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Preface

Integrated circuits are the enabling technology for the modern information
age. Advanced systems are built using state-of-the-art semiconductor chips.
Computing, communication, and network chips fuel the information tech-
nology era. The demands of emerging software applications can be met only
with unique chips and systems. The integration ability presented by mod-
ern semiconductor technology presents opportunities; however, the require-
ments posed by power consumption, reliability, and form factor present
challenges. This book presents fourteen chapters dealing with several sys-
tems and chips that present unique approaches to designing future comput-
ing and communication chips and systems.

Chapter 1 presents the TRIPS processor architecture and microarchitec-
ture. TRIPS is a unique architecture that seeks to better exploit uniprocessor-
level concurrency by changing the way instruction-level concurrency is
expressed to the hardware, thereby extending the scaling of uniprocessors
and enabling more efficient multiprocessors. TRIPS uses an explicit data
graph execution (EDGE) instruction set architecture to efficiently encode
concurrency in its dataflow execution model. The TRIPS microarchitecture
uses a distributed, tiled microarchitecture that supports dynamic out-of-
order execution. It is partitioned for scalability and implements deep specu-
lation and latency tolerance.

Chapter 2 describes the Centaur Technology x86 processor with several
data security features. Centaur Technology (a part of VIA Technologies
Inc.) integrated several security features into the x86 processor, with little
increase in die size or development effort. The chapter presents the hardware
security features, and describes the implementation of the AES encryption
hardware, the secure hash algorithm (SHA) hardware and the Montgomery
multiplier—all aimed at improving the security of the processor.

Chapter 3 presents the ARM Cortex-A8 processor, a sub-1 watt processor
that provides high performance for general purpose and media applica-
tions. The processor performs superscalar execution; yet, it is designed to be
energy efficient. The microarchitecture, machine efficiency, and operating
frequency are decided with energy efficiency as a primary criterion. Multi-
media and graphics applications are supported with a 64-bit SIMD unit.

Chapter 4 presents a highly parallel signal processor, the RACE-Hyper-
cube processor, which achieves up to 1 trillion bytes/sec at a relatively low
clock frequency of 250 MHz. The processor allows the selection of a variety
of configuration parameters.
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Chapter 5 presents an asynchronous FPGA design—the RASTER architec-
ture. The challenges and limitation of a clocked design are overcome with a
self-timed (asynchronous) design, resulting in higher performance per watt.
The RASTER architecture consists of an FPGA logic cell that uses a unique
method of intercell communication. Simulation shows data throughput rates
of up to 1.3 GHz at the 90nm process on a benchmarking suite of small FPGA
designs.

Chapter 6 presents another unique chip—the continuation-based Fuce
multithreading processor. The Fuce processor from Kyushu University, Japan,
is based on the dataflow computing model. The Fuce processor pursues par-
allel execution of threads with high parallel processing and compatibility.
Fuce means “fusion of communication and execution.” The Fuce processor
executes multiple threads using the exclusive multithread execution model,
which is derived from dataflow computing. The Fuce processor aims to fuse
the interprocessor execution and interprocessor communication. The Fuce
processor unifies processing inside the processor and communication with
external processors using events and threads.

Chapter 7 is a study of a processor with dual thread execution modes. The
authors present the use of additional cores on a processor for two purposes:
(1) to execute subordinate threads, and (2) to execute speculative threads.
Threads are spawned to the available processing cores to exploit thread-
level parallelism. Performance analysis using SPEC CPU2000 benchmarks
show higher improvement using subordinate threads rather than specula-
tive threads. A processor that can switch execution modes between the two
approaches is also investigated since many applications alternate between
different types of phases during their execution. Such an adaptive processor
is seen to be 17 percent better than the subordinate thread mechanism alone.

Adaptive power management of computer systems has become extremely
important in recent years. Such techniques heavily rely on variation of
power during execution of applications. Chapter 8 presents power phases in
commercial and scientific workloads running on enterprise-class hardware.
Power consumption of CPU, I/O, and disk subsystems is measured using
power sensors and phase behavior of applications is studied.

Future chips are driven by emerging and future applications. A workload
that is most demanding of computational power and speed is computer
graphics and visualization. Gaming has driven this quest for function and
speed to such a point that graphics chips, independent of the driving com-
puter system, have more gates than the latest CPU and many times the arith-
metic power. And yet, there are aspects of graphics that still overly consume
the power of systems. In Chapter 9, example graphics applications that need
enormous computing power are presented. The author seeks to provide com-
pact geometric representations of shapes so that rendering (displaying on
the screen) can be more efficiently performed. He shows a close relation-
ship between quadratic Bezier curves (QBCs) and iterated function systems
(IFSs) to manipulate 2D sets that resemble 3D sets in the real world. He also
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demonstrates the value of segmenting 3D triangle meshes that represent
human teeth, thus dramatically accelerating visualization processes.

In Chapter 10, the authors illustrate the use of hardware accelerators built
from field programmable gate arrays (FPGAs), graphic processing units
(GPUs), or SIMD processor arrays for high performance computing. Such
a system can be considered as a two-level processing system, consisting of
the conventional processing nodes and the acceleration hardware connected
over a high-speed network. In this chapter, researchers from the Los Alamos
National Laboratory describe the use of such systems for a class of applica-
tions that use wavefront algorithms. These algorithms are characterized by
a specific order in which cells are processed. The improvement in perfor-
mance from accelerators such as the Clearspeed CSX600 SIMD accelerator is
presented.

In Chapter 11, characteristics of a bioinformatics application are presented.
Computational biology has become an important workload for high perfor-
mance computers. Multiple-sequence alignment applications are important
bioinformatics applications. Twelve multiple sequence alignment programs
with a variety of alignment approaches are analyzed for performance of the
cache, trace cache, branch predictor, phase behavior, and so on.

Embedded systems are inherently real time systems—they must control
and compute as demanded by events. And the larger systems they are part of
may demand a significant number of parallel processes going; for example,
the most lavishly outfitted BMW automobile has an excess of 100 microcon-
trollers in charge of its many operations. Ravenscar is a subset of the Ada
programming language designed for real-time computing. In Chapter 12, the
authors present a Ravenscar, hardware-implemented run-time kernel with
delay queues that allows for accurate analysis of application timing behavior.
Formal state models and their simulations as well as hardware implemen-
tation are presented. The authors describe the corresponding VHDL state
machines and demonstrate that the required levels of parallelism, hardware
requirements, and timing granularity can be achieved.

In Chapter 13, an error correction scheme for a network-on-chip (NOC)
is presented. The increased susceptibility of on-chip networks to various
sources of error necessitates strategies to handle errors. A forward error cor-
rection scheme employing a low density parity check code (LDPC) is pre-
sented in this chapter. The presented LDPC is a linear block code suitable
for low latency, high gain, and low power design because of its streamlined
forward-only data flow structure.

Chapter 14 presents silicon-based on-chip optical interconnects and their
use in reducing thermal constraints in a high performance clustered multi-
threaded processor. Increased integration in modern semiconductor technol-
ogies often results in regions of the chip with very high power densities or hot
spots. One technique to reduce the thermal concerns from the hot spots is to
intermix hot and cold units, however, at the cost of increasing communication
distances between blocks. Silicon-based optical interconnects are shown to
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be very valuable for global communication paths in such chips. A significant
reduction in thermal constraints without reducing performance is shown in
connecting the common front-end with the distributed back-end of a clus-
tered multithreaded processor.

We hope that the readers of this book enjoy the variety of unique systems
and chips presented. Most of the chapters in this book are revised versions of
selected papers presented at the first, second, and third Workshop on Unique
Chips and Systems (UCAS). The first and second UCAS workshops were held
in March 2005 and March 2006 in Austin, Texas, and the third UCAS work-
shop was held in San Jose, California, in April 2007. We would like to thank
the authors of the chapters for their contributions. We also wish to thank all
those who helped in the process, especially Nora Konopka and Jessica Vakili
at CRC Press/Francis & Taylor.

Eugene John
University of Texas at San Antonio

Juan Rubio
IBM Austin Research Laboratory
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2 Unique Chips and Systems

1.1 Introduction

Growing on-chip wire delays, coupled with complexity and power limita-
tions, have placed severe constraints on the issue-width scaling of central-
ized superscalar architectures. As a result, recent microprocessor designs
have backed away from powerful uniprocessors, instead favoring multiple
simpler cores on a single die. Partitioning the chip into a collection of proces-
sors communicating via a common memory system mitigates some of the
technology scaling challenges, but increases the burden on software to pro-
vide multiple threads to execute concurrently across the cores.

An alternative is to pursue more powerful uniprocessors, but design them
so that they are scalable and tolerant of technology and complexity scaling.
Ideally, such wide-issue processors would be tiled [30], meaning composed
of multiple replicated, communicating design blocks. Because of multicycle
communication delays across these large processors, control must be distrib-
uted across the tiles. We advocate the use of microarchitectural networks
(or micronets) for routing control and data among the tiles. Micronets pro-
vide high-bandwidth, flow-controlled transport for control or data in a wire-
dominated processor by connecting the multiple tiles, each of which is a
client on one or more micronets. Higher-level microarchitectural protocols
direct global control across the micronets and tiles in a manner invisible to
software.
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In this chapter, we describe the architecture and implementation of the Tera-
op, Reliable, Intelligently-adaptive Processing System (TRIPS) processor—a
distributed, tiled microarchitecture. In particular, we discuss TRIPS tile par-
titioning, micronet connectivity, and distributed protocols that provide global
services in the TRIPS processor, including distributed fetch, execution, flush,
and commit. Although some of our prior publications have described the
TRIPS approach to exploiting parallelism as well as high-level performance
results [20,3], this chapter examines in detail the intertile connectivity and
protocols that have resulted from reducing the high-level design to silicon.
The key concepts that differentiate TRIPS from other tiled architectures such
as RAW [30] are the dynamic scheduling and execution which require dis-
tributed dynamic hardware protocols to provide the means to extract both
irregular and regular concurrency.

To understand the design complexity, timing, area, and performance issues of
this dynamic tiled approach, we implemented the TRIPS design in a 170M tran-
sistor, 130 nm ASIC chip. This prototype chip contains two processor cores, each
of which implements an EDGE instruction set architecture [3], is up to four-way
multithreaded, and can execute a peak of 16 instructions per cycle. Each proces-
sor core contains five types of tiles communicating across seven micronets: one
for data, one for instructions, and five for control used to orchestrate distributed
execution. TRIPS prototype tiles range in size from 1–9 mm2. Four of the prin-
cipal processor elements—instruction and data caches, register files, and execu-
tion units—are each subdivided into replicated copies of their respective tile
type; for example, the instruction cache is composed of five instruction cache
tiles, and the computation core is composed of 16 execution tiles.

The tiles are sized to be small enough so that wire delay within the tile is
less than one cycle, and so can largely be ignored from a global perspective.
Each tile interacts only with its immediate neighbors through the various
micronets, which have roles such as transmitting operands between instruc-
tions, distributing instructions from the instruction cache tiles to the execu-
tion tiles, or communicating control messages from the program sequencer. By
avoiding any global wires or broadcast buses—other than the clock, reset tree,
and interrupt signals—this design is inherently scalable to smaller processes,
and is less vulnerable to wire delays than conventional designs. Preliminary
performance results on the prototype architecture using a cycle-accurate sim-
ulator show that compiled code outperforms an Alpha 21264 on half of the
benchmarks, and we expect these results to improve as the TRIPS compiler
and optimizations are tuned. Hand optimization of the benchmarks produces
IPCs ranging from 1.5–6.5 and performance relative to Alpha of 0.6–8.

The rest of the chapter is organized as follows. Section 1.2 describes the
TRIPS ISA. Section 1.3 describes the microarchitecture of the various tiles
that compose the processor. This is followed by Section 1.4 which describes
TRIPS microarchitectural protocols. Section 1.5 describes the physical design
of the TRIPS prototype and also discusses various overheads of a distributed
design. This is followed by Section 1.6, which is about related work. Finally,
Section 1.7 concludes.
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1.2 ISA Support for Distributed Execution

TRIPS implements an Explicit Data Graph Execution (EDGE) instruction
set architecture (ISA). We conceived it with the goal of high-performance,
single-threaded, concurrent but distributed execution, by allowing compiler-
generated dataflow graphs to be mapped to an execution substrate by the
microarchitecture. The two defining features of an EDGE ISA are (1) block-
atomic execution and (2) direct communication of instructions within a
block, which together enable efficient dataflow-like execution.

The TRIPS ISA aggregates up to 128 instructions into a single block that
obeys the block-atomic execution model, in which a block is logically fetched,
executed, and committed as a single entity. This model amortizes the per-
instruction bookkeeping over a large number of instructions and reduces
the number of branch predictions and register file accesses. Furthermore,
this model reduces the frequency at which control decisions about what to
execute must be made (such as fetch or commit), providing the additional
latency tolerance to make more distributed execution practical.

1.2.1 TRIPS Blocks

The compiler constructs TRIPS blocks and assigns each instruction to a loca-
tion within the block. Each block is divided into between two and five 128-
byte chunks, as shown in Figure 1.1. Every block includes a header chunk
that encodes up to 32 read and up to 32 write instructions that access
the 128 architectural registers. The read instructions pull values out of the

PC

128 Bytes

128 Bytes

128 Bytes

128 Bytes

128 Bytes

Header
Chunk

Instruction
Chunk 0

(32 Instructions)

Instruction

Chunk 3

(32 Instructions)
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(32 Instructions)

Instruction
Chunk 1

(32 Instructions)

Bit Offsets
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31 6 5 0
0
4
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H25
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Read 1
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Write 1
Write 2
Write 3
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Write 5
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Write 7

––––––
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Write 30
Write 31

96
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- Up to 32 Reads
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- Block Size (8 bits)

- Block Flags (8 bits)

- Store Mask (32 bits)

FIGURE 1.1
TRIPS Block Format.
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registers and send them to compute instructions in the block, whereas the
write instructions return outputs from the block to the specified architec-
tural registers. In the TRIPS microarchitecture, each of the 32 read and write
instructions are distributed across the four register banks, as described in
the next section.

The header chunk also holds three types of control state for the block: a
32-bit “store mask” that indicates which of the possible 32 memory instruc-
tions are stores, block execution flags that indicate the execution mode of the
block, and the number of instruction “body” chunks in the block. The store
mask is used, as described in Section 1.4, to enable distributed detection of
block completion.

A block may contain up to four body chunks—each consisting of 32
instructions—for a maximum of 128 instructions, at most 32 of which can
be loads and stores. All possible executions of a given block must emit the
same number of outputs (stores, register writes, and one branch) regardless
of the predicated path taken through the block. This constraint is necessary
to detect block completion on the distributed substrate. The compiler gener-
ates blocks that conform to these constraints [25].

1.2.2 TRIPS Instruction Formats

With direct instruction communication, instructions in a block send their
results directly to intrablock dependent consumers in a dataflow fashion.
This model supports distributed execution by eliminating the need for any
intervening shared centralized structures (e.g., an issue window or register
file) between intrablock producers and consumers.

Figure 1.2 shows that the TRIPS ISA supports direct instruction communi-
cation by encoding the consumers of an instruction’s result as targets within
the producing instruction. The microarchitecture can thus determine pre-
cisely where the consumer resides and forward a producer’s result directly
to its target instruction(s). The nine-bit target fields (T0 and T1) each specify
the target instruction with seven bits and the operand type (left, right, predi-
cate) with the remaining two. A microarchitecture supporting this ISA maps
each of a block’s 128 instructions to particular coordinates, thereby deter-
mining the distributed flow of operands along the block’s dataflow graph.
An instruction’s coordinates are implicitly determined by its position in its
chunk, as shown in Figure 1.1.

The instruction set also includes two additional nontraditional fields:
PR and LSID. The PR field is included in nearly all of the instructions and
encodes a predicate to control conditional execution of the instruction. This
two-bit field determines whether the instruction is unpredicated, predicated
on a true condition, or predicated on a false condition. Predicated instruc-
tions must wait for a predicate operand to arrive before executing. The TRIPS
predicated execution model is integrated with the datagraph execution
model, enabling efficient programming and new opportunities for compile-
time optimization [26]. The LSID field is five bits and is included in every
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load and store instruction. This field encodes the original program order of
load and store instructions within the block so that the TRIPS memory dis-
ambiguation hardware can determine when load instructions have illegally
executed before store instructions on which they actually depend.

1.2.3 Code Generation

The TRIPS compiler accepts sequential programs and produces explicit data-
graphs for execution by the TRIPS distributed hardware resources. Front-end
compilation for an EDGE instruction set is similar to that of a conventional
ISA, including standard scalar optimizations. The internal representation of
the code after these optimizations is similar to standard three-operand RISC
code. At this stage, the EDGE blocks are merely basic blocks, and are typi-
cally quite small.

The next stage of compilation is TRIPS block formation, which uses a num-
ber of techniques to grow the block size. These optimizations include but
are not limited to loop unrolling, function inlining, and if-conversion using
predication. TRIPS block formation, however, is constrained by the block-
size restrictions discussed above. After block formation, a TRIPS program
can be represented using our TRIPS intermediate language (TIL). This lan-
guage appears similar to RISC assembly code but reflects the organization
of the instructions into blocks and includes the predication and load–store
identifiers. Further details on overall structure of the compiler and block for-
mation can be found in [25, 17].

OPCODE PR T1 T0XOP

OPCODE PR IMM T0XOP

General Instruction Formats

09 817182223242531

OPCODE PR IMM 0LSID

OPCODE PR IMM T0LSID

Load and Store Instruction Formats

09 817182223242531

OPCODE PR OFFSETEXIT

Branch Instruction Format
019202223242531

OPCODE CONST T0

Constant Instruction Format

09 8242531

V GR RT1 RT0

Read Instruction Format

0715162021

V GR

Write Instruction Format
045

G

I

L

S

B

C

R

W

Instruction Fields

OPCODE = Primary Opcode

XOP = Extended Opcode

PR = Predicate Field

IMM = Signed Immediate

T0 = Target 0 Specifier

T1 = Target 1 Specifier

LSID = Load/Store ID

EXIT = Exit Number

OFFSET = Branch Offset

CONST = 16-bit Constant

V = Valid Bit 

GR = General Register Index

RT0 = Read Target 0 Specifier

RT1 = Read Target 1 Specifier

8

FIGURE 1.2
TRIPS Instruction Formats.
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Finally, the TIL code is processed by the scheduler, which is in the back
end of the compiler, to produce TRIPS assembly code (TASL). The scheduler
is aware of the topology of the TRIPS core, including number of execution
units and latencies between execution units. The schedule determines where
each of the TRIPS instructions will execute in order to minimize the overall
critical path of the block and the program. The placement of an instruction
is implicitly encoded by the location of the instruction in the block chunks
of Figure 1.1. Details on the algorithms employed in the scheduler can be
found in [5].

Figure 1.3 shows the transformation of a simple sequence of RISC instruc-
tions into the TRIPS TIL and TASL representations. After TRIPS block forma-
tion, the basic block of Figure 1.3a is translated into the TIL code of Figure 1.3b.
The TIL code clearly delineates the block boundaries with begin and end
directives. The block also shows the read and write instructions that direct
values in and out of the persistent architecture register file. The TIL code
further includes the predication of the branch instructions that cause execu-
tion of either block 2 or block 3 after block 1 completes. The instructions in
the TIL code still appear in operand format in which each instruction encodes
named source and destination operands.

Figure 1.3c shows the final TRIPS assembly code after block scheduling.
The instructions are the same as Figure 1.3b, but each instruction has been
assigned a unique identifier indicated in brackets. This unique identifier
is interpreted by the hardware as the physical coordinates of a reservation

FIGURE 1.3
Transformation of RISC code to TRIPS assembly code.

 b_t<$t6> block3

 b_f<$t6> block2

.bend block1

.bbegin block2

...

.bbegin block1

 read $t1,$g1

 read $t2,$g2

 ld $t3,4($t2)

 add $t4,$t1,$t3

 st $t4,4($t2)

 addi $t5,$t4,2

 teqz $t6,$t4

 write $g5,$t5

ld R3,4(R2)

add R4,R1,R3

st R4,4(R2)

addi R5,R4,#2

beqz R4,Block3

[W1] $g5

[5]  addi 2 [W1]

[6]  teqz [7] [8]

[R1] $g1  [2]

[2]  add  [3] [4]

[R2] $g2  [1] [4]

[3]  mov  [5] [6]

[4]  st   S[2] 4

[7]  b_t  block3

[8]  b_f  block2

[1]  ld   L[1] 4 [2]
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station. The instructions are now in target format in which each instruction
specifies the identifiers of the consumers of its result, but instructions do not
encode from where their operands are coming. The load and store instruc-
tions now include the load–store sequence numbers (LSID) and the instruc-
tion stream includes a new mov instruction. This mov serves to fan out the
result of the previous add instruction to a total of three targets. The add
cannot complete this task itself because instruction encodings are limited to
two targets for arithmetic instructions.

1.3 A Distributed Microarchitecture

The goal of the TRIPS microarchitecture is a processor that is scalable and
distributed, meaning that it has no global wires, is built from a small set of
reused components on routed networks, and can be extended to a wider-
issue implementation without recompiling source code or changing the ISA.
Figure 1.4 shows the tile-level block diagram of the TRIPS prototype that
meets these specifications. The three major components on the chip are two
processors and the secondary memory system, each connected internally by
one or more micronetworks.

Each of the processor cores is implemented using five unique tiles: one
global control tile (GT), 16 execution tiles (ET), four register tiles (RT), four data
tiles (DT), and five instruction tiles (IT). The main processor core micronet-
work is the operand network (OPN), shown in Figure 1.5. It connects all of
the tiles except for the ITs in a two-dimensional, wormhole-routed, 5 5
mesh topology. The OPN has separate control and data channels, and can
deliver one 64-bit data operand per link per cycle. A control header packet
is launched one cycle in advance of the data payload packet to accelerate
wakeup and select for bypassed operands that traverse the network.

Each processor core contains six other micronetworks, one for instruction
dispatch—the global dispatch network (GDN)–and five for control: global
control network (GCN), for committing and flushing blocks; global status net-
work (GSN), for transmitting information about block completion; global refill
network (GRN), for I-cache miss refills; data status network (DSN), for com-
municating store completion information; and external store network (ESN),
for determining store completion in the L2 cache or memory. Links in each of
these networks connect only nearest neighbor tiles and messages traverse one
tile per cycle. Figure 1.5 shows the links for three of these networks.

This type of tiled microarchitecture is composable at design time, permitting
different numbers and topologies of tiles in new implementations with only
moderate changes to the tile logic, and no changes to the software model.
The particular arrangement of tiles in the prototype produces a core with 16-
wide out-of-order issue, 80 KB of L1 instruction cache, 32 KB of L1 data cache,
and four SMT threads. The microarchitecture supports up to eight TRIPS
blocks in flight simultaneously, seven of them speculative if a single thread
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is running, or two blocks per thread if four threads are running. The eight
128-instruction blocks provide an in-flight window of 1,024 instructions.

The two processors can communicate through the secondary memory
system, in which the On-Chip Network (OCN) is embedded. The OCN is
a 4 10, wormhole-routed mesh network, with 16-byte data links and four
virtual channels. This network is optimized for cache-line sized transfers,
although other request sizes are supported for operations such as loads and
stores to uncacheable pages. The OCN acts as the transport fabric for all
interprocessor, L2 cache, DRAM, I/O, and DMA traffic.

1.3.1 Global Control Tile (GT)

Figure 1.6a shows the contents of the GT, which include the blocks’ PCs, the
instruction cache tag arrays, the I-TLB, and the next-block predictor. The GT
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FIGURE 1.4
TRIPS prototype block diagram.
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handles TRIPS block management, including prediction, fetch, dispatch,
completion detection, flush (on mispredictions and interrupts), and com-
mit. It also holds control registers that configure the processor into different
speculation, execution, and threading modes. Thus the GT interacts with all
of the control networks and the OPN, to provide access to the block PCs. The
GT also maintains the current status of all eight in-flight blocks. When one
of the block slots is free, the GT accesses the block predictor, which takes
three cycles, and emits the predicted address of the next target block. Each
block may emit only one “exit” branch, even though it may contain several
predicated branches.

1.3.1.1 Fetch Unit

The fetch unit consists of a TLB (Translation-Lookaside Buffer) and a direc-
tory of the blocks that are resident in the I-cache. In addition, it contains the
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program counters (PC) for each thread and control registers that are used to
configure the execution of each block.

The instructions of a TRIPS block are striped across all of the ITs. For
example, IT0 caches chunk 0 of a block and IT1 caches chunk 1 of the same
block. The I-cache directory contains a listing of all blocks that are currently
resident in the I-cache. The directory consists of 128 entries, organized in a
two-way set-associative fashion, and each entry identifies a unique cached
block. The directory is virtually indexed and entries are evicted and replaced
in a LRU fashion.

The I-cache directory is similar to the tag array in conventional caches. In
the TRIPS processor, the GT maintains a single array on behalf of all the ITs.
This centralized directory provides a consistent view of the cached blocks
and avoids scenarios where portions of a block are not present in the I-cache.
The tag array in each IT can be eliminated, thus simplifying the implementa-
tion in both the GT and ITs. An alternate design could maintain the tag array
as part of each IT. However, since a single block is striped across all ITs and
each of them operates because in a distributed fashion, this approach would
require special hardware to keep the tag arrays consistent.

The instruction TLB (ITLB) consists of a set of sixteen registers to provide
the translations of virtual addresses of blocks to physical addresses. Each
register defines the size and read/execute access attributes of up to sixteen
memory segments. The minimum size of a memory segment is 64 KB and
the maximum size is 1 TB. Instruction memory segments may be marked as
uncacheable in the L1. A block in such a segment will never be filled into the
I-cache. A miss in the ITLB or an access protection violation will generate an
exception. Similar to the I-cache directory, implementing the ITLB inside the
GT avoids redundant implementation in the ITs.

1.3.1.2 Refill Unit

The refill unit maintains the status of pending I-cache refills. The TRIPS pro-
cessor supports up to four outstanding refills, but at most one per thread.
To manage multiple outstanding refills, the GT tracks the I-cache set and
the way being refilled and whether the refill has completed. The storage for
tracking pending refills in the GT is similar to the I-cache MSHR (Miss Sta-
tus Handling Register) state in conventional processors.

1.3.1.3 Retire Unit

The retire unit contains a retirement table, which tracks the execution state
of all blocks in flight, and is responsible for initiating the flush, commit,
and deallocation of the blocks in flight. Table 1.1 shows the details of the
state maintained for each block. Some of the entries in this table are locally
initialized by the GT, when it starts various block-level operations. Other
state, which manages the completion and commit protocols, is updated as
blocks produce their register, memory, and branch outputs. Neighboring
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tiles deliver updates to this state to the GT using the TRIPS processor control
networks.

The retirement table is similar to the reorder buffer (ROB) in conven-
tional processors. However, this table does not track the status of individual
instructions. It has only one entry for each block, thus containing far fewer
entries than a conventional ROB.

1.3.1.4 Next Block Predictor

The next block predictor uses a branch instruction’s three-bit exit field to
construct exit histories instead of using taken/not-taken bits. The predictor
has two major parts: an exit predictor and a target predictor. The predictor
uses exit histories to predict one of eight possible block exits, employing a
tournament local/gshare predictor similar to the Alpha 21264 [13] with 9 K,
16 K, and 12 K bits in the local, global, and choice exit predictors, respec-
tively. The predicted exit number is combined with the current block address
to access the target predictor for the next-block address. The target predictor
contains four major structures: a branch target buffer (20 K bits), a call target
buffer (6 K bits), a return address stack (7 K bits), and a branch type predic-
tor (12 K bits). The BTB predicts targets for branches, the CTB for calls, and
the RAS for returns. The branch type predictor selects among the different
target predictions (call/return/branch/sequential branch). The distributed
fetch protocol necessitates the type predictor; the predictor never sees the
actual branch instructions, as they are sent directly from the ITs to the ETs.

The predictor performs three major operations: predict, update, and repair.
Predict provides a prediction for the next block. Update modifies the predictor

TABLE 1.1

State Tracked for Each Block in the Retirement Table

V Valid block
O Oldest block in thread
Y Youngest block in thread

BADDR Virtual address of the block
PADDR Predicted address of the next block
RADDR Actual resolved address of the next block

RC Registers completed
SC Stores completed
BC Branch completed

RCOMM Registers committed
SCOMM Stores committed

E Exception in block
F Block already flushed
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tables with the information from a committing block. Repair corrects any
predictor state modified by incorrect speculation. Each of the three opera-
tions consumes three processor cycles.

1.3.2 Instruction Tile (IT)

Figure 1.6b shows an IT containing a two-way, 16 KB bank of the total L1 I-
cache. The ITs act as slaves to the GT, which holds the single tag array. Each
of the five 16 KB IT banks can hold a 128-byte chunk (for a total of 640 bytes
for a maximum-sized block) for each of 128 distinct blocks. An instruction
cache tile also contains a 32-entry refill buffer with 128-bit entries. On an
instruction cache miss, each IT will independently fetch its portion of the
missed block into its own refill buffer. Later, when the block is dispatched,
the contents of the refill buffer are delivered into the execution unit array
and written into the instruction cache RAM. The refill buffer has room for
four fetched blocks that are waiting to be dispatched.

1.3.3 Register Tile (RT)

To reduce power consumption and delay, the TRIPS microarchitecture parti-
tions its many registers into banks, with one bank in each RT. The register
tiles are clients on the OPN, allowing the compiler to place critical instruc-
tions that read and write from/to a given bank close to that bank. Because
many def-use pairs of instructions are converted to intrablock temporaries
by the compiler, they never access the register file, thus reducing total reg-
ister bandwidth requirements by approximately 70%, on average, compared
to a RISC or CISC processor. The four distributed banks can thus provide
sufficient register bandwidth with a small number of ports; in the TRIPS
prototype, each RT bank has two read ports and one write port. Each of the
four RTs contains one 32-register bank for each of the four SMT threads that
the core supports, for a total of 128 registers per RT and 128 registers per
thread across the RTs.

In addition to the four per-thread architecture register file banks, each RT
contains a read queue and a write queue, as shown in Figure 1.6c. These
queues hold up to eight read and eight write instructions from the block
header for each of the eight blocks in flight, and are used to forward register
writes dynamically to subsequent blocks reading from those registers. The
read and write queues perform a function equivalent to register renaming
for a superscalar physical register file, but are less complex to implement due
to the read and write instructions in the TRIPS ISA.

When a block dispatches, the read and write instructions are delivered
to the RTs where they are captured in the read and write queues, respec-
tively. Each read instruction queries the write queue, searching for write
instructions from prior uncommitted blocks. If the read instruction finds
that the most recent write queue entry to the sought after register has a valid
value, it injects the value into the execution array. On the other hand, if it
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finds that the most recent write instruction does not yet have a valid value,
it stays in the read queue. When the prior block produces the register write,
the pending register read wakes up and forwards the written value to its
descendants. If the read instruction finds no matching write instruction in
the write queue, it reads from the persistent register file. Register reads and
forwarding of writes from prior blocks may be speculative and occur before
the previous block commits. Speculation recovery involves invalidating the
read and write queue entries of all affected blocks.

1.3.4 Execution Tile (ET)

As shown in Figure 1.6d, each of the 16 ETs consists of a fairly standard
single-issue pipeline, a bank of 64 reservation stations, an integer unit, and a
floating-point unit. All units are fully pipelined except for the integer divide
unit, which takes 24 cycles. The 64 reservation stations hold eight instruc-
tions for each of the eight in-flight TRIPS blocks. Each reservation station has
fields for two 64-bit data operands and a one-bit predicate. Arriving oper-
ands specify the exact reservation station to write into, eliminating the need
for a CAM structure in the reservation stations; the TRIPS microarchitecture
uses a lower power RAM structure instead.

Each ET is responsible for local wakeup and selection of instructions.
According to the dataflow execution model, any instruction that has all of
its operands present may be selected for execution. If more than one instruc-
tion is ready, the ET selects the oldest instruction, which corresponds to the
earliest fetched instruction from the oldest block. When in the multithreaded
configuration, the ET may be selecting instructions from up to four threads.
In this case, selection priority rotates among the four threads, and within
each thread the oldest instruction is given the highest priority.

When an instruction completes, the ET is responsible for forwarding the
result to the target instructions. If the target resides on the same ET, the
result can bypass directly to the target instruction for immediate execu-
tion; no bubbles between dependent instructions are required. If the target
is remote, the ET injects the result into the operand network for delivery. If
the instruction has multiple targets, the ET injects a separate message into
the network for each target on successive cycles. When an operand arrives
from a remote ET, the control packet arrives first and begins the wakeup pro-
cess. If the ET selects the instruction receiving the operand, the instruction
may rendezvous with the operand network data packet arriving on the next
cycle and execute immediately. At a minimum, only one pipeline bubble is
required between dependent instructions executing on adjacent ETs.

The ETs also implement the TRIPS predication and exception models.
Unlike other predicated architectures, TRIPS only executes a predicated
instruction if the arriving predicate polarity (true or false) matches the
polarity of the predicated instruction. The ET matches arriving predicates
to predicated instructions and keeps unmatched predicated instructions in
their reservation stations until a matching predicate arrives. In TRIPS, an
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instruction that causes an exception cannot immediately signal the problem
because the instruction may be speculative. Instead, the ET generates a poi-
son bit that propagates with the instruction through the datagraph execution.
The processor will detect an exception only if the poison bit propagates to a
block output (register write, store, or branch target) and the block is ready to
commit. On a block flush or commit, the ET removes all of the flushed block’s
pending instructions from the reservation stations and any of the block’s
operand packets still propagating through the operand network.

1.3.5 Data Tile (DT)

Figure 1.6e shows a block diagram of a single DT. Each DT is a client on
the OPN, and holds one 2-way, 8 KB L1 data cache bank, for a total of 32 KB
across the four DTs. Virtual addresses are interleaved across the DTs at the
granularity of a 64-byte cache-line. In addition to the L1 cache bank, each
DT contains a copy of the load/store queue (LSQ), a dependence predictor,
a one-entry back-side coalescing write buffer, a data TLB, and a MSHR that
supports up to 16 requests for up to four outstanding cache lines.

1.3.5.1 Load Processing

The pipeline diagram in Figure 1.7 illustrates the different stages of load
processing. Every incoming load accesses (a) the TLB to perform address
translation and check the protection attributes, (b) the dependence predic-
tor (DPR) to check for possible store dependences, (c) the LSQ to identify
older matching uncommitted stores, and (d) the cache tags to check for cache
hits. Based on the responses (hit/miss) from the four units, the control logic
decides on the course of action for that load. Table 1.2 summarizes the pos-
sible load execution scenarios in the DT.

When the load hits in the cache, and only in the cache, the load reply can
be generated in two cycles. This best-case latency is likely to be the common
case for most loads. When a load hits both in the cache and the LSQ, the load
return value is formed by composing the values obtained from the LSQ and
cache. First, the load picks up any matching store’s bytes from the LSQ and
then reads the remaining bytes from the cache. This operation can take mul-
tiple cycles and is referred to as store forwarding.

A load may arrive at the DT before an earlier store on which it depends.
Processing such a load right away will result in a dependence violation
and a flush, leading to performance losses. To avoid this performance loss,
the TRIPS processor employs a simple dependence predictor that predicts
whether the load processing should be deferred. If the DPR predicts a likely
dependence, the load waits in the LSQ until all prior stores have arrived.
After the arrival of all older stores, the load is enabled from the LSQ, and
allowed to access the cache and the LSQs to obtain the most recent updated
store value.
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If the load misses in the cache, it is buffered in the MSHRs [16] and a read
request is generated and sent to the L2. When the data is returned from the
L2, the loads in the MSHRs are enabled and load processing resumes. As
with deferred loads, missed loads also access the LSQ and cache to pick up
the most recent store values.

1.3.5.2 Store Processing

Store processing occurs in two phases. During the first phase, each incoming
store is buffered in the LSQ and the other DTs are notified about the store’s
arrival using the Data Status Network (DSN). During this phase each store
checks for dependence violations; if any younger loads to the same address
as the store are in the queue, then a violation is reported to the control unit,
which initiates recovery. The dependence predictor is also trained to prevent
such violations in the future.

When a block becomes nonspeculative, the second phase of store pro-
cessing begins as illustrated in Figure 1.8. In this phase the oldest store is
removed from the LSQ, checked in the TLB, and the store value is written out
to the cache/memory system. If the store hits in the cache, the corresponding
cache line is marked as dirty. If the store misses in the cache, the store miss
request is sent to the L2. We chose a write-back, write-no allocate policy to
minimize the number of commit stalls.

Store
Commit

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

FIGURE 1.8
Store commit pipeline.

TABLE 1.2

Load Execution Scenarios

TLB DPR Cache LSQ Response

Miss X X X Report TLB Exception
Hit Hit X X Defer load until all prior stores are received
Hit Miss Hit Miss Forward data from cache
Hit Miss Miss X Forward data from L2 cache, issue cache fill request
Hit Miss Hit Hit Forward data from LSQ and cache

Note: X represents “don’t care” state.
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1.3.5.3 Store Tracking

In the TRIPS execution model, a block can commit only after all of its store
outputs have been generated. When a store arrives at any DT, the store arrival
information is broadcast to the other DTs through the DSN. Each DT then
increments a local counter that counts the number of stores that have arrived
at the memory system. When all of the stores in a block have been received,
the DT that received the last store sends a message to the control tile indicat-
ing that all memory outputs have been generated.

1.3.5.4 Memory-Side Dependence Processing

Because the DTs are distributed in the network, we implemented a memory-
side dependence predictor, closely coupled with each data cache bank [23].
Although loads issue from the ETs, a dependence prediction occurs (in par-
allel) with the cache access only when the load arrives at the DT. A naive
extension of conventional dependence processing mechanisms [4] would
hold back the load in the execution unit until the execution of the dependent
store.

In TRIPS, the latency of dependent loads can be broken down into four
parts: (1) the latency for the load to detect that the dependent store has exe-
cuted, (2) the latency for the load to be delivered from the execution unit to
the DT, (3) the latency to access the DT, and (4) the latency to deliver the value
from the DT to the target of the load. With execution-side dependence pro-
cessing, the system cannot overlap any of the latencies, because the loads are
issued only after the dependent stores resolve and rest of the steps must be
performed in order. However, memory-side dependence processing allows
the overlap of steps (1) and (2).

The dependence predictor in each DT uses a 1024-entry bit vector. When
an aggressively issued load causes a dependence misprediction (and subse-
quent pipeline flush), the dependence predictor sets a bit to which the load
address hashes. Any load whose predictor entry contains a set bit is stalled
until all prior stores have completed. Because there is no way to clear indi-
vidual bit vector entries in this scheme, the hardware clears the dependence
predictor after every 10,000 blocks of execution.

1.3.5.5 Load/Store Queues

The hardest challenge in designing a distributed data cache is the memory
disambiguation hardware. Because the TRIPS ISA restricts each block to 32
maximum issued loads and stores and eight blocks can be in flight at once, up
to 256 memory operations may be in flight. However, the mapping of memory
operations to DTs is unknown until their effective addresses are computed.
Two resultant problems are: (a) determining how to distribute the LSQ among
the DTs, and (b) determining when all earlier stores have completed—across
all DTs—so that a held-back load can issue.
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Although neither centralizing the LSQ nor distributing the LSQ capacity
across the four DTs were feasible options at the time, we solved the LSQ
distribution problem largely by brute force. We replicated four copies of a
256-entry LSQ, one at each DT. This solution is wasteful and not scalable
(because the maximum occupancy of all LSQs is 25%), but was the least com-
plex alternative for the prototype. The LSQ can accept one load or store per
cycle, forwarding data from earlier stores as necessary. Additional details on
the DT and LSQ design can be found in [23].

1.3.6 Secondary Memory System

The TRIPS prototype supports a 1 MB static NUCA [14] array, organized into
16 memory tiles (MTs), each one of which holds a four-way, 64 KB bank.
Each MT also includes an on-chip network (OCN) router and a single-entry
MSHR. Each bank may be configured as an L2 cache bank or as a scratchpad
memory, by sending a configuration command across the OCN to a given
MT. By aligning the OCN with the DTs, each IT/DT pair has its own private
port into the secondary memory system, supporting high bandwidth into
the cores for streaming applications. Details of the OCN beyond the descrip-
tion below can be found in [10].

The OCN consists of 16 MTs, each containing an OCN router and a level-2
cache bank. Twenty-four network tiles (NT), each containing an OCN router
and the system address translation tables, surround the 2 8 array of MTs.
These together form a 4 10, 2D mesh, as shown in the left half of Figure 1.4.
Connected to the OCN along the top and the bottom are the I/O tiles, includ-
ing two DMA controllers, two SDRAM controllers (SDCs), the external bus
controller (EBC), and the chip-to-chip network controller (C2C).

The OCN network is Y-X dimension-order, wormhole routed; flow control
is credit-based, meaning that each node keeps track of the number of empty
buffers in all of its neighbors’ input FIFOs to determine when it is safe to send
more data. Packets travel on one of four virtual channels, designated “Pri-
mary Request” (Q1), “Secondary Request” (Q2), “Secondary Reply” (P2), and
“Primary Reply” (P1) in order of increasing priority. The packets range in size
from 16 bytes to 80 bytes long, split into between one and five 16-byte flits.

OCN clients connect directly to NTs and include ten ports for instruction
and data traffic to and from the two on-chip processors, two on-chip DMA
controllers, two on-chip SDRAM controllers, one slow external bus control-
ler, and one high-speed chip-to-chip controller. The C2C port is a direct
extension of the OCN (albeit at one-eighth the bandwidth per channel), and
enables TRIPS chips to be connected gluelessly to one another in a larger sys-
tem. The OCN can be scaled by either increasing the mesh dimensions (more
M and N tiles) or by utilizing the spare client connections on the east side.

1.3.6.1 OCN Router

Figure 1.9 shows an MT along with its embedded OCN router. The OCN
router is typical of virtual channel router designs. Incoming packets are



Architecture and Implementation of the TRIPS Processor 21

latched into one of the input FIFOs in one of five input directions, north,
south, east, west, or local for the L2 bank itself. The router contains enough
storage for two incoming flits of data per direction, per virtual channel. A
4 4 crossbar network connects each input to every other possible output;
a 5 5 crossbar is unnecessary since a packet coming in from one direction
cannot depart in that same direction. In cases of contention, the crossbar
selects the higher priority channel. The router uses a round-robin arbitration
scheme to resolve contention among requests at the same priority level. The
direction of the last packet sent in each direction is stored and used on the
next arbitration cycle to ensure routing fairness and livelock avoidance. A
credit-based flow control scheme tracks the number of available buffers in
neighboring receiver FIFOs. When a receiver removes a flit from an incom-
ing FIFO, it sends a credit signal back to the sender to signify more FIFO
buffer space is available for future flits.

1.3.6.2 Network Address Translation

An NT forms a gateway to the OCN for clients, such as the TRIPS proces-
sors and IO units, to inject packets. Each NT contains an OCN router similar
to that discussed in the previous section. The main difference is that the
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FIGURE 1.9
Memory tile block diagram highlighting OCN router in detail.



22 Unique Chips and Systems

local interface is connected to an OCN client instead of an L2 cache bank.
Virtual-to-system address translation is performed within processors using
standard TLBs, but TRIPS supports an additional level of translation to
enable reconfiguration of the memory system. An NT translates the system
physical address to a network address using a simple table when the OCN
client transmits a packet header to an NT. This table consists of 16 entries
of eight bits each and is indexed using four bits from the system physical
address. Each table entry contains the X-Y coordinates of the MT to which
the address region is mapped. The table itself is memory mapped and can be
modified on-the-fly by the runtime system. By adjusting the mapping func-
tions within the TLBs and the network interface tiles (NTs), a programmer
can configure the memory system in a variety of ways including as a single
1 MB shared level-2 cache, as two independent 512 KB level-2 caches (one per
processor), as a 1 MB on-chip physical memory (no level-2 cache), or many
combinations in between.

1.4 Distributed Microarchitectural Protocols

To enable concurrent, out-of-order execution on this distributed substrate, we
implemented traditionally centralized microarchitectural functions, includ-
ing fetch, execution, flush, and commit, with distributed protocols running
across the control and data micronets.

1.4.1 Block Fetch Protocol

The fetch protocol retrieves a block of 128 TRIPS instructions from the
ITs and distributes them into the array of ETs and RTs. Figure 1.10 shows
the details of the GT’s block fetch pipeline which takes a total of 13 cycles,
including three cycles for prediction, 1 cycle for TLB and instruction cache
tag access, and 1 cycle for hit/miss detection. On a cache hit, the GT sends
eight pipelined indices out on the global dispatch network to the ITs. Predic-
tion and instruction cache tag lookup for the next block is overlapped with
the fetch commands of the current block. Running at peak, the machine can
issue fetch commands every cycle with no bubbles, beginning a new block
fetch every eight cycles.

When an IT receives a block dispatch command from the GT, it accesses
its I-cache bank based on the index in the GDN message. In each of the next
eight cycles the IT sends four instructions on its outgoing GDN paths to its
associated row of ETs and RTs. These instructions are written into the read
and write queues of the RTs and the reservation stations in the ETs when they
arrive at their respective tiles, and are available to execute as soon as they
arrive. Because the fetch commands and fetched instructions are delivered
in a pipelined fashion across the ITs, ETs, and RTs, the furthest ET receives
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its first instruction packet 10 cycles and its last packet 17 cycles after the GT
issues the first fetch command. Although the latency appears high, the pipe-
lining enables a high-fetch bandwidth of 16 instructions per cycle in steady
state, 1 instruction per ET per cycle.

On an I-cache miss, the GT instigates a distributed I-cache refill, using
the global refill network to transmit the refill block’s physical address to all
of the ITs. Each IT processes the misses for its own chunk independently,
and can simultaneously support one outstanding miss for each executing
thread (up to four). When the two 64-byte cache lines for an IT’s 128-byte
block chunk return, and when the IT’s south neighbor has finished its fill,
the IT signals refill completion northward on the GSN. When the GT receives
the refill completion signal from the top IT, it may issue a dispatch for that
block to all ITs.

The distributed fetch protocol provides significantly higher fetch band-
width compared to conventional processors. Directing the fetch from the GT
obviates the need for reservation station management at every tile. Because
a new set of reservation stations is required for executing every block, man-
aging the free list of reservation stations in a distributed fashion and keep-
ing them synchronized would require additional hardware mechanisms.
Instead, by managing the free list in the GT and propagating the allocated
identifier along with every fetch, the TRIPS implementation reduces the
complexity in other tiles.

The implementation tightly couples the predictor operations and the fetch
protocol operations in one single pipeline. In steady state, the three cycles
for predict and three cycles for update can fully overlap with the eight cycles
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of fetch required for one block. Thus there are no bubbles in the fetch pipe-
line, enabling a new block fetch every eight cycles. This offers a peak fetch
rate of 16 instructions per cycle (128 instruction/8 cycles) matching the peak
execution rate of the processor. Occasionally, the predictor update operation
may delay the predict operation causing bubbles in the fetch pipeline. For
example, in Figure 1.10, an update operation starting in cycle 5 could delay
the predict operation for the second block until cycle 8. The fetch of block B
will not start until cycle 14, introducing a bubble in the pipeline.

An alternate design could have completely decoupled the prediction pipe-
line from the fetch pipeline using a fetch target buffer [22]. That design offers
two advantages. First, multiple refills can be initiated well ahead of a fetch,
offering prefetching benefits. Second, stalls in the predict pipeline are less
likely to affect the fetch pipeline. Implementing this design would require
additional block management in the fetch unit. Our analysis indicated that
the extra complexity of the fetch target buffer was not worth the potential
benefits in the current implementation.

1.4.2 Distributed Execution

Dataflow execution of a block begins by the injection of block inputs from
the RTs. An RT may begin to process an arriving read instruction even if the
entire block has not yet been fetched. Each RT first searches the write queues
of all older in-flight blocks. If no matching, in-flight write to that register
is found, the RT simply reads that register from the architectural register
file and forwards it to the consumers in the block via the OPN. If a match-
ing write is found, the RT takes one of two actions: if the write instruction
has received its value, the RT forwards that value to the read instruction’s
consumers. If the write instruction is still awaiting its value, the RT buffers
the read instruction, which will be awakened by a tag broadcast when the
pertinent write’s value arrives.

Arriving OPN operands wake up instructions within the ET, which
selects and executes enabled instructions. The ET uses the target fields of
the selected instruction to determine where to send the resulting operand.
Arithmetic operands traverse the OPN to other ETs, whereas load and store
instructions’ addresses and data are sent on the OPN to the DTs. Branch
instructions deliver their next block addresses to the GT via the OPN.

An issuing instruction may target its own ET or a remote ET. If it targets
its local ET, the dependent instruction can be awakened and executed in the
next cycle using a local bypass path to permit back-to-back issue of depen-
dent instructions. If the target is a remote ET, a control packet is formed the
cycle before the operation will complete execution, and sent to wake up the
dependent instruction early. The OPN is tightly integrated with the wakeup
and select logic. When a control packet arrives from the OPN, the targeted
instruction is accessed and may be speculatively awakened. The instruction
may begin execution in the following cycle as the OPN router injects the
arriving operand directly into the ALU. Thus, for each OPN hop between
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dependent instructions, there will be one extra cycle before the consuming
instruction executes.

Figure 1.11a shows an example of how a code sequence is executed on the
RTs, ETs, and DTs. Block execution begins when the read instruction R[0] is
issued to RT0, triggering delivery of R4 via the OPN to the left operand of two
instructions, teq (N[1]) and muli (N[2]). When the test instruction receives
the register value and the immediate “0” value from the movi instruction,
it fires and produces a predicate that is routed to the predicate field of N[2].
Because N[2] is predicated on false, if the routed operand has a value of 0, the
muli will fire, multiply the arriving left operand by four, and send the result
to the address field of the lw (load word). If the load fires, it sends a request
to the pertinent DT, which responds by routing the loaded data to N[33]. The
DT uses the load/store IDs (0 for the load and 1 for the store, in this example)
to ensure that they execute in the proper program order if they share the
same address. The result of the load is fanned out by the mov instruction to
the address and data fields of the store.

If the predicate’s value is 1, N[2] will not inject a result into the OPN, thus
suppressing execution of the dependent load. Instead, the null instruction
fires, targeting the address and data fields of the sw (store word). Note that
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although two instructions are targeting each operand of the store, only one
will fire, due to the predicate. When the store is sent to the pertinent DT and
the block-ending call instruction is routed to the GT, the block has produced
all of its outputs and is ready to commit. Note that if the store is nullified, it
does not affect memory, but simply signals the DT that the store has issued.
Nullified register writes and stores are used to ensure that the block always
produces the same number of outputs for completion detection.

1.4.3 Block/Pipeline Flush Protocol

Because TRIPS executes blocks speculatively, a branch misprediction or a
load/store ordering violation could cause periodic pipeline flushes. These
flushes are implemented using a distributed protocol. The GT is first notified
when a misspeculation occurs, either by detecting a branch misprediction
itself or via a GSN message from a DT indicating a memory-ordering viola-
tion. The GT then initiates a flush wave on the GCN which propagates to all
of the ETs, DTs, and RTs. The GCN includes a block identifier mask indicat-
ing which block or blocks must be flushed. The processor must support mul-
tiblock flushing because all speculative blocks after the one that caused the
misspeculation must also be flushed. This wave propagates at one hop per
cycle across the array. As soon as it issues the flush command on the GCN,
the GT may issue a new dispatch command to start a new block. Because
both the GCN and GDN have predictable latencies, the instruction fetch/
dispatch command can never catch up with or pass the flush command.

1.4.4 Block Commit Protocol

Block commit is the most complex of the microarchitectural protocols in
TRIPS, because it involves the three phases illustrated in Figure 1.11b: block
completion, block commit, and commit acknowledgment. In phase one, a
block is complete when it has produced all of its outputs, the number of
which is determined at compile-time and consists of up to 32 register writes,
up to 32 stores, and exactly one branch. After the RTs and DTs receive all of
the register writes or stores for a given block, they inform the GT using the
global status network. When an RT detects that all block writes have arrived,
it informs its west neighbor. The RT completion message is daisy-chained
westward across the RTs, until it reaches the GT indicating that all of the
register writes for that block have been received.

Detecting store completion is more difficult because each DT cannot know
a priori how many stores will be sent to it. To enable the DTs to detect store
completion, we implemented a DT-specific network called the data status
network. Each block header contains a 32-bit store mask, which indicates
the memory operations (encoded as an LSID bit mask) in the block that are
stores. This store mask is sent to all DTs upon block dispatch. When an exe-
cuted store arrives at a DT, its 5-bit LSID and block ID are sent to the other
DTs on the DSN. Each DT then marks that store as received even though it
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does not know the store’s address or data. Thus, a load at a DT learns when
all previous stores have been received across all of the DTs. The nearest DT
notifies the GT when all of the expected stores of a block have arrived. When
the GT receives the GSN signal from the closest RT and DT, and has received
one branch for the block from the OPN, the block is complete. Speculative
execution may still be occurring within the block, down paths that will even-
tually be nullified by predicates, but such execution will not affect any block
outputs.

During the second phase (block commit), the GT broadcasts a commit
command on the global control network and updates the block predictor.
The commit command informs all RTs and DTs that they should commit
their register writes and stores to architectural state. To prevent this distrib-
uted commit from becoming a bottleneck, we designed the logic to support
pipelined commit commands. The GT can legally send a commit command
on the GCN for a block when a commit command has been sent for all older
in-flight blocks, even if the commit commands for the older blocks are still
in flight. The pipelined commits are safe because each tile is guaranteed to
receive and process them in order. The commit command on the GCN also
flushes any speculative in-flight state in the ETs and DTs for that block.

The third phase acknowledges the completion of commit. When an RT or
DT has finished committing its architectural state for a given block and has
received a commit completion signal from its neighbor on the GSN (similar
to block completion detection), it signals commit completion on the GSN.
When the GT has received commit completion signals from both the RTs and
DTs, it knows that the block is safe to deallocate, because all of the block’s
outputs have been written to architectural state. When the oldest block has
acknowledged commit, the GT initiates a block fetch and dispatch sequence
for that block slot.

1.5 Physical Design/Performance Overheads

The physical design and implementation of the TRIPS chip were driven by
the principles of partitioning and replication. The chip floorplan directly cor-
responds to the logical hierarchy of TRIPS tiles connected only by point-to-
point, nearest-neighbor networks. The only exceptions to nearest-neighbor
communication are the global reset and interrupt signals, which are latency
tolerant and pipelined in multiple stages across the chip.

1.5.1 Chip Specifications

The TRIPS chip is implemented in the IBM CU-11 ASIC process, which has
a drawn feature size of 130 nm and seven layers of metal. The chip itself
includes more than 170 million transistors in a chip area of 18.30 mm by
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18.37 mm, which is placed in a 47.5 mm square ball-grid array package.
Figure 1.12 shows an annotated floorplan diagram of the TRIPS chip taken
directly from the design database, as well as a coarse area breakdown by
function. The diagram shows the boundaries of the TRIPS tiles, as well as
the placement of register and SRAM arrays within each tile. We did not label
the network tiles that surround the OCN because they are so small. Also, for
ease of viewing, we have omitted the individual logic cells from this plot. On
the right of the diagram is a summary of the fraction of the chip occupied by
the major microarchitectural structures.

In addition to the core tiles, TRIPS also includes six controllers that are
attached to the rest of the system via the on-chip network (OCN). The two
133/266 MHz DDR SDRAM controllers (SDC) each connect to an individual
1 GB SDRAM DIMM. The chip-to-chip controller extends the on-chip net-
work to a four-port mesh router that gluelessly connects to other TRIPS
chips. These links nominally run at one-half the core processor clock and
up to 266 MHz. The two direct memory access (DMA) controllers can be pro-
grammed to transfer data to and from any two regions of the physical address
space including addresses mapped to other TRIPS processors. Finally, the
external bus controller (EBC) is the interface to a board-level PowerPC con-
trol processor. To reduce design complexity, we chose to offload much of the
operating system and runtime control to this PowerPC processor.

TRIPS relies on the trends toward hierarchical design styles with repli-
cated components, but differs from SOCs and CMPs in that the individual
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tiles are designed to have diverse functions but to cooperate to implement a
more powerful and scalable uniprocessor. The entire TRIPS design is com-
posed of only 11 different types of tiles, greatly simplifying both design and
verification. Table 1.3 shows additional details of the design of each TRIPS
tile. The Cell Count column shows the number of placeable instances in each
tile, which provides a relative estimate of the complexity of the tile. Array Bits 
indicates the total number of bits found in dense register and SRAM arrays
on a per-tile basis, and Size shows the area of each type of tile. Tile Count 
shows the total number of tile copies across the entire chip, and % Chip Area 
indicates the fraction of the total chip area occupied by that type of tile.

1.5.2 Chip Verification

The partitioned nature of the TRIPS chip facilitated a highly hierarchical
verification strategy. Each of the 11 tile design teams created a sophisticated
self-checking testbench for their tile that employed both directed and ran-
dom tests to exercise as many of the corner cases as possible. The three addi-
tional verification models above the tile level were the component level (one
each for processor and OCN) and the chip level. The processor verification
model executes real TRIPS programs which included simple hand-generated
programs, simple compiled programs, automatically generated integer and
floating-point instruction test programs, and randomly generated programs.
The random program generator obeyed TRIPS block constraints, and also
varying instruction distributions, dependence chain length distributions,
branch behavior, and predicate chain lengths. The OCN testbench was driven

TABLE 1.3

TRIPS Tile Specifications

Tile Function
Cell

Count
Array
Bits

Size
(mm2)

Tile
Count

% Chip 
Area

GT Processor control 52K 93K 3.1 2 1.8
RT Register file 26K 14K 1.2 8 2.9
IT Instruction cache 5K 135K 1.0 10 2.9
DT L1 Data cache 119K 89K 8.8 8 21.0
ET Instruction execution 84K 13K 2.9 32 28.0
MT L2 Data cache 60K 542K 6.5 16 30.7
NT OCN NW interface and routing 23K — 1.0 24 7.1
SDC DDR SDRAM controller 64K 6K 5.8 2 3.4
DMA DMA controller 30K 4K 1.3 2 0.8
EBC External bus controller 29K — 1.0 1 0.3
C2C Chip-to-chip communication

controller
48K — 2.2 1 0.7

Chip Total 5.8M 11.5M 334 106 100.0
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by regular and random access patterns, typically at rates that far exceed
what the OCN would experience in situ. For the full-chip Verilog verification
simulations, which only simulate 25 processor cycles per second, we focused
primarily on diagnostic tests that read and write all on-chip states from the
external bus controller, and tiny single- and multithreaded programs. This
hierarchical approach enabled us to eradicate most of the bugs at the tile
level; we discovered very few bugs at the component or full-chip level. Those
we did discover typically stemmed from incorrect implementation of the
micronet interfaces, which were relatively easy to track down and fix.

1.5.3 TRIPS System

A TRIPS system is a multiprocessor constructed from multiple TRIPS chips.
Each TRIPS chip is mounted on a daughtercard with two DRAM DIMMs
of 1 GB each and voltage regulator circuits. Four daughtercards are con-
nected to a motherboard via high-density connectors. The four TRIPS chips
can communicate directly via the chip-to-chip network via the traces on the
motherboard. The motherboard also includes a PowerPC 440GP embed-
ded processor chip, a Xilinx FPGA chip, a flash EEPROM chip, and voltage
regulators.

The PowerPC chip runs an embedded Linux operating system and serves
as both an OS offload processor for the TRIPS prototype chip and as a con-
duit between the TRIPS chips on a motherboard and a monitor running on
a host computer. The monitor connects to the PowerPC via a 100 Mbit ether-
net and can access all of the memory and the registers on each of the TRIPS
chips for the purposes of program execution and debugging. The FPGA chip
connects the C2C ports of two TRIPS chips to connectors at the edge of the
board to enable high-speed I/O devices to be connected to the motherboard.
Multiple TRIPS boards can be assembled in a single system by connecting
the C2C links of adjacent motherboards to each other. The maximum-sized
TRIPS system includes 8 boards, 32 TRIPS chips, 64 TRIPS processors, and 64
GB of DRAM. Assuming a processor clock rate of 500 MHz, this system has
a peak performance of 545 GFlops.

1.5.4 Area Overheads of Distributed Design

The principal area overheads of the distributed design stem from the wires
and logic needed to implement the tile-interconnection control and data net-
works listed in Table 1.4. The most expensive in terms of area are the two
data networks: the operand network (OPN) and the on-chip network. In
addition to the 141 physical wires per link, the OPN includes routers and
buffering at 25 of the 30 processor tiles. The four-port routers and the eight
links per tile consume significant chip area and account for approximately
12% of the total processor area. Strictly speaking, this area is not entirely
overhead as it takes the place of the bypass network, which would be much
more expensive than the routed OPN for a 16-issue conventional processor.
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The OCN carries a larger area burden with buffering for four virtual chan-
nels at each of the four-ported routers. It consumes a total of 14% of the total
chip area, which is larger than a bus architecture for a smaller scale memory
system, but necessary for the TRIPS NUCA cache. In general, the processor
control networks themselves do not have a large area impact beyond the cost
of the wires interconnecting the tiles. However, we found that full-chip rout-
ing was easily accomplished, even with the large number of wires.

Another large source of area overhead due to partitioning comes from the
oversized load/store queues in the DT, accounting for 13% of the processor
core area. The LSQ cell count and area are skewed somewhat by the LSQ
CAM arrays which had to be implemented from discrete latches, because no
suitable dense array structure was available in the ASIC design library.

Across the entire chip, the area overhead associated with the distributed
design stem largely from the on-chip data networks. The control protocol
overheads are insignificant, with the exception of the load/store queue.

1.5.5 Timing Overheads

The most difficult timing paths we found during logic-level timing opti-
mization were: (1) the local bypass paths from the multicycle floating-
point instructions within the ET, (2) control paths for the cache access state
machine in the MT, and (3) remote bypass paths across the operand net-
work within the processor core. The operand network paths are the most
problematic, because increasing the latency in cycles would have a signifi-
cant effect on instruction throughput. In retrospect, we underestimated the
latency required for the multiple levels of muxing required to implement
the operand router, but believe that a customized design could reduce rout-
ing latency. These results indicate a need for further research in ultra-low-
latency micronetwork routers.

TABLE 1.4

TRIPS Control and Data Networks

Network Use Bits

Global Dispatch (GDN) I-fetch 205

Global Status (GSN) Block status 6
Global Control (GCN) Commit/flush 13
Global Refill (GRN) I-cache refill 36
Data Status (DSN) Store completion 72
External Store (ESN) L1 misses 10

Operand Network (OPN) Operand routing 141 ( 8)
On-chip Network (OCN) Memory traffic 138 ( 8)
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1.5.6 Performance Overheads

We examine the performance overheads of the distributed protocols via a
simulation-based study using a cycle-level simulator, called tsim-proc, that
models the hardware at a much more detailed level than higher-level simula-
tors such as SimpleScalar. A performance validation effort showed that per-
formance results from tsim-proc were on average within 4% of those obtained
from the RTL-level simulator on our test suite and within 10% on randomly
generated test programs. We use the methodology of Fields et al. [9] to attri-
bute percentages of the critical path of the program to different microarchi-
tectural activities and partitioning overheads.

The benchmark suite in this study includes a set of microbenchmarks
(dct8x8, sha, matrix, vadd), a set of kernels from a signal processing library
(cfar, conv, ct, genalg, pm, qr, svd), a subset of the EEMBC suite (a2time01,
bezier02, basefp01, rspeed01, tblook01), and a handful of SPEC benchmarks
(mcf, parser, bzip2, twolf, and mgrid). In general, these are small programs
or program fragments (no more than a few tens of millions of instructions)
because we are limited by the speed of tsim-proc. The SPEC benchmarks
use the reference input set, and we employ subsets of the program as rec-
ommended in [24]. These benchmarks reflect what can be run through our
simulation environment, rather than benchmarks selected to leave an unreal-
istically rosy impression of performance. The TRIPS compiler toolchain takes
C or FORTRAN77 code and produces complete TRIPS binaries that will run
on the hardware. Although the TRIPS compiler is able to compile major bench-
mark suites correctly (i.e., EEMBC and SPEC2000) [25], there are many TRIPS-
specific optimizations that are pending completion. Until then, performance
of compiled code will be lacking because TRIPS blocks will be too small.

Although we report the results of the compiled code, we also employed
some hand optimization on the microbenchmarks, kernels, and EEMBC pro-
grams. We optimized compiler-generated TRIPS high-level assembly code
by hand, feeding the result back into the compiler to assign instructions
to ALUs and produce an optimized binary. Where possible, we report the
results of the TRIPS compiler and the hand-optimized code. We have not
optimized any of the SPEC programs by hand and are working to improve
compiler code quality to approach that of hand-optimized.

1.5.6.1 Distributed Protocol Overheads

To measure the contributions of the different microarchitectural protocols,
we computed the critical path of the program and attributed each cycle to
one of a number of categories. These categories include instruction distribu-
tion delays, operand network latency (including both hops and contention),
execution overhead of instructions to fan operands out to multiple target
instructions, ALU contention, time spent waiting for the global control tile
(GT) to be notified that all of the block outputs (branches, registers, stores)
have been produced, and the latency for the block commit protocol to com-
plete. Table 1.5 shows the overheads as a percentage of the critical path of the
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program, and the column labeled “Other” includes components of the criti-
cal path also found in conventional monolithic cores including ALU execu-
tion time, and instruction and data cache misses.

The largest overhead contributor to the critical path is the operand rout-
ing, with hop latencies accounting for up to 34% and contention accounting
for up to 25%. These overheads are a necessary evil for architectures with
distributed execution units, although they can be mitigated through better
scheduling to minimize the distance between producers and consumers
along the critical path and by increasing the bandwidth of the operand net-
work. For some of the benchmarks, the overheads of replicating and fanning
out operand values can be as much as 12%. Most of the rest of the distributed
protocol overheads are small, typically summing to less than 10% of the criti-
cal path. These results suggest that the overheads of the control networks are
largely overlapped with useful instruction execution, but that the data net-
works could benefit from further optimization.

1.5.6.2 Total Performance

To understand the impact of the distributed protocols on overall perfor-
mance, we compared execution time on tsim-proc to that of a more conven-
tional, albeit clustered, uniprocessor. Our baseline comparison point was a
467 MHz Alpha 21264 processor, with all programs compiled using the native
Gem compiler with the “-O4 -arch ev6” flags set. We chose the Alpha because
it has an aggressive ILP core that still supports low FO4 clock periods, an
ISA that lends itself to efficient execution, and a truly amazing compiler that
generates extraordinarily high-quality code. We use Sim-Alpha, a simulator
validated against the Alpha hardware to take the baseline measurements
so that we could normalize the level-2 cache and memory system and allow
better comparison of the processor and primary caches between TRIPS and
Alpha.

