
C8490

Bayesian statistical methods have become widely used for data
analysis and modelling in recent years, and the BUGS software has
become the most popular software for Bayesian analysis worldwide.
Authored by the team that originally developed this software, The
BUGS Book provides a practical introduction to this program and its
use. The text presents complete coverage of all the functionalities of
BUGS, including prediction, missing data, model criticism, and prior
sensitivity. It also features a large number of worked examples and
a wide range of applications from various disciplines.

The book introduces regression models, techniques for criticism
and comparison, and a wide range of modelling issues before
going into the vital area of hierarchical models, one of the most
common applications of Bayesian methods. It deals with essentials
of modelling without getting bogged down in complexity. The book
emphasises model criticism, model comparison, sensitivity analysis
to alternative priors, and thoughtful choice of prior distributions—all
those aspects of the “art” of modelling that are easily overlooked in
more theoretical expositions.

More pragmatic than ideological, the authors systematically work
through the large range of “tricks” that reveal the real power of the
BUGS software, for example, dealing with missing data, censoring,
grouped data, prediction, ranking, parameter constraints, and so
on. Many of the examples are biostatistical, but they do not require
domain knowledge and are generalisable to a wide range of other
application areas.

Full code and data for examples, exercises, and some solutions can
be found on the book’s website.

Lunn, Jackson, Best,
Thom

as, and Spiegelhalter
The BUGS Book

Statistics

David Lunn
Christopher Jackson

Nicky Best
Andrew Thomas

David Spiegelhalter

The BUGS Book
A Practical Introduction to

Bayesian Analysis

Texts in Statistical Science

C8490_Cover.indd 1 8/22/12 3:38 PM

Texts in Statistical Science

David Lunn
Christopher Jackson

Nicky Best
Andrew Thomas

David Spiegelhalter

The BUGS Book
A Practical Introduction to

Bayesian Analysis

CHAPMAN & HALL/CRC
Texts in Statistical Science Series
Series Editors
Francesca Dominici, Harvard School of Public Health, USA
Julian J. Faraway, University of Bath, UK
Martin Tanner, Northwestern University, USA
Jim Zidek, University of British Columbia, Canada

Analysis of Failure and Survival Data
P. J. Smith
The Analysis of Time Series —
An Introduction, Sixth Edition
C. Chatfield
Applied Bayesian Forecasting and Time Series
Analysis
A. Pole, M. West, and J. Harrison
Applied Categorical and Count Data Analysis
W. Tang, H. He, and X.M. Tu
Applied Nonparametric Statistical Methods,
Fourth Edition
P. Sprent and N.C. Smeeton
Applied Statistics — Handbook of GENSTAT
Analysis
E.J. Snell and H. Simpson
Applied Statistics — Principles and Examples
D.R. Cox and E.J. Snell
Applied Stochastic Modelling, Second Edition
B.J.T. Morgan
Bayesian Data Analysis, Second Edition
A. Gelman, J.B. Carlin, H.S. Stern,
and D.B. Rubin
Bayesian Ideas and Data Analysis: An Introduction
for Scientists and Statisticians
R. Christensen, W. Johnson, A. Branscum,
and T.E. Hanson
Bayesian Methods for Data Analysis,
Third Edition
B.P. Carlin and T.A. Louis
Beyond ANOVA — Basics of Applied Statistics
R.G. Miller, Jr.
The BUGS Book: A Practical Introduction to
Bayesian Analysis
D. Lunn, C. Jackson, N. Best, A. Thomas, and
D. Spiegelhalter
A Course in Categorical Data Analysis
T. Leonard
A Course in Large Sample Theory
T.S. Ferguson
Data Driven Statistical Methods
P. Sprent
Decision Analysis — A Bayesian Approach
J.Q. Smith

Design and Analysis of Experiments with SAS
J. Lawson
Elementary Applications of Probability Theory,
Second Edition
H.C. Tuckwell
Elements of Simulation
B.J.T. Morgan
Epidemiology — Study Design and
Data Analysis, Second Edition
M. Woodward
Essential Statistics, Fourth Edition
D.A.G. Rees
Exercises and Solutions in Biostatistical Theory
L.L. Kupper, B.H. Neelon, and S.M. O’Brien
Extending the Linear Model with R — Generalized
Linear, Mixed Effects and Nonparametric Regression
Models
J.J. Faraway
A First Course in Linear Model Theory
N. Ravishanker and D.K. Dey
Generalized Additive Models:
An Introduction with R
S. Wood
Generalized Linear Mixed Models:
Modern Concepts, Methods and Applications
W. W. Stroup
Graphics for Statistics and Data Analysis with R
K.J. Keen
Interpreting Data — A First Course
in Statistics
A.J.B. Anderson
Introduction to General and Generalized
Linear Models
H. Madsen and P. Thyregod
An Introduction to Generalized
Linear Models, Third Edition
A.J. Dobson and A.G. Barnett
Introduction to Multivariate Analysis
C. Chatfield and A.J. Collins
Introduction to Optimization Methods and Their
Applications in Statistics
B.S. Everitt
Introduction to Probability with R
K. Baclawski

Introduction to Randomized Controlled Clinical
Trials, Second Edition
J.N.S. Matthews
Introduction to Statistical Inference and Its
Applications with R
M.W. Trosset
Introduction to Statistical Limit Theory
A.M. Polansky
Introduction to Statistical Methods for
Clinical Trials
T.D. Cook and D.L. DeMets
Introduction to the Theory of Statistical Inference
H. Liero and S. Zwanzig
Large Sample Methods in Statistics
P.K. Sen and J. da Motta Singer
Linear Models with R
J.J. Faraway
Logistic Regression Models
J.M. Hilbe
Markov Chain Monte Carlo —
Stochastic Simulation for Bayesian Inference,
Second Edition
D. Gamerman and H.F. Lopes
Mathematical Statistics
K. Knight
Modeling and Analysis of Stochastic Systems,
Second Edition
V.G. Kulkarni
Modelling Binary Data, Second Edition
D. Collett
Modelling Survival Data in Medical Research,
Second Edition
D. Collett
Multivariate Analysis of Variance and Repeated
Measures — A Practical Approach for Behavioural
Scientists
D.J. Hand and C.C. Taylor
Multivariate Statistics — A Practical Approach
B. Flury and H. Riedwyl
Multivariate Survival Analysis and Competing Risks
M. Crowder
Pólya Urn Models
H. Mahmoud
Practical Data Analysis for Designed Experiments
B.S. Yandell
Practical Longitudinal Data Analysis
D.J. Hand and M. Crowder
Practical Multivariate Analysis, Fifth Edition
A. Afifi, S. May, and V.A. Clark
Practical Statistics for Medical Research
D.G. Altman
A Primer on Linear Models
J.F. Monahan

Principles of Uncertainty
J.B. Kadane
Probability — Methods and Measurement
A. O’Hagan
Problem Solving — A Statistician’s Guide,
Second Edition
C. Chatfield
Randomization, Bootstrap and Monte Carlo
Methods in Biology, Third Edition
B.F.J. Manly
Readings in Decision Analysis
S. French
Sampling Methodologies with Applications
P.S.R.S. Rao
Statistical Analysis of Reliability Data
M.J. Crowder, A.C. Kimber,
T.J. Sweeting, and R.L. Smith
Statistical Methods for Spatial Data Analysis
O. Schabenberger and C.A. Gotway
Statistical Methods for SPC and TQM
D. Bissell
Statistical Methods in Agriculture and Experimental
Biology, Second Edition
R. Mead, R.N. Curnow, and A.M. Hasted
Statistical Process Control — Theory and Practice,
Third Edition
G.B. Wetherill and D.W. Brown
Statistical Theory, Fourth Edition
B.W. Lindgren
Statistics for Accountants
S. Letchford
Statistics for Epidemiology
N.P. Jewell
Statistics for Technology — A Course in Applied
Statistics, Third Edition
C. Chatfield
Statistics in Engineering — A Practical Approach
A.V. Metcalfe
Statistics in Research and Development,
Second Edition
R. Caulcutt
Stochastic Processes: An Introduction,
Second Edition
P.W. Jones and P. Smith
Survival Analysis Using S — Analysis of
Time-to-Event Data
M. Tableman and J.S. Kim
The Theory of Linear Models
B. Jørgensen
Time Series Analysis
H. Madsen
Time Series: Modeling, Computation, and Inference
R. Prado and M. West

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2012 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130227

International Standard Book Number-13: 978-1-4665-8666-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface xiii

1 Introduction: Probability and parameters 1
1.1 Probability . 1
1.2 Probability distributions . 5
1.3 Calculating properties of probability distributions 7
1.4 Monte Carlo integration . 8

2 Monte Carlo simulations using BUGS 13
2.1 Introduction to BUGS . 13

2.1.1 Background . 13
2.1.2 Directed graphical models 13
2.1.3 The BUGS language 15
2.1.4 Running BUGS models 16
2.1.5 Running WinBUGS for a simple example 17

2.2 DoodleBUGS . 21
2.3 Using BUGS to simulate from distributions 22
2.4 Transformations of random variables 24
2.5 Complex calculations using Monte Carlo 26
2.6 Multivariate Monte Carlo analysis 27
2.7 Predictions with unknown parameters 29

3 Introduction to Bayesian inference 33
3.1 Bayesian learning . 33

3.1.1 Bayes’ theorem for observable quantities 33
3.1.2 Bayesian inference for parameters 34

3.2 Posterior predictive distributions 36
3.3 Conjugate Bayesian inference 36

3.3.1 Binomial data . 37
3.3.2 Normal data with unknown mean, known variance . . 41

3.4 Inference about a discrete parameter 45
3.5 Combinations of conjugate analyses 49
3.6 Bayesian and classical methods 51

3.6.1 Likelihood-based inference 52
3.6.2 Exchangeability . 52
3.6.3 Long-run properties of Bayesian methods 53

v

vi The BUGS Book

3.6.4 Model-based vs procedural methods 54
3.6.5 The “likelihood principle” 55

4 Introduction to Markov chain Monte Carlo methods 57
4.1 Bayesian computation . 57

4.1.1 Single-parameter models 57
4.1.2 Multi-parameter models 59
4.1.3 Monte Carlo integration for evaluating posterior inte-

grals . 61
4.2 Markov chain Monte Carlo methods 62

4.2.1 Gibbs sampling . 63
4.2.2 Gibbs sampling and directed graphical models 64
4.2.3 Derivation of full conditional distributions in BUGS . 68
4.2.4 Other MCMC methods 68

4.3 Initial values . 70
4.4 Convergence . 71

4.4.1 Detecting convergence/stationarity by eye 72
4.4.2 Formal detection of convergence/stationarity 73

4.5 Efficiency and accuracy . 77
4.5.1 Monte Carlo standard error of the posterior mean . . 77
4.5.2 Accuracy of the whole posterior 78

4.6 Beyond MCMC . 79

5 Prior distributions 81
5.1 Different purposes of priors 81
5.2 Vague, “objective,” and “reference” priors 82

5.2.1 Introduction . 82
5.2.2 Discrete uniform distributions 83
5.2.3 Continuous uniform distributions and Jeffreys prior . . 83
5.2.4 Location parameters 84
5.2.5 Proportions . 84
5.2.6 Counts and rates . 85
5.2.7 Scale parameters . 87
5.2.8 Distributions on the positive integers 88
5.2.9 More complex situations 89

5.3 Representation of informative priors 89
5.3.1 Elicitation of pure judgement 90
5.3.2 Discounting previous data 93

5.4 Mixture of prior distributions 95
5.5 Sensitivity analysis . 97

Contents vii

6 Regression models 103
6.1 Linear regression with normal errors 103
6.2 Linear regression with non-normal errors 107
6.3 Non-linear regression with normal errors 109
6.4 Multivariate responses . 112
6.5 Generalised linear regression models 114
6.6 Inference on functions of parameters 118
6.7 Further reading . 119

7 Categorical data 121
7.1 2 × 2 tables . 121

7.1.1 Tables with one margin fixed 122
7.1.2 Case-control studies 125
7.1.3 Tables with both margins fixed 126

7.2 Multinomial models . 126
7.2.1 Conjugate analysis . 126
7.2.2 Non-conjugate analysis — parameter constraints . . . 128
7.2.3 Categorical data with covariates 129
7.2.4 Multinomial and Poisson regression equivalence 131
7.2.5 Contingency tables . 132

7.3 Ordinal regression . 132
7.4 Further reading . 134

8 Model checking and comparison 137
8.1 Introduction . 137
8.2 Deviance . 138
8.3 Residuals . 140

8.3.1 Standardised Pearson residuals 140
8.3.2 Multivariate residuals 142
8.3.3 Observed p-values for distributional shape 143
8.3.4 Deviance residuals and tests of fit 145

8.4 Predictive checks and Bayesian p-values 147
8.4.1 Interpreting discrepancy statistics — how big is big? . 147
8.4.2 Out-of-sample prediction 148
8.4.3 Checking functions based on data alone 148
8.4.4 Checking functions based on data and parameters . . 152
8.4.5 Goodness of fit for grouped data 155

8.5 Model assessment by embedding in larger models 157
8.6 Model comparison using deviances 159

8.6.1 pD: The effective number of parameters 159
8.6.2 Issues with pD . 161
8.6.3 Alternative measures of the effective number of pa-

rameters . 164
8.6.4 DIC for model comparison 165
8.6.5 How and why does WinBUGS partition DIC and pD? 167

viii The BUGS Book

8.6.6 Alternatives to DIC 168
8.7 Bayes factors . 169

8.7.1 Lindley–Bartlett paradox in model selection 171
8.7.2 Computing marginal likelihoods 172

8.8 Model uncertainty . 173
8.8.1 Bayesian model averaging 173
8.8.2 MCMC sampling over a space of models 173
8.8.3 Model averaging when all models are wrong 175
8.8.4 Model expansion . 176

8.9 Discussion on model comparison 177
8.10 Prior-data conflict . 178

8.10.1 Identification of prior-data conflict 179
8.10.2 Accommodation of prior-data conflict 180

9 Issues in Modelling 185
9.1 Missing data . 185

9.1.1 Missing response data 186
9.1.2 Missing covariate data 189

9.2 Prediction . 193
9.3 Measurement error . 195
9.4 Cutting feedback . 201
9.5 New distributions . 204

9.5.1 Specifying a new sampling distribution 204
9.5.2 Specifying a new prior distribution 205

9.6 Censored, truncated, and grouped observations 206
9.6.1 Censored observations 206
9.6.2 Truncated sampling distributions 208
9.6.3 Grouped, rounded, or interval-censored data 209

9.7 Constrained parameters . 211
9.7.1 Univariate fully specified prior distributions 211
9.7.2 Multivariate fully specified prior distributions 211
9.7.3 Prior distributions with unknown parameters 214

9.8 Bootstrapping . 214
9.9 Ranking . 215

10 Hierarchical models 219
10.1 Exchangeability . 219
10.2 Priors . 223

10.2.1 Unit-specific parameters 223
10.2.2 Parameter constraints 223
10.2.3 Priors for variance components 225

10.3 Hierarchical regression models 227
10.3.1 Data formatting . 230

10.4 Hierarchical models for variances 237
10.5 Redundant parameterisations 240

Contents ix

10.6 More general formulations . 242
10.7 Checking of hierarchical models 242
10.8 Comparison of hierarchical models 249

10.8.1 “Focus”: The crucial element of model comparison in
hierarchical models . 250

10.9 Further resources . 252

11 Specialised models 253
11.1 Time-to-event data . 253

11.1.1 Parametric survival regression 254
11.2 Time series models . 257
11.3 Spatial models . 262

11.3.1 Intrinsic conditionally autoregressive (CAR) models . 263
11.3.2 Supplying map polygon data to WinBUGS and creat-

ing adjacency matrices 264
11.3.3 Multivariate CAR models 268
11.3.4 Proper CAR model . 269
11.3.5 Poisson-gamma moving average models 269
11.3.6 Geostatistical models 270

11.4 Evidence synthesis . 273
11.4.1 Meta-analysis . 273
11.4.2 Generalised evidence synthesis 274

11.5 Differential equation and pharmacokinetic models 278
11.6 Finite mixture and latent class models 280

11.6.1 Mixture models using an explicit likelihood 283
11.7 Piecewise parametric models 286

11.7.1 Change-point models 286
11.7.2 Splines . 288
11.7.3 Semiparametric survival models 288

11.8 Bayesian nonparametric models 291
11.8.1 Dirichlet process mixtures 293
11.8.2 Stick-breaking implementation 293

12 Different implementations of BUGS 297
12.1 Introduction — BUGS engines and interfaces 297
12.2 Expert systems and MCMC methods 298
12.3 Classic BUGS . 299
12.4 WinBUGS . 300

12.4.1 Using WinBUGS: compound documents 301
12.4.2 Formatting data . 301
12.4.3 Using the WinBUGS graphical interface 304
12.4.4 Doodles . 308
12.4.5 Scripting . 308
12.4.6 Interfaces with other software 310
12.4.7 R2WinBUGS . 311

x The BUGS Book

12.4.8 WBDev . 313
12.5 OpenBUGS . 315

12.5.1 Differences from WinBUGS 317
12.5.2 OpenBUGS on Linux 317
12.5.3 BRugs . 318
12.5.4 Parallel computation 319

12.6 JAGS . 320
12.6.1 Extensibility: modules 321
12.6.2 Language differences 321
12.6.3 Other differences from WinBUGS 324
12.6.4 Running JAGS from the command line 325
12.6.5 Running JAGS from R 326

Appendix A BUGS language syntax 329
A.1 Introduction . 329
A.2 Distributions . 329

A.2.1 Standard distributions 329
A.2.2 Censoring and truncation 330
A.2.3 Non-standard distributions 331

A.3 Deterministic functions . 331
A.3.1 Standard functions . 331
A.3.2 Special functions . 331
A.3.3 Add-on functions . 332

A.4 Repetition . 332
A.5 Multivariate quantities . 333
A.6 Indexing . 334

A.6.1 Functions as indices 334
A.6.2 Implicit indexing . 334
A.6.3 Nested indexing . 334

A.7 Data transformations . 335
A.8 Commenting . 335

Appendix B Functions in BUGS 337
B.1 Standard functions . 337
B.2 Trigonometric functions . 337
B.3 Matrix algebra . 337
B.4 Distribution utilities and model checking 340
B.5 Functionals and differential equations 341
B.6 Miscellaneous . 342

Appendix C Distributions in BUGS 343
C.1 Continuous univariate, unrestricted range 343
C.2 Continuous univariate, restricted to be positive 345
C.3 Continuous univariate, restricted to a finite interval 349
C.4 Continuous multivariate distributions 350

Contents xi

C.5 Discrete univariate distributions 351
C.6 Discrete multivariate distributions 354

Bibliography 357

Index 373

This page intentionally left blankThis page intentionally left blank

Preface

History Markov chain Monte Carlo (MCMC) methods, in which plausible
values for unknown quantities are simulated from their appropriate probability
distribution, have revolutionised the practice of statistics. For more than 20
years the BUGS project has been at the forefront of this movement. The BUGS
project began in Cambridge, United Kingdom, in 1989, just as Alan Gelfand
and Adrian Smith were working 80 miles away in Nottingham on their classic
Gibbs sampler paper (Gelfand and Smith, 1990) that kicked off the revolution.
But we never communicated (except through the intermediate node of David
Clayton) and whereas the Gelfand–Smith approach used image processing as
inspiration, the philosophy behind BUGS was rooted more in techniques for
handling uncertainty in artificial intelligence using directed graphical models
and what came to be called Bayesian networks (Pearl, 1988). Lunn et al.
(2009b) lay out all this history in greater detail.

Some people have accused Markov chain Monte Carlo methods of being
slow, but nothing could compare with the time it has taken for this book to
be written! The first proposal dates from 1995, but things got in the way, as
they do, and it needed a vigorous new generation of researchers to finally get
it finished. It is slightly galling that much of the current book could have been
written in the mid-1990s, since the basic ideas of the software, the language
for model description, and indeed some of the examples are unchanged. Nev-
ertheless there have been important developments in the extended gestational
period of the book, for example, techniques for model criticism and compar-
ison, implementation of differential equations and nonparametric techniques,
and the ability to run BUGS code within a range of alternative programs.

The BUGS project is rooted in the idea of generic reusable components that
can be put together as desired, like a child’s construction set but not quite as
colourful. In this book we typically tackle each of these components one by
one using deliberately simplified examples, but hopefully it will be clear that
they can be easily assembled into arbitrarily complex models. This flexibility
has enabled BUGS to be applied in areas that we had never dreamed about,
which is gratifying. But it is also important to note that in many situations
BUGS may not be the most efficient method, and there are many things it
cannot do. Yet. . .

What’s in the book? Perhaps we should start by saying what is not in
the book. First, there is minimal statistical theory, neither of statistical infer-

xiii

xiv The BUGS Book

ence nor of Markov chain Monte Carlo methods (although a presumption of
some familiarity with probability theory is made). This is partly to keep the
book to a manageable length, but also because the very way in which BUGS
works removes the need for much of the theory that is taught in standard
Bayesian statistics courses. Second, we do not cover decision theory, as BUGS
has been designed for handling Bayesian inferences expressed as an appro-
priate posterior distribution. Finally, we take it for granted that a Bayesian
approach is desired, and so barely bother to lay out the reasons why this may
be appropriate.

A glance at the chapter contents will reveal that we introduce regression
models, techniques for criticism and comparison, and a wide range of mod-
elling issues before going into the vital and traditional Bayesian area of hi-
erarchical models. This decision came after considerable thought and experi-
mentation, and was based on the wish to deal with the essentials of modelling
without getting bogged down in complexity. Our aim is to bring to the fore-
front model criticism, model comparison, sensitivity analysis to alternative
priors, and thoughtful choice of prior distributions — all those aspects of the
“art” of modelling that are easily overlooked in more theoretical expositions.
But we have also really enjoyed going systematically through the large range
of “tricks” that reveal the real power of the BUGS software: for example,
dealing with missing data, censoring, grouped data, prediction, ranking, pa-
rameter constraints, and so on.

Our professional background has meant that many of the examples are
biostatistical, but they do not require domain knowledge and hopefully it will
be clear that they are generalisable to a wide range of other application areas.
Full code and data for the examples, exercises, and some solutions can all be
found on the book website: www.mrc-bsu.cam.ac.uk/bugs/thebugsbook.

The BUGS approach clearly separates the model description from the “en-
gine,” or algorithms and software, used to actually do the simulations. A brief
introduction to WinBUGS is given in Chapter 2, but fully detailed instruc-
tions of how to run WinBUGS and similar software have been deferred to the
final chapter, 12, and a reference guide to the modelling language is given in
the appendices. Since BUGS now comes in a variety of flavours, we have tried
to ensure that the book works for WinBUGS, OpenBUGS, and JAGS, and
any differences have been highlighted. Nevertheless the software is constantly
improving, and so in some areas the book is not completely prescriptive but
tries to communicate possible developments.

Finally, we acknowledge there are many shades of Bayesianism: our own
philosophy is more pragmatic than ideological and doubtless there will be
some who will continue to spurn our rather informal attitude. An example of
this informality is our use of the term ‘likelihood’, which is sometimes used
when referring to a sampling distribution. We doubt this will lead to confusion.

Preface xv

How to use the book. Our intended audience comprises anyone who would
like to apply Bayesian methods to real-world problems. These might be prac-
tising statisticians, or scientists with a good statistical background, say famil-
iarity with classical statistics and some calculus-based probability and math-
ematical statistics. We do not assume familiarity with Bayesian methods or
MCMC. The book could be used for self-learning, for short courses, and for
longer courses, either by itself or in combination with a textbook such as Gel-
man et al. (2004) or Carlin and Louis (2008).

Chapters 1 to 6 provide a basic introduction up to regression modelling,
which should be a review for those with some experience with Bayesian meth-
ods and BUGS. Beyond that there should be new material, even for experi-
enced users. For a one-semester course we would recommend Chapters 1 to
6, most of Chapter 8 on model criticism and comparison, and Chapter 10 on
hierarchical models. A longer course could select from the wide range of is-
sues and models outlined in Chapters 7, 9 and 11, depending on what is most
relevant for the audience.

Whether studying on your own or as part of a course, instructions for run-
ning the WinBUGS software are given briefly in Chapter 2 and fully in Chap-
ter 12. A full explanation of BUGS model syntax and a list of functions and
distributions are given in the appendices. Chapter 12 explains how Open-
BUGS and JAGS differ from WinBUGS and gives examples of how all vari-
eties of BUGS can be conveniently run from other software, in particular from
R.

Other sources. If an accompanying text on the underlying theory of
Bayesian inference is required, possibilities include Gelman et al. (2004), Car-
lin and Louis (2008) and Lee (2004), with Bernardo and Smith (1994) pro-
viding a deeper treatment. Other books focus explicitly on BUGS: Ntzoufras
(2009) provides a detailed exposition of WinBUGS with accompanying the-
ory, Gelman and Hill (2007) explore both standard and hierarchical regression
models using both R and BUGS, while the texts by Congdon (2003, 2005,
2006, 2010) explore a staggering range of applications of BUGS that we could
not hope to match. Jackman (2009) covers both theory and BUGS imple-
mentations within social science, ecology applications are covered by Kéry
(2010) and Kéry and Schaub (2011), while Kruschke (2010) gives a tutorial in
Bayesian analysis and BUGS with applications in psychology. Expositions on
MCMC theory include Gamerman and Lopes (2006) and Brooks et al. (2011),
while Gilks et al. (1996) is still relevant even after many years.

Finally, there are numerous websites that provide examples and teaching
material, and when tackling a new problem we strongly recommend trying to
find these using appropriate search terms and adapting someone else’s code.
We have always been impressed by the great generosity of BUGS users in
sharing code and ideas, perhaps helped by the fact that the software has
always been freely available.

xvi The BUGS Book

A suggested strategy for inference and reporting. Rather than leav-
ing it until later in the book, it seems appropriate to lay out at an early stage
the approach to modelling and reporting that we have tried to exemplify.
Bayesian analysis requires a specification of prior distributions and models for
the sampling distribution for the data. For prior distributions, we emphasise
that there is no such the thing as the “correct” prior, and instead recommend
exploring a range of plausible assumptions and conducting sensitivity analysis.
Regarding assumptions for the sampling distribution, throughout this book
we try to exemplify a reasonably consistent approach to modelling based on an
iterative cycle of fitting and checking. We recommend starting with fairly sim-
ple assumptions, cross-checking with graphics and informal checks of model fit
which can then suggest plausible elaborations. A final list of candidate models
can then be compared using more formal methods.

There have been limited “guidelines” for reporting Bayesian analyses, e.g.,
Spiegelhalter et al. (2004), Sung et al. (2005), and Johnson (2011) in a medical
context, and also BaSiS (2001). Naturally the data have to be summarised
numerically and graphically. We need to acknowledge that Bayesian methods
tend to be inherently more complex than classical analyses, and thus there is
an additional need for clarity with the aim that the analysis could be replicated
by another investigator who has access to the full data, with perhaps full
details of computational methods and code given online.

If “informative” priors are included, then the derivation of the prior from
an elicitation process or empirical evidence should be detailed. If the prior
assumptions are claimed to be “non-informative,” then this claim should be
justified and sensitivity analysis given. The idea of “inference robustness” (Box
and Tiao, 1973) is crucial: it would be best if competing models with similar
evidential support, or alternative prior distributions, gave similar conclusions,
but if this is not the case then the alternative conclusions must be clearly
reported. Where possible, full posterior distributions should be given for major
conclusions, particularly for skewed distributions.

Finally. We would like to thank, and apologise to, our publishers for being
so patient with the repeatedly deferred deadlines. Special thanks are extended
to Martyn Plummer for his contributions to the book and for keeping us on
our toes with his persistent efforts at doing everything better than us. Special
thanks also to Simon White for his contribution, and to four reviewers, whose
comments were extremely helpful. Thanks also to our friends, colleagues, and
families for their support and words of encouragement, such as “Have you not
finished that bloody book yet?” Many thanks to the (tens of) thousands of
users out there, whose patience, enthusiasm, and sense of humour are all very
much appreciated. And finally, we are deeply grateful to all those who have
freely contributed their knowledge and insight to the BUGS project over the
years. We shall be thinking of you when we get to share out whatever minimal
royalties come our way!

Preface xvii

All MATLAB R© files found in the book are available for download from the
publisher’s Web site. MATLAB is a registered trademarks of The Mathworks,
Inc. For product information please contact:

The Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

This page intentionally left blankThis page intentionally left blank

1

Introduction: Probability and parameters

1.1 Probability

The Reverend Thomas Bayes (1702–1761) of Tunbridge Wells started his fa-
mous paper (Bayes, 1763) as shown in Figure 1.1: In modern language we

FIGURE 1.1

Reproduction of part of the original printed version of Bayes (1763): note the
font used for an ‘s’ when starting a word.

might translate this into the following problem: suppose a random quantity
has a binomial distribution depending on a true underlying ‘failure’ proba-
bility θ, and we observe r failures out of n observations, then what is the
chance that θ lies between two specified values, say θ1 and θ2? We will return
to Bayes’ main achievement later, but first we should pay careful attention
to his precise use of the terms to describe uncertainty. He uses ‘probability’
to define the underlying risk of the event occurring (which we have called θ),
and this is standard usage for a fixed but currently unknown risk. However, he
also describes the uncertainty concerning θ, using the term “chance.” This is
a vitally important component of his argument (although we shall revisit his
use of specific terminology in the next section). Essentially he wants to make

1

2 The BUGS Book

a direct numerical expression of uncertainty about an unknown parameter in
a probability model: this usage appeared natural to Bayes but is still deeply
controversial.

So what do we mean, in general, by “probability”? From a mathematical
perspective there is no great problem: probabilities of events are numbers be-
tween 0 and 1, where 0 represents impossibility and 1 certainty, which obey
certain rules of addition (for mutually exclusive events) and multiplication
(for conditional events). A “random variable” Y is said to have a probability
distribution p(y) when sets of possible realisations y of Y are assigned proba-
bilities, whether Y is discrete or continuous. If the set of possible probability
distributions for Y can be limited to a family indexed by a parameter θ, then
we may write p(y|θ) for the distribution, which now depends on some fixed
but unknown θ (note that capital Roman letters are generally used for poten-
tially observable quantities, lower case Roman for observed quantities, Greek
letters for unobservable parameters).

Using standard statistical techniques we can derive estimates, confidence
intervals, and hypothesis tests concerning θ. The particular procedures cho-
sen are justified in terms of their properties when used in repeated similar
circumstances. This is known as the “classical” or “frequentist” approach to
statistical inference, since it is based on long-run frequency properties of the
procedures under (hypothetical) repeated application. See § 3.6 for further
discussion on classical procedures.

But Bayes’ usage went beyond this. He wanted to express uncertainty about
θ, which is not directly observable, as a probability distribution p(θ). Thus the
crucial step taken in Bayesian analysis is to consider θ as a random variable
(in principle we should therefore start using capital and lower case Greek
letters, but this is not generally done and does not seem to lead to undue
confusion). As we shall see later in Chapter 3, when a distribution p(θ) is
directly specified it is known as a “prior” distribution, whereas if it arises as
a result of conditioning on some observed data y, it is known as a “posterior”
distribution and given the notation p(θ|y). Of course, parameters of interest
may reflect different characteristics depending on the questions being asked:
for example, the mean treatment effect in a population, the true variability
across individuals, and so on.

Example 1.1.1. Surgery: direct specification of a prior distribution
Suppose we are going to start to monitor mortality rates for a high-risk operation
in a new hospital. Experience in other hospitals indicates that the risk θ for
each patient is expected to be around 10%, and it would be fairly surprising (all
else being equal) if it were less than 3% or more than 20%. Figure 1.2 is seen to
represent this opinion as a formal probability distribution – in fact this distribution
has a specific mathematical form which will be explored in the next section.

We note that we are talking about the underlying risk/long-term rate, and not
the actual observed proportion of deaths which would, of course, be subject to
additional chance variability. We also note the common habit of referring to the

Introduction: Probability and parameters 3

0 10 20 30 40 50

0
2

4
6

8

Mortality risk (%)

P
ro

ba
bi

lit
y

de
ns

ity

FIGURE 1.2

A prior distribution supporting risks of mortality between 3% and 20%, and ex-
pected to be around 10%. The shaded area indicates risks greater than 15%.

underlying risk of mortality both as, say, “10%” and a probability (which must lie
between 0 and 1) of “0.1” – we hope the context will make the meaning clear.

For those used to standard statistical analysis, a distribution such as that
shown in Figure 1.2 may be doubly suspect: first, it is treating an unknown
parameter as a random variable, and, second, the distribution apparently
expresses opinion rather than being solely based on formal data analysis. In
answer to the first concern, what advantages are there to providing a direct
probability distribution for such quantities of interest? We might summarise
these as follows:

1. The analysis tells us precisely what we want to know: what are the plau-
sible values for the parameter of interest? Presentation of conclusions is
therefore intuitive to a general audience.

2. There is no need for p-values or α levels as measures of evidence, as we
can directly provide the probability of hypotheses of interest: for exam-
ple, the shaded tail area shown in Figure 1.2 expresses the probability

4 The BUGS Book

that the underlying mortality risk is greater than 15%: we shall see later
that this is 0.17.

3. There are no (difficult to interpret) confidence intervals: we can just
report that, say, a central range of 3% to 20% has 90% probability.

4. It is generally straightforward to make predictions (see §2.7, §3.2).
5. The process extends naturally to a theory of rational decision making

(Berger, 1985; Bernardo and Smith, 1994), although we shall not be
concerned with this topic in this book.

6. Importantly, there is a procedure for adapting the distribution in the
light of additional evidence: i.e., Bayes’ theorem allows us to learn from
experience and turn a prior distribution into a posterior distribution.

And what about the potential disadvantages of this apparently intuitive
approach? These may become more apparent later, but briefly we could list
the following:

1. Bayes’ theorem tells us how to learn from new evidence, but inevitably
requires the specification of what we thought before that evidence was
taken into account. Specification of one or more such “prior” distribu-
tions is an additional responsibility of the analyst.

2. There is an explicit allowance for quantitative subjective judgement in
the analysis, which is controversial within a supposedly “objective” sci-
entific setting (although of course one could argue that a standard sta-
tistical analysis rests on many assumptions that are not testable given
the available data).

3. The analysis may be more complex than a traditional approach.

4. Computation may be more difficult (which is precisely why BUGS has
been developed).

5. There are no established standards for Bayesian reporting (although
some suggestions have been made; see the discussion in our Preface).

Most of these potential difficulties relate to accountability, in the sense of
ensuring that the analysis is transparent, reproducible, and not unreason-
ably influenced by uncheckable assumptions that may not necessarily be gen-
erally agreed. These issues are having to be faced by journal editors and
other bodies acting as “gatekeepers” for the dissemination of claims made
using Bayesian analyses. For example, the Center for Devices and Radiolog-
ical Health (CDER) of the U.S. Food and Drug Administration (FDA) has
published guidelines for the use of Bayesian methods in submissions for the
approval of new medical devices (U.S. Department of Health and Human Ser-
vices, 2010). These guidelines emphasise the need to be explicit about the

Introduction: Probability and parameters 5

evidential basis for prior assumptions, conducting sensitivity analysis, provid-
ing software for reproducing the analysis, and so on, and we shall repeatedly
return to these themes later.

1.2 Probability distributions

A wide range of parametric probability distributions is described in Ap-
pendix C, with BUGS notation. But how do we know which distribution to
use in a particular context? Choice of the appropriate distribution inevitably
depends on knowledge of the specific subject matter and a strong degree of
judgement. We can distinguish between four different scenarios:

1. Choice of a fully specified sampling distribution, say p(y): for example,
if Y = the number of “heads” when tossing a single fair coin, taking on
the values 0 or 1, we may be happy to agree that Y ∼ Bernoulli(0.5) or,
equivalently, Y ∼ Binomial(0.5, 1).

2. Choice of the functional form of a parametric sampling distribution for
an observation, say p(y|θ): for example, if Y = annual number of road
accidents at a certain location, we may assume that Y ∼ Poisson(θ) for
some annual rate θ.

3. Choice of a fully specified “prior” distribution, say p(θ): for example,
if θ is a proportion, we might assume a uniform distribution between 0
and 1, so that θ ∼ Uniform(0, 1).

4. Choice of the functional form of a parametric distribution for param-
eters, say p(θ|μ): in Chapter 10 we shall describe how “hierarchical”
models include distributions for parameters that themselves contain un-
known parameters, for example, when θ has a normal distribution with
mean μ and variance ω2, so that θ ∼ Normal(μ, ω2).

We shall use standard notation for dealing with probability distributions.
For example, a binomial distribution representing the number of events in n
trials, each with probability θ of occurring, will be written Binomial(θ, n):
a variable R could be represented as having such a distribution either by
R|θ, n ∼ Binomial(θ, n) or p(r|θ, n) = Binomial(θ, n), where r is the reali-
sation of R. Pr(A) is used to denote the probability of a general event A.
Often we drop the explicit conditioning, and thus Bayes’ original aim can be
expressed formally as follows: if R ∼ Binomial(θ, n), what is Pr(θ1 < θ <
θ2|r, n)?

Random variables, whether denoted by Roman or Greek letters, have a
range of standard properties arising from probability theory. Here we use

6 The BUGS Book

notation suitable for continuous quantities, which can be easily translated to
discrete quantities by substituting summation for integration.

Consider a generic probability distribution p(θ) for a single parameter θ.
All the usual properties of probability distributions are defined, for example,

Distribution function: F (θ∗) = Pr(θ < θ∗), sometimes referred to as the
“tail area.”

Expectation: E[θ] =
∫
θp(θ) dθ, where the integral is replaced by a summa-

tion for discrete θ.

Variance, standard deviation and precision:
V ar[θ] =

∫
(θ − E[θ])2p(θ) dθ = E[θ2] − E2[θ]; standard deviation =√

variance; precision =1/variance.

Percentiles: the 100qth percentile is the value θq such that F (θq) = q, in
particular the median is the 50th percentile θ0.5.

% interval: A subset of values of θ with specified total probability: generally
a 100q% interval will be (θ1, θ2) such that F (θ2) − F (θ1) = q. Such an
interval might be “equi-tailed,” in that F (θ2) = 1 − q/2, F (θ1) = q/2,
although for asymmetric distributions narrower intervals will be possi-
ble. The narrowest interval available is known as the Highest Posterior
Density (HPD) interval: see below for an example.

Mode: the value of θ that maximises p(θ).

These properties extend naturally to multivariate distributions, although
percentiles are not generally uniquely defined.

Example 1.2.1. Surgery (continued): properties of a probability distribution
The distribution shown in Figure 1.2 is actually a Beta(3, 27), which, from Ap-
pendix C.3, we find has probability density proportional to θ2(1 − θ)26. From
formulae in Appendix C.3 and standard software we can obtain the following
properties: mean = 3/(3+27) = 0.1, standard deviation 0.054, variance 0.003,
median 0.091, mode 0.071. An equi-tailed 90% interval is (0.03, 0.20), which has
width 0.17, but a narrower HPD interval is (0.02, 0.18) with width 0.16.

Fitting parametric distributions to expressed subjective judgements will be dis-
cussed in Chapter 5.

Bayesian analysis is based on expressing uncertainty about unknown quanti-
ties as formal probability distributions. This provides an agreed mathematical
framework, but still leaves the possibility for confusion arising from the use
of terms such as “chance,” “risk,” “uncertainty” and so on. Some consistency
in terminology may be useful. In Bayes’ original aims shown in Figure 1.1, he
used “probability” to refer to uncertainty concerning an observable event and

Introduction: Probability and parameters 7

“chance” to refer to uncertainty concerning that probability. We shall diverge
from this usage: specifically, it seems more natural to use “chance” to refer to
“frequentist” or agreed probabilities, say based on physical characteristics of a
coin, while retaining the term “probability” for more subjective assessments.
Furthermore, if we were being properly pedantic, we might say “the chance
of this coin coming up heads is 0.5,” with the understanding that this was
an agreed probability based on physical assumptions about the symmetry of
the coin, i.e., it was a property of the coin itself, while saying “my probability
that someone will be killed by falling junk from space in the next 10 years is
0.2,” clearly communicating that this is a subjective judgement on my part,
perhaps expressing my willingness to bet on the outcome, and is a property
of my relationship with the event, conditional on all the background evidence
available to me, and not solely of the event itself. This essentially subjective
interpretation of all probability statements arising in Bayesian analysis will
be implicit in all subsequent discussion.

1.3 Calculating properties of probability distributions

Bayesian inference entirely rests on reporting properties of probability distri-
butions for unknown parameters of interest, and therefore efficient calculation
of tail areas, expectations, and so on is vital.

Options for calculating these quantities include:

Exact analytic: for example, when tail areas can be calculated exactly using
algebraic formulae.

Exact numeric: where, although no closed-form algebraic formula is avail-
able, the quantity can be calculated to arbitrary precision, such as tail
areas of a normal distribution.

Approximate analytic: for example, using normal approximations to dis-
tributions of random variables.

Physical experimentation: for example, by physically repeating an exper-
iment many times to determine the empirical proportion of “successes.”

Computer simulation: using appropriate functions of random numbers,
generate a large sample of instances of the random variable and em-
pirically estimate the property of interest based on the sample. This
technique is popularly known as Monte Carlo, and this will be the focus
of the methods used in this book.

8 The BUGS Book

1.4 Monte Carlo integration

Monte Carlo integration is a widely used technique in many branches of
mathematics and engineering and is conceptually very simple. Suppose the
random variable X has arbitrary probability distribution p(x) and we have
an algorithm for generating a large number of independent realisations
x(1), x(2), ..., x(T) from this distribution. Then

E(X) =

∫
xp(x) dx ≈ 1

T

T∑

t=1

x(t).

In other words, the theoretical expectation of X may be approximated by
the sample mean of a set of independent realisations drawn from p(x). By
the Strong Law of Large Numbers, the approximation becomes arbitrarily
exact as T → ∞. Monte Carlo integration extends straightforwardly to the
evaluation of more complex integrals. For example, the expectation of any
function of X , g(X), can be calculated as

E(g(X)) =

∫
g(x)p(x) dx ≈ 1

T

T∑

t=1

g(x(t)),

that is, the sample mean of the functions of the simulated values. In particular,
since the variance of X is simply a function of the expectations of X and X2,
this too may be approximated in a natural way using Monte Carlo integration.
Not surprisingly, this estimate turns out to be the sample variance of the
realisations x(1), x(2), ..., x(T) from p(x).

Another important function of X is the indicator function, I(l < X <
u), which takes value 1 if X lies in the interval (l, u) and 0 otherwise. The
expectation of I(l < X < u) with respect to p(x) gives the probability that X
lies within the specified interval, Pr(l < X < u), and may be approximated
using Monte Carlo integration by taking the sample average of the value of
the indicator function for each realisation x(t). It is straightforward to see that
this gives

Pr(l < X < u) ≈ number of realisations x(t) ∈ (l, u)

T
. (1.1)

In general, any desired summary of p(x) may be approximated by calculating
the corresponding summary of the sampled values generated from p(x), with
the approximation becoming increasingly exact as the sample size increases.
Hence the theoretical quantiles of p(x) may be estimated using the equivalent
empirical quantile in the sample, and the shape of the density p(x) may be
approximated by constructing a histogram (or alternatively a “kernel density
estimate” which effectively “smooths” the histogram) of the sampled values.

Introduction: Probability and parameters 9

Suppose we obtain an empirical mean Ê = Ê(g(X)) and variance V̂ =

V̂ ar(g(X)) based on T simulated values, and we consider Ê as the estimate

of interest. Then, since Ê is a sample mean based on T independent samples,
it has true sample variance V ar(g(X))/T , which may be estimated by V̂ /T .

Hence Ê has an estimated standard error

√
V̂ /T , which is known as theMonte

Carlo error : see §4.5 for further discussion of this concept. We note that this
may be reduced to any required degree of precision by increasing the number
of simulated values.

Example 1.4.1. Coins: a Monte Carlo approach to estimating tail areas
Suppose we want to know the probability of getting 2 or fewer heads when we
toss a fair coin 8 times. In formal terms, if Y ∼ Binomial(π, n), π = 0.5, n = 8,
then what is Pr(Y ≤ 2)? We can identify four methods:

1. An exact analytic approach uses knowledge of the first three terms of the
binomial distribution to give

Pr(Y ≤ 2) =
2∑

y=0

p (y|π = 0.5, n = 8)

=

(
8
0

)(
1

2

)8 (
1

2

)0

+

(
8
1

)(
1

2

)7 (
1

2

)1

+

(
8
2

)(
1

2

)6 (
1

2

)2

= 0.1445.

2. An approximate analytic approach might use our knowledge that E[Y] =
nπ = 4 and V ar[Y] = nπ(1−π) = 2 to create an approximate distribution
p(y) ≈ Normal(4, 2), giving rise to an estimate of Pr(Y ≤ 2) = Φ((2 −
4)/

√
2) = 0.079, or with a “continuity correction” Φ((2.5 − 4)/

√
2) =

0.144; the latter is a remarkably good approximation.

3. A physical approach would be to repeatedly throw a set of 8 coins and
count the proportion of trials where there were 2 or fewer heads. We did
this 10 times, observed 0/10 cases of 2 or fewer heads, and then got bored!

4. A simulation approach uses a computer to toss the coins! Many programs
have random number generators that produce an unstructured stream of
numbers between 0 and 1. By checking whether each of these numbers lies
above or below 0.5, we can simulate the toss of an individual fair coin, and
by repeating in sets of 8 we can simulate the simultaneous toss of 8 coins.
Figure 1.3 shows the empirical distributions after 100 and 10,000 trials and
compares with the true binomial distribution. It is clear that extending the
simulation improves the estimate of the required property of the underlying
probability distribution.

10 The BUGS Book

0 2 4 6 8

100 throws

Number of heads

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0 2 4 6 8

10000 throws

Number of heads

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0 2 4 6 8

True distribution

Number of heads

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

FIGURE 1.3

Distribution of the number of “heads” in trials of 8 tosses, from which we calculate
the proportion with 2 or fewer heads: (a) after 100 trials (0.160); (b) after 10,000
trials (0.1450); (c) the true binomial distribution (0.1445).

Suppose we consider an indicator function P2 which takes on the value of 1 when
there are 2 or fewer heads, 0 otherwise, so that P2 is a Bernoulli random quantity
with expectation π, which we can calculate to be 0.1445, and true variance π(1−
π) =0.124. The true Monte Carlo error for an estimate of π based on T simulated
values is therefore

√
π(1 − π)/T , corresponding to the classical standard error of

an estimate of π. Our estimates of π after 100 and 10,000 samples are 0.16
and 0.145, respectively, and so we can estimate Monte Carlo errors of 0.037 for
T = 100 and 0.0035 for T = 10, 000. If we took a classical statistical perspective
we could therefore calculate approximate confidence intervals for π of 0.16 ± 2
× 0.037 = (0.09, 0.23) after 100 iterations, and 0.145 ± 2 × 0.0035 = (0.138,
0.152): both comfortably include the true value of 0.1445.

The above results are enormously useful, but to see the real beauty of Monte
Carlo integration, suppose now that X is a random vector comprising k com-
ponents, X1, ..., Xk. Further suppose that x

(1),x(2), ...,x(T) are k-dimensional

realisations, with elements denoted x
(i)
j (i = 1, ..., T , j = 1, ..., k), from the

joint distribution p(x). Then for any j ∈ {1, ..., k}, x(1)j , x
(2)
j , ..., x

(T)
j represents

a sample from p(xj). In other words, we can make inferences with respect to
any marginal distribution by simply using those realisations that pertain to
the random variable(s) of interest, and ignoring all others. This result holds for
all possible marginal distributions, including those of arbitrary subsets of X.

Introduction: Probability and parameters 11

Such marginalisation, for example, integrating out of “nuisance” parameters,
is a key component of modern Bayesian inference.

One could argue that the whole development of Bayesian analysis was de-
layed for decades due to lack of suitable computational tools, which explains
why recent availability of high-performance personal computers has led to a
revolution in simulation-based Bayesian methods.

This page intentionally left blankThis page intentionally left blank

2

Monte Carlo simulations using BUGS

2.1 Introduction to BUGS

2.1.1 Background

BUGS stands for Bayesian inference Using Gibbs Sampling, reflecting the ba-
sic computational technique originally adopted (see Chapter 4). The BUGS
project began in 1989 and from the start was strongly influenced by develop-
ments in artificial intelligence in the 1980s. Briefly, these featured an explicit
attempt to separate what was known as the “knowledge base,” encapsulating
what was assumed about the state of the world, from the inference engine
“used to draw conclusions” in specific circumstances. The knowledge base
naturally makes use of a “declarative” form of programming, in which the
structure of our “model” for the world is described using a series of local re-
lationships that can often be conveniently expressed as a graph: see the next
section for further discussion of interpretation and computation on graphs. As
an essentially separate endeavour, one or more inference engines can be used
to compute results on the basis of observations in particular contexts.

This philosophy has been retained within the BUGS project, with a clear
separation between the BUGS language for specifying Bayesian models and
the various programs that might be used for actually carrying out the com-
putations. This book is primarily about the BUGS language and its power to
describe almost arbitrarily complex models using a very limited syntax. This
language has remained extremely stable over a long period. In contrast, pro-
grams to actually run BUGS models are in a state of constant development,
and so are only described in the final chapter of this book.

2.1.2 Directed graphical models

The basic idea of a graphical representation is to express the joint relationship
between all known and unknown quantities in a model through a series of
simple local relationships. Such a decomposition not only allows a simple
way of expressing and communicating the essential structure of the model,
but also provides the basis for computation. However, this is only possible if
substantial assumptions can be made about the qualitative structure of the
model, and these assumptions concern conditional independence: we shall use

13

14 The BUGS Book

the notation X ⊥⊥ Y |Z to represent the assumption that X is independent of
Y , conditional on fixing Z.

Suppose we have a set of quantities G arranged as a directed acyclic graph
(DAG), in which each quantity v ∈ G is represented as a node in the graph,
and arrows run into nodes from their direct influences or parents. Formally,
such a model represents the assumption that, conditional on its parent nodes
pa[v], each node v is independent of all other nodes in the graph except “de-
scendants” of v, where descendant has the obvious definition.

In the context of probability models, these conditional independence as-
sumptions imply that the full joint distribution of all the quantities G has a
simple factorisation in terms of the conditional distribution p(v|pa[v]) of each
node given its parents, so that

p(G) =
∏

v∈G
p(v|pa[v]) (2.1)

this conditional distribution may be “degenerate,” in the sense that the child
may be a logical function of its parents. Thus we only need to provide the
parent–child relationships in order to fully specify the model: the crucial idea
behind BUGS is that this factorisation forms the basis for both the model
description and the computational methods (§4.2.2).

Example 2.1.1. Family: a simple graphical model
The language of familial relationships is extremely useful when discussing DAGs.
For example, consider the graph shown in Figure 2.1, in which A, B, and D are
termed “founders,” as they have no parents, and A and B are parents of C,
which is in turn a parent (with D) of E and F . Considered as random quantities,
the conditional independence relationships exactly match those found in simple
Mendelian genetics. For example, A, B, and D are marginally independent, E and
F are conditionally independent given C and D, and C and D are also marginally
independent. However, say we observe E. Then this will induce a dependency
between C and D and between A and B, since two nodes without common
parents are only independent given no descendants have been observed. Using a
genetic analogy, once it is known a child has a particular gene, then the ancestors
are no longer probabilistically independent, in the sense that knowing the gene
was inherited from a particular ancestor reduces the chance that it came from
any other source. From the graph we can see that the joint distribution of the set
of quantities may be written

p(V) = p(A,B,C,D,E, F) = p(A)p(B)p(C|A,B)p(D)p(E|C,D)p(F |C,D)
(2.2)

To repeat, the crucial point is that we only need to specify these parent–child
conditional relationships in order to express the full joint distribution.

Monte Carlo simulations using BUGS 15

FE

DC

BA

FIGURE 2.1

A typical directed graphical model. Nodes represent variables in the model and
arrows show direct dependence between variables. If an arrow emanating from
one node points to another node, then the former is said to be a “parent” of the
latter; additionally, the latter is said to be a “child” of the former. For example,
D is a parent of F ; F is a child of D.

In this book we shall use graphs as an aid to communicating qualitative
conditional independence structure, emphasising that the graphical represen-
tation allows us to reduce “globally” complex models into a set of fairly simple
“local” components: furthermore we shall see this graphical structure not only
underlies the language used to represent such models, but also directly leads
to the computational procedures necessary to draw inferences in the light of
any available data.

2.1.3 The BUGS language

The BUGS language comprises syntax for a limited (but extensible — see
§12.4.8, §12.5, §12.6.1) list of functions and distributions which allow a series
of logical or stochastic local relationships between a node and its parents to
be expressed. By “chaining” these relationships together, a full joint distribu-
tion over all unknown quantities is expressed using the factorisation in (2.1).
The ideas are very similar to a spreadsheet, in which local relationships are
arranged into a directed graph so that when “founder” nodes are altered, the
implications are propagated through the graph to the “child-less” nodes which
form the conclusions. The BUGS language provides a similar representation,
except allowing stochastic as well as logical connectives. When combined with
a BUGS “engine,” inferences can be made on any unknown quantities in the
graph conditional on observed data, but instead of a spreadsheet that can only
work “down” the graph following the direction of the arrows, BUGS allows
you to fix the value of any node in the graph and establish plausible values

16 The BUGS Book

for all other nodes. Quantities are specified to be constants or data by giving
them values in a data file — see Chapter 12.

The BUGS language is “declarative,” and so in particular it does not matter
in which order the statements come (provided loop constraints are obeyed).
This is in contrast to more traditional statistical packages, which tend to use
a “procedural” language to execute commands in sequence. This can lead to
some perceived difficulties in BUGS model descriptions: for example, there is
no if-then-else construct.∗ So we can contrast two different approaches to
statistical packages:

Traditional approach:

1. Start with data, in some appropriate format.

2. Apply different statistical techniques to the data using a sequence
of commands.

3. Report estimates and intervals, and so on.

Graphical modelling approach:

1. Start with a model describing assumptions concerning the relation-
ships in the world, thus providing a full joint probability model for
all quantities, whether parameters or potentially observable data.

2. Offer up to the model whatever relevant data have been observed.

3. Use an appropriate engine to obtain inferences about all unobserved
quantities conditional on the observed data.

The BUGS syntax will be introduced through examples, with extensive
cross-references to a full listing in the appendices.

2.1.4 Running BUGS models

The currently available software applications for running BUGS models are
described in Chapter 12. Each program has the same basic functionality:

1. Checking the syntax of the model specification.

2. Reading in any data provided.

3. “Compiling” the BUGS model, which means constructing an internal
representation and working out the sampling methods to be used for
each stochastic node.

4. Starting the simulation at an appropriate set of values for the unknown
quantities.

∗But the step or equals functions can be used to define nodes conditionally on the values
of other nodes — see step or equals in the index for some examples.

Monte Carlo simulations using BUGS 17

5. In response to appropriate commands, simulate unknown quantities.

6. Report summary statistics and other tabular and graphical output.

The analyses in this book have been carried out using the currently most
popular engine: WinBUGS 1.4.3. This can be run interactively, performing
each of the above six (or more) steps one at a time; alternatively there is a
“script” facility to run an entire analysis in batch mode (§12.4.5). Scripts also
enable WinBUGS to be called from other software, and interfaces have been
developed for a variety of other packages (§12.4.6).

New developments are now made in the OpenBUGS program. This provides
a BUGS computation engine with a variety of interfaces, including one which is
very similar to WinBUGS. Another program for implementing BUGS models,
called JAGS, has been developed entirely independently (Plummer, 2003) and
is more portable to different computing platforms. More details about these
programs are provided in Chapter 12.

2.1.5 Running WinBUGS for a simple example

The following example illustrates the most basic use of BUGS.

Example 2.1.2. Coins: running WinBUGS
The model for Example 1.4.1 is

Y ∼ Binomial(0.5, 8)

and we want to know Pr(Y ≤ 2). This model is represented in the BUGS language
as

model {

Y ~ dbin(0.5, 8)

P2 <- step(2.5 - Y) # does Y = 2, 1 or 0?

}

P2 is a step function that will take on the value 1 if 2.5 - Y is ≥ 0, i.e., if Y is
2 or less, and 0 if Y is 3 or more: this corresponds to the indicator function used
in Example 1.4.1.

The following steps are used to run a basic model interactively in WinBUGS
(and in the graphical interface to OpenBUGS). This process is explained in more
detail for a more complex example in §12.4 and in the WinBUGS user manual
accessible from the Help menu.

1. Make a new document (New from the File menu) and type in the BUGS
model code, or open a document containing code which has been written
already (Open from the File menu).

2. Open Specification Tool from the Model menu. A dialog like the one
in Figure 2.2 will appear.

18 The BUGS Book

FIGURE 2.2

WinBUGS Model Specification Tool.

3. Highlight the word model in the BUGS code by double clicking on the word.
Click on check model. Any error messages are shown on the bottom left
of the screen, or model is syntactically correct will appear if there
are no errors.

4. There are no observed data in this model; therefore we can ignore load

data. See Example 3.3.2 for a simple example with observed data.

5. In this example it is sufficient to leave the number of parallel chains to run
(num of chains) at 1, but see §4.4.2 for an example of where running
more than one chain is helpful.

6. Click on compile. Again check for any error messages at the bottom left.

7. We can ignore load inits in this simple example. See §4.3 for an example
which needs initial values to be supplied by the user.

8. Click on gen inits. A message initial values generated, model

initialized should appear.

9. Open Update... from the Modelmenu (Figure 2.3) and Samples... from
the Inference menu (Figure 2.4).

10. Specify the nodes we want to monitor or record the sampled values for. In
this case, type P2 into the node box in the Sample Monitor Tool, and
click set. Similarly, type Y and click set.

Monte Carlo simulations using BUGS 19

FIGURE 2.3

WinBUGS Update Tool.

FIGURE 2.4

WinBUGS Sample Monitor Tool.

20 The BUGS Book

11. Type * into the node box in the Sample Monitor Tool, which means “all
monitored nodes,” and click trace to open a window where the sampled
values will appear as they are generated.†

12. Go to the Update Tool and type the number of samples to be generated in
updates. 10,000 are sufficient in this example. Click on Update to generate
the samples. See §12.4.3 for more information about the Update Tool.

13. Type * in the Sample Monitor Tool again. Click stats to see summary
statistics for all monitored nodes, and density to see plots of their empirical
distributions.

P2 sample: 10000

-1 0 1 2

 0.0
0.25
 0.5
0.75
 1.0

Y sample: 10000

-1 0 5

 0.0

 0.1

 0.2

 0.3

FIGURE 2.5

Empirical distributions for Y and P2 based on 10,000 simulations: output from
WinBUGS 1.4.3.

These plots are shown in Figure 2.5. Taking the empirical mean of P2 gives the
estimated probability that Y will be 2 or fewer. The summary statistics provided
by WinBUGS are

node mean sd MC error 2.5% median 97.5% start sample

P2 0.1448 0.3519 0.003317 0.0 0.0 1.0 1 10000

Y 4.004 1.417 0.01291 1.0 4.0 7.0 1 10000

The mean and sd are simply the empirical average and standard deviation of the
sampled values while, as described in §1.4, the MC error (Monte Carlo error; see
§4.5.1) provides an assessment of the sampling error on the mean attributable to
the limited number of iterations performed: we note that the MC error calculated
for P2 matches that obtained in Example 1.4.1. The 2.5%, median, and 97.5%

values are the empirical percentiles, while start is the iteration at which mon-
itoring began, and sample indicates the total number of iterations contributing
to the summary statistics.

†Note this will not work in the current version of OpenBUGS, which requires at least one
update to have been performed before opening the trace window.

Monte Carlo simulations using BUGS 21

This example illustrates a number of aspects of the BUGS syntax. First,
the entire model description is enclosed in model{...}. Second, there are two
types of connective corresponding to different parent–child relationships:

• <- represents logical dependence. The left-hand side of a logical state-
ment comprises a logical node, and the right-hand side comprises an
expression formed from the logical functions listed in Appendix B ap-
plied to a set of stochastic or logical nodes, e.g., m <- a + b*x.

• ~ represents stochastic dependence. The left-hand side of a stochastic
statement comprises a stochastic node, and the right-hand side comprises
a distribution from the list in Appendix C, e.g., r ~ dunif(a,b) for a
variable r that is uniformly distributed between a and b. Note that in
WinBUGS and OpenBUGS, logical expressions are not permitted as
parameters of distributions, so a statement such as r ~ dunif(2*a,b)

is not permitted‡.

• # is a comment character used to annotate the modelling code. Every-
thing after # on the same line is ignored by BUGS. Clear and concise
comments can be helpful when reading and maintaining models, partic-
ularly if it is not immediately clear what a piece of code does.

In general, each node in a model (apart from constants) should appear once
and only once on the left-hand-side of a statement (although see §A.7 for
exceptions to this rule).

2.2 DoodleBUGS

WinBUGS (and OpenBUGS) allow models to be specified by drawing a pic-
ture of the directed acyclic graph represented by the model. WinBUGS calls
this picture a Doodle. Nodes in the graph are of three types.

1. Constants are fixed by the design of the study: they are always founder
nodes (i.e., do not have parents) and are here denoted as rectangles in
the graph.

2. Stochastic nodes are variables that are given a distribution and are de-
noted as ellipses in the graph; they may be parents or children (or both).
Stochastic nodes may be observed and so be data, or may be unobserved
and hence be parameters, which may be unknown quantities underlying

‡But this is permitted in JAGS.

22 The BUGS Book

80.5

P2

YY

name: Y type: stochastic density: dbin
proportion 0.5 order 8 lower bound upper bound

FIGURE 2.6

Doodle for coins example: Y is generated from a binomial distribution with
parameters 0.5 and 8 represented by constant nodes, while P2 is a logical
indicator function taking on the value 1 if Y is 2 or less, and 0 otherwise.
The Y node has been highlighted by the user, whereby the underlying detail
is shown above the Doodle: lower and upper bounds can also be specified
for prior distributions (see Appendix A.2.2 and § 9.6 for discussion of the
appropriate use of bounded distributions).

a model, censored (partially observed) observations, or simply missing
data.

3. Deterministic nodes are logical functions of their parent nodes, again
denoted by ellipses but with a double arrow from their parents.

Figure 2.6 shows a Doodle representation of the coins example. If we cor-
rectly compose a Doodle, then we can run the program directly from the Doo-
dle or print out the equivalent BUGS code, though we cannot automatically
draw a Doodle for a given piece of code. See the WinBUGS or OpenBUGS
User Manual for more details on drawing Doodles. Although we feel such
graphs are extremely useful for explanation of the assumptions in a complex
model, they can be tricky to set up and we would not generally recommend
using them to specify complex models.

2.3 Using BUGS to simulate from distributions

We can use BUGS to simulate samples from any of the built-in distributions:
a sample of size n can be obtained either as n iterations or as a single iteration
of an array of size n.

Monte Carlo simulations using BUGS 23

Example 2.3.1. Simulating from a Student’s t distribution
Suppose we wanted a sample of size 1000 from a Student’s t distribution with
mean 10, precision parameter 2 (Appendix C.1), and 4 degrees of freedom. This
could be obtained by either running the code

model {

Y ~ dt(10, 2, 4)

}

and saving 1000 iterations (coda from the Sample Monitor Tool, Figure 2.4), or
by running the code

for (i in 1:1000) {Y[i] ~ dt(10, 2, 4)}

for a single iteration and saving the current state of Y (see, e.g., §12.4.3). Using
the former approach we obtain the following statistics:

node mean sd MC error 2.5% median 97.5% start sample

Y 10.04 0.9893 0.031 8.094 10.04 11.92 1 1000

From Appendix C.1, a t distribution with “precision” parameter r and d degrees
of freedom has variance d/((d − 2)r). Hence for r = 2 and d = 4 the exact
standard deviation is

√
1 = 1. The density curve is shown in Figure 2.7, showing

the characteristic heavy tails of the t distribution.

Y sample: 1000

 0.0 5.0 10.0 15.0

0.0

0.2

0.4

0.6

FIGURE 2.7

Kernel density plot of 1000 simulated values from a t distribution with mean 10,
precision parameter 2, and 4 degrees of freedom.

24 The BUGS Book

2.4 Transformations of random variables

Suppose we have a distribution pΘ(θ), where for clarity we introduce the
Θ subscript to indicate the subject of the distribution. We wish to make
inferences about a 1–1 transformation of θ, say φ = g(θ) with inverse function
θ = g−1(φ). If pΘ(θ) is discrete, then we have pΦ(φ) = pΘ(g

−1(φ)), so that
the probability of a particular value of φ is obtained simply by making the
appropriate transformation back to θ. For example, if Y ∼ Bernoulli(p), then
the distribution of X = 2Y + 1 is simply a discrete distribution Pr(X = 1) =
1− p,Pr(X = 3) = p.

If pΘ(θ) is continuous, then standard results from probability theory show
that

pΦ(φ) = pΘ(g
−1(φ))

∣
∣
∣
∣
dθ

dφ

∣
∣
∣
∣ ,

where the final term is called the “Jacobian” and is required when trans-
forming quantities with continuous probability distributions. The difficulty of
computing these terms can make inferences on transformations of parameters
complex to handle, particularly in multivariate situations.

However, transformations are straightforward when using a simulation ap-
proach. If we have a sample θ(1), . . . , θ(T) from pΘ(θ), then we just need to
create the transformed simulated values φ(1), . . . , φ(T) = g(θ(1)), . . . , g(θ(T))
and treat them as a simulated sample from pΦ(φ). This trivial result has strong
implications for ease of making inferences on measures, such as ranks, that
can be extremely difficult using an exact or approximate analytic approach,
whether classical or Bayesian.

Example 2.4.1. Cube
Take a standard normal Z with mean 0 and SD 1. Double it, add 1, and cube.
What is the distribution of the resulting random quantity Y , and what is Y ’s
expectation and the probability of Y exceeding 10?

We want to find the distribution of Y = (2Z+1)3 where Z ∼ Normal(0, 1), or
equivalently the distribution of Y = X3 where X ∼ Normal(1, 22). Analytically,
we can show that

p(y) =
1

2
√
π
e
− 1

2

(
sign(y)|y|1/3−1

2

)2

1

6
|y|−2/3,

which has an infinite mode at y = 0. This distribution is plotted in Figure 2.8.
To calculate its expectation it is best to return to the original transformation to
obtain

E[(2Z + 1)3] = E[8Z3 + 12Z2 + 6Z + 1] = 8× 0 + 12× 1 + 6× 0 + 1 = 13,

Monte Carlo simulations using BUGS 25

−5 0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

y

p(
y)

FIGURE 2.8

Exact distribution of Y = (2Z + 1)3 where Z ∼ Normal(0, 1).

since E[Z3] = E[Z] = 0. This expectation may appear surprisingly high, but
reflects the remarkably long right-hand tail shown in Figure 2.8. For the tail area
above 10, we obtain Pr(Y > 10) = Pr(Z > (101/3 − 1)/2) = Pr(Z > 0.577) =
0.28.

In BUGS code, the model is written:

Z ~ dnorm(0, 1)

Y <- pow(2*Z + 1, 3)

P10 <- step(Y - 10)

We note the use of the normal distribution dnorm and the pow function for
powers. Note that dnorm is parameterised in terms of mean and precision (inverse
variance) as opposed to the more conventional mean and variance, although in
this example, the precision and variance are equal. Running 100,000 iterations
gives estimates for E[Y] of 12.83 and Pr(Y > 10) of 0.28.

26 The BUGS Book

2.5 Complex calculations using Monte Carlo

Since arbitrary functions can be calculated at each iteration, we may be able
to use some ingenuity with the BUGS language to solve some otherwise in-
tractable problems.

Example 2.5.1. Repairs: the “how many” trick
Suppose costs of a repair have a gamma distribution with mean £100 and stan-
dard deviation £50: how many items will I be able to repair for £1000? From
Appendix C.2 we can work out that a Gamma(4, 0.04) has mean 100 and sd 50.
The “how many trick” is then, at each iteration, to simulate costs Yi, i = 1, ..., I,
from this distribution for a sufficiently large I, find the empirical cumulative dis-
tribution, and then find the value M which is the highest i such that the total
cost does not exceed £1000. We do this by creating a new vector cum.step =

1, 2, ...,M, 0, 0, ..., whereM is the largest integer such that
∑M

i=1 Yi < 1000, and
using the ranked function to find the maximum of the elements of cum.step.

for (i in 1:20) {Y[i] ~ dgamma(4, 0.04)}

cum[1] <- Y[1]

for (i in 2:20) {

cum[i] <- cum[i - 1] + Y[i]

}

for (i in 1:20) {

cum.step[i] <- i*step(1000 - cum[i])

}

number <- ranked(cum.step[], 20) # maximum number in cum.step

check <- equals(cum.step[20], 0) # always 1 if I=20 big enough

Running 10,000 iterations in WinBUGS produces the following summary statis-
tics; the empirical distributions are shown in Figure 2.9.

node mean sd MC error 2.5% median 97.5% start sample

number 9.631 1.636 0.01503 7.0 10.0 13.0 1 10000

Y[1] 101.1 50.02 0.5408 28.51 93.23 222.2 1 10000

Therefore the median number we can repair is 10, with a 95% predictive interval
7 to 13. Note that each Y has mean 100 and sd 50, as required.

Monte Carlo simulations using BUGS 27

number sample: 10000

3 5 10 15

0.0

0.1

0.2

0.3

Y[1] sample: 10000

 -200.0 0.0 200.0 400.0

 0.0
 0.0025
 0.005

 0.0075
 0.01

FIGURE 2.9

Distribution of number of items which can be repaired for 1000, given a random
item repair cost Y.

2.6 Multivariate Monte Carlo analysis

Our examples up to now have comprised calculating samples of a single ran-
dom variable. General Monte Carlo analysis extends this in two ways: first,
simulating multiple random variables, and second, setting up “chains” of vari-
ables so that the parameters of distributions themselves depend on random
quantities. It may help to think of this process as “adding uncertainty” to
a spreadsheet, and indeed in domains such as risk analysis and health eco-
nomics such analyses are often conducted using spreadsheets with additional
macros or add-on programs that allow cell values to be generated randomly
from probability distributions.

The following example illustrates multivariate Monte Carlo analysis.

Example 2.6.1. Heart transplant cost effectiveness: risks assumed known
Suppose a patient with heart failure has a survival time sN , which is assumed
exponential with mean θN = 2 years, corresponding to a constant monthly mor-
tality risk of 6.25%. A heart transplant has a θT = 80% operative survival rate,
and if a patient survives the operation their survival sP is exponential with mean
θP = 5 years. Assume the operation costs £20,000, and each post-operative year
costs θC = £3,000 in immunosuppressive drugs. What is the expected additional
cost per year of life gained by having a transplant?

We assume sN ∼ Exponential(0.5), using the “rate” parameterisation for the
exponential distribution given in Appendix C.2. Suppose oT = 1 if the patient
survives the transplant operation, oT = 0 otherwise. Then the total survival for a
patient receiving a heart transplant is sT = oT sP , where sP ∼ Exponential(0.2).
The additional survival is Is = sT −sN , at additional cost Ic = 20, 000+3000sT ,
so that the additional cost per unit year of life gained is r = Ic/Is. Obtaining the
distribution of r analytically is difficult if not impossible. The BUGS code is as
follows:

sN ~ dexp(0.5) # life without transplant (mean 2)

28 The BUGS Book

oT ~ dbern(0.8) # survive operation (prob 0.8)

sP ~ dexp(0.2) # life if survive transplant (mean 5)

sT <- oT*sP # total life time if choose transplant

Ic <- 20000 + 3000*sT # total additional cost of transplant

Is <- sT - sN # total additional survival

r <- Ic/Is # individual cost per additional year

1,000,000 iterations provides the following summary statistics:

node mean sd MC error 2.5% median 97.5% start sample

Ic 3.2E+4 14690.0 14.56 2.0E+4 27050.0 71990.0 1 1000000

Is 2.002 5.287 0.005213 -5.68 0.6658 15.64 1 1000000

oT 0.7999 0.4 3.952E-4 0.0 1.0 1.0 1 1000000

r -5885.0 7.948E+6 7904.0 -184600.0 5278.0 111100.0 1 1000000

sN 1.998 2.001 0.001936 0.05045 1.382 7.386 1 1000000

sP 4.995 4.992 0.005088 0.1261 3.469 18.46 1 1000000

sT 4.0 4.896 0.004855 0.0 2.351 17.33 1 1000000

The predictive distributions for Is and r are shown in Figure 2.10. We note the

Is sample: 1000000

 -50.0 0.0 25.0

 0.0
0.05
 0.1
0.15
 0.2

r sample: 1000000

-2.0E+9 0.0 2.00E+9

 0.0

1.00E-6

2.00E-6

3.00E-6

FIGURE 2.10

Empirical distributions from 1,000,000 samples of the incremental survival Is and
the cost per additional life-year r.

huge standard deviation for the simulated values of r: this occurs because the
survival advantage Is is often near 0 and leads to an MC error for r that is so
large that we cannot be confident whether r is expected to be positive. Indeed
after 10,000,000 iterations the estimate is −37730 with an MC error 30,780: the
fact that the MC error is not reducing indicates that the distribution for r does
not have a finite variance.

Fortunately this individual-level analysis is not appropriate when deciding on a
public policy of whether to fund a heart transplant programme for such patients.
When making policy decisions we would really like to know the total cost of the
programme compared to the total benefit, which depends on what is known as
the ICER (incremental cost-effectiveness ratio), which is the ratio of the expected
additional cost to the expected additional benefit. In this example this is simply
E[Ic]/E[Is], rather than E[r] = E[Ic/Is], which we were trying to estimate

Monte Carlo simulations using BUGS 29

above. In this case

E[Ic] = 20, 000 + θCE[oT sP] = 20, 000 + θCE[oT]E[sP] = 20, 000 + θCθT θP

and
E[Is] = E[oT sP]− E[sN] = θT θP − θN ,

from which we readily obtain that ICER= (20, 000+3000×0.8×5)/(0.8×5−2) =
32, 000/2 = 16, 000, with no uncertainty as it is a direct function of assumed
parameters of the distribution. The next section will deal with the more interesting
situation where there is uncertainty in the parameters. Whether £16,000 per
additional year of life is a good investment depends, of course, on the willingness
to pay of the healthcare funders.

2.7 Predictions with unknown parameters

Suppose we assume a parametric sampling distribution p(y|θ) and we are
willing to express our uncertainty about the parameter θ as a distribution p(θ).
Then before observing a future quantity Y , we can (in principle) integrate out
the unknown parameter to produce a predictive distribution

p(y) =

∫
p(y|θ)p(θ) dθ:

for discrete parameter distributions this takes the form

p(y) =
∑

i

p(y|θi)p(θi).

Such predictions are useful in, for example, cost-effectiveness models, design
of studies, checking whether observed data are compatible with expectations,
and so on.

In some cases, such as when Y has a binomial distribution with chance of
“success” θ and sample size n, and our uncertainty about θ is expressed in
the form of a beta distribution, we can carry out such integration analytically.
The reader is referred to Gelman et al. (2004) and Carlin and Louis (2008)
for mathematical detail/background, and to Table 3.1 for closed-form expres-
sions for predictive distributions in cases where they are available. In general,
however, such analytic integration is not possible. In contrast, to make such
predictions in BUGS we can just write

theta ~ dbeta(a, b)

Y ~ dbin(theta, n)

30 The BUGS Book

and the integration is automatically carried out without requiring any alge-
braic manipulations.

Example 2.7.1. Surgery (continued): prediction
Suppose our hospital in Example 1.1.1 and Example 1.2.1 was going to do 20
operations next year — how many deaths might we expect, and what is the
chance there will be at least 6 deaths?

If Y is the number of deaths next year, then since θ ∼ Beta(3, 27) and Y ∼
Binomial(θ, 20), we have from Table 3.1 that Y is beta-binomial with mean 0.1
× 20 = 2 and standard deviation 1.70. We can also calculate Pr(Y ≥ 6) = 0.04.
In BUGS code we have:

theta ~ dbeta(3, 27) # prior distribution

Y ~ dbin(theta, 20) # sampling distribution

P6 <- step(Y - 5.5) # =1 if y >= 6, 0 otherwise

We obtain the following WinBUGS output based on 100,000 iterations:

node mean sd MC error 2.5% median 97.5% start sample

P6 0.04058 0.1973 6.578E-4 0.0 0.0 1.0 1 100000

Y 1.998 1.708 0.005216 0.0 2.0 6.0 1 100000

The simulation-based estimates of E[Y] and Pr(Y ≥ 6) are within MC error (see
§4.5.1) of the true values.

The underlying process here is actually very straightforward: we simply sim-
ulate from the assumed prior distributions for the unknown parameters, and
then simulate future events conditional on the current values of the parame-
ters. In contexts such as cost-effectiveness analysis of healthcare interventions
this process is termed probabilistic sensitivity analysis, where it is necessary to
simulate expected outcomes for populations using distributions that depend,
say, on uncertain rates of disease progression and treatment effectiveness.

Example 2.7.2. Heart transplant cost effectiveness (continued)
In Example 2.6.1 we assumed all the input parameters were known, and we now
relax that assumption. First, the operative survival θT , previously assumed to be
0.8, is now given a Beta(8, 2) distribution which has mean 0.8, and could be
considered equivalent to having observed 8 survivors and 2 deaths in the last
10 operations — see §3.3.1, §5.3.1. Second, the mean survival θP following a
successful transplant operation, which we had assumed to be fixed at 5 years,
is now given a normal distribution with mean 5 and standard deviation 1, cor-
responding to mean survival being between 3 and 7 years. Finally, the annual
cost θC of transplant survivors, previously assumed to be £3000, is now given a
normal distribution with mean £3000 and standard deviation £1000, representing
considerable between-patient variability in drug requirements.

Monte Carlo simulations using BUGS 31

We recall that the crucial quantities of interest are the expected incremental
effectiveness, which we shall denote Ee, where Ee = θT θP−θN , and the expected
incremental cost denoted Ec, where Ec = 20, 000 + θCθT θP . The incremental
cost-effectiveness ratio is ICER = Ec/Ee. The essential BUGS code and results
are shown below. Note that in BUGS the normal distribution is parameterised in
terms of mean and precision (inverse variance), as opposed to mean and variance.

thetaN <- 2 # expected lifetime without transplant

thetaT ~ dbeta(8,2) # probability of surviving operation

thetaP ~ dnorm(5,1) # expected survival post-transplant (mean 5, sd 1)

thetaC ~ dnorm(3000,0.000001)

expected cost per year (mean 3000, sd 1000)

E.c <- (20000 + thetaC*thetaT*thetaP)/1000

expected additional cost of transplant

in thousands of pounds

E.e <- thetaT*thetaP - thetaN

expected total additional survival

ICER <- E.c/E.e # incremental cost-effectiveness ratio

node mean sd MC error 2.5% median 97.5% start sample

E.c 31.98 5.097 0.01578 23.5 31.47 43.35 1 100000

E.e 1.995 1.007 0.003094 0.09311 1.972 4.027 1 100000

ICER 15.05 1113.0 3.702 7.189 15.98 84.68 1 100000

The ICER has a median of about £16,000, 95% interval £7200 to £84,700, and
yet has a massive standard deviation. This is because the expected incremental
benefit Ee in the denominator of ICER can plausibly be around 0, which creates
occasional massive positive or negative values for ICER. Rather than focusing
on the ICER alone in such circumstances, it is clearer to carry out a sensitivity
analysis to different values of the “willingness to pay,” denoted K, for a unit of
benefit, which in this case is an expected additional year of life. For fixed K, the
incremental net benefit (INB) is defined as

INB(K) = KEe − Ec,

and is the expected benefit (in cost terms) for a single patient being given the
intervention. Of course INB(K) is an uncertain quantity which can be calculated
and monitored, and of particular interest is the probability that the incremental
net benefit is positive, denoted Q(K) = Pr(INB(K) > 0). Plotting Q(K) for a
range of values of K yields what is known as the cost-effectiveness acceptability
curve (CEAC).

These quantities are trivial to calculate within the BUGS language. If we wished
to conduct a sensitivity analysis for values of K between 0 and 100,000, in steps
of 5000, we add the following code:

for (i in 1:21) {

K[i] <- (i-1)*5

INB[i] <- E.e*K[i] - E.c

32 The BUGS Book

Q[i] <- step(INB[i])

}

We note that this is generic code that can be added to any cost-effectiveness
model. In the UK such assessments are carried out by the National Institute
for Health and Clinical Effectiveness (NICE), and values of K around £20,000–
£30,000 are considered as boundary cases for funding under the National Health
Service. Figure 2.11 shows the expected incremental benefits and costs, the in-
cremental net benefit for K = 30, 000, and the CEAC. The probability of cost
effectiveness for K = 30, 000 is 0.84, so there is fairly convincing evidence that
at this threshold the intervention is cost effective.

E.c: incremental costs (in £1000)

 0.0 20.0 40.0 60.0

 0.0

0.05

 0.1

E.e: incremental survival (years)

 -5.0 0.0 5.0

0.0
0.1
0.2
0.3
0.4

INB for willingness-to-pay £30,000

 -100.0 0.0 100.0

 0.0

0.005

 0.01

0.015

Probability transplant is cost-effective (acceptability curve)

Willingness-to-pay for one year of life (in £1000)
 0.0 50.0

0.0

0.5

1.0

FIGURE 2.11

Expected incremental benefits and costs, the incremental net benefit for K =
30, 000, and the cost-effectiveness acceptability curve (CEAC) for values of K
(willingness to pay for an additional expected year of survival) from 0 to £100,000.

3

Introduction to Bayesian inference

3.1 Bayesian learning

The problem stated in Bayes’ famous paper (Figure 1.1) involves two key in-
gredients. One is the use of probability as a means of expressing uncertainty
about an unknown quantity of interest. The other is the conditional nature
of the problem: what Bayes was interested in evaluating was the conditional
probability of failure in a single trial, given some data on the previous number
of failures. Put another way, he wanted to learn about the failure probability
on the basis of observed data. In modern language, this translates to requir-
ing p(θ|y, n) where θ is the unknown failure probability and we have observed
data on y failures out of n binomial trials. Bayes proposed a theorem (easily
provable from the axioms of probability) relating conditional and marginal
probabilities of random variables which he used to calculate the required con-
ditional probability for his problem.

3.1.1 Bayes’ theorem for observable quantities

Bayes’ theorem is usually stated in terms of probabilities for observable events.
Let A and B be events; then

p(A|B) =
p(B|A)p(A)

p(B)
. (3.1)

• p(A) is the marginal probability of A, often referred to as the prior
probability of A — where “prior” indicates “before taking account of
the information in B.” If the complement (not A) is denoted A, then
p(A) = 1− p(A).

• p(A|B) is the conditional probability of A given B, often referred to as
the posterior probability of A after taking account of the value of B.

• p(B|A) is the conditional probability of B given A — we will see later
that this corresponds to the likelihood function when Bayes’ theorem is
applied in a statistical modelling context.

• p(B) is the marginal probability of B and acts as a normalising constant
to ensure that the value of p(A|B) is a valid probability, i.e., a number

33

34 The BUGS Book

between 0 and 1. p(B) may be written as p(B|A)p(A) + p(B|A)p(A), a
process sometimes known as “extending the conversation.”

Example 3.1.1. Use of Bayes’ theorem in diagnostic testing
This example is taken from Spiegelhalter et al. (2004). Suppose a new HIV test
is claimed to have “95% sensitivity and 98% specificity.” In a population with an
HIV prevalence of 1/1000, what is the probability that a patient testing positive
actually has HIV? We can use Bayes’ theorem (3.1) to evaluate this.

Let A = 1 if the patient is truly HIV positive and A = 0 if they are truly HIV
negative. Further, let B = 1 if they test positive and B = 0 if they test negative.
The required probability is then p(A = 1|B = 1). Now, “95% sensitivity” means
that p(B = 1|A = 1) = 0.95, and “98% specificity” means that p(B = 1|A =
0) = 1 − 0.98 = 0.02. Writing p(B = 1) = p(B = 1|A = 1)p(A = 1) + p(B =
1|A = 0)p(A = 0) and applying Bayes’ theorem gives

p(A = 1|B = 1) =
0.95× 0.001

0.95× 0.001 + 0.02× 0.999
= 0.045.

Thus over 95% of those testing positive will, in fact, not have HIV!
This result generally comes as a surprise and illustrates that intuition is often

poor when processing probabilistic evidence. The key issue is how should this test
result change our belief that a patient is HIV positive? The disease prevalence
can be thought of as the prior probability (p = 0.001) of having HIV; observing a
positive result causes us to modify or update this to obtain a posterior probability
of having HIV of p = 0.045 — hence the patient is 45 times more likely to have
HIV after recording a positive test, but the absolute risk of HIV is still very small.

This result is perhaps better communicated by considering the expected status
of a large population, say 100,000 people, in which 100 people are expected to
be HIV+, of which 95 will test positive, and 99,900 will be HIV−, of which 1998
(2%) will also (erroneously) test positive. Thus, out of 2093 positive tests, only
95 (4.5%) will be truly HIV+ (Figure 3.1).

3.1.2 Bayesian inference for parameters

Bayes’ theorem applied to observable random variables (as in the diagnostic
testing example) is uncontroversial and established. More controversial is the
use of Bayes’ theorem in general statistical analysis, where parameters are the
unknown quantities, and their prior distribution needs to be specified. As dis-
cussed in Chapter 1, frequentist and Bayesian interpretations disagree about
what sort of things probabilities should be assigned to. In frequentist statis-
tics only the data are assumed to be random variables with associated prob-
ability distributions; parameters are fixed but unknown quantities and their
associated p-values and confidence intervals are based on long-run frequency

Introduction to Bayesian inference 35

HIV+
(A = 1)

HIV−
(A = 0)

Test+
(B = 1)

Test−
(B = 0)

Test+
(B = 1)

Test−
(B = 0)

100

99,900

5

1,998

97,902

95

100,000
people

FIGURE 3.1

Bayes’ theorem in HIV testing.

properties under repeated sampling of the data. From a Bayesian perspective,
both data and parameters can have probability distributions, and so Bayes’
theorem can be used to learn about probabilities of unobservable parameters
as well as observable events: see §3.6.2 for discussion of the intersection be-
tween these viewpoints. Using the same notation as Chapter 1 to distinguish
observed and unobservable quantities, Bayes’ theorem for inference about pa-
rameters can be expressed as

p(θ|y) = p(y|θ)p(θ)
p(y)

where p() now denotes a probability density rather than a simple probability
of an event. The interpretation is analogous to before: p(θ) is the prior distri-
bution for θ and expresses our uncertainty about the values of θ before taking
account of the observed data; p(θ|y) is the posterior distribution for θ and
represents the uncertainty about θ after conditioning on the data y. The con-
ditional distribution p(y|θ) describes how the data depend on the parameter
values. The normalising constant, p(y), simply ensures that p(θ|y) is a valid
probability distribution that integrates to 1. It turns out that it is usually
not necessary to calculate p(y) to evaluate properties of the posterior, and so
Bayes’ theorem in this context is often expressed simply as

p(θ|y) ∝ p(y|θ) p(θ)

where the proportionality is considered with relation to θ.
While the form of p(y|θ) arises from an assumed sampling distribution for

the data, it is clear that our only interest in p(y|θ) is as a function of θ for fixed
y. This means that any function of θ, say L(θ; y), such that L(θ; y) ∝ p(y|θ),
can be used in Bayes’ theorem, so that

p(θ|y) ∝ L(θ; y) p(θ).

36 The BUGS Book

L(θ; y) is termed the likelihood and is the basis for standard likelihood-based
statistical models. Hence Bayes’ theorem essentially states that

posterior ∝ likelihood× prior.

In this book we will generally not use the notation L(θ; y) and indeed will
often rather loosely refer to p(y|θ) as the likelihood, where it is clear that it
should be interpreted as a function of θ for fixed y.

3.2 Posterior predictive distributions

In the same way as we are able to make predictions about future quantities
based on our prior distribution for some parameter of interest θ (§2.7), we
can also make predictions based on the posterior distribution of θ, that is,
after learning about θ from observed data y. Denoting our future quantity of
interest by Ỹ , we derive the posterior-predictive distribution

p(ỹ|y) =
∫
p(ỹ, θ|y) dθ =

∫
p(ỹ|θ, y)p(θ|y) dθ.

Assuming past and future observations are conditionally independent given
θ, this simplifies to

p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y) dθ. (3.2)

The posterior-predictive expectation is

E[Ỹ |y] =
∫
E[Ỹ |θ]p(θ|y) dθ.

As we will see in the following section, in some cases, that is, when a par-
ticular prior distribution is chosen, such integrals are analytically tractable.
This is not the case, in general, however, but we will see that a simulation
approach again allows arbitrarily exact approximations to be derived in a
straightforward manner.

3.3 Conjugate Bayesian inference

The following are some simple examples of Bayesian inference for continuous-
valued parameters. In each case, we use what is known as a conjugate prior
distribution for the parameter of interest, in order to make the calculations
tractable.

Introduction to Bayesian inference 37

3.3.1 Binomial data

Suppose we observe y responses out of n binomial trials. Assuming the trials
are independent, with common unknown response probability θ, leads to a
binomial sampling distribution

p(y|n, θ) =
(
n
y

)

θy(1 − θ)n−y.

When considered as a function of θ, we obtain a likelihood

p(y|n, θ) ∝ θy(1− θ)n−y .

Suppose that, before taking account of the evidence from our trials, we be-
lieve all values for θ are equally likely. This implies a uniform prior distribution
for θ

θ ∼ Unif(0, 1).

The posterior is then proportional to likelihood × prior, or

p(θ|y, n) ∝ θy(1− θ)n−y × 1.

From Appendix C.3, we know that

θ ∼ Beta(a, b) ⇒ p(θ) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1

and so p(θ|y, n) has the form of a Beta(y + 1, n− y + 1) kernel.
To represent external evidence that some response rates are more plausible

than others, it is mathematically convenient to use a Beta(a, b) prior distri-
bution for θ. Combining this with the binomial likelihood gives a posterior
distribution

p(θ|y, n) ∝ p(y|θ, n) p(θ)
∝ θy(1− θ)n−yθa−1(1− θ)b−1

= θy+a−1(1− θ)n−y+b−1

∝ Beta(y + a, n− y + b). (3.3)

The posterior mean of θ may thus be written as

E[θ|y, n] = (y + a)/(n+ a+ b) = w
a

a+ b
+ (1− w)

y

n

where w = (a+ b)/(a+ b+n): the posterior mean is a weighted average of the
prior mean and y/n, the standard maximum-likelihood estimator, where the
weight w reflects the relative contribution of the prior “effective sample size”
a+ b. Hence the prior parameters a and b can be interpreted as equivalent to
observing a events in a+ b trials — see §5.3.1.

38 The BUGS Book

Suppose we return to a uniform prior on θ by setting a = b = 1 and consider
the case y = n, i.e., the event has happened at every opportunity! What is
the chance it will happen next time? The posterior-predictive expectation is
given by the posterior mean for θ:

E[Ỹ |y, n] = p(Ỹ = 1|y, n) =
∫
θp(θ|y, n) dθ = n+ 1

n+ 2
.

This is known as Laplace’s law of succession and assumes “exchangeable
events” (see §3.6.2): i.e., the same (unknown) θ applies to each. Laplace orig-
inally applied this to the problem of whether the sun will rise tomorrow. But
he recognised that the background knowledge should overwhelm simplistic as-
sumptions. “But this number [the probability that the sun will rise tomorrow]
is far greater for him who, seeing in the totality of phenomena the principle
regulating the days and seasons, realises that nothing at the present moment
can arrest the course of it.” (Stigler, 1986.)

