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Preface

History Markov chain Monte Carlo (MCMC) methods, in which plausible
values for unknown quantities are simulated from their appropriate probability
distribution, have revolutionised the practice of statistics. For more than 20
years the BUGS project has been at the forefront of this movement. The BUGS
project began in Cambridge, United Kingdom, in 1989, just as Alan Gelfand
and Adrian Smith were working 80 miles away in Nottingham on their classic
Gibbs sampler paper (Gelfand and Smith, 1990) that kicked off the revolution.
But we never communicated (except through the intermediate node of David
Clayton) and whereas the Gelfand-Smith approach used image processing as
inspiration, the philosophy behind BUGS was rooted more in techniques for
handling uncertainty in artificial intelligence using directed graphical models
and what came to be called Bayesian networks (Pearl, 1988). Lunn et al.
(2009b) lay out all this history in greater detail.

Some people have accused Markov chain Monte Carlo methods of being
slow, but nothing could compare with the time it has taken for this book to
be written! The first proposal dates from 1995, but things got in the way, as
they do, and it needed a vigorous new generation of researchers to finally get
it finished. It is slightly galling that much of the current book could have been
written in the mid-1990s, since the basic ideas of the software, the language
for model description, and indeed some of the examples are unchanged. Nev-
ertheless there have been important developments in the extended gestational
period of the book, for example, techniques for model criticism and compar-
ison, implementation of differential equations and nonparametric techniques,
and the ability to run BUGS code within a range of alternative programs.

The BUGS project is rooted in the idea of generic reusable components that
can be put together as desired, like a child’s construction set but not quite as
colourful. In this book we typically tackle each of these components one by
one using deliberately simplified examples, but hopefully it will be clear that
they can be easily assembled into arbitrarily complex models. This flexibility
has enabled BUGS to be applied in areas that we had never dreamed about,
which is gratifying. But it is also important to note that in many situations
BUGS may not be the most efficient method, and there are many things it
cannot do. Yet. ..

What’s in the book? Perhaps we should start by saying what is not in
the book. First, there is minimal statistical theory, neither of statistical infer-

xiii



xiv The BUGS Book

ence nor of Markov chain Monte Carlo methods (although a presumption of
some familiarity with probability theory is made). This is partly to keep the
book to a manageable length, but also because the very way in which BUGS
works removes the need for much of the theory that is taught in standard
Bayesian statistics courses. Second, we do not cover decision theory, as BUGS
has been designed for handling Bayesian inferences expressed as an appro-
priate posterior distribution. Finally, we take it for granted that a Bayesian
approach is desired, and so barely bother to lay out the reasons why this may
be appropriate.

A glance at the chapter contents will reveal that we introduce regression
models, techniques for criticism and comparison, and a wide range of mod-
elling issues before going into the vital and traditional Bayesian area of hi-
erarchical models. This decision came after considerable thought and experi-
mentation, and was based on the wish to deal with the essentials of modelling
without getting bogged down in complexity. Our aim is to bring to the fore-
front model criticism, model comparison, sensitivity analysis to alternative
priors, and thoughtful choice of prior distributions — all those aspects of the
“art” of modelling that are easily overlooked in more theoretical expositions.
But we have also really enjoyed going systematically through the large range
of “tricks” that reveal the real power of the BUGS software: for example,
dealing with missing data, censoring, grouped data, prediction, ranking, pa-
rameter constraints, and so on.

Our professional background has meant that many of the examples are
biostatistical, but they do not require domain knowledge and hopefully it will
be clear that they are generalisable to a wide range of other application areas.
Full code and data for the examples, exercises, and some solutions can all be
found on the book website: www.mrc-bsu.cam.ac.uk/bugs/thebugsbook.

The BUGS approach clearly separates the model description from the “en-
gine,” or algorithms and software, used to actually do the simulations. A brief
introduction to WinBUGS is given in Chapter 2, but fully detailed instruc-
tions of how to run WinBUGS and similar software have been deferred to the
final chapter, 12, and a reference guide to the modelling language is given in
the appendices. Since BUGS now comes in a variety of flavours, we have tried
to ensure that the book works for WinBUGS, OpenBUGS, and JAGS, and
any differences have been highlighted. Nevertheless the software is constantly
improving, and so in some areas the book is not completely prescriptive but
tries to communicate possible developments.

Finally, we acknowledge there are many shades of Bayesianism: our own
philosophy is more pragmatic than ideological and doubtless there will be
some who will continue to spurn our rather informal attitude. An example of
this informality is our use of the term ‘likelihood’, which is sometimes used
when referring to a sampling distribution. We doubt this will lead to confusion.



Preface XV

How to use the book. Our intended audience comprises anyone who would
like to apply Bayesian methods to real-world problems. These might be prac-
tising statisticians, or scientists with a good statistical background, say famil-
iarity with classical statistics and some calculus-based probability and math-
ematical statistics. We do not assume familiarity with Bayesian methods or
MCMC. The book could be used for self-learning, for short courses, and for
longer courses, either by itself or in combination with a textbook such as Gel-
man et al. (2004) or Carlin and Louis (2008).

Chapters 1 to 6 provide a basic introduction up to regression modelling,
which should be a review for those with some experience with Bayesian meth-
ods and BUGS. Beyond that there should be new material, even for experi-
enced users. For a one-semester course we would recommend Chapters 1 to
6, most of Chapter 8 on model criticism and comparison, and Chapter 10 on
hierarchical models. A longer course could select from the wide range of is-
sues and models outlined in Chapters 7, 9 and 11, depending on what is most
relevant for the audience.

Whether studying on your own or as part of a course, instructions for run-
ning the WinBUGS software are given briefly in Chapter 2 and fully in Chap-
ter 12. A full explanation of BUGS model syntax and a list of functions and
distributions are given in the appendices. Chapter 12 explains how Open-
BUGS and JAGS differ from WinBUGS and gives examples of how all vari-
eties of BUGS can be conveniently run from other software, in particular from

R.

Other sources. If an accompanying text on the underlying theory of
Bayesian inference is required, possibilities include Gelman et al. (2004), Car-
lin and Louis (2008) and Lee (2004), with Bernardo and Smith (1994) pro-
viding a deeper treatment. Other books focus explicitly on BUGS: Ntzoufras
(2009) provides a detailed exposition of WinBUGS with accompanying the-
ory, Gelman and Hill (2007) explore both standard and hierarchical regression
models using both R and BUGS, while the texts by Congdon (2003, 2005,
2006, 2010) explore a staggering range of applications of BUGS that we could
not hope to match. Jackman (2009) covers both theory and BUGS imple-
mentations within social science, ecology applications are covered by Kéry
(2010) and Kéry and Schaub (2011), while Kruschke (2010) gives a tutorial in
Bayesian analysis and BUGS with applications in psychology. Expositions on
MCMC theory include Gamerman and Lopes (2006) and Brooks et al. (2011),
while Gilks et al. (1996) is still relevant even after many years.

Finally, there are numerous websites that provide examples and teaching
material, and when tackling a new problem we strongly recommend trying to
find these using appropriate search terms and adapting someone else’s code.
We have always been impressed by the great generosity of BUGS users in
sharing code and ideas, perhaps helped by the fact that the software has
always been freely available.
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A suggested strategy for inference and reporting. Rather than leav-
ing it until later in the book, it seems appropriate to lay out at an early stage
the approach to modelling and reporting that we have tried to exemplify.
Bayesian analysis requires a specification of prior distributions and models for
the sampling distribution for the data. For prior distributions, we emphasise
that there is no such the thing as the “correct” prior, and instead recommend
exploring a range of plausible assumptions and conducting sensitivity analysis.
Regarding assumptions for the sampling distribution, throughout this book
we try to exemplify a reasonably consistent approach to modelling based on an
iterative cycle of fitting and checking. We recommend starting with fairly sim-
ple assumptions, cross-checking with graphics and informal checks of model fit
which can then suggest plausible elaborations. A final list of candidate models
can then be compared using more formal methods.

There have been limited “guidelines” for reporting Bayesian analyses, e.g.,
Spiegelhalter et al. (2004), Sung et al. (2005), and Johnson (2011) in a medical
context, and also BaSiS (2001). Naturally the data have to be summarised
numerically and graphically. We need to acknowledge that Bayesian methods
tend to be inherently more complex than classical analyses, and thus there is
an additional need for clarity with the aim that the analysis could be replicated
by another investigator who has access to the full data, with perhaps full
details of computational methods and code given online.

If “informative” priors are included, then the derivation of the prior from
an elicitation process or empirical evidence should be detailed. If the prior
assumptions are claimed to be “non-informative,” then this claim should be
justified and sensitivity analysis given. The idea of “inference robustness” (Box
and Tiao, 1973) is crucial: it would be best if competing models with similar
evidential support, or alternative prior distributions, gave similar conclusions,
but if this is not the case then the alternative conclusions must be clearly
reported. Where possible, full posterior distributions should be given for major
conclusions, particularly for skewed distributions.

Finally. We would like to thank, and apologise to, our publishers for being
so patient with the repeatedly deferred deadlines. Special thanks are extended
to Martyn Plummer for his contributions to the book and for keeping us on
our toes with his persistent efforts at doing everything better than us. Special
thanks also to Simon White for his contribution, and to four reviewers, whose
comments were extremely helpful. Thanks also to our friends, colleagues, and
families for their support and words of encouragement, such as “Have you not
finished that bloody book yet?” Many thanks to the (tens of) thousands of
users out there, whose patience, enthusiasm, and sense of humour are all very
much appreciated. And finally, we are deeply grateful to all those who have
freely contributed their knowledge and insight to the BUGS project over the
years. We shall be thinking of you when we get to share out whatever minimal
royalties come our way!
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All MATLAB® files found in the book are available for download from the
publisher’s Web site. MATLARB is a registered trademarks of The Mathworks,
Inc. For product information please contact:

The Math Works, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com
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Introduction: Probability and parameters

1.1 Probability

The Reverend Thomas Bayes (1702-1761) of Tunbridge Wells started his fa-
mous paper (Bayes, 1763) as shown in Figure 1.1: In modern language we

PROBLEM.

Given the number of times in which an unknown
event has happened and failed: Reguired the chance
that the probability of its happening in a fingle trial
lies fomewhere between any two degrees of pro-
bability that can be named.

FIGURE 1.1

Reproduction of part of the original printed version of Bayes (1763): note the
font used for an ‘s’ when starting a word.

might translate this into the following problem: suppose a random quantity
has a binomial distribution depending on a true underlying ‘failure’ proba-
bility 6, and we observe r failures out of n observations, then what is the
chance that 0 lies between two specified values, say 67 and 627 We will return
to Bayes’ main achievement later, but first we should pay careful attention
to his precise use of the terms to describe uncertainty. He uses ‘probability’
to define the underlying risk of the event occurring (which we have called 6),
and this is standard usage for a fixed but currently unknown risk. However, he
also describes the uncertainty concerning 6, using the term “chance.” This is
a vitally important component of his argument (although we shall revisit his
use of specific terminology in the next section). Essentially he wants to make
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a direct numerical expression of uncertainty about an unknown parameter in
a probability model: this usage appeared natural to Bayes but is still deeply
controversial.

So what do we mean, in general, by “probability”? From a mathematical
perspective there is no great problem: probabilities of events are numbers be-
tween 0 and 1, where O represents impossibility and 1 certainty, which obey
certain rules of addition (for mutually exclusive events) and multiplication
(for conditional events). A “random variable” Y is said to have a probability
distribution p(y) when sets of possible realisations y of Y are assigned proba-
bilities, whether Y is discrete or continuous. If the set of possible probability
distributions for Y can be limited to a family indexed by a parameter 6, then
we may write p(y|d) for the distribution, which now depends on some fixed
but unknown € (note that capital Roman letters are generally used for poten-
tially observable quantities, lower case Roman for observed quantities, Greek
letters for unobservable parameters).

Using standard statistical techniques we can derive estimates, confidence
intervals, and hypothesis tests concerning 6. The particular procedures cho-
sen are justified in terms of their properties when used in repeated similar
circumstances. This is known as the “classical” or “frequentist” approach to
statistical inference, since it is based on long-run frequency properties of the
procedures under (hypothetical) repeated application. See §3.6 for further
discussion on classical procedures.

But Bayes’ usage went beyond this. He wanted to express uncertainty about
6, which is not directly observable, as a probability distribution p(#). Thus the
crucial step taken in Bayesian analysis is to consider 6 as a random variable
(in principle we should therefore start using capital and lower case Greek
letters, but this is not generally done and does not seem to lead to undue
confusion). As we shall see later in Chapter 3, when a distribution p(6) is
directly specified it is known as a “prior” distribution, whereas if it arises as
a result of conditioning on some observed data y, it is known as a “posterior”
distribution and given the notation p(f|y). Of course, parameters of interest
may reflect different characteristics depending on the questions being asked:
for example, the mean treatment effect in a population, the true variability
across individuals, and so on.

Example 1.1.1. Surgery: direct specification of a prior distribution
Suppose we are going to start to monitor mortality rates for a high-risk operation
in a new hospital. Experience in other hospitals indicates that the risk 6 for
each patient is expected to be around 10%, and it would be fairly surprising (all
else being equal) if it were less than 3% or more than 20%. Figure 1.2 is seen to
represent this opinion as a formal probability distribution — in fact this distribution
has a specific mathematical form which will be explored in the next section.

We note that we are talking about the underlying risk/long-term rate, and not
the actual observed proportion of deaths which would, of course, be subject to
additional chance variability. We also note the common habit of referring to the
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Probability density
4
1

I T T T T 1
0 10 20 30 40 50

Mortality risk (%)

FIGURE 1.2
A prior distribution supporting risks of mortality between 3% and 20%, and ex-
pected to be around 10%. The shaded area indicates risks greater than 15%.

underlying risk of mortality both as, say, “10%" and a probability (which must lie
between 0 and 1) of “0.1" — we hope the context will make the meaning clear.

For those used to standard statistical analysis, a distribution such as that
shown in Figure 1.2 may be doubly suspect: first, it is treating an unknown
parameter as a random variable, and, second, the distribution apparently
expresses opinion rather than being solely based on formal data analysis. In
answer to the first concern, what advantages are there to providing a direct
probability distribution for such quantities of interest? We might summarise
these as follows:

1. The analysis tells us precisely what we want to know: what are the plau-
sible values for the parameter of interest? Presentation of conclusions is
therefore intuitive to a general audience.

2. There is no need for p-values or « levels as measures of evidence, as we
can directly provide the probability of hypotheses of interest: for exam-
ple, the shaded tail area shown in Figure 1.2 expresses the probability
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that the underlying mortality risk is greater than 15%: we shall see later
that this is 0.17.

. There are no (difficult to interpret) confidence intervals: we can just

report that, say, a central range of 3% to 20% has 90% probability.

It is generally straightforward to make predictions (see §2.7, §3.2).

. The process extends naturally to a theory of rational decision making

(Berger, 1985; Bernardo and Smith, 1994), although we shall not be
concerned with this topic in this book.

. Importantly, there is a procedure for adapting the distribution in the

light of additional evidence: i.e., Bayes’ theorem allows us to learn from
experience and turn a prior distribution into a posterior distribution.

And what about the potential disadvantages of this apparently intuitive
approach? These may become more apparent later, but briefly we could list
the following:

1.

Bayes’ theorem tells us how to learn from new evidence, but inevitably
requires the specification of what we thought before that evidence was
taken into account. Specification of one or more such “prior” distribu-
tions is an additional responsibility of the analyst.

. There is an explicit allowance for quantitative subjective judgement in

the analysis, which is controversial within a supposedly “objective” sci-
entific setting (although of course one could argue that a standard sta-
tistical analysis rests on many assumptions that are not testable given
the available data).

. The analysis may be more complex than a traditional approach.

Computation may be more difficult (which is precisely why BUGS has
been developed).

. There are no established standards for Bayesian reporting (although

some suggestions have been made; see the discussion in our Preface).

Most of these potential difficulties relate to accountability, in the sense of
ensuring that the analysis is transparent, reproducible, and not unreason-
ably influenced by uncheckable assumptions that may not necessarily be gen-
erally agreed. These issues are having to be faced by journal editors and
other bodies acting as “gatekeepers” for the dissemination of claims made
using Bayesian analyses. For example, the Center for Devices and Radiolog-
ical Health (CDER) of the U.S. Food and Drug Administration (FDA) has
published guidelines for the use of Bayesian methods in submissions for the
approval of new medical devices (U.S. Department of Health and Human Ser-
vices, 2010). These guidelines emphasise the need to be explicit about the
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evidential basis for prior assumptions, conducting sensitivity analysis, provid-
ing software for reproducing the analysis, and so on, and we shall repeatedly
return to these themes later.

1.2 Probability distributions

A wide range of parametric probability distributions is described in Ap-
pendix C, with BUGS notation. But how do we know which distribution to
use in a particular context? Choice of the appropriate distribution inevitably
depends on knowledge of the specific subject matter and a strong degree of
judgement. We can distinguish between four different scenarios:

1. Choice of a fully specified sampling distribution, say p(y): for example,
if Y = the number of “heads” when tossing a single fair coin, taking on
the values 0 or 1, we may be happy to agree that Y ~ Bernoulli(0.5) or,
equivalently, Y ~ Binomial(0.5, 1).

2. Choice of the functional form of a parametric sampling distribution for
an observation, say p(y|6): for example, if ¥ = annual number of road
accidents at a certain location, we may assume that Y ~ Poisson() for
some annual rate 6.

3. Choice of a fully specified “prior” distribution, say p(#): for example,
if # is a proportion, we might assume a uniform distribution between 0
and 1, so that 6 ~ Uniform(0, 1).

4. Choice of the functional form of a parametric distribution for param-
eters, say p(f|p): in Chapter 10 we shall describe how “hierarchical”
models include distributions for parameters that themselves contain un-
known parameters, for example, when 6 has a normal distribution with
mean g and variance w?, so that 6 ~ Normal(u, w?).

We shall use standard notation for dealing with probability distributions.
For example, a binomial distribution representing the number of events in n
trials, each with probability 8 of occurring, will be written Binomial(8,n):
a variable R could be represented as having such a distribution either by
R|0,n ~ Binomial(f,n) or p(r|d,n) = Binomial(¢,n), where r is the reali-
sation of R. Pr(A) is used to denote the probability of a general event A.
Often we drop the explicit conditioning, and thus Bayes’ original aim can be
expressed formally as follows: if R ~ Binomial(#,n), what is Pr(6; < 0 <
Oa|r,m)?

Random variables, whether denoted by Roman or Greek letters, have a
range of standard properties arising from probability theory. Here we use



6 The BUGS Book

notation suitable for continuous quantities, which can be easily translated to
discrete quantities by substituting summation for integration.

Consider a generic probability distribution p(f) for a single parameter 6.
All the usual properties of probability distributions are defined, for example,

Distribution function: F(6*) = Pr(6 < 6*), sometimes referred to as the
“tail area.”

Expectation: E[f] = [ 0p(#)df, where the integral is replaced by a summa-
tion for discrete 6.

Variance, standard deviation and precision:
Varld) = [(6 — E[0])*p(0) d0 = E[6?] — E?[f]; standard deviation =
V/variance; precision =1/variance.

Percentiles: the 100¢gth percentile is the value 6, such that F(6,) = ¢, in
particular the median is the 50*" percentile 6 .5.

% interval: A subset of values of # with specified total probability: generally
a 100¢% interval will be (6, 63) such that F(02) — F'(61) = ¢q. Such an
interval might be “equi-tailed,” in that F(f3) = 1 — q/2, F(61) = q/2,
although for asymmetric distributions narrower intervals will be possi-
ble. The narrowest interval available is known as the Highest Posterior
Density (HPD) interval: see below for an example.

Mode: the value of 6 that maximises p(9).

These properties extend naturally to multivariate distributions, although
percentiles are not generally uniquely defined.

Example 1.2.1. Surgery (continued): properties of a probability distribution
The distribution shown in Figure 1.2 is actually a Beta(3,27), which, from Ap-
pendix C.3, we find has probability density proportional to §2(1 — 6)2¢. From
formulae in Appendix C.3 and standard software we can obtain the following
properties: mean = 3/(3+27) = 0.1, standard deviation 0.054, variance 0.003,
median 0.091, mode 0.071. An equi-tailed 90% interval is (0.03, 0.20), which has
width 0.17, but a narrower HPD interval is (0.02, 0.18) with width 0.16.

Fitting parametric distributions to expressed subjective judgements will be dis-
cussed in Chapter 5.

Bayesian analysis is based on expressing uncertainty about unknown quanti-
ties as formal probability distributions. This provides an agreed mathematical
framework, but still leaves the possibility for confusion arising from the use
of terms such as “chance,” “risk,” “uncertainty” and so on. Some consistency
in terminology may be useful. In Bayes’ original aims shown in Figure 1.1, he
used “probability” to refer to uncertainty concerning an observable event and
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“chance” to refer to uncertainty concerning that probability. We shall diverge
from this usage: specifically, it seems more natural to use “chance” to refer to
“frequentist” or agreed probabilities, say based on physical characteristics of a
coin, while retaining the term “probability” for more subjective assessments.
Furthermore, if we were being properly pedantic, we might say “the chance
of this coin coming up heads is 0.5,” with the understanding that this was
an agreed probability based on physical assumptions about the symmetry of
the coin, i.e., it was a property of the coin itself, while saying “my probability
that someone will be killed by falling junk from space in the next 10 years is
0.2,” clearly communicating that this is a subjective judgement on my part,
perhaps expressing my willingness to bet on the outcome, and is a property
of my relationship with the event, conditional on all the background evidence
available to me, and not solely of the event itself. This essentially subjective
interpretation of all probability statements arising in Bayesian analysis will
be implicit in all subsequent discussion.

1.3 Calculating properties of probability distributions

Bayesian inference entirely rests on reporting properties of probability distri-
butions for unknown parameters of interest, and therefore efficient calculation
of tail areas, expectations, and so on is vital.

Options for calculating these quantities include:

Exact analytic: for example, when tail areas can be calculated exactly using
algebraic formulae.

Exact numeric: where, although no closed-form algebraic formula is avail-
able, the quantity can be calculated to arbitrary precision, such as tail
areas of a normal distribution.

Approximate analytic: for example, using normal approximations to dis-
tributions of random variables.

Physical experimentation: for example, by physically repeating an exper-
iment many times to determine the empirical proportion of “successes.”

Computer simulation: using appropriate functions of random numbers,
generate a large sample of instances of the random variable and em-
pirically estimate the property of interest based on the sample. This
technique is popularly known as Monte Carlo, and this will be the focus
of the methods used in this book.
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1.4 Monte Carlo integration

Monte Carlo integration is a widely used technique in many branches of
mathematics and engineering and is conceptually very simple. Suppose the
random variable X has arbitrary probability distribution p(z) and we have
an algorithm for generating a large number of independent realisations
M 2@ 2T from this distribution. Then

E(X) = /:cp(x) dx ~ %Zx(t).

In other words, the theoretical expectation of X may be approximated by
the sample mean of a set of independent realisations drawn from p(z). By
the Strong Law of Large Numbers, the approximation becomes arbitrarily
exact as T — oo. Monte Carlo integration extends straightforwardly to the
evaluation of more complex integrals. For example, the expectation of any
function of X, g(X), can be calculated as

T

B(g(X) = [ sip(o)de ~ 130,

t=1

that is, the sample mean of the functions of the simulated values. In particular,
since the variance of X is simply a function of the expectations of X and X2,
this too may be approximated in a natural way using Monte Carlo integration.
Not surprisingly, this estimate turns out to be the sample variance of the
realisations ("), 2 ... (™) from p(z).

Another important function of X is the indicator function, I(l < X <
u), which takes value 1 if X lies in the interval (I,u) and 0 otherwise. The
expectation of I(I < X < u) with respect to p(z) gives the probability that X
lies within the specified interval, Pr(l < X < u), and may be approximated
using Monte Carlo integration by taking the sample average of the value of
the indicator function for each realisation z(¥). It is straightforward to see that
this gives

Pr(l < X < u) ~ number of realis;:cions z® € (1, u) (11)

In general, any desired summary of p(x) may be approximated by calculating
the corresponding summary of the sampled values generated from p(x), with
the approximation becoming increasingly exact as the sample size increases.
Hence the theoretical quantiles of p(z) may be estimated using the equivalent
empirical quantile in the sample, and the shape of the density p(x) may be
approximated by constructing a histogram (or alternatively a “kernel density
estimate” which effectively “smooths” the histogram) of the sampled values.
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Suppose we obtain an empirical mean E = E(g(X)) and variance V =
Var(g(X)) based on T simulated values, and we consider E as the estimate

of interest. Then, since E is a sample mean based on T' independent samples,
it has true sample variance Var(g(X))/T, which may be estimated by V/T.

Hence E has an estimated standard error y/V /T, which is known as the Monte
Carlo error: see §4.5 for further discussion of this concept. We note that this
may be reduced to any required degree of precision by increasing the number
of simulated values.

Example 1.4.1. Coins: a Monte Carlo approach to estimating tail areas
Suppose we want to know the probability of getting 2 or fewer heads when we
toss a fair coin 8 times. In formal terms, if Y ~ Binomial(m, n), 7 = 0.5,n = §,
then what is Pr(Y < 2)? We can identify four methods:

1. An ezact analytic approach uses knowledge of the first three terms of the
binomial distribution to give

Pr(Y <2)

2
> p(yltr=05n=8)

y=0

-()G) G -O6) G -GG 6)

= 0.1445.

2. An approzimate analytic approach might use our knowledge that E[Y] =
nm =4 and VarlY] = nm(1—7) = 2 to create an approximate distribution
p(y) =~ Normal(4,2), giving rise to an estimate of Pr(Y < 2) = &((2 —
4)/v/2) = 0.079, or with a “continuity correction” ®((2.5 — 4)/V/2) =
0.144; the latter is a remarkably good approximation.

3. A physical approach would be to repeatedly throw a set of 8 coins and
count the proportion of trials where there were 2 or fewer heads. We did
this 10 times, observed 0/10 cases of 2 or fewer heads, and then got bored!

4. A simulation approach uses a computer to toss the coins! Many programs
have random number generators that produce an unstructured stream of
numbers between 0 and 1. By checking whether each of these numbers lies
above or below 0.5, we can simulate the toss of an individual fair coin, and
by repeating in sets of 8 we can simulate the simultaneous toss of 8 coins.
Figure 1.3 shows the empirical distributions after 100 and 10,000 trials and
compares with the true binomial distribution. It is clear that extending the
simulation improves the estimate of the required property of the underlying
probability distribution.
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FIGURE 1.3

Distribution of the number of “heads” in trials of 8 tosses, from which we calculate
the proportion with 2 or fewer heads: (a) after 100 trials (0.160); (b) after 10,000
trials (0.1450); (c) the true binomial distribution (0.1445).

Suppose we consider an indicator function P2 which takes on the value of 1 when
there are 2 or fewer heads, 0 otherwise, so that P2 is a Bernoulli random quantity
with expectation 7, which we can calculate to be 0.1445, and true variance 7(1 —
7) =0.124. The true Monte Carlo error for an estimate of 7 based on T simulated
values is therefore \/7(1 — 7) /T, corresponding to the classical standard error of
an estimate of 7. Our estimates of 7 after 100 and 10,000 samples are 0.16
and 0.145, respectively, and so we can estimate Monte Carlo errors of 0.037 for
T =100 and 0.0035 for T' = 10, 000. If we took a classical statistical perspective
we could therefore calculate approximate confidence intervals for m of 0.16 + 2
x 0.037 = (0.09, 0.23) after 100 iterations, and 0.145 + 2 x 0.0035 = (0.138,
0.152): both comfortably include the true value of 0.1445.

The above results are enormously useful, but to see the real beauty of Monte
Carlo integration, suppose now that X is a random wector comprising k com-
ponents, X1, ..., Xi. Further suppose that (), 2(® ... (™) are k-dimensional
realisations, with elements denoted x(z) (t=1,...,T,j =1,..,k), from the
joint distribution p(x). Then for any j € {1, ..., k}, $;1) 52), ceny ng) represents
a sample from p(z;). In other words, we can make inferences with respect to
any marginal distribution by simply using those realisations that pertain to
the random variable(s) of interest, and ignoring all others. This result holds for
all possible marginal distributions, including those of arbitrary subsets of X.



Introduction: Probability and parameters 11

Such marginalisation, for example, integrating out of “nuisance” parameters,
is a key component of modern Bayesian inference.

One could argue that the whole development of Bayesian analysis was de-
layed for decades due to lack of suitable computational tools, which explains
why recent availability of high-performance personal computers has led to a
revolution in simulation-based Bayesian methods.
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Monte Carlo simulations using BUGS

2.1 Introduction to BUGS
2.1.1 Background

BUGS stands for Bayesian inference Using Gibbs Sampling, reflecting the ba-
sic computational technique originally adopted (see Chapter 4). The BUGS
project began in 1989 and from the start was strongly influenced by develop-
ments in artificial intelligence in the 1980s. Briefly, these featured an explicit
attempt to separate what was known as the “knowledge base,” encapsulating
what was assumed about the state of the world, from the inference engine
“used to draw conclusions” in specific circumstances. The knowledge base
naturally makes use of a “declarative” form of programming, in which the
structure of our “model” for the world is described using a series of local re-
lationships that can often be conveniently expressed as a graph: see the next
section for further discussion of interpretation and computation on graphs. As
an essentially separate endeavour, one or more inference engines can be used
to compute results on the basis of observations in particular contexts.

This philosophy has been retained within the BUGS project, with a clear
separation between the BUGS language for specifying Bayesian models and
the various programs that might be used for actually carrying out the com-
putations. This book is primarily about the BUGS language and its power to
describe almost arbitrarily complex models using a very limited syntax. This
language has remained extremely stable over a long period. In contrast, pro-
grams to actually run BUGS models are in a state of constant development,
and so are only described in the final chapter of this book.

2.1.2 Directed graphical models

The basic idea of a graphical representation is to express the joint relationship
between all known and unknown quantities in a model through a series of
simple local relationships. Such a decomposition not only allows a simple
way of expressing and communicating the essential structure of the model,
but also provides the basis for computation. However, this is only possible if
substantial assumptions can be made about the qualitative structure of the
model, and these assumptions concern conditional independence: we shall use

13
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the notation X 1l Y|Z to represent the assumption that X is independent of
Y, conditional on fixing Z.

Suppose we have a set of quantities G arranged as a directed acyclic graph
(DAG), in which each quantity v € G is represented as a node in the graph,
and arrows run into nodes from their direct influences or parents. Formally,
such a model represents the assumption that, conditional on its parent nodes
pa[v], each node v is independent of all other nodes in the graph except “de-
scendants” of v, where descendant has the obvious definition.

In the context of probability models, these conditional independence as-
sumptions imply that the full joint distribution of all the quantities G has a
simple factorisation in terms of the conditional distribution p(v|pa[v]) of each
node given its parents, so that

p(G) = [] p(vlpalv]) (2.1)

vEG

this conditional distribution may be “degenerate,” in the sense that the child
may be a logical function of its parents. Thus we only need to provide the
parent—child relationships in order to fully specify the model: the crucial idea
behind BUGS is that this factorisation forms the basis for both the model
description and the computational methods (§4.2.2).

Example 2.1.1. Family: a simple graphical model

The language of familial relationships is extremely useful when discussing DAGs.
For example, consider the graph shown in Figure 2.1, in which A, B, and D are
termed “founders,” as they have no parents, and A and B are parents of C,
which is in turn a parent (with D) of E and F. Considered as random quantities,
the conditional independence relationships exactly match those found in simple
Mendelian genetics. For example, A, B, and D are marginally independent, E and
F are conditionally independent given C' and D, and C' and D are also marginally
independent. However, say we observe E. Then this will induce a dependency
between C' and D and between A and B, since two nodes without common
parents are only independent given no descendants have been observed. Using a
genetic analogy, once it is known a child has a particular gene, then the ancestors
are no longer probabilistically independent, in the sense that knowing the gene
was inherited from a particular ancestor reduces the chance that it came from
any other source. From the graph we can see that the joint distribution of the set
of quantities may be written

p(V) =p(A, B,C, D, E, F) = p(A)p(B)p(C|A, B)p(D)p(E|C, D)p(F|C, D)
(2.2)
To repeat, the crucial point is that we only need to specify these parent—child
conditional relationships in order to express the full joint distribution.
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FIGURE 2.1

A typical directed graphical model. Nodes represent variables in the model and
arrows show direct dependence between variables. If an arrow emanating from
one node points to another node, then the former is said to be a “parent” of the
latter; additionally, the latter is said to be a “child” of the former. For example,
D is a parent of F; F'is a child of D.

In this book we shall use graphs as an aid to communicating qualitative
conditional independence structure, emphasising that the graphical represen-
tation allows us to reduce “globally” complex models into a set of fairly simple
“local” components: furthermore we shall see this graphical structure not only
underlies the language used to represent such models, but also directly leads
to the computational procedures necessary to draw inferences in the light of
any available data.

2.1.3 The BUGS language

The BUGS language comprises syntax for a limited (but extensible — see
§12.4.8,§12.5,8§12.6.1) list of functions and distributions which allow a series
of logical or stochastic local relationships between a node and its parents to
be expressed. By “chaining” these relationships together, a full joint distribu-
tion over all unknown quantities is expressed using the factorisation in (2.1).
The ideas are very similar to a spreadsheet, in which local relationships are
arranged into a directed graph so that when “founder” nodes are altered, the
implications are propagated through the graph to the “child-less” nodes which
form the conclusions. The BUGS language provides a similar representation,
except allowing stochastic as well as logical connectives. When combined with
a BUGS “engine,” inferences can be made on any unknown quantities in the
graph conditional on observed data, but instead of a spreadsheet that can only
work “down” the graph following the direction of the arrows, BUGS allows
you to fix the value of any node in the graph and establish plausible values
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for all other nodes. Quantities are specified to be constants or data by giving
them values in a data file — see Chapter 12.

The BUGS language is “declarative,” and so in particular it does not matter
in which order the statements come (provided loop constraints are obeyed).
This is in contrast to more traditional statistical packages, which tend to use
a “procedural” language to execute commands in sequence. This can lead to
some perceived difficulties in BUGS model descriptions: for example, there is
no if-then-else construct.” So we can contrast two different approaches to
statistical packages:

Traditional approach:

1. Start with data, in some appropriate format.

2. Apply different statistical techniques to the data using a sequence
of commands.

3. Report estimates and intervals, and so on.
Graphical modelling approach:

1. Start with a model describing assumptions concerning the relation-
ships in the world, thus providing a full joint probability model for
all quantities, whether parameters or potentially observable data.

2. Offer up to the model whatever relevant data have been observed.
3. Use an appropriate engine to obtain inferences about all unobserved
quantities conditional on the observed data.

The BUGS syntax will be introduced through examples, with extensive
cross-references to a full listing in the appendices.

2.1.4 Running BUGS models

The currently available software applications for running BUGS models are
described in Chapter 12. Each program has the same basic functionality:

1. Checking the syntax of the model specification.
2. Reading in any data provided.

3. “Compiling” the BUGS model, which means constructing an internal
representation and working out the sampling methods to be used for
each stochastic node.

4. Starting the simulation at an appropriate set of values for the unknown

quantities.

*But the step or equals functions can be used to define nodes conditionally on the values
of other nodes — see step or equals in the index for some examples.
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5. In response to appropriate commands, simulate unknown quantities.
6. Report summary statistics and other tabular and graphical output.

The analyses in this book have been carried out using the currently most
popular engine: WinBUGS 1.4.3. This can be run interactively, performing
each of the above six (or more) steps one at a time; alternatively there is a
“script” facility to run an entire analysis in batch mode (§12.4.5). Scripts also
enable WinBUGS to be called from other software, and interfaces have been
developed for a variety of other packages (§12.4.6).

New developments are now made in the OpenBUGS program. This provides
a BUGS computation engine with a variety of interfaces, including one which is
very similar to WinBUGS. Another program for implementing BUGS models,
called JAGS, has been developed entirely independently (Plummer, 2003) and
is more portable to different computing platforms. More details about these
programs are provided in Chapter 12.

2.1.5 Running WinBUGS for a simple example

The following example illustrates the most basic use of BUGS.

Example 2.1.2. Coins: running WinBUGS
The model for Example 1.4.1 is

Y ~ Binomial(0.5, 8)

and we want to know Pr(Y < 2). This model is represented in the BUGS language
as

model {

Y ~ dbin(0.5, 8)

P2 <- step(2.5 - Y) # does Y = 2, 1 or 07
}

P2 is a step function that will take on the value 1if 2.5 - Yis >0, i.e.,, if Yis
2 or less, and 0 if Y is 3 or more: this corresponds to the indicator function used
in Example 1.4.1.

The following steps are used to run a basic model interactively in WinBUGS
(and in the graphical interface to OpenBUGS). This process is explained in more
detail for a more complex example in §12.4 and in the WinBUGS user manual
accessible from the Help menu.

1. Make a new document (New from the File menu) and type in the BUGS
model code, or open a document containing code which has been written
already (Open from the File menu).

2. Open Specification Tool from the Model menu. A dialog like the one
in Figure 2.2 will appear.
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Specification Tool  Ed|

check model [rad/data |

carmpile nurn of chains |1
load inits far chain E

gen inits

FIGURE 2.2
WinBUGS Model Specification Tool.

10.

Highlight the word model in the BUGS code by double clicking on the word.
Click on check model. Any error messages are shown on the bottom left
of the screen, or model is syntactically correct will appear if there
are no errors.

There are no observed data in this model; therefore we can ignore load
data. See Example 3.3.2 for a simple example with observed data.

In this example it is sufficient to leave the number of parallel chains to run
(num of chains) at 1, but see §4.4.2 for an example of where running
more than one chain is helpful.

Click on compile. Again check for any error messages at the bottom left.

We can ignore 1load inits in this simple example. See §4.3 for an example
which needs initial values to be supplied by the user.

Click on gen inits. A message initial values generated, model
initialized should appear.

Open Update. . . from the Model menu (Figure 2.3) and Samples. . . from
the Inference menu (Figure 2.4).

Specify the nodes we want to monitor or record the sampled values for. In
this case, type P2 into the node box in the Sample Monitor Tool, and
click set. Similarly, type Y and click set.
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FIGURE 2.3
WinBUGS Update Tool.

&4 Sample Monitor Tool ]|
riode: || LI falbs |1_ bo IE_ percentiles
I— I— I— 4]
25
clear zef frace hitatan dersity "
a0
zhats coda quantles] | bordiag] autozor] |95
FIGURE 2.4

WinBUGS Sample Monitor Tool.
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11. Type * into the node box in the Sample Monitor Tool, which means “all
monitored nodes,” and click trace to open a window where the sampled
values will appear as they are generated.

12. Go to the Update Tool and type the number of samples to be generated in
updates. 10,000 are sufficient in this example. Click on Update to generate
the samples. See §12.4.3 for more information about the Update Tool.

13. Type * in the Sample Monitor Tool again. Click stats to see summary
statistics for all monitored nodes, and density to see plots of their empirical
distributions.

P2 sample: 10000 Y sample: 10000
10 03[
0.75 02}
e o1t I
025 :
00} ] ooF —mm . . -
T T T T T T T
-1 0 1 2 -1 0 5
FIGURE 2.5

Empirical distributions for Y and P2 based on 10,000 simulations: output from
WinBUGS 1.4.3.

These plots are shown in Figure 2.5. Taking the empirical mean of P2 gives the
estimated probability that Y will be 2 or fewer. The summary statistics provided
by WinBUGS are

node mean sd MC error 2.5), median 97.5), start sample
P2 0.1448 0.3519 0.003317 0.0 0.0 1.0 1 10000
Y 4.004 1.417  0.01291 1.0 4.0 7.0 1 10000

The mean and sd are simply the empirical average and standard deviation of the
sampled values while, as described in §1.4, the MC error (Monte Carlo error; see
§4.5.1) provides an assessment of the sampling error on the mean attributable to
the limited number of iterations performed: we note that the MC error calculated
for P2 matches that obtained in Example 1.4.1. The 2.5%, median, and 97.5
values are the empirical percentiles, while start is the iteration at which mon-
itoring began, and sample indicates the total number of iterations contributing
to the summary statistics.

TNote this will not work in the current version of OpenBUGS, which requires at least one
update to have been performed before opening the trace window.
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This example illustrates a number of aspects of the BUGS syntax. First,
the entire model description is enclosed in model{...}. Second, there are two
types of connective corresponding to different parent—child relationships:

e <- represents logical dependence. The left-hand side of a logical state-
ment comprises a logical node, and the right-hand side comprises an
expression formed from the logical functions listed in Appendix B ap-
plied to a set of stochastic or logical nodes, e.g., m <- a + b*x.

e ~ represents stochastic dependence. The left-hand side of a stochastic
statement comprises a stochastic node, and the right-hand side comprises
a distribution from the list in Appendix C, e.g., r ~ dunif(a,b) for a
variable r that is uniformly distributed between a and b. Note that in
WinBUGS and OpenBUGS, logical expressions are not permitted as
parameters of distributions, so a statement such as r ~ dunif (2*a,b)
is not permitted?.

e # is a comment character used to annotate the modelling code. Every-
thing after # on the same line is ignored by BUGS. Clear and concise
comments can be helpful when reading and maintaining models, partic-
ularly if it is not immediately clear what a piece of code does.

In general, each node in a model (apart from constants) should appear once
and only once on the left-hand-side of a statement (although see § A.7 for
exceptions to this rule).

2.2 DoodleBUGS

WinBUGS (and OpenBUGS) allow models to be specified by drawing a pic-
ture of the directed acyclic graph represented by the model. WinBUGS calls
this picture a Doodle. Nodes in the graph are of three types.

1. Constants are fixed by the design of the study: they are always founder
nodes (i.e., do not have parents) and are here denoted as rectangles in
the graph.

2. Stochastic nodes are variables that are given a distribution and are de-
noted as ellipses in the graph; they may be parents or children (or both).
Stochastic nodes may be observed and so be data, or may be unobserved
and hence be parameters, which may be unknown quantities underlying

fBut this is permitted in JAGS.
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name: Y type: stochastic  density:  dbin
proportion 0.5 order 8 lower bound upper bound
0.5 8

FIGURE 2.6

Doodle for coins example: Y is generated from a binomial distribution with
parameters 0.5 and 8 represented by constant nodes, while P2 is a logical
indicator function taking on the value 1 if Y is 2 or less, and 0 otherwise.
The Y node has been highlighted by the user, whereby the underlying detail
is shown above the Doodle: lower and upper bounds can also be specified
for prior distributions (see Appendix A.2.2 and §9.6 for discussion of the
appropriate use of bounded distributions).

a model, censored (partially observed) observations, or simply missing
data.