Table 1.5 shows the performance of the TRIPS processor compared to the
Alpha. Because our focus is on the disparity between the processor cores, we
simulated a perfect level-2 cache with both processors, to eliminate differ-
ences in performance due to the secondary memory system. The first column
shows the speedup of TRIPS compiled code (TCC) over the Alpha. We com-
puted speedup by comparing the number of cycles needed to run each pro-
gram. The second column shows the speedup of the hand-generated TRIPS
code over that of Alpha. Columns 3–5 show the instruction throughput
(instructions per clock or IPC) of the three configurations. The ratios of these
IPCs do not correlate directly to performance, because the instruction sets
differ, but they give an approximate depiction of how much concurrency the
machine is exploiting. Our results show that on the hand-optimized codes,
TRIPS executes between 0.6 and 1.8 times as many instructions as Alpha,
largely due to fanout instructions and single-to-double conversions required
by TRIPS for codes that use 32-bit floats. The code bloat is currently larger
for compiled code, up to four times as many instructions in the worst case.
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Although these results are far from the best we expect to obtain, they do
provide insight into the capabilities of TRIPS. The results show that for the
hand-optimized programs, the TRIPS distributed microarchitecture is able
to sustain reasonable instruction-level concurrency, ranging from 1.1 to 6.5.
The speedups over the Alpha core range from 0.6 to just over 8. sha sees a
slowdown on TRIPS because it is an almost entirely serial benchmark. What
little concurrency there is is already mined out by the Alpha core, so the
TRIPS processor sees a slight degradation because of the block overheads,
such as interblock register forwarding. Convolution (conv) and vadd have
speedups close to two because the TRIPS core has exactly double the L1
memory bandwidth as Alpha (four ports as opposed to two), resulting in an
upper-bound speedup of two. Compiled TRIPS code does not fare as well,
but does exceed the performance of Alpha on about half of the benchmarks.
The maturation time of a compiler for a new processor is not short, but we
anticipate significant improvements as our hyperblock generation and opti-
mization algorithms come online.

We conclude from this analysis that the TRIPS microarchitecture can
sustain good instruction-level concurrency—despite all of the distributed
overheads—given kernels with sufficient concurrency and aggressive hand-
coding. Whether the core can exploit ILP on full benchmarks, or whether the
compiler can generate sufficiently optimized code, remain open questions
that are subjects of our current work.

1.6 Related Work

Much of the TRIPS architecture is inspired by important prior work across
many computer architecture domains, including tiled architectures, data-
flow architectures, superscalar processors, and VLIW architectures.

1.6.1 Tiled Architectures

With transistor counts approaching one billion, tiled architectures are emerg-
ing as an approach to manage design complexity. The RAW architecture [30]
pioneered research into many of the issues facing tiled architectures, includ-
ing scalar operand networks, a subset of the class of micronetworks designed
for operand transport [29]. Another more recent tiled architecture that, as
does RAW, uses homogeneous tiles is Smart Memories [19]. Emerging fine-
grained CMP architectures, such as Sun’s Niagara [15] or IBM’s Cell [21], can
also be viewed as tiled architectures. All of these architectures implement
one or more complete processors per tile. In general, these other tiled archi-
tectures are interconnected at the memory interfaces, although RAW allows
register-based interprocessor communication. TRIPS differs in three ways:
(1) tiles are heterogeneous, (2) different types of tiles are composed to create
a uniprocessor, and (3) TRIPS uses distributed control network protocols to
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implement functions that would otherwise be centralized in a conventional
architecture.

1.6.2 Dataflow Architectures

The work most similar to TRIPS are the two recent dataflow-like architectures
that support imperative programming languages such as C. These architec-
tures, developed concurrently with TRIPS, are WaveScalar [28] and ASH [2].
WaveScalar breaks programs into blocks (or “waves”) similar to TRIPS, but
differs in the execution model because all control paths are mapped and
executed, instead of the one speculated control path of TRIPS. Other major
differences include dynamic, rather than static placement of instructions, no
load speculation, and more hierarchy in the networks, because WaveScalar
provides many more execution units than TRIPS. ASH uses a similar predi-
cation model and dataflow concepts, but targets application-specific hard-
ware for small programs, as opposed to compiling large programs into a
sequence of configurations on a programmable substrate such as TRIPS. The
behavior inside a single TRIPS block builds on the rich history of dataflow
architectures including work by Dennis [8], Arvind [1], and hybrid dataflow
architectures such as the work of Culler [7] and Iannucci [12].

1.6.3 Superscalar Architectures

The TRIPS microarchitecture incorporates many of the high-ILP techniques
developed for aggressive superscalar architectures, such as two-level branch
prediction and dependence prediction. The TRIPS block atomic execution
model is descended from the Block-Structured ISA proposed by Patt et al. to
increase the fetch rate for wide issue machines [11]. Other current research
efforts also aim to exploit large-window parallelism by means of checkpoint-
ing and speculation [6,27].

1.6.4 VLIW Architectures

TRIPS shares some similarities to VLIW architectures in that the TRIPS
compiler decides where (but not when) instructions execute. Although the
TRIPS compiler does not have to decide instruction timing—unlike VLIW
architectures—the VLIW compilation algorithms for forming large sched-
uling regions, such as predicated hyperblocks [18], are also effective tech-
niques for creating large TRIPS blocks.

1.7 Conclusions

When the first TRIPS paper appeared in 2001 [20], the high-level results
seemed promising, but it was unclear (even to us) whether this technology
was implementable in practice, or whether it would deliver the performance
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indicated by the high-level study. The microarchitecture described in this
chapter is an existence proof that the design challenges unanswered in 2001
were solvable; the distributed protocols we designed to implement the basic
microarchitecture functions of instruction fetch, operand delivery, and com-
mit are feasible and do not incur prohibitive overheads. The distributed con-
trol overheads are largely overlapped with instruction execution, the logic
required to implement the protocols is not significant, and the pipelined pro-
tocols are not on critical timing paths.

The data networks, however, carry a larger area and performance burden
because they are on the critical paths between data-dependent instructions.
In the prototype, we are working to reduce these overheads through bet-
ter scheduling to reduce hop-counts; architectural extensions to TRIPS may
include more operand network bandwidth. The original work assumed an
ideal, centralized load/store queue, assuming that it could be partitioned
in the final design. Because partitioning turned out to be unworkable, we
elected to put multiple full-sized copies in every DT, which combined with
an area-hungry standard-cell CAM implementation, caused our LSQs to
occupy 40% of the DTs. Solving the problem of area-efficiently partitioning
LSQs has been a focus of our research for the past year.

These distributed protocols have enabled us to construct a 16-wide, 1024-
instruction window, out-of-order processor, which works quite well on a
small set of regular, hand-optimized kernels. We have not yet demonstrated
that code can be compiled efficiently for this architecture, or that the pro-
cessor will be competitive even with high-quality code on real applications.
Despite having completed the prototype, much work remains in the areas of
performance tuning and compilation before we will understand where the
microarchitectural, ISA, and compiler bottlenecks are in the design. Once
systems are up and running in the fall of 2006, we will commence a detailed
evaluation of the capabilities of the TRIPS design to understand the strengths
and weaknesses of the system and the technology.

Looking forward, partitioned processors composed of interconnected tiles
provide the opportunity to dynamically adjust their granularity. For exam-
ple, one could subdivide the tiles of a processor to create multiple smaller
processors, should the balance between instruction-level and thread-level
parallelism change. We expect that such substrates of heterogeneous or
homogeneous tiles will provide flexible computing platforms that can be tai-
lored at runtime to match the concurrency needs of different applications.
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2.1 Introduction

2.1.1 Background

Data security is a major concern in personal computing (PC) systems due to
the ubiquitous connectivity of PCs to the Internet and the many well-publicized
cases of viruses, data theft, and so forth. The increasing use of wireless con-
nectivity further increases security risks. As designers (Centaur Technology
Inc.) of the VIA Technologies Inc. (VIA) family of Intel -compatible (x86) pro-
cessors, we decided in 2001 to integrate the fundamental building blocks of
data security into all of our future x86 processors. By integrating these func-
tions, we could exploit the inherently high performance of the processor, as
well as ensure that add-on hardware adapters, additional chips, and the like
were not needed to provide data security: fast data security features would
always be available to software. Because no other x86 processor manufac-
turer (Intel and AMD®) provided these security functions in their processors,
we felt that we should set the example by providing such functionality in all
of our processors, for free. Our challenge was thus twofold: to design secure
and high-performance security features, and to do it with little development
effort or die-size impact. This chapter summarizes the security features we
created, and how we did it.

The integrated hardware functions we provide are fundamental build-
ing blocks of good data security: hardware random number generation,
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symmetric-key encryption, public-key encryption performance assistance
(modular multiplication), and secure hash generation. Our hardware
implementation provides significant performance improvements over soft-
ware-only implementation, as well as increasing the integrity of the secu-
rity functions. Unique hardware features allow multiple applications to use
these security functions directly, without any intervening operating system
software. In this chapter, the hardware random number generator and the
symmetric key encryption are covered in more detail than the other two
functions. This reflects the design complexity as well as the importance from
a security aspect.

The functions described here started to ship in VIA processors in 2003. The
implementation described is the VIA C7 processor, a low-cost, low-power,
x86 processor manufactured in 90-nm silicon-on-insulator (SOI) technology,
and shipping since mid-2005. Note that several patents cover the design and
implementation described here. More information about the VIA security
initiative can be found at [VIA06].

The primary Centaur Technology personnel that developed these security
features were the authors and Tim Elliott, Jim Lundberg, and Brian Snider.
Thanks also go to Phil Zimmermann for his useful suggestions during the
formative stages of this project.

2.1.2 Key Design Precepts

The following basic objectives or precepts guided our implementation of
security functions within the processor.

Provide very robust security. Whatever features we provide must meet
very high security standards. Where applicable, we implemented
the U.S. government standard because these standards are subject to
extensive public review and analysis. (And, of course, they are used a
lot.) An example of the impact of this objective is the extensive design
and validation effort made to ensure that our random number gener-
ator produced cryptographically good random bits. Another example
is the encryption unit, which was designed to be secure against tim-
ing and power attacks. In addition, the basic objective of requiring no
operating system software (discussed subsequently) was primarily
driven by concerns for the integrity of the security features.

Provide significant performance improvements over software implementation.
Our goal here was to be faster by orders of magnitude, not merely
by a few percentage points. This level of performance required
major hardware components to be added to the chip; a few addi-
tional gates in existing components could not provide the desired
performance.

Require no software outside of the application. The reason for this
unobvious requirement is part philosophical and part practical.
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The philosophical reason is that eliminating OS software and
device drivers from the critical security paths improves security.
The OS and its drivers are subject to viruses and other corrupting
agents; hardware is not. Also, an application doesn’t know what
is really being done in OS software: Is there a back door? Is the
data being recorded? Can the data leak out somehow? Thus, we
felt that highly secure applications would prefer a direct interface
to the hardware, assuming, of course, that the hardware interface
was fast, secure, and easy to use. The practical reason is the dif-
ficulty in getting OS support from Microsoft for new instructions
such as these security enhancements. (It turns out, however, that
the open software community aggressively supported our security
functions in the form of kernel support as well as library support.)

The implication of the requirement is that applications must be
able to use the hardware security functions using nonprivileged x86
instructions. Thus, we had to add new x86 instructions to the exist-
ing instruction set. A further implication is that the processor must
provide multitasking support for these features; we assumed no OS
support in saving new instruction states, and the like. Thus, in addi-
tion to the security hardware itself, the instruction set design and
associated microcode are important components.

Provide for free, on all of our processors. Because there was no quantified
market opportunity for hardware security, any die cost increase
associated with the functions needed to be insignificant; no one
would pay extra for these features, nor did we want anyone to pay
extra. The impact on other development activities also needed to be
insignificant because we are a very small development team and
have little “extra” manpower to apply to such projects.

The die cost impact of the security features was minimized by
our normal custom design approach and by the fact that there is
usually some unused space on a custom design such as ours. The
development cost impact was reduced by extensive use of existing
design elements and by volunteer work: that is, using designer’s
time that wouldn’t normally be spent on Centaur activities.

2.1.3 Security Features Provided

2.1.3.1 Hardware Random Number Generator (RNG)

Random numbers are used in many computer applications such as simula-
tion and statistical analysis. Random numbers, however, are essential in all
forms of data security including generating keys for symmetric-key and pub-
lic-key encryption, digital signatures, secure data hashes, seeds for secure
passwords, challenges in authentication protocols, and so forth. Ultimately,
using modern security algorithms, security is only as good as the random-
ness of the underlying “random” numbers. Unfortunately, random numbers
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good enough for security applications are very difficult to generate using
deterministic mechanisms such as computer programs. Accordingly, there is
a large body of research, analysis, and literature (which we do not cover here)
on the basic topics of, “What is randomness, how can we generate it, and how
can we test or verify it?”

There are three classes of random number generators based on the char-
acteristics of the values they produce. Truly random numbers must (1) have
unbiased statistical properties, (2) be unpredictable, and (3) be unrepeatable
[Sch96]. The last criterion makes it technically impossible to generate truly
random numbers using only software on a computer. Pseudorandom numbers
(numbers that statistically appear to be random, but don’t meet the second
and third criteria), however, can be generated using software algorithms.
The commonly available generators—such as those available in high-level
language libraries—can have good statistical properties, but are very pre-
dictable as well as repeatable. Cryptographically secure pseudorandom numbers
are, for practical purposes, unpredictable, a critical requirement for ran-
dom numbers used in security applications. The unpredictability is usually
obtained by combining data obtained from real-world actions such as key-
stroke timing with some other pseudorandom generator. The real-world data
keeps the result from being predictable. These generators are usually fairly
slow, however. An example of a cryptographically secure pseudorandom
generator—along with some good discussion of basic concepts—is found in
[Kel00]. These types of generators are also called deterministic random bit
generators (DRBG) in National Institute of Standards and Technology (NIST)
literature. [Bar06] contains the NIST recommendations for DRBGs.

Even cryptographically secure pseudorandom number generation algo-
rithms, however, do not generate truly random numbers because they are
repeatable. Thus, only hardware mechanisms can generate truly random
numbers. Although a few add-on hardware RNG devices exist for PCs, these
add-ons are slow, very expensive, and generally unavailable. An example
of such a hardware add-on is [Qua06]. The price for the PCI card version is
over $2000 (in 2006). Before our implementation there was no cost-effective
or easy-to-use source for truly random numbers on modern PCs.

Given these factors, we decided to implement a robust hardware-based
RNG with extensive focus on the “quality” (or randomness) of the generated
sequences. Our approach utilized a unique design approach for a hardware
RNG that is small, fast, and scales with improving technology. Part of the
design effort (in fact, the largest part) was extensive mathematical analysis
to characterize the randomness of the generated bits.

2.1.3.2 Advanced Encryption Standard (AES) Encryption Hardware

After a good RNG, the next most important data-security function is
symmetric-key (or block) encryption. This type of encryption can provide
both high security and high performance. It is used for data encryption
where the data is more than a few hundred bytes, or the computational
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capabilities available for encryption are low. AES is the new U.S. government
symmetric-key encryption standard, becoming an official NIST standard in
early 2002 [NI01a]. AES is more secure than the old Data Encryption Standard
(DES), which it replaced. In addition, AES was adopted after an open com-
petition with worldwide participation as opposed to the oft-maligned secret
selection of DES. The winning cipher was Rijndael, invented by Belgian cryp-
tographers [Dae02]. AES has received worldwide acceptance and is rapidly
becoming the dominant block cipher in use.

The AES standard operates on a 128-bit block of data (with key sizes of 128,
192, and 256 bits) to produce a corresponding 128-bit block. This one-to-one
encryption approach, or operating mode, is called Electronic Code Book (ECB).
In practice, however, real-world encryption rarely uses ECB; there are other
more secure operating modes that all have the property of mixing some-
thing with the input or output data such that the same data input block never
produces the same output block. These more secure operating modes are
defined and recommended by another NIST publication [Dwo01].

VIA processors implement the entire AES standard in hardware. The per-
formance improvement of this hardware approach is one to two orders of
magnitude faster than the same operation done in x86 software depend-
ing on cachability. In addition to the basic ECB mode, Centaur processors
directly support in hardware four additional common operating modes. The
modes are cipher block chaining (CBC), cipher feedback (CFB), output feed-
back (OFB), and counter mode (CTR).

2.1.3.3 Secure Hash Algorithm (SHA) Hardware

A secure hash is a short digest, or summary, of a longer message such that
“It is computationally infeasible, (1) to find a message that corresponds to
a given message digest, or (2) to find two different messages that produce
the same message digest.” [NI02]. The intent of the hash is to guarantee a
message’s integrity. If the message is changed somehow, then the hash of the
new message will not match the original hash. This integrity guarantee is
essential to many cryptographic protocols including digital signatures.

The Federal Information Processing Standards (FIPS) standard defines
four variants of the same basic approach, which is to irreversibly mix incom-
ing data blocks in a complex fashion with the accumulating hash. The stan-
dard variants are called SHA-1, SHA-256, SHA-384, and SHA-512 [NI02]. The
variants differ in the size of the data block to be hashed and the size of the
resultant hash. The basic algorithmic approach is the same for all SHA vari-
eties although there are some detailed differences.

VIA processors implement the SHA-1 and SHA-256 algorithms in hardware.
The performance improvement over software is about one order of magnitude.

2.1.3.4 Montgomery Multiplier Hardware

AES is a symmetric-key algorithm. The other basic type of encryption is
public-key encryption. This has significant advantages over symmetric-key
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encryption in that no secret keys need to be distributed. Public-key algorithms
are, however, computationally very expensive: several hundred (or thou-
sands) of times slower than a good symmetric-key algorithm. For that reason,
they are not used for large blocks of data. Public-key encryption is heavily
used, however, for short messages such as distributing secure keys and digi-
tal signatures over the Internet. The dominant public-key algorithm today,
especially for Internet applications, is called RSA (named after its inventors:
Ron Rivest, Adi Shamir, and Leonard Adelman) [Riv78]. RSA is also defined
as a part of the FIPS Digital Signature Standard [NI00].

The fundamental computational element of RSA is modular multiplication:

C Me mod n

where the M, e, and n values are thousands of bits long. This calculation
(done by repeated calculations of M M mod n) is very slow, even on mod-
ern processors. A well-known performance improvement that can speed
up this calculation is the Montgomery Multiply algorithm [Mon85]. In this
approach, all numbers are transformed into a different mathematical field
such that the modular multiplication in that field does not require a division
operation. Using software, this special modular multiplication operation is
slightly slower than a normal multiplication, but significantly faster than
multiplying and doing the modulus operation (division). At the end of all
of the Montgomery multiplies, the result must be transformed back into our
normal number field to yield the true result. The field transformations are
slow, but they only have to be done twice for each RSA calculation.

We have directly implemented the Montgomery Multiply function as a
special hardware multiply instruction. This hardware implementation runs
several times faster than software using the normal x86 multiply instruc-
tions. Unlike AES where doing the entire algorithm in hardware can speed
up performance by orders of magnitude, doing the total RSA algorithm in
hardware would offer no significant performance improvement over just
implementing the Montgomery Multiply function.

2.1.4 x86 Instruction Set

2.1.4.1 Instruction Structure

As described above, our security functions are designed for direct use by
an application. Two x86 primary opcodes provide access to all VIA security
functions. These opcodes are unused and cause invalid opcode exceptions
in other x86 processors (Intel and AMD). On VIA processors, these opcodes
can be switched back to being invalid by the operating system or BIOS using
a machine specific register (MSR). An extension to the standard x86 CPUID
instruction function reports information about the existence of the security
functions. Each primary opcode (called a “block” opcode in x86 terminol-
ogy) provides eight more specific “subopcodes,” which correspond directly
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to major functions such as read random bits and encrypt a block. Table 2.1
lists the currently implemented opcodes and their functions.

Because the instructions are optimized for multiblock processing (see
next section), the instruction operands are mostly pointers to memory loca-
tions. For example, for AES-CBC encryption, the operands are (using stan-
dard x86 notation):

ES:[EAX] pointer to initialization vector
ES:[EDX] pointer to control word
ES:[EBX] pointer to encryption key
ES:[ESI] pointer to plaintext input
ES:[EDI] pointer to ciphertext output
ECX block count

2.1.4.2 Instruction Functions

The x86 instructions do not directly access the security hardware; a layer
of microcode resides between the instruction and the hardware in order to
provide the following important instruction functions.

Optimizing Multiblock Operations. The typical use of the security func-
tions (other than the RNG) is to perform the same operation (such as
encryption) sequentially on many sequential blocks (e.g., encrypt-
ing an entire file). The VIA security instructions handle multiblock
sequences in a manner consistent with other x86 string operations
that use the x86 REP prefix. This prefix effectively directs the pro-
cessor to perform the same instruction operation repetitively for a
given count. Implementing this REP function in microcode provides

•
•
•
•
•
•

TABLE 2.1

New x86 Opcodes for security

Opcode Function

0x0F 0xA7 0xC0 Store available random bytes
0xF3 0x0F 0xA7 0xC0 REP store random bytes
0xF3 0x0F 0xA7 0xC8 REP AES ECB encrypt/decrypt
0xF3 0x0F 0xA7 0xD0 REP AES CBC encrypt/decrypt
0xF3 0x0F 0xA7 0xD8 REP AES CTR encrypt/decrypt
0xF3 0x0F 0xA7 0xE0 REP AES CFB encrypt/decrypt
0xF3 0x0F 0xA7 0xE8 REP AES OFB encrypt/decrypt
0xF3 0x0F 0xA6 0xC0 REP Montgomery Multiply
0xF3 0x0F 0xA6 0xC8 REP SHA-1
0xF3 0x0F 0xA6 0xD0 REP SHA-256
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a significant performance advantage over having the program issue
a non-REP version multiple times in a loop. Microcode can overlap
loads, stores, addressing updates, and string-completion branches
with the actual hardware operation. Microcode can also interrupt
the REP operation while ensuring that the original REP instruc-
tion can be restarted and continue properly after the interrupt (this
requirement is part of the standard x86 architecture).

Transparent AES Multitasking. All functions other than AES encryption
and decryption use no additional state other than that in memory
and the standard x86 registers. Thus, no unique operating system
support is required to share the security functions among multiple
software tasks. As described subsequently in more detail in the AES
details section, AES is different. Optimal performance requires a
large amount of “hidden” state (the expanded AES key) not present
in normal x86 architecture. Such a state would normally require
the operating system to save and reload the state across context
switches. Instead, the AES microcode is able to re-create this hidden
state automatically when needed after a software context switch.

Further details of the VIA x86 security instructions are found in [VIA05].

2.1.5 Performance Considerations

Because increased performance was one of the major objectives of our
hardware implementation approach, we describe performance in the more
detailed sections of this chapter. For AES, SHA, and Montgomery Multi-
ply, we present two views of performance. The “datasheet number” view is
that typically used in the processor industry to describe the performance of
instructions; that is, we quote the number of clocks it takes to do some basic
processor function (such as encrypt a block) assuming all the data in the
level-one cache, nothing else is happening in the processor, no I/O is run-
ning, and so on.

The second type of performance we report uses a real system with real
application software operating on real data files: it uses real memory and
cache characteristics. In addition, this approach can easily provide com-
parative numbers to equivalent software implementations on our and other
processors. To obtain this comparative data, we use well-known publicly
available source code libraries that perform the function in software. These
libraries are either modified directly, or an equivalent version is made that
uses the VIA security instructions.

2.1.6 Physical Design Methodology

The subsequent description of our implementation assumes some familiar-
ity with the general physical design of our processor. Figure 2.1 is a picture
of the referenced VIA C7 processor. The die size is approximately 31 mm2.
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The security components discussed in the chapter are outlined near the upper
right edge. The size of the components themselves totals about 0.5 mm2.
Figure 2.2 shows a close-up of the security components. In these and other
pictures of chip components in this chapter, almost all metal routing has
been removed.

The total chip contains about 400 discrete “top-level” components that are
each built independently as a physical block. To form the chip, these top-level
components are connected together with global signal routing as well as
power distribution, global clock distribution, RC repeaters, bulk capacitor fill,
and others. The three basic types of top-level components are as follows.

FIGURE 2.1
VIA C7 processor.
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Full Custom. The entire component is designed at the schematic level
and laid out by hand. There are about 74 custom block designs
instantiated 319 times. In Figure 2.2, the AES key-RAM component
is a full-custom element.

Datapath Stack. The component comprises several n-bit wide (typically
32 or 64 bits) library elements that “snap” together using common
power rails and signal channels. The definition of the stack (the
specification of the elements, their physical positioning, and the
interconnects) is controlled through a special language. A Cen-
taur tool creates the physical stack from this definition language
by placing the stack elements and routing the signals. The library
elements are designed using a full-custom approach: schematics to
hand layout. There are 63 datapath stacks on this chip constructed
out of a library of a few thousand elements. Many library elements
do the same basic function except for differences in bit width,

FIGURE 2.2
VIA C7 security components.
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timing, power, size, and drive strength. For example, the library
contains 25 different two-input adders (which are instantiated 65
total times across the chip). In Figure 2.2, the blocks labeled AES,
SHA, and RNG are 32-bit wide datapath stacks.

Synthesized Logic. There are 20 blocks on the chip of synthesized control
logic built using the conventional methodology of compiling Verilog
into a gate library. These are sometimes called auto-place and route
(APR) or random logic blocks. The gate library used is a Centaur-
designed custom library (of a few thousand elements) containing
many specialized gates. In Figure 2.2, the block labeled “control” is
an APR containing the control logic for all of the security functions.

2.2 RNG Design

2.2.1 Design Goals

The major objectives for our hardware RNG design were the following:
Truly Random at Large Sample Sizes. There is no test for a random number,

per se. All that can be determined is the statistically calculated probabil-
ity that a particular sample of bits came from a truly random source. Thus,
determining if a generator produces random bits requires defining accept-
able statistical criteria and statistically evaluating many samples. There are
many test suites and statistical tests (and acceptable probability criteria) used
in assessing randomness of generators. An old version of FIPS 140-2 defined
some tests and criteria to be applied to a small sample of 20,000 bits; this
“standard” has now been withdrawn due to problems with the randomness
tests [NI01b], but the tests are still used in some environments. The most
commonly used battery of tests is the Diehard suite, developed by George
Marsaglia [Mar06]. Diehard tests typically use a 10-megabyte sample size
(one test in one variation of this suite uses a 250-MB sample size). The Die-
hard suite of tests is primarily aimed at software random number generators,
which have unique statistical characteristics. Other lesser-used collections of
tests exist, but these suites are also primarily aimed at issues related to soft-
ware generators and such relatively small sample sizes.

Our experience has shown that 10 MB is too small a sample size. It is rela-
tively easy to find a large sample that is clearly not random (using standard
statistical tests and criteria) but whose 10-MB subsets do pass the popular
randomness test suites (such as Diehard). Thus, our design efforts were
focused on randomness of large sample sizes. In particular, our goal was to
generate bits that (1) were themselves statistically random up to one-gigabit
sample sizes, and (2) had entropy sufficient to seed standard cryptographic
mixing generators yielding statistically random samples up to one terabyte.

Interestingly, the largest single development effort on the VIA security
functions was the verification of randomness of actual chips. An extensive
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set of software had to be developed (and statistics had to be relearned) along
with the collection and analysis of terabytes of samples from hundreds of
parts. In addition, Cryptography Research Inc. has independently analyzed
the VIA RNG mechanism and issued a detailed report on its characteristics
and performance [CRI03].

Fast Bit Generation Speed. A fast bit generation rate is desired by some appli-
cations. More important, in order to meet our standards for randomness,
we needed to analyze hundreds of gigabit samples taken at each interesting
operating “corner” (voltage, temperature, etc.) of the processor. This required
very high speed just to be able to collect the terabytes of data we needed to
evaluate hardware.

This requirement effectively determined the technical approach used.
Most conventional hardware RNGs use thermal noise on the chip as the fun-
damentally unstable component. Thermal noise, however, does not have a
high inherent bit rate. Also, thermal noise does not scale with improving
technologies: it is no “faster” at 65-nm technology than at 90 nm, for exam-
ple. Accordingly, our design solution uses a new technique that is both fast
and scales with technology.

Flexible Analysis and Tuning Options. Because it is impossible to verify the
randomness of a hardware RNG during the design process (the randomness
comes from unpredictable circuit variations), it is important to include fea-
tures for experimentation and adjustment on the silicon version.

2.2.2 RNG Hardware

Figure 2.3 illustrates the VIA RNG hardware components.

2.2.2.1 Random-Bit Generator

The randomness of our bit generator derives from the interactions of four
free-running oscillators. These oscillators are inherently unstable. Their fre-
quency constantly changes due to their inherent instability, as well as manu-
facturing variations and voltage, temperature, and electrical environment
changes. The outputs of two of the fast oscillators (running at a nominal
frequency of about 1 GHz) are each divided by eight and then XORed. The
resultant waveform is passed through an RC load (poly resistor and large
gate capacitance) and used as the bias voltage adjustment for a third free-
running oscillator, whose frequency varies from about 100 MHz to 30 MHz
based on the bias input. The output of this oscillator is used as the clock for
a one-bit register whose data is the output of another 1-GHz free-running
oscillator. The output of this register is the raw generated bit.

These raw bits are not themselves truly random, but they do exhibit ade-
quate entropy to be used as a good entropy source for mixing generators
such as SHA or AES. This mixing of high-entropy bits is often used as a soft-
ware random number generation approach. Because both SHA and AES are
performed in hardware on our chips, this two-stage approach (raw bits into
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mixing algorithm) gives the highest random bit rate and the best statistical
results for huge bit lengths (tested up to five-terabyte sample size).

Optionally, however, the raw bits can be fed through a Von Neumann “whit-
ener” circuit to produce a direct high-quality random bit string. This circuit
outputs a bit whenever a polarity of incoming bits changes. When used with
our subsequent “1-of-n” bit selector, the whitened bit stream is sufficiently
random to pass the popular Diehard criteria (10 megabyte samples).

The random bits (raw or whitened) are collected into an eight-bit buffer as
the bits arrive. This buffer uses the same randomly generated clock as the
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VIA random number generator design.
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earlier described flip-flop. When this buffer is full, the associated processor
interface logic is then signaled to read the byte. Note that this random byte
generation mechanism runs asynchronously and completely overlaps with
other processor activity.

VIA processors contain two of these hardware random bit generators. They
are identical except one is rotated 90º on the silicon. This rotation introduces
different poly-width variations between the two instantiations. The origi-
nal intent of having two generators was in case one was more random than
the other. In practice, they behave so similarly that both are typically used
together to increase the data rate.

Each generator has an adjustable DC bias. Fuses set the default for this bias
during manufacturing, but software can override that setting via the RNG
control register. This bias adjustment was added for our internal experimen-
tation purposes, but our general philosophy is to allow software to use all
experimentation features. In practice, the default value works well and there
is no reason for changing the bias.

To conserve power, the random bit generator is shut off when the processor
is in a “sleep” mode. When exiting this low-power mode, both the current
contents of the output buffer and the next complete generated byte are dis-
carded. This reduces the risk of a glitch in the entropy of the generated bits
due to startup behavior.

2.2.2.2 System Interface Logic

When signaled that eight new random bits are available, the system interface
logic collects the random byte from the generator and places it into a 32-byte
first-in first-out buffer (FIFO). Either generator, or both, can be selected to
input bytes to the FIFO based on the control register setting. This operation
is completely asynchronous and overlapped with other processor activity.
The interface between the random generator and the system logic is sim-
plified by design: after the generator buffer fills, the next processor clock
boundary is guaranteed to occur before the arrival of the next random bit.
This clock arrival resets the “byte available” signal to the system logic; thus,
the system logic never reads the same byte twice.

Due to implementation specifics, a maximum of eight bytes of FIFO data
may be stored by a non-REP x86 instruction. No data is stored, however,
unless there are at least eight bytes in the FIFO. Any data read by an x86
instruction is removed from the FIFO. This ensures that random bits are
never reused across multiple tasks.

A 1-of-n bit selector can further filter the random data bits read from the
FIFO. The choices for eight FIFO bits are to return eight bits, four bits (every
other bit), two (every fourth bit) bits, or one bit (every eighth bit). The control
of the selector is specified in an x86 GPR when a “store RNG” instruction is
executed. The intent of this selector is to improve randomness of whitened
bits. To have good statistical characteristics at typical ten-megabyte sample
sizes, the selector should be set to the one-of-eight rate. Smaller sample sizes
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may be able to use more bits. Thus, based on the selector specified, and the
number of bytes in the FIFO, the number of random data bytes returned on
each x86 “store RNG” instruction request can be zero, one, two, four, or eight.
The final random data output is multiplexed into the internal SSE result bus
for delivery. This bus choice is transparent to software; the SSE bus was cho-
sen based on processor floor plan considerations.

2.2.2.3 Implementation

Figure 2.2 shows the layout of a random bit generator. This tiny component
(138 50 microns in 90-nm technology) is implemented as a full custom
block. The system interface logic, including the FIFO, is implemented as two
small 32-bit wide datapath stacks (shown in Figure 2.2 labeled as “RNG”),
each with a size of 227 63 microns.

2.2.3 RNG Software Interface

The software interface to the hardware RNG mechanisms is a new “store
random” (XSTORE) instruction. This instruction stores from zero to eight
bytes of random data using a memory address in a general-purpose regis-
ter (GPR). There are several unique features of this instruction beyond the
simple store function:

Control Word Reporting. The RNG has selectable features that affect the
delivered bits but the normal application probably shouldn’t change
(DC bias, raw vs. whitened bits). In this case, these features are con-
trolled via a machine-specific register (MSR). This register can only
be changed by a privileged program, typically, the BIOS or operating
system kernel. A security-sensitive application, however, may care
about these settings. For example, the application may be expecting
whitened bits; if somehow the control word has changed to generate
raw bits, the use of these bits may be incorrect within the application.
Thus, the XSTORE instruction also returns the control register set-
tings in a GPR on each “store RNG” bits instruction.

Bit Selector Control. The application can control the one-of-n bit selec-
tor by a control value placed in another GPR. As described above,
this affects the statistical randomness of the stored bits.

Reporting Number of Bytes Returned. Because the number of random
bytes returned for an XSTORE instruction is variable (zero through
eight), the application must have a way of determining what was
stored. Although the number of bytes stored can be obtained from
the destination pointer (next topic), for convenience this number is
also returned in another GPR.

REP String Capability. The REP XSTORE instruction operates similarly
to an x86 store string (STOSB) instruction in that the destination
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pointer in ES(EDI) is advanced by the number of bytes stored. Just
as for STOS, the ECX register defines how many bytes need to be
stored before the instruction completes normally. Interrupts and
exceptions terminate the REP store in such a way that ECX and
EDI correctly identify how many bytes have been stored. (One dif-
ference from x86 string instructions is that EDI always increments.)
When the REP store random instruction completes, there is a con-
tiguous stream of random bytes in memory.

There is a theoretical problem with using the REP XSTORE
instruction because (1) the instruction does not return control until
all requested bytes are stored, and (2) the generation bit rate is
variable. The REP version of XSTORE prevents easy detection of a
situation where the RNG hardware is not returning any bytes. In
practice this not a real risk, since this situation cannot occur with-
out a catastrophic hardware failure. We recommend that applica-
tions address this possibility by doing some non-REP XSTORES to
verify that random bytes are being returned.

2.2.4 Performance and Randomness

The bit generation speed of a RNG is unlike other computer performance
specifications in that the randomness “quality” of the generated data must
also be specified. The topic of what do we mean by the randomness of a sam-
ple or a generator, and how to verify the randomness, is beyond the scope of
this chapter; we provide here a simple summary of an extensive amount of
verification and analysis.

The VIA RNG has two major options to control generation speed and thus
the associated randomness of the generated data. In addition, because the
hardware generation mechanism is variable based on “random” factors, no
single speed reflects all parts or environments. Given these disclaimers, here
is an attempt to summarize our RNG performance. “Random” here means
that it passes standard statistical tests and criteria (the output always meets
the other two random criteria: unpredictable and unrepeatable).

For directly produced whitened bits, the average performance is
approximately

13.6 Mb/s using a divider of 1:1 (random for small sample sizes).
3.4 Mb/s using a divider of 4:1 (random for FIPS-140 tests, sizes
up to at least 20,000 bits).
1.7 Mbs using a divider of 8:1 (random for up to 10 MB sample
sizes).

For raw bits (no whitening), the range of typical performance is
approximately

28–280 Mb/s (not random, but usable as an entropy source).

•

•
•

•

•

•
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Feeding raw bits (as entropy source) into AES yields a pseudoran-
dom bit rate of

20–200 Mb/s using a 1:1 ratio of entropy bits to output bits. This is
statistically random up to terabit sample size, but a cryptographic
purist will worry about its underlying randomness because the
entropy of the input bits is less than one.
10–100 Mb/s using 2:1 ratio of entropy bits to output bits. This
is statistically random up to terabit sample size with no entropy
concerns.
We have run up to 900 Mb/s using fewer entropy bits than output
bits. This can be statistically random up to terabit sample size,
but a purist will not accept this approach because the inherent
entropy is low and thus it may be theoretically predictable.

2.3 AES Design

2.3.1 AES Standard Background

AES encrypts or decrypts only 16-byte data blocks. Key sizes are 128, 192, or
256 bits. Encryption or decryption of a block consists of multiple “rounds”
of data transformations starting with the input data, and with the output of
each round inputting to the next round. The functions performed are essen-
tially the same for each round except that the original key is expanded such
that a unique 128-bit “round key” is available for use in each round. For 128-
bit keys, the number of rounds required is 10, for 192-bit keys, the number of
rounds is 12, and for 256 bits, the number is 14.

For the purposes of understanding the algorithm as defined in FIPS pub-
lication 197, the 16 bytes of data processed each round should be thought of
as being organized into a 4 4 matrix of bytes such that the first four bytes
in the 16-byte data vector represent the first column, the second four the sec-
ond column, and so on. The arithmetic (addition and multiplication) used in
AES uses a particular finite field: GF(28) (a Galois field of order 28). Addition
in this field is merely a bitwise XOR. Multiplication is more complicated: it is
multiplication modulo of a certain irreducible polynomial in the field.

Each AES data transformation round comprises four steps in the follow-
ing order.

 1. Row-Shift. Various bytes within the 4 4 matrix rows are rotated
within each row.

 2. Byte substitution transform (“S-box”). This is a nonlinear trans-
form of each of the 16 bytes from the row-shift operation. Each byte
from the row-shift is transformed according to the same rules as

•

•

•

•
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all other bytes, and each byte transformation is independent of any
other bytes. This type of transformation is common among block
ciphers and is usually called an “S-box.” The transform values can-
not be calculated quickly and some type of table lookup is usually
used in software implementations.

 3. Column-Mix. The four bytes in each column (resulting from the
first two steps) are multiplied by a 4 4 constant matrix to produce
the result column. Again, this multiplication is done in the particu-
lar Galois field used by AES.

 4. Add round key. The final step for each round is to add (XOR) the
unique round key with the result data.

After 10 rounds (for key size of 128 bits), the result from the last step is the
16-byte encrypted (or decrypted) value for the original 16-byte input data block.

The differences between encryption and decryption are:

 1. The row shift rules are different: which bytes go where is different
(one is the inverse of the other mode).

 2. The S-box transform is different between the two modes (one is the
mathematical inverse of the other mode). Thus, two S-box tables
must be implemented.

 3. The column-mix multiplication matrix is different (one is the
mathematical inverse of the other mode). Thus, two multiplication
matrixes must be implemented.

 4. The key expansion algorithm is different. That is, even though the
master key is the same for encryption and decryption, the round
keys are different.

2.3.2 AES Design Topics

2.3.2.1 General Approach

Figure 2.4 is a logical view of the VIA AES hardware unit. Our goals and
general priorities for this implementation were:

Be as fast as possible given our normal processor implementation
methodology and using the “rest-of-processor” clock speed. That
is, we accepted the clock speed as a given, and our focus was to fit
the AES design into that clock speed. In the case of the implementa-
tion described here, the clock speed is 2 GHz.
Optimize file performance as well as individual block performance.
We assumed that most encryption or decryption uses would involve
multiple blocks using the same key (e.g., a file). Thus, we wanted to
make the total multiblock operation as fast as possible. This had an

•

•
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impact on the design of the x86 instruction interface as well as on
the solution to the key expansion issues (see below).
Provide complete standard functionality. We did not want to guess
what people might want to use, so we implemented the entire stan-
dard in hardware: encryption, decryption, and all three optional
key sizes. In addition, we implemented hardware support for
generating the expanded key. This particular generation is ques-
tionable because (1) key expansion may not be important to per-
formance (expansion is done only once per use of the key whereas
the key may be used multiple times across many blocks of data),
and (2) several different alternatives exist as to how to support key
expansion; we chose a particular one. This complicated topic is dis-
cussed further in the next section.
Make it easy to verify. This implied that we needed to support an
“intermediate mode” that provides the result of each step. This is
used to compare more closely with reference models as opposed to
just looking at the final result.
Be as easy to design as possible. This implied that we use our standard
development methodology and library elements wherever possible.

•

•

•
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2.3.2.2 Key Expansion

The expanded key required by the AES standard comprises a unique 128-bit
key for each round of the block operation (10, 12, or 14 rounds). The expanded
key is derived from the primary key by an algorithm using the same S-box
transform as the main encryption operation as well as rotations and XORing
with magic constants.

The first design choice we had to make was where does the expanded key
reside during an encryption or decryption operation: generated on-the-fly,
in an on-chip storage area, or in memory? The first option of generating
the round key in parallel with the round logic was rejected by us because
it required fairly large duplicate hardware (in particular, a duplicate S-box).
In retrospect, we would now choose to provide this duplicate hardware
because it would improve performance and security, but actually would
have no affect on the total die size.

Having rejected calculating the expanded keys on-the-fly, the choice was
now between getting the expanded keys from memory as we execute or pre-
loading them into on-chip memory area. Although getting the expanded
keys from memory as we encrypt is simple, this would significantly affect
the speed of encryption. This approach also is a major security hole (the key
can change during execution, etc.). Thus, we decided to maintain the entire
expanded key in an internal on-chip RAM area. This “key RAM” can pro-
vide the specific 128-bit round key to the round logic each clock.

The next obvious question is from where does the expanded key come?
We ended up supporting two options for getting the complete expanded key
into the key RAM:

Software can generate the entire expanded key in memory. An
x86 AES instruction option causes microcode to load the complete
expanded key from memory into the key RAM before encryption
starts. This gives the user full control over the expanded key and
avoids key-sharing complications with multitasking.
A faster and more convenient option causes the hardware to gener-
ate the expanded key from the provided master key. The generation
algorithm is much faster in hardware than in software. In addition,
this hardware feature greatly simplifies software: the complicated
key expansion algorithm does not need to exist in software. Note
that this option is not the on-the-fly alternative discussed above;
the entire expanded key is generated and stored in the key RAM
before any block encryption starts. This approach allowed us to
reuse the round logic (especially the S-box) for performing the key
expansion: only a few extra muxes and XORs were added into the
normal round logic. This hardware option, however, is not avail-
able for 192-and 256-bit key sizes due to practical reasons: the larger
key sizes would have required significantly more extra hardware
and introduced potential timing problems within the round logic.

•

•
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2.3.2.3 Multitasking Support

Keeping the expanded key completely within the hardware introduces a
major problem. Because there is no practical restriction on the size of a mul-
tiblock encryption or decryption operation invoked by one instruction, we
must allow interrupts to be taken at various times during execution. (There
is a limit on how long a PC can live with allowing interrupts to happen.)
Assume task 1 is using the AES unit and is interrupted and some form of
context switch occurs to task 2. The new task 2 now wants to use AES; this
causes the key RAM of task 1 to be replaced. But when we later return to
continue executing the AES instruction in task 1, the wrong expanded key
(that of task 2) is in the hardware.

If we could assume that the OS knows about the AES unit, the solution is
simple: just have the OS save and restore the key RAM along with the other
context data. But we do not assume any OS knowledge. Our solution is to use
a previously undefined bit (bit 30) in the x86 flags register (EFLAGS). When
the key RAM is loaded with an expanded key, bit 30 is set to a 1. All of the
x86 instructions or operations that save EFLAGS automatically clear this bit
(including exceptions and task switch instructions).

Following the example above:

 1. Task 1 starts an AES encryption or decryption. Because bit 30 is
zero, the expanded key is calculated and placed in the internal
key RAM (all AES instructions point to the normal key). Bit 30 is
now set to a 1.

 2. Task 1 continues to issue AES instructions. Because bit 30 is one,
the existing expanded key in the key RAM is reused for each of
these operations.

 3. An interrupt occurs and the context is switched. EFLAGS is saved
by the hardware on this transition and thus bit 30 is cleared.

 4. Task 2 starts an AES encryption or decryption. Because bit 30 is
zero, the expanded key is calculated and placed in the internal key
RAM. Bit 30 is now set to a 1 so that task 2 can continue to use the
AES hardware without any additional expanded key generation.

 5. An IRET instruction ultimately returns us to task 1. Bit 30 is cleared
by this instruction. Thus, the first AES use by task 1 causes the
expanded key generation and the reload of the key RAM to occur.

Note that this entire mechanism of regenerating and reloading expanded keys
is transparent (other than performance) to software; the hardware (really the
microcode) does it when needed. The only affect on software is that whenever
a key is used for the first time, bit 30 must be set to zero before the AES instruc-
tion is issued. We recommend using a PUSHF instruction (followed by a POPF
to keep the stack consistent) before the use of AES instruction (remember that
all AES instructions are REPs and thus operate typically on many blocks).
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2.3.3 AES Hardware Design

2.3.3.1 Round Logic

To accommodate the speed goals and to fit into our existing implementation
methodology, the standard definition of a round was modified slightly:

The data was organized into four 4-byte words from consecutive bytes
of the input. That is, our 4-byte words were the “columns” as defined
in the standard. The reason is that each of our words became a 32-
bit datapath stack (note the four AES stacks in Figure 2.2). The “row-
shift” operation thus was a mux moving bytes across the four 32-bit
stacks, but the complex “column-mix” operation is completely con-
tained within one 32-bit stack.
The order of the S-box substitution and the row-shift steps was
interchanged; we do S-box followed by row shift. Because the
S-box transform does not have any inter-byte affect, this change
is logically transparent to the order in the standard. The reason
for this change is performance. As described further subsequently,
the S-box is implemented as a dynamic ROM, and thus needs to
start the ROM translation on a clock boundary. The row shift can
be done merely as a static wired mux. Because we needed to start a
round on a clock edge, we had to put the ROM first.
The column-mix operation (multiplication) is performed using a
“sea” of multiway XORs (this is described further subsequently).
Although mathematically equivalent to the standard definition,
the equivalence is not particularly clear. Also, there is no discrete
key-add step: this is performed by merely another XOR input into
the multiplication logic.

It was obvious early in the design that this round approach could not be
done in one processor clock, but likely could be done in two clocks. Thus, the
design target, and the final implementation, was a two-clock round. In ECB
mode, where each block is encrypted independently, the logic is pipelined
so that the throughput is only one clock per round. For the other operating
modes (CBC, etc.), where the encryption of each block uses data from the
previous block’s encryption, the throughput is two clocks per round.

A round thus comprises the following datapath logic.

 1. Input register. The initial input data is loaded into this register and
the forward data from step 6 comes into this register.

 2. S-box lookup. This is done using a dynamic ROM. Thus, the input
register is really part of the ROM implementation; basically the
incoming bytes are the addresses into the ROM.

 3. Row shift. This consists of intrastack wires feeding output of ROM
into muxes in each 32-bit stack.

•

•

•
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 4. Clocked register. This is merely an internal pipeline register pass-
ing the data to the next clock.

 5. Column mix and key add. This is a large fanout of the 32-bit data
into a sea of cascading multibit XORs. The incoming round key
data is merely one XOR input.

 6. Forwarding results of step 5 back to the input register. On the last
round, this data is passed to the end-of-block logic.

The control logic for this round path is simple: a counter controlling (1) the
input to the round input register, (2) the selection of the round key from
its storage RAM, and (3) the signaling when an encryption or decryption is
complete. See Figure 2.5.

2.3.3.2 Interface Logic

Surrounding the round logic is the interface to microcode and logic to imple-
ment the supported encryption operating modes (EBC, CBC, CFB, OFB, CTR).
The hardware interface comprises the following:

Two 128-bit input registers and one small control register attached
to the internal SSE source bus. The data registers feed the round
logic with either two data blocks (for pipelined ECB) or one data
block and one initialization vector (for the other operating modes).
One of the data registers is also used to feed the extended key gen-
eration logic.
Two output registers attached to the internal SSE result bus.

•

•
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In addition to the round logic and timing (two clocks per round), there is an
additional clock stage of logic at the start of the block and at the end (after
all rounds are completed). This stage consists of the internal registers and
muxes required to forward data to and from previous blocks to implement
the operating modes other than ECB.

2.3.3.3 Expanded Key Logic

The logic to produce the expanded key is merely some extra muxes and XORs
embedded within the round logic. This allows the key generation to use the
S-box ROM used in round calculations.

2.3.4 AES Implementation Specifics

2.3.4.1 S-Box ROM

The AES S-box is implemented as a fast lookup table using a custom ROM
built to fit into a datapath stack. Each stack has a four-byte ROM where the
input address for each byte is nine bits (the eight bits of data and a bit saying
encryption or decryption). The output is the eight data bits.

Due to the extensive wire load on the following step (row-shift), the ROM
needed to be as fast as possible. It is implemented using dynamic (domino)
logic where the bit lines are precharged high in the second phase of a clock,
and held high or discharged low in the subsequent first phase. The address
decodes that drive the “word select” lines are also precharged dynamic logic.
To further improve speed, the address decode has two stages. The stage first
selects word lines that select four-bit lines. The second stage generates the
mux select among the four selected word lines. Bits are “programmed” in the
ROM by diffusion. That is, a zero bit has no transistor connection between
the word line and the bit lines. At our nominal timing corner (1.0 V, 100 C)
the data to out time is about 210 ps. Its size is approximately 0.037 nm2. The
ROM timing could have been made considerably faster, except that addi-
tional speed was not needed given the target clock speed.

2.3.4.2 Column-Mix Logic

For the four bytes processed in the second clock of the round logic, each output
byte is the sum of all four input bytes each multiplied by constants. Multiplica-
tion is done modulo a certain defined polynomial. As the standard document
points out, this means that a multiplication by two can be done with a left shift
of one bit followed by conditionally subtracting 0x1 B (subtracted if the high
bit of the result byte is one). Thus, the multiplying by two (“two_x” below) can
be implemented by wires (shift of one) and an XOR of a constant formed by bit
6 of the incoming byte (which will become bit 7 of the shifted result):

   wire[7:0] two_x_mask {0,0,0,in[6], in[6], 0,in[6], in[6]}; // 0 or 0x1B
   wire[7:0] two_x {in[6:0], 0} ^ two_x_mask.
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As an example, consider the equation for encryption of byte 0:

B0out 2•B0in 3•B1in B2in B3in.

Expanding each term and adding an XOR for the round key add yields:

 wire[7:0] out_0 two_x_b0_in ^ two_x_b1_in ^ b1_in ^ b2_in ^ b3_in ^
rnd_key_b0.

Because each two_x values contains an XOR, the full expanded equation
consists of seven XORs. This can be expanded to 32 bits by writing out
all the equations and collecting common terms such that the actual logic
used for encryption column-mix of 32 bits becomes a two-to-one XOR
(producing all four two_x bytes) followed by a six-to-one XOR (and a lot
of wires).

For performance reasons, we actually use custom-designed multi-input
XORs that are much faster than a sequence of two-to-one XORs. For exam-
ple, the six-to-one XOR we use has a nominal propagation time of 86 ps,
whereas the equivalent two-to-one XOR has a propagation time of 36 ps.
This advantage of using a wide XOR circuit versus cascaded two-to-ones
becomes even more apparent in the decryption logic, which ends with an
eight-to-one XOR.

2.3.4.3 Expanded Key RAM

Each round of AES encryption or decryption requires a different 16-byte
key, which is delivered from the key RAM. The key RAM component is a
small single-ported register file. This component contains 16 entries of 16
bytes each. The reason for 16 entries is that our AES implementation allows
a user-defined (nonstandard) number of rounds up to a maximum of 16. The
clock-to-out timing of the custom-designed key RAM is about 245 ps and the
size is 0.016 mm2.

2.3.5 AES Performance

The VIA C5J performance (at 2 GHz) for instruction set performance (again
assuming everything is in the cache) is approximately

Single block, ECB mode, keys already loaded:
1 block: 17 clocks
Large block count: 11.8 clocks/block average

Single block, CBC etc modes, keys already loaded:
1 block: 37 clocks
Large block count: 22.8 clocks/block average

•
•
•

•
•
•
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Expanded key generation/load
Hardware generated expanded keys: 38 clocks
Expanded keys loaded from memory: 53 clocks

Note that the time to load the expanded keys from memory does not include
the time for software to generate them; this is a much longer time. All of
these times include the microcode overhead.

To obtain comparative performance numbers for AES, we use the well-known
Gladman library of cryptography functions [Gla06a]. This source code runs on
any modern PC and is used by many applications. This software is highly opti-
mized and is the fastest software implementation we know of with freely avail-
able source code. Because the code is distributed in source form, it is easy to
modify it to support the VIA AES instructions. This allows us to measure very
accurately the performance benefit an application will get on a real system.

Some sample performance using the Gladman library is shown in Table 2.2.
Both the Intel P4 and the C5J system had the same memory size (512 MB) and
speed, the processors had the same bus speed, the same hard drive was used,
and so on. (The reason for the relatively obsolete P4 and the small memory
sizes is that this information was created more than two years before this
chapter was written). The caches were preloaded (by running an iteration of
the code) and the numbers are the average of several consecutive runs after
this point. The wall-clock time has been translated into gigabits per second
(a common metric for security functions).

In addition to our runs, Dr. Gladman performed the same experiments
and reported them here [Gla06b]. His maximum throughput results on an
old 1.2-MHz VIA processor are about 15 Gb/s. This corresponds to our 21.5-
Gb/s number on a 2-GHz processor.

Several conclusions are obvious. On data sizes that generally fit in the
caches, the VIA hardware performance is about 40 times that of software
(on a faster processor). The P4 is limited by processing speed, not by cache
misses. When the data is large enough to substantially overflow the caches,
the VIA solution becomes memory bound, but is still ten times the P4 soft-
ware speed.

•
•
•

TABLE 2.2

Real System AES Performance

Data Size
2.53 GHz Intel 

P4 (Gb/s)
2.0 GHz C5J 

(Gb/s)

8 KB 0.56 21.5
64 KB 0.56 19.5
1 MB 0.56 5.45
10 MB 0.56 5.23
Etc. 0.56 5.23
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2.3.6 Technology License Issues

Implementations of a symmetric-key encryption algorithm with key lengths
greater than 64 bits are subject to U.S. export control restrictions. The VIA
products containing AES have been reviewed by the appropriate U.S. gov-
ernment agencies and are classified as 5A0002 devices (“Systems, equipment,
application specific electronic assemblies, modules and integrated circuits
for information security”) that require U.S. export licenses. One license is
required for export of the design (“tapeout”) to a foreign country and one
required for sales of the final product in foreign countries. All VIA products
containing AES have the appropriate U.S. government export licenses.

We mention this nontechnical topic as a warning to other engineers: obtain-
ing these licenses was complicated and took longer than it took to design and
implement the AES unit. A legal firm that specializes in export controls is
strongly recommended.

2.4 SHA Design

2.4.1 SHA Standard Background

The secure hash standard as defined in FIPS 180-2 takes two inputs—a pre-
viously calculated message digest (hash) and a new message data block—
and produces a new digest. For SHA-1 and SHA-256, the data block size is
512 bits and the digest size is 160 bits (SHA-1) or 256 bits (SHA-256). The
algorithm is designed to be used on a large file of data with the digest from
each 512-bit block being fed into the calculation of the digest of the next
block.

The basic SHA-1 algorithm for producing a block digest is:

 1. The 16 32-bit words (512 bits) of the message data are expanded
into 80 32-bit words of data. This expanded data is called a message
schedule. The additional words are formed by rotations and XORs
of the input words.

 2. Five 32-bit values—called a, b, c, d, and e—are initialized with the
five 32-bit words of the incoming digest data.

 3. Eighty iterative calculations are then performed. Each iteration
uses a new expanded message word and the five values (a, b, c, d,
e) produced from the prior iteration. A complex calculation then
produces new values for a, b, c, d, and e. Four of the values are
directly produced from the five input values by rotation and mix-
ing. The fifth value is calculated by a five-to-one add (arithme-
tic) of functions of the five input values, a constant specific to the
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iteration number, and the expanded message word. The critical
terms are

T rotation(a) f1(b,c,d) e Ki expanded_keyi.

a T1.

(The f(x) notation indicated some function derived from the values of x.
The exact function is not critical to understanding the hardware
except to note that the function is performed by special logic in
the first clock of the iteration.)

 4. After all 80 iterations, the resulting five intermediate values are
added to the five parts of the original incoming message digest to
produce the output message digest.

The SHA-256 algorithm is similar except that

There are eight words of digest and intermediate values.
The algorithm for calculating expanded message words is differ-
ent, and there are only 64 iterations instead of the 80 for SHA-1.
The calculation of the eight intermediate values is more complex:
the critical components are the adds:

T1 h f2(e) f3(e,f,g) Ki expanded_keyi

T2 f4(a) f5(a,b,c)

E d T1

A T1 T2.

2.4.2 SHA-1 Hardware Design

Figure 2.6 illustrates the SHA-1 subset of the VIA SHA hardware implemen-
tation. It closely follows the standard definition with several implementa-
tion optimizations. The datapath we use is generally (but not always) 32 bits
wide. That allows us to easily perform one of the 80 iterations every two
clocks. (We could have done the entire SHA-1 iteration in one clock, but that
would have required unique SHA-1 and SHA-256 logic and we didn’t want
to expend the effort.)

•
•

•
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Referring to Figure 2.6, the major features are:

 1. Only the original 16 32-bit word data block is saved. The remain-
ing 64 expanded words are produced on the fly from this saved
data as needed.

 2. Each of the 80 iterations takes two clocks. In the first clock, four
of the new 32-bit outputs (b, c, d, e) are produced by wired muxes.
In the same clock, four of the inputs are converted to three of the
terms for the arithmetic add. An iteration-specific constant is gen-
erated with the logic and is the fourth add operand. The last add
operand is the iteration-specific expanded message word.

 3. In the second clock of an iteration, the five operands are added and
the result is forwarded back to the input of the next iteration.

160b Initial Digest

msg Storage

(16 × 32b regs)

SSE Load Bus

SSE Result Bus 

160b acc

Function & Magic

Constant
Generators

5-to-1
32b Adder

Final 64b Digest Piece

Expanded msg

Generator
e d c b a

2-to-1
32b Adder

New a
New

b, c, d, e, f

Final
5*32b

Adds

32b Message Word

1

2

3

4

Stack A

Stack B

FIGURE 2.6
VIA SHA unit design.
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 4. After all iterations are complete, five extra clocks at the end of the
block operation are taken to add together the five 32-bit outputs of
the iterations and the five portions of the original 160-bit digest.
Note that the loads of the next block of message data can be over-
lapped with this final add step. Note that using a separate adder
for this step is not necessary for SHA-1; the inputs could have
been routed through the five-way adder. This separate adder is
needed, however, for the SHA-256 calculation so it is also used for
SHA-1.

 5. Because the hardware is designed to execute multiple block digests,
the results from step 4 are internally forwarded to the inputs for
the next block calculations.

Figure 2.6 illustrates that the SHA components are contained within two
separate datapath stacks as shown in Figure 2.2. The actual stack sizes (that
include both SHA-1 and SHA-256 logic) are 0.046 and 0.069 mm2.

2.4.3 SHA-256 Hardware Design

SHA-256 uses the same basic datapath as shown in Figure 2.6. The timing is
three clocks per iteration rather than two for SHA-1. (Again, the clock timing
is a function of our wanting to share as much logic as possible between SHA-1
and SHA-256 and being lazy). The main differences in the implementation
over what is shown in Figure 2.6 are:

There are eight 32-bit words of digest and intermediate values.
The pipeline forwarding paths are changed for SHA-256. Four sep-
arate adds (three 2-way and one 5-way) are needed for each itera-
tion. This is performed by circulating the data back through the
second stage of the iteration logic, and thus the three clock timing.
The first pass through this stage does the five-input add and a two-
input add. The second pass does 2 two-input adds (one reuses the
five-input adder).

2.4.4 SHA Performance

The SHA-1 timing for one block is approximately 251 clocks. The SHA-256
time is 262 clocks. These numbers include substantial overhead associated
with multiblock optimization. For large blocks, and assuming data is in the
cache, the performance approaches 190 and 225 clocks, respectively.

Some sample real-system performance is shown in Table 2.3. The data
sizes are SHA “blocks,” which in this case are 64 bytes. Note that at 1,000,000
blocks, the functions are memory limited.

•
•
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2.5 Montgomery Multiplier Design

2.5.1 Hardware Design

Unlike AES and SHA, where the entire standard algorithm was implemented
in hardware, the Montgomery Multiplier implements only a 32-bit modular
multiply step in hardware (A B mod M). This step function is designed
to be used by microcode to execute modular multiplies of indefinite length
values. This scalability is very important because the recommended size of a
RSA key has continued to increase, and a longer key always means improved
security. The microcode component is quite complex in that it uses the 32-bit
hardware multiply step to provide the full A B mod M calculation for val-
ues up to 32,768 bits long. We know of no other hardware-based modular
multiply implementation that can handle values this big.

Unlike AES, SHA, or RNG, the Montgomery Multiplier hardware is not
a separate or discrete component; it comprises several components added
into an existing 32-bit multiplier stack. The major development effort for
the Montgomery Multiplier was not adding the unique hardware datapath
components; instead it was (1) figuring out what the proper hardware data-
path should be to perform the mathematical function, and (2) writing the
complicated microcode to perform the entire n-bit modular multiply. We do
not cover the mathematical derivation here, but rather show the resultant
design.

Figure 2.7 illustrates the additions to the normal multiplier circuitry. The
shaded components represent the components added to the existing two
32 32 hardware multipliers. Obviously, there are hidden muxes selecting
the Montgomery paths or the normal multiplier paths. Conceptually, the
hardware function is used (by microcode) in a double loop multiplying
each 32-bit word of the multiplicand (A) by all 32-bit words of the mul-
tiplier (B) modulo the 32-bit word of the modulus (M) (using the Mont-
gomery modular mathematics), adding in the previous partial products,

TABLE 2.3

Real System SHA Performance in Gb/s

Data Size
(Blks)

2.53 GHz Intel P4 2.0 GHz C5J

SHA-1 (Gb/s) SHA-256 (Gb/s) SHA-1 (Gb/s) SHA-256 (Gb/s)

10 0.07 0.04 0.38 0.35
100 0.43 0.24 2.41 2.24

1,000 0.59 0.33 3.81 3.60
1,000,000 0.62 0.34 2.97 2.97
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and accumulating the new partial products (T). A simplified view of this
double loop is

 for (j = 0; j < num _ words _ a; j++)
  for (i = 0; i < num _ words _ b; i++)
   T[j-1] = Montgomery _ hdw(A[j], B[i],
    M[j], T[j], U);

U is a constant related to the transformation into the Montgomery number
field. The [j – 1] indicates that the first low-order multiply result is thrown away.

2.5.2 Microcode Design

A major complication (and performance improvement) not totally obvious
in Figure 2.7 is that four words of A, M, and T are loaded and stored at a
time. This significantly improves performance because the Montgomery
Multiplier is attached to a 128-bit load/store bus. To take advantage of this,
the hardware can sequence the appropriate word out of the 128-bit input

M[j]

SSE Load Bus

SSE Result Bus 

T[j]

32b × 32b 32b × 32b

B[i] u

T[j]A[j]

64b + 32b 

64b + 64b + 33b

Hi 33b

T[j–1]

64b

64b

64b

128b

High 33b on Last Iteration

128b 128b 128b

32b

32b

32b 32b 32b32b

32b32b

33b

FIGURE 2.7
VIA Montgomery Multiplier design.
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registers and into the 128-bit output register. Thus, the microcode loads up
the 128-bit values, issues the hardware Montgomery Multiplier instruction
four times, and then stores the 128-bit partial product results.

The microcode overlaps loads, stores, addressing calculations, loop
branches, and so on with the hardware multiply instructions such that (for
data in the cache), the execution time approximates the hardware multiply
time contribution.

2.5.3 Montgomery Multiply Performance

The hardware latency for a single 32-bit Montgomery Multiply step is four
processor clocks, with a pipelined time of two processor clocks. Thus, assum-
ing no microcode overhead, the total time for an n word by m word multiply
can approach 2-nm clocks.

In practice, of course, cache misses may occur for real-world operands
so the meaningful performance needs to be measured on a real system.
Also, the end objective is a modular exponentiation (the RSA algorithm) not
merely a big number multiply. Thus, a meaningful measure of the value of
our implementation needs to be done on the total time to do a c me mod n
calculation for RSA-sized keys. This total calculation includes many func-
tions that also have to be done in software on VIA processors, thus diluting
the performance gain of the Montgomery Multiply hardware.

The comparison software we used was the well-known big number library
GMP [GM06]. Their claim is that they are the fastest library of big number
functions and they specifically target cryptography applications. GMP
includes a big-number modular exponentiation function that uses the Mont-
gomery Multiply algorithm in software. For comparison purposes, we wrote
a simple driver to perform the modular exponentiation function using our
modular multiply instruction.

Following are some sample times for typical RSA-length operands. The
actual values were chosen randomly.

Modulus size 1024 bits
2.53 GHz P4 340 exponentiations/s avg.
2.00 GHz VIA C7 1800 exponentiations/s avg.

Modulus size 2048 bits
2.53 GHz P4 7.1 exponentiations/s avg.
2.00 GHz VIA C7 35 exponentiations/s avg.

Note that there are many variables that affect the full RSA timing. Use
the Chinese Remainder Theorem (CRT) or not? Use a sign or verify expo-
nent? and so on. The above numbers used the CRT and the verify-sized
exponent.

•
•
•

•
•
•
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2.6 Summary Observations

Some after-the-fact observations about our integrated security implementa-
tion are:

The architecture and high-level design for some of the functions
was not obvious at the start and it took about one-half man-year to
figure out how we were going to do things such as the RNG and
Montgomery Multiply.
The actual implementation effort (logic, circuit, layout, microcode)
was relatively easy: maybe two man-years total. The largest com-
ponent in terms of effort was microcode.
Verification was easy except for the RNG. The non-RNG functions
are algorithmic and are easy to model in software, and easy to test
because they have simple pass/fail criteria. The total verification
effort for non-RNG components was less than one-half man-year.
The RNG could only be tested in silicon and there is no simple
pass/fail test. Rather, extensive statistical testing at many silicon
“corners” had to be performed. This took a lot of effort: maybe one
man-year total.
An unexpected (to us) complication was obtaining U.S. export
licenses. But, having now learned (and having hired a good law-
yer), the process is easy.
AES and SHA functions could have been made smaller, maybe by
20%. We didn’t do this because there was no need relative to the
chip’s floor plan.
The AES two-clock round could not be made faster given our basic
design methodology and technology. However, the two-clock SHA-1
iteration could be made to work in one clock and we probably could
get the three-clock SHA-256 iteration down to two clocks with a new
custom seven-input adder, but it wasn’t worth the effort to us.
Working with the open source software community is very easy.
All of the major open source operating systems (Linux, Open BSD,
and Free BSD) use our instructions in the kernel. In addition, major
software libraries such as OpenSSL directly use our instructions.

In retrospect, now having a lot of real application usage, we realize that
some things should have been done differently. Some of these changes are
implemented in our next processor design (not yet shipping).