More generally, with fixed a and b, as y and n increase, E(θ|y, n) → y/n and
the variance tends to zero. This is a general phenomenon: as n increases, the
posterior distribution gets more concentrated and the likelihood dominates
the prior.

Example 3.3.1. Surgery (continued): conjugate analysis
In Example 1.2.1 we used a Beta(3, 27) as a prior distribution for a mortality rate.
Suppose we now operate on n = 10 patients and observe y = 0 deaths. What
is the current posterior distribution, what is the probability that the next patient
will survive the operation, and what is the probability that there are 2 or more
deaths in the next 20 operations?

Plugging in the relevant values of a = 3, b = 27, y = 0 and n = 10 into (3.3) we
obtain a posterior distribution for the mortality rate θ of p(θ|y, n) = Beta(3, 37).
The prior, likelihood, and posterior are shown in Figure 3.2.

The probability of a death at the next operation is simply E[θ|y, n] = (y +
a)/(n+a+ b) = 3/40 = 0.075. When considering the number Ỹ of deaths in the
next 20 operations, from the beta-binomial predictive distribution (Appendix C.5),
we can calculate Pr(Ỹ ≥ 2) = 0.42.

Example 3.3.1 uses the closed-form solution to the beta-binomial analysis.
Alternatively, we could have used simulation methods for inference. In the
case of a conjugate model, we could sample directly from the closed-form pos-
terior. However, the whole point of using BUGS is to avoid having to perform
derivations of the type illustrated above for the beta-binomial model. All the
software requires is specification of the likelihood (or more precisely, the sam-
pling distribution) and prior distribution. From these it can usually derive
the posterior in closed form when a closed form is available, or, more gener-
ally, it can sample indirectly from the posterior using Markov chain Monte
Carlo (MCMC, see Chapter 4). Such specification of sampling distribution

Introduction to Bayesian inference 39

0.0 0.4 0.8

Beta(3,27) prior

0.0 0.4 0.8

Likelihood: 0 out of 10

Mortality rate

0.0 0.4 0.8

Beta(3,37) posterior

FIGURE 3.2

Prior, likelihood, and posterior distributions for Example 3.3.1.

and prior alone, as opposed to a closed form for the posterior, is illustrated in
the following example.

Example 3.3.2. Surgery (continued): beta-binomial analysis using BUGS
Assuming we derive the closed form by hand, the BUGS syntax for direct sampling
of the surgery mortality rate θ is simply

theta ~ dbeta(3, 37)

Alternatively, the BUGS syntax for direct sampling of the surgery posterior and
predictive distribution for the next 20 patients is shown below. Note that we now
need to specify some data along with our model, since we have observed y = 0. In
this simple example we can just include the statement y <- 0 in the model code.
Note also that in such examples we will separate observed data from modelling
assumptions by a row of #s.

y <- 0

##

theta ~ dbeta(3, 27) # prior distribution

y ~ dbin(theta, 10) # sampling distribution

Y.pred ~ dbin(theta, 20) # predictive distribution

P.crit <- step(Y.pred - 1.5) # =1 if Y.pred >= 2, 0 otherwise

Language notes. We note that y appears twice on the left-hand side of a state-
ment — once as a logical node and once as a stochastic node. Strictly speaking,
this goes against the declarative structure of the model specification, with the
accompanying exhortation to construct a directed graph and then to make sure
that each node appears once and only once on the left-hand-side of a statement.
However, a check has been built in so that, when finding a logical node which
also features as a stochastic node (such as y above), a stochastic node is created
with the calculated values as fixed data; see §A.7.

In more generic code we could write

40 The BUGS Book

a <- 3; b <- 27; y <- 0; n <- 10; n.pred <- 20; n.crit <- 2

###

theta ~ dbeta(a, b)

y ~ dbin(theta, n)

Y.pred ~ dbin(theta, n.pred)

P.crit <- step(Y.pred - n.crit + 0.5)

Alternatively, the data and prior parameters could be included in a list of data
kept separate from the model code:

list(a=3, b=27, y=0, n=10, n.pred=20, n.crit=2)

Recall the basic steps in Example 2.1.2 for running a model in WinBUGS. In
this example, we would now need to load this list of data in Step 4. We previously
ignored this step when there were no observed data. To do this,

• highlight the word list by double-clicking on it, and click load data in
the Specification Tool.

See §12.4.2 for a full discussion of supplying data to WinBUGS and OpenBUGS
and §12.6.3 for the different data format in JAGS.

Estimated posterior distributions for θ and the predicted number of deaths in
20 future operations are shown in Figure 3.3. Posterior summary statistics for the
three unknowns are

node mean sd MC error 2.5% median 97.5% start sample

P.crit 0.4175 0.4931 0.001496 0.0 0.0 1.0 1 100000

Y.pred 1.499 1.427 0.004347 0.0 1.0 5.0 1 100000

theta 0.07514 0.04134 1.322E-4 0.01611 0.06794 0.1739 1 100000

theta sample: 100000

 -0.1 0.0 0.1 0.2 0.3

 0.0

 5.0

10.0

15.0

Y.pred sample: 100000

0 5 10

 0.0

 0.1

 0.2

 0.3

FIGURE 3.3

Posterior and predictive distributions for surgery mortality, calculated by simula-
tion.

In this case, BUGS is able to derive the posterior in closed form and so is sampling
theta directly from a Beta(3, 37) distribution. Note the empirical mean and
standard deviation are within Monte Carlo error of the true values, 0.075 and
0.04113, respectively. The estimated probability of at least two deaths in 20 future

Introduction to Bayesian inference 41

operations (E[P.crit|y, n]) is 0.4175, which also agrees with the analytic result.

A Doodle or directed graph of this model is shown in Figure 3.4: this shows
how the observed and future data are assumed conditionally independent given
θ.

n.crit

P.crit

n.pred

Y.pred

n

y

ba

theta

Y.pred

name: Y.pred type: stochastic density: dbin
proportion theta order n.pred lower bound upper bound

FIGURE 3.4

Graphical representation of model for surgery mortality. The observed number
of deaths y is generated from a binomial distribution with probability theta.
Information “flows down the arrows” from the prior parameters a and b, and “up
the arrow” from the data y, to provide the posterior of the mortality rate theta.
The posterior is used to predict the outcome Y.pred of the next n.pred patients,
which is conditionally independent of Y given theta.

3.3.2 Normal data with unknown mean, known variance

Suppose we have an independent sample of normal data

yi ∼ Normal(μ, σ2), i = 1 . . . n, (3.4)

where σ2 is known and μ is unknown. The conjugate prior for the normal
mean μ is also normal:

μ ∼ Normal(γ, ω2)

where γ and ω2 are assumed specified. It is convenient to write ω2 as σ2/n0,
where n0 represents the “effective number of observations” in the prior distri-
bution. Then the posterior distribution for μ is given by

p(μ|y) ∝ p(μ)

n∏

i=1

p(yi|μ)

42 The BUGS Book

∝ exp

[

−1

2

{
(μ− γ)2

σ2/n0

}]

exp

[

−1

2

{∑
(yi − μ)2

σ2

}]

. (3.5)

Note that any terms in the normal sampling distribution or prior that do not
depend on μ can be ignored as they are simply absorbed into the proportion-
ality constant. By expanding the quadratics, collecting powers of μ together,
and then completing the square, it is straightforward to show that (3.5) has
the form of another normal density and so we can write the posterior for μ as

p(μ|y) = Normal(γn, ω
2
n), γn =

n0γ + ny

n0 + n
, ω2

n =
σ2

n0 + n
. (3.6)

There are three other equivalent expressions for the posterior mean:

γn = wγ + (1 − w)y, w =
n0

n0 + n
; (3.7)

γn = γ + (y − γ)
n

n0 + n
; (3.8)

γn = y − (y − γ)
n0

n0 + n
. (3.9)

Expression (3.7) shows that the posterior mean is a weighted average of the
prior mean and the sample mean, (3.8) emphasises the interpretation of the
posterior mean as the prior mean adjusted towards the data mean, while (3.9)
shows the data mean being “shrunk” towards the prior mean. It is also clear
from the symmetry of the observed sample size n and the prior constant n0 in
these expressions that n0 can be interpreted as a “prior sample size” — that
is, the information content of the prior is equivalent to having observed an
additional n0 “data” points. All three expressions highlight the compromise
between the prior and data means, with weights proportional to their relative
“sample sizes” or precisions.

The posterior variance is best interpreted on the inverse (i.e., precision)
scale, by re-writing (3.6) as 1/ω2

n = n0/σ
2+n/σ2. This shows that the poste-

rior precision is the sum of the prior precision and the data precision. Alterna-

tively, we can write ω2
n = σ2

n (1−w) where (1−w) = n/(n0 +n), emphasising
that the posterior variance is the data variance shrunk by a factor propor-
tional to the relative sample size of the data as a fraction of the total effective
“sample size” (or precision) of the data plus prior.

We may consider a future observation Ỹ as being equal to the sum of two
independent normal quantities, ε ∼ Normal(0, σ2) and μ|y ∼ Normal(γn, ω

2
n)

and hence the posterior predictive distribution is

p(ỹ|y) = Normal
(
γn, σ

2 + ω2
n

)
. (3.10)

So the predictive distribution is centered at the posterior mean of μ with
variance equal to the sum of the posterior variance and the data (residual)
variance.

Introduction to Bayesian inference 43

Example 3.3.3. Trihalomethanes in tap water
Regional water companies in the UK are required to take routine measurements
of trihalomethane (THM) concentrations in tap water samples for regulatory pur-
poses. Samples are tested throughout the year in each water supply zone and
analysed using an assay with known measurement error having standard deviation
σ = 5µg/L. Suppose we want to estimate the average THM concentration in
a particular water zone. Two independent measurements are taken, with values
y1 = 128µg/L and y2 = 132µg/L; hence their mean, y, is 130µg/L. What is
the true mean THM concentration in this water zone?

Denote the true mean THM concentration by μ. A standard analysis would
use the sample mean y = 130µg/L as an estimate of μ, with standard error
σ/

√
n = 5/

√
2 = 3.5µg/L. A 95% confidence interval is then y ± 1.96× σ/

√
n,

i.e., 123.1 to 136.9µg/L.
Suppose historical data on THM levels in other zones supplied from the same

water source showed that the mean THM concentration was 120µg/L with stan-
dard deviation 10µg/L. This suggests a Normal(120, 102) prior for μ. If we express
the prior standard deviation as σ/

√
n0, we can solve to find n0 = (σ/10)2 = 0.25

(hence the information content of this prior is equivalent to one quarter of an
observation). Our prior can thus be written as μ ∼ Normal(120, σ2/0.25).

Substituting the relevant values above into (3.6), the posterior for μ is then

p(μ|y) = Normal

(
0.25× 120 + 2× 130

0.25 + 2
,

52

0.25 + 2

)

= Normal(128.9, 3.332),

giving a 95% credible interval for μ of 122.4 to 135.4µg/L. The prior, likelihood,
and posterior are shown in Figure 3.5. Note how the informative prior distribution
“pulls” the posterior to the left (away from the likelihood). The effect is only small,
however, because the likelihood contains eight times (2/0.25) as much information
as the prior. Note also that the posterior is narrower than both likelihood and prior,
due to the combination of both sources of evidence.

Suppose the water company will be fined if observed THM levels in the
water supply exceed 145µg/L. From (3.10) the predictive distribution for
the THM concentration in a future sample taken from the water zone is
Normal(128.9, 3.332 + 52) = Normal(128.9, 36.1) (see Figure 3.6). Hence the
probability that the THM concentration in a future sample exceeds 145µg/L is
1− Φ[(145− 128.9)/

√
36.1] = 0.0037, which is very low.

BUGS code (and data) for the above analysis is as follows, and posterior sum-
maries for the unknowns are presented in the table beneath. (Remember that in
BUGS the normal distribution is parameterised in terms of mean and precision =
1/variance.) The results are very close to the theoretical values derived above.

for (i in 1:n) {

y[i] ~ dnorm(mu, inv.sigma.squared)

44 The BUGS Book

80 100 120 140 160 180

Mean THM concentration (μg/L)

FIGURE 3.5

Likelihood (−−) for Example 3.3.3 with prior (· · ·) and posterior (—) distribu-
tions.

80 100 120 140 160 180

THM concentration (μg/L)

FIGURE 3.6

Posterior (—) and predictive (−−) distributions for Example 3.3.3. The vertical
line represents the concentration at which water companies are fined.

Introduction to Bayesian inference 45

}

mu ~ dnorm(gamma, inv.omega.squared)

inv.omega.squared <- n0/sigma.squared

inv.sigma.squared <- 1/sigma.squared

y.pred ~ dnorm(mu, inv.sigma.squared)

P.crit <- step(y.pred - y.crit)

list(n=2, y=c(128, 132), gamma=120, n0=0.25,

sigma.squared=25, y.crit=145)

node mean sd MC error 2.5% median 97.5% start sample

P.crit 0.00363 0.06014 1.856E-4 0.0 0.0 0.0 1001 100000

mu 128.9 3.328 0.01017 122.3 128.9 135.4 1001 100000

y.pred 128.9 5.999 0.01936 117.1 128.9 140.6 1001 100000

More generally, a conjugate prior is one that is “compatible” with the like-
lihood, in the sense that they share the same functional form when the like-
lihood is viewed as a function of the parameter of interest; the posterior is
then also of the same form, and hence has the same (closed) distributional
form as the prior but with modified parameters. Table 3.1 shows examples of
conjugacy in cases where the likelihood is a function of one continuous-valued
parameter. The corresponding predictive distributions for future observations
are also given. These are obtained from (3.2) by noting that since the posterior
has the same form as the prior, and p(ỹ|θ) has the same form as the likeli-
hood, then the integrand must be proportional to a closed-form distribution
(of the same distributional form as the prior and posterior). The predictive
distribution is thus given by the proportionality constant.

3.4 Inference about a discrete parameter

In cases where the prior distribution has support on a finite set of discrete
values, the posterior is derived trivially, by multiplying prior and likelihood
for each possible value of the parameter of interest, and by then normalising
each such product by their sum, as illustrated in the example below.

Example 3.4.1. Three coins
Suppose I have 3 coins in my pocket. The coins may be either fair, biased 3:1 in
favour of heads, or biased 3:1 in favour of tails, but I do not know how many of
each type there are among the 3 coins. I randomly select 1 coin and toss it once,
observing a head. What is the posterior distribution of the probability of a head?

4
6

T
h
e
B
U
G
S
B
oo
k

TABLE 3.1

Univariate conjugate prior distributions for various one-parameter likelihoods from a sample of size n. Also given are the
corresponding posterior parameters and the predictive distribution for a single new observation ỹ†. See Appendix C
and/or Bernardo and Smith (1994), pp. 427–435, for definitions of distributions.

Sampling distribution Conjugate prior Posterior parameters Predictive distribution

y|θ ∼ Binomial(θ, n)
including Bernoulli (n = 1)

θ ∼ Beta(a, b)
an = a+ y,
bn = b+ n− y

Beta-Binomial(an, bn, n)

y|μ ∼∏n
i=1 Normal(μ, σ2) μ ∼ Normal(γ, ω2 = σ2

n0
)

γn = n0γ+nȳ
n0+n

,

ω2
n = σ2

n0+n

Normal(γn, ω
2
n + σ2)‡

y|σ2 ∼∏n
i=1 Normal(μ, σ2) σ−2 ∼ Gamma(a, b)

an = a+ n
2 ,

bn = b+ 1
2

∑
i(yi − μ)2

Student-t(μ, bnan , 2an)
§

y|θ ∼∏n
i=1 Poisson(θ) θ ∼ Gamma(a, b)

an = a+ nȳ,
bn = b+ n

NegBin(bn
bn+1 , an)

y|θ ∼∏n
i=1 Gamma(α, θ)

including Exponential (α = 1)
θ ∼ Gamma(a, b)

an = a+ nα,
bn = b+ nȳ

Gamma-Gamma(an, bn, α)

y|θ ∼∏n
i=1 Uniform(0, θ) θ ∼ Pareto(a, b)

an = a+ n,
bn = max{b, y}

{ an
an+1Uniform(0, bn), ỹ ≤ bn

1
an+1Pareto(an, bn), ỹ > bn

y|θ ∼ NegBin(θ, r)
including Geometric (r = 1)

θ ∼ Beta(a, b)
an = a+ r,
bn = b+ y

Negative-Binomial-Beta(an, bn, rp)

In
trod

u
ctio

n
to

B
a
yesia

n
in
feren

ce
4
7

TABLE 3.1

(Continued.)

Sampling distribution Conjugate prior Posterior parameters Predictive distribution

y|θ ∼∏n
i=1 Pareto(θ, c) θ ∼ Gamma(a, b)

an = a+ n,
bn = b+

∑n
i=1 log

(
yi
c

) Γ(an+1)
Γ(an)

1
bnỹ

[
1 + 1

bn
log
(
ỹ
c

)]−(an+1)

y|θ ∼∏n
i=1 Pareto(α, θ) θ ∼ Pareto(a, b)

an = a− nα,
bn = b,
truncated to
(b, u = min{y})

anα
an+1(b−an−u−an)

×
{
[b−an+1 − ỹ−an+1]ỹ−(α+1), ỹ < u
b−an+1 − u−an+1 , ỹ ≥ u

an+1 = an − α

†Actually in the cases of binomial and negative-binomial likelihoods, the predictive distributions given are for the number of successes

in m future Bernoulli trials and for the number of Bernoulli failures before rp successes, respectively (where the success probability is

θ in both cases).
‡Here, as is conventional, we parameterise the normal distribution in terms of its mean and variance. In BUGS, however, it is param-

eterised in terms of the mean and precision (inverse-variance) — see Appendix C.
§Note the t distribution is parameterised in terms of mean, inverse-scale-squared, and degrees of freedom, respectively — see Ap-

pendix C.1.

48 The BUGS Book

Letting y = 1 denote the event that I observe a head and θ denote the prob-
ability of a head, we have that θ ∈ (0.25, 0.5, 0.75). Note that our goal here is
to make an inference about the posterior distribution of θ itself (an unobservable
parameter), not about whether we will get a head on the next throw (an observ-
able event). Given that I select the coin at random, a reasonable prior distribution
for θ is to assume

p(θ = 0.25) = p(θ = 0.5) = p(θ = 0.75) = 0.33.

The sampling distribution or likelihood of the data can be represented by a
Bernoulli distribution,

p(y|θ) = θy(1− θ)(1−y).

The resulting posterior distribution for θ is shown in the following table.

Prior Likelihood Un-normalised Normalised
posterior posterior

θ p(θ) p(y = 1|θ) p(y = 1|θ)p(θ) p(y=1|θ)p(θ)
p(y=1)†

0.25 0.33 0.25 0.0825 0.167
0.50 0.33 0.50 0.1650 0.333
0.75 0.33 0.75 0.2475 0.500
Sum 1.00 1.50 0.495 1.000

† The normalising constant can be calculated as p(y = 1) =
∑

i p(y = 1|θi)p(θi) = 0.495.

So observing a head on a single toss of the coin means that there is now a 50%
probability that the chance of heads is 0.75 and only a 16.7% probability that the
chance of heads in 0.25.

The following code shows how such a model may be implemented in BUGS.

y <- 1

###################################

y ~ dbern(theta.true)

theta.true <- theta[coin]

coin ~ dcat(p[])

for(i in 1:3) {

p[i] <- 1/3

theta[i] <- 0.25*i

coin.prob[i] <- equals(coin, i)

}

Language note: coin has a categorical distribution taking on values 1,2,3,
and equals() is used to identify the individual probabilities in that distribution.
This is sometimes called the pick trick for choosing a random element of a vector
— see also §5.4 and pick in the index for other examples. The loop-index i can
be used in the calculations: the term theta.true is not strictly necessary, as the
nested index y ~ dbern(theta[coin]) could be used instead.

Introduction to Bayesian inference 49

node mean sd MC error 2.5% median 97.5% start sample

coin.prob[1] 0.1662 0.3723 0.001141 0.0 0.0 1.0 1 100000

coin.prob[2] 0.3342 0.4717 0.001435 0.0 0.0 1.0 1 100000

coin.prob[3] 0.4997 0.5 0.001491 0.0 0.0 1.0 1 100000

Suppose we want to predict the probability that the next toss is a head. Now,
algebraically

Pr(Ỹ = 1|y) =
∑

i

Pr(Ỹ = 1|θi)p(θi|y)

= (0.25× 0.167) + (0.50× 0.333) + (0.75× 0.500) = 7/12.

In BUGS a generic method is to predict a new observation by adding the line

Y.pred ~ dbern(theta.true)

but of course in this case, we could just monitor theta.true directly, since it
represents the required probability.

node mean sd MC error 2.5% median 97.5% start sample

Y.pred 0.5832 0.493 0.001611 0.0 1.0 1.0 1 100000

theta.true 0.5834 0.186 5.687E-4 0.25 0.5 0.75 1 100000

The same results are obtained by each method, but the Monte Carlo error is far
smaller with the “direct” method, since we avoid the additional error in sampling
an actual predictive observation.

3.5 Combinations of conjugate analyses

In many situations, more than one source of data is required to learn about
some quantity (also see §11.4). We might be able to obtain exact posteriors for
the parameter underlying each dataset, using independent conjugate analyses,
but Monte Carlo simulation may still be required to combine the evidence from
the different datasets.

Example 3.5.1. Heart transplants: learning from data
In Example 2.6.1, the expected survival of patients with heart failure undergoing
heart transplantation was estimated using Monte Carlo simulation based on a
fixed operative mortality rate (80%) and a given prior for the post-transplant
survival rate (exponential with mean 5 years). We extend this example here to
learn about these parameters from data.

Suppose that 10 patients in a particular centre received a heart transplant, and
8 of these survived the operation. These patients were followed up for the rest

50 The BUGS Book

for(i IN 1 : 8)

surv.t

sP[i]

nT

theta

yT

pT

FIGURE 3.7

Graphical model for heart transplant survival. Evidence from the operative mortal-
ity yT and the long-term survival sP is combined to estimate the overall expected
post-transplant survival surv.t.

of their lives, and survived for 2,3,4,4,6,7,10 and 12 years, respectively. Based on
these data, we predict the expected lifetime for a similar patient about to undergo
a transplant.

A binomial model with a conjugate uniform prior is used to estimate the prob-
ability of survival pT during the operation. The post-transplant survival data are
modelled as exponential with rate θ (mean 1/θ). A conjugate gamma prior (Ta-
ble 3.1) is used for θ with parameters a = b = 0.001, which is vague relative to
the data (see §5.2.6). Although the posteriors for pT and θ are available in closed
form as Beta(9,3) and Gamma(8.001,47.001) distributions, Monte Carlo integra-
tion is required to calculate the posterior of the total expected survival pT /θ. This
is then compared with the expected lifetime without transplant (assumed to be 2
years) to estimate the expected survival benefit from transplantation, labelled Is

in the BUGS code. The graphical model (Figure 3.7) illustrates how the expected
survival with transplant surv.t is inferred from two sources of data yT and sP.

yT ~ dbin(pT, nT)

pT ~ dunif(0, 1)

for (i in 1:8) {

sP[i] ~ dexp(theta)

}

theta ~ dgamma(0.001, 0.001)

surv.t <- pT/theta # expected survival with transplant

Is <- surv.t - 2

The data are supplied in a list.

list(yT=8, nT=10, sP=c(2,3,4,4,6,7,10,12))

Introduction to Bayesian inference 51

An initial value is also provided for θ∗.

list(theta=1)

The posterior mean survival benefit is about 3 years, but with a wide posterior
credible interval of about 0.2 to 9 years.

node mean sd MC error 2.5% median 97.5% start sample

Is 3.136 2.271 0.003046 0.2014 2.669 8.836 1001 500000

pT 0.7495 0.1202 1.702E-4 0.482 0.7639 0.9396 1001 500000

surv.t 5.136 2.271 0.003046 2.201 4.669 10.84 1001 500000

This analysis could easily be extended to include estimating the cost and cost
effectiveness of transplantation, as in Example 2.6.1. See §11.4 for more complex
examples of combining data from different sources in BUGS.

3.6 Bayesian and classical methods

There are three broad approaches to statistical inference.

1. The Fisherian approach is perhaps most prominent in current practice:
based largely on the work of R. A. Fisher, the basic idea is to use the
likelihood function as a basis for point and interval estimation, and p-
values as a measure of the discrepancy of data with a claimed hypothesis.

2. The Neyman–Pearson philosophy of “inductive behaviour,” originally
proposed by Jerzy Neyman and Egon Pearson in the 1930s, is rooted
in decision making and the error rates in choosing between null and
alternative hypotheses H0 and H1, and procedures for estimation and
testing are selected on the basis of their long-run properties.

3. Finally, the Bayesian approach uses the likelihood supplemented by a
prior distribution to produce a posterior probability distribution for pa-
rameters of interest, which may be combined with a loss function if a
formal decision is desired (Berger, 1985; Bernardo and Smith, 1994),
though we do not cover decision theory in this book.

∗See Section 4.3. This should not really be necessary, but without it WinBUGS (or current
OpenBUGS) will automatically generate an extreme initial value from the flat gamma prior,
giving numerical overflow and an error message. Ideally WinBUGS would sample from the
tighter conjugate posterior, or use the prior mean, median, or mode as JAGS does.

52 The BUGS Book

For further comparison of inferential methods see, for example, Cox and Hink-
ley (1974).While the Fisherian and Neyman–Pearson approaches are generally
considered as “classical” or “frequentist” methods and contrasted to Bayesian
analysis, the fairly informal discussion below suggests there are perhaps more
similarities between the Fisherian and Bayesian approaches to estimation than
may at first be apparent. In contrast, there can be strong differences in ap-
proaches to model selection, as discussed in Chapter 8.

3.6.1 Likelihood-based inference

If we assume a set of independent and identically distributed observations
y = {y1, . . . , yn} from a sampling model p(yi|θ), i = 1, . . . , n, with scalar
θ, then the likelihood (as introduced in §3.1.2) is any function of θ that is
proportional to p(y|θ) = ∏i p(yi|θ). We shall denote such a function L(θ; y).

The maximum likelihood estimate is the value θ̂ which maximises L(θ; y), or
equivalently maximises the log-likelihood denoted
(θ; y).

Let

I(θ) = −EY |θ

[
d2 log p(Y |θ)

dθ2

]

= EY |θ

[(
d log p(Y |θ)

dθ

)2
]

be the “Fisher Information” contained in a single observation Y . Then under
broad generality conditions the maximum likelihood estimator has an asymp-
totic normal distribution

θ̂ ∼ N(θ, (nÎ(θ̂))−1) (3.11)

where Î() is a sample-based estimate of I(). Thus the maximum likelihood es-
timator will converge to the true value of the parameter assuming the sampling
model has been appropriately chosen. Similar results hold for multivariate θ:
there are various procedures for dealing with nuisance parameters ψ, such
as creating a “profile likelihood” L(θ, ψ̂|θ; y) for θ based on the conditional

maximum likelihood estimates ψ̂|θ.

3.6.2 Exchangeability

“Exchangeability” is to Bayesian inference what “independently and identi-
cally distributed” is to classical inference. It is a formal expression of the
idea that we find no systematic reason to distinguish individual variables: in-
formally it is a judgement that they are “similar” but not identical. More
formally, we judge that Y1, . . . , Yn are finitely exchangeable if the proba-
bility that we assign to any set of potential outcomes p(y1, . . . , yn) is un-
affected by permutations of the labels attached to the variables, so that under
any permutation π(i), i = 1, . . . , n, we would assume that p(y1, . . . , yn) =
p(yπ(1), . . . , yπ(n)).

Introduction to Bayesian inference 53

For example, suppose Y1, Y2, Y3 are the first three flips of a (possibly biased)
coin, where Y1 = 1 indicates a head, and Y1 = 0 indicates a tail. We might
judge p(Y1 = 1, Y2 = 0, Y3 = 1) = p(Y2 = 1, Y1 = 0, Y3 = 1) = p(Y1 = 1, Y3 =
0, Y2 = 1): i.e., the probability of getting 2 heads and a tail is unaffected by
the particular flip on which the tail comes. This is a fairly strong assumption,
but a natural judgement to make if we have no reason to think that one flip
is systematically any different from another. Note that it does not mean we
believe that Y1, . . . , Yn are independent: this would not allow us to learn about
the chance of a head.

de Finetti (1931) proved a remarkable “representation theorem” — that if
every finite sequence of an infinite sequence of binary variables Y1, . . . , Yn, . . .
is judged finitely exchangeable, then it implies that the joint density for any
finite set can be written in the form

p(y1, . . . , yn) =

∫ n∏

i=1

p(yi|θ)p(θ)dθ

for some density p(θ) (assuming regularity conditions so that the density exists
and is continuous).

It is easy to argue from “right to left” in this equation, since this is a
standard expression for conditional and marginal probability. But the “left to
right” identity is not at all obvious and has very powerful implications: when
extended to a more general version, it says that exchangeable random quan-
tities can be thought of as being independently and identically distributed and
drawn from some common parametric distribution depending on an unknown
parameter θ, which itself has a prior distribution p(θ). Thus, from a subjec-
tive judgement about the exchangeability of observable quantities, the whole
apparatus of parametric models and Bayesian statistics is derived rather than
assumed.

We will see in Chapter 10 how we can use these ideas to develop hierarchical
models.

3.6.3 Long-run properties of Bayesian methods

The long-run properties of Bayesian methods provide an attractive link to
more familiar procedures. Asymptotically (under broad regularity conditions),
as the sample size increases, the influence of the prior distribution decreases
and the posterior distribution tends to a form leading to numerically identical
(although conceptually distinct) inferences as those obtained from a likelihood
perspective. We emphasise that this is based on asymptotics in which n →
∞, but the number of parameters p remains fixed. Very informally, for an
exchangeable sequence we have p(θ|y) ∝∏i p(yi|θ)p(θ), and so we can write

log p(θ|y) = const +
∑

i

log p(yi|θ) + log p(θ),

54 The BUGS Book

where the second term is O(n) and will dominate the prior term, which re-
mains fixed as the sample size increases. Hence expanding as a Taylor series
around the maximum likelihood estimate θ̂ (so that the (θ − θ̂) term disap-
pears), we get

log p(θ|y) ≈ const +
∑

i

log p(yi|θ̂) + 1

2
(θ − θ̂)2

∑

i

d2

dθ2
log p(yi|θ)

∣
∣
∣
∣
θ̂

+ . . . ,

where the quadratic term is −n× Î(θ̂), and Î(θ̂) is a sample-based estimate

of the Fisher Information I(θ) = −E[d
2

dθ2 log p(Y |θ)]. Hence, taking exponents
of both sides gives

θ ∼ N(θ̂, (nÎ(θ̂))−1).

The posterior distribution will therefore give essentially the same asymptotic
estimates and intervals as the maximum likelihood estimator (Equation 3.11).

However, note that the posterior is a distribution for θ given θ̂, whereas (3.11)

is the sampling distribution of θ̂ given θ.

3.6.4 Model-based vs procedural methods

Both Fisherian and Bayesian approaches are based on the assumption of a
fully described parametric model. A distinction, however, can be drawn be-
tween Bayesian and non-likelihood-based frequentist methods. The latter may
be termed “procedural,” in that a statistical procedure that can be applied
to data is invented, rather than being derived from a fully specified sampling
model assumption, and then its properties explored in a range of possible
circumstances. Such techniques include many classical nonparametric proce-
dures such as the sign and Wilcoxon tests, generalised estimating equations,
adaptive techniques such as M-estimation, survey weighting methods such as
inverse probability weights, and so on. In some circumstances these proce-
dures can be essentially reproduced within a Bayesian framework by assum-
ing a suitably extended model, so that particular forms of tail behaviour can
mimic M-estimation, and “nonparametric” methods can be obtained from a
very flexible parametric model, as described in §11.8.

We can, however, explore what will happen in a Bayesian analysis if we
make an erroneous assumption about the model. The asymptotic analysis
shown above reveals that the posterior mean will tend to the maximum like-
lihood estimator θ̂, which will itself converge to the “true” parameter value
θ, assuming that the true sampling distribution is p(y|θ) for some value θ. If
this is not the case and the “true” sampling distribution is some other den-
sity pT (y), then the posterior mean will converge to the “closest” value θ0 in
the assumed family of distributions, where θ0 minimises the Kullback–Leibler
discrepancy H(θ) between p(y|θ) and pT (y), where

H(θ) =

∫
log

pT (y)

p(y|θ)pT (y)dy.

Introduction to Bayesian inference 55

See Gelman et al. (2004), p. 585, for more discussion of convergence under
the “wrong model.”

The crucial point is that if the wrong model is assumed, then the confidence
with which the Bayesian inferences are made may be inappropriate, since, due
to the possibility of model error, the posterior distributions do not reflect the
full uncertainty. This means that there is a strong responsibility to assure
oneself of the adequacy of the chosen model, by both model checking and
adopting a sufficiently broad family to ensure robustness to a range of different
possible contingencies — see Chapter 8. Similar arguments apply in a non-
Bayesian likelihood context.

3.6.5 The “likelihood principle”

This principle states that “all information about θ provided by data y is
contained in the likelihood, that is, any function ∝ p(y|θ):” i.e., if observations
y and y′ are dependent on the same parameter θ and have the same likelihood
L(θ; y) ∝ L(θ; y′), then the inferences about θ should be identical. This is
clearly trivially true for Bayesian analysis, since the posterior only depends
on the likelihood and prior.

This principle seems self-evident, until one considers frequentist Neyman–
Pearson tests that, in order to conserve a fixed Type I error rate, force one
to allow for how many times one intends to examine the data when deciding
whether to reject a null hypothesis. In other words, to take into account what
you would have done had you observed something different! For example,
when making an inference about a proportion θ in a Neyman–Pearson (but
not a Fisherian) framework, it will make a difference whether you decide in
advance to carry out n trials and observe r successes, and hence adopt a
binomial model, or decide to carry on until you have observed r successes,
and happen to need to do n trials, which gives rise to a negative binomial
model. There is no difference in a Bayesian analysis, although of course the
prior may influence the results.

These issues become particularly important when conducting sequential or
adaptive clinical trials, in which the data is periodically examined and, de-
pending on the results observed, alterations may be made to the design or
the trial stopped altogether. From a strict Bayesian perspective, no adjust-
ment need be made to the conclusions as a result of these flexible designs,
and indeed, there are frequentist methods for adjusting both estimates and
intervals in a sequential trial, although they are seldom used. However, when
designing a trial, funders and regulatory bodies may still demand control of
Type 1 error and an idea of the power of a study to detect a certain effect,
and both of these “operating characteristics” are affected by adaptive designs.
It has therefore become standard practice within Bayesian adaptive trials to
make no adjustment for the design when drawing inferences, but to allow for
the design when making pre-trial assessments of the operating characteristics
(Berry et al., 2010).

This page intentionally left blankThis page intentionally left blank

4

Introduction to Markov chain Monte Carlo
methods

4.1 Bayesian computation

4.1.1 Single-parameter models

As discussed in Chapter 3, the posterior distribution contains all the informa-
tion needed for Bayesian inference. In all of the examples encountered thus
far there is a single unknown parameter, whose posterior distribution might
be graphed to provide a complete picture of the current state of knowledge
arising from the data and prior information. More generally, though, we wish
to calculate numeric summaries of the posterior distribution via integration,
e.g., E[θ|y] = ∫

θ
θp(θ|y) dθ. In the conjugate examples considered so far, the

posterior distribution is available in closed form and so the required inte-
grals are straightforward to evaluate. However, outside the conjugate family
of models, the posterior is usually of non-standard form (although we can al-
ways write down its density function to within a constant of proportionality).
As a consequence, at least some of the integrals required for summarising the
distribution are difficult.

Various methods are available for evaluating such integrals. In cases where
we can sample directly from the posterior, such as in conjugate problems, we
could use Monte Carlo simulation (if we wished to venture beyond standard
results). More generally, however, we could try to obtain an approximation
to the posterior density that is analytically tractable, for example, assuming
asymptotic normality of the posterior or more complex techniques such as
Laplace’s method (see, for example, Carlin and Louis (2008); Gelman et al.
(2004) for further details). Alternatively, numerical integration methods can
be used (Davis and Rabinowitz (1975); Press et al. (2002), Ch. 4). Standard
techniques include Gaussian quadrature, or a form of (non-iterative) Monte
Carlo integration, which differs from the form described in § 1.4. There we
could obtain a direct sample from p(θ|y) — here we cannot, so we would
integrate by sampling points uniformly from the region to be integrated over,
averaging the values of the integrand at those points, finally multiplying by
the size of the region.

Here, however, we focus exclusively on the class of iterative methods known

57

58 The BUGS Book

as Markov chain Monte Carlo (MCMC) integration (Gelfand and Smith, 1990;
Geman and Geman, 1984; Metropolis et al., 1953; Hastings, 1970). These
are by far the most powerful and flexible class of algorithms available for
Bayesian computation, though see § 4.6 for a brief discussion of situations
where MCMC is not well suited. We first present an example in which the
single parameter of interest has a non-standard posterior, to illustrate the
ease with which complex integrals can be evaluated using MCMC in BUGS.
Later, after discussing multi-parameter models, we will describe the types of
MCMC algorithm used by BUGS for performing such computations.

Example 4.1.1. Surgery (continued): non-conjugate inference
Suppose we observe the number of deaths y in a given hospital for a high-risk
operation. Let n denote the total number of such operations performed and sup-
pose we wish to make inferences regarding the underlying true mortality rate, θ,
say. The likelihood, up to a constant of proportionality, is given by

p(y|θ) ∝ θy(1− θ)n−y .

Note that θ must lie between 0 and 1, and suppose that to impose this constraint
we choose a non-conjugate, normal prior for the logistic transform of θ:

logit θ = log

(
θ

1− θ

)

∼ Normal(μ, ω2)

⇒ p(θ) =
1

θ(1 − θ)
× 1

ω
√
2π

exp

{

− 1

2ω2
(logit θ − μ)2

}

.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

theta

p(
th

et
a)

FIGURE 4.1

Prior density for θ in the case where logit θ ∼ Normal(0, 2.71).

Figure 4.1 shows the prior density for θ with μ = 0 and ω2 = 2.71, which
correspond to a good approximation of the standard logistic density (Appendix C

Introduction to MCMC methods 59

and § 5.2.5), which would be uniform on the scale of θ. Multiplying prior and
likelihood together gives the posterior

p(θ|y) = A× θy−1(1− θ)n−y−1 exp

{

− 1

2ω2
(logit θ − μ)2

}

,

where A is the normalising constant required to make the density integrate to 1.
A is analytically intractable, but even if we knew A, the posterior expectation

E[θ|y] = A×
∫ 1

0

θy(1− θ)n−y−1 exp

{

− 1

2ω2
(logit θ − μ)2

}

dθ

would still be intractable.
In Example 3.3.1, where a conjugate Beta(. , .) prior was specified for θ, we were

able to derive the posterior in closed form and perform Monte Carlo integration
directly by specifying that closed form as a sampling distribution in BUGS. With
a normal prior on logit θ, however, there is no closed-form posterior. In such cases
BUGS can perform Markov chain Monte Carlo integration instead if we simply
specify the likelihood and prior separately. Suppose y = 10 and n = 100:

y <- 10

n <- 100

##############################

y ~ dbin(theta, n)

logit(theta) <- logit.theta

logit.theta ~ dnorm(0, 0.368) # precision = 1 / 2.71

The software knows how to derive the posterior distribution and subsequently
sample from it. The resulting samples are used as in standard Monte Carlo inte-
gration to compute various posterior summaries, e.g.,

node mean sd MC error 2.5% median 97.5% start sample

theta 0.1081 0.03029 3.387E-4 0.05725 0.1052 0.1744 1001 10000

Hence the posterior mean is 0.108 and an approximate 95% credible interval for
θ is (0.0573, 0.174). Given the prior distribution and the observed data, we can
be 95% sure that the “true” mortality rate lies between 0.0573 and 0.174. These
results are very similar to those obtained in the conjugate case with θ assigned
a fully uniform Beta(1, 1) prior, as opposed to the approximately uniform prior
shown in Figure 4.1: mean = 0.108, interval = (0.0557, 0.175).

4.1.2 Multi-parameter models

More generally we are interested in models with more than one unknown pa-
rameter. As the number of parameters increases, however, it is increasingly
difficult to identify a conjugate prior, to the extent that for all but the sim-
plest of problems the joint posterior distribution is of non-standard form. In

60 The BUGS Book

addition, the integrals required for inference become high dimensional. For
example, suppose we have a joint posterior distribution for the vector of un-
knowns θ = {θ1, . . . , θk}. We often want to base inference on the marginal
posterior of a subset of the parameters: the marginal posterior for θ1, say, is

p(θ1|y) =
∫

θ2

. . .

∫

θk

p(θ|y) dθ2 . . . dθk.

In such cases MCMC is often the only suitable method of integration.

Example 4.1.2. A multi-parameter model
Suppose we have observed data yi, i = 1, . . . , n, which we believe arise from
a heavy-tailed Student-t distribution with unknown mean μ, unknown inverse-
scale-squared r, and unknown degrees of freedom d (see Appendix C.1). Further
suppose that we specify independent Normal(γ, ω2) and Gamma(α, β) priors for
μ and r, respectively, and an independent discrete-uniform prior for d on the set
{2, 3, . . . , 30}. The joint posterior distribution is given by

p(μ, r, d|y) ∝
{
Γ(d+1

2)

Γ(d2)

√
r

dπ

}n n∏

i=1

{
1 +

r

d
(yi − μ)2

}−(d+1)/2

[likelihood]

× exp

{

− 1

2ω2
(μ− γ)2

}

[prior μ]

× rα−1 exp(−βr) [prior r]

× 1/29 [prior d],

which is certainly of non-standard form! Suppose we wish to make marginal in-
ferences about the unknown degrees of freedom d. Then we need

p(d|y) =
∫

μ

∫

r

p(μ, r, d|y) drdμ,

which is intractable. In BUGS we simply specify the likelihood and each prior as
follows:

for (i in 1:n) {y[i] ~ dt(mu, r, d)}

mu ~ dnorm(gamma, inv.omega.squared)

r ~ dgamma(alpha, beta)

d ~ dcat(p[])

p[1] <- 0

for (i in 2:30) {p[i] <- 1/29}

The software then uses Markov chain Monte Carlo to generate samples from
the joint posterior distribution p(μ, r, d|y). These can be used to make arbitrary
inferences about the joint posterior or, by simply ignoring samples not pertaining
to the variable(s) of interest, to make marginal inferences about any subset of the
parameters. For example, we first generate a toy data set by simulating n = 100

Introduction to MCMC methods 61

values from a t-distribution with μ = 0, r = 1, and d = 4. We then fit the above
BUGS model, with “vague” priors given by γ = 0, ω = 100, and α = β = 10−3

(see Chapter 5 for discussion of why these might be suitable choices), and initial
values list(mu = 0, r = 1, d = 10), to obtain

node mean sd MC error 2.5% median 97.5% start sample

d 12.82 7.584 0.1648 3.0 11.0 29.0 1 100000

mu 0.04393 0.09752 5.455E-4 -0.1467 0.0431 0.2368 1 100000

r 1.339 0.3203 0.005169 0.8774 1.282 2.123 1 100000

Hence, we can immediately infer that the degrees of freedom has a (marginal)
posterior median of 11 and a 95% credible interval of [3, 29]. Visual inspection
of the posterior (Figure 4.2) reveals that there is limited information in the data
regarding d but that the mode, 5, is close to the true value of 4.

d sample: 100000

1 10 20 30

 0.0
0.02
0.04
0.06
0.08

FIGURE 4.2

Approximate posterior distribution for number of degrees of freedom from analysis
of 100 observations from t(0, 1, 4).

4.1.3 Monte Carlo integration for evaluating posterior inte-
grals

As we have seen in §1.4 we can calculate arbitrary summaries of interest for a
given distribution by Monte Carlo integration. Hence, assuming we can obtain
a sample of realisations from the joint posterior p(θ|y), we have an entirely
general method for evaluating the integrals necessary for Bayesian inference.
So how might we obtain a sample from p(θ|y)?

For all but the most tractable of posterior distributions, this cannot be
done directly. However, a number of algorithms exist for indirect sampling
from non-standard distributions. In general, these methods work by sampling
values from an approximate distribution and then correcting or adjusting the
values so that they better resemble a sample from the true distribution of
interest. The book by Ripley (1987) offers the interested reader a thorough

62 The BUGS Book

account of many such methods. Amongst the most widely used are importance
sampling and rejection sampling. These are non-iterative algorithms, in the
sense that the same approximation to the target distribution is used through-
out. However, to use them for Bayesian computation necessitates finding a
density that is a good approximation to the (log) joint posterior and that is
easy to sample from directly. For many realistically complex Bayesian models,
this is difficult or impossible to do (using generic methods that do not have
to be tuned to specific applications).

The alternative is to use an iterative algorithm, in which a single realisa-
tion from the approximating distribution is drawn at each iteration, but the
approximate distribution is improved at each step. Once the approximating
distribution is sufficiently close to the target (i.e., the joint posterior), succes-
sive draws from this distribution can be considered to form a sample from the
joint posterior of interest. Hence as the iterations proceed, the approximating
distribution can be thought of as converging towards the posterior. Theorems
exist which prove that if the approximating distribution is set up in a cer-
tain way (essentially so that the successive realisations form a Markov chain
with appropriate transition probabilities — see below), then this convergence
will occur almost surely as T (the number of iterations) → ∞ (Tierney, 1994;
Roberts and Rosenthal, 2004; Robert and Casella, 2004; Asmussen and Glynn,
2011). In practice, of course, only a finite number of iterations is possible, and
as we shall see in §4.4, deciding at which point the approximating distribution
is close enough to the target posterior is crucial when using these methods for
Bayesian inference.

4.2 Markov chain Monte Carlo methods

As hinted above, one of the most reliable and general methods for choosing
a suitable iterative approximating distribution for sampling from complex
Bayesian posterior distributions is to use a Markov chain. Formally, a sequence
of random variables X(0), X(1), X(2), . . . forms a Markov chain if, for all t, the
distribution of the t+ 1th variable in the sequence is given by

X(t+1) ∼ ptrans(x|X(t) = x(t)), (4.1)

that is, conditional on the value of X(t), the distribution of X(t+1) is indepen-
dent of all other preceding values, X(t−1), . . . , X(0). The right-hand side of
(4.1) is called the transition distribution of the Markov chain and defines the
conditional probability of moving to any particular new value given the current
value of the chain. Subject to fairly general regularity conditions (including
irreducibility and aperiodicity, see Cox and Miller (1965)), the marginal (or
unconditional) distribution of X(t+1) will converge to a unique stationary dis-

Introduction to MCMC methods 63

tribution as t → ∞. In simple terms, this means that although each variable
in the chain depends directly on its predecessor, eventually (as t increases) we
reach a point such that for practical purposes, all subsequent values are dis-
tributed marginally according to the same fixed distribution, which, crucially,
is independent of the starting value X(0). In other words, the chain even-
tually forgets where it started and conforms to an underlying “equilibrium”
distribution.

So how does this help us to generate realisations of θ from the joint pos-
terior distribution p(θ|y) in a Bayesian analysis? Replacing the random vari-
able X above by the random vector θ, the answer is to choose a transition
distribution suitable for generating (from an arbitrary initial state θ(0)) a se-
quence of realisations θ(1), θ(2), θ(3), . . . whose unique stationary distribution
is the joint posterior of interest p(θ|y). The marginal distributions of the θ(t)s
(t = 1, 2, 3, . . .) play the role of the approximating distributions discussed
earlier, with the approximation becoming successively closer to the target
posterior as the Markov chain converges to its stationary distribution.

Many methods exist for designing and sampling from such transition dis-
tributions, and their suitability depends on the nature of the joint posterior
distribution to be explored. As Bayesian models have become more and more
sophisticated, so people have invented cleverer and cleverer algorithms for
constructing efficient Markov chains to sample from required posterior distri-
butions. Inevitably there is a trade-off between the generality of a particular
method and its ability to sample efficiently from complex, high-dimensional
densities through fine-tuning. Here we focus on the main algorithms used by
the BUGS software, which, of necessity, are designed to be robust in a wide
range of applications rather than optimised for specific cases. Some strate-
gies and tricks for improving the efficiency of BUGS simulations in certain
situations are discussed, for example, in §6.1, §10.5, §11.2.

Note that, in general, MCMC methods generate a dependent sample from
the joint posterior of interest, since each realisation depends directly on its
predecessor. We can still use this sample as the basis for Monte Carlo inte-
gration, however, as all of the results discussed in §1.4 still hold.

4.2.1 Gibbs sampling

The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990;
Casella and George, 1992) is one of the most widely used algorithms for simu-
lating Markov chains. It is a special case of the Metropolis–Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) and generates a multi-dimensional
Markov chain by splitting the vector of random variables θ into subvectors
(often scalars) and sampling each subvector in turn, conditional on the most
recent values of all other elements of θ. The algorithm proceeds as follows. Let
the vector of unknowns θ consist of k sub-components, i.e., θ = (θ1, θ2, . . . , θk):

1. Choose arbitrary starting values θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k for each component,

64 The BUGS Book

where subscripts denote sub-components of θ and superscripts denote
the iteration number (iteration zero being the initial state of the Markov
chain).

2. Sample new values for each element of θ by cycling through the following
steps:

• Sample a new value for θ1, from the full conditional distribution of
θ1 given the most recent values of all other elements of θ and the
data:

θ
(1)
1 ∼ p(θ1|θ(0)2 , θ

(0)
3 , . . . , θ

(0)
k , y).

• Sample a new value θ
(1)
2 for the second component of θ, from its

full conditional distribution p(θ2|θ(1)1 , θ
(0)
3 , . . . , θ

(0)
k , y). Note that as

a new value for θ1 has already been sampled, it is this “most recent”
value that is conditioned upon, together with the starting values
for all other elements of θ.

• . . .

• Sample θ
(1)
k from p(θk|θ(1)1 , θ

(1)
2 , . . . , θ

(1)
k−1, y).

This completes one iteration of the Gibbs sampler and generates a new
realisation of the vector of unknowns, θ(1).

3. Repeat stage 2 many times, always conditioning on the most recent val-
ues of other parameters, to obtain a sequence of dependent realisations
of the vector of unknowns θ(1), θ(2), . . . , θ(T) (where T is typically of the
order of many thousands).

Figure 4.3 graphically illustrates the algorithm in the case of a hypothet-
ical two-parameter problem (k = 2). The beauty of Gibbs sampling is that
simulation from a complex, high-dimensional joint posterior distribution is re-
duced to a sequence of algorithms for sampling from one- or low-dimensional
distributions. As we shall see in the next subsection, these univariate or low-
dimensional full conditional distributions can usually be simplified by exploit-
ing the conditional independence structure of the model, and in many cases
are available in closed form (see Example 4.2.2 below), in which case direct
sampling is straightforward using a specialized, distribution-specific random
number generator (Ripley, 1987).

4.2.2 Gibbs sampling and directed graphical models

Suppose the model of interest can be represented as a directed acyclic graph
with stochastic nodes G and directed links L. As discussed in § 2.1.2, the
conditional independence assumptions expressed through the DAG structure
allow us to write p(G) =∏v∈G p(v|pa[v]) (Lauritzen et al., 1990). That is, the
joint distribution of all nodes is given by the product, over all nodes, of the

Introduction to MCMC methods 65

θ1

θ2

(θ
(1)
1 , θ

(0)
2)θ(0) = (θ

(0)
1 , θ

(0)
2)

θ(1) = (θ
(1)
1 , θ

(1)
2)

p(θ|y)

p(θ1|θ(0)
2 , y)

p(θ2|θ(1)
1 , y)

(a)

θ
(1)
1

θ
(0)
2

θ1

θ2

(b)

θ(5)

θ(0)

θ(3)

θ(1)

θ(2)

θ(4)

FIGURE 4.3

(a) First iteration of the Gibbs sampler for an illustrative two-parameter (bi-
variate) problem. The contours show the “height” of the true bivariate poste-
rior distribution p(θ|y) = p(θ1, θ2|y). The starting point of the Gibbs sampler

θ(0) = (θ
(0)
1 , θ

(0)
2) is shown by the solid dot, and the pair of values (θ

(1)
1 , θ

(1)
2)

sampled in the first iteration is shown by the open circle. The univariate den-
sity projected onto the top horizontal axis shows the full conditional distribu-

tion p(θ1|θ(0)2 , y), which is obtained by taking a horizontal “slice” through the

joint posterior distribution at the value θ2 = θ
(0)
2 (indicated by the horizontal

dashed line). A new value for θ1 (θ
(1)
1) is generated from this full conditional,

and then a “slice” parallel to the θ2 axis is taken through the joint posterior

at θ1 = θ
(1)
1 (vertical dashed line). This gives the univariate full conditional

p(θ2|θ(1)1 , y), which is shown projected onto the right-hand vertical axis, and

from which a new value for θ2 (θ
(1)
2) is sampled. (b) First five iterations of the

Gibbs sampler shown in (a). Note that the sampler always moves parallel to
the axes.

assumed distribution of each node conditional on its parents; in other words,
the product of all distributional assumptions. The set of all unknowns θ and
the set of all data y together form a partition of G, and so

p(θ, y) =
∏

v∈G
p(v|pa[v]). (4.2)

From the definition of conditional probability, p(θ|y) = p(θ, y)/p(y), which is
proportional to p(θ, y) when considered as a function of θ. Hence the joint
posterior can be obtained trivially for any DAG, up to a constant of pro-
portionality. Similarly, any conditional distribution involving all nodes in the
graph is also proportional to p(θ, y). Thus for any unobserved node (or set of
nodes) θi, say, the full conditional distribution p(θi|θ\i, y), where θ\i denotes
“all elements of θ except θi,” is proportional to p(θ, y) and can therefore be
expressed as the right-hand side of (4.2). However, we are seeking to identify

66 The BUGS Book

a distribution in θi and so any factor in (4.2) not involving θi can be ignored,
since it forms part of the normalising constant. Hence we obtain

p(θi|θ\i, y) ∝ p(θi|pa[θi])×
∏

v∈ch[θi]

p(v|pa[v]), (4.3)

and so the full conditional is dependent only on pa[θi], ch[θi] and all co-parents
of θi’s children. Collectively these three sets of nodes form a neighbourhood
in the graph around θi known as the Markov blanket ; θi is conditionally inde-
pendent of all other nodes in the graph, given the Markov blanket. The sub-
sequent derivation of a closed form for the full conditional (where available)
is exactly analogous to the derivation of a closed-form posterior in conjugate,
single-parameter models. The first term on the right-hand side of (4.3) plays
the role of the prior distribution and is referred to as the “prior component.”
The product in (4.3) plays the role of the likelihood and is known as the “like-
lihood component.” Finally, as we are conditioning on the most recent values
of all other nodes, it is as if those nodes have known values, and so there is
effectively only one unknown, θi.

Example 4.2.1. The Markov blanket
Consider the directed acyclic graph shown in Figure 4.4. Suppose we wish to derive
the full conditional distribution for node C. This is proportional to the product of
distributions for C and all of its children, conditional on their parents, i.e.,

p(C|A,B,D, . . . , I) ∝ p(C|A,B)× p(E|C,D)× p(F|C,D),
since ch[C] = {E,F}. The Markov blanket for C is given by its parents, its children,
and all co-parents of its children, in this case {A,B,D,E,F}. Given the Markov
blanket, a node is conditionally independent of all other nodes in the graph (G,
H, and I here), and so p(C|A,B,D, . . . , I) can be rewritten as p(C|A,B,D,E,F).

Example 4.2.2. Full conditional distributions
Suppose we observe data y1, . . . , yn, assumed to form a random sample from
a normal distribution with unknown mean μ and unknown precision τ . Further
suppose that we specify independent priors on μ and τ as follows:

μ ∼ Normal(γ, ω2); τ ∼ Gamma(α, β).

Note that these are the conjugate priors for the cases in which the precision and
the mean, respectively, have known values (see Table 3.1). Note also, however,
that the joint prior p(μ, τ) = Normal(γ, ω2) × Gamma(α, β) does not lead to a
closed-form joint posterior. Thus, in order to make inferences about μ and τ , we
might run a Gibbs sampler. We first choose arbitrary starting values, μ(0) = 5
and τ (0) = 10, say, and then an equally arbitrary updating order, μ then τ , say.

Introduction to MCMC methods 67

G

IH

D

FE

C

BA

FIGURE 4.4

Directed acyclic graph for Example 4.2.1, showing parent–child relationships
between nine nodes.

At iteration t of the Gibbs sampler we draw μ(t) ∼ p(μ|τ (t−1), y) and τ (t) ∼
p(τ |μ(t), y), where the full conditional sampling distributions can be derived from
the DAG shown in Figure 4.5. The full conditional for μ is proportional to the
prior for μ multiplied by the distribution of each child of μ conditional on that
child’s parents. From the graph, ch[μ] = {yi, i = 1, . . . , n}, and so

p(μ|τ (t−1), y) ∝ exp

{

− 1

2ω2
(μ− γ)2

}

× exp

{

−τ
(t−1)

2

n∑

i=1

(yi − μ)2

}

.

Conditioning on τ = τ (t−1) is essentially the same as assuming τ to be known.
Hence this is exactly the same type of calculation as is required for deriving the
single-parameter posterior (for μ) in the unknown mean, known precision/variance
case — see §3.3.2. Therefore,

p(μ|τ (t−1), y) = Normal

(
τ (t−1)

∑
yi + ω−2γ

nτ (t−1) + ω−2
,

1

nτ (t−1) + ω−2

)

.

Similarly, ch[τ] = {yi, i = 1, . . . , n}, and so

p(τ |μ(t), y) ∝ τα−1 exp{−βτ} × τ
n
2 exp

{

−τ
2

n∑

i=1

(yi − μ(t))2

}

,

which is the same as in the known mean, unknown precision case presented in
Table 3.1. Hence

p(τ |μ(t), y) = Gamma

(

α+
n

2
, β +

1

2

n∑

i=1

(yi − μ(t))2

)

.

68 The BUGS Book

i = 1,...,n

yi

μ τ

FIGURE 4.5

Directed acyclic graph depicting the assumption yi ∼ Normal(μ, τ−1), i =
1, . . . , n. Note the use of rectangular “plates” to denote repetition, i.e., the “loop”
over i.

4.2.3 Derivation of full conditional distributions in BUGS

Equation (4.3) demonstrates that only local knowledge of the graph is needed
to derive the full conditional distribution of any node (or group of nodes). In-
deed, in order to derive all of the full conditionals required for Gibbs sampling
on any DAG, we simply need to know how each node is related to its parents
and which nodes are its children. BUGS stores this information in the form
of an object-oriented version of the specified graph, with “objects” represent-
ing nodes and “pointer variables” linking nodes together, in particular linking
each node to its children. The software uses an expert system to visit each
node in turn and classify the form of the full conditional by considering the
“compatibility” of the prior component (the distribution of the node itself,
conditional on its parents) with each term in the likelihood component (the
distribution of each child conditional on its parents). If the full conditional
is available in closed form then a specialized, distribution-specific algorithm
will be used to derive and sample from that closed form. If a closed form is
not available, however, the expert system chooses a more general algorithm
from a range of suitable methods, based on any important features of the full
conditional that might have been gleaned from the aforementioned compati-
bility considerations, e.g., whether the density is “log-concave,” or has infinite
support, say. Some of the more commonly used alternative sampling methods
are discussed briefly in the following subsection; the reader is referred to Lunn
et al. (2000) and Lunn et al. (2009b) for further details regarding the internal
workings of BUGS.

4.2.4 Other MCMC methods

As mentioned above, if direct sampling from the full conditional is not possi-
ble, then the WinBUGS software implements a number of alternative, more
general algorithms, including “slice” sampling (Neal, 2003), Metropolis sam-

Introduction to MCMC methods 69

pling (Metropolis et al., 1953; Hastings, 1970), and various types of rejection
method, such as “adaptive rejection sampling” (Gilks, 1992; Gilks and Wild,
1992) — see Lunn et al. (2000) or the WinBUGS manual for more details. Fur-
ther algorithms are available in the OpenBUGS implementation of BUGS, for
example, delayed rejection (Green and Mira, 2001) and hybrid/Hamiltonian
methods (Duane et al., 1987; Neal, 2010) — please see the OpenBUGS doc-
umentation. Note that such methods are used only as a means of updating
full conditionals within a Gibbs sampling scheme; use of the Metropolis al-
gorithm, for example, thus leads to a type of sampling known as Metropolis-
within-Gibbs.

Metropolis algorithms We do not wish to go into the details of vari-
ous sampling methods in this text, but we feel it is instructive to provide
an overview of Metropolis-based algorithms since they lead to a characteristic
form of output that could be perceived as erroneous by the inexperienced user.
Metropolis algorithms work by first sampling values from a proposal distri-
bution, which approximates the relevant full conditional (or, more generally,
target distribution) but is easy to sample from. An acceptance probability α is
then calculated for the proposed value, and a Uniform(0, 1) random number
u is drawn to convert that probability into an accept/reject decision (reject
if u > α, accept otherwise). If the proposed value is to be accepted then the
Markov chain moves to that value, otherwise it remains at its current value.
This leads to a Markov chain that stays in the same place for a number of
iterations, on a regular basis, particularly if the proposal distribution does
not approximate the target distribution well (giving typically low values for
α). If we plot a continuous line joining successive samples together, then the
resulting trace plot — see §4.4.1 — can have the appearance of a cityscape
(a metropolis perhaps), with the roofs of buildings corresponding to multiple
successive rejections (see Figure 4.6, for example). Despite the chain contain-
ing multiple repeated values, it may be used, for inference, in exactly the
same way as if all values had been sampled directly, as long as sufficient time
is allowed for the chain to fully explore the target distribution.

In principle it is possible to use the Metropolis algorithm to jointly update
the entire posterior distribution in one go, rather than using the alternat-
ing conditional updating scheme of the Gibbs sampler. However, this often
requires problem-specific fine-tuning to obtain a multivariate proposal distri-
bution that is a good approximation to the joint posterior of interest; hence,
such an approach is not used in any implementation of BUGS, although note
that various types of “block updating,” where a group of variables is updated
together according to their joint full conditional, are possible. Even when used
within a Gibbs sampling scheme to sample from univariate full conditionals,
the Metropolis algorithm requires some tuning to obtain efficient simulations.
This tuning process has been fully automated in WinBUGS and is known as
the adapting phase (see also §12.4.3, and the WinBUGS manual). Samples

70 The BUGS Book

theta

iteration
3501 3600 3800 4000

4.9

5.0

5.1

5.2

FIGURE 4.6

Trace plot, whereby successive samples for a single parameter are joined to-
gether by a continuous line (plotted against iteration number). The plot il-
lustrates how output from Metropolis-based samplers contains multiple se-
quences of repeated values, which can give the plot the appearance of a
cityscape.

generated during this phase, however, cannot be considered to arise from the
posterior distribution, and so they must be discarded before performing any
Monte Carlo integration. The “slice” sampler used in all BUGS implemen-
tations also fine-tunes itself during an initial adapting phase, and the same
rule about discarding samples generated during this phase applies. These and
other issues relating to the interpretation of output from different MCMC
algorithms will be further discussed as they arise in context.

4.3 Initial values

Before any MCMC method can be started, we must first initialise the Markov
chain, i.e., provide starting values for each unknown parameter in the statis-
tical model. WinBUGS and OpenBUGS can often do this automatically, by
sampling from the assumed (“prior”) distribution of each parameter. However,
such distributions may have very large variances, say, to reflect a lack of prior
knowledge, and wildly inappropriate starting values may result. The disparity
between such initial values and those values supported by the posterior often
then causes the program to crash. Hence we have the facility to specify initial
values manually instead. JAGS, on the other hand, when asked to generate
initial values automatically, chooses a “central” value from the distribution,
such as the mean or median, which avoids this problem. In WinBUGS initial
values can be supplied as a list after the model description or in a separate
file (see §12.4.2). In practice a mixture of these two strategies typically works
well, with some values specified by the user and the remaining values gener-
ated automatically by the BUGS engine. All of the remaining examples in this

Introduction to MCMC methods 71

book have been run with a mixture of manually specified and automatically
generated initial values. Except in cases where the manually specified values
have been given explicitly, it will not generally be possible for the reader to
reproduce exactly any results quoted using their own code, although results
should agree up to Monte Carlo error — see §4.5.

Example 4.3.1. Initial values
Consider the multi-parameter Student-t problem described in Example 4.1.2.
There are three unknown parameters, each of which must be initialised. The
prior for μ, the mean of the Student-t distribution, is Normal(γ, ω2). With γ = 0
and ω = 100 as in Example 4.1.2, typical values from this prior lie in the range
(−20000, 20000). Hence we might prefer to simply set μ(0) = 0 rather than sam-
ple from the prior and obtain 14,603, say, which is unlikely to be a good starting
point! The prior for r is Gamma(0.001, 0.001), which WinBUGS cannot even
sample from (due to numerical inaccuracies caused by the small size of the first
parameter), and so a user-specified initial value is essential, e.g., r(0) = 1. We
may also provide our own starting value for the degrees-of-freedom parameter,
e.g., d(0) = 8, but any value from the discrete-uniform prior on {2, 3, . . . , 30}
would represent a reasonable starting point and so we might prefer to let Win-
BUGS generate this automatically. The user-specified values for μ and r can be
provided in the form of a list given after the model description:

list(mu = 0, r = 1)

In Example 2.1.2, we described the basic steps for running a model in WinBUGS.
In this example, we would now need to load this list of initial values in Step 7, as
follows, which was previously ignored.

• Highlight the word list by double-clicking on it, and click load inits in
the Specification Tool.

Initial values for the remaining parameters (d in this case) are generated auto-
matically using the gen inits command (see also §12.4.3); note that this must be
used after the user-specified values have been loaded.

4.4 Convergence

As discussed in §4.2, if we simulate realisations from a Markov chain transition
distribution, then under broad conditions, eventually the simulated values will
be marginally distributed according to the Markov chain’s unique stationary
distribution. To fully exploit this fact we need to be able to detect when the

72 The BUGS Book

marginal behaviour of the chain is sufficiently close to stationarity, so that
we can harvest all subsequent realisations as a dependent sample from the
stationary distribution; note that the initial, non-stationary portion of the
chain is referred to as the “burn-in.”

It is important to note that convergence here is to a distribution, not to a
fixed value. In practice we diagnose convergence retrospectively, by guessing
for how long to run the simulation (we can always keep going if our initial
guess proves insufficient) and then trying to determine if some latter portion
of the chain can be considered stationary. We typically have to run the sim-
ulation well beyond the point of convergence, as detecting stationarity (or a
lack thereof) requires a substantial sample size, as does accurate inference.
The actual post-convergence sample size required depends very much on the
efficiency of the Markov chain. We will discuss efficiency more formally in
§4.5, but we note here that, basically, the number of samples required, both
for detecting (non-) stationarity and for drawing accurate inferences, increases
with an increasing level of serial dependence in the chain (also known as serial-
or auto-correlation).

So why might we have a significant level of autocorrelation in the chain?
First note that all Markov chains, by definition, exhibit at least some serial
correlation. Second, imagine the two-parameter Gibbs sampler depicted in
Figure 4.3 and suppose there is a high degree of correlation in the target
distribution, such that the contours form narrow ellipses along the line y = x,
say. The Gibbs sampler is capable of exploring the entire joint posterior but
can only move perpendicular to the axes. Hence the shape of the distribution
prevents the sampler from taking anything other than small steps, and so
successive values of each variable are close together. All Metropolis-based
sampling algorithms also induce a level of autocorrelation in the sample, due
to their tendency to remain in the same place for a number of iterations, as
discussed in §4.2.4.

4.4.1 Detecting convergence/stationarity by eye

Our task is made easier by the fact that it is often straightforward to detect
(lack of) convergence informally by eye. Figure 4.7 illustrates this via several
history (or trace) plots, whereby a continuous line joining successive reali-
sations of a specific variable is plotted against Gibbs iteration number. The
various plots comprising the figure are discussed below.

Our model may contain many parameters but it is not feasible to visually
examine more than one at a time. This does not preclude convergence diag-
nosis, however, since we can simply assume convergence at the point where
all parameters have reached stationarity — note that it is quite normal for
different parameters to converge at different rates. Many realistically complex
models, however, have hundreds or even thousands of parameters, and per-
forming an individual assessment for each one may be impractical. In such
cases it is important to at least assess all parameters (and functions thereof)

Introduction to MCMC methods 73

of interest. It is also prudent to examine at least a random selection of the
remaining parameters.

As demonstrated by Figure 4.7(a), a Markov chain that has reached station-
arity should look like a random scatter about a stable mean value. In addition,
if plotted from the point of convergence onwards, a stationary Markov chain
that contains sufficient information for reliable inferences, informally speaking,
has the appearance of a “fat hairy caterpillar” (see Figure 4.7(b)). However,
if the Markov chain has a “snake-like” appearance instead (Figure 4.7(c)),
this does not necessarily mean that it hasn’t converged, since there may sim-
ply be a high degree of autocorrelation in the sample. Hence the time scale
over which the chain is plotted may be too short to clearly demonstrate sta-
tionarity, meaning that more samples are required. If we were to continue
sampling indefinitely, repeatedly redrawing the entire history plot within the
same area, it would eventually take on the required form, i.e., that of a fat
caterpillar (see Figure 4.7(d)), since any “periodicity” would be “squeezed”
to the point where it looked like random scatter — note that this also applies
to regions of any Metropolis output where rejections have occurred. Markov
chains generated using the Gibbs sampler often converge surprisingly quickly,
within the first few iterations, say. However, it is important to note that the
rate of convergence can be very slow, so slow in fact that a Markov chain may
appear stationary even when it is not (the apparently “stable” mean may be
drifting very slowly).

Of course, there is no reason why we cannot simulate two or more Markov
chains and pool the resulting samples (after convergence) for making infer-
ences. Such an approach provides us with a very effective means of checking
convergence. If the multiple chains are given widely differing initial states,
then we can be reasonably confident that stationarity has been reached when
the chains come together and start behaving similarly. Figure 4.7(e) illustrates
this by showing the same chain as in Figure 4.7(a) but with another chain,
initialised at a different starting point, superimposed. This approach forms
the basis of perhaps the most reliable formal convergence diagnostic, which
is discussed in the following subsection. We note here, however, that run-
ning multiple chains can be inefficient, particularly if the rate of convergence
is slow, since we effectively have to wait for convergence multiple times. This
problem is exacerbated by the need to use widely differing initial states, which
increase confidence in the diagnosis but often also substantially increase the
number of iterations required to reach convergence.

4.4.2 Formal detection of convergence/stationarity

Numerous techniques for formally diagnosing convergence can be found in
the literature. Many of these have been implemented within the CODA (Best
et al., 1995; Plummer et al., 2006) and BOA (Smith, 2000) software pack-
ages for R and S-Plus, which are designed to take BUGS output as input.
No method should be used blindly, however, as none can provide conclusive

74 The BUGS Book

iteration
1 250 500 750 1000

(a)

 5.0

 6.0

 7.0

 8.0

iteration
1001 2000 3000 4000 5000

(b)

 6.5

 7.0

 7.5

 8.0

iteration
1001 2000 3000 4000 5000

(c)

 -20.0

 0.0

 20.0

 40.0

iteration
1001 50000 100000 150000 200000

(d)

 -40.0

 -20.0

 0.0

 20.0

 40.0

iteration
1 250 500 750 1000

(e)

 5.0

 6.0

 7.0

 8.0

FIGURE 4.7

History/trace plots depicting five different scenarios. A continuous line joining
successive realisations of a given parameter is plotted against Gibbs iteration
number: (a) After convergence to its stationary distribution, a Markov chain
typically looks like a random scatter about some stable mean value (iteration
∼250 onwards); (b) A converged chain that contains sufficient information
for accurate inferences looks like a “fat hairy caterpillar;” (c) A “snake”-like
chain may have converged but contains too much serial-/auto-correlation for
accurate inferences to be drawn — more samples required; (d) The same chain
as in (c) but extended to iteration 200,000 and plotted over the same width
— the chain now takes on the required form; (e) The same chain as in (a) but
with another chain, initialised at a different starting point, superimposed.

Introduction to MCMC methods 75

proof of convergence and all are fallible. Indeed they are invariably founded
on a null hypothesis of convergence and as such are designed only to de-
tect non-convergence. Different methods examine/highlight different stochas-
tic features of the chain(s), and so it is prudent to always consider a range of
methods. For any given method, it is usually possible to construct an exam-
ple whereby that method will fail to detect non-convergence but others may
succeed. The reader is referred to Cowles and Carlin (1996) and Mengersen
et al. (1999) for detailed reviews of the various methods available. One method
that seems to stand out as being particularly effective, in our experience, is
that originally proposed by Gelman and Rubin (1992) and subsequently mod-
ified in Brooks and Gelman (1998). Here multiple chains starting at “overdis-
persed” initial values∗ are simulated and convergence is assessed by comparing
within- and between-chain variability. This is the only convergence diagnostic
currently implemented in WinBUGS (and OpenBUGS), but we reiterate the
wide range of methods available in BOA and CODA.

Again, we examine only one variable at a time, although multivariate ex-
tensions of the approach do exist (Brooks and Gelman, 1998). Suppose we
simulate M chains, each of length 2T , with a view to assessing the degree
of stationarity in the final T iterations. We take as a measure of posterior
variability the width of the 100(1−α)% credible interval for the parameter of
interest, e.g., α = 0.2. From the final T iterations we calculate the empirical
100(1 − α)% credible interval for each chain. We then calculate the average
width of these intervals across theM chains and denote this byW . Finally, we
compute the width B of the empirical 100(1−α)% credible interval based on
allMT samples pooled together. The ratio R̂ = B/W of pooled to average in-
terval widths should be > 1 if the starting values are suitably overdispersed;
it will also tend to 1 as convergence is approached, and so we can assume
convergence for practical purposes if R̂ < 1.05, say.

Rather than calculating a single value of R̂, we can examine the behaviour
of R̂ over iteration time by performing the above procedure repeatedly for an
increasingly large fraction of the total iteration range, ending with all of the
final T iterations contributing to the calculation as described above. Brooks
and Gelman (1998) propose splitting the total iteration range (1, . . . , 2T) into
Q batches of length a and calculating R̂(q), B(q), and W (q) based on the
latter halves of iterations 1, . . . , qa, for q = 1, . . . , Q. A plot of R̂(q), B(q),
and W (q) against some appropriate function of q then allows us not only
to assess the rate of convergence of R̂ to 1, but also to check that both B
and W have stabilised, which is crucial for a reliable diagnosis. WinBUGS
chooses a = max(100,
2T/100�)† and plots against the starting iteration of
each range,
qa/2�+ 1, so that the plot directly indicates the vicinity of the

∗In this context “overdispersed” means that the initial values are more variable than they
would have been if they had somehow been drawn from the target posterior.
†�x� denotes the largest integer not greater than x.

76 The BUGS Book

point of convergence.

Example 4.4.1. Brooks–Gelman–Rubin diagnostic
Consider the two converging Markov chains shown in Figure 4.7(e). Clearly con-
vergence occurs at around 250 iterations. Figure 4.8 shows the corresponding
Brooks–Gelman–Rubin (BGR) diagnostics for the iteration ranges 51–100, 101–
200, 151–300, 201–400, . . ., 501–1000 (2T = 1000, a = 100, Q = 2T/a = 10).
These are plotted against the starting iteration of each range (
qa/2�+ 1 = 51,
101, 151, 201, . . ., 501) so that the approximate point of convergence can be read
directly off the figure. The R̂ line suggests convergence at around 200 iterations.
However, note that the B and W lines do not stabilise until slightly later.

start-iteration
51 200 400

0.0

2.0

4.0

6.0

8.0

FIGURE 4.8

R̂(q), B(q) and W (q) for the two Markov chains shown in Figure 4.7(e), plotted
against the starting iteration,
qa/2�+1, of each range for which the diagnostics
are calculated. The upper line represents R̂, which should converge to the value
1 (indicated by the horizontal dashed line). The upper and lower of the other two
lines represent B and W , respectively. For plotting purposes, so that they can be
clearly seen on the same scale as R̂, these are normalised such that the maximum
estimated interval width is equal to 1.

This strategy works because both the length of the chains used in the cal-
culation and the start iteration are always increasing. Hence we will always
eventually (with an increasing sample size) discard any “burn-in” iterations
and also include a sufficient number of stationary samples to conclude con-
vergence.

Introduction to MCMC methods 77

4.5 Efficiency and accuracy

For a given sample size, the accuracy of our inferences is dependent on the
efficiency of our posterior sample, which decreases with an increasing level
of autocorrelation. One way of increasing efficiency is to reparameterise the
model so that the posterior correlation between parameters is reduced (see,
for example, §6.1). However, identifying such a parameterisation is not always
straightforward. Another way to improve efficiency is to perform a process
known as thinning whereby only every νth value from the Gibbs sampler is
actually retained for inference (the rest are still generated but are subsequently
discarded). However, this only represents an efficiency gain in terms of storing
and post-processing the sample: for the same computational cost of simulation,
the full sample will always contain more information and hence lead to better
accuracy.

4.5.1 Monte Carlo standard error of the posterior mean

The easiest way in which to improve accuracy is to simply increase the pos-
terior sample size, but what sample size should we choose to achieve a spe-
cific level of accuracy? Indeed, how should we define accuracy? Suppose we
are interested in estimating the posterior expectation of some (scalar-valued)
function g(θi). Further suppose we have T posterior samples for θi and denote
our Monte Carlo estimate, based on those T samples, by

ḡT =
1

T

T∑

t=1

g(θ
(t)
i).

As discussed in §1.4, if the samples θ
(1)
i , . . . , θ

(T)
i were independent, then the

Central Limit Theorem would provide us with a (Monte Carlo) standard error
for ḡT of

√
V ar[g(θi)|y]/T , which of course could be estimated by s/

√
T where

s2 is the sample variance:

s2 =
1

T − 1

T∑

t=1

{
g(θ

(t)
i)− ḡT

}2

.

Central limit theorems also exist for dependent samples (see Jones (2004), for
example). In particular, ḡT tends, in distribution, to Normal(E[g(θi)|y], ρ/T)
as T → ∞, for some positive constant ρ. We cannot use the sample variance
to estimate ρ as ρ �= V ar[g(θi)|y] when the sample is dependent. Instead we
split the sample into Q batches of length a and assume that a is sufficiently
large that the central limit theorem approximately holds for each batch:

ḡa,q =
1

a

qa∑

t=(q−1)a+1

g(θ
(t)
i) ∼approx Normal

(
E[g(θi)|y], ρ

a

)
, q = 1, . . . , Q.

78 The BUGS Book

Thus the batch means, ḡa,q, q = 1, . . . , Q, form a sample from some distribu-
tion with variance ρ/a. Hence

ρ ≈ ρ̂ =
a

Q− 1

Q∑

q=1

(ḡa,q − ḡT)
2
,

and so the standard error of ḡT can now be approximated, by
√
ρ̂/T . This

“Monte Carlo standard error” (MCSE) tells us how accurately the mean of
our Monte Carlo samples for g estimates the true posterior expectation of g.
It should not be confused with the posterior standard deviation, which reflects
the inherent uncertainty about g given the model and the data.

The above is known as the batch means method of calculating the MCSE.
There do exist other approaches, in particular methods adapted from time
series analysis (e.g., Geweke (1992)), but BUGS implements batch means due
to its simplicity. The value chosen for a is given by
√T � (Chien, 1988). In
cases where multiple Markov chains have been run, we split each chain in the
way described above and the number of batches becomes MQ, where M is
the number of chains.

4.5.2 Accuracy of the whole posterior

If we were only interested in accurate inference about the posterior mean
of g(θ), we could simply run the chain for long enough that gT ± δ×MCSE
(δ = 2 typically) agree to the desired number of significant figures. However,
we would usually want to characterise the whole posterior distribution of g(θ)
and present a credible interval or posterior probability. Raftery and Lewis
(1992) describe a general method for determining whether a posterior tail
probability is estimated to within a particular degree of accuracy with a spec-
ified probability. This is implemented in the CODA package for R and S-Plus.
For example, about 4000 independent samples after convergence are sufficient
to estimate the cumulative distribution function of the 2.5% quantile of a
well-behaved posterior within ±0.005 with probability 0.95. Reported 95%
credible intervals would then have actual posterior probability between 0.94
and 0.96. More iterations would be necessary if the chains are autocorrelated.

Alternatively, if we compare the MCSE to the posterior standard deviation,
this will tell us whether the inaccuracy about estimating the posterior mean of
g(θ) is large in the context of the overall uncertainty about g(θ). To elucidate
this, with independent samples the MCSE would be asymptotically s/

√
T ,

from the central limit theorem. This suggests that comparing the MCSE to the
estimated posterior standard deviation s gives us an estimate of the effective
sample size T ∗ = (s/MCSE)2 of an autocorrelated chain, which represents the
amount of information about the posterior distribution it contains. Therefore,
if MCSE < ks, then the effective sample size is > 1/k2. Conventionally (see
the WinBUGS manual), chains are run until the MCSE is less than k = 5%
of the posterior standard deviation, giving T ∗ = 400. This is sufficient for

Introduction to MCMC methods 79

many practical purposes — however, the T ∗ = 4000 suggested by Raftery and
Lewis’s diagnostic for estimating tail probabilities requires around k = 0.015,
or 1.5%.

A cruder but pragmatic strategy is to run the chains for increasingly more
iterations, repeatedly recalculating whatever posterior summary statistics are
of interest, until they do not appear to change within the desired accuracy.
Three or four significant figures are usually enough in our experience — ex-
cessive precision can impede clarity when presenting results, and given the
neglected uncertainties in most real statistical analyses (such as selection ef-
fects or measurement error) more precision may be spurious.

Example 4.5.1. Monte Carlo standard error
Consider again the two Markov chains shown in Figure 4.7(e) and suppose we wish
to accurately estimate the mean of the underlying posterior distribution. Shown
below are summary statistics, including MCSE (labelled MC error), calculated for
various iteration ranges after extending the simulation to 8250 iterations. Note
that the “burn-in” values from iterations 1–250 have been discarded and that
samples from the two chains have been pooled together.

node mean sd MC error 2.5% median 97.5% start sample

theta 7.333 0.1591 0.007993 7.008 7.339 7.637 251 500

theta 7.314 0.1597 0.006135 6.992 7.321 7.627 251 1000

theta 7.313 0.1604 0.004867 6.985 7.319 7.623 251 2000

theta 7.31 0.1627 0.003654 6.986 7.313 7.629 251 4000

theta 7.312 0.1629 0.002417 6.984 7.313 7.629 251 8000

theta 7.316 0.1625 0.001625 6.993 7.315 7.641 251 16000

The MCSE (fourth column) is less than 5% of the posterior standard deviation
(third column) after collecting as few as 1000 samples. Note, however, that if we
require MCSE < 0.01s, i.e., a standard error that is less than 1% of the posterior
standard deviation, then we must collect at least 16,000 samples in this case. This
is due to the fact that the estimated MCSE only decreases by a factor of ∼√

2
as we double the sample size (since MCSE ≈√ρ̂/T).

4.6 Beyond MCMC

There are a number of modelling scenarios for which standard MCMC, and
Gibbs sampling in particular, are not well suited. One such setting is the
analysis of time series data, due to the potentially long chains of serial depen-
dence in the data, although the fact that such models can at least be specified
in the BUGS language (and analysed, albeit somewhat inefficiently) is tes-
tament to the power of the language — see §11.2. Over the last decade or

80 The BUGS Book

so there have been many proposals for alternative formulations of the update
mechanism, to develop faster and more efficient techniques for improving mix-
ing and convergence rates. Some techniques use approximations to the true
likelihood; others, such as Lagrangian–Hamiltonian updates (Girolami and
Calderhead, 2011) generate more efficient proposal distributions. As alluded
to in §4.2.4 above, implementation of such methods in OpenBUGS has been,
and continues to be, explored. The “Stan” software, under development at
http://code.google.com/p/stan at the time of writing, implements generic
graphical models using Hamiltonian Monte Carlo sampling, and we eagerly
await its official release.

Beyond MCMC, there have been advances in Sequential Monte Carlo
(SMC ; Doucet et al. (2001); Del Moral et al. (2006)), whereby sets of particles
are propagated through sequential importance samplers (e.g., Ripley (1987)),
rather than constructing a Markov chain under MCMC. There are issues of
particle degeneracy, however, whereby the subset of particles (samples) that
are consistent with the observed data becomes too small. Hybrid schemes
combining MCMC within SMC have been proposed to gain the benefits of
both approaches (Andrieu et al., 2010).

Recently, there has been a growing interest in so-called likelihood-free ap-
proaches, for example, approximate Bayesian computation (ABC ; Pritchard
et al. (1999); Beaumont et al. (2002); Beaumont (2010)), where simulation
of the process or model is computationally cheap comparative to evaluating
the likelihood in an MCMC approach. There are, however, many unresolved
issues, such as model selection (Robert et al., 2011), and the theoretical jus-
tification is weaker than for MCMC. Approximation methods that allow fast
and precise inference for specific classes of problem have been developed, such
as for latent Gaussian models (Rue et al., 2009), but these are not generally
applicable outside this class of models.

Variational Bayesian methods are based on approximating an intractable
posterior distribution p(θ|y) by a distribution q(θ) from a family with a known
analytical form and have been applied to machine learning. See, for exam-
ple, Bishop (2006) or Mackay (2003) for a detailed introduction, and the
Infer.NET software (Minka et al., 2011).

5

Prior distributions

The prior distribution plays a defining role in Bayesian analysis. In view of
the controversy surrounding its use it may be tempting to treat it almost as
an embarrassment and to emphasise its lack of importance in particular appli-
cations, but we feel it is a vital ingredient and needs to be squarely addressed.
In this chapter we introduce basic ideas by focusing on single parameters, and
in subsequent chapters consider multi-parameter situations and hierarchical
models. Our emphasis is on understanding what is being used and being aware
of its (possibly unintentional) influence.

5.1 Different purposes of priors

A basic division can be made between so-called “non-informative” (also known
as “reference” or “objective”) and “informative” priors. The former are in-
tended for use in situations where scientific objectivity is at a premium, for
example, when presenting results to a regulator or in a scientific journal, and
essentially means the Bayesian apparatus is being used as a convenient way of
dealing with complex multi-dimensional models. The term “non-informative”
is misleading, since all priors contain some information, so such priors are
generally better referred to as “vague” or “diffuse.” In contrast, the use of in-
formative prior distributions explicitly acknowledges that the analysis is based
on more than the immediate data in hand whose relevance to the parameters
of interest is modelled through the likelihood, and also includes a considered
judgement concerning plausible values of the parameters based on external
information.

In fact the division between these two options is not so clear-cut — in par-
ticular, we would claim that any “objective” Bayesian analysis is a lot more
“subjective” than it may wish to appear. First, any statistical model (Bayesian
or otherwise) requires qualitative judgement in selecting its structure and dis-
tributional assumptions, regardless of whether informative prior distributions
are adopted. Second, except in rather simple situations there may not be an
agreed “objective” prior, and apparently innocuous assumptions can strongly
influence conclusions in some circumstances.

In fact a combined strategy is often reasonable, distinguishing parameters of

81

82 The BUGS Book

primary interest from those which specify secondary structure for the model.
The former will generally be location parameters, such as regression coef-
ficients, and in many cases a vague prior that is locally uniform over the
region supported by the likelihood will be reasonable. Secondary aspects of
a model include, say, the variability between random effects in a hierarchical
model. Often there is limited evidence in the immediate data concerning such
parameters and hence there can be considerable sensitivity to the prior dis-
tribution, in which case we recommend thinking carefully about reasonable
values in advance and so specifying fairly informative priors — the inclusion
of such external information is unlikely to bias the main estimates arising
from a study, although it may have some influence on the precision of the
estimates and this needs to be carefully explored through sensitivity analysis.
It is preferable to construct a prior distribution on a scale on which one has
has a good interpretation of magnitude, such as standard deviation, rather
than one which may be convenient for mathematical purposes but is fairly
incomprehensible, such as the logarithm of the precision. The crucial aspect
is not necessarily to avoid an influential prior, but to be aware of the extent
of the influence.

5.2 Vague, “objective,” and “reference” priors

5.2.1 Introduction

The appropriate specification of priors that contain minimal information is
an old problem in Bayesian statistics: the terms “objective” and “reference”
are more recent and reflect the aim of producing a baseline analysis from
which one might possibly measure the impact of adopting more informative
priors. Here we illustrate how to implement standard suggestions with BUGS.
Using the structure of graphical models, the issue becomes one of specifying
appropriate distributions on “founder” nodes (those with no parents) in the
graph.

We shall see that some of the classic proposals lead to “improper” priors
that do not form distributions that integrate to 1: for example, a uniform
distribution over the whole real line, no matter how small the ordinate, will
still have an infinite integral. In many circumstances this is not a problem, as
an improper prior can still lead to a proper posterior distribution. BUGS in
general requires that a full probability model is defined and hence forces all
prior distributions to be proper — the only exception to this is the dflat()

distribution (Appendix C.1). However, many of the prior distributions used
are “only just proper” and so caution is still required to ensure the prior is
not having unintended influence.

Prior distributions 83

5.2.2 Discrete uniform distributions

For discrete parameters it is natural to adopt a discrete uniform prior distri-
bution as a reference assumption. We have already seen this applied to the
degrees of freedom of a t-distribution in Example 4.1.2, and in §9.8 we will
see how it can be used to perform a non-Bayesian bootstrap analysis within
BUGS.

5.2.3 Continuous uniform distributions and Jeffreys prior

When it comes to continuous parameters, it is tempting to automatically
adopt a uniform distribution on a suitable range. However, caution is required
since a uniform distribution for θ does not generally imply a uniform distri-
bution for functions of θ. For example, suppose a coin is known to be biased,
but you claim to have “no idea” about the chance θ of it coming down heads
and so you give θ a uniform distribution between 0 and 1. But what about the
chance (θ2) of it coming down heads in both of the next two throws? You have
“no idea” about that either, but according to your initial uniform distribution
on θ, ψ = θ2 has a density p(ψ) = 1/(2

√
ψ), which can be recognised to be a

Beta(0.5, 1) distribution and is certainly not uniform.
Harold Jeffreys came up with a proposal for prior distributions which would

be invariant to such transformations, in the sense that a “Jeffreys” prior for θ
would be formally compatible with a Jeffreys prior for any 1–1 transformation
ψ = f(θ). He proposed defining a “minimally informative” prior for θ as

pJ(θ) ∝ I(θ)1/2 where I(θ) = −E[d
2

dθ2 log p(Y |θ)] is the Fisher information for
θ (§3.6.1). Since we can also express I(θ) as

I(θ) = EY |θ

[(
d log p(Y |θ)

dθ

)2
]

,

we have

I(ψ) = I(θ)

∣
∣
∣
∣
dθ

dψ

∣
∣
∣
∣

2

.

Jeffreys’ prior is therefore invariant to reparameterisation since

I(ψ)1/2 = I(θ)1/2
∣
∣
∣
∣
dθ

dψ

∣
∣
∣
∣ ,

and the Jacobian terms cancel when transforming variables via the expression
in §2.4. Hence, a Jeffreys prior for θ transforms to a Jeffreys prior for any 1–1
function ψ(θ).

As an informal justification, Fisher information measures the curvature of
the log-likelihood, and high curvature occurs wherever small changes in pa-
rameter values are associated with large changes in the likelihood: Jeffreys’
prior gives more weight to these parameter values and so ensures that the

84 The BUGS Book

influence of the data and the prior essentially coincide. We shall see examples
of Jeffreys priors in future sections.