3. Deterministic nodes are logical functions of their parent nodes, again
denoted by ellipses but with a double arrow from their parents.

Figure 2.6 shows a Doodle representation of the coins example. If we cor-
rectly compose a Doodle, then we can run the program directly from the Doo-
dle or print out the equivalent BUGS code, though we cannot automatically
draw a Doodle for a given piece of code. See the WinBUGS or OpenBUGS
User Manual for more details on drawing Doodles. Although we feel such
graphs are extremely useful for explanation of the assumptions in a complex
model, they can be tricky to set up and we would not generally recommend
using them to specify complex models.

2.3 Using BUGS to simulate from distributions

We can use BUGS to simulate samples from any of the built-in distributions:
a sample of size n can be obtained either as n iterations or as a single iteration
of an array of size n.
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Example 2.3.1. Simulating from a Student’s t distribution

Suppose we wanted a sample of size 1000 from a Student's t distribution with
mean 10, precision parameter 2 (Appendix C.1), and 4 degrees of freedom. This
could be obtained by either running the code

model {
Y ~ d4t(10, 2, 4)
}

and saving 1000 iterations (coda from the Sample Monitor Tool, Figure 2.4), or
by running the code

for (i in 1:1000) {Y[il = dt(10, 2, 4)%}

for a single iteration and saving the current state of Y (see, e.g., §12.4.3). Using
the former approach we obtain the following statistics:

node mean sd MC error 2.5} median 97.5%, start sample
Y 10.04 0.9893 0.031 8.094 10.04 11.92 1 1000

From Appendix C.1, a ¢t distribution with “precision” parameter r and d degrees
of freedom has variance d/((d — 2)r). Hence for r = 2 and d = 4 the exact
standard deviation is /1 = 1. The density curve is shown in Figure 2.7, showing
the characteristic heavy tails of the ¢ distribution.

Y sample: 1000
06 [
0.4
0.2
0.0

0.0 5.0 10.0 15.0

FIGURE 2.7
Kernel density plot of 1000 simulated values from a t distribution with mean 10,
precision parameter 2, and 4 degrees of freedom.




24 The BUGS Book

2.4 Transformations of random variables

Suppose we have a distribution pg(6), where for clarity we introduce the
© subscript to indicate the subject of the distribution. We wish to make
inferences about a 1-1 transformation of 8, say ¢ = ¢g(6) with inverse function
0 = g=(¢). If pe(h) is discrete, then we have ps(¢) = pe(g~(¢)), so that
the probability of a particular value of ¢ is obtained simply by making the
appropriate transformation back to 6. For example, if Y ~ Bernoulli(p), then
the distribution of X = 2Y + 1 is simply a discrete distribution Pr(X =1) =
1—p,Pr(X =3)=np.

If pe(0) is continuous, then standard results from probability theory show
that
do
do
where the final term is called the “Jacobian” and is required when trans-
forming quantities with continuous probability distributions. The difficulty of
computing these terms can make inferences on transformations of parameters
complex to handle, particularly in multivariate situations.

However, transformations are straightforward when using a simulation ap-
proach. If we have a sample 01 ... 6(T) from pg(#), then we just need to
create the transformed simulated values ¢, ... ¢ = g(@M) ... g(6™)
and treat them as a simulated sample from pg(¢). This trivial result has strong
implications for ease of making inferences on measures, such as ranks, that
can be extremely difficult using an exact or approximate analytic approach,
whether classical or Bayesian.

b

po(9) = pols~1(9)) ]

Example 2.4.1. Cube
Take a standard normal Z with mean 0 and SD 1. Double it, add 1, and cube.
What is the distribution of the resulting random quantity Y, and what is Y's
expectation and the probability of Y exceeding 107

We want to find the distribution of Y = (2Z + 1) where Z ~ Normal(0, 1), or
equivalently the distribution of Y = X3 where X ~ Normal(1,22). Analytically,
we can show that

1 _%(sigu('y)\gﬁ“*l)(z

_ Lo a3
p(y)—Qﬁe 6Iy\ ,

which has an infinite mode at y = 0. This distribution is plotted in Figure 2.8.
To calculate its expectation it is best to return to the original transformation to
obtain

E[(2Z+1)*=E[8Z° +122° +6Z+1]=8x0+12x 146 x 0+ 1 = 13,
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FIGURE 2.8
Exact distribution of Y = (27 + 1)? where Z ~ Normal(0, 1).

since E[Z% = E[Z] = 0. This expectation may appear surprisingly high, but
reflects the remarkably long right-hand tail shown in Figure 2.8. For the tail area
above 10, we obtain Pr(Y > 10) = Pr(Z > (10'/% —1)/2) = Pr(Z > 0.577) =
0.28.

In BUGS code, the model is written:

Z ~ dnorm(0, 1)
Y <- pow(2*Z + 1, 3)
P10 <- step(Y - 10)

We note the use of the normal distribution dnorm and the pow function for
powers. Note that dnorm is parameterised in terms of mean and precision (inverse
variance) as opposed to the more conventional mean and variance, although in
this example, the precision and variance are equal. Running 100,000 iterations
gives estimates for E[Y] of 12.83 and Pr(Y > 10) of 0.28.
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2.5 Complex calculations using Monte Carlo

Since arbitrary functions can be calculated at each iteration, we may be able
to use some ingenuity with the BUGS language to solve some otherwise in-
tractable problems.

Example 2.5.1. Repairs: the "how many” trick

Suppose costs of a repair have a gamma distribution with mean £100 and stan-
dard deviation £50: how many items will | be able to repair for £1000? From
Appendix C.2 we can work out that a Gamma(4,0.04) has mean 100 and sd 50.
The "how many trick” is then, at each iteration, to simulate costs Y;, ¢ =1, ..., I,
from this distribution for a sufficiently large I, find the empirical cumulative dis-
tribution, and then find the value M which is the highest i such that the total
cost does not exceed £1000. We do this by creating a new vector cum.step =
1,2,...,M,0,0,..., where M is the largest integer such that Zﬁ1 Y; < 1000, and
using the ranked function to find the maximum of the elements of cum.step.

for (i in 1:20) {Y[i] ~ dgamma(4, 0.04)}

cum[1] <- Y[1]
for (i in 2:20) {
cum[i] <- cum[i - 1] + Y[i]
}
for (i in 1:20) {
cum.step[i] <- ixstep(1000 - cum[i])
}

number <- ranked(cum.step[], 20) # maximum number in cum.step
check <- equals(cum.step[20], 0) # always 1 if I=20 big enough

Running 10,000 iterations in WinBUGS produces the following summary statis-
tics; the empirical distributions are shown in Figure 2.9.

node mean sd MC error 2.5} median 97.5%, start sample
number 9.631 1.636 0.01503 7.0 10.0 13.0 1 10000
Y[1] 101.1 50.02 0.5408 28.51 93.23 222.2 1 10000

Therefore the median number we can repair is 10, with a 95% predictive interval
7 to 13. Note that each Y has mean 100 and sd 50, as required.
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number sample: 10000 Y[1] sample: 10000
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FIGURE 2.9

Distribution of number of items which can be repaired for 1000, given a random
item repair cost Y.

2.6 Multivariate Monte Carlo analysis

Our examples up to now have comprised calculating samples of a single ran-
dom variable. General Monte Carlo analysis extends this in two ways: first,
simulating multiple random variables, and second, setting up “chains” of vari-
ables so that the parameters of distributions themselves depend on random
quantities. It may help to think of this process as “adding uncertainty” to
a spreadsheet, and indeed in domains such as risk analysis and health eco-
nomics such analyses are often conducted using spreadsheets with additional
macros or add-on programs that allow cell values to be generated randomly
from probability distributions.
The following example illustrates multivariate Monte Carlo analysis.

Example 2.6.1. Heart transplant cost effectiveness: risks assumed known
Suppose a patient with heart failure has a survival time sy, which is assumed
exponential with mean 0 = 2 years, corresponding to a constant monthly mor-
tality risk of 6.25%. A heart transplant has a 67 = 80% operative survival rate,
and if a patient survives the operation their survival sp is exponential with mean
Op = 5 years. Assume the operation costs £20,000, and each post-operative year
costs O = £3,000 in immunosuppressive drugs. What is the expected additional
cost per year of life gained by having a transplant?

We assume sy ~ Exponential(0.5), using the “rate” parameterisation for the
exponential distribution given in Appendix C.2. Suppose op = 1 if the patient
survives the transplant operation, o = 0 otherwise. Then the total survival for a
patient receiving a heart transplant is s = orsp, where sp ~ Exponential(0.2).
The additional survival is I, = s — sy, at additional cost 1. = 20, 000+ 3000s7,
so that the additional cost per unit year of life gained is r = I../I,. Obtaining the
distribution of r analytically is difficult if not impossible. The BUGS code is as
follows:

sN ~ dexp(0.5) # life without transplant (mean 2)
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oT ~ dbern(0.8) # survive operation (prob 0.8)

sP ~ dexp(0.2) # life if survive transplant (mean 5)
sT <- oT*sP # total life time if choose transplant
Ic <- 20000 + 3000*sT # total additional cost of transplant
Is <- sT - sN # total additional survival
r <- Ic/Is # individual cost per additional year

1,000,000 iterations provides the following summary statistics:

node mean sd MC error 2.5 median 97.5% start sample
Ic 3.2E+4 14690.0 14.56 2.0E+4 27050.0 71990.0 1 1000000
Is 2.002 5.287 0.005213 -5.68 0.6658 15.64 1 1000000
ol 0.7999 0.4 3.952E-4 0.0 1.0 1.0 1 1000000
r -5885.0 7.948E+6 7904.0 -184600.0 5278.0 111100.0 1 1000000
sN 1.998 2.001 0.001936 0.05045 1.382 7.386 1 1000000
sP 4.995  4.992 0.005088 0.1261 3.469 18.46 1 1000000
sT 4.0 4.896 0.004855 0.0 2.351 17.33 1 1000000

The predictive distributions for I and r are shown in Figure 2.10. We note the

Is sample: 1000000 r sample: 1000000
0.2r 3.00E-6 |
0.15 2.00E-6 |
0.1}
0.05 - 1.00E-6
0.0 0.0
T T T T T T
-50.0 0.0 25.0 -2.0E+9 0.0 2.00E+9
FIGURE 2.10

Empirical distributions from 1,000,000 samples of the incremental survival I and
the cost per additional life-year r.

huge standard deviation for the simulated values of r: this occurs because the
survival advantage I is often near 0 and leads to an MC error for r that is so
large that we cannot be confident whether 7 is expected to be positive. Indeed
after 10,000,000 iterations the estimate is —37730 with an MC error 30,780: the
fact that the MC error is not reducing indicates that the distribution for r does
not have a finite variance.

Fortunately this individual-level analysis is not appropriate when deciding on a
public policy of whether to fund a heart transplant programme for such patients.
When making policy decisions we would really like to know the total cost of the
programme compared to the total benefit, which depends on what is known as
the ICER (incremental cost-effectiveness ratio), which is the ratio of the expected
additional cost to the expected additional benefit. In this example this is simply
E[I.]/E|I], rather than E[r] = E[I./Is], which we were trying to estimate
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above. In this case
E[I.] = 20,000 + 0¢cE[orsp] = 20,000 + 8¢ E[or|E[sp] = 20,000 + 0c070p

and
E[IS] = E[OTSP] - E[SN} = 9T0p - 01\[,

from which we readily obtain that ICER = (20, 000+3000%0.8%x5)/(0.8x5—2) =
32,000/2 = 16,000, with no uncertainty as it is a direct function of assumed
parameters of the distribution. The next section will deal with the more interesting
situation where there is uncertainty in the parameters. Whether £16,000 per
additional year of life is a good investment depends, of course, on the willingness
to pay of the healthcare funders.

2.7 Predictions with unknown parameters

Suppose we assume a parametric sampling distribution p(y|f) and we are
willing to express our uncertainty about the parameter 6 as a distribution p(6).
Then before observing a future quantity Y, we can (in principle) integrate out
the unknown parameter to produce a predictive distribution

p(0) = [ piulow(e) a:
for discrete parameter distributions this takes the form

p(y) = Zp(yl9i)p(9i)-

Such predictions are useful in, for example, cost-effectiveness models, design
of studies, checking whether observed data are compatible with expectations,
and so on.

In some cases, such as when Y has a binomial distribution with chance of
“success” 0 and sample size n, and our uncertainty about 6 is expressed in
the form of a beta distribution, we can carry out such integration analytically.
The reader is referred to Gelman et al. (2004) and Carlin and Louis (2008)
for mathematical detail/background, and to Table 3.1 for closed-form expres-
sions for predictive distributions in cases where they are available. In general,
however, such analytic integration is not possible. In contrast, to make such
predictions in BUGS we can just write

theta ~ dbeta(a, b)
Y ~ dbin(theta, n)
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and the integration is automatically carried out without requiring any alge-
braic manipulations.

Example 2.7.1. Surgery (continued): prediction

Suppose our hospital in Example 1.1.1 and Example 1.2.1 was going to do 20
operations next year — how many deaths might we expect, and what is the
chance there will be at least 6 deaths?

If Y is the number of deaths next year, then since 6 ~ Beta(3,27) and ¥ ~
Binomial(6, 20), we have from Table 3.1 that Y is beta-binomial with mean 0.1
x 20 = 2 and standard deviation 1.70. We can also calculate Pr(Y > 6) = 0.04.
In BUGS code we have:

theta ~ dbeta(3, 27) # prior distribution
Y ~ dbin(theta, 20) # sampling distribution
P6 <- step(Y - 5.5) # =1 if y >= 6, 0 otherwise

We obtain the following WinBUGS output based on 100,000 iterations:

node mean sd MC error 2.5% median 97.5% start sample
P6 0.04058 0.1973 6.578E-4 0.0 0.0 1.0 1 100000
Y 1.998 1.708 0.005216 0.0 2.0 6.0 1 100000

The simulation-based estimates of E[Y] and Pr(Y > 6) are within MC error (see
§4.5.1) of the true values.

The underlying process here is actually very straightforward: we simply sim-
ulate from the assumed prior distributions for the unknown parameters, and
then simulate future events conditional on the current values of the parame-
ters. In contexts such as cost-effectiveness analysis of healthcare interventions
this process is termed probabilistic sensitivity analysis, where it is necessary to
simulate expected outcomes for populations using distributions that depend,
say, on uncertain rates of disease progression and treatment effectiveness.

Example 2.7.2. Heart transplant cost effectiveness (continued)

In Example 2.6.1 we assumed all the input parameters were known, and we now
relax that assumption. First, the operative survival 67, previously assumed to be
0.8, is now given a Beta(8, 2) distribution which has mean 0.8, and could be
considered equivalent to having observed 8 survivors and 2 deaths in the last
10 operations — see §3.3.1, §5.3.1. Second, the mean survival p following a
successful transplant operation, which we had assumed to be fixed at 5 years,
is now given a normal distribution with mean 5 and standard deviation 1, cor-
responding to mean survival being between 3 and 7 years. Finally, the annual
cost O¢ of transplant survivors, previously assumed to be £3000, is now given a
normal distribution with mean £3000 and standard deviation £1000, representing
considerable between-patient variability in drug requirements.
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We recall that the crucial quantities of interest are the expected incremental
effectiveness, which we shall denote E., where E, = O70p—0y, and the expected
incremental cost denoted E., where E. = 20,000 + 0c070p. The incremental
cost-effectiveness ratio is ICER = E./E.. The essential BUGS code and results
are shown below. Note that in BUGS the normal distribution is parameterised in
terms of mean and precision (inverse variance), as opposed to mean and variance.

thetaN <- 2 # expected lifetime without transplant
thetaT =~ dbeta(8,2) # probability of surviving operation
thetaP ~ dnorm(5,1) # expected survival post-transplant (mean 5, sd 1)
thetaC ~ dnorm(3000,0.000001)
# expected cost per year (mean 3000, sd 1000)
E.c <- (20000 + thetaC*thetaT*thetaP)/1000
# expected additional cost of transplant
# in thousands of pounds
E.e <- thetaT*thetaP - thetaN
# expected total additional survival

ICER <- E.c/E.e # incremental cost-effectiveness ratio
node mean sd MC error 2.5} median 97.5% start sample
E.c 31.98 5.097 0.01578 23.5 31.47 43.35 1 100000
E.e 1.995 1.007 0.003094 0.09311 1.972 4.027 1 100000
ICER 15.05 1113.0 3.702 7.189 15.98 84.68 1 100000

The ICER has a median of about £16,000, 95% interval £7200 to £84,700, and
yet has a massive standard deviation. This is because the expected incremental
benefit F, in the denominator of ICER can plausibly be around 0, which creates
occasional massive positive or negative values for ICER. Rather than focusing
on the ICER alone in such circumstances, it is clearer to carry out a sensitivity
analysis to different values of the “willingness to pay,” denoted K, for a unit of
benefit, which in this case is an expected additional year of life. For fixed K, the
incremental net benefit (INB) is defined as

INB(K) = KE, — E.,

and is the expected benefit (in cost terms) for a single patient being given the
intervention. Of course INB(K) is an uncertain quantity which can be calculated
and monitored, and of particular interest is the probability that the incremental
net benefit is positive, denoted Q(K) = Pr(INB(K) > 0). Plotting Q(K) for a
range of values of K yields what is known as the cost-effectiveness acceptability
curve (CEAC).

These quantities are trivial to calculate within the BUGS language. If we wished
to conduct a sensitivity analysis for values of K between 0 and 100,000, in steps
of 5000, we add the following code:

for (i in 1:21) {
K[il] <- (i-1)*5
INB[i] <- E.exK[i] - E.c
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Qli]  <- step(INB[il)
}

We note that this is generic code that can be added to any cost-effectiveness
model. In the UK such assessments are carried out by the National Institute
for Health and Clinical Effectiveness (NICE), and values of K around £20,000—
£30,000 are considered as boundary cases for funding under the National Health
Service. Figure 2.11 shows the expected incremental benefits and costs, the in-
cremental net benefit for K = 30,000, and the CEAC. The probability of cost
effectiveness for K = 30,000 is 0.84, so there is fairly convincing evidence that
at this threshold the intervention is cost effective.

01} 04} 0015}
005 gg I ooty
o1l 0.005 |
5 0ot 0ot

0.0

T T T T T T T T T
0.0 20.0 40.0 60.0 -5.0 0.0 5.0 -100.0 0.0 100.0
E.c: incremental costs (in £1000) E.e: incremental survival (years) INB for willingness-to-pay £30,000

Probability transplant is cost-effective (acceptability curve)

05

0.0

50.0
Willingness-to-pay for one year of life (in £1000)

FIGURE 2.11

Expected incremental benefits and costs, the incremental net benefit for K =
30,000, and the cost-effectiveness acceptability curve (CEAC) for values of K
(willingness to pay for an additional expected year of survival) from 0 to £100,000.
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Introduction to Bayesian inference

3.1 Bayesian learning

The problem stated in Bayes’ famous paper (Figure 1.1) involves two key in-
gredients. One is the use of probability as a means of expressing uncertainty
about an unknown quantity of interest. The other is the conditional nature
of the problem: what Bayes was interested in evaluating was the conditional
probability of failure in a single trial, given some data on the previous number
of failures. Put another way, he wanted to learn about the failure probability
on the basis of observed data. In modern language, this translates to requir-
ing p(0|y, n) where @ is the unknown failure probability and we have observed
data on y failures out of n binomial trials. Bayes proposed a theorem (easily
provable from the axioms of probability) relating conditional and marginal
probabilities of random variables which he used to calculate the required con-
ditional probability for his problem.

3.1.1 Bayes’ theorem for observable quantities

Bayes’ theorem is usually stated in terms of probabilities for observable events.
Let A and B be events; then

p(BlA)p(A)
p(B)
e p(A) is the marginal probability of A, often referred to as the prior

probability of A — where “prior” indicates “before taking account of
the information in B.” If the complement (not A) is denoted A, then

p(A) = 1 - p(A).

e p(A|B) is the conditional probability of A given B, often referred to as
the posterior probability of A after taking account of the value of B.

P(AB) = (3.1)

e p(B|A) is the conditional probability of B given A — we will see later
that this corresponds to the likelihood function when Bayes’ theorem is
applied in a statistical modelling context.

e p(B) is the marginal probability of B and acts as a normalising constant
to ensure that the value of p(A|B) is a valid probability, i.e., a number

33
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between 0 and 1. p(B) may be written as p(B|A)p(A) + p(B|A)p(A), a
process sometimes known as “extending the conversation.”

Example 3.1.1. Use of Bayes' theorem in diagnostic testing

This example is taken from Spiegelhalter et al. (2004). Suppose a new HIV test
is claimed to have "95% sensitivity and 98% specificity.” In a population with an
HIV prevalence of 1/1000, what is the probability that a patient testing positive
actually has HIV? We can use Bayes' theorem (3.1) to evaluate this.

Let A =1 if the patient is truly HIV positive and A = 0 if they are truly HIV
negative. Further, let B = 1 if they test positive and B = 0 if they test negative.
The required probability is then p(A = 1|B = 1). Now, “95% sensitivity” means
that p(B = 1]A = 1) = 0.95, and "98% specificity” means that p(B = 1|A =
0) =1—0.98 = 0.02. Writing p(B = 1) = p(B = 1|A = 1)p(A = 1) + p(B =
1]A = 0)p(A = 0) and applying Bayes' theorem gives

0.95 x 0.001

p( | ) = 095 % 0.001 £ 0.02 X 0.999 — 004

Thus over 95% of those testing positive will, in fact, not have HIV!

This result generally comes as a surprise and illustrates that intuition is often
poor when processing probabilistic evidence. The key issue is how should this test
result change our belief that a patient is HIV positive? The disease prevalence
can be thought of as the prior probability (p = 0.001) of having HIV; observing a
positive result causes us to modify or update this to obtain a posterior probability
of having HIV of p = 0.045 — hence the patient is 45 times more likely to have
HIV after recording a positive test, but the absolute risk of HIV is still very small.

This result is perhaps better communicated by considering the expected status
of a large population, say 100,000 people, in which 100 people are expected to
be HIV+, of which 95 will test positive, and 99,900 will be HIV—, of which 1998
(2%) will also (erroneously) test positive. Thus, out of 2093 positive tests, only
95 (4.5%) will be truly HIV+ (Figure 3.1).

3.1.2 Bayesian inference for parameters

Bayes’ theorem applied to observable random variables (as in the diagnostic
testing example) is uncontroversial and established. More controversial is the
use of Bayes’ theorem in general statistical analysis, where parameters are the
unknown quantities, and their prior distribution needs to be specified. As dis-
cussed in Chapter 1, frequentist and Bayesian interpretations disagree about
what sort of things probabilities should be assigned to. In frequentist statis-
tics only the data are assumed to be random variables with associated prob-
ability distributions; parameters are fixed but unknown quantities and their
associated p-values and confidence intervals are based on long-run frequency
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o5 Test+
HIV+ (B=1)
Test—
> (B=0)
Test+
1,998 (B=1)
Test—
97,902 (B =0)

FIGURE 3.1
Bayes’ theorem in HIV testing.

properties under repeated sampling of the data. From a Bayesian perspective,
both data and parameters can have probability distributions, and so Bayes’
theorem can be used to learn about probabilities of unobservable parameters
as well as observable events: see §3.6.2 for discussion of the intersection be-
tween these viewpoints. Using the same notation as Chapter 1 to distinguish
observed and unobservable quantities, Bayes’ theorem for inference about pa-
rameters can be expressed as

_ plo)p(®)

p(@ly) o)

where p() now denotes a probability density rather than a simple probability
of an event. The interpretation is analogous to before: p(9) is the prior distri-
bution for # and expresses our uncertainty about the values of 6 before taking
account of the observed data; p(f|y) is the posterior distribution for 6 and
represents the uncertainty about 6 after conditioning on the data y. The con-
ditional distribution p(y|@) describes how the data depend on the parameter
values. The normalising constant, p(y), simply ensures that p(fly) is a valid
probability distribution that integrates to 1. It turns out that it is usually
not necessary to calculate p(y) to evaluate properties of the posterior, and so
Bayes’ theorem in this context is often expressed simply as

p(0ly) o p(y|0) p(0)

where the proportionality is considered with relation to 6.

While the form of p(y|6) arises from an assumed sampling distribution for
the data, it is clear that our only interest in p(y|6) is as a function of @ for fixed
y. This means that any function of 6, say L(0;y), such that L(0;y)  p(y|0),
can be used in Bayes’ theorem, so that

p(0ly) o L(6;y) p(0).
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L(0;y) is termed the likelihood and is the basis for standard likelihood-based
statistical models. Hence Bayes’ theorem essentially states that

posterior  likelihood X prior.

In this book we will generally not use the notation L(6;y) and indeed will
often rather loosely refer to p(y|f) as the likelihood, where it is clear that it
should be interpreted as a function of 8 for fixed y.

3.2 Posterior predictive distributions

In the same way as we are able to make predictions about future quantities
based on our prior distribution for some parameter of interest 6 (§2.7), we
can also make predictions based on the posterior distribution of 6, that is,
after learning about # from observed data y. Denoting our future quantity of
interest by Y, we derive the posterior-predictive distribution

p(3ly) = / p(3,0y) db = / p(316.4)p(8ly) db.

Assuming past and future observations are conditionally independent given
0, this simplifies to

plily) = / p(3160)p(6ly) do. (3.2)

The posterior-predictive expectation is

E[Y]y] = / E[V(6]p(6]y) do.

As we will see in the following section, in some cases, that is, when a par-
ticular prior distribution is chosen, such integrals are analytically tractable.
This is not the case, in general, however, but we will see that a simulation
approach again allows arbitrarily exact approximations to be derived in a
straightforward manner.

3.3 Conjugate Bayesian inference

The following are some simple examples of Bayesian inference for continuous-
valued parameters. In each case, we use what is known as a conjugate prior
distribution for the parameter of interest, in order to make the calculations
tractable.
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3.3.1 Binomial data

Suppose we observe y responses out of n binomial trials. Assuming the trials
are independent, with common unknown response probability 6, leads to a
binomial sampling distribution

ol 0) = (1) v .
When considered as a function of §, we obtain a likelihood
p(yln, 0) oc ¥ (1 —0)" Y.

Suppose that, before taking account of the evidence from our trials, we be-
lieve all values for 6 are equally likely. This implies a uniform prior distribution
for 6

6 ~ Unif(0, 1).

The posterior is then proportional to likelihood x prior, or
p(fly,n) < 6Y(1—0)""Y x 1.
From Appendix C.3, we know that

la+b) o4 b—1
0 ~ Beta(a,b) = p(f) = T ()T () 07 (1-0)
and so p(f|y,n) has the form of a Beta(y + 1,n — y + 1) kernel.

To represent external evidence that some response rates are more plausible
than others, it is mathematically convenient to use a Beta(a, b) prior distri-
bution for §. Combining this with the binomial likelihood gives a posterior
distribution

p(0ly,n) o< p(yld,n) p(0)
o Y(1—0)"¥* "1 (1 — §)>*
_ 9y+a71(1 _ e)nnyrbfl

x Beta(y +a, n —y+0). (3.3)

The posterior mean of # may thus be written as

Efly,n] = (y + a)/(n+a+ ) :waLH)+(1—w)

SRS

where w = (a+0b)/(a+b+n): the posterior mean is a weighted average of the
prior mean and y/n, the standard maximum-likelihood estimator, where the
weight w reflects the relative contribution of the prior “effective sample size”
a + b. Hence the prior parameters a and b can be interpreted as equivalent to
observing a events in a + b trials — see §5.3.1.
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Suppose we return to a uniform prior on 6 by setting a = b = 1 and consider
the case y = n, i.e., the event has happened at every opportunity! What is
the chance it will happen next time? The posterior-predictive expectation is
given by the posterior mean for 6:

n+1
n+2

E[Y|y,n] = p(Y = 1|y,n) = /ﬂp(Gly,n) d =

This is known as Laplace’s law of succession and assumes “exchangeable
events” (see §3.6.2): i.e., the same (unknown) 6 applies to each. Laplace orig-
inally applied this to the problem of whether the sun will rise tomorrow. But
he recognised that the background knowledge should overwhelm simplistic as-
sumptions. “But this number [the probability that the sun will rise tomorrow/
1s far greater for him who, seeing in the totality of phenomena the principle
requlating the days and seasons, realises that nothing at the present moment
can arrest the course of it.” (Stigler, 1986.)

More generally, with fixed a and b, as y and n increase, E(f|y,n) — y/n and
the variance tends to zero. This is a general phenomenon: as n increases, the
posterior distribution gets more concentrated and the likelihood dominates
the prior.

Example 3.3.1. Surgery (continued): conjugate analysis

In Example 1.2.1 we used a Beta(3, 27) as a prior distribution for a mortality rate.
Suppose we now operate on n = 10 patients and observe y = 0 deaths. What
is the current posterior distribution, what is the probability that the next patient
will survive the operation, and what is the probability that there are 2 or more
deaths in the next 20 operations?

Plugging in the relevant valuesof a = 3,b = 27, y = 0 and n = 10 into (3.3) we
obtain a posterior distribution for the mortality rate 6 of p(f|y, n) = Beta(3, 37).
The prior, likelihood, and posterior are shown in Figure 3.2.

The probability of a death at the next operation is simply E[f]y,n] = (y +
a)/(n+a+b) = 3/40 = 0.075. When considering the number Y of deaths in the
next 20 operations, from the beta-binomial predictive distribution (Appendix C.5),
we can calculate Pr(Y > 2) = 0.42.

Example 3.3.1 uses the closed-form solution to the beta-binomial analysis.
Alternatively, we could have used simulation methods for inference. In the
case of a conjugate model, we could sample directly from the closed-form pos-
terior. However, the whole point of using BUGS is to avoid having to perform
derivations of the type illustrated above for the beta-binomial model. All the
software requires is specification of the likelihood (or more precisely, the sam-
pling distribution) and prior distribution. From these it can usually derive
the posterior in closed form when a closed form is available, or, more gener-
ally, it can sample indirectly from the posterior using Markov chain Monte
Carlo (MCMC, see Chapter 4). Such specification of sampling distribution
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Beta(3,27) prior Likelihood: 0 out of 10 Beta(3,37) posterior
T T T T 1 T T T T 1 T T T T 1
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Mortality rate

FIGURE 3.2
Prior, likelihood, and posterior distributions for Example 3.3.1.

and prior alone, as opposed to a closed form for the posterior, is illustrated in
the following example.

Example 3.3.2. Surgery (continued): beta-binomial analysis using BUGS
Assuming we derive the closed form by hand, the BUGS syntax for direct sampling
of the surgery mortality rate 6 is simply

theta ~ dbeta(3, 37)

Alternatively, the BUGS syntax for direct sampling of the surgery posterior and
predictive distribution for the next 20 patients is shown below. Note that we now
need to specify some data along with our model, since we have observed y = 0. In
this simple example we can just include the statement y <= 0 in the model code.
Note also that in such examples we will separate observed data from modelling
assumptions by a row of #s.

y <=0

HHRHHHHH R BRI R B R R R R R
theta ~ dbeta(3, 27) # prior distribution

y ~ dbin(theta, 10) # sampling distribution
Y.pred ~ dbin(theta, 20) # predictive distribution

P.crit <- step(Y.pred - 1.5) # =1 if Y.pred >= 2, 0 otherwise

Language notes. We note that y appears twice on the left-hand side of a state-
ment — once as a logical node and once as a stochastic node. Strictly speaking,
this goes against the declarative structure of the model specification, with the
accompanying exhortation to construct a directed graph and then to make sure
that each node appears once and only once on the left-hand-side of a statement.
However, a check has been built in so that, when finding a logical node which
also features as a stochastic node (such as y above), a stochastic node is created
with the calculated values as fixed data; see §A.7.
In more generic code we could write
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a <-3; b<-27; y <- 0; n <- 10; n.pred <- 20; n.crit <- 2
BB i S st S s i s S S S S B e R e e e e e 2
theta ~ dbeta(a, b)

y ~ dbin(theta, n)

Y.pred ~ dbin(theta, n.pred)

P.crit <- step(Y.pred - n.crit + 0.5)

Alternatively, the data and prior parameters could be included in a list of data
kept separate from the model code:

list(a=3, b=27, y=0, n=10, n.pred=20, n.crit=2)

Recall the basic steps in Example 2.1.2 for running a model in WinBUGS. In
this example, we would now need to load this list of data in Step 4. We previously
ignored this step when there were no observed data. To do this,

e highlight the word 1ist by double-clicking on it, and click 1oad data in
the Specification Tool.

See §12.4.2 for a full discussion of supplying data to WinBUGS and OpenBUGS
and §12.6.3 for the different data format in JAGS.

Estimated posterior distributions for # and the predicted number of deaths in
20 future operations are shown in Figure 3.3. Posterior summary statistics for the
three unknowns are

node mean sd MC error 2.5 median 97.5%, start sample

P.crit 0.4175 0.4931 0.001496 0.0 0.0 1.0 1 100000

Y.pred 1.499 1.427  0.004347 0.0 1.0 5.0 1 100000

theta 0.07514 0.04134 1.322E-4 0.01611 0.06794 0.1739 1 100000
theta sample: 100000 Y.pred sample: 100000
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FIGURE 3.3
Posterior and predictive distributions for surgery mortality, calculated by simula-
tion.

In this case, BUGS is able to derive the posterior in closed form and so is sampling
theta directly from a Beta(3,37) distribution. Note the empirical mean and
standard deviation are within Monte Carlo error of the true values, 0.075 and
0.04113, respectively. The estimated probability of at least two deaths in 20 future



Introduction to Bayesian inference 41
operations (E[P.critly,n]) is 0.4175, which also agrees with the analytic result.
A Doodle or directed graph of this model is shown in Figure 3.4: this shows

how the observed and future data are assumed conditionally independent given

6.

name: Y.pred type: stochastic density: dbin
proportion  theta order n.pred lower bound upper bound

n @ n.pred n.crit

N\ ﬂ
o @—C

Graphical representation of model for surgery mortality. The observed number
of deaths y is generated from a binomial distribution with probability theta.
Information “flows down the arrows" from the prior parameters a and b, and “up
the arrow” from the data y, to provide the posterior of the mortality rate theta.
The posterior is used to predict the outcome Y. pred of the next n.pred patients,
which is conditionally independent of Y given theta.

3.3.2 Normal data with unknown mean, known variance
Suppose we have an independent sample of normal data
y; ~ Normal(p,0?), i=1...n, (3.4)

where 02 is known and g is unknown. The conjugate prior for the normal
mean g is also normal:

 ~ Normal(y, w?)

where v and w? are assumed specified. It is convenient to write w? as o2 /nq,
where ng represents the “effective number of observations” in the prior distri-
bution. Then the posterior distribution for u is given by

n

p(ply) o< p() [ [ p(yiln)

i=1
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EIC et

Note that any terms in the normal sampling distribution or prior that do not
depend on p can be ignored as they are simply absorbed into the proportion-
ality constant. By expanding the quadratics, collecting powers of u together,
and then completing the square, it is straightforward to show that (3.5) has
the form of another normal density and so we can write the posterior for p as

2

nogy + ny 2 a
= N 1 2 = == . 3.6
p(uly) ormal(v,,w;), Tn no+n w no+ 1 (3.6)
There are three other equivalent expressions for the posterior mean:
_ n
Tn :w’}/“!‘(l _w)yv w = n()_?_ﬂ; (37)
n
= 7 — ; 3.8
Tn ’Y+(y 7)n0+n7 ( )
_ _ no
=y— (y— . 3.9
YT =9—F—") F—— (3.9)

Expression (3.7) shows that the posterior mean is a weighted average of the
prior mean and the sample mean, (3.8) emphasises the interpretation of the
posterior mean as the prior mean adjusted towards the data mean, while (3.9)
shows the data mean being “shrunk” towards the prior mean. It is also clear
from the symmetry of the observed sample size n and the prior constant ng in
these expressions that ng can be interpreted as a “prior sample size” — that
is, the information content of the prior is equivalent to having observed an
additional ny “data” points. All three expressions highlight the compromise
between the prior and data means, with weights proportional to their relative
“sample sizes” or precisions.

The posterior variance is best interpreted on the inverse (i.e., precision)
scale, by re-writing (3.6) as 1/w? = ng/0? 4+ n/o?. This shows that the poste-
rior precision is the sum of the prior precision and the data precision. Alterna-
tively, we can write w2 = %2(1 —w) where (1 —w) = n/(ng+n), emphasising
that the posterior variance is the data variance shrunk by a factor propor-
tional to the relative sample size of the data as a fraction of the total effective
“sample size” (or precision) of the data plus prior.

We may consider a future observation Y as being equal to the sum of two
independent normal quantities, ¢ ~ Normal(0, 0?) and |y ~ Normal(7,,,w?)
and hence the posterior predictive distribution is

p(gly) = Normal (y,,,0° + wy) . (3.10)

So the predictive distribution is centered at the posterior mean of p with
variance equal to the sum of the posterior variance and the data (residual)
variance.
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Example 3.3.3. Trihalomethanes in tap water

Regional water companies in the UK are required to take routine measurements
of trihalomethane (THM) concentrations in tap water samples for regulatory pur-
poses. Samples are tested throughout the year in each water supply zone and
analysed using an assay with known measurement error having standard deviation
o = 5ug/L. Suppose we want to estimate the average THM concentration in
a particular water zone. Two independent measurements are taken, with values
y1 = 128 ug/L and y2 = 132 ug/L; hence their mean, 7, is 130 ug/L. What is
the true mean THM concentration in this water zone?

Denote the true mean THM concentration by p. A standard analysis would
use the sample mean § = 130 ug/L as an estimate of u, with standard error
o/y/n=>5/v/2=3.5ug/L. A 95% confidence interval is then 7+ 1.96 x o/\/n,
i.e.,, 123.1 to 136.9 ug/L.

Suppose historical data on THM levels in other zones supplied from the same
water source showed that the mean THM concentration was 120 pg/L with stan-
dard deviation 10 pg/L. This suggests a Normal(120, 102) prior for y. If we express
the prior standard deviation as o/,/ng, we can solve to find ng = (¢/10)? = 0.25
(hence the information content of this prior is equivalent to one quarter of an
observation). Our prior can thus be written as y ~ Normal(120,02/0.25).

Substituting the relevant values above into (3.6), the posterior for y is then

0.25 x 120 + 2 x 130 52 >

— Normal
pluly) = Norma < 0.25 + 2 * 0.25+ 2

= Normal(128.9, 3.33?),

giving a 95% credible interval for  of 122.4 to 135.4 ug/L. The prior, likelihood,
and posterior are shown in Figure 3.5. Note how the informative prior distribution
“pulls” the posterior to the left (away from the likelihood). The effect is only small,
however, because the likelihood contains eight times (2,/0.25) as much information
as the prior. Note also that the posterior is narrower than both likelihood and prior,
due to the combination of both sources of evidence.

Suppose the water company will be fined if observed THM levels in the
water supply exceed 145ug/L. From (3.10) the predictive distribution for
the THM concentration in a future sample taken from the water zone is
Normal(128.9,3.33% 4+ 52) = Normal(128.9,36.1) (see Figure 3.6). Hence the
probability that the THM concentration in a future sample exceeds 145 ug/L is
1— ®[(145 — 128.9)/v/36.1] = 0.0037, which is very low.

BUGS code (and data) for the above analysis is as follows, and posterior sum-
maries for the unknowns are presented in the table beneath. (Remember that in
BUGS the normal distribution is parameterised in terms of mean and precision =
1/variance.) The results are very close to the theoretical values derived above.

for (i in 1:n) {
y[i] “ dnorm(mu, inv.sigma.squared)
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Mean THM concentration (ug/L)

FIGURE 3.5
Likelihood (——) for Example 3.3.3 with prior (---) and posterior (—) distribu-
tions.
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THM concentration (ug/L)

FIGURE 3.6

Posterior (—) and predictive (——) distributions for Example 3.3.3. The vertical
line represents the concentration at which water companies are fined.
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3

mu ~ dnorm(gamma, inv.omega.squared)
inv.omega.squared <- n0/sigma.squared
inv.sigma.squared <- 1/sigma.squared

y.pred ~ dnorm(mu, inv.sigma.squared)
P.crit <- step(y.pred - y.crit)

list(n=2, y=c(128, 132), gamma=120, n0=0.25,
sigma.squared=25, y.crit=145)

node mean sd MC error 2.5% median 97.5% start sample
P.crit 0.00363 0.06014 1.856E-4 0.0 0.0 0.0 1001 100000
mu 128.9 3.328 0.01017 122.3 128.9 135.4 1001 100000

y.pred 128.9 5.999 0.01936 117.1 128.9 140.6 1001 100000

More generally, a conjugate prior is one that is “compatible” with the like-
lihood, in the sense that they share the same functional form when the like-
lihood is viewed as a function of the parameter of interest; the posterior is
then also of the same form, and hence has the same (closed) distributional
form as the prior but with modified parameters. Table 3.1 shows examples of
conjugacy in cases where the likelihood is a function of one continuous-valued
parameter. The corresponding predictive distributions for future observations
are also given. These are obtained from (3.2) by noting that since the posterior
has the same form as the prior, and p(g|f) has the same form as the likeli-
hood, then the integrand must be proportional to a closed-form distribution
(of the same distributional form as the prior and posterior). The predictive
distribution is thus given by the proportionality constant.

3.4 Inference about a discrete parameter

In cases where the prior distribution has support on a finite set of discrete
values, the posterior is derived trivially, by multiplying prior and likelihood
for each possible value of the parameter of interest, and by then normalising
each such product by their sum, as illustrated in the example below.

Example 3.4.1. Three coins

Suppose | have 3 coins in my pocket. The coins may be either fair, biased 3:1 in
favour of heads, or biased 3:1 in favour of tails, but | do not know how many of
each type there are among the 3 coins. | randomly select 1 coin and toss it once,
observing a head. What is the posterior distribution of the probability of a head?
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TABLE 3.1

Univariate conjugate prior distributions for various one-parameter likelihoods from a sample of size n. Also given are the
corresponding posterior parameters and the predictive distribution for a single new observation . See Appendix C
and/or Bernardo and Smith (1994), pp. 427-435, for definitions of distributions.