We would implement an on-the-fly expanded key calculation for all
key sizes. This is not trivial, but it can be done. This approach would

•

•

•

•

•

•

•

•

•
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eliminate the complication of having to protect the expanded-key
RAM from task switches. It also removes any need for software to
have to do anything except invoke the AES instructions (today, 192-
and 256-bit keys require software to generate the expanded keys).
We would have supported unaligned (relative to a 16-byte bound-
ary) data blocks for AES and SHA in our first implementation. We
originally assumed, however, that software would always have the
input blocks aligned. We discovered situations where this was not
true and had to change the implementation in later versions. Our
currently shipping implementation of AES does support unaligned
data.
We would implement a “progressive” version of the SHA instruc-
tion that does not do the padding required by the SHA standard.
Our current implementation adds the padding automatically. This
is convenient for software that has all the data for a hash available
when the SHA instruction is executed. But this is inconvenient for
software that obtains the data for the hash a piece at a time.
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3.1 Cortex-A8

3.1.1 Overview

The ARM Cortex-A8 is a microprocessor targeted at systems that require high
performance for both general-purpose and media applications while main-
taining a low, sub 1 Watt, power profile and a small silicon footprint. This
processor targets a significantly higher performance point than any previ-
ous ARM processor. The increased level of performance for general-purpose
applications is realized through an energy-efficient balance of both increased
operating frequency and improvements in machine efficiency as measured
by instructions per cycle (IPC). The increase in frequency is achieved using
a deeper pipeline with less logic depth per stage when compared to previous
ARM cores. The increase in IPC comes mainly from superscalar execution of
instructions, but the improved branch prediction, efficient memory system,
and other features contribute as well to the machine performance. Perfor-
mance for media and graphics applications is increased even further than
what is achieved for general purpose applications with a 64-bit SIMD integer
and floating-point engine (NEON).
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3.1.2 Instruction Set Architecture

The ARM architecture is a load/store architecture with an instruction set
that is largely consistent with other RISC processors. Some special attributes
worth mentioning include instructions capable of both shift and ALU opera-
tions in the same instruction, the ability to use the program counter as a
general-purpose register, support for variable 16-bit and 32-bit instruction
opcodes, and a fully conditional instruction set. The ARM integer register
file includes 16 32-bit registers; 13 of these registers are general purpose.
The remaining three special-purpose registers are the stack pointer, a link
register, and the program counter. Although these registers have special
uses, they can also be used by most data processing and load/store instruc-
tions. The classic floating-point and new NEON media instructions both use
a second register file that contains 32 64-bit registers. When used for integer
SIMD operations, each register can contain a single 64-bit value, two 32-bit
values, four 16-bit values, or eight 8-bit integer values. When used for float-
ing-point operations, each register can contain a single 64-bit double preci-
sion value or two 32-bit single precision values.

3.1.3 Basic Pipeline Description

Cortex-A8 is an in-order, dual-issue superscalar processor with in-order
instruction issue, execution, and retire. The processor has a 13-stage main
pipeline that is used for all instructions. This main pipeline can be broken
into three decoupled parts: fetch, decode, and execute. Individual pipeline
stages within each part are simply numbered F1, F2, D0, D1, and so on. The
two fetch stages at the front of the pipeline are responsible for predicting
the instruction stream, fetching instructions from memory, and placing the
fetched instructions into a buffer for consumption by the decode pipeline.
The five decode stages take care of decoding, scheduling, and issuing instruc-
tions. They also deal with sequencing complex instructions and replaying
instruction sequences when a memory stall occurs. The six execute stages
consist of two symmetric ALU pipelines, a load-store pipeline, and a mul-
tiply pipeline. In addition to the main pipeline, there is a 10-stage pipeline
for the NEON SIMD execution engine, an eight-stage pipeline for the level-2
memory system, and a 13-stage pipeline for the debug trace generation. The
10-stage NEON pipeline includes four stages of instruction decode and issue
and six stages for instruction execution. NEON instruction decode stages
are numbered M0, M1, M2, , and NEON execute stages are numbered
N1, N2, . Level-2 memory system pipeline stages are numbered L1, L2, .
A diagram including all stages in the full pipeline can be seen in Figure 3.1.
Each main section of the pipeline is discussed in more detail in the subse-
quent sections.
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3.2 Instruction Fetch

3.2.1 Instruction Fetch Pipeline Overview

The instruction fetch unit (I-fetch unit) includes the entire level-1 instruction-
side memory system as well as dynamic branch prediction, and instruction
queuing hardware. The instruction fetch pipeline runs decoupled from the
rest of the processor, speculatively fetching up to four instructions per cycle
along the predicted execution stream and placing them in the instruction
queue to be consumed by the decode unit.

The fetch pipeline begins with the F0 stage where a new virtual address
is generated. This address can either be a branch target address provided
by a branch prediction for a previous instruction, or if there is no predic-
tion made this cycle, the next address will be calculated sequentially from
the fetch address used in the previous cycle. Note that the F0 fetch stage is
not counted as an official stage in the 13-stage main integer pipeline. This
is because ARM processor pipelines have always counted stages beginning
with the instruction cache access as the first stage.

Once an address has been calculated, it is used to access the instruction
cache arrays to obtain data for the next set of instructions in the F1 stage. In
parallel, the fetch address is also used in the F1 stage to access the branch
prediction arrays to determine if a branch prediction should be made for the
next fetch address.

In the final fetch pipeline stage, the F2 stage, instruction data is returned
from the instruction cache (assuming a hit occurs) and placed into the
instruction queue (or the queue bypass registers) for future consumption by
the decode unit. Also in the F2 stage, if this instruction results in a branch
prediction, the new target address is sent to the address generation unit to be
used as the next fetch address.

When a branch prediction for a taken branch is made, the instruction cur-
rently in the F2 stage changes the fetch address that is calculated in the F0
stage. Therefore, the instruction fetch currently in the F1 stage will need to
be thrown away. This means there is a one-cycle bubble in the fetch pipe-
line whenever a branch prediction is made for a taken branch. Typically, this
bubble is not exposed because the fetch engine runs ahead of the rest of the
machine, but it can be exposed in branch-heavy code sequences or any taken
branch that closely follows a branch misprediction.

3.2.2 Instruction Cache

The instruction cache is the largest component of the instruction fetch unit. It
is a physically addressed, four-way set associative cache capable of returning
64 bits of data per access, and it is configurable to be either 16 KB or 32 KB in
size. The cache line length is 64 bytes and line replacement is done using a
random policy. The instruction cache also includes a 32-entry, fully associative
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TLB. TLB misses are serviced by a hardware table walk mechanism that is
part of the level-2 memory system.

To minimize design effort, the instruction and data caches are essentially
identical, making use of the same array structures with only the minimum
differences in the control logic that are needed to support each. In most
ways, the level-1 cache design is a traditional cache design and it includes
the typical data array, tag array, and TLB structures found in most processor
caches. However, there is one additional structure in the Cortex-A8 that is
not present as part of a traditional cache design: the hashed virtual address
buffer (HVAB) array.

A traditional set-associative cache fires all ways of the data and tag RAMs
in parallel at the same time that the physical address is being read from the
TLB. This physical address is then compared with the values read from the
tag array to determine which of the data RAM ways contains the required
data and should be selected (or if a cache miss occurred). To avoid firing
all these arrays in parallel, Cortex-A8 implements a way indication scheme
based on a 6-bit hash of the virtual address and process ID of the access.
This hash is used to index into the HVAB and determines the cache way that
is likely to contain the data. This lookup is done quickly and is available in
time to prevent firing of all the ways in both the data and tag arrays. A TLB
translation and tag compare is still required in order to validate the hit. If
the hit proves to be incorrect then the access is flushed, the HVAB and cache
data is updated, and the access is repeated. Even though the TLB transla-
tion and tag read of the way containing the data are still required, they are
removed from the critical path of the cache access, which is another benefit
of the HVAB array.

Because the HVAB only brings a benefit in power savings when its hits are
correct and actually costs performance and energy when its predictions are
wrong, the key to its success is a good hash function that has a low likeli-
hood of generating false matches. Another key attribute of a hash function in
this application is that it can be evaluated relatively quickly. The hash used in
Cortex-A8’s caches is a two-level XOR reduction that mixes the address bits
and process ID in a carefully selected order. Modeling this function across
a large range of applications has shown a negligible increase in additional
cache misses from the use of the hash function.

3.2.3 Instruction Queue

Fetched instructions from the instruction cache are placed into the instruc-
tion queue (IQ), or registered for forwarding on to the D0 stage if the IQ is
empty. The purpose of the IQ is to absorb instruction delivery and consump-
tion discontinuities between the instruction cache and the decode unit. The
decoupling afforded by the queue allows the I-fetch unit to prefetch ahead
of the rest of the integer unit and build up a backlog of instructions that are
ready to be decoded. This backlog often hides the latency involved in pre-
dicting a change in the instruction stream and starting to fetch instructions
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from a new location. The queue also prevents stalls from the decode unit
from propagating back into the prefetch unit in the same cycle in which a
stall condition is detected.

The IQ is organized physically as four parallel FIFOs, each six entries deep
for a total of 24 entries. Each entry is 20-bits wide, holding 16 bits of instruc-
tion data and 4 bits of control state. Depending on the size of the instruction,
an instruction may be contained within just one or two entries of the queue.
Packing instructions in the queue in this manner can be complex to imple-
ment but it has efficiency advantages for the intermixed 16- and 32-bit long
instructions that are common in the Thumb instruction set.

3.2.4 Branch Prediction

The branch predictor includes two arrays: the 512-entry branch target buf-
fer (BTB) and the 4096-entry global history buffer (GHB). The BTB indicates
whether the current fetch address will return a branch instruction and, if
so, gives the branch target address. The GHB contains two-bit saturating
counters that give the indication of whether conditional branches should be
predicted taken or not taken.

The branch prediction arrays are both accessed in parallel with the
instruction cache access in the F1 stage. The GHB entry is selected using a
10-bit global branch history and four low-order bits of the PC. Branch history
is created from the taken/not taken status of the ten most recent branches.
This information is saved in the global history register (GHR). Using branch
history to determine prediction works well because heuristically instruction
traces tend to take similar paths through a program creating different histo-
ries that predict the outcome on the next subsequent branch. The only flaw to
a global history type of prediction is that it is possible to alias on two similar
histories that differ in the nth branch where n is the number of history bits

1. To help prevent this type of aliasing, low-order instruction address bits
are also used to index the GHB. The GHB has 4096 entries, but is organized
as a 256 entry by 32-bit array. So, only the upper eight bits of history are used
to access the array and the final indexing based on remaining history and
low-order PC bits is done after the array is accessed. Each access to the GHB
reads out 16 two-bit prediction values, each of which indicates whether the
next branch should be predicted taken or not taken. The 16 values are multi-
plexed down to a single prediction using an XOR combination of the remain-
ing history bits and the low-order PC bits. GHB accesses always return a
valid value and therefore there is no concept of a GHB miss. Instead, the
GHB prediction is qualified by a hit from the BTB. To save power, the GHB is
only accessed when the global history has changed. Because branch history
is only updated on the prediction of a branch, the GHB array is not accessed
any more often than necessary.

The BTB is indexed by the fetch address and contains branch target
addresses and information about the branch type. The BTB stores predicted
target addresses for both direct and indirect branches. On a BTB hit, if the
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entry is marked unconditional, the branch target address is used to fetch the
next instruction. If the branch is conditional, then the value returned from
the GHB access indicates whether the target address should be used. If the
GHB lookup indicates that the branch was not taken, then the instruction
cache continues fetching sequentially. On a BTB hit, the global history used
to access the GHB is updated by shifting the taken/not taken status bit into
the lowest-order bit of the global history. This update to the GHB history is
done in the D2 stage (two cycles after the prediction).

All branch predictions are resolved in the E4 stage at the end of the integer
pipeline by comparing the predicted and calculated PCs. If the branch mis-
predicts, or a taken branch is not predicted, the pipeline is flushed and the
BTB and GHB arrays are updated accordingly. The global history register,
used to index the GHB, is updated as well to a nonspeculative version of the
global history to keep the predictor more accurate. In the case of a correct
prediction, the GHB saturating counter and the nonspeculative global his-
tory register are both updated. Figure 3.2 shows the instruction fetch pipe-
line and the branch mispredict update path.

3.2.5 Return Stack

Cortex-A8 also makes use of a return stack for subroutine prediction. The sub-
routine return stack depth is eight entries. Return addresses are pushed onto
the stack when the BTB lookup indicates that the branch is a subroutine call.
When the BTB lookup indicates that the instruction is a subroutine return, the
branch target address is popped from the return stack instead of being read
from the BTB entry. Subroutines are often short and therefore it is important
to support multiple push and pop operations in flight in the pipeline at a time.
However, speculative updates to the return stack can be destructive because
an update from the incorrect path can result in getting the return stack out
of sync, generating multiple mispredictions. To achieve the performance ben-
efits of speculative updates to the return stack without the performance cost,
the instruction fetch unit maintains both a speculative and nonspeculative
return stack. The speculative return stack is read and updated immediately
based on the information returned from the BTB access and the nonspecula-
tive stack is not updated until the branch is known to be nonspeculative at the
end of the pipeline. If a branch is mispredicted, then the state of the specula-
tive stack is overwritten by the state in the nonspeculative stack.

3.3 Instruction Decode

3.3.1 Instruction Decode Pipeline Overview

The instruction decode unit is responsible for decoding, sequencing, and
issuing instructions. It also handles sequencing of exceptions and other
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unusual events. The main blocks within the decode unit include the instruc-
tion decoders, the instruction sequencer, the pending and replay queue, and
the instruction issue logic.

The logic of the decode unit occupies the D0–D4 stages of the pipeline. Early
instruction decoding is done in pipeline stages D0 and D1. In these stages the
instruction type, the source and destination operands, and resource require-
ments for the instruction are all determined. Multicycle instructions are bro-
ken down by the sequencer into multiple single-cycle operations in the D1
stage. These early stages generate all the decode information that is needed by
the issue logic that lives in the D3 stage of the pipeline. The D2 stage is used to
write instructions into and to read from the pending/replay queue structure.
The instruction scheduling logic operates in D3. The scoreboard is read in this
stage for all the operands of the next two instructions that could issue. These
instructions are read from the pending queue or directly from the D2 stage
if the pending queue is empty. The two instructions are also cross-checked
against each other to check for any other dependency hazards that would not
be detected by the scoreboard. The cross-checks and scoreboard results are
combined to determine whether 0, 1, or 2 instructions will be issued. Once
this issue decision is made and the next set of instructions is issued across
the D3/D4 boundary, these instructions cannot be stalled. After this point,
instructions advance one pipeline stage per cycle and the replay mechanism
will be used to handle any unpredictable hazards from the memory system
(cache miss, store buffer full, etc.). The D4 stage performs the final decode for
all the control signals required by the I-execute and load-store units. These are
then registered and sent to the I-execute and load-store units in E0. Figure 3.3
outlines the structure and the pipeline of the instruction decode unit.
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3.3.2 Static Scheduling Scoreboard

The scoreboard in Cortex-A8 is a predicting scoreboard that statically predicts
when operands should become available. This is different and more com-
plex than a traditional scoreboard that uses a single bit to indicate whether a
source operand is ready for use. Rather than returning a single bit, the value
read from the Cortex-A8 scoreboard indicates the number of cycles until a
valid result will be available for forwarding to a following instruction. This
information is used in combination with the source operand will be needed
to determine if a dependency hazard should prevent the instruction from
issuing. For example, we have an instruction being scheduled that requires
the register R1 to be available as a source operand in the E2 stage. Because
the scoreboard is accessed in the D3 stage, the E2 stage is four cycles away
in the pipeline (D4, E0, E1, and E2). Thus, if the scoreboard indicates that the
value for R1 will be available in four cycles or less, then no hazard exists
on this source operand. However, if the scoreboard indicates that the value
will not be available for five cycles or more, then the instruction could not
issue due to the dependency. In order for this scoreboard to work properly,
in addition to being updated whenever a new register is written, each entry
in the scoreboard is also self-updating on a cycle-by-cycle basis. The value in
each scoreboard entry will count down each cycle by one until updated by a
new register write or the value reaches zero, indicating that the value is now
available directly from the register file. In addition to indicating when an
operand will be available, each scoreboard entry also contains information
to track which execution pipeline is producing the register result and in what
stage in the pipeline the producing instruction currently is. This additional
information is used to generate the forwarding multiplexer control signals
that are passed along with the consuming instruction when it is issued.

As mentioned above, the static scoreboard implemented in Cortex-A8 is
more complex than a traditional scoreboard. However, there are several
advantages to using this method. First, when used in combination with the
replay queue, it allows the implementation of a fire-and-forget pipeline with
no stalls in the execution pipeline. This is important for removing funda-
mental speedpaths from the design that would otherwise prevent high-
frequency operation of the processor. Second, it is also a good technique
to use in a low-power design because knowing early in the pipeline which
execution units will be required each cycle allows aggressive clock gating
without the creation of speedpaths in the design.

3.3.3 Instruction Scheduling

Cortex-A8 is a dual-issue processor with two main integer pipelines called
“pipe0” and “pipe1.” When two instructions are issued, pipe0 will always
contain the older instruction in program order and pipe1 will always contain
the younger instruction. This means that if the older instruction in pipe0
cannot issue, then the instruction in pipe1 will not issue, even if no hazard
or resource conflicts exist for that instruction. When only one instruction is
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issued, it is always issued in pipe0. Furthermore, all issued instructions will
progress in order down the execution pipeline and retire with results writ-
ten back into the register file in the E5 stage. This in-order nature of instruc-
tion issue and retire completely prevents WAR hazards and keeps tracking
of WAW hazards and recovery from flush conditions straightforward.

If no RAW hazard is indicated from the scoreboard, the instruction in
pipe0 should be free to issue. However, there are other constraints to consider
besides just the scoreboard indicators for dual-issuing a pair of instructions.
The first thing to consider is the instruction types for the two instructions
and whether that combination is supported. In a given cycle, the following
combinations of dual issue are supported.

Any two data processing instructions
One load–store instruction and one data processing instruction, in
any order
Older multiply instruction with a younger load–store or data pro-
cessing instruction

In addition to the constraints listed above, only one of the two instructions
issued can change the program counter. Instructions that change the PC
include traditional branch instructions as well as any data processing or load
instruction with the PC as the destination register.

In addition to the resource check, the two instructions are also cross-
checked against each other to determine whether there are any RAW or WAW
hazards between the two instructions that would prevent dual issue. If both
instructions are writing to the same destination register (a WAW hazard), or
if the younger instruction needs a destination register before it is produced
from the older instruction (a RAW hazard), then dual issue is prevented.
It’s worth noting that when checking for a RAW hazard, it is not enough to
simply check if the second instruction requires a source operand that is a
destination register from the first instruction. In a similar fashion to what is
done when accessing the scoreboard, a comparison is done between when
the data will be produced by the older instruction and when it is needed
by the younger instruction. If the data isn’t needed until one cycle or more
after it is produced, then the dependent pair can still be dual issued. Some
examples of cases where this occurs include:

Compare or subtract instruction that sets the flags followed by a
flag-dependent conditional branch instruction
Any ALU instruction followed by a dependent store of the ALU
result to memory
A move or shift instruction followed by a dependent ALU instruction

This dual issue of dependent instruction pairs is a key feature in the design that
provides a significant performance increase inasmuch as the pairs of dependent
instructions mentioned above are quite common in typical code sequences.

•
•

•

•

•

•
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3.3.4 Replay and Pending Queue

The D2 stage of the decode pipeline is where instructions are inserted into
and extracted from the pending/replay queue structure. This is a single
structure with multiple read and write pointers used to hold instructions
for two purposes. The pending portion of the queue holds new instructions
that have not yet been issued whereas the replay entries in the queue hold
instructions that have recently been issued and are still in flight in the execu-
tion pipeline.

The pending queue serves two purposes. First, it prevents the stall signal
generated from the issue logic from rippling any farther up the pipeline. The
determination in D3 of how many instructions will be issued occurs very late in
the cycle. Therefore, it is important to limit the fanout of this signal to maintain
the high-frequency operation of the design. The second purpose of the pend-
ing queue is to pack the pending instructions as closely as possible so there are
always two instructions available to consider for dual issue. In the case where
only one instruction is issued, it is important that the next two instructions can
be considered together, even though they were originally sent from the fetch
unit in different cycles. The packing done by the pending queue makes this
possible and maximizes the opportunities for dual issue of instructions.

When instructions are issued, they move naturally from the pending queue
to the replay queue simply by manipulating the queue pointers. The replay
queue is the other key component, along with the static scheduling score-
board, in the Cortex-A8 fire-and-forget pipeline. As mentioned in the sched-
uling section, instructions are statically scheduled in the D3 stage based on
a prediction of when the source operand will be available. However, there
are some cases, due to stalls from the memory system, when the data will
not be available as expected. To handle these cases a recovery mechanism
is used to flush all subsequent instructions in the execution pipelines and
reissue (replay) them. The replay queue records every instruction in flight
in the integer execution pipeline. Instructions are placed in the queue before
they are issued and removed as they write back their results and retire. The
replay queue tracks the information necessary to restart instruction execu-
tion cleanly from the issue point.

The most common memory system stall is a level-1 data cache miss. There-
fore, the time taken to replay is balanced to be equal to the minimum level-2
cache hit latency of eight cycles; that is, if the instruction were stalled, rather
than replayed, it would still spend eight cycles waiting for the data to be
returned from the L2 cache. Most other causes of replay have latencies longer
than eight cycles before they are resolved. To prevent multiple replays from
occurring on a longer stall condition, an indicator from the memory system
is used to hold the first replayed instruction until the appropriate time for it
to issue.

The position of the replay queue in D2/D3 is a trade-off between perfor-
mance and area/power costs. The earlier the queue in the pipe, the deeper
but narrower it is and the greater the cycle cost of replay. At one extreme
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replay could be implemented by refetching instructions from the I-cache.
However, that would result in an unacceptably long replay penalty. At the
other extreme, replay could be implemented using a queue of all the control
signals crossing the decode–execute issue point, but that would result in an
unacceptably large structure required for the replay queue and would also
not allow it to be combined as easily with the pending queue. The best trade-
off is to position the queue in D2. This allows for the combined structure
with the pending queue and also matches well to the minimum L2 cache hit
latency.

3.3.5 Multicycle Instructions

The ARM instruction set is considered a RISC instruction set and therefore
the large majority of commonly executed instructions have a single opcode
and make one pass through the execution pipeline. However, there are a few
less commonly executed complex instructions that must be broken down
into multiple instruction opcodes and make multiple passes through the
execution pipeline. These instructions are called multicycle instructions.
Multicycle instructions are unrolled into micro-ops in the sequencer which
operates in the D1 stage. The micro-ops then move on to D2 to be queued
in the pending and replay queue. Each micro-op of a multicycle operation
is effectively treated as if it were an independent instruction. To help in the
expanding of multicycle instructions into multiple micro-ops, a temporary
register (Rtmp) is used to pass data from one micro-op to a subsequent one.
Rtmp is scheduled using the scoreboard and issue logic just as with any
other register, but it is only used to pass intermediate results between micro-
ops that are part of a single multicycle instruction. When micro-ops from a
multicycle instruction are issued, they will issue at the rate of one micro-op
per cycle. However, it is possible to pair the last micro-op with a following
independent instruction.

3.3.6 NEON SIMD Instructions

Although the bulk of advanced SIMD instruction decode takes part in the
NEON unit itself, there is still some amount of work for I-decode to perform
on these instructions. First, valid NEON and floating-point instructions are
recognized and tagged for routing to the NEON engine and any undefined
NEON instructions are trapped. Second, all NEON loads, stores, and register
transfers are decoded and scheduled because the main pipeline is responsi-
ble for providing data to the NEON unit for these instructions. Third, before
issuing NEON instructions, the decode unit must first check the number of
NEON instructions currently in flight that have not yet been consumed by
the NEON unit. If the NEON queue could overflow from too many instruc-
tions, then issue must stall until a slot in the NEON instruction queue is
free. All decoding and scheduling of NEON instructions in addition to these
cases is handled within the NEON unit.
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3.4 Integer Execute

3.4.1 Integer Execute Pipeline Overview

The integer execution unit is pipelined across the E0 to E5 stages. It is respon-
sible for doing the full execution of all ARM data processing, multiply, and
traditional branch instructions. It is also responsible for maintaining the
program counter, resolving condition codes for conditional instructions, gen-
erating addresses for load/store instructions, and prioritizing all potential
pipeline flushes due to exceptions, branch misprediction, or a memory replay.
NEON data processing instructions pass straight through the execution pipe-
line and are passed into the NEON instruction queue after the E5 stage.

The register bank is accessed in E0. Up to six registers can be read from the
register file for two instructions (a maximum of four sources per instruction).
After the register file is accessed, instructions are sent to one of two sym-
metrical ALU pipelines named Pipe-0 and Pipe-1. All instructions have an
instruction component that is sent down either Pipe-0 or Pipe-1, even load/
store, NEON, and multiply instructions that will not make use of the shifter
or ALU. This component of the instruction is used for maintaining pro-
gram order for instruction flushing, PC tracking, and data forwarding. The
multiply–accumulate unit is bound to ALU Pipe-0 and therefore multiplies
will always be the older instruction if dual issued. The load–store pipeline
can be combined and used with either Pipe-0 or Pipe-1 on an instruction-by-
instruction basis. This allows loads and stores to issue as either the older or
the younger instruction, increasing the dual-issue opportunities.

In the two symmetric ALU pipelines, the E1 stage contains the shifter and
the E2 stage includes the ALU. Most data processing operations are com-
pleted using either the shifter logic in E1 or the ALU present in E2. Some
ARM instructions require use of both the shifter and the ALU which is why
these blocks are pipelined instead of being implemented in parallel in a sin-
gle execute stage. The E3 stage is used to complete saturation arithmetic used
by some ARM data processing instructions. In E4, any change in control flow
including branch mispredictions, exceptions, and memory system replays
are prioritized and processed. The multiply pipeline does the actual multiply
operation in the E1, E2, and E3 stages. Multiply accumulate instructions do
the accumulate operation in the E4 stage. All results of ARM instructions are
written back into the register file in the E5 stage. Even when a result for an
instruction is available early, it is always written to the register file in order in
the E5 stage and made available early using forwarding logic. This prevents
the creation of any WAW hazards. See Figure 3.4.

3.4.2 Processing Flags and Conditional Instructions

As in most processor architectures, the ARM instruction set defines arith-
metic flags such as carry, overflow, sign, and the like that are used to resolve
branches and other conditional instructions. There are four of these flags
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and they are part of a larger processor status register called the CPSR. These
flag bits are difficult to scoreboard in the traditional fashion because some
instructions set just a subset of the flags. To scoreboard them properly, each
individual bit would have to be tracked in the scoreboard as a separate regis-
ter. This is too much overhead and complexity. Therefore, flags are not placed
in the scoreboard as with other registers. Instead, maintenance of the latest
values of the flags is handled within the execute unit in the E2 stage. To keep
this maintenance as straightforward as possible, all instructions that update
the flags or read the flags must do so in one of the two ALU pipelines in the
E2 stage. This way, the latest copy of the flags can live physically in the E2
stage, generated each cycle by a merging of the flag outputs from the Pipe-0
ALU and the Pipe-1 ALU. Because Pipe-0 is guaranteed to contain the older
instruction, it is always possible to create the correct final set of flags for use
in the next cycle by merging the output from both instructions. Allowing
two instructions to update the flags in parallel is particularly relevant to the
Thumb instruction set where many instructions are only available in a flag-
setting variant.

As mentioned in the architecture discussion, one of the unique features of
the ARM instruction set is that almost all ARM instructions can be made
conditional. Generally speaking, the ARM compiler makes fairly heavy
use of conditional instructions to reduce the number of short branches.
Therefore, it is important to handle the execution of conditional instruc-
tions in an efficient manner. From an architectural point of view, when an
instruction fails its condition codes and is not executed, it becomes a NOP
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(No OPeration). However, late conversion of an instruction to a NOP does not
work well in a statically scheduled machine. Therefore, conditional instruc-
tions are implemented on Cortex-A8 such that they always generate a result
regardless of whether they pass or fail their condition codes. This is done by
reading the old value of the destination register as a source operand for the
instruction. If a conditional instruction fails its condition code check, the old
destination value will be passed on as the result of the instruction that failed
its condition codes. As with all uses of the flags, condition code resolution
is done in the E2 stage of the pipeline local to the two ALUs. Inasmuch as
flags are forwarded between the ALU pipelines in the same cycle that they
are generated, back-to-back condition code setting and use in a conditional
instruction is fully supported.

On occasion, the entire Processor Status Register (CPSR) will need to be
read by an instruction, including the latest value of the flags that are stored
in the E2 stage of the execution pipeline. When a read of the full CPSR is
required, the execution pipeline must first be allowed to drain of all out-
standing operations so that the latest value of the flags can be read and
merged with the rest of the CPSR register. This means that an instruction
that reads the CPSR register will take a few additional cycles to execute.
However, these instructions are not common, so this is a good trade-off to
make in order to keep updates to the flags and condition code resolution as
efficient as possible.

3.4.3 Forwarding Paths

One of the most important features in Cortex-A8 for efficient execution of
code is the extensive support of key forwarding paths. Result data is for-
warded from the outputs of both shifters, both ALUs, the multiplier, and the
data cache. Data from each of these sources is made available for any con-
sumer instruction that requires it as soon as it is produced. Also, once data is
available for forwarding, it will continue to be available while the instruction
is in flight until its result is written into the register file in the E5 stage. Sup-
porting all of these forwarding cases requires a significant amount of data
multiplexing. However, high-frequency operation is still achievable because
the controls to steer the data to the correct pipeline are available early. Also,
any noncritical sources of data (data that was produced in a previous cycle)
can be combined early to reduce the number of critical inputs into the for-
warding multiplexer to a maximum of six in all cases.

3.4.4 Exceptions and Branches

All control flow changes for mispredicted branches and exceptions are han-
dled and prioritized at one time in the E4 stage. Resolving all branches and
exceptions together allows for a relatively simple prioritization scheme and
a single path for communicating all changes in the instruction stream to
the prefetch and decode units. This simplifies the branch resolution logic
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and the interface to the prefetch unit, and reduces the number of potential
sources of the next fetch address. The downside of processing all branches
in one stage is that you have to pick a point that is late enough in the pipe-
line for all branches to have their outcome resolved. This means a consistent,
but high, branch mispredict penalty for all types of mispredicted branches.
However, in most cases, a conditional branch is immediately preceded by
the operation that will set the condition codes. Therefore, the number of
times the branch could be resolved early is fairly small. Also, there is some
upside in performance to late branch resolution inasmuch as this allows
both the flag-setting instruction and the dependent branch to be issued in
parallel.

3.5 Memory System

3.5.1 Memory System Pipeline Overview

The Cortex-A8 memory system consists of the integer load/store pipeline, the
level-1 data cache, the level-2 data cache, and the bus interface unit. All data
memory transfers are handled by the memory system including all NEON
and floating-point load and store operations. All instruction cache misses are
also handled by the level-2 cache and bus interface unit.

The load–store pipeline runs in parallel with the two ALU pipelines in
stages E1–E3. In the E1 stage, the memory address is generated in the AGU
from the base and index register. In the E2 stage, the address is applied to
the cache arrays. In the case of a load operation, data is returned for format-
ting and forwarding in the E3 stage. In the case of a store operation, the
store data is formatted and ready to be written into the cache in the E3 stage.
Forwarding load data in the E3 stage results in a one-cycle load-use pen-
alty for the common case of load data forwarded to the ALU. The penalty
is two cycles if forwarding to a multiply, shift, or address calculation, and
the penalty is zero cycles in the case of forwarding to a subsequent store
instruction.

In the case of an L1 data cache load miss, a replay sequence occurs as
described in the decode section and the miss request is sent to the level-2
cache pipeline. The latency for a level-2 cache access is a minimum of eight
cycles. The L1 cycle is an arbitration stage where the next request to pro-
cess is chosen among all pending requests from the load–store unit, instruc-
tion fetch unit, and many other cases. The L2 and L3 stages are where the
tag RAM is accessed. In the L4 stage, it is determined whether a cache hit
has occurred. If the access resulted in a cache hit, the data RAM is accessed
in the L5 and L6 stages. In the L7 stage, data is returned to the load–store
unit, and it is formatted and forwarded to the load instruction in the L8
stage. The load–store and L2 pipelines can be seen in the pipeline diagram
in Figure 3.5.
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3.5.2 Level-1 Data-Side Memory System Structure

The D-side memory system uses many of the same components found in the
instruction cache including using the same data array, the tag array, the TLB,
and the HVAB array. Like the instruction cache, the data cache size is con-
figurable between 16 KB and 32 KB. Also like the instruction cache, it is four-
way set associative, physically addressed, has a 32-entry TLB, and uses a
hash virtual address buffer (HVAB) way indicator scheme to improve timing
and reduce power dissipation. Although many things are similar, there are
also other additional components in the data-side memory system that are
not required for the instruction cache. These include the integer store buffer,
the NEON store buffer, and the data alignment and forwarding logic.

ARM integer stores pass through a three-entry, 64-bit store buffer with byte
gathering (merging) on all entries before entering the data cache. This buffer
is needed because stores are still speculative in the E3 stage and data should
not be written into the cache until it is nonspeculative two cycles later. In
addition, the buffer merges any subsequent stores that are to the same 64-bit
location as one of the buffer entries. This store merging saves power because
it reduces the number of required cache accesses. Full forwarding from the
store buffer to subsequent load instructions is supported. So, no performance
is lost from waiting to commit stores to the data cache. NEON stores pass
through an eight-entry, 128-bit store buffer. The NEON stores have a deeper
buffer than integer stores because the NEON pipeline follows the ARM pipe-
line and store data will not be provided from the NEON engine, allowing the
buffer entry to retire, until the N3 stage of the NEON pipeline. Once a store
is placed in the NEON store buffer in the E3 stage, data hazard checking is
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performed to compare with all subsequent memory operations (both ARM
integer and NEON). Assuming no hazard condition exists, these subsequent
operations are allowed to complete and the NEON store is nonblocking. If an
address hazard is detected, then the subsequent memory request will replay
and wait for the NEON store to complete.

The level-1 data-side memory system supports reading or writing 64 bits
per cycle for integer load and store instructions and 128 bits per cycle for
NEON load and store instructions. Nonword-aligned reads are supported
without additional latency in cases where the entire access falls completely
within a naturally address-aligned 128-bit region. Nonword-aligned writes
are supported without additional latency in cases where the access falls com-
pletely within a naturally address-aligned 64-bit region.

3.5.3 Nonblocking NEON Loads

NEON load operations that miss in the level-1 data cache do not generate
a replay sequence. Instead, the missed request is passed from the level-1
memory system to the level-2 memory system. When data is returned from
the level-2 memory system, it will be sent directly to the NEON load data
queue and will not be returned to the level-1 memory system. In this way,
NEON can stream data directly from the level-2 cache as if it were a level-1
cache. This is very useful for NEON applications because media code tends
to work on streaming datasets that are more likely to miss in the L1 and
often even the L2 cache. Therefore, it is beneficial for NEON performance to
stream accesses with multiple misses outstanding with data coming from
the L2 and also from the external memory system directly to NEON.

3.5.4 Level-2 Cache Structure

The level-2 cache is physically addressed, has a 64-byte line size, and is eight-
way set associative with a random replacement policy. Write-back, write-
through, and write-allocate policies are all supported, but write-allocate is
the default, high-performance option. The cache size is configurable to be
anything from 1 MB to 128 KB in size. A 0-KB size is also supported in the
case where no L2 cache is desired. In the 0-KB scenario, the cache control
logic is also removed from the design for additional area and power savings.
The cache is pipelined to support multiple accesses in flight at once but RAM
accesses take at least two cycles so four-way banking is implemented to
allow back-to-back access for streaming data. For large cache sizes it is pos-
sible to configure wait states to allow more than two cycles to access the tag
and data RAMs. The external bus interface is configurable to be either 128-
or 64-bits wide and it supports multiple outstanding requests. The interface
to the level-1 memory system includes a 128-bit read interface and a 128-bit
write interface. This allows for efficient linefill operations that can complete
in just four cycles.
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3.5.5 Memory System Request Buffers

The memory system contains request buffers that all arbitrate for access to
the level-2 cache and to the external memory system. This arbitration is done
in the first stage of the level-2 cache pipeline. All requests, whether an initial
request from the level-1 memory system, or a linefill request from the exter-
nal memory system, arbitrate for cache access at this same point and then
flow through the L2 pipeline. This simplifies hazard checking and reduces
the complexity required to maintain proper memory transaction ordering
rules.

There are three types of buffers that arbitrate for cache access: miss buf-
fers, write buffers, and victim buffers.

3.5.5.1 Miss Buffers

The L2 unit includes three sets of miss buffers to track outstanding level-1
read misses for a total of 14 possible pending L2 read requests:

IMB, Instruction-side Miss Buffer
DMB, Integer Data-side Miss Buffer
NMB, NEON (data) Miss Buffer

The 1-entry IMB holds the pending read request from the instruction-side
memory subsystem. There can be only one outstanding request on the instruc-
tion side. The 1-entry DMB and 12-entry NMB hold pending read requests
from the data-side memory subsystem. The DMB contains any pending read
request for an ARM integer load instruction. The NMB holds up to 12 out-
standing read requests for NEON and floating-point load instructions. ARM
integer code can only have one outstanding read miss because the level-1
memory system is blocking after the first load miss for ARM integer loads.
However, as mentioned in the earlier section, the level-1 memory system is
nonblocking for NEON load misses to allow streaming of data from the L2
cache or external memory to NEON.

3.5.5.2 Write-Combining and Write Buffer

The L2 unit has an eight-entry, 128-bit wide write buffer and a two-entry
128-bit wide write combining buffer to handle subblock writes. Write com-
bining is performed on incoming write requests to the same quadword. If
the incoming write request is to a different quadword, the current contents
of the write-combining buffer are transferred to the write data buffer and
the incoming request is placed in the write-combining buffer. This write-
combining capability saves power by reducing multiple writes to the same
quadword down to a single store, and it also improves performance for the
same reason.

•
•
•
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Once valid, an entry in the write buffer will arbitrate for access to the L2
cache. If the write access results in a cache miss, the L2 unit supports write-
allocate. Therefore, a victim buffer will be allocated and an L3 linefill request
will be initiated similar to an L2 read miss.

As an additional optimization, if the full cache line is written, the level-2
line is simply marked dirty and no external memory requests are required.
Of course, write accesses for the victim line may still be required. This
optimization results in both a power and performance improvement in store
streaming scenarios.

3.5.5.3 Victim Buffer

The L2 unit has a four-entry victim buffer to handle linefills and evictions.
Each entry in the victim buffer (VB) can hold a full cache line of data (64
bytes). When a load or store request misses in the L2, a victim buffer is allo-
cated to perform the linefill request. Once data has been returned from the
L3 system, the VB will arbitrate for the L2 cache to read out the victim data
and write in the fill data, essentially performing a swap. If the L2 victim is
dirty, the VB will schedule a write-back of the L2 data to the L3 memory sys-
tem. Each victim buffer uses a unique ID on the external bus, which allows
for multiple requests outstanding at the same time and also allows the data
from these requests to be returned out of order.

3.6 NEON Media Processing Engine

3.6.1 NEON Pipeline Overview

The NEON unit processes the advanced SIMD instruction set that consists of
32-bit SIMD integer and floating-point instructions that can operate on 128-
bit, 64-bit, 32-bit, 16-bit, or 8-bit data values. These instructions were added
to greatly accelerate processing of media-style workloads such as audio and
video filters and codecs. The NEON unit also executes all ARM floating-
point instructions from the pre-existing VFP instruction set. It makes sense
for the NEON unit to execute both the new advanced SIMD instructions and
the pre-existing VFP floating-point instructions because they share the same
register file and load/store instructions.

The NEON media processing engine’s pipeline starts at the end of the main
integer pipeline. As a result, all instruction speculation is resolved before
instructions reach the NEON pipeline. This reduces the complexity of the
NEON Unit and also allows for a zero-cycle load-use penalty in most cases,
even when data is returned from the L2 cache, due to the decoupling buffers
used to hold pending instructions and data. The cost of putting the NEON
engine at the end of the main integer pipeline is the longer delay required
for writing values from the NEON register file to the ARM register file.
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However, this forwarding of data from a NEON register to an ARM register
is not commonly seen in media code.

The NEON unit is decoupled from the ARM integer pipeline by the 16-entry
NEON instruction queue (NIQ). NEON can receive up to two valid NEON
instructions from the integer execute unit. Once there are enough instruc-
tions sent to NEON to fill the queue, the decode unit will wait until entries
have been deallocated from the NIQ before sending any more instructions.
In a similar fashion to what is seen on the instruction side, NEON is also
decoupled from the memory system by the 12-entry load data queue. The load
data queue can receive data from either the level-1 data cache or the level-2
memory system and this data can be received out of order. Store data is written
out from the N3 stage in the NEON execution pipeline to the NEON store buf-
fer. All the interfaces between the NEON engine and the other components
of the processor can be seen in Figure 3.6.

3.6.2 NEON Pipeline

The NEON engine has its own pipeline that begins at the end of E5 and is a
ten-stage pipeline. NEON instructions are either read from the instruction
queue or directly from the E5 pipestage when the queue is empty. Instruc-
tions are always issued and retired in order.

NEON has four decode stages, M0–M3, and six execute stages, N1–N6.
The four decode stages in M0–M3 are very similar in structure and design
to the four decode stages D0–D4 seen in the main pipeline. The first two
stages are used to decode the instruction resource and operand require-
ments and the later two stages are used for instruction scheduling. A static
scoreboard with a fire-and-forget issue mechanism is used for the NEON
pipeline in a similar way to what is seen in the ARM integer pipeline with
the key difference being no requirement for a replay queue because there are
no conditions under which a pipeline flush can occur.
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The NEON decode logic is capable of dual issuing any LS permute instruc-
tion with any non-LS permute instruction. Dual-issuing these combinations
of instructions requires fewer register ports than would be needed for dual-
issuing two data processing instructions because LS data is provided directly
from the load data queue. It is also the most useful pairing of instructions to
dual-issue because significant load–store bandwidth is required to keep up
with the advanced SIMD data processing operations.

The 32-entry register file is accessed in the M3 stage when the instruction(s)
is (are) issued. Once issued, an instruction will be sent to one of seven execu-
tion pipelines: integer multiply, integer shift, integer ALU, NFP add, NFP
multiply, IEEE floating point, or load/store permute. All execution datapath
pipelines are balanced at six stages. The ten stages of the NEON pipeline
including all the execution pipelines, can be seen in Figure 3.7.

3.6.3 NEON Execution Pipelines

NEON has three SIMD integer pipelines, a load–store/permute unit, two
SIMD single-precision floating-point pipelines, and a nonpipelined IEEE
compliant floating-point engine. All NEON and floating-point instructions
are processed by one or more of these execution pipelines.

3.6.3.1 NEON Integer Pipelines

There are three execution pipelines responsible for executing NEON inte-
ger instructions, an integer multiply–accumulate (MAC) pipeline, an inte-
ger shift pipeline, and an integer ALU pipeline. The MAC unit consists of
two 32 × 16 multiply arrays with two 64-bit accumulate units. The 32 × 16
multiplier array can perform four 8 × 8, two 16 × 16, or one 32 × 16 multiply
operation in each cycle. The accumulate units have dedicated register read
ports for the accumulate operand. The MAC unit is also optimized to sup-
port one multiply–accumulate operation per cycle for high performance on a
sequence of MAC operations with a common accumulator.

The shift pipeline consists of three stages and is therefore a bit shorter than
the other NEON pipelines. When only a shift result is required, it is made
available early for subsequent instructions at the end of the N3 stage. Some
instructions do a shift and accumulate operation. For these instructions,
the result from the shift pipeline is forwarded to the MAC pipeline to com-
plete the accumulate operation.

The NEON integer ALU consists of two 64-bit SIMD ALUs operating in
parallel, with four 64-bit inputs. The first stage of the ALU pipeline, N1, is
responsible for formatting the operands to be used in the next cycle. This
includes inverting operands as needed for subtract operations, multiplexing
vector element pairs for folding operations, and sign/zero-extend of oper-
ands. The N2 stage contains the main ALU which is responsible for all NEON
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SIMD integer add, subtract, logical, count leading-sign/zero, count set, and
sum of element pairs operations. If this is the only operation required by the
instruction, then the result is available for forwarding at the end of the N2
stage. The flags are also calculated in the N2 stage, to be used in the follow-
ing stage. The N3 stage is responsible for the compare, test, and max/min
operations and for saturation detection. It also has a SIMD incrementor for
generating two’s complement and rounding operations, and data formatter
for high-half and halving operations. Similar to the shift pipeline, the ALU
pipeline can also make use of the MAC accumulator in stages N4 and N5 for
completing the final stages of the absolute-difference-accumulate operation.

3.6.3.2 NEON Load-Store/Permute Pipeline

The permute pipeline is fed by the load data queue (LDQ). The LDQ holds
all data associated with NEON load accesses prior to entering the NEON
permute pipeline. It is 12 entries deep and each entry is 128-bits wide. Data
can be placed into the LDQ from either the L1 cache or L2 memory system.
Accesses that hit in the L1 cache will return and commit the data to the LDQ.
Accesses that miss in the L1 cache will initiate an L2 access. A pointer is
attached with the load request as it proceeds down the L2 memory system
pipeline. When the data is returned from the L2 cache, the pointer is used to
update the LDQ entry reserved for this load request.

Each entry in the LDQ has a valid bit to indicate valid data returned from
the L1 cache or L2. Entries in the LDQ can be filled by L1 or L2 out of order,
but valid data within the LDQ must be read in program order. Entries at the
front of the LDQ are read off in order. If a load instruction reaches the M2
issue stage before the corresponding data has arrived in the LDQ, then it will
stall and wait for the data.

L1 and L2 data that is read out of the LDQ is aligned and formatted to be
useful for the NEON execution units. Aligned/formatted data from the LDQ
is multiplexed with NEON register read operands in the M3 stage before it is
issued to the NEON execute pipeline.

The NEON LS/permute pipeline is responsible for all NEON load–stores,
data transfers to or from the integer unit, and data permute operations. One
of the more interesting features of the NEON instruction set is the data per-
mute operations that can be done from register to register or as part of a load
or store operation. These operations allow for the interleaving of bytes of
memory into packed values in SIMD registers. For example, when adding
two 8-byte vectors, you may wish to interleave all of the odd bytes of memory
into register A and the even bytes into register B. The permute instructions
in NEON allow you to do operations such as this natively in the instruction
set and often with only using a single instruction.

This data permute functionality is implemented by the load–store permute
pipeline. Any data permutation required is done across two stages, N1–N2.
In the N3 stage, store data can forwarded from the permute pipeline and sent
to the NEON store buffer in the memory system.
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3.6.3.3 NEON Floating-Point Pipelines

The NEON floating-point (NFP) has two main pipelines: a six-stage multi-
ply pipeline and a six-stage add pipeline. The add pipeline adds two single-
precision floating-point numbers, producing a single-precision sum. The
multiply pipeline multiplies two single-precision floating-point numbers,
producing a single-precision product. In both cases, the pipelines are two-
way SIMD, which means that two 32-bit results are produced in parallel
when executing NFP instructions. Most classic ARM VFP single-precision
floating-point instructions can also be executed in the NFP pipeline when
IEEE-compliant mode is not enabled. When executing multiply–accumulate
instructions, both pipelines are used back-to-back to produce the final result.

3.6.3.4 IEEE-Compliant Floating-Point Engine

The IEEE-compliant floating-point engine is a nonpipelined implementation
of the ARM floating-point instruction set targeted for medium performance
IEEE 754-compliant and double-precision floating-point. It is designed to
provide general-purpose floating-point capabilities for a Cortex-A8 proces-
sor. This engine is not pipelined for most operations and modes, but instead
iterates over a single instruction until it has completed. A subsequent opera-
tion will be stalled until the prior operation has fully completed execution
and written the result to the register file. The IEEE-compliant engine will be
used for any floating-point operation that cannot be executed in the NEON
floating-point pipeline. This includes all double-precision operations and
any floating-point operations run with IEEE precision enabled.

3.7 Implementation and Deployment

ARM is a provider of intellectual property. This means ARM does not manu-
facture any silicon, but instead provides complete processor designs to the
customer, typically a silicon vendor. The silicon vendor will then integrate the
ARM processor as an embedded component in one or more of their system-on-
chip (SoC) products. ARM will typically provide the same processor design
to multiple customers. This creates additional design challenges because
each silicon vendor will have a different fabrication process and therefore
will need a slightly different mask set to fabricate the design. This is normally
dealt with by providing “soft” deliverables for the design. Soft IP means the
customer is provided with an RTL-level description of the design along with
a set of implementation scripts that can be used to synthesize, place, and route
the design in a way specific to their design libraries and process.

Delivering soft IP gives a lot of flexibility to the customer, including the
ability to configure some features in the design such as external bus widths
and cache sizes. However, there are limitations as well. Delivering soft IP
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means that the design will need to be fully synthesized and not make use of
any of the advanced implementation techniques that are commonly used in
the development of high-performance processors.

For Cortex-A8 to hit the top performance targets desired by its custom-
ers, support for advanced implementation techniques would be required. At
the same time, Cortex-A8 would need to still support the traditional soft IP
delivery method for customers for whom time to market and flexibility were
more important than achieving top performance. Customers who wish to
quickly implement and deploy the processor with a small team can do so
using the soft IP flow. However, customers who wish to target higher per-
formance levels can do so as well by using a larger team to build portions of
the design using an advanced implementation flow. Designs implemented
using both the soft and advanced flows are logically identical and share the
same RTL code base. In this way, the requirements of the full customer base
can be met with a single design. To help minimize the cost of building an
advanced implementation, ARM provides a reference design to customers
who want to take advantage of the advanced implementation flow. This ref-
erence design minimizes the effort required from the customer to only the
activities that are unique to their specific process. Also, to keep the cost of
the advanced implementation as low as possible, the advanced techniques
are used strategically only in the areas that provide the most benefit. A large
majority of the design can still be implemented using a standard synthesis
flow and the additional benefits from using the advanced implementation
will still be realized.

3.8 Conclusion

This chapter has gone through the details of the Cortex-A8 microarchitec-
ture describing the design along with some of the background behind the
decisions made along the way. The end result is a processor design that is
uniquely placed in the market because of the fine balance it achieves between
high performance and low power operation.
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processor clock speed to obtain adequate performance. Applications such 
as high-definition (HD) multistandard video processing require almost con-
tinuous processing at the highest performance level. Because power use is 
highly dependent on frequency, very little power savings can be achieved in 
these high-compute applications by varying clock frequencies to minimize 
power use during less-demanding program segments. Use of a flexible par-
allel architecture is an important means to provide high performance with-
out having a high dependence on the clock rate.

As an example, the high-profile H.264/AVC video encoding standard for 
picture sizes of 1920 1080 and larger represents one of the most computa-
tionally intensive algorithms to be implemented in future commercial and 
consumer products. The performance requirements greatly exceed the capa-
bilities of current generation multigigahertz general-purpose processors. In 
addition, the video encoding standards require a great deal of flexibility to 
support the numerous coding tools, such as the discrete cosine transform, 
support for adaptive block sizes, intraspatial prediction, intertemporal predic-
tion, support for interlaced coding and lossless representation, and deblock-
ing filtering, to name only a few [1]. This flexibility requirement imposes 
programmable capability in the encoding hardware. To address these video 
requirements and provide an alternative to obtaining performance from a 
high-speed clock, a processor requires a highly flexible approach to paral-
lel processing. The RACE-Hypercube  processor, running at relatively low 
clock frequencies, provides multiple forms of selectable parallelism and an 
architecture that is moldable to an application.

To meet the performance and flexibility requirements in a cost-effective 
manner the RACE-H  processor provides a hybrid architecture consisting 
of a scalable array processor enhanced with a scalable array of application-
specific hardware-assist coprocessing units. To make such a hybrid proces-
sor widely available at low cost requires the use of standard design practices 
that allow the design to be fabricated at multiple semiconductor suppliers. 
This means that custom-designed SOCs, optimized to a particular manufac-
turing process, cannot be easily used. Consequently, the standard approach 
of increasing clock speed on an existing design in an attempt to meet higher 
performance requirements is not feasible.

The need to support multiple standards, such as MPEG-2, MPEG-4, and 
VC-1 standards as SMPTE 421M, and to quickly adapt to changing standards, 
has become a product requirement [2]. To satisfy this need, programmable 
DSPs and control processors are being increasingly used as the central SOC 
design component. These processors form the basis of the SOC product plat-
form and permeate the overall system design including the on-chip memory, 
DMA, internal buses, and the like. Consequently, choosing a flexible and 
efficient processor, which can be manufactured by multiple semiconductor 
suppliers, is arguably the most important intellectual property (IP) decision 
to be made in the creation of an SOC product.

In recent years, a class of high-performance programmable processor IP has 
emerged that is appropriate for use in high-volume embedded applications 
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such as digital cellular, networking, communications, video, and console 
gaming [3,4,5]. This chapter briefly describes the RACE-H  processor as an 
example of the architectural features needed to meet the highest demands of 
the H.264.AVC high-profile video encoding requirements. The next section 
provides a brief description of the RACE-H  architecture. Section 4.2, titled 
“The RACE-H  Processor Platform,” describes how the RACE-H  archi-
tecture fulfills system requirements, with a focus on the DMA subsystem 
and development tools. The “Video Encoding Hardware Assists” section 
briefly discusses examples for processor element hardware assists. The “Per-
formance Evaluation” section presents performance results and projections 
and Section 4.6 concludes the chapter.

4.2 The RACE-HTM Architecture

In numerous application environments, there is a need to significantly aug-
ment the signal-processing capabilities of a MIPS, ARM, or other host proces-
sor. The RACE-H  processors provide streamlined coprocessor attachment 
to MIPS, ARM, or other hosts for this purpose. The RACE-H  architecture 
offers multiple forms of parallelism that are selectable at each stage of devel-
opment, from SOC definition through software programming. Through 
selectable parallelism, the RACE-H  processors achieve high performance 
at relatively low clock rates, thereby minimizing power use.

These forms of parallelism include 14 degrees of parallelism that may be 
selected. The first degree concerns the number of very long instructional 
word (VLIW) slots that are executed. The total number of slots available for 
execution is determined at implementation time where up to eight instruc-
tion slots may be implemented in the RACE-H  architecture. The number 
of slots that may be executed up to the maximum number implemented can 
then be selected and vary instruction by instruction during program execu-
tion. The second degree includes the determination of supported application-
specific instructions and the selection of the appropriate instructions for 
algorithmic operations. The third degree concerns the number and type of 
selectable application-specific hardware assists implemented in each process-
ing element (PE), allowing program control over the enabling and operation 
of each hardware assist. By attaching hardware assists to each PE, the hard-
ware assist capability of the core scales with the RACE-Hypercube dimen-
sions. The fourth degree is determining the number of PEs to implement and 
for specific algorithmic use to mask the PE array as needed for optimum power 
and performance efficiency. The fifth degree concerns operating the core as a 
single-issue uniprocessor for control single-thread operation. The sixth degree 
concerns operating the core as a variable-length indirect VLIW (iVLIW) uni-
processor for increased performance in uniprocessor tasks. The seventh degree 
supports operating each PE as a single-issue PE for all enabled PEs. The eighth 
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degree supports operating each PE as a variable-length iVLIW issue PE for 
all enabled PEs. The ninth degree allows the selection of 32-bit packed data 
operations, including single 32-bit, dual 16-bit, and quad 8-bit operations 
which can be mixed on each instruction slot in a VLIW. The tenth degree 
allows the selection of 64-bit packed data operations, including single 64-bit, 
dual 32-bit, quad 16-bit, and octal 8-bit operations that can be mixed with 
each other and with packed 32-bit data operations on each instruction slot 
in a VLIW. The eleventh degree concerns conditionally executing instruc-
tions independently within a VLIW and independently within each PE. The 
twelfth degree supports the independent selection of mesh, torus, hypercube, 
and hypercube-complement PE-to-PE communications concurrently on the 
array with DMA, load, store, and the other execution unit operations. The 
thirteenth degree allows for independent threaded array operations across 
the number of implemented and enabled PEs to be controlled by a single 
controller and the fourteenth degree supports background DMA operations 
that may be scaled across the number of DMA lanes implemented to match 
the dimensions of the RACE-Hypercube.

To provide for these multiple degrees of freedom, the RACE-H  proces-
sor is organized as an array processor using a sequence processor (SP) array 
controller and an array of distributed indirect VLIW PEs. The SP and each PE 
is provided with a small VLIW memory (VIM) that stores program-loaded 
VLIWs, where the VLIWs may be indirectly selected for execution. By vary-
ing the number of PEs on a core, an embedded scalable design is achieved 
with each core using a single architecture. This embedded scalability makes it 
possible to develop multiple products that provide a linear increase in perfor-
mance and maintain the same programming model by merely adding array 
processor elements as needed by the application. As the processing capability 
is increased, the PE memory interface bandwidth is increased, and the system 
DMA bandwidth may be increased accordingly. Embedded scalability drasti-
cally reduces development costs for future products because it allows for a 
single software development kit (SDK) to support a wide range of products.

In addition to the embedded scalability, RACE-H  processors are configu-
rable in hardware organization and in software use of on-chip resources. 
For example, the processor hardware may be configured in the number and 
type of processor cores included on a chip, number of VLIW slots, supported 
instructions, the sizes of the SP’s instruction memory, the distributed iVLIW 
memories, the PE/SP data memories, and the I/O buffers, selectable clock 
speed, choice of on-chip peripherals, and DMA bus bandwidth. The proces-
sor software may configure the use of the hardware dynamically instruction 
by instruction. Multiple RACE-H  processors may also be included on a 
chip and organized for data pipeline multiprocessing between the multiple 
SP/PE-array processors. Within a RACE-H  processor, the parallelization of 
subapplication tasks may also use forms of thread parallelism with a central-
ized host-based control, described later in this chapter.

Figure 4.1 shows the major architectural elements that make up a typical 
RACE-H  processor. The RACE-H  processor combines PEs in clusters that 
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also contain a sequence processor (SP), uniquely merged into the PE array, 
and a cluster-switch. The SP provides program control, contains instruction 
and data address generation units, and dispatches instructions fetched from 
the SP instruction memory to the PEs in the array. Both the SP and PEs each 
include a common set of execution units using the same indirect VLIW archi-
tecture for all processing elements. Figure 4.1 illustrates a five-issue variable 
length VLIW organization where the instruction set is partitioned into store, 
load, execute 1 (EX1), execute 2 (EX2), and execute 3 and communicate (EX3/C) 
instruction slots. The architecture is easily expandable to support the addi-
tion of another load unit and additional execution units.

The RACE-H  processor is designed for scalability with a single archi-
tecture definition and a common toolset. The processor and supporting 
tools are designed to optimize the needs of a SOC platform by allowing a 
designer to balance an application’s sequential control requirements with 
the application’s inherent data parallelism. This is accomplished by hav-
ing a scalable architecture that begins with a simple uniprocessor model, as 
used on the SP, and continues through multi-array processor implementa-
tions. The RACE-H  architecture supports a reasonably large array proces-
sor, as well as a simple stand-alone uniprocessor, the SP. In more detail, a 
RACE-H2×2 , RACE-H4×4 , and RACE-H4×4×4 , are shown in Figure 4.2. The 
RACE-H  architecture allows organizations with multiple SPs where each 
SP controls a subcluster of PEs. For example, a 4 4 may be made up of four 
2 2 clusters each with their own SP or a 4 4 may be configured with only a 
single SP controlling the 16 PEs. In a similar manner, a 4 4 4 3D-cube may 
have multiple configurations of SPs and PEs depending upon a product’s 
requirement.

The RACE-H  architecture uses a distributed register file model where the 
SP and each PE contain their own independent compute register file (CRF), 
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112 Unique Chips and Systems

up to eight execution units (five shown), a distributed very long instruction 
word memory (VIM), local SP instruction memory, local PE instruction 
memory, local data memories, and an application-optimized DMA and bus 
I/O control unit. The CRF is reconfigurable dynamically to act as a 32 32-
bit or 16 64-bit register file instruction by instruction and can vary within 
a VLIW and is totally integrated into the instruction set architecture. An 
8 32-bit address register file (ARF) and a 24 32-bit miscellaneous register 
file (MRF) are also defined in the instruction set architecture. Extending to 
support 128-bit wide and larger width register files is also architecturally 
supported. The balanced architectural approach taken for the CRF provides 
the high- performance features needed by many applications. It supports 
octal byte and quad halfword operations in a logical 16 64-bit register file 
space without sacrificing the 32-bit data-type support in the logical 32 32-
bit register file. Providing both forms of packed data independently on each 
execution unit allows optimum usage of the register file space and minimum 
overhead in manipulating packed data items.

In the RACE-H  architecture, the address registers are separated from 
the compute register file. This approach maximizes the number of registers 
for compute operations and guarantees a minimum number of dedicated 
address registers. It does not require any additional ports from the compute 
register file to support the load and store address generation functions and 
it still allows independent PE memory addressing for such functions as local 
data dependent table lookups.

The RACE-H  instruction set is partitioned into four groups using the 
high two bits of the instruction format: a control group, an arithmetic group, 
a load–store group, and a reserved proprietary instruction group. Figure 4.3 
shows 32-bit simplex instructions in groupings that represent an example 
of five execution unit slots of a VLIW plus a control group (01). Up to eight 
execution slots are architecturally defined allowing for additional load and 
execution units. Group (00) is reserved for future use. The execution units 
include store and load units and a set of execution units. For example, a first 
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execution unit is EX1, supporting arithmetic instructions. A second execution 
unit is EX2, supporting, for example, multiply, multiply accumulate, and 
other arithmetic instructions. A third execution unit is EX3/C, supporting 
data manipulation instructions such as shift, rotate, permute, bit operations, 
various other arithmetic instructions, PE-to-PE communication, and hard-
ware-assist interfacing instructions.

Providing a common set of execution units is also supported by the archi-
tecture. The load and store instructions support base plus displacement, 
direct, indirect, and table addressing modes. In addition, many application-
specific instructions are used for improved signal-processing efficiency. An 
example of these instructions is the set of multiply complex instructions for 
improved FFT performance described in reference [6]. In addition, the load 
unit and EX3/C unit have tightly coupled machine (TCM) instructions which 
are used to control hardware-assist coprocessors attached to each PE. Any 
of the five slots of instructions can be selected on a cycle-by-cycle basis, for 
single-, two-, three-, four-, or five-issue VLIWs, in this particular five-issue 
VLIW example. The single RACE-H  instruction set architecture supports 
the entire RACE-H  family of cores from the single merged SP/PE0 1 1
to any of the highly parallel multiprocessor arrays (1 2, 2 2, 2 4, 4 4, 
4 4 4, …); for more details see reference [7].

The control and branch instructions are executed by the SP and in the 
PEs, when the PEs are operating independently. The SP and PEs are also 
capable of indirectly executing VLIWs that are local to the SP and in each 
PE. Note that VLIWs are stored locally in VLIW memories (VIMs) in each 
PE and in the SP and are fetched by a 32-bit execute VLIW (XV) instruction. 
To minimize the effects of branch latencies, a short variable pipeline is used 
consisting of Fetch, Decode, Execute, and ConditionReturn for non-iVLIWs 
and Fetch, PreDecode, Decode, Execute, and ConditionReturn for iVLIWs. 
The PreDecode pipeline stage is used to indirectly fetch VLIWs from their 
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local VIMs. It is noted that an XV instruction supplies an offset address to 
a local VIM control unit, which computes a VIM address based on a local 
VIM base address register. In addition, the VLIWs located at the same VIM 
address in different PEs do not have to be the same VLIW. These architectural 
features allow for independent program action at each PE, referred to as syn-
chronous multiple instruction multiple data (SMIMD) operation. In addition, 
an extensive scalable conditional execution approach is used locally in each 
PE and the SP to minimize the use of branches.

All loads–stores and arithmetic instructions execute in one or two cycles 
with no hardware interlocks. The TCM instructions initiate multicycle oper-
ations that execute independently of other PE instructions. Furthermore, all 
arithmetic, load–store, and TCM instructions can be combined into VLIWs, 
stored locally in the SP and in each PE, and can be indirectly selected for 
execution from the small distributed VLIW memories. In one of the sup-
ported architectural approaches, a Load iVLIW (LV) instruction is used by 
the programmer or compiler to load individual instruction slots making up a 
VLIW with the 32-bit simplex instructions optimized for the algorithm being 
programmed. These VLIWs are used for algorithm performance optimiza-
tion, are reloadable, and require only the use of 32-bit execute VLIW (XV) 
instructions in the program stored in the SP instruction memory.

Many algorithms require an additional level of independent operations 
at each PE. The RACE-H  architecture supports independent and scal-
able program thread operations on each PE. Figure 4.4 illustrates a scal-
able thread flowchart of independent and scalable thread operations for the 
RACE-H4×4 . The SP controls the thread operation by issuing a thread start 
(Tstart) instruction. The Tstart instruction is fetched from SP instruction 
memory and dispatched to the SP and all PEs. Based on the Tstart, each PE 

SP Imem Instr.
.
.
.

SP Imem Instr.

SP Imem Tstart

PE0 Local Instr.
.
.
.

PE0 Local Instr.
PE0 Local Tstop

PE1 Local Instr.
.
.
.
.
.

PE1 Local Instr.

PE1 Local Tstop
...

PE15 Local Instr.
..
.
.

PE15 Local Instr.

PE15 Local Tstop

SP Imem Instr.
SP Imem Instr..

.

.

FIGURE 4.4
4 4 independent PE threads.



A Rotated Array Clustered Extended Hypercube Processor 115

switches to local independent PE operations fetching PE local instructions 
from PE instruction memory. The PE instruction memory may store all types 
of PE instructions including PE branch instructions and a thread stop (Tstop) 
instruction. As shown in Figure 4.4, each PE operates independently until its 
operations are complete, at which point each PE fetches a Tstop instruction. 
A Tstop instruction causes the PE to stop fetching local PE instructions and 
then to wait for SP dispatched instructions. Once all PEs have completed 
their local independent operations, the SP continues with its fetching opera-
tion from the SP instruction memory and dispatches PE instructions to the 
array. In SIMD operations, a dedicated bit in all instruction formats controls 
whether an instruction is executed in parallel across the array of PEs or 
sequentially in the SP.

To more optimally support the PE array containing the distributed register 
files, the RACE-H  network is integrated into the architecture providing 
single-cycle data transfers within PE clusters and between orthogonal clus-
ters of PEs. The EX3/C communication instructions can also be included into 
VLIWs, thereby overlapping communications with computation operations, 
which in effect reduces the communication latency to zero. The RACE-H
network operation is independent of background DMA operations which 
provide a data streaming path to peripherals and global memory.

The inherent scalability of the RACE-H  processor is obtained in part 
through the advanced RACE-Hypercube  network which interconnects the 
PEs. Consider, by way of example, a two-dimension (2D) 4 4 torus and the 
corresponding embedded 4D hypercube, written as a 4 4 table with row, 
column, and hypercube node labels. (See Figure 4.5A.)