Finally, we emphasise that if the specific form of vague prior is influential
in the analysis, this strongly suggests you have insufficient data to draw a
robust conclusion based on the data alone and that you should not be trying
to be “non-informative” in the first place.

5.2.4 Location parameters

A location parameter θ is defined as a parameter for which p(y|θ) is a func-
tion of y − θ, and so the distribution of y − θ is independent of θ. In this
case Fisher’s information is constant, and so the Jeffreys procedure leads to
a uniform prior which will extend over the whole real line and hence be im-
proper. In BUGS we could use dflat() to represent this distribution, but tend
to use proper distributions with a large variance, such as dunif(-100,100)
or dnorm(0,0.0001): we recommend the former with appropriately chosen
limits, since explicit introduction of these limits reminds us to be wary of
their potential influence. We shall see many examples of this use, for example,
for regression coefficients, and it is always useful to check that the posterior
distribution is well away from the prior limits.

5.2.5 Proportions

The appropriate prior distribution for the parameter θ of a Bernoulli or bi-
nomial distribution is one of the oldest problems in statistics, and here we
illustrate a number of options. First, both Bayes (1763) and Laplace (1774)
suggest using a uniform prior, which is equivalent to Beta(1, 1). A major at-
traction of this assumption, also known as the Principle of Insufficient Reason,
is that it leads to a discrete uniform distribution for the predicted number y
of successes in n future trials, so that p(y) = 1/(n+ 1), y = 0, 1, ..., n,∗ which
seems rather a reasonable consequence of “not knowing” the chance of success.
On the φ = logit(θ) scale, this corresponds to a standard logistic distribution,
represented as dlogis(0,1) in BUGS (see code below).

Second, an (improper) uniform prior on φ is formally equivalent to the
(improper) Beta(0, 0) distribution on the θ scale, i.e., p(θ) ∝ θ−1(1 − θ)−1:
the code below illustrates the effect of bounding the range for φ and hence
making these distributions proper. Third, the Jeffreys principle leads to a
Beta(0.5, 0.5) distribution, so that pJ(θ) = π−1θ

1
2 (1 − θ)

1
2 . Since it is com-

mon to use normal prior distributions when working on a logit scale, it is of
interest to consider what normal distributions on φ lead to a “near-uniform”

∗See Table 3.1 — the posterior predictive distribution for a binomial observation and beta
prior is a beta-binomial distribution. With no observed data, n = y = 0 in Table 3.1, this
posterior predictive distribution becomes the prior predictive distribution, which reduces
to the discrete uniform for a = b = 1.

Prior distributions 85

distribution on θ. Here we consider two possibilities: assuming a prior variance
of 2 for φ can be shown to give a density for θ that is “flat” at θ = 0.5, while
a normal with variance 2.71 gives a close approximation to a standard logistic
distribution, as we saw in Example 4.1.1.

theta[1] ~ dunif(0,1) # uniform on theta

phi[1] ~ dlogis(0,1)

phi[2] ~ dunif(-5,5) # uniform on logit(theta)

logit(theta[2]) <- phi[2]

theta[3] ~ dbeta(0.5,0.5) # Jeffreys on theta

phi[3] <- logit(theta[3])

phi[4] ~ dnorm(0,0.5) # var=2, flat at theta = 0.5

logit(theta[4]) <- phi[4]

phi[5] ~ dnorm(0,0.368) # var=2.71, approx. logistic

logit(theta[5]) <- phi[5]

We see from Figure 5.1 that the first three options produce apparently very
different distributions for θ, although in fact they differ at most by a single
implicit success and failure (§5.3.1). The normal prior on the logit scale with
variance 2 seems to penalise extreme values of θ, while that with variance 2.71
seems somewhat more reasonable. We conclude that, in situations with very
limited information, priors on the logit scale could reasonably be restricted to
have variance of around 2.7.

Example 5.2.1. Surgery (continued): prior sensitivity
What is the sensitivity to the above prior distributions for the mortality rate in our
“Surgery” example (Example 3.3.2)? Suppose in one case we observe 0/10 deaths
(Figure 5.2, left panel) and in another, 10/100 deaths (Figure 5.2, right panel).
For 0/10 deaths, priors 2 and 3 pull the estimate towards 0, but the sensitivity is
much reduced with the greater number of observations.

5.2.6 Counts and rates

For a Poisson distribution with mean θ, the Fisher information is I(θ) = 1/θ

and so the Jeffreys prior is the improper pJ (θ) ∝ θ−
1
2 , which can be approxi-

mated in BUGS by a dgamma(0.5, 0.00001) distribution. The same prior is
appropriate if θ is a rate parameter per unit time, so that Y ∼ Poisson(θt).

86 The BUGS Book

theta[1]: uniform

-0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

phi[1]: logistic

-10.0 -5.0 0.0 5.0

0.0

0.1

0.2

0.3

theta[2]: ~beta(0,0)

-0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

phi[2]: uniform

-10.0 -5.0 0.0 5.0

0.0

0.1

0.2

0.3

theta[3]: Jeffreys = beta(0.5,0.5)

-0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

phi[3]: Jeffreys

-10.0 -5.0 0.0 5.0

0.0

0.1

0.2

0.3

theta[4]: logit-normal

-0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

phi[4]: N(0,2)

-10.0 -5.0 0.0 5.0

0.0

0.1

0.2

0.3

theta[5]: logit-normal

-0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

phi[5]: N(0,2.71)

-10.0 -5.0 0.0 5.0

0.0

0.1

0.2

0.3

FIGURE 5.1

Empirical distributions (based on 100,000 samples) corresponding to various
different priors for a proportion parameter.

Prior distributions 87

[1]

[2]

[3]

[4]

[5]

box plot: theta

 0.0 0.1 0.2 0.3 0.4

(a)

[1]

[2]

[3]

[4]

[5]

box plot: theta

 0.05 0.1 0.15 0.2

(b)

FIGURE 5.2

Box plots comparing posterior distributions arising from the five priors dis-
cussed above for mortality rate: (a) 0/10 deaths observed; (b) 10/100 deaths
observed.

5.2.7 Scale parameters

Suppose σ is a scale parameter, in the sense that p(y|σ) = σ−1f(y/σ) for
some function f , so that the distribution of Y/σ does not depend on σ. Then
it can be shown that the Jeffreys prior is pJ(σ) ∝ σ−1, which in turn means
that pJ(σ

k) ∝ σ−k, for any choice of power k. Thus for the normal distribu-
tion, parameterised in BUGS in terms of the precision τ = 1/σ2, we would
have pJ(τ) ∝ τ−1. This prior could be approximated in BUGS by, say, a
dgamma(0.001,0.001), which also can be considered an “inverse-gamma dis-
tribution” on the variance σ2. Alternatively, we note that the Jeffreys prior
is equivalent to pJ(log σ

k) ∝ const, i.e., an improper uniform prior. Hence it
may be preferable to give log σk a uniform prior on a suitable range, for exam-
ple, log.tau ~ dunif(-10, 10) for the logarithm of a normal precision. We
would usually want the bounds for the uniform distribution to have negligible
influence on the conclusions.

We note some potential conflict in our advice on priors for scale parameters:
a uniform prior on log σ follows Jeffreys’ rule but a uniform on σ is placing
a prior on an interpretable scale. There usually would be negligible difference
between the two — if there is a noticeable difference, then there is clearly
little information in the likelihood about σ and we would recommend a weakly
informative prior on the σ scale.

Note that the advice here applies only to scale parameters governing the
variance or precision of observable quantities. The choice of prior for the vari-
ance of random effects in a hierarchical model is more problematic — we
discuss this in §10.2.3.

88 The BUGS Book

5.2.8 Distributions on the positive integers

Jeffreys (1939) [p. 238] suggested that a suitable prior for a parameter N ,
where N = 0, 1, 2, ..., is p(N) ∝ 1/N , analogously to a scale parameter.

Example 5.2.2. Coin tossing: estimating number of tosses
Suppose we are told that a fair coin has come up heads y = 10 times. How many
times has the coin been tossed? Denoting this unknown quantity by N we can
write down the likelihood as

p(y|N) = Binomial(0.5, N) ∝ N !

(N − y)!
0.5N .

As N is integer-valued we must specify a discrete prior distribution.
Suppose we take Jeffreys’ suggestion and assign a prior p(N) ∝ 1/N , which is

improper but could be curtailed at a very high value. Then the posterior distribu-
tion is

p(N |y) ∝ N !

(N − y)!
0.5N/N ∝ (N − 1)!

(N − y)!
0.5N , N ≥ y,

which we can recognise as the kernel of a negative binomial distribution with mean
2y = 20. This has an intuitive attraction, since if instead we had fixed y = 10 in
advance and flipped a coin until we had y heads, then the sampling distribution
for the random quantity N would be just this negative binomial. However, it is
notable that we were not told that this was the design — we have no idea whether
the final flip was a head or not.

Alternatively, we may wish to assign a uniform prior over integer values from
1 to 100, i.e., Pr(N = n) = 1/100, n = 1, ..., 100. Then the posterior for N is
proportional to the likelihood, and its expectation, for example, is given by

E[N |y] =
100∑

n=1

nPr(N = n|y) = A

100∑

n=1

n× n!

(n− y)!
0.5n, (5.1)

where A is the posterior normalising constant. The right-hand side of (5.1) cannot
be simplified analytically and so is cumbersome to evaluate (although this is
quite straightforward with a little programming). In BUGS we simply specify the
likelihood and the prior as shown below.

y <- 10

y ~ dbin(0.5, N)

N ~ dcat(p[])

for (i in 1:100) {p[i] <- 1/100}

BUGS can use the resulting samples to summarise the posterior graphically as
well as numerically. Numeric summaries, such as the one shown below, allow us
to make formal inferences; for example, we can be 95% certain that the coin has
been tossed between 13 and 32 times. Graphical summaries, on the other hand,

Prior distributions 89

N sample: 100000

0 20 40

 0.0

0.05

 0.1

FIGURE 5.3

Approximate posterior distribution for number of (unbiased) coin tosses leading
to ten heads.

might reveal interesting features of the posterior. Figure 5.3 shows the posterior
density for N . Note that the mode is 20, which is the intuitive answer, as well
as being the MLE and the posterior mean using the Jeffreys prior. Note also that
although the uniform prior supports values in {1, ..., 9}, which are impossible in
light of the observed data (10 heads), the posterior probability for these values
is, appropriately, zero.

node mean sd MC error 2.5% median 97.5% start sample

N 21.01 4.702 0.01445 13.0 20.0 32.0 1 100000

In Example 5.5.2 we consider a further example of a prior over the positive
integers which reveals the care that can be required.

5.2.9 More complex situations

Jeffreys’ principle does not extend easily to multi-parameter situations, and
additional context-specific considerations generally need to be applied, such
as assuming prior independence between location and scale parameters and
using the Jeffreys prior for each, or specifying an ordering of parameters into
groups of decreasing interest.

5.3 Representation of informative priors

Informative prior distributions can be based on pure judgement, a mixture of
data and judgement, or data alone. Of course, even the selection of relevant
data involves a substantial degree of judgement, and so the specification of an
informative prior distribution is never an automatic procedure.

90 The BUGS Book

We summarise some basic techniques below, emphasising the mapping of
relevant data and judgement onto appropriate parametric forms, ideally rep-
resenting “implicit” data.

5.3.1 Elicitation of pure judgement

Elicitation of subjective probability distributions is not a straightforward task
due to a number of potential biases that have been identified. O’Hagan et al.
(2006) provide some “Guidance for best practice,” emphasising that proba-
bility assessments are constructed by the questioning technique, rather than
being “pre-formed quantifications of pre-analysed belief” (p. 217). They say it
is best to interview subjects face-to-face, with feedback and continual checking
for biases, conducting sensitivity analysis to the consequence of the analysis,
and avoiding verbal descriptions of uncertainty. They recommend eliciting in-
tervals with moderate rather than high probability content, say by focusing
on 33% and 67% quantiles: indeed one can simply ask for an interval and
afterwards elicit a ‘confidence’ in that assessment (Kynn, 2005). They suggest
using multiple experts and reporting a simple average, but it is also important
to acknowledge imperfections in the process, and that even genuine “exper-
tise” cannot guarantee a suitable subject. See also Kadane and Wolfson (1998)
for elicitation techniques for specific models.

In principle any parametric distribution can be elicited and used in BUGS.
However, it can be advantageous to use conjugate forms since, as we have seen
in Chapter 3, the prior distribution can then be interpreted as representing
“implicit data,” in the sense of a prior estimate of the parameter and an
“effective prior sample size.” It might even then be possible to include the
prior information as “data” and use standard classical methods (and software)
for statistical analysis.

Below we provide a brief summary of situations: in each case the “im-
plicit data” might be directly elicited, or measures of central tendency and
spread requested and an appropriate distribution fitted. A simple moment-
based method is to ask directly for the mean and standard deviation, or elicit
an approximate 67% interval (i.e., the parameter is assessed to be twice as
likely to be inside the interval as outside it) and then treat the interval as
representing the mean ± 1 standard deviation, and solve for the parameters
of the prior distribution. In any case it is good practice to iterate between
alternative representations of the prior distribution, say as a drawn distribu-
tion, percentiles, moments, and interpretation as “implicit data,” in order to
check the subject is happy with the implications of their assessments.

• Binomial proportion θ. Suppose our prior information is equivalent to
having observed y events in a sample size of n, and we wanted to derive a
corresponding Beta(a, b) prior for θ. Combining an improper Beta(0,0)
“pre-prior” with these implicit data gives a conjugate “posterior” of
Beta(y, n − y), which we can interpret as our elicited prior. The mean

Prior distributions 91

of this elicited prior is a/(a+ b) = y/n, the intuitive point estimate for
θ, and the implicit sample size is a+ b = n. Using a uniform “pre-prior”
instead of the Beta(0,0) gives a = y + 1 and b = n− y + 1.

Alternatively, a moment-based method might proceed by eliciting a prior
standard deviation as opposed to a prior sample size, and by then solving
the mean and variance formulae (Appendix C.3) for a and b: a = mb/(1−
m), b = m(1−m)2/v+m− 1, for an elicited mean m = θ̂ and variance
v.

• Poisson rate θ: if we assume θ has a Gamma(a, b) distribution we can

again elicit a prior estimate θ̂ = a/b and an effective sample size of b,
assuming a Gamma(0,0) pre-prior (see Table 3.1, Poisson-gamma con-
jugacy), or we can use a moment-based method instead.

• Normal mean μ: a normal distribution can be obtained be eliciting a
mean γ and standard deviation ω directly or via an interval. By con-
ditioning on a sampling variance σ2, we can calculate an effective prior
sample size n0 = σ2/ω2 which can be fed back to the subject.

• Normal variance σ2: τ = σ−2 may be assumed to have a Gamma(a, b)
distribution, where a/b is set to an estimate of the precision, and 2a
is the effective number of prior observations, assuming a Gamma(0,0)
pre-prior (see Table 3.1, normal y with unknown variance σ2).

• Regression coefficients: In many circumstances regression coefficients
will be unconstrained parameters in standard generalised linear mod-
els, say log-odds ratios in logistic regression, log-rate-ratios in Poisson
regression, log-hazard ratios in Cox regression, or ordinary coefficients in
standard linear models. In each case it is generally appropriate to assume
a normal distribution. Kynn (2005) described the elicitation of regres-
sion coefficients in GLMs by asking an expert for expected responses
for different values of a predictor. Lower and upper estimates, with an
associated degree of confidence, were also elicited, and the answers used
to derive piecewise-linear priors.

Example 5.3.1. Power calculations
A randomised trial is planned with n patients in each of two arms. The response
within each treatment arm is assumed to have between-patient standard deviation
σ, and the estimated treatment effect Y is assumed to have a Normal(θ, 2σ2/n)
distribution. A trial designed to have two-sided Type I error α and Type II error
β in detecting a true difference of θ in mean response between the groups will
require a sample size per group of

n =
2σ2

θ2
(z1−β + z1−α/2)2,

92 The BUGS Book

where Pr(Z < zp) = p for a standard normal variable Z ∼ Normal(0, 1). Alter-
natively, for fixed n, the power of the study is

Power = Φ

(√
nθ2

2σ2
− z1−α/2

)

.

If we assume θ = 5, σ = 10, α = 0.05, β = 0.10, so that the power of the trial
is 90%, then we obtain z1−β = 1.28, z1−α/2 = 1.96, and n = 84.

Suppose we wish to acknowledge uncertainty about the alternative hypothesis
θ and the standard deviation σ. First, we assume past evidence suggests θ is
likely to lie anywhere between 3 and 7, which we choose to interpret as a 67%
interval (± 1 standard deviation), and so θ ∼ Normal(5, 22). Second, we assess
our estimate of σ = 10 as being based on around 40 observations, from which we
assume a Gamma(a, b) prior distribution for τ = 1/σ2 with mean a/b = 1/102

and effective sample size 2a = 40, from which we derive τ ∼ Gamma(20, 2000).

tau ~ dgamma(20, 2000)

sigma <- 1/sqrt(tau)

theta ~ dnorm(5, 0.25)

n <- 2*pow((1.28 + 1.96)*sigma/theta, 2) # n for 90% power

power <- phi(sqrt(84/2)*theta/sigma - 1.96) # power for n = 84

p70 <- step(power - 0.7) # Pr(power > 70%)

n sample: 10000

 0.0 1.00E+8 2.00E+8

 0.0

1.00E-6

2.00E-6

3.00E-6

power sample: 10000

 -0.5 0.0 0.5 1.0

 0.0
 2.0
 4.0
 6.0
 8.0

FIGURE 5.4

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group.

node mean sd MC error 2.5% median 97.5% start sample

n 38740.0 2.533E+6 25170.0 24.73 87.93 1487.0 1 10000

p70 0.7012 0.4577 0.004538 0.0 1.0 1.0 1 10000

power 0.7739 0.2605 0.002506 0.1151 0.8863 1.0 1 10000

Note that the median values for n (88) and power (0.89) are close to the values
derived by assuming fixed θ and σ (84 and 0.90, respectively), but also note the

Prior distributions 93

huge uncertainty. It is quite plausible, under the considered prior for θ and σ, that
to achieve 90% power the trial may need to include nearly 3000 subjects. Then
again, we might get away with as few as 50! A trial involving 84 subjects in each
group could be seriously underpowered, with 12% power being quite plausible.
Indeed, there is a 30% chance that the power will be less than 70%.

5.3.2 Discounting previous data

Suppose we have available some historical data and we could obtain a prior
distribution for the parameter θ based on an empirical estimate θ̂H , say, by
matching the prior mean and standard deviation to θ̂H and its estimated
standard error. If we were to use this prior directly then we would essentially
be pooling the data in a form of meta-analysis (see §11.4), in which case it
would be preferable (and essentially equivalent) to use a reference prior and
include the historical data directly in the model.

If we are reluctant to do this, it must be because we do not want to give the
historical data full weight, perhaps because we do not consider it to have the
same relevance and rigour as the data directly being analysed. We may there-
fore wish to discount the historical data using one of the methods outlined
below.

• Power prior: this uses a prior mean based on the historical estimate θ̂H ,
but discounts the “effective prior sample size” by a factor κ between 0
and 1: for example, a fitted Beta(a, b) would become a Beta(κa, κb), a
Gamma(a, b) would become a Gamma(κa, κb), a Normal(γ, ω2) would
become a Normal(γ, ω2/κ) (Ibrahim and Chen, 2000).

• Bias modelling: This explicitly considers that the historical data may be
biased, in the sense that the estimate θ̂H is estimating a slightly different
quantity from the θ of current interest. We assume that θ = θH+δ, where
δ is the bias whose distribution needs to be assessed. We further assume
δ ∼ [μδ, σ

2
δ], where [,] indicates a mean and variance but otherwise

unspecified distribution. Then if we assume the historical data give rise
to a prior distribution θH ∼ [γH , ω

2
H], we obtain a prior distribution for

θ of
θ ∼ [γH + μδ, ω

2
H + σ2

δ].

Thus the prior mean is shifted and the prior variance is increased.

The power prior only deals with variability — the discount factor κ essen-
tially represents the “weight” on a historical observation, which is an attractive
concept to communicate but somewhat arbitrary to assess. In contrast, the
bias modelling approach allows biases to be added, and the parameters can
be defined in terms of the size of potential biases.

94 The BUGS Book

Example 5.3.2. Power calculations (continued)
We consider the power example (Example 5.3.1) but with both prior distributions
discounted. We assume each historical observation informing the prior distribution
for σ is only worth half a current observation, so that the prior for σ is only based
on 10 rather than 20 observations. This discounts the parameters in the gamma
distribution for τ by a factor of 2. For the treatment effect, we assume that the
historical experiment could have been more favourable than the current one, so
that the historical treatment effect had a bias with mean −1 and SD 2, and so
would be expected to be between −5 and 3. Thus an appropriate prior distribution
is θ ∼ Normal(5 − 1, 22 + 22) or Normal(4, 8) — this has been constrained to
be > 0 using the I(,) construct (see Appendix A.2.2 and §9.6). This leads to
the code:

tau ~ dgamma(20, 2000)

tau ~ dgamma(10, 1000) # discounted by 2

theta ~ dnorm(5, 0.25)

theta ~ dnorm(4, 0.125)I(0,) # 4 added to var and shifted

by -1, constrained to be >0

n sample: 10000

 0.0 2.0E+10 4.0E+10

 0.0
5.00E-9
1.00E-8
1.50E-8
2.00E-8

power sample: 10000

 -0.5 0.0 0.5 1.0

0.0

2.0

4.0

6.0

FIGURE 5.5

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group. Discounted priors for tau and theta used.

node mean sd MC error 2.5% median 97.5% start sample

n 4.542E+6 4.263E+8 4.26E+6 20.96 125.6 14270.0 1 10000

p70 0.5398 0.4984 0.005085 0.0 1.0 1.0 1 10000

power 0.6536 0.3315 0.003406 0.04353 0.7549 1.0 1 10000

This has raised the median sample size to 126, but with huge uncertainty. There
is a 46% probability that the power is less than 70% if the sample size stays at
84.

Prior distributions 95

5.4 Mixture of prior distributions

Suppose we want to express doubt about which of two or more prior distribu-
tions is appropriate for the data in hand. For example, we might suspect that
either a drug will produce a similar effect to other related compounds, or if
it doesn’t behave like these compounds we are unsure about its likely effect.

For two possible prior distributions p1(θ) and p2(θ) for a parameter θ, the
overall prior distribution is then a mixture

p(θ) = qp1(θ) + (1− q)p2(θ),

where q is the assessed probability that p1 is “correct.” If we now observe data
y, it turns out that the posterior for θ is

p(θ|y) = q′p1(θ|y) + (1− q′)p2(θ|y)
where

pi(θ|y) ∝ p(y|θ)pi(θ),
q′ =

qp1(y)

qp1(y) + (1− q)p2(y)
,

where pi(y) =
∫
p(y|θ)pi(θ) dθ is the predictive probability of the data y as-

suming pi(θ). The posterior is a mixture of the respective posterior distri-
butions under each prior assumption, with the mixture weights adapted to
support the prior that provides the best prediction for the observed data.

This structure is easy to implement in BUGS for any form of prior assump-
tions. We first illustrate its use with a simple example and then deal with
some of the potential complexities of this formulation. In the example, pick
is a variable taking the value j when the prior assumption j is selected in the
simulation.

Example 5.4.1. A biased coin?
Suppose a coin is either unbiased or biased, in which case the chance of a “head”
is unknown and is given a uniform prior distribution. We assess a prior probability
of 0.9 that it is unbiased, and then observe 15 heads out of 20 tosses — what is
the chance that the coin is biased?

r <- 15; n <- 20 # data

######################################

r ~ dbin(p, n) # likelihood

p <- theta[pick]

pick ~ dcat(q[]) # 2 if biased, 1 otherwise

q[1] <- 0.9

96 The BUGS Book

q[2] <- 0.1

theta[1] <- 0.5 # if unbiased

theta[2] ~ dunif(0, 1) # if biased

biased <- pick - 1 # 1 if biased, 0 otherwise

biased sample: 100000

-1 0 1 2

0.0
0.2
0.4
0.6
0.8

theta[2] sample: 100000

 -0.5 0.0 0.5 1.0

 0.0
 0.5
 1.0
 1.5
 2.0

FIGURE 5.6

Biased coin: empirical distributions based on 100,000 simulations.

node mean sd MC error 2.5% median 97.5% start sample

biased 0.2619 0.4397 0.002027 0.0 0.0 1.0 1 100000

theta[2] 0.5594 0.272 9.727E-4 0.03284 0.6247 0.9664 1 100000

So the probability that the coin is biased has increased from 0.1 to 0.26 on
the basis of the evidence provided. The rather strange shape of the posterior
distribution for theta[2] is explained below.

If the alternative prior assumptions for theta in Example 5.4.1 were from
the same parametric family, e.g., beta, then we could formulate this as p

∼ dbeta(a[pick], b[pick]), say, with specified values of a[1], a[2], b[1],
and b[2]. However, the more general formulation shown in the example allows
prior assumptions of arbitrary structure.

It is important to note that when pick=1, theta[1] is sampled from its
posterior distribution, but theta[2] is sampled from its prior as pick=1 has
essentially “cut” the connection between the data and theta[2]. At another
MCMC iteration, we may have pick=2 and so the opposite will occur, and this
means that the posterior for each theta[j] recorded by BUGS is a mixture
of “true” (model specific) posterior and its prior. This explains the shape of
the posterior for theta[2] in the example above. If we are interested in the
posterior distribution under each prior assumption individually, then we could
do a separate run under each prior assumption, or only use those values for
theta[j] simulated when pick=j: this “post-processing” would have to be
performed outside BUGS.

We are essentially dealing with alternative model formulations, and our
q′s above correspond to posterior probabilities of models. There are well-
known difficulties with these quantities both in theory, due to their potential

Prior distributions 97

dependence on the within-model prior distributions, and in particular when
calculating within MCMC: see §8.7. In principle we can use the structure above
to handle a list of arbitrary alternative models, but in practice considerable
care is needed if the sampler is not to go “off course” when sampling from the
prior distribution at each iteration when that model is not being “picked.” It
is possible to define “pseudo-priors” for these circumstances, where pick also
dictates the prior to be assumed for theta[j] when pick �= j — see §8.7 and
Carlin and Chib (1995).

5.5 Sensitivity analysis

Given that there is no such thing as the true prior, sensitivity analysis to al-
ternative prior assumptions is vital and should be an integral part of Bayesian
analysis. The phrase “community of priors” (Spiegelhalter et al., 2004) has
been used in the clinical trials literature to express the idea that different
priors may reflect different perspectives: in particular, the concept of a “scep-
tical prior” has been shown to be valuable. Sceptical priors will typically be
centred on a “null” value for the relevant parameter with the spread reflecting
plausible but small effects. We illustrate the use of sceptical and other prior
distributions in the following example, where the evidence for an efficacious
intervention following myocardial infarction is considered under a range of
priors for the treatment effect, namely, “vague,” “sceptical,” “enthusiastic,”
“clinical,” and “just significant.”

Example 5.5.1. GREAT trial
Pocock and Spiegelhalter (1992) examine the effect of anistreplase on recovery
from myocardial infarction. 311 patients were randomised to receive either anistre-
plase or placebo (conventional treatment); the number of deaths in each group
is given in the table below.

Treatment total
anistreplase placebo

Event death 13 23 36
no death 150 125 275

total 163 148 311

Let rj , nj , and πj denote the number of deaths, total number of patients, and
underlying mortality rate, respectively, in group j ∈ {1, 2} (1 = anistreplase; 2
= placebo). Inference is required on the log-odds ratio (log(OR)) for mortality in
the anistreplase group compared to placebo, that is,

δ = log

{
π1/(1− π1)

π2/(1− π2)

}

= logitπ1 − logitπ2. (5.2)

98 The BUGS Book

A classical maximum likelihood estimator and approximate variance are given by

δ̂ = log

{
r1/(n1 − r1)

r2/(n2 − r2)

}

, V (δ̂) ≈ s2 =
1

r1
+

1

r2
+

1

n1 − r1
+

1

n2 − r2
.

For the above data these give δ̂ = −0.753 with s = 0.368. An approximate
Bayesian analysis might proceed via the assumption δ̂ ∼ Normal(δ, s2) with
a locally uniform prior on δ, e.g., δ ∼ Uniform(−10, 10). A more appropri-
ate likelihood is a binomial assumption for each observed number of deaths:
rj ∼ Binomial(πj , nj), j = 1, 2. In this case we could be “vague” by specifying
Jeffreys priors for the mortality rates, πj ∼ Beta(0.5, 0.5), j = 1, 2, and then
deriving the posterior for δ via (5.2). Alternatively we might parameterise the
model directly in terms of δ:

logitπ1 = α+ δ/2, logitπ2 = α− δ/2,

which facilitates the specification of informative priors for δ. Here α is a nuisance
parameter and is assigned a vague normal prior: α ∼ Normal(0, 1002). Our first
informative prior for δ is a “clinical” prior based on expert opinion: a senior
cardiologist, informed by one unpublished and two published trials, expressed belief
that “an expectation of 15–20% reduction in mortality is highly plausible, while
the extremes of no benefit and a 40% relative reduction are both unlikely.” This is
translated into a normal prior with a 95% interval of −0.51 to 0 (0.6 to 1.0 on the
OR scale): δ ∼ Normal(−0.26, 0.132). We also consider a “sceptical” prior, which
is designed to represent a reasonable expression of doubt, perhaps to avoid early
stopping of trials due to fortuitously positive results. For example, a hypothetical
sceptic might find treatment effects more extreme than a 50% reduction or 100%
increase in mortality largely implausible, giving a 95% prior interval (assuming
normality) of -0.69 to 0.69 (0.5 to 2 on the OR scale): δ ∼ Normal(0, 0.352).

As a counterbalance to the sceptical prior we might specify an “enthusiastic”
or “optimistic” prior, as a basis for conservatism in the face of early negative
results, say. Such a prior could be centred around some appropriate beneficial
treatment effect with a small prior probability (e.g., 5%) assigned to negative
treatment benefits. We do not construct such a prior in this example, however,
since the clinical prior described above also happens to be “enthusiastic” in this
sense. Another prior of interest is the “just significant” prior. Assuming that the
treatment effect is significant under a vague prior, it is instructive to ask how
sceptical we would have to be for that significance to vanish. Hence we assume
δ ∼ Normal(0, σ2

δ) and we search for the largest value of σδ such that the 95%
posterior credible interval (just) includes zero. BUGS code for performing such
a search is presented below along with code to implement the clinical, sceptical,
and vague priors discussed above. (Note that a preliminary search had been run
to identify the approximate value of σδ as somewhere between 0.8 and 1, though
closed form approximations exist for this “just signficant” prior (Matthews, 2001;
Spiegelhalter et al., 2004)).

Prior distributions 99

model {

for (i in 1:nsearch) { # search for "just

pr.sd[i] <- start + i*step # significant" prior

pr.mean[i] <- 0

}

pr.mean[nsearch+1] <- -0.26

pr.sd[nsearch+1] <- 0.13 # clinical prior

pr.mean[nsearch+2] <- 0

pr.sd[nsearch+2] <- 0.35 # sceptical prior

replicate data for each prior and specify likelihood...

for (i in 1:(nsearch+3)) {

for (j in 1:2) {

r.rep[i,j] <- r[j]

n.rep[i,j] <- n[j]

r.rep[i,j] ~ dbin(pi[i,j], n.rep[i,j])

}

}

delta.mle <- -0.753

delta.mle ~ dnorm(delta[nsearch+4], 7.40)

define priors and link to log-odds...

for (i in 1:(nsearch+2)) {

logit(pi[i,1]) <- alpha[i] + delta[i]/2

logit(pi[i,2]) <- alpha[i] - delta[i]/2

alpha[i] ~ dnorm(0, 0.0001)

delta[i] ~ dnorm(pr.mean[i], pr.prec[i])

pr.prec[i] <- 1/pow(pr.sd[i], 2)

}

pi[nsearch+3,1] ~ dbeta(0.5, 0.5)

pi[nsearch+3,2] ~ dbeta(0.5, 0.5) # Jeffreys prior

delta[nsearch+3] <- logit(pi[nsearch+3,1])

- logit(pi[nsearch+3,2])

delta[nsearch+4] ~ dunif(-10, 10) # locally uniform prior

}

list(r = c(13, 23), n = c(163, 148),

start = 0.8, step = 0.005, nsearch = 40)

The derived value of σδ is ∼0.925, corresponding to the 25th element of delta[]
above. Selected posterior and prior distributions are summarised below. We note
the essentially identical conclusions of the classical maximum likelihood approach
and the two analyses with vague priors. The results suggest we should conclude
that anistreplase is a superior treatment to placebo if we are either (a priori)
completely ignorant of possible treatment effect sizes, or we trust the senior car-
diologist’s expert opinion, or perhaps if we are otherwise enthusiastic about the

100 The BUGS Book

new treatment’s efficacy. If, on the other hand, we wish to claim prior indiffer-
ence as to the sign of the treatment effect but we believe “large” treatment
effects to be implausible, we should be more cautious. The “just significant” prior
has a 95% interval of (exp(−1.96 × 0.925), exp(1.96 × 0.925)) = (0.16, 6.1)
on the OR scale, corresponding to reductions/increases in mortality as extreme
as 84%/610%. These seem quite extreme, implying that only a small degree of
scepticism is required to render the analysis “non-significant.” We might conclude
that the GREAT trial alone does not provide “credible” evidence for superiority,
and larger-scale trials are required to quantify the treatment effect precisely.

node mean sd MC error 2.5% median 97.5% start sample

delta[25] -0.6635 0.3423 5.075E-4 -1.343 -0.6609 3.598E-4 1001 500000

delta[41] -0.317 0.1223 1.741E-4 -0.5562 -0.317 -0.07745 1001 500000

delta[42] -0.3664 0.2509 3.497E-4 -0.8608 -0.366 0.1245 1001 500000

delta[43] -0.7523 0.367 5.342E-4 -1.487 -0.7479 -0.04719 1001 500000

delta[44] -0.7534 0.3673 5.432E-4 -1.475 -0.7529 -0.0334 1001 500000

box plot: p(delta | data)

-1.5

-1.0

-0.5

 0.0

 0.5

box plot: p(delta)

-2.0

-1.0

 0.0

 1.0

 2.0

FIGURE 5.7

Left-hand side: Posterior distributions for δ from analysis of GREAT trial data.
From left to right: corresponding to “just significant,” “clinical,” “sceptical,”
“Jeffreys” and “locally uniform” priors. Right-hand side: Prior distributions for
analysis of GREAT trial data. From left to right: “just significant,” “clinical” and
“sceptical.”

A primary purpose of trying a range of reasonable prior distributions is
to find unintended sensitivity to apparently innocuous “non-informative” as-
sumptions. This is reflected in the following example.

Prior distributions 101

Example 5.5.2. Trams: a classic problem from Jeffreys (1939)
Suppose you enter a town of unknown size whose trams you know are numbered
consecutively from 1 to N . You first see tram number y = 100. How large might
N be?

We first note that the sampling distribution is uniform between 1 and N , so
that p(y|N) = 1

N , y = 1, 2, . . . , N . Therefore the likelihood function for N
is ∝ 1/N, N ≥ y, so that y maximises the likelihood function and so is the
maximum likelihood estimator. The maximum likelihood estimate is therefore
100, which does not appear very reasonable.

Suppose we take a Bayesian approach and consider the prior distributions on
the positive integers explored earlier (Example 5.2.2) — we will first examine the
consequences using WinBUGS and then algebraically. We first consider a prior
that is uniform on the integers up to an arbitrary upper bound M , say 5000. Y is
assumed drawn from a categorical distribution: the following code shows how to
set a uniform prior for N over the integers 1 to 5000 (as in Example 5.2.2) and
how to use the step function to create a uniform sampling distribution between
1 and N .

Y <- 100

########################

Y ~ dcat(p[])

sampling distribution is uniform over first N integers

use step function to change p[j] to 0 for j>N

for (j in 1:M) {

p[j] <- step(N - j + 0.01)/N

}

N ~ dcat(p.unif[])

for (j in 1:M) {

p.unif[j] <- 1/M

}

node mean sd MC error 2.5% median 97.5% start sample

N 1274.0 1295.0 10.86 109.0 722.0 4579.0 1001 10000

The posterior mean is 1274 and the median is 722, reflecting a highly skewed
distribution. But is this a sensible conclusion? For an improper uniform prior over
the whole of the integers, the posterior distribution is

p(N |y) ∝ p(y|N)p(N) ∝ 1/N, N ≥ y.

This series diverges and so this produces an improper posterior distribution. Al-
though our bounded prior is proper and so our posterior distribution is formally
proper, this “almost improper” character is likely to lead to extreme sensitivity
to prior assumptions. For example, a second run with M = 15,000 results in a

102 The BUGS Book

posterior mean of 3041 and median 1258. In fact we could show algebraically that
the posterior mean increases as M/ log(M); thus we can make it as big as we
want by increasing M (proof as exercise).

We now consider Jeffreys’ suggestion of a prior p(N) ∝ 1/N , which is improper
but can be constructed as follows if an upper bound, say 5000, is set.

N ~ dcat(p.jeffreys[])

for (j in 1:5000) {

reciprocal[j] <- 1/j

p.jeffreys[j] <- reciprocal[j]/sum.recip

}

sum.recip <- sum(reciprocal[])

The results show a posterior mean of 409 and median 197, which seems more
reasonable — Jeffreys approximated the probability that there are more than 200
trams as 1/2.

node mean sd MC error 2.5% median 97.5% start sample

N 408.7 600.4 4.99 102.0 197.0 2372.0 1001 10000

Suppose we now change the arbitrary upper bound to M = 15,000. Then the
posterior mean becomes 520 and median 200. The median, but not the mean,
is therefore robust to the prior. We could show that the conclusion about the
median is robust to the arbitrary choice of upper bound M by proving that as M
goes to infinity the posterior median tends to a fixed quantity (proof as exercise).

Finally, if a sensitivity analysis shows that the prior assumptions make a
difference, then this finding should be welcomed. It means that the Bayesian
approach has been worthwhile taking, and you will have to think properly
about the prior and justify it. It will generally mean that, at a minimum, a
weakly informative prior will need to be adopted.

6

Regression models

As in classical regression, Bayesian regression models are formulated by spec-
ifying a sampling distribution for the data (which we also loosely term the
likelihood) and then a form of relationship between the assumed distribution
of the response variable and any explanatory variables. The only difference is
that we also specify prior distributions for the regression coefficients and any
other unknown (nuisance) parameters. As we will see in this chapter, there are
several advantages to a Bayesian approach, however, such as it being relatively
straightforward to include parameter restrictions, use non-linear models, “ro-
bustify” against outliers, make predictions and inferences about functions of
regression parameters, and handle missing data.

6.1 Linear regression with normal errors

Suppose our response variable is denoted yi, i = 1, ..., n, and we have p co-
variates x1i,, xpi. We specify

yi ∼ Normal(μi, σ
2), μi = β0 +

p∑

k=1

βkxki,

along with prior distributions for β0, β1, ..., βp and σ. For example,

βk ∼ Normal(0, 1002), log σ ∼ Uniform(−100, 100)

or the alternative priors discussed in §5.2.4 and §5.2.7. Again we emphasise
that if the specific choice of vague prior is influential, this suggests that a
robust conclusion cannot be drawn from the data alone and more informative
priors based on background information should be considered.

In Bayesian regression analysis it is generally advisable to consider “center-
ing” any covariates, that is, subtracting the empirical mean from each value,
as illustrated in the following example. This has the effect of reducing the pos-
terior correlation between each coefficient (β1, ..., βp) and the intercept term
β0, because the intercept is essentially relocated to the “centre” of the data.
As discussed in §4.4, high levels of posterior correlation are problematic for
Gibbs sampling.

103

104 The BUGS Book

Example 6.1.1. Growth curve
Gelfand et al. (1990) examine growth data from 30 young rats whose weights
were measured weekly for five weeks. In this example we fit a linear regression to
the 9th rat’s data. The response variable yi, i = 1, ..., 5, is the weight, in grams,
on day xi.

model {

for (i in 1:5) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*(x[i] - mean(x[]))

}

Jeffreys priors

alpha ~ dflat()

beta ~ dflat()

tau <- 1/sigma2

log(sigma2) <- 2*log.sigma

log.sigma ~ dflat()

}

list(y = c(177,236,285,350,376), x = c(8,15,22,29,36))

We specify improper uniform priors for all parameters, and so the posterior mode
will be equal to the maximum likelihood estimates: α̂ = 284.8, β̂ = 7.31, σ̂2 =
71.3— note the posterior of σ2 is extremely skewed. Figure 6.1 shows the posterior
distribution of the model fit, produced through the Inference->Compare dialog
box in WinBUGS.

node mean sd MC error 2.5% median 97.5% start sample

alpha 284.8 7.89 0.078 269.9 284.8 300.1 4001 10000

beta 7.316 0.7814 0.008582 5.82 7.316 8.819 4001 10000

sigma2 316.3 743.6 26.14 37.24 145.6 1586.0 4001 10000

Linear models where all or some of the covariates are categorical are some-
times called analysis of variance or analysis of covariance models, respec-
tively, since the interest is often in comparing the variation of the outcome
within and between categories. In BUGS these are treated just like any other
linear regression — as a linear model with coefficients for each explanatory
variable.

Example 6.1.2. New York crime
Press (1971) presents data on the effects of increasing police manpower in New
York City. The response variable is the (seasonally adjusted) change in the number

Regression models 105

model fit: mu

day
 0.0 10.0 20.0 30.0 40.0

weight

 100.0

 200.0

 300.0

 400.0

 500.0

FIGURE 6.1

Model fit from Bayesian linear regression of rat 9’s data in Example 6.1.1. The
posterior median, 2.5% and 97.5% percentiles for each mu[i] are joined together
by straight lines: the solid line joins the medians, whereas the 95% credible inter-
vals are joined by dashed lines. The observed weights are shown by dots.

of thefts in 23 precincts of New York City from a 27-week base period in 1966 to a
58-week experimental period in 1966–1967. The percentage increase in manpower
in each precinct (MAN[]) is also recorded, as is the district (DIST[]) to which each
precinct belongs (1 = Downtown, 2 =Midtown, 3 = Uptown). The DIST covariate
is a categorical variable and requires a slightly different approach to covariates that
represent quantities. It doesn’t make sense to include a term like beta*DIST[i]
in the model because we can’t realistically assume that the effect of going from
downtown to midtown is the same as going from midtown to uptown, or even that
they have the same sign. Instead, we can create and incorporate into the model
two new covariates, one equal to one for midtown precincts, and zero otherwise
(D2[]), and another equal to one for uptown precincts, and zero otherwise (D3[]).
The model code for this multiple regression (where more than one covariate is
included) is then

for (i in 1:23) {

y[i] ~ dnorm(mu[i], tau)

D2[i] <- equals(DIST[i], 2)

D3[i] <- equals(DIST[i], 3)

mu[i] <- beta0 + beta[1]*MAN[i]

+ beta[2]*D2[i] + beta[3]*D3[i]

}

beta0 ~ dnorm(0, 0.0001)

for (j in 1:3) {

beta[j] ~ dnorm(0, 0.0001)

}

tau <- 1/pow(sigma, 2)

uniform prior on an interpretable scale

sigma ~ dunif(0, 100)

106 The BUGS Book

Posterior summaries for the model parameters are shown below.

node mean sd MC error 2.5% median 97.5% start sample

beta[1] -0.2378 0.1188 0.001181 -0.4759 -0.2374 -0.006211 5001 10000

beta[2] 0.558 3.027 0.03123 -5.493 0.5386 6.595 5001 10000

beta[3] -4.03 3.13 0.03011 -10.14 -4.014 2.239 5001 10000

beta0 2.573 1.992 0.01811 -1.291 2.581 6.533 5001 10000

sigma 5.837 1.037 0.01537 4.243 5.686 8.233 5001 10000

Another way to implement the same model is to make use of BUGS’ nested
indexing feature. In this case we can make use of the DIST covariate directly via
the following modification (note that there is no need to calculate D2 and D3 in
this case):

mu[i] <- beta0 + beta[1]*MAN[i] + gamma[DIST[i]]

with

gamma[1] <- 0

gamma[2] ~ dnorm(0, 0.0001)

gamma[3] ~ dnorm(0, 0.0001)

where gamma[1] is fixed because only two district contrasts are identifiable — we
could instead remove the intercept term, beta0, and estimate gamma[1] in its
place. To provide initial values for a vector such as gamma, which contains both
unknown parameters and constants (or logical nodes), we simply specify NA for
any elements that are constant/logical, e.g., gamma = c(NA,0,0).

Typically in multiple regression problems, such as in Example 6.1.2 above,
we are aiming for a parsimonious model. With this in mind we might wonder
whether including a particular covariate in the model is worthwhile. Intuitively
it may seem reasonable to require covariates appearing in the final model to
have coefficients with high posterior probabilities of being non-zero. Informally
we could say that a covariate effect is “significant” (at the 95% level) if the
95% posterior credible interval for the associated coefficient does not include
zero. Credible intervals will vary as we include/remove different covariates
in/from the model, and so, adopting this strategy, we are faced with the usual
problems of forwards and backwards selection.

We will look at model criticism and comparison in more detail in Chapter 8.
The Bayesian framework can actually accommodate situations in which the
choice of covariates to be included in a given model is a model parameter itself
— these methods are reviewed briefly in §8.8.2.

Example 6.1.3. New York crime (continued)
The credible intervals obtained in Example 6.1.2 above suggest that the effect of
police manpower is “significant,” whereas the district effects are not. Hence we
might consider removing the D2 and D3 variables from the regression equation:

Regression models 107

mu[i] <- beta0 + beta[1]*MAN[i]

Posterior summaries for beta0, beta[1], and sigma are given below, and the
resulting model fit is shown on the left-hand side of Figure 6.2. Note how the coef-
ficients have changed values considerably, and that the effect of police manpower
is no longer conventionally “significant,” although it is close.

node mean sd MC error 2.5% median 97.5% start sample

beta[1] -0.1761 0.1096 0.001085 -0.3921 -0.1765 0.04073 5001 10000

beta0 1.97 1.362 0.01394 -0.7489 1.963 4.632 5001 10000

sigma 5.873 0.9813 0.01054 4.297 5.74 8.136 5001 10000

6.2 Linear regression with non-normal errors

In classical linear modelling, the errors are usually assumed to be normally
distributed, for example, the “least squares” estimators for linear regression
are equivalent to maximum likelihood estimators under this assumption. How-
ever, we are not restricted to normality, and BUGS makes it easy to use any
appropriate distribution. If we suspect outlying observations, for example, we
can provide some robustness against their effects by assuming the data arise
from a heavy-tailed t-distribution. Thus the outliers can be accommodated
within the tails without necessarily forcing the location of the posterior to be
moved significantly. The following example illustrates.

Example 6.2.1. New York crime (continued): robust regression
Note from the model fit shown on the left-hand-side of Figure 6.2 that the right-
most point is rather influential — without this point in place, positive and negative
regression lines might seem equally plausible. The point corresponds to the 20th
precinct (between the Hudson River and Central Park on the southwest side
of Central Park). During the study, police manpower in the 20th precinct was
experimentally increased by 40%, but no experimental changes were made in
other precincts. Hence we might have cause to suspect that the corresponding
observation could be an outlier. We robustify our analysis against the potential
effects of such outliers with the following simple modification:

y[i] ~ dt(mu[i], tau, dof)

where dt(x,y,z) denotes a Student-t distribution with mean x, precision param-
eter y and degrees of freedom z (see Appendix C.1 — note the variance is z

y(z−2)

for z > 2). In principle, we could estimate the degrees of freedom, as in Exam-
ple 4.1.2, by assigning an appropriate prior, but this can be problematic unless
there are many observations. Instead, here, we set dof <- 4 to give a very heavy

108 The BUGS Book

tailed distribution for the residuals. The model fit is shown on the right-hand side
of Figure 6.2 and posterior summaries are given in the table below:

node mean sd MC error 2.5% median 97.5% start sample

beta0 1.699 1.632 0.02879 -1.191 1.59 5.222 5001 10000

beta[1] -0.1244 0.1449 0.002557 -0.358 -0.1455 0.2097 5001 10000

sigma 4.883 1.035 0.01803 3.266 4.756 7.214 5001 10000

model fit: mu

% change manpower
 -20.0 0.0 20.0 40.0

y

-20.0
-10.0
 0.0
 10.0
 20.0

model fit: mu

% change manpower
 -20.0 0.0 20.0 40.0

y

-20.0
-10.0
 0.0
 10.0
 20.0

FIGURE 6.2

Model fits for New York crime data in Examples 6.1.3 and 6.2.1 with manpower
effect alone in the regression equation: left-hand side, normal residuals; right-hand
side, t4 distributed residuals.

beta[1] sample: 10000

 -1.0 -0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

beta[1] sample: 10000

 -1.0 -0.5 0.0 0.5 1.0

0.0
1.0
2.0
3.0
4.0

FIGURE 6.3

Posterior density estimates for manpower effect in regression analysis of New
York crime data in Examples 6.1.3 and 6.2.1: left-hand side, normal residuals;
right-hand side, t4 distributed residuals.

Note that sigma is no longer the residual standard deviation; this is given by sd
<- sigma*sqrt(dof/(dof-2)), which is sigma*1.414 in this case. Hence the
posterior median residual standard deviation is 6.73, a little higher than before.
Just looking at the posterior median model fit we might think that assuming a t
distribution for the residuals has had a negligible effect. However, note that the
posterior summaries show the effect of manpower has been attenuated, with the
posterior median for beta[1] reduced in size from −0.177 (with normal errors) to

Regression models 109

−0.146. This is consistent with less of the overall variability apparent in the data
being explained by the model, as indicated by the increased residual standard
deviation. Also note that use of the t distribution may affect our substantive
inferences, since we can no longer consider the effect of manpower “significant”
— considerably more posterior probability now lies to the right of zero. This is
reflected by the (now positive) slope of the upper end of the credible interval
for the model fit, and by the posterior density estimates for beta[1] shown in
Figure 6.3.

6.3 Non-linear regression with normal errors

MCMC methods can easily accommodate non-linear regressions. The only ad-
ditional effort required in fitting such models might be ensuring that the pa-
rameters always have meaningful values by imposing appropriate constraints.
This is illustrated in the following example. Note that we can easily extend
non-linear models to non-normal errors, as in the previous subsection.

Example 6.3.1. Dugongs
Carlin and Gelfand (1991) consider data on length (yi) and age (xi) measurements
for i = 1, ..., n = 27 dugongs (sea cows) captured off the coast of Queensland.
The data are shown in Figure 6.5. A frequently used nonlinear growth curve with
no inflection point and an asymptote as x → ∞ is the Von Bertalanffy growth
model, given by

yi ∼ Normal(μi, σ
2), μi = L∞ − (L∞ − L0) e

−Kxi , i = 1, ..., n,

where L∞ > L0 > 0 and K > 0. L∞ represents the maximum expected length
achievable, and L0 is the length at time 0. We can impose such constraints in
various ways, e.g., L0,K ∼ Uniform(0, 100), L∞ = L0+β, β ∼ Uniform(0, 100).
We illustrate the use of this particular prior in the code below (model 1). We
also illustrate the use of truncated normal priors for L∞ and L0 (model 2).
We can use the I(,) syntax to represent truncated distributions, as discussed
in § 9.6 and Appendix A.2.2, as there are no unknown parameters in the prior
distribution. In addition, we present two further constrained priors based on the
fact that the von Bertalanffy model can be rewritten as μi = α − βγxi , with
α = L∞ > 0, β = L∞ − L0 > 0, and 0 < γ = e−K < 1. In model 3 we
assume α, β ∼ Uniform(0, 100) and γ ∼ Uniform(0, 1). Model 4 is the same as
model 3 except that we use approximately the same prior for γ as in model 1,
by assuming γ ∼ Gamma(0.001, 0.001)I(0, 1) (since p(K) ∝ 1 is equivalent to
e−K ∼ Gamma(0, 0)I(0, 1)). Four copies of the data are supplied and we compare
posterior distributions for α, β, γ, and σ2 between the four priors.

110 The BUGS Book

model {

for(j in 1:N) {

for (i in 1:4) {

y[i,j] ~ dnorm(mu[i,j], tau[i])

}

mu[1,j] <- Linf[1] - (Linf[1] - L0[1])*exp(-K[1]*x[1,j])

mu[2,j] <- Linf[2] - (Linf[2] - L0[2])*exp(-K[2]*x[2,j])

mu[3,j] <- alpha[3] - beta[3]*pow(gamma[3], x[3,j])

mu[4,j] <- alpha[4] - beta[4]*pow(gamma[4], x[4,j])

}

L0[1] ~ dunif(0, 100)

L0[2] ~ dnorm(0, 0.0001)I(0, Linf[2])

Linf[1] <- L0[1] + beta[1]

Linf[2] ~ dnorm(0, 0.0001)I(L0[2],)

K[1] ~ dunif(0, 100)

K[2] ~ dunif(0, 100)

for (i in 1:2) {alpha[i] <- Linf[i]}

for (i in 3:4) {alpha[i] ~ dunif(0, 100)}

beta[1] ~ dunif(0, 100)

beta[2] <- Linf[2] - L0[2]

for (i in 3:4) {beta[i] ~ dunif(0, 100)}

for (i in 1:2) {gamma[i] <- exp(-K[i])}

gamma[3] ~ dunif(0, 1)

gamma[4] ~ dgamma(0.001, 0.001)I(0, 1)

for (i in 1:4) {

tau[i] <- 1/sigma2[i]

log(sigma2[i]) <- 2*log.sigma[i]

log.sigma[i] ~ dunif(-10, 10)

}

}

node mean sd MC error 2.5% median 97.5% start sample

alpha[1] 2.65 0.07281 0.001407 2.527 2.644 2.809 10001 50000

alpha[2] 2.651 0.07263 0.001245 2.529 2.644 2.814 10001 50000

alpha[3] 2.656 0.07748 0.001929 2.532 2.647 2.829 10001 50000

alpha[4] 2.654 0.07424 0.001737 2.528 2.647 2.819 10001 50000

beta[1] 0.9751 0.07746 0.001512 0.8275 0.9736 1.129 10001 50000

beta[2] 0.9747 0.07807 6.402E-4 0.8263 0.9733 1.129 10001 50000

beta[3] 0.9759 0.07796 0.001022 0.828 0.9744 1.135 10001 50000

beta[4] 0.9759 0.07727 9.129E-4 0.8288 0.9742 1.132 10001 50000

gamma[1] 0.8607 0.03351 7.849E-4 0.7833 0.8646 0.9146 10001 50000

gamma[2] 0.8613 0.03373 5.879E-4 0.7845 0.8651 0.9161 10001 50000

gamma[3] 0.8632 0.03293 7.05E-4 0.7892 0.8665 0.9189 10001 50000

gamma[4] 0.8623 0.03386 6.953E-4 0.7839 0.8662 0.917 10001 50000

sigma2[1] 0.009987 0.003213 2.702E-5 0.005568 0.009403 0.01791 10001 50000

sigma2[2] 0.009961 0.003191 2.136E-5 0.005532 0.009387 0.01774 10001 50000

sigma2[3] 0.009973 0.003169 2.552E-5 0.005552 0.009384 0.01777 10001 50000

sigma2[4] 0.009975 0.003194 2.505E-5 0.005582 0.009389 0.01786 10001 50000

Regression models 111

The results are virtually identical for all four prior distributions, even though the
priors themselves differ considerably, as illustrated in Figure 6.4. The model fit is
shown in Figure 6.5.

alpha[1] sample: 50000

 -200.0 0.0 200.0 400.0

 0.0

0.005

 0.01

alpha[2] sample: 50000

 -200.0 0.0 200.0 400.0

 0.0
 0.002
 0.004
 0.006
 0.008

alpha[3] sample: 50000

 -200.0 0.0 200.0 400.0

 0.0

0.005

 0.01

0.015

alpha[4] sample: 50000

 -200.0 0.0 200.0 400.0

 0.0

 0.005

 0.01

 0.015

FIGURE 6.4

Prior distributions for α used in dugongs analyses — Example 6.3.1.

age (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.8
 2.0
 2.2
 2.4
 2.6

model fit: mu

age (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.8
 2.0
 2.2
 2.4
 2.6

FIGURE 6.5

Left-hand side: dugong lengths (m) plotted against age in years. Right-hand side:
same data with accompanying model fit.

112 The BUGS Book

6.4 Multivariate responses

Suppose we have observed nmeasurements on each of a number of individuals.
Let i (= 1, ..., N) index individuals and j (= 1, ..., n) index measurements,
and let Yij denote the jth observation made on individual i. Suppose also that
measurements are made on the whole real line, so that a normality assumption
might be appropriate. To account for the fact that observations made on
the same individual may be correlated, we can assume that they follow a
multivariate normal (MVN) distribution with unknown mean vector μ and
variance-covariance matrix Σ. That is,

Yi = (Yi1, Yi2, ..., Yin)
′ ∼ MVNn(μ,Σ), i = 1, ..., N.

If we have also observed covariates, such as the age at which each measurement
was taken, specification of appropriate forms for the elements of μ leads to a
multivariate regression model:

μj = β0 +

p∑

k=1

βkxkj , j = 1, ..., n,

where xkj denotes the jth value of covariate k. Typically we would specify
vague normal priors for the coefficients, i.e. β. ∼ Normal(0, 1002), and an
inverse-Wishart prior (see Appendix C.4) for the covariance Σ, via Σ−1 ∼
W(R, ρ). Here the right-hand side denotes a Wishart distribution with “scale
matrix” R and degrees of freedom ρ. The Wishart distribution is the multi-
variate analogue of the gamma distribution and arises in classical statistics
as the distribution of the sum-of-squares-and-products matrix in multivariate
normal sampling. It is the conjugate prior for the precision matrix of a mul-
tivariate normal distribution. The least informative, proper Wishart prior is
given by setting ρ = p, where p is the dimension of the distribution. The prior
mean is ρR−1 and so a good choice for R is ρΣ0, where Σ0 is some prior guess
for the covariance.

Example 6.4.1. Jaws
Elston and Grizzle (1962) present repeated measurements of jawbone height on
20 boys. Each boy’s jawbone was measured at ages 8, 8.5, 9, and 9.5 years, and
interest focuses on describing the average growth curve of the jawbone. BUGS
code for a multivariate regression model is given below.

model {

for (i in 1:20) {Y[i, 1:4] ~ dmnorm(mu[], Sigma.inv[,])}

for (j in 1:4) {mu[j] <- alpha + beta*x[j]}

alpha ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

Regression models 113

Sigma.inv[1:4, 1:4] ~ dwish(R[,], 4)

Sigma[1:4, 1:4] <- inverse(Sigma.inv[,])

}

list(Y = structure(

.Data = c(47.8, 48.8, 49.0, 49.7,

46.4, 47.3, 47.7, 48.4,

................

46.3, 47.6, 51.3, 51.8),

.Dim = c(20, 4)),

x = c(8.0, 8.5, 9.0, 9.5),

R = structure(

.Data = c(4, 0, 0, 0,

0, 4, 0, 0,

0, 0, 4, 0,

0, 0, 0, 4),

.Dim = c(4, 4)))

Array quantities in BUGS, such as Sigma.inv, must have their dimensions (1:4,
1:4 in this case) specified when they are defined, but not when they are used in the
definitions of other nodes. See Appendix A.5. Note the use of the structure()
syntax to specify data in matrix format — the data for R is supplied as a vector
formed by concatenating successive rows of the matrix — see §12.4.2. The value of
R is set equal to ρΣ0 where Σ0 = I is chosen by guessing the order of magnitude
of variation between responses. Peeking at the data in order to set the prior
is generally inappropriate as it is, strictly speaking, using the data twice in the
analysis. However, assessing the order of magnitude of the variability is reasonable.

Also note that the multivariate normal distribution (dmnorm) in BUGS follows
its univariate counterpart in being parameterised in terms of precision (Σ−1). The
matrix-valued inverse() function then allows inference on Σ. The model fit is
shown in Figure 6.6 below. As an alternative for these data, we could have used
a hierarchical “random coefficients” model — see Chapter 10.

Multivariate linear regressions are easily extended to nonlinear regressions,
as in the univariate case. In addition, we can also specify a multivariate t-
distribution (mvt) for the errors, to accommodate any outlying individuals.
One area in which we do not have much freedom, however, is with the Wishart
prior. Covariance matrices must always be positive-definite in order for them
to make sense. The Wishart distribution is the only standard distribution
that imposes this constraint naturally. If we wish to use an alternative form
of prior then we must take responsibility for imposing the constraint our-
selves, through appropriate parameterisation, say — the software will almost
certainly crash if the constraint is not satisfied. Alternative priors for covari-
ance matrices are further discussed in §10.2.3 and in Gelman et al. (2004),

114 The BUGS Book

8.0 8.5 9.0 9.5

46
48

50
52

54

x (age in years)

Y
(ja

w
bo

ne
he

ig
ht

in
m

m
)

FIGURE 6.6

Model fit for jawbone data. The posterior median fit and 95% credible interval
are indicated by the solid and dashed lines, respectively.

p. 483. Multivariate normal distributions with two specific structural forms
for the covariance matrix are implemented as separate distributions in the
BUGS language — see §11.3.6 for details.

6.5 Generalised linear regression models

Specification of Bayesian generalised linear models (GLMs) follows straight-
forwardly from the above discussion of linear models. No closed-form solution
is available, but as we have seen for nonlinear models, it is still straightforward
to obtain posterior samples using MCMC. The main differences with GLMs
are that the sampling distribution of the data is typically non-normal and
that we use a “link function” to transform parameters of that distribution
onto a scale where a linear model can be used appropriately. More formally
we assume that the data, yi, i = 1, ..., n, arise from a specific distribution in
the exponential family (McCullagh and Nelder, 1989), with

E[yi] = μi = g−1(ηi), ηi = β0 +

p∑

k=1

βkxki,

for covariates xki, k = 1, ..., p. The exponential family of distributions
includes distributions such as normal, Poisson, and binomial. Appropri-

Regression models 115

ate link functions g(.) for these would generally be the identity function,
log(.) and logit(.), respectively. For the binomial distribution, alternatives to
logit(p) = log(p/(1 − p)) are the probit, Φ−1(p), and complementary log-log,
log(− log(1 − p)).

In the binomial case, the data can be expressed as yi = ri/νi for consistency
with the relation logit(E[yi]) = ηi, where ri is the number of “successes” out
of νi “trials.” Such scaling is not necessary in BUGS, however, as illustrated
in the following example, along with the use of alternative link functions.
Link functions in BUGS are slightly special in that they may appear on the
left-hand side of a logical relationship, as shown for binary and count data
below.

Note that we are not restricted to the exponential family of models. Hierar-
chical regression models, which include random effects, are discussed in §10.3,
and many of the specialised models in Chapter 11 involve regression terms.

Example 6.5.1. Binary data: Beetles
Dobson (1983) analyses binary dose–response data from a bioassay experiment
in which the numbers of beetles killed after 5-hour exposure to carbon disulphide
at N = 8 different concentrations are recorded. Denoting the numbers of beetles
killed at, and exposed to, dose xi, i = 1, ..., 8, by yi and ni, respectively, we fit
the following logistic regression model.

yi ∼ Binomial(pi, ni), logit(pi) = α+ β(xi − x),

with vague Normal(0, 1002) priors for α and β. Note that, again, the covariate
(dose) is centred, by subtracting x = N−1

∑
xi. This is because serious MCMC

convergence issues arise when the xis are used directly, due to very high posterior
correlation between α and β — see §4.4; centering essentially relocates the y-axis
to x = x, which, in this case, vastly reduces the dependence of the intercept α
on β. The likelihood is specified via

for (i in 1:8) {

y[i] ~ dbin(p[i], n[i])

logit(p[i]) <- alpha + beta*(x[i] - mean(x[]))

}

If we want to assess the model fit visually then we will need to either transform
the data onto the same scale as the linear model or transform the model fit onto
the same scale as the observations. We insert the following code in the loop above
so that we can examine both:

phat[i] <- y[i]/n[i]

yhat[i] <- n[i]*p[i]

Instead of a logistic regression, we might prefer to perform a complementary
log-log or probit regression by replacing the logit link function with cloglog or
probit, respectively. In the latter case, specifying the relationship as

116 The BUGS Book

model fit: p (phat "observed")

dose
 1.6 1.7 1.8 1.9

0.0

0.5

1.0
model fit: yhat (y observed)

dose
 1.6 1.7 1.8 1.9

 0.0

20.0
40.0

60.0

80.0

FIGURE 6.7

Model fits from logistic regression of “Beetles data.” Left-hand side: 95% credible
intervals for p[] and “observed” phat[] plotted against dose. Right-hand side:
95% credible intervals for yhat[] and observed y[] plotted against dose.

p[i] <- phi(alpha + beta*(x[i] - mean(x[])))

where phi denotes the cumulative distribution function of the standard normal
distribution, is somewhat slower but can be more robust to numerical problems.

Example 6.5.2. Count data: Salmonella
Breslow (1984) analyses mutagenicity assay data (shown below) on salmonella in
which three plates have each been processed at various doses of quinoline and
the number of revertant colonies of TA98 salmonella subsequently measured.

Dose 0 10 33 100 333 1000
Plate 1 15 16 16 27 33 20
Plate 2 21 18 26 41 38 27
Plate 3 29 21 33 69 41 42

Denoting the dose by xi, i = 1, ..., 6, and the number of colonies observed on
plate j at dose xi by yij , we fit the following GLM suggested by theory:

yij ∼ Poisson(μi), logμi = α+ β log(xi + 10) + γxi,

with independent Normal(0, 1002) priors for α, β and γ.

for (i in 1:6) {

for (j in 1:3) {

y[i,j] ~ dpois(mu[i])

}

log(mu[i]) <- alpha + beta*log(x[i] + 10) + gamma*x[i]

}

alpha ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

gamma ~ dnorm(0, 0.0001)

Regression models 117

The model fit is shown on the left side of Figure 6.8. We also show 95% predictive
intervals for the response variable at each dose, which are calculated by adding
the following code to the model. These reflect uncertainty in α, β, and γ, as do
the credible intervals for the model fit, but they also reflect sampling variation
from the Poisson distribution.

for (i in 1:6) {y.pred[i] ~ dpois(mu[i])}

The predictive intervals indicate that the model may be deficient, since it can-
not predict the level of variability apparent in the observed data. In particular,
the largest observed response, at dose 100, is not realistically accommodated by
the fitted model. One solution is to specify a hierarchical model instead — see
Example 10.3.1. Another approach is to assume a negative binomial distribution
(Appendix C.5) to explicitly model over-dispersion in the response variable. The
negative binomial is more flexible than the Poisson but includes the Poisson distri-
bution as a limiting case. If we make the following assumption for the responses:

y[i,j] ~ dnegbin(p[i], r)

then the mean is given by mu[i] <- r*(1-p[i])/p[i]. Hence we can rearrange
to obtain p[i] <- r/(mu[i] + r) and model log(mu[i]) as above. (Note
that the Poisson distribution arises in the limit as r → ∞.) We specify a discrete
uniform prior for r via the following code:

r ~ dcat(pi[])

for (i in 1:max) {pi[i] <- 1/max}

with max = 1000. The resulting model fit and prediction interval are shown on
the right side of Figure 6.8, and posterior summaries for both models are given
in the table below. Note that posterior medians for the common parameters are
strikingly similar, but the posterior uncertainty is increased substantially with
the negative binomial model. Also note that the negative binomial model better
accommodates the observed data. We examine model comparison and criticism
more formally for this example in Chapter 8.

node mean sd MC error 2.5% median 97.5% start sample

dpois:

alpha 2.182 0.2169 0.0109 1.767 2.178 2.629 1001 20000

beta 0.3169 0.05666 0.002886 0.1993 0.3186 0.4254 1001 20000

gamma -0.001006 2.452E-4 1.06E-5 -0.001483 -0.001009 -5.044E-4 1001 20000

dnegbin:

alpha 2.183 0.3206 0.01339 1.581 2.176 2.843 4001 100000

beta 0.3166 0.08655 0.00366 0.1374 0.3188 0.4774 4001 100000

gamma -9.956E-4 3.794E-4 1.38E-5 -0.001721 -0.001009 -2.066E-4 4001 100000

r 72.24 145.3 0.8461 8.0 27.0 617.0 4001 100000

118 The BUGS Book

0 200 400 600 800 1000

0
20

40
60

dose

no
. o

f c
ol

on
ie

s

0 200 400 600 800 1000

0
20

40
60

dose

no
. o

f c
ol

on
ie

s

FIGURE 6.8

Posterior median model fits (—), 95% credible intervals (−−) and 95% prediction
intervals (.....) from regression analysis of salmonella data: left-hand side, Poisson
regression; right-hand side, negative-binomial regression.

6.6 Inference on functions of parameters

In a Bayesian context, MCMC makes inference easy for arbitrary functions of
parameters, such as coefficients in a regression model. For example, in a logistic
regression model, such as Example 6.5.1, the model is specified in terms of
the log odds ratio β, but the odds ratio exp(β) is usually more interpretable.
We simply evaluate the function of interest at every MCMC iteration, and the
resulting set of values represents a sample from the posterior distribution for
that function. In classical inference, the delta method is commonly used to
estimate standard errors or confidence intervals for functions of parameters,
though this can be inaccurate for very nonlinear functions. Bootstrapping
is a more accurate classical alternative with a similar computational cost to
MCMC.

Example 6.6.1. Beetles (continued): ED95
In Example 6.5.1, suppose we wish to estimate the ED95, that is, the dose that
will provide 95% of maximum efficacy:

logit 0.95 = α+ β(ED95− x) ⇒ ED95 = (logit 0.95− α)/β + x

We simply add the following code into the logistic regression model and monitor
the ED95 variable:

ED95 <- (logit(0.95) - alpha)/beta + mean(x[])

The posterior mean and standard deviation are 1.857 and 0.00776, respectively
(500,000 iterations were necessary to achieve this level of precision).

Using a classical logistic regression fitted in R, the estimated ED95 is 1.858. The
delta method, based on the (multivariate normal) asymptotic distribution of the

Regression models 119

maximum likelihood estimators of α and β, provides a standard error of 0.00773,
which is reasonably accurate in this example. Note that classical standard errors
obtained in this way will be underestimates of the true SE, due to the Cramer–Rao
inequality, though will converge asymptotically to the true SE.

Obtaining a confidence interval via the delta method would rely on a normal
approximation for some transformation of ED95, introducing further inaccuracies.
A classical alternative would be to use bootstrap methods to obtain a set of values
from the sampling distribution of the ED95 estimator. This could be achieved by
resampling from the data and refitting the model, or by simulating from the
asymptotic distribution of the estimators of α, β and computing the resulting
ED95. The sample quantiles could then be used as the confidence interval. The
latter method in this case gives a 95% interval of (1.844, 1.875), which closely
matches the Bayesian 95% credible interval of (1.843, 1.874).

6.7 Further reading

Gelman and Hill (2007) give a detailed introduction to regression modelling,
focusing on practical issues around building, fitting, criticising, and presenting
models including linear and generalised linear regressions, and hierarchical or
multilevel regression models (as we discuss in Chapter 10). Issues include pre-
dictive model checking (as in our Chapter 8), missing data (as in our §9.1), and
causal inference. Many of the models discussed are Bayesian, and BUGS and
R code is provided. Ntzoufras (2009) and Congdon (2003, 2006) give numer-
ous examples of regression models in WinBUGS, and methods for selection
of predictors. Ntzoufras (2009) gives a particularly detailed consideration of
models for analysis of variance and covariance.

This page intentionally left blankThis page intentionally left blank

7

Categorical data

Regression models for binary and count data were introduced in Chapter 6.
This chapter describes Bayesian models for more general forms of categorical
or discrete data, starting with 2 × 2 tables which classify two binary variables,
followed by multinomial models for single or multiple categorical outcomes and
models for ordered categorical data. Regression techniques are introduced for
relating multinomial and ordinal data to predictors.

As in any other Bayesian application, needing to specify prior distributions
may be both an advantage and a challenge. While inferences are sometimes
sensitive to the choice of prior, it can allow realistic information to be intro-
duced and can stabilise estimates from data with small counts. The BUGS
apparatus also allows models to be specified with arbitrary constraints on
their parameters.

7.1 2 × 2 tables

Suppose N individuals are classified, according to two binary variables, in the
following 2× 2 table.

Success Failure
Group 1 y11 y12 n1

Group 2 y21 y22 n2

Total m1 m2 N

This type of data arises in three general situations.

One margin fixed N individuals are classified deterministically as n1 in
Group 1 and n2 in Group 2. Each individual has a single random out-
come, deemed “success” with probability p1 for Group 1 and p2 for
Group 2. The total number of successes in Group i, yi1, is then dis-
tributed as Binomial(ni, pi), for i = 1, 2. We are interested in how the
success rate differs between groups, and we might make inferences about
the relative risk p2/p1 or the odds ratio (p2/(1− p2))/(p1/(1− p1)). We
already saw an example in §5.5, and we consider this situation further
in §7.1.1.

121

122 The BUGS Book

Both margins fixed N individuals are classified as n1 in Group 1 and n2 in
Group 2. The total number of successes and failures is fixed at m1 and
m2, respectively. These are then allocated randomly to groups. A com-
monly cited example is the “lady tasting tea” experiment. A colleague
of the statistician Ronald Fisher claimed to be able to tell whether the
milk or the tea infusion had been poured into a cup first. N cups of tea
with milk are prepared, n1 where the milk is poured first and n2 where
the tea is poured first. The taster is told how many had the milk poured
first, then she tries to guess which. m1 is the number of cups guessed as
“milk first,” so that in this example, m1 = n1. This is mathematically
more difficult and is discussed briefly in §7.1.3.

No margins fixed Two random binary outcomes are measured on N indi-
viduals, resulting in four possible combined outcomes with probabilities
p11, p12, p21, and p22. For example, we might ask someone whether they
smoke tobacco, drink alcohol, neither, or both. This is a 2×2 contingency
table, governed by a multinomial model. The BUGS implementation of
multinomial models is described in §7.2, and contingency table analysis
is discussed briefly in §7.2.5.

7.1.1 Tables with one margin fixed

Here we concentrate on the case with one margin fixed, and analyse some
fictitious data from the tea-tasting experiment introduced above. We delib-
erately choose an example with small counts, for which the choice of prior
will be important and Bayesian inferences are more likely to differ from clas-
sical results. Example 5.5.1 discussed how informative priors can be placed on
the (log-)odds ratio — here we place informative priors directly on the two
outcome probabilities.

Example 7.1.1. Lady tasting tea
Suppose the tea-tasting experiment resulted in the following guesses.

Guess
Milk first Tea first

Actual Milk first 3 1 4
Tea first 1 3 4
Total 4 4 8

For the purpose of this example, we suppose that the taster was not told
beforehand how many cups had their milk poured first, so that the column totals
are not fixed. The model is then two independent binomials, as in the BUGS code
below. p1, p2 are the probabilities that she guesses that the milk was poured first,
given that the milk or tea, respectively, were actually poured first. A classical
analysis would normally test the null hypothesis that p1 = p2, but we estimate
the posterior probability that p1 > p2, in other words that she has some ability

Categorical data 123

to identify the pouring order. However, for many situations a more meaningful
hypothesis may be that the difference between p1 and p2 is practically significant,
so that p1 − p2 > ε for some value of ε.

for (i in 1:2) {

y[i] ~ dbin(p[i], n[i])

p[i] ~ dunif(0, 1)

}

The data are simply supplied as:

list(n=c(4,4), y=c(3,1))

We compare the conventional independent uniform priors with various alterna-
tives.

“Reference” Independent Beta(0.5, 0.5) priors from Jeffreys’ principle, or uni-
form priors for logit(pi), equivalent to Beta(0,0), as discussed in §5.2.5.

One parameter The probability of correct classification doesn’t depend on
whether the milk or the tea is poured first, so that p1 = 1 − p2. Then
p1 is given a uniform, Jeffreys, or logit uniform prior. In this case the alter-
native hypothesis is p1 > 0.5.

One parameter, sceptical Again assuming p1 = 1 − p2, and following Lindley
(1984), we could be sceptical and place substantial prior mass on the single
point p1 = 0.5 representing no discriminating skill. We give 50% prior
probability to this point, assume zero prior probability to the situation p1 <
0.5, where she consistently selects the reverse of the true pouring order,
and place a uniform prior on the remaining region p1 > 0.5 where she
has some discriminating ability. As discussed in §8.7, studies of remarkable
or supernatural abilities are one of the few occasions where a point null
hypothesis is strictly realistic! This prior is implemented in BUGS using the
pick formulation, introduced in §5.4.

p[1] <- theta[pick]

pick ~ dcat(q[])

q[1] <- 0.5

q[2] <- 0.5

theta[1] <- 0.5

theta[2] ~ dunif(0.5, 1)

Dependent As discussed by Howard (1998), in many real 2× 2 table situations,
if p1 is expected to be large, then so is p2. Suppose we are told the lady is
inclined to guess “milk first” for cups with the milk actually poured first,
in other words p1 is large. If we were sceptical about her tasting skill, we
might believe that this is because she is more likely to guess “milk first”

124 The BUGS Book

TABLE 7.1

Posterior probabilities that the tea-taster has some discriminating
ability, for various priors.

Independent One parameter Dependent
ρ = 0.75 ρ = 0.875

Uniform 0.89 0.91 0.81 0.75
Beta(0.5,0.5) 0.92 0.92 0.82 0.75
Beta(0,0) 0.95 0.94 0.83 0.76
Sceptical 0.65

in all circumstances, and not because she can detect the pouring order.
This is equivalent to assuming a prior correlation. While this prior may
be less realistic in the tea-tasting experiment, it lets us illustrate a trick
described by Michael and Schucany (2002) for specifying identical marginal
priors for p1 and p2 while inducing a prior correlation between the two. If
p1 ∼ Beta(α, β) and x|p1 ∼ Binomial(p1, n), then, treating x as data, the
posterior of p1|x is Beta(α + x, β + n − x). However, if we define a new
random variable p2 whose distribution is this posterior integrated over the
distribution of x, then the marginal distribution of p2 will also be Beta(α, β),
and the correlation between p1 and p2 is ρ = n/(α+β+n). A similar trick
is available for the gamma distribution.

Therefore the following code specifies a joint prior for p1 and p2, where each
is marginally Uniform(0,1), and the correlation is 6/(6+α+β) = 0.75 with
α = β = 1 for the uniform (Beta(1,1)) distribution. With this correlation,
if p1 = 0.5, then p2 has a 95% chance of being between 0.1 and 0.92 —
not a very strong assumption.

alpha <- 1; beta <- 1;

p[1] ~ dbeta(alpha, beta)

n.corr <- 6 # for rho=0.75, or n.corr <- 14 for rho=0.875

x ~ dbin(p[1], n.corr)

a.post <- alpha + x

b.post <- alpha + n.corr - x

p[2] ~ dbeta(a.post, b.post)

The posterior probabilities that p1 > p2 are obtained in each case as the
posterior mean of

post <- step(p[1] - p[2])

except for the one-parameter sceptical prior, where the (equivalent) probability
of p1 > 0.5 is obtained as the posterior mean of pick−1. These are listed in
Table 7.1.

Categorical data 125

There is not much difference between the posterior probabilities under the vague
uniform, Jeffreys, and logit uniform priors, or whether the success probability is
assumed to be independent of the pouring order. However, the conclusions about
the lady’s tasting skill are more reserved under our more “subjective” priors. Under
the sceptical prior, which assigned a probability of 0.5 to any tasting skill, the
taster’s six out of eight successful classifications only convert this to a posterior
probability of 0.65. Under the dependent priors, as the prior correlation ρ between
p1 and p2 increases, the posterior probability of discriminating ability becomes
smaller, and the choice of marginal prior has even less impact.

Note that under certain priors, the Bayesian results agree with classical signif-
icance levels. The posterior probability of 0.92 under independent Jeffreys’ priors
is approximately the same (to 2 s.f.) as 1 − p, where p is the one-sided p-value
from the standard χ2 test without continuity correction. The corresponding 1−p
from Fisher’s exact test, however, is equal to the more conservative posterior
probability of 0.76 under independent priors of p1 ∼ Beta(0, 1), p2 ∼ Beta(1, 0),
which slightly favour p2 > p1 (Altham, 1969).

For some very sceptical priors, even if the taster had guessed all eight cups
of tea correctly, then the posterior probability would still not be convincing; for
example, it is 0.93 with a prior probability of 0.8 on p1 = 0.5. A greater number
of trials would then be required for stronger evidence! See Example 8.7.1 for a
situation where even greater scepticism is appropriate.

7.1.2 Case-control studies

Case-control studies typically produce data as a 2 × 2 table, but with the
outcome totals fixed, rather than the predictor totals. A fixed number of in-
dividuals with and without a certain outcome are collected and examined to
see whether they were exposed to a particular predictor. These allow the es-
timation of the odds ratio of the outcome in terms of the exposure, but not
the relative risk. They are typically used, however, for rare diseases where
the odds ratio approximates the relative risk. Suppose Group 2 represents
exposure. The number of exposed cases and controls are modelled as indepen-
dent binomial, with odds p21/p11 and p22/p12, respectively. The odds ratio
(p21p12)/(p11p22) between cases and controls for the probability of exposure
equals the odds ratio between exposed and unexposed for the probability of
the outcome.

Case-control studies are often analysed conditionally on fixed exposure to-
tals as well as fixed outcome totals. Bayesian analyses of case-control studies,
both conditional and unconditional, are discussed in the Endo example pro-
vided with WinBUGS and OpenBUGS.

126 The BUGS Book

7.1.3 Tables with both margins fixed

In the tea-tasting experiment as originally described by Fisher, the lady is
told the margins of the table and thus always guesses the correct total num-
ber with milk or tea poured first. The number of cups y11, for which milk
was poured first and the lady also identifies them correctly, is no longer bino-
mial but instead follows the non-central hypergeometric distribution. This is
parameterised by the table margins and the odds ratio — see Appendix C.5
for the exact definition. The “null” distribution of y11, when the odds ratio
is 1 (p1 = p2), is the standard hypergeometric. This is the basis of Fisher’s
exact test, which is commonly used to test the null hypothesis instead of
the (asymptotic) chi-squared test when the numbers in the table are small,
whether or not the column totals are fixed.

In order to estimate the posterior distribution of the odds ratio in a Bayesian
context, a non-central hypergeometric likelihood is required. This is pro-
vided by OpenBUGS and JAGS (with different parameterisations; see Ap-
pendix C.5) but not WinBUGS. In the tea-tasting example above, using a
uniform prior for p1 = 1 − p2, the posterior probability that p1 > p2 is 0.90,
similar to the probability of 0.91 obtained without the column totals fixed
(labelled “One parameter” in Table 7.1).

In the tea-tasting example, the row totals equal the column totals. For
more general tables with fixed margins, the margin totals imply complicated
constraints on the internal cells (Wakefield, 2004) and thus on plausible prior
values for the cell probabilities, assuming the prior is chosen after seeing the
column totals but before seeing the data.

7.2 Multinomial models

Suppose we have data y1, . . . , yn which are arrays of counts, yi =
(yi1, yi2, . . . , yiR). Each yi represents a set of Mi independent draws from R
categories with probabilities q = (q1, . . . , qR) so that

∑
r yir =Mi for all i, and∑

r qr = 1. For example, with R = 3 and Mi =M = 9 for all i: y1 = (1, 4, 4),
y2 = (3, 3, 3), and so on. This is amultinomial model yi ∼ Multinomial(q,Mi),

with likelihood ∝∏n
i=1

∏R
r=1 q

yir
r :

y[i,1:3] ~ dmulti(q[1:3], M[i])

7.2.1 Conjugate analysis

The conjugate prior for the vector of multinomial probabilities q is the
Dirichlet(α1, . . . , αR) distribution with p(q) ∝ ∏

r q
αr−1
r , a generalisation

Categorical data 127

of the beta distribution for the probability of a binary outcome (see Ap-
pendix C.4):

q[1:3] ~ ddirch(alpha[1:3])

The parameter αr is proportional to the expected probability qr of the rth
outcome, and the prior precision of q increases with the scale of the αr. For
example, αr = 1 for r = 1, . . . , R is a generalisation of the Uniform(0,1) or
Beta(1,1) distribution. Given one yi, the resulting posterior is

q ∼ Dirichlet(α1 + yi1, . . . , αR + yiR).

Note the greater posterior precision for larger sample sizes, and a greater
influence of the prior for larger αr.

Example 7.2.1. Asthma: state transitions in a clinical trial
Briggs, Ades, and Price (2003) examine transitions between five clinical states in
a randomised trial of treatments (seretide and fluticasone) for asthma. The states
are labelled STW: Successfully treated week, UTW: Unsuccessfully treated week,
Hex: Hospital-managed exacerbation, Pex: Primary care-managed exacerbation,
TF: Treatment failure. The number of occasions a patient occupied state a in
one week, followed by state b the following week, is counted for all states a, b for
12 weeks. For patients randomised to the seretide arm, these are

To
STW UTW Hex Pex TF

From Total
STW 210 60 0 1 1 272
UTW 88 641 0 4 13 746
Hex 0 0 0 0 0 0
Pex 1 0 0 0 1 2
TF 0 0 0 0 81 81

The aim is to estimate the transition probabilities between the states, which will
inform a cost-effectiveness analysis. Although no patients entered the Hex state
within the short 12 week follow-up, hospital admission is expensive and potentially
important to long-term cost effectiveness.

We fit a discrete-time Markov model, equivalent to four independent multino-
mial models with probability vector qi governing the state in the following week
conditionally on the current state, each with a uniform Dirichlet prior on qi. The
fifth state, treatment failure, is absorbing; in other words, patients cannot move
out of it, so q5r = 0, r = 1, . . . , 4, q55 = 1.

for (i in 1:4) {

count[i, 1:5] ~ dmulti(q[i, 1:5], M[i])

q[i, 1:5] ~ ddirch(alpha[])

}

for (r in 1:5) {alpha[r] <- 1}

128 The BUGS Book

One thousand samples from the conjugate posterior distribution produce pos-
terior means of

To
STW UTW Hex Pex TF

From
STW 0.76 0.22 0.004 0.007 0.007
UTW 0.12 0.86 0.001 0.007 0.02
Hex 0.20 0.20 0.20 0.20 0.20
Pex 0.28 0.14 0.14 0.14 0.30

The influence of the prior allows transitions not observed in the data to have a
small but non-zero posterior probability. This represents the belief that asthma
patients will occasionally need to be admitted to hospital after an exacerbation.
This would not have been possible if the transition probabilities had been esti-
mated simply by dividing the count data above by the appropriate denominator.

7.2.2 Non-conjugate analysis — parameter constraints

Conjugate Bayesian analyses for multinomial data, as above, can be performed
in standard statistical software. The BUGS language and MCMC framework,
however, enable more complex models in which the cell probabilities are func-
tions of other parameters of interest, where no closed-form posterior distribu-
tion is available for those parameters.

Example 7.2.2. Population genetics: self-fertilising plants
Given the following frequencies of genotypes from a set of maternal plants
(Holsinger, 2001–2010).

Offspring genotype
Maternal genotype AA AB BB

AA 427 95
AB 108 161 71
BB 64 74

we wish to estimate the rate σ at which plants self-fertilise, and the frequency
p of allele A in outcross pollen. The probabilities of each offspring genotype,
conditionally on each maternal genotype, are functions of these parameters (q =
1− p):

Categorical data 129

Offspring genotype
Maternal genotype AA AB BB

AA (1 − σ)p+ σ (1− σ)q 0
AB (1 − σ)p/2 + σ/4 1/2 (1− σ)q/2 + σ/4
BB 0 (1− σ)p (1− σ)q + σ

This can be written immediately in BUGS:

NAA[1:3] ~ dmulti(XAA[1:3], KAA)

NAB[1:3] ~ dmulti(XAB[1:3], KAB)

NBB[1:3] ~ dmulti(XBB[1:3], KBB)

XAA[1] <- (1 - sigma)*p + sigma

XAA[2] <- (1 - sigma)*q

XAA[3] <- 0

XAB[1] <- (1 - sigma)*p/2 + sigma/4

XAB[2] <- 0.5

XAB[3] <- (1 - sigma)*q/2 + sigma/4

XBB[1] <- 0

XBB[2] <- (1 - sigma)*p

XBB[3] <- (1 - sigma)*q + sigma

KAA <- sum(NAA[])

KAB <- sum(NAB[])

KBB <- sum(NBB[])

p ~ dunif(0, 1)

sigma ~ dunif(0, 1)

q <- 1 - p

obtaining posterior distributions for both the self-fertilisation rate and the allele
A frequency, each acknowledging the uncertainty about the other (Figure 7.1).

node mean sd MC error 2.5% median 97.5% start sample

p 0.7049 0.02394 2.455E-4 0.6562 0.7053 0.7497 1001 10000

sigma 0.37 0.04158 4.236E-4 0.287 0.3703 0.4509 1001 10000

7.2.3 Categorical data with covariates

The multinomial logistic model allows responses yi ∼ Multinomial(qi, N) to
be modelled in terms of a vector of covariates xi = (x1i, . . . , xpi). The log odds
ratio for category r relative to category 1 is defined as

ηir = log

(
qir
qi1

)

= αr +

p∑

k=1

βkrxki, r = 2, . . . , R; i = 1, . . . , N

130 The BUGS Book

p sample: 10000

 0.5 0.6 0.7

 0.0
 5.0
10.0
15.0
20.0

sigma sample: 10000

 0.2 0.3 0.4 0.5

 0.0
 2.5
 5.0
 7.5

 10.0

FIGURE 7.1

Posterior density estimates for allele frequency p and self-fertilisation rate sigma

from population genetics example.

Conceptually, this is equivalent to R−1 binomial logistic regressions compar-
ing category r > 1 with category 1. The category probabilities are then

qir =
φir

∑R
s=1 φis

where φir = eηir = eαr+
∑

k βkrxki

with the constraint that φi1 = 1 (i.e., ηi1 = 0).

Example 7.2.3. Asthma (continued): including a treatment effect
To compare the state transition probabilities between two treatment groups in
the asthma trial example 7.2.1, we could fit independent multinomial models to
the counts observed under each treatment. However, since the data are sparse, it
would probably be more efficient to fit a multinomial logistic model to the dataset
as a whole, with treatment as a covariate. We illustrate this for the transition
from the first state (successfully treated week). The transition counts for the two
treatments are:

To
STW UTW Hex Pex TF

Total
Seretide 210 60 0 1 1 272
Fluticasone 66 32 0 0 2 100

The probability q[i,2] that a patient is unsuccessfully treated in the following
week is allowed to vary between treatments i (where seretide is treatment 1 and
fluticasone is treatment 2) but due to the small counts, all transition probabilities
to other states are constrained to be the same between treatment groups. Diffuse
normal priors are assumed for the baseline log odds a[j] for transition to state j,
and for the log odds ratio b.treat[2] for treatment with fluticasone. Odds are
relative to remaining in the baseline state (STW). These priors on the log-odds
scale are not equivalent to the uniform Dirichlet priors used on the probability scale
in Example 7.2.1, and sensitivity analysis to the prior variance may be advisable.