Sampling distribution Conjugate prior Posterior parameters Predictive distribution
y|@ ~ Binomial(6, n) an, = a+vy, . .
including Bernoulli (n = 1) 0 ~ Beta(a, b) bp=b+n—y Beta-Binomial(an, by, n)
2 Yn = no'y+ng7’
y|lpu ~ 17, Normal(u,0?)  p ~ Normal(y,w? = =) s notn Normal(v,,, w? + o2)*
w" = no+n
ylo? ~ [[;, Normal(u,0?) o0~2 ~ Gamma(a,b) In =0+ 1%’ »  Student-t(u, &=, 2a,)8
= bn=b+ 355y — 1) on

y|6 ~ [];-, Poisson(f) 0 ~ Gamma(a, b) Z: : l‘;::y, NegBin(bfﬁv an)
yl0 ~ [T;—, Gamma(e, 0) 6 ~ Gamma(a, b) fn = 6+ no, Gamma-Gamma(ay,, by, )
including Exponential (oo = 1) ’ b, =b+ny e

n . an =a+n, —7 Uniform(0, by ), § < by,
y|6 ~ T];_, Uniform(0, #) 6 ~ Pareto(a, b) by, = max{b, y} { 1 _Pareto(an, bn), § > bn
y|0 ~ NegBin(6, r) an, =a-+r, . . .
including Geometric (r = 1) 0 ~ Beta(a,b) by =b+y Negative-Binomial-Beta(ay, by, rp)

Hqood SONE YL



TABLE 3.1
(Continued.)

Sampling distribution Conjugate prior Posterior parameters

Predictive distribution

ap =a+n,

b =b+ > log (yT)
ap = a — NQ,

bn:ba

truncated to
(b,u = min{y})

y|0 ~ [T, Pareto(d,¢) 6 ~ Gamma(a,b)

yl6 ~ []_, Pareto(c,#) 6 ~ Pareto(a, b)

_\1—(an+1)
Clan+1) 1 1
T(an) bnd [1 + g, log (%)]

QpQ
Anp1(b-on—u—an)

[pren s — g ]y, § <
b_an+1 _ u—an-u7 g Z u

Gpt1 = Qp — O

X

TActually in the cases of binomial and negative-binomial likelihoods, the predictive distributions given are for the number of successes
in m future Bernoulli trials and for the number of Bernoulli failures before 7, successes, respectively (where the success probability is

0 in both cases).

THere, as is conventional, we parameterise the normal distribution in terms of its mean and variance. In BUGS, however, it is param-

eterised in terms of the mean and precision (inverse-variance) — see Appendix C.

§Note the ¢ distribution is parameterised in terms of mean, inverse-scale-squared, and degrees of freedom, respectively — see Ap-

pendix C.1.
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Letting y = 1 denote the event that | observe a head and € denote the prob-
ability of a head, we have that 6 € (0.25,0.5,0.75). Note that our goal here is
to make an inference about the posterior distribution of 6 itself (an unobservable
parameter), not about whether we will get a head on the next throw (an observ-
able event). Given that | select the coin at random, a reasonable prior distribution
for 0 is to assume

p(0 = 0.25) = p(6 = 0.5) = p(6 = 0.75) = 0.33.

The sampling distribution or likelihood of the data can be represented by a
Bernoulli distribution,
plylf) = *(1 - ).

The resulting posterior distribution for 8 is shown in the following table.

Prior Likelihood Un-normalised Normalised
posterior posterior
0 p(0) ply=10) ply=10)pe) 00
0.25 0.33 0.25 0.0825 0.167
0.50 0.33 0.50 0.1650 0.333
0.75 0.33 0.75 0.2475 0.500
Sum | 1.00 1.50 0.495 1.000

t The normalising constant can be calculated as p(y = 1) = >, p(y = 1]6;)p(6;) = 0.495.

So observing a head on a single toss of the coin means that there is now a 50%
probability that the chance of heads is 0.75 and only a 16.7% probability that the
chance of heads in 0.25.

The following code shows how such a model may be implemented in BUGS.

y <=1
HEHHBHHHHHHAFHBRSH B H RS H BRI HERHS
v ~ dbern(theta.true)
theta.true <- thetalcoin]
coin ~ dcat(pll)
for(i in 1:3) {
plil <-1/3
thetali] <- 0.25%i
coin.prob[i] <- equals(coin, i)
}

Language note: coin has a categorical distribution taking on values 1,2,3,
and equals() is used to identify the individual probabilities in that distribution.
This is sometimes called the pick trick for choosing a random element of a vector
— see also §5.4 and pick in the index for other examples. The loop-index i can
be used in the calculations: the term theta.true is not strictly necessary, as the
nested index y ~ dbern(thetalcoin]) could be used instead.
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node mean  sd MC error 2.5% median 97.5), start sample
coin.prob[1] 0.1662 0.3723 0.001141 0.0 0.0 1.0 1 100000
coin.prob[2] 0.3342 0.4717 0.001435 0.0 0.0 1.0 1 100000
coin.prob[3] 0.4997 0.5 0.001491 0.0 0.0 1.0 1 100000

Suppose we want to predict the probability that the next toss is a head. Now,
algebraically

Pr(Y =1|y) = ZPr = 116,)p(6;]y)
= (0.25 x 0.167) + (0.50 x 0.333) + (0.75 x 0.500) = 7/12.
In BUGS a generic method is to predict a new observation by adding the line

Y.pred ~ dbern(theta.true)

but of course in this case, we could just monitor theta.true directly, since it
represents the required probability.

node mean sd MC error 2.5), median 97.5)% start sample
Y.pred 0.5832 0.493 0.001611 0.0 1.0 1.0 1 100000
theta.true 0.5834 0.186 5.687E-4 0.25 0.5 0.75 1 100000

The same results are obtained by each method, but the Monte Carlo error is far
smaller with the “direct” method, since we avoid the additional error in sampling
an actual predictive observation.

3.5 Combinations of conjugate analyses

In many situations, more than one source of data is required to learn about
some quantity (also see §11.4). We might be able to obtain exact posteriors for
the parameter underlying each dataset, using independent conjugate analyses,
but Monte Carlo simulation may still be required to combine the evidence from
the different datasets.

Example 3.5.1. Heart transplants: learning from data
In Example 2.6.1, the expected survival of patients with heart failure undergoing
heart transplantation was estimated using Monte Carlo simulation based on a
fixed operative mortality rate (80%) and a given prior for the post-transplant
survival rate (exponential with mean 5 years). We extend this example here to
learn about these parameters from data.

Suppose that 10 patients in a particular centre received a heart transplant, and
8 of these survived the operation. These patients were followed up for the rest
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T i
s

for(i IN 1 : 8)

FIGURE 3.7

Graphical model for heart transplant survival. Evidence from the operative mortal-
ity yT and the long-term survival sP is combined to estimate the overall expected
post-transplant survival surv.t.

of their lives, and survived for 2,3,4,4,6,7,10 and 12 years, respectively. Based on
these data, we predict the expected lifetime for a similar patient about to undergo
a transplant.

A binomial model with a conjugate uniform prior is used to estimate the prob-
ability of survival pr during the operation. The post-transplant survival data are
modelled as exponential with rate 6 (mean 1/6). A conjugate gamma prior (Ta-
ble 3.1) is used for § with parameters a = b = 0.001, which is vague relative to
the data (see §5.2.6). Although the posteriors for pr and 6 are available in closed
form as Beta(9,3) and Gamma(8.001,47.001) distributions, Monte Carlo integra-
tion is required to calculate the posterior of the total expected survival pr /6. This
is then compared with the expected lifetime without transplant (assumed to be 2
years) to estimate the expected survival benefit from transplantation, labelled Is
in the BUGS code. The graphical model (Figure 3.7) illustrates how the expected
survival with transplant surv.t is inferred from two sources of data yT and sP.

yT ~ dbin(pT, nT)
pT ~ dunif (0, 1)
for (i in 1:8) {
sP[i] ~ dexp(theta)
X
theta ~ dgamma(0.001, 0.001)
surv.t <- pT/theta # expected survival with transplant
Is <- surv.t - 2

The data are supplied in a list.

list(yT=8, nT=10, sP=c(2,3,4,4,6,7,10,12))
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An initial value is also provided for 6*.
list(theta=1)

The posterior mean survival benefit is about 3 years, but with a wide posterior
credible interval of about 0.2 to 9 years.

node mean sd MC error 2.5Y, median 97.5) start sample
Is 3.136 2.271 0.003046 0.2014 2.669 8.836 1001 500000
pT 0.7495 0.1202 1.702E-4 0.482 0.7639 0.9396 1001 500000

surv.t 5.136 2.271 0.003046 2.201 4.669 10.84 1001 500000

This analysis could easily be extended to include estimating the cost and cost
effectiveness of transplantation, as in Example 2.6.1. See §11.4 for more complex
examples of combining data from different sources in BUGS.

3.6 Bayesian and classical methods

There are three broad approaches to statistical inference.

1. The Fisherian approach is perhaps most prominent in current practice:
based largely on the work of R. A. Fisher, the basic idea is to use the
likelihood function as a basis for point and interval estimation, and p-
values as a measure of the discrepancy of data with a claimed hypothesis.

2. The Neyman—Pearson philosophy of “inductive behaviour,” originally
proposed by Jerzy Neyman and Egon Pearson in the 1930s, is rooted
in decision making and the error rates in choosing between null and
alternative hypotheses Hy and Hi, and procedures for estimation and
testing are selected on the basis of their long-run properties.

3. Finally, the Bayesian approach uses the likelihood supplemented by a
prior distribution to produce a posterior probability distribution for pa-
rameters of interest, which may be combined with a loss function if a
formal decision is desired (Berger, 1985; Bernardo and Smith, 1994),
though we do not cover decision theory in this book.

*See Section 4.3. This should not really be necessary, but without it WinBUGS (or current
OpenBUGS) will automatically generate an extreme initial value from the flat gamma prior,
giving numerical overflow and an error message. Ideally WinBUGS would sample from the
tighter conjugate posterior, or use the prior mean, median, or mode as JAGS does.
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For further comparison of inferential methods see, for example, Cox and Hink-
ley (1974). While the Fisherian and Neyman—Pearson approaches are generally
considered as “classical” or “frequentist” methods and contrasted to Bayesian
analysis, the fairly informal discussion below suggests there are perhaps more
similarities between the Fisherian and Bayesian approaches to estimation than
may at first be apparent. In contrast, there can be strong differences in ap-
proaches to model selection, as discussed in Chapter 8.

3.6.1 Likelihood-based inference

If we assume a set of independent and identically distributed observations
y = {y1,...,yn} from a sampling model p(y;|f), i = 1,...,n, with scalar
6, then the likelihood (as introduced in §3.1.2) is any function of # that is
proportional to p(y|6) = [[, p(v:|¢). We shall denote such a function L(6;y).
The maximum likelihood estimate is the value 6 which maximises L(6;y), or
equivalently maximises the log-likelihood denoted £(6;y).

Let

(dlogp(Ye))2

d*logp(Y'|0
1(0) = —Eyjo {7@)( | )] = Eyj 20

d6?

be the “Fisher Information” contained in a single observation Y. Then under
broad generality conditions the maximum likelihood estimator has an asymp-
totic normal distribution

0 ~ N(0, (nI(0))™") (3.11)

where I() is a sample-based estimate of I(). Thus the maximum likelihood es-
timator will converge to the true value of the parameter assuming the sampling
model has been appropriately chosen. Similar results hold for multivariate 6:
there are various procedures for dealing with nuisance parameters 1, such
as creating a “profile likelihood” L(6,1)|0;y) for 0 based on the conditional
maximum likelihood estimates 1ﬁ|9

3.6.2 Exchangeability

“Exchangeability” is to Bayesian inference what “independently and identi-
cally distributed” is to classical inference. It is a formal expression of the
idea that we find no systematic reason to distinguish individual variables: in-
formally it is a judgement that they are “similar” but not identical. More
formally, we judge that Yi,...,Y, are finitely exchangeable if the proba-
bility that we assign to any set of potential outcomes p(yi,...,¥yn) is un-
affected by permutations of the labels attached to the variables, so that under
any permutation 7(i), ¢ = 1,...,n, we would assume that p(y1,...,yn) =

PYr(1)s s Yr(n))-
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For example, suppose Y71, Y3, Y3 are the first three flips of a (possibly biased)
coin, where Y7 = 1 indicates a head, and Y7 = 0 indicates a tail. We might
judge p(Y1 = 1,}/2 = 0,}/3 = 1) :p(}/g = 1,Y1 = 0,Y3 = 1) :p(Yl = 1,Y3 =
0,Y2 = 1): i.e., the probability of getting 2 heads and a tail is unaffected by
the particular flip on which the tail comes. This is a fairly strong assumption,
but a natural judgement to make if we have no reason to think that one flip
is systematically any different from another. Note that it does not mean we

believe that Y7, ...,Y,, are independent: this would not allow us to learn about
the chance of a head.

de Finetti (1931) proved a remarkable “representation theorem” — that if
every finite sequence of an infinite sequence of binary variables Y1,...,Y,,...

is judged finitely exchangeable, then it implies that the joint density for any
finite set can be written in the form

P,y Yn) = /Hp(yil9)p(9)d9

for some density p(f) (assuming regularity conditions so that the density exists
and is continuous).

It is easy to argue from “right to left” in this equation, since this is a
standard expression for conditional and marginal probability. But the “left to
right” identity is not at all obvious and has very powerful implications: when
extended to a more general version, it says that exchangeable random quan-
tities can be thought of as being independently and identically distributed and
drawn from some common parametric distribution depending on an unknown
parameter @, which itself has a prior distribution p(6). Thus, from a subjec-
tive judgement about the exchangeability of observable quantities, the whole
apparatus of parametric models and Bayesian statistics is derived rather than
assumed.

We will see in Chapter 10 how we can use these ideas to develop hierarchical
models.

3.6.3 Long-run properties of Bayesian methods

The long-run properties of Bayesian methods provide an attractive link to
more familiar procedures. Asymptotically (under broad regularity conditions),
as the sample size increases, the influence of the prior distribution decreases
and the posterior distribution tends to a form leading to numerically identical
(although conceptually distinct) inferences as those obtained from a likelihood
perspective. We emphasise that this is based on asymptotics in which n —
00, but the number of parameters p remains fixed. Very informally, for an
exchangeable sequence we have p(f|y) o< [, p(v:|0)p(0), and so we can write

log p(6ly) = const + » _logp(yi|6) + log p(6),

(3
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where the second term is O(n) and will dominate the prior term, which re-
mains fixed as the sample size increases. Hence expanding as a Taylor series
around the maximum likelihood estimate 6 (so that the (0 — 6) term disap-
pears), we get

N d?
log p(fly) = const + » _logp(yi6) + 50— ) > 102 logp(inG)‘ +..
7 i 6

where the quadratic term is —n x I(f), and I(f) is a sample-based estimate
of the Fisher Information () = —E[J‘% log p(Y'|0)]. Hence, taking exponents
of both sides gives

0 ~ N0, (nl(6)").

The posterior distribution will therefore give essentially the same asymptotic
estimates and intervals as the maximum likelihood estimator (Equation 3.11).
However, note that the posterior is a distribution for 6 given é, whereas (3.11)
is the sampling distribution of 0 given 6.

3.6.4 Model-based vs procedural methods

Both Fisherian and Bayesian approaches are based on the assumption of a
fully described parametric model. A distinction, however, can be drawn be-
tween Bayesian and non-likelihood-based frequentist methods. The latter may
be termed “procedural,” in that a statistical procedure that can be applied
to data is invented, rather than being derived from a fully specified sampling
model assumption, and then its properties explored in a range of possible
circumstances. Such techniques include many classical nonparametric proce-
dures such as the sign and Wilcoxon tests, generalised estimating equations,
adaptive techniques such as M-estimation, survey weighting methods such as
inverse probability weights, and so on. In some circumstances these proce-
dures can be essentially reproduced within a Bayesian framework by assum-
ing a suitably extended model, so that particular forms of tail behaviour can
mimic M-estimation, and “nonparametric” methods can be obtained from a
very flexible parametric model, as described in §11.8.

We can, however, explore what will happen in a Bayesian analysis if we
make an erroneous assumption about the model. The asymptotic analysis
shown above reveals that the posterior mean will tend to the maximum like-
lihood estimator é, which will itself converge to the “true” parameter value
6, assuming that the true sampling distribution is p(y|6) for some value . If
this is not the case and the “true” sampling distribution is some other den-
sity pr(y), then the posterior mean will converge to the “closest” value 6y in
the assumed family of distributions, where fy minimises the Kullback—Leibler
discrepancy H (#) between p(y|0) and pr(y), where

o o pr(Yy)
1) = [ 108 28 ()
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See Gelman et al. (2004), p. 585, for more discussion of convergence under
the “wrong model.”

The crucial point is that if the wrong model is assumed, then the confidence
with which the Bayesian inferences are made may be inappropriate, since, due
to the possibility of model error, the posterior distributions do not reflect the
full uncertainty. This means that there is a strong responsibility to assure
oneself of the adequacy of the chosen model, by both model checking and
adopting a sufficiently broad family to ensure robustness to a range of different
possible contingencies — see Chapter 8. Similar arguments apply in a non-
Bayesian likelihood context.

3.6.5 The “likelihood principle”

This principle states that “all information about 6 provided by data y is
contained in the likelihood, that is, any function o« p(y|@):” i.e., if observations
y and 3’ are dependent on the same parameter § and have the same likelihood
L(8;y) o« L(6;y"), then the inferences about 6 should be identical. This is
clearly trivially true for Bayesian analysis, since the posterior only depends
on the likelihood and prior.

This principle seems self-evident, until one considers frequentist Neyman—
Pearson tests that, in order to conserve a fixed Type I error rate, force one
to allow for how many times one intends to examine the data when deciding
whether to reject a null hypothesis. In other words, to take into account what
you would have done had you observed something different! For example,
when making an inference about a proportion € in a Neyman—Pearson (but
not a Fisherian) framework, it will make a difference whether you decide in
advance to carry out n trials and observe r successes, and hence adopt a
binomial model, or decide to carry on until you have observed r successes,
and happen to need to do n trials, which gives rise to a negative binomial
model. There is no difference in a Bayesian analysis, although of course the
prior may influence the results.

These issues become particularly important when conducting sequential or
adaptive clinical trials, in which the data is periodically examined and, de-
pending on the results observed, alterations may be made to the design or
the trial stopped altogether. From a strict Bayesian perspective, no adjust-
ment need be made to the conclusions as a result of these flexible designs,
and indeed, there are frequentist methods for adjusting both estimates and
intervals in a sequential trial, although they are seldom used. However, when
designing a trial, funders and regulatory bodies may still demand control of
Type 1 error and an idea of the power of a study to detect a certain effect,
and both of these “operating characteristics” are affected by adaptive designs.
It has therefore become standard practice within Bayesian adaptive trials to
make no adjustment for the design when drawing inferences, but to allow for
the design when making pre-trial assessments of the operating characteristics
(Berry et al., 2010).
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4

Introduction to Markov chain Monte Carlo
methods

4.1 Bayesian computation
4.1.1 Single-parameter models

As discussed in Chapter 3, the posterior distribution contains all the informa-
tion needed for Bayesian inference. In all of the examples encountered thus
far there is a single unknown parameter, whose posterior distribution might
be graphed to provide a complete picture of the current state of knowledge
arising from the data and prior information. More generally, though, we wish
to calculate numeric summaries of the posterior distribution via integration,
e.g., Elfly] = [,0p(0ly)db. In the conjugate examples considered so far, the
posterior distribution is available in closed form and so the required inte-
grals are straightforward to evaluate. However, outside the conjugate family
of models, the posterior is usually of non-standard form (although we can al-
ways write down its density function to within a constant of proportionality).
As a consequence, at least some of the integrals required for summarising the
distribution are difficult.

Various methods are available for evaluating such integrals. In cases where
we can sample directly from the posterior, such as in conjugate problems, we
could use Monte Carlo simulation (if we wished to venture beyond standard
results). More generally, however, we could try to obtain an approximation
to the posterior density that is analytically tractable, for example, assuming
asymptotic normality of the posterior or more complex techniques such as
Laplace’s method (see, for example, Carlin and Louis (2008); Gelman et al.
(2004) for further details). Alternatively, numerical integration methods can
be used (Davis and Rabinowitz (1975); Press et al. (2002), Ch. 4). Standard
techniques include Gaussian quadrature, or a form of (non-iterative) Monte
Carlo integration, which differs from the form described in §1.4. There we
could obtain a direct sample from p(f|y) — here we cannot, so we would
integrate by sampling points uniformly from the region to be integrated over,
averaging the values of the integrand at those points, finally multiplying by
the size of the region.

Here, however, we focus exclusively on the class of iterative methods known

o7
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as Markov chain Monte Carlo (MCMC) integration (Gelfand and Smith, 1990;
Geman and Geman, 1984; Metropolis et al., 1953; Hastings, 1970). These
are by far the most powerful and flexible class of algorithms available for
Bayesian computation, though see §4.6 for a brief discussion of situations
where MCMC is not well suited. We first present an example in which the
single parameter of interest has a non-standard posterior, to illustrate the
ease with which complex integrals can be evaluated using MCMC in BUGS.
Later, after discussing multi-parameter models, we will describe the types of
MCMC algorithm used by BUGS for performing such computations.

Example 4.1.1. Surgery (continued): non-conjugate inference

Suppose we observe the number of deaths y in a given hospital for a high-risk
operation. Let n denote the total number of such operations performed and sup-
pose we wish to make inferences regarding the underlying true mortality rate, 6,
say. The likelihood, up to a constant of proportionality, is given by

p(yl0) oc 6(1 = 0)".

Note that § must lie between 0 and 1, and suppose that to impose this constraint
we choose a non-conjugate, normal prior for the logistic transform of 6:

logitd = log (%) ~ Normal (s, w?)

1 1
= p(0) = a1 =) X » 271_exp{——

1.2

0.8
|

p(theta)

0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0
theta

FIGURE 4.1

Prior density for § in the case where logitf ~ Normal(0,2.71).

Figure 4.1 shows the prior density for § with ; = 0 and w? = 2.71, which
correspond to a good approximation of the standard logistic density (Appendix C
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and §5.2.5), which would be uniform on the scale of 6. Multiplying prior and
likelihood together gives the posterior

w2

plOly) = A x 0V 1(1 = )" L exp { (logit u)Q} |
where A is the normalising constant required to make the density integrate to 1.
A is analytically intractable, but even if we knew A, the posterior expectation

202

1
E[fly] = A x / 0Y(1 — )" ¥ lexp { (logit6 — ,u)z} dé

0
would still be intractable.

In Example 3.3.1, where a conjugate Beta(., .) prior was specified for 6, we were
able to derive the posterior in closed form and perform Monte Carlo integration
directly by specifying that closed form as a sampling distribution in BUGS. With
a normal prior on logit &, however, there is no closed-form posterior. In such cases
BUGS can perform Markov chain Monte Carlo integration instead if we simply
specify the likelihood and prior separately. Suppose y = 10 and n = 100:

y <- 10

n <- 100

HERHHHHH BRI

v ~ dbin(theta, n)

logit(theta) <- logit.theta

logit.theta ~ dnorm(0, 0.368) # precision =1/ 2.71

The software knows how to derive the posterior distribution and subsequently
sample from it. The resulting samples are used as in standard Monte Carlo inte-
gration to compute various posterior summaries, e.g.,

node mean sd MC error 2.5% median 97.5) start sample
theta 0.1081 0.03029 3.387E-4 0.05725 0.1052 0.1744 1001 10000

Hence the posterior mean is 0.108 and an approximate 95% credible interval for
6 is (0.0573, 0.174). Given the prior distribution and the observed data, we can
be 95% sure that the “true” mortality rate lies between 0.0573 and 0.174. These
results are very similar to those obtained in the conjugate case with 6 assigned
a fully uniform Beta(1,1) prior, as opposed to the approximately uniform prior
shown in Figure 4.1: mean = 0.108, interval = (0.0557, 0.175).

4.1.2 Multi-parameter models

More generally we are interested in models with more than one unknown pa-
rameter. As the number of parameters increases, however, it is increasingly
difficult to identify a conjugate prior, to the extent that for all but the sim-
plest of problems the joint posterior distribution is of non-standard form. In
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addition, the integrals required for inference become high dimensional. For
example, suppose we have a joint posterior distribution for the vector of un-

knowns 6 = {61,...,0r}. We often want to base inference on the marginal
posterior of a subset of the parameters: the marginal posterior for 61, say, is

pat) = [ oo [ ool . asy.

In such cases MCMC is often the only suitable method of integration.

Example 4.1.2. A multi-parameter model

Suppose we have observed data y;, i = 1,...,n, which we believe arise from
a heavy-tailed Student-t distribution with unknown mean g, unknown inverse-
scale-squared r, and unknown degrees of freedom d (see Appendix C.1). Further
suppose that we specify independent Normal(y,w?) and Gamma(«, 3) priors for
1 and 7, respectively, and an independent discrete-uniform prior for d on the set
{2,3,...,30}. The joint posterior distribution is given by

d+1 r "o r —(d+1
p(u,r,dly)m{ré(i))\/%} H{HE(yi—u)?} v [likelihood]

2

1
< exp{—5isle—? ) [prior s
x r* Lexp(—pBr) [prior r]
x 1/29 [prior d],
which is certainly of non-standard form! Suppose we wish to make marginal in-
ferences about the unknown degrees of freedom d. Then we need

p(dly) = / / P, dly) drdp,

which is intractable. In BUGS we simply specify the likelihood and each prior as
follows:

for (i in 1:n) {y[il ~ dt(mu, r, d)}

mu ~ dnorm(gamma, inv.omega.squared)
r ~ dgamma(alpha, beta)

d ~ dcat(p[l)

pl1] <=0

for (i in 2:30) {pl[i] <- 1/29%}

The software then uses Markov chain Monte Carlo to generate samples from
the joint posterior distribution p(u, 7, d|y). These can be used to make arbitrary
inferences about the joint posterior or, by simply ignoring samples not pertaining
to the variable(s) of interest, to make marginal inferences about any subset of the
parameters. For example, we first generate a toy data set by simulating n = 100
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values from a t-distribution with 4 =0, r = 1, and d = 4. We then fit the above
BUGS model, with “vague” priors given by v = 0, w = 100, and o = 3 = 1073
(see Chapter 5 for discussion of why these might be suitable choices), and initial
values list(mu = 0, r = 1, d = 10), to obtain

node mean sd MC error 2.5% median 97.5% start sample
d 12.82 7.584 0.1648 3.0 11.0 29.0 1 100000
mu  0.04393 0.09752 5.455E-4 -0.1467 0.0431 0.2368 1 100000
r 1.339 0.3203 0.005169 0.8774 1.282 2.123 1 100000

Hence, we can immediately infer that the degrees of freedom has a (marginal)
posterior median of 11 and a 95% credible interval of [3,29]. Visual inspection
of the posterior (Figure 4.2) reveals that there is limited information in the data
regarding d but that the mode, 5, is close to the true value of 4.

d sample: 100000

0.08
0.06
0.04

021 .|I“||II|||||||IIIIIIIII||||
1I 1|0 2|0 3|o

FIGURE 4.2

Approximate posterior distribution for number of degrees of freedom from analysis
of 100 observations from (0, 1,4).

4.1.3 Monte Carlo integration for evaluating posterior inte-
grals

As we have seen in §1.4 we can calculate arbitrary summaries of interest for a
given distribution by Monte Carlo integration. Hence, assuming we can obtain
a sample of realisations from the joint posterior p(f|y), we have an entirely
general method for evaluating the integrals necessary for Bayesian inference.
So how might we obtain a sample from p(f]y)?

For all but the most tractable of posterior distributions, this cannot be
done directly. However, a number of algorithms exist for indirect sampling
from non-standard distributions. In general, these methods work by sampling
values from an approximate distribution and then correcting or adjusting the
values so that they better resemble a sample from the true distribution of
interest. The book by Ripley (1987) offers the interested reader a thorough
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account of many such methods. Amongst the most widely used are importance
sampling and rejection sampling. These are non-iterative algorithms, in the
sense that the same approximation to the target distribution is used through-
out. However, to use them for Bayesian computation necessitates finding a
density that is a good approximation to the (log) joint posterior and that is
easy to sample from directly. For many realistically complex Bayesian models,
this is difficult or impossible to do (using generic methods that do not have
to be tuned to specific applications).

The alternative is to use an iterative algorithm, in which a single realisa-
tion from the approximating distribution is drawn at each iteration, but the
approximate distribution is improved at each step. Once the approximating
distribution is sufficiently close to the target (i.e., the joint posterior), succes-
sive draws from this distribution can be considered to form a sample from the
joint posterior of interest. Hence as the iterations proceed, the approximating
distribution can be thought of as converging towards the posterior. Theorems
exist which prove that if the approximating distribution is set up in a cer-
tain way (essentially so that the successive realisations form a Markov chain
with appropriate transition probabilities — see below), then this convergence
will occur almost surely as T' (the number of iterations) — oo (Tierney, 1994;
Roberts and Rosenthal, 2004; Robert and Casella, 2004; Asmussen and Glynn,
2011). In practice, of course, only a finite number of iterations is possible, and
as we shall see in §4.4, deciding at which point the approximating distribution
is close enough to the target posterior is crucial when using these methods for
Bayesian inference.

4.2 Markov chain Monte Carlo methods

As hinted above, one of the most reliable and general methods for choosing
a suitable iterative approximating distribution for sampling from complex
Bayesian posterior distributions is to use a Markov chain. Formally, a sequence
of random variables X (©, X X @) forms a Markov chain if, for all ¢, the

distribution of the t + 1** variable in the sequence is given by
XU prans (2| X = 20), (4.1)

that is, conditional on the value of X®)| the distribution of X **1) is indepen-
dent of all other preceding values, X~V .. X The right-hand side of
(4.1) is called the transition distribution of the Markov chain and defines the
conditional probability of moving to any particular new value given the current
value of the chain. Subject to fairly general regularity conditions (including
irreducibility and aperiodicity, see Cox and Miller (1965)), the marginal (or
unconditional) distribution of X *+1) will converge to a unique stationary dis-
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tribution as t — oo. In simple terms, this means that although each variable
in the chain depends directly on its predecessor, eventually (as ¢ increases) we
reach a point such that for practical purposes, all subsequent values are dis-
tributed marginally according to the same fixed distribution, which, crucially,
is independent of the starting value X(®. In other words, the chain even-
tually forgets where it started and conforms to an underlying “equilibrium”
distribution.

So how does this help us to generate realisations of 6 from the joint pos-
terior distribution p(f|y) in a Bayesian analysis? Replacing the random vari-
able X above by the random vector €, the answer is to choose a transition
distribution suitable for generating (from an arbitrary initial state #(°)) a se-
quence of realisations 81, #(2) §3) . whose unique stationary distribution
is the joint posterior of interest p(6|y). The marginal distributions of the #(*)s
(t = 1,2,3,...) play the role of the approximating distributions discussed
earlier, with the approximation becoming successively closer to the target
posterior as the Markov chain converges to its stationary distribution.

Many methods exist for designing and sampling from such transition dis-
tributions, and their suitability depends on the nature of the joint posterior
distribution to be explored. As Bayesian models have become more and more
sophisticated, so people have invented cleverer and cleverer algorithms for
constructing efficient Markov chains to sample from required posterior distri-
butions. Inevitably there is a trade-off between the generality of a particular
method and its ability to sample efficiently from complex, high-dimensional
densities through fine-tuning. Here we focus on the main algorithms used by
the BUGS software, which, of necessity, are designed to be robust in a wide
range of applications rather than optimised for specific cases. Some strate-
gies and tricks for improving the efficiency of BUGS simulations in certain
situations are discussed, for example, in §6.1, §10.5, §11.2.

Note that, in general, MCMC methods generate a dependent sample from
the joint posterior of interest, since each realisation depends directly on its
predecessor. We can still use this sample as the basis for Monte Carlo inte-
gration, however, as all of the results discussed in §1.4 still hold.

4.2.1 Gibbs sampling

The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990;
Casella and George, 1992) is one of the most widely used algorithms for simu-
lating Markov chains. It is a special case of the Metropolis—Hastings algorithm
(Metropolis et al., 1953; Hastings, 1970) and generates a multi-dimensional
Markov chain by splitting the vector of random variables 6 into subvectors
(often scalars) and sampling each subvector in turn, conditional on the most
recent values of all other elements of 8. The algorithm proceeds as follows. Let
the vector of unknowns € consist of k sub-components, i.e., 8 = (61,02, ...,0k):

1. Choose arbitrary starting values ago), 950), e 0,(60) for each component,



64 The BUGS Book

where subscripts denote sub-components of # and superscripts denote
the iteration number (iteration zero being the initial state of the Markov
chain).

2. Sample new values for each element of 6 by cycling through the following
steps:

e Sample a new value for 61, from the full conditional distribution of
0, given the most recent values of all other elements of § and the
data:

01 ~ p(6:108”, 65, .00 y).

e Sample a new value 0%1) for the second component of @, from its
full conditional distribution p(92|9§1), 9:(30), ... 7915:0)’ y). Note that as
a new value for 61 has already been sampled, it is this “most recent”
value that is conditioned upon, together with the starting values
for all other elements of 6.

e Sample 9,&1) from p(@k\ﬂgl), 0;1), . ,Géljl,y).

This completes one iteration of the Gibbs sampler and generates a new
realisation of the vector of unknowns, §(1).

3. Repeat stage 2 many times, always conditioning on the most recent val-
ues of other parameters, to obtain a sequence of dependent realisations
of the vector of unknowns 6 () ... 0(T) (where T is typically of the
order of many thousands).

Figure 4.3 graphically illustrates the algorithm in the case of a hypothet-
ical two-parameter problem (k = 2). The beauty of Gibbs sampling is that
simulation from a complex, high-dimensional joint posterior distribution is re-
duced to a sequence of algorithms for sampling from one- or low-dimensional
distributions. As we shall see in the next subsection, these univariate or low-
dimensional full conditional distributions can usually be simplified by exploit-
ing the conditional independence structure of the model, and in many cases
are available in closed form (see Example 4.2.2 below), in which case direct
sampling is straightforward using a specialized, distribution-specific random
number generator (Ripley, 1987).

4.2.2 Gibbs sampling and directed graphical models

Suppose the model of interest can be represented as a directed acyclic graph
with stochastic nodes G and directed links £. As discussed in §2.1.2, the
conditional independence assumptions expressed through the DAG structure
allow us to write p(G) = [[,cg p(v|pafv]) (Lauritzen et al., 1990). That is, the
joint distribution of all nodes is given by the product, over all nodes, of the
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FIGURE 4.3

(a) First iteration of the Gibbs sampler for an illustrative two-parameter (bi-
variate) problem. The contours show the “height” of the true bivariate poste-
rior distribution p(|y) = p(61, 2]y). The starting point of the Gibbs sampler
6 = (950), 950)) is shown by the solid dot, and the pair of values (951),951))
sampled in the first iteration is shown by the open circle. The univariate den-
sity projected onto the top horizontal axis shows the full conditional distribu-
tion p(91|9;0) , ), which is obtained by taking a horizontal “slice” through the
joint posterior distribution at the value 6 = 9;0) (indicated by the horizontal
dashed line). A new value for 6, (09)) is generated from this full conditional,
and then a “slice” parallel to the 6 axis is taken through the joint posterior
at 6 = 9§1) (vertical dashed line). This gives the univariate full conditional
p(@g\ﬂgl), y), which is shown projected onto the right-hand vertical axis, and
from which a new value for 05 (951)) is sampled. (b) First five iterations of the
Gibbs sampler shown in (a). Note that the sampler always moves parallel to
the axes.

assumed distribution of each node conditional on its parents; in other words,
the product of all distributional assumptions. The set of all unknowns 6 and
the set of all data y together form a partition of G, and so

p(0,y) = ][ p(vlpalv]). (4.2)

vEG

From the definition of conditional probability, p(f]y) = p(8,y)/p(y), which is
proportional to p(f,y) when considered as a function of §. Hence the joint
posterior can be obtained trivially for any DAG, up to a constant of pro-
portionality. Similarly, any conditional distribution involving all nodes in the
graph is also proportional to p(f,y). Thus for any unobserved node (or set of
nodes) 0;, say, the full conditional distribution p(6;|6\;,y), where 6\; denotes
“all elements of 6 except 6;,” is proportional to p(f,y) and can therefore be
expressed as the right-hand side of (4.2). However, we are seeking to identify
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a distribution in 6; and so any factor in (4.2) not involving #; can be ignored,
since it forms part of the normalising constant. Hence we obtain

p(Bil6yi,y) oc p(Bilpale]) x [ plolpale)), (4.3)
vEch[f;]

and so the full conditional is dependent only on pal[6;], ch[f;] and all co-parents
of 0;’s children. Collectively these three sets of nodes form a neighbourhood
in the graph around 6; known as the Markov blanket; 8; is conditionally inde-
pendent of all other nodes in the graph, given the Markov blanket. The sub-
sequent derivation of a closed form for the full conditional (where available)
is exactly analogous to the derivation of a closed-form posterior in conjugate,
single-parameter models. The first term on the right-hand side of (4.3) plays
the role of the prior distribution and is referred to as the “prior component.”
The product in (4.3) plays the role of the likelihood and is known as the “like-
lihood component.” Finally, as we are conditioning on the most recent values
of all other nodes, it is as if those nodes have known values, and so there is
effectively only one unknown, 6;.

Example 4.2.1. The Markov blanket

Consider the directed acyclic graph shown in Figure 4.4. Suppose we wish to derive
the full conditional distribution for node C. This is proportional to the product of
distributions for C and all of its children, conditional on their parents, i.e.,

P(CIA,B,D, .., 1) x p(C|A, B) x p(EIC, D) x p(F|C, D),

since ch[C] = {E, F}. The Markov blanket for C is given by its parents, its children,
and all co-parents of its children, in this case {A,B,D,E,F}. Given the Markov
blanket, a node is conditionally independent of all other nodes in the graph (G,
H, and | here), and so p(C|A,B,D,...,I) can be rewritten as p(C|A,B,D, E,F).

Example 4.2.2. Full conditional distributions

Suppose we observe data y1,...,¥y,, assumed to form a random sample from
a normal distribution with unknown mean g and unknown precision 7. Further
suppose that we specify independent priors on p and 7 as follows:

p ~ Normal(y,w?); 7~ Gamma(a, 3).

Note that these are the conjugate priors for the cases in which the precision and
the mean, respectively, have known values (see Table 3.1). Note also, however,
that the joint prior p(u,7) = Normal(7y,w?) x Gamma(a, 3) does not lead to a
closed-form joint posterior. Thus, in order to make inferences about i and 7, we
might run a Gibbs sampler. We first choose arbitrary starting values, u(¥ =5
and 7(® = 10, say, and then an equally arbitrary updating order, p then 7, say.
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FIGURE 4.4
Directed acyclic graph for Example 4.2.1, showing parent—child relationships
between nine nodes.

At iteration t of the Gibbs sampler we draw p(") ~ p(u[r¢=V y) and 7(V) ~
p(T|pu, y), where the full conditional sampling distributions can be derived from
the DAG shown in Figure 4.5. The full conditional for p is proportional to the
prior for p multiplied by the distribution of each child of x conditional on that
child’s parents. From the graph, ch[y] = {y;,4 =1,...,n}, and so

_ 1 r=1) 2
p(ulr Y y) o exp{—m(u—vf}xexp{— 5 > wi—mw?y.

i=1

Conditioning on 7 = 7(t=1) is essentially the same as assuming 7 to be known.
Hence this is exactly the same type of calculation as is required for deriving the
single-parameter posterior (for y) in the unknown mean, known precision/variance
case — see §3.3.2. Therefore,

DS g+ w2y 1 )

(t—1) _
p(ulT 2Y) Normal( nrt=0 4§ -2 7 pr=1) 4 =2

Similarly, ch[7] = {y;,i =1,...,n}, and so

24
i=1

_ n T -
p(rlu®™,y) o 7% exp{—pr} x 7% exp{——Z(yi—u(”)Q},

which is the same as in the known mean, unknown precision case presented in
Table 3.1. Hence

n 1 <
P(T|M(t),y) = Gamma (a + 3 8+ 5 Z(yz _ ,u(t))2> .

i=1
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FIGURE 4.5

Directed acyclic graph depicting the assumption y; ~ Normal(u,771), i =
1,...,n. Note the use of rectangular “plates” to denote repetition, i.e., the “loop”
over 1.

4.2.3 Derivation of full conditional distributions in BUGS

Equation (4.3) demonstrates that only local knowledge of the graph is needed
to derive the full conditional distribution of any node (or group of nodes). In-
deed, in order to derive all of the full conditionals required for Gibbs sampling
on any DAG, we simply need to know how each node is related to its parents
and which nodes are its children. BUGS stores this information in the form
of an object-oriented version of the specified graph, with “objects” represent-
ing nodes and “pointer variables” linking nodes together, in particular linking
each node to its children. The software uses an expert system to visit each
node in turn and classify the form of the full conditional by considering the
“compatibility” of the prior component (the distribution of the node itself,
conditional on its parents) with each term in the likelihood component (the
distribution of each child conditional on its parents). If the full conditional
is available in closed form then a specialized, distribution-specific algorithm
will be used to derive and sample from that closed form. If a closed form is
not available, however, the expert system chooses a more general algorithm
from a range of suitable methods, based on any important features of the full
conditional that might have been gleaned from the aforementioned compati-
bility considerations, e.g., whether the density is “log-concave,” or has infinite
support, say. Some of the more commonly used alternative sampling methods
are discussed briefly in the following subsection; the reader is referred to Lunn
et al. (2000) and Lunn et al. (2009b) for further details regarding the internal
workings of BUGS.