In Figure 4.5A, the PEi,j cluster nodes are labeled in Gray-code as follows: 
PEG(i),G(j) where G(x) is the Gray code of x. The array of Figure 4.5A is trans-
formed by a series of operations that rotate columns of PEs. First, columns 2, 
3, and 4 are rotated one position down. Next, the same rotation is repeated 
with columns 3 and 4 and then, in a third rotation, only column 4 is rotated. 
The resulting 4 4 table is shown in Figure 4.5B.
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Notice that the row elements in Figure 4.5B, for example {(1,0), (0,1), (3,2), (2,3)}, 
contain the transpose PE elements. By grouping the row elements in clusters of 
four PEs each, and completely interconnecting the four PEs in a cluster, connec-
tivity among the transpose elements is obtained and extends the connectivity 
beyond the connectivity provided by a hypercube. In the new matrix of PEs, 
the east and south wires, as well as the north and west wires, are connected 
between adjacent clusters. For example, using Figure 4.5A note that node (2,3) 
connects to the east node (2,0) with wraparound wires in a torus arrangement. 
Node (2,3) also connects to the south node (3,3). Now, using Figure 4.5B, note 
that nodes (2,0) and (3,3) are both in the same row cluster adjacent to the row 
cluster containing node (2,3). This means that the east and south wires can 
be shared and, in a similar manner, the west and north wires can be shared 
between all clusters. This same pattern occurs for all nodes in the transformed 
matrix. This effectively cuts the wiring in half as compared to a standard torus, 
and without affecting the performance of any SIMD array algorithm.

Because the rotating algorithm maintains the connectivity between the 
PEs, the normal hypercube connections remain. For example, in Figure 4.5B, 
PE (1,0/0100) can communicate to its nearest hypercube nodes {(0000), (0101), 
(0110), (1100)} in a single step. With the additional connectivity in the clusters 
of PEs, the longest paths in a hypercube, where each bit in the node address 
changes between two nodes, are all contained in the completely connected 
clusters of processor nodes. For example, the circled cluster contains node 
pairs [(0100), (1011)] and [(0001), (1110)] which would take four steps to com-
municate between each pair in previous hypercube processors, but takes 
only one step to communicate in the RACE-H  network. These proper-
ties are maintained in higher-dimensional RACE-H  networks containing 
higher-dimensional tori, and thus hypercubes, as subsets of the RACE-H
connectivity matrix. The complexity of the RACE-H  network is small and 
the diameter, the largest distance between any pair of nodes, is two for all d
where d is the dimension of the subset hypercube [8]. The distance between 
mesh, torus, hypercube, and hypercube-complement nodes is one.

4.3 The RACE-HTM Processor Platform

The RACE-H  processors are designed to act as independent processors that 
may attach to ARM, MIPS, or other hosts. The programmer’s view of a RACE-
H  multiprocessor is a shared memory sequentially coherent model where 
multiple processors operate on independent processes. With this model, an 
SOC developer can quickly utilize the signal-processing capabilities of the 
RACE-H  core subsystems because the operating system already runs on 
the host processors. In its role as an attached coprocessor, the RACE-H  core 
is subservient to the host processor. A core driver running on the host oper-
ating system manages all the RACE-Hypercube processor resources on the 
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core. A RACE-H  system interface allows multiple RACE-H  cores to be 
attached to a single-host processor.

To complement the configurable hardware, there is a RACE-H  library of 
both DSP and control software routines. In addition, existing host-optimized 
compilers may be used for the sequential code that remains resident on the 
host allowing the parallel code to be optimized for the RACE-H  cores.

Data and control communication between thread coprocessors and sys-
tem components (such as a host control processor, memories, and I/O) is 
carried out using a DMA subsystem, one or more system data buses (SDBs), 
and a system control bus (SCB). The SDB provides the high bandwidth data 
interface between the cores and other system peripherals including system 
memory. The SDB consists of multiple identical lanes, and is scalable by 
increasing the number of lanes or increasing the width of the lanes. The SCB 
is a low-latency coprocessor-to-coprocessor/peripheral messaging bus that 
runs independently and in parallel with the SDB. This system of multiple 
independent application task-optimized cores is designed to have each core 
run an independent system-level thread supported by the programmable 
DMA engines.

The DMA subsystem consists of two or more transfer controllers, the DMA 
bus, SDB, and SCB interfaces. Each transfer controller manages data movement 
between the SDB and coprocessor memories, one direction at a time, across a 
single data “lane” of the DMA bus. Transfer controllers operate independently 
of each other, fetching their own transfer instructions from core memories 
once initiated by either the SP or the host control processor. Transfer signal-
ing instructions and hardware semaphores may be used to synchronize data 
transfer with array processing and host processor activities. Figure 4.6 shows 
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a configuration with a two-lane (two transfer controllers) DMA subsystem, 
and Figure 4.7 shows a four-lane DMA subsystem. The transfer controllers 
support instructions that allow independent addressing modes for the SDB 
side and DMA bus side. For example, in an image encoding application a 
group of picture macroblocks may be read from system memory using a 
“stride” addressing mode and distributed to array memories in various pat-
terns using only two transfer instructions.

Each SDB is a high-bandwidth bus based on the AMBA 2.0 standard [9] 
and scalable in width and maximum burst length. It is used primarily for 
data flow between array coprocessor memories and system memories or I/O. 
In a multi-SDB configuration (used for very high data bandwidth), the DMA 
transfer controller and host interface connections will be allocated between 
buses to match performance requirements.

The SCB is a low-latency control bus used for communication between 
the host control processor, the SP, and the DMA subsystem. It is used for 
enabling and configuring runtime system options and also allows the SP to 
configure and control the DMA transfer controllers.

To streamline development, verification, and debugging, a range of model-
ing and prototyping platforms support system modeling, and software and 
hardware system development, including:

A cycle-accurate C-simulator, which can be used to develop RACE-
H  processor software. This can be used directly with other C 
simulations, or with control processor tools and bus models to pro-
vide a software simulation model of an entire system.
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A software development toolkit (SDK) consisting of the GNU GCC 
compiler and binary tools, the RACE-H  ANSI-C Parallel C com-
piler, a back-end compiler to enable high-level assembly program-
ming with register allocation, instruction scheduling, and packing 
of instructions into VLIWs, and VIMA [10], a whole-program sched-
uler of iVLIW instructions.
An emulation board, can be used to model RTL of an entire SOC 
system.
A debugger.
An assortment of software libraries including a real-time frame-
work, user application program interface, debug I/O, C program 
runtime, mathematical libraries, and specialized DSP libraries.

The RACE-H  debugging GUI is shared by the C-simulator and emula-
tion board. With this development environment the software can be inte-
grated and tested. Verification tools and supporting scripts and guidelines 
for the physical design are available.

4.4 Video Encoding Hardware Assists

A number of algorithmic capabilities are generally common between multiple 
video encoding standards, such as MPEG-2, H.264/AVC, and SMPTE-VC-1. 
Motion estimation/compensation and deblocking filtering are two examples 
of compute-intensive algorithms that are required for video encoding.

Motion estimation is computationally the most expensive part of a video 
encoding process. On average it can take about 60–80% of the total avail-
able computational time, thus having the highest impact on the speed of the 
overall encoding process. It also has a major impact on the visual quality of 
encoded video sequences.

The most common motion estimation algorithms are block-matching 
algorithms operating in the time domain. Here motion vectors are used 
to describe the best temporal prediction for a current block of pixels to be 
encoded. A time domain prediction error between the current block of pix-
els and the reference block of pixels is formed, and a search is performed 
to minimize this value. The best motion vector minimizes a cost function 
based on the prediction block distance and the block pixel difference.

A block of pixels of the current video frame, which is in the search range 
of a passed frame (in temporal order), is compared with all possible spatial 
positions within the search range, looking for the smallest possible differ-
ence. For the best matching reference block, a motion vector is derived which 
describes the relative position of the two blocks.

Multiple different criteria have been proposed for the best match evalua-
tion. They are of different complexity and efficiency in terms of finding the 
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global optimum over a given search area. The sum of absolute differences 
(SAD) is the most commonly used criterion for the best match evaluation.

A hardware assist (HA) for block-matching search may be attached to each 
PE and is capable of performing full search (within a search window of 
programmable size) for integer pixel motion vectors calculation. It is capa-
ble of simultaneous extraction of results for 16 16, 16 8, 8 16, 8 8, and 
4 4 motion search based on the SAD criterion for each particular block size 
and given search range. The search range window may vary. For example, a 
search range such as 64 64 or 128 96 may be used. The hardware assist is 
also capable of setting up a coarse hierarchical search (through use of a spe-
cial TCM instruction) by automatically decimating pixels of a larger search 
range (64 64, for example) and bringing the decimated 32 32 search area 
into the pipelined compute engines of the hardware assist. Partial search 
results (SAD for each current block position within the search range) may be 
stored locally in each PE for further processing, or stored in the local HA/PE 
memory.

A similar hardware assist for deblocking filtering may be attached to each 
PE of the RACE-H processor, providing for a major offloading of the most 
compute-intensive operations, and allowing for real-time full-feature HD 
video encoding.

4.5 Performance Evaluation

To illustrate the power of the highly parallel RACE-H  architecture, a sim-
ple example is presented: Two vectors are to be added and the result stored 
in a third vector.

For (I  0; I < 256; I )
            A[i] B[i] C[i].

In a sequential-only implementation, there would be required a loop of 
four instructions, two load instructions to move a B and a C element to reg-
isters, an add of the elements, and a store of the result to register A. The 
sequential implementation takes (4*256) iterations  1024 cycles, assuming 
single-cycle load, add, and store instructions.

Assuming the data type is 16-bits and quad 16-bit packed data instructions 
are available in the processor, the vector sum could require (4*64) iterations 
256 cycles.

Furthermore, assuming an array processor of four PEs where each PE is capa-
ble of the packed data operations, then the function can be partitioned between 
the four PEs and run in parallel requiring (4*16) iterations  64 cycles.

Finally, assuming a VLIW processor such as the 2 2 RACE-Hypercube proces-
sor, a software pipeline technique can be used with the VLIWs to minimize the 
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instructions issued per iteration such that (2*16) iterations  32 cycles are required. 
This represents a 32× improvement over the sequential implementation.

With use of the 14 different levels of parallelism available on each core, 
the benchmarks shown in Figure 4.8 can be obtained on a RACE-Hypercube 
processor, with the array size shown in parentheses. (The 4 4 numbers are 
extrapolated from coded 2 2 numbers.)

The RACE-H  architecture allows a programmer or compiler to select the 
level of parallelism appropriate for the task at hand. This selectable parallel-
ism includes packed 32-bit and 64-bit data operations. With each additional 
PE, the packed data support on a processor core grows such that a 2 2
effectively provides four PEs each with five 64-bit execution units providing 
4*5*64 bits  1280-bits/cycle of packed data support. A 4 4 provides four 
times this for 4*1280 bits  5120 bits/cycle (640 bytes/cycle) of packed data 
support which at 250 MHz provides a performance of 160 gigabytes/sec. A 4 

 4  4 3D cube effectively provides four times this for 4*5120 bits  20,480 bits/
cycle (2560 bytes/cycle) of packed data support which at 250 MHz provides a 
performance of 640 gigabytes/sec. With at least three 64-bit hardware-assist 
functions operating independently and in parallel in each PE, an additional 
3*(8 bytes/cycle)*64 PEs*250 MHz  384 gigabytes/sec of performance. The 
4  4  4 3D cube provides 1.024 trillion bytes/sec at a relatively low clock 

Data TypeBenchmark

16-bit real & imaginary256 pt. Complex FFT (2×2)

16-bit real & imaginary1024 pt. Complex FFT (2×2)

Performance

189 cycles16-bit real & imaginary256 pt. Complex FFT (4×4)

383 cycles

256 pt. Complex FFT (1×1)

1024 pt. Complex FFT (4×4) 16-bit real & imaginary

16-bit real & imaginary 1115 cycles

580 cycles

1513 cycles

5221 cycles16-bit real & imaginary1024 pt. Complex FFT (1×1)

2048 pt. Complex FFT (4×4) 16-bit real & imaginary 1350 cycles

3182 cycles16-bit real & imaginary2048 pt. Complex FFT (2×2)

2D 8×8 IEEE IDCT (4×4) 8-bit

8-bit

18 cycles

2D 8×8 IEEE IDCT [11] (2×2) 34 cycles

2D 8×8 IEEE IDCT (1×1) 8-bit 176 cycles

256 tap Real FIR filter, M samples (4×4) 16-bit 4*M + 86 cycles

256 tap Real FIR filter, M samples (2×2) 16-bit 16*M + 81 cycles 

16-bit 64*M + 78 cycles256 tap Real FIR filter, M samples (1×1)

4×4 Matrix * 4x1 vector (4×4) 2-cycles/4-output vectorIEEE 754 Floating Point

4×4 Matrix * 4x1 vector (2×2) IEEE 754 Floating Point 2-cycles/output vector

145 cycles8-bit3×3 Correlation (720col) (4×4)

3×3 Correlation (720col) (2×2) 8-bit 271 cycles

3×3 Median Filter (720col) (4×4) 8-bit 360 cycles

3×3 Median Filter (720col) (2×2) 8-bit 926 cycles

370 cycles

1029 cycles16-bit

16-bit

Horizontal Wavelet  (N Rows = 512) (2×2)

Horizontal Wavelet  (N Rows = 512) (4×4)

FIGURE 4.8
1 1, 2 2, and 4 4 RACE-Hypercube processor benchmarks.
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frequency of 250 MHz with short execution unit pipelines based on 64-bit 
data types and an architecture that is programmer friendly.

4.6 Conclusions and Future Extensions

The pervasive use of processor IP in embedded SOC products for consumer 
applications requires a stable design point based on a scalable processor 
architecture to support future needs with a complete set of hardware and 
software development tools. The RACE-H  cores are highly scalable, using 
a single architecture definition that provides low power and high perfor-
mance. Target SOC designs can be optimized to a product by choice of core 
type, 1  1, 1 2, 2 2, 4 4, 4 4 4, and by the number of cores. The tools 
and SOC development process provides a fast path to delivering verified SOC 
products. Future plans include architectural extensions, such as improved 
VIM loading techniques, extensions to 128-bit datapaths effectively doubling 
performance, programmable hardware-assist engines, and other extensions 
representing supersets of the present design that would further improve 
performance in intended applications.

Trademark Information

RACE-H , RACE-Hixj , RACE-Hixjxk , and the RACE-Hypercube  are 
trademarks of Lighting Hawk Consulting, Inc. All other brands or product 
names are the property of their respective holders.
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5.1 Introduction

Configurable logic devices have myriad applications. Since their advent in
1985 by Xilinx Corp. [2], FPGAs (Field Programmable Gate Arrays) have
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simple applications such as ASIC (Application-Specific Integrated Circuit)
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the number of logic cells on one chip were on the order of a few hundred.
Now, however, transistor density increases have allowed the number of logic
cells on a single device to grow to tens of thousands, and speed has increased
by orders of magnitude. With this kind of logic density, it is now possible
to implement such designs as microprocessors, multimedia accelerators,
and data routers. Additionally, it has become commonplace to see ASIC-like
blocks, such as large embedded memory, DSPs, high-speed IOs, and proces-
sor blocks embedded into FPGA cores. Entire systems-on-a-chip can now
be fabricated from one FPGA. Therefore the FPGA itself becomes a critical
component in achieving high-speed timing constraints for the system.

Although technology shrinking has allowed for consistent area reduc-
tions, it has not come for free. Transistors have become velocity saturated.
Interconnect parasitics have not scaled proportionately. Noise margins have
dropped. Power density, especially DC (Direct Current) power density, is
growing substantially, so much so that FPGA designers now have to opti-
mize their designs to the triplicate of area, speed, and power.

Designing high-speed circuits in an FPGA is challenging, because any
area or power increase that comes from a new circuit implementation in the
core logic area gets multiplied by a factor of the array size. Thus, designs that
may work in a microprocessor realm that allow a large performance gain,
while incurring a large one-time area or power hit, are not feasible in an
FPGA core. To make matters worse, unlike ASICs, the critical path cannot be
predetermined and optimized in hardware, because the FPGA by nature of
its programmability can have any number of critical paths.

Due to the increasing constraints of current CMOS technologies, and due to
the fact that FPGAs have been optimized and reoptimized for 20 years now, it
is the belief of the authors that any large-scale hardware performance increases
in FPGAs will need a radical departure from our current circuit designing
methodologies. One of these radical departures is asynchronous design.

5.2 Asynchronous and Synchronous Systems

What is asynchronous design? Before that question can be answered, we
must first define the nature of synchronous design, so that we can differenti-
ate between the two.

5.2.1 Defining Synchronous Design

Synchronous design revolves around the idea that operations performed
inside a circuit are synchronized to a common reference signal. This refer-
ence signal is usually referred to as the clock, and it is this clock that is used
to simultaneously update all state-holding elements in a circuit. The use of
a common reference signal (in theory) reduces the complexity of a design.
Assuming the exact time the transition of the clock signal is known, then the
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design can go through all kinds of intermediate glitching as long as the data
is valid some small window around when the clock pulse arrives. Because
there are numerous possible paths from one source to one destination, and
because the environment (process, temperature, voltage, noise variations)
in which the signal propagates is not always known, it is difficult to deter-
mine precisely what the delay will be from that specific source to its destina-
tion. Instead of tightly controlling all of these variables, the designer simply
assumes worst-case conditions, and assures that the data will be valid before
the arrival of the clock pulse. Figure 5.1 illustrates a block-level diagram of a
synchronous system, showing the global clock signal fanning out to multiple
storage elements.

5.2.2 Defining Asynchronous Design

There are several types of design methods that are considered “asynchro-
nous.” Truly asynchronous designs use no synchronization signals at all. They
rely solely on delays through logic paths to determine when the next wave of
data will propagate through the system. This kind of asynchronous design
is known as “wave pipelining” [25]. It is used very little (or not at all) in com-
plex systems due to the fact that delays through a system can vary drastically
based on environmental factors. Wave pipelining is especially impractical to
use in a reconfigurable device because the delay on any given path will change
depending on the placement and routing of the design in software.

A second type of asynchronous design is known as “self-timed.” Self-timed
systems use control signals to notify a logic block’s computational status.
These control signals are known as handshaking signals. The handshaking
signals generally communicate either a data request (req) or data complete/
acknowledge (ack) status signal (see Figure 5.2). Data is processed on an avail-
ability and need basis. As soon as one block is done processing data, it notifies
the next block that it is finished and ready to transmit its data. As soon as the
receiver block is done processing its data, it takes the data from the transmitting
block and processes it. The basic idea is that data flow is dictated by local control
signals instead of one global signal. Because self-timed design is the most com-
mon form of asynchronous design, the terms are often used interchangeably.

Combinatorial
Logic

Storage
Element

Storage
Element

Combinatorial
Logic

Storage
Element

Data

Clock

FIGURE 5.1
Block diagram of a synchronous design.
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There are a few subtypes of self-timed systems. The first is known as
“delay-independent.” Delay-independent circuits will output valid data
regardless of the delays through the circuit. Although these circuits are
extremely robust, they rarely exist in practice. Another subtype is known as
“speed-insensitive.” Speed-insensitive circuits hold as long as the delays on
all routing wires are negligible. Because routing parasitics are nonnegligible
in today’s processes, often the control lines are delayed to allow the data to
stabilize before the control signals appear at the destination block.

5.2.2.1 Problems with Asynchronous Design

From the discussion above on synchronous design, the reader may guess that
synchronous designs allow “glitches” (intermittent logic transitions between
states) to occur, but asynchronous designs do not. This is in fact largely true,
and a major reason why synchronous design is much more common than
asynchronous design. Inasmuch as there is no reference clock signal that
has a known frequency, it is assumed that the time it takes a logic block to
process data can vary greatly. Thus, any transition that occurs at the output
of a logic block is determined to be an acknowledge signal that the block
has finished its computation. Logic must be guaranteed by the designer to
be hazard free. There are systematic methods for accomplishing this [5], but
it is an extra level of design effort that the synchronous designer can usu-
ally avoid. In implementation methods where control and data signals are
separate and the control signals are delayed relative to the data, glitching is
allowed to occur in a self-timed system. However, as is explained shortly, the
benefits of a self-timed system with these constraints are reduced.

Secondly, the area overhead of asynchronous control circuits is often non-
trivial. For instance, the AMULET1* design team reported an estimated 20%
area overhead for all of the asynchronous control circuits that went into
their design [6]. However, the gap between synchronous and asynchronous

* The AMULET is an asynchronous version of the ARM5 processor.
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overhead may narrow if recent trends continue in clock tree complexity.
Typically, clock trees use multiple levels of large drivers to overcome the RC
delays of the long routes they are driving. Additionally, large-scale synchro-
nous designs employ PLLs, DLLs, a variety of clock gaters, and clock dividers
in order to maintain effective clock distribution. All of these consume signifi-
cant chip area, and none of them would be necessary on an asynchronous
device.

The semiconductor arena has already largely been biased towards syn-
chronous design. This translates to the abundant availability of CAD tools,
software synthesizing algorithms, and research that is already behind the
optimization of synchronous systems. There is comparatively little sup-
port for asynchronous systems at this time, so optimizing an asynchronous
design is an uphill battle.

Lastly, there are some systems that are modeled more efficiently in a syn-
chronous methodology. For multimedia applications, for instance, that require
a constant throughput (say 30 frames per second of video to your computer
monitor), it makes more sense to model this from a synchronous perspective.

5.2.2.2 Advantages of Asynchronous Design

One of the biggest advantages of asynchronous design is that system
throughput is not based on the worst-case critical path. In a traditional syn-
chronous circuit, one can only clock the system as fast as the slowest path in
the system. Modern synchronous designs get around this fact by employ-
ing pipeline stages, where the critical path is broken up into pieces so that
a higher clock frequency can be used. Pipelining has problems of its own,
however. Overall latency increases because data in a pipeline will not be
available at the output until N clock cycles later, where N is the number of
pipeline stages. With each restart of the application, the pipeline will incur
an N cycle penalty to refill. Also, the pipeline latches themselves add to the
latency as well, due to their finite propagation delays and data setup time
requirements. Even in pipelined designs, the designer still must take into
account worst-case PVT (Process, Voltage, Temperature) conditions on the
path between pipeline stages to guarantee functionality.

More often than not, in a synchronous system, a computation will fin-
ish with some amount of slack time left over before the clock pulse, sim-
ply because all PVT variations must be considered. More over, large-scale
clocked systems always have some amount of clock skew and clock jitter
that eats into every computation cycle. Not all paths through a block will be
the worst-case path. Many computations finish well before the clock pulse
arrives, but as long as one computation is slower than the rest, all of the other
computations must wait until it is finished. Much of the available computa-
tion time is wasted in this sense.

Speed in an asynchronous system is based on average-case path delay.
Asynchronous systems pass their data on to the next stage the moment a
computation is finished, regardless of any environmental effects. The only
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overhead that one pays when a computation is finished is in the delays
through the handshaking logic. If one sequence of inputs causes a path to
have a 1-ns delay, for instance, and another sequence of inputs causes the
same path to have a 2-ns delay, a synchronous system would operate at
500 Mhz. However, assuming both paths are equally likely to be chosen, an
asynchronous system could operate at an effective 667 Mhz.

Power consumption is a big issue with synchronous designs. In some
devices, the clock tree alone can account for 40% of total chip power [7].
Elaborate clock-gating schemes are used in many modern architectures,
but this costs area and often results in higher clock skew or latency. If fine-
grained clock gating is not used, the chip will burn power even when por-
tions of the chip are not processing data.

Asynchronous systems have a natural clock gating effect. Only the por-
tions of the chip that are computing activate their handshaking signals, and
the rest of the chip automatically stays dormant. Several commercial prod-
ucts have been developed using asynchronous design simply for the power
savings it employs [8].

One of the largest headaches that the synchronous designer encounters is
ensuring that his or her circuits function over all PVT variations. Although
self-timed design does not guarantee PVT invariance, it does alleviate many
of the race conditions found in its synchronous counterpart. Many practical
asynchronous circuits have local race conditions of which the designer must
be aware. However, using proper design techniques (such as synchronizing
elements, eliminating hazards), these race conditions can be avoided or con-
strained to exist only in basic circuit elements. The synchronous designer,
on the other hand, most often has to simulate his design to ensure that paths
have adequate slack with respect to the clock.

A last benefit of asynchronous design is that it has a flatter and lower noise
spectrum than a synchronous design. This is because the clock in a synchronous
design switches a very large total chip capacitance at a very regular frequency,
thus creating large peaks in the frequency response. Asynchronous circuits on
the other hand have a more irregular signal switching pattern, and the capaci-
tance that switches is at a more localized level. Consequently, the frequency
response more closely resembles random noise, and at a lower overall level.
Devices that require very low electromagnetic radiation signatures could ben-
efit greatly from this. As an example, Figure 5.3 illustrates the spectral response
of a microcontroller implemented both synchronously and asynchronously.

5.2.2.3 Asynchronous Design and FPGAs

The first and foremost advantage to creating an asynchronous FPGA lies
in the nature of the FPGA’s critical path. By design, an FPGA’s critical path
cannot be known if it is to have the ability to implement a large number of
designs. Because of this, it is impossible to a priori optimize the hardware for
a specific critical path, as is done on ASIC chips. Figure 5.4 shows an example
of what a critical path might look like.
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FIGURE 5.3
Frequency response of two 80C51 microcontrollers, synchronous implementation, and asyn-
chronous implementation. (Courtesy of Phillips Semiconductors.)

FIGURE 5.4
Illustration of a critical path in a 3 × 3 logic cell array.
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With designs that approach the packing limits of a chip, routed paths are
fitted in wherever free slots remain, often leading to serpentinelike routes.
A smart router will try to avoid this by routing critical speed paths first,
but this only partially alleviates the problem. Modern designs also attempt
to employ pipelining of critical paths, but pipelining in an FPGA incurs a
large delay overhead. Pipelining not only adds a register delay, but also the
routing delays to get to and from that register. These routes are likely not a
straight shot from source to destination, and must travel down to the active
layer and back up to the higher metal layers in the process.

The FPGA often suffers from a high critical path delay to average path
delay ratio. The higher this ratio is, the more of a potential benefit asynchro-
nous design brings, because asynchronous design operates at the average
case delay. As long as the overhead of the handshaking logic is less than the
net speed gain achieved by asynchronous design, performance is gained.

The power gating effect of asynchronous FPGAs is also noteworthy. FPGAs
typically do not have 100% utilization of their logic cells. In a synchronous
design, the clock would be switching even unused cells. Programmable
clock gating is often used as a solution, but this is usually not done on a
level of granularity that can approach the benefits of asynchronous design.
It would likely require too many added levels of logic in the clock tree and
performance would suffer.

Several large corporations have recently taken an interest in asynchronous
design, including Intel, Sun, Phillips, and IBM [3],[12]. It is reasonable to
believe that future ASIC asynchronous designs will need to be prototyped.
Asynchronous prototyping can be done on synchronous FPGAs, but it is
extremely difficult to eliminate local race conditions and hazards when the
FPGA does not have some asynchronous elements designed into the cir-
cuitry [13]. The need for asynchronous FPGAs just for protyping in the near
future could be significant.

5.3 Basics of Self-Timed Design

5.3.1 Asynchronous Finite State Machines

Finite-State Machines (FSM) can be used to model any realizable circuit. A
finite-state machine consists of combinatorial logic and state-holding ele-
ments (registers). Registers are typically clocked periodically to update the
state of the system. Outputs of the registers are fed back into the combina-
torial logic. The kind of FSM just described is actually a subset of the most
generic FSM. The generic FSM does not require state holding elements, only
delays in the feedback loops so that the outputs and inputs cannot change
simultaneously. In effect, the synchronous FSM with clocked registers basi-
cally guarantees this constraint. In this sense, the asynchronous FSM is
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actually a simplified and more generic version of its synchronous counter-
part (see Figure 5.5).

For the case of wave pipelining, the designer would estimate the intrinsic
delays of the combinatorial logic and feedback routes and this delay would
limit the max throughput of the system. However, as mentioned earlier, logic
delays are difficult to estimate with high precision, and without on-chip
sensing elements, the wave pipeliner has to account for worst-case condi-
tions before the next wave of data can be sent through the system.

In self-timed FSMs, handshaking elements control when the feedback
loop updates the system. This method has the advantage of allowing data to
self-propagate, without any need to calculate externally when the next data
should be made available.

5.3.2 Handshaking Protocols

There are a few fundamental protocols used to implement handshaking in
self-timed designs. The most common approaches are known as “bundled
data” and “dual-rail.” Each of these protocols can be implemented in either a
2-phase or 4-phase fashion. There are variations on these protocols, such as
push or pull channels, that are also discussed.

5.3.2.1 4-Phase versus 2-Phase

The 4-phase protocol is the most commonly implemented protocol due to its
simplicity. It uses an interlocking “return to zero” method of handshaking.
The transmitter pulses the request line high. When ready to transmit data,
the receiver processes the new data, and pulses the acknowledge line high,
signaling to the transmitter that it is finished and ready for more data. The
rising acknowledge signal triggers the request line to reset, and the acknowl-
edge line is similarly reset by the falling request line. Figure 5.6 illustrates
this series of transitions.

Inputs InputsOutputs

FF

Clock

Delay

State Holding
Elements

Combinatorial
Logic

Combinatorial
Logic

Outputs

FIGURE 5.5
Synchronous and asynchronous state machines.
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The main drawback with the 4-phase protocol is that the line resetting
portion of each cycle has to be performed before the handshake logic can
process the next bit of data. Often times, however, the resetting portion can
be hidden by latching the state of the req/ack line and resetting it in parallel
to the next stage’s computation.

The 2-phase protocol uses a non-return-to-zero approach. Instead of using
only rising-edge transitions as indicators, 2-phase uses rising or falling edge
transitions to indicate a state change. Signals require no reset operation; they
simply hold their state until the next computation is performed (see Figure 5.7).
Because of this, the 2-phase protocol has a potential speed advantage.

However, the 2-phase protocol complicates the handshaking logic in the
fact that the receivers must be dual-edge detecting. Often times, the comple-
tion signal that is generated by internal logic is single-edge active, so the
transmitter must also include some logic to convert the pulse into a 2-phase
signal. The author notes that in practice, this usually involves trading off SR
latches in the 4-phase case for T-flops in the 2-phase. Note also that 2-phase
has half the number of communication signal transitions, resulting in a poten-
tially lower power solution.

5.3.2.2 Push-Channel versus Pull-Channel

A channel is basically just a word used to describe a datapath. Data can either
be “pushed” through the channel by the transmitter sending data with its
request, or can be “pulled” through the channel by the transmitter sending
data with its acknowledge signal. In the push version, the transmitter makes
the request, and receiver acknowledges. In the pull version, the receiver
requests and the transmitter responds. Another way to think of it is, in the
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FIGURE 5.6
4-phase handshaking waveforms for two data transfers.
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push case, the input side is saying, “I’m sending new data, process it.” In the
pull case, the output side is saying, “I’m ready for new data, send it to me.”

5.3.2.3 Bundled Data versus Dual-Rail

The most straightforward way to implement a handshaking system is to use
a data bus (which can consist of one or more data lines), a request line, and an
acknowledge line. This is in fact, the bundled data approach. It is called bun-
dled data because the request and acknowledge lines are bundled together
with the data lines. See Figure 5.8.

A major caveat to the bundled data approach is that it is not delay insen-
sitive. In order to function correctly, the request line (in the push channel
case) must change state after the data becomes valid. Otherwise, the receiver
could read old or metastable data. This constraint is known as the “bundling
constraint.” Most designs that used the bundled data approach account for
this in one of two ways: by using delays on the control lines or by mimicking
datapath worst-case parasitics. In the latter case, a copy of the critical path is
made through which the acknowledge signal propagates. Note that only the
gates in the specific critical path are copied, not the whole logic block.

Another major drawback is that if the data from a block finishes earlier
than the propagation of the ack signal, it has to wait. From a delay per-
formance side, this nulls out one of the main advantages of asynchronous
design, because the design has been reduced to a worst-case propagation
delay instead of an average-case. However, the bundled data approach is
the simplest and can also be useful in interblock communications, where
the delays are sometimes negligible compared to the intrablock delays. One
benefit to the bundled data approach is that glitches are allowable if they
happen on the data lines and occur prior to the arrival of the request signal
to the receiver.

The dual-rail protocol, on the other hand, is a delay-insensitive alternative.
It successfully combines the request and data lines so that any switching
on the data lines also signals a request. This way, there is no bundling con-
straint between the request and data line transitions, because they are now
the same wire(s). Figure 5.9 illustrates this method.

In order to encode both the request and data signals into one unit, the
data/request signal must be able to represent three states: a null (empty)
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FIGURE 5.8
Bundled data diagram.
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state, and then a data high or data low state. If the receiver senses a null state,
it does nothing, because there is no new data to process. If it senses a data
low or data high state, the receiver treats this as a request and processes the
data. To accomplish this, dual-rail encoding requires two data lines for each
data bit, or four possible states per data bit. The possible states are 00, 01, 10,
and 11. Here 00 denotes the null state, 01 denotes data low, 10 is data high,
and 11 is an illegal (unused) state.

The advantage of dual-rail is that it fully utilizes the average-case perfor-
mance benefit of asynchronous design, because a request signal is generated
as soon as the data is ready. There is also no need for delay lines or criti-
cal path-matching circuitry. For the one-bit case, the number of data/control
lines required is identical to bundled data. However, for larger buses, dual
rail requires twice as many data signals as bundled data.

5.3.3 Completion Generation and Detection

A completion signal is simply a signal that denotes when a logic block is fin-
ished computing its current data. Synchronous circuits simply wait a clock
cycle before latching in the next data value, under the assumption that the
data has indeed been computed during that time. However, asynchronous
designs require a signal to flag when a block is finished computing. Assum-
ing the input constantly toggled (i.e., high, low, high, low) with each new
value, this task would become automatic; one could just monitor output tran-
sitions. If one receives two logic 1s in a row or two logic 0s, however, there is
no way to detect the end of the second computation.

The bundled data and dual rail protocols are not simply limited to com-
munication between blocks. They are also methods of computation inside a
logic block. Both protocols can generate completion signals.

In the bundled data approach, a request signal goes in one block, and gen-
erates a “start” signal, telling the datapath logic to start computation. The
request signal propagates through a delay line and generates a completion
signal, naively assuming the data processing has already finished.

Typically, dual-rail logic is implemented in some form of dual-rail dynamic
logic. A true form of a Boolean expression is realized, along with its comple-
ment. Both the true and complement circuits are charged high during the
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Dual-rail diagram.
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precharge phase. When the evaluation phase comes around, one of the two cir-
cuits will drop low, indicating the end of a computation and the output value.
If the true portion drops low, the output is a one, and if the complement portion
drops low, the output is a zero. As soon as the data is latched by the next stage,
the circuit goes back into precharge mode. Thus, all that is necessary to gener-
ate a completion signal is to OR the true and complement outputs.

So far, we have discussed methods of completion generation. There are
also methods of completion detection. The most common method is known
as CSCD, or Current-Sensing Completion Detection. CSCD operates on the
principle that the current drawn from the power supplies during a computa-
tion is at least an order of magnitude higher than when it is finished.* An
analog current-sensing circuit is placed in the block that senses this current
delta after the arrival of the start signal, and flags completion.

One advantage of CSCD is that one is not required to use dual-rail or even
dynamic logic at all. There is an area trade-off between the CSCD circuitry
and the complement copy of dynamic logic implementation.

Most realizations of CSCD draw significant amounts of static power due to
the current sources embedded in the analog detectors. In many cases, mul-
tiple detectors must be used because the current through any one stage may
be too small a change to measure. Because of this, it seems to make more
sense to use CSCD only on larger block sizes.

5.3.4 Synchronization Elements

Synchronization logic requires hazard-free logic, because any glitch could
cause an unwanted acknowledge or request. Glitches occur when multiple
input combinations can cause the same output value. An OR gate does not
function well as a synchronization element. For instance, a two-input OR
gate could output a 1 if its inputs were 01, 10, or 11. Therefore, when the
inputs transition from 01 to 10, the OR gate could go low momentarily, and
then back high, causing a low glitch. AND gates have similar problems.

A circuit that is almost universally used in asynchronous design is the
Muller C-element. The C-element has the property that it only transitions to
0 if all inputs are zero, and only transitions to 1 if all inputs are 1. Otherwise,
it retains its previous state.

Therefore, the C-element meets the criteria above for being a synchroniza-
tion element. There are other forms of logic that can meet the synchroniza-
tion criteria but [1] claims that when dissected, they still boil down to the
same basic function as the C-element. Figure 5.10 illustrates a C-element and
one possible implementation. C-elements are used to implement any kind of
synchronization between blocks, including both 2-phase and 4-phase proto-
cols. Shown in Figure 5.11 is the 2-phase implementation.

From the diagram, the reader can see that the request signal only propa-
gates when the acknowledge signal allows it to pass. Initially, data ready

* For more information on CSCD techniques, see [17].
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is zero, req is zero, and ack is zero. Data ready transitions, causing one to
appear on req. If data ready transitioned again while the acknowledge signal
had not yet changed, it would not propagate to the req line. This way, only
one request signal can occur before the acknowledge transitions again.

C-elements can also be used to create an asynchronous FIFO (First In First
Out) buffer. FIFOs are useful for storing data between an asynchronous
domain and a synchronous one. Another common use is for storing values
from a previous stage while the current stage computes data, so that when the
current stage finishes computing, it doesn’t have to take time to fetch the next
piece of information. Chained together, they form multiple FIFO stages, where
data propagates to the next stage if that stage is empty, and otherwise stays
put. Figure 5.12 illustrates an asynchronous FIFO and its control signals.
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C-element symbol and a transistor implementation.
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5.4 Prior Asynchronous FPGA Architectures

This section introduces several pre-existing asynchronous FPGA architec-
tures, their methodologies, and structure. The previous asynchronous FPGA
architectures that have been proposed take on a variety of approaches. Some
approaches try to synthesize elements needed by asynchronous systems in a
pre-existing synchronous FPGA through software. Still others have taken a
synchronous design and have added more hardware to it to implement asyn-
chronous elements. The remaining approaches involve building an asynchro-
nous architecture from the ground up.

5.4.1 Triptych/Montage

The Montage architecture [4] is credited as being the first creation of an asyn-
chronous FPGA. It is actually an architecture built within the synchronous
Triptych architecture created at the University of Washington.

The Triptych architecture is a synchronous architecture that combines
routing and logic into one programmable block that can be used for either.
The core block consists of three input muxes that feed a LookUp Table (LUT)
and a D flop, and three output muxes that receive the inputs and the LUT
and D flop outputs. The idea is that the blocks not used for computation can
still use their routing resources to pass along signals. These blocks are called
RLBs, and are depicted in Figure 5.13.

Montage is the name given to the asynchronous qualities of the Triptych archi-
tecture. Montage takes a very bare-bones approach of adding a few key features
into a pre-existing synchronous architecture to allow for software synthesis of
asynchronous designs. The following is a description of these additions.

5.4.1.1 Asynchronous Circuit Synthesis

In order to synthesize asynchronous storage elements (such as C-elements
or SR latches) out of FPGA logic, a fast intrablock feedback path is required.
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This is because if the feedback path is routed outside the block and back in,
the feedback delay may become large enough to generate race conditions
between itself and the data propagation from a previous block. Montage
solves this problem by introducing a hardwired feedback path from the out-
put of the RLB back to the three inputs. The inputs are muxed with the feed-
back path so that any input into the RLB can select either the normal inputs
or the feedback path. This path is shorter than any interblock connection so
it ensures race-free storage elements.

5.4.1.2 Initialization

Asynchronous elements must be initialized on startup to some known state,
similarly to synchronous designs. The Triptych architecture has D-latches
that can be initialized to some value with a built-in initialization control sig-
nal. These D-latches can also be used to initialize the synthesized asynchro-
nous elements without having to route a control signal to each block and
thus increase the number of RLBs required to implement an element.

5.4.1.3 Hazard-Free Logic

Unless control lines are delayed through a block (as in a bundled data
approach), circuits must be designed to be hazard free. The Montage
architecture uses a lookup table decoder that guarantees if only one input
changes, no glitching will occur, due to the fact that it switches once between
two LUT memory cells. Although a requirement for proper functionality,
many decoder designs ensure this. The burden of allowing only one input to
change simultaneously is left to the software designer; that is, there are no
measures made in hardware to prevent this.

5.4.1.4 Low-Skew Routing

A large class of asynchronous designs are not delay insensitive, and thus
require isochronic fork constraints in some circuit building blocks. Iso-
chronic forks are a set of physical locations that require negligible skew to
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FIGURE 5.13
Schematic of Triptych/Montage logic block and arbiter unit.
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function properly. A major problem with many synchronous FPGAs is that
interblock routing often has unpredictable delays. Especially if one signal
is traveling to multiple destinations, it becomes very difficult to ensure that
one destination is reached before another. Montage’s claim is that its routing
architecture offers many routes that have little skew between all of the pos-
sible destinations. For instance, consider a route that spans two blocks verti-
cally. It would be difficult to ensure an symmetric isochronic fork constraint
in a route such as this because there is an inherent wire delay Sskew in the
times the first and second block receive the signal, namely, the time it takes
for the signal to propagate one more block. Montage has routes that reach
two RLBs simultaneously from a routing delay standpoint; see Figure 5.14.

For bundled-data systems, where the control line must change after the
data line, Montage must use RLB gate delays to slow down a control path if it
happens to be faster than the datapath, because there are no embedded delay
lines for this purpose.

5.4.1.5 Synchronous/Asynchronous Interface

It is often desirable to allow a synchronous block to interface with an asyn-
chronous one. Often times, this requires the use of more than one clock
domain, as in the case of synchronous FIFOs. The Montage D-latches can
select from one of two clocks.

Also, it is often necessary to determine the order of incoming signals at
a synchronous/asynchronous interface. It is possible to build arbiters and
synchronizers from general logic, but metastability issues and arbitration
errors increase due to the larger delays incurred inside synthesized arbitra-
tion/synchronization blocks. Montage decided to include embedded arbiters
that replace RLBs every so often in the core logic.

5.4.2 STACC Architecture

5.4.2.1 Globally Asynchronous, Locally Synchronous

The STACC (Self-Timed Array of Configurable Cells) [12] is a hybrid syn-
chronous and asynchronous architecture developed by Robert Payne. The
main idea of the STACC architecture is that it takes an existing synchronous
FPGA architecture, strips out the global clocking, and replaces it with timing 

FIGURE 5.14
Typical 2-destination route, and Triptych/Montage low-skew version.
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cells. A timing cell is a cell that controls the data flow between itself and other
timing cells. It is, in a sense, overlaid on top of a small logic block array (say
4 × 4 or 8 × 8). Instead of making every logic block in this array self-timed,
an array of logic blocks acts in a synchronous manner internally, using a
local clock to control flip-flops in the array. Then at the interface between
timing cells, it uses asynchronous request/acknowledge signals to transfer
data across the boundary to the next timing cell. The local clock itself is gen-
erated from the timing cell. Figure 5.15 shows how each timing cell contains
multiple data cells.

5.4.2.2 Timing Cells

The timing cell integrates synchronization, signal, merging, arbitration, and
delay control into one cell. Timing cell communication uses a 4-phase bun-
dled data approach. Programmable delay lines used for the control signals
(used to satisfy the bundling constraint) are embedded into the timing cells.
Payne chose to implement a bundled data protocol for two reasons: routing
track area efficiency and synchronous design leverage. Assuming a data bus
is greater than 1 bit, the bundled data approach requires less routing tracks.
Bundled data requires N 1 tracks for an N-bit bus. Dual-rail requires 2N
tracks for an N-bit bus. Additionally, Payne states that synchronous designs
can more easily be ported over in a bundled-data environment. Figure 5.16
illustrates the STACC timing cell.

5.4.2.3 Initialization

The STACC architecture has the unique ability of partial reconfiguration.
Partial reconfiguration is when only a portion of a chip is reconfigured, and
the rest of it remains untouched. Many asynchronous devices require the
device to be globally reset to be initialized. STACC has a memory cell in each
timing block that controls whether that timing cell will be reconfigured.
Using this method, only selected timing cells can be re-initialized.

5.4.3 PGA-STC Architecture

PGA-STC (Programmable Gate Array for implementing Self-Timed Circuits)
[14] is an architecture geared at implementing only asynchronous systems.

Timing Array

Data Array

FIGURE 5.15
STACC architecture.
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However, it does not contain dedicated asynchronous handshaking ele-
ments. They must be synthesized from logic cells, similar to Montage.

The PGA-STC logic cell consists of a LUT, a feedback path (similar to Mon-
tage), and a mux that serves the purpose of putting all storage elements in the
right state at initialization. The PGA-STC indicates that it uses a 2-phase bun-
dled data protocol for routing, although details are not described. Dedicated
arbiters are used as well. Figure 5.17 depicts the basic elements of the logic cell.

A main difference between the PGA-STC and Montage logic cells is the
existence of a programmable delay element. Instead of routing control signals
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through unused blocks to satisfy the bundling constraint, the programmable
delay element is programmed so that the control and data signals are closely
delay matched and the bundling constraint is satisfied. Also, the program-
mable delay element is used to generate a completion signal for the block,
and is closely matched to the worst-case delay through the logic cell.

The author makes the claim that the programmable delay element has a
granularity that is fractions of a typical gate delay.

5.4.4 PAPA Architecture

John Teifel and Rajit Manohar developed a fully self-timed FPGA architecture
at the ground level, known as PAPA (Programmable Asynchronous Pipeline
Array) [15]. This architecture most closely resembles the design presented in
this work, so it is used as the primary comparison/differentiation source.

5.4.4.1 Logic Cell

The PAPA logic cell consists of several functional blocks found in asynchro-
nous designs. In addition to the traditional LUT4s, PAPA includes dedicated
blocks for token splitting, merging, copying, sourcing, and sinking. For our
purposes here, tokens are simply data bits that are processed in an asynchro-
nous system.

In synchronous FPGAs, it is very common to have one signal fan out to
multiple destinations, so that each destination is updated with the same
data simultaneously. All that is required to do this is some kind of signal
multiplexing and demultiplexing. In most commercial FPGAs, wires have
multiple destination possibilities, which is the equivalent to a demux. Large
muxes are used to “gather in” the demuxed signals. Each cycle, the previous
data is overwritten under the assumption that it has been processed in the
previous cycle.

In asynchronous design, muxing and demuxing are not that simple. In
order to send the next bit of data to multiple destinations, the sender must
receive an acknowledge signal from every receiver; otherwise, some data
that had not yet been processed could get overwritten. This requires that the
transmitter receive completion signals from each receiver before any of them
can receive the next piece of data. Alternatively, the data could be copied and
each receiver could interface with its own copy of the data, reducing logic
fanout and complexity. This is in fact what the PAPA architecture does. It
uses “copy” cells to make copies of the data token to each receiver.

Merge units are basically a dynamically controlled mux. A control signal
decides which token to pass through to the output. Split units perform the
opposite function of conditionally sending input data to one of two output
channels, depending on the control value. Source units provide a constant
valued token, and sink units consume nonessential tokens in the system.

The optimized PAPA logic cell consists of two LUT4s, a splitter, a merger,
output copy units, and input copy units that feed the LUT4s (see Figure 5.18).
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Each block consists of four inputs and four outputs. All of the inputs include
asynchronous FIFO registers. The pipelines are useful because a given out-
put token might not be processed by downstream logic the moment it has
been computed. In the meantime, the input FIFOs can fill up with data, so
that when the output token is fired, the next computation’s latency is only
intrablock (as opposed to waiting for the previous block to compute and then
send its data).

The LUT4s use dual-rail logic to generate a completion signal. The LUT4 is
implemented in a two-stage dynamic logic method that initially precharges
all nodes high, and then either the true output or the complement output
drops low during the enable phase, signaling the end of the computation.
Initially, the entire LUT4 was implemented in a one-stage version, but charge
sharing became such an issue that a two-stage version became a necessity
(discussed more in Section 5.7).

Synchronous FPGAs often provide an arithmetic LUT mode, where the
LUT is used as an adder, subtractor, comparator, and so on. To create arith-
metic functions larger than one LUT, the carry-out of one LUT must be fed
into the carry-in of another. To speed up the arithmetic function, a fast-carry
path is usually built into the LUT, because the LUTs are tied together in a
ripple fashion, where the carry propagation controls the max frequency of
operation. The PAPA architecture implements a fast-carry chain that allows
the carry to propagate to the next stage immediately if it is not dependent on
the new set of input values. Otherwise, it functions as a normal ripple adder
carry propagation. The PAPA logic cell also contains a state-holding element
that generates a single token at reset, after which it behaves as a FIFO or a
token initializer.

FIGURE 5.18
PAPA base architecture logic cell.
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5.4.4.2 Routing

The PAPA routing architecture consists of a 4-phase dual-rail protocol. All
of the routing muxes are pipelined as are the logic cells. Routing pipelin-
ing allows routing between logic cells to be broken up into multiple pipeline
stages, potentially allowing a higher throughput rate. All routing connections
are point-to-point; that is, each mux output drives only to one possible loca-
tion. If a signal is required by multiple blocks, the signal must first be copied
and then transmitted, as in the above description of the copy circuit. Single-
pass gates are used to connect or disconnect a path between two blocks.

The routing fabric consists of pairs of lines (because it is dual-rail) that
traverse four directions to the most adjacent logic cells to the north, south,
east, and west. As mentioned earlier, each logic cell has a fanin of four and
a fanout of four.

5.5 Problems with Previous Architectures

In the previous section, we examined the major asynchronous FPGA archi-
tectures to date. Here, problems with previous architectures are explored,
and details are given on how the proposed architecture attempts to solve
these problems.

5.5.1 General Issues

The approach of the author was to develop an asynchronous architecture
from the ground up, as opposed to leveraging components of synchronous
designs, under the assumption that what one gains in potential evolutionary
usability, one loses in revolutionary performance.

The STACC architecture is an interesting one, but is more along the lines
of an evolutionary architecture, inasmuch as all block-level computations are
synchronous. There is a fair amount of overhead paid in area and delay to
implement an asynchronous design at a localized level, so the idea of locally
synchronous, globally asynchronous, is a valid one. However, the STACC
architecture only offers the benefits of asynchronous design at a multiple-
block-based level. STACC is geared towards synthesizing synchronous
modules that communicate with other modules asynchronously. If any com-
putation finishes inside this synchronous module before the next clock pulse
arrives, the remainder of the cycle is wasted. Any performance gain from an
asynchronous system in the STACC architecture is limited to the boundaries
of the timing cells.

Although the Montage architecture includes some built-in asynchronous
building blocks, it still lacks some of the basic components necessary to
make a performance-competitive asynchronous system. The requirement of
using “unused” logic cells as delay cells in the bundled data approach is
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probably the most cumbersome. Elements such as C-elements and SR latches
require an entire RLB for synthesis. These elements are common enough
and necessary enough in asynchronous designs that they warrant dedicated
hardware. For instance, an RLB block contains at least 40 transistors and 26
SRAMs, when a dedicated hardware C-element takes only 8 transistors and
no SRAM cells.

Montage banks on a “low skew” routing architecture, which makes inter-
block delays more predictable. However, the routing will still suffer from
PVT variations. In delaying control lines for the bundled data approach, the
software must delay the control lines assuming worst-case conditions, thus
losing a significant amount of performance. PGA-STC has the same issue,
although the dedicated fine-granularity programmable delay could poten-
tially increase performance and reduce die size if used often.

The architecture the authors envisioned fit somewhere in between the
coarse granularity of the STACC architecture and the fine granularity of
Montage. Because FPGA routing paths vary greatly in terms of delay, it seems
reasonable to make each interlogic cell communication asynchronous, where
the actual flow of data determines the max throughput, not the worst-case
conditions of any given path.

The PAPA architecture most closely resembles the architecture the author
designed. It seems to offer excellent performance, but at the cost of a large
area (discussed more in Section 5.8). In addition, its extensive use of dual-rail
domino circuits may become a power concern if it were to be designed in a
smaller feature technology. Because the routing architecture is based on a
dual-rail approach, it suffers from problems that are described in the next
section.

5.5.1.1 Routing Fabric Issues

Commercial synchronous routing fabrics are extremely rich in metal con-
nectivity. Current leading-edge chips use at least ten levels of metal intercon-
nect to obtain the necessary interblock connectivity without causing the die
to become metal-limited in area. The larger the number of metal tracks that
are available, the greater is the potential interblock connectivity. If a logic cell
has more connections to its neighbors, it is less likely to incur a detour delay
penalty. For instance, in a very simple routing architecture, there may be
one direct path from logic block A to logic block B. If that path is used, then
in order to go from A to B, the software must find another less direct route.
In this way, FPGA performance hinges greatly on the probability of being
able to connect from point A to B with the most direct route. On the other
hand, there are limits to the benefits of rich connectivity. At some point, the
gate delays due to high fanin/fanout muxes and extra wire loading of a very
connectivity-rich design bog down the system performance.

The biggest issue in making an asynchronous routing fabric as rich as its
synchronous counterparts is the fact that with current communications pro-
tocols, each communication channel usually requires three wires (data, req,
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ack or two data and one ack),* as opposed to one for a synchronous design.
Right from the start, one loses 2/3 of the available nonlocal metal tracks. If
the FPGA is equally active and metal-limited in area, this results in a loss
of 2/3 of the routing connectivity, or alternatively, a 67% increase in area to
obtain the original connectivity pattern.

Second, commercial synchronous routing fabrics use high fanout signals.
Instead of point-to-point routing, signals have the option of going to one of
multiple destinations. This further reduces the number of metal tracks and
muxes needed to implement a connectivity-rich design.

Suppose one were to implement a routing fabric with multiple fanout desti-
nations for each signal. Assuming the dual-rail or bundled-data protocols, the
layout designer would have to closely match at least a pair of signals that travel
to multiple destinations, often through multiple layers of metal. Otherwise,
the two data/control signals would suffer either from performance degrada-
tion or loss of functionality if the delta between the two became too great.

What the authors proposed to do was find a method of combining the con-
trol and data lines into one signal. There are several key benefits to combin-
ing the control and data signals. The first is that the number of routing tracks
required for a routing fabric is cut in half or 2/3, thus enabling the theoretical
potential of two to three times the connectivity. Secondly, it eliminates the
need for programmable delay elements to match the data and control signals,
assuming a bundled-data protocol is in use. Because the control is embed-
ded into the data signal, there is no question as to the order of signal arrival.
Everything happens sequentially. The control always initiates a transfer, the
data follows, and the control responds. It is possible to use a dual-rail routing
fabric to avoid delay elements, but the area consumed by dual-rail logic is
large, and two metal lines are still required for every one bit of data. Thirdly,
combining control and data signals allows the metal routes to go easily to
multiple fanout destinations, inasmuch as one only has to route one signal
to each destination.

In summary, combining control and data lines between FPGA logic cells
results in a potentially richer routing fabric, thus alleviating blockages and
detours when the software attempts to route a design, leading to a faster
overall system speed. There is a catch, however: the active area consumed by
the new control logic must be smaller than the area overhead one pays with
dual-channel routing. Also, the delay penalty incurred by the signal combi-
nation must be small enough to still outweigh the penalty paid for taking a
detour in the routing for this idea to be beneficial.

5.5.1.2 New Architecture Proposal

At a high level, the authors set out to design an architecture that employs an
asynchronous method of communication between logic blocks. The commu-
nication method uses a combined control and data line approach to reduce

* It is possible to use two wires if the one of the wires is bidirectional.
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routing congestion and potentially improve on performance. Additionally,
it was desirable to keep the logic cell smaller and more power-friendly than
the PAPA approach, but still computationally efficient, and make additional
improvements and discoveries while designing at the 90-nm technology node.

In the following two sections, the new architecture is described in detail. In
summary, a new FPGA core is created. A combined data and control signal
transmitter/receiver pair is developed to communicate between logic cells. A
fully asynchronously pipelined logic cell is introduced to take advantage of
the new communication protocol and also maximize throughput through the
logic cell itself. The logic cell contains an area-efficient completion-generating
LUT, with high-speed arithmetic capabilities, as well as fast feedback paths
to minimize loop iteration bound (feedbacks that limit throughput rates).
In addition, a routing architecture is proposed that maximizes resource
utilization by allowing logic cells to function either as computation nodes,
signal routers, or both. The name chosen for this proposed architecture is
“RASTER,” an acronym for Reconfigurable Array of Self-Timed Elements for
Rapid Throughput.

Section 5.6 describes a new block-to-block communication method.
Section 5.7 then introduces the new logic cell, and details a routing archi-
tecture using the communication blocks developed in Section 5.6.

5.6 RASTER Intercell Communication

The RASTER architecture revolves around the idea of combining handshak-
ing and data communication signals into one wire. What is required is a
protocol that has the ability to signal an empty state, along with a logic high
and logic low. There are several methods that can accomplish this feat, such
as using tertiary logic (three voltage levels), frequency modulation, multi-
ple current drive levels, and others. After evaluation of a few of these, the
method chosen was a pulse modulation encoding scheme. Figure 5.19 shows
a diagram of a data transaction using this scheme.

Enable Window

TimeTransmit Data/
Acknowledge

Receiver
Request Data

Voltage

FIGURE 5.19
Pulse encoding protocol.
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A bidirectional transmission line is used to communicate both control
and data. Initially, the transmit and receive drivers are tri-stated and the
transmission (comm) line is held high by weak PMOS keepers. When the
receiver is ready to receive data, the receiver engages and pulses the line low
and then back high. The transmitter interprets the rising edge of the pulse
as a data request. When the transmitter has data ready for transmission, it
pulls the line low again. Depending on whether the data is logic high or low,
the transmitter keeps the line held low for different amounts of time. In the
meantime, the receiver triggers off the falling edge the transmitter generates,
starting an enable window. If the line is pulled to high by the transmitter
before the enable window times out, the logic is regarded as a zero, else it is
a one.

Both the transmitter and receiver rely on delay elements to generate the
required pulses. In order to ensure the delay elements in both track each other
well, the same type of delay element is used. This way, if the transmitter pulse
lasts longer than its nominal delay, the receiver window will track it, assuming
process/temperature/voltage gradients from source to destination are mini-
mal. The implementation simulated used simple inverter chain delay lines,
but for higher accuracy, more advanced delay lines could be used (current-
starved inverters using bandgap references, for instance). Figures 5.20 and
5.21 show the transmitter and receiver pair implementation, respectively.

The transmitter and receiver both use a similar circuit to drive the trans-
mission line. The communications (comm) line is first pulled low with an
NMOS driver for a given pulse width. An edge detector detects the end of
the internal pulse, which turns on a PMOS driver to actively drive the line
back high again. When the driver senses that the line has been pulled high,
it shuts off the PMOS driver, tri-stating itself. When the line is at logic high,
PMOS keepers engage to weakly hold the line high. In this way, only the
transmitter or receiver is driving the line at any given time.

On a request, the receiver generates a pulse that pulls the comm line low.
In order not to treat its own request pulse as data, the receiver detector is
activated on the rising edge of the request pulse. The transmitter contains a
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FIGURE 5.20
Pulse encoding transmitter.
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rising edge detector to sense when the receiver has requested data. On the
rising edge of the request pulse, the transmitter activates itself, and if data is
available, pulls the line low using a short pulse for logic 0 and long pulse for
logic 1. The receiver initiates the enable window pulse generator after detect-
ing the falling edge of the transmitter pulse. If the comm line is pulled high
before the enable pulse times out, the state SR latch will be reset and store a
logic 0; otherwise, the enable window will time out first and the SR latch will
keep its logic 1 state. Each comm line wire fans out from one transmitter to 16
possible destinations, allowing for a fairly rich connectivity envirionment.

5.7 RASTER Logic Cell Architecture

In the last section, we went through a detailed description of how the inter-
block communication worked in the RASTER architecture. Now we explore
the logic cell and routing architecture in greater detail, and how the commu-
nication blocks previously described fit into this architecture.

5.7.1 Logic Cell

5.7.1.1 Lookup Table

The fundamental unit of most any FPGA logic cell is the lookup table. The
first question when designing a logic cell is, “What size lookup table should
I use?” This is a complex problem that involves LUT delay, number of logic
cells necessary for synthesis, and average LUT area. Several papers have been
written that suggest the 4-input LUT (LUT4) is the most efficient size in terms
of system speed per unit area [2]. In addition, most commercial products use
the LUT4 as their baseline, so it makes comparisons more straightforward.
Because of this, the LUT4 was chosen for the RASTER architecture.

Input mux

(bidirectional)

Pulse Generator

Pulse Generator

Reset

Set

Set
Reset

Request

Reset

Set Data

Available

Data

Received

Reset

Detector Ready
Data Out

Enable Window

SetComm

Line

FIGURE 5.21
Pulse encoding receiver.
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The next choice was how to implement the LUT4. Because the unit was to
be self-timed, it was necessary to decide whether to use dedicated comple-
tion generation circuitry or a programmable delay.

The advantage of the programmable delay method is that it potentially
saves area. When circuitry must generate its own completion signal, it is
usually done via a dual-rail approach, and thus large portions of the cir-
cuit must be duplicated. However, the programmable delay method suffers
in performance, especially across PVT variations, because the delay must
be programmed for worst-case conditions. Ideally, for a high-performance
device, one would design the LUT4 in a way that generates its own comple-
tion signal at a minimal area cost.

The PAPA architecture initially set out to use dual-rail domino logic for
their LUT4 design, but ran into “pull-down stack complexity and noise
problems.” Instead they broke the LUT into an address decoder stage that
generates a logic 1 on one of 16 address lines, and the address lines feed 16
decode transistors that connect any one memory cell to the output rails (see
Figure 5.22).

The RASTER architecture took a somewhat similar approach in breaking
down the decoder into two stages, although the implementation was quite
different. In order to minimize noise and multiple transistor stacking, a LUT
was created that buffer isolates the decoder into small segments. The LUT is
composed of a two-stage pass gate decoder with buffers placed in between
each stage. Each segment has a much smaller capacitive load than a full
dynamic logic approach, and has a maximum of two transistors in any path
from supply to end load.

In addition, while using a dual-rail approach, area could be saved by dupli-
cating only a portion of the LUT decoder. The 16 memory cells necessary in
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a LUT4 also need not be replicated. The predecoder decodes the four inputs
(A, B, C, and D) into initial decoding signals. The predecoder then feeds two
2-level pass gate decoders, one for the true outputs of the memory cells, and
one for the bar outputs. Buffers are inserted between pass gate stages to
boost performance and isolate nodes. Half latches are connected to the buf-
fers to act as level-restorers.

During precharge, the internal pass gate decoder nodes are pulled high
and held there by the PMOS level-restorers. Therefore, the output is high.
The predecoder is initially off, and none of the pass gate stages are turned
on. When a start signal arrives, the predecoder is enabled, and turns on a
path from a given memory cell to the output in both pass gate decoders. One
of the pass gate decoder outputs remains high, and the other drops. The
signals are NANDed together to generate a completion signal. On comple-
tion, the LUT4 resets itself by first latching the data, then turning off the
predecoder, and finally pulling all internal nodes high again. Figure 5.23
illustrates a high-level diagram of the RASTER LUT4.

The area trade-off between the programmable delay method and dual-rail
implementation is then fairly small. In the dual-rail approach, the only repli-
cated circuitry is the pass gate decoder, which is probably comparable to the
overhead of a programmable delay, while still retaining higher throughput.

The asynchronous LUT allows for multiple inputs to change simultane-
ously, unlike the restrictions placed on the Montage architecture and others.
This is because the start signal will not toggle until a token has been received
on each LUT input. After the last LUT input value has arrived, the start sig-
nal toggles.

Another benefit to the two-level dual-rail LUT4 scheme is in the way the
fast ripple logic can be implemented. This is described further in the next
section.
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5.7.1.2 Fast Ripple Logic

In addition to synthesizing logic functions and storage elements, most
computation-intensive FPGAs support a mode of operation known as “arith-
metic mode.” Arithmetic mode allows one to synthesize logic that uses a
carry chain. This includes elements such as adders, subtractors, counters,
and comparators. Although these can be built without a fast carry chain,
they quickly can become performance bottlenecks. For instance, the worst-
case path through a 16-bit counter is when the counter rolls over from all
ones to all zeros. In this case, a carry signal must ripple through all 16 bits
of the counter. In a synchronous system, the clock frequency would be lim-
ited to this one path. A solution typically involves a short carry chain path
between select logic cells, and potentially dedicated lookahead carry logic so
that each carry-out does not depend directly on the block’s carry-in.

In an asynchronous path, the speed is based on average case performance,
which is a significant savings in itself compared to a synchronous system.
Considering the previous 16-bit counter example, the worst-case path only
occurs once in 65536 (2 ^ 16) cycles. However, for this architecture, further
carry-chain delay reduction was desired.

A carry-skip approach to the fast carry logic was implemented. For every
two logic cells, there exists dedicated logic that minimizes the carry-in of the
first cell to the carry-out of the second cell path to 39 picoseconds. The fast
path contains only a two-gate delay. In this way one can build large ripple
logic structures with little impact on maximum throughput.

As alluded to previously, the dual-rail LUT has the ability to reduce the carry-
in to sum path as well. Half of the LUT is programmed with a sum function
assuming a carry-in of 1, and the other, with a sum function assuming carry-
in of 0. The incoming carry-in signal then selects the appropriate LUT output
through a 2:1 mux, without having to travel through the LUT itself. This method
is similar to a method used in fast adders known as “carry-select.” With a faster
carry-in to sum path, the LUT can generate a completion signal quicker, allow-
ing the carry chain to reset earlier and the LUT to transmit its data sooner.

It should be noted that it is possible to run an arithmetic unit at max fre-
quency without the aid of a fast carry path through the use of pipelining.
One could stagger the inputs into the unit in a staircase fashion (each A0
value leads the A1 value by 1, which leads the A2 value by 2, and so on).
However, this requires a large number of pipeline stages and is somewhat
cumbersome to implement. With the dedicated carry chain, all inputs can
arrive at the unit simultaneously (with no requirements on how many inputs
change), as they would in a synchronous environment.

5.7.1.3 Fast Feedback Path

Most commercial FPGA logic cells contain some sort of storage element, usu-
ally in the form of a D flip-flop. Because the RASTER logic cell is self-timed,
the logic cells by nature require some kind of storage element to retain their
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states until new data is transmitted or received. Therefore, each logic cell has
its own built-in flip-flop.

However, there are some functions that require tight feedback loops. What
this means is that the storage element feedback path loops back only one or
two levels in upstream logic. In a high-throughput system, feedback loops
can quickly become the bottleneck of a design, because they cannot always
be pipelined without changing the function being implemented. For exam-
ple, an FIR filter of the form y(n) x(n) x(n – 1) could easily be pipelined to
speed up operation. However, an IIR filter in the form of y(n) y(n – 1) x(n)
requires a feedback loop to the previous stage, and its throughput is limited
by this feedback loop (iteration bound), no matter how many levels of pipe-
lining one might add. An adder and an accumulator have similar problems.
In order to add the next number to what is stored in the accumulator, one
must feed the previous data back to the adder input before another operation
can continue. State machines also frequently require tight feedback loops.

In the RASTER architecture, any nonpipelineable feedback loop would
halve the throughput of any logic associated with that loop. Therefore a ded-
icated feedback loop was added to allow either the A or B input to be used
as a state feedback. Instead of having to route to a neighboring logic cell and
then return, the fast feedback loop can be utilized.

The logic for the fast feedback is minimal. All that is needed are two 2:1
muxes and a few inverters. There is no need for the feedback signal to inter-
face with the handshaking logic, as long as the feedback loop is fast enough
to stabilize the data at the inputs of the LUT before the next wave of data
arrives. This constraint is easily met because the architecture requires a few
hundred picoseconds to reset.