Categorical data 131

for (i in 1:2) {

count[i, 1:5] ~ dmulti(q[i, 1:5], M[i])

for (r in 1:5) {

q[i,r] <- phi[i,r]/sum(phi[i,])

log(phi[i,r]) <- a[r] + b.treat[r]*treat[i]

}

}

for (r in 2:5) {a[r] ~ dnorm(0, 0.00001)}

a[1] <- 0 #

b.treat[1] <- 0 # giving phi[i,1] = 1

b.treat[2] ~ dnorm(0, 0.00001)

or.treat <- exp(b.treat[2])

no treatment effect on transitions other than to UTW

for (r in 3:5) {b.treat[r] <- 0}

treat[1] <- 0

treat[2] <- 1

After an adaptive phase of 4000 iterations, 6000 posterior samples result in a
posterior mean of 1.72 (95% credible interval 1.00 to 2.80) for the odds ratio
or.treat for treatment with fluticasone. An estimate of the odds ratio could
also have been obtained “by hand” from the above data, as (32/66)/(60/210)
= 1.70, but the Bayesian formulation also allows us to simultaneously obtain
posterior distributions for this effect and for the other transition probabilities.
These are substantively the same as those obtained from the multinomial model
without covariates in Example 7.2.1.

This model could easily be extended to estimate the transition probabilities from
the remaining states. Constraints can be applied by setting up the appropriate
logical nodes — for example, assuming that the risk of hospital admission, or the
effect of treatment on this risk, is independent of the current state.

7.2.4 Multinomial and Poisson regression equivalence

An alternative way of fitting a multinomial logistic regression in BUGS is to
assume

yir ∼ Poisson(μir), log(μir) = λi + αr +
∑

k

βkrxki.

With an improper uniform prior on λi, integrating over λi produces the same
likelihood for the αr and βkr as the multinomial model (see Appendix C.6).
This can be more efficient, though perhaps at the cost of clarity. The model
in Example 7.2.3 could be expressed in this way as:

for (i in 1:2) {

132 The BUGS Book

for (r in 1:5) {

count[i,r] ~ dpois(mu[i,r])

log(mu[i,r]) <- lambda[i] + a[r] + b.treat[r]*treat[i]

}

lambda[i] ~ dflat()

}

7.2.5 Contingency tables

A common application of the multinomial/Poisson equivalence is to the anal-
ysis of contingency tables. These classify individuals according to two cate-
gorical outcomes, generalising the 2 × 2 table to any number of rows r and
columns c. Suppose we observe yij individuals in row i and column j of the
table, in other words, with level i of the first category and level j of the sec-
ond. Assuming independent outcomes, the model for the yij is multinomial
with corresponding probabilities pij : i = 1, . . . , r; j = 1, . . . , c. However, the
Poisson log-linear formulation is more common: yij ∼ Poisson(μij), where the
log mean of yij is

log(μij) = αi + βj + γij

under a saturated model, in which every cell has its own parameter. These are
conceptually the same as the Poisson regression models illustrated in Exam-
ple 6.5.2. Typically we would assess the hypothesis that the two factors are
independent, so that pij = piqj , or γij = 0 in the Poisson formulation.

These generalise easily to multiway contingency tables with more than
two categorical variables. Specific constraints on the probabilities may be
employed to examine particular hypotheses and compared using the meth-
ods discussed in Chapter 8. Arbitrary constraints on related parameters are
straightforward to implement using BUGS, as illustrated in Example 7.2.2.
Many examples of models for contingency tables and their implementation in
BUGS are given by Congdon (2005).

7.3 Ordinal regression

Ordinal data are discrete data with a natural ordering. These are commonly
found in surveys, where respondents give preferences on a ranked scale such
as the Likert (1. strongly disagree, 2. disagree, 3. neither agree nor disagree,
4. agree, 5. strongly agree). While ordinal data themselves are discrete, to
aid modelling we can usually assume they represent an underlying contin-
uous scale. Indeed, such data sometimes result from grouping an originally
continuous response into intervals.

Categorical data 133

Suppose the data y1, . . . , yn are independent outcomes on an ordinal scale
1, 2, . . . , R. TheR categories represent intervals [a0, a1), [a1, a2), . . . , [aR−1, aR]
of a latent continuous variable Zi which can take any real value, so that
a0 = −∞ and aR = ∞. The distribution of yi is fully specified by the cumu-
lative probabilities qir = Pr(Zi ≥ ar) that the response is in category r or
higher, for r = 1, . . . , R. To model how the response varies with covariates xi,
we place a linear model on these probabilities on a suitable link-transformed
scale. For example, using a logit link,

logit(qir) = μi − ar, μi = α+
∑

k

βkxki

Implicitly, the latent variable Zi has a logistic distribution with mean μi.
Alternatively, a probit link function would imply a latent normally distributed
variable (see Example 9.1.4 for an example of latent probit regression models).

The ordered logistic model is a proportional odds model. This means that
the odds ratio of a higher score compared to a lower score, Pr(yi ≥ r)/Pr(yi <
r), does not depend on which category r is chosen to define a “high” score.
Equivalently for the latent variable, Pr(Zi ≥ a)/Pr(Zi < a) is independent of
the cut-point a which distinguishes higher from lower scores.

The cut-points ar defining the categories are considered to be unknown
and must be given prior distributions which respect the ordering constraint
a1 < a2 < . . . < aR.

Example 7.3.1. Kidney transplants: ordered logistic regression
Kidneys for transplantation are commonly obtained from donors who are brain
dead but whose hearts are still beating. Because of the shortage of organs available
this way, kidneys are increasingly also being obtained from donors after cardiac
death. However, there are concerns about the extent of damage to these donor
organs during the “agonal phase” from withdrawal of life-supporting treatment to
cardiorespiratory arrest. Reid et al. (2011) investigated the impact of the duration
of the agonal phase on organ damage. Each of 190 donor kidneys is given a score
representing the presence of up to five indicators of kidney damage (acidaemia,
lactic acidosis, hypotension, hypoxia, or oliguria), so that the score is 0 if none
are present, up to 5 if all are present.

Figure 7.2 suggests the score increases with agonal phase duration. The ques-
tion is how to quantify this increase. An ordered logistic regression is fitted to the
agonal scores, shifted to take values from 1 to 6. The N = 190 scores Score[i]
are considered as independent categorical outcomes. The logit of the cumulative
probability Q[i,r] of scores of r or more is given a linear model with log(agonal
phase duration in minutes) lAPD[i] as a predictor, and an unknown cut-point
c[r] for each category r. A prior ordering is imposed on the cut-points by defining
positive prior distributions on reasonably large ranges for the differences dc[r]

134 The BUGS Book

between the cut-points.∗

for (i in 1:N) {

Score[i] ~ dcat(p[i,])

define in terms of cumulative probabilities

p[i,1] <- 1 - Q[i,1]

for (r in 2:5) {

p[i,r] <- Q[i,r-1] - Q[i,r]

}

p[i,6] <- Q[i,5]

for (r in 1:5) {

logit(Q[i,r]) <- b.apd*lAPD[i] - c[r]

}

}

for (i in 1:5) {dc[i] ~ dunif(0, 20)}

c[1] <- dc[1]

for (i in 2:5) {

c[i] <- c[i-1] + dc[i]

}

b.apd ~ dnorm(0, 0.001)

or.apd <- exp(b.apd)

The odds ratio or.apd is interpreted as the increase in odds of a higher score
corresponding to one unit increase in log(agonal phase minutes). After a burn-in
of 500 and further 10,000 iterations, the posterior median odds ratio is 1.46 (95%
CI 1.23, 1.74).

A more extensive analysis of these data (Reid et al., 2011) took account of
the correlation between kidneys from the same donor using a hierarchical model
(Chapter 10) and accounted for missing data on one or more of the indicators of
damage using Bayesian multiple imputation (as in Example 9.1.4). The analysis
presented above was based on a single imputation.

7.4 Further reading

Congdon (2005) gives a wide-ranging and detailed description of many
Bayesian models for categorical data, including WinBUGS code for all ex-
amples. Some of the many topics covered in greater detail than in our book

∗In JAGS and OpenBUGS, the elements of a vector can be sorted using c[1:5] <-

sort(x[]).

Categorical data 135

1
2

3
4

5
6

Agonal phase duration

A
go

na
l s

co
re

0 5 10 30 2 6 12

0 1 2 3 4 5 6 7

(minutes) (hours)

Log(agonal phase duration in minutes)

FIGURE 7.2

Agonal scores from donor kidneys compared with agonal phase duration.

include robust regression, flexible models including generalized additive and
nonparametric models, dynamic linear models and contingency tables, and
latent class and hierarchical extensions to many of these models.

This page intentionally left blankThis page intentionally left blank

8

Model checking and comparison

8.1 Introduction

The conclusions of a Bayesian analysis are conditional on the appropriateness
of an assumed probability model, so we need to be satisfied that our as-
sumptions are a reasonable approximation to reality, even though we do not
generally believe any model is actually “true.” Many aspects of an assumed
model might be questioned: observations that don’t fit, the distributional as-
sumptions, qualitative structure, link functions, which covariates to include,
and so on.

We can distinguish three elements that can be applied in an iterative man-
ner (O’Hagan, 2003).

1. Criticism: exploratory checking of a single model, which may suggest. . .

2. Extensions: embedding a model in a list of alternatives, which leads to. . .

3. Comparison: assessing candidate models in terms of their evidential sup-
port and influence on conclusions of interest.

Classical statistical model assessment ideas, such as residuals and predic-
tive ability on new data, generally depend on assumptions such as a linear
model structure. Here we adapt these ideas to be generically applicable in
arbitrary models, noting that the Bayesian approach means that parameters
have distributions and so, for example, residuals and deviances will be quan-
tities with posterior distributions. In addition, within a Bayesian framework
there is a responsibility to check for unintended sensitivity to the prior and
for conflict between prior and data. Fortunately, MCMC methods provide a
flexible framework for implementing these ideas.

In this chapter we first focus on the deviance as a general measure of model
adequacy. We go on to explore model criticism using residuals and meth-
ods based on generating replicate data and (possibly) parameters. We then
consider embedding models in extended models, followed by deviance-based
and traditional Bayesian measures for overall model comparison. Methods
for accounting for uncertainty about model choice are then described, and
we conclude by discussing the detection of conflict between prior and data.
Assessment of hierarchical models is described in §10.7 and §10.8.

137

138 The BUGS Book

We emphasise that the techniques described in this chapter are more infor-
mal than the inferential methods covered elsewhere — model criticism and
comparison inevitably involve a degree of judgement and cannot be reduced
to a set of formal rules.

8.2 Deviance

We define the deviance as

D(θ) = −2 log p(y|θ) (8.1)

which is explicitly a function of θ and so has a posterior distribution. This
quantity is created automatically as a node by WinBUGS and OpenBUGS,
named deviance. This can be monitored and plotted like any other node —
note that since the full sampling distribution p(y|θ) is used, including the
normalising constant, the absolute size of the deviance is generally difficult to
interpret.

We note that the deviance depends on the specific formulation of a distri-
bution, which becomes relevant when alternative parameterisations exist. For
example, a Student’s t4 distribution can be expressed as y ~ dt(mu,tau,4)

in terms of its mean μ and precision parameter τ , with corresponding density

p(y|μ, τ) = Γ(5
2)
√
τ√

4π

1

[1 + (y − μ)2τ/4]
5
2

(Appendix C.1) and hence the deviance is

D(μ, τ) = log π − 2 logΓ(
5

2
)− log τ + log(4) + 5 log[1 + (y − μ)2τ/4]

Alternatively, we can express the t distribution indirectly as a scale mixture
of normal densities. This follows from the standard result that if Y ∼ N(μ, σ2)

and λ ∼ χ2
4 are independent random quantities, then (Y−μ)

σ /
√
λ/4 ∼ t4, and

so if τ = 4/(λσ2), then (Y − μ)
√
τ ∼ t4 (Appendix C.1). Then the deviance

is simply −2 × log of the normal density (as a function of the mean and
precision).

D(μ, σ−2) = log 2π − log σ−2 + (y − μ)2σ−2

which may be expressed as

D(μ, τ, λ) = log 2π − log(λτ/4) + (y − μ)2λτ/4

showing the additional dependence on the random λ when using this repre-
sentation.

Model checking and comparison 139

0
1

2
3

4
5

6
7

Time − 24800 ns

C
ou

nt

−44 −2 16 21 26 31 36

FIGURE 8.1

Newcomb’s 66 measurements of the time taken for light to travel 7442 metres.

Example 8.2.1. Newcomb’s speed of light data
Stigler (1977) presents 66 measurements made of the time taken for light to
travel 7442 metres (recorded as deviations from 24,800 nanoseconds) made by
Simon Newcomb in 1882. Sixty-four of these form a fairly symmetric distribution
between around 17 and 40, while there are two gross outliers of −2 and −44.
These are shown in Figure 8.1 and were initially analysed by Carlin and Louis
(2008), who pointed out the rather clear non-normality.

A heavy-tailed t4 distribution can be fitted to the data in two different ways.
First as

y[i] ~ dt(mu, tau ,4)

mu ~ dunif(-100, 100)

tau ~ dgamma(0.001, 0.001)

with the following results:

node mean sd MC error 2.5% median 97.5% start sample

deviance 436.4 2.02 0.02387 434.4 435.8 441.8 1001 10000

mu 27.48 0.6604 0.009961 26.2 27.47 28.78 1001 10000

tau 0.04919 0.01196 1.829E-4 0.02968 0.04776 0.07635 1001 10000

Or we can fit an identical model using the scale mixture of normals

140 The BUGS Book

y[i] ~ dnorm(mu, invsigma2[i])

invsigma2[i] <- tau*lambda[i]/4

lambda[i] ~ dchisqr(4)

with the same priors on μ and τ . If we monitor deviance for this representation,
we shall be calculating at each iteration

D =
∑

i

[
log 2π − log τλi/4 + (yi − μ)2τλi/4)

]

and obtain the following results:

node mean sd MC error 2.5% median 97.5% start sample

deviance 408.6 7.969 0.104 393.9 408.3 425.2 1001 10000

mu 27.49 0.6586 0.00904 26.2 27.49 28.78 1001 10000

tau 0.04911 0.01186 1.719E-4 0.02955 0.04774 0.07576 1001 10000

The parameter estimates are the same (up to Monte Carlo error) but the deviance
is smaller in the representation in terms of a random scale parameter.

We shall examine this further when we consider model criticism by embed-
ding in more complex models in §8.5.

8.3 Residuals

Residuals measure the deviation between observations and estimated expected
values and should ideally be assessed on data that has not been used to fit the
model. Classical residuals are generally calculated, however, from the fitted
data and used to identify potential inadequacies in the model by, for example,
plotting against covariates or fitted values, checking for auto-correlations, dis-
tributional shape, and so on. This analysis is generally carried out informally,
and different forms of residual all have their Bayesian analogues.

8.3.1 Standardised Pearson residuals

A Pearson residual is defined as

ri(θ) =
yi − E(yi|θ)√
V ar(yi|θ)

(8.2)

which is a function of θ and therefore has a posterior distribution. If it is
considered as a function of random yi for fixed θ, it has mean 0 and variance

Model checking and comparison 141

1, and so we might broadly expect values between −2 and 2. For discrete
sampling distributions the residuals can be “binned up” by, say, creating new
variables made from adding y’s corresponding to covariates within a specified
range (Gelman et al., 2004). If we want to create a single-valued residual
rather than a random quantity, alternative possibilities include using a single
draw θt, plugging in the posterior means of θ, or using the posterior mean
residual.

We note that the residuals are not independent since their posterior dis-
tributions all depend on θ, and they are best used informally. Nevertheless
it seems natural to examine a summary measure such as X2 = Σir

2
i as an

overall measure of residual variation (McCullagh and Nelder, 1989).

Example 8.3.1. Bristol surgery mortality
The following data represent the mortality rates from 12 English hospitals carrying
out heart surgery on children under 1 year old between 1991 and 1995 (Marshall
and Spiegelhalter, 2007).

TABLE 8.1

Numbers of open-heart operations and deaths for children under 1 year of age
carried out in 12 hospitals in England between 1991 and 1995, as recorded by
Hospital Episode Statistics. The “tenth” data represents similar mortality rates
but based on approximately one tenth of the sample size.

Full data Tenth data
Hospital Operations ni Deaths yi Operations Deaths

1 Bristol 143 41 14 4
2 Leicester 187 25 19 3
3 Leeds 323 24 32 2
4 Oxford 122 23 12 2
5 Guys 164 25 16 3
6 Liverpool 405 42 41 4
7 Southampton 239 24 24 2
8 Great Ormond St 482 53 48 5
9 Newcastle 195 26 20 3
10 Harefield 177 25 18 3
11 Birmingham 581 58 58 6
12 Brompton 301 31 30 3

Suppose we fit a binomial model under the assumption that all 12 hospi-
tals had the same underlying risk θ, which we give a uniform prior. Then, since
E[Yi|θ] = niθ, V ar[Yi|θ] = niθ(1 − θ) under this model, we can calculate the
standardised residuals ri = (yi − niθ)/

√
niθ(1 − θ) as well as the sum of the

squared standardised residuals.

142 The BUGS Book

for (i in 1:12) {

y[i] ~ dbin(theta, n[i])

res[i] <- (y[i] - n[i]*theta)/sqrt(n[i]*theta*(1-theta))

res2[i] <- res[i]*res[i]

}

theta ~ dunif(0, 1)

X2.obs <- sum(res2[]) # sum of squared stand. resids

[3]

[11]
[6] [7] [12]

[8]

[9] [2] [10]
[5]

[4]

[1]
box plot: res

-4.0

-2.0

 0.0

 2.0

 4.0

 6.0

FIGURE 8.2

Standardised residuals for child heart surgery mortality rates in Table 8.1.

These are plotted in Figure 8.2 using the Inference->Compare->box plot

facility in WinBUGS. To rank the boxes in increasing order of their mean, right-
click on the plot, select Properties... then Special... and check the box
labelled rank. The residual for Bristol is a clear outlier. X2.obs has a posterior
mean of 59.1: for known θ we might expect this to be around 12, which informally
suggests a severe lack of fit of a constant risk model. See §8.4.5 for more on
goodness-of-fit tests, and Example 10.1.1, where we consider a hierarchical model
for these data.

8.3.2 Multivariate residuals

In multivariate settings such as

Yi = (Yi1, Yi2, ..., Yin)
′ ∼ MVNn(μ,Σ),

Model checking and comparison 143

for some response variable Yij (i = 1, ..., N , j = 1, ..., n), we can also calculate
standardised Pearson residuals, via, for example,

rij(μ,Σ) =
Yij − μj√

Σjj
.

This may highlight outlying observations but does not address the model’s
performance in terms of its ability to describe the correlation among obser-
vations from the same “unit” (e.g., individual). We might instead look at the
Mahalanobis distance (or its square):

Mi =

√
(Yi − E(Yi|θ))′ V (Yi|θ)−1 (Yi − E(Yi|θ)),

where θ denotes the set of all model parameters. In the following example
we show how to calculate Mi and M2

i in the case of a multivariate normal
assumption for the response. Under multivariate normality, the distribution
ofM2

i (considered as a function of random Yi with θ = {μ,Σ} fixed) is known
to be χ2

n.

Example 8.3.2. Jaws (continued): model checking
We return to the “Jaws” example of §6.4. For each boy constituting the data set,
the Mahalanobis distance from the fitted model (and its square) can be calculated
by inserting the following code.

for (i in 1:20) {

for (j in 1:4) {

res[i, j] <- Y[i, j] - mu[j]

temp[i, j] <- inprod(Sigma.inv[j, 1:4], res[i, 1:4])

}

M.squared[i] <- inprod(res[i, 1:4], temp[i, 1:4])

M[i] <- sqrt(M.squared[i])

}

Box plots for both quantities are shown in Figure 8.3. If the data Yi, i = 1, ..., N ,
were truly realisations from MVN(μ, Σ) for some fixed μ and Σ, then eachM2

i (for
random Yi) would be ∼χ2

4. Hence we might expect the majority of individuals,
in this case, to have squared distances less than the 95th percentile of a χ2

4

distribution ≈ 9.5. In light of this we might be concerned as to whether individual
12’s data are well accounted for by the model. Note, however, that we would
actually expect 1 boy out of 20 to give a squared distance > 9.5.

8.3.3 Observed p-values for distributional shape

If the cumulative distribution function F (Y |θ) is available in closed form,
then the quantity Pi(θ) = F (yi|θ) would have a uniform sampling distribu-

144 The BUGS Book

box plot: M.squared

 0.0

 5.0

10.0

15.0

20.0

box plot: M

0.0

2.0

4.0

6.0

FIGURE 8.3

Squared Mahalanobis distance (left) and Mahalanobis distance (right) for each
boy in “Jaws” Example 8.3.2.

tion for fixed θ — these are essentially the one-sided p-values for each ob-
servation.∗ Therefore a very informal assessment of the fit of a model could
be achieved by taking the posterior means of the Pis, ranking them, plotting
against 1, 2, . . . , N , and examining the plot for linearity. This plot is poor at
visual detection of outliers since Pis near 0 and 1 do not show up well, but it
can be effective in detecting inappropriate distributional shape.

Example 8.3.3. Dugongs (continued): residuals
Recall Example 6.3.1 about nonlinear regression for the length of dugongs. If we
assume that the observation Yi in Model 3 is normally distributed around the
regression line μi, we have that F (yi|μi, σ) = Φ(ri), where Φ is the standard
normal cumulative distribution function, and ri = (yi − μi)/σ is the Pearson
residual.

y[i] ~ dnorm(mu[i], inv.sigma2)

mu[i] <- alpha - beta*pow(gamma, x[i])

res[i] <- (y[i] - mu[i])/sigma

p.res[i] <- phi(res[i])

The posterior distributions of the standardised residuals, res, and their p-
values, p.res, are shown in Figure 8.4, with the ordered mean p-values showing
approximate linearity and so supporting the normal assumption.

∗OpenBUGS and JAGS have functions to automatically compute the cumulative density
of any stochastic node; see Appendix B.4.

Model checking and comparison 145

box plot: res

-4.0

-2.0

 0.0

 2.0

 4.0
[17]
[16]
[10]

[11]
[4]
[22]
[18]

[27]
[7]

[19]
[2]

[1]
[13]

[3]
[24]

[14]
[12]

[20]
[5]

[8]
[26]

[15]
[23]

[25]
[21]

[6]
[9]

caterpillar plot: p.res

 0.0 0.5 1.0

FIGURE 8.4

Box plot (left) and caterpillar plot (right) showing standardised residuals and
p-values, respectively, for dugongs, Example 8.3.3.

8.3.4 Deviance residuals and tests of fit

Residuals can be based directly on a standardised or “saturated” version of
the deviance (McCullagh and Nelder (1989), p. 398), defined as

DS(θ) = −2 log p(y|θ) + 2 log p(y|θ̂S(y)) (8.3)

where θ̂S(y) are appropriate “saturated” estimates: typically, when E[Y] = θ,

we set θ̂S(y) = y (McCullagh and Nelder, 1989). Standardised deviances for
common distributions are:

yi ∼ Binomial(θi, ni) : DS(θ) = 2
∑

i

{
yi log

[
yi/ni
θi

]
+ (ni − yi) log

[
(1−yi/ni)

1−θi

]}

yi ∼ Poisson(θi) : DS(θ) = 2
∑

i

{
yi log

[
yi
θi

]
− (yi − θi)

}

yi ∼ Normal(θi, σ
2
i) : DS(θ) =

∑
i

[
yi−θi

σi

]2

If we denote by DSi the contribution of the ith observation to the stan-
dardised deviance, so that

∑
iDSi = DS , then the deviance residual dri can

be defined as

dri = signi
√
DSi

where signi is the sign of yi − E(yi|θ).
When yi = 0, care is needed when calculating these residuals: for a binomial

distribution with yi = 0 we obtain dri = −√−2ni log(1− θi) and for the
Poisson dri = −√

2θi.

146 The BUGS Book

Suppose we have relatively little information in the prior and so the condi-
tions for the asymptotic normality of θ hold (see §3.6).

θ ∼ N(θ̂, (nÎ(θ̂))−1)

where θ̂ is the maximum likelihood estimate under the currently assumed

model, and Î(θ̂) = − d2

dθ2 log p(y|θ)
∣
∣
∣
θ̂
is the observed Fisher information. Then

we may write the saturated deviance as

DS(θ) = −2 log p(y|θ) + 2 log p(y|θ̂S(y)) = D(θ) −D(θ̂) +D(θ̂)−D(θ̂S).

Then from the asymptotic normality we obtain

D(θ) − D(θ̂) = −2 log p(y|θ) + 2 log p(y|θ̂(y))
≈ p log 2π − log

∣
∣
∣nÎ(θ̂)

∣
∣
∣+ (θ − θ̂)T Î(θ̂)(θ − θ̂)− p log 2π + log

∣
∣
∣nÎ(θ̂)

∣
∣
∣

= (θ − θ̂)T Î(θ̂)(θ − θ̂)

which has an approximate χ2
p distribution, where p = dim(θ). In addition,

D(θ̂) −D(θ̂S) is a function of the data that from classical GLM theory has,
approximately, a χ2

n−p sampling distribution (McCullagh and Nelder, 1989).
Taken together, the posterior expectation of the saturated deviance has the
approximate relationship

E[DS(θ)] ≈ p+ (n− p) = n.

As a rough assessment of the goodness of fit for models for which the saturated
deviance is appropriate, essentially Poisson and binomial, we may therefore
compare the mean saturated deviance with the sample size.

Example 8.3.4. Bristol (continued): tenth data
We examine the Bristol data as in Example 8.3.1, but using the tenth data in
Table 8.1 to illustrate analysis of small numbers. If the observed proportion in
the ith hospital is denoted pi = yi/ni, the corresponding contribution to the
standardised deviance is

DSi = 2ni

[

pi log(pi/θi) + (1− pi) log

(
1− pi
1− θi

)]

for (i in 1:12) {

y[i] ~ dbin(theta, n[i])

prop[i] <- y[i]/n[i]

(extra 0.00001 avoids numerical errors if prop[i] = 0 or 1)

Ds[i] <- 2*n[i]*(prop[i]*log((prop[i]+0.00001)/theta)

+ (1-prop[i])*log((1-prop[i]+0.00001)/(1-theta)))

sign of deviance residual

Model checking and comparison 147

sign[i] <- 2*step(prop[i] - theta) - 1

dev.res[i] <- sign[i]*sqrt(Ds[i])

}

dev.sat <- sum(Ds[])

[3]

[7]
[6]

[11] [8]
[12]

[9] [4] [2] [10]
[5]

[1]

box plot: dev.res

-2.0

-1.0

 0.0

 1.0

 2.0

FIGURE 8.5

Deviance residuals for Bristol child heart surgery mortality (“tenth data”).

The deviance residuals (Figure 8.5) follow a reasonable pattern between−2 and
2. The saturated deviance has posterior mean 7.5 (95% interval 6.5 to 11.6), and
comparison with the sample size of 12 suggests that this model fits adequately.

8.4 Predictive checks and Bayesian p-values

8.4.1 Interpreting discrepancy statistics — how big is big?

Residuals can be thought of as examples of statistics which measure the dis-
crepancy between the observed data and an assumed model. Although often
straightforward to calculate, a problem arises in their calibration — when is an
observed discrepancy “large?” In this section we consider a general means of
calibrating discrepancies via p-values obtained using simulated replicate data,
where the discrepancy statistics may be functions of data alone or involve
data and parameters.

148 The BUGS Book

Ideally models should be checked by comparing predictions made by the
model to actual new data. But often we use the same data for model building
and checking, in which case special caution is required. We note that although
this process is generally referred to as “model checking,” we are also checking
the reasonableness of the prior assumptions.

8.4.2 Out-of-sample prediction

Suppose we have two sets of data yf and yc assumed to follow the same model,
where yf is used to fit the model and yc for model criticism: for example, we
may leave out a random 10% sample of data for validation purposes. The
idea is to compare yc with predictions ypredc based on yf and some assumed
sampling model and prior distribution, and if the assumptions are adequate
the two should look similar. Comparisons are derived from the predictive
distribution

p(ypredc |yf) =
∫
p(ypredc |yf , θ)p(θ|yf)dθ

=

∫
p(ypredc |θ)p(θ|yf)dθ

which is easy to obtain by simulating θ from its posterior distribution and
then simulating ypredc |θ.

Ideally we would want to use as much data as possible for model fitting,
but also as much data as possible for model criticism. At one extreme, we
could take out just one observation yc = yi, yf = y\i, and then the predictive

distribution is p(ypredi |y\i). Full cross-validation extends this idea and repeats
for all i, while 10-fold cross-validation might, for example, remove 10% of the
data, see how well it is predicted, and repeat this process 10 times.

At the other extreme we could try and predict all of the data, so that yc = y
and the predictive distribution is p(y), conditioned only on the prior. This is
the prior predictive approach to model criticism (Box, 1980), but it is clearly
strongly dependent on the prior information, producing vacuous predictions
when this is weak — an impediment to the use of Bayes factors for comparing
models (see §8.7).

In practice we often do not split data, and so diagnostics are likely to be
conservative.

8.4.3 Checking functions based on data alone

A function T (yc) is termed a checking or test statistic (Gelman et al., 2004)
if it would have an extreme value if the data yc conflict with the assumed
model. A common choice is just T (yci) = yci to check for individual outliers.

A check is made whether the observed T (yc) is compatible with the sim-
ulated distribution of T (ypredc), either graphically and/or by calculating a

Model checking and comparison 149

c
obs

c
obsT(y) T(y)c

pred

y y
c
pred y

f

θ

FIGURE 8.6

Graphical representation of predictive model checking, in which observed data
yc is compared to predicted data ypredc by a checking function T .

Bayesian p-value, which is the predictive probability of getting such an ex-
treme result.

pBayes = Pr
(
T (ypredc) ≤ T (yc)|yf

)

=

∫ ∫
I(T (ypredc) ≤ T (yc))p(y

pred
c |θ)p(θ|yf)dθdypredc .

This is easily calculated by simulating data, calculating the discrepancy func-
tion, and setting an indicator function for whether the observed statistic is
greater than the current simulated value (Figure 8.6).

Example 8.4.1. Bristol (continued): cross-validation
Suppose we take Bristol out and predict how many deaths we would expect were
there a common mortality risk in all the hospitals.

for (i in 2:12) { # remove Bristol

...

}

predicted number of deaths in centre 1 (Bristol)

y1.pred ~ dbin(theta, n[1])

P.bris <- step(y1.pred-y[1]-0.00001) + 0.5*equals(y1.pred, y[1])

Here the mid p-value is used for discrete data: Pr(ypred1 > y1)+
1
2 Pr(y

pred
1 = y1).

node mean sd MC error 2.5% median 97.5% start sample

P.bris 0.0 0.0 1.0E-12 0.0 0.0 0.0 1001 10000

y1.pred 16.05 3.81 0.04069 9.0 16.0 24.0 1001 10000

150 The BUGS Book

We would predict that Bristol would have between 9 and 24 deaths assuming a
common risk model: the probability of getting at least the observed total of 41
under this model is essentially 0.

The following example concerns secondary features of a model, and does
not involve a separate dataset for checking.

Example 8.4.2. Is a sequence of flips of a biased coin real or fake?
A standard illustration of the non-regularity of random outcomes is to test whether
a sequence of flips of a fair coin is a real or fake sequence. Test statistics include
the longest run; and the number of switches between heads and tails, and the
fake sequence generally will show too short a longest run and too many switches.

Generally an unbiased coin is assumed, but the analysis can be extended to a
coin with unknown probability θ of coming up heads. Consider the following data
on 30 coin-flips, where 1 indicates a head and 0 a tail.

y=c(0,0,0,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1)

There are 17 switches between heads and tails, and the maximum run length is 4.
The following code shows how to calculate the number of switches and the

maximum run length both for observed and replicate data, where the maximum
run length is given by max.run.obs[N].Mid-p-values are then calculated for both
switches and maximum run length, which fully take into account the uncertainty
about θ.

for(i in 1:N) {

y[i] ~ dbern(theta)

y.rep[i] ~ dbern(theta)

}

theta ~ dunif(0,1)

switch.obs[1] <- 0

switch.rep[1] <- 0

for (i in 2:N) {

switch.obs[i] <- 1 - equals(y[i-1], y[i])

switch.rep[i] <- 1 - equals(y.rep[i-1], y.rep[i])

}

s.obs <- sum(switch.obs[])

s.rep <- sum(switch.rep[])

P.switch <- step(s.obs-s.rep-0.5)

+ 0.5*equals(s.obs, s.rep)

run.obs[1] <- 1

run.rep[1] <- 1

max.run.obs[1] <- 1

max.run.rep[1] <- 1

Model checking and comparison 151

for (i in 2:N) {

run.obs[i] <- 1 + run.obs[i-1]

* equals(y[i-1], y[i])

run.rep[i] <- 1 + run.rep[i-1]

* equals(y.rep[i-1], y.rep[i])

max.run.obs[i] <- max(max.run.obs[i-1], run.obs[i])

max.run.rep[i] <- max(max.run.rep[i-1], run.rep[i])

}

P.run <- step(max.run.obs[N]-max.run.rep[N]-0.5)

+ 0.5*equals(max.run.obs[N], max.run.rep[N])

node mean sd MC error 2.5% median 97.5% start sample

theta 0.3442 0.08273 2.597E-4 0.192 0.3408 0.5151 1 100000

s.rep 12.71 3.259 0.01033 6.0 13.0 19.0 1 100000

max.run.rep[30] 6.937 3.047 0.008692 3.0 6.0 15.0 1 100000

P.run 0.1153 0.256 8.294E-4 0.0 0.0 1.0 1 100000

P.switch 0.9094 0.2642 8.941E-4 0.0 1.0 1.0 1 100000

The underlying probability θ of a head is estimated to be around 0.34, and in a
true random sequence we would expect between 6 and 19 switches (median 13)
and for the maximum run length between 3 and 15 (median 6). The mid-p-values
are 0.91 for switches and 0.12 for runs, providing some evidence that the sequence
is not from a real coin, considering p-values close to 0 and 1 as extreme.

The power to detect discrepancies from the model is substantially improved
if we can choose a checking function whose predictive distribution is indepen-
dent of unknown parameters in the model. If such a checking function can be
found, then there is no need to have a separate dataset to use for checking.

Example 8.4.3. Newcomb (continued): checking for a low minimum value
The Newcomb data (Example 8.2.1) show evidence of non-normality. If we partic-
ularly wanted to check for low minimum values, we could calculate the checking
statistic T obs = (y[1]−y[N/2])/(y[N/4]−y[N/2]), and its posterior predictive repli-
cates, where y[r] is the rth lowest value of yi (rounding r to the nearest integer if

necessary). T obs will be high compared to its replicates if the minimum is lower
than expected under the assumed normal model. Since the checking statistic is
“standardised,” its predictive distribution will be independent of the true mean
μ and variance σ2 = 1/τ , and depends only on the normality assumption. To
show this, note that the statistic is unchanged if each of the four terms y[r] in the
expression is replaced by (y[r] − μ)/σ, each of which has a distribution which is
independent of μ and σ. Compared to the observed value of 23.7, the predicted
distribution for T rep (Figure 8.7) has mean 3.7 and SD 1.1, and the p-value P.T
is estimated to be very close to 0, so the observed value is clearly incompatible.

152 The BUGS Book

for(i in 1:N){

Y[i] ~ dnorm(mu,tau)

Y.rep[i] ~ dnorm(mu,tau)

}

N.50 <- round(N/2)

N.25 <- round(N/4)

Y.rep.min <- ranked(Y.rep[], 1)

Y.rep.50 <- ranked(Y.rep[], N.50)

Y.rep.25 <- ranked(Y.rep[], N.25)

T.rep <- (Y.rep.min - Y.rep.50)/(Y.rep.25 - Y.rep.50)

P.T <- step(T.rep - T.obs)

T.rep sample: 10000

 0.0 5.0 10.0 15.0

0.0

0.2

0.4

0.6

FIGURE 8.7

Posterior density of discrepancy statistic for low minimum value.

Suppose instead we used the sample variance as a checking statistic, which would
be higher if the minimum is lower than expected.

V.obs <- sd(Y[])*sd(Y[])

V.rep <- sd(Y.rep[])*sd(Y.rep[])

P.V <- step(V.rep - V.obs)

Compared to the observed sample variance of 115.5, the predicted sample variance
has mean 119 and SD 30, and the p-value P.V is estimated to be around 0.49, so
no indication of discrepancy is given. This is not unexpected — the distribution of
this statistic depends strongly on σ2, and the estimate of σ2 is highly influenced
by the outliers. Thus the uncertainty about estimating the parameters reduces the
power of the check to detect outliers when the same dataset is used for estimating
parameters and checking.

8.4.4 Checking functions based on data and parameters

If we want to check deviations from an assumed parametric form, it may be
appropriate to use a discrepancy function T (yc, θ) (Gelman et al., 2004) that

Model checking and comparison 153

depends on both the data and parameters, for example, standardised Pearson
residuals. We can then simulate T (ypredc , θ) and calculate

pBayes = Pr
(
T (ypredc , θ) ≤ T (yc, θ)|yf

)

=

∫ ∫
I(T (ypredc , θ) ≤ T (yc, θ)) × p(ypredc |θ)p(θ|yf)dθdypredc ,

which is obtained by seeing how often the discrepancy function based on
predicted data is less than the observed discrepancy.

Although ideally model checking should be based on new data, in practice
the same data are generally used for both developing and checking the model.
This needs to be carried out with caution, as the procedure can be conserva-
tive, and we shall see in the next example that the very features we are trying
to detect can be influential in fitting the model and so mask their presence.

Example 8.4.4. Newcomb (continued): checking for skewness
Instead of specifically focusing on the minimum observation, as described above,
we might consider a more generic test of distributional shape such as sample
skewness. We could construct a checking function based on data alone and whose
distribution under normality does not depend on the unknown mean and variance,
such as T (y) =

∑
i[(yi − y)/SD(y)]3, which has observed value −290.

We can compare this with a similar measure of skewness but based on param-
eters T (y, μ, σ) =

∑
i[(yi − μ)/σ]3.

for (i in 1:N) {

Y[i] ~ dnorm(mu, tau)

Y.rep[i] ~ dnorm(mu, tau)

T.data.obs[i] <- pow((Y[i] - mean(Y[]))/sd(Y[]),3)

T.data.rep[i] <- pow((Y.rep[i] - mean(Y.rep[]))/sd(Y.rep[]),3)

T.para.obs[i] <- pow((Y[i] - mu)/sigma,3)

T.para.rep[i] <- pow((Y.rep[i] - mu)/sigma,3)

}

mu ~ dunif(-100, 100)

tau ~ dgamma(0.001, 0.001)

sigma <- 1/sqrt(tau)

T.data.obs.tot <- sum(T.data.obs[])

T.data.rep.tot <- sum(T.data.rep[])

T.para.obs.tot <- sum(T.para.obs[])

T.para.rep.tot <- sum(T.para.rep[])

P.data <- step(T.data.obs.tot - T.data.rep.tot)

P.para <- step(T.para.obs.tot - T.para.rep.tot)

node mean sd MC error 2.5% median 97.5% start sample

T.data.obs.tot -289.8 0.0 1.0E-12 -289.8 -289.8 -289.8 1 10000

T.data.rep.tot 0.02773 18.65 0.1727 -37.1 -0.01383 37.07 1 10000

T.para.obs.tot -293.3 81.25 0.8554 -475.1 -285.5 -157.4 1 10000

T.para.rep.tot -0.444 31.57 0.2758 -62.93 -0.4164 62.88 1 10000

154 The BUGS Book

For the data-based measure, the replicate has a mean of around 0 and SD 19,
showing a massive discrepancy with the observed value of −290. For the para-
metric checking function, the observed checking function has a posterior mean
of −293 (SD 81), while the predictive check has a mean of around 0 (SD 32),
showing a much less extreme (although still strong) discrepancy.

The above examples emphasise that increased power to detect deviations
from assumptions can be obtained by careful choice of checking functions that
focus on the suspected discrepancy and whose distributions do not depend on
unknown parameters, or at least not strongly.

Example 8.4.5. Dugongs (continued): prediction as model checking
By adding in an extra line to the code for Example 8.3.3 to generate a replicate
dataset at each iteration, we can see whether the observed data are compatible
with the predictions.

y.pred[i] ~ dnorm(mu[i], inv.sigma2)

P.pred[i] <- step(y[i] - y.pred[i])

Figure 8.8 shows 95% prediction bands for the replicate data, and so an informal
comparison can be made by superimposing the observed data.

model fit: y.pred

age (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.5

 2.0

 2.5

 3.0

FIGURE 8.8

Prediction bands for replicate data — dugongs example.

The procedure outlined in this example appears attractive but could be
conservative if there were considerable uncertainty about the parameters, in
which case the predictive distributions would be wide and observations would
tend to appear compatible with the model.

Such conservatism arises when the predictive distribution of the checking
function depends on parameters which are not very precisely estimated, and

Model checking and comparison 155

so, as we found in Example 8.4.4, we should choose a checking function whose
predictive distribution depends primarily on the assumptions being checked.
This is illustrated in the next example.

8.4.5 Goodness of fit for grouped data

Classical goodness of fit statistics are based on grouping data into K bins
labelled by k and then comparing observed Ok to expected Ek counts under
the assumed model: comparison might be via a Pearson chi-squared X2 =∑

k(Ok−Ek)2/Ek or likelihood ratio statistic G = 2
∑
kOk log(Ok/Ek), both

of which have asymptotically χ2
K−p distributions, where p is the number of

estimated parameters. We might adopt either of these statistics as checking
functions that are based on data and parameters.

If we assume that each of the Ok is a Poisson observation with mean Ek
under the null hypothesis, then G = 2

∑
k Ok log(Ok/Ek) is a saturated de-

viance and hence, using the results of §8.3.4, would be expected to have a
posterior mean of around K if the null model is true, although this ignores
the constraint that

∑
k Ok =

∑
k Ek.

Example 8.4.6. Claims
An insurance company takes a sample of n = 35 customers and adds up the
number of claims each has made in the past year to give y1, . . . , yn. These form
the following distribution, where mk =

∑
i I(yi = k) is the number of yi that

equal k, with
∑
mk = n.

k 0 1 2 3 4 5
mk 10 5 10 7 2 1

The total number of claims in the sample is
∑

k kmk = 59, and the average
number of claims per customer is

∑
k kmk/35 = 1.69. Suppose we fit a Poisson

model with mean λ. Then we can generate replicate data yrep at each iteration,
create replicate aggregate data mrep, and hence provide a null distribution for
any checking function.

We consider the classical likelihood ratio goodness-of-fit statistic G(m,λ) =
2
∑
kmk log(mk/Ek), where Ek = ne−λλk/k! is the expected count in cell k

under the fitted model, which will be a random quantity since it depends on the
unknown λ. Grep is also calculated for replicate data: these data may extend
beyond the range of counts observed in the original dataset.

A Jeffreys prior for the Poisson is adopted, pJ(λ) ∝ λ−
1
2 , approximated by a

Gamma(0.5,0.001) distribution.

remember that k = number of claims + 1

for (i in 1:n) {

y[i] ~ dpois(lambda)

y.rep[i] ~ dpois(lambda)

156 The BUGS Book

for (k in 1:K) {

eq[i,k] <- equals(y[i], k-1) # needed to construct

aggregate data

eq.rep[i,k] <- equals(y.rep[i], k-1)

}

}

for (k in 1:K) {

m[k] <- sum(eq[,k]) # aggregate counts

m.rep[k] <- sum(eq.rep[,k])

log of expected counts

logE[k] <- log(n) - lambda + (k-1)*log(lambda)

- logfact(k-1)

likelihood ratio statistic

LR[k] <- 2*m[k]*(log(m[k]+0.00001) - logE[k])

LR.rep[k] <- 2*m.rep[k]*(log(m.rep[k]+0.00001)

- logE[k])

}

G <- sum(LR[])

G.rep <- sum(LR.rep[])

P <- step(G - G.rep)

lambda ~ dgamma(0.5, 0.001) # Jeffreys prior

node mean sd MC error 2.5% median 97.5% start sample

G 7.96 1.465 0.0137 6.956 7.382 12.1 10001 10000

G.rep 6.473 3.531 0.03121 1.668 5.747 15.09 10001 10000

P 0.701 0.4578 0.004491 0.0 1.0 1.0 10001 10000

lambda 1.7 0.22 1 0.001996 1.291 1.693 2.161 10001 10000

We note that the likelihood ratio checking function G(m,λ) has a posterior mean
of around 8 — since this can be considered a saturated deviance we would expect
a posterior mean of aroundK = 6 and so does not suggest a discrepancy from the
null assumption. A more precise analysis is obtained by comparing the distribution
of the observed and replicate likelihood ratio statistics — these show substantial
overlap, and the p-value of 0.70 does not indicate any problems with the Poisson
assumption. The minimum value of G(m,λ) over 10,000 iterations is 6.955 —
this is also the classical likelihood ratio statistic which may be compared to a χ2

5

distribution under the null hypothesis, giving an approximate p-value of 0.22 and
so similarly not indicating a significant deviation from the Poisson assumption.

However, a simple look at the data might lead us to suspect an excess of zero
claims. A more powerful checking function would focus on this single form of
discrepancy and would not depend (or only depend weakly) on λ. This requires a
little ingenuity.

If data were really from a Poisson distribution, we would expect T = m0m2/m
2
1

to be around Pr(Y=0|λ) Pr(Y=2|λ)
Pr(Y=1|λ)2 =

e−λ 1
2λ

2e−λ

λ2e−2λ = 0.5. Since this does not depend

Model checking and comparison 157

on λ, we would hope that the distribution of T will depend mainly on the Poisson
assumption and be largely independent of the true rate of claims. T = 4 with
these data.

more powerful invariant test for excess zero counts

T.rep <- m.rep[1]*m.rep[3]/(m.rep[2]*m.rep[2])

P.inv <- step(T - T.rep)

T rep has a median of 0.46 and 95% credible interval 0.083 to 2.7. The resulting
p-value is 0.99, providing strong evidence of excess zero claims, a discrepancy en-
tirely missed by the more generic goodness-of-fit tests. A “zero-inflated Poisson”
model to fit these data is discussed in §11.6.

8.5 Model assessment by embedding in larger models

Suppose we are checking whether an observation yi can be assumed to come
from a distribution p(yi|θi0), where this null model is a special case of a larger
family p(yi|θi). Three approaches are possible:

• Fit the more flexible model in such a way as to provide diagnostics for
individual parameter values θi = θi0.

• Fit the full model and examine the posterior support of the null model:
this can be difficult when the null model is on the boundary of the
parameter space.

• Fit the full and null model and compare them using a single criterion,
such as DIC (see §8.6.4, e.g., salmonella example).

Example 8.5.1. Newcomb (continued): checking normality
We have seen in §8.2 how a Student’s t-distribution can be expressed as a scale
mixture of normals, in which if we assume Yi ∼ N(μ, σ2), and λi ∼ χ2

4, then if
τi = 4/(λiσ

2), then (Yi−μ)√τi ∼ t4. If we define si = 4/λi, large sis should cor-
respond to outlying observations. These are plotted in Figure 8.9. In WinBUGS
and OpenBUGS the data index i corresponding to each box plot can be dis-
played by right-clicking on the plot and selecting Properties->Special->show

labels. This will identify the two outliers correctly as the measurements of -2
and -44.

Y[i] ~ dnorm(mu, invsigma2[i])

invsigma2[i] <- tau/s[i]

158 The BUGS Book

s[i] <- 4/lambda[i]

lambda[i] ~ dchisqr(4)

box plot: s

 0.0

100.0

200.0

300.0

400.0

FIGURE 8.9

Outlier diagnostics using the t-distribution for the Newcomb light speed data.

This analysis assumes a t distribution with known degrees of freedom ν in order
to provide a diagnostic for outlying observations. However, we could consider ν
to be unknown and estimate its posterior distribution, noting that the normal
assumption is equivalent to the t with infinitely large ν. We could adapt the
model of § 4.1.2 but follow Jeffreys’ suggestion p(ν) ∝ 1/ν as a prior for a
positive integer (§5.2.8) — this is equivalent to a uniform prior on log ν. Using a
discrete approximation by placing a uniform prior on ν = 2, 4, 8, 16, 32, . . . , 1024
leads to 86% posterior probability for ν = 2.

Model checking and comparison 159

8.6 Model comparison using deviances

Given a set of candidate models, we would often like to say something about
which is “better,” or even “best.” This general idea can be made more for-
mal in various ways, and we shall see that the appropriate tool depends on
our intended action. In particular, we may be interested in selecting the “cor-
rect” model, informal examination of sensitivity to multiple “well-supported”
models, making short-term predictions, or explicit weighting of the models.

Classical model choice uses hypothesis testing for comparing nested models,
typically the likelihood ratio test. For non-nested models, alternatives include
the Akaike Information Criterion (AIC).

AIC = −2 log p(y|θ̂) + 2p = D(θ̂) + 2p, (8.4)

where θ̂ is the maximum likelihood (minimum deviance) estimate, p is the
number of parameters in the model (dimension of θ), and lower AIC is
favoured. The 2p term serves to penalise more complex models which would
otherwise be favoured by having a lower minimised deviance −2 log p(y|θ̂).
Just as in model checking, predictive ability forms a natural criterion for
comparing models, and AIC is designed to optimise predictions on a replicate
dataset of the same size and design as that currently in hand. We note that,
asymptotically, AIC is equivalent to leave-one-out cross-validation (§ 8.4.2)
(Stone, 1977). Of course, if an external dataset is available, then we could
compare models on how well they predict such independent validation data.

In a Bayesian context it is natural to base a comparative measure on the
posterior distribution of the deviance, and many authors have suggested using
the posterior mean deviance D = E[D] as a measure of fit (§ 8.2). This is
invariant to the chosen parameterisation of θ and generally converges well.
It can, under certain circumstances, be used as a test of absolute fit of a
model (§8.3.4). But more complex models will fit the data better and so will
inevitably have smaller D and so, in analogy to the Akaike criterion, we need
to have some measure of “model complexity” to trade off against D.

However, in Bayesian models with informative prior distributions, which
include all hierarchical models, the prior effectively acts to restrict the free-
dom of the model parameters, so the appropriate “number of parameters” is
less clear. We now consider a proposal for assessing the “effective number of
parameters.”

8.6.1 pD: The effective number of parameters

Spiegelhalter et al. (2002) use an informal information-theoretic argument to
suggest a measure pD defined by

160 The BUGS Book

pD = Eθ|y[−2 log p(y|θ)] + 2 log p(y|θ̃(y))
= D −D(θ̃), (8.5)

where θ̃ is a “good” plug-in estimate of θ. If we take θ̃ = E[θ|y] = θ, then

pD = “posterior mean deviance - deviance of posterior means.”

Suppose we assume that the posterior distribution p(θ|y) is approximately
multivariate normal with mean θ; then a Taylor expansion of D(θ) around
D(θ), followed by posterior expectation, gives

Eθ|y[D(θ)] ≈ D(θ)− E
[
tr
(
(θ − θ)TL′′

θ
(θ − θ)

)]

= D(θ) + tr
(−L′′

θ
V
)

where V = E
[
(θ − θ)(θ − θ)T

]
is the posterior covariance matrix of θ, and

−L′′
θ
= − d2

dθ2
log p(y|θ)

∣
∣
∣
∣
θ

is the observed Fisher’s information evaluated at the posterior mean of θ —
this might also be denoted Î(θ) using the notation of §3.6.

Hence
pD ≈ tr

(−L′′
θ
V
)
. (8.6)

The approximate form given in (8.6) shows pD might be thought of as the
dimensionality p of θ, times the ratio of the information in the likelihood
about the parameters as a fraction of the total information in the posterior
(likelihood + prior). To elucidate this with an example, suppose we observe
y ∼ N(θ, σ2) with σ2 known and one parameter θ with prior distribution
θ ∼ N(μ, ω2). Then the standard normal-normal results (§3.3.2) show that
V = 1/(σ−2 + ω−2) and −L′′

θ
= σ−2, the Fisher information I(θ). Hence

pD = σ−2/(σ−2 + ω−2), the ratio of the information in the likelihood to the
information in the posterior. We can also write pD = ω2/(σ2 +ω2), known as
the intra-class correlation coefficient.

Suppose that the information in the likelihood dominates that in the prior,
either through the sample size being large or a “vague” prior being used for
θ, and conditions for asymptotic normality apply. Then θ ≈ θ̂, the maximum
likelihood estimate. Also, V −1 ≈ −L′′

θ̂
from the asymptotic results (§ 3.6),

hence pD ≈ p, the actual number of parameters.
This could also be derived from the results of §8.3.4 for situations of weak

prior information in which we argue that

D(θ)−D(θ̂) ≈ (θ − θ̂)T Î(θ̂)(θ − θ̂)

Model checking and comparison 161

has a χ2
p distribution. Thus, taking expectations of each side reveals that, in

these circumstances, pD ≈ p.

Example 8.6.1. Dugongs (continued): effective number of parameters
Example 8.3.3 has weak prior information and hence we should expect that pD
should be close to the actual number of parameters. We find that pD = 3.7,
compared to the four parameters.

8.6.2 Issues with pD

pD is an apparently attractive measure of the implicit number of parameters,
but has two major problems:

• pD is not invariant to reparameterisation, in the sense that if the model
is rewritten into an equivalent form but in terms of a function g(θ),
then a different pD may arise since p(y|θ) will generally not be equal to
p(y|g(θ)). This can lead to misleading values in some circumstances and
even negative pDs.

• An inability to calculate pD when θ contains a categorical parameter,
since the posterior mean is not then meaningful. This renders the mea-
sure inapplicable to mixture models (§11.6)—though see §8.6.6 for al-
ternatives.

Example 8.6.2. Transformed binomial: negative pD due to severe posterior
skewness
For a binomial parameter θ, consider three different ways of putting a uniform
prior on θ, generated by putting appropriate priors on ψ1 = θ, ψ2 = θ5, and
ψ3 = θ20.

Let ψ = θn. If θ ∼ Unif(0, 1), then Pr(θ < t) = t, and so Pr(ψ < t) =
t1/n. Differentiating reveals that p(ψ) ∝ t1/n−1, which we can identify as a
Beta(1/n, 1) distribution.

Suppose we now observe n = 2 observations of which r = 1 is a “success.”
The appropriate code is therefore:

r <- 1; n <- 2; a[1] <- 1; a[2] <- 5; a[3] <- 20

for (i in 1:3) {

a.inv[i] <- 1/a[i]

theta[i] <- pow(psi[i], a.inv[i])

psi[i] ~ dbeta(a.inv[i], 1)

}

r1 <- r; r2 <- r; r3 <- r # replicate data

r1 ~ dbin(theta[1], n)

162 The BUGS Book

r2 ~ dbin(theta[2], n)

r3 ~ dbin(theta[3], n)

In the WinBUGS output, obtained from setting a DIC monitor (after conver-
gence) via the Inference -> DIC... dialog box, the mean deviance D(θ) is
labelled Dbar, while the plug-in deviance D(θ) is labelled Dhat.

Dbar Dhat pD

r1 1.945 1.386 0.559

r2 1.945 1.550 0.395

r3 1.933 2.289 -0.356

The posterior distribution for θ does not depend on the parameter on which the
prior distribution has been placed, and the mean deviances Dbar are theoretically
invariant to the parameterisation (although even after 500,000 iterations the mean
deviance for the third parameterisation has not reached its asymptotic value).
WinBUGS, however, uses the posterior of ψ, not θ, to calculate pD. These are very
different, with that corresponding to the third parameterisation being negative.

As suggested in §8.2, WinBUGS (and current OpenBUGS) parameterises
the deviance in terms of the stochastic parents of y in the model: i.e., if θ are
the parameters that directly appear in the sampling distribution p(y|θ), but
there are stochastic nodes ψ such that θ = f(ψ) in the model, then Dhat =
D(f(ψ)). It is therefore important to try to ensure that the stochastic parents
of the data have approximately normal posterior distributions. The example
above is an instance of pD being negative due to the posterior of ψ being very
non-normal, in which case f(ψ) does not provide a good estimate of θ — in
fact it leads to a plug-in deviance that is greater than the posterior mean
deviance.

One possibility, illustrated in the salmonella example below, is to change
the parameterisation into one for which the posterior is more likely to be
symmetric and unimodal, which will generally mean placing prior distributions
on transformations that cover the real line. Unfortunately, this may not be
the most intuitive scale on which to place a prior distribution.

An alternative is to ignore the pD calculated by WinBUGS and calculate
your own pD directly in terms of the deterministic parameters θ = θ(ψ) so
that Dhat = D(θ). In the previous example, this would lead to the plug-in
deviances all being based on θ and hence no difference between the parame-
terisations. As another example, in generalised or nonlinear regression models
one might use the posterior means of the linear predictors μ = β′x, whose
posterior distributions are likely to be approximately normal, rather than
higher-level parameters of which β are deterministic functions. For example,
in Example 6.3.1 we would calculate the posterior mean of every μi, instead of
L0 and L∞, which may have skewed posteriors. The deviance at the posterior
means of these parameters must then be calculated externally to BUGS and

Model checking and comparison 163

then subtracted from the posterior mean deviance (Equation 8.5) to calculate
pD. It is envisaged that this will become the standard way of calculating pD
in future versions of OpenBUGS.

The previous example shows the problems that arise when using the pos-
terior mean as a summary of a highly skewed distribution. The mean is also
a very poor summary of a bimodal posterior distribution, and the following
example shows this can also lead to negative values of pD.

Example 8.6.3. Conflicting ts: negative pD due to a prior-data conflict
Consider a single observation y from a t4 distribution with unit scale and unknown
mean μ, which itself has been given a standard t4 distribution with unit scale and
mean 0.

y <- 10

y ~ dt(mu, 1, 4)

mu ~ dt(0, 1, 4)

This extreme value leads to the bimodal posterior distribution shown in Fig-
ure 8.10.

mu (from sample of 10000)

 -10.0 0.0 10.0 20.0

 0.0

0.05

 0.1

0.15

FIGURE 8.10

Posterior distribution resulting from a prior-data conflict.

The mean posterior deviance is D(θ) = 10.8: the posterior mean of μ is 4.9,
which has a low posterior ordinate, and plugging this into the deviance gives a
plug-in deviance D(θ) = 12.0. Hence pD = −1.2.

WinBUGS and OpenBUGS do not calculate pD (or DIC) if θ contains
a discrete parameter. If this parameter is categorical, the posterior mean,
required by pD, is not meaningful. If the parameter is discrete but quantitative,
however, it could be made continuous, as in the following example.

Example 8.6.4. Salmonella (continued): parameterising to stabilise pD
The negative binomial model for the salmonella data (Example 6.5.2) has a dis-
crete parent parameter r, which means we cannot calculate pD. We first try mak-

164 The BUGS Book

ing the prior distribution on r continuous by using r ~ dunif(1,max) instead
of the discrete uniform prior adopted previously.

This produces pD ≈ 1.6, which seems inappropriately low given there are four
parameters in the model: three regression coefficients and r. The problem is as
described above: the posterior distribution for r is highly skewed. We can, how-
ever, try placing a prior on a parameter that would be expected to have a more
symmetric and unimodal posterior distribution, such as log r. Taking Jeffreys’ sug-
gestion for a positive integer (§5.2.8), we could make p(r) ∝ 1/r, or equivalently
p(log r) ∝ constant.

logr.cont ~ dunif(0, 10)

log(r.cont) <- logr.cont

r <- round(r.cont)

logr.cont has a well-behaved posterior distribution, and pD now becomes
4.3, close to the true number of four parameters.

8.6.3 Alternative measures of the effective number of param-
eters

Consider again the situation in which information in the likelihood dominates
that in the prior. We have already seen (§8.6.1) that in these circumstances

D(θ) ≈ D(θ) + χ2
p

so that E(D(θ)) ≈ D(θ) + p (leading to pD ≈ p as shown above) and
V ar(D(θ)) ≈ 2p. Thus, with negligible prior information, half the variance
of the deviance is an estimate of the number of free parameters in the model
— this estimate generally turns out to be remarkably robust and accurate
in these situations of weak prior information. This in turn suggests using
pV = V ar(D)/2 as an estimate of the effective number of parameters in a
model in more general situations: this was noted by Gelman et al. (2004). pV
has the great advantage over pD of being invariant to reparameterisations.

A second alternative to pD was proposed by Plummer (discussion of Spiegel-
halter et al. (2002)): the expected Kullback–Leibler information divergence
Eθ0,θ1(I(θ0, θ1)) between the predictive distributions at two different param-
eter values, where

I(θ0, θ1) = Eypred|θ0

[

log

(
p(ypred|θ0)
p(ypred|θ1)

)]

This is the definition of pD used in the JAGS implementation of BUGS, com-
puted using the sample average of

log

(
p(ypred0 |θ0)
p(ypred0 |θ1)

)

Model checking and comparison 165

over values of θ0 and θ1 generated from two parallel MCMC chains, where
ypred0 are posterior predictions from the chain for θ0. This is non-negative,
does not depend on the parameterisation, and is identical to the previous pD
in the normal linear model with known variance. Plummer (2008) calls this
measure p∗D and gives an approximate cross-validatory justification.

Some examples of these alternative measures compared to pD are shown in
Table 8.2. They work well in situations where pD works well, but although
they are always positive and invariant to parameterisation, they can also be
misleading in extreme situations, for example, with a strong prior-data conflict
or severely skewed posteriors.

TABLE 8.2
Comparison of pD and alternative measures of effective model complexity.

Example No. Parameters pD pV p∗D
Dugongs (6.3.1, model 3) 4 3.6 4.7 4.7
Transformed Binomial (8.6.2, version 3) 1 -0.4 0.3 0.1
Conflicting ts (8.6.3) 1 -1.2 23.2 3.6
Salmonella (Poisson, 6.5.2) 3 3.0 3.0 3.0
Salmonella (negative binomial, 8.6.4) 4 4.3 4.8 4.6

8.6.4 DIC for model comparison

The measure of fit D can be combined with the measure of complexity pD to
produce the Deviance Information Criterion (DIC).

DIC = D + pD

= D(θ) + 2pD

This can be seen as a generalisation of Akaike’s criterion: for models with
weak prior information, θ ≈ θ̂, and hence pD ≈ p and DIC ≈ AIC. We can
therefore expect Akaike-like properties of favouring models that can make
good short-term predictions of a repeat set of similar data, rather than at-
tempting to identify a “true” model — see §8.9 for discussion on alternative
model comparison criteria.

Example 8.6.5. DIC for model comparison
Table 8.3 shows DIC comparisons for previous examples, which can be computed
in WinBUGS and OpenBUGS by setting a DIC monitor via the Inference ->

DIC... dialog box. Note that this must be set after the chains have reached
convergence. For the salmonella data, the DIC improves by 8 when the negative
binomial model is used instead of the Poisson, despite the increase in complexity.

166 The BUGS Book

For Newcomb’s light speed data (Example 8.2.1), the t4 distribution is strongly
preferred to the normal. However, if the t4 distribution is implemented as a scale
mixture of normals, as suggested in §8.2, the deviance, and hence the DIC, is on a
different scale and therefore cannot be compared to the other two analyses. Here
DIC is assessing the ability to predict yi conditionally on the current value of
the mixing parameter λi — whereas the explicit t4 model is integrated over the
λi. This is changing the focus of the prediction problem — see §10.8 for further
discussion.
pD and DIC are particularly useful for comparing hierarchical models, as dis-

cussed in § 10.8. For these models it is unclear how much random effects will
contribute to the complexity of a model, since the implicit prior constraint of
“shrinkage” to the mean (§ 10.1) simultaneously reduces the model’s effective
complexity. In Example 10.3.3 (Hepatitis B) each random effect contributes less
than half an effective parameter to pD. DIC also indicates that the hierarchical
model is superior to a non-hierarchical model with no child-specific effects.

TABLE 8.3

Examples of DIC for model comparison.

Example D pD DIC
Salmonella (Poisson, 6.5.2) 139.2 3.0 142.3
Salmonella (negative binomial, 8.6.4) 125.9 4.3 134.5

Newcomb (normal, 8.2.1) 501.7 2.0 503.8
Newcomb (t4 distribution) 436.4 2.0 438.4
Newcomb (t4 distribution as scale mixture) 408.8 15.1 423.8

Hepatitis B (non-hierarchical, 10.3.3) 1132.3 4.0 1136.3
Hepatitis B (hierarchical) 813.8 98.3 912.1

As mentioned above, the minimum DIC is intended to identify the model
that would be expected to make the best short-term predictions, in the same
spirit as Akaike’s criterion. Plummer (2008) gave a more formal justification,
showing that DIC approximated a cross-validatory loss but only when the ef-
fective number of parameters is much smaller than the number of independent
observations.

It is important to note that only differences between models in DIC are
important, and not absolute values. It is difficult to say what constitutes
an important difference in DIC. With two simple hypotheses H0 and H1,
exp[(DIC0 − DIC1)/2] would be a likelihood ratio, and so a DIC difference
of 10 would be a likelihood ratio of 148, while a DIC difference of 5 would
be a likelihood ratio of 12. By this rough analogy, differences of more than

Model checking and comparison 167

10 might definitely rule out the model with the higher DIC, and differences
between 5 and 10 are substantial. But if the difference in DIC is, say, less than
5, and the models make very different inferences, then it could be misleading
just to report the model with the lowest DIC. In this case there is uncertainty
about the choice of model. It may then be helpful to use methods of inference
which account for this uncertainty, as discussed in §8.8.

We note that DIC can legitimately be negative! A probability density p(y|θ)
can be greater than 1 if on a small standard deviation, and hence a deviance
can be negative, and a DIC negative.

8.6.5 How and why does WinBUGS partition DIC and pD?

WinBUGS (and OpenBUGS) separately reports the contribution to Dbar, pD
and DIC for each differently named (scalar, vector, or array) node, together
with a Total. This enables the individual contributions from different portions
of data to be assessed.

In some circumstances some of these contributions may need to be ignored
and removed from the Total. For example, in the following model:

for (i in 1:N) {

Y[i] ~ dnorm(mu, tau)

}

tau <- 1/pow(sigma, 2)

sigma ~ dnorm(0, 1)I(0,)

mu ~ dunif(-100, 100)

where Y is observed data, then the DIC tool will give DIC partitioned into Y,
sigma, and the Total, where sigma has been constrained to be greater than 0
using the I() construct (Appendix A.2.2). Clearly, in this case, there should
be no contribution from sigma, but because of the lower bound specified using
the I() notation in the prior, WinBUGS treats sigma as if it were an observed
but censored stochastic node when deciding what to report in the DIC table.

In another situation, we might genuinely have censored data, e.g.,

Y[i] ~ dnorm(mu, tau)I(Y.cens[i],)

where Y is unknown but Y.cens is the observed lower bound on Y (see Exam-
ple 9.6.1).

WinBUGS has no way of knowing that in the first case, sigma should be
ignored in the DIC, whereas in the second case Y should be included. This is as
much a problem of how the BUGS language represents censoring, truncation,
and bounds using the same notation as it is to do with how DIC is displayed,
but it illustrates the ambiguity and how it is the user’s responsibility to pick
out the relevant bits.

Note that JAGS currently just sums over all data in the model when pre-
senting DIC and p∗D.

168 The BUGS Book

8.6.6 Alternatives to DIC

For models with discrete parameters, such as finite mixture models, the plug-
in deviance required by pD cannot be calculated since the posterior mean of
a discrete parameter is either undefined or not guaranteed to be part of the
discrete parameter space. Celeux et al. (2006), and their discussants, investi-
gated ways of defining pD and DIC for mixture and related models, though
found them all problematic. For example, a mixture model could be refor-
mulated by integrating over the discrete component membership parameter,
as in Example 11.6.1 — however, the resulting DIC may be sensitive to the
constraint chosen to identify the components (§11.6).

Plummer (2008) proposed the penalised expected deviance as an alternative
model comparison measure. Both this and DIC estimate the ability to predict
a replicate dataset, but judge this ability by different loss functions. Whereas
DIC estimates the deviance for a replicate dataset evaluated at the posterior
expectations of parameters θ, Plummer’s criterion estimates the expected de-
viance for a replicate dataset. Both criteria incorporate a penalty to adjust
for the underestimate in the loss (“optimism”) due to using the data twice
to both fit and evaluate the model. Since it does not require a “plug-in” es-
timate such as the posterior mean, this criterion can be used with discrete
parameters. It is calculated as D+ popt, where the optimism popt is estimated
from two parallel MCMC chains using importance sampling, as described by
Plummer (2008) and provided in JAGS. The importance sampling method is
unstable when there are highly influential observations, otherwise popt ≈ 2p∗D.
A similar approximation was derived in the context of variable selection by
van der Linde (2005).

The pseudo-marginal likelihood was proposed by Geisser and Eddy (1979)
as a cross-validatory measure of predictive ability,

∏

i

p(yi|y\i) =
∏

i

∫
p(yi|θ)p(θ|y\i)dθ,

where y\i is all observations excluding yi. Gelfand and Dey (1994) described
an importance sampling method for estimating it based on a single MCMC
run, which avoids the need to refit the model with each observation excluded
in turn. The full-data posterior density p(θ|y) is used as a proposal distri-
bution to approximate the leave-one-out posterior p(θ|y\i). Given an MCMC

sample θ(1), . . . , θ(T) from the posterior of θ, the importance weights are then
wit = p(θ(t)|y\i)/p(θ(t)|y) ∝ 1/p(yi|θ(t)), and the estimate of p(yi|y\i) is the

harmonic mean of p(yi|θ(t)) over the posterior sample:

p(yi|y\i) ≈
∑

t

witp(yi|y\i, θ(t))/
∑

t

wit

= T/
∑

t

(1/p(yi|θ(t)))

Model checking and comparison 169

Thus, the quantity 1/p(yi|θ(t)) is monitored during MCMC sampling, and the
estimate of p(yi|y\i) is the reciprocal of its posterior mean. The individual
p(yi|y\i) are called conditional predictive ordinates (CPOs) and may also be
used as outlier diagnostics. Again, this method may be unstable, particularly if
some of the CPOs are large (common in hierarchical models) and may require
a large MCMC sample for a precise estimate. However, unlike DIC, it does
not depend on plug-in estimates or on the model parameterisation.

8.7 Bayes factors

Traditional Bayesian comparison of modelsM0 andM1 is based on hypothesis
tests using the Bayes factor. The posterior odds of model M0 compared to
M1 are given by

p(M0|y)
p(M1|y) =

p(M0)

p(M1)

p(y|M0)

p(y|M1)

where
p(y|M0)

p(y|M1)
=

∫
p(y|θ0)p(θ0)dθ0∫
p(y|θ1)p(θ1)dθ0 = B01

is known as the Bayes factor for M0 compared to M1. In other words,

posterior odds of M0 = Bayes factor × prior odds of M0.

The Bayes factor B01 quantifies the weight of evidence in favour of the null
hypothesis H0: “M0 is true.” If both models (hypotheses) are equally likely
a priori, then their relative prior odds is 1 and B01 is the posterior odds in
favour of model M0 (Jeffreys (1939), p. 275, Gelman et al. (2004), p. 185).

The Bayes factors are in some sense similar to a likelihood ratio, except that
the likelihood is integrated instead of maximised over the parameter space. As
with AIC, there is no need for models to be nested, although unlike AIC, the
objective is the identification of the ‘true’ model (Bernardo and Smith, 1994).
Jeffreys (1939) provided a table relating the size of the Bayes factor to the
“strength of evidence.”
p(y|Mr) is the marginal likelihood or prior predictive probability of the data,

and it is important to note that this will depend crucially on the form of the
prior distribution. A simple example will show that Bayes factors require
informative prior distributions under each model. Consider a scalar θ so that
the relevant term for the Bayes factor is p(y) =

∫
p(y|θ)p(θ)dθ. Suppose θ

is given a uniform prior, so that p(θ) = 1/(2c); θ ∈ [−c, c]. Then p(y) =
1
2c

∫ c
−c p(y|θ)dθ ∝ 1

c for large c. Therefore p(y) can be made arbitrarily small
by increasing c.

170 The BUGS Book

TABLE 8.4

Calibration of Bayes factors provided by Jeffreys.

Bayes factor range Strength of evidence in favour of H0 and against H1

> 100 Decisive
32 to 100 Very strong
10 to 32 Strong
3.2 to 10 Substantial
1 to 3.2 “Not worth more than a bare mention”

Strength of evidence against H0 and in favour of H1

1 to 1/3.2 “Not worth more than a bare mention”
1/3.2 to 1/10 Substantial
1/10 to 1/32 Strong
1/32 to 1/100 Very strong
< 1/100 Decisive

Suppose we are comparing models with weak prior information. Schwarz’s
Bayesian Information Criterion (BIC) is:

BIC = −2 log p(y|θ̂) + p logn,

where θ̂ is the maximum likelihood estimate. The difference BIC0−BIC1 gives
an approximation to −2 logB01. Kass and Wasserman (1995) show that this
approximation has error Op(n

−1/2) under a prior distribution which carries
information equivalent to a single observation — the unit-information prior.

Alternatively, the posterior probability of model r, among a set of models
indexed by k, is approximated by

p(Mr|y) = exp(−0.5BICr)/
∑

k

exp(−0.5BICk) (8.7)

Example 8.7.1. Paul the psychic octopus
In the 2010 football World Cup competition, Paul “the psychic octopus” made
8 predictions of the winners of football matches and got all y = 8 right. Our
analysis will ignore the possibilities of draws, assume there was no bias or ma-
nipulation in the experiment, and ignore selection effects arising from Paul only
becoming famous due to the first correct predictions, in the face of competition
from numerous other wildlife. We assume a binomial model with probability θ of
a correct prediction.

Rather naively, we could set up two simple hypotheses: H0 representing that
the predictions are just chance, so that θ = 0.5; H1 representing Paul hav-
ing 100% predictive ability, so that θ = 1. Since these are simple hypothe-
ses with no unknown parameters, the Bayes factor is just the likelihood ratio
p(y|H0)/p(y|H1) = 1/28 = 1/256, which from Table 8.4 represents “decisive”

Model checking and comparison 171

evidence against H0 by Jeffreys criteria. However, the posterior odds against Paul
being psychic also depend on the prior odds p(H0)/p(H1) of Paul not having any
psychic abilities (or knowledge of football), which it is reasonable to assume are
so huge that this likelihood ratio makes little impact!

It may be more sensible to compare H0 with an alternative hypothesis H1 that
Paul has some psychic ability, represented by a prior distribution on θ|H1. Naively
this would be uniform on 0.5 to 1, but we introduce some scepticism by restricting
it to be less than 0.55. So we are both sceptical of any effect existing at all, and
even if it did exist, sceptical of a large effect. The code then essentially follows
that of the biased coin example in §5.4.
q[1] <- 0.5; q[2] <- 0.5 # prior assumptions

r <- 8; n <- 8 # data

r ~ dbin(theta[pick], n) # likelihood

pick ~ dcat(q[])

theta[1] <- 0.5 # if random (assumption 1)

theta[2] ~ dunif(0.5, 0.55) # if psychic

psychic <- pick - 1 # 1 if psychic, 0 otherwise

node mean sd MC error 2.5% median 97.5% start sample

psychic 0.6012 0.4896 0.001601 0.0 1.0 1.0 1 100000

The posterior probability of psychic abilities is now 0.6, corresponding to pos-
terior odds p(H0|y)/p(H1|y) = 0.4/0.6 = 0.66. If the prior odds are taken as 1,
this means that the Bayes factor is 0.66 in favour of psychic abilities, but again
the prior odds against psychic abilities should realistically be much larger.

8.7.1 Lindley–Bartlett paradox in model selection

We have already seen that the Bayes factor depends crucially on the prior
distribution within competing models. We now use a simple example to show
how this can lead to an apparent conflict between using tail areas to criticise
assumptions, and using Bayes factors — a conflict that has become known as
the Lindley–Bartlett paradox.

Suppose we assume Yi ∼ N(θ, 1); we want to test H0 : θ = 0 against H1 :
θ �= 0. Then the sufficient statistic is Y with distribution Y ∼ N(θ, 1/n). For
H0, p(y|H0) =

√
n
2π exp[−ny2/2]. For H1, assume p(θ) = 1/(2c); θ ∈ [−c, c],

θ �= 0, then

p(y|H1) =
1

2c

∫ c

−c

√
n

2π
exp[−n(y − θ)2/2] dθ ≈ 1

2c
.

Hence the Bayes factor is

B01 =
p(y|H0)

p(y|H1)
=

√
n

2π
exp[−ny2/2]× 2c.

172 The BUGS Book

From a classical hypothesis-testing perspective, we would declare a “signif-
icant” result if y > 1.96/

√
n. At this critical value, the Bayes factor is√

n
2π exp[−1.962/2]× 2c. Hence

• For fixed n, we can give H0 very strong support by increasing c

• For fixed c, we can give H0 very strong support by increasing n

So data that would just reject H0 using a classical test will tend to favour H0

for (a) diffuse priors under H1 and (b) large sample sizes.

8.7.2 Computing marginal likelihoods

Computing Bayes factors for a generic model is challenging outside simple con-
jugate situations, as reviewed by Han and Carlin (2001) and Ntzoufras (2009).
There is no easy method which works for all models specified in BUGS. BIC
gives an approximation, as described above, though this essentially implies a
default “unit information” prior for the parameters and does not allow user-
specified priors. Other methods are based either on

• directly computing the marginal likelihood for each model, or

• considering the model choice as a discrete parameter and jointly sam-
pling from the model and parameter space (§8.8.2).

For computing the marginal likelihood p(y) for a particular model M , har-
monic mean and related estimators are also sometimes used:

p(y) ≈
(

1

T

T∑

t=1

{
g(θ(t))

p(y|θ(t))p(θ(t))
})−1

where g() is an importance sampling density chosen to approximate the pos-
terior. Although this is temptingly easy to program in BUGS by monitoring
the term inside the braces and taking the reciprocal of its posterior mean, it
is impractical in all but the simplest of models, since p(y|θ(t)) will frequently
be very small; thus unfeasibly long runs would be required to stably estimate
the posterior mean — indeed it may never converge (Neal, 2008). Bridge
sampling or path sampling estimators (Gelman and Meng, 1998) are more ef-
fective, though usually require problem-specific tuning. Similarly, methods by
Chib (1995) and Chib and Jeliazkov (2001) were shown to be effective by Han
and Carlin (2001), but to implement these in BUGS would need substantial
problem-specific programming, including access to the underlying source code
(Ntzoufras, 2009).

Jointly sampling from the model and parameter space is a generally more
reliable method of obtaining posterior probabilities of models in a BUGS
context, particularly for comparing models with different sets of predictor
variables, and techniques to do this in BUGS are reviewed in §8.8.2.

Model checking and comparison 173

8.8 Model uncertainty

Neglecting uncertainty about the choice of model has been called a “quiet
scandal” in statistical practice (Breiman, 1992) – see, for example, Draper
(1995) and Burnham and Anderson (2002) for discussions. Drawing conclu-
sions on the basis of a single selected model can conceal the possibility that
other plausible models would give different results. Sensitivity analysis is rec-
ommended as a minimum, and this section discusses methods to formally
incorporate model uncertainty in conclusions.

8.8.1 Bayesian model averaging

Posterior model probabilities p(Mr|y) can be used to do “model averaging” to
obtain predictions which account for model uncertainty. If we need to predict
Ỹ , and the predictive distribution assumingMr is p(ỹ|y,Mr), then the “model-
averaged” prediction is

p(ỹ|y) =
∑

i

p(ỹ|y,Mr)p(Mr|y)

where
p(Mr|y) = p(Mr)p(y|Mr)/

∑

k

{p(Mk)p(y|Mk)}

However, as discussed in §8.7.2, the marginal likelihood p(y|Mr) involved in
this definition is not, in general, straightforward to calculate in BUGS. We
now describe techniques to accomplish model-averaged predictions without
needing to calculate marginal likelihoods.

8.8.2 MCMC sampling over a space of models

We could consider the model choice as an additional parameter: specify prior
probabilities for the model choice m and model-specific parameters θm, and
sample from their joint posterior distribution p(m, θm|y), thus computing the
posterior model probabilities. Any predictions are automatically averaged over
the competing models.

Reversible jump MCMC However, if we are choosing between models
with different numbers of parameters, then the dimension of the space changes
as the currently chosen model changes. The reversible jump MCMC algorithm
was devised by Green (1995) to allow sampling over a space of varying dimen-
sion. The Jump add-on to WinBUGS (Lunn et al., 2009c)† performs reversible

†This is under development for OpenBUGS.

174 The BUGS Book

jump for variable selection in linear and binary regression and selecting among
polynomial splines with different numbers of knots. See the manual included
with Jump for further details and worked examples. It could be extended in
the future to select within other classes of models, such as mixture models, for
which specialised programming is currently required to implement reversible
jump MCMC.

Product space search In reversible jump MCMC, a value for θm is only
sampled if the sampler is currently visiting model m. Carlin and Chib (1995)
described an alternative MCMC method for sampling from p(m, θm|y), where
values of θm are sampled for all m, whatever the currently chosen model. This
requires a pseudoprior to be specified for each θm conditionally on the model
not being m. While this is less efficient than reversible jump, it enables stan-
dard MCMC algorithms, available in BUGS, to be used. It can suffer from
poor mixing unless the pseudopriors and priors on the models are chosen
carefully. In practice, each model can be fitted independently and the result-
ing posteriors used to choose pseudopriors for a joint model. See the Pines

example for BUGS (available from the BUGS web site or distributed with
OpenBUGS) or Carlin and Louis (2008) for further details.

Variable selection priors There are several methods specifically for vari-
able selection in regression models, including stochastic search variable selec-
tion (George and McCulloch, 1993) and Gibbs variable selection (Dellaportas
et al., 2002). The general idea is that there is a vector of covariate effects β
and a vector I of the same length containing 0/1 indicators for each covariate
being included in the model. β is then given a “spike and slab” prior (Mitchell
and Beauchamp, 1988). This is a mixture of a probability mass p(βj |Ij = 0)
concentrated around zero, representing exclusion from the model, and a rela-
tively flat prior p(βj |Ij = 1) given that the variable is included:

p(βj) = p(Ij = 1)p(βj |Ij = 1) + p(Ij = 0)p(βj |Ij = 0).

In BUGS, an example is

beta[j] <- b[pick[j]] # effect of jth covariate

b[1] ~ dnorm(0, tau) # "spike": tau is large, b[1] <- 0

b[2] ~ dnorm(0, eps) # "slab": precision eps is small

pick[j] <- I[j] + 1

I[j] ~ dbern(p[j])

where p[j] is the prior probability that the jth covariate is included, assum-
ing these probabilities are independent. Thus the posterior probabilities of
including each covariate arise naturally as the posterior mean of each I[j].
The methods differ in how exactly they define the priors. For more details on
these methods and their implementation in BUGS, see O’Hara and Sillanpää

Model checking and comparison 175

(2009) and Ntzoufras (2009) — while programming is generally straightfor-
ward, their efficiency and accuracy can depend on the choice of prior and
parameterisation.

8.8.3 Model averaging when all models are wrong

Bayesian model averaging involves choosing and computing prior and poste-
rior probabilities on models, interpreted as beliefs in their truth. Bernardo and
Smith (1994) showed decision-theoretically that this provides optimal predic-
tion or estimation under an “M-closed” situation — in which the true process
which generated the data is among the list of candidate models.

However, often one does not believe any of the models are true — an “M-
open” situation. Typically the truth is thought to be more complex than any
model being considered. Model averaging is more difficult in this case, though
some suggestions have been made. For example, substituting AIC or DIC for
BIC in Equation (8.7) gives “Akaike weights” (Akaike, 1979) or DIC weights
for averaging models, which measure their predictive ability, rather than their
probability of being true. Using DIC in this way is attractively simple, though
this method has not been formally assessed or justified. The resulting probabil-
ities are difficult to interpret, though Burnham and Anderson (2002) suggest
they represent posterior model probabilities under an implicit prior which
favours more complex models at larger sample sizes.

Bootstrapping DIC A more interpretable way of averaging models with-
out invoking a “true model” is to bootstrap the model selection process. As-
suming independent data points, we resample from the data, choose the best-
fitting model according to some criterion, repeat the process a large number of
times, and average the resulting predictions. Buckland et al. (1997) used this
method with AIC in a frequentist context, and Jackson et al. (2010a) used
it with DIC for averaging Bayesian models. The resulting model probabilities
p(Mr|y) are the proportion of samples to which model r fits best according
to the criterion. These are not Bayesian posterior probabilities, but rather
frequentist probabilities, under sampling uncertainty, that the model will give
the best predictions among those being compared.

Resampling and refitting would often be impractical for Bayesian models
fitted by MCMC, which are typically intensive to compute. Therefore Jackson
et al. (2010a), following Vehtari and Lampinen (2002), adapted a “Bayesian
bootstrap” method which only requires one model fit and no resampling.
Instead of sampling with replacement from the data vector y, the Bayesian
bootstrap samples sets of probabilities qi that the underlying random variable
Y takes the value of each sample point y1, . . . , yn. In one bootstrap iteration,

samples q
(rep)
i of qi are drawn from a “flat” Dirichlet(1,. . . ,1) distribution.

This is the posterior distribution of the sampling distribution of Y , which is
assumed to be a discrete distribution over the observed values. This posterior

176 The BUGS Book

is obtained by combining the sample y1, . . . , yn with an improper prior (Rubin,
1981).

The bootstrap replicate of a sample statistic (e.g., the mean) that can be

expressed as
∑

i f(yi) is the weighted sum n
∑
i q

(rep)
i f(yi). Since the DIC can

be decomposed into a sum over observations i, DIC(y|Mr) =
∑n
i=1DICi,

where DICi = 2D(yi|θ)−D(yi|θ̂), the bootstrap replicate of the DIC is

DIC(y|Mr)
(rep) = n

n∑

i=1

q
(rep)
i DICi

The sample of replicate DICs for each competing model can be used to give
a bootstrap “confidence interval” surrounding the DIC for each model and
probabilities that each model is best among the candidates.

Implementing this in BUGS requires the contribution to the posterior de-
viance from each data point to be monitored explicitly, similar to the method
of deviance residuals (§8.3.4). For example, in a normal model:

for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)

dev[i] <- log(2*pi) - log(tau) + pow(y[i] - mu[i], 2)*tau

...

}

The deviance of the observation y[i] evaluated at the posterior means of
mu[i] and tau is subtracted from the posterior mean of dev[i] to produce
DICi. The replicates can then be computed outside BUGS, using random
samples of Dirichlet(1,. . .,1) variables (created, e.g., by BUGS). Note that the
resulting model-averaged posterior has no Bayesian interpretation, since two
sampling models for the data are used simultaneously — it is best viewed as
a computational approximation to resampling.

8.8.4 Model expansion

Instead of averaging over a discrete set of models, a more flexible framework
for model uncertainty is to work within a single model that encompasses all
reasonable possibilities. This is recommended, for example, by Gelman et al.
(2004). Model uncertainty is then considered as a choice over a continuous
space of models. Support for different model choices is assessed by examining
posterior distributions of parameters in the larger model, as in § 8.5, and
the model is checked to ensure that it gives predictions which agree with
observations, as in §8.4.

The class of Bayesian nonparametric models illustrated in § 11.8, for ex-
ample, can reasonably be thought to “include the truth” in most practical
situations. However, these do not naturally represent many model choice sit-
uations — a common example is whether to include or exclude a covariate in

Model checking and comparison 177

a regression. The encompassing flexible model would then be the one which
includes all covariates being considered. In §8.8.2, we described flexible models
of this type, where the prior distributions for the covariate effects had “spikes”
at zero representing the possibility that the covariate is not included.

Smooth distributions are often a more realistic expression of prior belief
than the mixture priors of this kind implied by discrete model averaging. Giv-
ing privilege to an effect of zero would not make sense if all potential predictors
are thought to have non-zero, though perhaps inconsequentially small, effects.
On the other hand, routinely using very vague priors for all potential effects
would often lead to identifiability problems or poor predictive ability. Weakly
informative priors might then be used, which typically “shrink” the effect to-
wards zero. Gelman et al. (2008), for example, recommend a default Cauchy
prior for logistic regression. For a review and comparison of such “shrinkage”
priors for linear regression, see O’Hara and Sillanpää (2009), and for binary
and survival regression see Rockova et al. (2012).

8.9 Discussion on model comparison

Broadly, there are two rather different approaches to Bayesian model compar-
ison — one based on Bayes factors (or BIC) and the other on DIC, AIC, or
similar measures. We can contrast the approaches under the following head-
ings:

• Assumptions. The Bayes factor approach attempts to identify the “cor-
rect” model and implicitly assumes that such a thing exists and is in
the families of distributions being considered. Posterior probabilities of
models rely on it being meaningful to place probabilities on models.
DIC/AIC makes no such assumption and only seeks short-term predic-
tive ability.

• Prior distributions. Bayes factors require proper prior distributions (al-
though these could be unit-information priors, as in BIC), which are not
required for DIC/AIC.

• Computation. Bayes factors are notoriously difficult to compute in
MCMC, requiring problem-specific programming or approximation;
computation of DIC is generally straightforward.

• Model uncertainty. Model averaging to account for uncertainty about
model choice is natural within a Bayes factor approach, provided one
is willing to specify and interpret prior and posterior probabilities on
models. Otherwise, DIC or Akaike weights, or bootstrapping, could be
used for model averaging, though the theoretical justification is weak.

178 The BUGS Book

Working within an expanded model is a more flexible approach to model
uncertainty which does not require averaging over a discrete set of mod-
els.

• The “focus” of the analysis. When dealing with hierarchical models,
different model comparison methods can be related to which aspect of
the model is of primary interest (§10.8.1).

The first issue is the most important: the situations in which it is reasonable
to assume that any particular model is “true” appear very limited. We would
therefore argue that the use of Bayes factors is restricted to domains where
competing models correspond to clear, identifiable hypotheses that could in
principle be proven to be “correct.” Examples might include genetics appli-
cations where an individual is assumed to either carry some gene or not, or
studies of supernatural abilities (as in Example 8.7.1) where the existence of
any ability, however small, would be remarkable.

In either approach, we would recommend thorough criticism of model as-
sumptions, as described in the first half of this chapter, and if there is model
uncertainty, addressing it either formally or through clear sensitivity analyses.

8.10 Prior-data conflict

Bayesian analysis has traditionally focused on “turning the Bayesian handle,”
combining a prior distribution with a likelihood to produce a posterior distri-
bution. But what if the likelihood and the prior seem in conflict, in the sense
that they support almost non-intersecting areas of the parameter space? A
naive approach would just charge on regardless, but this can lead to absurd
results: for example, if we assume a normal observation y ∼ N(θ, 1) with stan-
dard normal prior θ ∼ N(0, 1), then an observation y = 10 will lead to a
posterior distribution θ ∼ N(5, 0.5), which is tightly situated around θ = 5, a
value supported neither by prior nor data (we note that if we instead assumed
Student’s t distributions we would obtain a bimodal posterior distribution, as
in Example 8.6.3). This has been nicely ridiculed by Stephen Senn’s charac-
terisation of a Bayesian as someone who, suspecting a donkey and catching
a glimpse of what looks like a horse, strongly concludes he has seen a mule
(Senn (1997), p. 46, Spiegelhalter et al. (2004), p. 63).

There are two broad approaches to handling conflict: “identification” and
“accommodation.” Throughout this discussion we generally assume that the
data are given priority and, in the case of conflict, it is the prior distribution
that is called into question and discarded if necessary. However, the techniques

Model checking and comparison 179

can be easily adapted to give priority to the prior and discard divergent data,
essentially adapting techniques previously used for identifying outliers.

8.10.1 Identification of prior-data conflict

This approach considers the current prior as a null hypothesis and checks
whether the data fit the prior model or not. It is essentially a p-value argument
as described for model checking (§8.4), in which an observed summary statistic
t0 is compared to a predictive distribution p0(t) =

∫
p(t|θ) p(θ)dθ, but using

predictions arising from the prior rather than from the posterior distribution.
The aim is to identify conflict and then one can decide whether to question
the prior or the data.