4.2.4 Other MCMC methods

As mentioned above, if direct sampling from the full conditional is not possi-
ble, then the WinBUGS software implements a number of alternative, more
general algorithms, including “slice” sampling (Neal, 2003), Metropolis sam-



Introduction to MCMC methods 69

pling (Metropolis et al., 1953; Hastings, 1970), and various types of rejection
method, such as “adaptive rejection sampling” (Gilks, 1992; Gilks and Wild,
1992) — see Lunn et al. (2000) or the WinBUGS manual for more details. Fur-
ther algorithms are available in the OpenBUGS implementation of BUGS, for
example, delayed rejection (Green and Mira, 2001) and hybrid/Hamiltonian
methods (Duane et al., 1987; Neal, 2010) — please see the OpenBUGS doc-
umentation. Note that such methods are used only as a means of updating
full conditionals within a Gibbs sampling scheme; use of the Metropolis al-
gorithm, for example, thus leads to a type of sampling known as Metropolis-
within-Gibbs.

Metropolis algorithms We do not wish to go into the details of vari-
ous sampling methods in this text, but we feel it is instructive to provide
an overview of Metropolis-based algorithms since they lead to a characteristic
form of output that could be perceived as erroneous by the inexperienced user.
Metropolis algorithms work by first sampling values from a proposal distri-
bution, which approximates the relevant full conditional (or, more generally,
target distribution) but is easy to sample from. An acceptance probability « is
then calculated for the proposed value, and a Uniform(0, 1) random number
w is drawn to convert that probability into an accept/reject decision (reject
if u > «, accept otherwise). If the proposed value is to be accepted then the
Markov chain moves to that value, otherwise it remains at its current value.
This leads to a Markov chain that stays in the same place for a number of
iterations, on a regular basis, particularly if the proposal distribution does
not approximate the target distribution well (giving typically low values for
«). If we plot a continuous line joining successive samples together, then the
resulting trace plot — see §4.4.1 — can have the appearance of a cityscape
(a metropolis perhaps), with the roofs of buildings corresponding to multiple
successive rejections (see Figure 4.6, for example). Despite the chain contain-
ing multiple repeated values, it may be used, for inference, in exactly the
same way as if all values had been sampled directly, as long as sufficient time
is allowed for the chain to fully explore the target distribution.

In principle it is possible to use the Metropolis algorithm to jointly update
the entire posterior distribution in one go, rather than using the alternat-
ing conditional updating scheme of the Gibbs sampler. However, this often
requires problem-specific fine-tuning to obtain a multivariate proposal distri-
bution that is a good approximation to the joint posterior of interest; hence,
such an approach is not used in any implementation of BUGS, although note
that various types of “block updating,” where a group of variables is updated
together according to their joint full conditional, are possible. Even when used
within a Gibbs sampling scheme to sample from univariate full conditionals,
the Metropolis algorithm requires some tuning to obtain efficient simulations.
This tuning process has been fully automated in WinBUGS and is known as
the adapting phase (see also §12.4.3, and the WinBUGS manual). Samples
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FIGURE 4.6

Trace plot, whereby successive samples for a single parameter are joined to-
gether by a continuous line (plotted against iteration number). The plot il-
lustrates how output from Metropolis-based samplers contains multiple se-
quences of repeated values, which can give the plot the appearance of a
cityscape.

generated during this phase, however, cannot be considered to arise from the
posterior distribution, and so they must be discarded before performing any
Monte Carlo integration. The “slice” sampler used in all BUGS implemen-
tations also fine-tunes itself during an initial adapting phase, and the same
rule about discarding samples generated during this phase applies. These and
other issues relating to the interpretation of output from different MCMC
algorithms will be further discussed as they arise in context.

4.3 Initial values

Before any MCMC method can be started, we must first initialise the Markov
chain, i.e., provide starting values for each unknown parameter in the statis-
tical model. WinBUGS and OpenBUGS can often do this automatically, by
sampling from the assumed (“prior”) distribution of each parameter. However,
such distributions may have very large variances, say, to reflect a lack of prior
knowledge, and wildly inappropriate starting values may result. The disparity
between such initial values and those values supported by the posterior often
then causes the program to crash. Hence we have the facility to specify initial
values manually instead. JAGS, on the other hand, when asked to generate
initial values automatically, chooses a “central” value from the distribution,
such as the mean or median, which avoids this problem. In WinBUGS initial
values can be supplied as a list after the model description or in a separate
file (see §12.4.2). In practice a mixture of these two strategies typically works
well, with some values specified by the user and the remaining values gener-
ated automatically by the BUGS engine. All of the remaining examples in this
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book have been run with a mixture of manually specified and automatically
generated initial values. Except in cases where the manually specified values
have been given explicitly, it will not generally be possible for the reader to
reproduce ezxactly any results quoted using their own code, although results
should agree up to Monte Carlo error — see §4.5.

Example 4.3.1. Initial values

Consider the multi-parameter Student-t problem described in Example 4.1.2.
There are three unknown parameters, each of which must be initialised. The
prior for 1, the mean of the Student-t distribution, is Normal(7y,w?). With v =0
and w = 100 as in Example 4.1.2, typical values from this prior lie in the range
(—20000,20000). Hence we might prefer to simply set 1(©) = 0 rather than sam-
ple from the prior and obtain 14,603, say, which is unlikely to be a good starting
point! The prior for r is Gamma(0.001,0.001), which WinBUGS cannot even
sample from (due to numerical inaccuracies caused by the small size of the first
parameter), and so a user-specified initial value is essential, e.g., r® = 1. We
may also provide our own starting value for the degrees-of-freedom parameter,
e.g., d = 8 but any value from the discrete-uniform prior on {2,3,...,30}
would represent a reasonable starting point and so we might prefer to let Win-
BUGS generate this automatically. The user-specified values for ;1 and r can be
provided in the form of a list given after the model description:

list(mu = 0, r = 1)

In Example 2.1.2, we described the basic steps for running a model in WinBUGS.
In this example, we would now need to load this list of initial values in Step 7, as
follows, which was previously ignored.

e Highlight the word 1ist by double-clicking on it, and click 1oad inits in
the Specification Tool.

Initial values for the remaining parameters (d in this case) are generated auto-
matically using the gen inits command (see also §12.4.3); note that this must be
used after the user-specified values have been loaded.

4.4 Convergence

As discussed in §4.2, if we simulate realisations from a Markov chain transition
distribution, then under broad conditions, eventually the simulated values will
be marginally distributed according to the Markov chain’s unique stationary
distribution. To fully exploit this fact we need to be able to detect when the
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marginal behaviour of the chain is sufficiently close to stationarity, so that
we can harvest all subsequent realisations as a dependent sample from the
stationary distribution; note that the initial, non-stationary portion of the
chain is referred to as the “burn-in.”

It is important to note that convergence here is to a distribution, not to a
fixed value. In practice we diagnose convergence retrospectively, by guessing
for how long to run the simulation (we can always keep going if our initial
guess proves insufficient) and then trying to determine if some latter portion
of the chain can be considered stationary. We typically have to run the sim-
ulation well beyond the point of convergence, as detecting stationarity (or a
lack thereof) requires a substantial sample size, as does accurate inference.
The actual post-convergence sample size required depends very much on the
efficiency of the Markov chain. We will discuss efficiency more formally in
§4.5, but we note here that, basically, the number of samples required, both
for detecting (non-) stationarity and for drawing accurate inferences, increases
with an increasing level of serial dependence in the chain (also known as serial-
or auto-correlation).

So why might we have a significant level of autocorrelation in the chain?
First note that all Markov chains, by definition, exhibit at least some serial
correlation. Second, imagine the two-parameter Gibbs sampler depicted in
Figure 4.3 and suppose there is a high degree of correlation in the target
distribution, such that the contours form narrow ellipses along the line y = z,
say. The Gibbs sampler is capable of exploring the entire joint posterior but
can only move perpendicular to the axes. Hence the shape of the distribution
prevents the sampler from taking anything other than small steps, and so
successive values of each variable are close together. All Metropolis-based
sampling algorithms also induce a level of autocorrelation in the sample, due
to their tendency to remain in the same place for a number of iterations, as
discussed in §4.2.4.

4.4.1 Detecting convergence/stationarity by eye

Our task is made easier by the fact that it is often straightforward to detect
(lack of) convergence informally by eye. Figure 4.7 illustrates this via several
history (or trace) plots, whereby a continuous line joining successive reali-
sations of a specific variable is plotted against Gibbs iteration number. The
various plots comprising the figure are discussed below.

Our model may contain many parameters but it is not feasible to visually
examine more than one at a time. This does not preclude convergence diag-
nosis, however, since we can simply assume convergence at the point where
all parameters have reached stationarity — note that it is quite normal for
different parameters to converge at different rates. Many realistically complex
models, however, have hundreds or even thousands of parameters, and per-
forming an individual assessment for each one may be impractical. In such
cases it is important to at least assess all parameters (and functions thereof)
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of interest. It is also prudent to examine at least a random selection of the
remaining parameters.

As demonstrated by Figure 4.7(a), a Markov chain that has reached station-
arity should look like a random scatter about a stable mean value. In addition,
if plotted from the point of convergence onwards, a stationary Markov chain
that contains sufficient information for reliable inferences, informally speaking,
has the appearance of a “fat hairy caterpillar” (see Figure 4.7(b)). However,
if the Markov chain has a “snake-like” appearance instead (Figure 4.7(c)),
this does not necessarily mean that it hasn’t converged, since there may sim-
ply be a high degree of autocorrelation in the sample. Hence the time scale
over which the chain is plotted may be too short to clearly demonstrate sta-
tionarity, meaning that more samples are required. If we were to continue
sampling indefinitely, repeatedly redrawing the entire history plot within the
same area, it would eventually take on the required form, i.e., that of a fat
caterpillar (see Figure 4.7(d)), since any “periodicity” would be “squeezed”
to the point where it looked like random scatter — note that this also applies
to regions of any Metropolis output where rejections have occurred. Markov
chains generated using the Gibbs sampler often converge surprisingly quickly,
within the first few iterations, say. However, it is important to note that the
rate of convergence can be very slow, so slow in fact that a Markov chain may
appear stationary even when it is not (the apparently “stable” mean may be
drifting very slowly).

Of course, there is no reason why we cannot simulate two or more Markov
chains and pool the resulting samples (after convergence) for making infer-
ences. Such an approach provides us with a very effective means of checking
convergence. If the multiple chains are given widely differing initial states,
then we can be reasonably confident that stationarity has been reached when
the chains come together and start behaving similarly. Figure 4.7(e) illustrates
this by showing the same chain as in Figure 4.7(a) but with another chain,
initialised at a different starting point, superimposed. This approach forms
the basis of perhaps the most reliable formal convergence diagnostic, which
is discussed in the following subsection. We note here, however, that run-
ning multiple chains can be inefficient, particularly if the rate of convergence
is slow, since we effectively have to wait for convergence multiple times. This
problem is exacerbated by the need to use widely differing initial states, which
increase confidence in the diagnosis but often also substantially increase the
number of iterations required to reach convergence.

4.4.2 Formal detection of convergence/stationarity

Numerous techniques for formally diagnosing convergence can be found in
the literature. Many of these have been implemented within the CODA (Best
et al., 1995; Plummer et al., 2006) and BOA (Smith, 2000) software pack-
ages for R and S-Plus, which are designed to take BUGS output as input.
No method should be used blindly, however, as none can provide conclusive
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History/trace plots depicting five different scenarios. A continuous line joining
successive realisations of a given parameter is plotted against Gibbs iteration
number: (a) After convergence to its stationary distribution, a Markov chain
typically looks like a random scatter about some stable mean value (iteration
~250 onwards); (b) A converged chain that contains sufficient information
for accurate inferences looks like a “fat hairy caterpillar;” (c) A “snake”-like
chain may have converged but contains too much serial-/auto-correlation for
accurate inferences to be drawn — more samples required; (d) The same chain
as in (c) but extended to iteration 200,000 and plotted over the same width
— the chain now takes on the required form; (e) The same chain as in (a) but
with another chain, initialised at a different starting point, superimposed.
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proof of convergence and all are fallible. Indeed they are invariably founded
on a null hypothesis of convergence and as such are designed only to de-
tect non-convergence. Different methods examine/highlight different stochas-
tic features of the chain(s), and so it is prudent to always consider a range of
methods. For any given method, it is usually possible to construct an exam-
ple whereby that method will fail to detect non-convergence but others may
succeed. The reader is referred to Cowles and Carlin (1996) and Mengersen
et al. (1999) for detailed reviews of the various methods available. One method
that seems to stand out as being particularly effective, in our experience, is
that originally proposed by Gelman and Rubin (1992) and subsequently mod-
ified in Brooks and Gelman (1998). Here multiple chains starting at “overdis-
persed” initial values* are simulated and convergence is assessed by comparing
within- and between-chain variability. This is the only convergence diagnostic
currently implemented in WinBUGS (and OpenBUGS), but we reiterate the
wide range of methods available in BOA and CODA.

Again, we examine only one variable at a time, although multivariate ex-
tensions of the approach do exist (Brooks and Gelman, 1998). Suppose we
simulate M chains, each of length 27T, with a view to assessing the degree
of stationarity in the final T iterations. We take as a measure of posterior
variability the width of the 100(1 — )% credible interval for the parameter of
interest, e.g., & = 0.2. From the final T iterations we calculate the empirical
100(1 — )% credible interval for each chain. We then calculate the average
width of these intervals across the M chains and denote this by W. Finally, we
compute the width B of the empirical 100(1 — )% credible interval based on
all M'T samples pooled together. The ratio R=B /W of pooled to average in-
terval widths should be > 1 if the starting values are suitably overdispersed;
it will also tend to 1 as convergence is approached, and so we can assume
convergence for practical purposes if R < 1.05, say.

Rather than calculating a single value of R, we can examine the behaviour
of R over iteration time by performing the above procedure repeatedly for an
increasingly large fraction of the total iteration range, ending with all of the
final T iterations contributing to the calculation as described above. Brooks
and Gelman (1998) propose splitting the total iteration range (1,...,27) into
Q batches of length a and calculating R(q), B(q), and W (q) based on the
latter halves of iterations 1,...,qa, for ¢ = 1,...,Q. A plot of R(q), B(qg),
and W(q) against some appropriate function of ¢ then allows us not only
to assess the rate of convergence of R to 1, but also to check that both B
and W have stabilised, which is crucial for a reliable diagnosis. WinBUGS
chooses a = max(100, |27/100])" and plots against the starting iteration of
each range, |qa/2] + 1, so that the plot directly indicates the vicinity of the

*In this context “overdispersed” means that the initial values are more variable than they
would have been if they had somehow been drawn from the target posterior.

x| denotes the largest integer not greater than z.



76 The BUGS Book

point of convergence.

Example 4.4.1. Brooks—Gelman—Rubin diagnostic

Consider the two converging Markov chains shown in Figure 4.7(e). Clearly con-
vergence occurs at around 250 iterations. Figure 4.8 shows the corresponding
Brooks—Gelman—-Rubin (BGR) diagnostics for the iteration ranges 51-100, 101-
200, 151-300, 201-400, ..., 501-1000 (27" = 1000, a = 100, Q = 2T'/a = 10).
These are plotted against the starting iteration of each range (|¢a/2] +1 = 51,
101, 151, 201, .. ., 501) so that the approximate point of convergence can be read
directly off the figure. The R line suggests convergence at around 200 iterations.
However, note that the B and W lines do not stabilise until slightly later.
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51 200 400
start-iteration

FIGURE 4.8

R(q), B(q) and W (q) for the two Markov chains shown in Figure 4.7(e), plotted
against the starting iteration, |ga/2| + 1, of each range for which the diagnostics
are calculated. The upper line represents R, which should converge to the value
1 (indicated by the horizontal dashed line). The upper and lower of the other two
lines represent B and W, respectively. For plotting purposes, so that they can be
clearly seen on the same scale as R, these are normalised such that the maximum
estimated interval width is equal to 1.

This strategy works because both the length of the chains used in the cal-
culation and the start iteration are always increasing. Hence we will always
eventually (with an increasing sample size) discard any “burn-in” iterations
and also include a sufficient number of stationary samples to conclude con-
vergence.
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4.5 Efficiency and accuracy

For a given sample size, the accuracy of our inferences is dependent on the
efficiency of our posterior sample, which decreases with an increasing level
of autocorrelation. One way of increasing efficiency is to reparameterise the
model so that the posterior correlation between parameters is reduced (see,
for example, §6.1). However, identifying such a parameterisation is not always
straightforward. Another way to improve efficiency is to perform a process
known as thinning whereby only every vth value from the Gibbs sampler is
actually retained for inference (the rest are still generated but are subsequently
discarded). However, this only represents an efficiency gain in terms of storing
and post-processing the sample: for the same computational cost of simulation,
the full sample will always contain more information and hence lead to better
accuracy.

4.5.1 Monte Carlo standard error of the posterior mean

The easiest way in which to improve accuracy is to simply increase the pos-
terior sample size, but what sample size should we choose to achieve a spe-
cific level of accuracy? Indeed, how should we define accuracy? Suppose we
are interested in estimating the posterior expectation of some (scalar-valued)
function g(6;). Further suppose we have T posterior samples for §; and denote
our Monte Carlo estimate, based on those T samples, by

L )
_ t
gT:T§ 9(91 )

t=1

As discussed in §1.4, if the samples 951), e ,QET) were independent, then the
Central Limit Theorem would provide us with a (Monte Carlo) standard error

for gr of \/Var[g(6:)|y]/T, which of course could be estimated by s/v/T where

52 is the sample variance:

T
1 2
2 (t) p.
= — 0:"7) — } .
S T_1 £ {9( i ) gr

Central limit theorems also exist for dependent samples (see Jones (2004), for
example). In particular, gr tends, in distribution, to Normal(E[g(6;)|y], p/T)
as T — oo, for some positive constant p. We cannot use the sample variance
to estimate p as p # Var[g(0;)|y] when the sample is dependent. Instead we
split the sample into @ batches of length a and assume that a is sufficiently
large that the central limit theorem approximately holds for each batch:

_ 1 & (t) P
ga,q - E Z g(az ) Napprox Normal (E[g(al)‘y]a 5) bl q - ]-a R Q
t=(qg—1)a+1
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Thus the batch means, gq.q, ¢ =1,...,Q, form a sample from some distribu-
tion with variance p/a. Hence

Q
~ a _ ~ N2
pr:Q-l;(ga7q_gT)’

and so the standard error of gr can now be approximated, by /p/T. This
“Monte Carlo standard error” (MCSE) tells us how accurately the mean of
our Monte Carlo samples for g estimates the true posterior expectation of g.
It should not be confused with the posterior standard deviation, which reflects
the inherent uncertainty about g given the model and the data.

The above is known as the batch means method of calculating the MCSE.
There do exist other approaches, in particular methods adapted from time
series analysis (e.g., Geweke (1992)), but BUGS implements batch means due
to its simplicity. The value chosen for a is given by [v/T| (Chien, 1988). In
cases where multiple Markov chains have been run, we split each chain in the
way described above and the number of batches becomes M@, where M is
the number of chains.

4.5.2 Accuracy of the whole posterior

If we were only interested in accurate inference about the posterior mean
of g(), we could simply run the chain for long enough that g, + §xMCSE
(6 = 2 typically) agree to the desired number of significant figures. However,
we would usually want to characterise the whole posterior distribution of g(6)
and present a credible interval or posterior probability. Raftery and Lewis
(1992) describe a general method for determining whether a posterior tail
probability is estimated to within a particular degree of accuracy with a spec-
ified probability. This is implemented in the CODA package for R and S-Plus.
For example, about 4000 independent samples after convergence are sufficient
to estimate the cumulative distribution function of the 2.5% quantile of a
well-behaved posterior within +0.005 with probability 0.95. Reported 95%
credible intervals would then have actual posterior probability between 0.94
and 0.96. More iterations would be necessary if the chains are autocorrelated.

Alternatively, if we compare the MCSE to the posterior standard deviation,
this will tell us whether the inaccuracy about estimating the posterior mean of
g(0) is large in the context of the overall uncertainty about g(6). To elucidate
this, with independent samples the MCSE would be asymptotically s/\/i
from the central limit theorem. This suggests that comparing the MCSE to the
estimated posterior standard deviation s gives us an estimate of the effective
sample size T* = (s/MCSE)? of an autocorrelated chain, which represents the
amount of information about the posterior distribution it contains. Therefore,
if MCSE < ks, then the effective sample size is > 1/k?. Conventionally (see
the WinBUGS manual), chains are run until the MCSE is less than k = 5%
of the posterior standard deviation, giving T* = 400. This is sufficient for
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many practical purposes — however, the T* = 4000 suggested by Raftery and
Lewis’s diagnostic for estimating tail probabilities requires around k = 0.015,
or 1.5%.

A cruder but pragmatic strategy is to run the chains for increasingly more
iterations, repeatedly recalculating whatever posterior summary statistics are
of interest, until they do not appear to change within the desired accuracy.
Three or four significant figures are usually enough in our experience — ex-
cessive precision can impede clarity when presenting results, and given the
neglected uncertainties in most real statistical analyses (such as selection ef-
fects or measurement error) more precision may be spurious.

Example 4.5.1. Monte Carlo standard error

Consider again the two Markov chains shown in Figure 4.7(e) and suppose we wish
to accurately estimate the mean of the underlying posterior distribution. Shown
below are summary statistics, including MCSE (labelled MC error), calculated for
various iteration ranges after extending the simulation to 8250 iterations. Note
that the "burn-in” values from iterations 1-250 have been discarded and that
samples from the two chains have been pooled together.

node mean sd MC error 2.5), median 97.5% start sample
theta 7.333 0.1591 0.007993 7.008 7.339 7.637 251 500
theta 7.314 0.1597 0.006135 6.992 7.321 7.627 251 1000
theta 7.313 0.1604 0.004867 6.985 7.319 7.623 251 2000
theta 7.31 0.1627 0.003654 6.986 7.313 7.629 251 4000
theta 7.312 0.1629 0.002417 6.984 7.313 7.629 251 8000
theta 7.316 0.1625 0.001625 6.993 7.315 7.641 251 16000

The MCSE (fourth column) is less than 5% of the posterior standard deviation
(third column) after collecting as few as 1000 samples. Note, however, that if we
require MCSE < 0.01s, i.e., a standard error that is less than 1% of the posterior
standard deviation, then we must collect at least 16,000 samples in this case. This
is due to the fact that the estimated MCSE only decreases by a factor of ~+/2
as we double the sample size (since MCSE =~ /p/T).

4.6 Beyond MCMC

There are a number of modelling scenarios for which standard MCMC, and
Gibbs sampling in particular, are not well suited. One such setting is the
analysis of time series data, due to the potentially long chains of serial depen-
dence in the data, although the fact that such models can at least be specified
in the BUGS language (and analysed, albeit somewhat inefficiently) is tes-
tament to the power of the language — see §11.2. Over the last decade or
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so there have been many proposals for alternative formulations of the update
mechanism, to develop faster and more efficient techniques for improving mix-
ing and convergence rates. Some techniques use approximations to the true
likelihood; others, such as Lagrangian—Hamiltonian updates (Girolami and
Calderhead, 2011) generate more efficient proposal distributions. As alluded
to in §4.2.4 above, implementation of such methods in OpenBUGS has been,
and continues to be, explored. The “Stan” software, under development at
http://code.google.com/p/stan at the time of writing, implements generic
graphical models using Hamiltonian Monte Carlo sampling, and we eagerly
await its official release.

Beyond MCMC, there have been advances in Sequential Monte Carlo
(SMC'; Doucet et al. (2001); Del Moral et al. (2006)), whereby sets of particles
are propagated through sequential importance samplers (e.g., Ripley (1987)),
rather than constructing a Markov chain under MCMC. There are issues of
particle degeneracy, however, whereby the subset of particles (samples) that
are consistent with the observed data becomes too small. Hybrid schemes
combining MCMC within SMC have been proposed to gain the benefits of
both approaches (Andrieu et al., 2010).

Recently, there has been a growing interest in so-called likelihood-free ap-
proaches, for example, approximate Bayesian computation (ABC; Pritchard
et al. (1999); Beaumont et al. (2002); Beaumont (2010)), where simulation
of the process or model is computationally cheap comparative to evaluating
the likelihood in an MCMC approach. There are, however, many unresolved
issues, such as model selection (Robert et al., 2011), and the theoretical jus-
tification is weaker than for MCMC. Approximation methods that allow fast
and precise inference for specific classes of problem have been developed, such
as for latent Gaussian models (Rue et al., 2009), but these are not generally
applicable outside this class of models.

Variational Bayesian methods are based on approximating an intractable
posterior distribution p(6|y) by a distribution ¢() from a family with a known
analytical form and have been applied to machine learning. See, for exam-
ple, Bishop (2006) or Mackay (2003) for a detailed introduction, and the
Infer.NET software (Minka et al., 2011).
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Prior distributions

The prior distribution plays a defining role in Bayesian analysis. In view of
the controversy surrounding its use it may be tempting to treat it almost as
an embarrassment and to emphasise its lack of importance in particular appli-
cations, but we feel it is a vital ingredient and needs to be squarely addressed.
In this chapter we introduce basic ideas by focusing on single parameters, and
in subsequent chapters consider multi-parameter situations and hierarchical
models. Our emphasis is on understanding what is being used and being aware
of its (possibly unintentional) influence.

5.1 Different purposes of priors

A basic division can be made between so-called “non-informative” (also known
as “reference” or “objective”) and “informative” priors. The former are in-
tended for use in situations where scientific objectivity is at a premium, for
example, when presenting results to a regulator or in a scientific journal, and
essentially means the Bayesian apparatus is being used as a convenient way of
dealing with complex multi-dimensional models. The term “non-informative”
is misleading, since all priors contain some information, so such priors are
generally better referred to as “vague” or “diffuse.” In contrast, the use of in-
formative prior distributions explicitly acknowledges that the analysis is based
on more than the immediate data in hand whose relevance to the parameters
of interest is modelled through the likelihood, and also includes a considered
judgement concerning plausible values of the parameters based on external
information.

In fact the division between these two options is not so clear-cut — in par-
ticular, we would claim that any “objective” Bayesian analysis is a lot more
“subjective” than it may wish to appear. First, any statistical model (Bayesian
or otherwise) requires qualitative judgement in selecting its structure and dis-
tributional assumptions, regardless of whether informative prior distributions
are adopted. Second, except in rather simple situations there may not be an
agreed “objective” prior, and apparently innocuous assumptions can strongly
influence conclusions in some circumstances.

In fact a combined strategy is often reasonable, distinguishing parameters of

81



82 The BUGS Book

primary interest from those which specify secondary structure for the model.
The former will generally be location parameters, such as regression coef-
ficients, and in many cases a vague prior that is locally uniform over the
region supported by the likelihood will be reasonable. Secondary aspects of
a model include, say, the variability between random effects in a hierarchical
model. Often there is limited evidence in the immediate data concerning such
parameters and hence there can be considerable sensitivity to the prior dis-
tribution, in which case we recommend thinking carefully about reasonable
values in advance and so specifying fairly informative priors — the inclusion
of such external information is unlikely to bias the main estimates arising
from a study, although it may have some influence on the precision of the
estimates and this needs to be carefully explored through sensitivity analysis.
It is preferable to construct a prior distribution on a scale on which one has
has a good interpretation of magnitude, such as standard deviation, rather
than one which may be convenient for mathematical purposes but is fairly
incomprehensible, such as the logarithm of the precision. The crucial aspect
is not necessarily to avoid an influential prior, but to be aware of the extent
of the influence.

5.2 Vague, “objective,” and “reference” priors
5.2.1 Introduction

The appropriate specification of priors that contain minimal information is
an old problem in Bayesian statistics: the terms “objective” and “reference”
are more recent and reflect the aim of producing a baseline analysis from
which one might possibly measure the impact of adopting more informative
priors. Here we illustrate how to implement standard suggestions with BUGS.
Using the structure of graphical models, the issue becomes one of specifying
appropriate distributions on “founder” nodes (those with no parents) in the
graph.

We shall see that some of the classic proposals lead to “improper” priors
that do not form distributions that integrate to 1: for example, a uniform
distribution over the whole real line, no matter how small the ordinate, will
still have an infinite integral. In many circumstances this is not a problem, as
an improper prior can still lead to a proper posterior distribution. BUGS in
general requires that a full probability model is defined and hence forces all
prior distributions to be proper — the only exception to this is the dflat ()
distribution (Appendix C.1). However, many of the prior distributions used
are “only just proper” and so caution is still required to ensure the prior is
not having unintended influence.
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5.2.2 Discrete uniform distributions

For discrete parameters it is natural to adopt a discrete uniform prior distri-
bution as a reference assumption. We have already seen this applied to the
degrees of freedom of a t-distribution in Example 4.1.2, and in §9.8 we will

see how it can be used to perform a non-Bayesian bootstrap analysis within
BUGS.

5.2.3 Continuous uniform distributions and Jeffreys prior

When it comes to continuous parameters, it is tempting to automatically
adopt a uniform distribution on a suitable range. However, caution is required
since a uniform distribution for 6 does not generally imply a uniform distri-
bution for functions of #. For example, suppose a coin is known to be biased,
but you claim to have “no idea” about the chance # of it coming down heads
and so you give 0 a uniform distribution between 0 and 1. But what about the
chance (0?) of it coming down heads in both of the next two throws? You have
“no idea” about that either, but according to your initial uniform distribution
on 6, ¢ = 62 has a density p(v)) = 1/(2y/1), which can be recognised to be a
Beta(0.5, 1) distribution and is certainly not uniform.

Harold Jeffreys came up with a proposal for prior distributions which would
be invariant to such transformations, in the sense that a “Jeffreys” prior for 6
would be formally compatible with a Jeffreys prior for any 1-1 transformation
¥ = f(0). He proposed defining a “minimally informative” prior for 6 as
py(0) o< I(6)Y/? where I(6) = —E[% logp(Y'|#)] is the Fisher information for
0 (§3.6.1). Since we can also express I(f) as

dlogp(Y16) )’
10)=F _—
) = Bvio | (TEEED)
we have )
do
I =10)|—| .
) =10 |57
Jeffreys’ prior is therefore invariant to reparameterisation since
do
I 1/2 _ (6 1/2 | %Y
()2 = 160) | 77

and the Jacobian terms cancel when transforming variables via the expression
in §2.4. Hence, a Jeffreys prior for 6 transforms to a Jeffreys prior for any 1-1
function ¥(6).

As an informal justification, Fisher information measures the curvature of
the log-likelihood, and high curvature occurs wherever small changes in pa-
rameter values are associated with large changes in the likelihood: Jeffreys’
prior gives more weight to these parameter values and so ensures that the
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influence of the data and the prior essentially coincide. We shall see examples
of Jeffreys priors in future sections.

Finally, we emphasise that if the specific form of vague prior is influential
in the analysis, this strongly suggests you have insufficient data to draw a
robust conclusion based on the data alone and that you should not be trying
to be “non-informative” in the first place.

5.2.4 Location parameters

A location parameter 6 is defined as a parameter for which p(y|0) is a func-
tion of y — 6, and so the distribution of y — 0 is independent of 8. In this
case Fisher’s information is constant, and so the Jeffreys procedure leads to
a uniform prior which will extend over the whole real line and hence be im-
proper. In BUGS we could use df lat () to represent this distribution, but tend
to use proper distributions with a large variance, such as dunif (-100,100)
or dnorm(0,0.0001): we recommend the former with appropriately chosen
limits, since explicit introduction of these limits reminds us to be wary of
their potential influence. We shall see many examples of this use, for example,
for regression coefficients, and it is always useful to check that the posterior
distribution is well away from the prior limits.

5.2.5 Proportions

The appropriate prior distribution for the parameter 6 of a Bernoulli or bi-
nomial distribution is one of the oldest problems in statistics, and here we
illustrate a number of options. First, both Bayes (1763) and Laplace (1774)
suggest using a uniform prior, which is equivalent to Beta(1l,1). A major at-
traction of this assumption, also known as the Principle of Insufficient Reason,
is that it leads to a discrete uniform distribution for the predicted number y
of successes in n future trials, so that p(y) =1/(n+1), y =0, 1,...,n," which
seems rather a reasonable consequence of “not knowing” the chance of success.
On the ¢ = logit(d) scale, this corresponds to a standard logistic distribution,
represented as dlogis(0,1) in BUGS (see code below).

Second, an (improper) uniform prior on ¢ is formally equivalent to the
(improper) Beta(0,0) distribution on the 6 scale, i.e., p(f) oc 071 (1 — )~ 1:
the code below illustrates the effect of bounding the range for ¢ and hence
making these distributions proper. Third, the Jeffreys principle leads to a
Beta(0.5,0.5) distribution, so that p;(f) = 7162 (1 — #)2. Since it is com-
mon to use normal prior distributions when working on a logit scale, it is of
interest to consider what normal distributions on ¢ lead to a “near-uniform”

*See Table 3.1 — the posterior predictive distribution for a binomial observation and beta
prior is a beta-binomial distribution. With no observed data, n = y = 0 in Table 3.1, this
posterior predictive distribution becomes the prior predictive distribution, which reduces
to the discrete uniform for a = b= 1.
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distribution on 6. Here we consider two possibilities: assuming a prior variance
of 2 for ¢ can be shown to give a density for 6 that is “flat” at § = 0.5, while
a normal with variance 2.71 gives a close approximation to a standard logistic
distribution, as we saw in Example 4.1.1.

thetal1] ~ dunif (0,1) # uniform on theta
phil[1] ~ dlogis(0,1)
phil[2] ~ dunif (-5,5) # uniform on logit(theta)

logit(thetal[2]) <- phil[2]

thetal[3] ~ dbeta(0.5,0.5) # Jeffreys on theta
phi [3] <- logit(thetal3])
phil4] ~ dnorm(0,0.5) # var=2, flat at theta = 0.5

logit(thetal[4]) <- phil[4]

phil[5] ~ dnorm(0,0.368) # var=2.71, approx. logistic
logit(theta[5]) <- phi[5]

We see from Figure 5.1 that the first three options produce apparently very
different distributions for 6, although in fact they differ at most by a single
implicit success and failure (§5.3.1). The normal prior on the logit scale with
variance 2 seems to penalise extreme values of 6, while that with variance 2.71
seems somewhat more reasonable. We conclude that, in situations with very
limited information, priors on the logit scale could reasonably be restricted to
have variance of around 2.7.

Example 5.2.1. Surgery (continued): prior sensitivity

What is the sensitivity to the above prior distributions for the mortality rate in our
“Surgery” example (Example 3.3.2)? Suppose in one case we observe 0/10 deaths
(Figure 5.2, left panel) and in another, 10/100 deaths (Figure 5.2, right panel).
For 0/10 deaths, priors 2 and 3 pull the estimate towards 0, but the sensitivity is
much reduced with the greater number of observations.

5.2.6 Counts and rates

For a Poisson distribution with mean 6, the Fisher information is I(6) = 1/6
and so the Jeffreys prior is the improper p;(6) 0*%, which can be approxi-
mated in BUGS by a dgamma (0.5, 0.00001) distribution. The same prior is
appropriate if 6 is a rate parameter per unit time, so that Y ~ Poisson(6t).
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FIGURE 5.1

Empirical distributions (based on 100,000 samples) corresponding to various
different priors for a proportion parameter.
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FIGURE 5.2

Box plots comparing posterior distributions arising from the five priors dis-
cussed above for mortality rate: (a) 0/10 deaths observed; (b) 10/100 deaths
observed.

5.2.7 Scale parameters

Suppose o is a scale parameter, in the sense that p(y|lo) = o~ f(y/o) for
some function f, so that the distribution of Y/o does not depend on o. Then
it can be shown that the Jeffreys prior is ps(c) oc o=, which in turn means
that ps(c*) oc 0%, for any choice of power k. Thus for the normal distribu-
tion, parameterised in BUGS in terms of the precision 7 = 1/0?%, we would
have ps(7) o 771. This prior could be approximated in BUGS by, say, a
dgamma (0.001,0.001), which also can be considered an “inverse-gamma dis-
tribution” on the variance o2. Alternatively, we note that the Jeffreys prior
is equivalent to p;(log ok ) o const, i.e., an improper uniform prior. Hence it
may be preferable to give log o* a uniform prior on a suitable range, for exam-
ple, log.tau ~ dunif (-10, 10) for the logarithm of a normal precision. We
would usually want the bounds for the uniform distribution to have negligible
influence on the conclusions.

We note some potential conflict in our advice on priors for scale parameters:
a uniform prior on logo follows Jeffreys’ rule but a uniform on o is placing
a prior on an interpretable scale. There usually would be negligible difference
between the two — if there is a noticeable difference, then there is clearly
little information in the likelihood about o and we would recommend a weakly
informative prior on the o scale.

Note that the advice here applies only to scale parameters governing the
variance or precision of observable quantities. The choice of prior for the vari-
ance of random effects in a hierarchical model is more problematic — we
discuss this in §10.2.3.
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5.2.8 Distributions on the positive integers

Jeffreys (1939) [p. 238] suggested that a suitable prior for a parameter N,
where N =0,1,2,...,is p(N) o< 1/N, analogously to a scale parameter.

Example 5.2.2. Coin tossing: estimating number of tosses

Suppose we are told that a fair coin has come up heads y = 10 times. How many
times has the coin been tossed? Denoting this unknown quantity by N we can
write down the likelihood as

N!
(N =y)!
As N is integer-valued we must specify a discrete prior distribution.

Suppose we take Jeffreys' suggestion and assign a prior p(N) « 1/N, which is

improper but could be curtailed at a very high value. Then the posterior distribu-
tion is

p(y|N) = Binomial(0.5, N') 0.5V,

N —1)!
p(Nly) o 10.5% /N o ( ),0.5N, N>y,

—1

(N —y) (N —y)
which we can recognise as the kernel of a negative binomial distribution with mean
2y = 20. This has an intuitive attraction, since if instead we had fixed y = 10 in
advance and flipped a coin until we had y heads, then the sampling distribution
for the random quantity N would be just this negative binomial. However, it is
notable that we were not told that this was the design — we have no idea whether
the final flip was a head or not.

Alternatively, we may wish to assign a uniform prior over integer values from
1 to 100, i.e., Pr(N =n) = 1/100, n = 1,...,100. Then the posterior for N is
proportional to the likelihood, and its expectation, for example, is given by

100 100
n X n!
E[NJy] =) nPr(N=nly) =AY mo.m, (5.1)
n=1 n=1 ’

where A is the posterior normalising constant. The right-hand side of (5.1) cannot
be simplified analytically and so is cumbersome to evaluate (although this is
quite straightforward with a little programming). In BUGS we simply specify the
likelihood and the prior as shown below.

y <- 10

y ~ dbin(0.5, N)

N ~ dcat(pll)

for (i in 1:100) {p[il <- 1/100}

BUGS can use the resulting samples to summarise the posterior graphically as
well as numerically. Numeric summaries, such as the one shown below, allow us
to make formal inferences; for example, we can be 95% certain that the coin has
been tossed between 13 and 32 times. Graphical summaries, on the other hand,
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N sample: 100000
01

<l
.III| |III||I|..-_,
20

0.0

0

40

FIGURE 5.3
Approximate posterior distribution for number of (unbiased) coin tosses leading
to ten heads.

might reveal interesting features of the posterior. Figure 5.3 shows the posterior
density for V. Note that the mode is 20, which is the intuitive answer, as well
as being the MLE and the posterior mean using the Jeffreys prior. Note also that
although the uniform prior supports values in {1,...,9}, which are impossible in
light of the observed data (10 heads), the posterior probability for these values
is, appropriately, zero.

node mean sd MC error 2.5, median 97.5%, start sample
N 21.01 4.702 0.01445 13.0 20.0 32.0 1 100000

In Example 5.5.2 we consider a further example of a prior over the positive
integers which reveals the care that can be required.

5.2.9 More complex situations

Jeffreys’ principle does not extend easily to multi-parameter situations, and
additional context-specific considerations generally need to be applied, such
as assuming prior independence between location and scale parameters and
using the Jeffreys prior for each, or specifying an ordering of parameters into
groups of decreasing interest.

5.3 Representation of informative priors

Informative prior distributions can be based on pure judgement, a mixture of
data and judgement, or data alone. Of course, even the selection of relevant
data involves a substantial degree of judgement, and so the specification of an
informative prior distribution is never an automatic procedure.
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We summarise some basic techniques below, emphasising the mapping of
relevant data and judgement onto appropriate parametric forms, ideally rep-
resenting “implicit” data.

5.3.1 Elicitation of pure judgement

Elicitation of subjective probability distributions is not a straightforward task
due to a number of potential biases that have been identified. O’Hagan et al.
(2006) provide some “Guidance for best practice,” emphasising that proba-
bility assessments are constructed by the questioning technique, rather than
being “pre-formed quantifications of pre-analysed belief” (p. 217). They say it
is best to interview subjects face-to-face, with feedback and continual checking
for biases, conducting sensitivity analysis to the consequence of the analysis,
and avoiding verbal descriptions of uncertainty. They recommend eliciting in-
tervals with moderate rather than high probability content, say by focusing
on 33% and 67% quantiles: indeed one can simply ask for an interval and
afterwards elicit a ‘confidence’ in that assessment (Kynn, 2005). They suggest
using multiple experts and reporting a simple average, but it is also important
to acknowledge imperfections in the process, and that even genuine “exper-
tise” cannot guarantee a suitable subject. See also Kadane and Wolfson (1998)
for elicitation techniques for specific models.

In principle any parametric distribution can be elicited and used in BUGS.
However, it can be advantageous to use conjugate forms since, as we have seen
in Chapter 3, the prior distribution can then be interpreted as representing
“implicit data,” in the sense of a prior estimate of the parameter and an
“effective prior sample size.” It might even then be possible to include the
prior information as “data” and use standard classical methods (and software)
for statistical analysis.

Below we provide a brief summary of situations: in each case the “im-
plicit data” might be directly elicited, or measures of central tendency and
spread requested and an appropriate distribution fitted. A simple moment-
based method is to ask directly for the mean and standard deviation, or elicit
an approximate 67% interval (i.e., the parameter is assessed to be twice as
likely to be inside the interval as outside it) and then treat the interval as
representing the mean + 1 standard deviation, and solve for the parameters
of the prior distribution. In any case it is good practice to iterate between
alternative representations of the prior distribution, say as a drawn distribu-
tion, percentiles, moments, and interpretation as “implicit data,” in order to
check the subject is happy with the implications of their assessments.

e Binomial proportion 6. Suppose our prior information is equivalent to
having observed y events in a sample size of n, and we wanted to derive a
corresponding Beta(a, b) prior for §. Combining an improper Beta(0,0)
“pre-prior” with these implicit data gives a conjugate “posterior” of
Beta(y,n — y), which we can interpret as our elicited prior. The mean



Prior distributions 91

of this elicited prior is a/(a + b) = y/n, the intuitive point estimate for
0, and the implicit sample size is a +b = n. Using a uniform “pre-prior”
instead of the Beta(0,0) givesa=y+1and b=n —y+ 1.