5.7.2 Routing Architecture

The routing architecture is straightforward. Each block has four transmit-
ting channels and four receiving channels. Each transmitter spans four logic
cells and taps into each logic cell along the way. At each tap, the transmit-
ter channel connects to all four receivers in that logic cell, for a total of 16
possible destinations. Note that each transmitter can have only one active
receiver; the other connections are all turned off.

Every routing channel travels through a 16:1 mux that feeds into the input
of a receiver block. Because there are only 16 signals that go to any one logic
cell, each receiver has a full crossbar connectivity pattern, meaning that it is
exhaustive. Figure 5.24 shows the output connections from one logic cell.

Each of the four transmitters in a logic cell drive one orthogonal direction:
north, south, east, and west. The LUT can drive any combination of the four
transmitters. This way, in addition to being able to drive a signal in multiple
directions, the signal can be copied up to four times in a given cell, as opposed
to using dedicated token copying circuitry as in the PAPA approach.

To enhance the connectivity further, any receiver input that is not used by
the LUT in its corresponding logic cell can route directly to the logic cell’s
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transmitters. These paths are known as “passthroughs.” For instance, if a
logic cell is programmed to be a 2-input lookup table, two of the inputs are
unused. These two unused inputs can be routed to any transmitters that are
not used by the LUT output. This functionality allows designs to be packed
into a fewer number of logic cells by allowing any unused elements to func-
tion as routing resources, similar to Montage’s dual-nature cell approach.
Note, however, in this mode each receiver input is hard-wired to only one
corresponding transmitter, in order to reduce circuit complexity. However,
each input can still be routed in any of the cardinal directions because the
input muxes are full-crossbar, allowing the software to choose on which
receiver to bring the input signal in.

If further routing resources are required to route a design, logic cells can
be used only as routing cells; that is, the cell is programmed to use all four
passthroughs. In this way, routability can arbitrarily be increased simply by
spacing out computational cells between more and more routing cells, albeit
at the cost of an increasing number of unusable LUTs.

By combining the signal copying of the LUT mode, routability of the rout-
ing cell mode, and packing potential of combining both modes, a routing
architecture is developed with a fairly small number of channels needed
per logic cell. Figure 5.25 illustrates three modes of operation for which the
RASTER cell can be programmed.

5.7.3 Internal Logic Cell Synchronization

A four-phase internal logic cell synchronization method was used for
minimal impact on the area-delay product. Two-phase is potentially faster

= Receiver

FIGURE 5.24
Routing connectivity for one RASTER logic cell.
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but most sources claim a significant area overhead in choosing two-phase
synchronization with minimal speed increase [1]. In addition, the receiver/
transmitter communication between two blocks became the bottleneck of
the system early on, such that all internal signals inside the logic cell had
enough time to reset in the background while the next bit of data was fetched
by the receiver.

The logic cell requires that all the LUT input data arrive before the LUT is
allowed to start computing. After the inputs have arrived, the LUT can pro-
cess the data assuming any transmitters coupled with the LUT have finished
transmitting their data. If not, the LUT waits. After the transmitters have
emptied their data, they send a signal to the LUT enabling it to start. From
this point, the LUT computes the data and sends the output to its associated
transmitters. The LUT resets itself while the data is being transmitted, and is
now ready to receive the next wave of data.

Passthrough paths need only wait for their associated transmitter to fire
before they pass their data from receiver to transmitter. So in summary, there
are interlocking mechanisms for the receivers and transmitters associated
with the LUT, and separate interlocking mechanisms for any passthroughs
in the logic cell, so that passthrough and LUT data signals can move in paral-
lel through the logic cell with no interdependence.

5.7.4 Internal Pipelining

In order to maximize throughput in the logic cell, it was necessary to add
a pipeline stage between each receiver and the LUT. This way, the receiver
could deposit its data into the pipeline register and immediately fetch
another data bit. Otherwise, the receiver would have to wait for the LUT to
process the last piece of data, transmitters to transmit it, and the LUT reset
before fetching the next piece of data. With the pipeline registers in place,
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the throughput of the transmitter/receiver transactions can be made roughly
equal to the throughput of the LUT.

The pipeline registers are of a dual-rail variety. Dual-rail registers were
necessary in order for the pipeline register to send the receiver a signal to
fetch new data as soon as the pipeline register was empty. The dual-rail regis-
ter generates its own empty signal for this purpose. Because the passthrough
paths have no extra logic between transmitter and receiver, they are fast
enough to bypass the pipeline registers and go directly to the transmitters
without any throughput penalty.

Figure 5.26 illustrates the three types of paths through the logic cell that
determine the cell’s throughput. The dotted lines indicate the delay cycle
that occurs for a transmit/receive transaction. For conciseness, the lines are
shown with the transmitters feeding back to the receivers of the same block.
In actuality, these paths would be coming from different blocks. Notice that
the cycle only includes the delay through the transmitter, receiver, and pipe-
line register. The dashed line shows the LUT cycle which includes the delay
from the LUT through the transmitter. The transmitter delay in the transmit/
receive cycle is different from the one in the transmit/receive transition. The
LUT transmit delay includes only the delay to transfer the data from the LUT
to the transmitter and the transmitter signal back to the LUT that the data was
received. Finally, the solid line indicates the passthrough delay path, which
essentially includes a transmit receive cycle plus a small propagation delay
to the transmitter (bypassing the pipeline register). All three of these cycles
were optimized to provide maximum throughput without any one of them
being significantly slower than the others.

5.7.5 Power-Up Initialization

Because there are many state-holding elements in the proposed architec-
ture, such as SR latches, flip-flops, and LUT feedback paths, it is essential
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that each storage element comes up in the appropriate state upon power-up
of the device. Instead of adding large amounts of circuitry to each storage
element (i.e., converting flip-flops to asynchronous reset flops, etc.), a Power-
On Reset (POR) signal was used. Most storage elements in the architecture
contain one NMOS transistor whose gate is fed by the POR signal. The POR
signal tracks VCC as the device is powered on. The NMOS transistors in the
storage elements overdrive any feedback loops to initialize to the appropriate
state. As long as the power supply is ramped at a reasonable rate (millisec-
onds), the feedback loops cannot overdrive the POR transistors. After VCC
has reached full rail, the POR signal releases and shuts off all of the POR
transistors. The logic cell POR circuitry was verified assuming a VCC ramp
rate of one millisecond.

5.7.6 Implementation Notes

All schematics were created with custom logic (i.e., no standard cell librar-
ies). The logic cell was simulated in its entirety in SPICE. The carry-chain
speedpath, passthrough paths, and communication routes were simulated
separately with estimated wire parasitics.

5.8 Simulation Results

There are three main metrics that need to be addressed when dealing with
FPGAs: performance, area (cost), and power. Beyond these, requirements
such as routability and packing density are also important. However, both
of the latter require software to evaluate in a proper manner, which is not
presently in existence for this architecture. Therefore, we focus here only on
performance, area, and power.

5.8.1 Maximum Throughput

When estimating the performance of any system, one must consider the per-
formance of the system as a whole. Therefore, speed estimators such as clock
frequency in synchronous microprocessors are inadequate. For instance, the
clock speed tells you nothing about how many operations can occur simulta-
neously, how many operations occur in a given cycle, and so on. The best test
for performance is actually running a realistic software program and deter-
mining how long it takes to run. Similarly, in an FPGA, the best test of per-
formance is to program the FPGA with a series of benchmark designs and
determine system speed. This type of benchmarking is left for Section 5.9.

In the meantime, however, it is useful to find the throughput of an indi-
vidual logic cell, if for nothing else than to put a ceiling on the maximum
system throughput. It also decouples the logic cell’s performance with the
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performance of the routing architecture so that we can ascertain in the
benchmarks to what the system throughput constraints are mainly due.

Because this is an asynchronous system, there is no maximum clock fre-
quency that sets a ceiling on operation frequency. Instead, maximum data
throughput sets the system speed.

Here, we focus on three main cycle paths that determine max throughput
in the logic cell. It is necessary to take into account a cycle because the next
piece of data cannot progress until after the previous data has propagated
through the downstream logic and sent a completion signal to the upstream
logic. The three cycle paths under analysis were previously described towards
the end of Section 5.7. If any one of these paths is significantly slower than
the others, it will likely dictate the maximum throughput of the system.

In order to characterize the logic cell, a list of necessary timing arcs that
describe the delay from one point in the cell to the next was developed. In
addition to being useful for throughput measurements, timing arcs are used
by software to determine potential race conditions and maximum frequency
estimations. All delays were obtained from SPICE simulations using 90-nm
transistor models. Operating conditions assumed 1.2-V core voltage, 25°C
temperature, and typical process corner.

In summary, the transmit/receive communication cycle takes 737 ps to
complete. The LUT cycle takes 650 ps, and the passthrough cycle requires
769 ps. Taking the worst of the three, the logic cell max throughput rate is
1.3 GHz. Considering the main 90-nm competitors (Xilinx’s Vertex 4 and
Altera’s Spartan II) have a 500-Mhz clock frequency, this is a data through-
put increase of more than five times, assuming data throughput is 1/2 the
clock frequency. To put it another way, the proposed architecture has an
equivalent maximum clock frequency of 2.6 GHz.

The only other cycle of interest is the carry propagation cycle, which
cited earlier, takes 39 ps per two logic cells. The latter half of the cycle (the
acknowledge portion) actually happens in the background: while the carry
propagates to the remaining cells, the previous cells reset. The only addition
to the 39 ps per two logic cells is the resetting of the last cell in the carry
chain, which takes an additional 64 ps.

The PAPA architecture was designed in a 0.25-μm technology, so direct
speed comparisons are difficult.* At the 0.25-μm node, it could run several
benchmark designs at a peak throughput of 400 Mhz. If we assume constant
field scaling over three technology jumps (0.25 -> 0.18 -> 0.13 -> 0.09), assume
that each technology has a scale factor of square root of two, and that speed
is proportional to the scale factor, then the PAPA architecture would run at
400 Mhz * (2 ^ 1/2) ^ 3 1.1 GHz. Therefore the RASTER architecture has an
18% higher throughput rate in an equivalent technology.

* PAPA also quotes some performance results in a 0.18-μm technology, but does not report
exact area or power numbers to go along with it.  Therefore, the 0.25-μm technology compari-
son is used here.
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Note that the PAPA architecture has several specialized blocks inside
the logic cell that may give it a performance advantage at the system level.
Although PAPA logic cells contain dedicated copy and state element blocks,
RASTER can perform signal copies and state feedbacks fairly efficiently.
Merge elements would require using a LUT, which may be slower than the
dedicated merge element that the PAPA logic cell has. A split element would
require the use of two LUTs in the RASTER architecture because each logic
cell only has one output coming out of the LUT. If split and merge elements
are common enough in asynchronous designs, it may be advantageous to
allocate dedicated circuitry to perform these functions. However, it is poten-
tially at a high area cost to add it into each cell when only a fraction use it, so
the throughput increase would have to be substantial.

5.8.2 Area

Commercial FPGA logic cores are laid out in a custom fashion. Any area
increase in one logic cell gets magnified by the number of cells in the array,
and quickly becomes a significant portion of the overall FPGA area.

In order to treat the architecture as realistic, an area estimate based on
custom layout rules was required. Time constraints did not allow for actual
physical layout, so estimation methods were employed. The first method
used was based on lambda rules. Lambda rules assume that the critical
dimensions that determine layout packing density scale linearly with chan-
nel length from one technology node to the next. The logic cell was assumed
to be near random logic, so a value of 1000 lambda2 per transistor was used
[23]. For a transistor count of 2536, this method gave an area of 4058 μm2.
Although not an extremely accurate method, it is still useful for compari-
son. The PAPA optimized architecture tile occupies 2.6 Mega-lambda2, and
the RASTER architecture occupies 2.5 Mega-lambda2, thus slightly smaller
by the lambda method. The PAPA area estimate is based on the 4-track per
block routing architecture. Increasing the number of routing tracks bumps
up the area estimate significantly. For instance, the optimized PAPA archi-
tecture with 30 routing tracks occupies 8.3 Mega-lambda2 area.

In order to obtain more accurate results, a custom layout estimation method
was used based on a paper by Moraes et al. [21]. It takes into account actual
limiting design rules and average transistor sizes. Based on this estimation,
the RASTER logic cell size is 2582 μm2 per logic cell, or 51 microns per side,
assuming a square tile. Note that the lambda estimation method is in the
general vicinity (64 μm per side) as a sanity check.

5.8.3 Power

In deep submicron technologies, power has two major components: active
(switching) power and leakage power. An 85ºC junction temperature was
assumed in order to capture the effects of leakage power along with the
active power component.
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At DC, all internal nodes in the logic cell are driven to the VSS or VCC rail.
Therefore, the power consumed when the logic cell is either unused or in a
wait state is fairly low. Based on SPICE simulations at 1.2 V, 85°C junction
temperature, each logic cell consumes 65 μW of leakage power. About 55%
of the leakage power comes from the transmitters and receivers, mainly due
to the large output drivers. The rest of the power lies in the LUT, pipeline
registers, and handshake logic.

During active operation, power consumption is fairly high due to a few
factors. The transmitters and receivers have to switch levels twice with every
new input, as compared to a synchronous design switching only once. The
LUT must be reset after every computation, also doubling its switching
compared to a synchronous design. Handshaking logic fires request and
acknowledge signals each cycle. Overall, most of the logic must transition
twice in a cycle.

Active power calculations assume that the average active logic cell switches
two of its four inputs every cycle, and two of the transmitters also switch.
Under this assumption, the transmitters and receivers consume about half
of the total active power.

At maximum throughput (1.3 GHz), the active power consumption per
logic cell is 6.2 mW. Added to the leakage power, the total power consump-
tion per logic cell is 6.3 mW. At lower system throughput frequencies, the
active power drops to 2.4 mW (500 Mhz) and 1.2 mW (250 Mhz) per cell.

When calculating power for an asynchronous design, one must take into
account the average system throughput, and what percentage of the chip is
switching at any given time. Average system throughput is sensitive to (a) the
design one programs into the array, and (b) how fast the inputs are allowed
to change. The actual programmed design will often set the ceiling on the
system throughput, even when individual system components could run
faster, as we show in the next section. When trying to keep power minimal,
as opposed to a synchronous environment, one cannot simply slow down a
global clock to reduce the operational frequency of the chip. However, the
maximum operational frequency can be controlled by the input switching
frequencies. To think of it another way, after each wave of data passes from
input to output, the external signals wait before sending the next wave, even
though the chip could have processed them sooner.

Power numbers were estimated based on chipwide activity factors. The
chipwide activity factor assumes what percentage of the chip is switching on
average at a given time. Without software and actual design implementations,
it is difficult to ascertain what the range of activity factors could be. How-
ever, most synchronous designs assume an activity factor around 10–25%,
and because the authors are unaware of an average activity factor for self-
timed designs, this was the chosen range. At this activity factor, power is
bearable. Assuming higher activity factors, however, power gets out of hand
rapidly for large array sizes, due to the multiple orders of magnitude delta
between the static and active power components. For a device with 100 K
active LUTs (LUTs used by the design) running at maximum throughput
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and 10% activity factor, power consumption is around 70 watts. However, at a
data frequency of 250 Mhz, power drops to 20 watts. For the rest of the array
sizes, the power can range from 2 watts for a 250 Mhz design with 10 K active
LUTs, up to 138 watts for a 1.3 GHz with 200-K LUTs active.

Now we compare the PAPA architecture with the RASTER power budget.
PAPA consumed an estimated 26 pJ per cycle. Again, assuming that constant
field scaling for the migration from 0.25-μm to 0.09-μm technologies, active
power per block would remain unchanged. However, leakage power would
increase dramatically, but because dynamic circuits are used extensively, we
assume that the leakage component is small in comparison. If we normalize
the cycle time to 1.3 GHz, the PAPA logic cell and associated routing would
consume 33.8 mW. This is over five times higher than the RASTER architec-
ture on a per logic cell basis.

In summary, we have found that, if the RASTER logic cell can run at maxi-
mum throughput rates, it is over five times faster than current synchronous
FPGAs. When compared to the PAPA architecture, it is 18% faster, consumes
less area, and uses 1/5 of the power that PAPA does.

5.9 Benchmarking

In the previous section, we examined performance on a logic cell scale. Now
we explore the performance of this architecture from a system perspective.

In the absence of software tools for the RASTER architecture, benchmark
designs had to be limited both in complexity and number. However, the
small designs chosen give good indicators of the relative performance of this
architecture versus the 90-nm competition assuming chip routability is not
a major bottleneck.

The RASTER architecture was benchmarked against Xilinx’s Virtex 4 and
Altera’s Stratix II, both from the 90-nm technology node. Three benchmark
designs were chosen from the PREP benchmarking suite [26]. PREP was a
nonprofit organization that was created to benchmark FPGAs in an unbiased
manner by providing a suite of benchmark designs for each company to run
on their own products. From the PREP suite the datapath, small state machine,
and 16-bit accumulator were chosen. In addition to the PREP desings, an
asynchronous state machine and an array multiplier were included.

No modifications were made to the PREP designs. The same design files
were run on all devices. Xilinx ISE 7.1 software was used to test the Virtex
4 part, using the fastest speed grade. Altera’s Stratix II device was tested
using the Quartus 5.0 software package, using the fastest speed grade, with
the optimized for speed option turned on. For the RASTER architecture,
because no software yet exists, all designs were hand-routed.

Logic cell counts are normalized to a LUT4 basis. Virtex 4’s base cell is
the slice, which contains two LUT4s. Altera uses the ALUT, which also
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contains two LUT4s. Note however, that Stratix II uses extensive input shar-
ing between LUT4s under the assumption that LUT5s and LUT6s are more
efficient block sizes, and thus LUT4 packing density will be less than a strict
LUT4 architecture.

All operational frequencies are effective clock frequencies. For Stratix II
and Virtex 4, this is simply the max clock frequency of the routed design.
For the asynchronous architecture, this is the average data throughput mul-
tiplied by two, because the synchronous architecture’s data frequency is half
that of the clock.

5.9.1 Datapath Design

The datapath design was chosen because it is a singular serial path, and
therefore is a good representative path for maximum throughput. There are
no feedback loops or need to wait on intermediate inputs for the data to
propagate through the design. The datapath design starts with a 4:1 mux that
feeds a register, which in turn feeds an 8-bit shift register. This sort of design
lends itself very well to pipelining.

Both Virtex 4 and Stratix II were able to run the design at their maximum
clock frequency of 500 MHz. Because the datapath design allows for maximum
throughput and there were no routing issues, the RASTER architecture could
run it at an equivalent 2.6-GHz clock frequency. Inasmuch as each logic cell has
a pipeline stage embedded in it, the number of logic cells required to implement
the design was also low, only 11 logic cells. In contrast, Virtex 4 required 24 logic
cells and Stratix II required 40. Figure 5.27 illustrates the datapath design.
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FIGURE 5.27
Datapath design and its synthesis into RASTER logic cells.
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5.9.2 Synchronous State Machine

The small state machine design is a ten-state synchronous state machine,
half of which resembles a Moore machine (having output transitions only
on state changes), and the other half a Mealy machine (output transitions on
state changes and input changes). There are eight inputs and eight outputs.

In order to run the synchronous state machine on an asynchronous archi-
tecture, the state machine first had to be converted to be hazard free. A one-
hot state encoding method was used to ensure race-free state changes. For the
initial estimate, it was assumed that the inputs could only switch after the out-
puts had stabilized. This is a worst-case assumption as far as propagation delay
goes. For this assumption, the operational frequency was about 219 Mhz. This
frequency was calculated by taking the average case path through the state
machine, from input to output (assuming all inputs and states are equally
likely). We can see here that the individual routing delays, being longer than
the synchronous routing delays, start to add up. If we assume, however, that
the inputs can change directly after the state registers change, then the fre-
quency increases to 577 Mhz. Stratix II was able to run the design at max
frequency (500 Mhz), but Virtex 4 was only able to run it at 487 Mhz.

If an asynchronous architecture was taken into account up front, it would
be possible to further streamline the state machine through the use of a tech-
nique such as using a burst-mode state machine, and significantly increase
speed. It is also possible to pipeline the state machine so that inputs can
be fed in a constant stream manner, but this requires all internal feedback
loops and input paths to have the same number of pipeline stages, otherwise
the functionality would change. This approach is possible but puts difficult
constraints on the routing of the design. Figure 5.28 shows the synchronous
state machine and its implementation in RASTER cells.

The design implementation required 26 logic cells to perform actual com-
putations, and 69 additional logic cells for routing. Most of the routing blocks
were not fully used, and their spare tracks and LUTs could be potentially
reused by neighboring modules.

It should also be noted that the synchronous design tools do not consider a
logic cell “used” if only routing tracks and muxes in that cell are consumed.

5.9.3 Asynchronous State Machine

Because the previous state machine was geared for synchronous devices, it
is educational to also implement an asynchronous state machine in all three
environments in order to demonstrate the potential benefits the asynchro-
nous architecture might have in this arena of circuits.

The asynchronous state machine chosen was a simple three-state pulse
subtractor state machine [19]. Because it was not possible to use clocked reg-
isters for this design, asynchronous set-reset latches had to be synthesized
into LUTs. Both Xilinx and Altera’s software were not able to run this design
near maximum frequency. Because there were no clocked registers to act as
pipeline stages between logic, the timing analyzers assumed the worst-case
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path through the whole state machine. In contrast, the RASTER architecture
only has to worry about the average-case path through the state machine.
In addition, with proper signal feedback, the asynchronous state machine
could immediately send in the next wave of data inputs as soon as the state
registers stabilized, whereas the synchronous architectures would have to
wait until the next clock cycle. Stratix II was able to run the design at 416
Mhz, and Virtex II could run it only at 287 Mhz. The RASTER architecture
could run it at 1030 Mhz. Figure 5.29 shows the asynchronous state machine
and its mapping.

This design was more symmetrical and required less interconnection
between computation elements, both lending to higher packing density. Out
of 16 logic cells, 7 were required for routing only, and the rest performed
computations. Stratix II and Virtex 4 both required only 8 logic cells.

5.9.4 Arithmetic Design I

For the arithmetic design, a 16-bit accumulator was chosen. The 16-bit accu-
mulator is a combination of a 16-bit adder connected in parallel to a 16-bit
register, with the register outputs fed back into the adder. The design also
calls for a reset signal to initialize the register. This design demonstrates the
efficiency of the RASTER architecture in a typical arithmetic environment.

Both Stratix II and Virtex 4 were able to route their designs at maximum
frequency, as they both employ dedicated fast-carry chains for arithmetic
mode support. Virtex 4 required 32 logic cells to implement this design, and
Stratix II also required 32. RASTER has the advantage of having innate stor-
age capability inside the logic cell, because the same value will be stored in
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the logic cell until all of the inputs change. Therefore, the number of logic
cells required for the accumulator is only 16. However, the reset signal has
a fanout of 16, so to avoid 16 individual reset signals, 16 more logic cells are
required to route the reset signal to each cell. RASTER was able to run the
design at the max frequency of 2.6 GHz. The fast feedback paths were used in
this design for the accumulator feedback in order to support the maximum
throughput rate. Figure 5.30 depicts the implementation of the accumulator.

Although the PAPA architecture does not quote a design speed for an
accumulator, it does have data on a 16-bit bit-aligned adder. Assuming the
difference between the two designs is slight, and assuming the same tech-
nology scaling factors as discussed in Section 5.8, the bit-aligned 16-bit adder
design in PAPA would run at about 2.1 GHz.

5.9.5 Arithmetic Design II

For the second arithmetic design, a 4 × 4 array multiplier was chosen. Mul-
tipliers are frequently used in signal-processing applications in conjunction
with fast adders. Owing to the self-timed nature of the RASTER logic cells,
the multiplier implementation is fully pipelined by default. In addition to
the pipelining done in the multiplier itself, internal pipeline stages must be
inserted to distribute the input values to each partial product of the multi-
plier at the proper time. The worst-case path in the multiplier consists of the
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baseline transmit to receive delay plus two carry propagation delays, yield-
ing a max frequency of about 2.3 GHz.

From a packing density perspective, the multiplier is fairly compact in
comparison to the more random logic of the synchronous state machine. 86
logic cells were used to create the multiplier, with 28 logic cells performing
computations, and the remaining used for pipelining and input signal rout-
ing distribution. See Figure 5.31 for details.

Once again, in comparison, the PAPA architecture would be able to run at
process-equivalent speeds of about 2.1 GHz for a hand-routed 4 × 4 multi-
plier. However, the number of logic cells needed was only 21.

Figure 5.32 summarizes the data recorded on each benchmark design. In
conclusion, it appears that the RASTER architecture has significant speed
advantages over the synchronous competition in the areas of datapath and
arithmetic structures. As long as a given state machine is constructed with
asynchronous behavior taken into account, state machines look potentially
faster as well. For small designs, packing efficiency looks to be decent, but
may be an issue with larger design implementations, and would need care-
ful evaluation from a software place and route engine. Much of the routing
efficiency depends on the ability of cells to be used both as computation and
routing cells simultaneously.
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5.10 Conclusion and Future Research

After having completed this project, there are many areas that merit further
research, negating any time constraints. In addition, there is also a short list
of potential uses for the architecture.

5.10.1 Further Research

5.10.1.1 Power Reduction

In order to use this architecture for large array sizes in a cost-effective man-
ner, it is likely necessary to reduce the active power consumption of the logic
cells. This as we saw in Section 5.8 depends greatly on the overall activity
factor of a given design, and also on the average number of input and output
switching in a given logic cell. However, if power becomes an issue, the fol-
lowing are some potential power saving methods that could be researched.

Because the transmitter and receiver blocks account for 55% of overall
power, it seems obvious that this would be the first place to start. Assuming
all internal nodes fully charge or discharge in a cycle, active power is propor-
tional only to the total switching capacitance on a node. Therefore reduction
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of switching capacitance, especially on the communication channel lines, is
critical. Leakage power in comparison to active power is low, so it may be
worthwhile to introduce a lower Vt driver transistor for the communication
blocks. Then the drivers could be sized smaller for equal delay, and thus
lowering the switching capacitance on the communication channels. In addi-
tion, the entire transmitter and receiver blocks may be able to be sized down
without significant performance losses. The design was initially started
with an average transistor width of 1 μm for process variability reasons, but
the 90-nm technology node allows for sizing down to around 0.2 μm. Note
that after postlayout extraction, internal nodes may require such sizes to be
driven appropriately, but a substantial reduction may still be possible.

For the logic cell, it may be worthwhile to switch to a typical LUT4 design
that does not use self-resetting dual-rail logic. A simple delay-line completion
generation approach may be better for power and area reduction. Because the
routing throughput is low in comparison to the LUT4, performance reduc-
tions may not be noticeable.

The pipeline registers are surprisingly power-hungry for the amount of
logic they contain, most likely due to the C-elements requiring ratio logic to
overdrive previously stored values. In fact, throughout the design, all feed-
back elements used require the overdriving of feedback inverters. This was
done to reduce area, inasmuch as there is a fair amount of C-elements and
edge-triggered registers. However, area could be sacrificed here for power
reduction by employing extra transistors to disable the feedback path when
writing in new data.

5.10.1.2 High-Fanout Signals

It was obvious compared to synchronous architectures that the RASTER
architecture had to use significantly more logic cells to route high-fanout nets.
Because synchronous multiplexers typically have tens of destinations, most
of which can be active simultaneously, they have an inherent area advantage
to an asynchronous protocol that requires only one active destination. This
problem was seen up front and was mitigated by providing each logic cell
with the potential to copy a signal four times. However, control signals such
as those used for reset and initialization are problematic. The POR signal
provides power-up initialization, but any subsequent reinitialization would
require powering down the part and then raising the supply again. In addi-
tion, some Petri net-based designs (used for transition-driven asynchronous
state machine synthesis) require specific nodes to be initialized to contain
tokens of a certain value.

A potential solution is to use one or two signals that act more on a global
level. Each logic cell could select from one of the two lines, and have program-
mable inverts on the lines of a section that was to have some cells initialized
high and low. If the signals are totally global, the solution is fairly simple
in that there are no requirements to wait for individual LUTs to complete
operations; everything is just interrupted and reinitialized. However, if one
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were to want to reinitialize only a portion of the device (as in the resettable
accumulator benchmark design), this would require handshaking signals to
and from the global input source. Something that involves a row- or column-
based global signal approach is probably the most efficient.

Because the routing architecture does incorporate multiple fanout destina-
tions for each signal, it is possible to make more than one active at a time, thus
increasing routability. However, a similar problem to the one described above
is encountered for global signals in that it would require the routing and
interfacing of more handshaking signals between nearby blocks, potentially
defeating the pulse-encoding method of communication. Limited fanout
allowance, once again on a small row or column basis, might be worthwhile.

5.10.1.3 Software Place and Route Tools

Given the time, a tailored software place and route engine should be made
for the architecture to truly test it on a larger scale. Early limitations of the
architecture surfaced in the hand placement and routing of the benchmark
designs that allowed the authors to go back and make improvements. An
automated tool would greatly enhance productivity and allow for more iter-
ations and the uncovering of bottlenecks at a higher level.

5.10.1.4 Better Mux Performance

Although typical NMOS pass gates make very efficient muxes, they have their
drawbacks. NMOS pass gates pass a logic high signal poorly, and because of
this reduce path performance and robustness over extreme temperatures and
voltages. To combat this problem, one can use a higher voltage supply on the
gate connection of the transistor, as long as the gate oxide can withstand the
higher electric field. This is often done in practice, and the RASTER commu-
nication paths would likely have sped up significantly had this method been
used, and also would have been more robust on extreme PVT corners.

5.10.2 Potential Uses

There is a variety of potential uses for this architecture. Here is a list of a few.

 1. Stand-alone architecture for high-throughput designs. RASTER seems
to have significant advantages to implementing asynchronous
designs; this alone warrants potential stand-alone use. The RASTER
architecture could also be used in the same traditional products as
a typical synchronous architecture, provided that the software is
intelligent enough to translate synchronous designs into asynchro-
nous versions.

 2. Prototyping ASIC asynchronous designs. Although synchronous FPGAs
can and have been used to synthesize asynchronous components, it
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is a complex and inefficient process. Using an inherently self-timed
architecture seems like a much more efficient alternative for asyn-
chronous ASIC prototypes.

 3. Using as glue logic for multicore chips or systems on a chip (SOCs).
Large embedded systems are becoming commonplace. For com-
plex designs that require several different bus transaction stan-
dards and block interconnections, it may be very valuable for
time-to-market deadlines to use a reconfigurable high-speed
interconnect between IP cores, processor cores, and the like. In
addition, this would give the SOC designer the benefit of actually
changing bus protocols if a more efficient one were to come along
at a later date, or allow “patches” to be made to the design once it
was completed.

 4. Using as an embedded block in a synchronous device. Similar to the use of
embedded cores such as DSP blocks and processor cores, the RAS-
TER logic cells could be embedded within a synchronous architec-
ture in small arrays. This would provide synchronous FPGAs the
ability to offload high-speed logic into the RASTER array without
having to increase the entire chip’s clock frequency. These arrays
could be interfaced via FIFOs or by using handshaking signals that
selectively gate the clock when the array gets overburdened.

 5. Signal-processing applications. Digital signal processing requires
an abundance of fast adders, fast multipliers, and delay cells. The
RASTER logic cells are able to implement all three of these blocks
efficiently. Using an FPGA as a digital processing unit instead of
a dedicated DSP chip would offer the advantage of embedding
additional logic in with the datapath processing elements, such as
a control unit.

5.11 Conclusion

The RASTER architecture offers potentially significant system performance
increases over synchronous FPGAs. There are still potential issues that may
need to be investigated before using this architecture in a commercial set-
ting, such as active power consumption, routability, packing density, and
robustness across all kinds of process variations and corners. In general,
though, it offers some solutions to the problems associated with synchro-
nous design, and makes potential improvements on previous asynchronous
FPGA architectures. The hope is that ideas presented in this chapter will
profit the reader as well as pave the way for future advances in the area of
asynchronous FPGA design.
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6
The Continuation-Based 
Multithreading Processor: Fuce

Masaaki Izumi, Satoshi Amamiya, Takanori 
Matsuzaki, and Makoto Amamiya
Kyushu University

6.1 Introduction

Processor architectures have achieved performance improvements by using 
instruction-level parallelism in processors. In particular, the performance 
enhancement of superscalar processors is remarkable. However, the prob-
lem in superscalar processors is that they cannot use whole parallelism 
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because the processors are limited in their ability to exploit instruction-level 
parallelism from single-process execution or single-thread execution [3]. 
In contrast, multithreading processors that exploit thread level parallelism 
are researched. The Simultaneous Multithreading (SMT) processor [7][9] 
executes two or more processes or threads simultaneously and achieves the 
improvement of throughput. A typical example of the SMT processor which 
is made for business is the Pentium 4 supporting hyper-threading technol-
ogy [9]. 

Moreover, by the semiconductor technology advancement, the Chip Mul-
tiprocessor (CMP) [5][10] equipped with two or more processor cores in the 
chip has been researched in recent years. Because there are two or more 
processor cores in the CMP, the CMP can execute two or more processes 
or threads at the same time. SPARC T1 [14] and the IBM POWER5 [13] are 
examples of such commodity CMPs. The SPARC T1 has eight fine-grained 
multithreading processor cores that execute four threads concurrently. 

However, in the multithreading processor, the overhead of thread schedul-
ing that OS manages is increased, because the thread scheduling becomes 
complex unlike a uniprocessor. The overhead exists in thread scheduling 
which is managed by the OS, and this overhead does not sufficiently bring 
out the performance of the multithreading processor. 

We are developing the Fuce processor [2], which is based on the advanced 
version of a dataflow computing model. The Fuce processor adopts the pro-
gramming model based on the continuation-based multithreading model 
and pursues parallel execution in thread level. The Fuce processor is a CMP 
equipped with eight thread execution units to perform concurrent multi-
thread execution with the hardware units. The Fuce processor reduces the 
overhead of thread execution management due to the hardware-level multi-
thread execution control. 

6.2 Continuation-Based Multithreading Model

6.2.1 Continuation

The core concept of the Fuce thread execution model is the continuation [1], 
which is an advanced version of the dataflow computing model. More con-
cretely, in Fuce, continuation is defined by the static dependency analysis 
among threads, whereas in the dataflow model the continuation is defined by 
the dependency relation between different computational elements (opera-
tions). Here, the thread is defined as a block of sequentially ordered machine 
instructions, which is executed exclusively without interference. Note that 
this thread definition differs from the typical definition of a nonblocking 
thread [4][6][12], or the definition of a block in TRIPS [11]. From the architec-
tural point of view, in Fuce the processor pipeline may be blocked during 
execution within a thread, even when memory access occurs. 
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Figure 6.1(a) shows the single-dependency relation among thread A, 
thread B, and thread C. Thread B requires the computation result of thread 
A, and thread C requires that of thread B. In order to complete execution of 
all these threads, thread A has to notify thread B of the result of computa-
tion, and thread B has to notify thread C. We define this notification of the 
result as continuation. In typical RISC manner, the action of continuation can 
be divided into two actions, namely: transferring the computed result data 
and sending the continuation signal. Therefore, in Fuce, the data passing 
and the continuation are clearly separated in program code. The action of 
continuation is explicitly specified in a thread program, separated from the 
data passing, by using a special machine instruction. 

We introduce two types of threads, called predecessor and successor. The 
predecessor thread is a thread that notifies the continuation to another thread, 
and the successor thread is a thread that will be notified by another thread. 
In Figure 6.1(a), for example, thread A is a predecessor thread of thread B and 
thread C is a successor thread of thread B. Figure 6.1(b) shows an example of 
multiple successor threads of a predecessor thread. Thread B and thread C can 
be executed concurrently, because there are no dependencies between thread 
B and thread C. Thread D cannot be executed before completing execution of 
thread B and thread C. Because many threads like thread B and thread C are 
considered to exist simultaneously in typical program code, effective parallel 
processing will be much more possible if we design an appropriate processor 
that supports the exclusive multithread execution model. 

We introduce two numbers, called fan-in and fan-out. Fan-in is defined 
as the number of predecessor threads, and fan-out is defined as the number 
of successor threads. In Figure 6.1(b), the fan-in of thread D is two, and the 
fan-out of thread A is two. The order of thread execution is controlled by 
the continuation. Each thread decreases its fan-in value by one each time it 

FIGURE 6.1
Thread continuation.
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receives the continuation signal, and when the fan-in reaches zero, the thread 
becomes ready to be executed. Once the thread execution is triggered, noth-
ing can interfere with its execution until the execution terminates. 

6.2.2 Thread and Instance

In order to realize the continuation-based exclusive multithread execution in 
the Fuce architecture, its programming model is defined in terms of the func-
tion and the thread. In general, a function is composed of several threads, and 
has a function instance when activated. The function instance is used as its 
execution environment in the thread execution. The function instance has the 
thread program codes and data area of the activated function. Threads in the 
same function share its function instance. 

Features of the thread are summarized as

The thread has its synchronization value. Its initial value is set to 
its fan-in value. When the continuation signal is issued by the pre-
decessor thread, the synchronization value is decreased, and when 
it reaches zero the thread is ready to execute. The continuation sig-
nal is issued when the continuation instruction is executed in the 
predecessor thread. 
The synchronization with other threads is decided only by the 
issue of the continuation signal delivered by the threads. 
The thread continues its execution without interruption until the 
thread termination instruction is executed. No thread has a busy 
wait state during execution. 

6.3 Thread Programming Technique

The exclusive multithread execution model easily achieves a multithread pro-
gramming technique which would be difficult in the conventional sequential 
execution model that is convenient for serial programs. The thread program-
ming technique extracts the parallelism that exists inside the program as 
much as possible, and achieves more efficient multithread execution control. 
We show concretely the demand-driven concept and the data-driven con-
cept by the continuation-based multithreading control. In addition, we show 
thread pipelining that extracts the pipeline parallelism. 

6.3.1 Data-Driven Execution

For data-driven control, the continuation point is put in the predecessor 
thread and the predecessor thread continues the execution from this point 
to the successor thread. Data needed by the successor thread is transferred 

•

•

•
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from the predecessor thread before the continuation signal is issued. Thus 
the data-driven computing concept is realized in the continuation-based 
model. This technique is very effective except for the programs that need 
mutual exclusion control. We discuss here the mutual exclusion problem in 
data-driven control and its solution. 

For mutual exclusion in the data-driven concept, the thread tries to lock 
another thread that accesses an exclusive resource, because the thread that 
accesses the resource has to be executed exclusively. That is, the thread has to 
be continued selectively from its predecessor threads. In order to control the 
selective continuation, the test&lock operation is devised in the data-driven 
method. Figure 6.2 shows an example of mutual exclusion control using the 
test&lock operation. This example shows the case where two predecessor 
threads selectively continue to the mutually exclusive thread. 

1. The predecessor thread performs the test&lock operation to the 
successor thread.

2. (a) When the predecessor thread succeeds in locking, the predeces-
sor thread continues to the mutually exclusive thread.
 (b) When the predecessor thread fails to get the lock, the predeces-
sor thread is reactivated and tries to get the lock again. 

3. When the successor thread terminates the execution of a critical 
region, it releases the lock.  

We call this technique of using  the lock operation for the control of mutual 
exclusion, the lock operation technique. This lock operation technique is 
effective in the case where any threads continue to the mutually exclusive 
thread if they cannot explicitly specify their predecessor threads. This situ-
ation will occur when any number of processes will be dynamically created 
for resource management in the OS. 

In continuation-based multithread execution, the thread is executed exclu-
sively without interference. Therefore, when missing resource acquisition, 

FIGURE 6.2
Lock operation for mutual exclusion.
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the thread execution should not be in busy wait but should terminate its 
execution and reactivate, because deadlock would occur if multiple threads 
are in busy wait. The problem is that the execution resource is uselessly con-
sumed in repeating the rerunning of the thread that misses for the resource 
acquisition. Repeated useless reactivation of threads for the test&lock opera-
tion would impede other threads in starting execution. 

6.3.2 Demand-Driven Execution

In data-driven execution, the continuation point is set in the predecessor 
thread, and the dependence relation between threads is defined as data-
driven continuation. In the demand-driven concept, on the other hand, 
the continuation point is set in the successor thread, and the continuation 
relation is defined from the successor thread to the predecessor thread by 
demand. Figure 6.3 shows the execution of thread A, thread B, and thread C 
that uses the demand-driven continuation. 

Thread B needs the result of thread A. Thread C needs the result of thread 
B. In order to execute these three threads with the demand-driven continua-
tion, thread C sends the demand for data to thread B, and thread B sends the 
demand for data to thread A. Afterwards, thread A sends the result data to 
thread B and continues to thread B. Thread B similarly sends the result data 
to thread C and continues to thread C. 

The demand for the result is called the demand-driven continuation, and 
the notification of the result data is called the data-driven continuation. 

The thread is reactivated when it fails to get the lock of mutual exclusion, 
and in some cases the reactivation repeats many times in the data-driven 
concept. In order to exclude the lock, we use the demand-driven method to 
the mutual exclusion. Figure 6.4 shows an example of mutual exclusion con-
trol by demand-driven. This example shows the case where two predecessor 
threads continue to one successor thread. 

1. The successor thread continues to one of its predecessor threads 
with demand, and terminates.

2. The demanded predecessor thread sends the result data to the suc-
cessor thread, and continues to the successor thread.

3. The successor thread executes with the result data, then continues 
to another predecessor thread with demand, and terminates.  

FIGURE 6.3
Continuation for demand.
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We call this technique to use the demand for control of the exclusive threads 
activation, the demand-driven method. This method needs no test&lock oper-
ations and eliminates the useless reactivation of the thread. We can use this 
demand-driven technique if the predecessor threads are predetermined and 
known by the exclusive successor thread as shown by the arrows in Figure 
6.4. In a producer and consumer processing scheme like stream processing, 
use of this technique will achieve efficient mutual exclusion control. 

6.3.3 Thread Pipelining

Thread pipelining controls the thread executions so that each thread executes 
concurrently in pipelined fashion. Figure 6.5 depicts the thread pipelining. 

In Figure 6.5, thread A is the predecessor that continues to thread B, and 
thread B is the successor thread continued from thread A. Thread A passes 

FIGURE 6.4
Continuation for mutual exclusion.

FIGURE 6.5
Thread pipelining.
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the result and continues to thread B. Then thread A reactivates itself to gen-
erate the next result. At the same time, the continued thread B initiates the 
computation with the passed data. At this time, thread A and thread B can be 
executed in parallel. In the same way, thread pipelining is exploited between 
threads B and C, and between threads C and D. Thus, thread pipelining 
exploits the thread level parallelism because thread pipelining can execute 
the predecessor thread and the successor thread in parallel. In this scheme, 
thread pipelining makes the best use of continuation-based multithread exe-
cution without a memory buffer. 

6.4 Fuce Processor

The objective in designing the Fuce processor is to fuse the intraprocessor 
computation and interprocessor communication. Not only user-level pro-
grams, but even the OS kernel program including external interrupt han-
dling code and communication processing code are assumed to be composed 
of sets of threads, and the Fuce processor is designed to execute the multiple 
threads in parallel and concurrently. Figure 6.6 shows an overview of the Fuce 
processor. The Fuce processor mainly implements multiple thread execution 
units, register files, and the thread activation controller. In addition, assum-
ing the advance of semiconductor technology, the Fuce processor has on-chip 
memory to reduce memory access latency. The processor executes multiple 
exclusive threads in parallel with the multiple thread execution units. 

6.4.1 Thread Execution Unit

The thread execution unit (TEU) executes instructions of a thread. The Fuce 
processor has multiple TEUs, each of which executes an activated thread 
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exclusively. The TEU consists of a main unit and a preload unit. The main 
unit is a very simple RISC processor that can issue the thread control instruc-
tions concerning the continuation. The preload unit is a subset of the main 
unit and mainly executes load instructions to set up the execution context. 

6.4.2 Register Files

There is a set of two register files. One is the current register file, which is 
used by the main unit. The other is the alternate register file, which is used 
by the preload unit. When the TEU switches thread execution from the cur-
rent one to the next one, the TEU switches the roles of the current register file 
and the alternate register file. 

The Fuce processor achieves preloading of thread context using the pre-
load unit and register files [8]. This allows the Fuce processor to hide mem-
ory access latency and to achieve fast thread-context switching. Figure 6.7 
shows an overview of thread context preloading. 

While the main unit is executing a thread using the current register file 
in the foreground, the preload unit starts to execute the load instructions 
of another thread using the alternate register file and transfers data from 
the main memory to the alternate register file in the background. Here, we 
assume that the programmer or compiler has scheduled instructions so 
that all load instructions are arranged to the forepart of a thread and the 
other instructions construct the rest of the thread. The execution of the 
rest is done by the main unit. At this time, the current register file will 
become the alternate register file when the main unit finishes executing 
the thread. Also the alternate register file will become the current regis-
ter file. Therefore, the main unit and the preload unit can start to execute 
different exclusive threads independently using current register files and 
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alternate register files. The preload unit executes the forepart of a thread, 
and the main unit executes the rest of the thread. 

6.4.3 Thread Activation Controller

The thread activation controller (TAC) is the core component of the 
Fuce processor. The TAC controls all successor threads and exclusive 
multithreading. 

The TAC has an activation control memory (ACM), which has informa-
tion about function instances. Figure 6.8 shows an overview of the TAC. The 
structure of the ACM is similar to the paging system used in virtual memory 
in a typical OS. Each page in the activation control memory is associated with 
a function instance, and information about all threads involved in a function 
is recorded in an ACM page. Sync-count, fan-in, code-entry, and lock-bit com-
prise the necessary thread information for controlling thread execution. The 
sync-count is the current waiting number for continuation needed to execute 
its thread. Whenever the thread is continued, the sync-count is reduced by 
one. The fan-in is the fan-in value of the thread. The code-entry is the pointer 
to the thread code. The lock-bit is used for mutual exclusion. Every thread 
has a thread ID, which consists of a page number and an offset. The page 
number selects the function instance, and the offset selects thread-entry in 
a function instance. 

A hardware queue, called a ready-queue, is implemented inside the TAC 
to enable concurrent operation between the TAC and the TEUs. When a TEU 
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finishes the execution of a thread and its alternate register file becomes avail-
able, a thread in the ready-queue is allocated to the TEU to start its execution. 
At the same time, preloading operation starts with the alternate register file. 

The Fuce processor manages events in the TAC. The event-handling threads 
are preregistered in the ACM, and when an event occurs, the event triggers 
the corresponding event-handling thread by issuing continuation signal. 
This is done by making the event-handling device in the Fuce processor 
issue the continuation signal towards the ACM entry of the corresponding 
event-handling thread. In this way, the Fuce processor unifies the external 
event handling and the internal computation as continuation by the TAC. 

6.5 Implementation on FPGA

The Fuce processor prototype is implemented on the FPGA board, Accveri-
nos B-1 [15], with eight Xilinx XC2V6000 FPGA chips and 16 SDRAM mem-
ory modules. Figure 6.9 depicts the mapping of the Fuce prototype processor 
on the Accverinos B-1. 

The external host machine interacts with the Fuce prototype processor 
through the PCI bus. The host machine throws the Fuce machine codes and 
data into the FPGA boards. The memory access control unit distributes them 

FPGA

PCI Bus

to External PC

Memory Controller

P
C

I C
o

n
tro

ller

Access
Control

Unit

Fuce Processor

SDRAM Memory

FIGURE 6.9
Accverinos B-1.



188 Unique Chips and Systems

to the SDRAM memory and the Fuce processor. Table 6.1 shows the specifica-
tions of the Accverinos B-1. 

The Fuce prototype processor has eight TEUs. The latency of the TAC is 
one cycle, and memory access latency is variable. Note that the processor in 
current implementation has one Kbyte instruction cache in each TEU, but it 
has no data cache. See Tables 6.2 and 6.3.

6.5.1 Hardware Cost of the Fuce Processor

The number of logic gates was calculated to evaluate the cost of the Fuce pro-
cessor. The Fuce processor was written in VHDL and the FPGA circuit was 
synthesized using Synplify Pro. 

Table 6.4 shows the hardware cost for the Fuce processor. Note that no 
data cache or memory is included in this calculation. Also, note that the inte-
ger multiplier, integer divider, and the floating-point arithmetic unit are not 
implemented in the current Fuce processor prototype. The hardware cost 
required for the logic part is 150,000 logic gates. If one FPGA gate is com-
posed of 24 transistors, the Fuce processor requires 3.6 million transistors. 
The logic circuit of the TAC requires about 360,000 transistors. As this data 
shows, the circuit size for the thread management is very small. The cir-
cuit cost for the thread management unit including the TAC will be lightly 
affected even if the arithmetic and logic unit gets more complicated. 

By the way, the logic part of the Pentium 4 is about 24 million transistors. 
Compared to the Pentium 4, the circuit scale of the Fuce processor is very 
small. When the integer multiplier, integer divider, and the floating-point 

TABLE 6.2

Specification of Thread Execution Unit

General registers 2 sets * 32 registers * 32 bits
Instruction cache 1 Kbyte
Pipeline structure 5 stages
Instruction issue 2 instructions per clock cycle
Main unit 1 instruction per clock cycle
Preload unit 1 instruction per clock cycle

TABLE 6.1

Specification of FPGA Board

ACM Size 4 KByte 
Frequency of Fuce processor 3 MHz
Frequency of PCI bus 33 MHz
Frequency of SDRAM memory 133 MHz
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TABLE 6.4

Amount of Gates of Fuce Processor

Module FPGA Gates

TEUs ( 8) 124,048

Load/store unit 5,555
TAC 9,103
Etc. 11,733
Overall 150,448

unit are implemented in the Fuce processor, the circuit cost will increase. 
But, the Fuce processor with a small-scale thread management circuit can 
execute eight threads in parallel, whereas the Pentium 4 can execute only 
two threads at the same time. In the Fuce processor, every thread execution 
is triggered by an event, and this makes the processor structure very simple. 
Therefore, a comparatively small size hardware is required for the TEU. 

6.5.2 Simulation Result

Performance of the Fuce processor was evaluated by software simulation. 
The Fuce processor was described by VHDL and runs on the ModelSim HDL 
simulator. We evaluated the concurrency performance of the Fuce processor 
and thread pipelining effect by running several benchmark programs on 
the simulator. As the Fuce processor on this simulator has only the integer 
execution circuit, the floating-point execution circuit is imitated by adding 
the NOP execution cycles. The simulator imitates the multiplication and the 
division of integer arithmetic with only one cycle. 

Quick Sort, Merge Sort, 8-Queen, and Fast Fourier Transform were used 
as benchmark programs. The Quick Sort program sorts 7000 data, the Merge 
Sort program sorts 4096 data, and 8-Queen program searches for all solutions. 
The Fast Fourier Transform program processes 4096 elements. The benchmark 
programs were written with Fuce assembler language. Quick Sort, Merge 

TABLE 6.3

Specification of Fuce Processor

Number of TEUs 8
Memory size 1 Mbyte
Data cache None
Instruction cache 8 Kbyte
Memory access latency 20, 60, and 100 clock cycles
TAC’s latency 1 clock cycle
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Sort, 8-Queen, and Fast Fourier Transform were chosen because they have 
high concurrency. These programs are suitable for evaluating the performan-
ceof concurrent execution. Quick Sort, Merge Sort, and 8-Queen programs 
exploit very high instance-level parallelism, and the Fast Fourier Transform 
program exploits very high parallelism in both instance-level and data-level. 
These programs are written by the well-known standard algorithms. 

Furthermore, the performance of the thread pipelining was evaluated 
using Quick Sort and Merge Sort programs. Two kinds of mutual exclusions, 
the data-driven technique and the demand-driven technique, were applied 
to the thread pipelining. The data-driven program uses the thread pipelin-
ing with the data-driven technique, and the demand-driven program uses 
the thread pipelining with the demand-driven technique. These programs 
show that the thread pipelining technique exploits thread-level parallelism 
more than the programs written in well-known algorithms. 

Performance was evaluated for various values of the number of TEUs and 
memory access latency. 

Table 6.5 and Table 6.6 show the performance improvement to the increase 
in the number of TEUs. In the Quick Sort and Merge Sort programs, the 
performance is affected by the increase in the memory access latency. In the 
8-Queen and the Fast Fourier Transform programs, the speedup is roughly 
linear to the increase in the number of TEUs. The Tables also show that the 
speedup ratio is roughly linear to the increase in memory access latency. 
From this data it is said that the Fuce processor exploits performance enough 
for concurrent programs. 

Table 6.7 and Table 6.8 show the performance improvement to the increase 
in the number of TEUs in the thread pipelining Quick Sort and Merge Sort 
programs. Figure 6.10 and Figure 6.11 show the clock cycles to the number 
of TEUs in the thread pipelining Quick Sort and Merge Sort programs. (In 
these Figures, the number next to the program name is the memory access 
latency.) In the thread pipelining Quick Sort and Merge Sort programs, the 
performance is improved more for the increase of memory access latency. 

TABLE 6.5

Speedup Ratio in the Well-Known Quick Sort and Merge Sort Methods 
(Normalized with Each One TEU)

# of TEUs

Quick Sort Merge Sort
Memory Access Latency

20 (Clock Cycles) 60 100 20 60 100

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.79 1.73 1.75 1.73 1.66 1.63
4 2.88 2.68 2.70 2.61 2.39 2.28
6 3.50 3.18 3.21 3.08 2.75 2.58
8 3.86 3.46 3.48 3.37 2.96 2.76
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TABLE 6.6

Speedup Ratio in the Well-Known 8-Queen and Fast Fourier Transform 
Methods (Normalized with Each One TEU)

# of 
TEUs

8-Queen Fast Fourier Transform
Memory Access Latency

20 (Clock Cycles) 60 100 20 60 100

1 1.00 1.00 1.00 1.00 1.00 1.00
2 1.99 1.99 1.99 2.00 2.00 2.00
4 3.96 3.97 3.98 3.95 3.94 3.98
6 5.91 5.94 5.95 5.82 5.82 5.86
8 7.80 7.85 7.89 7.64 7.68 7.74

TABLE 6.7

Speedup Ratio in the Thread Pipelining Quick Sort (Normalized with Each 
One TEU)

# of TEUs

Standard Method Data-Driven Demand-Driven
Memory Access Latency

20 (Clock Cycles) 60 100 20 60 100 20 60 100

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.79 1.73 1.75 1.96 1.98 1.99 1.98 1.99 1.99
4 2.88 2.68 2.70 3.85 3.93 3.93 3.45 3.18 3.05
6 3.50 3.18 3.21 5.42 5.22 4.86 3.70 3.31 3.15
8 3.86 3.46 3.48 6.00 5.42 4.97 3.89 3.36 3.19

TABLE 6.8

Speedup Ratio in the Thread Pipelining Merge Sort (Normalized with Each 
One TEU)

# of TEUs

Standard Method Data-Driven Demand-Driven
Memory Access Latency

20 (Clock Cycles) 60 100 20 60 100 20 60 100

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.73 1.66 1.63 1.99 1.99 1.99 1.97 1.94 1.91
4 2.61 2.39 2.28 3.80 3.90 3.93 3.13 2.92 2.72
6 3.08 2.75 2.58 5.47 5.68 5.75 3.78 3.40 3.12
8 3.37 2.96 2.76 6.75 7.39 7.57 3.94 3.53 3.22
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From Table 6.7 and Figure 6.10, the data-driven method extracts parallelism 
more than the demand-driven one in the Quick Sort program. In the data-
driven method, the lock operation seldom fails, and the extracted parallelism 
saliently improves the execution performance. On the other hand, although 
the demand-driven method excludes all locks, its performance improvement 
is not as explicit compared with the data-driven method. The performance in 
the data-driven method improves linearly for one TEU to four TEUs for all of 
the memory access latency, because the lock-miss decreases with the increase 
in the memory access latency in the data-driven method. In eight TEUs, the 
performance improvement in the demand-driven method is higher than 
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the well-known method for one TEU to six TEUs, whereas the performance 
improvement in the demand-driven method is at the same level as the well-
known method. This is because the thread pipelining extracts the parallel-
ism in earlier stages of computation. In the data-driven Quick Sort program, 
the lock-miss decreases when the memory access latency increases, and the 
data-driven method effectively exploits the parallelism. From Figure 6.7, the 
data-driven program extracts more parallelism than the demand-driven pro-
gram. Thereby, as Figure 6.10 shows, the data-driven method achieves higher 
performance than the demand-driven one for the increase in memory access 
latency. In the Quick Sort program, the demand-driven method cannot pre-
load the thread context and therefore cannot use multiple TEUs effectively. 

Table 6.8 shows that the data-driven method achieves a linear speedup 
to the increase in the number of TEUs in the Merge Sort program. How-
ever, as Figure 6.11 shows, the data-driven method consumes more execution 
clock cycles than the demand-driven one. The data-driven method fails 98% 
of the lock operations and repeats its thread execution to get the lock. Thus, 
the thread execution repeats uselessly and it consumes many more execution 
clock cycles. On the other hand, the demand-driven method never uses the 
test & lock operations and improves the throughput. The demand-driven 
method exploits the parallelism even though the thread needs two continu-
ations for the demand and the computation result. 

Figure 6.11 shows that the data-driven method consumes more execution 
time than the demand-driven one. This is because the lock-miss is caused by 
the feature of the Merge Sort program in which most of the lock operations 
fail to get the lock in data-driven execution. And repeated thread execution 
for the lock competes with other thread executions to start their execution. 
Thus, the demand-driven method exploits the parallelism more in the thread 
pipelining, and it improves the performance. 

If programs can exploit parallelism enough, higher speedup will be 
achieved on the same number of TEUs even if the memory access latency 
increases. For example, the well-known 8-Queen and Fast Fourier Transform 
programs and the data-driven Merge Sort program, which have enough par-
allelism, achieve higher speedup on the same number of TEUs than other 
methods. The reason is that the memory access latency is hidden by the pre-
loading of thread context. 

6.6 Conclusion

This chapter described the processor architecture, named Fuce, which sup-
ports thread-level parallel computation. The Fuce architecture is designed 
to fuse intraprocessor computation and interprocessor communication. The 
basic programming model of the Fuce architecture is the continuation-based 
multithreading. Then, the chapter discussed continuation-based thread 
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programming, Fuce processor construction, and evaluation of the Fuce 
processor. 

This chapter showed that the Fuce processor exploits parallelism in concur-
rent execution of multiple threads and invents the stream-processing perfor-
mance extracted by thread pipelining. It was shown that the Fuce processor 
improves its performance linearly to the increase in the number of TEUs in 
concurrent processing. The thread pipelining also extracts the parallelism as 
much as possible from stream processing style programs.

The problem of the Fuce processor, although the problem is common to all 
parallel processing, is that it is difficult to make use of the locality of data. We 
have to develop a method for extracting the data locality in parallel process-
ing, and a method of thread allocation and activation to control the effective 
use of the cache memory. 

In the next step, we will implement the OS kernel mechanism of the Fuce 
processor on the FPGA board and will evaluate processor performance using 
more practical benchmark programs. For more detailed evaluation of stream 
processing, benchmark programs such as multimedia processing will be 
considered. 
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7.1 Introduction

All major high-performance microprocessor vendors have announced or are
already selling chips with two to eight cores. Future generations of these
processors will undoubtedly include more cores. Multicore architectures
exploit the inherent parallelism present in programs, which is the primary
means of increasing processor performance, in addition to decreasing the
clock period and the memory latency. Two of the techniques that have been
recently proposed for exploiting parallelism in nonnumeric programs are
subordinate threading and speculative multithreading. Both of these techniques
use multiple processing cores.

In the subordinate threading technique, one of the processing elements
(PEs) executes the main thread, whereas the others execute subordinate threads 
(a.k.a. helper threads). A subordinate thread works on behalf of the main
thread, thereby speeding up the main thread’s computation. Subordinate
threading techniques have been proposed for tasks such as data prefetching
[1–5] and branch outcome precomputation [6, 7]. Quite often, the subordinate
thread is a redundant copy of the main thread, but pruned in an appropriate
manner to achieve the desired goal.

In the speculative multithreading technique, the compiler or hardware
extracts speculative threads from a sequential program, and the processor
executes multiple threads in parallel, with the help of multiple processing
elements. A speculative thread is spawned before control reaches that thread,
and before knowing if its execution is required or not. The use of specula-
tive threads allows aggressive exploitation of thread-level parallelism from
programs that are inherently sequential. Examples of speculative threading
processors are the multiscalar processor [8] and the trace processor [9].

In this chapter we perform a study on subordinate threading and specula-
tive multithreading. We compare one type of subordinate threading tech-
nique (decoupled execution) against one type of speculative multithreading
(trace processor). Decoupled architectures were studied in [10–12], in which
the program is partitioned into two partitions at a fine granularity. They
achieve good performance by exploiting the fine-grain parallelism present
between the two partitions. Traditional decoupled architectures partition
the instruction stream into a memory access stream and a computation exe-
cute stream, such that memory accesses can be done well ahead of when the
data is needed by the execute stream, thereby hiding memory access latency.
Other ways of partitioning are also possible.

In a trace processor, the program is partitioned (at a slightly coarser level)
into traces, each of which is a contiguous sequence of dynamic instruc-
tions. A trace executes on each processing element. Processing elements are
arranged as a circular queue, in which only the head PE is allowed to commit
its instructions. All other processing elements cannot commit instructions
until they become the head.
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We perform our quantitative comparison of decoupled execution and trace
processing using 2-PE processors. In our comparison, we identify character-
istics of code regions that are better run using each type of processor (trace
processor or decoupled processor). Finally we investigate a technique that
exploits the variance within an application by switching between trace pro-
cessing and decoupled processing in a single processor. Our experimental
results show that switching between them provides an average performance
improvement of 17% higher than that of decoupled execution and trace
processing.

The outline of this chapter is as follows. Section 7.2 discusses the motiva-
tion of our work, which is variance in program behavior within an applica-
tion. We also discuss program characteristics that favor the trace processor or
decoupled processor. Section 7.3 discusses a 2-PE hybrid processor that can
switch between the trace processing and decoupled processing modes. We
present our experimental results in Section 7.4. Section 7.5 discusses related
work. We conclude in Section 7.6.

7.2 Motivation: Performance Variance within an Application

We first briefly describe the trace processor and the decoupled processor that
we used, followed by a performance study of one of the SPEC2000 bench-
marks, bzip, using a single-PE processor, a 2-PE trace processor, and a 2-PE
decoupled processor. We then compare the trace processor execution against
the decoupled processor. The metric we use in our comparison is based on
how much each technique manages to overlap computations on each pro-
cessing element.

7.2.1 Our Implementation of the Trace Processor
and Decoupled Processor

The decoupled architecture requires two architecture contexts. The trace
processor requires at least two architecture contexts. We only use two archi-
tecture contexts for the trace processor because the comparison of trace
processor against decoupled processor would be unfair if more than two
architecture contexts are used for the trace processor.

7.2.1.1 Trace Processor

Trace processors are organized around traces [9][13]. Traces have fixed sizes,
and are formed dynamically by the hardware as the program executes. A trace
predictor is used to predict the next trace to execute on the next empty PE.
Traces are committed in program order; thus the head PE has the first trace,
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and the next trace in program order is fetched by the following PE which in
turn will become the head when the head PE commits all its instructions. The
trace processor we use is very similar to the one in [9, 14] except for a minor
modification. We allow the head PE to fetch up to two traces if it finished fetch-
ing the first trace but has not yet finished with committing all its instructions.
This is done to reduce the amount of time the fetch unit is idle in the head PE.
Hence, our trace processor may contain up to three traces at any time num-
bered 1, 2, and 3 according to the sequential order of the program. The first
trace is executed by the head PE, the second trace is executed by the following
PE, and the third trace is fetched by the head PE. The third trace, however,
does not modify the state of the head PE while there is a trace ahead of it.
When the head PE commits all the instructions of the first trace, it may then
allow the third trace to modify its state. The second trace is handled by the
second PE (nonhead PE). In our simulations, we used a trace composed of four
blocks. The maximum size of a block is seven instructions.

7.2.1.2 Decoupled Processor

The simulated decoupled processor dynamically partitions the active portion
of the program into two partitions. One partition—the main thread—is com-
posed of highly predictable branch instructions and computations leading to
these branches. The second partition—the subordinate thread—is composed
of all other instructions. Computations that lead to a highly predictable branch
execute on the main thread and not on the subordinate thread if they are identi-
fied as unreferenced writes as in [15]. The main thread executes all store instruc-
tions so as to maintain a correct data memory state (the subordinate thread
does not write its stores to the second-level data cache). This is not a major over-
head, as most of the data cache misses incurred by the subordinate thread are
not incurred again by the main thread. The subordinate thread passes all its
outcomes and control information to the main thread. The main thread is sped
up, by receiving almost perfect branch predictions from the subordinate thread
as well as fewer data cache misses (stores and loads executed by the subor-
dinate thread bring the required pages into the dL2 cache). The main thread
does not execute instructions that are correctly executed by the subordinate
thread (except stores). Also, the main thread does not fetch or decode instruc-
tions, because each instruction is fetched, decoded, and executed by the subor-
dinate thread and all this information is sent to the main thread. (Notice that
instructions that are not executed by the subordinate thread are still fetched
and decoded by the subordinate thread.) If the subordinate thread goes on the
wrong path, the main thread squashes it and restarts it.

7.2.2 Analysis of the Performance Variance of Benchmark bzip

Figure 7.1 shows how the performance of the SPEC2000 benchmark program
bzip keeps changing with respect to time when executed on three different
execution models: a trace processor, a decoupled processor, and a single-PE
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processor. The performance is measured in terms of the IPC (instructions per
cycle), and is plotted for every 1000 dynamic instructions. After skipping the
first 1 billion instructions, 9.6 million instructions were simulated. The x-axis
indicates the number of instructions from 0 to 9.6 million. The y-axis indi-
cates the IPC. The first 4.8 million instructions make the first half of Figure 7.1
and the second half is from 4.8 million to 9.6 million instructions. It is clear
from the figure that the behavior of the trace processor and the decoupled pro-
cessor are quite different for bzip. More importantly, the behavior in the first
half and second half are quite different. In the first half, the trace processor
has higher performance, but in the second half the decoupled processor has
higher performance. This alternation in performance indicates that within the
benchmark bzip, thread-level parallelism or fine-grain parallelism alone does
not give the highest performance. Rather, the highest performance alternates
between both thread-level parallelism, and fine-grain parallelism.

Table 7.1 shows some statistics that explain the above behavior. From the
table, we can see that the average number of dynamic branches increases signif-
icantly (almost doubles) from the first half of bzip to the second half. However,
the branch prediction accuracy increases slightly as well. The average number
of memory references decreases from the first half to the second half. The dL1
miss rate also decreases from the first half to the second half. These are changes
in program characteristics that favor an overall increase in performance.

7.2.3 Analysis of Decoupled Execution versus Trace Execution

For the decoupled processor as well as the trace processor, the IPC in the
second half is higher than that in the first half. However, the increase is

FIGURE 7.1
Performance variance for benchmark bzip, when using trace processor, decoupled processor,
and single-PE processor.
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much more dramatic for the decoupled processor. Let us take a closer look at
the reasons for this.