As a simple example, assume the prior is θ ∼ N(μ, σ2/n0) and the sampling
distribution is Ym ∼ N(θ, σ2/m). Then the predictive distribution is Ym ∼
N(μ, σ2/m+ σ2/n0) and so the predictive p-value is

Pr(Ym < ym) = Φ

⎛

⎝ ym − μ

σ
√

1
n0

+ 1
m

⎞

⎠ .

We note that this is also the tail area associated with a standardised test
statistic contrasting the likelihood and the prior: i.e., suppose we assumed
Ym ∼ N(θ1, σ

2/m) and interpret the prior distribution as resulting from an
observation μ ∼ N(θ2, σ

2/n0), then a classical test of the null hypothesis
H0 : θ1 = θ2 would be based on

zm =
ym − μ

σ
√

1
n0

+ 1
m

,

a measure of conflict between data and prior.
We use one-sided p-values throughout, identifying both high and low values

as “interesting.”

Example 8.10.1. Surgery (continued): assessing prior-data conflict
In Example 1.1.1 we considered a prior distribution for a mortality rate that could
be expressed as a Beta(3,27), which has a mean of 10%. In Example 2.7.1 we
then assumed that 20 operations were to take place and obtained the predictive
probability of the number of successes. Suppose, however, that after the first five
operations there had been two deaths, that is, 40% mortality — is this grounds
for deciding that the prior distribution was “wrong”?

We can calculate the predictive distribution for Y either in its beta-binomial
closed form or by Monte Carlo simulation. Since this predictive distribution is
discrete, we assume a mid-p-value, Pr(Y > y) + 1

2 Pr(Y = y).

r.obs <- 2

180 The BUGS Book

theta ~ dbeta(3, 27)

r ~ dbin(theta, 5) # sampling distribution

P <- step(r-r.obs-0.5) + 0.5*equals(r, r.obs) # mid-p-value

The mean of P is 0.054, suggesting some evidence of conflict with the prior
distribution.

8.10.2 Accommodation of prior-data conflict

Suppose that instead of simply identifying conflict, we wanted to automati-
cally accommodate it: we assume that in the case of conflict we would want
to reject or downweight the prior distribution. A natural way of modelling
this is to imagine competing priors, perhaps drawn from disagreeing experts.
One prior might represent our current opinion and be given substantial prior
weight, while an alternative could represent a weak prior covering a wider
range of alternatives: this is a natural application of mixture priors (§5.4) in
which the idea is essentially to get the data to “choose” between the alterna-
tives.

Example 8.10.2. Surgery (continued): mixture of priors
Our prior for the underlying mortality risk in the previous example was Beta(3,27).
But suppose a claim was made that the procedure was much more dangerous than
this; in fact the mortality rate could be around 50%. Such a prior opinion might
be represented by a Beta(3,3) distribution, which is symmetric with mean 0.5 and
standard deviation =

√
0.5× 0.5/7 = 0.19. Suppose, as above, out of the first

five operations there are two deaths — what should we now believe about the
true mortality rate? What do we expect to happen over the next 10 operations?

A crucial input is the relative belief in the two competing prior distributions,
prior 1: θ ∼ Beta(3, 27) or prior 2: θ ∼ Beta(3, 3). We shall take them as initially
equally plausible, corresponding to q1 = Pr(prior 1) = 0.5. The code shows how
a “pick” formulation is used to select the appropriate parameters for the prior
distribution.

model {

theta ~ dbeta(a[pick], b[pick])

pick ~ dcat(q[1:2])

q[1] <- 0.50

q[2] <- 0.50

q.post[1] <- equals(pick, 1) # = 1 if prior 1 picked

q.post[2] <- equals(pick, 2) # = 1 if prior 2 picked

r ~ dbin(theta, n) # sampling distribution

r.pred ~ dbin(theta, m) # predictive distribution

}

Model checking and comparison 181

node mean sd MC error 2.5% median 97.5% start sample

q.post[1] 0.2416 0.4281 0.004438 0.0 0.0 1.0 1001 50000

q.post[2] 0.7584 0.4281 0.004438 0.0 1.0 1.0 1001 50000

y.pred 3.789 2.328 0.0177 0.0 4.0 8.0 1001 50000

theta 0.3786 0.1843 0.00164 0.07455 0.3872 0.721 1001 50000

Given these early results, there is now a 76% probability that the “sceptical”
prior is appropriate and that this is a high-risk operation, and we would now
expect 4 (95% interval 0 to 8) deaths out of the next 10 operations. Such a
formulation may naturally lead to a bimodal posterior distribution for θ, as shown
in Figure 8.11.

theta (sample of 50000)

 -0.5 0.0 0.5 1.0

0.0
0.5
1.0
1.5
2.0

FIGURE 8.11

Posterior distribution for surgery mortality using a mixture of priors.

The formulation above works well when both priors are from the same
family of distributions. Alternatively, we could follow the approach of Exam-
ple 8.7.1 and model

y ~ dbin(theta[pick], n)

theta[1] ~ dbeta(3, 27)

theta[2] ~ dbeta(3, 3)

which generalises easily to different parametric forms for the competing prior
distributions.

This idea can be extended from a small set of possible prior distributions
to a continuous mixture, and in so doing we can provide a “robust” prior
that will have some influence if the data and prior agree, and otherwise will
be overwhelmed. Essentially this can be implemented by adopting a “heavy-
tailed” prior distribution that supports a wide range of possibilities but has
little influence in the extremes. For example, if we have a normal sampling
distribution Y ∼ N(μ, 1), but the prior distribution is a Student’s t distribu-
tion, then in the case of conflict the prior is essentially ignored (Dawid, 1973)
as the long tails of the prior “accommodate” the conflicting observation.

182 The BUGS Book

Using the ideas introduced in §8.2 and §8.5, we can express the t distri-
bution as a normal distribution whose unknown precision is drawn from a
chi-squared distribution. Specifically, suppose we thought that a reasonable
prior distribution was normal with precision 1, but we wished to express some
doubt about this assumption. If we take μ ∼ N(0, 1/λ), where λ = X2

k/k and
X2
k ∼ χ2

k, we are essentially assuming a tk prior distribution for μ.

Example 8.10.3. Prior robustness using a t prior distribution
Suppose we assume Y ∼ N(μ, 1), a prior mean E[μ] = 0, and we want to build
in prior robustness by assuming a tk distribution for μ. We shall illustrate this
with k = 1, 2, 4, 10, 50, 1000; k = 1 corresponds to a very heavy-tailed Cauchy
distribution with no mean or variance, while k = 1000 is essentially a normal
distribution. We construct these t distributions as scale mixtures of normals, as
in Example 8.2.1.

Suppose we then observe a single data point y = 4, apparently conflicting with
the prior mean of 0.

y.obs <- 4

df[1] <-1; df[2] <- 2; df[3] <- 4

df[4] <- 10; df[5] <- 50; df[6] <- 1000

#######################################

for (i in 1:6) {

y[i] <- y.obs # replicate data

y[i] ~ dnorm(mu[i], 1)

mu[i] ~ dnorm(0, lambda[i])

lambda[i] <- X[i]/df[i] # precision is chi-square/df

X[i] ~ dchisqr(df[i])

compare with prior distributions

mu.rep[i] ~ dnorm(0, lambda.rep[i])

lambda.rep[i] <- X.rep[i]/df[i]

X.rep[i] ~ dchisqr(df[i])

}

node mean sd MC error 2.5% median 97.5% start sample

lambda[1] 0.2091 0.3384 0.004393 0.00338 0.1054 1.072 1001 10000

lambda[2] 0.3047 0.3576 0.004708 0.0155 0.1954 1.252 1001 10000

lambda[3] 0.4709 0.3992 0.005804 0.05558 0.3619 1.536 1001 10000

lambda[4] 0.6988 0.3487 0.004382 0.2132 0.6339 1.56 1001 10000

lambda[5] 0.9299 0.1895 0.001948 0.5993 0.9165 1.333 1001 10000

lambda[6] 0.9961 0.045 3.477E-4 0.9095 0.9951 1.086 1001 10000

mu[1] 3.449 1.072 0.01359 1.321 3.456 5.482 1001 10000

mu[2] 3.212 1.065 0.01376 1.135 3.198 5.316 1001 10000

mu[3] 2.859 1.035 0.01576 0.9113 2.833 4.97 1001 10000

mu[4] 2.444 0.8902 0.01013 0.7911 2.42 4.277 1001 10000

mu[5] 2.084 0.7478 0.007878 0.6675 2.071 3.575 1001 10000

mu[6] 2.004 0.7031 0.00638 0.6264 1.996 3.401 1001 10000

Model checking and comparison 183

The estimate of μ based on the Cauchy (k = 1) is hardly influenced by the prior
and a low value for λ is estimated. The normal (k = 1000) has the posterior mean
mid-way between the data and the prior — an implausible conclusion whichever
is true — and estimates λ to be almost 1.

We could think of a prior t distribution as a sensitivity analysis when we
are unsure of a reasonable prior variance for a parameter with a normal prior.
Assuming a t prior leads to the data taking preference if there is apparent
“conflict” with the prior mean, since if the data and the prior mean are very
different, this will tend to support the assumption of a large prior variance
and so tends to assume that λ is small.

This page intentionally left blankThis page intentionally left blank

9

Issues in Modelling

A strength of the Bayesian graphical modelling techniques of BUGS is the
way they can represent the typical complexities of real data. This chapter
explains various generic issues encountered in data analysis and how they can
be addressed in BUGS. For example, data commonly include missing values
and measurement errors. A realistic model may need to account for censor-
ing, truncation, grouping, rounding, or constraints on parameters, or use a
sampling or prior distribution not already included in BUGS. We also discuss
prediction, controlling “feedback” in graphical models, classical bootstrap es-
timation, and expressing uncertainty surrounding “ranks” or positions in a
league table. Each of the techniques we describe may be deployed as part of
any model in BUGS, with typically only a few extra lines of code.

9.1 Missing data

Missing data are common and there is an extensive literature covering a wide
variety of methods for dealing with the problem. Comprehensive textbooks on
the topic include Little and Rubin (2002), Molenberghs and Kenward (2007),
and Daniels and Hogan (2008). Missing values in BUGS are denoted by NA in
the data set, and from a Bayesian perspective, these are treated as additional
unknown quantities for which a posterior distribution can be estimated. Hence
the Bayesian approach makes no fundamental distinction between missing
data and unknown model parameters. We just need to specify an appropriate
joint model for the observed and missing data and model parameters, and
BUGS will generate posterior samples of the model parameters and missing
values in the usual way using MCMC.

The appropriateness of a particular missing data model is dependent on the
mechanism that leads to the missing data and the pattern of the missing data.
It also makes a difference whether we are dealing with missing responses or
missing covariates (or both). Following Rubin (1976), missing data are gen-
erally classified into three types: missing completely at random (MCAR),
missing at random (MAR), and missing not at random (MNAR). Informally,
MCAR occurs when the probability of missingness does not depend on ob-
served or unobserved data, in the less restrictive MAR it depends only on the

185

186 The BUGS Book

observed data, and when neither MCAR nor MAR holds, the data are MNAR.
Under an MCAR or MAR assumption, it is not usually necessary to specify a
model for the missing data mechanism in order to make valid inference about
parameters of the observed data likelihood, in which case the missing data
mechanism is termed ignorable. In the case of MNAR missingness, the fact
that a given value is missing tells us something about what that value might
have been. In this case the missing data mechanism is informative and we
must specify a model for it. There are two main approaches to this, using ei-
ther a pattern mixture model or a selection model (Daniels and Hogan, 2008).
In either case, the parameters of such a model cannot be uniquely inferred
from the data, and so informative priors or parameter constraints are typ-
ically required. Inferences can thus be sensitive to the choices made — see
Best et al. (1996) and Mason et al. (2012) for detailed discussions in the case
of selection models. In the following examples we illustrate how to implement
some specific models for missing response or missing covariate data in BUGS
that make different assumptions about the missing data mechanism. A com-
prehensive discussion of a wide range of Bayesian missing data models can be
found in Daniels and Hogan (2008).

9.1.1 Missing response data

For ignorable missing response data, we can chose to remove it from the
data set, but often this is inconvenient. If we simply denote the value as
missing (NA) in the dataset, then BUGS will automatically generate values
from its posterior predictive distribution — see §9.2 — and inferences on the
parameters will be as if we had deleted that response.

Example 9.1.1. Growth curve (continued): ignorable missing response data
mechanism
We look again at the growth data from a single rat previously considered as an
example of regression analysis (Example 6.1.1). We assume that the final data-
point (actually 376 g) is missing. If we assume that the chance of a value being
missing does not directly depend on the true underlying weight, then an identical
regression model can be adopted and only the data file changed.

for (i in 1:5) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*(x[i] - mean(x[]))

}

alpha ~ dflat()

.....

list(y = c(177,236,285,350,NA), x = c(8,15,22,29,36))

node mean sd MC error 2.5% median 97.5% start sample

alpha 290.3 7.029 0.06709 279.4 290.4 300.8 4001 10000

Issues in Modelling 187

beta 8.104 0.8881 0.007908 6.79 8.11 9.355 4001 10000

sigma2 188.1 2915.0 58.29 5.72 29.08 926.0 4001 10000

mu[5] 403.8 16.74 0.158 377.6 404.0 427.7 4001 10000

y[5] 403.6 20.52 0.2122 371.5 404.0 434.2 4001 10000

model fit: mu (missing at random)

day
 0.0 10.0 20.0 30.0 40.0

weight

 100.0

 200.0
 300.0

 400.0

 500.0

model fit: mu (informative missingness)

day
 0.0 10.0 20.0 30.0 40.0

weight

 100.0

 200.0
 300.0

 400.0

 500.0

FIGURE 9.1

Model fits for rat 9’s data with final observation missing. The plotted point (•)
corresponding to the missing value y[5], at 36 days, is the posterior mean. The
interval plotted at x[5] is for mu[5], not y[5]. Top: y[5] missing at random.
Bottom: informative missingness for y[5].

The model fit is shown at the top of Figure 9.1. The estimated value for the
missing data point y[5] lies on the fitted line; the 95% credible interval is wider
than that for mu[5] (see table above), since it allows for the uncertainty about
mu[5] as well as for the sampling error σ (= τ−1/2), and uncertainty about σ.

Example 9.1.2. Growth curve (continued): informative missing response data
mechanism
Again we assume the final observation is missing, but now we also assume that the
chance of an observation being missing depends on the true weight: specifically

188 The BUGS Book

the odds of being missing increase by 2% for every extra gram of weight. The data
now has to include an indicator miss[] for whether an observation is missing or
not, and our assumption about the missing data mechanism is specified using a
logistic selection model for the probability of missingness, with b=log(1.02).

for (i in 1:5) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*(x[i] - mean(x[]))

selection model for missing data mechanism

miss[i] ~ dbern(p[i])

logit(p[i]) <- a + b*(y[i]-250)

}

a ~ dlogis(0, 1)

b <- log(1.02)

.....

list(y = c(177,236,285,350,NA), x = c(8,15,22,29,36),

miss = c(0,0,0,0,1))

Here we specify a logistic prior for a, equivalent to a uniform prior on the proba-
bility of an observation with a true value of 250 g being missing (see §5.2.5).
node mean sd MC error 2.5% median 97.5% start sample

a -1.973 1.082 0.01081 -4.262 -1.913 0.01912 4001 10000

alpha 291.4 13.13 0.3402 280.5 290.6 303.5 4001 10000

beta 8.228 1.314 0.03709 7.035 8.133 9.677 4001 10000

sigma2 433.0 4537.0 177.5 5.755 30.73 1063.0 4001 10000

mu[5] 406.6 27.89 0.8487 382.7 404.6 435.0 4001 10000

y[5] 408.4 38.23 1.368 378.6 404.9 447.1 4001 10000

The assumption about the missing data mechanism has raised the estimated
missing weight from 404 to 408 g, and the posterior mean gradient from 8.10
to 8.23. The fact that the final data point is missing suggests that it has a
larger value than it might have had if it were missing at random. Note that
the missing weight is no longer estimated on the fitted line but slightly above
it — see Figure 9.1 (bottom). In practice, we would want to examine sensitivity
to different assumptions about the missing data mechanism, particularly to the
value of b. It is also possible to treat b as random and specify a prior distribution
for it, although posterior learning about the parameters of the selection model is
heavily dependent on model assumptions (see Mason et al. 2012). Note that with
more complex examples, reasonably tight priors and careful choice of initial values
for the parameters of the selection model may be needed to avoid convergence
problems and possible crashes of the MCMC sampling algorithms.

Issues in Modelling 189

9.1.2 Missing covariate data

In the case of missing covariates, again NA can be specified for each missing
value. However, the difference between missing responses and missing covari-
ates is that we would not have specified a prior distribution or model for the
covariates if they had been fully observed. Hence we must introduce a model
or prior for the missing values, even if the missing data mechanism can be
assumed to be ignorable. One option is to specify a prior distribution with
common unknown parameters for both observed and unobserved values of
the relevant covariate and then priors for the parameters of this distribution.
The observed values of the covariate will contribute to the estimation of the
unknown parameters, which, in turn, will inform about the missing values.
This approach is only valid if the missing and observed covariate values can
be assumed to be exchangeable, which is a mathematical formalisation of the
assumption that a group of quantities is similar in some sense. Such assump-
tions are further discussed in Chapter 10. We illustrate this approach below.

Example 9.1.3. Dugongs (continued): ignorable missing covariate mechanism
We look again at version 3 of the non-linear growth curve model for the lengths
of 27 dugongs, previously considered as an example of regression analysis (Exam-
ple 6.3.1). In the current example we assume that the ages of four of the dugongs
were not recorded. In specifying a prior distribution for the missing ages we should
bear in mind that the growth curve is only meaningful for non-negative values of
age. Here we constrain each unknown age to be positive by assuming that all ages
arise from a log-normal distribution (dlnorm() — see Appendix C.2) with com-
mon unknown parameters. A more appropriate assumption might be a truncated
normal distribution, truncated at zero. Note, however, that we would not be able
to use the I(,) construct to truncate the distribution, since the parameters of
that distribution would be unknown — see §9.6.2 and Appendix A.2.2 for further
details, including alternative ways of specifying truncated distributions.

for(j in 1:27) {

y[j] ~ dnorm(mu[j], tau)

mu[j] <- alpha - beta*pow(gamma, x[j])

prior on covariate

x[j] ~ dlnorm(mu.x, p.x)

}

...

priors on mean and precision of covariate model

mu.x ~ dunif(-10, 10)

p.x <- 1/pow(sd.x, 2)

sd.x ~ dunif(0, 10)

...

list(x = c(1.0,1.5,1.5,NA,2.5,4.0,5.0,5.0,NA,8.0,8.5,9.0,

9.5,9.5,10.0,12.0,12.0,13.0,NA,14.5,15.5,15.5,

190 The BUGS Book

16.5,17.0,NA,29.0,31.5),

y = c(1.80,1.85,1.87,1.77,2.02,2.27,2.15,2.26,2.47,

2.19,2.26,2.40,2.39,2.41,2.50,2.32,2.32,2.43,

2.47,2.56,2.65,2.47,2.64,2.56,2.70, 2.72,2.57))

node mean sd MC error 2.5% median 97.5% start sample

alpha 2.649 0.06845 0.001528 2.527 2.645 2.797 4001 50000

beta 0.9604 0.07883 9.338E-4 0.8136 0.9584 1.116 4001 50000

gamma 0.8661 0.03251 7.006E-4 0.7926 0.8707 0.9152 4001 50000

mu.x 2.096 0.2087 9.875E-4 1.689 2.094 2.512 4001 50000

sd.x 1.048 0.1722 0.001139 0.7735 1.027 1.444 4001 50000

sigma 0.0955 0.01605 1.407E-4 0.07019 0.09341 0.1325 4001 50000

x[4] 1.395 0.7006 0.004034 0.3363 1.299 3.035 4001 50000

x[9] 16.7 18.08 0.1805 6.831 12.77 54.61 4001 50000

x[19] 17.52 22.87 0.2601 6.821 12.88 59.72 4001 50000

x[25] 38.5 39.62 0.3918 12.3 28.05 127.9 4001 50000

There is considerable uncertainty regarding the “true” values of the missing co-
variates, particularly for dugongs 9, 19, and 25. The actual values of the four
missing ages are 1.5, 7, 13, and 22.5, and all of these are included within the
estimated 95% credible intervals, although for dugong 9 this is only just the case.
This reflects the influence of the response value, y, on the posterior distribution of
each missing x — dugong 9 was long for its age (y[9] = 2.47) and hence values
of age somewhat larger than the actual value are consistent with the fitted model.
In fact, dugongs 9 and 19 had identical lengths, and so the posterior distributions
for x[9] and x[19] are identical to within sampling error.

If there are other fully observed covariates in the regression model of in-
terest, the previous approach will not account for correlation between these
and the covariate being imputed. In this case, a better option is to specify a
regression model to impute the missing covariates as a function of other co-
variates. This model may include covariates not in the main model of interest
and is similar in spirit to the two-stage multiple imputation (MI) approach of
Rubin (1987). As with standard MI, variables that are predictive of both the
missing covariate itself and of the missing data mechanism should be included
in the imputation model. When multiple covariates have missing values, it is
also important to reflect the dependence structure of the covariates in the
imputation model.

Example 9.1.4. Birthweight: regression model for imputing missing covariates
Trihalomethanes (THM) are a chemical byproduct of the treatment process used
to disinfect the public water supply in the UK. Molitor et al. (2009) analyse the
association between THM levels in domestic tap water and the risk of giving birth
to a low birthweight (< 2.5 kg) baby. They use data from the UK National Births
Register on maternal age, baby’s gender and birthweight, and use the mother’s

Issues in Modelling 191

residential postcode to link modelled estimates of average THM levels in the
water supply zone of residence to each birth. Maternal smoking and ethnicity are
known risk factors for low birthweight and are potential confounders of the THM
effect due to their spatial patterning, which correlates with spatial variations in
THM levels. Smoking and ethnicity are not recorded in the birth register but are
available for a subset of the mothers who participated in a national birth cohort
study. Molitor et al. (2009) build a full Bayesian model to impute the missing
smoking and ethnicity indicators for mothers in the birth register who did not
participate in the cohort study and to simultaneously estimate the regression of
low birthweight on THM levels adjusted for confounders.

Here we use simulated data that mimics a slightly simplified version of this
problem. The model of interest is a logistic regression of the low birthweight
indicator lbw on binary indicators of THM level > 60 µg/L (THM), male baby
(male), non-white maternal ethnicity (eth), maternal smoking during pregnancy
(smk), and deprived local area (dep). smk and eth are recorded for 20% of mothers
but are missing for the remaining 80%; all other variables are fully observed. To
impute the missing covariate values, we build a bivariate regression model for smk
and eth assuming correlated errors. Since these are both binary indicators, we
use multivariate probit regression (Chib and Greenberg, 1998) in which smk and
eth are equal to thresholded values of a bivariate normal latent variable Z,

Zi = (Zi1, Zi2)
′ ∼ MVN(μi,Ω), i = 1, . . . , n;

smki = I(Zi1 ≥ 0); ethi = I(Zi2 ≥ 0),

where Ω must be in correlation form for identifiability reasons. The elements of
μi = (μi1, μi2)

′ are modelled as independent linear functions of covariates, which
include the other variables in the regression model for lbw plus area-level measures
of the proportion of the population who smoke (area.smk) and who are non-white
(area.eth). Unlike standard multiple imputation, it is not necessary to include
the response variable from the regression model of interest (lbw in this case)
in the covariate imputation model, since information about lbw is automatically
propagated via feedback from the assumed regression model of lbw on smk and
eth. Likelihood information about the observed values of smk and eth is included
in the imputation model by specifying bounds on Zi such that Zi1 ∈ (−∞, 0) if
smki = 0, Zi1 ∈ [0,∞) if smki = 1, Zi2 ∈ (−∞, 0) if ethi = 0, and Zi2 ∈ [0,∞)
if ethi = 1. If smki and ethi are missing, the corresponding bounds on Zi1 and Zi2
are set to (−∞,∞). In BUGS this is done using the I(lower,upper) notation
(§9.6) and including vectors giving values of the lower and upper bounds in the
data file. Since a value of ±∞ cannot be specified in the data file, we instead use
an arbitrarily large value relative to the scale of the latent Z variable (say ± 10).
Initial values for the parameters of the regression model of interest and for the
imputation model need to be chosen carefully to ensure that they both provide
compatible information about the missing covariate values; strongly conflicting
initial values can cause the MCMC samplers in BUGS to crash.

for (i in 1:n) {

192 The BUGS Book

lbw[i] ~ dbern(p[i])

logit(p[i]) <- beta[1] + beta[2]*THM[i] +

beta[3]*male[i] + beta[4]*dep[i] +

beta[5]*smk[i] + beta[6]*eth[i]

}

for (k in 1:6) {

beta[k] ~ dnorm(0, 0.0001)

}

for (k in 2:6) {

OR[k] <- exp(beta[k])

}

multivariate probit covariate imputation model

for (i in 1:n) {

Z[i,1:2] ~ dmnorm(mu[i,1:2],

Omega[1:2,1:2])I(lo[i,1:2],up[i,1:2])

mu[i,1] <- delta[1,1] + delta[2,1]*THM[i] +

delta[3,1]*male[i] + delta[4,1]*dep[i] +

delta[5,1]*area.smk[i] +

delta[6,1]*area.eth[i]

mu[i,2] <- delta[1,2] + delta[2,2]*THM[i] +

delta[3,2]*male[i] + delta[4,2]*dep[i] +

delta[5,2]*area.smk[i] +

delta[6,2]*area.eth[i]

}

for (i in 1:Nmis) { # Data file is ordered so subjects

1,...,Nmis have missing values

smk[i] <- step(Z[i,1]) # thresholded value of Z[i,1]

eth[i] <- step(Z[i,2]) # thresholded value of Z[i,2]

}

Sigma[1,1] <- 1

Sigma[2,2] <- 1

Sigma[1,2] <- corr

Sigma[2,1] <- corr

corr ~ dunif(-1, 1)

Omega[1:2, 1:2] <- inverse(Sigma[,])

for (k in 1:6) {

delta[k,1] ~ dnorm(0, 0.0001)

delta[k,2] ~ dnorm(0, 0.0001)

}

node mean sd MC error 2.5% median 97.5% start sample

OR[2] 1.178 0.121 0.002129 0.956 1.172 1.425 1001 20000

OR[3] 0.8095 0.08177 0.001518 0.6607 0.8052 0.9821 1001 20000

OR[4] 1.007 0.101 0.001919 0.8243 1.001 1.221 1001 20000

OR[5] 2.915 0.5202 0.01434 2.033 2.867 4.057 1001 20000

OR[6] 4.116 0.7181 0.01833 2.897 4.053 5.716 1001 20000

Issues in Modelling 193

corr -0.3039 0.05583 0.002219 -0.4096 -0.3046 -0.1904 1001 20000

There is a small excess risk of low birthweight for mothers with high THM levels in
their tap water supply, although the posterior 95% credible interval just includes
the null odds ratio. Maternal smoking and non-white ethnicity confer substantially
increased risks of low birthweight, although the wide credible intervals for these
effects reflect uncertainty due to the high proportion of missing values. Analysis
of the complete cases only produced a far more uncertain estimate of the THM
effect (mean of OR[2] = 1.13, 95% CI 0.76 to 1.64), whilst analysis of the full
data excluding the confounders smk and eth from the regression model produced
an upwardly biased estimate of the THM effect (mean of OR[2] = 1.44, 95% CI
1.21 to 1.70).

9.2 Prediction

There are a number of reasons why we may want to predict an unknown
quantity Y pred. We may want to “fill in” missing or censored data (§9.1) or
predict replicate datasets in order to check the adequacy of our model (§8.4).
Finally, we may simply want to make predictions about the future.

If we were working within a classical paradigm, it would not be straightfor-
ward to make full predictions after fitting a statistical model. Although point
predictions of a future quantity Y pred may be easy, obtaining the appropriate
full predictive distribution for Y pred is challenging, as one needs to account for
three components: uncertainty about the expected future value E[Y pred], the
inevitable sampling variability of Y pred around its expectation, and the un-
certainty about the size of that error, as well as the correlations between these
components. Fortunately, it is so trivial to obtain such predictive distributions
using MCMC that it can be dealt with very briefly.

Suppose we have a model p(ypred|θ) and a fully specified prior distribution
p(θ). We have already seen in §2.7 how Monte Carlo methods can produce the
predictive distribution of a future quantity as p(ypred) =

∫
p(ypred|θ)p(θ)dθ by

simply including ypred in the model and treating it as an unknown quantity.
The same principle applies if instead we are using MCMC methods with a
posterior distribution p(θ|y) (Chapter 4). In the example below we point out
that, rather than explicitly include the quantities to be predicted in the model
description, it may be easier to just expand the dataset to include missing data
indicated as NA.

194 The BUGS Book

Example 9.2.1. Dugongs (continued): prediction
Consider again the growth model for dugongs from Example 6.3.1. Suppose we
want to project the length of dugongs beyond the currently observed age range,
say at ages 35 and 40 years. We could explicitly include, as quantities in the model,
the expected lengths of all dugongs at those ages, as well as the observable lengths
of specific future dugongs. Assuming

yj ∼ Normal(μj , σ
2 = τ−1), μj = α− βγxj

for the observed data, we add the code

mu35 <- alpha - beta*pow(gamma, 35)

mu40 <- alpha - beta*pow(gamma, 40)

y35 ~ dnorm(mu35, tau)

y40 ~ dnorm(mu40, tau)

Alternatively, it will generally be easier to leave the model description unmodified
and instead expand the data file with two dugongs of the appropriate ages but
with missing lengths:

list(N = 29,

x = c(1.0, 1.5, 1.5, ..., 29.0, 31.5, 35, 40),

y = c(1.80, 1.85, 1.87, ..., 2.72, 2.57, NA, NA))

Posterior predictive summaries for the quantities of interest are given by

node mean sd MC error 2.5% median 97.5% start sample

mu[28] 2.638 0.05949 0.002778 2.528 2.635 2.762 1001 10000

mu[29] 2.642 0.06291 0.002959 2.528 2.638 2.775 1001 10000

y[28] 2.637 0.1153 0.002654 2.408 2.638 2.865 1001 10000

y[29] 2.642 0.1179 0.003107 2.413 2.64 2.881 1001 10000

The intervals around mu[28] and mu[29] reflect uncertainty concerning the fitted
parameters α, β, and γ, as is the case for the other elements of mu. Intervals
around the missing ys additionally reflect the sampling error σ and uncertainty
about the value of σ. The model fit and predictive intervals for mu[28] and
mu[29] are shown together in Figure 9.2. Widening of the intervals towards the
right-hand side of the plot has nothing to do with the fact that the right-most
intervals are predictive; this is simply due to greater uncertainty in the fitted curve
for older animals.

Issues in Modelling 195

model fit: mu

age (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.8

 2.0

 2.2

 2.4

 2.6

FIGURE 9.2

Model fit for observed dugongs data, with 95% posterior predictive intervals for
the expected dugong length at ages 35 and 40 years. The points plotted (•) at
35 and 40 years are the posterior median values of y[28] and y[29], which are
specified as missing. The points coincide exactly with the predictive medians for
mu[28] and mu[29].

9.3 Measurement error

Errors in measurement can occur for both responses and covariates. The for-
mer case is straightforward, since standard statistical models can be thought
of as encompassing errors in measurement and we can select the appropriate
response distribution. When covariates are measured with error, there are two
possible models: classical and Berkson.

The more common, classical model is represented in the graph shown in
Figure 9.3(a), in which the observed covariate x is assumed conditionally
independent of the response y given the “true” underlying covariate value z.
The covariate may be categorical or continuous, but in either case needs to
be provided with a prior distribution, with parameters ψ, say, which may or
may not be known. In addition, an error model is assumed with parameters
φ, which in order to be identifiable will need to be either assumed known or
estimable from a subset of data in which both x and z are observed.

Example 9.3.1. Cervix: case-control study with errors in covariates
Carroll et al. (1993) consider the problem of estimating the odds ratio of a disease
d in a case-control study where the binary exposure variable is measured with
error. Their example concerns exposure to herpes simplex virus (HSV) in women
with invasive cervical cancer (d = 1) and in controls (d = 0). Exposure to HSV
is measured by a relatively inaccurate western blot procedure x for 1929 of the
2044 women, whilst for 115 women, it is also measured by a refined or “gold
standard” method z. The data are given in Table 9.1. They show a substantial

196 The BUGS Book

y

z

ψ

x β

φ

y

z

β

φ x

(a) (b)

FIGURE 9.3

DAGs depicting classical and Berkson measurement error models. The re-
sponse variable y is regressed on “true” covariates z, with regression coeffi-
cients β. (a) Classical model: the observed covariates x are assumed dependent
on the true values z via an error model with parameters φ; a prior distribution
with parameters ψ is specified for z. (b) Berkson error model: the true covari-
ates z are assumed dependent on the observed values x via an error model
with parameters φ.

amount of misclassification, as indicated by low sensitivity and specificity of x in
the “complete” data. The degree of misclassification is also significantly higher
for the controls than for the cases (p = 0.049 by Fisher’s exact test).

A (prospective) logistic model is fitted to the case-control data as follows

di ∼ Bernoulli(pi), logit(pi) = β0 + βzi, i = 1, . . . , 2044,

where β is the log odds ratio of disease d. Since the relationship between d and z
is only directly observable in the 115 women with “complete” data, and because
there is evidence of differential measurement error, the following parameters are
required in order to estimate the misclassification model:

φ11 = Pr(x = 1|z = 0, d = 0)

φ12 = Pr(x = 1|z = 0, d = 1)

φ21 = Pr(x = 1|z = 1, d = 0)

φ22 = Pr(x = 1|z = 1, d = 1)

ψ = Pr(z = 1)

BUGS code for the model is as follows:

for (i in 1:n) {

Issues in Modelling 197

TABLE 9.1

Case-control data for cervix example.

Complete data Incomplete data
d z x Count d z x Count
1 0 0 13 1 — 0 318
1 0 1 3 1 — 1 375
1 1 0 5 0 — 0 701
1 1 1 18 0 — 1 535
0 0 0 33
0 0 1 11
0 1 0 16
0 1 1 16

d[i] ~ dbern(p[i])

logit(p[i]) <- beta0 + beta*z[i]

z[i] ~ dbern(psi)

x[i] ~ dbern(phi[z1[i], d1[i]])

z1[i] <- z[i] + 1

d1[i] <- d[i] + 1

}

for (j in 1:2) {

for (k in 1:2) {

phi[j, k] ~ dunif(0, 1)

}

}

psi ~ dunif(0, 1)

beta0 ~ dnorm(0, 0.0001)

beta ~ dnorm(0, 0.0001)

where the z1 and d1 variables are created because phi[] must be indexed with
1s and 2s, as opposed to 0s and 1s, and functions are not allowed as indices.
The data can be specified “long-hand” with three entries (d, z, x) for each of
the 2044 individuals. Alternatively the individual-level data can be “constructed”
from Table 9.1 via the following additional code:

for (j in 1:8) {

for (i in offset[j]:offset[j+1]-1) {

d[i] <- d.com[j]; x[i] <- x.com[j]; z[i] <- z.com[j]

}

}

for (j in 9:12) {

for (i in offset[j]:offset[j+1]-1) {

d[i] <- d.inc[j-8]; x[i] <- x.inc[j-8]

}

}

198 The BUGS Book

where d.com, x.com, and z.com denote the complete data, d.inc and x.inc
denote the incomplete data, and offset contains the cumulative counts of indi-
viduals within each category: offset=c(1, 14, 17, 22, 40, 73, 84, 100,
116, 817, 1352, 1670, 2045). Posterior summaries are given in the table be-
low.

node mean sd MC error 2.5% median 97.5% start sample

beta 0.6213 0.3617 0.01924 -0.09153 0.6188 1.345 1001 20000

beta0 -0.9059 0.199 0.01045 -1.321 -0.8996 -0.5283 1001 20000

phi[1,1] 0.3177 0.05309 0.00199 0.2109 0.3186 0.4199 1001 20000

phi[1,2] 0.2212 0.08055 0.003301 0.07556 0.2188 0.3884 1001 20000

phi[2,1] 0.5691 0.06352 0.002116 0.4428 0.5683 0.6941 1001 20000

phi[2,2] 0.7638 0.06187 0.002506 0.6409 0.7646 0.8806 1001 20000

psi 0.4923 0.04304 0.001771 0.4057 0.4929 0.5771 1001 20000

From this output we can estimate that the chance of falsely identifying HSV
using a western blot is 32% in controls and 22% in cases, while the chance of
missing a true HSV is 44% in controls and 24% in cases. Accounting for this
misclassification results in a substantially de-attenuated estimate of the exposure
log-odds ratio, although the increased uncertainty means that this is no longer
statistically significant (posterior mean and 95% CI for beta = 0.62 (−0.09, 1.35)
compared to 0.45 (0.27, 0.63) if covariate misclassification is ignored).

Example 9.3.2. Dugongs (continued): measurement error on age
Recalling again Example 6.3.1, we now assume that the observed age xj is an
imperfect measure of the true age zj, with measurement standard deviation 1.
We consider the model

yj ∼ Normal(μj , σ
2), μj = α− βγzj , xj ∼ Normal(zj , 1),

with α, β ∼ Uniform(0, 100), γ ∼ Uniform(0, 1), and log σ ∼ Uniform(−10, 10).
In addition, a prior distribution for each zj is required. In the absence of prior
knowledge we assume zj ∼ Uniform(0, 100) for j = 1, . . . , n. BUGS code for the
model is given by

for(j in 1:n) {

y[j] ~ dnorm(mu[j], tau)

mu[j] <- alpha - beta*pow(gamma, z[j])

x[j] ~ dnorm(z[j], 1)

z[j] ~ dunif(0, 100)

}

alpha ~ dunif(0, 100)

beta ~ dunif(0, 100)

gamma ~ dunif(0, 1)

tau <- 1/sigma2

Issues in Modelling 199

log(sigma2) <- 2*log.sigma

log.sigma ~ dunif(-10, 10)

The model fit is shown in Figure 9.4. Note that the “true” ages zj , j = 1, . . . , n,
are estimated such that the model fit is improved. This is reflected by a posterior
median value for σ2 of 0.0078, which is reduced from 0.0094 (when no measure-
ment error was assumed — see Example 6.3.1). Figure 9.5 shows the posterior
distribution of the difference between each observed and “true” age, calculated
by adding the code:

for (j in 1:n) {resx[j] <- x[j] - z[j]}

Where the fit is not improved by estimating z[j] away from the observed value
x[j], the distribution of resx[j] is approximately standard normal. We can see
that, particularly in the first half of the dataset, there is considerable adjustment
of the ages being entered into the regression equation.

model fit: mu

'true' age z (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.8
 2.0
 2.2
 2.4
 2.6

model fit: mu

observed age x (yrs)
 0.0 10.0 20.0 30.0 40.0

length (m)

 1.8
 2.0
 2.2
 2.4
 2.6

FIGURE 9.4

Model fits from analysis of dugongs data assuming a classical measurement error
model for the observed ages. Left-hand side: model fit plotted against posterior
median “true” ages, zj, j = 1, . . . , n. Right-hand side: model fit plotted against
observed ages xj , j = 1, . . . , n.

Berkson errors arise in situations where the observed covariates are expected
to be less variable than the “true” values, perhaps because the observed values
are aggregated. This can occur when the covariates measure environmental
exposure, say, such as levels of air pollution. The observed values may be
summary measures for geographical areas, each, perhaps, taken at a single site
or summed/averaged over the area. The actual exposures of individuals within
those areas would then be expected to be more variable than the recorded
values. This leads to a measurement error model in which the true covariate
value depends on the observed value, rather than the other way round as
in classical measurement error (see the right-hand side of Figure 9.3). The
following example illustrates the use of a Berkson model for air pollution
data.

200 The BUGS Book

box plot: resx

-4.0

-2.0

 0.0

 2.0

 4.0

FIGURE 9.5

Box plot summarising posterior distributions of the difference between each ob-
served and “true” age for the dugongs example with covariate measurement error.

Example 9.3.3. Air pollution: Berkson measurement error
Whittemore and Keller (1988) examine data regarding the potential effects of
exposure to nitrogen dioxide (NO2) on respiratory illness. One hundred and three
children are categorised as having respiratory illness or not and of being exposed
to one of three different levels of NO2 in their bedrooms:

Bedroom NO2 level in ppb (x)
Respiratory illness (y) < 20 20–40 40+ Total

Yes 21 20 15 56
No 27 14 6 47

Total (n) 48 34 21 103

The three exposure categories (indexed by j) are thought of as a surrogate for
“true exposure,” and the nature of the measurement error relationship is known
precisely from a separate calibration study:

zj = α+ βxj + εj, j = 1, 2, 3,

where xj equals 10, 30, and 50 for j = 1, 2, and 3, respectively, and zj is
interpreted as the “true average value” of NO2 in group j. In addition, from the
calibration study we assume α = 4.48, β = 0.76, and εj ∼ Normal(0, 81.14),
j = 1, 2, 3. We wish to fit the following logistic regression:

yj ∼ Binomial(pj , nj), logit(pj) = θ1 + θ2zj , j = 1, 2, 3,

where nj is the total number of children in group j.

Issues in Modelling 201

for (j in 1:3) {

y[j] ~ dbin(p[j], n[j])

logit(p[j]) <- theta[1] + theta[2]*z[j]

z[j] ~ dnorm(mu[j], 0.01232)

mu[j] <- alpha + beta*x[j]

}

theta[1] ~ dnorm(0, 0.0001)

theta[2] ~ dnorm(0, 0.0001)

node mean sd MC error 2.5% median 97.5% start sample

theta[1] -0.8096 0.8559 0.03736 -2.889 -0.6557 0.3502 12001 20000

theta[2] 0.04207 0.03144 0.001313 -0.002226 0.03667 0.1212 12001 20000

z[1] 12.8 8.299 0.2011 -3.881 12.98 28.81 12001 20000

z[2] 27.43 7.474 0.08438 12.95 27.37 42.39 12001 20000

z[3] 41.43 8.56 0.1437 25.35 41.23 58.56 12001 20000

Note that the effect of NO2 exposure on the chances of developing a respiratory
illness is almost, but not quite, significant in this analysis: the 95% credible interval
for θ2, which represents the log odds ratio for a unit increase in “true exposure”
only just includes zero.

9.4 Cutting feedback

In the dugongs example 9.3.2 above the true ages are estimated such that they
improve the fit of the line. In many cases, this is exactly what we would want:
the information in the measured ages regarding the values of the true ages is
supplemented by feedback from the response data (dugong lengths) due to the
assumed relationship between length and age. However, there are situations
in which we might wish to infer the values of missing variables based solely on
the observed values of those variables. In other words, we may wish to ignore,
or “cut” the feedback from the response data. We can achieve this using the
cut() function in WinBUGS,∗ as illustrated in the following example.

Example 9.4.1. Cutting feedback
Consider the simple linear regression presented in Figure 9.6(a). In this case the
values of the variable plotted on the x-axis are assumed known. However, suppose
we know that they are measured with error and that the standard deviation of
those errors is 1.5. We denote the response variable by yi, i = 1, . . . , n, and

∗or OpenBUGS. There is no “cut” function currently in JAGS.

202 The BUGS Book

the modelled and observed values of the independent variable by zi and xi, i =
1, . . . , n, respectively. (Note that xi = i, i = 1, . . . , n.) One option is to assume:

yi ∼ Normal(μi, σ
2), μi = a+ bzi, xi ∼ Normal(zi, 1.5

2),

with appropriate priors on a, b, σ, and each zi. This would allow estimation of the
zis to be influenced by feedback from the yis. To cut this feedback, we assume
instead

zi = cut(z∗i), xi ∼ Normal(z∗i , 1.5
2),

with appropriate priors on the z∗i s, e.g., z
∗
i ∼ Uniform(−100, 100), i = 1, . . . , n.

The cut(.) function here makes a copy of the variable passed as an argument but
otherwise severs the link between argument and result, z∗i and zi, respectively,
in this case. Hence zi always has the same value as z∗i but z∗i is isolated from
the yis and cannot be influenced by them. The following BUGS code fits models
with and without feedback as well as the model in which zi = xi, i = 1, . . . , n.
In order to fit multiple models simultaneously we must make multiple copies of
the dataset {yi, xi, i = 1, . . . , n}, as shown below.

model {

for (m in 1:3) {

for (i in 1:n) {

y.copy[m, i] <- y[i]

x.copy[m, i] <- x[i]

y.copy[m, i] ~ dnorm(mu[m, i], tau[m])

mu[m, i] <- a[m] + b[m]*z[m, i]

}

a[m] ~ dnorm(0, 0.0001)

b[m] ~ dnorm(0, 0.0001)

tau[m] <- 1/pow(sigma[m], 2)

sigma[m] ~ dunif(0, 100)

}

for (i in 1:n) {

z[1, i] <- x.copy[1, i]

x.copy[2, i] ~ dnorm(z[2, i], 0.4444)

z[2, i] ~ dunif(-100, 100)

z[3, i] <- cut(z.star[i])

x.copy[3, i] ~ dnorm(z.star[i], 0.4444)

z.star[i] ~ dunif(-100, 100)

}

}

Model fits for the models with and without feedback are shown in Figure 9.6(b)
and Figure 9.6(c), respectively. Note that with feedback the zis are estimated
so that the regression line fits as well as possible. One danger of allowing this to

Issues in Modelling 203

happen is that the estimates may become implausible. Indeed, note that in this ex-
ample several of the zis are not ordered when feedback is allowed, e.g., posterior
median estimates for z3, z4, and z5 are 2.90, 5.59, and 3.40, respectively, al-
though there is considerable overlap between the 95% credible intervals: (0.844,
4.81), (2.85, 7.10), and (1.70, 5.98), respectively. It may be known that they
must be ordered, however. An ordering constraint could be applied in such cases,
as discussed in § 9.7.2, but there are numerous situations in which an obvious
constraint to ensure plausibility does not exist. The reader is referred to Lunn
et al. (2009a) for further discussion on difficulties with feedback. Without feed-
back, point estimates for the zis are approximately equal to the measured values,
xi = i, i = 1, . . . , n, but considerable uncertainty is acknowledged and this is
propagated into the regression analysis, manifesting as a wider credible interval
for the model fit compared to when the observed xis are assumed error-free.

model fit: mu[1,]

 0.0 5.0 10.0

(a)

 -5.0

 0.0

 5.0

 10.0

 15.0

model fit: mu[2,]

 0.0 5.0 10.0

(b)

 -5.0

 0.0

 5.0

 10.0

 15.0

model fit: mu[3,]

 0.0 5.0 10.0

(c)

 -5.0

 0.0

 5.0

 10.0

 15.0

FIGURE 9.6

Model fits for linear regression data, under various assumptions for the indepen-
dent variable: (a) xis assumed error-free, i.e., zi = xi; (b) fully Bayesian model
(with feedback); and (c) model without feedback. In (b) and (c), the model fits
are plotted against posterior mean estimates of the zis.

204 The BUGS Book

9.5 New distributions

9.5.1 Specifying a new sampling distribution

Suppose we wish to use a sampling distribution that is not included in the list
of standard distributions, in which an observation yi contributes a likelihood
term Li. One possibility is the “zeros trick” based on the following.

We invent a set of observations zi = 0, each of which is assumed to be
drawn from a Poisson(φi) distribution. Each then has a likelihood contribution
exp(−φi), and so if φi is set to − log(Li), we will obtain the correct likelihood
contribution. (Note that φi should always be > 0 as it is a Poisson mean, and
so we may need to add a suitable constant to ensure that it is positive.) The
BUGS code will look like the following:

const <- 10000 # arbitrary, ensures phi[i] > 0

for (i in 1:n) {

z[i] <- 0

z[i] ~ dpois(phi[i])

phi[i] <- -log(L[i]) + const

L[i] <- ...

}

Li is set to a function of yi and θ proportional to the likelihood p(yi|θ). This
trick allows arbitrary sampling distributions to be used and is particularly
suitable when, say, dealing with truncated distributions (§9.6.2).

A new observation from the distribution, denoted yn+1, can be predicted
by including it as an additional, but missing, observation in the data file and
assigning it an improper uniform prior, e.g., y[n+1] ∼ dflat(), defining zi
and φi in the same way as before for i = n + 1. The missing observation is
essentially assumed to be an unknown parameter with a uniform prior, but
also with a likelihood term corresponding to the sampling distribution.

Note that the DIC (§8.6) for data from distributions specified using the zeros
trick, as reported by the WinBUGS or OpenBUGS DIC tool, is calculated with
respect to zi, not yi. Example 11.6.2 explains how to transform this to the
scale of yi, so it can be compared with the DICs of models for yi which are
specified using built-in sampling distributions.

Example 9.5.1. A clumsy way of modelling the normal distribution
We use the “zeros trick” to model a normal distribution with unknown mean μ
and unknown standard deviation σ, including predicting a new observation. We

Issues in Modelling 205

have seven observed values and one missing value as follows: y = c(-1, -0.3,

0.1, 0.2, 0.7, 1.2, 1.7, NA).

for (i in 1:8) {

z[i] <- 0

z[i] ~ dpois(phi[i])

phi[i] <- log(sigma) + 0.5*pow((y[i] - mu)/sigma, 2)

}

y[8] ~ dflat()

sigma ~ dunif(0, 100)

mu ~ dunif(-100, 100)

We must provide an initial value for y[8], via y = c(NA, NA, NA, NA, NA,

NA, NA, 0), say, otherwise BUGS will try to generate one from the improper
prior and crash.

node mean sd MC error 2.5% median 97.5% start sample

mu 0.365 0.4758 0.006864 -0.5948 0.3693 1.316 4001 10000

sigma 1.18 0.481 0.01139 0.6216 1.067 2.415 4001 10000

y[8] 0.3499 1.355 0.03415 -2.345 0.3564 3.095 4001 10000

Whilst the results match those that would be obtained in a standard analysis us-
ing y[i] ~ dnorm(mu, tau); tau <- 1/pow(sigma,2), this is an inefficient
procedure, particularly for the prediction, and so a long run is necessary. The MC
error for the prediction is 0.03 using the zeros trick and 0.01 for the same number
of iterations in the equivalent standard analysis.

An alternative to the “zeros trick” is the “ones trick.” Here we invent a set
of observations equal to 1 instead, and assume each to be Bernoulli distributed
with probability pi. By making each pi proportional to Li (i.e., by specifying a
scaling constant large enough to ensure pi < 1 for all i), the required likelihood
term is provided:

const <- 10000 # arbitrary, ensures p[i] < 1

for (i in 1:n) {

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- L[i]/const

}

We will illustrate use of the “ones trick” in §9.6.2, where we consider how to
specify truncated sampling distributions.

9.5.2 Specifying a new prior distribution

Suppose we want to use a prior distribution for θ that does not belong to the
standard set. Then we can use the “zeros trick” (see above) at the prior level

206 The BUGS Book

combined with an improper uniform prior for θ. A single Poisson observation
equal to zero, with mean φ = − log(p(θ)), contributes a term exp(−φ) =
p(θ) to the likelihood for θ; when this is combined with a “flat” prior for θ
the correct prior distribution results. This is essentially the same process as
predicting from a new distribution covered in the previous section. Summary
BUGS code is

z <- 0

z ~ dpois(phi)

theta ~ dflat()

phi <- expression for -log(desired prior for theta)

For example, if we wished to produce a standard normal prior, we would use

phi <- 0.5*pow(theta, 2)

It is important to note that this method produces high auto-correlation, poor
convergence, and large MC errors, so it is computationally slow and long runs
are necessary. Initial values also need to be specified as the dflat() prior
cannot be sampled from using gen.inits.

New sampling distributions and new prior distributions can also be specified
in WinBUGS via the WinBUGS Development Interface (WBDev). This can
give big computational savings and clearer BUGS code, at the cost of “lower-
level” programming in Component Pascal — see § 12.4.8 for more details.
There are similar but less well-documented capabilities in OpenBUGS and
JAGS; see Chapter 12.

9.6 Censored, truncated, and grouped observations

9.6.1 Censored observations

A data point is a censored observation when we do not know its exact value,
but we do know that it lies above or below a point c, say, or within a specified
interval. The most common application is in survival analysis (§11.1), but here
we consider general measurement problems. There are two strategies within
BUGS:

1. In general, in WinBUGS we can use the I(,) construct (§A.2.2), which
specifies a restricted range within which the unknown quantity lies. The
unknown quantity is then simply treated as a model parameter. Note
that in OpenBUGS the C() function is preferred (see §12.5.1) and JAGS
uses a different syntax altogether (see §12.6.2).

2. Each exact observation y contributes p(y|θ) to the likelihood of θ,
whereas an observation censored at c provides a contribution of Pr(Y >

Issues in Modelling 207

c|θ) or Pr(Y < c|θ). Hence, if the distribution function can be expressed
in BUGS syntax, then we can use either the “ones trick” or the “zeros
trick” (§9.5) to directly specify the contribution of the censored obser-
vations to the likelihood.

Example 9.6.1. Censored chickens
Suppose we weigh nine chickens, with a scale that only goes up to 8 units, so
that if the scale shows 8 it means that the chicken weighs at least 8 units, which
we denote 8+. The weights are 6, 6, 6, 7, 7, 7, 8+, 8+, 8+. The population of
chickens is assumed to have weights that are normally distributed with mean μ
and standard deviation 1 unit. (This is not intended to be a realistic example — all
the observed weights are integer-valued and would more realistically be modelled
as roundings of a true continuous-valued weight, as in Example 9.6.3). If the 8+
weighings were exactly 8, and μ was assigned a locally uniform prior, then the
posterior distribution for μ would be Normal(7, 1/9). WinBUGS code accounting
for the censoring via method 1 above is

model {

for (i in 1:6) {y[i] ~ dnorm(mu, 1)} # uncensored data

for (i in 7:9) {y[i] ~ dnorm(mu, 1)I(8,)} # censored data

mu ~ dunif(0, 100)

}

data:

list(y = c(6,6,6,7,7,7,NA,NA,NA))

node mean sd MC error 2.5% median 97.5% start sample

mu 7.193 0.3478 0.003604 6.515 7.19 7.875 1001 10000

y[7] 8.571 0.4809 0.005356 8.018 8.446 9.805 1001 10000

We note that the posterior mean of μ is greater than 7 since the censored ob-
servations have been estimated to be between 8.0 and 9.8 — see Figure 9.7 for
the posterior density of censored observation y[7] (y[8] and y[9] also have the
same posterior). The posterior standard deviation of μ is 0.35, slightly greater
than if the data had been exact rather than censored — we can think of the
effective sample size having been reduced from 9 to 1/0.34782 = 8.3.

Now consider the second method outlined above, making use of the “zeros
trick.” Each censored observation provides a term Pr(Y > 8|μ) to the likelihood
of μ, which is equal to Pr(Y − μ > 8 − μ) = 1 − Φ(8 − μ) = Φ(μ − 8), where
Φ(.) is the cumulative distribution function of the standard normal distribution,
available in BUGS via the syntax phi(.):

for (i in 1:6) {y[i] ~ dnorm(mu, 1)}

for (i in 1:3) {

zeros[i] <- 0

zeros[i] ~ dpois(p[i])

208 The BUGS Book

y[7] sample: 10000

 8.0 9.0 10.0 11.0 12.0

0.0

0.5

1.0

1.5

FIGURE 9.7

Posterior distribution for censored observation y[7] in the “censored chickens”
example.

p[i] <- -log(phi(mu-8))

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 7.192 0.348 0.003687 6.519 7.185 7.882 1001 10000

We obtain largely the same results as with method 1, with similar Monte Carlo
standard errors. Method 2 is computationally more efficient, as the censored ob-
servations are integrated out before analysis. However, method 1 is more generally
applicable, as it does not require the distribution function to be known.

9.6.2 Truncated sampling distributions

A sampling distribution is truncated if for some reason we never observe
cases above or below a specified point, although in the permissible range of
observations the data follow a standard distribution. The sampling distribu-
tion must therefore be normalised to condition on lying in the permissible
range, say Y < c, so that the likelihood contribution of an observation y is
p(y|θ)/Pr(Y < c|θ). This will not generally be of standard form, and so ei-
ther a new distribution has to be defined (§12.4.8) or the “ones”/“zeros” trick
used (§9.5).

It is very important to realise that the I(,) construct is not appropriate for
truncated distributions with unknown parameters, since the generated likeli-
hood term will ignore the truncation and be incorrect (see Appendix A.2.2).
However, the I(,) construct can be used when specifying truncated prior
distributions with no unknown parameters — see Examples 5.3.2 and 6.3.1.

Example 9.6.2. Truncated chickens
In Example 9.6.1, suppose that any chicken weighing 8 or more units is sent back
to get more exercise, so the distribution of chicken weights is right-truncated at

Issues in Modelling 209

8. Therefore we only hear about the six chickens that weighed 6 or 7 units, and
each of these provides a likelihood contribution of exp[−(yi − μ)2/2]/Φ(c− μ).
So using the “ones trick”:

for (i in 1:6) {

z[i] <- 1

z[i] ~ dbern(p[i])

p[i] <- exp(-0.5*(y[i] - mu)*(y[i] - mu))/phi(8 - mu)

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 6.737 0.4965 0.00498 5.819 6.72 7.75 1001 10000

Although we don’t know how many chickens were weighed and returned, knowl-
edge of this truncation has raised the estimated population mean from the sample
mean of 6.5 to 6.74. The posterior standard deviation of 0.5 means that the ef-
fective sample size is 1/0.52 = 4, so the truncation has considerably reduced
the precision. Note that in this situation chickens weighing 8 or more units are
not included in the data collection process, whereas in the censoring example
(Example 9.6.1), while they may not be fully observed, they may still be present.

In JAGS, the T(,) construct may simply be used to truncate the sampling
distribution in the following way. JAGS computes the appropriate normalising
constant internally.

y[i] ~ dnorm(mu, 1)T(,8)

A similar general facility is planned in OpenBUGS but is only partially implemented
currently.

As may be apparent from the examples above, there are subtle differences
between truncation and censoring. Truncation is appropriate when values out-
side a given range are actually impossible. Censoring, on the other hand, is
appropriate when values beyond that range are possible in principle, but have
not been observed due to the nature of the measurement device/method —
that is, they may be observable using a different method.

9.6.3 Grouped, rounded, or interval-censored data

If observations are either grouped into categories or rounded, to the nearest
integer, say, the information provided by an observation is that it lies in a
particular interval, say (lower, upper). This can be treated as interval censor-
ing and handled by assuming we have a true but unobserved quantity z which
contributes to the likelihood for θ but we only know it lies between lower and
upper. This is specified using I(lower,upper).

210 The BUGS Book

Example 9.6.3. Grouped chickens
Suppose all nine chickens in Example 9.6.1 have been weighed and reported as 6,
6, 6, 7, 7, 7, 8, 8, 8, but we know that when the scales report 7 units, say, the
true weight z could be anything between 6.5 and 7.5.

for (i in 1:9) {

lower[i] <- y[i] - 0.5

upper[i] <- y[i] + 0.5

z[i] ~ dnorm(mu, 1)I(lower[i], upper[i])

}

mu ~ dunif(0, 100)

node mean sd MC error 2.5% median 97.5% start sample

mu 7.001 0.3496 0.00364 6.322 7.003 7.692 1001 10000

z[1] 6.08 0.2778 0.002909 5.543 6.113 6.483 1001 10000

z[4] 6.993 0.2829 0.002573 6.527 6.991 7.474 1001 10000

z[7] 7.922 0.2759 0.002482 7.517 7.885 8.458 1001 10000

The posterior mean is 7, as might be expected from symmetric data, but the ef-
fective sample size is reduced from 9 to 1/0.352 = 8.2 by the grouping. The true
weight for a chicken reported as 6 is estimated to be 6.08, slightly “shrunk” to-
wards the mean by the assumption that the weights in the population are normally
distributed — see Figure 9.8.

z[1] sample: 10000

 5.0 5.5 6.0 6.5 7.0

0.0

0.5

1.0

1.5

z[4] sample: 10000

 6.0 6.5 7.0 7.5 8.0

0.0

0.5

1.0

1.5

z[7] sample: 10000

 7.0 7.5 8.0 8.5 9.0

0.0

0.5

1.0

1.5

FIGURE 9.8

Posterior density estimates for “true” chicken weights in the “grouped chickens”
example.

Issues in Modelling 211

9.7 Constrained parameters

9.7.1 Univariate fully specified prior distributions

A single parameter θ may be subject to a range constraint such as θ > 0.
Provided the distribution of θ does not contain any unknown parameters, then
this can be accommodated by using the I(,) construct (§9.6). For example,
a standard normal variable constrained to be positive is expressed as

theta ~ dnorm(0,1)I(0,)

See Examples 5.3.2 and 6.3.1. An alternative approach, which better gener-
alises to more complex constraints, is essentially an extension of the “ones
trick.” We introduce an auxiliary observation z taking the value 1. This is as-
sumed to arise from a Bernoulli distribution whose parameter takes the value
1 if the constraint is obeyed, and 0 otherwise. When sampling θ, only values
that obey the constraint, and therefore provide non-zero likelihood, will be
accepted, as illustrated in the example below.

Example 9.7.1. Half-normal
The code below shows the half-normal distribution being generated in two differ-
ent ways.

theta[1] ~ dnorm(0,1)I(0,)

theta[2] ~ dnorm(0,1)

z <- 1

z ~ dbern(constraint)

constraint <- step(theta[2])

The results show the substantially increased Monte Carlo error associated with
the auxiliary data method:

node mean sd MC error 2.5% median 97.5% start sample

theta[1] 0.8009 0.6106 0.006119 0.03056 0.6696 2.253 4001 10000

theta[2] 0.7897 0.5973 0.01643 0.02286 0.6743 2.206 4001 10000

9.7.2 Multivariate fully specified prior distributions

Order constraints on a series of parameters can be expressed using the I(,)

construct, provided the prior distribution does not contain unknown param-
eters. For example, to order a[1]<a[2]<a[3]:

a[1] ~ dnorm(0, 0.001)I(, a[2])

a[2] ~ dnorm(0, 0.001)I(a[1], a[3])

a[3] ~ dnorm(0, 0.001)I(a[2],)

212 The BUGS Book

Or as in Example 7.3.1, a[2] and a[3] could be defined by adding positively
distributed increments to a[1] and a[2], respectively. In JAGS and Open-
BUGS, the elements of an unconstrained vector can also be sorted using the
sort() function, for example, b[1:3] <- sort(a[]).

The auxiliary data method can be used to impose more complex constraints,
as the following example shows.

Example 9.7.2. Doughnut: bivariate normal with a hole in it
Suppose we assume θi ∼ Normal(0, 1), i = 1, 2, but with the curious constraint
that θ21 + θ22 > 1. This can be generated using the following code.

theta[1] ~ dnorm(0, 1)

theta[2] ~ dnorm(0, 1)

z <- 1

z ~ dbern(constraint)

constraint <- step(theta[1]*theta[1] + theta[2]*theta[2] - 1)

theta[1]
 -4.0 -2.0 0.0 2.0 4.0

theta[2]

 -4.0

 -2.0

 0.0

 2.0

 4.0

FIGURE 9.9

Scatterplot showing 5000 samples from a bivariate normal distribution subject to
the constraint θ21 + θ22 > 1.

A scatterplot of 5000 simulations (Figure 9.9) shows a bivariate normal distri-
bution with a hole in the centre.

Additive constraints on parameters can be easily imposed by reparameteri-
sation. For example, if we require a set of parameters βi, i = 1, . . . , n, to sum
to 0, we can define each as βi = bi − b, where the bis are independent with
known prior distributions.

Issues in Modelling 213

Example 9.7.3. Bristol (continued): sum-to-zero constraint
We consider Example 8.3.1 as a logistic model:

yi ∼ Binomial(θi, ni), logit θi = α+ βi, i = 1, . . . , 12.

We allow each centre i to have its own effect parameter βi, but with the com-
monly imposed constraint that those parameters add to 0, in order to ensure
identifiability.

for (i in 1:12) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- alpha + beta[i]

beta[i] <- b[i] - mean(b[])

b[i] ~ dunif(-10,10)

}

alpha ~ dunif(-10,10)

Figure 9.10 shows a box plot of the beta[i]s from the above model. These are
identifiable, due to the sum-to-zero constraint, but the individual b[i]s are not.
Non-identifiable parameters can actually be introduced to improve convergence
in hierarchical models — see §10.5.

[1]

[2]

[3]

[4]
[5]

[6] [7] [8]

[9] [10]

[11] [12]

box plot: beta

-2.0

-1.0

 0.0

 1.0

 2.0

FIGURE 9.10

Posterior summaries for centre effects beta[i] in the Bristol example.

214 The BUGS Book

9.7.3 Prior distributions with unknown parameters

All of the parameter constraints considered thus far have taken a standard
prior distribution and truncated it. Those standard priors have also had fixed
parameters. Unfortunately, when the prior parameters are unknown, the I()

method for truncation does not work correctly in BUGS — it is simply a trick
for restricting the values sampled for a given node and only works in sim-
ple settings. In particular, the normalising constant for the truncation is not
accounted for when computing the likelihood contribution of the truncated
parameter(s) to the full conditional distribution(s) of the prior parameter(s).
In such cases, we have several alternative options, but as this issue is par-
ticularly relevant to hierarchical models, discussion of these is deferred until
§10.2.2.

9.8 Bootstrapping

As suggested in Chapter 2, BUGS can, in principle, be used to perform any
statistical procedure based on random sampling, which need not necessarily be
a Bayesian analysis. For example, we can implement classical nonparametric
bootstrap estimation as follows.

Example 9.8.1. Bootstrapping in BUGS: the Newcomb data
The Newcomb data have previously been considered as an illustration of model
elaboration for non-normal data (see Examples 8.2.1, 8.4.3, and 8.4.4). Carlin
and Louis (2008) point out that, given the outliers, a more robust analysis might
consider inference on the median rather than the mean of the distribution. If we
wish to avoid a parametric assumption about the shape of the distribution, then
we can adopt the basic bootstrap procedure of taking a series of repeat samples
with replacement and calculating the sample mean and median for each of these
repeats. This can be easily carried out in BUGS using the code below.

for (i in 1:N) {

p[i] <- 1/N # set up uniform prior on 1 to N

}

for (j in 1:N){

pick[j] ~ dcat(p[]) # pick random number between 1 and N

Yboot[j] <- Y[pick[j]] # set jth bootstrap observation

}

mean <- mean(Yboot[])

now find median of bootstrap sample: this is halfway

between observation N/2 and N/2+1...

n1 <- N/2

Issues in Modelling 215

n2 <- n1 + 1

median <- (ranked(Yboot[], n1) + ranked(Yboot[], n2))/2

We note how the discrete uniform prior distribution is set up and the use of
the dcat distribution to select a random observation. We monitor one of the
bootstrap elements Yboot[1]; its density in Figure 9.11 provides an approximate
sampling distribution for the data. The median has a discrete distribution with
median 27 and 95% interval 26.0 to 28.5 (the true value for the speed of light
would give 33, well outside the 95% bootstrap interval).

Yboot[1] sample: 100000

-45 -25 0 25

 0.0

0.05

 0.1

0.15

median sample: 100000

 24.0 26.0 28.0 30.0

 0.0
 2.0
 4.0
 6.0
 8.0

FIGURE 9.11

Empirical distributions for Yboot[1] and median based on 100,000 simulations.

9.9 Ranking

There is increasing attention to the profiling of schools, hospitals, and so on,
often resulting in institutions being ranked into a league table similar to sports
teams or competitors. Generally the rank is treated as a descriptive statistic,
but we can also think of the observed rank as an imperfect measure of the
“true rank” and perform statistical inference. This can be useful when we
want to assess the probability, for example, that a treatment that currently
looks best is truly the best treatment being examined.

The observed rank is a highly unreliable summary statistic since it can be
very sensitive to small changes in the data. Bayesian methods can provide
posterior interval estimates for ranks for which WinBUGS and OpenBUGS
contain “built-in” options.† rank(x[], i) returns the rank of the ith element

†In JAGS, rank(x[]) transforms a vector x into a vector of ranks, so that the equiva-
lent of rank(x[],i) is y <- rank(x[]); y[i]. The equivalent of ranked(x[], i) is y <-

sort(x[]); y[i].

216 The BUGS Book

of x. equals(rank(x[],i),1) = 1 if the ith element of x has the lowest value,
and 0 otherwise; the mean is the probability that the ith element has the lowest
value. ranked(x[], i) returns the value of the ith-ranked element of x. The
Rank option of the Inference menu monitors the rank of each element of a
specified vector.

Example 9.9.1. Bristol (continued): ranking
Consider again the child heart surgery mortality rates introduced in Example 8.3.1.
Ignoring Bristol, we consider whether the variability in mortality rates between
hospitals allows any confident ranking. We assume the mortality in each hospital
is pi, i = 1, ..., N , with N = 11, which are assumed to have independent Jeffreys
Beta(0.5,0.5) priors. We would like to assess the true rank of each hospital and
the probability that each has the highest or lowest mortality.

for (i in 1:N) {

numbers1toN[i] <- i

p[i] ~ dbeta(0.5, 0.5)

r[i] ~ dbin(p[i], n[i])

hosp.rank[i] <- rank(p[], i) # rank of hospital i

prob.lowest[i] <- equals(hosp.rank[i], 1) # =1 if hosp i is lowest

prob.highest[i] <- equals(hosp.rank[i], N) # =1 if hosp i is highest

}

hosp.lowest <- inprod(numbers1toN[], prob.lowest[])

index of lowest hosp

hosp.highest <- inprod(numbers1toN[], prob.highest[])

index of highest hosp

The rank function produces the rank of each hospital at each iteration so that,
for example, hosp.rank[i] = 1 if hospital i currently has the lowest mortality
rate p[i]. prob.lowest[i] will then be 1 at that iteration, and so the mean
of prob.lowest[i] will provide the probability that hospital i is the “safest”
hospital.

We note the “which is min/max” trick used to pick out the index of, say, the
lowest hospital: prob.lowest[] is a vector of zeros except for a 1 in the position
of the hospital with the lowest p at that iteration; by taking an inner-product∑

i i*prob.lowest[i], hosp.lowest takes on the value equal to the index of
the hospital currently ranked lowest.

The upper panel of Figure 9.12 shows that there are substantial posterior prob-
abilities (0.71 and 0.68, respectively) of hospital 2 being the “safest” (with the
lowest mortality) and hospital 3 being the “least safe”: these are hospitals 3 and 4
in the original data table in Example 8.3.1. The lower panel illustrates that there
is considerable uncertainty regarding each hospital’s rank, however.

Issues in Modelling 217

hosp.lowest sample: 10000

0 5 10

0.0
0.2
0.4
0.6
0.8

hosp.highest sample: 10000

0 5 10

0.0
0.2
0.4
0.6
0.8

[1]

[2]

[3] [4]

[5]
[6] [7]

[8] [9]

[10]
[11]

box plot: hosp.rank

 0.0

 5.0

10.0

15.0

FIGURE 9.12

Top: Posterior histograms for the hospital with the lowest (left) and highest (right)
mortality. Bottom: Box plot comparing hospital-specific posterior ranks.

This page intentionally left blankThis page intentionally left blank

10

Hierarchical models

We are often interested in making inferences on many parameters correspond-
ing to different “units,” for example, different patients, geographical areas,
schools, hospitals, etc. The main goal is often to quantify the degree of similar-
ity across units so that we can make predictions about “new” units. Suppose,
for example, that a specific operation is carried out in a number of hospitals,
labelled A, B, C, D, etc. Further suppose that the observed mortality rates for
that operation in hospitals A, B, and C are 0.1, 0.19, and 0.14, respectively.
What would you predict for hospital D? What information did you use to come
up with that prediction? Most people would predict a value that is similar, in
some sense, to the other values. We tend to recognise that it is unlikely that all
hospitals have the same underlying mortality rate, due to employing different
surgeons and having different catchment areas, for example, but we also tend
to assume that knowing something about the other hospitals tells us at least
something about the one of interest. Our natural inclination, therefore, is to-
wards an assumption somewhere between the unit-specific parameters being
identical and being entirely independent.

10.1 Exchangeability

An assumption of “similarity,” in the sense that the units’ “labels” convey
no information, is related to the assumption of “exchangeability” made about
observations (§3.6.2), which was shown to be equivalent to assuming the obser-
vations were independent and identically distributed from a distribution with
unknown parameters, where those parameters are given a prior distribution.
Similarly, under broad conditions (de Finetti (1931); see also Bernardo and
Smith (1994) for an overview) exchangeability of the unit-specific parameters,
θi, i = 1, ..., N , can be shown to be mathematically equivalent to assuming
that they arise from a common “population” distribution whose parameters
are unknown and assigned appropriate prior distributions. Therefore the θis
are similar but not identical.

For example, suppose θi ∼ N(μ, ω2), i = 1, ..., N , with μ ∼ N(. , .) and
ω ∼ Uniform(. , .), say. The data yi are a group of observations for each unit
i, and these are assumed to be generated conditionally on the corresponding

219

220 The BUGS Book

φ

θ
1

θ
Ν

...

y
1

y
Ν

...

θ
1 θ

Ν
...

y
1 y

Ν
...

θ

y
1

y
Ν

...

FIGURE 10.1

A basic hierarchical model (left), independent-parameters model (middle),
and identical-parameters model (right).

unit-specific parameter θi. This is illustrated as a directed acyclic graph in
Figure 10.1 (left). In this model, we learn about θi not only through direct
information from yi, but also through indirect information which comes from
the remaining yj : j �= i, via the population distribution, which is parame-
terised by φ.

To contrast this with the alternative assumptions alluded to above, an
“independent-parameters” assumption would involve assigning prior distri-
butions with fixed values directly to each θi (Figure 10.1, middle) — here
the information about θi comes only from yi. An “identical-parameters” as-
sumption would set θi = θ, i = 1, ..., N (Figure 10.1, right). If we denote,
collectively, the unknown parameters of the population distribution by φ,
an exchangeability assumption is an assumption of conditional independence,
given φ.

The posterior distribution for such a model is still proportional to the like-
lihood multiplied by the prior, but the prior distribution, of all unknown
parameters, is decomposed into an exchangeability assumption for the unit-
specific parameters and a prior for the population parameters:

p(θ1, ..., θN , φ) = p(φ)

N∏

i=1

p(θi|φ)

Hence the prior is “hierarchical,” that is, it is specified in “layers.” Such models
are thus generally referred to as hierarchical models, but they may also be
called multilevel ormixed effects models. The term “mixed effects” stems from
the combination of fixed effects and random effects in a “classical” statistical
model: the population mean parameters, e.g., μ, are referred to as fixed effects,
whereas the exchangeable parameters θi, i = 1, ..., N , or the corresponding
“residuals” θi − μ, i = 1, ..., N , are known as random effects. Of course, in a
Bayesian model, the population mean parameters are also, strictly speaking,
“random,” because they are assigned a prior probability distribution. Note
that a finite mixture model or latent class model (§11.6) is a special case of a

Hierarchical models 221

hierarchical model in which p(θi|φ) is a categorical distribution, so that the
units are classified into a finite number of groups.

Example 10.1.1. Bristol (continued): hierarchical model
We fit a hierarchical model to the data from Example 8.3.1 on mortality rates
from child heart surgery in English hospitals. The outlying data from Bristol are
excluded, leaving 11 hospitals.

Denote the underlying “true” mortality rates by θi, i = 1, ..., 11. The sampling
model is then given by p(y|θ) =

∏11
i=1 p(yi|θi) =

∏11
i=1 Binomial(θi, ni), where

y and θ denote {y1, ..., y11} and {θ1, ..., θ11}, respectively. If we wish to assume
that the θis are “similar” then one option is θi ∼ Beta(a, b), i = 1, ..., 11, with a
and b unknown and assigned appropriate priors. Previously when specifying beta
priors, we have simply chosen fixed values for a and b to express our uncertainty
regarding the relevant proportion parameter. However, now we are faced with
expressing uncertainty about a and b themselves, which are somewhat unintuitive.
Instead we could specify priors for the mean and standard deviation, as defined
in §5.3.1, and define a and b as deterministic functions of those. Another option
is to use a link function in combination with a normal population distribution, for
example, logit θi ∼ Normal(μ, ω2), i = 1, ..., N , with appropriate priors for μ and
ω, say. Here we use this latter option with vague uniform priors for μ and ω:

for (i in 1:11) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- logit.theta[i]

logit.theta[i] ~ dnorm(mu, inv.omega.squared)

}

inv.omega.squared <- 1/pow(omega, 2)

omega ~ dunif(0, 100)

mu ~ dunif(-100, 100)

The results are summarised in Figure 10.2, where posterior distributions for each
θi are compared with those obtained under an assumption of independence. There
are several phenomena to notice here. Firstly note that the credible intervals for
the exchangeable θis are narrower. If assuming independence, one may as well
analyse each hospital’s data independently; there is nothing to gain from simulta-
neous analysis. Under an assumption of exchangeable θis, however, each posterior
borrows strength (or precision) from the others, via their joint influence on the
estimation of the underlying population parameters. In other words, the informa-
tion about each hospital’s mortality rate is supplemented with information about
the population distribution of mortality rates. One side effect of this borrowing
of strength is that the uncertainty about mortality rates is spread more evenly
across the hospitals, as can be observed from the more uniform width of credible
intervals. Another side effect of borrowing of strength is known as “shrinkage to
the mean.” Units contribute to the estimation of the population parameters in

222 The BUGS Book

proportion to the amount of data they provide. In turn, unit-specific estimates for
units with relatively few data are supplemented more, in relative terms, by the in-
formation available on the population parameters. Because of sampling variation,
there is a tendency for unit-specific estimates, under independence, to be more
extreme when data are few. Hence the more extreme values tend to get pulled in
towards the population mean (because the data-rich units, which typically give
less extreme estimates, contribute more to locating that population mean).

0.00 0.05 0.10 0.15 0.20 0.25 0.30

2
4

6
8

10

theta[i]

ho
sp

ita
l

FIGURE 10.2

Posterior summaries for hospital-specific mortality rates (θi) from analysis of
surgery data. Ninety-five percent credible intervals and posterior medians are
shown both for hierarchical analysis, assuming exchangeable/similar θis (•),
and for independent θis (◦). The vertical dashed line represents the posterior
median population mean mortality rate.

The effects of fitting a hierarchical model, observed in Figure 10.2 above
— borrowing of strength, global smoothing of uncertainty, and shrinkage to
the mean — are general phenomena, that is, they can be observed to some
degree in all hierarchical analyses. Shrinkage to the mean can initially appear
somewhat undesirable, but it is simply the similarity assumption overriding
the effects of sampling variation. With sufficient data for a given unit, there
is negligible shrinkage.

Hierarchical models 223

10.2 Priors

10.2.1 Unit-specific parameters

In Example 10.1.1 above we allude to various options being available for the
type of population distribution specified for the unit-specific parameters θi,
i = 1, ..., N . In many settings we will want to explore whether the values of
unit-specific parameters are related to various covariates. Had we chosen a
beta population distribution in Example 10.1.1, this would have been cum-
bersome, since the underlying mean and variance must be constrained appro-
priately. It is often much easier to transform the unit-specific parameters to a
scale on which they can take any real value and then specify a normal popu-
lation distribution, say, for the transformed parameters. We may then specify
any appropriate model for the relationship between the mean and covariates
of interest, and the variance is also free to take any positive value.

Example 10.2.1. Bristol (continued): hospital-level covariate
Recalling Example 10.1.1, let xi, i = 1, ..., N , denote the observed values of
some covariate that might predict hospitals’ mortality rates, such as the typical
condition of patients who tend to be admitted. We transform to a logistic scale,
as before, and specify

logit θi ∼ Normal(μi, ω
2), μi = α+ βxi, i = 1, ..., N

for (i in 1:11) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- logit.theta[i]

logit.theta[i] ~ dnorm(mu[i], inv.omega.squared)

mu[i] <- alpha + beta*x[i]

}

with appropriate priors for α, β, and ω.

Note that whenever we apply a covariate model to unit-specific parameters,
we are making exchangeability assumptions regarding the residual differences
between the parameters and the covariate model, rather than the unit-specific
parameters themselves.

10.2.2 Parameter constraints

In many cases we will wish to impose constraints, such as positivity, on unit-
specific parameters. However, in hierarchical models the unit-specific parame-
ters have prior distributions whose parameters are also unknown. This means

224 The BUGS Book

that the tricks outlined in §9.7 for applying constraints do not work. In par-
ticular, we cannot use the I(,) construct or the auxiliary data method (see
Example 9.7.2, for example) for constraining unit-specific parameters. Fortu-
nately, there remain several basic options, as outlined below.

• Choose an appropriately constrained standard distribution: For exam-
ple, gamma or log-normal for positivity, or beta for proportion param-
eters. Of course, this has the downside that the resulting model may
be difficult to interpret, or that covariate modelling is cumbersome, as
mentioned in the previous section. One particularly awkward situation
is when a set of parameters must sum to a specific value, e.g., the prob-
abilities associated with a multinomial distribution must sum to 1. In
principle, choosing a Dirichlet prior for the probability vector ensures
that the elements always sum to 1. However, no current implementation
of BUGS allows learning about the parameters of a Dirichlet distri-
bution, which would be required if the model were hierarchical (with
unit-specific probability vectors). Fortunately, there is a workaround for
this outlined in Example 10.3.4.

• Reparameterise the model: We could choose a new set of parameters, for
which a normal population distribution (with unknown population pa-
rameters) would seem appropriate, and use these as the basis for our hi-
erarchical model. We may then “construct” the constrained parameters
from the unconstrained set. As a very simple example, which we have
already seen in Example 10.2.1, we can construct a proportion param-
eter from a normally distributed parameter by taking the inverse-logit
(or expit) transformation. A more complex example is the unit-specific
probability vectors of a multinomial distribution, alluded to above. In
this case, we could specify

φir =
exp(θir)∑p
s=1 exp(θis)

, r = 1, ..., p,

where i indexes units, r indexes the p probabilities for each unit, and the
θi vectors are assumed to arise from a p-dimensional multivariate normal
distribution. Use of this approach is also illustrated in Example 10.3.4.

• Specify a new distribution that applies the relevant constraint: This can
be achieved in WinBUGS using the WinBUGS Development Interface
(WBDev — see § 12.4.8). Thus a truncated distribution, say, can be
specified for the unit-specific parameters in such a way that the normal-
ising constant is fully accounted for in computing the full conditional
distributions of the population parameters. This can also be achieved
via the “ones” or “zeros” trick (§9.5). Although these make use of aux-
iliary data, they work correctly as long as the new distribution is fully
specified, including any normalising constants, say.

Hierarchical models 225

10.2.3 Priors for variance components

Although, ostensibly, we have numerous options in terms of specifying a prior
for the variance of unit-specific parameters, we must be careful, if attempting
to be vague relative to the data, that our choice does not influence the result-
ing posterior too much, or even render it improper. Improper posteriors can
be avoided by ensuring that the prior is proper, but an apparently vague prior
for a random effects variance component, even if proper, can have undesirable
consequences. There is rarely an issue with the residual variance, because
the likelihood contribution from the observed data will invariably support
values for the residual variance well away from zero, but variances of unob-
served parameters require considerable care. Obvious choices include proper
approximations to the Jeffreys prior: either the conjugate gamma prior on the
precision scale, ω−2 ∼ Gamma(ε, ε) with ε small, or the uniform prior on the
log standard deviation scale, logω ∼ Uniform(−A,A) with A large. However,
the resulting posteriors can be very sensitive to choices of ε and A. As ε tends
away from 0 and A tends away from ∞, the prior becomes inappropriately
biased away from ω = 0 (Gelman, 2006) when we usually want to allow for
the possibility of no between-group variability. Note that σ−2 ∼ Gamma(ε, ε)
is less problematic as a prior for a sampling variance σ2, where zero variance
is usually implausible.

Instead, Gelman (2006) recommends using a uniform prior on the scale of
the standard deviation, over a large (or semi-infinite) range, or a half-normal
distribution with large variance. When a more informative prior is required,
Gelman (2006) recommends working with the half-t family of distributions,
including the half-Cauchy as a special case. The half-Cauchy is a non-standard
distribution in BUGS, but it can be specified by noting that if z is a normal
random variable with mean zero and standard deviation B, and γ is a χ2

1

random variable, then z/
√
γ is Cauchy distributed, with location zero and

scale B, e.g.

omega <- abs(z)/sqrt(gamma)

z ~ dnorm(0, inv.B.squared)

inv.B.squared <- 1/pow(B, 2)

gamma ~ dgamma(0.5, 0.5)

gives a half-Cauchy distribution for ω. The scale B is the median of the
half-Cauchy distribution, which means that prior beliefs are easily expressed.
Half-Cauchys also assign considerable weight to the value zero and have very
heavy tails, which means that both zero and large random-effects variances
(ω2) can be accommodated if the likelihood is indicative of such. We will
revisit the half-Cauchy in §10.4.

Covariance matrices In multivariate settings, i.e. when there are multi-
ple unit-specific parameters for each unit — see Example 10.3.2 — we may

226 The BUGS Book

extend the above ideas to prior specification for the variance of each set of ran-
dom effects. We may, additionally, wish to estimate the covariances between
each pair of random effects. The variance-covariance matrix must always be
positive-semidefinite, however, and this is not a straightforward constraint to
apply. A Wishart(R, k) prior for the precision matrix, where R and k denote
inverse-scale matrix and degrees of freedom, respectively, ensures positive-
semidefiniteness, but can lead to sensitivity, as in the case of its univariate,
gamma counterpart. The least informative, proper Wishart prior, obtained
by setting k equal to the number of parameters, is actually not that unin-
formative, especially as the number of parameters increases, although it will
usually suffice. In light of this, it is advisable, whether attempting to be infor-
mative or not, to set R equal to k multiplied by some prior guess at the value
of the between-unit covariance matrix, since the prior mean of the precision
matrix is given by kR−1. If attempting to be informative, Wishart priors are
somewhat restrictive, since once the mean is set, the level of uncertainty is
controlled by k alone. Hence choosing k to match prior beliefs for one param-
eter may lead to implausible values for others. O’Malley and Zaslavsky (2005)
propose a more flexible, scaled inverse-Wishart prior for covariance matrices.
The reader is referred to Gelman and Hill (2007), pp. 284–287, 376–380, for
further discussion including how to implement such priors in BUGS. Other
alternative priors tend to be parameterised in terms of decompositions such
as the spectral or Cholesky decomposition. Barnard et al. (2000) propose de-
composing the covariance matrix into a vector of standard deviations and a
correlation matrix, with (typically) independent priors. This is particularly
attractive because specifying priors for standard deviations and correlations
is relatively intuitive. The correlation matrix is required to be positive defi-
nite, but the authors present methods for ensuring this. BUGS is yet to be
equipped with such specialised sampling tools, however.

For low-dimensional problems, multivariate-normal random-effects distribu-
tions might be best specified in terms of conditional distributions, for example,

(
θi1
θi2

)

∼ MVN2

((
μ1

μ2

)

,

(
ω2
1 ρω1ω2

ρω1ω2 ω2
2

))

is equivalent to

θi1 ∼ Normal(μ1, ω
2
1),

θi2|θi1 ∼ Normal

(

μ2 +
ω2

ω1
ρ(θi1 − μ1), (1 − ρ2)ω2

2

)

. (10.1)

Any prior that constrains ω1 > 0, ω2 > 0, and 0 ≤ ρ < 1 is then permissible.
Some ways of modelling correlations among multivariate spatially correlated
quantities are discussed in §11.3.

Hierarchical models 227

10.3 Hierarchical regression models

The exchangeability ideas discussed above are easily extended to regression
analysis. This is illustrated in the following examples, both of which specify
a Generalised Linear Mixed Model (GLMM) – a GLM in which the linear
predictor contains random effects (Breslow and Clayton, 1993). Use of non-
linear forms for the regression function is also handled straightforwardly, as
illustrated in Example 10.4.1.

Example 10.3.1. Salmonella (continued): hierarchical model
We first return to the “salmonella” example of §6.5. Initially we modelled the
data as arising from a Poisson distribution as follows:

yij ∼ Poisson(μi), logμi = α+ β log(xi + 10) + γxi, i = 1, ..., 6, j = 1, ..., 3,

but the model was incapable of predicting the level of variability apparent in the
observed data. One option was to fit a negative binomial model instead (see Ex-
ample 6.5.2). Another option is to allow the log-mean of the Poisson distribution
to be “adjusted” by some amount, λij , say, for each observation:

yij ∼ Poisson(μij), logμij = α+ β log(xi + 10) + γxi + λij .

By allowing the mean to vary on an observation-by-observation basis, more vari-
ability can be accounted for. We might think it reasonable now to assume the λijs
are similar/exchangeable. Hence λij ∼ Normal(μλ, ω

2
λ), i = 1, ..., 6, j = 1, ..., 3,

except that estimation of μλ would be confounded with that of α, and so we set
μλ = 0 and specify a prior for ωλ only, e.g., ωλ ∼ Uniform(0, 100). The BUGS
code for this model and predictive distributions for the number of colonies at each
dose is

for (i in 1:6) {

for (j in 1:3) {

y[i,j] ~ dpois(mu[i,j])

log(mu[i,j]) <- log.fit[i] + lambda[i,j]

lambda[i,j] ~ dnorm(0, inv.omega.lambda.squared)

}

log.fit[i] <- alpha + beta*log(x[i] + 10)

+ gamma*x[i]

log(fit[i]) <- log.fit[i]

y.pred[i] ~ dpois(mu.pred[i])

log(mu.pred[i]) <- log.fit[i] + lambda.pred[i]

lambda.pred[i] ~ dnorm(0, inv.omega.lambda.squared)

}

alpha ~ dnorm(0, 0.0001)

228 The BUGS Book

beta ~ dnorm(0, 0.0001)

gamma ~ dnorm(0, 0.0001)

omega.lambda ~ dunif(0, 100)

inv.omega.lambda.squared <- 1/pow(omega.lambda, 2)

0 200 400 600 800 1000

0
20

40
60

80

dose

no
. o

f c
ol

on
ie

s

FIGURE 10.3

Posterior median model fit (—), 95% credible intervals (−−), and 95% pre-
diction intervals (.....) from hierarchical regression analysis of salmonella data.