Alternatively, a moment-based method might proceed by eliciting a prior
standard deviation as opposed to a prior sample size, and by then solving
the mean and variance formulae (Appendix C.3) for ¢ and b: a = mb/(1—
m), b=m(1—m)?/v+m —1, for an elicited mean m = 0 and variance
.

e Poisson rate 6: if we assume 6 has a Gamma(a, b) distribution we can
again elicit a prior estimate 6 = a/b and an effective sample size of b,
assuming a Gamma(0,0) pre-prior (see Table 3.1, Poisson-gamma con-
jugacy), or we can use a moment-based method instead.

e Normal mean p: a normal distribution can be obtained be eliciting a
mean y and standard deviation w directly or via an interval. By con-
ditioning on a sampling variance o2, we can calculate an effective prior
sample size ng = 0 /w? which can be fed back to the subject.

2 2

e Normal variance o%: 7 = ¢~ % may be assumed to have a Gamma(a, b)
distribution, where a/b is set to an estimate of the precision, and 2a
is the effective number of prior observations, assuming a Gamma(0,0)

pre-prior (see Table 3.1, normal y with unknown variance o2).

e Regression coefficients: In many circumstances regression coefficients
will be unconstrained parameters in standard generalised linear mod-
els, say log-odds ratios in logistic regression, log-rate-ratios in Poisson
regression, log-hazard ratios in Cox regression, or ordinary coefficients in
standard linear models. In each case it is generally appropriate to assume
a normal distribution. Kynn (2005) described the elicitation of regres-
sion coefficients in GLMs by asking an expert for expected responses
for different values of a predictor. Lower and upper estimates, with an
associated degree of confidence, were also elicited, and the answers used
to derive piecewise-linear priors.

Example 5.3.1. Power calculations

A randomised trial is planned with n patients in each of two arms. The response
within each treatment arm is assumed to have between-patient standard deviation
o, and the estimated treatment effect Y is assumed to have a Normal(6, 202 /n)
distribution. A trial designed to have two-sided Type | error o and Type Il error
B in detecting a true difference of 6 in mean response between the groups will
require a sample size per group of

20?2
n= W(zl—[f + 21-as2)%,
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where Pr(Z < z,) = p for a standard normal variable Z ~ Normal(0,1). Alter-
natively, for fixed n, the power of the study is

n6?2
ﬁ —Z21—a/2 | -

If we assume # = 5,0 = 10, a = 0.05, 8 = 0.10, so that the power of the trial
is 90%, then we obtain 215 = 1.28, 2;_,/2 = 1.96, and n = 84.

Suppose we wish to acknowledge uncertainty about the alternative hypothesis
# and the standard deviation o. First, we assume past evidence suggests 0 is
likely to lie anywhere between 3 and 7, which we choose to interpret as a 67%
interval (£ 1 standard deviation), and so 6 ~ Normal(5,22). Second, we assess
our estimate of o = 10 as being based on around 40 observations, from which we
assume a Gamma(a, b) prior distribution for 7 = 1/02 with mean a/b = 1/10?
and effective sample size 2a = 40, from which we derive 7 ~ Gamma(20, 2000).

Power = ® (

tau ~ dgamma (20, 2000)
sigma <- 1/sqrt(tau)
theta dnorm(5, 0.25)
n 2xpow ((1.28 + 1.96)*sigma/theta, 2) # n for 90% power
power <- phi(sqrt(84/2)+*theta/sigma - 1.96) # power for n = 84
p70 step(power - 0.7) # Pr(power > 70%)
n sample: 10000 power sample: 10000
3.00E-6 [ 8.0
2.00E-6 60r
1.00E-6 | ol
0.0 L, : : 0.0 : ‘ ‘ :
0.0  1.00E+8 200E+8 05 00 05 10
FIGURE 5.4

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group.

node mean sd MC error 2.5), median 97.5, start sample
n 38740.0 2.533E+6 25170.0 24.73 87.93 1487.0 1 10000
p70 0.7012 0.4577 0.004538 0.0 1.0 1.0 1 10000
power 0.7739 0.2605 0.002506 0.1151 0.8863 1.0 1 10000

Note that the median values for n (88) and power (0.89) are close to the values
derived by assuming fixed 6 and o (84 and 0.90, respectively), but also note the
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huge uncertainty. It is quite plausible, under the considered prior for 6 and o, that
to achieve 90% power the trial may need to include nearly 3000 subjects. Then
again, we might get away with as few as 50! A trial involving 84 subjects in each
group could be seriously underpowered, with 12% power being quite plausible.
Indeed, there is a 30% chance that the power will be less than 70%.

5.3.2 Discounting previous data

Suppose we have available some historical data and we could obtain a prior
distribution for the parameter # based on an empirical estimate éH, say, by
matching the prior mean and standard deviation to O and its estimated
standard error. If we were to use this prior directly then we would essentially
be pooling the data in a form of meta-analysis (see §11.4), in which case it
would be preferable (and essentially equivalent) to use a reference prior and
include the historical data directly in the model.

If we are reluctant to do this, it must be because we do not want to give the
historical data full weight, perhaps because we do not consider it to have the
same relevance and rigour as the data directly being analysed. We may there-
fore wish to discount the historical data using one of the methods outlined
below.

e Power prior: this uses a prior mean based on the historical estimate éH,
but discounts the “effective prior sample size” by a factor x between 0
and 1: for example, a fitted Beta(a,b) would become a Beta(ka, xb), a
Gamma(a,b) would become a Gamma(ra, kb), a Normal(y,w?) would
become a Normal(vy,w?/k) (Ibrahim and Chen, 2000).

e Bias modelling: This explicitly considers that the historical data may be
biased, in the sense that the estimate fp is estimating a slightly different
quantity from the 6 of current interest. We assume that 6 = 6+, where
d is the bias whose distribution needs to be assessed. We further assume
§ ~ [us,02], where [,] indicates a mean and variance but otherwise
unspecified distribution. Then if we assume the historical data give rise
to a prior distribution 6y ~ [yx,w?%], we obtain a prior distribution for
0 of

0 ~ [ym + ps, wh + o3)-

Thus the prior mean is shifted and the prior variance is increased.

The power prior only deals with variability — the discount factor x essen-
tially represents the “weight” on a historical observation, which is an attractive
concept to communicate but somewhat arbitrary to assess. In contrast, the
bias modelling approach allows biases to be added, and the parameters can
be defined in terms of the size of potential biases.
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Example 5.3.2. Power calculations (continued)

We consider the power example (Example 5.3.1) but with both prior distributions
discounted. We assume each historical observation informing the prior distribution
for o is only worth half a current observation, so that the prior for o is only based
on 10 rather than 20 observations. This discounts the parameters in the gamma
distribution for 7 by a factor of 2. For the treatment effect, we assume that the
historical experiment could have been more favourable than the current one, so
that the historical treatment effect had a bias with mean —1 and SD 2, and so
would be expected to be between —5 and 3. Thus an appropriate prior distribution
is § ~ Normal(5 — 1,22 + 22) or Normal(4, 8) — this has been constrained to
be > 0 using the I(,) construct (see Appendix A.2.2 and §9.6). This leads to
the code:

# tau ~ dgamma (20, 2000)
tau ~ dgamma (10, 1000) # discounted by 2
# theta ~ dnorm(5, 0.25)
theta ~ dnorm(4, 0.125)I(0,) # 4 added to var and shifted
# by -1, constrained to be >0

n sample: 10000 power sample: 10000

2.00E-8 | 6.0[

1.50E-8 | 40

1.00E-8 [ L

5.00E-9 | 20

00L 00L
T T T T T T T
0.0 2.0E+10  4.0E+10 -0.5 0.0 0.5 1.0
FIGURE 5.5

Empirical distributions based on 10,000 simulations for: n, the number of subjects
required in each group to achieve 90% power, and power, the power achieved with
84 subjects in each group. Discounted priors for tau and theta used.

node mean sd MC error 2.5% median 97.5%  start sample
n 4 .542E+6 4.263E+8 4.26E+6 20.96 125.6 14270.0 1 10000
p70 0.5398 0.4984  0.005085 0.0 1.0 1.0 1 10000
power 0.6536 0.3315  0.003406 0.04353 0.7549 1.0 1 10000

This has raised the median sample size to 126, but with huge uncertainty. There
is a 46% probability that the power is less than 70% if the sample size stays at
84.
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5.4 Mixture of prior distributions

Suppose we want to express doubt about which of two or more prior distribu-
tions is appropriate for the data in hand. For example, we might suspect that
either a drug will produce a similar effect to other related compounds, or if
it doesn’t behave like these compounds we are unsure about its likely effect.

For two possible prior distributions p;(#) and ps(#) for a parameter 6, the
overall prior distribution is then a mizture

p(0) = qp1(0) + (1 — q¢)p2(0),

where g is the assessed probability that p; is “correct.” If we now observe data
Yy, it turns out that the posterior for 6 is

pOly) = ¢'pr(Oly) + (1 — ¢")p2(0ly)

where

pi(0ly) o< p(y|0)p:(0),
/= p1(y)
ap1(y) + (1 = @)p2(y)’

where p;(y) = [ p(y|0)pi(0) do is the predictive probability of the data y as-
suming p;(6). The posterior is a mixture of the respective posterior distri-
butions under each prior assumption, with the mixture weights adapted to
support the prior that provides the best prediction for the observed data.

This structure is easy to implement in BUGS for any form of prior assump-
tions. We first illustrate its use with a simple example and then deal with
some of the potential complexities of this formulation. In the example, pick
is a variable taking the value j when the prior assumption j is selected in the
simulation.

Example 5.4.1. A biased coin?

Suppose a coin is either unbiased or biased, in which case the chance of a “head”
is unknown and is given a uniform prior distribution. We assess a prior probability
of 0.9 that it is unbiased, and then observe 15 heads out of 20 tosses — what is
the chance that the coin is biased?

r <- 15; n <- 20 # data
HEHHBHHHAHHBHH R AR A HHRRSHH AR R BSSHRH

r ~ dbin(p, n) # likelihood

P <- thetal[pick]

pick ~ dcat(q[l) # 2 if biased, 1 otherwise

ql1] <- 0.9
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ql2] <- 0.1

thetal[1] <- 0.5 # if unbiased

theta[2] ~ dunif(0, 1) # if biased

biased <- pick - 1 # 1 if biased, O otherwise
biased sample: 100000 theta[2] sample: 100000

08 201
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FIGURE 5.6

Biased coin: empirical distributions based on 100,000 simulations.

node mean sd MC error 2.5% median 97.5% start sample
biased 0.2619 0.4397 0.002027 0.0 0.0 1.0 1 100000
theta[2] 0.5594 0.272 9.727E-4 0.03284 0.6247 0.9664 1 100000

So the probability that the coin is biased has increased from 0.1 to 0.26 on
the basis of the evidence provided. The rather strange shape of the posterior
distribution for thetal[2] is explained below.

If the alternative prior assumptions for theta in Example 5.4.1 were from
the same parametric family, e.g., beta, then we could formulate this as p
~ dbeta(alpick], blpick]), say, with specified values of a[1], a[2], b[1],
and b[2]. However, the more general formulation shown in the example allows
prior assumptions of arbitrary structure.

It is important to note that when pick=1, thetal[1] is sampled from its
posterior distribution, but theta[2] is sampled from its prior as pick=1 has
essentially “cut” the connection between the data and theta[2]. At another
MCMC iteration, we may have pick=2 and so the opposite will occur, and this
means that the posterior for each thetal[j] recorded by BUGS is a mixture
of “true” (model specific) posterior and its prior. This explains the shape of
the posterior for theta[2] in the example above. If we are interested in the
posterior distribution under each prior assumption individually, then we could
do a separate run under each prior assumption, or only use those values for
thetal[j] simulated when pick=j: this “post-processing” would have to be
performed outside BUGS.

We are essentially dealing with alternative model formulations, and our
q's above correspond to posterior probabilities of models. There are well-
known difficulties with these quantities both in theory, due to their potential
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dependence on the within-model prior distributions, and in particular when
calculating within MCMC: see §8.7. In principle we can use the structure above
to handle a list of arbitrary alternative models, but in practice considerable
care is needed if the sampler is not to go “off course” when sampling from the
prior distribution at each iteration when that model is not being “picked.” It
is possible to define “pseudo-priors” for these circumstances, where pick also
dictates the prior to be assumed for theta[j] when pick # j — see §8.7 and
Carlin and Chib (1995).

5.5 Sensitivity analysis

Given that there is no such thing as the true prior, sensitivity analysis to al-
ternative prior assumptions is vital and should be an integral part of Bayesian
analysis. The phrase “community of priors” (Spiegelhalter et al., 2004) has
been used in the clinical trials literature to express the idea that different
priors may reflect different perspectives: in particular, the concept of a “scep-
tical prior” has been shown to be valuable. Sceptical priors will typically be
centred on a “null” value for the relevant parameter with the spread reflecting
plausible but small effects. We illustrate the use of sceptical and other prior
distributions in the following example, where the evidence for an efficacious
intervention following myocardial infarction is considered under a range of
priors for the treatment effect, namely, “vague,” “sceptical,” “enthusiastic,”
“clinical,” and “just significant.”

Example 5.5.1. GREAT trial

Pocock and Spiegelhalter (1992) examine the effect of anistreplase on recovery
from myocardial infarction. 311 patients were randomised to receive either anistre-
plase or placebo (conventional treatment); the number of deaths in each group
is given in the table below.

Treatment total
anistreplase placebo
Event death 13 23 36
no death 150 125 275
total 163 148 311

Let 7, nj, and 7; denote the number of deaths, total number of patients, and
underlying mortality rate, respectively, in group j € {1,2} (1 = anistreplase; 2
= placebo). Inference is required on the log-odds ratio (log(OR)) for mortality in
the anistreplase group compared to placebo, that is,

5 =log {77”/(1 —m)

P S p—— } = logit m; — logit ms. (5.2)
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A classical maximum likelihood estimator and approximate variance are given by

szlog{w}, O R A S

T rg ng—T1 ng—ry

For the above data these give 5 = —0.753 with s = 0.368. An approximate
Bayesian analysis might proceed via the assumption 5 ~ Normal(§, s?) with
a locally uniform prior on ¢, e.g.,, 6 ~ Uniform(—10,10). A more appropri-
ate likelihood is a binomial assumption for each observed number of deaths:
r; ~ Binomial(7;,n;), j = 1,2. In this case we could be “vague” by specifying
Jeffreys priors for the mortality rates, m; ~ Beta(0.5,0.5), j = 1,2, and then
deriving the posterior for § via (5.2). Alternatively we might parameterise the
model directly in terms of §:

logitm = a+4§/2, logitmy =a —4§/2,

which facilitates the specification of informative priors for §. Here « is a nuisance
parameter and is assigned a vague normal prior: a ~ Normal(0, 100%). Our first
informative prior for ¢ is a “clinical” prior based on expert opinion: a senior
cardiologist, informed by one unpublished and two published trials, expressed belief
that “an expectation of 15-20% reduction in mortality is highly plausible, while
the extremes of no benefit and a 40% relative reduction are both unlikely.” This is
translated into a normal prior with a 95% interval of —0.51 to 0 (0.6 to 1.0 on the
OR scale): § ~ Normal(—0.26,0.132). We also consider a “sceptical” prior, which
is designed to represent a reasonable expression of doubt, perhaps to avoid early
stopping of trials due to fortuitously positive results. For example, a hypothetical
sceptic might find treatment effects more extreme than a 50% reduction or 100%
increase in mortality largely implausible, giving a 95% prior interval (assuming
normality) of -0.69 to 0.69 (0.5 to 2 on the OR scale): § ~ Normal(0,0.35%).

As a counterbalance to the sceptical prior we might specify an “enthusiastic”
or “optimistic” prior, as a basis for conservatism in the face of early negative
results, say. Such a prior could be centred around some appropriate beneficial
treatment effect with a small prior probability (e.g., 5%) assigned to negative
treatment benefits. We do not construct such a prior in this example, however,
since the clinical prior described above also happens to be “enthusiastic” in this
sense. Another prior of interest is the “just significant” prior. Assuming that the
treatment effect is significant under a vague prior, it is instructive to ask how
sceptical we would have to be for that significance to vanish. Hence we assume
§ ~ Normal(0,0%) and we search for the largest value of o5 such that the 95%
posterior credible interval (just) includes zero. BUGS code for performing such
a search is presented below along with code to implement the clinical, sceptical,
and vague priors discussed above. (Note that a preliminary search had been run
to identify the approximate value of s as somewhere between 0.8 and 1, though
closed form approximations exist for this “just signficant” prior (Matthews, 2001;
Spiegelhalter et al., 2004)).
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model {
for (i in 1:nsearch) {
pr.sdl[i] <-
pr.mean[i] <-
}

pr.mean[nsearch+1] <-
pr.sd[nsearch+1] <-
pr.mean[nsearch+2] <-
pr.sd[nsearch+2] <-

# replicate data for e

99

# search for "just
start + i*step # significant" prior
0

-0.26

0.13 # clinical prior
0

0.35 # sceptical prior

ach prior and specify likelihood...

for (i in 1:(nsearch+3)) {

for (j in 1:2) {

r.repli,j] <-
n.repli,j] <-
r.repli,j] -
}
}
delta.mle <-
delta.mle -

# define priors and 1i

r[j]
nlj]
dbin(pili,jl, n.repli,jl)

-0.753
dnorm(deltal[nsearch+4], 7.40)

nk to log-odds...

for (i in 1:(nsearch+2)) {

logit(pili,1]) <-
logit(pil[i,2]) <-
alphali] -
deltalil -
pr.prec[i] <-
}
pilnsearch+3,1]
pi[nsearch+3,2]
delta[nsearch+3] <-

delta[nsearch+4]
}

list(r = c(13, 23), n =

alphal[i] + deltal[i]/2
alphali] - deltalil/2
dnorm(0, 0.0001)
dnorm(pr.mean[i], pr.prec[i])
1/pow(pr.sdl[i], 2)

dbeta(0.5, 0.5)

dbeta(0.5, 0.5) # Jeffreys prior
logit(pi[nsearch+3,1])
logit(pil[nsearch+3,2])

dunif (-10, 10) # locally uniform prior

c(163, 148),

start = 0.8, step = 0.005, nsearch = 40)

The derived value of oy is ~0.925, corresponding to the 25th element of deltal]
above. Selected posterior and prior distributions are summarised below. We note
the essentially identical conclusions of the classical maximum likelihood approach
and the two analyses with vague priors. The results suggest we should conclude

that anistreplase is a superior
completely ignorant of possible

treatment to placebo if we are either (a priori)
treatment effect sizes, or we trust the senior car-

diologist’s expert opinion, or perhaps if we are otherwise enthusiastic about the
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new treatment’s efficacy. If, on the other hand, we wish to claim prior indiffer-
ence as to the sign of the treatment effect but we believe “large” treatment
effects to be implausible, we should be more cautious. The “just significant” prior
has a 95% interval of (exp(—1.96 x 0.925),exp(1.96 x 0.925)) = (0.16,6.1)
on the OR scale, corresponding to reductions/increases in mortality as extreme
as 84%/610%. These seem quite extreme, implying that only a small degree of
scepticism is required to render the analysis “non-significant.” We might conclude
that the GREAT trial alone does not provide “credible” evidence for superiority,
and larger-scale trials are required to quantify the treatment effect precisely.

node mean sd MC error 2.5% median 97.5% start sample
delta[25] -0.6635 0.3423 5.075E-4 -1.343 -0.6609 3.598E-4 1001 500000
delta[41] -0.317 0.1223 1.741E-4 -0.5562 -0.317 -0.07745 1001 500000
delta[42] -0.3664 0.2509 3.497E-4 -0.8608 -0.366 0.1245 1001 500000
delta[43] -0.7523 0.367 5.342E-4 -1.487 -0.7479 -0.04719 1001 500000
delta[44] -0.7534 0.3673 5.432E-4 -1.475 -0.7529 -0.0334 1001 500000

box plot: p(delta | data) box plot: p(delta)

0.5 20t

0.0} T | 10}

-0.5} % 0.0t

-1.0f -1.0f

15 — — |20
FIGURE 5.7

Left-hand side: Posterior distributions for § from analysis of GREAT trial data.
From left to right: corresponding to “just significant,” “clinical,” “sceptical,”

“Jeffreys” and "locally uniform” priors. Right-hand side: Prior distributions for
analysis of GREAT trial data. From left to right: “just significant,” “clinical” and
“sceptical.”

A primary purpose of trying a range of reasonable prior distributions is
to find unintended sensitivity to apparently innocuous “non-informative” as-
sumptions. This is reflected in the following example.
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Example 5.5.2. Trams: a classic problem from Jeffreys (1939)

Suppose you enter a town of unknown size whose trams you know are numbered
consecutively from 1 to N. You first see tram number y = 100. How large might
N be?

We first note that the sampling distribution is uniform between 1 and N, so
that p(y|N) = %, y = 1,2,...,N. Therefore the likelihood function for N
is « 1/N, N > y, so that y maximises the likelihood function and so is the
maximum likelihood estimator. The maximum likelihood estimate is therefore
100, which does not appear very reasonable.

Suppose we take a Bayesian approach and consider the prior distributions on
the positive integers explored earlier (Example 5.2.2) — we will first examine the
consequences using WinBUGS and then algebraically. We first consider a prior
that is uniform on the integers up to an arbitrary upper bound M, say 5000. Y is
assumed drawn from a categorical distribution: the following code shows how to
set a uniform prior for N over the integers 1 to 5000 (as in Example 5.2.2) and
how to use the step function to create a uniform sampling distribution between
1and N.

Y <- 100
e
Y ~ dcat(p[1)

# sampling distribution is uniform over first N integers
# use step function to change p[j] to O for j>N
for (j in 1:M) {
pljl <- step(N - j + 0.01)/N
}
N ~ dcat(p.unif[])
for (j in 1:M) {
p.unif[j] <- 1/M
}

node mean sd MC error 2.5, median 97.5) start sample
N 1274.0 1295.0 10.86 109.0 722.0 4579.0 1001 10000

The posterior mean is 1274 and the median is 722, reflecting a highly skewed
distribution. But is this a sensible conclusion? For an improper uniform prior over
the whole of the integers, the posterior distribution is

p(Nly) < p(y|N)p(N) < 1/N, N > y.

This series diverges and so this produces an improper posterior distribution. Al-
though our bounded prior is proper and so our posterior distribution is formally
proper, this “almost improper” character is likely to lead to extreme sensitivity
to prior assumptions. For example, a second run with M = 15,000 results in a
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posterior mean of 3041 and median 1258. In fact we could show algebraically that
the posterior mean increases as M/ log(M); thus we can make it as big as we
want by increasing M (proof as exercise).

We now consider Jeffreys' suggestion of a prior p(N) o< 1/N, which is improper
but can be constructed as follows if an upper bound, say 5000, is set.

N ~ dcat(p.jeffreys([])
for (j in 1:5000) {

reciprocal[j] <- 1/j

p-jeffreys[j] <- reciprocal[j]/sum.recip
}

sum.recip <- sum(reciprocall])

The results show a posterior mean of 409 and median 197, which seems more
reasonable — Jeffreys approximated the probability that there are more than 200
trams as 1/2.

node mean sd MC error 2.5% median 97.5% start sample
N 408.7 600.4 4.99 102.0 197.0 2372.0 1001 10000

Suppose we now change the arbitrary upper bound to M = 15,000. Then the
posterior mean becomes 520 and median 200. The median, but not the mean,
is therefore robust to the prior. We could show that the conclusion about the
median is robust to the arbitrary choice of upper bound M by proving that as M
goes to infinity the posterior median tends to a fixed quantity (proof as exercise).

Finally, if a sensitivity analysis shows that the prior assumptions make a
difference, then this finding should be welcomed. It means that the Bayesian
approach has been worthwhile taking, and you will have to think properly
about the prior and justify it. It will generally mean that, at a minimum, a
weakly informative prior will need to be adopted.
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Regression models

As in classical regression, Bayesian regression models are formulated by spec-
ifying a sampling distribution for the data (which we also loosely term the
likelihood) and then a form of relationship between the assumed distribution
of the response variable and any explanatory variables. The only difference is
that we also specify prior distributions for the regression coefficients and any
other unknown (nuisance) parameters. As we will see in this chapter, there are
several advantages to a Bayesian approach, however, such as it being relatively
straightforward to include parameter restrictions, use non-linear models, “ro-
bustify” against outliers, make predictions and inferences about functions of
regression parameters, and handle missing data.

6.1 Linear regression with normal errors

Suppose our response variable is denoted y;, ¢ = 1,...,n, and we have p co-
variates x1;, ...., Tpi. We specify

p
Yi ~ Normal(/,ti,O'Z), i = Po+ Zﬁkxkia
k=1

along with prior distributions for Sy, 81, ..., B, and o. For example,
Br ~ Normal(0,100%), logo ~ Uniform(—100,100)

or the alternative priors discussed in §5.2.4 and §5.2.7. Again we emphasise
that if the specific choice of vague prior is influential, this suggests that a
robust conclusion cannot be drawn from the data alone and more informative
priors based on background information should be considered.

In Bayesian regression analysis it is generally advisable to consider “center-
ing” any covariates, that is, subtracting the empirical mean from each value,
as illustrated in the following example. This has the effect of reducing the pos-
terior correlation between each coefficient (81, ..., 5p) and the intercept term
Bo, because the intercept is essentially relocated to the “centre” of the data.
As discussed in §4.4, high levels of posterior correlation are problematic for
Gibbs sampling.

103
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Example 6.1.1. Growth curve

Gelfand et al. (1990) examine growth data from 30 young rats whose weights
were measured weekly for five weeks. In this example we fit a linear regression to
the 9th rat's data. The response variable y;, i = 1, ..., 5, is the weight, in grams,
on day x;.

model {
for (i in 1:5) {
y[i] ~ dnorm(muli], tau)
mu[i] <- alpha + beta*(x[i] - mean(x[]))
}
# Jeffreys priors
alpha ~ dflat()
beta ~ dflat ()
tau <- 1/sigma2
log(sigma2) <- 2*log.sigma
log.sigma ~ dflat()
}

list(y = c(177,236,285,350,376), x = c(8,15,22,29,36))

We specify improper uniform priors for all parameters, and so the posterior mode
will be equal to the maximum likelihood estimates: & = 284.8, B =731, 02 =
71.3 — note the posterior of o2 is extremely skewed. Figure 6.1 shows the posterior
distribution of the model fit, produced through the Inference->Compare dialog
box in WinBUGS.

node mean sd MC error 2.5, median 97.5% start sample
alpha 284.8 7.89 0.078 269.9 284.8 300.1 4001 10000
beta 7.316 0.7814 0.008582 5.82 7.316 8.819 4001 10000
sigma2 316.3 743.6 26.14 37.24 145.6 1586.0 4001 10000

Linear models where all or some of the covariates are categorical are some-
times called analysis of variance or analysis of covariance models, respec-
tively, since the interest is often in comparing the variation of the outcome
within and between categories. In BUGS these are treated just like any other
linear regression — as a linear model with coefficients for each explanatory
variable.

Example 6.1.2. New York crime
Press (1971) presents data on the effects of increasing police manpower in New
York City. The response variable is the (seasonally adjusted) change in the number



Regression models 105

weight [ model fit: mu
500.0 |
400.0 1
300.0 |

200.0 1

100.0 1

FIGURE 6.1

Model fit from Bayesian linear regression of rat 9's data in Example 6.1.1. The
posterior median, 2.5% and 97.5% percentiles for each mu[i] are joined together
by straight lines: the solid line joins the medians, whereas the 95% credible inter-
vals are joined by dashed lines. The observed weights are shown by dots.

of thefts in 23 precincts of New York City from a 27-week base period in 1966 to a
58-week experimental period in 1966—-1967. The percentage increase in manpower
in each precinct (MAN[]) is also recorded, as is the district (DIST[]) to which each
precinct belongs (1 = Downtown, 2 = Midtown, 3 = Uptown). The DIST covariate
is a categorical variable and requires a slightly different approach to covariates that
represent quantities. It doesn’'t make sense to include a term like beta*DIST[i]
in the model because we can't realistically assume that the effect of going from
downtown to midtown is the same as going from midtown to uptown, or even that
they have the same sign. Instead, we can create and incorporate into the model
two new covariates, one equal to one for midtown precincts, and zero otherwise
(D2[1), and another equal to one for uptown precincts, and zero otherwise (D3 [1).
The model code for this multiple regression (where more than one covariate is
included) is then

for (i in 1:23) {

y[i] “ dnorm(mu([i], tauw)
D2[i] <- equals(DIST[i], 2)
D3[1i] <- equals(DIST[i], 3)
mu [i] <- betal + beta[1]*MAN[i]
+ beta[2]*D2[i] + beta[3]*D3[i]
}
betal ~ dnorm(0, 0.0001)
for (j in 1:3) {
betalj] ~ dnorm(0, 0.0001)
}
tau <- 1/pow(sigma, 2)

# uniform prior on an interpretable scale
sigma ~ dunif (0, 100)
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Posterior summaries for the model parameters are shown below.

node mean sd MC error 2.5% median 97.5% start sample
betal[1] -0.2378 0.1188 0.001181 -0.4759 -0.2374 -0.006211 5001 10000
beta[2] 0.558 3.027 0.03123 -5.493 0.5386 6.595 5001 10000
beta[3] -4.03 3.13 0.03011 -10.14 -4.014 2.239 5001 10000
beta0 2.573 1.992 0.01811 -1.291 2.581 6.533 5001 10000
sigma 5.837 1.037 0.01537 4.243 5.686 8.233 5001 10000

Another way to implement the same model is to make use of BUGS' nested
indexing feature. In this case we can make use of the DIST covariate directly via
the following modification (note that there is no need to calculate D2 and D3 in
this case):

mu[i] <- betaO + beta[1]*MAN[i] + gamma[DIST[i]]
with
gamma[1] <- 0

gamma[2] ~ dnorm(0, 0.0001)
gamma[3] ~ dnorm(0, 0.0001)

where gamma [1] is fixed because only two district contrasts are identifiable — we
could instead remove the intercept term, beta0, and estimate gamma[1] in its
place. To provide initial values for a vector such as gamma, which contains both
unknown parameters and constants (or logical nodes), we simply specify NA for
any elements that are constant/logical, e.g., gamma = c(NA,0,0).

Typically in multiple regression problems, such as in Example 6.1.2 above,
we are aiming for a parsimonious model. With this in mind we might wonder
whether including a particular covariate in the model is worthwhile. Intuitively
it may seem reasonable to require covariates appearing in the final model to
have coefficients with high posterior probabilities of being non-zero. Informally
we could say that a covariate effect is “significant” (at the 95% level) if the
95% posterior credible interval for the associated coefficient does not include
zero. Credible intervals will vary as we include/remove different covariates
in/from the model, and so, adopting this strategy, we are faced with the usual
problems of forwards and backwards selection.

We will look at model criticism and comparison in more detail in Chapter 8.
The Bayesian framework can actually accommodate situations in which the
choice of covariates to be included in a given model is a model parameter itself
— these methods are reviewed briefly in §8.8.2.

Example 6.1.3. New York crime (continued)

The credible intervals obtained in Example 6.1.2 above suggest that the effect of
police manpower is “significant,” whereas the district effects are not. Hence we
might consider removing the D2 and D3 variables from the regression equation:
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mul[i] <- betal + betal[1]*MAN[i]

Posterior summaries for beta0, betal[1], and sigma are given below, and the
resulting model fit is shown on the left-hand side of Figure 6.2. Note how the coef-
ficients have changed values considerably, and that the effect of police manpower
is no longer conventionally “significant,” although it is close.

node mean sd MC error 2.5% median 97.5%  start sample
beta[1] -0.1761 0.1096 0.001085 -0.3921 -0.1765 0.04073 5001 10000
betal 1.97 1.362 0.01394 -0.7489 1.963 4.632 5001 10000
sigma 5.873 0.9813 0.01054 4.297 5.74 8.136 5001 10000

6.2 Linear regression with non-normal errors

In classical linear modelling, the errors are usually assumed to be normally
distributed, for example, the “least squares” estimators for linear regression
are equivalent to maximum likelihood estimators under this assumption. How-
ever, we are not restricted to normality, and BUGS makes it easy to use any
appropriate distribution. If we suspect outlying observations, for example, we
can provide some robustness against their effects by assuming the data arise
from a heavy-tailed t-distribution. Thus the outliers can be accommodated
within the tails without necessarily forcing the location of the posterior to be
moved significantly. The following example illustrates.

Example 6.2.1. New York crime (continued): robust regression

Note from the model fit shown on the left-hand-side of Figure 6.2 that the right-
most point is rather influential — without this point in place, positive and negative
regression lines might seem equally plausible. The point corresponds to the 20th
precinct (between the Hudson River and Central Park on the southwest side
of Central Park). During the study, police manpower in the 20th precinct was
experimentally increased by 40%, but no experimental changes were made in
other precincts. Hence we might have cause to suspect that the corresponding
observation could be an outlier. We robustify our analysis against the potential
effects of such outliers with the following simple modification:

y[i] ~ dt(mul[i], tau, dof)
where dt (x,y,z) denotes a Student-¢ distribution with mean x, precision param-

eter y and degrees of freedom z (see Appendix C.1 — note the variance is ﬁ

for z > 2). In principle, we could estimate the degrees of freedom, as in Exam-
ple 4.1.2, by assigning an appropriate prior, but this can be problematic unless
there are many observations. Instead, here, we set dof <- 4 to give a very heavy
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tailed distribution for the residuals. The model fit is shown on the right-hand side
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of Figure 6.2 and posterior summaries are given in the table below:

node mean sd MC error 2.5Y, median 97.5% start sample
betal 1.699 1.632 0.02879 -1.191 1.59 5.222 5001 10000
beta[1] -0.1244 0.1449 0.002557 -0.358 -0.1455 0.2097 5001 10000
sigma 4.883 1.035 0.01803 3.266 4.756 7.214 5001 10000
y|model fit: mu y| model fit: mu
20.0f 20.0f
100F ---._ 7, 10.0} ---
0.0 %° 0.0}
-10.0f - R -10.0f
-20.0f -20.01
-20.0 0.0 20.0 40.0 -20.0 0.0 20.0 40.0
% change manpower % change manpower
FIGURE 6.2

Model fits for New York crime data in Examples 6.1.3 and 6.2.1 with manpower
effect alone in the regression equation: left-hand side, normal residuals; right-hand
side, t4 distributed residuals.

beta[1] sample: 10000 beta[1] sample: 10000
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FIGURE 6.3

Posterior density estimates for manpower effect in regression analysis of New
York crime data in Examples 6.1.3 and 6.2.1: left-hand side, normal residuals;
right-hand side, ¢4 distributed residuals.

Note that sigma is no longer the residual standard deviation; this is given by sd
<- sigma*sqrt(dof/(dof-2)), which is sigma*1.414 in this case. Hence the
posterior median residual standard deviation is 6.73, a little higher than before.
Just looking at the posterior median model fit we might think that assuming a ¢
distribution for the residuals has had a negligible effect. However, note that the
posterior summaries show the effect of manpower has been attenuated, with the
posterior median for beta[1] reduced in size from —0.177 (with normal errors) to
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—0.146. This is consistent with less of the overall variability apparent in the data
being explained by the model, as indicated by the increased residual standard
deviation. Also note that use of the ¢ distribution may affect our substantive
inferences, since we can no longer consider the effect of manpower “significant”
— considerably more posterior probability now lies to the right of zero. This is
reflected by the (now positive) slope of the upper end of the credible interval
for the model fit, and by the posterior density estimates for beta[1] shown in
Figure 6.3.

6.3 Non-linear regression with normal errors

MCMC methods can easily accommodate non-linear regressions. The only ad-
ditional effort required in fitting such models might be ensuring that the pa-
rameters always have meaningful values by imposing appropriate constraints.
This is illustrated in the following example. Note that we can easily extend
non-linear models to non-normal errors, as in the previous subsection.

Example 6.3.1. Dugongs

Carlin and Gelfand (1991) consider data on length (y;) and age (z;) measurements
for ¢ = 1,...,n = 27 dugongs (sea cows) captured off the coast of Queensland.
The data are shown in Figure 6.5. A frequently used nonlinear growth curve with
no inflection point and an asymptote as z — oo is the Von Bertalanffy growth
model, given by

Yi ~ Normal(,ui,JQ), i = Loo — (Loo — Lo) e Ko i=1,..n,

where Lo, > Lo > 0 and K > 0. L, represents the maximum expected length
achievable, and L is the length at time 0. We can impose such constraints in
various ways, e.g., Lo, K ~ Uniform(0,100), Lo = Lo+ 3, 8 ~ Uniform(0, 100).
We illustrate the use of this particular prior in the code below (model 1). We
also illustrate the use of truncated normal priors for Lo, and Lo (model 2).
We can use the I(,) syntax to represent truncated distributions, as discussed
in §9.6 and Appendix A.2.2, as there are no unknown parameters in the prior
distribution. In addition, we present two further constrained priors based on the
fact that the von Bertalanffy model can be rewritten as p; = a — p~®¢, with
a@=1Lsw >0 8=1Le—Lo>0 and 0 < v =e X < 1. In model 3 we
assume «, 5 ~ Uniform(0,100) and v ~ Uniform(0,1). Model 4 is the same as
model 3 except that we use approximately the same prior for v as in model 1,
by assuming v ~ Gamma(0.001,0.001)1(0,1) (since p(K) o 1 is equivalent to
e~ ~ Gamma(0,0)1(0,1)). Four copies of the data are supplied and we compare
posterior distributions for , 3, 7y, and o2 between the four priors.
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model {

for(j in 1:N) {

for (i in 1:4) {
y[i,j] ~ dnorm(muli,jl, taulil)

}
mul1,j] <- Linf[1] - (Linf[1] - LO[1])=*exp(-K[1]*x[1,j])
mul2,j] <- Linf[2] - (Linf[2] - LO[2])=exp(-K[2]*x[2,j])
mu[3,j] <- alpha[3] - betal[3]*pow(gammal[3], x[3,j])
mul4,j] <- alpha[4] - betal[4]*pow(gammal[4], x[4,j])

}

LO[1] ~ dunif (0, 100)

LO[2] ~ dnorm(0, 0.0001)I(0, Linf[2])
Linf[1] <- LO[1] + betall]

Linf [2] ~ dnorm(0, 0.0001)I(LO[2], )
K[1] ~ dunif (0, 100)

K[2] ~ dunif (0, 100)

for (i in 1:2) {alphali] <- Linf[il}
for (i in 3:4) {alphali] ~ dunif(0, 100)}

betal[1] ~ dunif (0, 100)
betal[2] <- Linf[2] - LO[2]
for (i in 3:4) {betalil ~ dunif (0, 100)}
for (i in 1:2) {gammali] <- exp(-K[i])}
gamma [3] ~ dunif (0, 1)
gamma [4] ~ dgamma(0.001, 0.001)I(0, 1)
for (i in 1:4) {
tauli] <- 1/sigma2[i]
log(sigma2[i]) <- 2*log.sigmali]
log.sigmal[i] ” dunif (-10, 10)
}
}
node mean sd MC error 2.5} median  97.5), start sample
alpha[1l] 2.65 0.07281 0.001407 2.527 2.644 2.809 10001 50000
alpha[2] 2.651 0.07263 0.001245 2.529 2.644 2.814 10001 50000
alpha[3] 2.656 0.07748 0.001929 2.532 2.647 2.829 10001 50000
alpha[4] 2.654 0.07424 0.001737 2.528 2.647 2.819 10001 50000
betal1] 0.9751 0.07746 0.001512 0.8275 0.9736 1.129 10001 50000
betal2] 0.9747 0.07807 6.402E-4 0.8263 0.9733 1.129 10001 50000
beta[3] 0.9759 0.07796 0.001022 0.828  0.9744 1.135 10001 50000
betal4] 0.9759 0.07727 9.129E-4 0.8288 0.9742 1.132 10001 50000
gamma[1] 0.8607 0.03351 7.849E-4 0.7833 0.8646 0.9146 10001 50000
gamma[2] 0.8613 0.03373 5.879E-4 0.7845 0.8651 0.9161 10001 50000
gamma[3] 0.8632 0.03293 7.05E-4 0.7892 0.8665 0.9189 10001 50000
gamma[4] 0.8623 0.03386 6.953E-4 0.7839 0.8662 0.917 10001 50000
sigma2[1] 0.009987 0.003213 2.702E-5 0.005568 0.009403 0.01791 10001 50000
sigma2[2] 0.009961 0.003191 2.136E-5 0.005532 0.009387 0.01774 10001 50000
sigma2[3] 0.009973 0.003169 2.552E-5 0.005552 0.009384 0.01777 10001 50000
sigma2[4] 0.009975 0.003194 2.505E-5 0.005582 0.009389 0.01786 10001 50000
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The results are virtually identical for all four prior distributions, even though the
priors themselves differ considerably, as illustrated in Figure 6.4. The model fit is
shown in Figure 6.5.

alpha[1] sample: 50000 alpha[2] sample: 50000
0.01 0.008 |
0.006 |
0.005 | 0.004
0.002
00 0.0
T T T T T T T T
-200.0 0.0 200.0 400.0 -200.0 0.0 200.0 400.0
alpha[3] sample: 50000 alpha[4] sample: 50000
0.015F 0.015
0.01 0.01
0.005 | 0.005 | '
00 00
T T T T T T T T
-200.0 0.0 200.0 400.0 -200.0 0.0 200.0 400.0
FIGURE 6.4

Prior distributions for a used in dugongs analyses — Example 6.3.1.

length (m) . . length (m) [model fit: mu -
26 Lo . 2.6}
2.4} Ta B 24}
22t ¢ 22t
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0.0 10.0 20.0 30.0 40.0 0.0 10.0 20.0 30.0 40.0
age (yrs) age (yrs)
FIGURE 6.5

Left-hand side: dugong lengths (m) plotted against age in years. Right-hand side:
same data with accompanying model fit.
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6.4 Multivariate responses

Suppose we have observed n measurements on each of a number of individuals.
Let i (= 1,...,N) index individuals and j (= 1,...,n) index measurements,
and let Y;; denote the jth observation made on individual ¢. Suppose also that
measurements are made on the whole real line, so that a normality assumption
might be appropriate. To account for the fact that observations made on
the same individual may be correlated, we can assume that they follow a
multivariate normal (MVN) distribution with unknown mean vector p and
variance-covariance matrix Y. That is,

Yi = (}/ila}/zaa‘“a}/in)/NMVNn(M,E), 'L:].,,N

If we have also observed covariates, such as the age at which each measurement
was taken, specification of appropriate forms for the elements of u leads to a
multivariate regression model:

p
My :BO+Zkakj7 j: 1,...,71,
k=1

where z; denotes the jth value of covariate k. Typically we would specify
vague normal priors for the coefficients, i.e. 3. ~ Normal(0,100%), and an
inverse-Wishart prior (see Appendix C.4) for the covariance X, via ¥ 1 ~
W(R, p). Here the right-hand side denotes a Wishart distribution with “scale
matrix” R and degrees of freedom p. The Wishart distribution is the multi-
variate analogue of the gamma distribution and arises in classical statistics
as the distribution of the sum-of-squares-and-products matrix in multivariate
normal sampling. It is the conjugate prior for the precision matrix of a mul-
tivariate normal distribution. The least informative, proper Wishart prior is
given by setting p = p, where p is the dimension of the distribution. The prior
mean is pR~! and so a good choice for R is pXg, where Xy is some prior guess
for the covariance.