7.2.3.1 Decoupled Processor

In the decoupled processor, the subordinate thread does not execute highly
predictable branches and computation leading up to such branches. The main
thread executes the instructions not executed by the subordinate thread, in
addition to a few classes of instructions that are executed by both. In the first
half of bzip, the subordinate thread executes about 76.95% of the instructions,
and the main thread executes about 23.04% of the instructions. Because of
this imbalance, the decoupled processor could not deliver good performance
in the first half.1 In the second half, the subordinate thread executes about
44.36% of the instructions, and the main thread executes about 55.64% of the
instructions. Because of this balance among the two PEs, much more perfor-
mance is obtained in the second half.

7.2.3.2 Trace Processor

The same argument applies to the trace processor also. The number of
instructions ready to commit when a processing element (PE) becomes the

1 A good balance of the workload among the two PEs is important for performance. Even more
important is the extent to which the critical instructions; however, that measure is very dif-
ficult to quantify.

TABLE 7.1

Performance Variance for bzip Benchmark

First Half of BZIP Second Half of BZIP
Trace

Processor
Decoupled
Processor

Single-PE
Processor

Trace
Processor

Decoupled
Processor

Single-PE
Processor

IPC 2.8096 2.4107 2.1610 3.0811 3.7527 2.7787
% branch instrs 8.13 8.13 8.13 30.70 30.70 30.70
br. pred. accuracy (%) 94.69 95.50 94.66 97.92 98.46 97.91
% memory instrs 35.73 35.73 35.73 19.57 19.57 19.57
dL1 miss rate 0.0063 0.0037 0.0038 0.0026 0.0013 0.0013
% instrs. executed
correctly

by subordinate thread — 76.95 — — 44.35 —
% instrs. executed
correctly

by main thread — 23.04 — — 55.64 —
% instrs. executed
by nonhead PE 33.00 — — 38.06 — —
% instrs. executed
by head PE 66.99 — — 61.93 — —



A Study of a Processor with Dual Thread Execution Modes 203

head PE increases from the first half of bzip to the second half. In the first
half of bzip, the nonhead PE executes 33.00% of the instructions and the head
PE executes 66.99%. In the second half, the nonhead PE executes 38.06% and
the head PE executes 61.93%. Thus, the work is more equally divided among
the PEs in the second half of bzip than in the first half, and therefore the IPC
increases from the first half of bzip to the second half.

7.2.3.3 Trace versus Decoupled

In the first half of bzip, the trace processor has a higher IPC than the decou-
pled processor, because it is more successful in partitioning the work equally
among the PEs. For the decoupled processor, the number of instructions
executed correctly by the PEs is split 76.95%–23.04%, whereas for the trace
processor it is 66.99%–33.00%. The opposite is true in the second half.

7.2.4 Code Region Characteristics

Both the trace processor and the decoupled processor overlap useful compu-
tations by partitioning the dynamic code among the two PEs. The way each
processor overlaps computations, as we saw, is different. The trace proces-
sor divides the program into traces that follow each other in program order,
whereas the decoupled processor partitions each block of instructions into
two (hence, each trace gets partitioned into two, one of which executes on
one PE and the other executes in parallel on the other PE). In this section, we
take a closer look at these differences. The examples in Figure 7.2 illustrate
how the trace processor and the decoupled processor overlap computations.
Through these examples we show which characteristics of code regions make
them best suited for the trace processor and which characteristics make them
best suited for the decoupled processor.

Figure 7.2a shows three consecutive traces from the first half of bzip.
Figure 7.2b shows two consecutive traces from the second half of bzip. The
instructions enclosed in a dark grey box in trace 2 are those that can execute
without stalls on the second PE in a trace processor. The instructions enclosed
in a white box are those that do not execute on the subordinate thread, so
they would execute on the main thread in a decoupled processor. Instruc-
tions enclosed in a light gray box can execute in parallel in both the trace pro-
cessor and the decoupled processor. Note that, in the decoupled processor,
instructions can be removed from both trace 1 and trace 2, for execution on
the main thread. In the first example (Figure 7.2a) there is a third trace. Trace
3 writes into register 2 and register 2 is not referenced after the last branch of
trace 2, therefore it exposes instruction “slt” in trace 2 to be removed.

We can conclude that two characteristics have a detrimental effect on the
relative performance of trace processors compared to decoupled processors:2
large number of unpredictable branches and long data dependency chains.

2 The discussion presented here is applicable to the form of decoupled processors we have
analyzed.
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7.2.4.1 Shorter Data Dependency Chains and Unpredictable Branches

The example in Figure 7.2a shows that with fewer highly predictable branches,
the subordinate thread will end up executing more instructions. With fewer
register dependencies among instructions, there will be more parallelism to
exploit. In this case, the trace processor does better than the decoupled pro-
cessor. The number of instructions not executed by the subordinate thread in
7.2a is 7 (unshaded boxes and light grey boxes). The number of instructions
that can execute without delays on a second PE in a trace processor is 15
(dark and light grey boxes).

7.2.4.2 Long Data Dependency Chains and Predictable Branches

The example in Figure 7.2b shows that when there are long data dependency
chains, the trace processor performs worse than the decoupled processor.
The number of instructions not executed by the subordinate thread in this
example is 11 (white boxes). The number of instructions in trace 2 that can
execute without delays on the second PE of a trace processor is 4 (dark gray
boxes).

From these two findings, we can see that although both decoupled proces-
sor and trace processor are similar in their goal of overlapping computations
to enhance performance, they do it differently. Code regions that are charac-
terized with shorter data dependency chains and predictable branches are
best executed by a trace processor. Code regions that are characterized by
long data dependency chains and unpredictable branches are best executed
by a decoupled processor. Therefore, a hybrid processor that identifies these
characteristics dynamically can switch between the decoupled mode and the
trace mode when appropriate.

7.3 A Hybrid Processor

7.3.1 Basic Idea

In order to exploit the variance posed within an application during different
phases of its execution, we propose a hybrid processor that incorporates
both types of threads. For part of the time the processing elements act as a
trace processor. For the remaining part, they act as a decoupled processor.
Figure 7.3 shows the hardware components of such a hybrid processor. In
the trace processor mode, the PEs are called head PE and nonhead PE. In the
decoupled processor mode, the PEs are called main PE and subordinate PE.
The control unit serves the trace processor by deciding the next trace to be
fetched in the next PE. For implementing the hybrid function, it also contains
a switch that switches between the decoupled and trace processing modes.
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While in the decoupled processor mode, the trace predictor continues to
be updated for every trace. This is done in order to have an accurate trace
predictor, so that upon switching to the trace processor mode, there is no
performance loss due to incorrect trace predictions.

The register marker and the unreferenced write identifier are used while in
the decoupled mode to aid in forming the main thread and subordinate
thread partitions. The outcomes buffer is used to communicate values from
the head PE to the nonhead PE in the trace processing mode. It is also used
in the decoupled mode to pass the outcomes and decoded information of all
instructions executed by the subordinate thread to the main thread.

7.3.2 Minimal Hardware Overhead

The proposed hybrid processor includes minimal hardware requirements
above what is required for the trace processor and the decoupled processor.
It requires the switch in the control unit as mentioned before. Each hybrid
processor PE may have one of four roles at any point of time, a head PE or
nonhead PE (as in the trace processor) and a main PE or subordinate PE (as in
the decoupled processor). Switching between the roles for any PE is handled
by the control unit switch.

7.3.3 Switching Options

We investigate two mechanisms for switching from one execution mode to
the other. One of them incurs a lot of penalty (blunt switching) and the other
has no penalty (careful switching). We explain these two in detail.

7.3.3.1 Blunt Switching

In blunt switching the switching is done instantly, potentially throwing away
useful work. That is, when the control unit determines that switching modes
could lead to better performance, it immediately switches modes. Whatever
work done by the nonhead PE (or subordinate PE) is lost in that switching,
because the thread being executed in that PE is squashed.

7.3.3.2 Careful Switching

The performance of the hybrid processor under the blunt switching strategy
was not very promising, as shown later. After a careful analysis we realized
that the amount of work lost during switching was huge. Careful switching
was our means to save the lost work. When switching from trace process-
ing to decoupled processing, if there is a trace in the nonhead PE, then it
becomes the subordinate thread. When the trace in the head PE commits,
it becomes the main PE. There are no penalties incurred when switching
from the decoupled mode to the trace processor mode as well. When in the
decoupled mode, the subordinate thread sometimes goes on the wrong path.
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That requires recovery with an associated delay (21 cycles in our experiments
as shown in Table 7.2). In the careful switching scheme, the actual switching
is done only at times of recovery, which will incur 21 cycles anyway even if
no switching occurs. The hardware associated with the switching may incur
gate delays that cannot be accounted for in our simulation model, as our
model is based on a cycle-level simulator.

7.4 Experimental Results 

In order to study the potential for a hybrid processor that switches between
decoupled processing and trace processing, we developed three cycle-
accurate simulators based on the simplescalar toolset [16]. One simulator
models the trace processor, another models the decoupled processor, and the
third models the hybrid processor that switches between the two execution
models. All three simulators include two processing elements. Each PE may
issue up to 4 instructions per cycle and may hold up to 32 instructions in its
reorder buffer. The level 1 data cache of the subordinate thread is invalidated
on recovery from the wrong path.

The microarchitectural parameters we used for the study are shown in
Table 7.2. We used the SPEC_INT2000 benchmarks. To get to the interesting
portions of the benchmarks, we skipped the first 1 billion instructions for each

TABLE 7.2

Microarchitectural Simulation Parameters

Block size 7 instructions

Trace size 4 blocks

Instruction cache Size/assoc/repl = 16KB/1-way/LRU
Line size = 32 instructions
Miss penalty = 30 cycles

Data cache Size/assoc/repl = 16KB/4-way/LRU
Line size = 32 instructions
Miss penalty = 30 cycles

Dispatch/issue/retire bandwidth 4-way

Trace predictor/branch predictor Size = 8192
Number of paths = 16
Confidence counters = 16

Subordinate thread recovery delay 5 cycles to startup recovery, 4 register restores per
Cycle (total of 64 registers), invalidate all first
Level data cache entries of, Total latency = 21 cycles

Switching delays 0 cycles (for blunt switching)
Variable (for blunt switching)
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benchmark, except for parser and twolf, for which we skipped the first 500
million instructions. We executed 500 million instructions per benchmark.

We performed two experiments to study the potential of the hybrid tech-
nique. In the first experiment we ran the trace processor and the decoupled
processor once and gathered the IPC data for every 500 instructions exe-
cuted and placed the data on files. We then ran the hybrid processor with the
gathered data as input files. The hybrid processor simulator checks the IPC
values in both files every 500 instructions. If one IPC is higher and doesn’t
belong to the processor currently run by the hybrid, then the hybrid per-
forms a switch. In the second experiment, we did the same but for every 1000
instructions.

7.4.1 Experiment 1 (Every 500 Instructions)

Table 7.3 shows some statistics for the hybrid execution. We run each benchmark
for 500 million instructions, so the maximum number of switching is 1 million.
Table 7.3 shows the percentage of switching for each benchmark, the percentage
of execution time spent in each processing mode (trace and decoupled), and the
number of instructions executed by each processing mode. The average num-
ber of times switching occurred over all the benchmarks is 32.32%. The average
amount of execution time spent in the decoupled processor mode over all
the benchmarks is 50.14%. The average performance of the hybrid processor
(blunt switching), hybrid processor (careful switching), the decoupled proces-
sor, and the trace processor are plotted against that of the single-PE processor
in Figure 7.4. The hybrid with blunt switching has an average performance
improvement of 5% higher than that of the decoupled and 6% higher than that
of the trace processor. It is clear from the figure that the performance of the

TABLE 7.3

Hybrid Processor Switching Statistics (Every 500 Instructions)

Hybrid Processor Checks Performance Every 500 Instructions
%Times

Switched
%Cycles in 
Decoupled

%Cycles
in Trace

%Instructions Done 
in Decoupled Mode

%Instructions Done 
in Trace Mode

gzip 31.17 68.19 31.81 69.24 30.76
gcc 30.35 51.54 48.46 56.12 43.88
bzip 23.80 66.85 33.15 66.14 33.86
mcf 27.56 41.07 58.93 41.08 58.92
twolf 47.31 57.63 42.37 58.77 41.23
vortex 27.22 51.09 48.91 56.05 43.95
parser 32.62 52.24 47.76 58.00 42.00
perl 23.15 12.74 87.26 13.23 86.77
vpr 47.70 49.91 50.09 54.77 45.23
Average 32.32 50.14 49.86 52.60 47.40
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hybrid (careful switching) is far better. Its average performance improvement
is higher than that of the trace by 17% and higher than that of the decoupled
by 16%. Note that its percentage of IPC improvement is 50% higher than that of
both the decoupled and trace processor for benchmark vortex. This is because
vortex is one of those benchmarks in which the IPC alternates between highs
and lows for the trace processor and the decoupled processor. The highs of the
trace processor overlap with the lows of the decoupled processor, as shown in
Figure 7.5. The lows (or highs) of the trace processor sometimes overlap with
the highs (or lows) of the decoupled processor with a difference of more than
150%, as shown in Figure 7.5.

FIGURE 7.4
Percentage of IPC performance for the trace processor, decoupled processor, and the hybrid
processor (blunt and careful switching) over the single-PE processor. (Hybrid processor checks
IPC every 500 instructions.)
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7.4.2 Experiment 2 (Every 1000 Instructions)

Table 7.4 shows the statistics for the hybrid execution, when switching is
potentially done after every 1000 instructions. The table shows the percent-
age of times switching actually occurred for each benchmark, the percentage
of execution time spent in each processing mode (trace and decoupled), and
the percentage of instructions executed in each processing mode. The aver-
age number of times switching occurred over all the benchmarks is 15.74%.
The average amount of execution time spent in the decoupled processor
mode over all the benchmarks is 50.47%. The average performance of the
hybrid processor (blunt switching), hybrid processor (careful switching), the
decoupled processor, and the trace processor is plotted against the single-PE
processor in Figure 7.6. The hybrid processor with blunt switching has an
average performance improvement of 6% higher than that of the decoupled
processor and 7% higher than that of the trace processor. It is clear from
the figure that the performance of hybrid (careful switching) is again higher
than that of blunt switching. Its average performance improvement is higher
than that of the trace by 14% and higher than that of the decoupled by 13%.
Note that its percentage of IPC improvement is 50% higher than both the
decoupled and the trace processor for benchmark vortex for the same rea-
sons as in the first experiment.

7.4.3 Comparison between Experiment 1 and Experiment 2

The difference between experiment 1 and experiment 2 is the granularity at
which the hybrid processor may switch between the two execution modes.
From the results shown in Figure 7.4 and Figure 7.6, as the granularity

TABLE 7.4

Hybrid Processor Switching Statistics (Every 1000 Instructions)

Hybrid Processor Checks Performance Every 1000 Instructions
% Times
Switched

% Cycles in 
Decoupled

% Cycles 
in Trace

% Instructions Done 
in Decoupled Mode

% Instructions 
Done in Trace Mode

gzip 13.12 74.76 25.24 74.60 25.40
gcc 16.57 54.46 45.54 58.06 41.94
bzip 9.25 67.46 32.54 66.92 33.08
mcf 14.94 37.39 62.61 42.88 57.12
twolf 25.22 60.99 39.01 61.73 38.27
vortex 18.44 49.30 50.70 55.33 44.67
parser 15.11 51.14 48.86 57.28 42.72
perl 5.07 4.90 95.10 5.31 94.69
vpr 23.94 53.85 46.15 57.01 42.99
Average 15.74 50.47 49.53 53.24 46.76
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decreases the performance of hybrid (careful switching) increases. It is also
evident from Table 7.3 and Table 7.4 that the percentage of switching is higher
for experiment 1 than for experiment 2. These two findings indicate that
with smaller granularities, more overlapping of high performance and low
performance regions of trace and decoupled is likely to be exploited by the
hybrid. Figure 7.7 shows the comparison between the hybrid processor that
checks the IPC every 500 instructions versus 1000 instructions. For all the
benchmarks, the hybrid (careful switching) does better in experiment 1 than
in experiment 2. The hybrid with blunt switching does worse for experiment
1, because of the increased penalties due to increased switching. Note that

FIGURE 7.6
Percentage of IPC performance for the trace processor, decoupled processor, and the hybrid
processor (blunt and careful switching) over the single-PE processor. (Hybrid processor checks
IPC every 1000 instructions.)
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blunt switching may not have a very bad effect if at the time of switching
not much work is lost, as evident from some benchmarks such as vpr (47%
switching).

7.5 Related Work

In [6], a technique is introduced in which the subordinate thread is shortened
to be as small as possible. Their technique is called pruning and is based on
the predictability of values and addresses. The subordinate thread is short-
ened by pruning computations that are predictable.

The varying behavior of programs was studied in [17] and [18]. In [18] the
behavior of programs was classified over their course of execution correlat-
ing the behavior among IPC, branch prediction, value prediction, address
prediction, cache performance, and reorder buffer occupancy. A program
phase was defined in [17] as a set of intervals within a program’s execution
that have similar behavior, regardless of temporal adjacency.

Techniques to exploit program phases (behavior) were presented in [19]
and [20]. In [19] the microarchitectural resources were dynamically tuned
to match the program’s requirements with regard to power consumption.
Program phases were identified dynamically and smaller hardware con-
figurations were used to save power consumption during phases of fewer
hardware requirements. In [20] an architecture that can provide significantly
higher performance in the same die area than a conventional chip multipro-
cessor was introduced. It does that by matching the various jobs of a diverse
workload to the various cores providing high single-thread performance
when thread-level parallelism is low and high throughput when thread-level
parallelism is high.

7.6 Conclusion

We performed a comparative study of trace processors and decoupled pro-
cessors. In our study we identified characteristics of codes that would make
a decoupled processor perform better than a trace processor with similar
hardware configuration. We also identified code characteristics that would
make a trace processor perform better than a decoupled processor. The dif-
ferences in the code characteristics were evident in some benchmarks, which
proved that within an application, different code regions require a different
architecture to provide the best performance. We introduced a hybrid pro-
cessor that exploits the variance within an application such that it executes
part of the application using a decoupled processor mode and the remaining
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part using a trace processor mode. It does that with the goal of maximizing
performance. Our simulations show that our scheme has great potential. It
achieves an average performance improvement of 17% higher than what is
possible with the decoupled processor.

We plan to extend our work to identify more code region characteristics
and use multiple architectures to run them. Dynamic switching between
different architectures is also a research topic that we plan to investigate.
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are applied without knowledge of what type of workloads are present. For 
example, at the transistor level, the power supply voltage can be reduced 
when the feature size is reduced. At the microarchitecture level the clock 
signal can be gated off for idle functional units. However, at the instruction 
set level or higher, techniques for reducing power consumption are applied 
dynamically in response to workload variation. Typically, this involves iden-
tifying performance-independent phases within a program. These phases 
allow for the exchange of performance for power savings without a reduc-
tion in perceived performance. In the commercial server environment, sig-
nificant opportunity exists for reducing power consumption through the 
application of dynamic power management.

Although there has been much research on adaptive power-aware archi-
tectures at various granularities, there has not been sufficient study on the 
actual phase granularities of real programs. Many past studies used simula-
tions. Some used performance counter-based data to extrapolate power in 
order to identify phases. In this chapter, we study phases based on actual 
measurement. We measure power samples for several periodicities to study 
the granularities of phases that exist in commercial servers.

Knowing how power consumption of the whole system is varying is often 
insufficient to perform adaptations effectively. If one can know how power 
consumed by a certain resource varies under different conditions, it can be 
helpful for performing adaptations. In this chapter, we study the power of 
each subsystem and the variations within it. We use the coefficient of varia-
tion (CoV) of power samples for CPU, chipset, memory, I/O, and disk to see 
the variations in power consumed by each. Homogeneity of power samples 
from each of these subsystems is presented.

Using 10 KHz instrumentation, we illustrate power phases beyond typi-
cal coarse-grain phases used in servers running commercial workloads [1]. 
By quantifying how much power is typically consumed in a subsystem and 
for how long the power consumption is stable enough to justify application 
of power adaptations, effective adaptations can be selected for a workload. 
This chapter considers power phase durations of 1 ms, 10 ms, 100 ms, and 
1000 ms. Phases in this range are applicable to more fine-grain adaptations 
such as dynamic voltage scaling, throttling, or other microarchitectural 
approaches.

This chapter makes three primary contributions. The first is a measurement 
framework for the fine-grain study of subsystem power consumption. By 
simultaneously measuring the power consumption of multiple subsystems, it 
is possible to observe complex interactions between subsystems without the 
need for simulation. Second, using this framework we demonstrate the varia-
tion in power consumption at the subsystem level for SPEC CPU, SPECjbb, 
and dbt-2 workloads. Finally, we characterize power phase behavior of a 
commercial workload. Unlike previous studies, the characterization includes 
available power phase duration and amplitude distribution which can be 
used to predict the amount of detectable phase behavior in a workload.
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8.2 Related Work

Existing measurement-based workload power studies of computing systems 
have been performed at the various levels: microarchitecture [2]–[4], subsys-
tem [5]–[7], or complete system [8]. This study targets the subsystem level 
and extends previous studies by considering a larger number of subsystems. 
Also, unlike existing subsystem studies that analyze power on desktop and 
mobile uniprocessor systems, we consider an enterprise class multiprocessor 
system running a typical commercial workload.

Past studies performed at the microarchitecture level [2][3] utilize 
performance-monitoring counters (PMCs) to estimate the contribution to 
microprocessor power consumption due to the various functional units. 
These studies only consider uniprocessor power consumption and use sci-
entific workloads rather than commercial. Furthermore, because power is 
measured through a proxy it is not as accurate as direct measurement. Also, 
Natarajan [4] performs simulation to analyze power consumption of scien-
tific workloads at the functional unit level.

At the subsystem level, [5]–[7] consider power consumption in three differ-
ent hardware environments. Bohrer [5] considers the following subsystems 
in a uniprocessor personal computer: CPU, hard disk, and combined memory 
and I/O. The workloads represent typical web server functions such as http, 
financial, and proxy servicing. Our study adds multiprocessors, and consid-
ers chipset, memory, and I/O separately. Mahesri and Vardhan [6] perform 
a subsystem-level power study of a Pentium M laptop. They present average 
power results for productivity workloads. In contrast, we consider a server-
class SMP running commercial and scientific workloads. Feng et al. [7] per-
form a study on a large clustered system running a scientific workload. As 
part of a proposed resource management architecture, Chase et al. [8] present 
power behavior at the system level. To the best of our knowledge, our study is 
the first to present a power characterization that includes phase duration.

8.2.1 Dynamic Adaptation

Dynamic adaptation is a valuable tool for improving the energy efficiency 
(instructions/joule) and reliability of computing systems. Unlike static tech-
niques that may limit peak performance in order to reduce average power 
consumption and increase energy efficiency, dynamic adaptation offers high 
performance and high efficiency. Dynamic techniques take advantage of 
a critical feature of modern computing: within an application or a group of 
simultaneously executing applications, the demand for computing perfor-
mance is typically variable. During certain phases of execution, an application 
can reduce its execution time through increased processing performance. In 
other phases, increases in processing performance will have negligible impact. 
During these performance-independent phases, it is possible to save power 
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without reducing the perceived performance of the processor. This chapter 
seeks to improve the utilization of dynamic adaptations by quantifying the 
availability of power phases in commercial and scientific workloads. Know-
ing which workloads offer the greatest availability of distinct phases can assist 
designers in choosing the best candidates for applying dynamic adaptations.

In addition to increasing efficiency, dynamic adaptations may also be used 
to increase reliability. Adapting for efficiency usually increases reliability 
because the component consumes less power and therefore operates at a lower 
average temperature. However, in some cases adaptations must be applied 
without concern for performance or efficiency. These adaptations are used to 
guarantee safe operating conditions at levels from a particular component 
through large groups of systems. Considering individual components, most 
current generation microprocessors contain facilities to reduce performance 
(clock rate) when thermal emergencies occur. A thermal emergency is an 
elevated die temperature caused by excessive utilization, cooling equipment 
failure, or high ambient temperature.

At the other extreme, the reliable operation of an entire server rack or 
computing center may be jeopardized by a highly utilized component. Due 
to the demand to increase performance in computing centers, many centers 
are now being designed with systems capable of exceeding thermal and 
power constraints of the building or room in which they are housed. This 
is typically not a problem, unless the rare case occurs in which many of the 
systems are being highly utilized at once. By knowing which workloads 
have sustained, high levels of utilization, designers can allocate comput-
ing resources in a manner that limits or prevents the likelihood of these 
emergencies.

8.3 Methodology

In this section, we describe our experimental approach composed of power 
sampling, workload selection, and phase classification.

8.3.1 Power Sampling

For this study, we utilize an existing measurement framework from a pre-
vious processor power study [9] and extend it to provide additional func-
tionality required for subsystem level study. The most significant difference 
between the studies of processor level versus subsystem level is the require-
ment for simultaneously sampling of multiple power domains. To meet this 
requirement we chose the IBM x440 server, described in Table 8.1.

By choosing this server, instrumentation is greatly simplified due to 
the presence of current-sensing resistors on the major subsystem power 
domains. The current-sensing resistors are included in the server to prevent 
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over-current conditions in the server’s various power domains. This reduces 
the probability of a short circuit becoming a fire. Although these resistors 
are used to detect the case where power supply current is greater than a 
fixed limit, they can be adapted to provide more fine-grain information. This 
allows study of power phase behavior in the server.

Using the current-sensing resistors, five power domains are considered: 
CPU, chipset, memory, I/O, and disk. The components of each subsys-
tem are listed in Table 8.2. Due to the complex power requirements of the 
server chipset used in the x440, it is not possible to directly measure the 
power consumption of all of the five subsystems. By considering the con-
sistent nature of power consumption in some components, it is possible to 
infer how much power each subsystem is using. For example, a particu-
lar power domain may supply current to two subsystems. If all current 
delivered to one of those components is effectively constant, that current 
can be subtracted out to allow observation of the more dynamic remaining 
components. In addition to the components listed in Table 8.2, additional 
support circuitry for those subsystems is included in the power measure-
ment such as decoupling capacitors, strapping resistors, and clock genera-
tion circuits.

Power consumption for each subsystem (CPU, memory, etc.) can be calcu-
lated by measuring the voltage drop across that subsystem’s current-sensing 

TABLE 8.1

IBM x440 SMP Server Parameters

Four Pentium 4 Xeon 2.0 GHz, 512 KB L2 Cache, 2 MB L3 Cache, 400 MHz FSB
32 MB DDR L4 Cache 
8 GB PC133 SDRAM Main Memory
Two 32 GB Adaptec Ultra160 10 K SCSI Disks 
Fedora Core Linux, kernel 2.6.11, PostgreSQL 8.1.0

TABLE 8.2

Subsystem Components

Subsystem Components

CPU Four Pentium 4 Xeons
Chipset Memory controllers and processor interface chips
Memory System memory and L4 cache
I/O I/O bus chips, SCSI, NIC
Disk Two 10 K rpm 32 G disks
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resistor. In order to limit the loss of power in the sense resistors and to pre-
vent excessive drops in regulated supply voltage, the system designer used 
a particularly small resistance. Even at maximum power consumption, the 
corresponding voltage drop is in the tens of millivolts. In order to improve 
noise immunity and sampling resolution we designed a custom circuit board 
to amplify the observed signals to levels more appropriate for our measure-
ment environment. The printed circuit board is shown in Figure 8.1. This 
board provides amplification for eight current measurement channels using 
the Texas Instruments INA168 current shunt monitor pictured in Figure 8.2. 
This integrated circuit provides a difference amplifier intended for power 
instrumentation of portable systems. It provides an output voltage that is 
directly proportional to the voltage across a current-sensing resistor. The 
gain of the amplifier is set using a user-selectable resistor. In our case, we 
chose a gain of 20X. This provides a reasonable voltage level for our data 
acquisition equipment and allows sampling of signals that vary at rates in 
excess of 10 KHz. The board also provides BNC-type connecters to allow 
direct connection to the data acquisition component. The board can be seen 
as part of the entire measurement environment in Figure 8.3.

This measurement environment is similar to that used in a previous study 
of uniprocessor power consumption [9]. The main components of the envi-
ronment are subsystem power sensing, amplification (custom board), data 
acquisition, and logging. Subsystem power sensing is provided by resistors 
on board the x440 server. The voltage drop across the resistors is amplified by 
the custom circuit board. The amplified signals are captured by the National 

FIGURE 8.1
Current sense amplification PCB.
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FIGURE 8.2
TI current shunt monitor INA168 [10].
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FIGURE 8.3
Power measurement environment.
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Instruments AT-MIO-16E-2 data acquisition card. Finally, the host system, 
running LabVIEW, logs the captured data to a file for offline processing.

Earlier we mentioned the capability of the current-sensing amplifiers to 
measure signals faster than 10 KHz. This decision was dictated by peak sam-
pling rate of our data acquisition system. Although the AT-MIO-16E-2 data 
acquisition card is capable of 500 K samples/second, the effective limit is 
approximately 10 KHz. Two factors contribute to the reduced sampling rate. 
First, the need to measure eight channels simultaneously reduces the rate 
by 8X. Second, the host system for the sampling card has insufficient perfor-
mance to sustain full-speed sampling.

The final component of our measurement environment is the offline pro-
cessing of log files. Processing is made up of two major parts: amplitude 
analysis and phase classification. The details of these parts are described in 
Section 8.3.3.

8.3.2 Workloads

In this section we describe the various benchmarks that are used as workloads 
used in the study. These benchmarks are intended to be representative of typical 
server workloads. For commercial workloads, we consider dbt-2 in Section 8.3.2.1 
and SPECjbb in Section 8.3.2.2. Section 8.3.2.3 covers the SPEC CPU benchmark 
which represents scientific workloads. Finally, Section 8.3.2.4 describes the 
baseline idle workload which is common in server environments.

8.3.2.1 Transaction Processing

For the majority of our analysis we utilize the dbt-2 transaction processing 
workload from Open Source Development Labs [11] as a representative com-
mercial workload. This workload imitates the TPC-C benchmark. It represents 
a wholesale parts supplier accepting orders and distributing parts to vari-
ous sales districts. Results from this workload are presented in terms of new 
order transactions per minute (NOTPM). They are not intended to be directly 
comparable to TPC-C results, but they do scale similarly. Dbt-2 dictates the 
warehouse/client configuration to maintain similarity to TPC-C. Within these 
requirements it is found that disk space is the primary bottleneck of our x440. 
The 28 Gbytes of available space on a dedicated disk yielded a 160-warehouse 
workload. Although higher throughput is possible with more disk space, we 
were able to obtain 234 NOTPM.

8.3.2.2 SPECjbb 2000

Because our server is disk-bound with respect to server workloads, we 
include the disk-independent SPECjbb 2000 workload. This workload emu-
lates a three-tiered server-side Java application. The benchmark scales the 
amount of work to fully utilize the available processing resources.
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8.3.2.3 SPEC CPU 2000

Eight SPEC CPU 2000 workloads are analyzed for average power consump-
tion. These do not generate significant I/O traffic, however, they do utilize 
the CPU and memory subsystems intensively. For each workload, eight 
instances are run simultaneously. This allows full utilization of the eight 
available hardware threads (four physical processors with two-way hyper-
threading). The power measurements are made after all workloads have 
passed the initialization phase (reading dataset from disk).

8.3.2.4 Baseline

The baseline workload is the minimum processing required by the operat-
ing system when the server is idle. This workload is especially important 
because it demonstrates the high levels of idle power required to operate a 
server. For this workload and for all others the following software levels are 
used: Linux kernel version 2.6.11, Fedora Core 4, gcc version 4.0.0, and Intel 
FORTRAN compiler 9.1.036.

8.3.3 Phase Classification

Classification of power phases is presented in two ways: amplitude distribu-
tion and duration strata. For our purposes, amplitude distribution is defined 
as a probability distribution of sampling power at a particular amplitude 
(watts). Duration is the length of a phase in milliseconds.

Amplitude results are presented as probability distributions of all power 
samples. The samples are stratified into groups with a range equal to one 
twentieth of the difference between maximum and minimum sampled 
value. The shape of the distribution can be used to direct power manage-
ment policies. For example, multimodal power amplitude distributions sug-
gest multiple distinct power phases. In contrast, narrowly distributed power 
consumption suggests a simpler phase behavior. For the purpose of dynamic 
phase detection and adaptation, the widely distributed (large standard 
deviation) or multimodal distributed (multiple peaks) offer the best oppor-
tunities, due to the presence of multiple distinct behaviors. Very narrowly 
distributed power behavior indicates highly homogeneous power consump-
tion and consequently, little opportunity to detect power phases. Finally, the 
location of the distribution center provides a single, representative power 
consumption value for the subsystem. Figure 8.4 provides an example of two 
power amplitude distributions. The high homogeneity distribution indicates 
that the vast majority of samples are within 5 watts of the 21-watt average. 
In contrast, the low homogeneity distribution has a much larger variation 
of nearly 15 watts. Also, two dominant amplitudes are present at 32 watts 
and 35 watts. This suggests the presence of at least two distinct phases with 
respect to power amplitude.
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Presented power phase duration results do not have as fine a granular-
ity (4 levels) as the amplitude results (20 levels). Rather than performing an 
exhaustive search of all possible phase durations, we instead selected four 
groups: 1 ms, 10 ms, 100 ms, and 1000 ms. These groups are intended to 
cover the range of useful but underutilized durations. Phase durations much 
greater than 1 s are fairly well known and utilized in the server environment 
[1][12]. No phases less than 1 ms are considered due to the overhead of cur-
rent software-directed adaptation mechanisms.

Our mechanism for defining a phase is similar to a phase comparison 
metric used by Lau et al. [13]. In order for a series of samples to be con-
sidered a phase, they must have a coefficient of variation less than the 
limit specified for the experiment. Our results show that a CoV of 0.05 
yields representative phases that differ from the sampled data by 3.2% on 
average.

Phase groupings by duration should be inclusive of all phases greater 
than or equal to their duration size, yet smaller than the next larger dura-
tion group. For example, all phases with durations from 10 ms to 99 ms are 
placed in the 10-ms group. Also, phases are mutually exclusive. Grouping in 
the largest possible duration is preferred. For example, although a 100-ms 
phase is composed of ten 10-ms phases, the 10-ms phases are not placed in 
the 10-ms group. This approach favors identifying the maximum number 
of long duration phases, because long phases give the best opportunity for 
amortizing the cost of identification and power adaptation. We also present 
results in which samples are allowed to exist within multiple groups. Using 
the previous example of a 100-ms phase, the phase would be placed in the 
10-ms group (ten instances) as well as the 100-ms group.
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8.4 Power Analysis

This section presents subsystem power analysis in three forms. First in 
Section 8.4.1, power traces are presented at varying resolutions to illus-
trate the need for fine-grain sampling and phase detection. Next, Section 
8.4.2 presents probability distributions of power samples. By considering 
the distribution characteristics, selection of power management strategies 
is improved. Finally, Section 8.4.3 provides phase duration results based on 
varying levels of intraphase homogeneity.

8.4.1 Power Traces

In this section power traces of the dbt-2 workload are presented at vari-
ous sample rates to justify the need for fine-grain sampling and adaptation. 
Traditional coarse-grain power phases have easily observable behavior. An 
example of a coarse-grain power phase can be seen in Figure 8.5. For all 
figures in this section the legend ordering reflects the graph ordering. For 
example, the top subsystem in the legend is the CPU. Therefore, the top 
(highest power) subsystem in the graph is the CPU. Similarly, the bottom 
subsystem in the legend and graph is the chipset. This case demonstrates a 
server transitioning from being very heavily loaded (0–2000 seconds), ser-
vicing a large number of warehouse transactions, to the idle state (2000–5000 
seconds), servicing only periodic operating system traffic. These phases 
are easily detected due the large difference in power consumption. Also, 
the long phase length reduces the need for frequent sampling. Typically, 
commercial workload power savings is accomplished by aggressive sleep 
modes such as standby or hibernation, during the long-term, low-utilization 
phases [13][1].
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To further reduce power consumption, the shorter, less distinct power phases 
must be utilized. Figure 8.6 illustrates the presence of numerous distinct 
power phases once the granularity of sampling is increased. At this resolution 
it becomes clear that significant fluctuations in power use are occurring. CPU 
power varies by more than 3X whereas most other subsystems vary from 30–
50%. At this level more responsive techniques such as DVFS are appropriate.

Utilizing the extent of our sampling environment, Figure 8.7 shows the 
presence of very fine-grain power phases when the sampling resolution is 
increased to 10 KHz. At this level, the large phase magnitude changes are 
present, but duration appears shorter. Most discernable phases are on the 
order of milliseconds, with the exception of the two 10-ms phases at 55 and 
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85 ms. For such short duration changes, it is not reasonable to use DVFS due 
to the long time required for voltage [14] and frequency transition. A more 
appropriate technique would be explicit clock gating [15] or ISA directed 
powerdown of microarchitectural features.

8.4.2 Amplitude

8.4.2.1 Dbt-2

Figure 8.8 shows the average power breakdown for the various subsystems 
under the dbt-2 workload. Not surprisingly, the CPU subsystem is the domi-
nant power user. However, unlike distributed, scientific [7], and mobile, 
productivity workloads such as [6], I/O and disk power consumption are 
significant. Although differences in average subsystem power are large at 
138% for disk compared to CPU, the variations within an individual subsys-
tem are even greater. A comparison of subsystem power amplitude distribu-
tions is made in Figure 8.9. Note that the CPU distribution is truncated at 
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60 watts to prevent obscuring results from the other subsystems. A small 
number of phases (6.5%) exist above 60 watts and extending to 163 watts. As 
in Figures 8.5 through 8.7, the legend is ordered with the highest power at 
the top and lowest at the bottom.

These distributions suggest that there are significant opportunities for 
phase-based power savings for CPU, I/O, and disk. These subsystems have 
wider or multimodal distributions. The larger variations in power consump-
tion provide greater opportunity to use runtime detection techniques such 
as [16][17]. In contrast, chipset and memory have very homogeneous behav-
ior suggesting nearly constant power consumption and less opportunity for 
phase detection using this workload.

8.4.2.2 SPEC

For the case of SPEC CPU and SPECjbb workloads the results are somewhat 
different. In Table 8.3 a comparison of average subsystem power consump-
tion is given for all workloads. Compared to the disk-bound dbt-2, these 
memory-bound and CPU-bound applications show significantly higher CPU 
and memory power consumption. Although dbt-2 only increases average 
CPU power by 26% compared to idle, all of these workloads increase aver-
age CPU power by more than 250%. For memory, the top three consumers 
are all floating point workloads. This supports the intuitive conclusion that 
memory power consumption is correlated to utilization.

The remaining subsystems had little variation from workload to work-
load. For the disk subsystem this can be explained by two factors. First, most 
workloads used in this study contain little disk access with the exception 
of dbt-2. For most others, the initial loading of the working set is the major-
ity of the disk access. Using synthetic workloads targeted at increasing disk 

TABLE 8.3

Average Power Consumption (Watts)

CPU Chipset Memory I/O Disk

idle 38.4 19.9 28.1 32.9 21.6
gcc 162 20.0 34.2 32.9 21.8
mcf 167 20.0 39.6 32.9 21.9
vortex 175 17.3 35.0 32.9 21.9
art 159 18.7 35.8 33.5 21.9
lucas 135 19.5 46.4 33.5 22.1
mesa 165 16.8 33.9 33.0 21.8
mgrid 146 19.0 45.1 32.9 22.1
wupwise 167 18.8 45.2 33.5 22.1
dbt-2 48.3 19.8 29.0 33.2 21.6
SPECjbb 112 18.7 37.8 32.9 21.9
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utilization, we were only able to achieve less than 3% average increase of 
disk power compared to idle. This is due to the second factor which is a lack 
of disk power management. Modern hard disks often have the ability to save 
power during low utilization through low power states and variable speed 
spindles. However, the disks used in this study do not make use of these 
power-saving modes. Therefore, disk power consumption is dominated by 
the power required for platter rotation which can account for almost 80% of 
max power [18]. For I/O and chipset subsystems, little workload-to-workload 
variation was observed. In the case of the chipset, offset errors due to alias-
ing were introduced that affected average power results. As we show in the 
next section greater variation was found within each workload.

8.4.2.3 Intraworkload Variation

To quantify the extent of available phases within a workload we use the met-
ric coefficient of variation. This metric uses standard deviation to quantify 
variation in a dataset, and also normalizes the variation to account for dif-
ferences in average data. Because the subsystems in this study have average 
power values that differ by nearly an order of magnitude, this metric is most 
appropriate. Table 8.4 provides a summary of CoV for all workloads.

Compared to the variation in average power among workloads on a given 
subsystem, the variation within a particular workload is less consistent. 
Subsystem–workload pairs such as CPU–gcc and memory–SPECjbb have a 
very large variety of power levels. In contrast disk–art and chipset–mcf have 
as much as 300X less variation.

The cause for this difference can be attributed to the presence or lack of 
power management in the various subsystems. The most variable subsys-
tem, the CPU, makes use of explicit clock gating through the instruction set. 

TABLE 8.4

Power Consumption Coefficient of Variation

CPU Chipset Memory I/O Disk

idle 8.86E-03 4.61E-03 1.17E-03 3.86E-03 1.25E-03
gcc 5.16E-02 1.13E-02 6.90E-02 4.05E-03 2.44E-03
mcf 3.37E-02 8.53E-03 3.60E-02 3.81E-03 1.50E-03
vortex 6.99E-03 4.12E-03 2.06E-02 3.11E-03 7.82E-04
art 2.47E-03 3.66E-03 5.31E-03 3.12E-03 2.51E-04
lucas 1.21E-02 6.34E-03 5.73E-03 3.09E-03 3.25E-04
mesa 6.05E-03 3.49E-03 8.81E-03 3.86E-03 3.85E-04
mgrid 3.58E-03 2.46E-03 3.36E-03 3.06E-03 2.37E-04
wupwise 1.56E-02 6.96E-03 9.45E-03 3.12E-03 4.95E-04
dbt-2 1.70E-01 6.73E-03 2.37E-02 4.35E-03 1.61E-03
SPECjbb 2.34E-01 1.75E-02 7.61E-02 1.70E-03 3.34E-03
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Whenever the operating system is unable to find a schedulable process, it 
issues the “halt” instruction. This puts the processor in a low power mode 
in which the clock signal is gated off in many parts of the chip. This mode 
reduces power consumption in the processor to less than 25% of typical. 
Because the memory subsystem does not make use of significant power 
management modes, its variation is due only to varying levels of utilization. 
These workloads exhibit large variations in memory utilization, therefore 
this has a significant impact.

In contrast, the chipset and I/O subsystems have little variation in utiliza-
tion. Because these subsystems also do not make use of power-saving modes, 
their total variation is very low. In the case of I/O, the observed workloads 
make little or no use of disk and network resources. For the chipset subsys-
tem, the causes are not as clear and require further study. As mentioned in 
the previous section the lack of disk power management causes little vari-
ation in disk power consumption. If these subsystems are to benefit from 
dynamic adaptation, workloads with larger variation in utilization would 
be needed.

In order to justify the use of CoV for identifying workloads with distinct 
phases we consider probability distributions for some of the extreme cases. 
In order for a subsystem–workload pair to be a strong candidate for optimi-
zation, it must have distinct program/power phases. If a workload exhibits 
constant power consumption it is difficult to identify distinct phases. Fur-
thermore, if the difference in phases is very small, it may be difficult to dis-
tinguish a phase in the presence of sampling noise. Therefore, we propose 
that a strong candidate should have multiple distinct phases. This can be 
observed in the power amplitude distributions in Figures 8.10 and 8.11.

In Figure 8.10 we see the gcc workload running on the CPU subsystem. 
Because this workload has significant variation in instructions per cycle 
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(IPC) and IPC has been shown to be strongly correlated with power [9], the 
resultant power variation is also significant. From this graph three local max-
imums are apparent at: 133 W, 162 W, and 169 W. Applying Bircher’s mod-
els, these correspond to IPCs of ~0, 1.11, and 1.52. Therefore, approximately 
5% of the time the processor is stalled waiting for memory or a pipeline fill 
(IPC  0). This can be found by taking the sum of the probabilities under the 
first local maximum near 133 W. The remainder of the workload has vary-
ing degrees of utilization, but typically has IPC greater than 1. Therefore, 
dynamic adaptations for this subsystem–workload pair would likely need to 
make use of the high-IPC cases which are very common. The low IPC phases 
are too rare for this combination.

Similarly, the memory subsystem coupled with SPECjbb exhibits a large 
range of variation. In Figure 8.11, four distinct local maximums are visible. 
This lowest, which is near 28 W, corresponds to idle power. Therefore, about 
4% of this workload makes no access to memory. The other three maximums 
at 37 W, 39 W, and 42 W are strong candidates for adaptation because they 
are significantly different from adjacent maximums.

At the other extreme of variation we consider two floating-point work-
loads: art and mgrid running on disk and chipset subsystems, respectively. 
Unlike dbt-2, these workloads are memory-bound and make little use of the 
disk subsystem. The resultant distribution for art can be seen in Figure 8.12. 
Although two local maximums are apparent, their difference is very small. 
The entire range of observed power consumptions varies from only 21.865–
21.9 W, a difference of only 35 mW. Because no direct access of the disk is 
made from within the application, the only disk access is caused by period 
operating system traffic. It is possible that the two maximums are caused by 
the idle case and a rare seek/read/write cycle. Because the seek/read/write 
cycles would have to be very rare to produce such a small difference, it is 
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difficult to distinguish them from noise in the measurement. An even simpler 
distribution exists for the chipset subsystem running mgrid in Figure 8.13. In 
this case only one maximum exists at 19.05 W. The total variation is approxi-
mately 300 mW. For both cases it is quite difficult to identify multiple distinct 
phases. Therefore, these subsystem–workloads are not strong candidates for 
dynamic adaptation.

8.4.3 Duration

The presence of power variation is not sufficient to motivate the applica-
tion of power adaptation. Due to the overhead of detection and transition, 
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adapting for short duration phases may not be worthwhile. Table 8.5 pres-
ents the percentage of samples that are classifiable as phases with durations 
of 1 ms, 10 ms, 100 ms, and 1000 ms under the dbt-2 workload. These results 
assume a group of samples can be defined as phases of multiple durations. 
As described in Section 8.3.3, a 100-ms phase would be made up of ten 10-ms 
phases. Results for coefficient of variation of 0.25, 0.1, and 0.05 are presented. 
At CoVs of 0.25 and 0.1 excessive error exists especially in I/O subsystem 
phase classifications. A probable cause of the error is the greater sample-to-
sample variability of the I/O power trace. The disk subsystem, which has 
higher than average error, also has a wider than average distribution. For the 
following discussion, a CoV of 0.05 is utilized.

The effect of narrow chipset and memory distributions is evident in their 
high rates of classification. For both, at least half of all samples can be clas-
sified as 1000-ms phases. In contrast, CPU, I/O, and disk have no 1000-ms 
phases and considerably fewer phases classified at finer granularities. These 
results can be used to plan power management strategies for a particular 
workload–subsystem combination. For example, by noting that the I/O 
subsystem has almost no phases longer than 1 ms, the designer would be 
required to use very low latency adaptations. In contrast, the disk subsys-
tem has 18.5% of samples definable as 100-ms phases, thus providing greater 

TABLE 8.5

Percentage of Classifiable Samples Using dbt-2

Duration(ms) CPU Chipset Memory I/O Disk

CoV = 0.25
1 98.5 100 100 99.5 100
10 90.8 100 100 87.6 100
100 70.0 100 100 85.3 100
1000 36.0 100 100 96.3 100
Error % 8.78 3.70 3.47 15.2 6.31

CoV = 0.10
1 91.7 100 100 81.1 100
10 66.0 100 98.6 35.7 88.6
100 43.1 100 94.4 21.0 95.6
1000 9.30 100 93.1 0.00 95.0
Error % 4.60 3.70 3.47 6.63 6.31

CoV = 0.05
1 61.6 88.3 97.7 22.4 98.4
10 25.5 78.0 91.2 1.70 32.1
100 6.00 63.2 78.6 0.00 18.5
1000 0.00 64.4 50.0 0.00 0.00
Error % 3.38 3.46 2.68 3.67 2.93
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opportunity to amortize adaptation costs. Although chipset and memory 
subsystems have a large percentage of classifiable samples, they may not be 
viable candidates for adaptation. By also considering that most of the chipset 
and memory samples are very close to the average standard deviations of 
0.9 W and 1.4 W, respectively, there may be insufficient variation for runtime 
phase detection.

From these results, it is clear that distinct phases are detectable at gran-
ularities ranging from seconds to milliseconds. The next step in utilizing 
the phases is to combine the amplitude and duration results to direct power 
management strategies. An example classification is given in Table 8.6.

This classification can be used to direct selection of power-saving tech-
niques. The phase duration selects the power management type based on 
similar transition times. The power level and frequency work in opposition 
to each as a policy control. For example, although a particular phase may 
occur 5% of the time, because it is such a high-power case it would be valu-
able to reduce its power. This is similar to the case of the CPU presented in 
Figure 8.9. At the other extreme, a phase may consume very low power, but 
because it occurs very frequently it would be valuable to address.

8.5 Conclusion

In this chapter we have presented a framework for measuring power at a fine 
grain. Using this framework we show that for scientific workloads, the CPU 
and memory subsystem exhibit the greatest variation in power consumption. 
The large variation is shown to be due to the presence of power management 
facilities or varying levels of utilization. Other subsystems such as chipset, I/O, 
and disk contain much less variation due to a lack of power management 
facilities and low utilization. We also illustrate distinct power phases in the 
dbt-2 commercial server workload ranging in duration from milliseconds to 
seconds and amplitude variations from 30 to 300%. Furthermore, we suggest 
that for this workbad CPU, I/O, and disk subsystems have a greater potential 
for phase detection. 

TABLE 8.6

Example Workload Phase Classification

High Power (%) Med Power (%) Low Power (%)

High Duration 5 10 20
Med Duration 0 15 5
Low Duration 10 35 0
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9
Visualization by Subdivision: 
Two Applications for Future 
Graphics Platforms

Chand T. John
Stanford University

9.1 Introduction

Obtaining compact geometric representations of complex shapes is critical to 
performing efficient operations on geometric data in computer graphics and 
computational geometry. Operations commonly performed on geometric 
data include compression, animation, and rendering. One effective method 
for compactly representing geometric data is to subdivide the data into parts 
that can themselves be represented efficiently. It is often desirable to divide a 
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shape into meaningful parts because this simplifies any subsequent process-
ing of the shape. Methods for subdividing complex shapes into meaningful 
parts have a strong impact on a variety of fields. For example, potentially 
cancerous polyps in a human colon can be automatically detected as geo-
metric anomalies if the colon’s geometry is subdivided into polyp and non-
polyp regions [11]. The distribution of temperature in the earth’s oceans can 
be compared to a typical distribution to decide automatically whether a new 
El Niño is developing, if regions of significantly varying temperature are 
identified separately from each other. If we are animating an airplane fly-
ing over part of North America, we can divide up the geometry of the ter-
rain into meaningful regions, compress the geometric data describing each 
region, and uncompress a region’s data only when the airplane flies over that 
particular region, to greatly improve efficiency of the animation [10]. Radios-
ity is a popular method for rendering scenes, but unfortunately it tends be 
slow in its most general forms. However, if a scene is divided into parts, then 
computing the illumination for each part of a scene becomes an order of 
magnitude faster, making radiosity a practical method for visualization of 
that scene [7]. For radiosity, it may be less critical to have a subdivision that is 
meaningful, but any other geometric operations to be performed on the data, 
such as compression for storing the data, will depend on having a subdivision 
that is meaningful. It would be far less efficient to have to generate different 
subdivisions of a shape for each type of operation that is performed, when 
one meaningful subdivision can reveal the overall structure of the shape in a 
way that makes all operations efficient. In general, meaningful subdivisions 
greatly enhance the efficiency of common operations performed on complex 
geometric objects. 

In this chapter we introduce two visualization applications in which the 
subdivision of a geometric object into meaningful parts is central to having 
an effective description of the shape. In our first application, described in 
Section 9.2, we introduce a mathematical relationship [12] between a class of 
smooth curves known as quadratic Bézier curves (QBCs), and a class of func-
tion sets called iterated function systems (IFSs), which can be used to generate 
complex 2D shapes known as self-affine sets. This relationship allows us to 
construct complex 2D shapes that are represented with no loss of informa-
tion by a small number of QBCs. Thus, this relationship facilitates compres-
sion of these complex 2D shapes. The relationship also enables animation of 
a continuously changing 2D shape simply by continuously deforming the 
curves that represent it. The results can be extended to 3D shapes. Although 
we have not developed a good algorithm for representing an arbitrary 2D or 
3D shape by a set of curves in this fashion, we are able to create a variety of 
shapes using these curves. Essentially each curve represents one “part” or 
“feature” of the overall shape. IFSs alone have been used in the past for gen-
erating movies of complex shapes such as clouds [2]. However, it is not easy 
to manipulate an IFS in a way that creates realistic shapes and deformations. 
Using QBCs, however, not only gives us a greater level of intuitive control 
over the complex shape represented by an IFS, but also provides more control 
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over smooth deformations of the shape than is offered by simply tweaking 
the IFS’s coefficients. We give three examples of the use of QBCs in modeling 
and deforming 2D cloudlike shapes based on intuitive ideas about how real 
clouds form in the 3D world. 

Visualization, simulation, and animation of clouds is needed in weather 
prediction and in realistic scene construction for computer games. In meteo-
rology, clouds are modeled as the result of thermodynamic interactions in 
water droplet populations. In computer games and computer-generated 
movies, it is common to use some physics of light movement to maintain a 
certain level of realism in rendering clouds, but approximations are made in 
order to avoid significant computational expense. Flight simulators are an 
example of games in which realistic cloud rendering is needed [9] [24]. As 
mentioned before, IFSs have also been used for rendering movies of clouds 
[2], although this technique is not often used in modern cloud modeling. 

In Section 9.2, we introduce an IFS-based cloud modeling technique, but 
focus more on the shape representation aspect of visualization rather than 
the rendering. Barnsley [2] illustrates that there are ways to make realistic 
renderings of objects as long as we can compactly represent the geometry 
of a complex set. In this chapter we demonstrate that we can use QBCs that 
represent IFS-based clouds, and that the QBCs can be manipulated to also 
mimic the shape changes that real clouds undergo as they develop. 

Real clouds can be classified into three main classes: stratiform, cumuli-
form, and cirriform. Stratiform clouds are formed by gentle mixing of air 
masses of different temperatures with minimal vertical movement of air: 
these clouds are commonly associated with steady drizzles and fog. Cumu-
liform clouds include the puffy “fair weather” clouds typically seen on 
partly cloudy days, as well as the large cumulus congestus and cumulo-
nimbus clouds that generate thunderstorms. Cirriform clouds are wispy 
high-level clouds seen at the top of the troposphere, at the highest altitudes 
where clouds can form. We demonstrate that we can control the formation 
of 2D self-affine clouds that mimic the geometry and formation of stratus 
clouds, cumulonimbus clouds, and lenticular altocumulus (lens-shaped 
middle altitude) clouds. 

In our second application, in Section 9.4, we describe four algorithms for 
segmentation of geometric shapes represented as 3D triangle meshes, and 
apply these algorithms to human tooth data. Researchers who study statis-
tics and abnormalities of human tooth shapes are interested in producing 
such segmentations in order to classify and compare teeth in large dental 
databases. Those who research dental morphology to study genetic factors 
in bone structures of people in various populations are also interested in 
automatic shape analysis of teeth. Visualization of developing and changing 
teeth is itself useful for those who study human teeth and prescribe stage-
by-stage dental procedures, and a meaningful decomposition of the shape of 
a tooth is useful in constructing simulations and measurements of changes 
in different areas of the tooth. The central problem is to produce a meaning-
ful segmentation of the geometry of a tooth. 
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Some 3D shape segmentation algorithms are extensions of 2D image seg-
mentation algorithms, which have received decades of attention in computer 
vision. For example, one of the first recent papers on 3D mesh segmenta-
tion [18] extends an image segmentation approach based on the concept 
of “watersheds.” Others use approaches based on deformable models for 
shapes from medical imaging [1], electrical charge distributions [25], implicit 
surfaces [3], stereoscopic image pairs [14], cutting along edges of high curva-
ture [8], differential geometry [22], and simple surface patch extraction [19]. 
Some approaches treat a whole surface as a single segment and repeatedly 
divide it into smaller segments [13], whereas others treat each point or face 
of a surface as a single segment and merge neighboring segments together 
to form larger segments [7]. Some techniques are results of applying ideas 
from human vision theory [21] to computer vision. Some apply classical 
approaches from data clustering [15] and others use new approaches based 
on the topological characteristics of a shape [4]. We apply versions of four of 
the above algorithms to human teeth and assess which of them is the best 
algorithm both for our application and for general geometric data. 

9.2 Controlling Self-Affine Clouds Using QBCs

First we introduce some basic mathematics of QBCs and IFSs. Then we prove 
the QBCIFS theorem, which relates QBCs and IFSs. Finally we use the theo-
rem to generate animations of 2D self-affine clouds that bear an overall geo-
metric morphology similar to real-world 3D clouds. 

9.2.1 Fundamentals of Curves and IFSs

9.2.1.1 Quadratic Bézier Curves

Throughout this chapter, 2 denotes the set of points in the Euclidean plane, 
and 2 denotes the set of vectors in the plane. Let, P0 P1 ,L , Pn

2. Let 0 ,
1,… , n [ ]0 1 such that 

0 1 1L n

Then the barycenter of the points { }Pi i
n

0  with weights { }i i
n

0  is the point 

P P
i

n

i i

0

(9.1)

Simply put, P is the center of mass (“barycenter”) of the points { }Pi i
n

0 with 
weights { }i i

n
0. The process of computing a barycenter using Equation (9.1) 

is called a barycentric combination. Note that although addition and scalar 
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multiplication are not defined over 2, equation 1 is still valid when it is writ-
ten as 

P P P P
i

n

i i0

1

0( )

because each P Pi 0  is a vector in 2, where addition and scalar multiplica-
tion are valid operations, and the addition of a point to a vector is also a valid 
operation. 

Suppose we are given three distinct, noncollinear points P0, P1, and P2, in 
the plane. Suppose we are also given a real number t [ ]0 1 . The de Casteljau 
algorithm proceeds as follows. First compute two barycentric combinations to 
obtain two intermediate points:

P t t P tP0
1

0 11( ) ( ) (9.2)

P t t P tP1
1

1 21( ) ( ) (9.3)

Then compute a similar barycentric combination over these intermediate 
points:

P t t P t tP t0
2

0
1

1
11( ) ( ) ( ) ( ) (9.4)

( ) ( )1 2 12
0 1

2
2t P t t P t P (9.5)

The set of points {P0
2 0 1( ) [ ]t t  is the quadratic Bézier curve with control 

points P0, P1, and P2. The triangle P0P1P2  is called the control polygon of the 
curve. For more on the theory of Bézier curves and surfaces, see [6]. 

9.2.1.2 Iterated Function Systems

An affine map is a transformation w: 2 2 such that 

w x y
a

c

b

d

x

y

e

f
( , )     , (9.6)

where a, b, c, d, e, and f are real numbers. We may abbreviate Equation (9.6) 
with the notation w X AX T( ) , where A is the 2  2 matrix above, X x y T[   ] ,
and T  [e f ]T.

An important fact is that barycentric combinations are invariant with 
respect to affine maps. That is, if w is an affine map and P is a barycenter 
defined as in Equation (9.1), then 

w P w P w P
i

n

i i

i

n

i i( ) ( )
0 0

(9.7)
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that is, w P( ) is still the barycenter of the points { ( )}w Pi with weights { }i . In 
fact, affine maps are precisely those maps that preserve barycentric combina-
tions. The proof of this fact is straightforward; see page 18 in [6]. 

An iterated function system (IFS) is a set of N affine maps w … wN1 . Here we 
only focus on IFSs with N 2 , so we denote an IFS as a pair { }w w1 2  of affine 
maps. Let H( 2) denote the set of nonempty compact subsets of 2. Associated 
with each IFS is a function w: H( 2) H( 2) such that W K w K w K( ) ( ) ( )1 2 ,
for every K H( 2). Let W Kno ( ) denote the repeated application of the map W
to the set K a total of n times. 

A common restriction is to assume that w1 and w2  are contractive maps: 
that, for each i  1, 2,

|| ( ) ( )||   || ||w X w Y s X Y X Y Ei i i
2 (9.8)

where 0 1si is the contractivity factor of wi. Assuming that w1 and w2 are 
contractive, then we know from the contraction mapping theorem [2] that w1

and w2 have unique fixed points X1 and X2, respectively, and furthermore, 
for any X 2,

lim ( ) lim ( )
n

n
n

nw X X w X X1 1 2 2
o o and  (9.9)

Convergence for w1 and w2 are with respect to some measure of distance over 
2, such as the Euclidean metric. Not only do w1 and w2 push every point 

toward their own fixed points, but also W maps every K H( 2) to its own 
unique fixed point L W Kn

nlim ( )o , called the attractor of the IFS { }w w1 2 .
Note that we can start with any nonempty compact set K and end up with 
the same attractor L, for a fixed IFS. Convergence in H( 2) is with respect to 
the Hausdorff metric. Formally, an IFS consisting only of contractive maps is 
called a hyperbolic IFS. The term “IFS” can be used to refer to an arbitrary col-
lection of maps with no condition imposed on the maps. For our purposes, 
we always require an IFS to be composed of affine maps, but they need not 
be contractive unless explicitly stated. We show below that it is not neces-
sary for w1 and w2 to be contraction mappings in order for W to converge 
to the attractor of its IFS, but simply that w1 and w2 must mimic the general 
behavior of an IFS made up of contraction mappings. See [2] for a thorough 
treatment of IFSs. 

9.2.2 An IFS with a QBC Attractor

We now describe a connection between the two seemingly unrelated math-
ematical objects introduced above: QBCs and IFSs. Consider the QBC defined 
by P P0 10 0 1 2 0( ) ( ), and P2 1 1( ) (see Figure 9.1). It is easy to verify that 
the image of the function P t0

2( ) for t [ ]0 1 is the graph of y x2 for x [ ]0 1 .
Now suppose we were to use the de Casteljau algorithm to compute P u0

2( ) ,
where 0 1u  is some fixed real number. We would compute the points 
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P u P u0
1

1
1( ) ( )  and P u0

2( ) . Now define w1 and w2 to be the unique affine trans-
formations satisfying

w P P w P P u w P P u1 0 0 1 1 0
1

1 2 0
2( ) ( ) ( ) ( ) ( ) (9.10)

w P P u w P P u w P P2 0 0
2

2 1 1
1

2 2 2( ) ( ) ( ) ( ) ( ) (9.11)

So w1 maps the original control polygon P0P1P2 to the polygon 
T P P u P u1 0 0

1
0
2( ) ( )  and w2 maps the original control polygon to the polygon 

T P u P u P2 0
2

1
1

2( ) ( ) . Let S1 denote the QBC whose control polygon is T1 and let 
S2 be the QBC whose control polygon is T2. It is easy to verify algebraically that 
S1 and S2 are, respectively, the graphs of y x2  for x [ ]0 1 2  and x [ ],1 2 1
respectively. In other words, the maps w1 and w2 subdivide the original curve 
into two subcurves that intersect in exactly one point: P u u u0

2 2( ) ( ). The 
functions also map the original control polygon to the control polygons that 
correspond to each of the two subcurves. 

We can compute w1 and w2 by solving a system of linear equations directly 
from their definition. This yields 

w
x

y

u

u

x

y1 2

0
0 (9.12)

and 

w
x

y

u

u u u

x

y2 2

1 0
2 1 1( ) ( )

uu

u2
. (9.13)
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FIGURE 9.1
The de Casteljau algorithm is applied to a quadratic Bézier curve with control points P0  (0,0), 
P1  (1/2,0), and P2  (1,1). This curve is the graph of y x2 for x  [0,1].
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Barnsley [2] describes a way to construct an IFS whose attractor is the graph 
of a function interpolating a set of points in 2. Formally, given data points
( , ),( , ), ,( , )x y x y x yN N0 0 1 1 K where x x xN0 1 L , for some N 1, define an 
IFS { , , }w wN1 K  satisfying the following conditions:

a
x x
x xn
n n

N

1

0

, (9.14)

e
x x x x

x xn
N n n

N

1 0

0

, (9.15)

c
y y d y y

x xn
n n n N

N

1 0

0

( )
, (9.16)

f
x y x y d x y x y

x xn
N n n n N N

N

1 0 0 0

0

( )
, (9.17)

bn 0, and 0 1dn for each n N{ , , },1 K where the variables are the coeffi-
cients of each w w x y a x b y e c x d y fn n n n n n n n: ( , ) ( , ). Then two facts from 
[2] hold:

1. There is a metric d on 2 equivalent to the Euclidean metric, such 
that the IFS is hyperbolic with respect to d. There is a unique non-
empty compact set S 2 such that 

S w Sn

n

N

( ).
1
U

2. Moreover, s is the attractor of this IFS, and S is the graph of a con-
tinuous function f x xN: [ , ]0 interpolating the original N 1
data points. f is called a fractal interpolation function.

We set N  2 and have the data points (0,0), (u, u2), and (1, 1), and set d1 u2

and d2  (1 u)2. Note the resulting IFS is {w1, w2} where w1 and w2 are defined 
as in Equations (9.12) and (9.13). Then if we define W: H( 2) H( 2) such that
W B w B w B( ) ( ) ( )1 2 for all B H( 2), we have from the above facts and the 
IFS definitions that { ( )}W Bon converges to the QBC above (call it S) with respect 
to the metric d, and that S is the unique fixed point of W. In summary, we have 
shown how to construct a whole family of hyperbolic IFSs (parameterized by 
0 < u < 1) whose attractor is a particular QBC: the graph of y x2 for x [ ,  ].0 1

9.2.2.1 IFSs with QBC Attractors

Suppose we are given three points Q Q Q0 1 2
2 that are distinct and non-

collinear. Let T be a QBC with control points Q0, Q1, and Q2. Let 0 1u  be 



Visualization by Subdivision: Two Applications for Future Graphics Platforms 247

an arbitrary real number. If we let Q t0
2( ) denote the point on T with param-

eter value t [ ,  ],0 1 then define T Q t t u1 0
2 0{ ( ) : [ ,  ]} and T Q t t u2 0

2 1{ ( ) : [ ,  ]}.
Define an affine map : 2 2 such that (Pi) Qi for i  0, 1, 2, where each 
Pi is a control point for the graph of y x2, as defined in the previous section. 
Clearly this map is unique and invertible. Moreover, because affine maps 
preserve barycentric combinations, (S) T, (S1) T1, and (S2) T2,. Let v1

and v2 be the unique affine maps mapping T to T1 and T2, respectively. It is 
easy to see that  

v1  o 1 o 1 and (9.18)

v2  o 2 o 1. (9.19)

Define V: H( 2) H( 2) such that V(B) v1(B) v2(B) for all B H( 2). Clearly 
V(T) v1(T) v2(T) T1 T2 T, so T is a fixed point of V. It is easy to see that 
V  o W o 1, which implies that Von  o Won o 1. Now for any B H( 2), 
we know 1(B) H( 2), so Won( 1 (B)) S as n . But because  is continu-
ous, Von(B) (Won ( 1 (B))) (S) T as n . Furthermore, if A1 and A2 are 
both fixed points of V, then V(A1) A1 and V(A2) A2, so (W( 1 (A1))) A1 and 

(W( 1 (A2))) A2, so W( 1(A1)) 1(A1) and W( 1(A2)) 1(A2), but because 
W has S as its unique fixed point, it follows that S 1(A1) 1(A2), so A1

A2 T, so V does have a unique fixed point T to which every sequence {Von(B)} 
converges. 