The model fit and predictive intervals are shown in Figure 10.3. Note that, in
order to generate unit-specific predictions in a hierarchical model, it is necessary
to also generate a predicted random effect (lambda.pred[i] in this case) —
this is known as “mixed prediction” or “mixed replication” (see §10.7 and Fig-
ure 10.8). Posterior summaries for the main parameters are given in the table
below. Note that the model fit and parameter estimates are very similar to those
previously obtained from the negative binomial model – see Example 6.5.2. A
quantitative measure of the model fit is given by the posterior mean deviance in
the table below (110.6). Corresponding figures for the non-hierarchical Poisson
model and the negative binomial model are 139.3 and 130.8, respectively. Clearly
the hierarchical model fits better, but is the improved fit worth the expense of
19 additional parameters (ωλ and one λij for each observation)? Note, however,
that the random effects λij do not count, collectively, as 18 “whole” parameters,
due to the correlation among them induced by the exchangeability assumption.
To determine the “effective” number of parameters we can calculate DIC, which
gives pD = 13.4, meaning that the random effects count as ∼10 parameters. In
the non-hierarchical Poisson and negative binomial models, 3 and 4 parameters
are used, respectively. Adding posterior mean deviance and the effective number
of parameters gives the DIC for each model: 124, 142, and 135 for the hierarchi-
cal Poisson, non-hierarchical Poisson, and negative binomial models, respectively,
suggesting that the hierarchical Poisson model is superior. We note that the

Hierarchical models 229

hierarchical Poisson and the negative binomial both can be considered as deal-
ing with extra-Poisson variability and will generally give very similar inferences.
Both give similar inferences for the regression parameters. However, as detailed
in §10.8.1, we might expect somewhat different deviances, as they have a different
“focus” (see §10.8.1), just as a t distribution has a different deviance depending
on whether it is expressed directly or as a scale mixture of normals (§8.2). As we
are only interested in the regression coefficients, not the random effects, in this
case the negative binomial model may be favoured in spite of the lower DIC in
the hierarchical Poisson model.

node mean sd MC error 2.5% median 97.5% start sample
alpha 2.147 0.3758 0.01461 1.384 2.152 2.881 1001 100000
beta 0.3173 0.1026 0.004063 0.1168 0.3166 0.5267 1001 100000
deviance 110.6 6.065 0.02823 100.7 109.9 124.3 1001 100000
gamma -9.96E-4 4.612E-4 1.601E-5 -0.001936 -9.912E-4 -8.523E-5 1001 100000
omega.lambda 0.2813 0.0836 9.769E-4 0.1438 0.2719 0.4726 1001 100000

Example 10.3.2. Hepatitis B immunisation
Hepatitis B (HB) is endemic in Africa. This example concerns a program of
childhood vaccination introduced in Gambia. The effectiveness of the program
depends on the duration of immunity afforded by vaccination. Our dataset comes
from a study in which 106 children were immunised against HB and followed
up. The level of immunity is measured by a quantity known as anti-HB titre.
This was measured at the time of vaccination (baseline) and on either two or
three follow-up occasions for each child. We wish to construct a model useful for
predicting an individual child’s protection against HB after vaccination. A similar
study in Senegal (Coursaget et al., 1991) found that anti-HB titre is proportional
to the reciprocal of time since vaccination, and so we work on the basis that the
relationship between log-anti-HB-titre and log-time-since-vaccination should be
approximately linear. The raw data are depicted in Figure 10.4; the observations
for each child are joined by straight lines. We use the baseline log-titre as a
covariate since this will be available for a given new individual, and it clearly
gives an indication of subsequent titre values. Let y0i and yij denote the log-
baseline and jth follow-up log-titre measurement, respectively, for individual i. In
addition, let tij denote the log-time to which yij corresponds. Specification of a
non-hierarchical model might begin

yij ∼ Normal(ψij , σ
2), ψij = α+ β(tij − t) + γ(y0i − y0),

where t and y0 denote the empirical means of the tijs and y0is, respectively.
We might, however, think it unrealistic to assume the same intercept and slope
for all individuals. We can assume instead that different individuals have distinct
intercepts and slopes, but that all slopes and all intercepts are similar/related.
For example,

ψij = αi + βi(tij − t) + γ(y0i − y0),

αi ∼ Normal(μα, ω
2
α), βi ∼ Normal(μβ , ω

2
β),

230 The BUGS Book

with μα, ωα, μβ , and ωβ assigned appropriate priors. Another option is to make
a multivariate exchangeability assumption, which allows for correlation between
intercepts and slopes — an individual with a large intercept might be more likely
to have a small slope, say. For example, we might assume that each pair (αi, βi)
arises from a bivariate normal population distribution with unknown population
mean vector and unknown population covariance matrix. We might specify this
directly, assuming multivariate normal and inverse-Wishart priors for the mean
and covariance, respectively, or indirectly via conditional distributions as in (10.1).
(Note that it is not feasible to estimate a distinct γi for each individual, as there
is only one baseline measurement.) We will return to this example shortly, after
discussing how the data might be formatted.

FIGURE 10.4

Raw hepatitis B data: log anti-HB titre vs log time since vaccination. Each
child’s data are joined together by straight lines.

10.3.1 Data formatting

Hierarchical models are invariably used for fitting data from multiple “units.”
The fact that those units generally do not provide the same amount of data
presents somewhat of a data formatting problem for BUGS. The natural thing
to do would be to specify hierarchical data in a matrix, with each row com-

Hierarchical models 231

prising a specific unit’s data. Such a matrix would be what we call a “ragged
array,” due to each row having a different length. We can only specify regular
arrays in BUGS, as described in §12.4.2, and so here we present the various
options available.

1. “Pad out” the ragged array with missing values, so that it becomes
regular.We first choose a maximum row length corresponding to the unit
with the most data and fill in the missing values with NAs. The model
is then specified as if the data were balanced, as illustrated in the next
example, and the missing values are “imputed” from their predictive
distributions (see §9.1). This has no impact on the inferences themselves,
but can create a lot of unnecessary computation and can be cumbersome
to set up, especially if the data are very imbalanced. Hence we present
two further alternatives.

• Firstly, format the entire dataset as a single vector, with data from each
unit forming contiguous elements and units arranged one after another,
and then either:

2. construct a vector of indices at which each unit’s data starts in the
data vector. This is called the “offsets” approach and is illustrated
in the example below. Or,

3. construct a vector of the same length as the data vector which
specifies the unit to which each observation corresponds. We may
then use the “nested indexing” feature of BUGS, which, again, is
illustrated below.

Example 10.3.3. Hepatitis B (continued)
The follow-up HB data form a ragged array, as shown in the table below. In
this example we illustrate three different approaches to specifying a hierarchical
regression model.

Child log-titre yij log-time tij
1 4.997 8.028 6.541 6.963
2 6.830 4.905 6.295 5.841 6.529 6.982
3 3.951 4.356 7.026 10.00
4

Method 1, “padding out”:

for (i in 1:N) {

for (j in 1:3) {

y[i,j] ~ dnorm(psi[i,j], inv.sigma.squared)

psi[i,j] <- alpha[i] + beta[i]*(t[i,j] - tbar)

232 The BUGS Book

+ gamma*(y0[i] - y0bar)

}

alpha[i] ~ dnorm(mu.alpha, inv.omega.alpha.squared)

beta[i] ~ dnorm(mu.beta, inv.omega.beta.squared)

}

list(N = 106,

y = structure(

.Data = c(4.997,8.028,NA,6.830,4.905,6.295,3.951,4.356,NA,...),

.Dim = c(106, 3)),

t = structure(

.Data = c(6.541,6.963,0,5.841,6.529,6.982,7.026,10.00,0,...),

.Dim = c(106, 3)), ...)

Note that we can specify any appropriate log-time for the missing data, in this
case 0, since the missing values themselves are of no interest.

Method 2, “offsets”:

for (i in 1:N) {

for (j in offset[i]:(offset[i+1]-1)) {

y[j] ~ dnorm(psi[j], inv.sigma.squared)

psi[j] <- alpha[i] + beta[i]*(t[j] - tbar)

+ gamma*(y0[i] - y0bar)

}

alpha[i] ~ dnorm(mu.alpha, inv.omega.alpha.squared)

beta[i] ~ dnorm(mu.beta, inv.omega.beta.squared)

}

list(N = 106,

y = c(4.997,8.028,6.830,4.905,6.295,3.951,4.356,...),

t = c(6.541,6.963,5.841,6.529,6.982,7.026,10.00,...),

offset = c(1,3,6,8,...), ...)

Note that the length of offset[] must be N+1, with offset[N+1] = Nobs +

1, where Nobs is the total number of observations.

Method 3, “nested indexing”:

for (j in 1:Nobs) {

y[j] ~ dnorm(psi[j], inv.sigma.squared)

psi[j] <- alpha[child[j]] + beta[child[j]]*(t[j] - tbar)

+ gamma*(y0[child[j]] - y0bar)

}

Hierarchical models 233

for (i in 1:N) {

alpha[i] ~ dnorm(mu.alpha, inv.omega.alpha.squared)

beta[i] ~ dnorm(mu.beta, inv.omega.beta.squared)

}

list(N = 106, Nobs = 288,

y = c(4.997,8.028,6.830,4.905,6.295,3.951,4.356,...),

t = c(6.541,6.963,5.841,6.529,6.982,7.026,10.00,...),

child = c(1,1,2,2,2,3,3,...), ...)

For this example, because there is a maximum of only three observations per child,
we used the “padding out” method and specified vague Normal(0, 1002) priors
for μα, μβ , and γ, Uniform(0, 100) priors for ωα and ωβ , and a Uniform(−10, 10)
prior for log σ. To specify a bivariate exchangeability assumption instead, we could
replace the definitions of alpha[i] and beta[i] in the examples above with

alpha[i] <- theta[i,1]

beta[i] <- theta[i,2]

theta[i,1:2] ~ dmnorm(mu[], inv.Omega[,])

and specify priors for mu[] and inv.Omega[,] via, for example,

mu[1:2] ~ dmnorm(m[], T[,])

Omega.inv[1:2,1:2] ~ dwish(R[,], k)

with appropriate values for m, T , R, and k, e.g., m = (0, 0)′, T = 100−2I2, R =
ks2I2, and k = 2, where s is some guess at the between-child standard deviation
of regression coefficients, and I2 is the 2×2 identity matrix. Alternatively, we could
specify bivariate normal random effects indirectly via conditional distributions:

for (i in 1:N) {

alpha[i] ~ dnorm(mu.alpha, inv.omega.alpha.squared)

beta[i] ~ dnorm(mean.beta, prec.beta)

}

mean.beta <- mu.beta + omega.beta*rho*

(alpha[i] - mu.alpha)/omega.alpha

prec.beta <- inv.omega.beta.squared/(1 - pow(rho, 2))

with, for example,

mu.alpha ~ dnorm(0, 0.0001); mu.beta ~ dnorm(0, 0.0001)

omega.alpha ~ dunif(0, 100); omega.beta ~ dunif(0, 100)

rho ~ dunif(0, 1)

The resulting posterior distributions, assuming univariate exchangeability, are
summarised and compared with those from the equivalent non-hierarchical model
in the table below.

234 The BUGS Book

Hierarchical model Non-hierarchical model
Parameters Posterior Parameters Posterior

median (95% interval) median (95% interval)
μα 6.14 (5.84, 6.43) α 6.13 (5.94, 6.33)
μβ −1.08 (−1.34, −0.796) β −1.05 (−1.48, −0.608)
γ 0.671 (0.504, 0.837) γ 0.674 (0.561, 0.787)
σ2 0.987 (0.791, 1.23) σ2 2.98 (2.54, 3.54)
ω2
α 2.02 (1.46, 2.82)
ω2
β 0.0726 (3.64E-4, 0.608)

DIC 912 DIC 1136
pD 98.4 pD 4.03

First, note the strong agreement for the intercept and slope parameters be-
tween the hierarchical and non-hierarchical models. This might be expected but
is largely due to the linear nature of both models — fitting a straight line through
the pooled data gives the same result as averaging parameters after fitting a
straight line to each individual. If the model were nonlinear, this would be un-
likely to occur. Second, note how the residual variability has been reduced from
around 3 to around 1: this suggests that allowing for variation in child-specific
αs and βs explains approximately two thirds of the initially unexplained variance.
Note also that the vast majority of variability between individuals is between inter-
cepts rather than slopes. Indeed, we might have expected this, given the apparent
similarity of individual slopes in Figure 10.4. The DIC figures show that the hier-
archical model is vastly superior, even after taking account of an additional ∼94
(effective) parameters. The actual number of parameters used in the hierarchical
model is 218, including 212 random effects. This suggests that each random effect
is worth less than half a parameter.

Example 10.3.4. Students’ goals: hierarchical categorical/multinomial models
Four hundred and seventy eight students in grades 4–6 (aged 7–13) from 9 schools
in Michigan, USA were asked whether good grades, popularity, or sporting ability
was most important to them (Chase and Dummer, 1992). Summarising the data,
52% of the 227 boys in the study and 52% of the 251 girls chose good grades.
The difference between boys and girls appears in their preference for sports versus
popularity — while 26% of boys preferred sports (22% popularity), 36% of girls
chose popularity (12% sports).

We use Bayesian models to quantify uncertainty about the underlying probabil-
ities and how they differ between girls and boys, and between schools. We model
the response Goals for each student i as a categorical outcome with probabilities
pik, where k =1,2,3 indicates sporting ability, popularity, or grades, respectively.
Using nested indexing, the variable School[i] is an integer from 1 to nschool=9.
Gender[i] is 1 for a boy and 0 for a girl.

Hierarchical models 235

Dirichlet/gamma model First, ignoring gender effects for illustration, we
might model between-school variations in these probabilities by assuming the
probabilities are a constant vector pj for each student in school j, and model
pj ∼ Dirichlet(α) (see §7.2). However, no current implementation of BUGS al-
lows inference on the parameters of a Dirichlet distribution ddirch. A convenient
workaround is to exploit the relation between the Dirichlet and gamma distribu-
tions (Appendix C.4) — if pjk = qjk/

∑
k qjk and qjk ∼ Gamma(αk, 1), then the

vector pj ∼ Dirichlet(α). Thus the school-specific probabilities in the following
hierarchical model are drawn from a Dirichlet distribution with parameters a[].

for (i in 1:npupil) {

Goals[i] ~ dcat(p[School[i],])

}

for (j in 1:nschool) {

for (k in 1:3) {

p[j,k] <- q[j,k]/sum(q[j,])

q[j,k] ~ dgamma(a[k], 1)

}

}

for (k in 1:3) {

a[k] ~ dgamma(1, 0.001)

p.pop[k] <- a[k]/sum(a[]) # population mean of p[,k]

}

However, the resulting chains fail to converge in this example due to high posterior
correlations between the three a[k].

Multinomial logistic models Convergence can be achieved using a multinomial
logistic model, as in §7.2.3, with log(qjk) ∼ N(μj , σ

2) for k = 1, 2 and log(qjk) =
1 for the baseline category k = 3 (a preference for good grades, the commonest
outcome). The parameters μ1, μ2, and σ

2 express the mean preferences and their
variability between schools in a different way and have lower posterior cross-
correlations than the Dirichlet parameters a[]. We use this model to investigate
the difference between girls and boys as well as between schools.

Three variants are used, which all include gender effects. We estimate a pos-
terior distribution for or.boy — the odds ratio of preferring sport for a boy
compared to a girl — under each model, assuming this effect is common between
schools. The probabilities of each other choice are transformed to log-odds rela-
tive to choosing good grades, k = 3. In the first model, for example, b[1] and
b[2] are the log odds of sports and popularity, respectively, compared to grades,
for a girl.

No difference between schools
for (i in 1:npupil) {

Goals[i] ~ dcat(p[i,])

for (k in 1:3) {

236 The BUGS Book

p[i,k] <- q[i,k]/sum(q[i,])

log(q[i,k]) <- a[i,k]

}

a[i,1] <- b[1] + b.boy*Gender[i]

a[i,2] <- b[2]

a[i,3] <- 0

}

b[1] ~ dnorm(0, 0.0001)

b[2] ~ dnorm(0, 0.0001)

b.boy ~ dnorm(0, 0.0001)

or.boy <- exp(b.boy)

Boys are significantly more likely than girls to prefer sporting ability. The
posterior median odds ratio is 2.67, the 95% credible interval is (1.67, 4.36),
and the DIC for model comparison (§8.6.4) is 961.

Independent school effects As above, but with

a[i,1] <- b[School[i], 1] + b.boy*Gender[i]

a[i,2] <- b[School[i], 2]

a[i,3] <- 0

}

for (j in 1:nschool) {

b[j,1] ~ dnorm(0, 0.0001)

b[j,2] ~ dnorm(0, 0.0001)

}

A DIC of 956 suggests that allowing for differences between schools im-
proves the model. This also modifies the gender odds ratio, since there are
also some differences between schools in the proportion of boys and girls in
the data — the posterior median is now 2.96 (1.78, 5.01).

Hierarchical school effects As above, but replacing the independent vague nor-
mal priors on the log odds of sport and of popularity for girls for each school
by a bivariate normal exchangeable prior, parameterised using conditional
distributions, as described in §10.2.3.

for (j in 1:nschool) {

b[j,1] ~ dnorm(mu[1], tau[1])

mub2[j] <- mu[2] + s[2]/s[1]*cor*(b[j,1] - mu[1])

b[j,2] ~ dnorm(mub2[j], taub2)

}

vb2 <- (1 - cor*cor)*v[2]

tau[1] <- 1/v[1]

taub2 <- 1/vb2

for (k in 1:2) {

Hierarchical models 237

mu[k] ~ dnorm(0, 0.0001)

v[k] <- s[k]*s[k]

s[k] ~ dunif(0, 100)

}

cor ~ dunif(0, 1)

A DIC of 951 suggests that allowing exchangeable school effects improves the
model even further. We are “borrowing strength” from other schools to estimate
each school’s effect — this model assumes they are not entirely the same, but
neither are they entirely unrelated. The increase in the odds of preferring sports
for a boy compared to a girl now has a posterior median of 2.86 (1.75, 4.76).

In Figure 10.5, the school and gender-specific estimated probabilities of pre-
ferring sports, under the independent and hierarchical models, are compared with
the raw proportions observed to prefer sports. For schools with few children in
the data (e.g., Elm with only 5 boys and 16 girls), both of the models produce
more stable estimates which borrow information from the rest of the data. In
the hierarchical model, the school-specific probabilities are shrunk towards the
global average. Uncertainty about the probabilities is expressed as 95% credible
intervals.

10.4 Hierarchical models for variances

In the Hepatitis B model of Example 10.3.2 we assumed that all residuals
have a common variance. However, it is reasonable to suspect that residual
variances for different units might differ. It also seems reasonable to suppose
that, although different, these variances are similar in some sense, and so
we may wish to assume they are exchangeable. One approach would be to
model the log-standard deviations as arising from a normal population dis-
tribution, with unknown mean and variance. Another option, which allows
standard deviations to be modelled on the natural scale, is to assume they
arise from a half-Cauchy population distribution, with unknown scale param-
eter. This latter option is a natural model in cases where some variances may
be outlying. It also facilitates the specification of prior beliefs, since the only
parameter represents the population median standard deviation. Both of these
approaches are illustrated in the following example, which also demonstrates
the ease with which hierarchical regression models are extended from linear,
as in Example 10.3.2, to nonlinear.

238 The BUGS Book

Probability that a boy prefers sports

0.0 0.2 0.4 0.6

Elm

Brentwood Elementary

Brentwood Middle

Ridge

Sand

Brown Middle

Main

Portage

Westdale Middle

Probability that a girl prefers sports

0.0 0.2 0.4 0.6

Hierarchical model
Independent effects model
Raw proportions

FIGURE 10.5

Probabilities of preferring sports achievement to popularity or grades, for stu-
dents in nine schools: posterior medians and 95% credible intervals. Plot sym-
bols are scaled in proportion to the number of students in the school/gender.

Example 10.4.1. Cadralazine: hierarchical model for variances
Ten cardiac failure patients were each given a 30 mg intravenous bolus dose of
cadralazine. The data comprise plasma drug concentrations (mg/L) measured at
various times between 2 and 32 hours post dose. Let yij denote the jth con-
centration measurement, taken at time tij , for individual i (there are around
six observations for each individual). The time-course of many drugs, following
intravenous input, can be modelled as an exponential decay, as follows:

yij ∼ Normal(ψij , σ
2
i), ψij =

D

Vi
exp(−CLi

Vi
tij),

where D denotes the dose (30 mg), and CLi and Vi denote patient-specific pa-

Hierarchical models 239

rameters known as the clearance and volume of distribution, respectively. Note
that we are now assuming residuals from different individuals have different vari-
ances σ2

i . Both the clearance and volume must be positive and so the following
exchangeability assumption is appropriate for these patient-specific parameters:

θi = (logCLi, log Vi)
′ ∼ MVN2(μ,Ω), i = 1, ..., 10,

with appropriate priors for μ and Ω:

μ ∼ MVN2

((
log 2.9
log 15

)

,

(
1002 0
0 1002

))

, Ω−1 ∼ Wishart

((
0.08 0
0 0.08

)

, 2

)

,

which are vague but represent prior guesses that clearance and volume are 2.9 L/hr
and 15 L, respectively, and that their coefficients of variation throughout the
population are around 20% (0.08 = 2 × 0.22). For the patient-specific residual
standard deviations, we could log-transform and assume a normal population
distribution:

log σi ∼ Normal(μσ, ω
2
σ), i = 1, ..., 10,

with μσ ∼ Normal(0, 1002) and ωσ ∼ Uniform(0, 100), say. Alternatively, an
appropriate model on the natural scale would be

σi ∼ half-Cauchy(B), i = 1, ..., 10,

where B is the population median residual standard deviation. We can be vague
about B, e.g., B ∼ Uniform(0, 100), but the parameter’s direct interpretability
means that it is straightforward to be informative. BUGS code for the vague
half-Cauchy model is as follows:

for (i in 1:10) {

for (j in offset[i]:(offset[i+1]-1)) {

y[j] ~ dnorm(psi[j], inv.sigma.squared[i])

psi[j] <- D*exp(-CL[i]*time[j]/V[i])/V[i]

}

CL[i] <- exp(theta[i, 1])

V[i] <- exp(theta[i, 2])

theta[i, 1:2] ~ dmnorm(mu.theta[], inv.Omega[,])

sigma[i] <- abs(z[i])/sqrt(gamma[i])

z[i] ~ dnorm(0, inv.B.squared)

gamma[i] ~ dgamma(0.5, 0.5)

inv.sigma.squared[i] <- 1/pow(sigma[i], 2)

}

inv.B.squared <- 1/pow(B, 2)

B ~ dunif(0, 100)

mu.theta[1:2] ~ dmnorm(m[], T[,])

inv.Omega[1:2, 1:2] ~ dwish(R[,], k)

Omega[1:2, 1:2] <- inverse(inv.Omega[,])

240 The BUGS Book

The advantage of the log-normal population distribution is that it facilitates mod-
elling the residual variation as a function of covariates. The heavy tails of the
half-Cauchy distribution, on the other hand, allow for outlying individuals with
relatively large residuals, which arise frequently in these types of model due to it
being difficult to fit every individual’s data equally well. Note also that the half-
Cauchy accommodates the possibility of variances very close to zero for some
units. The Cauchy’s heavy tails result in less shrinkage to the population mean,
as demonstrated in Figure 10.6.

sigma (log-normal)(a)

 0.0

 0.1

 0.2

 0.3

 0.4

sigma (half-Cauchy)(b)

 0.0

 0.1

 0.2

 0.3

 0.4

sigma (independent)(c)

 0.0

 0.1

 0.2

 0.3

 0.4

FIGURE 10.6

Posterior summaries for each σi, i = 1, ..., 10, from analysis of cadralazine data
assuming: (a) log-normal exchangeability, (b) half-Cauchy exchangeability,
(c) independence. In (a) and (b) the horizontal line is the posterior-mean
population-median residual-standard-deviation.

10.5 Redundant parameterisations

Various authors (e.g., Gelman and Hill (2007), Chapter 19) have sug-
gested deliberately overparameterising hierarchical models to improve con-
vergence/mixing. Supposing θi ∼ Normal(μ, ω2), i = 1, ..., N , say, which can
be rewritten as θi = μ + αi, αi ∼ Normal(0, ω2), i = 1, ..., N , then the basic
idea is to replace each αi with ξηi, ηi ∼ Normal(0, ω2

η). The ηis and ξ are then
not identifiable, although their products, αi, i = 1, ..., N , are. Moreover, mix-
ing for the identifiable parameters is improved, as illustrated in the following
example, which demonstrates only a mild effect; in some cases the effect may
be quite dramatic.

Hierarchical models 241

Example 10.5.1. Bristol (continued): overparameterisation
Returning to the surgery data of Example 10.1.1, we wish to replace the spec-
ification logit θi ∼ Normal(μ, ω2) with logit θi = μ + ξηi, ηi ∼ Normal(0, ω2

η).
A natural prior for ξ would be ξ ∼ Normal(0, vξ). However, since ωη, the scale
of the ηis, is unknown, we can without loss of generality set vξ = 1. Note that
ωη = ω/|ξ|.

for (i in 1:11) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- mu + eta[i]*xi

eta[i] ~ dnorm(0, inv.omega.eta.squared)

}

inv.omega.eta.squared <- 1/pow(omega.eta, 2)

omega.eta <- omega/abs(xi)

xi ~ dnorm(0, 1)

omega ~ dunif(0, 100)

mu ~ dunif(-100, 100)

History plots for θ1 over the first 4000 iterations are shown in Figure 10.7 and
show considerably better mixing in the overparameterised version.

theta[1]

iteration
1 1000 2000 3000 4000

(a)

 0.05
 0.1

 0.15
 0.2

 0.25

theta[1] (overparameterised)

iteration
1 1000 2000 3000 4000

(b)

 0.05
 0.1

 0.15
 0.2

 0.25

FIGURE 10.7

History plots for θ1 from analysis of surgery data using: (a) standard model
as described in Example 10.1.1, (b) overparameterised model.

242 The BUGS Book

10.6 More general formulations

Throughout this chapter we have dealt with hierarchical models compris-
ing three levels: (i) a likelihood conditional on unit-specific parameters, (ii)
exchangeability assumptions (population distributions) for the unit-specific
parameters (or their departures from some covariate model), and (iii) prior
distributions for the population parameters, also referred to as hyperparame-
ters. There is, of course, no reason to stop us considering models with more
levels. The appropriate number of levels is governed by the structure of the
data under consideration (and is usually obvious). For example, we might be
interested in modelling the outcome of children’s exams at school, with obser-
vations on different children, within different schools, in different geographical
areas, in different countries, with repeated observations on each child. After
controlling for important covariates, we may wish to make the following sub-
jective judgements, thus formulating a six level model: that exam results for
the same child are correlated; that the performances of children within the
same school are correlated; that schools within the same geographical area are
correlated; that geographical areas within the same country are correlated;
that different countries are all similar in some sense; and that the parame-
ters of the “population distribution” from which different countries arise are
unknown with appropriate priors.

An m-level hierarchical model is typically formulated by assuming observa-
tions or unknown parameters at one level are conditionally independent, given
the parameters at the next level. If there is no next level, then a prior distri-
bution for the parameters of the current level is specified. In general, given
data y, we define a likelihood p(y|θ) and then specify a prior distribution for
θ via a series of structural judgements:

p(θ) =

∫ ∫
...

∫
p(θ|φ2)p(φ2|φ3)...p(φm−1) dφ2dφ3...dφm−1,

where φk, k = 2, ...,m− 1, are referred to as the “hyperparameters of level k”
(or just “hyperparameters” when k = m− 1). The structural judgements are
usually exchangeability assumptions, but other types of assumption are also
possible, such as spatial correlation — see §11.3.

10.7 Checking of hierarchical models

We have seen in Chapter 8 that model checking is ideally carried out in a
true predictive, or cross-validatory, framework where parts of the data, say
yi, are removed and predicted from the remainder. This is represented for

Hierarchical models 243

hierarchical models in Figure 10.8, which shows that in order to predict a
replicate yrepi it is necessary to also generate a replicate random effect θrepi :
this is known as “mixed replication.”

φ

θ
i

rep θ
\i

y
i

rep y
\i

y
i

T
i

obsT
i

rep

σ2

FIGURE 10.8

Cross-validatory “mixed” replication of random effects θi and data yi in a
hierarchical model, where φ are the parameters of the random effects distri-
bution and σ2 is the observation-level variance. Data point yi is left out and
predicted using a model fitted to the remaining data y\i. The bold black arrow
indicates a logical function. The double-edged nodes represent quantities to
be compared in order to assess divergence.

Example 10.7.1. Bristol (continued): cross-validatory check of random effects
model
We consider the Bristol data, including all 12 hospitals, as listed in Example 8.3.1,
but adopting the random effects model used previously (Example 10.1.1) on the
11 hospitals excluding Bristol.

for (i in 2:N) {

y[i] ~ dbin(theta[i], n[i])

logit(theta[i]) <- logit.theta[i]

logit.theta[i] ~ dnorm(mu, inv.omega.squared)

}

inv.omega.squared <- 1/pow(omega, 2)

omega ~ dunif(0, 10)

mu ~ dunif(-10, 10)

Mixed predictions of centre 1:

244 The BUGS Book

generate replicate log-odds:

logit.theta1.cv ~ dnorm(mu, inv.omega.squared)

logit(theta1.cv) <- logit.theta1.cv

generate replicate deaths:

y1.cv ~ dbin(theta1.cv, n[1])

use mid p-value:

P.mixed <- step(y1.cv - y[1] - 0.00001)

+ 0.5*equals(y1.cv, y[1])

node mean sd MC error 2.5% median 97.5% start sample

P.mixed 0.00165 0.03965 4.267E-4 0.0 0.0 0.0 1001 10000

omega 0.1996 0.1132 0.004138 0.01784 0.1857 0.4557 1001 10000

y1.cv 16.77 5.38 0.06203 7.0 16.0 28.0 1001 10000

The cross-validatory predictive distribution for the number of deaths in Bristol
has median 16 and 95% interval 7 to 28, compared to the observed value of 41.
Bristol is therefore a clear outlier, with a one-sided p-value of around 0.002. The
between-hospital SD ω (excluding Bristol) has posterior mean 0.20.

Cross-validation is time consuming and, as described in Chapter 8, is gen-
erally replaced by generating replicate data from the posterior distribution
of the parameters, taking into account all the observed data. As for non-
hierarchical models, we need to be careful that the checking function assesses
quantities that are not directly estimated by the probability model, otherwise
it will be unduly influenced by the data which it is intended to be critiquing,
inducing conservatism in the procedure and losing power to detect discrep-
ancies. Within a hierarchical framework this means that we need to be very
clear about what a replicate involves. For example, suppose we simply gener-
ate a new Y rep

i conditional on the θi being simulated within the MCMC run
and compare the replicate with the observed yi — this is likely to be deeply
conservative, as yi will have been extremely influential in the simulated value
for θi.

The recommended procedure is therefore to essentially repeat the cross-
validation procedure but without leaving yi out of the analysis, thus gener-
ating θrepi |y followed by Y rep

i . The generation of a new θrepi can be viewed as
“ghosting”: for each unit in turn, a ghost unit is created in a parallel uni-
verse, and observations are generated. Some conservatism will be introduced,
but this may be only moderate, as yobsi only influences θrepi through φ (Fig-
ure 10.8).

Example 10.7.2. Bristol (continued): approximate cross-validatory check of
random effects model
We again analyse the surgery mortality data, as in Example 10.7.1, but this time
re-predicting the Bristol data based on fitting the random effects model to all 12
hospitals, including Bristol.

Hierarchical models 245

node mean sd MC error 2.5% median 97.5% start sample

P.mixed 0.02225 0.1457 0.001438 0.0 0.0 0.0 1001 10000

omega 0.4248 0.1297 0.001985 0.23 0.4059 0.7387 1001 10000

y1.cv 19.35 8.917 0.08326 6.0 18.0 40.0 1001 10000

The estimated between-hospital SD is now substantially larger due to the in-
clusion of Bristol, and hence the predictive distribution for the number of deaths
in Bristol now has median 18 and 95% interval 6 to 40. This is considerably wider
than the cross-validatory predictive distribution, but the p-value of 0.02 is still rea-
sonably small. The lack of cross-validation has therefore introduced conservatism
but not completely masked the outlier.

The issue remains of selecting a discrepancy measure Ti for a vector yi.
If Ti is chosen to be the full data yi, then the individual observations yij
each contribute to the overall measure of divergence. However, the reference
distribution is then a convolution of the likelihood p(yij |θi) with the prior
p(θi|φ), and so loses power if our interest is solely in checking for divergent
θi and we are willing to assume the likelihood is correct. This is clearly illus-
trated if sufficient statistics si exist, since by definition the likelihood factorises
p(yi|θi) into p(yi|si)p(si|θi). The first term contains no information about θi
and hence its inclusion in a reference distribution for a discrepancy measure
can only add noise to the procedure. Thus it will be more efficient to use si as
a discrepancy measure or, more generally, if closed-form estimators θ̂i exist,
to set Ti = θ̂i(yi) and then compare θ̂i with p(θ̂

rep
i |y\i).

Example 10.7.3. Rats: checking a random effects growth model for outliers
Recall the data introduced in Example 6.1.1 on the growth of a single rat. We now
consider the growth of all 30 rats in the experiment, whose weight was measured
at T = 5 time points: age 8, 15, 22, 29 and 36 days. A null model H0 assumes
normal errors and random-coefficient linear growth curves with time x measured
in days minus 22. Intercept and gradient may be given a bivariate normal prior,
so that

yij ∼ N(μij , σ
2), μij = αi1 + αi2(xj − x̄), αi ∼ MVN2(μα,Ω)

where μα,Ω, σ
2 are given proper but very diffuse prior distributions.

We first consider identifying divergent rats. In this simple linear model we can
obtain closed-form sufficient statistics for the intercept and gradient parameters
αi, specifically α̂i1 = yi, α̂i2 =

∑
j yij(xj − x)/

∑
j(xj − x)2. A mixed replicate

α̂rep
i can then be obtained at each iteration by simulating αrep

i and then using
the known sampling theory α̂i1 ∼ N(αi1, σ

2/T), α̂i2 ∼ N(αi2, σ
2/
∑
j(xj − x)2)

to generate α̂rep
i . A standard p-value comparison can then be made between α̂rep

i

and α̂i. Of course this procedure relies on closed-form sufficient statistics being
available, and the next example will show how we can manage when this is not
the case.

246 The BUGS Book

Divergent individual observations may also be of interest. This could be checked
by summaries of residuals. Specifically, if we calculate X2

i =
∑
j(yij − μij)

2/σ2,

then we know that a replicate version has a χ2
T distribution. A p-value can be

therefore be obtained by comparing X2
i with a χ2

T observation at each iteration.

for (i in 1:N) {

for (j in 1:T) {

Y[i,j] ~ dnorm(mu[i,j], tau)

mu[i,j] <- alpha[i,1] + alpha[i,2]

*(x[j] - mean(x[]))

cross-product statistics

XY[i,j] <- Y[i,j]*(x[j] - mean(x[]))

XX[i,j] <- (x[j] - mean(x[]))*(x[j] - mean(x[]))

posterior predictive

N(0,1) under null

resid[i,j] <- (Y[i,j] - mu[i,j])*sqrt(tau)

resid2[i,j] <- resid[i,j]*resid[i,j]

}

X2[i] <- sum(resid2[i,]) # chisq(T) under null

chi.sqr[i] ~ dchisqr(T) # comparison under null

P.resid[i] <- step(X2[i] - chi.sqr[i])

prior for intercept and gradient

alpha[i,1:2] ~ dmnorm(mu.alpha[],R[,])

replicated intercept and gradient

alpha.pred[i,1:2] ~ dmnorm(mu.alpha[],R[,])

summary statistics for intercept and gradient

alpha.est[i,1] <- mean(Y[i,])

alpha.est[i,2] <- sum(XY[i,])/sum(XX[i,])

precision of intercept estimates

alpha.est.prec[i,1] <- tau*T

precision of gradient estimates

alpha.est.prec[i,2] <- tau*sum(XX[i,])

alpha.est.pred[i,1] ~ dnorm(alpha.pred[i,1],

alpha.est.prec[i,1])

alpha.est.pred[i,2] ~ dnorm(alpha.pred[i,2],

alpha.est.prec[i,2])

P.alpha[i,1] <- step(alpha.est[i,1] -

alpha.est.pred[i,1])

P.alpha[i,2] <- step(alpha.est[i,2] -

alpha.est.pred[i,2])

}

mu.alpha[1] ~ dunif(-1000,1000)

mu.alpha[2] ~ dunif(-1000,1000)

R[1:2,1:2] ~ dwish(Omega[,],2)

Omega[1,1] <- 1;

Hierarchical models 247

Omega[1,2] <- 0;

Omega[2,1] <- 0;

Omega[2,2] <- 1

tau ~ dgamma(0.001,0.001)

sigma <- 1/tau

Table 10.1 selects rats with at least one p-value being less than 0.05 or greater
than 0.95, and the trajectories for these rats are highlighted among the 30 rats
shown in Figure 10.9. The clearly erratic behaviour of rat 3 is identified by the
aggregate residual measure. The intercepts of rats 9, 14, and 29 are highlighted,
as well as the gradients of rats 2, 4, and 9. However, we are performing three hy-
pothesis tests for each of 30 rats; therefore we are more likely to find low p-values
merely by chance. If we applied Bonferroni’s correction, we would only highlight
p-values less than 0.05/(3×30) = 0.00056 or greater than 0.9994. Therefore, even
the intercept of rat 9 is not as extreme as the p-value of 0.997 might suggest.
This is apparent from Figure 10.9, which also shows that rats 14 and 29 do not
appear to have intercepts which diverge from the rest of the population.

TABLE 10.1

p-values for rat growth model checking which are
less than 0.05 or greater than 0.95. Diagnostics for
divergent rats are based on mixed-parameter
replication of estimated intercepts and gradients.
Divergent observations are examined by a χ2

statistic based on standardised residuals.

Divergent rats Divergent observations
Rat Intercept Gradient within rats
2 0.959
3 0.999
4 0.044
9 0.997 0.961 0.951
14 0.963
29 0.043

We note that we have not carried out full cross-validation, but the influence
of individual rats on the random-effects distribution will be limited and so the
conservatism will not be great. If desired, individual rats could be removed and
the analysis repeated.

An alternative way of detecting outlying observations or units in a hierar-
chical model is by treating the issue as one of potential conflict between the
posterior inferences pR(θi|yi) that would arise from the data yi alone assum-
ing a reference prior for θi, which we consider as “fixed-effects” estimates,

248 The BUGS Book

Days

W
ei

gh
t i

n
gr

am
s

15
0

20
0

25
0

30
0

35
0

8 15 22 29 36

2

3

4

9

14

29

FIGURE 10.9

Growth curves for 30 rats, highlighting “outlying” rats with p-values less than
0.05 or greater than 0.95.

and the predictive prior distribution p(θi|y\i) that arises from the remaining
data. Contrasting these two sources results in “conflict p-values” (Marshall
and Spiegelhalter, 2007). See also §8.10 on prior-data conflict.

We consider the rats example using this method, but without full cross-
validation, so that the predictive prior p(θi|y\i) is approximated by p(θi|y).
This procedure requires duplication of the data in order to contrast fixed-effect
estimates with posterior predictive distributions, but the nuisance parameter
σ2 = 1/τ should only be estimated from one set of data. We therefore make
use of the “cut” function (see § 9.4) so that information about τ can feed
through to the fixed-effect estimates without “double counting.”

Example 10.7.4. Rats: checking a longitudinal growth model using conflict
p-values
We assess the rats’ growth model using replications of both intercept and gra-
dient, in which (approximate) predictive replicates generated conditionally on all
observed data are contrasted with fixed-effects replicates generated conditionally
only on the data for that rat. Uniform priors are assumed for αi1 and αi2, and σ

2

needs to be estimated from the entire data.

for (i in 1:N) {

for (j in 1:T) {

Hierarchical models 249

...

Y.fix[i,j] <- Y[i,j] # duplicate data

Y.fix[i,j] ~ dnorm(mu.fix[i,j], tau.fixed)

mu.fix[i,j] <- alpha.fix[i,1] +

alpha.fix[i,2]*(x[j] - mean(x[]))

}

priors for fixed effects parameters

alpha.fix[i,1] ~ dunif(-1000,1000)

alpha.fix[i,2] ~ dunif(-1000,1000)

...

P.alpha.fix[i,1] <- step(alpha.fix[i,1] - alpha.pred[i,1])

P.alpha.fix[i,2] <- step(alpha.fix[i,2] - alpha.pred[i,2])

}

...

prevent learning about tau from duplicate data

tau.fixed <- cut(tau)

The resulting p-values are almost identical to those shown in the final column
of Table 10.1. We note that this method did not require any knowledge of closed-
form estimates and their sampling distributions.

10.8 Comparison of hierarchical models

As already illustrated in Example 10.3.3, model comparison in hierarchical
models can be carried out using the tools developed in Chapter 8. Indeed
the concepts of the “effective number of parameters” pD and the Deviance
Information Criterion (DIC) were developed for random effects models, where
it is possible to apparently have more parameters than observations and simple
counting of parameters is inappropriate. Essentially the hierarchical model can
be thought of as an estimated common prior distribution for the random effect
parameters, which are no longer independent and hence do not remove a full
degree of freedom in the fitting procedure.

Example 10.8.1. Hepatitis B (continued): measurement error
Returning to the hepatitis B data from Example 10.3.2, we replace the model
with the baseline measurement yi0 as a covariate,

ψij = αi + βi(tij − t) + γ(y0i − y0),

250 The BUGS Book

with a model that includes classical measurement error on y0i. The predictor y0i
is replaced by its “true” value μ0i, which is given a hierarchical prior.

ψij = αi + βi(tij − t) + γ(μ0i − y0),

y0i ∼ N(μ0i, σ
2), μ0i ∼ N(με, σ

2
ε).

psi[i,j] <- alpha[i] + beta[i]*(t[i,j] - tbar)

+ gamma*(mu0[i] - y0bar)

We obtain the following summary statistics and DIC statistics from WinBUGS.

node mean sd MC error 2.5% median 97.5% start sample

gamma 1.004 0.1597 0.004629 0.7242 0.9923 1.353 10001 50000

mu.alpha 6.134 0.1619 0.00212 5.819 6.135 6.453 10001 50000

mu.beta -1.064 0.1406 0.005251 -1.336 -1.065 -0.789 10001 50000

Dbar Dhat pD DIC

y 815.571 719.083 96.488 912.059

y0 303.517 250.644 52.873 356.389

total 1119.090 969.727 149.361 1268.450

With y0i as a direct covariate, but with the same model for y0i in terms of μ0i,
we obtain the following:

node mean sd MC error 2.5% median 97.5% start sample

gamma 0.675 0.08526 0.001505 0.5055 0.6752 0.8403 10001 50000

mu.alpha 6.137 0.1518 7.699E-4 5.839 6.136 6.434 10001 50000

mu.beta -1.056 0.1466 0.006404 -1.339 -1.056 -0.7769 10001 50000

Dbar Dhat pD DIC

y 814.684 716.752 97.932 912.616

y0 300.487 226.607 73.879 374.366

total 1115.170 943.359 171.811 1286.980

The DIC for the data y alone is very similar between the two models. However,
the measurement error model gives improved explanation for the baseline data yi0
— in this model we learn about μi0 both directly from yi0 and indirectly from the
rest of the data, via the inclusion of μi0 in the regression model for yij : j > 0.
Also the posterior estimate of γ ≈ 1 from the measurement error model is more
consistent with scientific belief (Coursaget et al., 1991).

10.8.1 “Focus”: The crucial element of model comparison in
hierarchical models

Consider the basic hierarchical model outlined in Figure 10.1 (left), which
expresses the assumption that

p(y, θ, φ) = p(y|θ)p(θ|φ)p(φ)

Hierarchical models 251

There are three broad approaches that could be taken to comparing alter-
native models with this structure. These are compared below according to
their construction and their computational ease, and then we consider their
interpretation.

• Deviance Information Criterion

DIC = D(θ) + 2pD

which is based on p(y|θ) and is trivial to compute.

• Akaike Information Criterion

AIC = −2 log p(y|φ̂) + 2pφ

where pφ is the number of hyperparameters. This relies on being able
to integrate out the θ’s to give

p(y|φ) =
∫

Θ

p(y|θ)p(θ|φ)dθ.

• Bayesian Information Criterion

BIC = −2 log p(y|φ̂) + pφ logn

which is an approximation to −2 log p(y), where

p(y) =

∫

φ

p(y|φ)p(φ)dφ.

This depends on a proper prior formulation and is generally computa-
tionally difficult to evaluate (see §8.7).

The crucial observation is that the “likelihood” is not well defined in a
hierarchical model. Is it p(y|θ), p(y|φ), or p(y)? The three criteria use different
definitions, according to what can be thought of as the “focus” of the analysis:
either θ, φ, or the model structure without any unknown parameters. So it is
not a matter of which model comparison criterion is “correct,” but which is
appropriate for the purposes intended.

One way to identify the focus is to think of the prediction problem of inter-
est, since prediction is not well defined in a hierarchical model without stating
the focus, which is essentially what remains fixed when making predictions.

For example, suppose the three levels of our model concerned classes within
schools within a country. Then:

• If we were interested in predicting results of future classes in those actual
schools, then θ is the focus and deviance-based methods such as DIC are
appropriate. This would be the case if we wanted, for example, to create
“league tables” of schools according to their likely results on future
classes.

252 The BUGS Book

• If we were interested in predicting results of future schools in that coun-
try, then φ is the focus and marginal-likelihood methods such as AIC
are appropriate; this would be the relevant procedure if we wanted to
make statements about the education in the whole country.

• If we were interested in predicting results for a new country, then no
parameters are in focus, and Bayes factors are appropriate to compare
models — this would be the case if we wanted to make very general state-
ments about education in the whole world, outside the specific country
being studied.

This strongly suggests that Bayes factors may in almost all circumstances
be inappropriate measures by which to compare hierarchical models.

10.9 Further resources

Gelman and Hill (2007) is a practically focused book on regression and hierar-
chical modelling, which discusses model development, checking, and presenta-
tion, often in a Bayesian framework. Causal inference is a topic covered there
which we have not mentioned here. Hierarchical models are also discussed in
the more general book on Bayesian analysis by Gelman et al. (2004). Cong-
don (2010) describes a variety of hierarchical Bayesian models and includes
WinBUGS implementations of many examples.

MLwiN (Rasbash et al., 2009) is a robust and well-featured software pack-
age for multilevel/hierarchical modelling with as long a history as BUGS. It
implements many more complex models than those discussed in this chapter,
including models for non-nested or cross-classified data structures (for exam-
ple, children in the same school who live in different neighbourhoods) and
data where lower-level units belong to more than one higher-level unit (for
example, a child who changes schools). Many of these are implemented from a
Bayesian perspective using MCMC sampling (Browne, 2009). The underlying
principles behind a wide variety of models such as these are covered in detail
by Goldstein (2010), with many applications in social and medical sciences.

11

Specialised models

Perhaps the greatest strength of BUGS is its flexibility — the language can
represent statistical models and data structures of arbitrary complexity. We
now have the tools and skills to tackle a theoretically limitless range of mod-
els, knowing the basics of Bayesian analysis and MCMC computation (Chap-
ters 1–5), the Bayesian view of the standard linear and generalised linear mod-
els pervasive in applied statistics (Chapters 6–7), how to assess and compare
models (Chapter 8), and how BUGS can deal with the common complications
of real data analysis (Chapter 9). Chapter 10 discussed hierarchical models,
which are naturally suited to the graphical modelling principles of BUGS, and
now we present an overview of many other specialised applications. Of course,
the flexibility of BUGS comes at the cost of learning the many idiosyncrasies
of the language and its practical limitations, and we hope to illustrate these
issues in the examples here.

11.1 Time-to-event data

Data representing times t1, . . . , tn until the occurrence of an event are often
known as survival data (Kalbfleisch and Prentice, 2002). They are charac-
terised by censored observations — event times which are only known to be
within a certain range. For example, if patient i was alive at the end of the
study follow-up, their time of death ti is known to be greater than their last
follow-up time ci — this is called right-censoring.

In WinBUGS, censored survival data are usually modelled by using the I()
construct (see §9.6) to indicate that a censored event time t[i] is drawn from
the same model as the observed data, but it is unobserved and known only to
be greater than c[i]. For example, consider n observations of exponentially
distributed survival times t[i]:

for (i in 1:n) {

t[i] ~ dexp(mu)I(c[i],)

}

Censored times are considered to be unknowns, in the same way as model
parameters. If t[i] is observed, the observed value is supplied in the data

253

254 The BUGS Book

for t[i], and the variable c[i] is set to 0, representing no constraint on the
exponential distribution of t[i].

list(n=7,

t=c(10, 13, 6, 14, 1, NA, NA, NA),

cens=c(0, 0, 0, 0, 0, 15, 15, 15))

If the event time is censored, then t[i] is set to NA in the data, and c[i]

contains the time of censoring. The I() construct indicates that the true t[i]
could be any value greater than c[i].

In OpenBUGS the C() function is preferred to I() (see §12.5.1) and JAGS
uses a different syntax (see §12.6.2).

11.1.1 Parametric survival regression

Standard survival models include a “location” parameter which can be ex-
pressed as a linear function of covariates. Usually this defines a proportional
hazards (PH) model, where the hazard, or instantaneous risk of the event,
h(t) = f(t)/F (t), is proportional to covariate values: h(t) = h0(t)e

β′xi , or an
accelerated failure time (AFT) model where the survival time Ti is such that
Ti exp(β

′xi) has a fixed distribution. For Weibull-distributed survival times,
ti ∼ Weibull(r, μi), the model log(μi) = α+ βxi is both PH and AFT.

Frailty models can be applied to grouped survival data, such as times to
related events on the same individual, or groups j of related individuals. These
include a random effect bj representing any heterogeneity in survival between
groups: log(μij) = α + βxi + bj , and can be expressed in BUGS just as any
other hierarchical model (Chapter 10), for example,

log(mu[i]) <- a + b.age*age[i] + b.sex*sex[i] + b[group[i]]

for (j in 1:Ngroups) {

b[j] ~ dnorm(0.0, inv.omega.squared)

}

Semiparametric survival models are often used as a better-fitting alterna-
tive to simple parametric models such as the Weibull. The Cox regression
model has hazard h(t) = h0(t)e

β′xi proportional to covariates, but the base-
line hazard h0(t) is nonparametric. A Bayesian analogue of this model can be
implemented in BUGS, as described in §11.7.3.

Example 11.1.1. Icelandic volcano eruptions: predicting event times
In April 2010, the volcano Eyjafjallajökull in Iceland erupted. The resulting ash
cloud was blown towards Western Europe and caused severe disruption to air travel
for the following few weeks. A report into the eruption and its impact (UCL Insti-
tute for Risk and Disaster Reduction, 2010) reviewed how well the risk had been
managed. One question was whether potentially more devastating eruptions from
the larger neighbouring volcano Katla can be predicted from a recent eruption of

Specialised models 255

Eyjafjallajökull. The report provides the dates of all 18 eruptions of Katla since
the year 1177, with a corresponding indicator of whether Eyjafjallajökull had also
erupted within the previous year.

(a) Simple prediction. In this first model, we consider only the data on Katla. We
fit a Weibull distribution to the times t[i] from one Katla eruption to the next,
given the dates supplied as D[i]. Note we reparameterise the Weibull distribution
in terms of σ = (μ)−1/r, so we can place an approximate Jeffreys prior on σ (Sun
and Berger, 1994). We predict the time of the next Katla eruption, given the
dates of all previous eruptions and the knowledge that it has not erupted from
1918 to 2010. In other words, we predict the next eruption interval t[19] given
that it is censored at 92 years. The I() construct, as above, is used to indicate
censored observations.

We also estimate the probability that Katla will erupt in the next t years, given
that it hasn’t erupted in the 92 years since 1918, for t = 1,5,10 or 50 years.
This is 1 − S(t + 92)/S(92), where S() is the survivor function, or 1 minus the
cumulative density of the Weibull distribution.

for (i in 2:(Nk-1)) {

t[i] <- D[i] - D[i-1]

}

for (i in 2:Nk) {

t[i] ~ dweib(r, mu)I(cens[i],)

}

r ~ dunif(0, 10)

sigma ~ dgamma(0.001, 0.001) # Jeffreys prior

mu <- 1/pow(sigma, r)

median <- sigma*pow(log(2), 1/r) # median time to event

p.erupt.1 <- 1 - exp(pow(92/sigma,r) - pow((92+1)/sigma,r))

p.erupt.5 <- 1 - exp(pow(92/sigma,r) - pow((92+5)/sigma,r))

p.erupt.10 <- 1 - exp(pow(92/sigma,r) - pow((92+10)/sigma,r))

p.erupt.50 <- 1 - exp(pow(92/sigma,r) - pow((92+50)/sigma,r))

list(Nk=19,

D = c(1177, 1262, 1311, 1357, 1416, 1440, 1450, 1500, 1550,

1580, 1612, 1625, 1660, 1721, 1755, 1823, 1860, 1918, NA),

cens = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,92))

A burn-in of 1000 and 5000 subsequent iterations gives the following summary
statistics. There is a 95% credible interval of 92–148 for t[19], or 2010–2066 for
the actual next eruption year. We estimate a substantial probability (0.03–0.15)
that Katla will erupt within the next year following 2010 and a high likelihood of
eruption (0.79–0.99) within the next 50 years.

node mean sd MC error 2.5% median 97.5% start sample

t[19] 106.2 16.22 0.3188 92.33 101.3 148.4 1000 5001

256 The BUGS Book

median 45.23 6.158 0.1093 33.42 45.17 57.87 1000 5001

p.erupt.1 0.07364 0.03261 5.453E-4 0.02759 0.06752 0.1525 1000 5001

p.erupt.5 0.3161 0.1157 0.002027 0.132 0.3009 0.5782 1000 5001

p.erupt.10 0.5286 0.1539 0.002845 0.2502 0.5212 0.8376 1000 5001

p.erupt.50 0.9647 0.05829 0.00123 0.7927 0.9892 1.0 1000 5001

(b) Prediction using a time-dependent covariate. In the second model, we try to
improve prediction by including eruption of Eyjafjallajökull as a time-dependent
covariate for the time ti until the next Katla eruption. Again, we model ti as
Weibull, but this time we assume the hazard changes in periods when Eyjafjal-
lajökull is erupting. We approximate this by assuming that there are instantaneous
spikes in the hazard of Katla eruption at the recorded eruption times of its neigh-
bour.

The likelihood for parameters θ is a product of contributions from the survivor
function from the 19 periods when Katla is inactive and contributions from the
hazard at 18 eruption times. The 19th period ends in the year 2010, so that the
19th eruption time is censored. The survivor function for the Weibull distribution
is S(t) = exp(−μtr), and the instantaneous hazard is h(t) = μ(t)rtr−1, where
μ(t) = μeβ at the instant of an Eyjafjallajökull eruption, and μ(t) = μ otherwise;
therefore the likelihood is

l(θ|t) =
19∏

i=1

S(ti|θ)
18∏

i=1

h(ti|θ) =
19∏

i=1

exp(−μtri)
18∏

i=1

μ exp(βxi)rt
r−1
i

This is written in the BUGS language using the “ones trick”:

for (i in 2:19) {

t[i] <- D[i] - D[i-1]

inactive[i] <- 1

erupt[i] <- 1

}

Likelihood contributions from inactive periods

for (i in 2:19) {

inactive[i] ~ dbern(p.inactive[i])

p.inactive[i] <- exp(-mu*pow(t[i], r))

}

Likelihood contributions at eruption times

for (i in 2:18) {

erupt[i] ~ dbern(q[i])

q[i] <- mu*r*pow(t[i], r-1)*exp(beta*eyja[i])

}

beta ~ dnorm(0, 0.7) # weakly informative

rel.risk <- exp(beta)

r ~ dunif(0, 10)

sigma ~ dgamma(0.001, 0.001)

mu <- 1/pow(sigma, r)

Specialised models 257

p.erupt.1 <- 1 - exp(mu*rel.risk*

(pow(92, r) - pow(92+1, r)))

p.erupt.50 <- 1 - exp(mu*rel.risk*

(pow(92, r) - pow(92+1, r)))*

exp(mu*(pow(92+1, r) - pow(92+50, r)))

list(

D= c(1177, 1262, 1311, 1357, 1416, 1440, 1450, 1500, 1550,

1580, 1612, 1625,1660, 1721, 1755, 1823, 1860, 1918, 2010),

eyja = c(0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1))

Notes:

• The prior precision of τ = 0.7 on the log relative risk β represents the belief
that the risk is unlikely to be raised by more than a factor of 10, so that
the prior standard deviation is about 2/

√
τ = log(10).

• As before, we wish to estimate the probability that Katla will erupt within 1
year, or within 50 years, from now. In calculating this, we assume that the
hazard ratio eβ applies only in the year after the eruption of Eyjafjallajökull.

Even with a fairly conservative prior distribution on β, we obtain a posterior
median of 17 (1.7, 181) for the relative hazard eβ of Katla eruption while the
neighbouring volcano is active. The predictions of the next Katla eruption time
are more pessimistic now this extra information has been included — we now
estimate a 70% (10%–100%) probability of eruption within the next year.∗

11.2 Time series models

There are many forms of model for time series data. They typically relate the
response at time t, or its mean, to the preceding values of those (or related)
quantities. For example, an autoregressive (AR) model relates successive re-
sponses yt, t = 1, ..., n, via:

yt = c+

p∑

i=1

θiyt−i + εt, t = p+ 1, ..., n, (11.1)

∗At the time this book was completed (May 2012) Katla still hadn’t erupted again, though
intense seismic activity was detected there in late 2011. The Grimsvotn volcano, in a dif-
ferent part of Iceland, erupted in May 2011.

258 The BUGS Book

with εt ∼ Normal(0, σ2), say. Here p is the order of the AR process, which
is thus denoted AR(p). Note that we cannot specify the model in the form
of (11.1) in BUGS, since data cannot be assigned a logical value. Instead we
specify yt ∼ Normal(mt, σ

2), with mt = c+
∑p
i=1 θiyt−i. Note, however, that

mt is undefined for t = 1, ..., p. We can circumvent this problem by specifying
appropriate priors for the undefined mts, or for the corresponding residuals.
In the latter case we may then define mt = yt − εt.

A related model is the moving average (MA) model, which relates responses
to previous values of the residuals, e.g.,

yt = c+

q∑

i=1

φiεt−i + εt, t = q + 1, ..., n.

This is denoted MA(q), and the early time points are handled in the same
way as for the AR model. AR(p) and MA(q) may be combined to form an
ARMA(p, q) model:

yt = c+

p∑

i=1

θiyt−i +
q∑

i=1

φiεt−i + εt,

the use of which is illustrated in the following example, after first fitting an
AR(1) process.

Example 11.2.1. Sunspots
Our data for this example count the number of sunspots observed each year from
1770 to 1869 (Anderson, 1971, p. 660). We begin by fitting an AR(1) process to
the observed data:

AR(1):

for (t in 1:n) {

y[t] ~ dnorm(m[t], tau)

yr[t] <- 1769 + t

}

for (t in 2:n) {

m[t] <- c + theta*y[t-1]

eps[t] <- y[t] - m[t]

}

m[1] <- y[1] - eps[1]

eps[1] ~ dnorm(0, 0.0001)

theta ~ dnorm(0, 0.0001)

c ~ dnorm(0, 0.0001)

tau <- 1/pow(sigma, 2)

sigma ~ dunif(0, 100)

The resulting model fit is shown in Figure 11.1(a), and the main parameter esti-
mates are given in the BUGS output below. The model fit is quite good, consid-
ering there are only four parameters, but it can be improved by including more

Specialised models 259

terms in the model. For example, an ARMA(2,1) model (code below) gives the fit
shown in Figure 11.1(b); parameter estimates are also given in the BUGS output.
Note the substantial reduction in sigma, the residual standard deviation, and that
the DIC is reduced from 903 to 832 when fitting the ARMA(2,1) model.

ARMA(2,1):

for (t in 1:n) {

y[t] ~ dnorm(m[t], tau)

yr[t] <- 1769 + t

}

for (t in 3:n) {

m[t] <- c + theta[1]*y[t-1] + theta[2]*y[t-2]

+ phi*eps[t-1]

eps[t] <- y[t] - m[t]

}

m[1] <- y[1] - eps[1]

m[2] <- y[2] - eps[2]

eps[1] ~ dnorm(0, 0.0001)

eps[2] ~ dnorm(0, 0.0001)

for (i in 1:2) {

theta[i] ~ dnorm(0, 0.0001)

}

phi ~ dnorm(0, 0.0001)

c ~ dnorm(0, 0.0001)

tau <- 1/pow(sigma, 2)

sigma ~ dunif(0, 100)

AR(1) parameter estimates:

node mean sd MC error 2.5% median 97.5% start sample

c 8.539 3.506 0.03699 1.436 8.567 15.35 501 9500

sigma 21.81 1.597 0.01637 18.97 21.72 25.26 501 9500

theta 0.8113 0.05886 5.718E-4 0.6976 0.8103 0.9295 501 9500

ARMA(2,1) parameter estimates:

node mean sd MC error 2.5% median 97.5% start sample

c 15.89 3.473 0.04195 9.321 15.85 22.83 4001 6000

sigma 15.11 1.135 0.01632 13.12 15.03 17.51 4001 6000

theta[1] 1.204 0.1189 0.003421 0.9601 1.207 1.429 4001 6000

theta[2] -0.5408 0.1139 0.003274 -0.7561 -0.5444 -0.3036 4001 6000

phi 0.4013 0.1329 0.005149 0.1205 0.41 0.6383 4001 6000

Another type of time series model is the hidden Markov model (HMM),
which relates the mean, say, of the response to preceding values of the mean.
We illustrate the use of such a model in the example below. We emphasise that
while the BUGS language can accommodate many time series models, a Gibbs

260 The BUGS Book

sunspots: AR(1)

year 1750.0 1800.0 1850.0 1900.0

(a)

 0.0

 50.0

 100.0

 150.0

 200.0

sunspots: ARMA(2, 1)

year 1750.0 1800.0 1850.0 1900.0

(b)

 0.0

 50.0

 100.0

 150.0

 200.0

FIGURE 11.1

Model fits for sunspot data: (a) AR(1) model, (b) ARMA(2,1) model. Solid
line: posterior mean of m[t]; dashed lines: 95% interval; dots: observed data.

sampling scheme is often not the best approach to parameter estimation,
due to high posterior correlations induced by the nature of the model. With
HMMs in particular, convergence can be improved by specifying the model in
a certain way. For example, suppose we wish to assume yt ∼ Normal(mt, σ

2),
t = 1, ..., n, with

mt = f(mt−1) + ut, t = 2, ..., n,

and ut ∼ Normal(0, ω2), say, along with appropriate priors for σ and ω. An
alternative, but equivalent, specification is mt ∼ Normal(f(mt−1), ω

2), which
typically leads to much better mixing in the simulated Markov chains. Such
so-called hierarchical centering works in many settings (Gelfand et al., 1995),
not just in time series analysis. With HMMs, it may be the only option anyway,

Specialised models 261

due to one of BUGS’ many idiosyncracies. We do not fully understand why,
but in cases where the function f(.) contains more than one instance of mt−1,
e.g., f(mt−1) = βmt−1/(1 − mt−1), WinBUGS will “hang,” when building
the internal representation of the model, with anything more than a few data
(n > 20, say).

Example 11.2.2. Tuna
Meyer and Millar (1999) consider tuna (albacore) stocks in the South Atlantic
between 1967 and 1989. Denoting the natural logarithm of the “catch per unit
effort” (kg per 100 hooks) by yt, the authors propose the following model:

yt ∼ Normal(log(qKPt), σ
2), t = 1, ..., n = 23,

where q, K, and Pt denote the “catchability parameter,” “carrying capacity” of
the environment, and biomass in year t expressed as a proportion of the carrying
capacity, respectively. In addition, the biomass dynamics are given by

logPt = f(Pt−1) + ut, f(Pt−1) = log

[

Pt−1 + rPt−1(1− Pt−1)− Ct−1

K

]

,

where ut ∼ Normal(0, ω2), r is the “intrinsic growth rate,” and Ct−1 denotes the
total catch, in kilotonnes, during year t− 1. To avoid the issues discussed above,
we will express this, instead, as

logPt ∼ Normal(f(Pt−1), ω
2), t = 1, ..., n.

BUGS code incorporating Meyer and Millar’s informative priors for q, K, r, σ−2,
and ω−2, and the assumption f(P0) = 0, is given below; the model fit is shown
in Figure 11.2.

for (t in 1:n) {

y[t] ~ dnorm(mu[t], inv.sigma.squared)

yr[t] <- t + 1966

mu[t] <- log(q*K*P[t])

log(P[t]) <- LP[t]

LP[t] ~ dnorm(f[t], inv.omega.squared)

}

f[1] <- 0

for (t in 2:n) {

f[t] <- log(P[t-1] + r*P[t-1]*(1 - P[t-1])

- C[t-1]/K)

}

q <- 1/inv.q

log(K) <- log.K

log(r) <- log.r

sigma <- 1/sqrt(inv.sigma.squared)

262 The BUGS Book

omega <- 1/sqrt(inv.omega.squared)

inv.q ~ dgamma(0.001, 0.001)I(0.5, 100)

log.K ~ dnorm(5.043, 3.760)I(2.303, 6.908)

log.r ~ dnorm(-1.380, 3.845)I(-4.605, 0.1823)

inv.sigma.squared ~ dgamma(1.709, 0.008614)

inv.omega.squared ~ dgamma(3.786, 0.01022)

log(CPUE)

year
 1960.0 1970.0 1980.0 1990.0

2.5

3.0

3.5

4.0

4.5

FIGURE 11.2

Model fit for tuna catch data showing log catch per unit effort (CPUE) against
time. Solid and dashed lines show posterior mean and 95% interval, respectively,
for mu[t]; dots show observed data y[t].

node mean sd MC error 2.5% median 97.5% start sample

K 275.5 60.24 2.227 183.6 266.1 418.8 4001 100000

omega 0.05383 0.01472 2.334E-4 0.03371 0.05106 0.09079 4001 100000

q 0.2425 0.05435 0.002133 0.1475 0.239 0.3611 4001 100000

r 0.2976 0.08411 0.00295 0.1483 0.2932 0.4757 4001 100000

sigma 0.1086 0.01939 1.755E-4 0.07575 0.1067 0.152 4001 100000

11.3 Spatial models

While time series models express the correlations between quantities measured
at different points in time, spatial models are used for quantities which vary

Specialised models 263

over two dimensions. These are used extensively in the ecological and envi-
ronmental sciences (Ripley, 2004; Bivand et al., 2008) and in medical image
analysis (Penny et al., 2006). Epidemiologists also study how the risk of dis-
ease varies systematically over areas, or with spatially varying predictors such
as socio-economic characteristics or environmental exposures (Elliott et al.,
2000; Lawson et al., 2003).

The most flexible way of modelling spatial dependence is via a spatially
structured random effects distribution in a hierarchical model, with obser-
vations assumed conditionally independent given the random effects. Some
spatial models can also be used directly as sampling distributions. Let S =
(S1, S2, . . . , Sn) be a vector of random variables associated with locations
i = 1, . . . , n. WinBUGS and OpenBUGS contain a substantial set of features
for implementing spatial models for S and for mapping posterior estimates,
designated “GeoBUGS” and collected in the Map menu in the Windows inter-
face.† The particular choice of model to use depends in part on whether the
locations are areas (lattice data) or spatial coordinates (point data), whether
the goal of the analysis is estimation or prediction, and whether we wish to
model dependence via a jointly specified distribution p(S) or a set of condi-
tionally specified distributions p(Si|S\i).

11.3.1 Intrinsic conditionally autoregressive (CAR) models

Conditionally autoregressive (CAR) models specify how each Si is related to
the Sj at all other locations via a set of univariate conditional distributions.
One of the most commonly used formulations (Besag et al., 1991) is

Si|S\i ∼ Normal

⎛

⎝
∑

j �=i

wijSj
wi+

,
ω2

wi+

⎞

⎠ (11.2)

where wij are weights used to express spatial dependence between locations
i and j, with wij = wji, wii = 0 and wi+ =

∑
j wij . Thus the conditional

mean (and mode) of Si is a weighted average of the other Sjs. This model is
available in BUGS as

S[1:n] ~ car.normal(adj[], weights[], num[], inv.omega.squared)

(see §11.3.2 for explanation of adj, weights, and num). A heavier-tailed double
exponential model is available as car.l1, which leads to the conditional mode
of Si being a weighted median of other Sjs. A simple and widely used choice
of weights for areal (lattice) data is wij = 1 if i and j are adjacent areas, and
wij = 0 otherwise, which is usually sufficient for regions with regularly spaced,
similarly sized areas. This is an example of a Markov random field in which

†All references to WinBUGS in this section also include OpenBUGS, though none of the
spatial modelling or mapping facilities described here are currently available in JAGS.

264 The BUGS Book

each Si is independent of others conditionally on the Sj of its neighbours.
However, any pair of (Si, Sj) will be marginally correlated due to the chain
of dependencies on the paths linking them.

Model (11.2) and its double exponential equivalent are termed intrinsic
CAR models, where the joint distribution of S is not explicitly defined. The
implied joint distribution is in fact improper with an undefined mean and so
cannot be used as a sampling distribution for data. However, if used as a prior,
these models will still lead to a proper posterior distribution for S. A trick to
remove the impropriety is to constrain the Si (i = 1, . . . , n) to sum to zero
(automatically imposed in the car.normal and car.l1 distributions). Whilst
this still does not constitute a useful model for data (constraining the sampling
distribution of a set of observations to have zero mean is not meaningful
in general), it does allow car.normal or car.l1 to be used as zero-mean
random effects distributions in a hierarchical regression model with a separate
intercept term, or in combination with other sets of random effects. If an
improper uniform prior (denoted dflat in BUGS) is specified for the intercept
term, then the joint prior distribution for the intercept and constrained CAR
random effects is equivalent to an intrinsic CAR prior on the unconstrained
random effects.

Note that the elements of S form an undirected acyclic graph; however, their
posterior distribution can be sampled within the BUGS graphical modelling
framework (§4.2.2) by considering S as a multivariate node within the overall
directed acyclic graph, with elements constrained to sum to zero.

The intrinsic CAR models can also be used for temporal smoothing of time
series data, as a random walk prior for latent parameters treated as if defined
on a single collapsed spatial dimension (see the GeoBUGS manual for an
example).

11.3.2 Supplying map polygon data to WinBUGS and cre-
ating adjacency matrices

Information about spatial locations for areal data is typically provided as a
polygon file giving geographical coordinates of the boundaries of each area.
Various polygon map file formats (labelled “Splus,” “ArcInfo,” and “Epimap”)
can be imported directly into WinBUGS using the Import option in the Map

menu (see GeoBUGS manual). The R package maptools (Bivand et al., 2008)
also enables ArcView shapefiles (ESRI, Ltd.) to be imported and can manipu-
late map data exported from WinBUGS. The Map->Mapping Tool dialog box
in WinBUGS can then be used to draw maps of data or posterior summary
statistics from a fitted model (as in Figure 11.3).

For the car.normal and car.l1 distributions, spatial adjacency informa-
tion should be supplied with the rest of the data required by the model. The
vector adj[] is a collapsed vector for each area i indicating its neighbours, that
is, which areas j have non-zero weights in the CAR model (Equation 11.2).
num[] is a vector of length n indicating the number of neighbours for each

Specialised models 265

area and is used to determine which entries of adj[] correspond to which
area. For example,

adj = c(19, 9, 5, 10, 7, ...), num = c(3, 2, ...)

indicates area 1 has 3 neighbours (areas 19, 9, and 5), area 2 has 2 neighbours
(areas 10 and 7), and so on. The vector weights[] is the same length as adj[]
and provides the weights wij in model (11.2) that are associated with each
pair of areas. For the simple CAR model described in §11.3.1, this will be a
vector of 1’s. Other choices of weights are possible, but the user must ensure
that the specified weights are symmetric (i.e., wij = wji). Given polygon data
supplied to WinBUGS in map format, num[] and adj[]may be created by the
adj matrix option of the Map->Adjacency Tool dialog box in WinBUGS.

Example 11.3.1. Mapping lip cancer in Scotland
“Disease mapping” is the production of area-level summaries of disease outcomes.
A simple measure of area-level disease risk is the standardised morbidity or mor-
tality ratio (SMR). This is defined as Yi/Ei, where Yi is the observed number
of disease cases and Ei is the expected number of cases given the age-specific
population distribution in the area. However this is unhelpful for small areas and
rare diseases, when sampling variability will obscure any systematic differences in
disease risk between areas. A common method of distinguishing true risk vari-
ations from random noise is to “smooth” the data using a spatial hierarchical
model.

Here we use data from Clayton and Kaldor (1987) on the numbers of cases
Y[i] of lip cancer registered in each of i = 1, . . . , 56 counties of Scotland during
the 6 years from 1975 to 1980. The aim is to estimate the underlying relative risk
RR[i] of lip cancer in each area i compared to the expected risk, after accounting
for random variability. The expected count E[i] in area i, calculated from the
age-specific population distribution in area i and overall age-specific lip cancer
rates in Scotland, is included as a constant offset on the log scale. The covariate
X[i] represents the percentage of the population occupied in agriculture, fishing,
or forestry in county i and is used as a proxy for the population average exposure to
sunlight — a known risk factor for lip cancer. An area-level random effect S[i]
with an intrinsic normal CAR prior is included to spatially smooth the relative
risks. S[i] is often interpreted as capturing the effects of unobserved spatially
structured latent covariates.

The posterior variance of the random effects can be sensitive to the prior for
ω−2, as explained in §10.2.3. A Gamma(ε,ε) prior with ε small, for example, would
be inappropriately biased away from zero in situations where spatial dependence is
negligible. Instead, following Kelsall and Wakefield (1999), we use a Gamma(0.5,
0.0005) prior, equivalent to the belief that the random effect standard deviation
is centered around 0.05 with a 1% prior probability of being smaller than 0.01 or
larger than 2.5.

for (i in 1:n) {

266 The BUGS Book

Y[i] ~ dpois(mu[i])

log(mu[i]) <- log(E[i]) + alpha0 + alpha1*X[i]/10 + S[i]

RR[i] <- exp(alpha0 + alpha1*X[i]/10 + S[i])

}

S[1:n] ~ car.normal(adj[], weights[], num[],

inv.omega.squared)

for(k in 1:sumNumNeigh) { # sumNumNeigh = length of adj[],

weights[k] <- 1 # obtained from Map->Adjacency Tool

}

alpha0 ~ dflat()

alpha1 ~ dnorm(0.0, 1.0E-5)

rr.x <- exp(alpha1)

inv.omega.squared ~ dgamma(0.5, 0.0005)

Care is needed when specifying initial values for S[]. These cannot be generated
from the prior since it is improper, so if the gen inits option is selected in
WinBUGS or OpenBUGS, initial values of zero will be assigned to all elements
of S[]. It is therefore preferable to provide user-specified initial values for S[]
if multiple chains are being run to assess convergence. Note also that three of
the regions in Scotland consist of islands that have no “neighbours,” and so the
conditional distributions (11.2) are not defined for these areas. BUGS assigns a
constant value of zero to any element of S[] that has no neighbours and does
not update these during the MCMC simulation. Such elements must be assigned
a value NA in the initial values file.

Figure 11.3 maps the observed SMRs (left) and the posterior means of the
spatially smoothed estimates of the relative risk of lip cancer (middle), which
includes effects due to the occupational factors that were adjusted for. The geo-
graphical variation in the latter is smoother, reflecting the assumption of spatial
dependence imposed by the random effects and separation of the between-area
(random effects) variation from the random Poisson variation.

A feature of the intrinsic CAR model is that spatial structure is imposed a priori
and there is no Bayesian learning about the strength of spatial dependence in the
data. Besag et al. (1991) propose an alternative formulation (commonly referred
to as the convolution or “BYM” model, after its authors) that includes a second
unstructured random effect H[i] to capture effects of unobserved unstructured
latent covariates. In practice, one or the other of S[i] or H[i] will often dominate
the other, but which one will not usually be known in advance. Bayesian learning
about the extent of spatial versus unstructured variation in the data can then
be based on the posterior proportion of the total between-area variation in log
relative risks explained by each random effect (denoted pS and pH, respectively,
in the code below). We also estimate the proportion of variance of the log relative
risks which is explained by the population age structure (pE), and by the covariate
(pX).

Another useful summary of the between-area variation in relative risks is the
quantile ratio (QR), which quantifies the spread of the empirical distribution of

Specialised models 267

(9) < 0.33

(5) 0.33 - 0.5

(10) 0.5 - 1.0

(17) 1.0 - 2.0

(6) 2.0 - 3.0

(7) 3.0 - 4.0

(2) >= 4.0

values for SMR

 200.0km

N

(0) < 0.33

(6) 0.33 - 0.5

(17) 0.5 - 1.0

(17) 1.0 - 2.0

(8) 2.0 - 3.0

(6) 3.0 - 4.0

(2) >= 4.0

(samples)means for RR

 200.0km

N

(0) < 0.33

(8) 0.33 - 0.5

(16) 0.5 - 1.0

(16) 1.0 - 2.0

(8) 2.0 - 3.0

(6) 3.0 - 4.0

(2) >= 4.0

(samples)means for RR

 200.0km

N

FIGURE 11.3

Left: Standardised mortality ratios for lip cancer in Scottish counties. Middle:
smoothed using spatial random effects. Right: smoothed using spatial and
exchangeable effects.

the random effects. For example, the 80% QR is calculated by ranking the random
effects across areas and taking the exponentiated difference between the random
effects in areas ranked at the 90% and 10% quantiles. For the current example,
the 80% QR may be calculated based on the quantiles of the total relative risk,
including the effects of observed covariates (QR80), and/or the residual relative
risk after adjusting for observed covariates (resQR80). In BUGS this is calculated
by using ranked() to find the 6th and 51st out of the 56 areas in order of
(residual) relative risk, corresponding to the 10% and 90% quantiles.

for (i in 1:n) {

...

log(mu[i]) <- log(E[i]) + alpha0 + alpha1*X[i]/10

+ S[i] + H[i]

RR[i] <- exp(alpha0 + alpha1*X[i]/10 + S[i] + H[i])

residRR[i] <- exp(S[i] + H[i]) # residual RR

H[i] ~ dnorm(0, inv.omega.sq.h)

X.pred[i] <- alpha1*X[i]/10

lE[i] <- log(E[i])

}

...

inv.omega.sq.h ~ dgamma(0.5, 0.0005)

sdS <- sd(S[])

sdH <- sd(H[])

sdX <- sd(X.pred[])

sdE <- sd(lE[])

sumvar <- sdS*sdS + sdH*sdH + sdX*sdX + sdE*sdE

pS <- sdS*sdS/sumvar

pH <- sdH*sdH/sumvar

pX <- sdX*sdX/sumvar

268 The BUGS Book

pE <- sdE*sdE/sumvar

QR80 <- ranked(RR[], 51)/ranked(RR[], 6)

resQR80 <- ranked(residRR[], 51)/ranked(residRR[], 6)

node mean sd MC error 2.5% median 97.5% start sample

QR80 7.555 1.297 0.01185 5.412 7.424 10.46 1001 40000

pE 0.6238 0.03673 5.298E-4 0.549 0.6246 0.6931 1001 40000

pH 0.0182 0.03086 0.001449 1.703E-4 0.003441 0.1125 1001 40000

pS 0.2718 0.05497 0.001634 0.1559 0.2733 0.3773 1001 40000

pX 0.08619 0.04071 9.25E-4 0.01754 0.0829 0.1749 1001 40000

resQR80 4.934 0.9109 0.01352 3.481 4.818 7.016 1001 40000

rr.x 1.587 0.1907 0.004348 1.236 1.58 1.986 1001 40000

The resulting mapped relative risks (Figure 11.3, right) are very similar to those
from the previous model, suggesting that there is negligible extra non-spatial
variation. From the posterior means under this model, 62% of the variation in log
disease rates is associated with the age structure of the population and 9% with
the occupational characteristics. The estimated relative risk of lip cancer is 1.59
(1.24, 1.99) for an increase of 10% in the proportion of the population working
in agriculture, fishing, or forestry. The remainder of the variation is associated
mainly with unobserved spatially dependent factors (27%), with less than 2% of
the variation attributable to unobserved non-spatial factors. The quantile ratio
suggests large heterogeneity (7.6-fold variation across the central 80% of areas)
in the risk of lip cancer across Scotland. Occupational characteristics explain some
of this heterogeneity, but nearly 5-fold variation across areas remains unexplained
according to the posterior mean of resQR80.

Adjustments to deal with potential biases are often desirable in geographi-
cal epidemiological studies of this kind. As discussed by Best et al. (2001) and
Richardson and Best (2003), the Bayesian graphical modelling approach allows,
for example, measurement error in potential predictors to be accounted for, along
with ecological bias caused by ignoring within-area variations in the predictor
(see Example 11.4.1). Each model elaboration is typically implemented with a
few extra lines of BUGS code.

11.3.3 Multivariate CAR models

The intrinsic CAR model can be used to define spatially correlated random
effects for any form of response model. The Gaussian version of this model
generalises straightforwardly to multivariate random effects. A p-dimensional
set of spatially correlated effects can be modelled by replacing the univari-
ate conditional distribution (Equation 11.2) with a multivariate conditional
distribution. The multivariate normal intrinsic CAR model is implemented as

S[1:p,1:n] ~ mv.car(adj[], weights[], num[], inv.Omega[,])

Specialised models 269

where inv.Omega[] is the precision matrix, the multivariate equivalent of
ω−2. As in the univariate case, spatial dependence between areas is modelled
via the adjacency weights and is assumed to be the same for all p sets of
random effects. The within-area conditional correlation of the vector of p
random effects for area i given the neighbouring effects is modelled via the
off-diagonal terms in the inverse precision matrix.

11.3.4 Proper CAR model

The proper CAR model introduces an additional parameter γ, often termed
an autocorrelation coefficient, into the conditional specification (Model 11.2).
Provided γ satisfies certain constraints, this leads to a joint distribution for S
that is uniquely defined:

S ∼MVNn(μ, σ
2(I − γC)−1M),

where C is an n× n normalised weight matrix with elements Cij = wij/wi+
(with w defined as in §11.3.1), reflecting the spatial dependence between areas
i and j, M is an n × n diagonal matrix with elements Mii = 1/wi+, and γ
controls the overall strength of dependence. This model is implemented in
WinBUGS as

S[1:n] ~ car.proper(mu[], C[], adj[], num[], M[], tau, gamma)

To define a proper joint distribution, gamma must be bounded by the in-
verse of the maximum and minimum eigenvalues of M− 1

2CM
1
2 , which can

be calculated using the min.bound and max.bound functions in BUGS (see
the GeoBUGS manual). In practice, gamma often needs to be very close to its
upper bound in order to represent even moderate spatial dependence and so
the BYM model (see Example 11.3.1) is often preferred as a random effects
prior that allows learning about the strength of spatial dependence. Unlike
the intrinsic CAR, however, car.proper can be used as a distribution for
continuous spatially correlated data, as well as a prior for random effects.

11.3.5 Poisson-gamma moving average models

An alternative to the CAR model (Ickstadt and Wolpert, 1998; Best et al.,
2000a) expresses spatial correlation among a set of Poisson counts Yi ∼
Poisson(μi) as a convolution or moving average. This assumes a set of in-
dependent gamma-distributed random effects γj representing the underlying
risks in a (possibly different) partition of the study region indexed by j. The
risk in area i is modelled as

μi = Ai
∑

j

kijγj ,

where Ai is a scaling factor for area i (usually related to its size or population)
and kij are a set of kernel weights which govern the contribution of the area

270 The BUGS Book

j random effect γj to the area i risk. The kij typically decrease as the dis-
tance between the areas increases. For example, Best et al. (2000b) employed
a Gaussian kernel with kij = 1/(2πρ2) exp(−d2ij/(2ρ2)), where dij is the dis-
tance between the centroids of the areas. Best et al. (2000b) also discussed
an advantage of this model over the log-linear CAR model discussed above
— if the Poisson mean μi is modelled as a linear function of covariates, then
the covariate effect is consistent under spatial aggregation, avoiding ecological
bias (§11.4.1).

This convolution model is implemented in WinBUGS as

S ~ dpois.conv(mu[])

though the user must provide definitions of the kij and γj which the elements
of mu[] depend on. See the GeoBUGS manual.

11.3.6 Geostatistical models

While CAR models are typically used to model areal or lattice data, point-
referenced spatial data are more often modelled using a geostatistical model.
Such models have their origins in the kriging literature and can be used as a
sampling distribution for continuous spatial data or as a spatial random ef-
fects distribution on an appropriately transformed scale (Diggle et al., 1998).
In either case, let S = (S1, S2, . . . , Sn) be a vector of random variables as-
sociated with point locations (xi, yi), i = 1, . . . , n. Then S can be modelled
with a multivariate normal distribution S ∼ MVNn(μ,Σ) whose covariance
matrix Σ is specified as a function of the distance dij between points i and j.
This covariance matrix must be symmetric and positive-definite, and only cer-
tain parameterisations will guarantee this. BUGS implements one of the most
common spatial covariance matrix parameterisations, the powered exponential
function Σij = (1/τ) exp(−(φdij)

κ), as

S[1:n] ~ spatial.exp(mu[], x[], y[], tau, phi, kappa)

where x[] and y[] contain the x and y coordinates of each point, which
are used by BUGS to compute the distances dij . An alternative covariance
function, spatial.disc, with correlation decreasing approximately linearly
to zero at a specified distance, is described in the GeoBUGS manual. Spatial
interpolation or prediction from these models (kriging) can be carried out
in WinBUGS using the functions spatial.pred and spatial.unipred. The
former jointly predicts all target locations simultaneously, whereas the lat-
ter carries out prediction site by site and so ignores correlation between the
predictions at different locations. This tends to yield slightly wider prediction
intervals (the predicted means will be the same for both versions) but is faster.

Note that none of the spatial models in BUGS allows a complete covariance
matrix to be defined explicitly; only specific parameterisations which implic-
itly guarantee a symmetric positive definite covariance matrix are available.

Specialised models 271

Example 11.3.2. Estimating radioactivity levels on Rongelap Island
Rongelap Island in the Pacific Ocean experienced contamination due to fall-out
from the Bikini Atoll nuclear weapons testing programme in the 1950s. Its former
inhabitants have lived in self-imposed exile on another island since 1985. Diggle
et al. (1998) used Bayesian kriging to estimate radioactivity levels on the island
using data from a radiological survey conducted to establish whether Rongelap
could be safely re-settled. We analyse a subset of the data covering the western
half of the island, comprising photon emission counts Y[] attributable to radioac-
tive caesium measured at each of 73 locations given by coordinate vectors x[]
and y[]. A Poisson model is specified for Y[] with offset log(t[]), the (log)
time over which the counts were recorded. The log emission rate is modelled as
a latent Gaussian spatial field with exponential correlation function. The fitted
model is used to predict emission rates at a further 93 locations with coordinate
vectors x.pred[] and y.pred[], in order to estimate the location and level of
maximum contamination on the island.

Weakly informative priors are recommended for the parameters of the spatial co-
variance matrix, since there is often little information in the data to estimate these.
The choice may be guided by examination of the empirical variogram and by plot-
ting correlation-distance decay curves simulated from the prior. Figure 11.4 (top
left) shows a plot of exp(−(φdij)

κ) versus dij for values of φ ∼ Uniform(0, 120)
and κ ∼ Uniform(0.1, 0.95), the priors used by Diggle et al. (1998). We also use
the same weakly informative uniform prior as Diggle et al. for the overall mean
beta. However, in order to overcome convergence difficulties with this analysis,
we specify an informative half-standard-normal prior for the standard deviation
(sigma) of the spatial process.

for(i in 1:73) {

Y[i] ~ dpois(lambda[i])

log(lambda[i]) <- log(t[i]) + beta + S[i]

}

spatial field representing true log contamination intensity

S[1:73] ~ spatial.exp(mu[], x[], y[],

tau, phi, kappa)

for(i in 1:73) {

mu[i] <- 0

}

mean log contamination intensity

beta ~ dunif(-3, 7)

priors on parameters of spatial covariance matrix

phi ~ dunif(0, 120)

kappa ~ dunif(0.1, 1.95)

sigma ~ dnorm(0, 1)I(0,)

tau <- 1/pow(sigma, 2)

for(j in 1:93) { # prediction

272 The BUGS Book

T[j] ~ spatial.unipred(mu.pred[j], x.pred[j],

y.pred[j], S[])

exp.T[j] <- exp(T[j] + beta) # predicted intensity

mu.pred[j] <- 0

}

combine observed and predicted locations

for(i in 1:73) {

pred[i] <- exp(S[i])

}

for(i in 74:166) {

pred[i] <- exp.T[i-73]

}

max value of contamination

max.level <- ranked(pred[], 166)

for(i in 1:166) { # location of maximum

pred.rank[i] <- rank(pred[], i)

prob.max[i] <- equals(pred.rank[i], 166)

}

prob that count/sec > 15 at location i

for(i in 1:166) {

prob.exceeds.15[i] <- step(pred[i] - 15)

}

node mean sd MC error 2.5% median 97.5% start sample

beta 1.841 0.3141 0.014 1.228 1.856 2.491 10001 250000

kappa 0.9327 0.2239 0.002256 0.4973 0.9317 1.368 10001 250000

max.level 32.72 12.44 0.08155 18.93 29.82 63.6 10001 250000

phi 8.547 6.106 0.1143 1.008 7.58 21.0 10001 250000

sigma 0.8377 0.2211 0.004254 0.5677 0.787 1.413 10001 250000

As noted for some of the time series models, a Gibbs sampling updating scheme
is often not the best approach for models such as this, due to high posterior cor-
relations between parameters. Convergence of phi, sigma, kappa, and (in par-
ticular) beta is poor for this example, and long run lengths are needed. Posterior
medians for these parameters differ somewhat from those obtained by Diggle et al.
(1998) for the whole island, but posterior estimates of the maximum contami-
nation are similar. Figure 11.4 maps the predicted photon emission rates for the
western half of Rongelap (top right), the locations where there is at least a 5%
posterior probability that the rate exceeds 15 counts per unit time (bottom left),
and the posterior probability that each location is the maximum (bottom right).
The latter two maps highlight areas with high levels of radioactivity that are of
specific concern when considering the habitability of the island.

Specialised models 273

prob.exceeds.15

 1.0km

N

(85) < 0.01

(81) >= 0.01

prob.max

 1.0km

N

(126) < 0.01

(12) 0.01 - 0.015

(12) 0.015 - 0.02

(5) 0.02 - 0.025

(3) 0.025 - 0.03

(8) >= 0.03

pred

 1.0km

N

(14) < 2.5

(39) 2.5 - 5.0

(47) 5.0 - 7.5

(47) 7.5 - 10.0

(18) 10.0 - 12.5

(1) >= 12.5

0.0 0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

Distance (metres / 1500)

C
or

re
la

tio
n

FIGURE 11.4

Top left: Prior simulations of correlation versus distance for the Rongelap
example. Top right: Predicted photon emission rates (counts per unit time).
Bottom left: Posterior probability that rate exceeds 15 counts per unit time.
Bottom right: Posterior probability that each location is the maximum.

11.4 Evidence synthesis

“Evidence synthesis” can be broadly described as making inference on a quan-
tity from more than one dataset at the same time. Meta-analysis is a typical
example, where estimates of the same quantity obtained from different stud-
ies are combined. A BUGS graphical model forms a natural framework for
evidence synthesis. If there are N datasets, each assumed to be generated by
a different model, but with a parameter θ in common, then all the datasets
simultaneously provide information about θ.

11.4.1 Meta-analysis

In random-effects meta-analysis, for example, suppose there are eight trials
indexed by k, rt[k] deaths out of nt[k] patients in the treatment group and
rc[k] deaths out of nc[k] patients in the control group. A different bino-
mial model is assumed to generate each trial dataset; however, the models are
linked hierarchically using an exchangeable normal model on the control log-
odds phi[k] and log-odds ratios of treatment theta[k]. All the data simul-
taneously inform the parameters of interest — the “pooled” mean treatment
effect mu and baseline mu.base.

for (k in 1:8) {

274 The BUGS Book

rt[k] ~ dbin(pt[k], nt[k])

rc[k] ~ dbin(pc[k], nc[k])

logit(pt[k]) <- phi[k] + theta[k]

logit(pc[k]) <- phi[k]

theta[k] ~ dnorm(mu, inv.omega.sq)

phi[k] ~ dnorm(mu.base, inv.omega.sq.base)

}

As the random effects variance 1/inv.omega.sq tends to zero, this tends to
a “fixed effects” analysis where each study is assumed to estimate a common
pooled effect theta. This common effect would be approximately the same
if the theta[k] were estimated independently from each study k and the
estimates were then pooled using a weighted average, as in a classical fixed-
effects meta-analysis. In a random-effects meta-analysis, the advantage of a
Bayesian approach is that uncertainty about the random effects variance is
acknowledged in the pooled effect, unlike a classical analysis where the pooled
estimate uses just a point estimate of the variance (DerSimonian and Laird,
1986). See Spiegelhalter et al. (2004) for more discussion.