Example 6.4.1. Jaws

Elston and Grizzle (1962) present repeated measurements of jawbone height on
20 boys. Each boy's jawbone was measured at ages 8, 8.5, 9, and 9.5 years, and
interest focuses on describing the average growth curve of the jawbone. BUGS
code for a multivariate regression model is given below.

model {
for (i in 1:20) {Y[i, 1:4] ~ dmnorm(mul], Sigma.inv[,])}
for (j in 1:4) {mulj] <- alpha + beta*x[jl}
alpha ~ dnorm(0, 0.0001)
beta ~ dnorm(0, 0.0001)
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Sigma.inv[1:4, 1:4] ~ dwish(R[,]1, 4)
Sigma[1:4, 1:4] <- inverse(Sigma.inv([,])
}
list(Y = structure(

.Data = c(47.8, 48.8, 49.0, 49.7,
46.4, 47.3, 47.7, 48.4,
46.3, 47.6, 51.3, 51.8),
.Dim = ¢(20, 4)),

x = c(8.0, 8.5, 9.0, 9.5),
R = structure(
.Data = c(4, 0, 0, O,
0, 4, 0, O,
0, 0, 4, 0,
0, 0, 0, 4),
.Dim = c(4, 4)))

Array quantities in BUGS, such as Sigma.inv, must have their dimensions (1:4,
1:4in this case) specified when they are defined, but not when they are used in the
definitions of other nodes. See Appendix A.5. Note the use of the structure()
syntax to specify data in matrix format — the data for R is supplied as a vector
formed by concatenating successive rows of the matrix — see §12.4.2. The value of
R is set equal to pXy where Xy = I is chosen by guessing the order of magnitude
of variation between responses. Peeking at the data in order to set the prior
is generally inappropriate as it is, strictly speaking, using the data twice in the
analysis. However, assessing the order of magnitude of the variability is reasonable.

Also note that the multivariate normal distribution (dmnorm) in BUGS follows
its univariate counterpart in being parameterised in terms of precision (X~!). The
matrix-valued inverse() function then allows inference on X. The model fit is
shown in Figure 6.6 below. As an alternative for these data, we could have used
a hierarchical “random coefficients” model — see Chapter 10.

Multivariate linear regressions are easily extended to nonlinear regressions,
as in the univariate case. In addition, we can also specify a multivariate t-
distribution (mvt) for the errors, to accommodate any outlying individuals.
One area in which we do not have much freedom, however, is with the Wishart
prior. Covariance matrices must always be positive-definite in order for them
to make sense. The Wishart distribution is the only standard distribution
that imposes this constraint naturally. If we wish to use an alternative form
of prior then we must take responsibility for imposing the constraint our-
selves, through appropriate parameterisation, say — the software will almost
certainly crash if the constraint is not satisfied. Alternative priors for covari-
ance matrices are further discussed in §10.2.3 and in Gelman et al. (2004),
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Model fit for jawbone data. The posterior median fit and 95% credible interval
are indicated by the solid and dashed lines, respectively.

p- 483. Multivariate normal distributions with two specific structural forms
for the covariance matrix are implemented as separate distributions in the
BUGS language — see §11.3.6 for details.

6.5 Generalised linear regression models

Specification of Bayesian generalised linear models (GLMs) follows straight-
forwardly from the above discussion of linear models. No closed-form solution
is available, but as we have seen for nonlinear models, it is still straightforward
to obtain posterior samples using MCMC. The main differences with GLMs
are that the sampling distribution of the data is typically non-normal and
that we use a “link function” to transform parameters of that distribution
onto a scale where a linear model can be used appropriately. More formally
we assume that the data, y;, i = 1,...,n, arise from a specific distribution in
the exponential family (McCullagh and Nelder, 1989), with

p
Bl =pi=g""(m), m =080+ Brwi,
k=1

for covariates zg;, k = 1,...,p. The exponential family of distributions
includes distributions such as normal, Poisson, and binomial. Appropri-
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ate link functions g(.) for these would generally be the identity function,
log(.) and logit(.), respectively. For the binomial distribution, alternatives to
logit(p) = log(p/(1 — p)) are the probit, ®~1(p), and complementary log-log,
log(—log(1 — p)).

In the binomial case, the data can be expressed as y; = r; /v; for consistency
with the relation logit(E[y;]) = n;, where r; is the number of “successes” out
of v; “trials.” Such scaling is not necessary in BUGS, however, as illustrated
in the following example, along with the use of alternative link functions.
Link functions in BUGS are slightly special in that they may appear on the
left-hand side of a logical relationship, as shown for binary and count data
below.

Note that we are not restricted to the exponential family of models. Hierar-
chical regression models, which include random effects, are discussed in §10.3,
and many of the specialised models in Chapter 11 involve regression terms.

Example 6.5.1. Binary data: Beetles
Dobson (1983) analyses binary dose—response data from a bioassay experiment
in which the numbers of beetles killed after 5-hour exposure to carbon disulphide
at N = 8 different concentrations are recorded. Denoting the numbers of beetles
killed at, and exposed to, dose x;, i = 1,...,8, by y; and n;, respectively, we fit
the following logistic regression model.

y; ~ Binomial(p;,n;), logit(p;) = a+ B(z; — T),

with vague Normal(0, 1002) priors for o and 3. Note that, again, the covariate
(dose) is centred, by subtracting @ = N~ ;. This is because serious MCMC
convergence issues arise when the z;s are used directly, due to very high posterior
correlation between o and 8 — see §4.4; centering essentially relocates the y-axis
to x = T, which, in this case, vastly reduces the dependence of the intercept «
on (. The likelihood is specified via

for (i in 1:8) {

y il ~ dbin(pl[i], nlil)

logit(p[i]) <- alpha + beta*(x[i] - mean(x[]1))
}

If we want to assess the model fit visually then we will need to either transform
the data onto the same scale as the linear model or transform the model fit onto
the same scale as the observations. We insert the following code in the loop above
so that we can examine both:

phat[i] <- y[il/n[i]
yhat[i] <- n[il#*pl[il

Instead of a logistic regression, we might prefer to perform a complementary
log-log or probit regression by replacing the 1ogit link function with cloglog or
probit, respectively. In the latter case, specifying the relationship as
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model fit: p (phat "observed") model fit: yhat (y observed)
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FIGURE 6.7

Model fits from logistic regression of “Beetles data.” Left-hand side: 95% credible
intervals for p[] and “observed” phat[] plotted against dose. Right-hand side:
95% credible intervals for yhat [] and observed y[] plotted against dose.

plil <- phi(alpha + beta*(x[i] - mean(x[1)))

where phi denotes the cumulative distribution function of the standard normal
distribution, is somewhat slower but can be more robust to numerical problems.

Example 6.5.2. Count data: Salmonella

Breslow (1984) analyses mutagenicity assay data (shown below) on salmonella in
which three plates have each been processed at various doses of quinoline and
the number of revertant colonies of TA98 salmonella subsequently measured.

Dose 0 10 33 100 333 1000
Platel 15 16 16 27 33 20
Plate2 21 18 26 41 38 27
Plate3 29 21 33 69 41 42

Denoting the dose by x;, i =1, ...,6, and the number of colonies observed on
plate j at dose x; by y;;, we fit the following GLM suggested by theory:

yij ~ Poisson(y;), logu; = a+ Blog(z; + 10) + va;,
with independent Normal(0, 1002) priors for a;, 3 and 7.

for (i in 1:6) {

for (j in 1:3) {

y[i,j] ~ dpois(mulil)

}

log(mu[i]) <- alpha + betaxlog(x[i] + 10) + gammax*x[i]
}
alpha ~ dnorm(0, 0.0001)
beta ~ dnorm(0, 0.0001)
gamma ~ dnorm(0, 0.0001)
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The model fit is shown on the left side of Figure 6.8. We also show 95% predictive
intervals for the response variable at each dose, which are calculated by adding
the following code to the model. These reflect uncertainty in «, 3, and ~, as do
the credible intervals for the model fit, but they also reflect sampling variation
from the Poisson distribution.

for (i in 1:6) {y.pred[i] ~ dpois(mul[i])}

The predictive intervals indicate that the model may be deficient, since it can-
not predict the level of variability apparent in the observed data. In particular,
the largest observed response, at dose 100, is not realistically accommodated by
the fitted model. One solution is to specify a hierarchical model instead — see
Example 10.3.1. Another approach is to assume a negative binomial distribution
(Appendix C.5) to explicitly model over-dispersion in the response variable. The
negative binomial is more flexible than the Poisson but includes the Poisson distri-
bution as a limiting case. If we make the following assumption for the responses:

y[i,j] ~ dnegbin(p[il, r)

then the mean is given by mu[i] <- r*(1-p[i])/p[i]. Hence we can rearrange
to obtain p[i]l <- r/(mul[i]l + r) and model log(mul[il) as above. (Note
that the Poisson distribution arises in the limit as r — 00.) We specify a discrete
uniform prior for r via the following code:

r ~ dcat(pill)
for (i in 1:max) {pilil <- 1/max}

with max = 1000. The resulting model fit and prediction interval are shown on
the right side of Figure 6.8, and posterior summaries for both models are given
in the table below. Note that posterior medians for the common parameters are
strikingly similar, but the posterior uncertainty is increased substantially with
the negative binomial model. Also note that the negative binomial model better
accommodates the observed data. We examine model comparison and criticism
more formally for this example in Chapter 8.

node mean sd MC error 2.5} median 97.5% start sample
dpois:

alpha 2.182 0.2169 0.0109 1.767 2.178 2.629 1001 20000

beta 0.3169 0.05666 0.002886 0.1993 0.3186 0.4254 1001 20000

gamma -0.001006 2.452E-4 1.06E-5 -0.001483 -0.001009 -5.044E-4 1001 20000

dnegbin:
alpha 2.183 0.3206 0.01339 1.581 2.176 2.843 4001 100000
beta 0.3166 0.08655 0.00366 0.1374 0.3188 0.4774 4001 100000
gamma -9.956E-4 3.794E-4 1.38E-5 -0.001721 -0.001009 -2.066E-4 4001 100000
r 72.24 145.3 0.8461 8.0 27.0 617.0 4001 100000
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Posterior median model fits (—), 95% credible intervals (——) and 95% prediction
intervals (.....) from regression analysis of salmonella data: left-hand side, Poisson
regression; right-hand side, negative-binomial regression.

6.6 Inference on functions of parameters

In a Bayesian context, MCMC makes inference easy for arbitrary functions of
parameters, such as coefficients in a regression model. For example, in a logistic
regression model,; such as Example 6.5.1, the model is specified in terms of
the log odds ratio (3, but the odds ratio exp(8) is usually more interpretable.
We simply evaluate the function of interest at every MCMC iteration, and the
resulting set of values represents a sample from the posterior distribution for
that function. In classical inference, the delta method is commonly used to
estimate standard errors or confidence intervals for functions of parameters,
though this can be inaccurate for very nonlinear functions. Bootstrapping
is a more accurate classical alternative with a similar computational cost to
MCMC.

Example 6.6.1. Beetles (continued): ED95
In Example 6.5.1, suppose we wish to estimate the ED95, that is, the dose that
will provide 95% of maximum efficacy:

logit 0.95 = o+ B(ED95 — %) = EDY5 = (logit0.95 — a)/B + T

We simply add the following code into the logistic regression model and monitor
the ED95 variable:

ED95 <- (logit(0.95) - alpha)/beta + mean(x[])

The posterior mean and standard deviation are 1.857 and 0.00776, respectively
(500,000 iterations were necessary to achieve this level of precision).

Using a classical logistic regression fitted in R, the estimated ED95 is 1.858. The
delta method, based on the (multivariate normal) asymptotic distribution of the
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maximum likelihood estimators of o and 3, provides a standard error of 0.00773,
which is reasonably accurate in this example. Note that classical standard errors
obtained in this way will be underestimates of the true SE, due to the Cramer—Rao
inequality, though will converge asymptotically to the true SE.

Obtaining a confidence interval via the delta method would rely on a normal
approximation for some transformation of ED95, introducing further inaccuracies.
A classical alternative would be to use bootstrap methods to obtain a set of values
from the sampling distribution of the ED95 estimator. This could be achieved by
resampling from the data and refitting the model, or by simulating from the
asymptotic distribution of the estimators of a, 5 and computing the resulting
EDO95. The sample quantiles could then be used as the confidence interval. The
latter method in this case gives a 95% interval of (1.844, 1.875), which closely
matches the Bayesian 95% credible interval of (1.843, 1.874).

6.7 Further reading

Gelman and Hill (2007) give a detailed introduction to regression modelling,
focusing on practical issues around building, fitting, criticising, and presenting
models including linear and generalised linear regressions, and hierarchical or
multilevel regression models (as we discuss in Chapter 10). Issues include pre-
dictive model checking (as in our Chapter 8), missing data (as in our §9.1), and
causal inference. Many of the models discussed are Bayesian, and BUGS and
R code is provided. Ntzoufras (2009) and Congdon (2003, 2006) give numer-
ous examples of regression models in WinBUGS, and methods for selection
of predictors. Ntzoufras (2009) gives a particularly detailed consideration of
models for analysis of variance and covariance.
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7

Categorical data

Regression models for binary and count data were introduced in Chapter 6.
This chapter describes Bayesian models for more general forms of categorical
or discrete data, starting with 2 x 2 tables which classify two binary variables,
followed by multinomial models for single or multiple categorical outcomes and
models for ordered categorical data. Regression techniques are introduced for
relating multinomial and ordinal data to predictors.

As in any other Bayesian application, needing to specify prior distributions
may be both an advantage and a challenge. While inferences are sometimes
sensitive to the choice of prior, it can allow realistic information to be intro-
duced and can stabilise estimates from data with small counts. The BUGS
apparatus also allows models to be specified with arbitrary constraints on
their parameters.

7.1 2 x 2 tables

Suppose N individuals are classified, according to two binary variables, in the
following 2 x 2 table.

Success Failure

Group 1 w11 Y12 ni
Group 2 y21 Yo2 U
Total mi mo N

This type of data arises in three general situations.

One margin fixed N individuals are classified deterministically as ni in
Group 1 and ny in Group 2. Each individual has a single random out-
come, deemed “success” with probability p; for Group 1 and po for
Group 2. The total number of successes in Group 4, y;1, is then dis-
tributed as Binomial(n,,p;), for ¢ = 1,2. We are interested in how the
success rate differs between groups, and we might make inferences about
the relative risk p2/p1 or the odds ratio (p2/(1—p2))/(p1/(1—p1)). We
already saw an example in §5.5, and we consider this situation further
in §7.1.1.

121
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Both margins fixed N individuals are classified as n; in Group 1 and ns in
Group 2. The total number of successes and failures is fixed at m; and
ma, respectively. These are then allocated randomly to groups. A com-
monly cited example is the “lady tasting tea” experiment. A colleague
of the statistician Ronald Fisher claimed to be able to tell whether the
milk or the tea infusion had been poured into a cup first. N cups of tea
with milk are prepared, n; where the milk is poured first and ny where
the tea is poured first. The taster is told how many had the milk poured
first, then she tries to guess which. my is the number of cups guessed as
“milk first,” so that in this example, m; = ny. This is mathematically
more difficult and is discussed briefly in §7.1.3.

No margins fixed Two random binary outcomes are measured on N indi-
viduals, resulting in four possible combined outcomes with probabilities
P11, P12, P21, and pao. For example, we might ask someone whether they
smoke tobacco, drink alcohol, neither, or both. This is a 2x 2 contingency
table, governed by a multinomial model. The BUGS implementation of
multinomial models is described in §7.2, and contingency table analysis
is discussed briefly in §7.2.5.

7.1.1 Tables with one margin fixed

Here we concentrate on the case with one margin fixed, and analyse some
fictitious data from the tea-tasting experiment introduced above. We delib-
erately choose an example with small counts, for which the choice of prior
will be important and Bayesian inferences are more likely to differ from clas-
sical results. Example 5.5.1 discussed how informative priors can be placed on
the (log-)odds ratio — here we place informative priors directly on the two
outcome probabilities.

Example 7.1.1. Lady tasting tea
Suppose the tea-tasting experiment resulted in the following guesses.

Guess
Milk first Tea first
Actual Milk first 3 1 4
Tea first 1 3 4
Total 4 4 8

For the purpose of this example, we suppose that the taster was not told
beforehand how many cups had their milk poured first, so that the column totals
are not fixed. The model is then two independent binomials, as in the BUGS code
below. p1, po are the probabilities that she guesses that the milk was poured first,
given that the milk or tea, respectively, were actually poured first. A classical
analysis would normally test the null hypothesis that p; = ps, but we estimate
the posterior probability that p; > p2, in other words that she has some ability
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to identify the pouring order. However, for many situations a more meaningful
hypothesis may be that the difference between p; and ps is practically significant,
so that p; — po > € for some value of e.

for (i in 1:2) {
y[i] ~ dbin(pl[il, n[il)
plil = dunif(0, 1)

}

The data are simply supplied as:
list(n=c(4,4), y=c(3,1))

We compare the conventional independent uniform priors with various alterna-
tives.

“Reference” Independent Beta(0.5, 0.5) priors from Jeffreys’ principle, or uni-
form priors for logit(p;), equivalent to Beta(0,0), as discussed in §5.2.5.

One parameter The probability of correct classification doesn't depend on
whether the milk or the tea is poured first, so that p; = 1 — ps. Then
p1 is given a uniform, Jeffreys, or logit uniform prior. In this case the alter-
native hypothesis is p; > 0.5.

One parameter, sceptical Again assuming p;1 = 1 — po, and following Lindley
(1984), we could be sceptical and place substantial prior mass on the single
point p; = 0.5 representing no discriminating skill. We give 50% prior
probability to this point, assume zero prior probability to the situation p; <
0.5, where she consistently selects the reverse of the true pouring order,
and place a uniform prior on the remaining region p; > 0.5 where she
has some discriminating ability. As discussed in §8.7, studies of remarkable
or supernatural abilities are one of the few occasions where a point null
hypothesis is strictly realistic! This prior is implemented in BUGS using the
pick formulation, introduced in §5.4.

pl1] <- thetal[pick]
pick ~ dcat(qll)
ql1] <- 0.5

ql2] <- 0.5

thetal[1l] <- 0.5
thetal[2] ~ dunif (0.5, 1)

Dependent As discussed by Howard (1998), in many real 2 x 2 table situations,
if p1 is expected to be large, then so is pa. Suppose we are told the lady is
inclined to guess “milk first” for cups with the milk actually poured first,
in other words p; is large. If we were sceptical about her tasting skill, we
might believe that this is because she is more likely to guess "milk first”
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TABLE 7.1
Posterior probabilities that the tea-taster has some discriminating
ability, for various priors.

Independent One parameter Dependent
p=0.75 p=0.875
Uniform 0.89 0.91 0.81 0.75
Beta(0.5,0.5) 0.92 0.92 0.82 0.75
Beta(0,0) 0.95 0.94 0.83 0.76
Sceptical 0.65

in all circumstances, and not because she can detect the pouring order.
This is equivalent to assuming a prior correlation. While this prior may
be less realistic in the tea-tasting experiment, it lets us illustrate a trick
described by Michael and Schucany (2002) for specifying identical marginal
priors for p; and p2 while inducing a prior correlation between the two. If
p1 ~ Beta(a, 8) and z|p1 ~ Binomial(py,n), then, treating = as data, the
posterior of pi|z is Beta(a + z, 8 + n — z). However, if we define a new
random variable ps whose distribution is this posterior integrated over the
distribution of z, then the marginal distribution of ps will also be Beta(a, ),
and the correlation between p; and ps is p = n/(a+ S +n). A similar trick
is available for the gamma distribution.

Therefore the following code specifies a joint prior for p; and ps, where each
is marginally Uniform(0,1), and the correlation is 6/(6 +«a+ 3) = 0.75 with
a = f =1 for the uniform (Beta(1,1)) distribution. With this correlation,
if p1 = 0.5, then p2 has a 95% chance of being between 0.1 and 0.92 —
not a very strong assumption.

alpha <- 1; beta <- 1;

pl1] ~ dbeta(alpha, beta)
n.corr <- 6 # for rho=0.75, or n.corr <- 14 for rho=0.875
X ~ dbin(p[1], n.corr)

a.post <- alpha + x
b.post <- alpha + n.corr - x
pl2] ~ dbeta(a.post, b.post)

The posterior probabilities that p; > po are obtained in each case as the
posterior mean of
post <- step(p[1] - pl[2])

except for the one-parameter sceptical prior, where the (equivalent) probability
of p1 > 0.5 is obtained as the posterior mean of pick—1. These are listed in
Table 7.1.
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There is not much difference between the posterior probabilities under the vague
uniform, Jeffreys, and logit uniform priors, or whether the success probability is
assumed to be independent of the pouring order. However, the conclusions about
the lady's tasting skill are more reserved under our more “subjective” priors. Under
the sceptical prior, which assigned a probability of 0.5 to any tasting skill, the
taster’s six out of eight successful classifications only convert this to a posterior
probability of 0.65. Under the dependent priors, as the prior correlation p between
p1 and po increases, the posterior probability of discriminating ability becomes
smaller, and the choice of marginal prior has even less impact.

Note that under certain priors, the Bayesian results agree with classical signif-
icance levels. The posterior probability of 0.92 under independent Jeffreys' priors
is approximately the same (to 2 s.f.) as 1 — p, where p is the one-sided p-value
from the standard x? test without continuity correction. The corresponding 1 —p
from Fisher's exact test, however, is equal to the more conservative posterior
probability of 0.76 under independent priors of p; ~ Beta(0,1), p2 ~ Beta(1,0),
which slightly favour pa > p; (Altham, 1969).

For some very sceptical priors, even if the taster had guessed all eight cups
of tea correctly, then the posterior probability would still not be convincing; for
example, it is 0.93 with a prior probability of 0.8 on p; = 0.5. A greater number
of trials would then be required for stronger evidence! See Example 8.7.1 for a
situation where even greater scepticism is appropriate.

7.1.2 Case-control studies

Case-control studies typically produce data as a 2 x 2 table, but with the
outcome totals fixed, rather than the predictor totals. A fixed number of in-
dividuals with and without a certain outcome are collected and examined to
see whether they were exposed to a particular predictor. These allow the es-
timation of the odds ratio of the outcome in terms of the exposure, but not
the relative risk. They are typically used, however, for rare diseases where
the odds ratio approximates the relative risk. Suppose Group 2 represents
exposure. The number of exposed cases and controls are modelled as indepen-
dent binomial, with odds ps;/p11 and paa/p12, respectively. The odds ratio
(p21p12)/(P11p22) between cases and controls for the probability of exposure
equals the odds ratio between exposed and unexposed for the probability of
the outcome.

Case-control studies are often analysed conditionally on fixed exposure to-
tals as well as fixed outcome totals. Bayesian analyses of case-control studies,
both conditional and unconditional, are discussed in the Endo example pro-
vided with WinBUGS and OpenBUGS.
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7.1.3 Tables with both margins fixed

In the tea-tasting experiment as originally described by Fisher, the lady is
told the margins of the table and thus always guesses the correct total num-
ber with milk or tea poured first. The number of cups 11, for which milk
was poured first and the lady also identifies them correctly, is no longer bino-
mial but instead follows the non-central hypergeometric distribution. This is
parameterised by the table margins and the odds ratio — see Appendix C.5
for the exact definition. The “null” distribution of yi1, when the odds ratio
is 1 (p1 = p2), is the standard hypergeometric. This is the basis of Fisher’s
exact test, which is commonly used to test the null hypothesis instead of
the (asymptotic) chi-squared test when the numbers in the table are small,
whether or not the column totals are fixed.

In order to estimate the posterior distribution of the odds ratio in a Bayesian
context, a non-central hypergeometric likelihood is required. This is pro-
vided by OpenBUGS and JAGS (with different parameterisations; see Ap-
pendix C.5) but not WinBUGS. In the tea-tasting example above, using a
uniform prior for p; = 1 — ps, the posterior probability that p; > ps is 0.90,
similar to the probability of 0.91 obtained without the column totals fixed
(labelled “One parameter” in Table 7.1).

In the tea-tasting example, the row totals equal the column totals. For
more general tables with fixed margins, the margin totals imply complicated
constraints on the internal cells (Wakefield, 2004) and thus on plausible prior
values for the cell probabilities, assuming the prior is chosen after seeing the
column totals but before seeing the data.

7.2 Multinomial models

Suppose we have data wyp,...,y, which are arrays of counts, y; =
(Yi1, Yi2, - - -, Yir)- BEach y; represents a set of M; independent draws from R
categories with probabilities ¢ = (q1, ..., qr) so that ) _y; = M; for all i, and
> . @ = 1. For example, with R =3 and M; = M =9 for all i: y; = (1,4,4),
y2 = (3,3, 3), and so on. This is a multinomial model y; ~ Multinomial(g, M;),
with likelihood oc T/, [T, ¥

y[i,1:3] ~ dmulti(q[1:3], M[il)

7.2.1 Conjugate analysis

The conjugate prior for the vector of multinomial probabilities ¢ is the
Dirichlet(av, ..., ag) distribution with p(q) o [],.¢% !, a generalisation
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of the beta distribution for the probability of a binary outcome (see Ap-
pendix C.4):

ql1:3] ~ ddirch(alphal1:3])

The parameter «,. is proportional to the expected probability ¢, of the rth
outcome, and the prior precision of ¢ increases with the scale of the «,.. For
example, o, = 1 for r = 1,..., R is a generalisation of the Uniform(0,1) or
Beta(1,1) distribution. Given one y;, the resulting posterior is

q ~ Dirichlet(ay + yi1,---,Qr + Yir)-

Note the greater posterior precision for larger sample sizes, and a greater
influence of the prior for larger a..

Example 7.2.1. Asthma: state transitions in a clinical trial

Briggs, Ades, and Price (2003) examine transitions between five clinical states in
a randomised trial of treatments (seretide and fluticasone) for asthma. The states
are labelled STW: Successfully treated week, UTW: Unsuccessfully treated week,
Hex: Hospital-managed exacerbation, Pex: Primary care-managed exacerbation,
TF: Treatment failure. The number of occasions a patient occupied state a in
one week, followed by state b the following week, is counted for all states a, b for
12 weeks. For patients randomised to the seretide arm, these are

To

STW UTW Hex Pex TF
From Total
STW 210 60 0 1 1 272
UTW 88 641 0 4 13 746
Hex 0 0 0 0 0 0
Pex 1 0 0 0 1 2
TF 0 0 0 0 81 81

The aim is to estimate the transition probabilities between the states, which will
inform a cost-effectiveness analysis. Although no patients entered the Hex state
within the short 12 week follow-up, hospital admission is expensive and potentially
important to long-term cost effectiveness.

We fit a discrete-time Markov model, equivalent to four independent multino-
mial models with probability vector ¢; governing the state in the following week
conditionally on the current state, each with a uniform Dirichlet prior on ¢;. The
fifth state, treatment failure, is absorbing; in other words, patients cannot move
outofit,soqs- =0, 7r=1,...,4, g55 = 1.

for (i in 1:4) {
count[i, 1:5] ~ dmulti(qli, 1:5], M[i])
qli, 1:5] ~ ddirch(alphall)

}

for (r in 1:5) {alphalr] <- 1}
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One thousand samples from the conjugate posterior distribution produce pos-
terior means of

To

STW UTW Hex Pex TF
From
STW 0.76 0.22 0.004 0.007 0.007
UTw 0.12 0.86 0.001 0.007 0.02
Hex 020 020 020 0.20 0.20
Pex 0.28 0.14 0.14 0.14 0.30

The influence of the prior allows transitions not observed in the data to have a
small but non-zero posterior probability. This represents the belief that asthma
patients will occasionally need to be admitted to hospital after an exacerbation.
This would not have been possible if the transition probabilities had been esti-
mated simply by dividing the count data above by the appropriate denominator.

7.2.2 Non-conjugate analysis — parameter constraints

Conjugate Bayesian analyses for multinomial data, as above, can be performed
in standard statistical software. The BUGS language and MCMC framework,
however, enable more complex models in which the cell probabilities are func-
tions of other parameters of interest, where no closed-form posterior distribu-
tion is available for those parameters.

Example 7.2.2. Population genetics: self-fertilising plants
Given the following frequencies of genotypes from a set of maternal plants
(Holsinger, 2001-2010).

Offspring genotype
Maternal genotype AA AB BB

AA 427 95
AB 108 161 71
BB 64 74

we wish to estimate the rate o at which plants self-fertilise, and the frequency
p of allele A in outcross pollen. The probabilities of each offspring genotype,
conditionally on each maternal genotype, are functions of these parameters (¢ =

1—p):
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Offspring genotype

Maternal genotype AA AB BB
AA l-o)p+o (I1-0)q 0
AB (1—-0)p/2+0/4 1/2 (1-0)g/24+0/4
BB 0 (1—o)p l-0)g+0o

This can be written immediately in BUGS:

NAA[1:3] ~ dmulti(XAA[1:3], KAA)
NAB[1:3] ~ dmulti(XAB[1:3], KAB)
NBB[1:3] ~ dmulti(XBB[1:3], KBB)
XAA[1] <- (1 - sigma)*p + sigma
XAA[2] <- (1 - sigma)*q

XAA[3] <=0

XAB[1] <- (1 - sigma)*p/2 + sigma/4
XAB[2] <- 0.5

XAB[3] <- (1 - sigma)*q/2 + sigma/4
XBB[1] <- 0

XBB[2] <- (1 - sigma)*p

XBB[3] <- (1 - sigma)*q + sigma

KAA <- sum(NAA[])
KAB <- sum(NAB[1)
KBB <- sum(NBB[])
P ~ dunif (0, 1)
sigma ~ dunif (0, 1)
q <-1-p

obtaining posterior distributions for both the self-fertilisation rate and the allele
A frequency, each acknowledging the uncertainty about the other (Figure 7.1).

node mean sd MC error 2.5% median 97.5)% start sample
p 0.7049 0.02394 2.455E-4 0.6562 0.7053 0.7497 1001 10000
sigma 0.37 0.04158 4.236E-4 0.287 0.3703 0.4509 1001 10000

7.2.3 Categorical data with covariates

The multinomial logistic model allows responses y; ~ Multinomial(g;, N) to
be modelled in terms of a vector of covariates x; = (214, .., Zpi). The log odds
ratio for category r relative to category 1 is defined as

2t

p
nir_10g<q£>:ar+25erkia r=2,....,R;, i=1,...,N
i
k=1
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p sample: 10000 sigma sample: 10000
200 10.0 [
150 751
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50 25+
00L 0.0[
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0.5 0.6 0.7 0.2 0.3 0.4 0.5
FIGURE 7.1

Posterior density estimates for allele frequency p and self-fertilisation rate sigma
from population genetics example.

Conceptually, this is equivalent to R — 1 binomial logistic regressions compar-
ing category r > 1 with category 1. The category probabilities are then

¢ir
S s

with the constraint that ¢;; =1 (i.e., n;1 = 0).

Qir = where ¢;. = e'lir = eQrt2 25 BrrZhi

Example 7.2.3. Asthma (continued): including a treatment effect

To compare the state transition probabilities between two treatment groups in
the asthma trial example 7.2.1, we could fit independent multinomial models to
the counts observed under each treatment. However, since the data are sparse, it
would probably be more efficient to fit a multinomial logistic model to the dataset
as a whole, with treatment as a covariate. We illustrate this for the transition
from the first state (successfully treated week). The transition counts for the two
treatments are:

To
STW UTW Hex Pex TF
Total
Seretide 210 60 0 1 1 272

Fluticasone 66 32 0 0 2 100

The probability q[i,2] that a patient is unsuccessfully treated in the following
week is allowed to vary between treatments i (where seretide is treatment 1 and
fluticasone is treatment 2) but due to the small counts, all transition probabilities
to other states are constrained to be the same between treatment groups. Diffuse
normal priors are assumed for the baseline log odds a[j] for transition to state j,
and for the log odds ratio b.treat [2] for treatment with fluticasone. Odds are
relative to remaining in the baseline state (STW). These priors on the log-odds
scale are not equivalent to the uniform Dirichlet priors used on the probability scale
in Example 7.2.1, and sensitivity analysis to the prior variance may be advisable.
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for (i in 1:2) {

count[i, 1:5] ~ dmulti(q[i, 1:5], M[i])
for (r in 1:5) {
qli,r] <- phili,r]/sum(phili,])
log(phili,r]) <- a[r] + b.treat[r]*treat[i]
}
}
for (r in 2:5) {alr] ~ dnorm(0, 0.00001)}
al1] <=0 #
b.treat[1] <=0 # giving phil[i,1] =1
b.treat[2] ~ dnorm(0, 0.00001)
or.treat <- exp(b.treat[2])

# no treatment effect on transitions other than to UTW
for (r in 3:5) {b.treat[r] <- 0}
treat[1] <=0
treat [2] <-1

After an adaptive phase of 4000 iterations, 6000 posterior samples result in a
posterior mean of 1.72 (95% credible interval 1.00 to 2.80) for the odds ratio
or.treat for treatment with fluticasone. An estimate of the odds ratio could
also have been obtained “by hand” from the above data, as (32/66)/(60,/210)
= 1.70, but the Bayesian formulation also allows us to simultaneously obtain
posterior distributions for this effect and for the other transition probabilities.
These are substantively the same as those obtained from the multinomial model
without covariates in Example 7.2.1.

This model could easily be extended to estimate the transition probabilities from
the remaining states. Constraints can be applied by setting up the appropriate
logical nodes — for example, assuming that the risk of hospital admission, or the
effect of treatment on this risk, is independent of the current state.

7.2.4 Multinomial and Poisson regression equivalence

An alternative way of fitting a multinomial logistic regression in BUGS is to
assume

Yir ~ Poisson(uir),  log(pir) = Ni + oy + Z BrrThi-
k

With an improper uniform prior on )\;, integrating over \; produces the same
likelihood for the «, and S, as the multinomial model (see Appendix C.6).
This can be more efficient, though perhaps at the cost of clarity. The model
in Example 7.2.3 could be expressed in this way as:

for (i in 1:2) {
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for (r in 1:5) {
count[i,r] ~ dpois(muli,r])
log(mu[i,r]) <- lambda[i] + al[r] + b.treat[r]*treat[i]
}
lambdal[i] ~ dflat ()
}

7.2.5 Contingency tables

A common application of the multinomial/Poisson equivalence is to the anal-
ysis of contingency tables. These classify individuals according to two cate-
gorical outcomes, generalising the 2 x 2 table to any number of rows r and
columns c. Suppose we observe y;; individuals in row 4 and column j of the
table, in other words, with level i of the first category and level j of the sec-
ond. Assuming independent outcomes, the model for the y;; is multinomial
with corresponding probabilities p;;: ¢ = 1,...,r; 7 = 1,...,c. However, the
Poisson log-linear formulation is more common: y;; ~ Poisson(;;), where the
log mean of y;; is

log(pij) = ai + Bj + ij
under a saturated model, in which every cell has its own parameter. These are
conceptually the same as the Poisson regression models illustrated in Exam-
ple 6.5.2. Typically we would assess the hypothesis that the two factors are
independent, so that p;; = p;g;, or v;; = 0 in the Poisson formulation.

These generalise easily to multiway contingency tables with more than
two categorical variables. Specific constraints on the probabilities may be
employed to examine particular hypotheses and compared using the meth-
ods discussed in Chapter 8. Arbitrary constraints on related parameters are
straightforward to implement using BUGS, as illustrated in Example 7.2.2.
Many examples of models for contingency tables and their implementation in
BUGS are given by Congdon (2005).

7.3 Ordinal regression

Ordinal data are discrete data with a natural ordering. These are commonly
found in surveys, where respondents give preferences on a ranked scale such
as the Likert (1. strongly disagree, 2. disagree, 3. neither agree nor disagree,
4. agree, 5. strongly agree). While ordinal data themselves are discrete, to
aid modelling we can usually assume they represent an underlying contin-
uous scale. Indeed, such data sometimes result from grouping an originally
continuous response into intervals.
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Suppose the data y1,...,y, are independent outcomes on an ordinal scale
1,2,..., R. The R categories represent intervals [ag, a1), [a1, az2), ..., [ar—1, ag)
of a latent continuous variable Z; which can take any real value, so that
ag = —oo and ag = oo. The distribution of y; is fully specified by the cumu-
lative probabilities ¢;; = Pr(Z; > a,) that the response is in category r or
higher, for r = 1,..., R. To model how the response varies with covariates x;,
we place a linear model on these probabilities on a suitable link-transformed
scale. For example, using a logit link,

logit(gir) = i — ar, i = o+ Z BrTri
k

Implicitly, the latent variable Z; has a logistic distribution with mean pu;.
Alternatively, a probit link function would imply a latent normally distributed
variable (see Example 9.1.4 for an example of latent probit regression models).

The ordered logistic model is a proportional odds model. This means that
the odds ratio of a higher score compared to a lower score, Pr(y; > r)/ Pr(y; <
r), does not depend on which category r is chosen to define a “high” score.
Equivalently for the latent variable, Pr(Z; > a)/ Pr(Z; < a) is independent of
the cut-point a which distinguishes higher from lower scores.

The cut-points a, defining the categories are considered to be unknown
and must be given prior distributions which respect the ordering constraint
a <ag <...<ag.

Example 7.3.1. Kidney transplants: ordered logistic regression

Kidneys for transplantation are commonly obtained from donors who are brain
dead but whose hearts are still beating. Because of the shortage of organs available
this way, kidneys are increasingly also being obtained from donors after cardiac
death. However, there are concerns about the extent of damage to these donor
organs during the “agonal phase” from withdrawal of life-supporting treatment to
cardiorespiratory arrest. Reid et al. (2011) investigated the impact of the duration
of the agonal phase on organ damage. Each of 190 donor kidneys is given a score
representing the presence of up to five indicators of kidney damage (acidaemia,
lactic acidosis, hypotension, hypoxia, or oliguria), so that the score is 0 if none
are present, up to 5 if all are present.

Figure 7.2 suggests the score increases with agonal phase duration. The ques-
tion is how to quantify this increase. An ordered logistic regression is fitted to the
agonal scores, shifted to take values from 1 to 6. The N = 190 scores Score[i]
are considered as independent categorical outcomes. The logit of the cumulative
probability Q[i,r] of scores of r or more is given a linear model with log(agonal
phase duration in minutes) 1APD[i] as a predictor, and an unknown cut-point
c[r] for each category . A prior ordering is imposed on the cut-points by defining
positive prior distributions on reasonably large ranges for the differences dc[r]
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between the cut-points.*

for (i in 1:N) {

Score[i] ~ dcat(pli,])
# define in terms of cumulative probabilities
pli,1] <- 1 -Qf[i,1]
for (r in 2:5) {
pli,r] <- Q[i,r-11 - Q[i,r]
X
pli,6] <- Q[i,5]

for (r in 1:5) {
logit(Q[i,r]) <- b.apd*1APD[i] - c[r]

}
}
for (i in 1:5) {dc[i] ~ dunif (0, 20)}
cl1] <- dc[1]
for (i in 2:5) {

c[i] <- cl[i-1] + dc[i]
}
b.apd ~ dnorm(0, 0.001)
or.apd <- exp(b.apd)

The odds ratio or.apd is interpreted as the increase in odds of a higher score
corresponding to one unit increase in log(agonal phase minutes). After a burn-in
of 500 and further 10,000 iterations, the posterior median odds ratio is 1.46 (95%
Cl 1.23, 1.74).

A more extensive analysis of these data (Reid et al., 2011) took account of
the correlation between kidneys from the same donor using a hierarchical model
(Chapter 10) and accounted for missing data on one or more of the indicators of
damage using Bayesian multiple imputation (as in Example 9.1.4). The analysis
presented above was based on a single imputation.

7.4 Further reading

Congdon (2005) gives a wide-ranging and detailed description of many
Bayesian models for categorical data, including WinBUGS code for all ex-
amples. Some of the many topics covered in greater detail than in our book

*In JAGS and OpenBUGS, the elements of a vector can be sorted using c[1:5] <-
sort(x[1).
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Agonal scores from donor kidneys compared with agonal phase duration.

include robust regression, flexible models including generalized additive and
nonparametric models, dynamic linear models and contingency tables, and
latent class and hierarchical extensions to many of these models.
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Model checking and comparison

8.1 Introduction

The conclusions of a Bayesian analysis are conditional on the appropriateness
of an assumed probability model, so we need to be satisfied that our as-
sumptions are a reasonable approximation to reality, even though we do not
generally believe any model is actually “true.” Many aspects of an assumed
model might be questioned: observations that don’t fit, the distributional as-
sumptions, qualitative structure, link functions, which covariates to include,
and so on.

We can distinguish three elements that can be applied in an iterative man-
ner (O’Hagan, 2003).