Here we have proven that, even if v1 and v2 are not contraction mappings in 
a conventional sense, they still mimic the behavior of w1 and w2, and there-
fore the IFS {v1, v2} still converges to its attractor, the QBC with control points 
Q0, Q1, and Q2. Thus we have given a constructive proof of the following 
result. See Figure 9.2.

THEOREM 1
Any quadratic Bézier curve with distinct noncollinear control points P0, P1, and P2

is the attractor of some family of iterated function systems {w1, w2}, where the family 
is parameterized by a real number 0 < u < 1.

Q0

Q1

Q2

Q
0
1

Q
1
1Q

0
2

FIGURE 9.2
The de Casteljau algorithm is applied to a quadratic Bézier curve with control points Q0, Q1,
and Q2. This curve is the graph of y x2 for x  [0, 1]. The behavior of the affine maps v1 and v2

is analogous to the behavior of w1 and w2 on y x2.
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9.2.2.2 Controlling IFS Clouds with QBCs

We have developed a method for finding an IFS whose attractor is a given 
QBC. Suppose we have several such QBCs S S … Sn1 2 . Suppose that we 
have constructed an IFS I w wi i i{ }2 1 2  whose attractor is the curve Si, for 
i … n1 2 . Then we can combine all the N into one IFS I w w … w n{ }1 2 2

whose attractor is a dusty cloudlike fractal. We can move control points of the 
curves Si in a smooth fashion and recalculate the attractor of the aggregate 
IFS I to produce an animation that shows the original fractal being deformed 
smoothly. We would also have chosen arbitrary parameters ui  for each IFS 
Ii, and these values can also be varied to smoothly deform the attractor of I.
If the curves Si  are chosen and deformed appropriately, we can create ani-
mations of two-dimensional clouds that form and grow as do real clouds. 
Although the choice of these curves and their deformations is not brought 
down to a science by this technique, we have made a considerable improve-
ment over the existing technique of arbitrarily continuously varying the IFS 
I itself, because our method offers more intuition over the geometric changes 
in the attractor. 

Three examples show how the earlier results can be used to generate 
animations of growing two-dimensional cloudlike structures. To aid in 
choosing appropriate Bézier curves, we use some basic (not rigorous) 
knowledge of the actual physics underlying cloud formation, as well as 
the shapes of the curves themselves. For more on the basic physics of cloud 
formation, see [5]. For an explanation of the different types of clouds that 
form, see [16]. 

Note that the pictures of the 2D clouds in this chapter are not beautifully 
shaded. Although it is not hard to modify the picture generation process to 
produce more nicely shaded images, here we present only completely white 
points of each cloud over a completely black background, so that the direct 
result of pooling the IFSs of several QBCs is presented. The pictures are gen-
erated using the random iteration algorithm [2]. One way to create shaded 
images would be to plot pixels with a dim gray intensity, and each time a 
pixel is hit an additional time by the algorithm, increase the intensity of that 
pixel. Thus the “denser” areas of a 2D cloud would appear brighter, just as 
the denser parts of a real cloud would reflect more light and appear brighter 
than less dense areas. 

Example 9.1: Stratus. Stratus clouds are formed and exist in environments 
where overlying warm air in a stable atmosphere mixes benignly with under-
lying cool air to form relatively flat clouds at the border of the two air layers. 
The cloud generally forms from top to bottom. We mimic this cloud forma-
tion by starting with one QBC with control points ( 10, 0), (0, 0), and (10, 0). 
This curve is a line segment that lies on the x-axis between x 10 and x
10. Now we make three extra copies of this curve, so that we have four copies 
of the curve in all. We transform the first copy into a new curve with control 
points ( 10, 0), (0, 1), and (10, 0). All that was done in this transformation is 
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that the middle control point, (0, 0), was moved to (0, 1). Next, we transform 
the second copy of the original curve into a curve with control points ( 10, 

3), (0, 4), and (10, 3) by vertical shifting of the original control points. We 
transform the third copy of the original curve into a new curve with control 
points (10, 0), (0, 1.5), and (10, 3). Finally, the fourth copy is transformed to 
a curve with control points ( 10, 3), (0, 1.5), and (10, 0). 

As shown in the previous section, the IFSs associated with multiple curves 
can be pooled into a single aggregate IFS whose attractor is an irregular 
fractal. However, this fractal can be transformed continuously simply by 
continuously transforming the control points of the Bézier curves that rep-
resent this aggregate IFS. In the previous paragraph, four identical curves 
make up the initial set of curves, whose IFSs are pooled into one IFS whose 
attractor ends up being the initial curve. But as these curves are transformed 
into the new curves described above, the pooled IFS associated with these 
curves has an attractor that is continuously transformed from a line seg-
ment (the initial fractal) into a stratiform cloud (the final fractal). So, the con-
tinuous transformation of Bézier curves as described above can be used to 
graphically illustrate the formation of a stratus cloud. The transformations 
used on the curves have some relationships to the physical mixing of air lay-
ers associated with the formation of such a cloud. 

Figure 9.3 illustrates the graphical modeling of stratus cloud formation as 
described above. 

Example 9.2: Cumulonimbus. Updrafts in moist unstable air cause small, 
puffy cumulus clouds to form above the altitude at which water vapor con-
denses. If updrafts continue, and sufficient moisture exists in the air, then 
the small cumulus clouds will become towering cumulus congestus clouds. 
If updrafts push the top of the cloud up to the tropopause, then vertical 
growth is halted and an anvil shape appears at the top of the cumulus cloud, 
forming a cumulonimbus cloud, or thundercloud. 

FIGURE 9.3
Graphical illustration of stratus cloud formation by representation of the cloud as the attractor 
of an IFS that is created by combining the IFSs associated with a set of QBCs. The pictures in 
the top row are the QBCs that were used to generate the corresponding pictures in the bottom 
row.
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We illustrate such a process by starting with eight identical flat curves 
(instead of the four curves used in the stratus cloud example) and continu-
ously transforming them upward to form a cumulus cloud, which then grows 
further into a cumulus congestus cloud. Finally, two curves in the congestus 
cloud are elongated horizontally to form an anvil-headed cumulonimbus. 
See Figure 9.4. 

Example 9.3: Lenticular cloud. A lenticular cloud is a lens-shaped altocumu-
lus cloud. Lenses are parabolic in shape. So, the relationship between qua-
dratic curves and fractals is quite appropriate for the graphical illustration 
of a lenticular cloud. The lenticular cloud is modeled by two curves that are 
nearly identical. See Figure 9.5. 

In all space-filling clouds (Examples 9.1 and 9.2), two space-filling curves 
that formed an X-shape were used. Around these space-filling curves, there 
were other curves that defined the external shapes of the clouds. Together, 
the space-filling and external curves generated the two-dimensional fractal 
clouds that they were meant to represent. 

FIGURE 9.4
The growth of a cumulonimbus cloud is illustrated above using QBCs by application of the 
QBCIFS theorem. The pictures in the top row are the QBCs that were used to generate the cor-
responding pictures in the bottom row. The first cloud is a 2D representation of a fair-weather 
cumulus cloud. The second picture represents a towering cumulus congestus cloud. Finally, 
the third picture represents a cumulonimbus cloud, with an anvil shape on top.

FIGURE 9.5
A lenticular cloud, or lens-shape altocumulus cloud, is modeled above by two nearly identi-
cal QBCs. These QBCs are shown in the first picture. The resulting fractal lenticular cloud is 
shown in the second picture.
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9.3 Tooth-Shape Segmentation

We apply four segmentation algorithms to human teeth, represented as 3D 
triangle meshes. We then discuss which of these algorithms is the best for our 
application and in general. Finally we speculate on the future of mesh seg-
mentation algorithms, in particular for graphics and medical data processing 
applications. Throughout this section, we use the following pairs of terms 
interchangeably: (a) faces and triangles, and (b) segments and clusters. 

9.3.1 Bottom-Up Clustering

Garland et al. [7] describe a bottom-up algorithm for segmenting polygonal 
meshes in order to speed up ray tracing, collision detection, and radiosity 
computations. Here we describe and apply a simple variation of their algo-
rithm. The input to the algorithm is a closed triangle mesh. A closed mesh is 
one that is topologically equivalent to a sphere; every edge is part of exactly 
two triangles. The steps of the algorithm are as follows.

1. Number the triangles in the mesh from 1 to N. This ordering usu-
ally already exists in the mesh data structure. Let M denote the 
number of pairs of adjacent (sharing an edge) triangles.

2. Initially, each triangle is in its own segment. We can store this 
information in an array S of N integers, where the value in the ith 
slot of the array is the number of the segment containing triangle 
i. Initially, triangle 1 is in segment 1, triangle 2 is in segment 2, and 
so on, so S[i] i for each i  1, ,N.

3. Create a matrix A with M rows and 2 columns. Fill the first col-
umn with pairs (i, j) of triangle indices. Fill the second column with 
“scores” s(i, j) that we assign to each pair (i, j) of adjacent triangles. 
We can choose any score function s that we wish, as long as the 
score measures the “flatness” of each pair of triangles. Garland et 
al. use a quadric metric to compute scores. We use a simpler mea-
sure. First, for every triangle in the mesh, we compute its oriented-
outward normal vector. Then to any pair (i, j) of adjacent triangles 
with normal vectors ni and nj, we assign the score s(i, j)  1 ni nj.

4. Sort the rows of the above matrix A in decreasing order of scores.
5. Choose a threshold score smin that lies in the range of scores contained 

in A.
6. Repeat for each pair (i, j) of adjacent triangles, in order of the sorted 

score list: “merge” the clusters containing the two triangles. That 
is, look at the segment numbers S[i] and S[j] of i and j. If S[i] S[j], 
then i and j are already in the same segment, so we can skip this 
pair and go on to the next pair in the matrix A. If S[i] S[j], then 
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we want to take all of the triangles in segment S[j] (j’s segment) 
and put them into the segment S[i] (i’s segment). This is easy to do: 
simply scan through S and replace all occurrences of S[j] with S[i].

7. Stop merging when the next score in the list is lower than Smin. The 
result is a segmentation of the original mesh.

Results: See Figure 9.6. The segments tend to be small, and fail to capture 
the main bumps on a tooth surface. This is because small local fluctuations 
in the bumpiness of the mesh cause the growth of a segment to suddenly halt 
before it reaches a reasonable size. 

Note: Each pair of adjacent triangles corresponds to a unique edge of the 
mesh. Thus, if for each triangle from 1 through N, we count its three edges, 
then at the end we will have counted 3N edges total. But because each edge 
belongs to exactly two triangles, we will have counted every edge twice. Thus 
the number of edges, or number of pairs of adjacent triangles, is M N3 2.
Thus the array A we created in the above algorithm is of linear size. Note also 
that M must be an integer, implying that N must be even: it is impossible to 
make a closed triangle mesh with an odd number of triangles. The simplest 
closed triangle mesh is a tetrahedron, which is made up of four triangles. 

9.3.2 Top-Down Clustering

Instead of merging small clusters to form larger ones, we can take the oppo-
site route and treat the whole mesh as one huge cluster, and then divide it 
up into smaller clusters. Katz and Tal [13] use such an approach in order to 
speed up animations of segmentable objects. We use a variation of their algo-
rithm, which has the following steps. The input is not just a triangle mesh, 
but also a positive integer k that represents the number of segments into 
which the mesh will be decomposed.

FIGURE 9.6
Decomposition of a tooth using the pairwise merging algorithm based on the bottom-up clus-
tering algorithm of Garland et al. [7]. The two pictures show two views of the same tooth. The 
blue area is one of the segments constructed by the algorithm. Each shade of pink denotes a 
different segment. Note how the segments tend to be very small and localized, indicating that 
the local structure of the mesh is a poor guide to its overall structure.
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1. Choose a face with the minimum sum of distances to all other faces 
in the mesh. Let this be the first representative face, f1.

2. For i  2, 3 , , k choose the ith representative face fi to be the face 
with the maximum possible minimum distance from all previously 
chosen representative faces f1, , fi 1.

3. For each nonrepresentative face f in the mesh, compute its distances 
d1, d2, , dk to each of the representative faces f1, f2, , fk. Assign f to 
the segment represented by fi, a representative face closest to f.

There are many ways to measure the distances in step 3 of the algorithm. 
We use two methods:

1. Geometric distance: The distance between faces f and g is the Euclidean 
distance between the centroids of f and g in three-dimensional space.

2. Geodesic distance: The distance between faces f and g is the distance 
between the vertices representing f and g when representing the 
mesh as a graph whose vertices are the centroids of each face and 
the edges have weights equal to the distances between the cen-
troids of adjacent faces in three-dimensional space. Geodesic dis-
tance takes much longer to compute than geometric distance.  

Results: See Figure 9.7. The segmentation is much better than in the bottom-
up approach: the segments conform more to the general hill and valley shapes 
on a tooth. However, it is still not clear that this segmentation really captures 
the essential features of a tooth that characterize what type of tooth it is. 

9.3.3 Watershed Segmentation

Watersheds were one of the earliest approaches used in 3D mesh segmenta-
tion [18]. The basic idea is to view a 3D shape as a piece of land with hills 
and valleys, similar to the earth. Page et al. extend these ideas by combining 
watersheds and fast marching methods [21]. The algorithm we used is based 
on their work. The steps in our algorithm are as follows.

1. Compute principal curvatures and directions at each vertex of the 
mesh.

2. Threshold the regions of positive curvature to get an initial marker 
set of vertices.

3. Apply mathematical morphology to clean up the marker set.
4. Grow each “catchment basin” in the marker set so that every vertex 

is assigned to some segment. This yields the final segmentation.

Results: See Figure 9.8. Essentially the curvature computation [23] yields 
nonsensical values. This is because our local information is bad, since our 
data is a reduced and meshed version of the original data, implying that a 
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FIGURE 9.7
Top-down decomposition of teeth. The top left image shows the result of dividing a tooth into k
20 segments using geometric distance measurements between faces. The top right image also 
shows a tooth with k  20 segments but using geodesic distance. The bottom left image shows 
a tooth divided into k  10 segments using geometric distance. The bottom right image shows 
a tooth divided into k  10 segments using geodesic distance.

FIGURE 9.8
Initial catchment basins on a tooth using curvature information as in the fast marching water-
sheds algorithm of Page et al. [21].
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lot of important local information was thrown out during processing. The 
catchment basins in Figure 9.8 yield no useful information about the true 
hills and valleys on the surface of the tooth. 

9.3.4 Lloyd’s Algorithm

Lloyd’s algorithm is a popular variation of k-means clustering that works as 
follows. The input is not only a triangle mesh, but also integers k  2 and N  0.

1. Randomly pick k faces f1, , fk on the mesh.
2. Construct k clusters C1, , Ck as follows. Initially, for each i  1, 2, ,

k, Ci  {fi}. Then for every other face f in the mesh, assign f to the 
cluster Cj where fj is the closest of the initial k faces to f.

3. Repeat N times: compute the centroid of each of the k clusters, and 
then recompute the corresponding clusters, just as before, but using 
these new cluster centroids.  

Results: See Figure 9.9. The segments are similar in nature to those of the 
earlier top-down clustering. They still do not give a complete description of 
the features of a tooth, but the segment shapes do conform to some extent to 
the main cusps on a tooth. 

9.4 Conclusion

We have shown that 2D clouds can be depicted using the idea that all qua-
dratic Bézier curves are attractors of IFSs. The formation and change of strati-
form and cumuliform clouds can be illustrated by continuously transforming 

FIGURE 9.9
(Left) Segmentation of a tooth into k  10 segments using Lloyd’s algorithm for k-means cluster-
ing with N  1 extra iteration. (Right) Segmentation of a tooth into k  10 segments using Lloyd’s 
algorithm with N  4 extra iterations.
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a set of curves in ways that relate to the graphical and physical nature of the 
formation processes. Because a fractal cloud generated from Bézier curves 
shows the shapes of the curves in its own shape, this technique of drawing 
fractal clouds enables us to illustrate the formation of stratus clouds from 
stable air mixtures, the growth of cumulonimbus clouds from unstable air 
to small cumulus to cumulus congestus to anvil-headed thunderclouds, and 
the shapes of lenticular altocumulus clouds. 

The techniques of this chapter can be extended to three dimensions using 
an analogous relationship between IFSs and Bézier surfaces. The addition of 
color may require a six-dimensional IFS, where the three spatial coordinates 
are combined with the three color coordinates (redness, greenness, blue-
ness). Quite possibly, the physics used in choosing curves can be extended 
to a more rigorous level. The physics that is used in picking Bézier curves or 
surfaces may become more complicated in higher dimensions, as wind shear 
and convective cells would induce a nontrivial amount of lateral motion, and 
the addition of color would present further complications. 

Many improvements remain to be made. However, Section 9.2 of this chap-
ter does present a new application of a simple idea that relates two different 
types of geometrical objects. This method for generating images and anima-
tions of real scenes combines the advantages of both Bézier curves and iter-
ated function systems. Extensions of these ideas may prove to be beneficial 
to some areas of visualization and geometric modeling. 

We also applied four segmentation algorithms to human teeth, represented 
as 3D triangle meshes. In general, methods that relied on local information 
to form segments (bottom-up clustering and watershed segmentation) per-
formed poorly for our data, whereas the methods that segment based on 
the global structure of the shape performed much better (top-down cluster-
ing and Lloyd’s algorithm). The best algorithm in general for noisy data or 
data whose local information has been tampered with or removed (such as 
our data), is Lloyd’s algorithm. It is a top-down method but also repeatedly 
refines its own segmentation until it converges close to a good final segmen-
tation; in spirit, this is just like an author starting with a rough draft of a con-
ference paper and repeatedly proofreading it until it has become a polished 
final draft. Clearly the final result is better than the first attempt. However, 
for a specific application, people tend to make a special segmentation algo-
rithm that is based on an existing algorithm: for instance, region-growing 
segmentations in medical imaging originated from the basic idea of bottom-
up segmentation. Lloyd’s algorithm is more complicated than the first two 
algorithms we introduced, and so the basic bottom-up and top-down algo-
rithms will continue to coexist with Lloyd’s algorithm in the future as a start-
ing point for development of more sophisticated segmentation techniques. 
Watershed segmentation is another fairly simple and popular segmentation 
algorithm, which will likely be in use in the future; currently it is still used 
in medical imaging applications. 

For our specific application, new segmentation algorithms that better 
capture the features of a tooth may need to incorporate information about 
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how real teeth grow and form their shapes. We are working on construct-
ing a segmentation algorithm based on a growth model of the hormonal 
mechanism by which cusps on teeth grow in stages. This may highlight a 
more general need for greater use of scientific principles in the application of 
computer vision and graphics techniques, rather than purely geometric and 
statistical approaches. 

In general, the concept of representing a complex shape by subdividing 
it into meaningful parts has proven repeatedly to be a useful method of 
enhancing visualization, manipulation, and geometric processing of data. 
The techniques we discussed in this chapter illustrate some of the potential 
of this concept to improve the state of the art in computer graphics. 
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including the roadrunner system at Los Alamos National Laboratory which 
is expected to have a peak performance of over 1 PF utilizing AMD Opteron 
processors and IBM Cell processors. However, the utility of these systems 
will only occur if they can achieve a higher level of application performance 
than when using a conventional processing system.

A heterogeneous two-level processing configuration is considered here 
that results from the use of accelerators. The first level consists of conven-
tional cluster processing nodes that are interconnected using a high-speed 
network. The second level consists of the acceleration hardware which is 
placed within each of the first-level nodes. Thus the compute nodes of the 
conventional cluster act as host to the accelerators. There is no connectivity 
between the second-level acceleration hardware on different nodes, rather 
the first-level communication network is used for internode data transfer.

In this work we analyze the use of acceleration hardware, which we refer to 
generically as ADs (or acceleration devices), on a class of applications that use 
wavefront algorithms. These algorithms are characterized by a dependency 
in their processing flow that results in a specific order in which individual 
spatial cells are processed for a given wavefront direction. One application 
of interest to Los Alamos is Sweep3D. This application performs a deter-
ministic Sn transport calculation that uses a wavefront algorithm as its main 
computational kernel. It has been estimated that applications like Sweep3D 
use a high percentage of cycles on the large-scale ASC (Accelerated Strategic 
Computing) machines (Hoisie, Lubeck, and Wasserman, 2000).

The analysis that we undertake is twofold:

1. Generic ADs on a generic single-direction wavefront calculation
2. A case study with the ClearSpeed CSX600 SIMD AD on a multi-

direction wavefront Sweep3D calculation

In the general analysis we characterize an AD as a set of individual pro-
cessing elements (PEs) arranged in a logical 2-D array that are capable of 
transferring data with logical neighbors at a certain latency and bandwidth. 
Additionally we consider each AD PE to achieve a fraction (in the range 1/100 
to 1) of the conventional processor performance. The potential performance 
advantage of an AD is dependent on these parameters.

In the case study using the ClearSpeed CSX600 we consider the use of 
either 96 or 192 SIMD PEs per PCI-x card. The CSX600 has demonstrated 
a high level of performance on several applications including DGEMM 
(ClearSpeed, 2005).

We utilize a performance model in this analysis that has been previously 
validated on a wide-wide of systems including all ASC systems to date (Hoisie, 
Lubeck, and Wasserman, 2000). The performance model enables the explora-
tion potential performance, analyzing ADs with widely different characteris-
tics prior to their procurement/deployment within a large-scale system.

Previous work on the analysis of wavefront algorithms includes: the 
characterization of their computational performance in the absence of 
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communication costs (Koch, Baker, and Alcouffe 1992); the development of 
a detailed performance model of Sweep3D for large-scale systems that has 
been applied to both Massively Parallel Processors (MPPs; Hoisie, Lubeck, 
and Wasserman, 2000) and to clusters of symmetric multiprocessors (Hoisie, 
Lubeck, and Wasserman, 1999); and in the use of irregular meshes (Mathis 
and Kerbyson, 2005). The performance of wavefront algorithms has also 
been explored on heterogeneous systems in which each node has a different 
processing capability (Almeida et al., 2005). The contribution of this work is 
in the analysis of wavefront algorithms on a heterogeneous two-level pro-
cessing system which can be realistically implemented today in many con-
figurations. It extends work initially presented at the Second Workshop on 
Unique Chips and Systems (Kerbyson and Hoisie, 2006).

In Section 10.2 we provide an overview of wavefront algorithms while 
also detailing the earlier performance model. In Section 10.3 we consider the 
potential performance improvement of using ADs for a range of configura-
tions. In Section 10.4 we detail the case study using the ClearSpeed CSX600. 
Conclusions drawn from this work are contained in Section 10.5.

10.2 Wavefront Algorithms

Wavefront algorithms are characterized by a dependency in the process-
ing order of cells within a spatial domain. Each cell in a multidimensional 
spatial grid can only be processed when previous cells in the direction of 
processing flow have been processed. Examples are shown in Figure 10.1 for 
one-dimensional, two-dimensional, and three-dimensional regular spatial 
grids. In each case, five steps of wavefront propagation are shown. For each 
step, the cell(s) that can be processed are shown in black, and previously 

FIGURE 10.1
Example wavefront propagation showing available parallelism.
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processed cells are shown shaded (for the 1-D and 2-D cases). The direction 
of the wavefront is from left to right (1-D), from lower-left to upper-right 
(2-D), and from the nearest upper corner into the page (3-D). The so-called 
wavefront thus moves across the spatial grid in the direction of travel, enter-
ing at one corner point and exiting after passing through all cells.

The direction of wavefront travel may vary from one calculation phase to 
another. It has been noted that the available parallelism, that is, the num-
ber of spatial cells that can be processed simultaneously, is a function of 
the dimensionality of the spatial grid minus one. For instance, as shown in 
Figure 10.1, the available parallelism in the 1-D case is simply one (only one 
cell can be processed at any time), for the 2-D case a diagonal line of cells can 
be processed at any time (whose maximum size is equal to the minimum of 
the two dimensions), and for the 3-D case a diagonal plane of cells can be 
processed simultaneously (whose maximum size is equal to the minimum 
of the product of any of the two dimensions).

In the following we consider only a regular 3-D spatial grid with I J
K cells. On a single processor the processing flow can proceed as shown in 
Figure 10.1c, that is, with a diagonal plane that gradually increases in size 
from 1 cell (the entry corner) to a maximum and then back to 1. Equally the 
processing flow may proceed in the I, J, K order using three nested loops. 
That is, the first complete row of cells can be processed, in the order indi-
cated by the direction of the wavefront, followed by subsequent rows in the 
same plane and then subsequent planes. This ordering simplifies implemen-
tation while also satisfying the wavefront dependency relationships in the 
direction of travel.

The available parallelism is limited and thus the potential performance 
gain is also limited. In order to achieve high processor efficiency, a 3-D grid 
is typically partitioned along two of its dimensions, for example, the I and J
dimensions, leaving the entire K dimension local to a processor. In this case, 
each processor is assigned a subgrid of size Ic Jc K cells where Ic I/Px and 
Jc J/Py on a logical 2-D processing array of P Px Py processors. Note that 
when using a weak-scaling mode the global domain increases in size in pro-
portion with P and the subgrid per processor remains a constant.

In a parallel processing flow, the same dependencies in the direction of the 
wavefront travel have to be observed. In the 3-D grid case, partitioned on a 
2-D logical processor array, only one processor is active in the first step (first 
diagonal), three processors active in the second step (first  second diagonal), 
six in the third step, and so on. An example 4  4 logical processor array is 
shown in Figure 10.2. Wavefront n is on the major diagonal of processors, 
and earlier wavefronts (n – 1, etc.) are in front, and later wavefronts (n  1, 
etc.) are behind. The maximum number of wavefronts that originate from a 
corner processor is equal to K.

The total number of steps in a wavefront operation is equal to the number 
of wavefronts plus the number of steps required for the wavefront to prop-
agate across the processors (commonly referred to as the pipeline length). 
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By considering the number of wavefronts to be the number of cells in the K
dimension grouped into blocks of height B, the number of steps is simply:

steps
K
B

P Px y( )2 (10.1)

where Ic Jc B cells are processed in each step (in a weak-scaling mode). It 
has been shown that the parallel computational efficiency (PCE) of wave-
front algorithms is given by

PCE
K B

K B P Px y

/
/ ( )2 (10.2)

in the absence of communication costs (Koch, Baker, and Alcouffe, 1992). 
This is the number of wavefronts K/B originating from a corner divided by 
the total number of steps as given by (10.1). The maximum PCE occurs when 
B  1, and represents an upper bound on the parallel efficiency when com-
munication costs are not negligible.

A more accurate performance model of wavefront algorithms was devel-
oped by Hoisie, Lubeck, and Wasserman (2000). This model takes into account 
additional costs required on a parallel system in terms of communication 
latencies and bandwidths. It has been applied to the case of MPPs as well as 
clusters of SMPs (Hoisie, Lubeck, and Wasserman 1999). The model has been 
validated on many large-scale systems including all ASC machines. It uses 
as an example the Sweep3D application that is representative of part of the 
ASC workload. Sweep3D uses a 3-D spatial grid that is partitioned in two 
dimensions. It is normally executed in weak-scaling mode where the global 

FIGURE 10.2
Example wavefront processing on a 4  4 logical 2-D processor array.
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problem-size grows in proportion to the processor count and the size of a 
subgrid remains constant.

A simplified form of the model that gives the processing time for one 
direction of wavefront travel in Sweep3D is given by Hoisie, Lubeck, and 
Wasserman (2000):

T
K
B

B T T B P P B Tcycle c msg x y c.( . . ( )) ( ).( .4 2 22. ( ))T Bmsg (10.3)

where the first term represents the number of wavefronts originating from 
one corner, and the second term is the pipeline length. The computational 
time for a single wavefront on a single processor is Tc which on a general 
purpose processor in weak-scaling can be approximated by the single cell 
processing time multiplied by the number of cells in a wavefront step. The 
time to communicate one message for a given block size is Tmsg(B). It can be 
seen that the total number of steps is the same as in (10.1).

In order to achieve a high parallel efficiency the effect of the pipeline, Px +
Py – 2, and the messaging, Tmsg, should be minimized. It can be seen from (10.3) 
that the pipeline is minimized when B  1, and the messaging is minimized 
when B  K. Clearly there is a trade-off between the number of wavefronts 
and the size of the system. In general, the number of blocks increases (B
decreases) with the level of parallelism.

10.3 Large-Scale Two-Level Processing Systems

A two-level processing system is considered here consisting of a conven-
tional arrangement of compute nodes, a high-performance network, and 
additional acceleration hardware. Compute nodes typically contain between 
two and eight processors, and the interconnection network is typically a 
multistage switching fabric such as a fat-tree. Such an arrangement is shown 
in Figure 10.3.
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FIGURE 10.3
Example two-level system consisting of: conventional compute nodes, a high-performance net-
work, and additional acceleration hardware.
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As an example, we consider two-way AMD Opteron processing nodes 
interconnected using Infiniband. The characteristics of this compute node 
are listed in Table 10.1. Also listed is the assumed computation performance 
per wavefront direction per cell based on 40 flops per cell and 11% of a single 
CPU peak being achieved.

One or more acceleration devices can be added to each compute node. Each 
AD can be implemented on a plug-in PCI card or connected directly to the 
processor memory bus. Each can contain one of more PEs. For simplicity we 
assume that there is one AD per compute node processor.

The exact AD configuration is not a concern to us in the general analy-
sis, but the ClearSpeed CSX600 is used in the case study in Section 10.4. We 
assume that an AD can be characterized by the following:

1. A number of distinct processors (PEs)
2. Inter-PE communication cost: for PEs arranged in a logical 2-D array
3. Single PE performance: an AD PE is assumed to operate at a multiple 

of the compute node processor performance (in the range [1/100 … 1])

For the wavefront processing, we assume that the ADs are used to acceler-
ate only the computation associated with an individual block. This is denoted 
as B.Tc in (10.3). The compute node high-performance network is still used for 
internode data transfers and is used by appropriate calls to the MPI message 
library by a compute node processor. It may also be possible to optimize this 
communication on certain AD implementations.

For simplicity we also assume that if an AD has its own local memory 
that data transfer to or from this is small in comparison to internode 
communication.

We first analyze the impact on the PCE in Section 10.3.1 followed by the impact 
on the cycle time assuming realistic communication costs in Section 10.3.2.

10.3.1 Impact on the PCE

The ADs significantly affect the PCE due to their internal parallelism. When 
only using the compute nodes, the number of steps in a wavefront operation 

TABLE 10.1

Compute Node Characteristics

2.6 GHz Opteron

Processor count Per node
Large-scale system

2
O(10,000)

Compute time Per direction/cell (ns)
% of CPU peak

70
11

MPI communication Bandwidth (GB/s)
Latency ( s)

1.6
4



266 Unique Chips and Systems

is given by (10.1). However, each step now uses the additional parallelism of 
the AD. The number of substeps required on the AD will be the equal of the 
block size (B) plus the pipeline length of the AD:

steps AD B P Px y( ) ( )2 (10.4)

where P Px Py is the logical 2-D array of AD PEs. The total number of 
steps is the product of (10.1) and (10.4):

steps total K B P P B P Px y x y( ) ( / ( ))( ( ))2 2 (10.5)

It can be seen from (10.5) that to reduce the effect of the pipeline across com-
pute nodes B should be small, but to reduce the effect of the pipeline on the 
AD, B should be large. It can be shown that a minimum number of steps 
occur when

B
P P
P P

Kx y

x y

( )
( )

2
2

(10.6)

Thus as a system scales in size, the optimum block size decreases propor-
tionally to √(Px + Py – 2). If Px = Py = √P, then it decreases in proportion to P1/4.

An example of the utilization of a single AD is shown in Figure 10.4. A sys-
tem of 256 compute nodes is assumed in which Px Py  16 and, by the use of 
(10.6), the optimum block sizes are ~8, ~14, and ~22 for ADs of size 4, 16, and 
64 PEs, respectively. The processing of several blocks can be seen in each case 
depicted in Figure 10.4. For example, in Figure 10.4b for an AD containing 16 
PEs, the number of steps required to process a block of size 14 K-planes is 20 
when using (10.4). As the number of PEs within the AD increases the opti-
mum block size increases, but the average utilization of the PEs, and hence 
their efficiency, decreases.

The PCE is plotted in Figure 10.5 for various system sizes in terms of com-
pute processor count (which is equal to the AD count), and the number of 
PEs per AD. Note that the optimum block size as given by (10.6) is used in all 
cases. It can be seen that the PCE decreases with increasing compute proces-
sor count as well with increasing AD PE count. The best PCE occurs when 
the AD contains only one PE. The worst PCE is only 10% on the largest AD 
PE count and compute processor count. Note that K is fixed at 1000 in all 
cases and the PCE increases as K increases.

10.3.2 Impact on the Cycle-Time

The impact on the cycle-time of a wavefront calculation can be assessed 
using the performance model (10.3). The AD effects only one component 
in this model: the compute time to process a single block, denoted as B.Tc
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in (10.3). Using an AD leads to a two-level use of the model. B.Tc for an AD 
is given by

B T
B
B

B T T B P Pc AC msgAC x y. .( . ( )) ( ).(4 2 B T T BAC msgAC. . ( ))2 (10.7)

where B  is the height of a block size on the AD, TAC is the compute time for 
a single wavefront on an AD PE, and TmsgAC is the inter-PE message time on 
the AD.
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FIGURE 10.4
Utilization of an AD for the first 100 steps of a wavefront calculation.
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The overall cycle-time is given by incorporating (10.7) into (10.3). It should 
be noted that the message time between AD PEs will typically be far less 
than between compute processors as near-neighbor (usually on-chip) data 
transfers will be utilized. Heavy-weight MPI message-passing should not be 
required in such a case.

In order to calculate the cycle-time we consider various AD configurations. 
The three main parameters of: PE count, PE processing time, and inter-AD 
PE communication time are varied as listed in Table 10.2. The processing 
time on an AD PE is considered to be a multiple of the AMD Opteron proces-
sor performance corresponding to x1, x0.1, and x0.01.

Figure 10.6 shows the wavefront cycle-time for the case of K  1000, 
the single-cell AD processing time of 70 ns, and the inter-PE latency and 
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TABLE 10.2

AD Performance Characteristics

Processor count Per card [1  128]
Compute time/cell (ns) {70, 700, 7000}
Inter-PE 
communication

Bandwidth (GB/s)
Latency (ns)

1
50
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bandwidth equal to 50 ns and 1 GB/s, respectively. It can be seen that at the 
largest scale the performance improvement by adding a factor of 128 more 
PEs to the AD only improves the performance by a factor of 3.5. Indeed there 
is very little difference in the performance when using an AD with 64 or 128 
PEs. This is due to the increased pipeline length and greater inefficiencies 
that occur due to using smaller block sizes at large-scale.

In Figure 10.7 the parallel efficiency is shown for a range in the single-cell 
AD processing time. The efficiency for the 70 ns case reflects the cycle-time 
in Figure 10.6 for the 16 PEs per AD case. It can be seen that as the processing 
becomes more compute-bound the parallel efficiency approaches that indicated 
by the PCE. Note that the improved efficiency does not equate to improved 
performance, quite the contrary as shown in Figure 10.8. Here the cycle-time 
is shown for the three single-cell compute times. As the compute time per 
cell improves, so does the cycle-time for the wavefront calculation. It can also 
be seen that there is not always a performance advantage of using an AD for 
wavefront calculations. For instance, in the case of an AD PE having 1/10 
the performance of an Opteron (700 ns), there is a scale below which the AD 
improves performance, and above which it is actually slower. This occurs at 
512 compute processors as shown in Figure 10.8 for the case considered.

ADs can thus be used to provide a performance improvement for wavefront 
applications up to a certain system scale. In the next section we consider the 
effectiveness of the ClearSpeed CSX600 on a specific wavefront application, 
namely Sweep3D.
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FIGURE 10.7
Parallel efficiency for a range in single-cell processing times (AD  16 PEs).
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10.4 Case Study: Sweep3D with ClearSpeed 
CSX600 Accelerators

The general analysis in Section 10.3 provided an insight into the process-
ing of wavefront calculations using a conventional processing cluster with 
ADs. In this section we analyze a currently available AD—the ClearSpeed 
CSX600—using the Sweep3D application in a weak-scaling mode.

The CSX600 is a single-chip containing 96 SIMD PEs as shown in Figure 10.9. 
Each PE contains an integer ALU, a 16-bit integer multiply-accumulate, an 
FPU (capable of two double-precision flops per cycle), a general-purpose reg-
ister file, 6-Kbytes memory, and connections to neighboring PEs as well as to 
external I/O. Each PE has some local autonomy; in particular each PE has its 
own address pointer into memory.

The 96 PEs are interconnected linearly in a 1-D ring such that each proces-
sor can simultaneously shift data to its left or right neighbors at a peak rate 
of 4 bytes per cycle thus achieving a high aggregate inter-PE communication 
bandwidth. However off-chip communication is done via external memory.

Access to external memory is achieved across a memory bus (shared by all 
PEs) that operates at a peak of 3.2 GB/s. Several chips can be interconnected 
in a linear array via two ClearConnect Bridge Ports.

The CSX chip is clocked at 250 MHz, resulting in a PE-peak performance 
of 500 Mflop/s and a chip-peak performance of 48 Gflop/s. Up to two chips 
can be placed on a single PCIx card, and typically two cards can be placed in 
a host node. The peak performance characteristics of the CSX600 and those 
used in this analysis are listed in Table 10.3.
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It is assumed that the PEs on a chip are arranged as an 8  12 logical 2-D 
array and as a 16  12 logical array when two chips are on the PCIx card. The 
effective communication bandwidth between processors varies depending 
on the communication direction. For a communication in the logical X direc-
tion the PEs will be logically neighboring with a peak bandwidth between 
PEs on-chip of ~1 GB/s (assumed 500 MB/s achievable). However, the peak 
bandwidth between chips is 3.2 GB/s and is shared by 12 PEs on the edge of 
the 8  12 logical array. Thus, a realistic figure of 200 MB/s is used for the 
communications in X (based on an assumed achievable peak of 2.4 GB/s 
divided by 12). For a communication in the logical Y direction, the achiev-
able bandwidth of 500 MB/s is divided by 8, the distance a Y message shifts 
to reach its destination PE resulting in 62.5 MB/s. In this case the external 
bandwidth is sufficient to meet the demand from the 8 PEs on the edge of the 
8  12 logical array.

10.4.1 Sweep3D Performance on a Two-Level
Processing System Using the CSX600

The performance of Sweep3D is analyzed here on a system whose com-
pute nodes consist of two-way Opteron processors interconnected using 
Infiniband 4x, and two ClearSpeed CSX600 cards. It uses the performance 
model as described in Section 10.3 as well as the characteristics of the CSX600 
listed in Table 10.3. The system is analyzed as follows.

TABLE 10.3

CSX600 Performance Characteristics

Characteristic

PEs/chip 96
Chips/card (max) 2
Clock rate (MHz) 250
PE peak (Gflops) 0.5
Card peak (Gflops) 96
Inter-PE communications
(Intrachip) Peak

(Interchip) Peak

Latency (ns)
Bandwidth (GB/s)
Latency (ns)
Bandwidth (GB/s)

10
1

100
3.2

Inter-PE bandwidth
(Intrachip) logical X 
     logical Y
(Interchip) logical X 
     logical Y 

(MB/s)
(MB/s)
(MB/s)
(MB/s)

500
62.5

200
62.5

Compute time/cell ( s) 2.5



A Performance Analysis of Two-Level Heterogeneous Processing Systems 273

An analysis of the compute time on a single CSX600 board com-
pared to an AMD Opteron
An analysis of the parallel performance of an Opteron cluster with 
and without the CSX600
A sensitivity analysis considering a range for the CSX input param-
eters that were listed in Table 10.3

Note that the current implementation of Sweep3D is considered in this anal-
ysis without modification apart from the computation of a block being pro-
cessed by the CSX600 accelerator. Internode communication is undertaken 
by the Opteron processors. Optimization of the communication has not yet 
been considered as a factor in this comparison.

The estimated compute time per cell for Sweep3D, as listed in Table 10.3, 
results from a detailed analysis of the innermost loop (Reddaway, 2005). This 
time corresponds to approximately 3.2% of peak when considering that each 
cell requires ~40 flops including a division (which is costly on the CSX600). It 
also assumes that access to the off-chip memory required for the next block 
in the wavefront processing can be overlapped with the computation of the 
current block; this is architecturally possible but has yet to be demonstrated 
for Sweep3D. The maximum number of cells that can be contained within a 
subblock is ~40 due to the small 6 Kbytes memory per PE.

In this analysis several assumptions are made on the problem size being 
processed. This includes a beneficial view (to the CSX600) of the problem size 
per PE of 1  1  400 (or Ic  1 and Jc  1) resulting in a subgrid of size 8  12  400 
and 16  12  400 per chip and per board, respectively. The K dimension is 
set at 400 with 6 wavefront angles per cell. The number of angles is an added 
feature of the wavefront calculation in Sweep3D. We consider two cases that 
differ in terms of the number of angles per block, either 1 or 6, on the CSX600. 
It is also assumed that the CSX600 main memory is preloaded with the nec-
essary variables for the wavefront calculation. The best blocking factors are 
used in all cases in the following analysis.

10.4.2 Sweep3D Single Processor/Single CSX600 Card Compute Time

The expected iteration time for Sweep3D when varying the number of K-
planes per block between 1 and 400 is shown in Figure 10.10 for a single 
CSX600 card and a single 2.6 GHz Opteron (single-core and estimated for a 
dual-core). Figure 10.10a shows the compute time for a 16  12  400 subgrid 
(2 CSX600 chips on a card), and Figure 10.10b shows the case for an 8  12 
400 subgrid (1 CSX600).

It can be seen in Figure 10.10 that a CSX600 outperforms the dual-core 
Opteron processor when a block consists of more than 10 K-planes in the 16 
12  400 subgrid case with 6 angles per block, and more than 2 K-planes with 
1 angle per block. Note that the use of only 1 angle per block is an optimistic 
performance estimate.

However, as we illustrated in Section 10.3, there is a trade-off concerning 
the block size: the larger the block size is, the poorer the parallel efficiency as 
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•

•
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a system scales in size. This will alter the perceived advantage of the CSX600 
shown in Figure 10.10.

10.4.3 Sweep3D Parallel Performance

Figure 10.11 shows the expected iteration time of Sweep3D as the node count 
increases. Two Opteron clusters are considered consisting of either single-core 
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or dual-core processors with a clock speed of 2.6 GHz. The remaining two 
curves show the performance of Sweep3D when using the CSX600 with 
either one or six angles per block on either one or two CSX chips per card.

It can be seen that a system with the CSX600 is expected to outperform a 
2.6 GHz Opteron Dual-core system up to 8192 nodes in the case of 16  12 
400 subgrids (two chips per card), and up to 128 nodes in the case of 8  12 
400 subgrids (one chip per card).

10.4.4 Improvement in Performance

Figure 10.12 shows the relative performance between the CSX600 system and 
the Opteron only systems for Sweep3D. Using six angles per block as well as 
the best case of only one angle per block on the CSX600 is plotted. A value 
greater than one indicates a performance advantage to the CSX600. The per-
formance advantage of the CSX600 over that of the dual-core Opteron system 
is at best a factor of 2.5 for the 16  12  400 subgrid case on a single node. 
However the advantage gradually decreases with scale to only a factor of 1.5 
at 256 nodes, and to a factor of 1.2 at 2048 nodes. When using one CSX600 
chip per board there is only a slight advantage up to 64 nodes.

The poorer performance at large-scale results from the increased pipeline 
length due to the parallelism of the CSX600 and the smaller blocks that are 
required as the scale increases. This was also seen in the general analysis in 
Section 10.3 (Figure 10.8).

This result shows that, for the wavefront processing contained within 
Sweep3D, the CSX600 is capable of providing an improved level of perfor-
mance on smaller (capacity) sized systems but is not expected to provide a 
significant performance improvement on larger (capability) sized systems.

10.5 Conclusions

This work has provided an analysis of a two-level processing system on 
wavefront algorithms. The two-level system is characterized by a set of 
compute nodes containing conventional processors, interconnected via a 
high-speed network, and each having additional acceleration hardware. The 
main characteristic of wavefront algorithms is their dependency in the pro-
cessing order of spatial cells, which can limit parallel efficiency.

We have shown that in the general case it is possible that acceleration hard-
ware can be used to improve the performance of such applications. However, 
the level of performance depends upon the level of parallelism of the accel-
erator, the compute performance of each accelerator PE, and the performance 
of inter-PE communications.
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In general as the parallelism in the accelerator increases, the parallel effi-
ciency will decrease. This limits the potential performance improvement 
especially when the accelerators are used in large-scale parallel systems.

The ClearSpeed CSX600 chip containing 96 SIMD PEs was used as a case 
study to analyze the performance of Sweep3D whose wavefront processing 
is representative of part of the ASC workload. In this it was shown that the 
high level of parallelism contained within each CSX600 can improve the per-
formance of the Sweep3D calculation when compared with a single- and a 
dual-core AMD Opteron system even though its clock-rate and single-PE pro-
cessing time are smaller. However, in the case of large-scale systems, the accel-
erators are not expected to provide any significant performance improvement 
that is a direct result of the scaling characteristics of wavefront algorithms.

This makes an interesting observation for the CSX600 in that it may be 
more suited for a capacity computing situation where an application may 
make use of up to ~512 nodes, rather than a larger-sized capability comput-
ing situation. Accelerators with fewer but faster PEs compared to the CSX600 
may be more suited to wavefront processing such as Sweep3D.

It should also be noted that this analysis was favorable to the CSX600 in 
several ways: the subgrid sizes were chosen to match the number of PEs on 
a CSX600 chip or card, the smallest possible blocking factors in sweep3D 
were assumed, and optimistic values for the performance characteristics of 
the CSX600 were used as input to the performance model. Relaxing some of 
these assumptions would decrease the magnitude of any advantage of the 
ClearSpeed CSX600.
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11
Microarchitectural Characteristics 
and Implications of Alignment 
of Multiple Bioinformatics Sequences

Tao Li 
University of Florida

11.1 Introduction

In the last few decades, advances in molecular biology and laboratory equip-
ment have allowed the increasingly rapid obtaining of an enormous amount 
of genomic and proteomic data [1]. Bioinformatics explores computational 
methods to allow researchers to sift through this massive biological data in 
order to provide useful information. Bioinformatics applications are widely 
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used in many areas of life science, such as drug design, human therapeutics, 
forensics, and homeland security. A number of recent market research 
reports estimate the size of the bioinformatics market is projected to grow to 
$176 billion by 2005, and $243 billion by 2010 [2].

Multiple sequence alignment (MSA), which lines up multiple genomes, is 
one of the most important applications in bioinformatics [3]. MSA plays a 
vital role in analyzing genomic data and understanding the biological signif-
icance and functionality of genes and proteins. Predicting the structure and 
functions of proteins, classification of proteins, and phylogenetic analysis are 
a few examples of the countless applications that use MSA.

Finding the optimal MSA for a given set of genomes is an NP-complete 
problem [4]. A significant body of work has been done to find heuristic solu-
tions to the MSA problem [5]. However, there is little quantitative understand-
ing of the performance of these MSA methods on modern microprocessor 
and memory architecture. To ensure good hardware performance, a detailed 
characterization of how the MSA software uses various microarchitectural 
features provided by the contemporary microprocessor is needed. Adhering 
to this philosophy, this chapter studies the performance and characteristics 
of 12 widely used MSA programs on the Intel Pentium 4 microarchitecture 
[6]. We examine basic workload characteristics and efficiencies of caching, 
TLBs, out-of-order execution, branch prediction, and speculative execution.

We chose the Pentium 4 architecture due to its advanced design and popu-
larity. Inasmuch as MSA benchmarks are not well known from the architec-
ture perspective, we believe that an in-depth analysis of a wide variety of 
MSA software on the representative architecture is crucial in understand-
ing the implications of bioinformatics’ multiple sequence alignment tools 
on today’s market. Although the characteristics of MSA applications may 
vary for different architectures, we believe that our experiments are broad 
enough from the perspective of bioinformatics market needs. Note that our 
goal in this chapter is not to develop new MSA software, but to explore how 
advanced microarchitecture behaves for existing MSA applications.

The rest of the chapter is organized as follows. Section 11.2 provides a back-
ground of MSA and describes the selected programs. Section 11.3 describes 
the experimental methodology. Section 11.4 presents the detailed character-
ization of MSA applications and their architectural implications. Section 11.5 
summarizes the major findings of this work and concludes the chapter.

11.2 Background: Multiple Sequence Alignment (MSA)

Studying evolutionary relationships between sequences is one of the main 
goals of bioinformatics. The majority of biological sequences are DNA and 
protein sequences. A DNA sequence is made from an alphabet of four ele-
ments, namely A, T, C, and G, called nucleotides. A protein can be regarded as 
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a sequence of amino acids. There are 20 distinct amino acids. Thus, a protein 
can be regarded as a sequence defined on an alphabet of size 20.

MSA is the process of aligning three or more sequences with each other so 
as to match as many residues (nucleotides or amino acids) as possible. Align-
ment of multiple sequences involves placing the residues that derive from a 
common ancestor to the same column. This is achieved by introducing gaps 
(which represent insertions or deletions) into sequences. Thus, an alignment 
is a hypothetical model of mutations (substitutions, insertions, and deletions) 
that occurred during sequence evolution. The best alignment will be the one 
that represents the most likely evolutionary scenario. Sometimes, the evolu-
tionary history of the sequences cannot be determined precisely. In such cases, 
usually a computable measure, such as a sum-of-pairs score is used to deter-
mine the quality of the multiple alignments. The sum-of-pairs score is defined 
as the sum of the scores of the underlying alignments of all pairs of sequences 
in the resulting multiple alignment, where a score is computed for a pair of 
sequences based on the matching and mismatching characters. Figure 11.1 
shows a multiple alignment among the DNA sequences A  “AGGTCAGTC-
TAGGAC”, B  “GGACTGAGGTC”, and C  “GAGGACTGGCTACGGAC”.

The number of multiple sequence alignment methods has been increased 
steadily. Most MSA algorithms can be classified as one of the following cat-
egories: exact, progressive, iterative, anchor-based, and probabilistic meth-
ods. Given a set of sequences, exact methods deliver an alignment optimal 
with respect to a computable objective function, such as sum-of-pairs score, 
through exhaustive search. Progressive methods find a multiple alignment 
by iteratively picking two sequences from this set and replacing them with 
their alignment (i.e., consensus sequence) until all sequences are aligned 
into a single consensus sequence. Thus, progressive methods guarantee that 
more than two sequences are never simultaneously aligned. The choice of 
sequence pairs is the main difference among various progressive methods. 
Iterative methods start with an initial alignment; they then repeatedly refine 
this alignment through a series of iterations until no more improvements can 
be made. Depending on the strategy used to improve the alignment, itera-
tive methods can be deterministic or stochastic. Anchor-based methods use 
local motifs (short common subsequences) as anchors. Later, the unaligned 
regions between consecutive anchors are aligned using other techniques. 
Probabilistic methods precompute the substitution probabilities by analyz-
ing known multiple alignments. They use these probabilities to maximize 
the substitution probabilities for a given set of sequences.

Sequence A -AGGTCAGTCTA-GGAC
Sequence B --GGACTGA----GGTC
Sequence C GAGGACTGGCTACGGAC

FIGURE 11.1
An example of MSA (the aligned DNA sequences match in seven positions).
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Of the many algorithms, we selected a subset of 12 programs based on their 
popularity, availability, and how representative they were of aligning mul-
tiple sequences in general. We briefly describe the MSA tools we selected.

Msa [7] uses high-dimensional dynamic programming (DP) to exhaustively 
produce all possible alignments of the input sequences. The number of dimen-
sions is equal to the number of sequences compared. It then chooses the align-
ment with the highest sum-of-pairs score. It uses the distances between pairs 
of sequences to eliminate unpromising alignments to improve efficiency.

Clustal w [8] first finds a phylogenetic tree for the multiple sequences to 
be aligned. The phylogenetic tree shows the ancestral relationships among 
sequences. If two sequences are derived from the same ancestor, they are 
then located in a subtree rooted at their parent. Clustal w progressively aligns 
pairs of sequences that are siblings on this tree starting from the leaf nodes 
until all sequences are aligned.

Treealign [9] is similar to clustal w. It builds a phylogenetic tree with 
minimum parsimony on the input sequences. It then aligns pairs of these 
sequences using dynamic programming starting from the tips of the phylo-
genetic tree.

T-coffee [10] computes the distance between every pair of sequences. It then 
computes a phylogenetic tree from these distances using the neighbor join-
ing method. It uses this tree as a guide to align sequences progressively.

Poa [11] progressively aligns pairs of sequences. Unlike clustal w, poa rep-
resents each sequence or the alignment of multiple sequences using graphs. 
Every node of this graph corresponds to a nucleotide. Poa aligns such graphs, 
instead of sequences, at every step until all sequences are aligned.

Probcons [12] uses a hidden Markov model (HMM) to compute the poste-
rior probability of aligning every pair of letters. It then builds a guide tree 
(similar to the phylogenetic tree) for the given sequences using these prob-
ability values. Finally, it aligns the sequences progressively by following the 
guide tree.

SAGA [13] employs a genetic algorithm to optimize the sum-of-pairs score 
of the multiple alignment. It first finds a population of possible solutions. 
These solutions are then updated iteratively with random mutations to find 
better alignments.

Muscle [14] computes a k-mer (subsequence of length k) distance for every pair 
of sequences. Next, it builds a guide tree using these distances. It progressively 
aligns sequences with the help of this guide tree. Later, it iteratively computes 
the Kimura distance between aligned nucleotides and realigns the sequences.

Mavid [16] finds common subsequences with the help of a suffix tree. It then 
chooses such subsequences to align sequences at these positions. Mavid uses an 
anchor-based method for alignments of large numbers of DNA sequences.

Mafft [17] converts nucleotide sequences to sequences of real numbers by 
storing the volume and polarity of each nucleotide. It assumes that two sub-
sequences are similar if they have similar volume and polarities. Mafft uses 
fast Fourier transformation of these sequences to find the positions where 
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these sequences have similar volumes and polarities. These positions are 
used as anchors and the nucleotides at these positions are aligned together.

Dialign [18] aligns pairs of sequences to find long gap-free similar subse-
quences using dynamic programming. Later, it greedily chooses the subse-
quence pairs with the largest similarity score and anchors two sequences at 
that location until all similar subsequences are exhausted. If the position of 
such a subsequence conflicts with an existing anchor, then that subsequence 
is discarded.

Hmmer [19] employs hidden Markov models (profile HMMs) for align-
ing multiple sequences. Profile HMMs are statistical models of multiple 
sequence alignments. They capture position-specific information about how 
conserved each column of the alignment is, and which residues are likely.

Table 11.1 summarizes the selected MSA programs and their algorithm 
categories.

11.3 Methodology

To observe the architectural characteristics of MSA algorithms and how they 
utilize various microarchitecture features, we conducted our experiments 
using hardware performance counters. This section describes our experi-
mental setup.

11.3.1 System Configuration

All experiments were run on a 3-GHz Pentium 4 (Prescott) processor [6] with 
1 GB of DRAM running RedHat 9.0 Linux kernel version 2.4.26. All MSA 
benchmarks were compiled using Intel’s C/C  Linux compilers with the 

TABLE 11.1

Five Main Classes of MSA and the Selected Programs for Each Class

Type Tool

Exact Msa

Progressive Clustal w, Treealign, Poa, Probcons, Muscle, 
T-coffee

Iterative SAGA, Muscle

Anchor-based Mafft, Dialign, Mavid

Probabilistic SAGA, Hmmer, Probcons, Muscle



286 Unique Chips and Systems 

maximum level of optimizations. The input datasets for the MSA bench-
marks were chosen from a highly popular biological database, the National 
Center for Biotechnology Information (NCBI) [20] Bacteria genomes data-
bases. In this study, the 317 Ureaplasma’s gene sequences [21] were used as 
the inputs for all the MSA benchmarks. All MSA benchmarks were executed 
to completion.

11.3.2 Pentium 4 Microarchitecture

The front end of the Prescott microarchitecture fetches and decodes x86 
instructions. It builds the decoded instruction into sequences of μops called 
traces, which are stored in the execution trace cache. The Pentium 4 proces-
sors have two areas where branch predictions are performed: in the front 
end of the pipeline and at the execution trace cache (the trace cache uses 
branch prediction when it builds a trace). The pipeline in Prescott has 31 
stages, so a pipeline flush due to poor branch prediction can result in a much 
larger clock cycle penalty. The front-end BTB (branch target buffer, 4-K 
entries) is accessed on a trace cache miss and a smaller trace-cache BTB (2-K 
entries) is used to detect the next trace line. The trace-cache BTB, together 
with the front-end BTB, uses a highly advanced branch prediction algorithm. 
Static branch prediction will occur at decode time if the front-end BTB has 
no dynamic branch prediction data for a particular branch. Dynamic branch 
prediction accuracy is also enhanced by adding an indirect branch predictor. 
The out-of-order execution engine, which consists of the allocation, renam-
ing, and scheduling functions, can issue three μops per cycle to the next pipe-
line stage. To exploit the instruction-level parallelism (ILP) in the programs, 
the Prescott microarchitecture provides a very large window of instructions 
(up to 126) from which the execution units can choose.

The Prescott memory subsystem contains an eight-way, 16-KB L1 data 
cache and an eight-way, 1-MB, write-back L2 unified cache with 128 bytes/
cache line. The levels in the cache hierarchy are not inclusive. All caches 
use a pseudo-LRU (least recently used) replacement algorithm. The Pen-
tium 4 microarchitecture supports both hardware- and software-controlled 
prefetching mechanisms. 

11.3.3 Pentium 4 Hardware Counters

We used the Pentium 4 hardware counters to measure various architectural 
events [22]. The Pentium 4 performance counting hardware includes 18 hard-
ware counters that can count 18 different events simultaneously in paral-
lel with pipeline execution. The 18 counter configuration control registers 
(CCCRs), each associated with a unique counter, configure the counters for 
specific counting schemes such as event filtering and interrupt generation. 
The 45 event selection control registers (ESCRs) specify the hardware events 
to be counted and some additional model-specific registers (MSRs) for spe-
cial mechanisms such as replay tagging [23]. These counters collect various 
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statistics including the number and type of retired instructions, mispre-
dicted branches, cache misses, and so on. We used a total of 59 event types 
for the data presented in this chapter.

11.4 Workload Characteristics

This section provides a detailed workload characterization of MSA bench-
marks on the studied microarchitecture. The examined architectural fea-
tures include instruction distribution, out-of-order execution, cache and TLB 
performance, branch and efficiency of branch prediction.

11.4.1 Instruction Characteristics

The total number of instructions executed on the studied MSA workloads 
ranges from hundreds of billions to thousands of billions. This indicates that 
the computation requirement to align a large set of DNA/protein sequences 
is nontrivial. The use of performance counters (instead of simulation) allows 
us to examine the entire program characteristics running on the realistic and 
meaningful datasets.

Figure 11.2 presents the dynamic instruction profile of the MSA programs. 
The dynamic instructions are broken down into five categories: load, store, 
branch, floating point (FP), and integer. As can be seen, the most frequently 
executed instructions are loads. This is because all these tools need to read 
data from the dynamic programming matrix and write the results back onto 
the same matrix many times. The percentage of loads is significantly more 
than that of store in all the programs because the dynamic programming 
algorithm has to read multiple entries from the DP matrix to update a single 

FIGURE 11.2
Dynamic operations profile.
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entry. As a whole, memory operations occupy a significant share of the total 
instruction mix, which is 63% on average. Therefore, MSA workloads are 
data-centric in nature. This indicates that MSA applications can benefit from 
techniques to improve memory bandwidth in general.

Branch instructions exhibit significant differences from algorithm to algo-
rithm. For example, 27% of dynamic instructions in benchmarks dialign and 
SAGA are branches. This can be explained as follows. Dialign usually gen-
erates a large candidate set of anchors, which then needs to be analyzed to 
find a set of nonconflicting anchors. This analysis involves a large number of 
comparisons among candidate anchors. SAGA evaluates and compares all the 
members of the solution population per iteration. As the population of solu-
tions and the number of iterations increases, the number of comparisons also 
increases. A more detailed analysis on the branches and branch prediction 
can be found in Section 11.4.6. The majority of MSA workloads contain few 
floating-point operations. Only methods that calculate statistics and likelihood 
values or phylogenetic trees in their algorithms use floating-point instructions. 
For example, Mafft computes the Fourier transformations of the volumes and 
polarities of the amino acids for different combinations of sequences. Muscle
incurs floating-point operations during the computation of Kimura distances. 
Probcons computes the posterior probability of aligning every pair of letters.

11.4.2 IPC and μPC

Using the events that count the number of cycles and number of instructions 
retired during the program execution, we computed the IPC (instruction-per-
cycle) of the studied MSA benchmarks. On the high-performance processors 
such as Pentium 4, the IPC metric indicates how efficiently the micropro-
cessors exploit instruction-level parallelism (ILP). In order to improve the 
efficiency of superscalar execution and the parallelism of programs, each x86 
instruction is further translated into one or more μops inside the Pentium 4 
processor. Typically, a simple instruction is translated into around one to 
three μops. The results of the measured IPC and μops per cycle (μPC) on the 
benchmarks are shown in Figure 11.3.

The greatest IPC values come from clustal w, dialign, and poa. The lowest IPC 
values are msa and muscle. The IPC ranges from 0.15 to 0.93, with an average 
around 0.60. A lower IPC can be caused by an increase in cache misses, branch 
mispredictions, or pipeline stalls in the CPU. For example, MSA methods 
(mafft and muscle) extensively using floating-point instructions yield lower 
IPCs due to the pipeline stalls on the long latency floating-point operations. 
The IPC is remarkably low on benchmark msa due to the excessive data cache 
misses. These cache misses are incurred because the exhaustive search strat-
egy of msa reads and writes large amounts of data. The μPC ranges from 0.23 
to 1.32, with an average around 0.94. Only six benchmarks (clustal w, dialign,
treealign, poa, t-coffee, and SAGA) achieve more than one μops per cycle. This 
implies that, for the majority of MSA applications, the available ILP that can 
be exploited by the Pentium 4 microarchitecture is limited.
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11.4.3 Trace Cache

As the front end, the Prescott trace cache sends up to three μops per cycle 
directly to the out-of-order execution engine, without the need for them 
to pass through the decoding logic. Only when there is a trace cache miss 
does the front end fetch x86 instructions from the L2 cache. There are some 
exceedingly long x86 instructions (e.g., the string manipulation instructions) 
that decode into hundreds of μops. For these long instructions, the Prescott 
fetches μops from a special μops ROM that stores the canned μops sequence.

Figure 11.4 shows the proportion of the μops fetched from the L2 cache, 
the trace cache, and the μops ROM, respectively. As can be seen, a dominant 
fraction (93%) of the μops is supplied by the trace cache. On benchmarks 
dialign, mavid, treealign, and t-coffee, around 2–8% of the μops come from the 
μops ROM, implying that these workloads use x86 complex instructions 
more frequently. The μops ROM contributes 20% and 39% of the dynami-
cally executed μops on benchmark muscle and SAGA. This is because these 
two programs excessively use the string manipulation instructions to han-
dle biological sequences. For example, SAGA repeatedly mutates existing 

FIGURE 11.4
Source of the μops.

FIGURE 11.3
IPC versus μPC.
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population of alignments which involves costly string operations. More-
over, SAGA uses x86 FSQRT (floating-point square root) instructions. The L2 
cache contributes less than 1% of the μops on most of the benchmarks (except 
treealign). The instruction footprint generated by benchmark treealign yields 
more trace cache misses. A closer investigation shows that this benchmark 
performs operations on both graphs and phylogenetic trees alternately. The 
codes performing these two operations conflict with each other in the trace 
cache. Nevertheless, on the majority of benchmarks, the Prescott trace cache 
is highly efficient in providing the μops to the rest of the pipeline. This indi-
cates that the instruction footprints of MSA applications are small and cache 
misses due to instruction fetches are negligible.

The trace cache operates in two modes: deliver mode and build mode. The 
deliver mode is the mode in which the trace cache feeds stored traces to the 
execution logic to be executed. This is the mode in which the trace cache 
normally runs. When there is a trace cache miss, the trace cache goes into 
build mode. In this mode, the front end fetches x86 instructions from the L2 
cache, translates into μops, builds a trace segment with it, and loads that seg-
ment into the trace cache to be executed. Figure 11.5 shows the percentage of 
nonsleep cycles that the trace cache is delivering μops versus decoding and 
building traces. Overall, the utilization of the trace cache is extremely high 
except on the benchmarks treealign.

11.4.4 Cache Misses

Figure 11.6 presents the counts of cache misses per 1000 instructions retired. 
We see that instruction-related cache misses are nearly fully satisfied by the 
trace cache. Data cache miss ratios are higher because the data footprint 
is much larger than the instruction footprint. For example, msa can cause 
more than 40 L1 data cache misses on every 1000 instructions executed. This 
can be explained as follows. Unlike other methods, msa fills a multidimen-
sional dynamic programming matrix. As the number of dimensions (i.e., 

FIGURE 11.5
Percentage of TC deliver mode.
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the number of sequences compared) increases, the number of matrix entries 
needed to compute a single DP entry increases exponentially. Thus, these 
entries do not fit into the cache resulting in cache misses every time a new 
value is computed. On average, the studied bioinformatics applications gen-
erate 11 L1 cache misses per 1000 retired instructions.

We found that the L1 data cache misses on most of the benchmarks can 
be nearly fully satisfied by the L2 cache. The Pentium 4 processors use auto-
matic hardware prefetch to bring cache lines into the unified L2 cache based 
on prior reference patterns. Prefetching is beneficial because many accesses 
to the biological sequences are sequential, and thus, predictable.

Interestingly, the benchmarks (msa) with the highest L1 data cache misses 
also have the highest L2 misses, implying their poor data locality. This is 
because, in order to compute the alignment score for an entry of the DP 
matrix, msa needs to access the information in all neighboring entries of that 
entry. As the dimensionality of the DP matrix (i.e., number of sequences) 
increases, the locations of these entries get exponentially far away from each 
other causing poor data locality. Figures 11.3 and 11.6 show a fairly strong 
correlation between the L2 misses and IPC, which indicates that the L2 miss 
latency is more difficult to be completely overlapped by out-of-order execu-
tion. We observed that overall prefetching and L2 cache can efficiently han-
dle the working sets of MSA applications.

11.4.5 TLB Misses

The Pentium 4 processor uses separate TLB (translation lookaside buffer) 
to translate the virtual address into the physical address for instruction 
and data accesses. Prescott has a 128-entry, fully associative instruction 
TLB (ITLB) and a 64-entry, fully associative data TLB (DTLB). Figure 11.7 
presents the ITLB and DTLB miss rates across the studied benchmarks. 
The ITLB miss rates are well below 1% on most benchmarks. Figure 11.7 
also shows that most of the DTLB accesses can be handled very well by the 

FIGURE 11.6
Cache miss rates.
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Pentium 4 processor. Nevertheless, msa yields high (16%) DTLB miss rates 
due to its large data memory footprint. This is mainly caused by the high-
dimensional DP matrix that msa uses. Because all MSA software run the 
same input dataset, it is clear that the internal data structures created by the 
algorithms largely affect the DTLB behavior.