This can be extended to mixed treatment comparisons involving several
treatments, where different pairs of treatments may appear in different studies,
but any pair can be connected by a chain of comparisons. The aim is to
estimate relative effects between every pair of treatments using the whole
network of studies, not just those which directly compare each pair. See, for
example, Caldwell et al. (2005), and Lu and Ades (2004) for examples of
WinBUGS code to implement these.

11.4.2 Generalised evidence synthesis

Spiegelhalter et al. (2004) discuss further generalisations of meta-analysis,
including adjusting for bias when combining observational and randomised
studies. Studies of a common design or with some other common aspect may
be assumed to be exchangeable (§ 10.1), though prior assumptions may be
important if there are few studies of a particular type.

Economic evaluations, such as those conducted by the National Institute
for Health and Clinical Excellence in the U.K., are increasingly important
to health policy making. These usually depend on complex combinations of
evidence about the treatments and patients. The treatment effect is often es-
timated from a meta-analysis, while long-term costs and health effects under
different policies are projected using a Markov or similar multi-state transi-
tion model (as in Example 7.2.1). Spiegelhalter and Best (2003) describe such
a simultaneous evidence synthesis and cost-effectiveness analysis, with associ-
ated programs available in the hips example for WinBUGS 1.4. Demiris and
Sharples (2006) synthesised survival data from a population register and a
randomised trial to inform a health policy evaluation, providing WinBUGS
code.

Specialised models 275

FIGURE 11.5

Generalised evidence synthesis. Evidence is required on a parameter α which is
a function of more fundamental parameters θ1, . . . , θn, each of which generates
observed data y1, . . . , yn.

Typically in complex Bayesian evidence syntheses, evidence is required on
a quantity α which is a function of more fundamental parameters θ1, . . . , θn.
Each of the fundamental parameters θi defines a statistical model which gen-
erates observed data yi, as illustrated by the directed acyclic graph in Fig-
ure 11.5. These have been used in epidemiology. Goubar et al. (2008) and
Presanis et al. (2008), for example, estimate the prevalence of human im-
munodeficiency virus (HIV) infection in England and Wales. Multiple survey
datasets are used to simultaneously estimate over 30 parameters or functions
of parameters in WinBUGS, such as the underlying prevalence and probability
of HIV diagnosis in selected samples with particular risk profiles. Conflicts or
inconsistencies, where the model fitted well to some datasets but not others,
were identified using the posterior mean deviance and deviance information
criterion.

Example 11.4.1. Limiting long-term illness: combining individual and
aggregate data
Here we give an example of combining evidence from observational data in dif-
ferent forms from different sources. Determining individual-level risk factors from
data aggregated over areas is fraught with problems known as ecological bias.
The effect of an area-level average predictor on the area-level average outcome is
not necessarily the same as the effect of the individual predictor for an individual’s
outcome. Jackson et al. (2006) studied the benefit of combining aggregate and
individual data to alleviate this bias and improve power. A model was fitted for the
risk of self-reported limiting long-term illness (LLTI) among men aged from 45 to
59 years in London. Potential risk factors included non-white ethnicity, household
income (continuous, on the log scale), and area-level deprivation as measured by
the Carstairs index. Aggregate data (mainly from the census) were available from
ngr = 255 electoral wards in London, supplemented by samples of survey data
from n = 412 individuals.

To estimate the risk factors from a synthesis of both datasets, we simply as-
sume they are generated by models with the same underlying individual-level
parameters.

276 The BUGS Book

Individual-level data First we present the portion of the model representing
the individual-level data llti. This is simply a logistic regression, which includes
a random area-specific effect mu.base[ward[i]] to account for heterogeneity
between areas due to unobserved factors.

for (i in 1:n) {

llti[i] ~ dbern(pzy[i])

logit(pzy[i]) <- mu.base[ward[i]] + mu.scale

+ a.carstairs*carstairs[ward[i]]

+ a.nonwhite*nonwhite[i]

+ a.lincome*lincome[i]

}

mu.scale <- 0.7

A danger of combining evidence from different sources is potential inconsistency
between the sources — and this was encountered here. There is known to be a
higher rate of reporting limiting long-term illness in surveys compared to pop-
ulation censuses. A fixed “fudge factor” mu.scale was therefore added to the
individual-level model, based on external data on this discrepancy. This could eas-
ily be extended with a prior distribution to represent uncertainty about mu.scale.

Aggregate data The second half of the model represents the number of indi-
viduals per ward N.llti reporting limiting long-term illness. This needs careful
modelling to avoid ecological bias. Naively using a binomial logistic regression,
with the area-level proportion of non-white residents p.nonwhite and mean log
income mean.lincome as covariates, would yield the effects of the area-level
average predictors on area-level outcomes, whereas we are interested in inferring
effects of individual-level risk factors. Therefore the area-level binomial probability
pi is obtained by integrating the individual level model over the within-area distri-
bution of the covariates. Firstly, we integrate over the binary covariate, non-white
ethnicity,

pi = q0i(1 − φi) + q1iφi

where φi is the proportion of non-white residents in area i (p.nonwhite[i])
and q0i, q1i are the probabilities of LLTI for white and non-white individuals,
respectively (pw[i] and pnw[i]). q0i, q1i are obtained by integrating over the
within-area distribution gi(x) of the continuous variable, log income, assumed
normal with standard deviation si. Salway and Wakefield (2005) show that this
integral is approximated by

q0i =
∫
expit(μi + βx)gi(x)dx ≈ expit

{
(1 + c2β2s2i)

−1/2(μi + βmi)
}

q1i =
∫
expit(μi + α+ βx)gi(x)dx ≈ expit

{
(1 + c2β2s2i)

−1/2(μi + α+ βmi)
}

where c = 16
√
3/(15π), α, β are the log odds ratios for non-white and log income,

respectively, and μi is the baseline log odds for area i, modelled as a normal
random effect with a regression on the area’s Carstairs deprivation index. Further
details are given in Jackson et al. (2006).

Specialised models 277

for (i in 1:ngr) {

N.llti[i] ~ dbin(p[i], N.pop[i])

p[i] <- p.nonwhite[i]*pnw[i]

+ (1 - p.nonwhite[i])*pw[i]

logit(pw[i]) <- (mu.base[i] + a.carstairs*carstairs[i]

+ a.lincome*mean.lincome[i])

/ sqrt(1 + pow(c*a.lincome, 2)/tau.x[i])

logit(pnw[i]) <- (mu.base[i] + a.carstairs*carstairs[i]

+ a.nonwhite + a.lincome*mean.lincome[i])

/ sqrt(1 + pow(c*a.lincome, 2)/tau.x[i])

tau.x[i] <- 1/pow(sd.lincome[i], 2)

mu.base[i] ~ dnorm(base.mu, base.tau)

}

c <- 16*sqrt(3)/(15*pi)

pi <- 3.141592654

Priors for shared parameters The “weakly informative” normal priors with
mean 0 and precision 1.48 for the log odds ratios for income and ethnicity represent
a 95% prior belief that the odds ratio is between 1/5 and 5. The logistic prior on
the baseline log odds base.mu is equivalent to a uniform prior on the probability
scale (§5.2.5).
a.carstairs ~ dnorm(0, 0.1)

a.nonwhite ~ dnorm(0, 1.48)

a.lincome ~ dnorm(0, 1.48)

or.nonwhite <- exp(a.nonwhite)

or.lincome <- exp(a.lincome)

or.carstairs <- exp(a.carstairs)

base.mu ~ dlogis(0, 1)

base.tau ~ dgamma(1, 0.01)

base.sig <- 1/sqrt(base.tau)

After 30,000 iterations from two parallel chains, with the first 4000 from each
discarded, we obtain the following summary statistics. Non-white residents are
estimated to have a 43% increased odds of limiting long-term illness, and low
household income is also a significant risk factor. Living in a deprived area, as
measured by the Carstairs index, also seems to confer an additional risk of LLTI.

node mean sd MC error 2.5% median 97.5%

base.mu -2.108 0.03027 0.001257 -2.171 -2.107 -2.052

base.sig 0.1843 0.01172 1.438E-4 0.1622 0.184 0.2082

or.carstairs 1.071 0.004904 1.836E-4 1.062 1.072 1.081

or.lincome 0.5617 0.04406 0.00158 0.4785 0.5608 0.6513

or.nonwhite 1.432 0.1649 0.007305 1.133 1.424 1.763

Using the individual-level data alone, there is insufficient power to detect signif-
icant associations with ethnicity. Using the aggregate data alone gives estimates

278 The BUGS Book

which are very similar to those from the combined data — because in this case
the individual data sample size is small. However, simulation studies (Jackson
et al., 2006) show that individual data can improve inference from area-level data
when the area-level data contain little between-area variation in average covariate
values and thus little information about the relationship between covariate and
outcome.

Riley et al. (2008) describe similar methods for combining individual and aggre-
gate data in the context of meta-analysis, using shared parameters in WinBUGS.

11.5 Differential equation and pharmacokinetic models

In nonlinear regression, within the field of pharmacokinetics in particular, it is
sometimes more convenient to express the regression function via differential
equations. Consider, for example, the cadralazine regression function used
in Example 10.4.1. For the jth plasma cadralazine concentration taken from
individual i (at time tij):

ψij =
D

Vi
exp

(

−CLi
Vi

tij

)

.

This is the unique solution to the following differential equation and initial
condition, at time t = tij :

dC(t)

dt
= −CLi

Vi
C(t), C(t = 0) =

D

Vi
, (11.3)

where C(t) denotes cadralazine concentration at time t. Hence we might spec-
ify the model in terms of (11.3) instead, as illustrated below. Why might we
want to do this? In pharmacokinetics, the regression function is typically de-
rived from a compartmental model, which represents the body as a number of
compartments between which drug transfer occurs at various rates. The move-
ment of drug between these compartments is naturally expressed in terms of
differential equations, but, in general, we may not know (or want to derive)
the analytic solution. Compartmental models are used in many areas, but
there are other fields with alternative motives for expressing models in terms
of differential equations. WinBUGS and OpenBUGS provide an interface,
therefore, to facilitate such specification.

Specialised models 279

Example 11.5.1. Cadralazine (continued): differential equations
WithWinBUGS Differential Equation Interface (WBDiff) installed,‡ the likelihood
for our cadralazine example (10.4.1) can be specified in WinBUGS as follows:

for (i in 1:10) {

for (j in offset[i]:(offset[i+1]-1)) {

y[j] ~ dnorm(psi[j, 1], inv.sigma.squared[i])

}

psi[offset[i]:(offset[i+1]-1), 1:dim]

<- ode(init[i, 1:dim],

time[offset[i]:(offset[i+1]-1)],

D(C[i, 1:dim], t), origin, tol)

D(C[i, 1], t) <- -CL[i]*C[i, 1]/V[i]

init[i, 1] <- D/V[i]

...

}

The ode(.) syntax represents a matrix-valued function that returns the numerical
solution to the differential equation(s) at the times specified, in this case the
elements of time[] between offset[i] and offset[i+1]-1. In OpenBUGS,
this facility is available without needing to install an add-on package.

Here there is only one differential equation, for a single quantity C (the under-
lying system is a one compartment model). More generally, however, there may be
dim equations for dim quantities. Each column of the output from ode(.) (psi[]
in this case) corresponds to one of the quantities being modelled, whereas rows
correspond to the times at which the solution is required. The various arguments
of ode(.) are described as follows: (i) a vector of dim initial conditions, one for
each of the quantities being modelled; (ii) the set of times at which the solution is
to be evaluated; (iii) the differential equations themselves, specified elsewhere in
the code via the D(, t) notation; (iv) the “origin” to which the initial conditions
relate; and (v) the level of numerical accuracy required in the solution, typically
10−6. There is a slight inconsistency in that the same “dummy variable” t is
used to specify differential equations for all individuals. In OpenBUGS, a different
dummy variable must be used for each individual.

WBDiff also allows users to package their differential equation system as new
BUGS syntax. The above regression function could be re-expressed as follows, for
example,

psi[offset[i]:(offset[i+1]-1), 1:dim]

<- one.comp(init[i, 1:dim],

time[offset[i]:(offset[i+1]-1)],

theta[i, 1:numpar], origin, tol)

‡Available from http://www.winbugs-development.org.uk.

280 The BUGS Book

Here one.comp(.) is a new function, written in Component Pascal by the user, in
which the differential equations are specified and linked to a numerical solver (the
reader is referred to the WBDiff documentation for details). In terms of arguments,
the function is virtually identical with the more general ode(.) function above.
The only difference is that instead of supplying the equations, we provide the
parameters required to define the equations internally, theta[i,]. In the above
specification, the elements of theta[i,] may correspond to CLi and Vi, say —
it depends on how one.comp(.) has been defined internally.

The main advantage of “hard-wiring” differential equation systems into
BUGS, as in the latter example above, is that as compiled code they can be
computed much more rapidly, especially as the complexity and/or the number
of equations increases.

Most of the compartmental systems used in basic pharmacokinetics have
known solutions. Many of these are available via the PKBugs software, which
is compatible only with Version 1.3 of WinBUGS, or via the Pharmaco in-
terface in WinBUGS 1.4.§ In both cases the likelihood for our cadralazine
example can be specified as

for (i in 1:10) {

for (j in offset[i]:(offset[i+1]-1)) {

y[j] ~ dnorm(psi[j], inv.sigma.squared[i])

psi[j] <- pkIVbol1(theta[i, 1:2], time[j], D)

}

}

where pkIVbol1(.) is a hard-wired function representing single compartment
kinetics following an intravenous bolus dose. In this case the elements of
theta[i,] must correspond to logCLi and log Vi (in that order).

11.6 Finite mixture and latent class models

Discrete mixtures of distributions arise in a number of contexts. The prior
distribution may be one of a set of alternatives, such as a mixture of two
components, described in §5.4. A similar analysis arises when assuming that
all the data come from one of a set of competing models (§8.7).

A mixture model, however, usually means that each individual data point
yi is assumed drawn from one of a list of possible distributions. This can be

§Both PKBugs and Pharmaco are available from http://www.winbugs-development.org.

uk.

Specialised models 281

considered as a clustering of the points into groups Gj , j = 1, .., J , where yi is
a member of group Ti and has a distribution parameterised by θTi . We may
write this general model as

yi ∼ p(yi|θTi , GTi), Ti ∼ Categorical(p) (11.4)

so that the probability that yi is in the jth group Gj is Pr(Ti = j) = pj .
Particular difficulties can arise when using MCMC to analyse such models

using this formulation. Each iteration involves generating a possible cluster-
ing of the points, and if a group j is left empty at a particular iteration, then
there will be no likelihood term to contribute to the next simulation of the
group’s parameters θj , and this can lead to convergence problems. Similarly,
the model is invariant to permutations of the labels of the groups, so that care-
ful constraints are required to minimise the effect of points switching between
different groups at different MCMC iterations (Richardson and Green, 1997;
Stephens, 2000).

The JAGS implementation of BUGS includes a specialised module mix for
finite mixtures of normal distributions. This provides a distribution for a nor-
mal mixture

y[i] ~ dnormmix(mu, tau, pi)

where the component-specific means mu, precisions tau, and membership prob-
abilities pi are vectors with length equal to the number of alternative distri-
butions. A specialised random-walk Metropolis–Hastings sampler, with tem-
pered transitions to jump between multiple modes of the posterior density
(Neal, 1996; Celeux et al., 2000), is also used.

Mixture models with unknown numbers of components may be implemented
in BUGS using Bayesian nonparametric methods, as discussed in §11.8.

Example 11.6.1. Eyes
Bowmaker et al. (1985) analyse data on the peak sensitivity wavelengths for
individual microspectrophotometric records on the eyes of monkeys. A scaled
histogram of the data from one monkey (S14 in the paper) is shown in Figure 11.6
with a kernel density estimate suggesting a two-component mixture.

Part of the analysis involves fitting a mixture of two normal distributions with
common variance to this distribution, so that each observation yi is assumed
drawn from one of two groups. Let Ti = 1, 2 be the true group of the ith obser-
vation, where group j has a normal distribution with mean λj and precision τ .
We assume an unknown fraction p1 of observations are in group 1, p2 = 1 − p1
in group 2.

The model is thus

yi ∼ Normal(λTi , τ), Ti ∼ Categorical(p).

This formulation easily generalises to additional components in the mixture, al-
though for identifiability, an order constraint is put onto the group means. This

282 The BUGS Book

Wavelength (nm)

D
en

si
ty

0.
00

0.
02

0.
04

0.
06

0.
08

525 530 535 540 545 550 555 560

FIGURE 11.6

Monkey eye tracking measurements with a kernel density estimate.

avoids “label switching” between MCMC iterations. However, in general, partic-
ularly with greater numbers of groups, inferences about the groups may be sen-
sitive to the constraint chosen to identify them, and Stephens (2000) discusses
specialised algorithms to alleviate this problem.

Diebolt and Robert (1994) pointed out that there is a danger using this model
that at some iteration all the data will go into one component of the mixture, and
this state will be difficult to escape from — this matches our experience. They
suggested a re-parameterisation, a simplified version of which is to assume

λ2 = λ1 + θ, θ > 0.

λ1, θ, τ, p are given independent vague priors.

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- lambda[T[i]]

T[i] ~ dcat(p[])

}

p[1:2] ~ ddirch(alpha[])

alpha[1] <- 1

alpha[2] <- 1

theta ~ dunif(0, 1000)

lambda[2] <- lambda[1] + theta

lambda[1] ~ dunif(-1000, 1000)

Specialised models 283

0.
00

0.
02

0.
04

0.
06

0.
08

Wavelength (nm)

P
os

te
rio

r
pr

ed
ic

tiv
e

de
ns

ity

525 530 535 540 545 550 555 560

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
ro

ba
bi

lit
y

in
 g

ro
up

 2
 (

po
in

ts
)

FIGURE 11.7

Posterior predictive distribution for an eye tracking observation. The probabilities
that each data point is in mixture group 2 are overlaid.

sigma ~ dunif(0, 100)

tau <- 1 / pow(sigma, 2)

Posterior medians and 95% CIs for the two group means are 537 (535, 539) and
549 (545, 551) nm, respectively, with common standard deviation 3.7 (3.0, 6.2).
About 60% (41%, 77%) of observations are estimated to be in group 1.

Figure 11.7 illustrates how the probability that each observation is in group
2 increases with the size of the observation. Overlaid is the posterior predictive
distribution for a new observation, which approximately follows the kernel density
estimate for the data.

Since there are only two categories, we could also have used a Bernoulli instead
of a categorical distribution for T[i]. See Example 11.6.3.

11.6.1 Mixture models using an explicit likelihood

The finite mixture model can be reformulated by summing over the possi-
ble memberships Ti to give the the following distribution, from which every
observation is assumed to arise:

p′(yi|θ) =
∑

j

pjp(yi|θj , Gj).

284 The BUGS Book

This sampling distribution can be employed using the zeros trick (§9.5). This
allows a multimodal density to be fitted to the data, but cannot allocate
observations Ti to distinct groups. An advantage of this formulation is that
the DIC for model comparison can be calculated. In §11.4 the model involves
a discrete parameter Ti for which the posterior mean, and therefore DIC, is
undefined (see §8.6.4), whereas here this parameter is integrated over. Though
again, as discussed by Celeux et al. (2006), the DIC may be sensitive to the
constraint chosen to avoid label switching.

Example 11.6.2. Eyes (continued): DIC with the zeros trick
In this mixture formulation, we assume each observation is drawn from a density

p(yi|) = p× Normal(λ1, σ
2) + (1− p)× Normal(λ2, σ

2).

implemented using the zeros trick.

for (i in 1:N) {

Zero[i] <- 0

Zero[i] ~ dpois(phi[i])

phi[i] <- -log((p[1]*exp(-0.5*tau*pow(y[i] - lambda[1], 2))

+ p[2]*exp(-0.5*tau*pow(y[i] - lambda[2], 2)))

* sqrt(tau/(2*3.14159))) + C

}

C <- 100

p[2] <- 1 - p[1]

p[1] ~ dunif(0, 1)

theta ~ dunif(0, 1000)

lam ~ dunif(0, 1000)

lambda[2] <- lam + theta/2

lambda[1] <- lam - theta/2

sigma ~ dunif(0, 100)

tau <- 1/pow(sigma, 2)

The mixing is considerably poorer than under the previous formulation, requir-
ing about ten times as many iterations for a similar degree of accuracy. Indeed,
a further alteration to the parameterisation was required for satisfactory conver-
gence, replacing the group means λ1, λ2 = λ1+θ by a “centred” parameterisation
λ1 = λ− θ/2, λ2 = λ+ θ/2.

Note also that in this example, the component membership probabilities p

cannot be explicitly given a Dirichlet prior in WinBUGS, where the ddirch dis-
tribution can only be employed as a conjugate prior for the parameter of a cate-
gorical or multinomial distribution, or for forward sampling. The equivalent p[1]
∼ dunif(0,1) is therefore specified. In OpenBUGS or JAGS, a Dirichlet prior
would be allowed.

To compare the DIC for a model implemented with the zeros trick with the
DIC of a model defined using a built-in distribution, for example, a simple normal
model

Specialised models 285

for (i in 1:N) {

y[i] ~ dnorm(lam, tau)

}

lam ~ dunif(0, 1000)

sigma ~ dunif(0, 100)

tau <- 1/pow(sigma, 2)

an adjustment must be made. The DIC which WinBUGS calculates when the
zeros trick is used (Dzero, say) refers to the Poisson model for the dummy Zero

data Zi = 0, i = 1, . . . , n. This is on a different scale to the DIC (D, say)
which would be reported from a direct model for y. The sampling distribution
for a single Poisson-distributed Zi is p(Zi|φi) = e−φiφZi

i /Zi! = e−φi . Since
φi = C − log(g(yi|λ1, λ2, σ)), where g(yi|.) is the sampling distribution of the
normal mixture model for yi, the Poisson sampling distribution is e−Cg(yi|.).
Taking −2 log() and summing over the n observations, we conclude that Dzero

will differ from the “natural” DIC D by a constant

Dzero = D + 2nC

where C is the constant applied to ensure that the Poisson rate is positive, and
n is the number of observations (100 and 48, respectively, in this example).

WinBUGS reports a DIC of 9918 for the two-component mixture model im-
plemented using the zeros trick. For the simple normal model implemented using
dnorm, the DIC reported is 326. To compare these, a constant 2nC = 9600 is
added to 326, obtaining 9926. Since this is greater than 9918, the two-component
mixture model with an effective additional two parameters is therefore preferred
to the simple normal model. Indeed, if the simple normal model were implemented
using the zeros trick, WinBUGS would report a DIC of 9926.

Example 11.6.3. Zero-inflated Poisson
In Example 8.4.6 we used a focussed checking function to identify an excess of
zeros in a set of 35 observations assumed to come from a Poisson distribution.
A natural extension is a “zero-inflated Poisson” (ZIP) model , which is a two-
component mixture model in which an unknown proportion 1− p of observations
is constrained to be exactly 0, while the remainder p are drawn from a standard
Poisson distribution (some of these observations may, by chance, also be 0). There
are a number of possible ways of expressing such a model in BUGS — perhaps
the simplest is to assume each observation yi comes from one of two groups so
that gi = 0 or gi = 1: those in group 0 are Poisson with mean 0 (and so are all
0), while those from group 1 are Poisson with mean μ. This can be expressed as
yi ∼ Pois(mi), where mi = giμ, and gi ∼ Bern(p). BUGS code is as follows:

for (i in 1:N) {

y[i] ~ dpois(m[i])

286 The BUGS Book

m[i] <- group[i]*mu # mean is 0 if group is 0

group[i] ~ dbern(p)

}

proportion of claims that could be positive

p ~ dunif(0,1)

mu ~ dgamma(0.5, 0.0001) # approximate Jeffreys prior

We estimate p to be 0.81 (95% interval 0.63 to 0.97) and μ to be 2.07 (1.50
to 2.73).

11.7 Piecewise parametric models

11.7.1 Change-point models

Arbitrarily flexible models can be built in BUGS by piecing together simpler
parametric forms. A simple example is a change point model for a regression
of y on x consisting of two straight lines, which meet at a certain point x = θ.

yi ∼ Normal(μi, σ
2), μi = α+ βx+ β2(x − θ)+ (11.5)

Here (x − θ)+ denotes the positive part of (x − θ), which is implemented by
the step() function in BUGS. The regression slope is then β for x ≤ θ and
β + β2 for x > θ (as in Figure 11.8).

Example 11.7.1. Stagnant water: change point model
Carlin et al. (1992) analyse data on water stagnation and flow rates. yi is the log
flow rate down an inclined channel, and xi is the log height of stagnant surface
layers for different surfactants i. The rate of decline in flow rate seems to suddenly
increase around x = 0 (Figure 11.8). The linear change-point model (11.5) can
be expressed simply in BUGS; however, sensible parameterisation and prior choice
are necessary. The change point θ is given a continuous uniform prior over the
region of the observed xi. Constraining this point to lie at one of the xi = xc,
with a discrete uniform prior on c, would produce a poorly converging chain due
to the strong correlation between c and α (α = E[y] at x = 0).

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta[1]*x[i] + beta[2]*(x[i] - theta)

* step(x[i] - theta)

}

tau ~ dgamma(0.001, 0.001)

Specialised models 287

alpha ~ dnorm(0.0, 1.0E-6)

for (j in 1:2) {

beta[j] ~ dnorm(0.0, 1.0E-6)

}

sigma <- 1/sqrt(tau)

theta ~ dunif(-1.3, 1.1)

Ten thousand iterations after a burn-in of 500 produces a posterior mean of
0.026 (−0.040, 0.087) for the change point. Posterior means and 95% pointwise
credible intervals for the regression means mu[i] are illustrated in Figure 11.8.

−1.0 −0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

Log stagnant height (cm)

Lo
g

flo
w

 r
at

e
(g

/c
m

/s
)

FIGURE 11.8

Change-point model for stagnant water data. Solid and dashed lines show
posterior means and 95% intervals, respectively, for the fitted values mu[i];
dots show observed data y[i].

288 The BUGS Book

11.7.2 Splines

The idea of the change-point model generalises to spline models consisting of
piecewise parametric functions, commonly polynomials. These are defined to
change at K knots θ1, . . . , θK , and may optionally include smoothness con-
straints at the knots. An example of a cubic spline is

μi = α+

3∑

j=1

βjx
j
i +

K∑

k=1

βk+3(xi − θk)
3
+

The location of the knots may be estimated as part of the model. Ordering con-
straints on the locations (§9.7.2) are necessary with more than one knot. The
required BUGS model specification becomes quite verbose for splines more
complex than a quadratic polynomial with a couple of knots. Some exam-
ples are given by Congdon (2005). However, the Jump add-on to WinBUGS¶

contains functions to automatically construct a variety of polynomial splines.
Even the number of knots can be considered as an unknown parameter, since
the posterior distribution is estimated using reversible jump MCMC (§8.8.2).
This facility is under development for OpenBUGS.

11.7.3 Semiparametric survival models

Piecewise parametric models have an interesting application to flexible sur-
vival analysis. In the Cox proportional hazards regression model, the hazard
is modelled as a function of covariates xi as h(t) = h0(t)e

βxi . In the usual
classical implementation by partial likelihood, h0(t) is left unspecified. The
Bayesian framework, however, requires a full probability model; therefore we
specify h0(t) as a piecewise-constant function.

The BUGS implementation relies on a counting process formulation (An-
dersen et al., 1993). For individual i, Ni(t) counts the number of deaths up to
time t. The increment of the counting process dNi(t) over the time interval
[t, t+ dt] takes the value 1 if individual i dies in this interval and 0 otherwise.
In allowing multiple “deaths” for each individual, the counting process en-
ables more general event history models. The hazard function of the process
is λi(t) = limdt→0E(dNi(t)|Ft)/dt, where Ft is the history of the process up
to t. Let tj : j = 1, 2, . . . represent all unique death or censoring times (t0 = 0).
If the hazard λi(t) is assumed to be piecewise-constant, the likelihood for these
data can be computed by multiplying probabilities of survival or death over
intervals up to each individual’s observed death time Ti or censoring time T ∗

i :

∏

i

∏

j:tj<=min(Ti,T∗
i)

λi(tj)
dNi(tj) exp(−λi(tj)(tj − tj−1)), (11.6)

¶Available from http://www.winbugs-development.org.uk.

Specialised models 289

equivalent to a Poisson model for dNi(tj) with mean λi(tj)(tj − tj−1). The
most flexible possible model allows λi(t) to change at every observed death
time. But a more efficient model can be built by adapting the change points
to the data, using more frequent hazard changes in regions where there are
more observed deaths. See Demiris and Sharples (2006) and Jackson et al.
(2010b) for further discussion of practical issues with these models.

Example 11.7.2. Leukaemia: survival models with piecewise-constant hazards
Times in remission were recorded for 42 leukaemia patients from a trial of the
drug 6-mercaptopurine versus placebo (Gehan, 1965). A piecewise-constant haz-
ard model for these data is built. The time in remission obs.t[i] in weeks,
indicator ind[i] (1 if they relapsed at the end of the remission time or 0 if cen-
sored), and a covariate Z (0.5 representing control, and −0.5 treated) are supplied
as usual (§11.1) for each individual i. To set up the counting process, a vector
t[] of all unique times in remission is also given.

list(N=42, T=23, eps=1.0E-10,

obs.t=c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23,

6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,25,32,32,34,35),

ind=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,0,1,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,0),

Z=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,

-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,

-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5,-0.5),

t=c(1,2,3,4,5,6,7,8,9,10,11,12,13,15,16,17,19,20,22,23,25,32,34,35),

period=c(1,2,3,4,5,6,7,8,8,9,10,11,12,13,14,15,15,15,16,17,17,17,17,17),

period4=c(1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4),

ndtimes=17)

First, the counting process increments dN are calculated for each individual i and
unique relapse or censoring time j in terms of the data. Y[i,j] are indicators for
obs.t >= t, in other words, whether individual i is under observation at time
t[j]. The increment dN[i,j] is 1 if individual i is observed to relapse at t[j],
and zero otherwise.

for (i in 1:N) {

for (j in 1:T) {

Y[i,j] <- step(obs.t[i] - t[j] + eps)

dN[i,j] <- Y[i,j]*step(t[j+1] - obs.t[i] - eps)*ind[i]

}

}

The Poisson model (11.6) is then applied to the dN[i,j], with rate Idt[i,j]

equal to the hazard multiplied by the length of the time interval ending in t[j],
or zero if individual i is not at risk. The hazard is assumed proportional to the
treatment covariates Z, with a baseline hazard lam which changes at every distinct
relapse time. Periods with identical hazard are indicated by period in the data —

290 The BUGS Book

note the hazard does not change at times when censoring occurs but no relapses.
Diffuse priors are specified for each distinct hazard and for the covariate effect.
Finally, the survivor function S(t) is then calculated in terms of the cumulative
hazard H(t) as S(t) = exp(−H(t)) for each treatment group.

dt[1] <- t[1]

for (j in 2:(T+1)) {

dt[j] <- t[j] - t[j-1]

}

for (j in 1:T) {

for (i in 1:N) {

dN[i,j] ~ dpois(Idt[i,j])

Idt[i,j] <- Y[i,j]*exp(beta*Z[i])

* lam[period[j]]*dt[j]

}

}

cumhaz.treat[1] <- 0

cumhaz.placebo[1] <- 0

for (j in 2:(T+1)) {

cumhaz.treat[j] <- cumhaz.treat[j-1] + lam[period[j]]

* dt[j]*exp(beta*-0.5)

cumhaz.placebo[j] <- cumhaz.placebo[j-1] + lam[period[j]]

* dt[j]*exp(beta*0.5)

S.treat[j] <- exp(-cumhaz.treat[j])

S.placebo[j] <- exp(-cumhaz.placebo[j])

}

for (j in 1:ndtimes) {

lam[j] ~ dgamma(0.001, 0.001)

}

beta ~ dnorm(0.0, 0.000001)

The posterior mean relapse-free survival curves are superimposed on standard
Kaplan–Meier estimates in Figure 11.9. In a second model, the unique observed
relapse times j are partitioned into four periods according to the sample quartiles,
so that period[j] is replaced by period4[j], which takes the values 1, 2, 3,
4. This model is more efficient than the model with a hazard change per relapse
time, as judged by its DIC of 221, compared to 246, and the treatment effect β
is unchanged.

Specialised models 291

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Weeks

P
ro

ba
bi

lit
y

of
 r

em
ai

ni
ng

 in
 r

em
is

si
on

Placebo

Treatment

Kaplan−Meier
Hazard per death time
Four hazard pieces

FIGURE 11.9

Relapse-free survival curves for leukaemia trial patients.

11.8 Bayesian nonparametric models

There is growing interest in the use of Bayesian nonparametric methods based
on distributions over spaces of distributions (Hjort et al., 2010). A typical
motivation is to account for model uncertainty (§8.8) about the choice of a
parametric distribution. For instance, normal distributions are often used un-
critically for random effects in hierarchical models or as the error distribution
in a regression. But sampling distributions for data, or priors for parameters,
often do not follow any standard parametric shape. Unlike typical classical
nonparametric methods (such as rank and permutation tests, or Kaplan–Meier
survival estimators), Bayesian nonparametric methods can provide full prob-
ability models for the data-generating process. Thus they may be used to
estimate a predictive distribution for any point outside or inside the sample
data, which accounts for uncertainty about distributional shape.

The most common models of this type are based on the Dirichlet process

292 The BUGS Book

(DP), which is a distribution over distributions

G() ∼ DP(G0(), α).

G0() represents the central or “mean” distribution, for instance Normal(0, 1)
or Normal(μ, σ2), while the precision or concentration parameter α governs
how close realisations of G() are to G0(). A distribution is essentially defined
by the set of all probabilities for any partition of the sample space into any
number of intervals k, which follow

(p1, . . . , pk) ∼ Dirichlet(αp01, . . . , αp0k),

where (p01, . . . , p0k) are the probabilities under G0().

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

Four draws from DP(G0=N(0,1), α=10)

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4

Four draws from DP(G0=N(0,1), α=0.5)

FIGURE 11.10

Samples of distributions generated from the Dirichlet process.

A realisation of the Dirichlet process is a discrete distribution, defined as
an infinite collection of point masses at random locations θ1, θ2, . . . in the
sample space, with weights p1, p2, . . . :

∑∞
1 pk = 1. Smaller values of the

precision parameter α result in a few large pk dominating the distribution
(Figure 11.10).

Specialised models 293

11.8.1 Dirichlet process mixtures

To define a continuous distribution, the DP can be used as the basis of a mix-
ture model, for example, a mixture of Normal(θk, σk) with mixing proportions
defined by the pk. There are a theoretically infinite number of mixture com-
ponents k = 1, . . . ,∞, giving an arbitrarily flexible choice of distributional
shapes. Multimodal or heavy-tailed distributions are naturally modelled as
mixtures (§11.6). Although a finite number of mixture components may only
be necessary in practice, Dirichlet process models acknowledge uncertainty
about this number. Smaller values of α result in a smaller number of mixture
components.

11.8.2 Stick-breaking implementation

As shown by Congdon (2006)(§6.7), Dirichlet-process-based models can be
implemented in the BUGS language using a constructive definition, which
represents the distribution (as illustrated in Figure 11.10) as a stick of length
1 which has been successively broken into smaller and smaller pieces. For
q1, q2, q3 . . . ∼ Beta(1, α),

• Define p1 = q1 (break proportion q1 of a stick)

• p2 = (1− q1)q2 (break proportion q2 of remainder)

• p3 = (1− q1)(1 − q2)q3 (break proportion q3 of remainder)

and so on, with the recursive relation pj = (1 − qj−1)qjpj−1/qj−1. The stick-
breaking definition is truncated so that the stick is only broken C times,
which assumes that the data can be represented by a maximum of C possible
clusters. Finally, the sticks are placed at locations x1, x2, . . . sampled from the
baseline distribution G0.

This method was used by Ohlssen et al. (2007) to fit flexible random ef-
fects models for identifying health-care providers with outlying or unexpected
performance. The R package DPpackage (Jara et al., 2011) also implements
MCMC posterior inference for the DP and related models using exact and
more efficient algorithms; however, the BUGS language allows a freer choice
of component-specific and prior distributions, and allows DP models to be
embedded within a larger graphical model.

Example 11.8.1. Galaxy clustering: Dirichlet process mixture models
Roeder (1990) and Escobar and West (1995) studied the velocities, relative to
our own galaxy, of 82 galaxies drawn from six well-separated conic sections of
the Corona Borealis region. The distribution of velocities (Figure 11.11) appears
multimodal, suggesting that galaxies are clustered, as predicted by the Big Bang
theory. To estimate a posterior density for the velocity distribution, we fit a Dirich-
let process mixture of normals. This may also provide a posterior distribution for

294 The BUGS Book

the number of clusters, to distinguish between genuine clusters and artefacts of
sampling.

First, the mixture model is defined, as in § 11.6. The n galaxy velocities yi
are assumed to arise from a maximum of C = 20 normal distributions with
different means and precisions. The stick-breaking definition then generates the
probabilities pj that galaxy i belongs to cluster Gi = j : j = 1, . . . , C.

yi ∼ Normal(μGi , σ
2
Gi
)

μj ∼ Normal(aμ, σ
2
j /bμ), 1/σ2

j ∼ Gamma(aτ , bτ)

The prior distributions are derived from Escobar and West (1995). A diffuse
normal prior is used for the mean aμ of the normal cluster means, and the between-
cluster variance of μj is a scaled version of the within-cluster variance σ2

j = 1/τj .
But with diffuse priors on bμ, aτ , bτ and the DP precision parameter α, the chain
fails to converge. The within-cluster variances σ2

j need more careful constraints
for identifiability therefore scientific belief is used to define an inverse gamma
prior with fixed shape aτ = 2 and uncertain scale bτ ∼ Gamma(2, 1), and also
bμ ∼ Gamma(0.5, 50). The DP precision parameter, which governs the expected
number of clusters, is initially fixed at α = 1, which implies about 90% prior
weight on between three and seven clusters to generate a dataset of n = 82.
See Ohlssen et al. (2007) and Jara et al. (2011) for more discussion of prior
specification in this class of models.

for (i in 1:n) {

velocity[i] ~ dnorm(mu[i], tau[i])

mu[i] <- mu.mix[group[i]]

tau[i] <- tau.mix[group[i]]

group[i] ~ dcat(pi[])

for (j in 1:C) {

gind[i,j] <- equals(j, group[i])

}

}

p[1] <- q[1]

for (j in 2:C) {

p[j] <- q[j]*(1 - q[j-1])*p[j-1]/q[j-1]

}

for (j in 1:C) {

q[j] ~ dbeta(1, alpha)

pi[j] <- p[j]/sum(p[])

mu.mix[j] ~ dnorm(amu, mu.prec[j])

mu.prec[j] <- bmu*tau.mix[j]

tau.mix[j] ~ dgamma(aprec, bprec)

}

alpha <- 1

amu ~ dnorm(0, 0.001)

Specialised models 295

bmu ~ dgamma(0.5, 50)

aprec <- 2

bprec ~ dgamma(2, 1)

K <- sum(cl[])

for (j in 1:C) {

sumind[j] <- sum(gind[,j])

cl[j] <- step(sumind[j]-1+0.001) # cluster j used in

this iteration

}

for (j in 1:ndens) {

for (i in 1:C) {

dens.cpt[i,j] <- pi[i]*

sqrt(tau.mix[i] / (2*3.141592654))*

exp(-0.5*tau.mix[i]*(mu.mix[i] - dens.x[j])

*(mu.mix[i] - dens.x[j]))

}

dens[j] <- sum(dens.cpt[,j])

}

Twenty thousand iterations are required for sufficiently precise estimation of
the number of clusters K after a burn-in of 1000, giving a posterior median of 7
(4–10) clusters. The posterior mean and pointwise 95% posterior credible limits
for the density function of galaxy velocities (dens in the code above, evaluated at
ndens=271 points at equal increments of 0.1 between 8 and 35) are illustrated
in Figure 11.11.

Ideally, α would be estimated from the data. In this example, the constant
α = 1 was replaced with a Gamma(2, 4) prior. The resulting chain mixes fairly
poorly, but supports values close to α = 1. The uncertainty around the number
of clusters is slightly increased, with a posterior median of K = 6 (3–11). There
is sensitivity to this prior choice, however — under an alternative Uniform(0.3,
10) prior, the posterior median is K = 13 (6–18). However, the qualitative shape
of the posterior density under this alternative prior is unchanged (Figure 11.11,
top row).

We can get some idea of the distribution of clusters by plotting the posterior
means of the probabilities pi[i] assigned to each cluster [i] (Figure 11.11,
bottom row)— note that under the uniform prior, there are more components with
smaller estimated probabilities. We cannot obtain meaningful posteriors describing
particular clusters, however. Just as for standard mixture models (§ 11.6), the
integer labels of the mixture components stored in group[] do not retain their
substantive meaning in terms of data clusters between MCMC iterations. However,
under the stick-breaking implementation, the lower labels will tend to be applied
to the most common clusters with the highest probabilities pi[j], particularly if
α is low.

296 The BUGS Book

Fixed α = 1

Galaxy velocity (x 1000 km/h)

P
ro

ba
bi

lit
y

de
ns

ity

10 15 20 25 30 35

0.
00

0.
10

0.
20

0.
30

Estimated α ~ Uniform(0.3,10)

Galaxy velocity (x 1000 km/h)

P
ro

ba
bi

lit
y

de
ns

ity

10 15 20 25 30 35

0.
00

0.
10

0.
20

0.
30

1 3 5 7 9 11 13 15 17 19

Component

P
ro

ba
bi

lit
y

of
 e

ac
h

co
m

po
ne

nt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 7 9 11 13 15 17 19

Component

P
ro

ba
bi

lit
y

of
 e

ac
h

co
m

po
ne

nt

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 11.11

Galaxy velocities with posterior density from the Dirichlet process mixture model
and probabilities of mixture components, under two prior specifications. Note that
due to label switching the components may represent different clusters at each
iteration.

12

Different implementations of BUGS

Through the years, a variety of software has been developed to perform
MCMC sampling for models specified in the BUGS language. This chapter
describes in detail the alternative implementations and interfaces to BUGS
which are currently available and will hopefully clear up some confusion. We
give brief examples of how to perform a typical analysis under each interface.
All examples elsewhere in this book use WinBUGS 1.4.3, though where appro-
priate, important differences between BUGS implementations for particular
examples have been highlighted.

12.1 Introduction — BUGS engines and interfaces

We distinguish between different BUGS engines and BUGS interfaces. The
engine is the core of the software — the underlying code which interprets
the model and performs MCMC simulation. The interface is the means of
controlling the engine — the actual software application which users open
before starting their analysis, and the commands or buttons used to perform
the analysis.

Currently there are three BUGS engines in widespread use:

• WinBUGS

• OpenBUGS

• JAGS

The older “Classic” BUGS is virtually obsolete. Different engines have slightly
different scientific capabilities, in terms of what functions, distributions, and
MCMC sampling algorithms can be used in models. There are also some minor
differences in BUGS language syntax.

Each engine can be controlled though different interfaces. For a model run
under the same engine, different interfaces will give identical results. For ex-
ample, WinBUGS can be run by clicking in its menus, by using a “script”
to run a batch of menu commands at once, or through other software (such
as R, via the R2WinBUGS package). Engines also differ in the computer op-
erating systems and hardware platforms that they can run on. For example,

297

298 The BUGS Book

TABLE 12.1

Sampling method hierarchy used by WinBUGS. Each method is only used
if no previous method in the hierarchy is appropriate.

Target full conditional Sampling method
Discrete Inversion of cumulative distribution function
Closed form (conjugate) Direct sampling using standard algorithms
Log-concave Derivative-free adaptive rejection sampling

(Gilks and Wild, 1992)
Restricted range Slice sampling (Neal, 2003)
Unrestricted range Metropolis–Hastings

(Metropolis et al., 1953; Hastings, 1970)

WinBUGS is restricted to Windows or “emulators” of Windows on other op-
erating systems. OpenBUGS may also run natively on Linux on PC hardware,
and JAGS is even more portable.

12.2 Expert systems and MCMC methods

Each BUGS engine implements an “expert system” to decide which of the
available MCMC algorithms should/could be used for a given problem. This
is one area where the various engines differ substantially. All of the expert sys-
tems begin with classification, whereby the full conditional distribution of each
node, or block of nodes, within the specified graphical model is classified. If
the full conditional can be derived in closed form, then the appropriate classi-
fication is the corresponding density type, e.g., normal, gamma. Alternatively,
if a closed form is not available, the expert system may still be able to iden-
tify useful properties that can be exploited by particular sampling algorithms,
such as log-concavity, which enables adaptive rejection sampling (Gilks, 1992;
Gilks and Wild, 1992). In WinBUGS, there is a one-to-one mapping between
classifications and MCMC methods; in other words, the classification uniquely
determines the sampling algorithm. A simplified representation of this map-
ping is given in Table 12.1.

By contrast, OpenBUGS uses a more flexible system whereby sampling
methods “choose” nodes (using classification as a guide) as opposed to nodes
“choosing” methods. First, all available methods are arranged in order of in-
creasing generality. Then, starting with the more specialised methods, such as
conjugate samplers, the software works through each available method in turn,
allocating that method to any node, or block of nodes, for which it is applica-
ble. By focusing on sampling methods one by one, the software can go beyond
simple classifications and probe the graphical model for further, contextual

Different implementations of BUGS 299

information that will facilitate the composition of better tailored sampling
schemes. This approach also facilitates expansion of the software’s capabili-
ties, since new sampling methods can be added without requiring new clas-
sifications. In addition, an interface exists within OpenBUGS to disable var-
ious algorithms temporarily, so different schemes can be experimented with.
Currently OpenBUGS includes many of the sampling methods used by Win-
BUGS along with various other “semi-general” methods, such as multivariate
Metropolis, various forms of adaptive Metropolis, hybrid sampling (Hanson,
2001), and differential evolution (Ter Braak, 2006). JAGS uses largely the
same approach as OpenBUGS but with a reduced set of methods, currently
restricted to conjugate samplers, slice samplers, and specialised samplers for
mixture models and generalised linear models.

In light of the above discussion of sampling methods, the name BUGS might
be considered somewhat of a misnomer, since, strictly speaking, the software
does not generally perform Gibbs sampling. However, the sampling scheme
still has the flavour of Gibbs sampling since it traverses nodes (or blocks) in
the graphical model and considers their full conditionals as target distributions
even if they cannot be sampled exactly.

12.3 Classic BUGS

The BUGS project began in the late 1980s and grew from several strands of
research on artificial intelligence, graphical modelling, and Bayesian compu-
tation. Several years’ development led to the first stable release of the soft-
ware in 1995, then simply called BUGS version 0.5, now referred to as “Clas-
sic” BUGS. This was written in the Modula-2 programming language, had
a purely text-based, command line interface, and ran on MS-DOS and sev-
eral varieties of Unix. The BUGS language was largely the same as in future
versions, although the software employed a more limited range of MCMC al-
gorithms — Gibbs sampling using conjugacy, inversion, or adaptive rejection
sampling for log-concave full conditionals. Development became focused on
WinBUGS around the mid-1990s. The new developments included an inter-
active graphical user interface, more sophisticated Metropolis–Hastings sam-
pling algorithms, and a new, highly modular, “component-oriented” infras-
tructure for the program source code. This early history of the BUGS project
is related in more detail by Lunn et al. (2009b).

300 The BUGS Book

12.4 WinBUGS

WinBUGS is an application for Microsoft Windows containing an engine and
a graphical user interface for BUGS. It is freely available from http://www.

mrc-bsu.cam.ac.uk/bugs. WinBUGS was written in the Component Pascal
programming language, using the Blackbox Component Builder development
environment and libraries.

Example 12.4.1. Example of using WinBUGS: Seeds
This example will be used to illustrate how to run a typical analysis in WinBUGS
and other BUGS implementations. We observe seeds on 21 plates, arranged, ac-
cording to a 2 by 2 factorial layout, by seed and type of root extract (Crowder,
1978; Breslow and Clayton, 1993). The number and proportion of seeds that
germinated on each plate are shown below. We study how this varies by seed
type (O. aegyptiaco 73 or 75) and root extract (bean or cucumber). ri and ni
are the number of germinated and the total number of seeds on the ith plate,
i = 1, . . . , N , respectively.

O. aegyptiaco 75 O. aegyptiaco 73
Bean Cucumber Bean Cucumber

ri ni ri/ni ri ni ri/ni ri ni ri/ni ri ni ri/ni
10 39 0.26 5 6 0.83 8 16 0.50 3 12 0.25
23 62 0.37 53 74 0.72 10 30 0.33 22 41 0.54
23 81 0.28 55 72 0.76 8 28 0.29 15 30 0.50
26 51 0.51 32 51 0.63 23 45 0.51 32 51 0.63
17 39 0.44 46 79 0.58 0 4 0.00 3 7 0.43

10 13 0.77

The model is a random effects logistic regression, allowing for over-dispersion:

ri ∼ Binomial(pi, ni)

logit(pi) = a0 + a1x1i + a2x2i + a12x1ix2i + bi

bi ∼ Normal(0, 1/τ)

where pi is the probability of germination on the ith plate, x1i and x2i are the
seed type and root extract of the ith plate, and an interaction term a12x1ix2i is
included. The associated BUGS model code (the same for all BUGS implementa-
tions) is

for (i in 1:N) {

r[i] ~ dbin(p[i], n[i])

b[i] ~ dnorm(0, tau)

logit(p[i]) <- alpha0 + alpha1*x1[i] + alpha2*x2[i]

Different implementations of BUGS 301

+ alpha12*x1[i]*x2[i] + b[i]

}

alpha0 ~ dnorm(0, 1.0E-6)

alpha1 ~ dnorm(0, 1.0E-6)

alpha2 ~ dnorm(0, 1.0E-6)

alpha12 ~ dnorm(0, 1.0E-6)

tau ~ dgamma(0.001, 0.001)

sigma <- 1/sqrt(tau)

12.4.1 Using WinBUGS: compound documents

WinBUGS uses Blackbox’s compound document file format, with the file ex-
tension .odc. Graphics, tables, and formulae may be mixed alongside text of
different fonts and colours in the same compound document; therefore Win-
BUGS can be used as a simple word processor. On opening the WinBUGS
application, the user is presented with a menu interface. To create a new
compound document, click on the File menu, then New. To open an existing
document or text file, click on File, then Open.

There are two alternative ways of organising the model and data for an
analysis in WinBUGS.

1. Model, data, and initial values are kept next to each other in the same
“compound document.” Results such as summary statistics and poste-
rior density plots may also be presented alongside the model inputs.
This is tidier and clearer for simpler, self-contained examples and online
tutorials. Using the fold facility (Tools->Create Fold) large chunks of
text or graphics, such as data files or results, can be hidden within a
pair of arrows and revealed again with a single click.

2. Each model, dataset, and set of initial values is kept in a separate file.
This strategy is preferable for more complex analyses with several al-
ternative models and datasets, and is required for analyses which are
controlled by scripts or from other software. Each file may be either in
.odc format or in plain text (.txt), though plain text is recommended
for compatibility with other software. In the Seeds example we use sep-
arate plain text files.

12.4.2 Formatting data

Data for WinBUGS can be formatted in two alternative ways.

R/S-Plus format In most of the examples in the WinBUGS manual and
this book, the “R/S-Plus” format is used. This begins with the word

302 The BUGS Book

list, and the syntax is the same as that used in R or S-Plus to create
a list of vectors of possibly different lengths. Observations on the same
variable, separated by commas, are collected together with the c() (col-
lection or concatenation) operator. The exact formatting of white space
(spaces and line breaks) doesn’t matter. For the Seeds example, the data
are formatted as follows:

list(

r = c(10, 23, 23, 26, 17, 5, 53, 55, 32, 46, 10,

8, 10, 8, 23, 0, 3, 22, 15, 32, 3),

n = c(39, 62, 81, 51, 39, 6, 74, 72, 51, 79, 13,

16, 30, 28, 45, 4, 12, 41, 30, 51, 7),

x1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x2 = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 1, 1, 1, 1, 1),

N = 21)

Arrays can also be defined in this format using the structure operator
as in the following example (a different dataset). The .Data component
contains the array data strung out as a single vector, while the .Dim

component defines the dimensions of the array. In this case Y is a matrix
with 30 rows and 5 columns (only the first and last 2 rows are shown
below, to save space for illustration). The .Data component is filled up
by reading across the first row, then across the second row, and so on.

list(

xbar = 22, N = 30, T = 5,

x = c(8.0, 15.0, 22.0, 29.0, 36.0),

Y = structure(

.Data = c(

151, 199, 246, 283, 320,

145, 199, 249, 293, 354,

[intermediate rows omitted here...]

137, 180, 219, 258, 291,

153, 200, 244, 286, 324),

.Dim = c(30, 5)

)

)

For arrays of general dimension, the final index increases fastest, fol-
lowed by the penultimate index, and so on. But be warned that R and
S-Plus fill arrays by reading the left-most index first, i.e., filling ma-
trix columns before rows. The dput function in S-Plus produces the
above format but with matrix columns filled first, so that, for example,

Different implementations of BUGS 303

.Dim=c(5,30)must be changed to .Dim=c(30,5) for use in WinBUGS.
In R, a convenient alternative is to use the BRugs or R2WinBUGS pack-
ages (§12.4.7, §12.5.3). A list of variables (of possibly different lengths
and dimensions) stored in the R list object dat can be written out to
the data file data.txt using the R command

BRugs:::write.datafile(dat, "data.txt")

In BRugs (though not R2WinBUGS, currently), categorical variables (“fac-
tors” in R) are automatically converted to numeric format by this func-
tion. Be careful to check that the resulting numeric codes represent the
desired ordering of categories.

Rectangular format The alternative “rectangular” format is more familiar
to users of spreadsheets or standard statistical software, where variables
are supplied in different columns, headed by the variable name, and
observations are in different rows. The first two and last two rows of the
Seeds data can be formatted in this way as follows:

r[] n[] x1[] x2[]

10 39 0 0

23 62 0 0

[intermediate rows omitted for illustration...]

32 51 1 1

3 7 1 1

END

The file must end with the key word END followed by a line break. This
format can be exported from other software, typically as tab-separated
text, with a little extra work to define the variable names and end of file.
The restriction of rectangular format is that variables of different lengths
cannot be mixed. Note that each individual column of an array must
be labelled when using rectangular format. For example, the columns of
the 30× 5 matrix from the previous example would be labelled

Y[,1] Y[,2] Y[,3] Y[,4] Y[,5]

Constants, such as the number of observations, should be supplied in
a separate dataset. For the Seeds example, this is list(N = 21). The
value of a constant node can also be supplied as an extra variable in
the model file, even if it is also given a stochastic distribution (like the
variable y in Example 3.3.1) An index of a set, however (like N in the
Seeds example), cannot be supplied in this way.

304 The BUGS Book

Notes on supplying data

• Initial values for unknown parameters in the model are supplied using
exactly the same format as observed data.

• Data can be supplied as a single file or with different groups of variables
in different files of either format. Arrays cannot be split over different
files, however.

• Missing values, in either data format, are specified by NA. Prior distri-
butions can be supplied in the model file for these values, giving an
automatic procedure for multiple imputation (§9.1).

• In WinBUGS (though not JAGS or newer versions of OpenBUGS) all
variables supplied in a data file (and initial values file) must be de-
fined in the model. This is inconvenient, for example, when developing
regression models and selecting covariates to include. To work around
this restriction, a dummy variable can be defined in the model which
is a function of elements of unused variables (x and y for instance) but
unconnected to the rest of the model.

dummy <- x[1] + y[1]

12.4.3 Using the WinBUGS graphical interface

In § 2.1, we explained the basic steps involved in running a BUGS model,
common to all implementations of BUGS. In WinBUGS, these steps can be
performed by clicking on menus and dialog boxes.

The data, model and initial values for the Seeds example are sup-
plied in separate plain text files in a directory called Test, which is
a subdirectory of the directory where WinBUGS is installed, commonly
C:\Program Files\WinBUGS14.∗

1. Click on the Model menu, then Specification..., to show the Speci-
fication Tool (Figure 2.2 in Chapter 2).

2. To check the syntax of the model specification, open the model file
(Seeds mod.txt here), highlight the word modelwith the mouse (e.g., by
double-clicking), and click on check model. If there is a syntax error in
the model, an error message will appear in the status bar at the bottom
of the WinBUGS window, and a cursor will highlight the position of the
error. Otherwise the message model is syntactically correct will

∗They are also supplied in the Examples directory in OpenBUGS, and with the mate-
rial accompanying this book, as Seedsmodel.txt, Seedsdata.txt, Seedsinits1.txt and
Seedsinits2.txt.

Different implementations of BUGS 305

appear. All messages produced by WinBUGS will also appear in the log
(Info->Open Log).

3. To load a dataset in R/S-Plus format, open the data file (Seeds dat.txt),
highlight the word list, and click on load data.

4. To load a dataset in rectangular format, highlight the row containing
the variable names and click on load data. The message data loaded

should appear, or an error message if the data formatting is incorrect.

5. Repeat until all datasets have been loaded.

6. Select the number of chains to run in num chains in the Specification
Tool (2 in this example). Running multiple chains, with different initial
values, can be useful for checking convergence (§4.4). A single chain is
sufficient as a “pilot” run when developing and testing models.

7. Click on compile. This sets up the internal graphical model structure
and chooses which MCMC updating algorithms are used for each node.
Check for any error message in the status bar or a successful model
compiled message.

8. Initial values must now be supplied for each chain. These can be arbi-
trary, although if extreme values are chosen, convergence can be poor,
or WinBUGS may even crash with a “trap” (a window full of debugging
information aimed at developers, though generally opaque to users).
A different set of initial values is used for each chain. Open the file
Seeds in.txt containing initial values, highlight in the same way as for
datasets, and click on load inits. A message chain initialized but

other chain(s) contain uninitialized variables should appear.

9. Load initial values for the second chain (Seeds in1.txt) in the same
way.

10. It is not necessary to supply initial values for every parameter in a file.
If we had not initialized all stochastic nodes in the model, we would see
a message model contains uninitialized nodes. To get WinBUGS
to generate initial values for all remaining parameters from their prior
distributions, click gen inits. However, it is advisable to supply initial
values for nodes with vague priors to avoid extreme values being sampled
(see §4.3).

Once the chains have been initialised, we can start performing MCMC sim-
ulation. But first we define which variables to store sampled values for.

• Open the Sample Monitor Tool by clicking on the Inference menu,
followed by Samples (Figure 2.4).

306 The BUGS Book

• For the Seeds example we want to monitor alpha0, alpha1, alpha2,

alpha12, sigma. First, type alpha0 in the box marked node, then click
set. Only monitor the nodes which are of interest to avoid wasting
memory and processing time.

• Repeat this for alpha1, alpha2, alpha12, and sigma.

• Instead of storing every sampled value, we could save memory by mon-
itoring running means, standard deviations, or approximate running
quantiles through the Inference->Summary dialog in a similar way. This
is only advisable after convergence has been reached.

Then to run the simulation, open the Update dialog (Figure 2.3). Type the
desired number of updates in the updates box, and click update.

• The number in the refresh box tells WinBUGS to refresh its display
after the given number of iterations during the course of a simulation.
This defaults to 100 iterations. For slow simulations, a lower value should
be typed into this box (e.g., 10 or 1), so that WinBUGS does not appear
to “freeze” while running. For very fast simulations, where redrawing the
display takes a non-negligible amount of time compared to a simulation,
higher refresh intervals (e.g., 1000, 10,000, or more) are advisable.

• The “over-relax” option is a technique (Neal, 1998) which can be used
for some updating algorithms to improve mixing of chains. This gen-
erates multiple samples at each iteration and then selects one that is
negatively correlated with the current value. The time per iteration
will be increased, but the within-chain correlations should be reduced
so that fewer iterations are necessary. However, due to this trade-off,
this method is not always beneficial. The over-relax option can be
switched on for a particular MCMC simulation by ticking the over

relax check box in the Update dialog. Default settings can be modi-
fied via Options->Update.

• The adapting box is automatically ticked if an adaptive Metropolis
or slice sampling algorithm is being used and the parameters of the
algorithm are being “tuned” to improve the acceptance rate. WinBUGS
prevents the user from calculating summary statistics when the sampler
is adapting, since the chain has not converged. The user cannot un-tick
this box, but the length of the adaptive phase can be controlled via
Options->Update.

• Run a sufficient number of iterations until convergence has been reached
(§4.4). Convergence is typically examined informally from a complete
history of the sampled values (Figure 12.1, top). To produce this, return
to the Sample Monitor Tool (Inference->Samples). Type the the name
of a parameter into node, or the character * to refer to all monitored

Different implementations of BUGS 307

parameters, and click history. A “burn-in” of at least around 1000 is
required for the Seeds example.

• Run a sufficient number of iterations after convergence to produce pos-
terior summary statistics with the desired accuracy (§4.5). Ten thousand
updates are sufficient for the Seeds example. To produce posterior sum-
mary statistics, use the stats button. The boxes marked beg and end

specify the iterations you want to use for posterior summaries — increase
the number in beg to discard the “burn-in.” Here we select beg=4001
to discard the first 4000 out of a total of 14,000 iterations. There are
two parallel chains, so the summaries are based on a pooled sample of
20,000.

node mean sd MC error 2.5% median 97.5% start sample

alpha0 -0.5533 0.1941 0.005749 -0.9431 -0.554 -0.162 4001 20000

alpha1 0.08043 0.3144 0.009024 -0.5799 0.09154 0.6722 4001 20000

alpha12 -0.8256 0.4274 0.01186 -1.686 -0.8206 0.01917 4001 20000

alpha2 1.358 0.2726 0.0078 0.8281 1.35 1.928 4001 20000

sigma 0.2818 0.1436 0.00511 0.04597 0.2726 0.5901 4001 20000

• To output the current values of all stochastic parameters, click
Model->Save state. These are formatted just as initial values; there-
fore this facility can be used to stop a simulation, leave WinBUGS, and
restart it later at the same point from these initial values. However, the
new chain will be different from a continuation of the original run, since
the seed used for generating random numbers will be different and an
adapting phase may have been interrupted.

• To export the entire monitored sample for a selected variable (or all
variables, using *) use the coda button in the Sample Monitor Tool.
This produces one or more windows containing the samples for each
parallel chain and an index window listing which rows of the output
correspond to which variables. After saving these windows to text files,
they can be imported, for example, by the R or S-Plus coda package for
MCMC convergence diagnostics and output analysis.

• Many other graphical and numerical posterior summaries are available
through the Sample Monitor Tool and elsewhere in the Inferencemenu.
For example, the shape of the the marginal posterior distribution for
a node can be displayed with a kernel density estimate (Figure 12.1,
bottom). See the WinBUGS manual for more details on these. Graphics
properties such as axis titles and limits can be changed by right-clicking
in the plot region and selecting Properties.... The resulting dialog
commonly contains a button Special...which leads to settings specific
to the particular type of graphic being drawn. The graphics facilities
of WinBUGS are limited, however, and publication-quality figures are
usually better drawn in software such as R, after exporting appropriate
MCMC samples or summaries.

308 The BUGS Book

alpha0 chains 1:2

iteration

1 1000 2000 3000 4000

-10.0

 -5.0

 0.0

 5.0

alpha0 chains 1:2 sample: 20000

 -4.0 -3.0 -2.0 -1.0 0.0 1.0

 0.0

 1.0

 2.0

 3.0

FIGURE 12.1

Sample history (top) and posterior density (bottom) for a single node in the
Seeds example.

12.4.4 Doodles

As described in §2.2, models in WinBUGS can also be specified by drawing a
graph called a Doodle. This illustrates relationships between all model quan-
tities as a directed acyclic graph and is exactly equivalent to BUGS model
code. The BUGS code can be generated from any given Doodle, but WinBUGS
cannot convert BUGS language to Doodles. Doodles can help to explain the
principles of graphical modelling, but they are cumbersome to construct for
all but the simplest models.

12.4.5 Scripting

A typical BUGS session consists of a long sequence of actions: load the model
specification and data, compile and initialise a certain number of chains, mon-
itor certain nodes, update the chain for many iterations, check convergence,
discard the first few iterations as a burn-in, and compute summary statistics.
WinBUGS 1.4 contains a scripting facility which enables the entire session
to be run using a single action, instead of using the mouse to perform the
relevant menu choice for every action. The sequence of actions is given as a
list of text commands in a plain text or .odc format script file. Each com-
mand is exactly equivalent to a menu choice, so that both scripts and mouse
clicks may be used in the same session. To run the script, open the file and
select Script in the Model menu. For example, the following script runs the

Different implementations of BUGS 309

WinBUGS session described above for the Seeds example. Change the paths
to the model, data, and initial value files according to where they are stored
on your system, e.g., check(’c:/path/to/Seeds_mod.txt’).

display(’log’)

check(’Test/Seeds_mod.txt’)

data(’Test/Seeds_dat.txt’)

compile(2)

inits(1, ’Test/Seeds_in.txt’)

inits(2, ’Test/Seeds_in1.txt’)

gen.inits()

update(4000)

set(alpha0)

set(alpha1)

set(alpha12)

set(alpha2)

set(sigma)

update(10000)

history(*)

density(*)

stats(*)

coda(*,seeds)

save(’Test/seedsLog’)

Two chains are compiled and initialised. After a burn-in of 4000 iterations, the
parameters alpha0, alpha1, alpha12, alpha2, sigma are monitored. A sample
of 10,000 is drawn and a full sample trace, density plot, and summary statistics
are produced for the monitored variables. All the outputs are directed to the
WinBUGS log window, which is saved at the end of the script. See the user
manual for a full description of all possible scripting commands.

Scripting has several advantages compared to running analyses entirely
by point-and-click. Indeed, any statistical software driven by text commands
shares these advantages.

Convenience The cycle of developing models, criticising their results, revis-
ing and comparing models, and correcting the inevitable errors, usually
needs tens to hundreds of model “runs.” Scripting makes each individual
run more convenient by replacing a sequence of (usually tens of) mouse
clicks with just one click.

Reproducibility All scientific analyses should be reproducible. Analyses
controlled by point-and-click can in principle be reproducible, but the
exact sequence of clicks needs to be recorded. Given a BUGS model, a
seed for random number generation, the length of the burn-in, and the
number of iterations to keep, any WinBUGS analysis can be replicated.
When using the scripting facility, these steps are always recorded and
saved in the script file.

310 The BUGS Book

Automated analyses We often want to run a batch of similar analyses in
succession. For example, a novel statistical model or method is com-
monly assessed by a simulation study. An analysis is run repeatedly on
different datasets simulated from a known model. Finally, the results
are aggregated to assess whether point estimates are biased or interval
estimates have the appropriate coverage. Running more than about ten
simulation replicates would not be practical if WinBUGS were purely
driven through its menus, but it can be accomplished by scripting. Au-
tomated analyses should, however, be used with care — in particular,
when running several models in succession, convergence should be as-
sessed for each model separately.

12.4.6 Interfaces with other software

A WinBUGS analysis with a given script saved in the file script.txt can be
executed from the Windows command line interface as

"C:\Program Files\WinBUGS14\WinBUGS14.exe" /PAR "C:\script.txt"

assuming that WinBUGS is installed in C:\Program Files\WinBUGS14 and
the script is located in the root directory of the C: drive.

An entire WinBUGS analysis can then be triggered by external software,
without the users opening WinBUGS themselves. The following procedure
allows repeated analyses to be automated with a slightly modified model or
dataset every time.

1. Generate the model and data; write them to files.

2. Run WinBUGS using the above Windows command and a script which
always includes the following:

• display(’log’) to ensure that results are written to the log file
instead of separate windows,

• the file names of the current model and data,

• summary statistics are produced using stats(), or full MCMC
samples saved to separate text files (with names beginning with
‘output’) using coda(*,output)

• finally, save(’log.txt’) to save the entire log in a text file.

3. Parse the log file ’log.txt’, saving the summary statistics.

4. Repeat the above steps with different data (or model file) if necessary.

The external software must be able to run the above Windows command and
should handle the burden of converting the data from its native format to

Different implementations of BUGS 311

WinBUGS format, parsing the log file, and saving the statistics. This usually
needs a specialised package for that software to be written. A full list of these
interfaces that we currently know of is maintained at http://www.mrc-bsu.
cam.ac.uk/bugs/winbugs/remote14.shtml, including packages for R, Ex-
cel (Woodward, 2011), Stata, SAS, and MATLAB R©.

12.4.7 R2WinBUGS

The external interface to WinBUGS we are most familiar with is the
R2WinBUGS package for R (Sturtz et al., 2005) available from the CRAN reposi-
tory of contributed R packages (http://cran.r-project.org). This is based
around an R function bugs(), which runs an entire WinBUGS session and
returns MCMC samples, summary statistics, and related information.

The model is provided in a text file. Again for illustration we use the Seeds
example with the model in Seeds mod.txt. Begin by calling setwd() in R to
change to the directory where this is stored. R2WinBUGS requires data as an
R list object. Since the data in Seeds dat.txt are a text representation of
such an object, we can load it into the R workspace using dget.†

> library(R2WinBUGS)

change the following to wherever the files are stored

> setwd("c:/Program Files/WinBUGS14/Test")

> model.file <- "Seeds_mod.txt"

> data <- dget("Seeds_dat.txt")

Note this will not work if the data contain matrices or arrays, for which the
ordering of the dimensions will need to be reversed — though in practice the
data are likely to have originated in some other format which is easier to
import into R than data in WinBUGS format.

Initial values can be supplied as a list of lists, one list for each chain,

> inits <- list(

list(alpha0 = 0, alpha1 = 0, alpha2 = 0, alpha12 = 0,

tau = 1),

list(alpha0 = 10, alpha1 = 10, alpha2 = 10, alpha12 = 10,

tau = 0.1))

or as an R function returning a (potentially random) list, which will be called
for each chain.

> inits <- function(){

list(alpha0=rnorm(0, 10), alpha1=rnorm(0, 10),

alpha2=rnorm(0, 10), alpha12=rnorm(0, 10),

tau=runif(0, 5))}

†Any error message about an “incomplete final line” can safely be ignored.

312 The BUGS Book

The parameters to monitor are defined, and the bugs() function runs Win-
BUGS in the background with the given model, data, initial values, num-
ber of chains n.chains, total iterations n.iter, initial iterations to discard
n.burnin, and thinning interval n.thin.

> parameters <- c("alpha0","alpha1","alpha2","alpha12","sigma")

> seeds.sim <- bugs(data, inits, parameters, model.file,

n.chains=2, n.iter=14000, n.burnin=4000, n.thin=1,

bugs.directory="c:/Program Files/WinBUGS14/")

The directory bugs.directory where WinBUGS is installed may need to be
changed from the default. Other useful options include debug=TRUE, which
keeps WinBUGS open to allow further interactive investigation into the
progress of the MCMC chain, before returning to R.

Printing the object returned by bugs() shows the posterior mean and stan-
dard deviation, a set of five quantiles for the monitored parameters, and the
DIC and effective number of parameters pD for model comparison. Also shown
are convergence diagnostics using the Brooks–Gelman–Rubin method (§4.4.2).
> seeds.sim

Inference for Bugs model at "Seeds_mod.txt", fit using WinBUGS,

2 chains, each with 14000 iterations (first 4000 discarded)

n.sims = 20000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha0 -0.6 0.2 -0.9 -0.7 -0.6 -0.4 -0.2 1 2000

alpha1 0.1 0.3 -0.6 -0.1 0.1 0.3 0.7 1 9500

alpha2 1.4 0.3 0.8 1.2 1.4 1.5 1.9 1 2800

alpha12 -0.8 0.4 -1.7 -1.1 -0.8 -0.6 0.0 1 20000

sigma 0.3 0.1 0.0 0.2 0.3 0.4 0.6 1 1200

deviance 102.1 7.0 90.1 96.9 101.6 107.1 116.0 1 980

For each parameter, n.eff is a crude measure of effective sample

size, and Rhat is the potential scale reduction factor (at

convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)

pD = 11.2 and DIC = 113.3

DIC is an estimate of expected predictive error (lower deviance

is better).

Plotting the object, plot(seeds.sim), will give simple line plots of poste-
rior credible intervals for each parameter. However, we are not restricted to the
facilities provided with R2WinBUGS — any of the data manipulation and plot-
ting capabilities of R and its contributed packages may be exploited instantly
to perform further analyses and produce publication-quality graphs and ta-
bles. In Figure 12.2, the posterior distributions of the odds ratios exp(α1),

Different implementations of BUGS 313

exp(α2), exp(α12) of seed germination corresponding to seed type 73 (ver-
sus 75), cucumber (versus bean), and their interaction, respectively, are il-
lustrated as density strips using the denstrip package in R. The darkness
of the strip is proportional to the posterior density, fading to white at zero.
The axis is plotted on the log scale, and mathematical symbols are used in
the annotation. The posteriors are obtained from the MCMC samples avail-
able in seeds.sim$sims.list. Density strips can also be plotted directly in
OpenBUGS via Inference->Compare. The odds of germination are about five
times greater for cucumber root extract, while the seed type only affects the
odds ratio for cucumber root extract.

install.packages(denstrip) # if necessary

library(denstrip)

plot(0, type="n", xlim=c(0.1, 6), ylim=c(0,3),

xlab="Odds ratio", ylab="", log="x", yaxt="n",

bty="n", cex.axis=1.5, cex.lab=1.5)

abline(v=1, col="lightgray")

for (i in 1:3) {

sam <- exp(seeds.sim$sims.list[[i+1]])

denstrip(sam, at=3-i, tick=quantile(sam, c(0.025, 0.975)),

mtick = median(sam))

}

text(0.1, 2:0 + 0.2,

c(expression(paste("Seed type 73 (vs. 75): ",

e^alpha[1])),

expression(paste("Cucumber (vs. bean): ",

e^alpha[2])),

expression(paste("Interaction (73 and cucumber): ",

e^alpha[12])),

pos=4)

12.4.8 WBDev

The BUGS language can be used to perform calculations by defining new
nodes as functions of other nodes, using the built-in mathematical functions
available in BUGS. However, the processing and memory requirements for
computing and storing nodes increase vastly as the calculations become more
complex. Furthermore, the BUGS code becomes less clear as more complex
calculations are incorporated into the same model. Similarly, new distributions
may be defined by explicitly writing out their log-likelihoods using the zeros
or ones trick (§9.5), but the BUGS language is an inefficient and cumbersome
means of doing this.

The WBDev (WinBUGS development) interface (Lunn, 2003) was devel-
oped to allow users to write their own functions and statistical distributions

314 The BUGS Book

0.1 0.2 0.5 1.0 2.0 5.0

Odds ratio

Seed type 73 (vs. 75): eα1

Cucumber (vs. bean): eα2

Interaction (73 and cucumber): eα12

FIGURE 12.2

Posterior density strip plots for the odds ratios for seed germination using R
graphics after an R2WinBUGS analysis.

in efficient compiled code. The function or distribution is packaged into a new
modelling component which acts as a “black box” — i.e., its implementation
details are stored separately from the BUGS model in which it is employed.
This makes the BUGS model specification vastly clearer, reducing the scope
for errors. Using compiled code also offers computational improvements up to
orders of magnitude. For example, Jackson et al. (2010a) performed a health
economic analysis in WinBUGS andWBDev, where calculating expected costs
and benefits of different treatment choices involved a product of over 500 8×8
transition probability matrices from a Markov model. This would have been
practically impossible in pure BUGS code.

There are three main steps to developing a new function or distribution
using WBDev.

• Install the Blackbox Component Builder software and integrate it with
the WinBUGS installation.

• Edit a template file, or “module” written in Component Pascal. The user
needs only to write the minimum of code necessary to define the new
function or the probability density of a new distribution (and option-
ally also the cumulative density and a random sampling procedure). All
the facilities of Component Pascal and its libraries, used to write Win-

Different implementations of BUGS 315

BUGS itself, are available to developers, providing much more scope for
complex calculations.

• Add a line to a “resource file” to tell WinBUGS the name and location
of the newly defined function or distribution. The new module may also
be distributed for the benefit of other users.

WBDev is available to download from http://www.winbugs-development.

org.uk. More detailed documentation and instructions are provided in the
manuals distributed with WBDev. Some functions and distributions written
by WinBUGS users can also be downloaded from here.

In OpenBUGS there are templates for implementing new distributions and
functions in the source code in a similar manner; see § 12.5. JAGS (§ 12.6)
may be extended similarly by writing modules, though this is not currently
documented.

12.5 OpenBUGS

WinBUGS is stable and will remain available, but it will no longer be devel-
oped beyond the version (1.4.3) used to run the examples in this book. Devel-
opment is now concentrated on the OpenBUGS project (http://openbugs.
info). OpenBUGS began by “forking” or diverging the Component Pascal
source code of WinBUGS and evolved into a completely separate engine for
the BUGS language. OpenBUGS has now been validated on an extensive suite
of examples to ensure that it gives the same correct results as WinBUGS, and
it is now recommended for routine use.

There were several motives for the development of OpenBUGS.

Better communication with other software OpenBUGS has a Win-
dows graphical user interface (GUI) which is largely identical to Win-
BUGS, but the internal engine for graphical modelling and computation
has been decoupled from the user interface. OpenBUGS is distributed
with a shared library (.dll on Windows, or .so on Linux) which pro-
vides an application programming interface (API) for graphical mod-
elling. Any external software which can call C-based libraries can then
be enhanced with the graphical modelling and MCMC capabilities of
OpenBUGS. Unlike the scripting facility described in § 12.4.6, this is
fully interactive. This means that OpenBUGS commands can be run
one at a time, returning the user to the calling program after each com-
mand, instead of having to run an entire OpenBUGS session before
returning. The BRugs package for R, described below, is the only such
interactive interface we know of at the moment.

316 The BUGS Book

Portability The Blackbox Component Builder environment and libraries
used to build WinBUGS and OpenBUGS are only available on Win-
dows. Therefore Windows is required to modify or extend the Open-
BUGS source code. However, Blackbox on Windows can be used to build
a shared object (.so) in the ELF format. This is the standard format
for shared libraries on Unix/Linux systems running on x86, the standard
PC processor hardware. This allows OpenBUGS to run natively on a
PC running Linux. Currently there is only a plain-text command-line
interface and an R interface (described below) available for this library.
Running the OpenBUGS GUI on Linux still requires an “emulator” such
as Wine.

Open source principles The benefit of open source development in statis-
tics has been shown by the success of R (R Development Core Team,
2011) and its huge repository of add-on packages. R has now superseded
the proprietary S-Plus as the dominant statistical software in research
environments. With open source software, all the algorithms used for
computation may be inspected, users may modify the code for their
own needs, and modifications may be shared with others. The GNU
General Public License, which is applied to OpenBUGS, not only en-
sures that the source for OpenBUGS is available, but also that any pub-
lished modifications must remain open. The potential for collaborative
development on OpenBUGS, however, has been hampered in practice
by the obscurity of the Component Pascal language and the restriction
of the Blackbox tools to Windows. This is likely to have discouraged
developers used to more widespread languages such as C++ or Java
and scientific programmers accustomed to working with GNU tools in
Unix/Linux (including Mac) environments.

Platform for new developments The open source infrastructure is in-
tended to make OpenBUGS a platform for experimental developments
in Bayesian modelling, which may then be disseminated for the ben-
efit of other users. This has led, for example, to features for parallel
computing (§12.5.4) and differential equation modelling (§11.5). While
WinBUGS allows users to write their own functions and distributions
using the WBDev facility (§12.4.8), these can be implemented (as well
as new sampling algorithms) just by editing the OpenBUGS source.
Templates are provided (see the OpenBUGS Developer Manual) so that
the user only has to write the minimum amount of code necessary to
define their function or distribution. Entirely new “subsystems,” which
may comprise functions, distributions, and samplers, may also be writ-
ten and automatically loaded without needing to modify the existing
OpenBUGS code. The Reliability subsystem for industrial reliability
analysis (Kumar et al., 2010), is an example of this, currently distributed
with OpenBUGS.

Different implementations of BUGS 317

12.5.1 Differences from WinBUGS

The OpenBUGS graphical interface is largely identical to WinBUGS. Models
are loaded and run, and data files are formatted, in the same way. The BUGS
language used for models is also the same, though with a few additions.

• Several new functions and distributions have been added to OpenBUGS,
for example, eigen.vals, integral, gammap, ode, prod, p.valueM,
solution.

• The I() censoring function is still supported, but the preferred function
for this purpose is now C() to reduce confusion between censoring and
truncation (see §9.6). OpenBUGS now has a T() function for truncation,
but it is currently only partially implemented and not well documented
or tested.

• A dloglik distribution was added for clearer model statements when
implementing the “zeros trick” (§9.5) for generic likelihoods and priors.

• The names of the scripting commands have been changed in OpenBUGS
(see §12.5.3 below), and many new commands have been added.

Other new features are currently summarised on the web page http:

//openbugs.info/w/OpenVsWin. Most importantly, the choice of MCMC up-
dating methods has been made more flexible. In WinBUGS, the updater could
only be changed for all nodes of a particular type by editing a configuration
file before opening WinBUGS. In OpenBUGS, before compiling, the user can
select the updater to be used for each node (Model->Updater Options). An
updater can also be disabled globally for all nodes in the session.

12.5.2 OpenBUGS on Linux

OpenBUGS on Linux is distributed with a basic command line interface. This
has sometimes been called “LinBUGS,” but it has the same modelling capabil-
ity as any other OpenBUGS interface, since it simply calls on the OpenBUGS
shared library. We therefore simply call it OpenBUGS for Linux.

After installing the package in the standard way as described on its down-
load page, OpenBUGS is launched from the Linux command prompt by typ-
ing:

OpenBUGS

This gives an OpenBUGS command prompt:

OpenBUGS version 3.2.1 rev 781

type ’modelQuit()’ to quit

OpenBUGS>

318 The BUGS Book

Standard scripting commands can then be entered into this prompt to load,
run, and analyse the model. Perhaps more usefully, given a script file stored
in the file /path/to/script.txt, a full OpenBUGS session can be run from
the Linux command prompt as follows:

OpenBUGS /path/to/script.txt

or equivalently,

OpenBUGS < /path/to/script.txt

The sampled chains can be saved in CODA files using the samplesCoda()

command (see below). An entire transcript of the session can be saved by
redirecting the output of the Linux command to the file log.txt:

OpenBUGS /path/to/script.txt > log.txt

12.5.3 BRugs

The bugs() function from the R2OpenBUGS package in R (analogous to
R2WinBUGS) may be used to run an entire OpenBUGS session in the back-
ground. The BRugs package, however, enables fully interactive use of Open-
BUGS from R on both Windows and Linux.‡ This makes it possible, for ex-
ample, to set additional monitors, run more updates, check convergence, and
so on, in the middle of a run without needing to exit and restart WinBUGS.
Furthermore, the command line OpenBUGS on Linux is a very limited inter-
face. For example, on a standard terminal, it is not possible to recall and edit
previous commands. To plot traces and diagnose convergence in the middle
of a model run, a user would need to save the sample history to a file using
coda() and use external MCMC diagnostic software such as the coda package
in R. Using BRugs, models can be controlled and queried entirely interactively
from R.

All R commands provided by BRugs have the same names as their Open-
BUGS scripting equivalents (though different from WinBUGS scripting com-
mands, §12.4.5) and obey the same syntax. First type

library(BRugs)

setwd(’c:/Program Files/OpenBUGS/OpenBUGS321/Examples’)

in R to load the package and change the working directory to where the model
files are stored. From then on, a sequence of commands like the one below
can be used both under R and as a script for running from the OpenBUGS
Windows program.

‡Partially interactive use is possible in R2OpenBUGS, which allows a running session to be
saved to a file and subsequently resumed from the same point.

Different implementations of BUGS 319

modelCheck(’Seedsmodel.txt’)

modelData(’Seedsdata.txt’)

modelCompile(2)

modelInits(’Seedsinits1.txt’, 1)

modelInits(’Seedsinits2.txt’, 2)

modelGenInits()

modelUpdate(4000)

samplesSet(’alpha0’)

samplesSet(’alpha1’)

samplesSet(’alpha12’)

samplesSet(’alpha2’)

samplesSet(’sigma’)

modelUpdate(10000)

samplesStats(’*’)

samplesHistory(’*’)

samplesCoda(’*’,’Seeds’)

The coda package can then be used for diagnostics and summaries. The R
command

seeds.coda <- read.openbugs("Seeds")

reads the entire sample history into an R object seeds.coda, which is an R
object of class mcmc.list. This is essentially a list of matrices of class mcmc,
one for each of the two chains, with a row for each sample and a column for
each variable. Most functions for summaries and plots in the coda package
act on this type of object. For example,

HPDinterval(seeds.coda)

estimates intervals of highest posterior density for each parameter, a feature
unavailable in OpenBUGS.

12.5.4 Parallel computation

For several years, the maximum clock speed of single computer processor
cores has been limited to around 3–4 GHz, while the number of cores in
a computer has increased. At the time of writing, a typical consumer PC
contains two to four processor cores. To make the best use of these resources,
different processors should be allowed to perform computations at the same
time. Parallelised or threaded programming has therefore become increasingly
important.

MCMC is a natural application for parallel programming, since different
MCMC chains are independent conditionally on their starting values and ran-
dom number seeds and do not need to communicate with each other while
running. OpenBUGS now contains the infrastructure for parallel MCMC com-
putation. An executable program called MultiBUGS.exe is under development

320 The BUGS Book

and will soon be distributed with OpenBUGS.§ This is identical to the Open-
BUGS Windows interface, except that if more than one chain is compiled,
then each chain is computed on a different processor. The first chain is com-
puted using the MultiBUGS.exe process, which launches multiple instances
of another executable called WorkerBUGS.exe to compute each subsequent
chain. Initial values, random number seeds, and monitored samples are com-
municated between the master and worker processes by saving to files.

Multiple processing will not be enabled in the standard OpenBUGS pro-
gram due to the overhead of launching the worker processes and communi-
cating information. For simpler models which only take a minute of run time,
there would be little benefit. But for large, computationally intensive mod-
els, substantial savings in computer time can be made. MultiBUGS is not
currently available for Linux, although it is possible in principle.

Within WinBUGS, and indeed from OpenBUGS, MCMC computations can
be parallelised by calling from other software, as in §12.4.6. Different instances
of WinBUGS would be launched simultaneously for the same model and data,
but with different initial values and random number seed specification. The
results would then be combined and analysed by reading coda output, for
example, with the coda package for R.

12.6 JAGS

JAGS,¶ which stands for “Just Another Gibbs Sampler” (Plummer, 2003),
is the most recent engine for the BUGS language, developed entirely inde-
pendently of WinBUGS and OpenBUGS. This was written in C++, devel-
oped using the GNU compilers and packaging tools, is open source, and is
freely available from http://mcmc-jags.sourceforge.net. JAGS may run
natively on any system supported by the GNU tools, including Windows and
many varieties of Unix such as Linux and Mac OS X. Currently, binary ver-
sions are available for Windows, Mac OS X, and most Linux distributions.

The current version (3.2.0) implements most of the same functionality as
WinBUGS, with some minor but important differences in the language syntax
(see below) and some extra features. A notable WinBUGS facility currently
missing from JAGS is spatial models (§11.3), due to its restriction to directed
graphs. The MCMC methods currently available in JAGS are restricted to
conjugate and slice samplers, and specialised samplers for mixture models
and generalised linear models, whereas OpenBUGS contains many more spe-

§The source code for an experimental version of MultiBUGS is already available with the
OpenBUGS download.
¶Thanks to Martyn Plummer for his help in writing this section.

Different implementations of BUGS 321

cialised samplers (§12.2). Since JAGS is built on a version of the numerical
library (Rmath) used for R, many of the functions in base R for mathematical
and statistical calculations are also available in the JAGS dialect of the BUGS
language.

Just like OpenBUGS, JAGS includes a shared C library for BUGS lan-
guage interpretation and MCMC computation. The user interfaces to JAGS
all call on the same shared library. Currently there is a basic command-line
interface (§12.6.4) and an R interface (§12.6.5).

12.6.1 Extensibility: modules

Like “subsystems” in OpenBUGS, users may develop modules for some spe-
cialised application, without needing to alter the core JAGS code. Modules
may be loaded and unloaded within a single JAGS session. A single module
may contain new functions, distributions, MCMC samplers, random number
generators, and “monitors” (facilities to record sampled quantities for later
analysis). This is intended to make JAGS a platform for new developments
in Bayesian statistics. Often a new statistical model or sampling method is
developed as an extension of an existing model. By working within the BUGS
graphical modelling framework, researchers may implement just their spe-
cialised extension, without needing to “re-invent the wheel” by developing
generic modelling functions or user interfaces. Their new module may then be
distributed for the benefit of other users.

The bugs module, for example, contains the functions, distributions, and
other facilities available in WinBUGS. The dic module provides functions for
model comparison using deviance-based measures. In particular it implements
a monitor for the model deviance, and methods for estimating the effective
number of parameters (pD, §8.6.1). These provide alternatives to the conven-
tional DIC (§8.6.4) which were proposed by Plummer (2008) for estimating
the expected predictive utility of models.

12.6.2 Language differences

The current JAGS user manual explains the differences between JAGS and
WinBUGS or OpenBUGS. For example, the data format is different (see be-
low), although formatting data is not a concern when running through the
rjags R interface. Some specific functions and distributions are defined dif-
ferently, as described in Appendices B and C — but here we explain more
fundamental language differences.

Censoring and truncation Some improvements were made to clarify cer-
tain confusing aspects of the BUGS language. In particular, WinBUGS
represents censoring, truncation, and prior ordering all by the I() con-
struct, which tempts incorrect use (see § 9.6). JAGS separates these
concepts.

322 The BUGS Book

Truncated distributions are simply given using the T() function, for
example, dnorm(mu, tau)T(lower,upper) for the truncated normal.
This allows truncated distributions to be used as likelihoods or priors,
avoiding the danger of using I() wrongly in WinBUGS.

A right-censored survival time (see §11.1) is specified in WinBUGS as

t[i] ~ dweib(r, mu[i])I(c[i],)

where t[i] takes the value NA in the data if it is censored (t[i] >

c[i]), and c[i]=0 if t[i] is observed. In JAGS this becomes

X[i] ~ dinterval(t[i], c[i])

t[i] ~ dweib(r, mu[i])

where X[i] takes the value 1 if t[i] is censored and 0 otherwise. The
data for t[] and c[] are defined in the same way.

dinterval is a distribution representing general interval-censored data.
X ~ dinterval(t, c[]) indicates that the scalar X is a coarsened ver-
sion of a continuous variable t based on a vector of cut points cm. If t ≤ c1
then X = 0, if cm < t ≤ cm+1 then X = m (for m = 1, . . . ,M − 1), or
if t > cM then X = M . For simple right-censoring, as in the example
above, there is just one cut pointM = 1, then c is a scalar, and X takes
the values 0 and 1.

Prior ordering of a set of parameters a[1:n] (see §9.7.2) can simply be
implemented by the sort function, which sorts a vector in ascending
order. The elements of a[] are given independent priors and replaced
by a0[1:n] <- sort(a).

Data as observable functions of parameters dinterval is a distribu-
tion because it generates a likelihood for data X . The likelihood is 1
if the unknown t is in a range consistent with the data X and zero oth-
erwise. However, when sampling from this distribution, the outcome X
has only one possible value given t and the cm; therefore in this sense
dinterval behaves like a deterministic function. Relations with this
dual nature are called “observable functions” in JAGS.