1. Criticism: exploratory checking of a single model, which may suggest. . .
2. Ezxtensions: embedding a model in a list of alternatives, which leads to. . .

3. Comparison: assessing candidate models in terms of their evidential sup-
port and influence on conclusions of interest.

Classical statistical model assessment ideas, such as residuals and predic-
tive ability on new data, generally depend on assumptions such as a linear
model structure. Here we adapt these ideas to be generically applicable in
arbitrary models, noting that the Bayesian approach means that parameters
have distributions and so, for example, residuals and deviances will be quan-
tities with posterior distributions. In addition, within a Bayesian framework
there is a responsibility to check for unintended sensitivity to the prior and
for conflict between prior and data. Fortunately, MCMC methods provide a
flexible framework for implementing these ideas.

In this chapter we first focus on the deviance as a general measure of model
adequacy. We go on to explore model criticism using residuals and meth-
ods based on generating replicate data and (possibly) parameters. We then
consider embedding models in extended models, followed by deviance-based
and traditional Bayesian measures for overall model comparison. Methods
for accounting for uncertainty about model choice are then described, and
we conclude by discussing the detection of conflict between prior and data.
Assessment of hierarchical models is described in §10.7 and §10.8.

137



138 The BUGS Book

We emphasise that the techniques described in this chapter are more infor-
mal than the inferential methods covered elsewhere — model criticism and
comparison inevitably involve a degree of judgement and cannot be reduced
to a set of formal rules.

8.2 Deviance

We define the deviance as
D(0) = —2log p(y|0) (8.1)

which is explicitly a function of 6 and so has a posterior distribution. This
quantity is created automatically as a node by WinBUGS and OpenBUGS,
named deviance. This can be monitored and plotted like any other node —
note that since the full sampling distribution p(y|#) is used, including the
normalising constant, the absolute size of the deviance is generally difficult to
interpret.

We note that the deviance depends on the specific formulation of a distri-
bution, which becomes relevant when alternative parameterisations exist. For
example, a Student’s t4 distribution can be expressed as y ~ dt(mu,tau,4)
in terms of its mean p and precision parameter 7, with corresponding density

INCIV 1 ,
VAT [ (y = p)r/4)?

p(ylp,7) =
(Appendix C.1) and hence the deviance is

)
D(p,7) =logm — QIOgF(E) —log 7 4 log(4) + 5log[l + (y — u)*7/4]

Alternatively, we can express the ¢ distribution indirectly as a scale mixture
of normal densities. This follows from the standard result that if Y ~ N(u, 0?)
and A ~ x7 are independent random quantities, then @/\/)\/4 ~ t4, and
so if 7 =4/(\o?), then (Y — pu)\/T ~ t4 (Appendix C.1). Then the deviance
is simply —2 x log of the normal density (as a function of the mean and
precision).

D(p,07?) =log2m —logo ™ + (y — p)’c >

which may be expressed as
D(p,7,A) = log 2m — log(A7/4) + (y — p)* A7 /4

showing the additional dependence on the random A when using this repre-
sentation.
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Count
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Time - 24800 ns
FIGURE 8.1
Newcomb's 66 measurements of the time taken for light to travel 7442 metres.

Example 8.2.1. Newcomb's speed of light data
Stigler (1977) presents 66 measurements made of the time taken for light to
travel 7442 metres (recorded as deviations from 24,800 nanoseconds) made by
Simon Newcomb in 1882. Sixty-four of these form a fairly symmetric distribution
between around 17 and 40, while there are two gross outliers of —2 and —44.
These are shown in Figure 8.1 and were initially analysed by Carlin and Louis
(2008), who pointed out the rather clear non-normality.

A heavy-tailed ¢4 distribution can be fitted to the data in two different ways.
First as

y[il ~ dt(mu, tau ,4)
mu ~ dunif (-100, 100)
tau ~ dgamma(0.001, 0.001)

with the following results:

node mean sd MC error 2.5% median 97.5), start sample
deviance 436.4 2.02 0.02387 434.4 435.8 441.8 1001 10000
mu 27.48 0.6604 0.009961 26.2 27 .47 28.78 1001 10000
tau 0.04919 0.01196 1.829E-4 0.02968 0.04776 0.07635 1001 10000

Or we can fit an identical model using the scale mixture of normals
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y[i] ~ dnorm(mu, invsigma2[i])
invsigma2[i] <- tauxlambdal[i]/4
lambdal[i] ~ dchisqr(4)

with the same priors on p and 7. If we monitor deviance for this representation,
we shall be calculating at each iteration

D= Z [log 2 —logTA; /4 + (yi — /,L)QT/\i/4)]

and obtain the following results:

node mean sd MC error 2.5% median 97.5)  start sample
deviance 408.6 7.969 0.104 393.9 408.3 425.2 1001 10000
mu 27.49 0.6586 0.00904 26.2 27.49 28.78 1001 10000
tau 0.04911 0.01186 1.719E-4 0.02955 0.04774 0.07576 1001 10000

The parameter estimates are the same (up to Monte Carlo error) but the deviance
is smaller in the representation in terms of a random scale parameter.

We shall examine this further when we consider model criticism by embed-
ding in more complex models in §8.5.

8.3 Residuals

Residuals measure the deviation between observations and estimated expected
values and should ideally be assessed on data that has not been used to fit the
model. Classical residuals are generally calculated, however, from the fitted
data and used to identify potential inadequacies in the model by, for example,
plotting against covariates or fitted values, checking for auto-correlations, dis-
tributional shape, and so on. This analysis is generally carried out informally,
and different forms of residual all have their Bayesian analogues.

8.3.1 Standardised Pearson residuals

A Pearson residual is defined as

yi — E(yi|0)

v Var(yi|0)

which is a function of # and therefore has a posterior distribution. If it is
considered as a function of random y; for fixed 6, it has mean 0 and variance

TZ(Q) = (82)
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1, and so we might broadly expect values between —2 and 2. For discrete
sampling distributions the residuals can be “binned up” by, say, creating new
variables made from adding y’s corresponding to covariates within a specified
range (Gelman et al., 2004). If we want to create a single-valued residual
rather than a random quantity, alternative possibilities include using a single
draw @, plugging in the posterior means of 6, or using the posterior mean
residual.

We note that the residuals are not independent since their posterior dis-
tributions all depend on 6, and they are best used informally. Nevertheless
it seems natural to examine a summary measure such as X2 = ¥;r? as an
overall measure of residual variation (McCullagh and Nelder, 1989).

Example 8.3.1. Bristol surgery mortality

The following data represent the mortality rates from 12 English hospitals carrying
out heart surgery on children under 1 year old between 1991 and 1995 (Marshall
and Spiegelhalter, 2007).

TABLE 8.1

Numbers of open-heart operations and deaths for children under 1 year of age

carried out in 12 hospitals in England between 1991 and 1995, as recorded by

Hospital Episode Statistics. The “tenth” data represents similar mortality rates
but based on approximately one tenth of the sample size.

Full data Tenth data
Hospital Operations n; Deaths y; Operations Deaths
1 Bristol 143 41 14 4
2 Leicester 187 25 19 3
3 Leeds 323 24 32 2
4  Oxford 122 23 12 2
5 Guys 164 25 16 3
6 Liverpool 405 42 41 4
7 Southampton 239 24 24 2
8 Great Ormond St 482 53 48 5
9 Newcastle 195 26 20 3
10 Harefield 177 25 18 3
11 Birmingham 581 58 58 6
12 Brompton 301 31 30 3

Suppose we fit a binomial model under the assumption that all 12 hospi-
tals had the same underlying risk 6, which we give a uniform prior. Then, since
EY;|0] = ni0, Var[Y;|f] = n;0(1 — ) under this model, we can calculate the
standardised residuals r; = (y; — n;0)/+/n;0(1 — 0) as well as the sum of the
squared standardised residuals.
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for (i in 1:12) {

The BUGS Book

y[i] ~ dbin(theta, nl[i])
res[i] <- (y[i] - n[il*theta)/sqrt(n[i]l*theta*(1-theta))

res2[i] <- res[i]*res[i]

}

theta ~ dunif (0, 1)
X2.o0bs <- sum(res2[])
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Standardised residuals for child heart surgery mortality rates in Table 8.1.

These are plotted in Figure 8.2 using the Inference->Compare->box plot
facility in WinBUGS. To rank the boxes in increasing order of their mean, right-

click on the plot, select Properties... then Special...

and check the box

labelled rank. The residual for Bristol is a clear outlier. X2.0bs has a posterior
mean of 59.1: for known 6 we might expect this to be around 12, which informally
suggests a severe lack of fit of a constant risk model. See §8.4.5 for more on
goodness-of-fit tests, and Example 10.1.1, where we consider a hierarchical model

for these data.

8.3.2 Multivariate residuals

In multivariate settings such as

}/i - (}/ila}/ﬂa ceey

}/;n)/ ~ MVNn(,Uf, E)v
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for some response variable Y;; (i =1,...,N, j =1,...,n), we can also calculate
standardised Pearson residuals, via, for example,

Yij — pj
rij(n, 8) = = =—=".
7
This may highlight outlying observations but does not address the model’s
performance in terms of its ability to describe the correlation among obser-

vations from the same “unit” (e.g., individual). We might instead look at the
Mahalanobis distance (or its square):

M, = \/m — B(Yi|0)) V(Y;|0)~1 (Y; — E(Y;|6)),

where 6 denotes the set of all model parameters. In the following example
we show how to calculate M; and M? in the case of a multivariate normal
assumption for the response. Under multivariate normality, the distribution
of M? (considered as a function of random Y; with 8 = {u, ¥} fixed) is known
to be x2.

Example 8.3.2. Jaws (continued): model checking

We return to the “Jaws” example of §6.4. For each boy constituting the data set,
the Mahalanobis distance from the fitted model (and its square) can be calculated
by inserting the following code.

for (i in 1:20) {
for (j in 1:4) {
res[i, j1 <- Y[i, jl - mul[j]
temp[i, j] <- inprod(Sigma.inv[j, 1:4], res[i, 1:4])
}
M.squared[i] <- inprod(res([i, 1:4], temp[i, 1:4])
M[i] <- sqrt(M.squared[i])
}

Box plots for both quantities are shown in Figure 8.3. If thedata ¥;, i =1,..., N,
were truly realisations from MVN(p, X) for some fixed p and ¥, then each M? (for
random Y;) would be ~x3. Hence we might expect the majority of individuals,
in this case, to have squared distances less than the 95th percentile of a x?
distribution /= 9.5. In light of this we might be concerned as to whether individual
12's data are well accounted for by the model. Note, however, that we would
actually expect 1 boy out of 20 to give a squared distance > 9.5.

8.3.3 Observed p-values for distributional shape

If the cumulative distribution function F(Y|f) is available in closed form,
then the quantity P;(f) = F(y;|0) would have a uniform sampling distribu-
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FIGURE 8.3
Squared Mahalanobis distance (left) and Mahalanobis distance (right) for each
boy in “Jaws"” Example 8.3.2.

tion for fixed 8 — these are essentially the one-sided p-values for each ob-
servation.* Therefore a very informal assessment of the fit of a model could
be achieved by taking the posterior means of the P;s, ranking them, plotting
against 1,2,..., N, and examining the plot for linearity. This plot is poor at
visual detection of outliers since P;s near 0 and 1 do not show up well, but it
can be effective in detecting inappropriate distributional shape.

Example 8.3.3. Dugongs (continued): residuals

Recall Example 6.3.1 about nonlinear regression for the length of dugongs. If we
assume that the observation Y; in Model 3 is normally distributed around the
regression line u;, we have that F(y;|ui,0) = ®(r;), where @ is the standard
normal cumulative distribution function, and r; = (y; — p;)/o is the Pearson
residual.

y[i] ~ dnorm(mu[i], inv.sigma2)

mu [i] <- alpha - beta*pow(gamma, x[i])
res[i]l <~ (y[i] - mulil)/sigma
p-res[i] <- phi(res[il)

The posterior distributions of the standardised residuals, res, and their p-
values, p.res, are shown in Figure 8.4, with the ordered mean p-values showing
approximate linearity and so supporting the normal assumption.

*OpenBUGS and JAGS have functions to automatically compute the cumulative density
of any stochastic node; see Appendix B.4.
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box plot: res caterpillar plot: p.res
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FIGURE 8.4

Box plot (left) and caterpillar plot (right) showing standardised residuals and
p-values, respectively, for dugongs, Example 8.3.3.

8.3.4 Deviance residuals and tests of fit

Residuals can be based directly on a standardised or “saturated” version of
the deviance (McCullagh and Nelder (1989), p. 398), defined as

Ds(0) = —2logp(y|0) + 2log p(y|fs(y)) (8.3)

where ég(y) are appropriate “saturated” estimates: typically, when E[Y] = 0,

we set 0g(y) = y (McCullagh and Nelder, 1989). Standardised deviances for
common distributions are:

=25, {uilog [2424] + (i — i) log [ Aef2) |}
(@) =23, {yz log [%] — (i — 91)}

i

yi ~ Binomial(0;,n;) : Ds(0)
yi ~ Poisson(6;) : Dg

2
yi ~ Normal(0;,07) : Ds(0) =3, [y‘g;ﬂ]
If we denote by Dg; the contribution of the ith observation to the stan-

dardised deviance, so that Zz Dg; = Dg, then the deviance residual dr; can
be defined as

dr; = signi\/ Ds;

where sign; is the sign of y; — E(y;]0).

When y; = 0, care is needed when calculating these residuals: for a binomial
distribution with y; = 0 we obtain dr; = —\/—2n;log(1 — 6;) and for the
Poisson dr; = —+/260;.
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Suppose we have relatively little information in the prior and so the condi-
tions for the asymptotic normality of 6 hold (see §3.6).

6 ~N(@9, (nl(9))7)

where 6 is the maximum likelihood estimate under the currently assumed
model, and I(f) = — szQ log p(y|0) ; is the observed Fisher information. Then

we may write the saturated deviance as

Ds(0) = —2logp(yl0) + 2log p(yls(y)) = D(9) = D(6) + D(9) — D(bs).

Then from the asymptotic normality we obtain

D(9) — D(0) = —2logp(y|6) + 2log p(y|0(y))
~ plog 2w — log )nf(é)’ + (0 —0)T1(0)(0 — ) — plog 27 + log ’nf(é)

=(0-0)T1(6)(0—0)

which has an approximate X;Q; distribution, where p = dim(#). In addition,
D(A) — D(fs) is a function of the data that from classical GLM theory has,
approximately, a X%_p sampling distribution (McCullagh and Nelder, 1989).
Taken together, the posterior expectation of the saturated deviance has the
approximate relationship

E[Ds(9)] ~ p+ (n—p) = n.

As arough assessment of the goodness of fit for models for which the saturated
deviance is appropriate, essentially Poisson and binomial, we may therefore
compare the mean saturated deviance with the sample size.

Example 8.3.4. Bristol (continued): tenth data

We examine the Bristol data as in Example 8.3.1, but using the tenth data in
Table 8.1 to illustrate analysis of small numbers. If the observed proportion in
the ¢th hospital is denoted p; = y;/n;, the corresponding contribution to the
standardised deviance is

Dsi = 2n; |pilog(pi/0;) + (1 — pi) log (1 _ZZ)}
for (i in 1:12) {

y[i] ~ dbin(theta, n[i])
prop[il <- yl[il/n[i]
# (extra 0.00001 avoids numerical errors if prop[i] = 0 or 1)
Ds[i] <- 2xn[i]*(prop[i] *log((prop[i]+0.00001) /theta)

+ (1-prop[il)*log((1-prop[i]+0.00001)/(1-theta)))
# sign of deviance residual
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sign[i] <- 2*step(prop[i] - theta) - 1
dev.res[i] <- sign[i]l*sqrt(Ds[i])

}
dev.sat <- sum(Ds[])
box plot: dev.res
1]
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FIGURE 8.5

Deviance residuals for Bristol child heart surgery mortality ( “tenth data”).

The deviance residuals (Figure 8.5) follow a reasonable pattern between —2 and
2. The saturated deviance has posterior mean 7.5 (95% interval 6.5 to 11.6), and
comparison with the sample size of 12 suggests that this model fits adequately.

8.4 Predictive checks and Bayesian p-values
8.4.1 Interpreting discrepancy statistics — how big is big?

Residuals can be thought of as examples of statistics which measure the dis-
crepancy between the observed data and an assumed model. Although often
straightforward to calculate, a problem arises in their calibration — when is an
observed discrepancy “large?” In this section we consider a general means of
calibrating discrepancies via p-values obtained using simulated replicate data,
where the discrepancy statistics may be functions of data alone or involve
data and parameters.
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Ideally models should be checked by comparing predictions made by the
model to actual new data. But often we use the same data for model building
and checking, in which case special caution is required. We note that although
this process is generally referred to as “model checking,” we are also checking
the reasonableness of the prior assumptions.

8.4.2 Out-of-sample prediction

Suppose we have two sets of data y and y. assumed to follow the same model,
where yy is used to fit the model and y. for model criticism: for example, we
may leave out a random 10% sample of data for validation purposes. The
idea is to compare y. with predictions yP™9 based on y; and some assumed
sampling model and prior distribution, and if the assumptions are adequate
the two should look similar. Comparisons are derived from the predictive
distribution

p(yEyy) = / p(yE™ Yy, 0)p(0lys)do
- / P(y™e10)p(Bly)d6

which is easy to obtain by simulating € from its posterior distribution and
then simulating yPr°4|6.

Ideally we would want to use as much data as possible for model fitting,
but also as much data as possible for model criticism. At one extreme, we

could take out just one observation y. = y;, y5 = y\;, and then the predictive

distribution is p(y?"**|y). Full cross-validation extends this idea and repeats

for all 4, while 10-fold cross-validation might, for example, remove 10% of the
data, see how well it is predicted, and repeat this process 10 times.

At the other extreme we could try and predict all of the data, so that y. =y
and the predictive distribution is p(y), conditioned only on the prior. This is
the prior predictive approach to model criticism (Box, 1980), but it is clearly
strongly dependent on the prior information, producing vacuous predictions
when this is weak — an impediment to the use of Bayes factors for comparing
models (see §8.7).

In practice we often do not split data, and so diagnostics are likely to be
conservative.

8.4.3 Checking functions based on data alone

A function T'(y.) is termed a checking or test statistic (Gelman et al., 2004)
if it would have an extreme value if the data y. conflict with the assumed
model. A common choice is just T'(yc;) = yei to check for individual outliers.

A check is made whether the observed T'(y.) is compatible with the sim-
ulated distribution of T'(yP*4), either graphically and/or by calculating a
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FIGURE 8.6

Graphical representation of predictive model checking, in which observed data
Ye is compared to predicted data yP*? by a checking function 7.

Bayesian p-value, which is the predictive probability of getting such an ex-
treme result.

Prayes = Pr (T2 < T(ye)|yy)

- / / LT @) < T(ye))p(y | 0)p(6lys ) dody?™".

This is easily calculated by simulating data, calculating the discrepancy func-
tion, and setting an indicator function for whether the observed statistic is
greater than the current simulated value (Figure 8.6).

Example 8.4.1. Bristol (continued): cross-validation
Suppose we take Bristol out and predict how many deaths we would expect were
there a common mortality risk in all the hospitals.

for (i in 2:12) { # remove Bristol

}

# predicted number of deaths in centre 1 (Bristol)

yl.pred ~ dbin(theta, n[1])

P.bris <- step(yl.pred-y[1]-0.00001) + 0.5%equals(yl.pred, y[1])

Here the mid p-value is used for discrete data: Pr(y?™% > y;)+ 3 Pr(yPd = o).
node mean sd MC error 2.5% median 97.5% start sample

P.bris 0.0 0.0 1.0E-12 0.0 0.0 0.0 1001 10000
yl.pred 16.05 3.81 0.04069 9.0 16.0 24.0 1001 10000
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We would predict that Bristol would have between 9 and 24 deaths assuming a
common risk model: the probability of getting at least the observed total of 41
under this model is essentially 0.

The following example concerns secondary features of a model, and does
not involve a separate dataset for checking.

Example 8.4.2. Is a sequence of flips of a biased coin real or fake?
A standard illustration of the non-regularity of random outcomes is to test whether
a sequence of flips of a fair coin is a real or fake sequence. Test statistics include
the longest run; and the number of switches between heads and tails, and the
fake sequence generally will show too short a longest run and too many switches.
Generally an unbiased coin is assumed, but the analysis can be extended to a
coin with unknown probability 6 of coming up heads. Consider the following data
on 30 coin-flips, where 1 indicates a head and 0 a tail.

y=c(0,0,0,1,0,1,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1)

There are 17 switches between heads and tails, and the maximum run length is 4.

The following code shows how to calculate the number of switches and the
maximum run length both for observed and replicate data, where the maximum
run length is given by max . run.obs [N]. Mid-p-values are then calculated for both
switches and maximum run length, which fully take into account the uncertainty
about 6.

for(i in 1:N) {
y[i] ~ dbern(theta)
y.repl[i] ~ dbern(theta)
}
theta ~ dunif(0,1)
switch.obs[1] <=0
switch.rep[1] <- 0
for (i in 2:N) {
switch.obs[i] <- 1 - equals(y[i-1], y[il)
switch.rep[i] <- 1 - equals(y.rep[i-1], y.rep[il])

}
S.obs <- sum(switch.obs[])
s.rep <- sum(switch.rep[])
P.switch <- step(s.obs-s.rep-0.5)
+ 0.5*equals(s.obs, s.rep)
run.obs[1] <- 1
run.rep[1] <- 1
max.run.obs[1] <=1
max.run.rep[1] <-1
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for (i in 2:N) {

run.obs[i] <- 1 + run.obs[i-1]
* equals(y[i-11, y[il)
run.rep[i] <- 1 + run.rep[i-1]

* equals(y.repli-1], y.repl[il)
max.run.obs[i] <- max(max.run.obs[i-1], run.obs[i])
max.run.rep[i] <- max(max.run.rep[i-1], run.rep[i])

P.run <- step(max.run.obs[N]-max.run.rep[N]-0.5)
+ 0.5*equals(max.run.obs[N], max.run.rep[N])

node mean  sd MC error 2.5), median 97.5), start sample
theta 0.3442 0.08273 2.597E-4 0.192 0.3408 0.5151 1 100000
s.rep 12.71  3.259 0.01033 6.0 13.0 19.0 1 100000
max.run.rep[30] 6.937 3.047 0.008692 3.0 6.0 15.0 1 100000
P.run 0.1153 0.256 8.294E-4 0.0 0.0 1.0 1 100000
P.switch 0.9094 0.2642 8.941E-4 0.0 1.0 1.0 1 100000

The underlying probability 6 of a head is estimated to be around 0.34, and in a
true random sequence we would expect between 6 and 19 switches (median 13)
and for the maximum run length between 3 and 15 (median 6). The mid-p-values
are 0.91 for switches and 0.12 for runs, providing some evidence that the sequence
is not from a real coin, considering p-values close to 0 and 1 as extreme.

The power to detect discrepancies from the model is substantially improved
if we can choose a checking function whose predictive distribution is indepen-
dent of unknown parameters in the model. If such a checking function can be
found, then there is no need to have a separate dataset to use for checking.

Example 8.4.3. Newcomb (continued): checking for a low minimum value

The Newcomb data (Example 8.2.1) show evidence of non-normality. If we partic-
ularly wanted to check for low minimum values, we could calculate the checking
statistic 7°Ps = (Y1) — Yiny2))/ (Yiny4) — Yiv/2)), and its posterior predictive repli-
cates, where yy, is the rth lowest value of y; (rounding r to the nearest integer if
necessary). T°P% will be high compared to its replicates if the minimum is lower
than expected under the assumed normal model. Since the checking statistic is
“standardised,” its predictive distribution will be independent of the true mean
p and variance 02 = 1/7, and depends only on the normality assumption. To
show this, note that the statistic is unchanged if each of the four terms y,) in the
expression is replaced by (y,; — p)/0, each of which has a distribution which is
independent of 1 and o. Compared to the observed value of 23.7, the predicted
distribution for TP (Figure 8.7) has mean 3.7 and SD 1.1, and the p-value P.T
is estimated to be very close to 0, so the observed value is clearly incompatible.
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for(i in 1:N){
Y[i] ~ dnorm(mu,tau)
Y.rep[i] ~ dnorm(mu,tau)

}
N.50 <- round(N/2)
N.25 <- round(N/4)
Y.rep.min <- ranked(Y.rep[], 1)
Y.rep.50 <- ranked(Y.rep[], N.50)
Y.rep.25 <- ranked(Y.rep[], N.25)
T.rep <- (Y.rep.min - Y.rep.50)/(Y.rep.25 - Y.rep.50)
P.T <- step(T.rep - T.obs)
T.rep sample: 10000
0.6
04r
0.2f /L
0.0
T T T T
0.0 5.0 10.0 15.0
FIGURE 8.7

Posterior density of discrepancy statistic for low minimum value.

Suppose instead we used the sample variance as a checking statistic, which would
be higher if the minimum is lower than expected.

V.obs <- sd(Y[1)*sd (Y1)
V.rep <- sd(Y.rep[1)*sd(Y.rep[])
P.V <- step(V.rep - V.obs)

Compared to the observed sample variance of 115.5, the predicted sample variance
has mean 119 and SD 30, and the p-value P.V is estimated to be around 0.49, so
no indication of discrepancy is given. This is not unexpected — the distribution of
this statistic depends strongly on 2, and the estimate of o2 is highly influenced
by the outliers. Thus the uncertainty about estimating the parameters reduces the
power of the check to detect outliers when the same dataset is used for estimating
parameters and checking.

8.4.4 Checking functions based on data and parameters

If we want to check deviations from an assumed parametric form, it may be
appropriate to use a discrepancy function T'(y., #) (Gelman et al., 2004) that
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depends on both the data and parameters, for example, standardised Pearson
residuals. We can then simulate 7'(y2"*¢, §) and calculate

Piayes = Pr (T(y27,0) < T(ye, 0)|yy)

/ / (2%, 0) < T(ye, 0)) x p(y?™(0)p(6ly s )dbdyr™?,

which is obtained by seeing how often the discrepancy function based on
predicted data is less than the observed discrepancy.

Although ideally model checking should be based on new data, in practice
the same data are generally used for both developing and checking the model.
This needs to be carried out with caution, as the procedure can be conserva-
tive, and we shall see in the next example that the very features we are trying
to detect can be influential in fitting the model and so mask their presence.

Example 8.4.4. Newcomb (continued): checking for skewness
Instead of specifically focusing on the minimum observation, as described above,
we might consider a more generic test of distributional shape such as sample
skewness. We could construct a checking function based on data alone and whose
distribution under normality does not depend on the unknown mean and variance,
such as T'(y) = >_.[(y; — ¥)/SD(y)]?, which has observed value —290.

We can compare this with a similar measure of skewness but based on param-

eters T(y, p,0) = >, [(yi — ) /o).

for (i in 1:N) {
Y[i] ~ dnorm(mu, tau)
Y.rep[i] ~ dnorm(mu, tau)
T.data.obs[i] <- pow((Y[i] - mean(Y[1))/sd(Y[1),3)
T.data.rep[i] <- pow((Y.rep[i] - mean(Y.rep[]))/sd(Y.rep[]),3)
T.para.obs[i] <- pow((Y[i] - mu)/sigma,3)
T.para.rep[i] <- pow((Y.rep[i] - mu)/sigma,3)

}

mu ~ dunif (-100, 100)
tau ~ dgamma(0.001, 0.001)
sigma <- 1/sqrt(tau)

T.data.obs.tot <- sum(T.data.obs[])
T.data.rep.tot <- sum(T.data.rep[])
T.para.obs.tot <- sum(T.para.obs[])
T.para.rep.tot <- sum(T.para.repl[])

P.data <- step(T.data.obs.tot - T.data.rep.tot)
P.para <- step(T.para.obs.tot - T.para.rep.tot)
node mean sd MC error 2.5), median 97.5), start sample
T.data.obs.tot -289.8 0.0 1.0E-12 -289.8 -289.8 -289.8 1 10000
T.data.rep.tot 0.02773 18.65 0.1727 -37.1 -0.01383 37.07 1 10000
T.para.obs.tot -293.3 81.25 0.8554 -475.1 -285.5 -157.4 1 10000
T.para.rep.tot -0.444 31.57 0.2758 -62.93 -0.4164 62.88 1 10000
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For the data-based measure, the replicate has a mean of around 0 and SD 19,
showing a massive discrepancy with the observed value of —290. For the para-
metric checking function, the observed checking function has a posterior mean
of —293 (SD 81), while the predictive check has a mean of around 0 (SD 32),
showing a much less extreme (although still strong) discrepancy.

The above examples emphasise that increased power to detect deviations
from assumptions can be obtained by careful choice of checking functions that
focus on the suspected discrepancy and whose distributions do not depend on
unknown parameters, or at least not strongly.

Example 8.4.5. Dugongs (continued): prediction as model checking

By adding in an extra line to the code for Example 8.3.3 to generate a replicate
dataset at each iteration, we can see whether the observed data are compatible
with the predictions.

y.pred[i] ~ dnorm(muli], inv.sigma2)
P.pred[i] <- step(y[il - y.pred[il)

Figure 8.8 shows 95% prediction bands for the replicate data, and so an informal
comparison can be made by superimposing the observed data.

length (m) | model fit: y.pred
3.01
2571
2071
1.5}
6.0 1b.0 é0.0 ?;0.0 46.0

age (yrs)

FIGURE 8.8
Prediction bands for replicate data — dugongs example.

The procedure outlined in this example appears attractive but could be
conservative if there were considerable uncertainty about the parameters, in
which case the predictive distributions would be wide and observations would
tend to appear compatible with the model.

Such conservatism arises when the predictive distribution of the checking
function depends on parameters which are not very precisely estimated, and



Model checking and comparison 155

so0, as we found in Example 8.4.4, we should choose a checking function whose
predictive distribution depends primarily on the assumptions being checked.
This is illustrated in the next example.

8.4.5 Goodness of fit for grouped data

Classical goodness of fit statistics are based on grouping data into K bins
labelled by k£ and then comparing observed Oy to expected Ej counts under
the assumed model: comparison might be via a Pearson chi-squared X? =
> (O — Ey)?/ Ey, or likelihood ratio statistic G = 2", Oy log(Ox/E}), both
of which have asymptotically X%(ﬂ) distributions, where p is the number of
estimated parameters. We might adopt either of these statistics as checking
functions that are based on data and parameters.

If we assume that each of the Oy is a Poisson observation with mean FEj
under the null hypothesis, then G = 23, Oy log(Oy/E}) is a saturated de-
viance and hence, using the results of §8.3.4, would be expected to have a
posterior mean of around K if the null model is true, although this ignores
the constraint that ), Op = ", Ek.

Example 8.4.6. Claims

An insurance company takes a sample of n = 35 customers and adds up the
number of claims each has made in the past year to give y1,...,y,. These form
the following distribution, where my, = >, I(y; = k) is the number of y; that
equal k, with > my = n.

k

mg 1

ol o
ol =
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ol N
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N &
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The total number of claims in the sample is Zk kmi = 59, and the average
number of claims per customer is ), kmy /35 = 1.69. Suppose we fit a Poisson
model with mean A. Then we can generate replicate data y™P at each iteration,
create replicate aggregate data m™P, and hence provide a null distribution for
any checking function.

We consider the classical likelihood ratio goodness-of-fit statistic G(m, \) =
2>, my log(my/Ey), where Ej, = ne *\¥/k! is the expected count in cell k
under the fitted model, which will be a random quantity since it depends on the
unknown A. G™P is also calculated for replicate data: these data may extend
beyond the range of counts observed in the original dataset.

A Jeffreys prior for the Poisson is adopted, ps(\) oc A~2, approximated by a
Gamma(0.5,0.001) distribution.

# remember that k = number of claims + 1
for (i in 1:n) {
y[i] ~ dpois(lambda)
y.repli] ~ dpois(lambda)
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for (k in 1:K) {
eqli,k] <- equals(y[i], k-1) # needed to construct
# aggregate data
eq.repli,k] <- equals(y.repl[i], k-1)

}
}
for (k in 1:K) {
m [k] <- sum(eql[,k]) # aggregate counts
m.rep [k] <- sum(eq.repl[,k])
# log of expected counts
logE[k] <- log(n) - lambda + (k-1)*log(lambda)

- logfact(k-1)
# likelihood ratio statistic

LR [k] <- 2¥m[k]*(log(m[k]+0.00001) - logE[k])
LR.rep[k] <- 2xm.rep[k]*(log(m.rep[k]+0.00001)
- logE[k])

}
G <- sum(LR[])
G.rep <- sum(LR.rep[])
P <- step(G - G.rep)
lambda ~ dgamma(0.5, 0.001) # Jeffreys prior
node mean sd MC error 2.5)% median 97.5% start sample
G 7.96 1.465 0.0137 6.956 7.382 12.1 10001 10000
G.rep 6.473 3.531 0.03121 1.668 5.747 15.09 10001 10000
P 0.701 0.4578 0.004491 0.0 1.0 1.0 10001 10000

lambda 1.7 0.22 1 0.001996 1.291 1.693 2.161 10001 10000

We note that the likelihood ratio checking function G(m, \) has a posterior mean
of around 8 — since this can be considered a saturated deviance we would expect
a posterior mean of around K = 6 and so does not suggest a discrepancy from the
null assumption. A more precise analysis is obtained by comparing the distribution
of the observed and replicate likelihood ratio statistics — these show substantial
overlap, and the p-value of 0.70 does not indicate any problems with the Poisson
assumption. The minimum value of G(m, \) over 10,000 iterations is 6.955 —
this is also the classical likelihood ratio statistic which may be compared to a x?
distribution under the null hypothesis, giving an approximate p-value of 0.22 and
so similarly not indicating a significant deviation from the Poisson assumption.

However, a simple look at the data might lead us to suspect an excess of zero
claims. A more powerful checking function would focus on this single form of
discrepancy and would not depend (or only depend weakly) on A. This requires a
little ingenuity.

If data were really from a Poisson distribution, we would expect T' = mqgms/m?

_ _ —X 132 —A
to be around Pr(y;f('é)jr\gfm =2 ,\zzi\zf = 0.5. Since this does not depend
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on A, we would hope that the distribution of T" will depend mainly on the Poisson
assumption and be largely independent of the true rate of claims. T' = 4 with
these data.

# more powerful invariant test for excess zero counts
T.rep <- m.rep[1]*m.rep[3]/(m.rep[2]*m.rep[2])
P.inv <- step(T - T.rep)

T"¢P has a median of 0.46 and 95% credible interval 0.083 to 2.7. The resulting
p-value is 0.99, providing strong evidence of excess zero claims, a discrepancy en-
tirely missed by the more generic goodness-of-fit tests. A “zero-inflated Poisson”
model to fit these data is discussed in §11.6.

8.5 Model assessment by embedding in larger models

Suppose we are checking whether an observation y; can be assumed to come
from a distribution p(y;|6;0), where this null model is a special case of a larger
family p(y;|0;). Three approaches are possible:

e Fit the more flexible model in such a way as to provide diagnostics for
individual parameter values 8; = 6,9.

e Fit the full model and examine the posterior support of the null model:
this can be difficult when the null model is on the boundary of the
parameter space.

e Fit the full and null model and compare them using a single criterion,
such as DIC (see §8.6.4, e.g., salmonella example).

Example 8.5.1. Newcomb (continued): checking normality

We have seen in §8.2 how a Student’s ¢-distribution can be expressed as a scale
mixture of normals, in which if we assume Y; ~ N(u,0?), and \; ~ x3, then if
7 = 4/(N\io?), then (Y; —p)\/7; ~ ta. If we define s; = 4/\;, large s;s should cor-
respond to outlying observations. These are plotted in Figure 8.9. In WinBUGS
and OpenBUGS the data index i corresponding to each box plot can be dis-
played by right-clicking on the plot and selecting Properties->Special->show
labels. This will identify the two outliers correctly as the measurements of -2
and -44.

Y[i] ~ dnorm(mu, invsigma2[il])
invsigma2[i] <- tau/s[i]
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s[il <- 4/lambdali]
lambdal[i] ~ dchisqr(4)
box plot: s
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FIGURE 8.9

Outlier diagnostics using the t-distribution for the Newcomb light speed data.

This analysis assumes a t distribution with known degrees of freedom v in order
to provide a diagnostic for outlying observations. However, we could consider v
to be unknown and estimate its posterior distribution, noting that the normal
assumption is equivalent to the ¢ with infinitely large v. We could adapt the
model of §4.1.2 but follow Jeffreys' suggestion p(v) < 1/v as a prior for a
positive integer (§5.2.8) — this is equivalent to a uniform prior on logv. Using a
discrete approximation by placing a uniform prior on v = 2,4,8,16,32,...,1024
leads to 86% posterior probability for v = 2.
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8.6 Model comparison using deviances

Given a set of candidate models, we would often like to say something about
which is “better,” or even “best.” This general idea can be made more for-
mal in various ways, and we shall see that the appropriate tool depends on
our intended action. In particular, we may be interested in selecting the “cor-
rect” model, informal examination of sensitivity to multiple “well-supported”
models, making short-term predictions, or explicit weighting of the models.

Classical model choice uses hypothesis testing for comparing nested models,
typically the likelihood ratio test. For non-nested models, alternatives include
the Akaike Information Criterion (AIC).

AIC = —2log p(y|f) + 2p = D(h) + 2p, (8.4)

where 6 is the maximum likelihood (minimum deviance) estimate, p is the
number of parameters in the model (dimension of #), and lower AIC is
favoured. The 2p term serves to penalise more complex models which would
otherwise be favoured by having a lower minimised deviance —2log p(y|é)
Just as in model checking, predictive ability forms a natural criterion for
comparing models, and AIC is designed to optimise predictions on a replicate
dataset of the same size and design as that currently in hand. We note that,
asymptotically, AIC is equivalent to leave-one-out cross-validation (§8.4.2)
(Stone, 1977). Of course, if an external dataset is available, then we could
compare models on how well they predict such independent validation data.

In a Bayesian context it is natural to base a comparative measure on the
posterior distribution of the deviance, and many authors have suggested using
the posterior mean deviance D = FE[D] as a measure of fit (§8.2). This is
invariant to the chosen parameterisation of 8 and generally converges well.
It can, under certain circumstances, be used as a test of absolute fit of a
model (§8.3.4). But more complex models will fit the data better and so will
inevitably have smaller D and so, in analogy to the Akaike criterion, we need
to have some measure of “model complexity” to trade off against D.

However, in Bayesian models with informative prior distributions, which
include all hierarchical models, the prior effectively acts to restrict the free-
dom of the model parameters, so the appropriate “number of parameters” is
less clear. We now consider a proposal for assessing the “effective number of
parameters.”

8.6.1 pp: The effective number of parameters

Spiegelhalter et al. (2002) use an informal information-theoretic argument to
suggest a measure pp defined by
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pp = Egjy[—2logp(y|0)] + 21og p(y|0(y))
=D — D(6), (8.5)

where 6 is a “good” plug-in estimate of 6. If we take 6 = E[0ly] = 0, then
pp = “posterior mean deviance - deviance of posterior means.”

Suppose we assume that the posterior distribution p(0|y) is approximately
multivariate normal with mean 6; then a Taylor expansion of D(f) around

D(0), followed by posterior expectation, gives

where V = E [(0 — 0)(6 — 0)”] is the posterior covariance matrix of 6, and

2

d
—Lg =2 log p(y[0) -

is the observed Fisher’s information evaluated at the posterior mean of 6§ —
this might also be denoted () using the notation of §3.6.
Hence
pp ~ tr (—=LyV). (8.6)

The approximate form given in (8.6) shows pp might be thought of as the
dimensionality p of @, times the ratio of the information in the likelihood
about the parameters as a fraction of the total information in the posterior
(likelihood + prior). To elucidate this with an example, suppose we observe
y ~ N(#,0%) with 02 known and one parameter 6 with prior distribution
6 ~ N(p,w?). Then the standard normal-normal results (§3.3.2) show that
V =1/(672 4+ w™?) and -Lj = 072, the Fisher information I(#). Hence
pp = 0 2/(072 + w™?), the ratio of the information in the likelihood to the
information in the posterior. We can also write pp = w?/(0? + w?), known as
the intra-class correlation coefficient.

Suppose that the information in the likelihood dominates that in the prior,
either through the sample size being large or a “vague” prior being used for
6, and conditions for asymptotic normality apply. Then 6 ~ é, the maximum
likelihood estimate. Also, V! ~ —L/é’ from the asymptotic results (§3.6),
hence pp = p, the actual number of parameters.

This could also be derived from the results of §8.3.4 for situations of weak
prior information in which we argue that

D) —D(@B) ~ (0 —0)T1(6)(6 —0)
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has a X;% distribution. Thus, taking expectations of each side reveals that, in
these circumstances, pp ~ p.

Example 8.6.1. Dugongs (continued): effective number of parameters

Example 8.3.3 has weak prior information and hence we should expect that pp
should be close to the actual number of parameters. We find that pp = 3.7,
compared to the four parameters.

8.6.2 Issues with pp

pp is an apparently attractive measure of the implicit number of parameters,
but has two major problems:

e pp is not invariant to reparameterisation, in the sense that if the model
is rewritten into an equivalent form but in terms of a function g(6),
then a different pp may arise since p(y|@) will generally not be equal to

p(ylg(#)). This can lead to misleading values in some circumstances and
even negative pps.

e An inability to calculate pp when 6 contains a categorical parameter,
since the posterior mean is not then meaningful. This renders the mea-
sure inapplicable to mixture models (§11.6)—though see §8.6.6 for al-
ternatives.

Example 8.6.2. Transformed binomial: negative pp due to severe posterior
skewness

For a binomial parameter 6, consider three different ways of putting a uniform
prior on §, generated by putting appropriate priors on 1 = 0,1 = 6°, and
'IZJS — 920,

Let p = 0". If § ~ Unif(0,1), then Pr(¢ < t) = ¢, and so Pr(¢ < t) =
t1/™ Differentiating reveals that p(t)) oc /"~ which we can identify as a
Beta(1/n,1) distribution.