Another observable function is dsum, which allows aggregate data X to
be modelled as a sum of two unknown parameters a and b:

X ~ dsum(a, b)

instead of X <- a + b.

We would likeX to contribute to the likelihood for the parameters a and
b, but the latter form doesn’t allow the true value of X to be supplied as

Different implementations of BUGS 323

data. dsum() enables this likelihood contribution to be obtained. dsum
is used, for example, in ecological inference (see Wakefield et al. (2011)
and Example 11.4.1), where individual-level relationships are inferred
from aggregate data.

Data transformations WinBUGS allows an observed variable to be trans-
formed and then given a model (§A.7), for example,

for (i in 1:N) {

z[i] <- sqrt(y[i])

z[i] ~ dnorm(mu, tau)

}

This infringes the “declarative” principle of the BUGS language — that
each variable should be defined only once in terms of its parents. To
transform data in JAGS, a separate data block must be written:

data {

for (i in 1:N) {z[i] <- sqrt(y[i])}

}

model {

for (i in 1:N) {z[i] ~ dnorm(mu, tau)}

...

}

This effectively defines a distinct graphical model. Stochastic variables
can also be defined in the data block — allowing simulation studies
where data are generated and analysed by different models.

Vectorised calculations In JAGS, just as in R or S-Plus, a scalar c can be
added to a vector (or array) A using

B <- A + c

Any scalar function is automatically vectorised in this way when its
arguments are arrays with conforming dimensions, or scalars. In Win-
BUGS and OpenBUGS, this more verbose form would be required:

for (i in 1:n) {

B[i] <- A[i] + c

}

Vectorisation may slow down MCMC sampling, however. In this exam-
ple, one vector node B is created in place of n scalar nodes. If only one
element A[i] of A is updated, then the whole of B is recalculated in-
stead of just the corresponding B[i]. This can create a bottleneck when
updating the model, especially if n is large. Link functions cannot be
vectorised, to avoid this problem in generalised linear models.

324 The BUGS Book

Deterministic nodes In JAGS, a deterministic node need not be explicitly
defined to be used on the right-hand side of a stochastic relation. For
example,

for (i in 1:n) {

y[i] ~ dnorm(a + b*x[i], tau)

}

would be permissible in JAGS, but not in WinBUGS and OpenBUGS,
where it must be written in a form such as

for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- a + b*x[i]

}

Multivariate nodes A multivariate node in JAGS must either be fully ob-
served or fully unobserved. Therefore to model a multivariate normal
vector where some variables are missing, a conditional specification is
required (see §C.4).

12.6.3 Other differences from WinBUGS

Data formatting Data are supplied to JAGS in a different format to Win-
BUGS and OpenBUGS. For example, the Seeds data are formatted as

r <-

c(10, 23, 23, 26, 17, 5, 53, 55, 32, 46, 10, 8, 10, 8, 23, 0,

3, 22, 15, 32, 3)

n <-

c(39, 62, 81, 51, 39, 6, 74, 72, 51, 79, 13, 16, 30, 28, 45,

4, 12, 41, 30, 51, 7)

x1 <-

c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

x2 <-

c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1)

N <- 21

This data format is identical to the R commands required to define
the corresponding variables as R objects. With this format, JAGS is
consistent with R/S-Plus in filling matrices by row, instead of by column
as WinBUGS expects (see §12.4.2).
Existing R objects may be saved in this format using the R command:

dump(c("r","n","x1","x2","N"), file="seeds-data.R")

Different implementations of BUGS 325

The variable N does not need to be supplied in JAGS, unlike WinBUGS,
since the length function may be used as follows to determine the length
of the variable r.

for (i in 1:length(r)) {

r[i] ~ dbin(p[i], n[i])

...

}

Initial values In JAGS, if initial values are not supplied for a parameter
and the user requests that JAGS provides one automatically, this is not
generated from the prior but instead set to a plausible central value given
the prior. This value depends on the distribution but is typically the
mean, median, or mode. This avoids the common problem in WinBUGS
where an extreme initial value is generated, causing WinBUGS to crash.

12.6.4 Running JAGS from the command line

JAGS has a command line interface and can be invoked interactively or
through a script file. The same commands are used in each case. To in-
voke JAGS interactively, simply type jags at the Unix or Windows command
prompt. To invoke JAGS with a script file, say, Seeds_jags.cmd, type

jags Seeds_jags.cmd

A typical script file has the following commands. It is easy to see the corre-
spondence with WinBUGS or OpenBUGS script commands.

model in "Seedsmodel.txt"

data in "seeds-data.R"

compile, nchains(2)

parameters in "seeds-inits1.R"

parameters in "seeds-inits2.R"

initialize

update 4000

monitor alpha0

monitor alpha1

monitor alpha12

monitor alpha2

monitor sigma

update 10000

coda *, stem(seedsCODA)

The last line of this script saves the monitored parameter values to files in
CODA format with names beginning with seedsCODA. These can then be read
into R using functions from the coda package, for example,

326 The BUGS Book

library(coda)

seeds.coda <- read.openbugs("seeds")

Summary statistics and diagnostics can then be produced; for example,

summary(seeds.coda)

plot(seeds.coda)

plots sample history and posterior densities.

12.6.5 Running JAGS from R

The package rjags (Plummer, 2011), available from the CRAN archive (http:
//cran.r-project.org), gives a fully interactive R interface to the JAGS
computation engine, allowing Bayesian models to be developed entirely within
the R interface. An advantage over the JAGS command-line interface is that
there is no need to reformat the data and initial values, since these are simply
supplied as R list objects.

library(rjags)

seeds <- list(r=r, n=n, x1=x1, x2=x2, N=N)

seeds.jags <- jags.model("Seedsmodel.txt", data=seeds,

n.chains=2)

The command jags.model compiles and initialises the given model, using the
given data and number of chains. Initial values may also be supplied as an
R list in an inits argument. For certain MCMC algorithms, an adaptation
period is run at this stage. This may be controlled by the argument n.adapt
and is 1000 iterations by default. If optimal behaviour of the sampler is not
attained, a warning is given and the adaptation period can be extended by
calling the adapt function.

The following command then updates the model for 4000 iterations without
monitoring any parameters.

update(seeds.jags, 4000)

After this burn-in, 10,000 samples are drawn from five parameters as follows.

seeds.coda <- coda.samples(seeds.jags,

c("alpha0","alpha1","alpha2","alpha12","sigma"),

10000)

The coda.samples function produces an R object of the same mcmc.list

class as produced by reading CODA files using read.openbugs. Thus the
same functions as before may be used to produce summary statistics and
plots:

summary(seeds.coda)

plot(seeds.coda)

Different implementations of BUGS 327

The package R2jags (Su and Yajima, 2011) provides a non-interactive in-
terface to JAGS, analogous to R2WinBUGS. An entire JAGS analysis can be
run using a single function call from R. The package provides a facility for
running multiple chains on parallel processors.

This page intentionally left blankThis page intentionally left blank

Appendix A

BUGS language syntax

A.1 Introduction

As described in Chapter 12, the BUGS language is currently implemented
in WinBUGS, OpenBUGS, and JAGS, which have minor differences in their
capabilities and language syntax. In this chapter we focus on BUGS as imple-
mented in WinBUGS, but mention differences in other implementations.

The BUGS language facilitates a declarative, textual description of the
probability model whereby the relationship between each node and its parents
is stated explicitly; the software uses this to construct an internal, graphical
representation of the model. Note that the declarative nature of the language
means that the order in which the various relationships are specified is irrel-
evant. There are two possible types of relation:

• ~ means “is distributed as” and denotes a stochastic relation;

• <- means “is to be replaced by” and denotes a logical relation.

Nodes on the left of a ~ are stochastic nodes and those on the left of a <- are
logical (or deterministic) nodes. In addition, a model may include constant
nodes, which are fixed by the design of the study and have no parents —
unless supplied as logical constants, their values must be specified as part
of the data (see Chapter 2). Note that, generally speaking, each logical or
stochastic node should appear once and only once on the left-hand side of
a statement (although see §A.7 for exceptions to this rule). This chapter
provides an overview of the syntax available for fully specifying each parent–
child relationship.

A.2 Distributions

A.2.1 Standard distributions

Lists of continuous and discrete distributions available in the different imple-
mentations of BUGS, along with their full definitions and examples of their

329

330 The BUGS Book

usage, are given in Appendices B and C. Note that the parameters of distri-
butions, i.e., quantities occurring on the right-hand side of a ~ relation, must
be named nodes or numerical values rather than expressions. For example, we
cannot specify x ~ dnorm(a + b*z, 1), say; instead, we must use something
like:

x ~ dnorm(mu, 1)

mu <- a + b*z

A.2.2 Censoring and truncation

Suppose a stochastic quantity x has been observed to lie in the interval (a, b).
In WinBUGS we can specify such interval censoring by following the distri-
butional expression for x with I(a, b). That is,

x ~ ddist(psi)I(a, b)

where psi (ψ) denotes a generic set of distributional parameters. (JAGS deals
with censoring differently; see §12.6.2). Note that censoring bounds must be
named nodes or numerical values rather than expressions, and that leaving
either censoring bound blank simply corresponds to no limit, e.g., I(a,)

designates a quantity that has been observed to be greater than a, but not
less than any specific amount.

It is vital to understand that use of the I(.,.) construct is not the same
as specifying a truncated distribution. The sole effect of the I(.,.) expres-
sion is to ensure that all values sampled for x outside the specified interval
are rejected. This may seem like an appropriate strategy for sampling from
truncated distributions, but the full conditional distribution derived for ψ is
inconsistent with truncation. To see this, note that the density of a truncated
distribution, when considered as a function of its parameters (ψ, as opposed
to x), is not simply proportional to the untruncated density. Instead, it is
normalised by the integral of the untruncated density over the truncation in-
terval, which is a complex function of ψ (and a and b). BUGS does not take
account of this normalising constant when deriving the full conditional for ψ,
as it is inappropriate to do so in the case of interval censoring — the correct
likelihood contribution is the untruncated density.

Of course when ψ is known, for example, when p(x|ψ) is a hyperprior, there
is no need to sample from p(ψ|.) and the effect of using I(.,.) is equiva-
lent to specifying a truncated distribution for x. However, in general, it is the
user’s responsibility to check that appropriate sampling will result whenever
the I(.,.) construct is stretched beyond its intended purpose. In WinBUGS
and OpenBUGS, if truncated distributions are required in cases where ψ is
unknown, then they might be handled by working out an algebraic form for
the likelihood and using the techniques for implementing non-standard distri-
butions discussed in the following subsection. In JAGS, distributions may be
easily truncated in any situation, as described in §12.6.2.

BUGS language syntax 331

Note that the I(.,.) notation is never appropriate when x is observed (the
bounds will simply be ignored in this case). Note also that even when I(.,.)

is used for censoring, if x, ψ, a, and b are all unknown, then a and b must not
be functions of ψ.

In OpenBUGS, I(,.,) works in the same way as in WinBUGS, but the
equivalent function C(.,.) is preferred to clarify that this is intended for
censoring rather than truncation. A T(.,.) function is intended to be used
for truncation, but currently this is only partially implemented.

A.2.3 Non-standard distributions

Distributions other than those given in Appendix C can still be implemented
by making use of either the “ones trick” or the “zeros trick” (see § 9.5
for details). Alternatively, new distributions can be “hard-wired” into Win-
BUGS using the WinBUGS Development Interface (WBDev (Lunn, 2003);
http://www.winbugs-development.org.uk), as described in §12.4.8. Or in
OpenBUGS and JAGS, the program source code may be extended directly,
as discussed in Chapter 12.

A.3 Deterministic functions

A.3.1 Standard functions

Logical expressions can be built using the operators +, -, *, and / and the
standard functions listed in Appendix B. Bracketing can be used to any depth.
All scalar-valued parameters appearing on the right-hand side of a <- rela-
tion can be expressions as well as named nodes or numerical values, with
the exception (in WinBUGS and OpenBUGS) of the “index” parameter (i)
in both rank(.,.) and ranked(.,.). Note that the functions cloglog(.),
log(.), logit(.), and probit(.) can be used on the left-hand side of a
logical relation, as indicated in the “Usage” column (§B.1). Also note that
logical nodes cannot be given data or initial values (except when using the
data transformation facility described in §A.7).

A.3.2 Special functions

A.3.2.1 The “cut” function

Suppose we observe some data that we do not wish to contribute to the
parameter estimation and yet we wish to consider as part of the model. This
might happen, for example: (a) when we wish to make predictions on some
individuals for whom we have observed partial data that we do not wish to

332 The BUGS Book

use for parameter estimation; (b) when we want to use data to learn about
some parameters but not others; or (c) when we want evidence from one part
of a model to form a prior distribution for a second part of the model, but we
do not want “feedback” from this second part.

The cut(.) function forms a kind of “valve” in the graph: prior information
is allowed to flow “downwards” through the cut, but likelihood information is
prevented from flowing upwards. In practical terms, the syntax y <- cut(x)

produces a logical node y that is an exact copy of node x in the sense that
it always has the same value as x (x may be stochastic or logical). However,
any descendants of y that are introduced into the graph cannot then influence
inference on x. The reader is referred to §9.4 for examples of appropriate usage
of cut(.). Note this facility is currently unavailable in JAGS.

A.3.2.2 Deviance

BUGS automatically creates a logical node called deviance for the specified
model. This evaluates, using the current state of the model, minus twice the
logarithm of the conditional likelihood. By conditional likelihood we mean
the joint probability distribution of all observed and censored nodes, condi-
tional on their stochastic parents. The deviance node can be monitored and
contributes to the calculation of DIC (see §8.2, §8.6.4).

A.3.3 Add-on functions

There are several add-on interfaces to WinBUGS that contain libraries of
specialized functions, e.g., PKBugs (Lunn et al., 2002) for pharmacokinetic
modelling, and Jump (Lunn et al., 2009c) for reversible jump computation
(§8.8.2) on variable selection and spline models. In addition, WBDev (Lunn,
2003) can be used to “hard-wire” one’s own specialized functions into the Win-
BUGS framework — see §12.4.8. This can offer massive gains in efficiency over
building the relevant expression using standard BUGS syntax. In OpenBUGS
and JAGS, the program source code itself can be extended to implement new
functions, as discussed in Chapter 12.

A.4 Repetition

Repeated structures are specified using a “for-loop.” The syntax for this is:

for (i in a:b) {

list of statements to be repeated for increasing

values of loop-variable i

}

BUGS language syntax 333

Note that any depth of nesting of for-loops is permitted (as long as a different
index/loop variable is used for each loop). Note also that a and b must both
be integer-valued observed data or integer-valued logical expressions involving
only standard operators (+, -, *, /), numerical values, observed data, and/or
other for-loop indices (j, say). In particular, a and b must not be unobserved-
stochastic or named-logical nodes. The step function can often be used to
work around this. For example, to add up the first K out of 10 values of the
vector x[], where K is random, instead of

for (i in 1:K) {

xtosum[i] <- x[i]

}

s <- sum(xtosum[])

we could write

for (i in 1:10) {

xtosum[i] <- x[i]*step(K - i + 0.1)

}

s <- sum(xtosum[])

As described in §12.6.2, JAGS also offers a concise R-like syntax for per-
forming parallel scalar functions on vectorised arguments.

A.5 Multivariate quantities

We define a multivariate quantity as any collection of nodes, either all stochas-
tic or all logical, that are defined simultaneously, e.g., x[] ~ dmnorm(mu[],

T[,]), y[,] <- inverse(z[,]). All multivariate quantities must form con-
tiguous elements of the array of nodes to which they belong. As we traverse
contiguous elements of a given array, the fastest changing index is the final
index, and so all multivariate quantities should be defined using the latter
indices. For example, the following code specifies yi ∼ MVNd(μ, T

−1) for a
collection of vectors yi, i = 1, ..., K, which form the rows of a K × d matrix
Y :

for (i in 1:K) {

Y[i, 1:d] ~ dmnorm(mu[1:d], T[1:d, 1:d])

}

Now suppose that each yi has a distinct precision matrix Ti, as opposed to a
common precision T , and that all of these matrices are to be stored in a three-
dimensional array P[,,]. We specify a Wishart(R, k) prior for each matrix
via:

334 The BUGS Book

for (i in 1:K) {

P[i, 1:d, 1:d] ~ dwish(R[1:d, 1:d], k)

}

A.6 Indexing

A.6.1 Functions as indices

The four basic operators (+, -, *, and /) along with appropriate bracketing
are allowed to calculate an integer function as an index, for example:

Y[(i + j)*k, l]

On the left-hand side of a relation, an expression that always evaluates to a
fixed value (given the values of any loop variables) is allowed for an index. On
the right-hand side the index can be a fixed-value expression or a named node,
which allows a straightforward formulation for mixture models, in which the
appropriate element of an array is “picked” according to a random quantity
(see §A.6.3 below). However, functions of unobserved nodes are not permitted
to appear directly as index terms (named logical nodes may be introduced if
such functions are required).

A.6.2 Implicit indexing

The conventions broadly follow those of S-Plus/R:

• n:m represents n, n+ 1, ...,m;

• x[] represents all values of vector x;

• Y[,3] indicates all values in the third column of matrix Y.

Multidimensional arrays are handled internally as one-dimensional arrays with
a “constructed” index. Thus functions defined on arrays must be over equally
spaced nodes within the array: for example, y <- sum(i, 1:4, k).

A.6.3 Nested indexing

Nested indexing can be very effective. For example, suppose N individuals can
each be in one of J groups, and g[1:N] is a vector containing the group mem-
berships for each individual. Then group coefficients beta[j] (j = 1, ..., J)
can be fitted using beta[g[i]] in a regression equation in which individuals
are indexed by i.

In the BUGS language, nested indexing can be used for the parameters of
distributions, e.g.,

BUGS language syntax 335

for (i in 1:N) {

c[i] ~ dcat(theta[1:J])

y[i] ~ dnorm(mu[c[i]], tau)

}

Here y[i], i = 1, ..., N, are realisations from a normal mixture distribution
with J components, each with a distinct mean mu[j], j = 1, ..., J, and a com-
mon precision tau. The c[1:N] vector contains the indices of the components
to which each observation belongs.

A.7 Data transformations

Although transformations of data can always be carried out before using
BUGS, it is convenient to be able to try various transformations of dependent
variables within a model description. For example, we may wish to try both
y and sqrt(y) as dependent variables without creating a separate variable
z = sqrt(y) in the data file.

The BUGS language therefore permits the following type of structure to
occur:

for (i in 1:N) {

z[i] <- sqrt(y[i])

z[i] ~ dnorm(mu, tau)

}

Strictly speaking, this goes against the declarative structure of the model spec-
ification, with the accompanying exhortation to construct a directed graph
and then to make sure that each node appears once and only once on the
left-hand side of a statement. However, a check has been built in so that
when finding a logical node that also features as a stochastic node (such as z
above), a stochastic node is created with the calculated values as fixed data.
Note that this construction is only possible when transforming observed data
(not a function of data and parameters) with no missing values.

JAGS addresses this issue using a separate data block, as described
in §12.6.2.

A.8 Commenting

is the comment character, used to annotate BUGS code to help the pro-
grammer. BUGS ignores everything following # on a line.

336 The BUGS Book

model {

Y ~ dbin(0.5, 8)

P2 <- step(2.5 - Y) # 1 if Y is 2 or less, 0 otherwise

}

Appendix B

Functions in BUGS

§B.1 lists the logical functions which are available in all current BUGS im-
plementations, and §B.2 onwards list functions only in OpenBUGS or JAGS,
with the occasional exception.

B.1 Standard functions

The standard functions listed in Table B.1 are used in the same way in Win-
BUGS, OpenBUGS, and JAGS, with a few exceptions listed in a footnote.

B.2 Trigonometric functions

OpenBUGS and JAGS provide a full complement of trigonometric functions
and their inverse, hyperbolic, and inverse hyperbolic analogues:

sin arcsin sinh arcsinh

cos arccos cosh arccosh

tan arctan tanh arctanh

WinBUGS only includes sin, cos, and tan. In JAGS, the inverse functions
may be called as asin, acos, etc., for consistency with R.

B.3 Matrix algebra

JAGS contains some extra functions for matrix calculations. The t() function
transposes a matrix, the %*% operator multiplies two matrices of compatible
dimensions, e.g., A %*% B, and the mexp() function in the msm module (for
continuous-time Markov multi-state models) computes the matrix exponential

337

3
3
8

T
h
e
B
U
G
S
B
oo
k

TABLE B.1

Functions available in all BUGS implementations.

Expression Function Usage Definition

abs absolute value y <- abs(x) y = |x|
cloglog complementary y <- cloglog(x) y = ln(− ln(1− x)); x ∈ (0, 1)

log-log cloglog(z) <- a + b*x ln(− ln(1 − z)) = a+ bx

cos cosine y <- cos(x) y = cos(x)

equals logical equals y <- equals(a,b) y = 1 if a = b, y = 0 otherwise

exp exponential y <- exp(x) y = ex

inprod inner product y <- inprod(a[],b[]) y =
∑
i aibi

inverse matrix inverse y[1:n,1:n] <- inverse(x[,]) Y = X−1; X & Y both n× n

log natural logarithm y <- log(x) y = ln(x); x > 0
log(z) = a + b*x ln(z) = a+ bx

logdet log determinant y <- logdet(x[,]) y = ln |X |;
X symmetric & positive definite

logfact log factorial y <- logfact(x) y = ln(x!); x = 0, 1, 2, ...

loggam log gamma function y <- loggam(x) y = ln(Γ(x)); x > 0

logit logistic transform y <- logit(x) y = ln(x
1−x); x ∈ (0, 1)

logit(z) <- a + b*x ln(z
1−z) = a+ bx

max maximum y <- max(a,b) y = max(a, b)

mean mean y <- mean(x[]) y = 1
n

∑
i xi

min minimum y <- min(a,b) y = min(a, b)

F
u
n
ctio

n
s
in

B
U
G
S

3
3
9

TABLE B.1

(Continued.)

Expression Function Usage Definition

phi standard normal y <- phi(x) y = Φ(x) =
∫ x
−∞

1√
2π
e−

1
2 t

2

dt
distribution function

pow power y <- pow(a,b) y = ab

probit probit probit(z) <- a + b*x Φ−1(z) = a+ bx

sqrt square root y <- sqrt(x) y =
√
x; x ≥ 0

rank rank of ith element y <- rank(x[],i) y =
∑
j I(xj ≤ xi)

in vector

ranked ith smallest value y <- ranked(x[],i) y = ith smallest value in x
in vector

round nearest integer y <- round(x) y =
x+ 0.5�

sd standard deviation y <- sd(x[]) y =
√

1
n−1

∑
i

(
xi − 1

n

∑
i xi
)2

step unit step y <- step(x) y = 1 if x ≥ 0, y = 0 otherwise

sum sum y <- sum(x[]) y =
∑
i xi

trunc truncate towards 0 y <- trunc(x) y =
x+ (1− ε)I(x < 0)�

• min(...), max(...) in JAGS accept any number of arguments and return their minimum or maximum.

• rank(v[]) in JAGS, given a vector v, returns a vector of ranks, so that the equivalent of rank(x[],i) is y <- rank(x[]); y[i]. Also ranked

is not in JAGS — the equivalent of ranked(x[], i) is y <- sort(x[]); y[i].

• probit can be used on the right-hand side of a definition y <- probit(x) in JAGS, but in WinBUGS and OpenBUGS it can only be used
as a link function, e.g., probit(y) <- a + b*x.

340 The BUGS Book

of a square matrix. The matrix exponential is a power series of matrix products
1+A+A2/2!+ . . ., which is not the same as taking the scalar exponential of
each element.

OpenBUGS has the function eigen.vals(x), which returns the vector of
eigenvalues of a square matrix x.

B.4 Distribution utilities and model checking

OpenBUGS provides the functions

density(s1, s2)

cumulative(s1, s2)

deviance(s1, s2)

to evaluate, respectively, the probability density p(x|θ), the cumulative density∫ x
−∞ p(u|θ)du, and deviance −2 log(p(x|θ)) of the scalar node s1 evaluated at
x defined by the current value of the scalar node s2, and θ defined by the
current parameters of s1. The node s1 must be a stochastic node.

JAGS provides a similar facility via a suite of functions with names begin-
ning d,p,q, or r. For example,

dnorm(x,mu,tau)

pnorm(x,mu,tau)

qnorm(x,mu,tau)

rnorm(x,mu,tau)

produce the probability density, cumulative density, inverse cumulative den-
sity, and a random sample, respectively, from a normal distribution with mean
mu and precision tau. Most of the distributions in Appendix C which are
available in JAGS may be used in this way with analogous names — see the
current JAGS user manual for further details. These functions are named like
the corresponding functions in R, but the JAGS parameterisations are used.

OpenBUGS includes a set of functions intended for predictive model check-
ing (see §8.4).
replicate.post(s)

replicate.prior(s)

generate a new node from the distribution of the scalar stochastic node s.
In replicate.post, the current values of the parameters of this distribution
are used, but in replicate.prior, these parameters are resampled in turn
from their distributions. The choice depends on the desired “focus” for model
assessment; see §10.7. replicate.postM(v) can be used if v is a vector. There
are two corresponding functions

Functions in BUGS 341

post.p.value(s)

prior.p.value(s)

for calculating predictive p-values. These return one if a sample from the distri-
bution of s is less than the value of s, and zero otherwise. The latter function
resamples any stochastic parents of s. post.p.value(s) has an equivalent
p.valueM(v) for multivariate stochastic nodes v.

B.5 Functionals and differential equations

In OpenBUGS, there are some functions with arguments defined by functions
themselves.

integral(F(s), s1, s2, s3)

returns the definite integral of function F(s) between s = s1 and s = s2 to
accuracy s3, and

solution(F(s), s1, s2, s3)

returns a solution of equation F(s) = 0 lying between s = s1 and s = s2 to
accuracy s3. s1 and s2 must bracket a solution.

The function argument in either case is defined by the special notation
F(s). For example, an integral y =

∫ u
0

{
cos(x)2 + sin(x)2

}
dx with a random

upper limit u can be evaluated by

y <- integral(F(x), 0, u, 1.0E-6)

F(x) <- cos(x)*cos(x) + sin(x)*sin(x)

u ~ dunif(0, 1)

However, since cos(x)2 + sin(x)2 = 1, y will have a Uniform(0,1) distribution
just like u.

Ordinary differential equations can be solved in OpenBUGS using

ode(v1, v2, D(v3, s1), s2, s3)

which gives the solution at a grid of points v2, given initial values v1, at time
s2, solved to accuracy s3. D(v3,s1) defines the system in terms of time s1

using the special function D(). See the Diff subdirectory of the OpenBUGS
installation for detailed documentation. This is also available in WinBUGS via
the add-on WBDiff package — see Example 11.5.1 for an example of defining
D().

342 The BUGS Book

B.6 Miscellaneous

• sort(x) in OpenBUGS and JAGS sorts a vector x into ascending order.

• JAGS and OpenBUGS have the inverse logit function ilogit(x) defined
as exp(x)/(1 + exp(x)), and the inverse complementary log-log function
icloglog(x) defined as 1− exp(− exp(x)).

• OpenBUGS has an incomplete gamma function gammap(a, x), defined
as the cumulative density of the gamma distribution with scale param-
eter 1. ∫ x

0

ta−1 exp(−t)
Γ(a)

dt

For example, y and z will be the same in the following code.

w ~ dgamma(3, 1)

y <- cumulative(w, 2)

z <- gammap(3, 2)

• interp.lin(e, x, y) (OpenBUGS and JAGS)

Suppose we have a vector of function values yi = f(xi) for i = 1 . . . n
and we wish to predict the value f(e) at a new point e. This function
estimates this by a simple linear interpolation between the pair of points
corresponding to the closest xi above and below e:

f(e) = yp + (yp+1 − yp)q, q = (e− xp)/(xp+1 − xp), xp ≤ e ≤ xp+1

The elements of x must be in ascending order, e must be a scalar, and
x and y must be vectors of the same length.

Appendix C

Distributions in BUGS

In a Bayesian analysis, as well as choosing sampling distributions for observ-
able quantities, we must choose prior distributions to characterise uncertainty
about parameters. Therefore a thorough understanding of different probabil-
ity distributions and their properties is important to Bayesian work. Here we
list the distributions available in current implementations of the BUGS lan-
guage, with their common uses and properties. §9.5, §12.4.8 explain how to
implement distributions not in this list.

Means and variances of all distributions are given where these exist, but
note that the variance may not be a sensible measure to base a prior on when
the distribution is very skewed. In that case, the typical rule of thumb (based
on the normal distribution) that a 95% credible interval is about “mean ±2
standard deviations” will be inaccurate. A pair of quantiles will then be a
better measure of spread.

A table of prior, posterior, and predictive distributions for conjugate
Bayesian analyses is given in Chapter 3, Table 3.1.

C.1 Continuous univariate, unrestricted range

Normal x ∼ dnorm(mu,tau)

Density p(x|μ, τ) =√ τ
2π e

− τ
2 (x−μ)2 for −∞ < x <∞, τ > 0

Mean μ Variance 1/τ

The normal distribution is ubiquitous as a model (or prior) for continuously
distributed quantities, due to its convenient properties and familiarity. It is
fundamental to statistics as the sampling distribution for an empirical mean,
from the central limit theorem. But remember that in BUGS there is rarely
any algebraic or computational need to assume normality. Another distribu-
tion may be more realistic or fit the data better, perhaps due to skewness or
heavier tails, and this is usually no more computationally difficult.

Since the very first version of BUGS, the normal has been parameterised
by the precision τ = 1/σ2 rather than the commoner variance σ2 or stan-

343

344 The BUGS Book

dard deviation σ. When used as a prior, for example, smaller precisions give
vaguer priors. In retrospect this was an unwise decision — although using τ
gives tidier expressions for the posterior distributions of the parameters un-
der conjugate priors, it has caused a lot of confusion. However, changing the
parameterisation at this stage would be likely to redouble the confusion for
existing users!

Logistic x ∼ dlogis(mu,tau)

Density p(x|μ, τ) = τeτ(x−μ)/(1 + eτ(x−μ))2 for −∞ < x <∞, τ > 0

Mean μ Variance π2

3τ2

A standard logistic random variable with mean μ = 0 and precision parameter
τ = 1 is the logit of a Uniform(0,1) random variable, hence its application as
a prior for the intercept in a logistic regression model, equivalent to a uniform
prior on the probability scale (§4.1.1, §5.2.5). Qualitatively it is very similar to
the normal, though with a slightly heavier tail. Note that τ here is analogous
to the inverse standard deviation

√
τ of the normal, not the inverse variance

τ .

Student’s t x ∼ dt(mu,tau,k)

Density p(x|μ, τ, k) = Γ((k+1)/2)
Γ(k/2)

√
τ
kπ

{
1 + τ

k (x− μ)2
}−(k+1)/2

for −∞ < x < ∞, τ > 0, k ≥ 2 (WinBUGS), k ≥ 1 (OpenBUGS), or k ≥
0 (JAGS).

Mean μ Variance k
τ(k−2) if k ≥ 2, otherwise infinite or undefined

Used in place of the commoner normal distribution when heavier tails are
required. As k → ∞, the tails become thinner and this tends to the normal
distribution with mean μ and precision τ . The “standard” t distribution,
familiar in classical hypothesis tests, has μ = 0, τ = 1. Given X ∼ N(0, 1)
and V ∼ χ2

k, then X/
√
V/k has the standard tk distribution.

Due to this relation with the χ2 distribution, the “degrees of freedom” k is
conventionally an integer. BUGS allows non-integer k, through generalising
the χ2

k as Gamma(k2 ,
1
2). WinBUGS is restricted to k ≥ 2, OpenBUGS to

k ≥ 1, while JAGS allows all k ≥ 0.
The t distribution with k = 1 is called the Cauchy distribution, whose mean

and variance are undefined. The half-Cauchy distribution has an application
as a prior for standard deviations in hierarchical models (§10.2.3). The Cauchy
and other t distributions may be implemented in all varieties of BUGS using
the above definition in terms of the normal and gamma, as illustrated in
§5.5, §10.2.3.

Distributions in BUGS 345

Double exponential x ∼ ddexp(mu,tau)

Density p(x|μ, τ) = τ
2 e

−τ |x−μ| for −∞ < x <∞, τ > 0

Mean μ Variance 2/τ2

A symmetric distribution whose density is formed by coupling the density of
the exponential distribution with its reflection in the y-axis, then shifting and
scaling. Sometimes used in place of a normal distribution when heavier tails
are required, for example, in modelling spatial correlation (§11.3). Also known
as a Laplace distribution.

Improper uniform x ∼ dflat() (WinBUGS + OpenBUGS)

Density p(x) = 1 for −∞ < x <∞
An “improper” distribution does not integrate to 1. This improper distribution
may be used as a prior, but the responsibility is on the user to ensure the
implied posterior distribution is proper, without which inferences will not
make sense. A typical use of dflat() is as a minimally informative prior
based on Jeffreys’ principle (§ 5.2.3). Another example of a valid use is in
spatial modelling (§11.3).

C.2 Continuous univariate, restricted to be positive

Exponential x ∼ dexp(theta)

Density p(x|θ) = θe−θx for x > 0, θ > 0

Mean 1/θ Variance 1/θ2

A simple distribution for a positive quantity, typically the time to an event,
where the risk or rate θ of the event is constant through time.

Gamma x ∼ dgamma(a,b)

Density p(x|a, b) = baxa−1e−bx/Γ(a) for x > 0, a, b > 0

Mean a/b Variance a/b2

A Gamma(1, b) distribution is exponential with mean 1/b, and Gamma(v2 ,
1
2)

is a chi-squared χ2
v distribution on v degrees of freedom. Gamma distributions

are used as sampling distributions for positive and skewed data, such as costs
or times to events. If a is an integer, then the Gamma(a, b) is the distribution
of the sum of a independent exponential variables with rate b. Note that the

346 The BUGS Book

gamma is sometimes parameterised in terms of the scale 1/b instead of the
rate b.

The gamma is commonly used as a conjugate prior distribution for inverse-
scale parameters — see §5.2.7 and Table 3.1. However, the gamma with small
a, b is not recommended as a vague prior for the precision of random effects
in a hierarchical model. See §10.2.3 for discussion of appropriate alternatives.

Chi-squared x ∼ dchisqr(k)

Density p(x|k) = 2−
k
2 x

k
2−1e−

x
2 /Γ(k/2) for x > 0, k ≥ 0

Mean k Variance 2k

The distribution of the sum of the squares of k independent standard normal
random variables. More commonly used in classical hypothesis testing than
in Bayesian applications.

Noncentral chi-squared x ∼ dnchisqr(k,delta) (JAGS only)

Density p(x|k, δ) = exp(− δ
2)
∑∞

r=0
(δ/2)r

r!
pχ2(x|k + 2r) for x > 0, k ≥

0, δ ≥ 0, where pχ2(x|k) is the density p(x|k) of the χ2 distribution above

Mean k + δ Variance 2(k + 2δ)

The distribution the sum of squares of k independent normal random variables
each with variance one, where δ is the sum of squares of the normal means.

Weibull x ∼ dweib(a,b)

Density p(x|a, b) = a b xa−1e−bx
a

for x > 0, a, b > 0

Mean b−1/aΓ(1 + 1/a) Variance b−2/a(Γ(1 + 2/a)− Γ(1 + 1/a)2)

A common model for times x to events (see §11.1). The hazard or instantaneous
risk of the event is h(x) = abxa−1. For a < 1 the hazard decreases with x;
for a > 1 it increases. a = 1 is the exponential distribution dexp(b) with
constant hazard.

Be careful of alternative parameterisations in different software; for exam-
ple, dweibull() in R uses p(x|a, b2) = (a/b2)(x/b2)

a−1 exp(−(x/b2)
a), where

b2 = b−1/a, and survreg() in the R package survival (Therneau, 2010)
reports estimates of log(b2) and 1/a.

Log-normal x ∼ dlnorm(mu,tau)

Density p(x|μ, τ) =√ τ
2π

1
xe

− τ
2 (log x−μ)2 for x > 0, τ > 0

Mean exp(μ+ 1/(2τ)) Variance exp(2μ+ 1/τ)(exp(1/τ)− 1)

Distributions in BUGS 347

The distribution of the log of a normally distributed random variable with
mean μ and precision (not variance) τ . The median is exp(μ).

Generalised gamma x ∼ gen.gamma(a,b,c)

Density p(x|a, b, c) = c bcaxca−1e−(bx)c/Γ(a) for x > 0, a, b, c > 0

Mean μ = Γ(a+1/c)
bΓ(a) Variance Γ(a+2/c)

b2Γ(a) − μ2

Called dggamma in OpenBUGS and dgen.gamma in JAGS, with the same
parameters.

IfW ∼ Gamma(a, 1) thenX =W 1/c/b has the generalised gamma distribu-
tion. With a = 1 this is equivalent to dweibull(c, c2) where c2 = (1/b)−c,
with c = 1 it is equivalent to dgamma(a, b), and with a = c = 1 to dexp(b).
As a → ∞ it tends to dlnorm(mu, tau) where mu is log(1/b) + log(a)/c and
the precision tau is c2a (Lawless, 1980).

Again there are many different parameterisations of this distribution. This
one is based on Stacy (1962). A more flexible parameterisation was developed
by Prentice (1974), in which the parameter called a here is transformed and
unbounded. This avoids problems with estimation when the supported values
of a are close to the log-normal boundary. WinBUGS modules for this alter-
native, and the even more flexible four-parameter generalised F distributions,
are provided by Jackson et al. (2010b).

Pareto x ∼ dpar(a,b)

Density p(x|a, b) = abax−(a+1) for x > b, a, b > 0

Mean ba
a−1 (undefined a ≤ 1) Variance b2a

(a−1)2(a−2) (undefined a ≤ 2)

The distribution function is Pr(Y < y) = 1−ba/yk, that is, the tail probability
is a “power law” function of the tail length. The probability density is a
decreasing function, like the density of the exponential distribution.

The “Pareto principle” is that for many events, a proportion p of the effects
comes from roughly 1− p of the causes. For example, a common observation
is that 20% of all individuals own 80% of a society’s wealth. Furthermore, for
all n, (1 − p)n will own pn of the wealth; for example, 20% of that richest
20% will own 80% of that richest 20%’s share. This model holds if individual
wealth has a Pareto distribution with a = log(1− p)/ log(1−p

p) > 1. The Gini

coefficient commonly used to measure income inequality is 1
2a−1 under this

model, ranging between 0 (a → ∞, p = 0.5, perfect equality) and 1 (or 100%,
a = 1, p = 1, complete inequality).

The Pareto is also a natural model for Bayesian inference about extreme
values, since it is the conjugate distribution for the upper limit of a uniform
distribution with a fixed lower limit (Table 3.1).

If X ∼ Pareto(a, b), then log(X/b) is exponential with rate a.

348 The BUGS Book

Generalised extreme value x ∼ dgev(mu,sigma,eta)

(OpenBUGS only)

Density p(x|μ, σ, η) =
1
σ

(
1 + η

σ
(x− μ)

)−(1+1/η)
exp

{
−(1 + η

σ
(x− μ))−1/η

}
for η

σ
(x− μ) ≥ −1

Mean
μ+ σ Γ(1−η)−1

η
if η �= 0, η < 1,

μ+ σγ if η = 0,
indeterminate if η ≥ 1

Variance

σ2 (g2 − g21)/η
2 if η �= 0, η < 1

2
,

σ2 π2

6
if η = 0,

∞ if η ≥ 1
2

γ is Euler’s constant (0.5772 to four decimal places) and gk = Γ(1− kη).
This distribution arises through the extreme value theorem as the distri-

bution of the normalised maximum of a sequence of random variables. When
σ = μη with μ, η < 0, it reduces to a Weibull distribution for −x, with
a = −1/η, b = (−η/σ)−1/η as parameterised above.

Generalised Pareto x ∼ dgpar(mu,sigma,eta)

(OpenBUGS only)

Density p(x|μ, σ, η) = 1
σ

(
1 + η

σ (x− μ)
)−(1+1/η)

for η
σ (x− μ) ≥ −1, x ≥ μ

Mean μ+ σ
1−η (η < 1, otherwise indeterminate) Variance σ2

(1−η)2(1−2η) (η <
1
2 , otherwise indeterminate)

When η = σ/μ, this reduces to the Pareto distribution with parameters
a = μ/σ and b = σ/η. As η → 0 with μ = 0, this tends to the exponen-
tial distribution with rate 1/σ. Used for modelling events which exceed some
extreme threshold.

F x ∼ df(n,m,mu,tau) (JAGS and OpenBUGS only)

Density p(x|n,m, μ, τ) =
Γ(n+m

2)

Γ(n
2)Γ(m

2)

(
n
m

)n
2
√
τ(
√
τ(x − μ))

n
2 −1

{
1 + n

√
τ(x−μ)
m

}− (n+m)
2

for x > 0, n,m > 0

Mean m
m−2 for m > 2 Variance 2m2(n+m−2)

n(m−2)2(m−4) for m > 4

The standard F distribution, familiar from classical analysis of variance, is
the distribution of the ratio of the mean squares of n and m independent
standard normal variates, hence of the ratio of two independent chi-squared
variates each divided by its degrees of freedom.

The F distribution in OpenBUGS is a generalised F distribution which also
includes location and inverse scale parameters μ and τ . The F distribution in
JAGS is the standard one restricted to μ = 0, τ = 1. WinBUGS modules for
the generalised F distribution with alternative parameterisations described by
Prentice (1975) and Cox (2008) are provided by Jackson et al. (2010b).

Distributions in BUGS 349

Other positive distributions

The Reliability subsystem in OpenBUGS (Kumar et al., 2010) implements
several positive distributions which are used to model failure times in engi-
neering. These include Birnbaum–Saunders, Burr X, Burr XII, exponential
power, exponentiated Weibull, extended exponential, extended Weibull, flex-
ible Weibull, generalised exponential, generalised power Weibull, Gompertz,
Gumbel, inverse Gaussian, inverse Weibull, linear failure rate, logistic expo-
nential, log-logistic, log-Weibull, and modified Weibull. See its manual for
further details.

C.3 Continuous univariate, restricted to a finite interval

Uniform x ∼ dunif(a,b)

Density p(x|a, b) = 1/(b− a) for x ∈ [a, b], b > a

Mean a+b
2 Variance (b−a)2

12

The uniform is common in Bayesian applications as an intuitively vague prior
distribution. When using it in this way, make sure that the limits really cover
all possible values for the parameter. Also, as discussed in §5.2.3, it is only
“uninformative” in this way for one choice of scale; for example, if logit(p) is
uniform then p is not uniform.

Beta x ∼ dbeta(a,b)

Density p(x|a, b) = Γ(a+b)
Γ(a)Γ(b) x

a−1(1− x)b−1 for 0 < x < 1, a, b > 0

Mean a/(a+ b) Variance ab/((a+ b)2(a+ b+ 1))

The beta distribution is most commonly used as a prior for proportions
(§5.2.5), since it is the conjugate prior for the probability in a binomial model
(Table 3.1). If a, b > 1, the beta has a single mode at (a−1)/(a+ b−2). With
a = b = 1 this is simply the Uniform(0,1) distribution. Otherwise, if a ≥
1, b ≤ 1, the density is increasing and skewed towards one; if a ≤ 1, b ≥ 1, the
density is decreasing and skewed towards zero; or if a, b < 1, the distribution
is U-shaped. See §5.3.1 for discussion of how to express or elicit prior beliefs
as a beta distribution.

350 The BUGS Book

C.4 Continuous multivariate distributions

Multivariate normal x[1:d] ∼ dmnorm(mu[],T[,])

Density p(x|μ, T) = (2π)−
d
2 |T | 12 e− 1

2 (x−μ)′T (x−μ) for T symmetric and
positive definite, d = dim(x), ∞ < xi <∞
Analogously to the univariate normal, this is parameterised by the precision
matrix T , which is the inverse of the covariance matrix Σ.

For smaller-dimensional x it is often preferable to specify a multivari-
ate normal model or prior as a sequence of conditional univariate normal
distributions (see, e.g., § 10.2.3). This gives the parameters a more intu-
itive meaning. For example, if X and Y are jointly bivariate normal with
marginal means μX , μY , marginal variances σ2

X , σ
2
Y , respectively, and corre-

lation ρ = Cov(X,Y)/(σXσY), then the conditional distribution (Y |X = x)
is normal with mean μY + σY

σX
ρ(x − μX) and variance (1 − ρ2)σ2

Y . Together
with an independent univariate normal model for X , this fully defines the
joint distribution of X and Y in terms of their marginal properties and their
correlation, an understandable quantity between 0 and 1.

In higher dimensions, given a pair of vectors x1, x2, where the concatenated
pair is multivariate normal, the general formula for the conditional distribu-
tion of (x1|x2 = a) is multivariate normal with mean μ1 + Σ12Σ

−1
22 (a − μ2)

and covariance matrix Σ11 − Σ12Σ
−1
22 Σ21, where μr is the marginal mean of

xr and Σrs = Cov(xr , xs).

Multivariate t x[1:d] ∼ dmt(mu[],T[,],k)

Density p(x|μ, T, k) = Γ ((k + d)/2) (kπ)−
d
2 |T | 12×

{1 + (x− μ)′T (x− μ)/k}−(k+d)/2
/Γ(k/2)

for T symmetric and positive definite, d = dim(x), k ≥ 2, −∞ < xi <∞
Analogously to the multivariate normal, this reduces to the univariate Student
t distribution when dim(x) = 1 and can be applied in place of the multivariate
normal when a heavier-tailed distribution is needed.

Wishart x[1:d,1:d] ∼ dwish(R[,],k)

Density p(x|R, k) = |R| k2 |x| k−d−1
2 e−

1
2 tr(Rx)/2dk/2Γd(k/2) for R, x sym-

metric and positive definite, d = dim(x), k ≥ d

The Wishart is a distribution for a matrix which is restricted to be positive-
definite. It is a multivariate generalisation of the gamma distribution and the
conjugate prior for the precision matrix of a multivariate normal distribution.
The mean is kR−1, and when k is lower, the distribution is less informative. As

Distributions in BUGS 351

discussed in §10.2.3, since the parameters of the Wishart are difficult to inter-
pret, multivariate normal distributions may be better specified as sequences
of conditional distributions, where dependence can be expressed by bivariate
correlations instead of covariance matrices.

This may only be used as a conjugate prior or for forward sampling, and
the parameters must be specified as constants and cannot be estimated.

Dirichlet x[1:d] ∼ ddirch(theta[])

Density p(x|θ) = Γ(
∑

i θi)∏
i Γ(θi)

∏
i x

θi−1
i for θi > 0, xi ∈ [0, 1],

∑
i xi = 1

In OpenBUGS and JAGS this may also be spelt ddirich.
A distribution for a vector where all elements are constrained in [0,1] and

add up to one, such as a vector of probabilities for mutually exclusive events.
The Dirichlet is a multivariate generalisation of the beta distribution and
the conjugate distribution for the probabilities governing a multinomial or
categorical model. In JAGS, but not in OpenBUGS or WinBUGS, structural
zeros are allowed, so that if some of the elements of theta are zero, then the
corresponding element of x is fixed to zero.
ddirch can be used as a prior but not as a likelihood in any variety of

BUGS. In other words, the parameters of the distribution cannot be estimated
and must be supplied as constants. However, if Y1, . . . , Yn ∼ Gamma(ai, b)
independently, then V =

∑n
i=1 Yi ∼ Gamma(

∑
ai, b) and (Y1/V, . . . , Yn/V) ∼

Dirichlet(a), where a = (a1, . . . , an). Since the parameters of the gamma can
be estimated in BUGS, this enables the Dirichlet distribution to be fitted to
data, for example, or to be used in a hierarchical model where the random
effects consist of vectors of probabilities (Example 10.3.4).

Additionally, in WinBUGS, ddirch can only be used as a conjugate prior
in a model with a multinomial (dmulti) or categorical outcome (dcat), or
for forward sampling. OpenBUGS and JAGS do not have this restriction.

Spatial distributions

The GeoBUGS facilities of WinBUGS and OpenBUGS provide several dis-
tributions for modelling sets of spatially correlated quantities. These are de-
scribed in §11.3.

C.5 Discrete univariate distributions

Bernoulli x ∼ dbern(theta)

352 The BUGS Book

Density p(x|θ) = θx(1− θ)1−x for x = 0, 1, θ ∈ [0, 1]

Mean θ Variance θ(1− θ)

The distribution of a single event which occurs with probability θ.

Binomial x ∼ dbin(theta,n)

Density p(x|θ, n) = n!
x!(n−x)!θ

x(1 − θ)n−x for θ ∈ [0, 1], n ∈ Z
+, x =

0, . . . , n, where Z
+ denotes the set of all positive integers.

Mean nθ Variance nθ(1− θ)

The distribution of the number of “successes” x out of n independent Bernoulli
trials with probability θ. By generalising x! = Γ(x+1), non-integer x may be
modelled by the binomial distribution in BUGS.

Categorical x ∼ dcat(theta[])

Density p(x|θ) = θx for x = 1, 2, ..., n, θi ∈ [0, 1],
∑
i θi = 1

The distribution of an event which has one of n mutually exclusive outcomes
with probabilities θ1, . . . , θn. The mean and variance are not defined, as the
outcomes are not necessarily quantitative. In JAGS, the probabilities for a cat-
egorical (or multinomial) distribution may be any positive quantities, which
are normalised internally to sum to 1. In WinBUGS or OpenBUGS, the ele-
ments of theta must be between 0 and 1 and sum to 1.

Poisson x ∼ dpois(theta)

Density p(x|θ) = θx

x! e
−θ for x = 0, 1, ..., θ > 0

Mean θ Variance θ

A simple distribution for count data. It models the number of independent
events in a fixed interval, when the expected number of events is θ and the
event rate is constant. Unlike the binomial distribution, the number of events
is theoretically unbounded. For rare events, where θ is low, the Binomial(n, θ)
distribution is approximately equivalent to the Poisson(nθ).
dpois in BUGS has an unexpected use in the “zeros trick” for defining a

new distribution; see §9.5.

Geometric x ∼ dgeom(theta) (OpenBUGS only)

Density p(x|θ) = θ(1 − θ)x−1 for x = 0, 1, ..., θ ∈ [0, 1]

Mean θ Variance θ

The distribution of the number x of Bernoulli trials required for one success
to occur; where the success probability is θ.

Distributions in BUGS 353

Negative binomial x ∼ dnegbin(theta,n)

Density p(x|θ, n) = (x+n−1)!
x!(n−1)! θ

n(1 − θ)x for θ ∈ [0, 1], n ∈ Z
+, x =

0, 1, 2, . . .

Mean (1−θ)n
θ Variance (1−θ)n

θ2

The negative binomial is the distribution of the number of failures in a se-
quence of Bernoulli events with success probability θ before n successes occur,
see Example 5.2.2.

The negative binomial also arises as a generalisation of the Poisson dis-
tribution where the variance is greater than the mean. Thus it is commonly
used for modelling overdispersed count data. If (Y |W) ∼ Poisson(W), and
the Poisson rate is random with W ∼ Gamma(n, θ

1−θ), then the distribution
of Y marginalised over W is negative binomial with parameters θ, n. When
modelling count data in BUGS, explicitly using dpois and dgamma is a more
flexible and clearer alternative to using dnegbin, although it does not lend
itself to regression situations, where the response mean is modelled as a func-
tion of covariates (as in Example 6.5.2). The parameters of the gamma may
both be continuous, whereas n in dnegbin is discrete.

Beta-binomial x ∼ dbetabin(a,b,n) (JAGS only)

Density p(x|a, b, n) = (a+x−1
x

)(
b+n−x−1
n−x

)(
a+b+n−1

n

)−1
for a, b > 0, n ∈ Z

+

Mean na
a+b Variance nab(a+b+n)

(a+b)2(a+b+1)

The beta-binomial is an overdispersed version of the binomial distribution,
where the success probability is random. If (Y |p) ∼ Binomial(n, p), and
p ∼ Beta(a, b), then the marginal distribution of Y is beta-binomial with
parameters a, b. Thus it can be used in place of the binomial as a more flexi-
ble model for bounded count data where the variance is not defined entirely
by the mean. Unlike the negative binomial, the parameters of dbetabin are
the same as the underlying beta distribution; therefore, there is little clarity
gained by explicitly using dbinom and dbeta.

It reduces to the Bernoulli distribution when n = 1 and to a discrete uniform
distribution when a = b = 1.

Non-central hypergeometric x ∼ dhyper(n1,n2,m1,psi)

(JAGS and OpenBUGS only)

Density p(x|n1, n2,m1, ψ) =
(n1

x)(
n2

m1−x)ψ
x

∑min(n1,m1)

i=max(0,m1−n2) (
n1
i)(

n2
m1−i)ψi

for ni ≥ 0, 0 <

m1 ≤ n1 + n2, max(0,m1 − n2) ≤ x ≤ min(n1,m1)

Mean m Variance v

The JAGS parameterisation is given above. OpenBUGS parameterises it

354 The BUGS Book

slightly differently as x ∼ dhyper(n,m,N,psi), where n = n1, m = m1,
N = n1 + n2, and ψ is unchanged.

The non-central hypergeometric distribution is used for sampling without
replacement. Consider an urn with N balls, n of which are white, and the
remainder are black. The standard hypergeometric distribution (with φ = 1)
governs the number of white balls in a sample of m balls drawn from the urn.
The non-central hypergeometric distribution applies when the probability that
an individual ball is drawn is different between a black (pb) and a white (pw)

ball.∗ The odds ratio for drawing a white ball is ψ = pw(1−pb)
pb(1−pw) .

It also has an application to inference for a 2 × 2 table when the margins
are known — either as a likelihood when the cell counts are known (§7.1.3) or
as a prior when these are unknown (“ecological” inference: Wakefield (2004)).
Consider a table of the number of individuals with and without a disease who
are either unexposed or exposed to a risk factor. For a fixed population size
N , number of exposed individuals n, diseased individuals m, and a fixed odds
ratio of φ, then the number of unexposed individuals with the disease follows
the non-central hypergeometric distribution.

It is also known as Fisher’s non-central hypergeometric distribution, or the
extended hypergeometric.

C.6 Discrete multivariate distributions

Multinomial x[1:R] ∼ dmulti(theta[],n)

Density p(x|θ, n) = n!∏
r xr!

∏
r θ

xr
r for θr ∈ [0, 1],

∑
r θr = 1,

∑
r xr =

n, n ∈ Z
+

The distribution of a set of n events, each of which can have one of R mutually
exclusive outcomes with probabilities θ1, . . . , θR. It generalises the categori-
cal distribution to more than one event and the binomial to more than two
outcomes.

JAGS allows unnormalised probabilities in the multinomial (as in the cat-
egorical) and internally sums them to one. In OpenBUGS and WinBUGS,
theta must consist of proper probabilities.

In multinomial logistic regression, a multinomial outcome is modelled as
a function of covariates. The probability of the rth of R categories given

∗Perhaps if their weights or temperatures are different.

Distributions in BUGS 355

covariate vector xi (changing notation so xi is a covariate) is

p(r|xi) = exp(β′
rxi)∑R

r=1 exp(β
′
rxi)

where β1 = 0 for identifiability. Let the observed counts for all data with the
ith covariate pattern be yi1, ..., yiR,

∑R
r=1 yir = ni. Then the likelihood is

∏

i

exp(
∑R

r=1 yir β
′
rxi)[∑R

r=1 exp(β
′
rxi)

]ni

This likelihood can be handled in BUGS using dmulti (§6.4). However, in
many circumstances it is more efficient to specify

yir ∼ Poisson(μir), log(μir) = λi + β′
rxi.

With a Gamma(ε,ε) prior on λi as ε → 0, equivalent to a uniform prior on
log(λi), integrating over λi produces the same likelihood for the βr as the
multinomial model (proof as exercise). A BUGS example is in §7.2.4.

This page intentionally left blankThis page intentionally left blank

Bibliography

Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of
autoregressive model fitting. Biometrika, 66, (2), 237.

Altham, P. (1969). Exact Bayesian analysis of a 2× 2 contingency table, and
Fisher’s “exact” significance test. Journal of the Royal Statistical Society.
Series B (Methodological), 31, (2), 261–9.

Andersen, P. K., Borgan, O., Gill, R. D., and Keiding, N. (1993). Statistical
models based on counting processes. Springer, New York.

Anderson, T. W. (1971). The statistical analysis of time series. John Wiley
& Sons, New York..

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72, (3), 269–342.

Asmussen, S. and Glynn, P. W. (2011). A new proof of convergence of MCMC
via the ergodic theorem. Statistics and Probability Letters, 81, 1482–5.

Barnard, J., McCulloch, R., and Meng, X. (2000). Modeling covariance ma-
trices in terms of standard deviations and correlations, with application
to shrinkage. Statistica Sinica, 10, (4), 1281–312.

BaSiS (2001). Standards for Reporting of Bayesian Analyses in the Sci-
entific Literature. http://lib.stat.cmu.edu/bayesworkshop/2001/

BaSis.html.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society, 53, 370–418.

Beaumont, M. (2010). Approximate Bayesian computation in evolution and
ecology. Annual Review of Ecology, Evolution and Systematics, 41, 379–
406.

Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate
Bayesian computation in population genetics. Genetics, 162, 2025–35.

Berger, J. (1985). Statistical decision theory and Bayesian analysis. Springer.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian theory. John Wiley &
Sons, New York.

Berry, S. M., Carlin, B. P., Lee, J. J., and Müller, P. (2010). Bayesian adaptive
methods for clinical trials. CRC Press, Boca Raton, FL.

357

358 The BUGS Book

Besag, J., York, J., and Mollié, A. (1991). Bayesian image restoration, with
two applications in spatial statistics. Annals of the Institute of Statistical
Mathematics, 43, (1), 1–20.

Best, N., Cockings, S., Bennett, J., Wakefield, J., and Elliott, P. (2001). Eco-
logical regression analysis of environmental benzene exposure and child-
hood leukaemia: sensitivity to data inaccuracies, geographical scale and
ecological bias. Journal of the Royal Statistical Society, Series A, 164,
(1), 155–74.

Best, N., Ickstadt, K., and Wolpert, R. (2000a). Spatial Poisson regression
for health and exposure data measured at disparate resolutions. Journal
of the American Statistical Association, 95, (452), 1076–1088.

Best, N., Ickstadt, K., Wolpert, R., and Briggs, D. (2000b). Combining models
of health and exposure data: the SAVIAH study. In Spatial epidemiology:
Methods and applications (ed. P. Elliott, J. C. Wakefield, N. G. Best, and
D. J. Briggs), pp. 393–414. Oxford University Press, Oxford, UK.

Best, N. G., Cowles, M. K., and Vines, S. K. (1995). CODA: Convergence Di-
agnosis and Output Analysis software for Gibbs Sampler output: Version
0.3. Medical Research Council Biostatistics Unit, Cambridge, UK.

Best, N. G., Spiegelhalter, D. J., Thomas, A., and Brayne, C. E. G. (1996).
Bayesian analysis of realistically complex models. Journal of the Royal
Statistical Society, Series A, 159, 323–42.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer,
London, UK.

Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. (2008). Applied spatial
data analysis with R. Springer, London, UK.

Bowmaker, J. K., Jacobs, G. H., Spiegelhalter, D. J., and Mollon, J. D. (1985).
Two types of trichromatic squirrel monkey share a pigment in the red-
green spectral region. Vision Research, 25, (12), 1937–46.

Box, G. E. P. and Tiao, G. C. (1973). Bayesian inference in statistical analysis.
John Wiley & Sons, New York.

Box, G. E. P. (1980). Sampling and Bayes inference in scientific modelling
and robustness. Journal of Royal Statistical Society, Series A (General),
383–430.

Breiman, L. (1992). The little bootstrap and other methods for dimensionality
selection in regression: X-fixed prediction error. Journal of the American
Statistical Association, 87, (419), 738–54.

Breslow, N. (1984). Extra-Poisson variation in log-linear models. Applied
Statistics, 33, (1), 38–44.

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in general-
ized linear mixed models. Journal of the American Statistical Association,
88, 9–25.

Bibliography 359

Briggs, A.H., Ades, A.E., and Price, M.J. (2003). Probabilistic sensitivity anal-
ysis for decision trees with use of the Dirichlet distribution in a Bayesian
framework, Medical Decision Making, 23, (4), 341–350.

Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-L. (ed.) (2011). Handbook
of Markov chain Monte Carlo. CRC Press, Boca Raton, FL.

Brooks, S. P. and Gelman, A. (1998). General methods for monitoring conver-
gence of iterative simulations. Journal of Computational and Graphical
Statistics, 7, 434–55.

Browne, W. (2009). MCMC estimation in MLwiN, v2.10. Centre for Multi-
level Modelling, University of Bristol.

Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). Model selection:
an integral part of inference. Biometrics, 53, (2), 603–18.

Burnham, K. P. and Anderson, D. R. (2002). Model selection and multi-model
inference: a practical information-theoretic approach. Springer, New York.

Caldwell, D. M., Ades, A. E., and Higgins, J. P. T. (2005). Simultaneous com-
parison of multiple treatments: combining direct and indirect evidence.
British Medical Journal, 331, 897–900.

Carlin, B. and Gelfand, A. (1991). An iterative Monte Carlo method for
nonconjugate Bayesian analysis. Statistics and Computing, 1, (2), 119–
28.

Carlin, B., Gelfand, A., and Smith, A. (1992). Hierarchical Bayesian analysis
of changepoint problems. Applied Statistics, 41, (2), 389–405.

Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society, Series B,
57, (3), 473–84.

Carlin, B. P. and Louis, T. A. (2008). Bayesian methods for data analysis,
third edition. CRC Press, Boca Raton, FL.

Carroll, R. J., Gail, M. H., and Lubin, J. H. (1993). Case-control studies with
errors in covariates. Journal of the American Statistical Association, 88,
(421), 185–99.

Casella, G. and George, E. I. (1992). Explaining the Gibbs sampler. The
American Statistician, 46, 167–74.

Celeux, G., Forbes, F., Robert, C., and Titterington, D. M. (2006). Deviance
information criteria for missing data models (with discussion). Bayesian
Analysis, 1, (4), 651–706.

Celeux, G., Hurn, M., and Robert, C. (2000). Computational and inferential
difficulties with mixture posterior distributions. Journal of the American
Statistical Association, 95, (451), 957–70.

Chase, M. and Dummer, G. (1992). The role of sports as a social status
determinant for children. Research Quarterly for Exercise and Sport, 63,
(4), 418–24.

360 The BUGS Book

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the
American Statistical Association, 90, (432), 1313–21.

Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models.
Biometrika, 85, (2), 347–61.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from the Metropolis-
Hastings output. Journal of the American Statistical Association, 96,
(453), 270–81.

Chien, C. H. (1988). Small sample theory for steady state confidence inter-
vals. In Proceedings of the Winter Simulation Conference (ed. M. Abrams,
P. Haigh, and J. Comfort), pp. 408–13.

Clayton, D. G. and Kaldor, J. (1987). Empirical Bayes estimates of age-
standardized relative risks for use in disease mapping. Biometrics, 43,
671–681.

Congdon, P. (2003). Applied Bayesian modelling, John Wiley & Sons, New
York.

Congdon, P. (2005). Bayesian models for categorical data. John Wiley & Sons,
New York.

Congdon, P. (2006). Bayesian statistical modelling (2nd edn). John Wiley &
Sons, New York.

Congdon, P. (2010). Applied Bayesian hierarchical methods. John Wiley &
Sons, New York.

Coursaget, P., Yvonnet, B., Chiron, J. P., Gilks, W. R., Day, N. E., Wang,
C. C., et al. (1991). Scheduling of revaccination against hepatitis B virus.
The Lancet, 337, (8751), 1180–3.

Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo con-
vergence diagnostics: a comparative review. Journal of the American
Statistical Association, 91, 883–904.

Cox, C. (2008). The generalized F distribution: An umbrella for parametric
survival analysis. Statistics in Medicine, 27, 4301–12.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical statistics. Chapman and
Hall, London.

Cox, D. R. and Miller, H. D. (1965). The theory of stochastic processes.
Chapman and Hall, London.

Crowder, M. J. (1978). Beta-binomial ANOVA for proportions. Applied Statis-
tics, 27, 34–7.

Daniels, M. J. and Hogan, J. W. (2008). Missing data in longitudinal studies:
Strategies for Bayesian modeling and sensitivity analysis. Chapman &
Hall, Boca Raton, FL.

Davis, P. and Rabinowitz, P. (1975). Methods of numerical integration. Aca-
demic Press, Waltham, MA.

Bibliography 361

Dawid, A. (1973). Posterior expectations for large observations. Biometrika,
60, (3), 664–7.

de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio.
Academia Nazionale del Linceo.

Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo
samplers. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68, 411–36.

Dellaportas, P., Forster, J., and Ntzoufras, I. (2002). On Bayesian model and
variable selection using MCMC. Statistics and Computing, 12, (1), 27–36.

Demiris, N. and Sharples, L. D. (2006). Bayesian evidence synthesis to ex-
trapolate survival estimates in cost-effectiveness studies. Statistics in
Medicine, 25, 1960–75.

DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials. Con-
trolled clinical trials, 7, (3), 177–88.

Diebolt, J. and Robert, C. (1994). Estimation of finite mixture distributions
through Bayesian sampling. Journal of the Royal Statistical Society. Se-
ries B (Methodological), 56, (2), 363–75.

Diggle, P. J., Tawn, J. A., and Moyeed, R. A. (1998). Model-based geostatis-
tics (with discussion). Journal of the Royal Statistical Society: Series C
(Applied Statistics), 47, (3), 299–350.

Dobson, A. (1983). Introduction to statistical modelling. Chapman & Hall,
Boca Raton, FL.

Doucet, A., de Freitas, N., and Gordon, N. (ed.) (2001). Sequential Monte
Carlo methods in practice. Springer, London, UK.

Draper, D. (1995). Assessment and propagation of model uncertainty (with
discussion). Journal of the Royal Statistical Society, Series B, 57, (1),
45–97.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid
Monte Carlo. Physics Letters B, 195, 216–22.

Elliott, P., Wakefield, J. C., Best, N. G., and Briggs, D. J. (ed.) (2000). Spatial
epidemiology: Methods and applications. Oxford University Press, Oxford,
UK.

Elston, R. and Grizzle, J. (1962). Estimation of time-response curves and
their confidence bands. Biometrics, 18, (2), 148–59.

Escobar, M. D. and West, M. (1995). Bayesian density estimation and infer-
ence using mixtures. Journal of the American Statistical Association, 90,
(430), 577–588.

Gamerman, D. and Lopes, H. F. (2006). Markov chain Monte Carlo: Stochas-
tic simulation for Bayesian inference (2nd edn). Taylor & Francis, Boca
Raton, FL.

Gehan, E. (1965). A generalized Wilcoxon test for comparing arbitrarily
singly-censored samples. Biometrika, 52, (1-2), 203–223.

362 The BUGS Book

Geisser, S. and Eddy, W. (1979). A predictive approach to model selection.
Journal of the American Statistical Association, 74, 153–60.

Gelfand, A. and Dey, D. (1994). Bayesian model choice: asymptotics and
exact calculations. Journal of the Royal Statistical Society, Series B, 56,
(3), 501–14.

Gelfand, A., Hills, S., Racine-Poon, A., and Smith, A. (1990). Illustration of
Bayesian inference in normal data models using Gibbs sampling. Journal
of the American Statistical Association, 85, (412), 972–85.

Gelfand, A., Sahu, S., and Carlin, B. (1995). Efficient parametrisations for
normal linear mixed models. Biometrika, 82, (3), 479.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to
calculating marginal densities. Journal of the American Statistical Asso-
ciation, 85, 398–409.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical
models. Bayesian Analysis, 1, (3), 515–33.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian
data analysis, second edition. Chapman & Hall/CRC, London, UK.

Gelman, A. and Hill, J. (2007). Data analysis using regression and multi-
level/hierarchical models. Cambridge University Press, New York.

Gelman, A., Jakulin, A., Pittau, M., and Su, Y. (2008). A weakly informative
default prior distribution for logistic and other regression models. The
Annals of Applied Statistics, 2, (4), 1360–83.

Gelman, A. and Meng, X. (1998). Simulating normalizing constants: From
importance sampling to bridge sampling to path sampling. Statistical
Science, 13, (2), 163–85.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using
multiple sequences (with discussion). Statistical Science, 7, 457–511.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6, 721–41.

George, E. and McCulloch, R. (1993). Variable selection via Gibbs sampling.
Journal of the American Statistical Association, 88, (423), 881–9.

Geweke, J. (1992). Evaluating the accuracy of sampling based approaches to
the calculation of posterior moments. In Bayesian statistics 4, (ed. J. O.
Bernardo, J. M. Berger, A. P. Dawid, and A. F. M. Smith), pp. 169–94.

Gilks, W. (1992). Derivative-free adaptive rejection sampling for Gibbs sam-
pling. In Bayesian statistics 4, (ed. J. M. Bernardo, J. O. Berger, A. P.
Dawid, and A. F. M. Smith), pp. 641–65. Oxford University Press, Ox-
ford, UK.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (ed.) (1996). Markov
chain Monte Carlo in practice. Chapman & Hall/CRC, Boca Raton, FL.

Bibliography 363

Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs
sampling. Applied Statistics, 41, (2), 337–48.

Girolami, M. and Calderhead, B. (2011). Riemann manifold Langevin and
Hamiltonian Monte Carlo methods. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 73, 123–214.

Goldstein, H. (2010). Multilevel statistical models (4th edn). John Wiley &
Sons, New York.

Goubar, A., Ades, A. E., De Angelis, D., McGarrigle, C. A., Mercer, C. H.,
Tookey, P. A., Fenton, K., and Gill, O. N. (2008). Estimates of human
immunodeficiency virus prevalence and proportion diagnosed based on
Bayesian multiparameter synthesis of surveillance data. Journal of the
Royal Statistical Society: Series A (Statistics in Society), 171, (3), 541–
80.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika, 82, (4), 711–32.

Green, P. J. and Mira, A. (2001). Delayed rejection in reversible jump
Metropolis-Hastings. Biometrika, 88, 1035–53.

Han, C. and Carlin, B. P. (2001). Markov chain Monte Carlo methods for
computing Bayes factors: a comparative review. Journal of the American
Statistical Association, 96, (455), 1122–32.

Hanson, K. (2001). Markov chain Monte Carlo posterior sampling with the
Hamiltonian method. Proc. SPIE, 4322, pp. 456–67.

Hastings, W. K. (1970). Monte Carlo sampling-based methods using Markov
chains and their applications. Biometrika, 57, 97–109.

Hjort, N. L., Holmes, C., Müller, P., and Walker, S. G. (ed.) (2010). Bayesian
nonparametrics. Cambridge University Press, Cambridge.

Holsinger, K. (2001–2010). Lecture Notes in Population Genetics. University
of Connecticut, Storrs, CT.

Howard, J. V. (1998). The 2×2 table: A discussion from a Bayesian viewpoint.
Statistical Science, 13, (4), 351–67.

Ibrahim, J. G. and Chen, M.-H. (2000). Power prior distributions for regres-
sion models. Statistical Science, 15, (1), 46–60.

Ickstadt, K. and Wolpert, R. L. (1998). Multiresolution assessment of forest
inhomogeneity. In Case studies in Bayesian statistics, Volume 3. Lecture
notes in statistics (ed. C. Gatsonis, J. S. Hodges, R. E. Kass, R. McCul-
loch, P. Rossi, and N. D. Singpurwalla), pp. 371–86. Springer-Verlag, New
York.

Jackman, S. (2009). Bayesian analysis for the social sciences. John Wiley &
Sons, New York.

Jackson, C. H., Best, N. G., and Richardson, S. (2006). Improving ecological
inference using individual-level data. Statistics in Medicine, 25, (12),
2136–59.

364 The BUGS Book

Jackson, C. H., Sharples, L. D., and Thompson, S. G. (2010a). Structural
and parameter uncertainty in Bayesian cost-effectiveness models. Applied
Statistics, 59, (2), 233–53.

Jackson, C. H., Sharples, L. D., and Thompson, S. G. (2010b). Survival models
in health economic evaluations: balancing fit and parsimony to improve
prediction. International Journal of Biostatistics, 6, (1). Article 34.

Jara, A., Hanson, T., Quintana, F., Müller, P., and Rosner, G. (2011). DP-
package: Bayesian semi and nonparametric modeling in R. Journal of
Statistical Software, 40, (5), 1–30.

Jeffreys, H. (1939). Theory of probability. Oxford University Press, Oxford,
UK.

Johnson, S. R. (2011). Bayesian inference: Statistical gimmick or added value?
The Journal of Rheumatology, 38, (5), 794.

Jones, G. L. (2004). On the Markov chain central limit theorem. Probability
Surveys, 1, 299–320.

Kadane, J. and Wolfson, L. J. (1998). Experiences in elicitation. Journal of
the Royal Statistical Society: Series D (The Statistician), 47, (1), 3–19.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure
time data (second edn). John Wiley & Sons, New York.

Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested
hypotheses with large samples. Journal of the American Statistical Asso-
ciation, 90, 928–34.

Kelsall, J. E. and Wakefield, J. C. (1999). Discussion of “Bayesian models for
spatially correlated disease and exposure data” by Best et al. In Bayesian
statistics 6, p. 151. Oxford University Press, Oxford, UK.

Kéry, M. (2010). Introduction to WinBUGS for ecologists: Bayesian approach
to regression, ANOVA, mixed models and related analyses. Academic
Press, Waltham, MA.

Kéry, M. and Schaub, M. (2011). Bayesian population analysis using Win-
BUGS: A hierarchical perspective. Academic Press, Waltham, MA.

Kruschke, J. K. (2010). Doing Bayesian data analysis: A tutorial with R and
BUGS. Academic Press, Waltham, MA.

Kumar, V., Ligges, U., and Thomas, A. (2010). ReliaBUGS user
manual, version 1.0. Available online: http://www.openbugs.info/

Manuals/\breakReliability/Contents.html.

Kynn, M. (2005). Eliciting expert knowledge for Bayesian logistic regression
in species habitat modelling. PhD thesis, Queensland University of Tech-
nology, Brisbane, Australia.

Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les évènemens.
De l’Imprimerie Royale. Translated and discussed by S. M. Stigler (1986)
in Statistical Science, 1, (3), 359–378.

Bibliography 365

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., and Leimer, H. G. (1990).
Independence properties of directed Markov fields. Networks, 20, 491–
505.

Lawless, J. F. (1980). Inference in the generalized gamma and log gamma
distributions. Technometrics, 22, (3), 409–19.

Lawson, A. B., Browne, W. J., and Rodeiro, C. L. V. (2003). Disease mapping
with WinBUGS and MLwiN. Wiley-Blackwell, New York.

Lee, P. (2004). Bayesian statistics: An introduction. John Wiley & Sons, New
York.

Lindley, D. V. (1984). A Bayesian lady tasting tea. In Statistics: An appraisal
(ed. H. A. David and H. T. David). Iowa State University Press, Ames,
IA.

Little, R. J. A. and Rubin, D. B. (2002). Statistical analysis with missing
data. John Wiley & Sons, New York.

Lu, G. and Ades, A. (2004). Combination of direct and indirect evidence in
mixed treatment comparisons. Statistics in Medicine, 23, (20), 3105–24.

Lunn, D., Best, N., Spiegelhalter, D., Graham, G., and Neuenschwander, B.
(2009a). Combining MCMC with “sequential” PKPD modelling. Journal
of Pharmacokinetics and Pharmacodynamics, 36, (1), 19–38.

Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009b). The BUGS
project: Evolution, critique and future directions. Statistics in Medicine,
28, (25), 3049–67.

Lunn, D. J. (2003). WinBUGS development interface (WBDev). ISBA Bul-
letin, 10, (3), 10–1.

Lunn, D. J., Best, N. G., Thomas, A., Wakefield, J., and Spiegelhalter, D.
(2002). Bayesian analysis of population PK/PD models: general concepts
and software. Journal of Pharmacokinetics and Pharmacodynamics, 29,
(3), 271–307.

Lunn, D. J., Best, N. G., and Whittaker, J. C. (2009c). Generic reversible
jump MCMC using graphical models. Statistics and Computing, 19, (4),
395–408.

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS
— a Bayesian modelling framework: concepts, structure, and extensibility.
Statistics and Computing, 10, 325–37.

Mackay, D. J. C. (2003). Information theory, inference, and learning algo-
rithms. Cambridge University Press, Cambridge, UK.

Marshall, E. and Spiegelhalter, D. (2007). Identifying outliers in Bayesian
hierarchical models: a simulation-based approach. Bayesian Analysis, 2,
(2), 409–44.

Mason, A., Richardson, S., Plewis, I., and Best, N. (2012). Strategy for mod-
elling non-random missing data mechanisms in observational studies using
Bayesian methods. Journal of Official Statistics (forthcoming).

366 The BUGS Book

Matthews, R. A. J. (2001). Methods for assessing the credibility of clinical
trial outcomes. Drug Information Journal, 35, (4), 1469–78.

McCullagh, P. and Nelder, J. (1989). Generalized linear models. Chapman &
Hall/CRC, Boca Raton, FL.

Mengersen, K. L., Robert, C. P., and Guihenneuc-Jouyaux, C. (1999). MCMC
convergence diagnostics: a reviewww. In Bayesian Statistics 6 (ed. J. M.
Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith), pp. 415–40.
Oxford University Press, Oxford, UK.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. (1953). Equations of state calculations by fast computing ma-
chines. Journal of Chemical Physics, 21, 1087–91.

Meyer, R. and Millar, R. B. (1999). BUGS in Bayesian stock assessments.
Canadian Journal of Fisheries and Aquatic Sciences, 56, 1078–86.

Michael, J. and Schucany, W. (2002). The mixture approach for simulating
bivariate distributions with specified correlations. The American Statis-
tician, 56, (1), 48–54.

Minka, T., Winn, J., Guiver, J., and Kannan, A. (2011). Infer.NET version
2.4. Microsoft Research, Cambridge.

Mitchell, T. and Beauchamp, J. (1988). Bayesian variable selection in linear
regression. Journal of the American Statistical Association, 83, (404),
1023–32.

Molenberghs, G. and Kenward, M. G. (2007). Missing data in clinical studies.
John Wiley & Sons, New York.

Molitor, N., Best, N., Jackson, C., and Richardson, S. (2009). Using Bayesian
graphical models to model biases in observational studies and to combine
multiple data sources: Application to low birth-weight and water disinfec-
tion by-products. Journal of the Royal Statistical Society, Series A, 172,
(3), 615–37.

Neal, R. (1996). Sampling from multimodal distributions using tempered
transitions. Statistics and Computing, 6, (4), 353–66.

Neal, R. (1998). Learning in graphical models, chapter Suppressing ran-
dom walks in Markov chain Monte Carlo using ordered over-relaxation,
pp. 205–39. Kluwer Academic Publishers, Dordrecht.

Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31, (3), 705–41.

Neal, R. M. (2008). The harmonic mean of the likelihood: worst Monte
Carlo method ever. Radford Neal’s blog, August 17. http://

radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-

the-likelihood-worst-monte-carlo-method-ever/.

Neal, R. M. (2010). MCMC using Hamiltonian dynamics. In Handbook of
Markov chain Monte Carlo (ed. S. Brooks, A. Gelman, G. Jones, and
X. L. Meng). Chapman & Hall–CRC Press, Boca Raton, FL.

Bibliography 367

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. John Wiley & Sons,
New York.

O’Hagan, A. (2003). HSSS model criticism (with discussion). In Highly struc-
tured stochastic systems (ed. P. J. Green, N. L. Hjort, and S. T. Richard-
son), pp. 423–53. Oxford University Press, Oxford, UK.

O’Hagan, A., Buck, C., Daneshkhah, A., Eiser, J., Garthwaite, P., Jenkinson,
D., Oakley, J., and Rakow, T. (2006). Uncertain judgements: Eliciting
experts’ probabilities, Statistics in practice. JohnWiley & Sons, New York.

O’Hara, R. B. and Sillanpää, M. J. (2009). A review of Bayesian variable
selection methods: what, how and which. Bayesian Analysis, 4, (1), 85–
118.

Ohlssen, D. I., Sharples, L. D., and Spiegelhalter, D. (2007). Flexible random-
effects models using Bayesian semi-parametric models: applications to
institutional comparisons. Statistics in Medicine, 26, 2088–112.

O’Malley, A. J. and Zaslavsky, A. M. (2005). Cluster-level covariance analysis
for survey data with structured nonresponse. Technical Report, Depart-
ment of Health Care Policy, Harvard Medical School, Boston, MA.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of
plausible inference. Morgan Kaufmann.

Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., and Nichols, T. E.
(ed.) (2006). Statistical parametric mapping: The analysis of functional
brain images. Academic Press, Waltham, MA.

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. In Proceedings of the 3rd International
Workshop on Distributed Statistical Computing, Vienna, Austria, pp. 20–
2.

Plummer, M. (2008). Penalized loss functions for Bayesian model comparison.
Biostatistics, 9, (3), 523–39.

Plummer, M. (2011). rjags: Bayesian graphical models using MCMC. R
package version 3-5, http://CRAN.R-project.org/package=rjags.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: Convergence
diagnosis and output analysis for MCMC. R News, 6, (1), 7–11.

Pocock, S. and Spiegelhalter, D. (1992). Domiciliary thrombolysis by general
practitioners. British Medical Journal, 305, (6860), 1015.

Prentice, R. L. (1974). A log gamma model and its maximum likelihood
estimation. Biometrika, 61, (3), 539–44.

Prentice, R. L. (1975). Discrimination among some parametric models.
Biometrika, 62, (3), 607–14.

Presanis, A. M., De Angelis, D., Spiegelhalter, D. J., Seaman, S., Goubar, A.,
and Ades, A. E. (2008). Conflicting evidence in a Bayesian synthesis of
surveillance data to estimate human immunodeficiency virus prevalence.

368 The BUGS Book

Journal of the Royal Statistical Society: Series A (Statistics in Society),
171, (4), 915–37.

Press, S. J. (1971). Some effects of an increase in police manpower in the 20th
precinct of New York City. RAND Corporation, New York.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2002).
Numerical recipes in C++: The art of scientific computing (2nd edn).
Cambridge University Press, Cambridge, UK.

Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., and Feldman, M. T.
(1999). Population growth of human Y chromosomes: A study of Y chro-
mosome microsatellites. Molecular Biology and Evolution, 16, 1791–8.

R Development Core Team (2011). R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, Vienna, Austria.

Raftery, A. and Lewis, S. (1992). How many iterations in the Gibbs sampler?
In Bayesian statistics 4, pp. 763–73. Oxford University Press, Oxford,
UK.

Rasbash, J., Charlton, C., Browne, W., Healy, M., and Cameron, B. (2009).
MLwiN version 2.1. Centre for Multilevel Modelling, University of Bristol.

Reid, A. W. N., Harper, S., Jackson, C. H., Wells, A. C., Summers, D. M.,
Gjorgjimajkoska, O., Sharples, L. D., Bradley, J. A., and Pettigrew, G. J.
(2011). Expansion of the kidney donor pool by using cardiac death donors
with prolonged time to cardiorespiratory arrest. American Journal of
Transplantation, 11, (5), 995–1005.

Richardson, S. and Best, N. (2003). Bayesian hierarchical models in ecological
studies of health-environment effects. Environmetrics, 14, (2), 129–47.

Richardson, S. and Green, P. (1997). On Bayesian analysis of mixtures with an
unknown number of components (with discussion). Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 59, (4), 731–92.

Riley, R., Lambert, P., Staessen, J., Wang, J., Gueyffier, F., Thijs, L., and
Boutitie, F. (2008). Meta-analysis of continuous outcomes combining in-
dividual patient data and aggregate data. Statistics in Medicine, 27, (11),
1870–93.

Ripley, B. D. (1987). Stochastic simulation. John Wiley & Sons, New York.

Ripley, B. D. (2004). Spatial statistics. Wiley-Blackwell, New York.

Robert, C. and Casella, G. (2004). Monte Carlo statistical methods, (2nd edn).
Springer-Verlag, London, UK.

Robert, C., Cornuet, J.-M., Marin, J.-M., and Pillai, N. S. (2011). Lack of
confidence in approximate Bayesian computational (ABC) model choice.
PNAS, 108, 15112–7.

Roberts, G. and Rosenthal, J. (2004). General state space Markov chains and
MCMC algorithms. Probability Surveys, 1, 20–71.

Bibliography 369

Rockova, V., Lesaffre, E., Luime, J., and Löwenberg, B. (2012). Hierarchical
Bayesian formulations for selecting variables in regression models. Statis-
tics in Medicine (early view, doi:10.1002/sim.4439).

Roeder, K. (1990). Density estimation with confidence sets exemplified by
superclusters and voids in the galaxies. Journal of the American Statistical
Association, 85, (411), 617–24.

Rubin, D. (1987). Multiple imputation for nonresponse in surveys. John Wiley
& Sons, New York.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, (3), 581–92.

Rubin, D. B. (1981). The Bayesian bootstrap. Annals of Statistics, 9, (1),
130–4.

Rue, H., Martino, S., and Chopin, N. (2009). Approximate Bayesian inference
for latent Gaussian models by using integrated nested Laplace approxi-
mations (with discussion). Journal of the Royal Statistical Society, Series
B, 71, 319–92.

Salway, R. and Wakefield, J. (2005). Sources of bias in ecological studies of
non-rare events. Environmental and Ecological Statistics, 12, (3), 321–47.

Schwartz, G. (1978). Estimating the dimension of a model. Annals of Statis-
tics, 6, 342.

Senn, S. (1997). Statistical issues in drug development. Wiley Interscience,
New York.

Smith, B. J. (2000). Bayesian output analysis program (BOA) version 0.5.0
user manual. Department of Biostatistics, University of Iowa College of
Public Health, Iowa City, IA.

Spiegelhalter, D. J., Abrams, K. R., and Myles, J. P. (2004). Bayesian ap-
proaches to clinical trials and health-care evaluation. Wiley, Chichester,
UK.

Spiegelhalter, D. J. and Best, N. G. (2003). Bayesian approaches to multiple
sources of evidence and uncertainty in complex cost-effectiveness mod-
elling. Statistics in Medicine, 22, (23), 3687–709.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and van der Linde, A. (2002).
Bayesian measures of model complexity and fit (with discussion). Journal
of the Royal Statistical Society, Series B, 64, (4), 583–639.

Stacy, E. W. (1962). A generalization of the gamma distribution. Annals of
Mathematical Statistics, 33, 1187–92.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 62, (4),
795–809.

Stigler, S. (1977). Do robust estimators work with real data? The Annals of
Statistics, 5, (6), 1055–98.

Stigler, S.M. (1986). Laplace’s 1774 memoir on inverse probability, Statistical
Science , Vol. 1, Number 3, 359–363.

370 The BUGS Book

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-
validation and Akaike’s criterion. Journal of the Royal Statistical Society,
Series B, 39, (1), 44–7.

Sturtz, S., Ligges, U., and Gelman, A. (2005). R2WinBUGS: a package for
running WinBUGS from R. Journal of Statistical Software, 12, (3), 1–16.

Su, Y.-S. and Yajima, M. (2011). R2jags: A package for running jags from
R. R package version 0.03-02, http://CRAN.R-project.org/package=
R2jags.

Sun, D. and Berger, J. (1994). Bayesian sequential reliability for Weibull and
related distributions. Annals of the Institute of Statistical Mathematics,
46, (2), 221–49.

Sung, L., Hayden, J., Greenberg, M., Koren, G., Feldman, B., and Tomlinson,
G. (2005). Seven items were identified for inclusion when reporting a
Bayesian analysis of a clinical study. Journal of Clinical Epidemiology,
58, (3), 261–8.

Ter Braak, C. (2006). A Markov chain Monte Carlo version of the genetic algo-
rithm differential evolution: easy Bayesian computing for real parameter
spaces. Statistics and Computing, 16, (3), 239–49.

Therneau, T. (2010). Survival: Survival analysis, including penalised like-
lihood. R package version 2.36-1. Original Splus→R port by Thomas
Lumley. Available online: http://CRAN.R-project.org/package=survival

Tierney, L. (1994). Markov chains for exploring posterior distributions (with
discussion). Annals of Statistics, 22, 1701–86.

UCL Institute for Risk and Disaster Reduction (2010). Volcanic hazard from
Iceland: analysis and implications of the Eyjafjallajökull eruption. Uni-
versity College, London, UK.

U.S. Department of Health and Human Services (2010). Guidance for the
use of Bayesian statistics in medical device clinical trials. Food and Drug
Administration, Center for Devices and Radiological Health.

van der Linde, A. (2005). DIC in variable selection. Statistica Neerlandica,
59, (1), 45–56.

Vehtari, A. and Lampinen, J. (2002). Bayesian model assessment and com-
parison using cross-validation predictive densities. Neural Computation,
14, (10), 2439–68.

Wakefield, J. (2004). Ecological inference for 2 × 2 tables (with discussion).
Journal of the Royal Statistical Society, Series A, 167, (3), 385–445.

Wakefield, J., Haneuse, S., Dobra, A., and Teeple, E. (2011). Bayes compu-
tation for ecological inference. Statistics in Medicine, 30, (12), 1381–96.

Whittemore, A.S., and Keller, J.B. (1988). Approximations for errors in
variables regression. Journal of the American Statistical Association, 83,
1057–1066.

Bibliography 371

Woodward, P. (2011). Bayesian analysis made simple: An Excel GUI for
WinBUGS, CRC Biostatistics Series. Chapman & Hall, Boca Raton, FL.

This page intentionally left blankThis page intentionally left blank

This page intentionally left blankThis page intentionally left blank

C8490

Bayesian statistical methods have become widely used for data
analysis and modelling in recent years, and the BUGS software has
become the most popular software for Bayesian analysis worldwide.
Authored by the team that originally developed this software, The
BUGS Book provides a practical introduction to this program and its
use. The text presents complete coverage of all the functionalities of
BUGS, including prediction, missing data, model criticism, and prior
sensitivity. It also features a large number of worked examples and
a wide range of applications from various disciplines.

The book introduces regression models, techniques for criticism
and comparison, and a wide range of modelling issues before
going into the vital area of hierarchical models, one of the most
common applications of Bayesian methods. It deals with essentials
of modelling without getting bogged down in complexity. The book
emphasises model criticism, model comparison, sensitivity analysis
to alternative priors, and thoughtful choice of prior distributions—all
those aspects of the “art” of modelling that are easily overlooked in
more theoretical expositions.

More pragmatic than ideological, the authors systematically work
through the large range of “tricks” that reveal the real power of the
BUGS software, for example, dealing with missing data, censoring,
grouped data, prediction, ranking, parameter constraints, and so
on. Many of the examples are biostatistical, but they do not require
domain knowledge and are generalisable to a wide range of other
application areas.

Full code and data for examples, exercises, and some solutions can
be found on the book’s website.

Lunn, Jackson, Best,
Thom

as, and Spiegelhalter
The BUGS Book

Statistics

David Lunn
Christopher Jackson

Nicky Best
Andrew Thomas

David Spiegelhalter

The BUGS Book
A Practical Introduction to

Bayesian Analysis

Texts in Statistical Science

C8490_Cover.indd 1 8/22/12 3:38 PM

	Front Cover
	Contents
	Preface
	1. Introduction: Probability and parameters
	2. Monte Carlo simulations using BUGS
	3. Introduction to Bayesian inference
	4. Introduction to Markov chain Monte Carlo methods
	5. Prior distributions
	6. Regression models
	7. Categorical data
	8. Model checking and comparison
	9. Issues in Modelling
	10. Hierarchical models
	11. Specialised models
	12. Different implementations of BUGS
	Appendix A: BUGS language syntax
	Appendix B: Functions in BUGS
	Appendix C: Distributions in BUGS
	Bibliography