Suppose we now observe n = 2 observations of which r = 1 is a “success.”
The appropriate code is therefore:

r <- 1; n <- 2; a[1] <- 1; a[2] <- 5; a[3] <- 20
for (i in 1:3) {
a.inv[i] <- 1/ali]
thetal[i] <- pow(psil[il, a.inv[i])
psili] ~ dbeta(a.inv[i], 1)
}
rl <-r; r2<-r; r3<-r # replicate data
ri ~ dbin(thetall], n)
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r2 ~ dbin(thetal2], n)
r3 ~ dbin(thetal3], n)

In the WinBUGS output, obtained from setting a DIC monitor (after conver-
gence) via the Inference -> DIC... dialog box, the mean deviance D(6) is

labelled Dbar, while the plug-in deviance D(8) is labelled Dhat.

Dbar Dhat pD
rl 1.945 1.386 0.559
r2 1.945 1.550 0.395
r3 1.933 2.289 -0.356

The posterior distribution for 6 does not depend on the parameter on which the
prior distribution has been placed, and the mean deviances Dbar are theoretically
invariant to the parameterisation (although even after 500,000 iterations the mean
deviance for the third parameterisation has not reached its asymptotic value).
WinBUGS, however, uses the posterior of ¢, not 6, to calculate pp. These are very
different, with that corresponding to the third parameterisation being negative.

As suggested in §8.2, WinBUGS (and current OpenBUGS) parameterises
the deviance in terms of the stochastic parents of y in the model: i.e., if 6 are
the parameters that directly appear in the sampling distribution p(y|€), but
there are stochastic nodes 1 such that § = f(¢) in the model, then Dhat =
D(f(¥)). Tt is therefore important to try to ensure that the stochastic parents
of the data have approximately normal posterior distributions. The example
above is an instance of pp being negative due to the posterior of 1 being very
non-normal, in which case f(1/) does not provide a good estimate of # — in
fact it leads to a plug-in deviance that is greater than the posterior mean
deviance.

One possibility, illustrated in the salmonella example below, is to change
the parameterisation into one for which the posterior is more likely to be
symmetric and unimodal, which will generally mean placing prior distributions
on transformations that cover the real line. Unfortunately, this may not be
the most intuitive scale on which to place a prior distribution.

An alternative is to ignore the pp calculated by WinBUGS and calculate
your own pp directly in terms of the deterministic parameters § = 6(¢)) so
that Dhat = D(f). In the previous example, this would lead to the plug-in
deviances all being based on # and hence no difference between the parame-
terisations. As another example, in generalised or nonlinear regression models
one might use the posterior means of the linear predictors yu = 'z, whose
posterior distributions are likely to be approximately normal, rather than
higher-level parameters of which 8 are deterministic functions. For example,
in Example 6.3.1 we would calculate the posterior mean of every p;, instead of
Ly and L, which may have skewed posteriors. The deviance at the posterior

means of these parameters must then be calculated externally to BUGS and
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then subtracted from the posterior mean deviance (Equation 8.5) to calculate
pp. It is envisaged that this will become the standard way of calculating pp
in future versions of OpenBUGS.

The previous example shows the problems that arise when using the pos-
terior mean as a summary of a highly skewed distribution. The mean is also
a very poor summary of a bimodal posterior distribution, and the following
example shows this can also lead to negative values of pp.

Example 8.6.3. Conflicting ts: negative pp due to a prior-data conflict
Consider a single observation y from a ¢4 distribution with unit scale and unknown
mean , which itself has been given a standard ¢4 distribution with unit scale and
mean 0.

y <= 10
y ~ dt(mu, 1, 4)
mu ~ dt(0, 1, 4)

This extreme value leads to the bimodal posterior distribution shown in Fig-
ure 8.10.

mu (from sample of 10000)
0.15
0.1
0.05
00
T T T T
-10.0 0.0 10.0 20.0

FIGURE 8.10
Posterior distribution resulting from a prior-data conflict.

The mean posterior deviance is D(f) = 10.8: the posterior mean of . is 4.9,
which has a low posterior ordinate, and plugging this into the deviance gives a

plug-in deviance D(#) = 12.0. Hence pp = —1.2.

WinBUGS and OpenBUGS do not calculate pp (or DIC) if 6 contains
a discrete parameter. If this parameter is categorical, the posterior mean,
required by pp, is not meaningful. If the parameter is discrete but quantitative,
however, it could be made continuous, as in the following example.

Example 8.6.4. Salmonella (continued): parameterising to stabilise pp
The negative binomial model for the salmonella data (Example 6.5.2) has a dis-
crete parent parameter r, which means we cannot calculate pp. We first try mak-
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ing the prior distribution on r continuous by using r ~ dunif (1,max) instead
of the discrete uniform prior adopted previously.

This produces pp = 1.6, which seems inappropriately low given there are four
parameters in the model: three regression coefficients and r. The problem is as
described above: the posterior distribution for r is highly skewed. We can, how-
ever, try placing a prior on a parameter that would be expected to have a more
symmetric and unimodal posterior distribution, such as log r. Taking Jeffreys’ sug-
gestion for a positive integer (§5.2.8), we could make p(r) o 1/r, or equivalently
p(logr) o constant.

logr.cont ~ dunif (0, 10)
log(r.cont) <- logr.cont
r <- round(r.cont)

logr.cont has a well-behaved posterior distribution, and pp now becomes
4.3, close to the true number of four parameters.

8.6.3 Alternative measures of the effective number of param-
eters

Consider again the situation in which information in the likelihood dominates
that in the prior. We have already seen (§8.6.1) that in these circumstances

D(9) = D(0) + x;

so that E(D(#)) ~ D() + p (leading to pp ~ p as shown above) and
Var(D(0)) ~ 2p. Thus, with negligible prior information, half the variance
of the deviance is an estimate of the number of free parameters in the model
— this estimate generally turns out to be remarkably robust and accurate
in these situations of weak prior information. This in turn suggests using
py = Var(D)/2 as an estimate of the effective number of parameters in a
model in more general situations: this was noted by Gelman et al. (2004). py
has the great advantage over pp of being invariant to reparameterisations.

A second alternative to pp was proposed by Plummer (discussion of Spiegel-
halter et al. (2002)): the expected Kullback-Leibler information divergence
Eog, 0,(1(00,01)) between the predictive distributions at two different param-
eter values, where

This is the definition of pp used in the JAGS implementation of BUGS, com-
puted using the sample average of

pred 0
og (p@‘;md o>>
p(yp " 161)

I(eo, 01) = Eyp'r'ed‘go |:10g <
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over values of Ay and 6, generated from two parallel MCMC chains, where
ygr“l are posterior predictions from the chain for 6. This is non-negative,
does not depend on the parameterisation, and is identical to the previous pp
in the normal linear model with known variance. Plummer (2008) calls this
measure pj, and gives an approximate cross-validatory justification.

Some examples of these alternative measures compared to pp are shown in
Table 8.2. They work well in situations where pp works well, but although
they are always positive and invariant to parameterisation, they can also be
misleading in extreme situations, for example, with a strong prior-data conflict
or severely skewed posteriors.

TABLE 8.2

Comparison of pp and alternative measures of effective model complexity.
Example No. Parameters pp pv  pp
Dugongs (6.3.1, model 3) 4 3.6 4.7 4.7

Transformed Binomial (8.6.2, version 3) 1 -04 03 0.1
Conflicting ts (8.6.3) 1 -1.2 232 36
Salmonella (Poisson, 6.5.2) 3 3.0 30 3.0
Salmonella (negative binomial, 8.6.4) 4 43 48 46

8.6.4 DIC for model comparison

The measure of fit D can be combined with the measure of complexity pp to
produce the Deviance Information Criterion (DIC).

DIC =D +pp

= D(9) + 2pD

This can be seen as a generalisation of Akaike’s criterion: for models with
weak prior information, 6 ~ é, and hence pp =~ p and DIC ~ AIC. We can
therefore expect Akaike-like properties of favouring models that can make
good short-term predictions of a repeat set of similar data, rather than at-
tempting to identify a “true” model — see §8.9 for discussion on alternative
model comparison criteria.

Example 8.6.5. DIC for model comparison

Table 8.3 shows DIC comparisons for previous examples, which can be computed
in WinBUGS and OpenBUGS by setting a DIC monitor via the Inference ->
DIC... dialog box. Note that this must be set after the chains have reached
convergence. For the salmonella data, the DIC improves by 8 when the negative
binomial model is used instead of the Poisson, despite the increase in complexity.
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For Newcomb's light speed data (Example 8.2.1), the t4 distribution is strongly
preferred to the normal. However, if the ¢4 distribution is implemented as a scale
mixture of normals, as suggested in §8.2, the deviance, and hence the DIC, ison a
different scale and therefore cannot be compared to the other two analyses. Here
DIC is assessing the ability to predict y; conditionally on the current value of
the mixing parameter \; — whereas the explicit t4 model is integrated over the
Ai. This is changing the focus of the prediction problem — see §10.8 for further
discussion.

pp and DIC are particularly useful for comparing hierarchical models, as dis-
cussed in §10.8. For these models it is unclear how much random effects will
contribute to the complexity of a model, since the implicit prior constraint of
“shrinkage” to the mean (§10.1) simultaneously reduces the model’s effective
complexity. In Example 10.3.3 (Hepatitis B) each random effect contributes less
than half an effective parameter to pp. DIC also indicates that the hierarchical
model is superior to a non-hierarchical model with no child-specific effects.

TABLE 8.3

Examples of DIC for model comparison.
Example D PD DIC
Salmonella (Poisson, 6.5.2) 139.2 3.0 1423
Salmonella (negative binomial, 8.6.4) 125.9 4.3 1345
Newcomb (normal, 8.2.1) 501.7 2.0 503.8
Newcomb (¢4 distribution) 436.4 2.0 4384
Newcomb (t4 distribution as scale mixture)  408.8 15.1 423.8
Hepatitis B (non-hierarchical, 10.3.3) 1132.3 4.0 1136.3
Hepatitis B (hierarchical) 813.8 98.3 9121

As mentioned above, the minimum DIC is intended to identify the model
that would be expected to make the best short-term predictions, in the same
spirit as Akaike’s criterion. Plummer (2008) gave a more formal justification,
showing that DIC approximated a cross-validatory loss but only when the ef-
fective number of parameters is much smaller than the number of independent
observations.

It is important to note that only differences between models in DIC are
important, and not absolute values. It is difficult to say what constitutes
an important difference in DIC. With two simple hypotheses Hy and Hi,
exp[(DICy — DICy)/2] would be a likelihood ratio, and so a DIC difference
of 10 would be a likelihood ratio of 148, while a DIC difference of 5 would
be a likelihood ratio of 12. By this rough analogy, differences of more than
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10 might definitely rule out the model with the higher DIC, and differences
between 5 and 10 are substantial. But if the difference in DIC is, say, less than
5, and the models make very different inferences, then it could be misleading
just to report the model with the lowest DIC. In this case there is uncertainty
about the choice of model. It may then be helpful to use methods of inference
which account for this uncertainty, as discussed in §8.8.

We note that DIC can legitimately be negative! A probability density p(y|6)
can be greater than 1 if on a small standard deviation, and hence a deviance
can be negative, and a DIC negative.

8.6.5 How and why does WinBUGS partition DIC and pp?

WinBUGS (and OpenBUGS) separately reports the contribution to Dbar, pD
and DIC for each differently named (scalar, vector, or array) node, together
with a Total. This enables the individual contributions from different portions
of data to be assessed.

In some circumstances some of these contributions may need to be ignored
and removed from the Total. For example, in the following model:

for (i in 1:N) {

Y[i] ~ dnorm(mu, tau)
}
tau <- 1/pow(sigma, 2)
sigma ~ dnorm(0, 1)I(0, )
mu ~ dunif (-100, 100)

where Y is observed data, then the DIC tool will give DIC partitioned into Y,

sigma, and the Total, where sigma has been constrained to be greater than 0

using the I() construct (Appendix A.2.2). Clearly, in this case, there should

be no contribution from sigma, but because of the lower bound specified using

the I () notation in the prior, WinBUGS treats sigma as if it were an observed

but censored stochastic node when deciding what to report in the DIC table.
In another situation, we might genuinely have censored data, e.g.,

Y[i] ~ dnorm(mu, tau)I(Y.cens[i], )

where Y is unknown but Y. cens is the observed lower bound on Y (see Exam-
ple 9.6.1).

WinBUGS has no way of knowing that in the first case, sigma should be
ignored in the DIC, whereas in the second case Y should be included. This is as
much a problem of how the BUGS language represents censoring, truncation,
and bounds using the same notation as it is to do with how DIC is displayed,
but it illustrates the ambiguity and how it is the user’s responsibility to pick
out the relevant bits.

Note that JAGS currently just sums over all data in the model when pre-
senting DIC and p7,.
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8.6.6 Alternatives to DIC

For models with discrete parameters, such as finite mixture models, the plug-
in deviance required by pp cannot be calculated since the posterior mean of
a discrete parameter is either undefined or not guaranteed to be part of the
discrete parameter space. Celeux et al. (2006), and their discussants, investi-
gated ways of defining pp and DIC for mixture and related models, though
found them all problematic. For example, a mixture model could be refor-
mulated by integrating over the discrete component membership parameter,
as in Example 11.6.1 — however, the resulting DIC may be sensitive to the
constraint chosen to identify the components (§11.6).

Plummer (2008) proposed the penalised expected deviance as an alternative
model comparison measure. Both this and DIC estimate the ability to predict
a replicate dataset, but judge this ability by different loss functions. Whereas
DIC estimates the deviance for a replicate dataset evaluated at the posterior
expectations of parameters #, Plummer’s criterion estimates the expected de-
viance for a replicate dataset. Both criteria incorporate a penalty to adjust
for the underestimate in the loss (“optimism”) due to using the data twice
to both fit and evaluate the model. Since it does not require a “plug-in” es
timate such as the posterior mean, this criterion can be used with discrete
parameters. It is calculated as D + Dopt, Where the optimism p,,; is estimated
from two parallel MCMC chains using importance sampling, as described by
Plummer (2008) and provided in JAGS. The importance sampling method is
unstable when there are highly influential observations, otherwise pop: =~ 2p7,.
A similar approximation was derived in the context of variable selection by
van der Linde (2005).

The pseudo-marginal likelihood was proposed by Geisser and Eddy (1979)
as a cross-validatory measure of predictive ability,

[T ol = IT [ sl as

where g, is all observations excluding y;. Gelfand and Dey (1994) described
an importance sampling method for estimating it based on a single MCMC
run, which avoids the need to refit the model with each observation excluded
in turn. The full-data posterior density p(f]y) is used as a proposal distri-
bution to approximate the leave-one-out posterior p(f|y;). Given an MCMC
sample 6V ... 0T) from the posterior of 6, the importance weights are then
wir = p(0®y\i) /p(0P |y) oc 1/p(y:|60"), and the estimate of p(yi|y\;) is the
harmonic mean of p(y;|6Y)) over the posterior sample:

yz‘y\z sztp yz‘y\zaa() /szt
= T/Z (1/p(yil6™))
t



Model checking and comparison 169

Thus, the quantity 1/p(y;|0") is monitored during MCMC sampling, and the
estimate of p(y;|y\;) is the reciprocal of its posterior mean. The individual
p(yily\i) are called conditional predictive ordinates (CPOs) and may also be
used as outlier diagnostics. Again, this method may be unstable, particularly if
some of the CPOs are large (common in hierarchical models) and may require
a large MCMC sample for a precise estimate. However, unlike DIC, it does
not depend on plug-in estimates or on the model parameterisation.

8.7 Bayes factors

Traditional Bayesian comparison of models My and M; is based on hypothesis
tests using the Bayes factor. The posterior odds of model My compared to
M are given by

p(Moly)  p(Mo) p(y|Mo)

p(Mily)  p(Mi) p(y| M)

where
p(y|Mo) [ p(yl6o)p(fo)dfo Bor

p(y|My) [ p(ylor)p(61)dby

is known as the Bayes factor for My compared to M;. In other words,

posterior odds of My = Bayes factor x prior odds of M.

The Bayes factor By; quantifies the weight of evidence in favour of the null
hypothesis Hy: “Mj is true.” If both models (hypotheses) are equally likely
a priori, then their relative prior odds is 1 and By is the posterior odds in
favour of model My (Jeffreys (1939), p. 275, Gelman et al. (2004), p. 185).

The Bayes factors are in some sense similar to a likelihood ratio, except that
the likelihood is integrated instead of maximised over the parameter space. As
with AIC, there is no need for models to be nested, although unlike AIC, the
objective is the identification of the ‘true’ model (Bernardo and Smith, 1994).
Jeffreys (1939) provided a table relating the size of the Bayes factor to the
“strength of evidence.”

p(y|M,) is the marginal likelihood or prior predictive probability of the data,
and it is important to note that this will depend crucially on the form of the
prior distribution. A simple example will show that Bayes factors require
informative prior distributions under each model. Consider a scalar 8 so that
the relevant term for the Bayes factor is p(y) = [ p(y|0)p(0)db. Suppose 0
is given a uniform prior, so that p(6) = 1/(2¢); 0 € [—c,c]. Then p(y) =
2% ffcp(y|9)d9 o % for large c¢. Therefore p(y) can be made arbitrarily small
by increasing c.



170 The BUGS Book

TABLE 8.4
Calibration of Bayes factors provided by Jeffreys.

Bayes factor range Strength of evidence in favour of Hy and against H;

> 100 Decisive
32 to 100 Very strong
10 to 32 Strong
3.2 to 10 Substantial
1to 3.2 “Not worth more than a bare mention”

Strength of evidence against Hy and in favour of H;

1to1/3.2 “Not worth more than a bare mention”
1/3.2 to 1/10 Substantial
1/10 to 1/32 Strong
1/32 to 1/100 Very strong

< 1/100 Decisive

Suppose we are comparing models with weak prior information. Schwarz’s
Bayesian Information Criterion (BIC) is:

BIC = —2logp(y|d) + plogn,

where @ is the maximum likelihood estimate. The difference BICy —BIC; gives
an approximation to —2log Bp;. Kass and Wasserman (1995) show that this
approximation has error Op(n_l/ 2) under a prior distribution which carries
information equivalent to a single observation — the wunit-information prior.

Alternatively, the posterior probability of model r, among a set of models
indexed by k, is approximated by

p(M,|y) = exp(—0.5BIC,.)/ Zexp(—O.BBICk) (8.7)
k

Example 8.7.1. Paul the psychic octopus

In the 2010 football World Cup competition, Paul “the psychic octopus” made
8 predictions of the winners of football matches and got all y = 8 right. Our
analysis will ignore the possibilities of draws, assume there was no bias or ma-
nipulation in the experiment, and ignore selection effects arising from Paul only
becoming famous due to the first correct predictions, in the face of competition
from numerous other wildlife. We assume a binomial model with probability 6 of
a correct prediction.

Rather naively, we could set up two simple hypotheses: H representing that
the predictions are just chance, so that § = 0.5; H; representing Paul hav-
ing 100% predictive ability, so that § = 1. Since these are simple hypothe-
ses with no unknown parameters, the Bayes factor is just the likelihood ratio
p(y|Ho)/p(y|H1) = 1/2% = 1/256, which from Table 8.4 represents “decisive”
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evidence against H by Jeffreys criteria. However, the posterior odds against Paul
being psychic also depend on the prior odds p(Hy)/p(H1) of Paul not having any
psychic abilities (or knowledge of football), which it is reasonable to assume are
so huge that this likelihood ratio makes little impact!

It may be more sensible to compare Hy with an alternative hypothesis H; that
Paul has some psychic ability, represented by a prior distribution on 6| H; . Naively
this would be uniform on 0.5 to 1, but we introduce some scepticism by restricting
it to be less than 0.55. So we are both sceptical of any effect existing at all, and
even if it did exist, sceptical of a large effect. The code then essentially follows
that of the biased coin example in §5.4.

ql1] <- 0.5; q[2] <- 0.5 # prior assumptions

r <- 8; n <- 8 # data

r ~ dbin(thetalpick], n) # likelihood

pick ~ dcat(qll)

theta[1] <- 0.5 # if random (assumption 1)

theta[2] ~ dunif(0.5, 0.55) # if psychic

psychic <- pick - 1 # 1 if psychic, O otherwise
node mean sd MC error 2.5% median 97.5% start sample

psychic 0.6012 0.4896 0.001601 0.0 1.0 1.0 1 100000

The posterior probability of psychic abilities is now 0.6, corresponding to pos-
terior odds p(Holy)/p(Hily) = 0.4/0.6 = 0.66. If the prior odds are taken as 1,
this means that the Bayes factor is 0.66 in favour of psychic abilities, but again
the prior odds against psychic abilities should realistically be much larger.

8.7.1 Lindley—Bartlett paradox in model selection

We have already seen that the Bayes factor depends crucially on the prior
distribution within competing models. We now use a simple example to show
how this can lead to an apparent conflict between using tail areas to criticise
assumptions, and using Bayes factors — a conflict that has become known as
the Lindley—Bartlett paradox.

Suppose we assume Y; ~ N(6,1); we want to test Hy : § = 0 against H; :
6 # 0. Then the sufficient statistic is Y with distribution Y ~ N(#,1/n). For
Hy, p(y|Ho) = /2 exp[—ny?/2]. For Hy, assume p(f) = 1/(2¢); 6 € [—¢, ¢l

0 # 0, then
p(3IHy) = /\/—exp n(g — 0)/2) db ~ 5.

Hence the Bayes factor is

p(Ho) [ m 5
By = ———= =/ — exp|—ny~“ /2] x 2¢c.
01 p(THY) o p[ v/ ]
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From a classical hypothesis-testing perspective, we would declare a “signif-
icant” result if ¥ > 1.96/y/n. At this critical value, the Bayes factor is
o= exp[—1.96%/2] x 2c. Hence

e For fixed n, we can give Hy very strong support by increasing ¢
e For fixed ¢, we can give Hy very strong support by increasing n

So data that would just reject Hy using a classical test will tend to favour Hy
for (a) diffuse priors under H; and (b) large sample sizes.

8.7.2 Computing marginal likelihoods

Computing Bayes factors for a generic model is challenging outside simple con-
jugate situations, as reviewed by Han and Carlin (2001) and Ntzoufras (2009).
There is no easy method which works for all models specified in BUGS. BIC
gives an approximation, as described above, though this essentially implies a
default “unit information” prior for the parameters and does not allow user-
specified priors. Other methods are based either on

e directly computing the marginal likelihood for each model, or

e considering the model choice as a discrete parameter and jointly sam-
pling from the model and parameter space (§8.8.2).

For computing the marginal likelihood p(y) for a particular model M, har-
monic mean and related estimators are also sometimes used:

T (t)
P = <% 2 {p(ylg((g)p()“”) }>

t=1
where ¢() is an importance sampling density chosen to approximate the pos-
terior. Although this is temptingly easy to program in BUGS by monitoring
the term inside the braces and taking the reciprocal of its posterior mean, it
is impractical in all but the simplest of models, since p(y|0™®) will frequently
be very small; thus unfeasibly long runs would be required to stably estimate
the posterior mean — indeed it may never converge (Neal, 2008). Bridge
sampling or path sampling estimators (Gelman and Meng, 1998) are more ef-
fective, though usually require problem-specific tuning. Similarly, methods by
Chib (1995) and Chib and Jeliazkov (2001) were shown to be effective by Han
and Carlin (2001), but to implement these in BUGS would need substantial
problem-specific programming, including access to the underlying source code
(Ntzoufras, 2009).

Jointly sampling from the model and parameter space is a generally more
reliable method of obtaining posterior probabilities of models in a BUGS
context, particularly for comparing models with different sets of predictor
variables, and techniques to do this in BUGS are reviewed in §8.8.2.
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8.8 Model uncertainty

Neglecting uncertainty about the choice of model has been called a “quiet
scandal” in statistical practice (Breiman, 1992) — see, for example, Draper
(1995) and Burnham and Anderson (2002) for discussions. Drawing conclu-
sions on the basis of a single selected model can conceal the possibility that
other plausible models would give different results. Sensitivity analysis is rec-
ommended as a minimum, and this section discusses methods to formally
incorporate model uncertainty in conclusions.

8.8.1 Bayesian model averaging

Posterior model probabilities p(M,|y) can be used to do “model averaging” to
obtain predictions which account for model uncertainty. If we need to predict

Y, and the predictive distribution assuming M, is p(g|y, M, ), then the “model-
averaged” prediction is

p(gly) = Zp ily, My )p(M,|y)

where
p(M;|y) = p(M;)p(y|M;) /Z{p Mie)p(y|Mi)}

However, as discussed in §8.7.2, the marginal likelihood p(y|M,) involved in
this definition is not, in general, straightforward to calculate in BUGS. We
now describe techniques to accomplish model-averaged predictions without
needing to calculate marginal likelihoods.

8.8.2 MOCMC sampling over a space of models

We could consider the model choice as an additional parameter: specify prior
probabilities for the model choice m and model-specific parameters 6,,, and
sample from their joint posterior distribution p(m, 6,,|y), thus computing the
posterior model probabilities. Any predictions are automatically averaged over
the competing models.

Reversible jump MCMC However, if we are choosing between models
with different numbers of parameters, then the dimension of the space changes
as the currently chosen model changes. The reversible jump MCMC algorithm
was devised by Green (1995) to allow sampling over a space of varying dimen-
sion. The Jump add-on to WinBUGS (Lunn et al., 2009¢)t performs reversible

TThis is under development for OpenBUGS.
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jump for variable selection in linear and binary regression and selecting among
polynomial splines with different numbers of knots. See the manual included
with Jump for further details and worked examples. It could be extended in
the future to select within other classes of models, such as mixture models, for
which specialised programming is currently required to implement reversible
jump MCMC.

Product space search In reversible jump MCMC, a value for 6, is only
sampled if the sampler is currently visiting model m. Carlin and Chib (1995)
described an alternative MCMC method for sampling from p(m, 0,,,|y), where
values of 6, are sampled for all m, whatever the currently chosen model. This
requires a pseudoprior to be specified for each 6,, conditionally on the model
not being m. While this is less efficient than reversible jump, it enables stan-
dard MCMC algorithms, available in BUGS, to be used. It can suffer from
poor mixing unless the pseudopriors and priors on the models are chosen
carefully. In practice, each model can be fitted independently and the result-
ing posteriors used to choose pseudopriors for a joint model. See the Pines
example for BUGS (available from the BUGS web site or distributed with
OpenBUGS) or Carlin and Louis (2008) for further details.

Variable selection priors There are several methods specifically for vari-
able selection in regression models, including stochastic search variable selec-
tion (George and McCulloch, 1993) and Gibbs variable selection (Dellaportas
et al., 2002). The general idea is that there is a vector of covariate effects
and a vector I of the same length containing 0/1 indicators for each covariate
being included in the model. § is then given a “spike and slab” prior (Mitchell
and Beauchamp, 1988). This is a mixture of a probability mass p(5;|I; = 0)
concentrated around zero, representing exclusion from the model, and a rela-
tively flat prior p(8;]1; = 1) given that the variable is included:

p(5) = p(L; = Dp(B;|L; = 1) + p(I; = O)p(B;11; = 0).

In BUGS, an example is

betal[j] <- blpick([j]] # effect of jth covariate

b[1] ~ dnorm(0, tau) # "spike": tau is large, b[1] <- 0
b[2] ~ dnorm(0, eps) # "slab": precision eps is small
pick[j] <- I[j] + 1

I1[;] ~ dbern(p[jl)

where p[j] is the prior probability that the jth covariate is included, assum-
ing these probabilities are independent. Thus the posterior probabilities of
including each covariate arise naturally as the posterior mean of each I[j].
The methods differ in how exactly they define the priors. For more details on
these methods and their implementation in BUGS, see O’Hara and Sillanpaé
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(2009) and Ntzoufras (2009) — while programming is generally straightfor-
ward, their efficiency and accuracy can depend on the choice of prior and
parameterisation.

8.8.3 Model averaging when all models are wrong

Bayesian model averaging involves choosing and computing prior and poste-
rior probabilities on models, interpreted as beliefs in their truth. Bernardo and
Smith (1994) showed decision-theoretically that this provides optimal predic-
tion or estimation under an “M-closed” situation — in which the true process
which generated the data is among the list of candidate models.

However, often one does not believe any of the models are true — an “M-
open” situation. Typically the truth is thought to be more complex than any
model being considered. Model averaging is more difficult in this case, though
some suggestions have been made. For example, substituting AIC or DIC for
BIC in Equation (8.7) gives “Akaike weights” (Akaike, 1979) or DIC weights
for averaging models, which measure their predictive ability, rather than their
probability of being true. Using DIC in this way is attractively simple, though
this method has not been formally assessed or justified. The resulting probabil-
ities are difficult to interpret, though Burnham and Anderson (2002) suggest
they represent posterior model probabilities under an implicit prior which
favours more complex models at larger sample sizes.

Bootstrapping DIC A more interpretable way of averaging models with-
out invoking a “true model” is to bootstrap the model selection process. As-
suming independent data points, we resample from the data, choose the best-
fitting model according to some criterion, repeat the process a large number of
times, and average the resulting predictions. Buckland et al. (1997) used this
method with AIC in a frequentist context, and Jackson et al. (2010a) used
it with DIC for averaging Bayesian models. The resulting model probabilities
p(M,|y) are the proportion of samples to which model r fits best according
to the criterion. These are not Bayesian posterior probabilities, but rather
frequentist probabilities, under sampling uncertainty, that the model will give
the best predictions among those being compared.

Resampling and refitting would often be impractical for Bayesian models
fitted by MCMC, which are typically intensive to compute. Therefore Jackson
et al. (2010a), following Vehtari and Lampinen (2002), adapted a “Bayesian
bootstrap” method which only requires one model fit and no resampling.
Instead of sampling with replacement from the data vector y, the Bayesian
bootstrap samples sets of probabilities g; that the underlying random variable
Y takes the value of each sample point y1,...,y,. In one bootstrap iteration,
samples qz(rep ) of g; are drawn from a “flat” Dirichlet(1,...,1) distribution.
This is the posterior distribution of the sampling distribution of Y, which is
assumed to be a discrete distribution over the observed values. This posterior
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is obtained by combining the sample y1, . . ., ¥, with an improper prior (Rubin,
1981).

The bootstrap replicate of a sample statistic (e.g., the mean) that can be
expressed as ). f(y;) is the weighted sumn ), qi(rep)f(yi). Since the DIC can
be decomposed into a sum over observations i, DIC(y|M,) = Y." | DIC;,
where DIC; = 2D(y;|0) — D(yz\é), the bootstrap replicate of the DIC is

DIC(y|M,)"") =0y ¢{"P DIC;

=1

The sample of replicate DICs for each competing model can be used to give
a bootstrap “confidence interval” surrounding the DIC for each model and
probabilities that each model is best among the candidates.

Implementing this in BUGS requires the contribution to the posterior de-
viance from each data point to be monitored explicitly, similar to the method
of deviance residuals (§8.3.4). For example, in a normal model:

for (i in 1:n) {
y[i] ~ dnorm(mu[i], tau)
dev[i] <- log(2xpi) - log(tau) + pow(y[i] - mu[i], 2)*tau

}

The deviance of the observation y[i] evaluated at the posterior means of
mul[i] and tau is subtracted from the posterior mean of dev[i] to produce
DIC;. The replicates can then be computed outside BUGS, using random
samples of Dirichlet(1,...,1) variables (created, e.g., by BUGS). Note that the
resulting model-averaged posterior has no Bayesian interpretation, since two
sampling models for the data are used simultaneously — it is best viewed as
a computational approximation to resampling.

8.8.4 Model expansion

Instead of averaging over a discrete set of models, a more flexible framework
for model uncertainty is to work within a single model that encompasses all
reasonable possibilities. This is recommended, for example, by Gelman et al.
(2004). Model uncertainty is then considered as a choice over a continuous
space of models. Support for different model choices is assessed by examining
posterior distributions of parameters in the larger model, as in § 8.5, and
the model is checked to ensure that it gives predictions which agree with
observations, as in §8.4.

The class of Bayesian nonparametric models illustrated in §11.8, for ex-
ample, can reasonably be thought to “include the truth” in most practical
situations. However, these do not naturally represent many model choice sit-
uations — a common example is whether to include or exclude a covariate in
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a regression. The encompassing flexible model would then be the one which
includes all covariates being considered. In §8.8.2, we described flexible models
of this type, where the prior distributions for the covariate effects had “spikes”
at zero representing the possibility that the covariate is not included.

Smooth distributions are often a more realistic expression of prior belief
than the mixture priors of this kind implied by discrete model averaging. Giv-
ing privilege to an effect of zero would not make sense if all potential predictors
are thought to have non-zero, though perhaps inconsequentially small, effects.
On the other hand, routinely using very vague priors for all potential effects
would often lead to identifiability problems or poor predictive ability. Weakly
informative priors might then be used, which typically “shrink” the effect to-
wards zero. Gelman et al. (2008), for example, recommend a default Cauchy
prior for logistic regression. For a review and comparison of such “shrinkage”
priors for linear regression, see O’Hara and Sillanpad (2009), and for binary
and survival regression see Rockova et al. (2012).

8.9 Discussion on model comparison

Broadly, there are two rather different approaches to Bayesian model compar-
ison — one based on Bayes factors (or BIC) and the other on DIC, AIC, or
similar measures. We can contrast the approaches under the following head-
ings:

o Assumptions. The Bayes factor approach attempts to identify the “cor-
rect” model and implicitly assumes that such a thing exists and is in
the families of distributions being considered. Posterior probabilities of
models rely on it being meaningful to place probabilities on models.
DIC/AIC makes no such assumption and only seeks short-term predic-
tive ability.

e Prior distributions. Bayes factors require proper prior distributions (al-
though these could be unit-information priors, as in BIC), which are not
required for DIC/AIC.

o Computation. Bayes factors are notoriously difficult to compute in
MCMC, requiring problem-specific programming or approximation;
computation of DIC is generally straightforward.

o Model uncertainty. Model averaging to account for uncertainty about
model choice is natural within a Bayes factor approach, provided one
is willing to specify and interpret prior and posterior probabilities on
models. Otherwise, DIC or Akaike weights, or bootstrapping, could be
used for model averaging, though the theoretical justification is weak.
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Working within an expanded model is a more flexible approach to model
uncertainty which does not require averaging over a discrete set of mod-
els.

o The “focus” of the analysis. When dealing with hierarchical models,
different model comparison methods can be related to which aspect of
the model is of primary interest (§10.8.1).

The first issue is the most important: the situations in which it is reasonable
to assume that any particular model is “true” appear very limited. We would
therefore argue that the use of Bayes factors is restricted to domains where
competing models correspond to clear, identifiable hypotheses that could in
principle be proven to be “correct.” Examples might include genetics appli-
cations where an individual is assumed to either carry some gene or not, or
studies of supernatural abilities (as in Example 8.7.1) where the existence of
any ability, however small, would be remarkable.

In either approach, we would recommend thorough criticism of model as-
sumptions, as described in the first half of this chapter, and if there is model
uncertainty, addressing it either formally or through clear sensitivity analyses.

8.10 Prior-data conflict

Bayesian analysis has traditionally focused on “turning the Bayesian handle,”
combining a prior distribution with a likelihood to produce a posterior distri-
bution. But what if the likelihood and the prior seem in conflict, in the sense
that they support almost non-intersecting areas of the parameter space? A
naive approach would just charge on regardless, but this can lead to absurd
results: for example, if we assume a normal observation y ~ N(6, 1) with stan-
dard normal prior § ~ N(0, 1), then an observation y = 10 will lead to a
posterior distribution 6 ~ N(5,0.5), which is tightly situated around 6 = 5, a
value supported neither by prior nor data (we note that if we instead assumed
Student’s t distributions we would obtain a bimodal posterior distribution, as
in Example 8.6.3). This has been nicely ridiculed by Stephen Senn’s charac-
terisation of a Bayesian as someone who, suspecting a donkey and catching
a glimpse of what looks like a horse, strongly concludes he has seen a mule
(Senn (1997), p. 46, Spiegelhalter et al. (2004), p. 63).

There are two broad approaches to handling conflict: “identification” and
“accommodation.” Throughout this discussion we generally assume that the
data are given priority and, in the case of conflict, it is the prior distribution
that is called into question and discarded if necessary. However, the techniques



Model checking and comparison 179

can be easily adapted to give priority to the prior and discard divergent data,
essentially adapting techniques previously used for identifying outliers.

8.10.1 Identification of prior-data conflict

This approach considers the current prior as a null hypothesis and checks
whether the data fit the prior model or not. It is essentially a p-value argument
as described for model checking (§8.4), in which an observed summary statistic
to is compared to a predictive distribution po(t) = [ p(¢|0) p(#)df, but using
predictions arising from the prior rather than from the posterior distribution.
The aim is to identify conflict and then one can decide whether to question
the prior or the data.

As a simple example, assume the prior is @ ~ N(u, 02 /ng) and the sampling
distribution is Y, ~ N(6,02/m). Then the predictive distribution is Y, ~
N(u, 02 /m + 02 /ng) and so the predictive p-value is

Pr(Yin < ym) = ® %

T4/ o + m
We note that this is also the tail area associated with a standardised test
statistic contrasting the likelihood and the prior: i.e., suppose we assumed
Y ~ N(61,02/m) and interpret the prior distribution as resulting from an

observation pu ~ N(f2,0%/ng), then a classical test of the null hypothesis
Hy : 61 = 65 would be based on

Zm = yml_ K 7’
T4/ o + m
a measure of conflict between data and prior.

We use one-sided p-values throughout, identifying both high and low values
as “interesting.”

Example 8.10.1. Surgery (continued): assessing prior-data conflict
In Example 1.1.1 we considered a prior distribution for a mortality rate that could
be expressed as a Beta(3,27), which has a mean of 10%. In Example 2.7.1 we
then assumed that 20 operations were to take place and obtained the predictive
probability of the number of successes. Suppose, however, that after the first five
operations there had been two deaths, that is, 40% mortality — is this grounds
for deciding that the prior distribution was “wrong”?

We can calculate the predictive distribution for Y either in its beta-binomial
closed form or by Monte Carlo simulation. Since this predictive distribution is
discrete, we assume a mid-p-value, Pr(Y > y) + 1 Pr(Y =y).

r.obs <- 2
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theta ~ dbeta(3, 27)
r ~ dbin(theta, 5) # sampling distribution
P <- step(r-r.obs-0.5) + 0.5%equals(r, r.obs) # mid-p-value

The mean of P is 0.054, suggesting some evidence of conflict with the prior
distribution.

8.10.2 Accommodation of prior-data conflict

Suppose that instead of simply identifying conflict, we wanted to automati-
cally accommodate it: we assume that in the case of conflict we would want
to reject or downweight the prior distribution. A natural way of modelling
this is to imagine competing priors, perhaps drawn from disagreeing experts.
One prior might represent our current opinion and be given substantial prior
weight, while an alternative could represent a weak prior covering a wider
range of alternatives: this is a natural application of mixture priors (§5.4) in
which the idea is essentially to get the data to “choose” between the alterna-
tives.

Example 8.10.2. Surgery (continued): mixture of priors
Our prior for the underlying mortality risk in the previous example was Beta(3,27).
But suppose a claim was made that the procedure was much more dangerous than
this; in fact the mortality rate could be around 50%. Such a prior opinion might
be represented by a Beta(3,3) distribution, which is symmetric with mean 0.5 and
standard deviation =,/0.5 x 0.5/7 = 0.19. Suppose, as above, out of the first
five operations there are two deaths — what should we now believe about the
true mortality rate? What do we expect to happen over the next 10 operations?
A crucial input is the relative belief in the two competing prior distributions,
prior 1: 6 ~ Beta(3,27) or prior 2: § ~ Beta(3,3). We shall take them as initially
equally plausible, corresponding to g1 = Pr(prior 1) = 0.5. The code shows how
a “pick” formulation is used to select the appropriate parameters for the prior
distribution.

model {
theta ~ dbeta(alpick], blpick])
pick ~ dcat(ql1:2])
ql1] <- 0.50
ql2] <- 0.50

gq.post[1] <- equals(pick, 1) # = 1 if prior 1 picked
q.post[2] <- equals(pick, 2) # = 1 if prior 2 picked
r ~ dbin(theta, n) # sampling distribution
r.pred ~ dbin(theta, m) # predictive distribution
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node mean sd MC error 2.5% median 97.5% start sample
q.post[1] 0.2416 0.4281 0.004438 0.0 0.0 1.0 1001 50000
q.post[2] 0.7584 0.4281 0.004438 0.0 1.0 1.0 1001 50000
y.pred 3.789 2.328 0.0177 0.0 4.0 8.0 1001 50000
theta 0.3786 0.1843 0.00164 0.07455 0.3872 0.721 1001 50000

Given these early results, there is now a 76% probability that the “sceptical”
prior is appropriate and that this is a high-risk operation, and we would now
expect 4 (95% interval 0 to 8) deaths out of the next 10 operations. Such a
formulation may naturally lead to a bimodal posterior distribution for 8, as shown
in Figure 8.11.

theta (sample of 50000)

20

151

1.0

0.5}

0.0
T T T T
-0.5 0.0 0.5 1.0

FIGURE 8.11
Posterior distribution for surgery mortality using a mixture of priors.

The formulation above works well when both priors are from the same
family of distributions. Alternatively, we could follow the approach of Exam-
ple 8.7.1 and model

y ~ dbin(thetalpick], n)
theta[1] ~ dbeta(3, 27)
theta[2] ~ dbeta(3, 3)

which generalises easily to different parametric forms for the competing prior
distributions.

This idea can be extended from a small set of possible prior distributions
to a continuous mixture, and in so doing we can provide a “robust” prior
that will have some influence if the data and prior agree, and otherwise will
be overwhelmed. Essentially this can be implemented by adopting a “heavy-
tailed” prior distribution that supports a wide range of possibilities but has
little influence in the extremes. For example, if we have a normal sampling
distribution Y ~ N(gu, 1), but the prior distribution is a Student’s ¢ distribu-
tion, then in the case of conflict the prior is essentially ignored (Dawid, 1973)
as the long tails of the prior “accommodate” the conflicting observation.
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Using the ideas introduced in §8.2 and §8.5, we can express the ¢ distri-
bution as a normal distribution whose unknown precision is drawn from a
chi-squared distribution. Specifically, suppose we thought that a reasonable
prior distribution was normal with precision 1, but we wished to express some
doubt about this assumption. If we take  ~ N(0,1/)), where A\ = X?/k and
X? ~ X3, we are essentially assuming a ¢, prior distribution for u.

Example 8.10.