11.4.6 Branches and Branch Prediction

Figure 11.8 presents the fraction of branches that belong to conditional 
branches, indirect branches, calls, and returns. Conditional branches, rang-
ing from 54% (muscle) to 99% (hmmalign) of the dynamic branches, dominate 
the control flow transfers in the MSA applications. Indirect branches account 
for more than 10% of the dynamic branches on benchmarks treealign, muscle,

FIGURE 11.7
TLB miss rates.

FIGURE 11.8
Dynamic branch mix.
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and SAGA. We further examined the source code and found that the per-
centage of indirect branches is caused by the software programming style 
and they are not an inherent part of the algorithm. For example, the bench-
marks treealign, t-coffee, and SAGA embed the case-switch statements in vari-
ous loops to determine sequence format, or to select one operation from all 
possible choices to process the sequence elements. The benchmark muscle,
programmed with C , uses additional virtual functions to implement the 
algorithm. On the average, conditional branches, indirect branches, call, 
and return contribute to 81%, 8%, 6%, and 6% of the total dynamic branches, 
respectively.

Figure 11.9 shows the branch misprediction rates on the MSA applica-
tions. The overall branch misprediction rates exceed 5% on 6 out of the 12 
benchmarks. The misprediction rates on the indirect branches are less than 
2% on all studied benchmarks. Typically, the targets of indirect branches are 
difficult to be predicted accurately using a conventional branch target buf-
fer. The results show that the advanced indirect branch prediction mecha-
nism used in the Pentium 4 processor works well on the MSA software. 
Figure 11.9 also shows that calls and returns can also be predicted accu-
rately with the 16-entry return address stack. To further improve branch 
prediction accuracy of MSA software, efforts should focus on the condi-
tional branch prediction.

11.4.7 Speculative Execution

To reach high performance, the Pentium 4 machine fetches and executes 
instructions along the predicted path until the branch is resolved. In case 
there is a branch misprediction, the speculatively executed instructions 
along the mispredicted path are flushed. The speculative execution factor or 
the ratio of the total number of instructions decoded to the total number of 

FIGURE 11.9
Misprediction rates.
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instructions retired quantitatively captures how aggressively the processor 
executes the speculated instructions.

Figure 11.10 shows the speculative execution factors for instructions and 
μops on the MSA software. On the average, the processor decodes 27% more 
instructions than it retires. Note that there is a fairly strong correlation 
between the branch prediction accuracy and the speculative execution fac-
tor on these programs. Due to the use of deeply pipelined design (31 stages 
behind the trace cache) to reach high operation clock frequency, the accuracy 
of branch prediction plays an important role on Prescott pipeline perfor-
mance. MSA benchmarks with higher mispredicted branches per instruc-
tion have higher speculated instructions, indicating these applications can 
further benefit from more accurate branch prediction.

11.4.8 Phase Behavior

Recent computer architecture research has shown that program execution 
exhibits phase behavior, and these behaviors can be seen even on the largest 
of scales [27]. Program phases can be exploited to design adaptive micro-
architecture, guide feedback compiler optimization, and reduce simulation 
time. To reveal the phase behavior of MSA applications, we sampled per-
formance counters at a time interval of 0.1 second. Figure 11.11 shows the 
sampled IPC of six MSA applications. As can be seen, the studied MSA appli-
cations show heterogeneous phase behavior. For example, benchmark t-coffee 
shows periodic spikes where program execution yields high IPC. The phase 
behavior of benchmarks msa and treealign is highly predictable for the entire 
program execution. Benchmarks muscle, clustalw, and t-coffee exhibit irregu-
lar and unpredictable phase behavior during the program execution.

FIGURE 11.10
Speculation factor.
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11.5 Conclusions

As requirements for the processing of biological data grow, bioinformatics 
becomes an important type of application domain. The assembly of a mul-
tiple sequence alignment has become one of the most common tasks in bio-
informatics. Despite the amount of attention dedicated to the MSA problem, 
it is largely unknown how various MSA methods use the advanced micro-
architectural features provided by modern processors. Our work studies 
architectural properties for several widespread multiple sequence alignment 
algorithms on an actual Intel Pentium 4 processor.

We found that bioinformatics multiple sequence alignment workloads ben-
efit from many advanced Pentium 4 microarchitecture features such as trace 
cache, prefetching and large size L2 cache, and advanced indirect branch 
predictor. We believe that several observations we made in this study can be 
useful for performance optimization of MSA workloads from the architec-
tural point of view. For example, MSA workloads intensively access (i.e., read) 
memory and the access patterns can be captured by the hardware prefetcher. 
Thus, a smaller L1 data cache with multiple read ports and prefeteching can 
provide higher memory bandwidth while reducing cache hit latency. We 
also observed that despite the relatively good behavior on cache and branch 
prediction, the IPC performance of MSA workloads is still poor. To fully uti-
lize the superscalar capability provided by the advanced microarchitecture, 
we believe that additional techniques, such as value prediction [24] and more 
aggressive compiler optimizations (e.g., superblock [25] and hyperblock [26]), 
should be used.

The results obtained in this chapter open up new avenues for future MSA 
algorithms. For example, to reduce excessive amounts of loads and stores, 
heuristic methods can be applied to MSA algorithms to further reduce the 
amount of search space explored. To effectively reduce branch misprediction 
rates and pipeline flushes, new MSA algorithms should explore the search 
space more deterministically. That is, unpromising alignments need to be 
eliminated pre-emptively using better strategies. These improvements can 
be obtained by summarizing and indexing the search space and statistically 
analyzing the sequences. In future work, we will explore the hardware and 
software techniques to optimize the performance of MSA tools.
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12.1 Introduction

Software is ubiquitous in the mission-critical systems that are used today,
ranging from embedded systems such as flight control to stand-alone systems
that manage international financial flows. Real-time embedded systems are a
special class of mission-critical systems, which have to satisfy both depend-
ability and timeliness requirements. The traditional constraints on these
systems were processing power and memory availability; however, with the
quantum increases in computing power and miniaturization of electronics,
the challenges revolve around integrating multiple embedded components
within a larger systems context and managing the evolution of technology.
Building, evolving, and ensuring confidence in these complex systems in
a cost-effective and schedule-compliant manner is becoming increasingly
more difficult. As Boehm (1981) noted, the most difficult part of developing
a software-intensive system is not in the software development phase itself,
but in the design, integration, and verification phases. There needs to be a
unifying framework that covers the complete system life cycle, from initial
requirements all the way to sustainment and eventual retiring.

The emergence of system-on-chip technologies for rapid prototyping, and
the use of formal methods for verification of both the design and the imple-
mented system provide new approaches for building complex real-time
embedded systems. These new approaches do not completely mitigate the
classic problems of embedded systems development, namely, understanding
the impact of the operating system services on system behavior, maximiz-
ing processor utilization, and ensuring deterministic behavior of the imple-
mented system without sacrificing design flexibility or system evolution.
These new technologies enable the exploration of newer implementation
architectures and alternative approaches to provide increased depend-
ability. Model-checking tools can now be used to explore large-state space
systems, and models of the application software and underlying operating
system services can be effectively composed and verified through guided
state space exploration. In this chapter, we present the design of a hardware
implemented runtime kernel for an implementation architecture involving
multiple processors. We present the design space exploration that was car-
ried out to determine the implementation of delay queues for the kernel.

The remainder of the chapter is organized as follows. The Gurkh frame-
work section details how the approach used within Gurkh differs from
the traditional approach used to build real-time embedded systems from
the perspective of system architecture, system design, verification, and
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ensuring overall system dependability. The Foundations section details
the building blocks used, namely the underlying operating system model,
the formal modeling and verification tools, and the prototyping tools. The
Gurkh Framework Components section provides a high-level overview of
the four elements of the framework and details the first hardware imple-
mented runtime kernel that was prototyped for a single-processor environ-
ment, and motivates the need for supporting multiprocessor environments.
The RavenHaRT-II section provides the overall architecture of the new
RavenHaRT-II kernel, and the Modeling and Implementation sections cover
the design space exploration of queues at both analysis and implementation
levels. The chapter concludes with a recap of the results and provides guid-
ance on further work.

12.2 The Gurkh Framework

The Gurkh framework was created as a first step towards the development
of an integrated framework that covers the life cycle of a mission critical
real-time embedded system (Asplund and Lundqvist, 2003). The framework
draws from the domains of concurrent software design, formal verification
and hardware-software co-design, to ensure efficient design space explora-
tion, maximum utilization of computational resources, and high-confidence
in the implemented system. The differences between the Gurkh approach
and the traditional approach to mission-critical systems development across
multiple levels of abstraction are summarized in Table 12.1.

TABLE 12.1

Contrasting the Traditional Approach to the Gurkh Approach

Traditional Approach Gurkh Approach

Architecture Stable COTS processor/micro-
controller

Stable COTS processor with
programmable hardware components

Design Cyclic executive-based
scheduling

Priority-based pre-emptive scheduling

Software operating system Hardware implemented operating
system

Application capability
implemented solely in software

Application capability partitioned
between hardware and software

Verification Formal verification of software
(excluding OS)

Formal verification of system
(application and OS)

Dependability Intrusive monitoring or
redundancy

Nonintrusive monitoring and
reconfiguration
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12.2.1 System Architecture

The traditional approach to embedded real-time system development has
been to select a commercial off-the-shelf microprocessor or microcontroller
as the underlying hardware platform, and corresponding operating system,
over which the application software is developed. This approach is extremely
effective in moving all remaining design decisions to the application level, but
significantly constrains the design space that can be explored. Recent advances
in the three areas of hardware-software codesign, prototyping technology,
and formal modeling and verification enable more effective exploration of
the design space through prototyping and simulation. In the Gurkh frame-
work, the underlying system architecture is defined by the Xilinx Virtex-II
Pro platform architecture, wherein software runs on an embedded PowerPC,
and additional system capabilities can be implemented on the FPGA.

12.2.2 System Design

The four major tasks in the design of an embedded system are (Wolf, 1994):

Partitioning the requisite capabilities into interacting components
Allocating the components to specific computational elements
Scheduling the times at which the functions are executed on a
given computational element
Mapping the specification to an implementation

As was highlighted in the system architecture section, using traditional
approaches simplifies the embedded system design problem to one of select-
ing the right operating system, and scheduling the application tasks. The
most widely used scheduling paradigm is the cyclic executive (CE) approach,
where the execution of several processes on the CPU is explicitly and stati-
cally interleaved. This leads to a deterministic system from the ground up,
but exhibits a crippling inflexibility in the sense that the slightest modifica-
tion of the system often requires a complete redesign of the predetermined
schedule. Given that the schedule generation process is known to be an NP-
hard problem, the CE approach does not scale as the number of processes
increases. Furthermore, the necessity for tasks to share a harmonic relation-
ship imposes artificial timing requirements (Vardanega, 1999) that can be
wasteful in processor bandwidth (Punnekkat, 1997).

The approach adopted in Gurkh on the other hand is to use a hardware-
implemented runtime kernel (either RavenHaRT (Silbovitz, 2004) or Raven-
HaRT-II (Naeser and Lundqvist, 2005)) to provide operating system services,
and enable the use of priority-based pre-emptive scheduling techniques
to manage the execution of the application processes. This approach pro-
vides flexibility along two dimensions: it allows for postponement of the
mapping decisions to hardware and software components until later in the
development life cycle, and provides greater flexibility in application design.

•
•
•

•
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Unlike the CE approach, minor design changes result mostly in small imple-
mentation modifications.

12.2.3 System Verification

In the traditional development approach, formal verification is restricted to
the application, as the underlying operating system may not have a formal
definition. The formal basis of the RavenHaRT kernel allows for the formal
verification of the complete system (both the application and the operating
system). The tools within the Gurkh framework enable formal verification at
both the design and integration stages.

12.2.4 System Dependability

Dependability is obtained in mission-critical embedded systems through a
combination of fault prevention, fault removal, fault tolerance, and fault fore-
casting. Fault prevention and removal are more effective in the design stages;
fault tolerance and forecasting are critical during the operational stages of
the system. Given the wide recognition of the fact that there is no cost- and
schedule-effective means of completely eliminating all faults from the sys-
tem prior to its fielding, fault tolerance is critical in mission-critical embedded
systems. The traditional approach (Abbott, 1990) to fault tolerance is use of
intrusive monitoring (watchdog timers, software monitors) to detect errors,
and recover either through forward error recovery or backward error recov-
ery through a redundant system, and provide continued service. If intru-
sive monitoring is being used for error recovery, additional software has to
be added to the application, changing the timing behavior of the system.
In mission-critical embedded systems, this addition of monitoring software
changes the timing analysis performed on the system, the overall scheduling
of tasks, and consumes valuable processor resources. In the Gurkh approach,
system dependability is provided through the use of a monitoring chip (MC),
which provides nonintrusive monitoring for error detection, and a modified
backwards error recovery approach to provide continued service (Gorelov,
2005).

12.3 Gurkh Framework Foundations

The Gurkh framework is built around the Ravenscar tasking profile of the
Ada 95 programming language. It exploits the analysis capabilities provided
by the UPPAAL toolset, and leverages the prototyping capabilities provided
by the Xilinx Virtex-II Pro.

12.3.1 The Ravenscar Tasking Profile

The core of the Ada language is mandatory for all language implementations,
also known as profiles. A set of annexes is defined to extend the language in
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order to fulfill special implementation needs. The Ravenscar profile (Burns
et al., 1998, 2003) for Ada 95 defines a safe subset of the Ada language features.
From the annex perspective, the real-time annex is mandatory for Ravenscar.
The profile does not allow tasks to be dynamically allocated (other than at
software start time), and allows only for a fixed number of tasks. None of
the tasks may terminate, hence each consists of an infinite loop. Tasks have
a single invocation event that can be called an infinite number of times. The
invocation event can be time-triggered or event-triggered. Time-triggered
tasks make use of a delay until statement.

Tasks can only interact by using shared data in a synchronized fashion
through the use of protected objects (POs). POs may contain three different
types of constructs, the Protected Function, the Protected Procedure, and the
Protected Entry. A Protected Function is a read-only mechanism, whereas
the Procedure is a read-write mechanism. The Protected Entry is associated
with a Boolean barrier variable and both implement a mechanism used for
event-triggered invocation of tasks.

12.3.2 The UPPAAL Model Checker

Model checking has most often been applied to hardware design, but has also
been shown very useful for software design. Model checking is a method
that algorithmically verifies a formal system by verifying if the model of the
hardware or software design satisfies a formal specification written as a set
of temporal logic formulas. The UPPAAL model checker tool suite (Larsen
et al., 1997; Behrmann et al., 2004) contains an editor, simulation tool, and
verification tool for networks of timed automata. A timed automaton is a
finite-state automaton, augmented with time, clocks, Boolean variables, inte-
ger variables, and synchronization channels. Shared variables and synchro-
nization channels can be used by two or more automata to communicate
data and synchronize.

Each automaton consists of an initial location, indicated by an inner circle,
a fixed number of locations and transitions between locations. In the expla-
nation of the queues below, the notation n1 n2 represents a transition from
location n1 to location n2. Transitions can contain guards, synchronizations,
and assignments. An automaton can transition from a location if the guard
on the transition is satisfied. When a transition is taken, the assignment part
of the transition is executed. During a synchronous step, where two automata
communicate over a channel, the assignments of the sending automaton are
made before those of the receiving automaton. A transition can synchronize
at most on one channel. An exclamation mark after the channel name is used
to indicate that the channel is used for sending and a question mark is used
to indicate receiving. Locations can be marked as committed or urgent to
force specific temporal behavior (an encircled c, respectively, an encircled u).
Unmarked locations have no restrictions, committed locations can be used
to create atomic chains of transitions, and an automaton in a committed loca-
tion must leave the location before any other noncommitted transition may
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be taken in the system. Committed locations can be used to synchronize over
multiple channels in a chain of transitions. Urgent locations indicate that
outgoing transitions from the location have precedence over time transitions.
Time transitions can be taken whenever there are no automata in committed
or urgent locations that can make transitions. Failure is reported during veri-
fication or simulation if an automaton cannot leave a committed location.

The UPPAAL verification tool is used to explore whether user-defined
properties hold in the timed automata model. If a property cannot be veri-
fied (proven correct) UPPAAL automatically generates a counterexample
that can be explored in the simulator part of the tool.

12.3.3 Prototyping Tools

A system-on-chip (SoC) is an implementation technology that typically con-
tains one or more processors, a processor bus, a peripheral bus, a compo-
nent bridging the two buses and several peripheral devices (Mosensoson,
2000). The SoC development platform used in the Gurkh framework con-
sists of Xilinx’s Virtex-II Pro hardware (Xilinx, 2004). The ML310 boards
used for development have two PowerPC processors each, along with over
30,000 FPGA fabric logic cells and over 2400 kb of block RAM. Xilinx’s ISE
foundation version 6.2.0.3i, with Xilinx’s Embedded Development Kit soft-
ware version 6.3, along with Mentor Graphics’ ModelSim SE Plus 5.8e were
the tools used for design entry, simulation, synthesis, implementation, con-
figuration, and verification.

12.4 Gurkh Framework Components

The Gurkh framework, Figure 12.1, consists of four main components:

 1. A Ravenscar compliant runtime kernel that can be synthesized on
the FPGA in two forms: as RavenHaRT for single-processor envi-
ronments (Silbovitz, 2004), and RavenHaRT-II in multiprocessor
environments (Naeser and Lundqvist, 2005).

 2. A set of tools for translating VHDL (Nehme, 2004) and Ada (Nae-
ser, 2005) to both an intermediate formal notation (Naeser et al.,
2005) as well as timed automata. The intermediate formal notation
is used to enable translation across various tools, as well as for
visualization purposes. The timed automata representation is used
for verification of timing and behavioral properties of the applica-
tion in conjunction with the runtime kernel (RTK).

 3. An Ada Ravenscar to PowerPC and RTK cross-compiler called
pGNAT (Seeumpornroj, 2004).
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 4. A nonintrusive online hardware monitoring device, called the
monitoring chip (MC), created using a model of the target system
application (Gorelov, 2005).

Real-time embedded systems have strict timing requirements, and must
satisfy the additional constraints of predictability and determinism. This cre-
ates a significant challenge when using a traditional software-implemented
operating system (OS), particularly when multitasking must be done in a
system with a single processor. When the OS also runs on the processor, in
addition to application tasks, the OS interrupts the processor at regular inter-
vals by performing clock-tick interrupts. When interrupted in this manner,
the processor must stop the task it is running so that the OS can check to see
if another task should be running instead, and then resume. Even if the same
task continues to run, the interrupt still occurs. This results in less effective
processor utilization. In addition, the time taken for actions such as schedul-
ing varies with the number of tasks, which introduces jitter and makes the
whole system less deterministic.

To save processor time and increase determinism, many of the capabilities
of a software OS can be implemented in hardware including task handling
(such as creation, deletion, and scheduling), synchronization (such as sema-
phores, flags, and resource sharing), and timing (such as delays, periodic
starts, watchdogs, and interrupts). When all task management is performed
in hardware, scheduling is done in parallel to running application tasks,
thereby enabling better utilization of processor time. The only necessary
processor interrupts occur when a task is changing. This eliminates the need
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FIGURE 12.1
Uniprocessor instantiation of the Gurkh architecture.
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for clock-tick interrupts, and this change alone can give the processor up to
20% more time for running tasks (Klevin, 2003).

The RavenHaRT kernel (Silbovitz, 2004), was the first hardware imple-
mentation of the Ravenscar-compliant kernel specified in Lundqvist and
Asplund (2003) for a single-processor environment. Although RavenHaRT
was successful in demonstrating the concept, it did not completely address
the optimizations necessary to extend the implementation to multiprocessor
environments. In order to address three of the critical system-on-chip design
challenges of silicon minimization, power minimization, and increased
insight into timing behavior, the RavenHaRT kernel was extended to Raven-
HaRT-II (Naeser and Lundqvist, 2005).

The Open Ravenscar Run Time Kernel (ORK; de la Puente and Zamo-
rano, 2001a; de la Puente et al., 2001b) also implements the Ravenscar profile.
Dynamic validation by software faults injection of ORK is described in Maia
et al. (2003) where verification of an implemented kernel is attempted. The
ORK approach does not suit the RavenHaRT-II kernel because it is special-
ized in accordance with the final system’s actual characteristics. For example,
the delay queue can be specialized for the actual task setup when the number
of delaying tasks is known or can be easily deduced using code inspection.
This kind of optimization will not only help to reduce the size of the final
hardware implementation but also reduce the size of the state space during
verification and thus allow for larger systems to be verified.

12.5 The RavenHaRT-II Kernel

The RavenHaRT-II kernel provides the basic services for applications run-
ning on the embedded PowerPC. These services include support for schedul-
ing application software tasks, communication and synchronization between
tasks, handling processor allocation, and access to shared objects. These dif-
ferent tasks of the kernel can be implemented in a modular architecture,
with separate components such as the ready queue, the delay queue, the
protected object handler, and the interrupt handler as seen in Figure 12.2.
This architecture makes it easier to modify the design and implementation
of each individual part of the kernel to meet a system’s specific demands and
requirements in either software or hardware (Naeser and Lundqvist, 2005).

The designs of the queues were modeled using timed automata and veri-
fied together with models of both the other kernel operations as well as of an
example application, using the UPPAAL model checker. The queues, and the
rest of the kernel, are part of the Gurkh framework that enables the analysis
of the temporal properties of safety-critical systems that are implemented in
both software and hardware. Although there are tools for hardware analy-
sis (Laramie, 2004), the ability to analyze the temporal behavior of the full
system, where the system is partially implemented in hardware, made us
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design the queues and all other parts of the kernel and application using the
UPPAAL tool suite. The UPPAAL models of the delay queue, transformation
of timed automata to VHDL, and metrics of the FPGA implementation are
discussed in later sections.

The desired properties of the RavenHaRT-II kernel are the same as those
of software implemented runtime kernels: high speed, predictable behavior,
optimal resource utilization, and small size. Timing properties of individual
kernel components are also important because they will have a significant
impact on the level of possible parallelism. A slower component can become
a bottleneck if interacting components operate faster.

The behavior of delay queues is critical to the overall performance of the
runtime kernel. Their operation determines the overall efficiency of the kernel.
Having accurate models of the delay queues enables optimal utilization of
processor resources as well as fine-grain analysis during verification.

The interface of the delay queue is shown in Table 12.2, and the basic oper-
ation of the delay queue is as follows.

Operating

Hardware

RTK

Ready Queue

Application

Software Task
Task

Interrupt

Manager

Delay Queue

Task

Protected

Object Queue

FIGURE 12.2
The RavenHaRT-II architecture.

TABLE 12.2

Delay Queue Interface Description

Input Signals Consumed by the Delay Queue
delay(Tid, time) Delay task T with identity id, Tid, until time is reached.
tick Signaled when the system clock increase.

Output Signals Produced by the Delay Queue
suspend(Tid) Remove Tid from ready-queue.
unblock(Tid) Put Tid last within its priority.
runnable(Tid) Signal that Tid is ready to run.
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 1. When a task is delayed, a preliminary quick check to decide if the
task will be suspended is done.

 a. If the delay time is the current time, or in the past, the task
should not be suspended and this is signaled with the unblock 
signal. On receiving an unblock the ready queue will move the
task to the last position among tasks with the same priority.

 b. If the delay time is in the future, then the task should be sus-
pended and a suspend is signaled. Suspension makes the ready
queue remove the task from the running tasks and pre-empt it
from the processor where it is running.

 2. When the release time of a task is reached, the ready queue is sig-
naled to make that task runnable again.

The resources the delay queue uses to store information about the delayed
tasks and the way in which it monitors the releases vary in different queue
models. Four different queue models are described below, with correspond-
ing different behavior.

12.6 UPPAAL Models of Delay Queues

Minimizing the size of the kernel components allows larger systems to be
verified. Some parameters can be changed to optimize the implementation
size of the delay queue:

 1. The size of the stored delay times
 2. How the delays are stored
 3. The amount of parallelism used

The behavior of the queue, that is, if and when the queue will cause unwanted
stalling of the RTK, depends on the amount of parallelism used in the imple-
mentation. Furthermore, the behavior of the queue also depends on whether
work is done when delaying or releasing tasks. Some of the parameters depend
on each other and some combinations can be eliminated, sorted arrays with
all work taking place at release time. The models of delay queues Q1, Q2, Q3,
and Q4 presented below explore different combinations of the parameters.

The delay times can be stored and used as absolute times or as delta times. An
absolute time T is the release time of the task and, as discussed in Zamorano
et al. (2001), requires a minimum of 41 bits to represent 50 years at 1-ms reso-
lution, as required by the Ada Reference Manual (ALRM, 2001). However,
the number of bits required can be reduced in a system with periodic tasks
where the cycle times of all delaying tasks are known. A delta time ΔT rep-
resents the number of ticks remaining until the release of a task and can be
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used with a countdown timer to delay tasks. A safe estimation of the number
of bits needed for the delta times is the number of bits needed to represent
the cycle-time of the task with the longest period.

The array (or queue) where information about the delayed tasks is stored
can be managed in two ways, either as a sorted queue ordered by the release
times or as an array indexed by the task identities. The two forms of storage
increase the work when delaying the queue, or when releasing the indexed
array. A delay queue using a sorted list will have to re-sort the queue of
delayed tasks when a task is delayed whereas an indexed queue will have to
find the next task to release whenever a task is released. At the time a task is
delayed the sorted queue can be made to respect the order in which the tasks
are released and implemented, for example, FIFO or a priority release policy.
An indexed array cannot keep this kind of information and will hence release
the tasks in some kind of identifier indexed order. However, a priority-based
release can be achieved by ordering the task identities in priority order. Note
that the first position of the array is not needed inasmuch as the task ID zero
is reserved for null processes, as they never delay.

Increasing the amount of parallelism within RavenHaRT-II will reduce the
time that kernel components can be blocked by each other, but introduces the
possibility of communication delays. Another reason for using parallelism
carefully is that it increases the amount of chip area that the hardware imple-
mentation will use. To ensure the correct operation of the different delay
queues, their behavior is formally verified, using additional models of the
other kernel components and sample application systems. Once the queues
are verified, the designs are transformed into VHDL and finally synthesized
in the FPGA. The designs of four queues are presented and analyzed in fol-
lowing sections.

12.6.1 Delay Queue Q1

The first delay queue design, shown in Figure 12.3, uses an indexed array of
absolute release times. The computation needed to delay a task is minimal,
n0 n1 n0; the queue writes the release time in the position corresponding
to the task in array DQd. The queue records in the variable next, the index
of the task with the closest release time. If there are several releases at the
same time the one with the lowest identity is stored. When the release time
of next is reached, n0 n2, the task scheduled to be released is made ready
to run and the array is searched for the next task to release. In n3 the first
delayed task is found and set to be the next task. Further searching is con-
tinued in n4. If several tasks are scheduled to be released at the same clock-
tick, the queue will release all of them, n4 n2 n3. Tasks released at the
same tick are released in index order to enforce deterministic behavior of the
releases. This forced order makes it possible to achieve better performance
easily. Ticks from the clock will initiate no action if no task is scheduled to be
released, n0 n0. The worst release case for a single task occurs in the case
where all tasks are scheduled to be released at the same time and the task
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with the highest index would be released after the release of all other tasks.
This property is the same for all queues. For Q1 the expected area require-
ments on the FPGA for the queue is linear to the number of delaying tasks
plus area for some additional variables used to remember the number of cur-
rently delayed tasks and the next released task.

12.6.2 Delay Queue Q2

The second delay queue, shown in Figure 12.4, manages delayed tasks by using
a time counter for every delayed task. Each position in the array DQd holds a
counter for the associated task. The counter for a task is set to the delta time ΔT

when the task is delayed, n0 n1 n0. All stored delta times are decremented
by one at every system clock-tick, in the transitions leading to and from location
n2. A task associated with a ΔT decremented to zero during a tick is released
using transition n2 n3. When all positions in the array have been processed,
the automaton returns to its initial location and waits for the next tick.

For Q2 the expected area requirement is lower than that of Q1 because delta
times are used rather than absolute times. No attempt to improve the queue’s
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n3n4
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(Rd == DQd[next] and Rt < next),
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Rt:=next, DQd[next]:=0,
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next:=0,

delayed--, i:=1

Rd <= time
unblock!

delay_until?

FIGURE 12.3
UPPAAL model of Q1.
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performance by tracking the lowest and highest indices of the delayed tasks
has been attempted because the mechanisms for tracking them are likely to
be a waste of valuable chip area.

12.6.3 Delay Queue Q3

The third queue, shown in Figure 12.5, is a parallelized version of Q2 where
each delaying task gets a countdown timer of its own. The delay queue’s
functionality is achieved by the work of all the counters running in parallel.
The parallelism is used to minimize the time to delay and release the tasks.
Nodes to the left of the initial node n0 are used if a task cannot be delayed
(tries to delay to a time not in the future), and the nodes to the right of n0 are
used if the task can be delayed. When a task is delayed, the ΔT for the delay is
calculated and stored in a time counter, activating the automaton. The indi-
vidual values of active counters are decremented at every clock-tick, n3 n3.
When the release time for a task is reached, the counter releases the task and
returns to the initial node.

Node n4 is urgent (and not committed) because there can be several delay
queues contending to release their delayed tasks at the same time. In the

n0 n2 n3n1

delay_until?

tick?
i:=1

DQd[i]==1

DQd[i]:=0,

Rt:=i

runnable!

DQd[i]>1,
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i++
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i<cnt_t
i++suspend!

Rd-time > 0

DQd[Rt]:=Rd-time
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Rd-time <= 0
unblock!

FIGURE 12.4
UPPAAL model of Q2.
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FIGURE 12.5
UPPAAL model of Q3.
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model presented here there is no way to enforce a specific release order of
tasks released at the same tick. The UPPAAL tool will explore all possible
executions of the releases, and different ways to handle the releases can be
found in the queue design analysis section.

The area used by each individual queue is minimal but extra space will be
needed to accommodate one state machine for each task that delays. As shown
in the implementation section, the area cost for the parallelism is very high.

12.6.4 Delay Queue Q4

The fourth delay queue shown in Figure 12.6, uses two memory arrays. The
DQt array contains the task queue and the DQd array is used to store delta
times. The delta times represent the remaining time for tasks to be released
once a task is the next task to be released. Every time a task is delayed the
queue takes the transition n0 n1. If the task is the only task that is delayed,
the queue transitions back to the initial state. If there are delayed tasks, the
new task should be queued in DQt according to its delta time. DQt is a cir-
cular queue whose head is pointed at by next and the position where the
delayed task should be inserted is found using n2 n2. When the insertion
position has been found, all tasks to the right of it are shifted right, n3 n3.
When the delta time of a next is reached, n0 n4, all tasks delayed to the
same time will be released using n4 n4.

A possible area optimization for this queue can be achieved if the greatest
number of tasks that can be delayed at a single time is known. If the maxi-
mum number of simultaneously delayed tasks is known, the DQt array can
be reduced to accommodate at most this number of tasks. A possible speed
optimization can be achieved by checking if the array should grow at the
beginning rather than at the end. If there are n delayed tasks, shifting the

n0

n4

n1 n2 n3

d > DQd[DQt[i]] or

(d == DQd[DQt[i]] and t > DQt[i]),

i != (next+delayed)%cnt_t
d-=DQd[DQt[i]], i:=(i+1)%cnt_t

delayed,

Rd > time
i:=next,

d:=Rd-time,

t:=Rt

delayed,

DQd[DQt[next]] == 1
tick?

runnable!

delayed == 1 or

DQd[DQt[(next+1)%cnt_t]]

Rt:=DQt[next],

DQt[next]:=0, DQd[Rt]:=0,

next:=(next+1)%cnt_t,

delayed--

DQd[DQt[next]]>1
tick?
DQd[DQt[next]]--

Rd <= time
unblock!

delay_until?

!delayed, Rd > time
suspend!
DQt[0]:=Rt, DQd[Rt]:=Rd-time,

delayed:=1, next:=0

d < DQd[DQt[i]] or

(d == DQd[DQt[i]] and t < DQt[i])
DQd[DQt[i]]-=d,

DQd[t]:=d

i != (next+delayed)%cnt_t
n:=DQt[i],

DQt[i]:=t,

t:=n, i:=(i+1)%cnt_t

i == (next+delayed)%cnt_t

DQt[i]:=t, DQd[t]:=d,

n:=0, t:=0, delayed++

suspend!

delayed > 1,

!DQd[DQt[(next+1)%cnt_t]]
runnable!
Rt:=DQt[next],

DQt[next]:=0, DQd[Rt]:=0,

next:=(next+1)%cnt_t,

delayed--

i == (next+delayed)%cnt_t
suspend!
DQt[i]:=t, DQd[t]:=d,

n:=0, t:=0, delayed++

!delayed
tick?

FIGURE 12.6
UPPAAL model of Q4.
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task identities to the left is preferable if the task to be inserted is among the
n/2 tasks with the nearest release times.

12.6.5 Queue Design Analysis

The delay queue and kernel are designed to be synthesized for a specific
target application system. This specialization enables optimizing resource
utilization. In the UPPAAL models in the delay queues section, an optimiza-
tion of the number of bits used to represent delta times was presented. The
optimization used knowledge about the cycle-time of cyclic executive tasks.
The length of the memory array needed to remember release times can be
optimized if delaying tasks are given sequential task identities.

The common procedure when releasing tasks is to lock (stop) the dispatch-
ing before releasing tasks, for example, as done in de la Puente et al. (2001a).
The need for locking is only necessary in a system where a task of lower prior-
ity Tlo can be released from the delay queue ahead of a task of higher priority
Thi when a batch of tasks is released at the same time. If the dispatcher is not
locked, a situation can occur where Tlo is loaded on a processor only to be pre-
empted when Thi is released. The situation is avoided if tasks are released in
priority order, with the release of the highest-priority task first. It is safe to dis-
patch and start loading Thi because no task in the same release batch can force
Thi to be pre-empted. A FIFO order within each priority makes the release
behavior even more deterministic if several tasks can have the same priority.

In a system where all tasks have their unique priorities, the index order
can be used as the priority order. Queues Q1 and Q2 enforce priority-ordered
release if the task indices are ordered in priority order. To achieve FIFO
release these queues would have to be extended with memory to store the
priority of the tasks and the arrival order of the tasks. The dispatch order
of Q3 can be defined if the communication between the counters and the
ready queue follows a protocol, which prioritizes the signals from the coun-
ters according to the priorities of the tasks. However, FIFO order is outside
the immediate reach of Q3 because it would place too many requirements
on communication or synchronization to be usable. The Q4 queue releases
according to index order and FIFO order. As with the first two queues, Q4

will have to be extended with more memory to implement FIFO if several
tasks can have the same priority.

The Ravenscar profile allows only absolute delays where the release time
is given explicitly; that is, there are no relative delays. The main reason for
not supporting relative delays is that it makes system analysis easier. Fur-
thermore, the kind of systems the profile focuses on, cyclic executives, uses
absolute delays. The four queues presented can be easily extended to handle
relative delays by adding an extra interface function that doesn’t calculate the
delta-times. The formal automata could also be extended in the same way.

The delay queues presented are not limited for use in a hardware RTK but can
be used as stand-alone components to help a processor manage delayed tasks.
For example, the delay queues could be implemented using a memory-mapped
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bus interface to allow them to exist in a hardware–software codesign. The
interface should contain the system time and implement the clock-tick gen-
eration. The task status, runnable/suspend/unblock, should be included in a
readable register and it should also be wired to an interrupt pin at the proces-
sor. Additionally, a readable task identity register should be included.

12.7 Implementation

The timed automata models of the four delay queues were manually trans-
lated to VHDL state machines. The VHDL state machines were augmented
with extra glue logic, for example, for communication, and were then syn-
thesized to the target device. The Xilinx ISE Foundation 6.2.03i tool (Xilinx
ISE, 2004) was used for synthesis and the target device was a Virtex-II Pro
2vp7ff672-7 FPGA (Xilinx FPGA). The FPGA has an on-chip PowerPC (IBM)
processor on which the tasks are run.

The basic translation of the UPPAAL automata to VHDL finite-state
machines (FSM) is straightforward but constructs such as UPPAAL’s chan-
nels, urgent locations, and committed locations are not present in VHDL.
Because these constructs define the timing behavior, they must be handled
with care. A transition from an urgent location should be taken before the next
system clock-tick. This can be accomplished if the implementation ensures
that the state machines finish urgent parts within a system clock-tick. We
have ensured this by having the clock speed of the kernel run so fast that all
work in an FSM can be completed within time. As described in the Foundations
section, committed locations are used for atomic transactions, for example, in
the UPPAAL model of Q1, Figure 12.3, the transitions n0 n2 n3 form an
atomic chain where the automata receive over a channel and then send over
a channel. This behavior can be optimized in the implementation by using
separate Rt for input (respectively, output; cf. Rt and rdy_Rt in Table 12.3). We
have chosen to translate the communication and synchronization channels of

TABLE 12.3

Hardware Signals/Buses

Signals
tick Clock signal generated at system-level frequency that decides the delay

accuracy available to the application
delay Signal triggering the state machines to insert a task (Rt) with delay time (Rd)
delay_end Signal to synchronize with a bus interface that a delay call has finished

Buses
Rt Identity of the task that perform a delay call
rdy_Rt Identity of the task that will be runnable/suspended/unblock
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timed automata into a call-and-acknowledge protocol, shown in Figure 12.7.
With our translation, the transition n0 n1 corresponds to a delay call and
the transition n1 n2 corresponds to an acknowledge call. Transition n2

n0 is used to complete the communication/synchronization sequence. An
alternative translation involving a more complex channel implementation is
described in Silbovitz and Lundqvist (2003).

Delay queue designs Q1, Q2, and Q4 use arrays to store information such as
task identities and delay values. For the target technology we use, arrays can
be implemented with registers or with block RAM memory. A register imple-
mentation needs larger area because it requires a register to be coded in the
FPGA whereas a memory implementation can use the memory blocks of the
FPGA. There is a performance penalty for using block RAM, inasmuch as
memory access takes one clock cycle, whereas register access takes zero clock
cycles; however, in Virtex-II Pro, this penalty is not significant. An example
of how we handle block RAM accesses is shown in Figure 12.8. Transition
n0 n1 is the DQt[next] access and transition n1 n2 is the DQd[DQt[next]]
access. The last transition n2 n3 is the DQt[next]:=0 access. In other words,
we try to set the address in advance so as not to lose an extra clock cycle.
When this is not possible, we insert an extra state.

To initialize memory arrays, a reset state, shown in Figure 12.9, looping
through arrays and initializing variables has been introduced. This loca-
tion implements UPPAAL’s initialization of its variables but is not shown
in the state graphs of the different queue implementations, for example, in
Figure 12.10.

The hardware signals/buses described in Table 12.3 are a translation of the
component design interface shown in Table 12.2. The reset and clock signals
are not included because they generally exist in any FSM implementation
and do not contribute to the understanding.

n0 n1 n2delay delay_end:=1

!delay
delay_end:=0

delay

FIGURE 12.7
State graph for communication.

n0 n1 n2 n3

address_DQt:=next,
write_n_DQt:=1

address_DQd:=data_DQt,
write_n_DQd:=1

data_DQt:=0,
write_n_DQt:=0

FIGURE 12.8
State graph for assigning the value 0 to DQd[DQt[next]],DQt[next].
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next:=address_DQd,
next_time:=data_DQd,
address_DQd++

address_DQd == cnt_t,

data_DQd==0 or

data_DQd>=next_time
address_DQd:=next

address_DQd:=0,

write_n_DQd:=1

data_DQd>0,
time >= data_DQd
rdy_Rt:=address_DQd,

data_DQd:=0,

write_n_DQd:=0

delayed--

delay,

Rd <= time
unblock:=1,

rdy_Rt:=Rt

rdy_end
suspend:=0,

unblock:=0,

write_nDQd:=1

!rdy_end,

!suspend,

!unblock
delay_end:=1

!delay
delay_end:=0,

address_DQd:=next

address_DQd == cnt_t,
data_DQd>0,
time<data_DQd,
data_DQd<next_time
next:=address_DQd,
next_time:=data_DQd

FIGURE 12.10
State graph for delay queue Q1.

n0n1

!reset_n
address_DQd:=0,

data_DQd:=0,

write_n_DQd:=0

address_DQd==MAX_NO_TASK
write_n_DQd:=1

address_DQd<MAX_NO_TASK
address_DQd++

FIGURE 12.9
State graph for resetting the DQd array.
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12.7.1 Delay Queue Q1

The implementation of Q1 consists of the FSM shown in Figure 12.10. The
state machine has the same states as the UPPAAL model (cf. Figure 12.3), and
block memory is used to implement the DQd array. The transition n0 n1 is
replaced with in0 in1 in5 to implement the call-and-acknowledge proto-
col. The extended parallelism of the implementation allows Rt_rdy to be set
to runnable when the Rt value is received, which allows n4 n2 to be trans-
lated into in4 in3. Address_DQd replaces the temporary i variable used
for looping in the UPPAAL model. Because Address_DQd is cnt_t bit wide,
transition n4 n0 has been changed to handle the fact that Address_DQd
cannot be greater than cnt_t.

12.7.2 Delay Queue Q2

The implementation of Q2 is similar to that of Q1. The state machine has the
same states that the Q2 model has (cf. Figure 12.4), and like the FSM for Q1 it
uses block memory to implement the DQd array. The implementation also
uses the same variable and location eliminations as described for Q1. The
cycle needed to access the RAM block storing DQd is implemented by intro-
ducing an extra location in the FSM.

12.7.3 Delay Queue Q3

The countdown timers of the third queue design are implemented using
the finite-state machines shown in Figure 12.11. The state machines, FSMn

with locations in0 – in3, are an interface for distribution of delayed tasks to
their dedicated state machine. The dedicated state machines are described
by machine FSMm with location im0. FSMn calculates ΔT and performs the ΔT

checks to decide if a delaying task should unblock or suspend. FSMn also
informs the ready queue when a task’s delay time has expired and the task
becomes runnable. The FSMp, that is, ip0, serializes the run signals from the
FSMms for FSMn. Each FSMm implements a register counter, which is decre-
mented at each clock-tick until it becomes zero. The machine signals that the
task should be released when the counter value to be decreased is one.

The model of the counters (cf. Figure 12.5), corresponds to FSMn, FSMm,
and FSMp. The reason for partitioning the model is to save hardware area
and to enable priority-ordered task activation. If priority-ordered release
is used, it can be managed by FSMp. The area required by the design is
reduced by using one interface state machine FSMn, instead of multiple
similar interfaces for each FSMm. The choice of using a register rather than
the smaller memory blocks is that the access speed mentioned above, one
clock cycle, applies to the access of a RAM block that no other FSM uses.
Using a block to hold information about a single task is resource waste
and having several queues use and access the same block will be another
implementation of Q2.
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12.7.4 Delay Queue Q4

The FSM created while implementing Q4 closely resembles the automaton in
Figure 12.6. Both the time-counter array and task-queue array, DQd and DQt,
are implemented in block memory. The same variable and location elimina-
tions described for Q1 and Q2 are used and extra locations are added to handle
the extra clock cycles needed when accessing the DQd and DQt memories.

12.8 Results

To investigate the properties of the implementations, we synthesized systems
with different numbers of delaying tasks and timer widths. The bit times are
selected to represent systems with high rate cyclic executives (16-bit time),
medium rate CE (32-bit time), and finally 41-bit time to handle the 50 years
required by the Ada standard.

FIGURE 12.11
State graphs FSMn, FSMm, and FSMp for delay queue Q3.

im0

dly[t]
counter:=d,

run[t]:=0

tick,

counter>1
counter--

tick,

counter==1
counter--,

run[t]:=1

ip0

!to_rdy,

run[i]==1
to_rdy;=1,

to_rdy_Rt:=i
!to_rdy,

run[i]==0
i++

to_rdy,

to_rdy_end
to_rdy:=0

in0in1
dly[Rt]:=0

in3

to_rdy_end:=0

in2

delay,

Rd <= time
Rt_rdy:=Rt,

d:=0,

dly[Rt]:=1,

unblock:=1

to_rdy
rdy_Rt:=to_rdy_Rt

runnable:=1,

dly[to_rdy_Rt]:=1,

d:=0,
to_rdy_end:=1

rdy_end
unblock:=0

!rdy_end,

!unblock
delay_end:=1

delay,

Rd > time
Rt_rdy:=Rt,

d:=Rd-time,

dly[Rt]:=1

suspend:=1

!delay
delay_end:=0 rdy_end

runnable:=0,

dly[to_rdy_Rt]:=0

!rdy_end,
!runnable

(a)

(c)(b)
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12.8.1 Area

The results we present in this section are based on synthesis with the clock
timing constraint set to 10 ns, that is, creating a kernel running with a kernel
clock frequency of 100 MHz, and without any area constraints. In addition,
the synthesis tool default settings have been used. The gate count is roughly
equivalent to the chip area used by the implementations. The gate counts
used by the synthesized systems are presented in Figure 12.12.

It is not unexpected that it is more efficient to use memory rather than
registers when the number of tasks increases. The small gate count growth
between 4 and 16 task configurations for designs Q1, Q2, and Q4 is due to the
synthesis tool using 16 × 1 memory primitives for the arrays. The size growth
of the queues is, as expected, close to linear. Queues Q1, Q2, and Q4 use RAM
blocks to store data, and the number of RAM blocks used to implement the
single array is the same for Q1 and Q2 whereas Q4 uses a little bit more to
implement its two arrays. Because Q3 does not use RAM blocks to code its
registers, the cost of the variables is included in the gate count.

Q2 uses the smallest area, followed by Q1 and by Q4. However, Q3 uses
the smallest area for systems with four delaying tasks, but using registers is
not efficient for larger task sets. Furthermore, Q3 quickly outgrows the other
implementations in terms of area.

The memory utilization of the designs is very small compared to that avail-
able on the target system. For example, the 4200 gates used by a Q2 imple-
mentation with 16 tasks and 16-bit time is small compared to the 811,008
gates that the target Virtex-II Pro device supports. A 4-task 16-bit time syn-
thesized system for any of the queues uses 1–3% of the FPGA’s resources in
slices, four input LUTs, and slice flip-flops. Queues Q1, Q2, and Q4 use 6–10%
of the slices and LUTs and 1–2% of the slice flip-flops when synthesized for a
64-task system with 41-bit time. However, the register queue, Q3, uses about
80% of the available slices and LUTs and close to 30% of the slice flip-flops
for this configuration. Fitting the queues, in addition to the register queue,

(a) 16 bit time (b) 32 bit time (c) 41 bit time

Q1 Q2 Q3 Q4

Number of Tasks

G
at

e 
C

o
u

n
t

Q3

Q4 Q1

Q2

FIGURE 12.12
Gate usage of the four queue implementations.
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on the target FPGA can be easily accomplished, and the majority part of the
resources is left for the rest of the kernel and other system components.

12.8.2 Speed

The execution properties of the delay queue implementations depend on the
behavior of the rest of the kernel. The communication times between ker-
nel components will influence the execution time of the delay queue. Other
kernel components can force the delay queue to wait. For example, when a
batch of tasks is released, the ready queue will accept them in serial order
at the rate it can process them. The application will also influence the execu-
tion time of the delay queue. For example, the application will instantiate the
queue with the number of tasks that delay.

Let STDly be the set of tasks that delay in an application and let |STDly| be the
cardinality of that set. Let Crun be the number of clock cycles the ready queue
uses to make a task runnable and let Csus be the number of clock cycles it
uses to suspend a task. The worst-case execution for Q1 and Q4 to delay a task
occurs when the delay request arrives during the release of a batch of tasks.
The worst-case execution time is described in Equation (12.1).

((| | )* ( ) ) ( )S C CT run susDly 1 3 1 4 (12.1)

The first part of the expression, ((|STDly| − 1) * (3 + Crun) + 1), describes the num-
ber of kernel clock cycles used to time out all tasks in the delay queue; that
is, the task with the lowest priority will have to wait for all other tasks to be
handled by the ready queue. The second part, (4 + Csus), describes the number
of cycles used to manage the insertion of the call into the queue. The worst
delay for Q2, shown in Equation (12.2), is similar to the one of Q1 and Q4.

((| | )* ( ) ) ( )S C CT run susDly 1 2 1 4 (12.2)

The worst case for Q3 is different because delays are made to private time
counters in parallel. Equation (12.3) takes the shared interface machine
into consideration.

( ) ( )3 4C Crun sus (12.3)

It is important to note that Q3 prioritizes delay calls before each clock-tick
and that it is possible because it uses one FSM for each task’s delay counter.
It is not possible to prioritize delay calls with the other delay queues because
this would risk a system clock-tick being missed. The frequency of the ker-
nel clock, KerClk, needs to ensure that the queue’s work, together with any
time added by interaction with other kernel components, can be completed
within a system clock-tick. If this cannot be guaranteed, then the kernel
risks missing system ticks. Moreover, the kernel clock frequency must also
support the Ravenscar profile delay accuracy of 1 ms of the system ticks.
Table 12.4 shows the maximum clock frequency at which the queues can be
synthesized for a 16-task configuration. To check that the queues satisfy the
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1-ms requirement we made a coarse overestimation of the worst number of
kernel cycles used to delay a task. We found this number of cycles to be 350
kernel cycles. All these cycles must be completed within a system clock-tick
for the operation of the kernel to be guaranteed correct. In Table 12.4 we see
that the slowest queue, Q1, can be synthesized to a maximum of 132 MHz.
This speed would allow the system to be synthesized with a system clock
frequency of 0.38 MHz, which clearly supports the 1 kHz (1 ms) required by
the Ravenscar profile.

The calculation presented here makes no optimizations of the system clock-
tick management. The kernel can run at a slower speed by using a buffer for
the system clock-ticks. Management using a buffer that can store ticks would
allow the delay queue to spread its worst-case work over the number of ticks
the buffer can hold. This is based on the simple reasoning that a worst case
cannot be followed by another equally bad case because the first case will
lead the system to a system state where the equally bad state is impossible.
For example, if the worst case is one where all tasks are delayed and released
at the same time, they will not be delayed during the next tick, making it
impossible to repeat the release. A system with a buffer could make it easier
to synthesize the system and produce an efficient hardware kernel.

12.9 Conclusions

This chapter presented formal models and hardware implementations of
four delay queues suited for multiple processor systems. The queues express
different properties regarding hardware requirements, possible parallelism,
and execution times. Different task release policies and how they can be sup-
ported by the queues, and translations from the original timed automata
designs to VHDL, together with metrics of the hardware implementations
have been presented.

Surprisingly, the queue using the most parallelism, Q3, shows not only the
best response time properties but also the least chip area usage for systems
where four or fewer tasks use the delay queue. In systems with more than

TABLE 12.4

Maximum Clock Frequency in MHz

Time Width Q1 Q2 Q3 Q4

16 bit 145 173 283 155
32 bit 142 156 242 144
41 bit 132 150 225 138
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five delaying tasks, Q3 quickly outgrows the other queues in terms of area.
Otherwise Q2 uses the least amount of chip area. All queues can meet the
Ravenscar profile’s timing demand of a granularity of 1 ms.

Although not attempted here, an interesting study would be that of a frame-
work where the properties verified in the initial design, made in a high-level
verification tool, could be transformed into properties of the hardware tool
used for synthesis to hardware. Enabling verification of the high-level prop-
erties could be a step in validating software to hardware translation.
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13
Forward Error Correction for On-Chip 
Interconnection Networks

Praveen Bhojwani, Rohit Singhal, Gwan Choi, and Rabi Mahapatra
Texas A&M University

13.1 Introduction

The emergence of networks-on-chips (NoC) as the communication infra-
structure alternative to bus-based communication in systems-on-chips 
(SoC) has presented the SoC design community with numerous challenges. 
Designing energy-efficient, high-performance, reliable systems requires the 
formulation of strategies to rectify operational glitches.

The design of low-power systems has highlighted the contribution of 
interconnect power, up to 50% of total system power [1]. To reduce intercon-
nect energy consumption, voltage scaling schemes are being used, which in 
turn reduce the circuit’s noise margin. The decrease in noise margin makes 
the interconnect less immune to errors during transmission. Furthermore, 
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internal noises such as power supply noise, crosstalk noise, and intersig-
nal interference and external noises such as thermal noise, electromagnetic 
noise, slot noise, and alpha-particle induced noise also present reliability 
concerns. Thus, combining low-power strategies with data reliability in SoC 
has become a daunting task for the designers.

As identified by Shanbhag [2], noise mitigation and tolerance are the two 
alternatives to addressing the reliability concerns. But due to the energy inef-
ficiency of the former, noise tolerance is the preferred approach. In order to 
deal with interconnect errors in an energy-efficient way, suitable encoding 
and decoding schemes need to be employed [3]. Reliability concerns can be 
addressed using either error-detecting codes (EDC) or error-correcting codes 
(ECC). VLSI self-checking circuits use error-detection codes such as parity, 
two-rail, and other unidirectional EDCs (m-out-of-n and Berger codes) [4]. 
Because crosstalk is bidirectional [5], these codes would not be sufficient. 
Bertozzi et al. [6] make a case for the use of Hamming code [7] on on-chip 
data buses, highlighting its capability to handle single and double errors, its 
low complexity, and flexibility as a purely detecting code or a purely correct-
ing code.

For on-chip networks, Worm et al. [8] suggest using Hamming code for 
error detection and Dumitras et al. [9] utilize cyclic redundancy check (CRC) 
[10] to detect errors over every hop. Retransmissions are then used to correct 
the detected errors. When it comes to using ECCs in a design, Bertozzi et al. [6] 
compare the energy efficiency of forward error correction (FEC) versus error 
detection and retransmission for on-chip data buses. The reported results 
indicate that FEC is energy inefficient in described applications. However, 
the overhead for FEC is expected to subside in emerging NoCs that span 
large devices using an increasing number of hops and complex buffering/ 
signaling structures. Use of FEC may be cost inefficient when the size of 
the network is small and the cost of FEC codecs is high. But as network 
size increases and error rates increase, error detection and retransmission 
schemes become unacceptable with respect to energy use and latency.

Turbo code [11] is perhaps the most popular code for FEC in communi-
cation systems and its coding gain approaches very close to the Shannon 
limit. Numerous researchers have revealed the high implementation com-
plexity and the high latency associated with the turbo decoders. For the low 
latency and hardware-overhead requirement of the SoC designs, use of turbo 
code-based FECs is prohibitive. Hamming codes, on the other hand, can be 
decoded using simple hardware structures. These, however, have very poor 
bit error rate (BER) performance when compared to a similar rate turbo code. 
Rivaling the performance of turbo codes, Gallager [12] proposed a class of 
linear block codes referred to as low-density parity check (LDPC) codes. This 
code is suitable for low-latency, high-gain, and low-power design because of 
its streamlined forward-only data flow structure.

A number of LDPC decoder architectures have been previously reported. 
Blanksby and Howland [13] demonstrated a 690-mW LDPC decoder. 
A low-power decoder architecture was also presented by Mansour and 
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Shanbhag [14]. The objectives of these designs are throughput and very high 
coding gain. The application targets for these decoders include optical chan-
nel, magnetic-media storage, and wireless communication devices among 
other error-prone devices. And as a consequence, the complexity of decoder 
designs presented in the aforementioned research is very high and infeasible 
at the SoC level.

We ascertain that LDPC code decoder design can be tailored to suit the 
performance and overhead requirements imposed by NoC designs. A novel 
LDPC decoder design that minimizes the hardware requirement by utiliz-
ing only the minimum precision necessary to achieve objective error rate is 
presented in this research.

Ideally, a transparent forward error-correction scheme is desired for SoC 
application. Error-correction schemes must be (1) complete, i.e., it does not 
require interruption to or from the network controller, (2) compact and power 
thrifty enough to be implemented as an integral component of an on-chip 
network interface, and (3) yield high coding gain and cover a wide range of 
error models specific to the SoC design.

This research has the following contributions:

It presents the case for FEC-based reliability in on-chip networks in 
high error rate scenarios.
It presents experimental results using a variant LDPC code that 
achieves the aforementioned FEC design objectives with remark-
able energy efficiency.
It provides for an improvement in the communication latency, 
which benefits real-time communications in on-chip networks.

13.2 Preliminaries

This section introduces the concept of the NoC architecture and the basics of 
LDPC-based FEC. The energy model used to estimate the energy use and the 
assumptions made in the energy consumption analysis are also presented.

13.2.1 NoC Architecture

Researchers have suggested the use of regular layouts (such as folded torus 
or the mesh) to integrate intellectual property (IP) cores constituting the SoC 
[15, 16]. One or more IP cores are placed in a network tile, which is the basic 
building block of the NoC. These tiles are connected to an on-chip network 
that routes flits between them. Each tile consists of routing logic responsible 
for routing and forwarding the packets, based on the routing policy of the 
network. The router logic is constituted of in-ports, out-ports, and a switch 
fabric to connect them. The NoC architecture and its components are shown 
in Figure 13.1.

•

•

•
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Another important component of the tile is the core-network interface (CNI) 
[17, 18]. The CNI allows the IP cores to speak the “language” of the network. 
It will also be the site for the error-detection and forward error-correction 
modules for communication reliability. The following section provides a 
brief introduction to LDPC-based FECs.

13.2.2 FEC Basics

LDPC codes are linear block codes and have a sparse parity check matrix H.
A special class of LDPC codes have H that has the following properties:

The number of 1s in each column is j.
The number of 1s in each row is k > j.

As with the other linear block codes, encoding is simple and involves 
matrix operations such as addition and multiplication that can be imple-
mented using a highly regular hardware structure consisting of simple gates. 
Decoding of LDPC codes is iterative and uses the log maximum-likelihood a 
priori (LOG MAP) algorithm [19]. There are two decoding methods for LDPC 
decoder: soft decision and hard decision decoding. In hard decision decod-
ing, the received code-word is sampled as zeros or ones and then the parity 
check equation is implemented as XORs for each check in the H matrix. If the 
parity check is satisfied, the code bit is not flipped; otherwise it is flipped. 
Each code bit will receive j values from the above operation and then do 
majority voting to decide the final update. This is an iteration of hard deci-
sion. In soft decision iteration, quantized values rather than zeros or ones 
are used for the inputs. The parity check operations involve multiplication 
of hyperbolic tangent values of the quantized information. In our design, we 
use only the minimum number of bits to satisfy the precision requirement of 
the coding gain: one hard decision stage, one soft decision stage with three-
bit quantization, and lastly a hard decision stage for N  264 bits to provide 
optimum frame error rate results. In the context of NoC, frame error rate 

•
•

On Chip

Router

IP Core

C
N
I

NW
Tile

FIGURE 13.1
Generic NoC architecture layout and NW tile structure.
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(FER) rather than BER is important because retransmission occurs when a 
frame error is detected.

The code-word size of 264 bits was found to be an ideal size for both the 
NoC and the LDPC. The rate code for this design was set at 75% and we also 
used the same rate for the EDCs.

13.2.3 Energy Model

The energy consumed in transmitting a flit (flow digit) from the source to 
destination network tile—in an error-free environment—can be estimated 
using the expression:

Eflit  (n  1) * (Ei Eo Esw) n * Elink (13.1)

where Ei is energy consumed in the tile in-port, Eo is energy consumed in 
the tile out-port, Esw is energy consumed in the tile switch, Elink is energy con-
sumed on the link between tiles, and n is the number of hops. This expres-
sion is similar to those proposed in [9, 20].

When applied to the different reliability schemes, Equation (13.1) can be mod-
ified to estimate the energy consumption pertaining to that implementation.

The energy consumption of the input/output controllers is dominated by 
the register read and writes. These have been estimated to be 0.075 pJ/bit at 
180-nm technology [9]. The energy consumption for the links at 50% driver 
supply, at TSMC 0.18 micron and using differential signaling has been found 
to be 0.12 pJ/mm/bit [21]. As mentioned earlier, the flit size being used here 
is 264 bits.

13.2.4 Motivation

An error detection and retransmission scheme has been shown to be suit-
able for bus-based communication [6, 8]. Although this solution is elegant 
for small-length bus design, it needs to be re-evaluated in the context of 
low-latency requirements of real-time applications mapped onto SoCs. 
Because the cost of FEC implementation has been a confining factor for ear-
lier researchers, an analysis is needed to determine the strength of the FEC 
scheme from the above perspective. The results shown in this research will 
further highlight the benefits of using FEC.

Formulating an optimal design requires determination of a target FEC 
decoder complexity. Our analysis of energy consumption (see Figure 13.2a) 
and average flit latency (see Figure 13.2b) over different hop lengths for vary-
ing FERs has aided us in making decisions regarding the error-recovery 
requirement of the FEC. The communication considered here was noncon-
gestive, inasmuch as our goal was to examine the trend in such situations.

The cost for retransmission (energy and average flit latency) has been found 
to be almost the same for FERs less than 0.01. This allowed us to design a 
scaled-down LDPC decoder that had a target FER of 0.01.
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Figure 13.3 shows the FER plot of the number of decoding iterations at dif-
ferent signal-to-noise ratios (SNR). The number of iterations n shown in the 
figure correspond to initial hard decision iteration followed by n – 1 iterations 
of soft decision decoding and a hard decision. From Figure 13.3, n  1,2 has 
poor FER performance compared to n  3,4,5. Beyond n  3, the performance 
saturates and hence the n  3 configuration is adopted. This configuration 
corresponds to an iteration of hard decision decoding followed by a three-
bit precision soft decision iteration and a hard decision. This configuration 
achieves a FER of less than 0.01 for a wide range of operating SNRs. And 
as determined earlier, the NoC requires a FER of 0.01 for the given error-
correction scheme to provide any energy savings.
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13.2.5 On-Chip Communication Data Reliability

The challenge of providing cost-effective data reliability in NoCs is not 
merely protecting the application data. Network control signal (flit headers) 
reliability is also critical for correct operation of the SoC. We chose to provide 
independent reliability schemes for both the control and application data 
lines because most of the strategies discussed in this section are not condu-
cive to providing equal protection to both. This unequal error protection can 
be tuned at design time to achieve cost efficiency. Because the proportion 
of the control lines, to those of the data, is comparatively lower, a simple 
forward error correction through Hamming codes is used to facilitate the 
control signal reliability.

Application data reliability can be achieved via two strategies:

Error detection and retransmission (ED  R)
FEC and limited retransmissions (FEC  R)

The following sections discuss the possible scenarios of operation in each 
strategy and their associated costs.

13.3 Error Detection and Retransmission (ED + R)

In the ED  R strategy, the transmitter encodes the data to be sent. At the 
receiver, a decoder determines whether an error has occurred in the trans-
mission. If an error is detected, a retransmission request is made to the 
sender. ED  R can operate in two scenarios:
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Hop-to-hop

•
•

•
•
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13.3.1 End-to-End Retransmission

In this scenario, data is transferred from the source to the destination tile 
and is checked for errors at the destination CNI. If an error is detected, a 
retransmission request is made to the source CNI via a negative acknowl-
edgment (NAK) flit. This scheme uses an error-detection and retransmission 
request module as shown in Figure 13.4b.

The overhead for such a scenario is the need for an encoder and decoder pair 
in the CNI of every tile. An increased buffer requirement at the sending CNI 
will be needed to hold flits until they are correctly delivered to the destination 
tile. Because we did not use a positive acknowledgment (ACK) for correctly 
received flits, the buffers were periodically purged, based on a time-out. The 
value set for the time-out will be dependent on the target SoC application and 
size of the NoC. Traditional issues with using time-outs, like that of lost flits, 
are not applicable in the NoC designs because we use credit-based communi-
cation and so no flits are lost in the network due to buffer overflows.

Extending Equation (13.1), we can estimate the energy consumption in an 
end-to-end reliability scenario. The energy per flit and the corresponding 
transmission energy over a noisy network will be:

Eflit  (n  1) * (Ei Eo Esw) n * Elink Er (13.2)

Etransmission  (1 FEP)Eflit  FEP(EtransmissionN EtransmissionR) (13.3)
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where FEP is frame error probability, Er is the energy cost of providing 
reliability, EtransmissionN is the energy consumed in transmitting the negative 
acknowledgment, and EtransmissionR is the energy consumed in transmitting the 
original flit. The Er for CRC was found to be 19.8 pJ at 0.18 microns, whereas 
that of Hamming was 17.4 pJ at the same technology.

Because (1 – FEP) will tend to 1, Equation (13.3) will recursively expand to:

Etransmission Eflit (1  2 FEP  4 FEP2  8 FEP3 ) (13.4)

13.3.2 Hop-to-Hop Retransmission

In this scenario, data is transferred from the source to the destination tile, and 
is checked for errors at every hop through to the destination. This scheme 
is implemented between the in-ports and out-ports of neighboring network 
tiles. So in this scenario, each in-port and out-port will have a decoder and 
encoder, respectively. The buffer requirement in this case is much lower 
when compared to end-to-end.

As in the case above, energy consumption in the hop-to-hop scenario can 
also be estimated. The energy per flit and the corresponding transmission 
energy over a network with a frame-error probability of FEP is given by

Eflit  (n  1) * (Ei Eo Esw Er) n * Elink (13.5)

Etransmission  (1 – FEP)Eflit FEP(EtransmissionR) (13.6)

Etransmission Eflit (1 FEP FEP2 FEP3 ) (13.7)

In the hop-to-hop scenario, the energy consumption term for the negative 
acknowledgment is absent (because it is only over a single hop).

The expected latency in the hop-to-hop scenario is higher for lower FERs, 
but it remains lower when the FER exceeds 0.05 (see Figure 13.5). The energy 
consumption is higher than that of the end-to-end scenario, but at higher 
FERs, it does not grow as rapidly (Figure 13.6).

The results in Figures 13.5 and 13.6 are for a CRC-based error-detection 
module. The energy consumption for our design of the Hamming error 
detector was slightly lower, but it followed a similar trend. Another benefit 
of such a scenario is the availability of network link status information for 
network routing reliability purposes.

The cost associated with this implementation, in terms of the area overhead, 
makes the scheme infeasible for larger NoCs. Each network tile will require 
four times as many encoder–decoder pairs as compared to the end-to-end 
scenario. The gate count for CRC was estimated at 1874 gate equivalents at 
0.18 microns. When the communication channel becomes noisy, variation in 
the average flit latency and energy consumption can be as much as 25%. See 
Figure 13.7. We now take a look at the prospect of using FEC to help circum-
vent this degradation.
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13.4 Forward Error Correction (FEC + R)

With the variation in average flit latency and energy consumption going up 
by about 25% for channels with high FERs, the challenge of meeting com-
munication constraints becomes difficult.

Because the energy consumption in the ED  R strategy—for long hop dis-
tances—is dominated by that on the interconnection network, controlling 
the number of retransmissions is the key to total energy consumption. Using 
an FEC strategy will reduce the number of retransmissions and also provide 
for better performance at high FERs and long hop distances.

In general, the use of FECs becomes critical when the communication has 
real-time constraints, or when the cost of retransmission exceeds that of FEC.

The cost of providing FEC is:

Area overhead
Higher energy consumption (when compared to error detection)

The FEC design selected earlier was used to evaluate the FEC  R strategy. 
The modules of the design were included in the CNI (see Figure 13.4c).

In this strategy the data to be transmitted is encoded with error-correcting 
codes so as to transmit a code-word that allows for error recovery. The 
decoder at the receiver then decodes the code-word and extracts the applica-
tion data. By designing a FEC with a higher FER—to lower implementation 
cost—the need for retransmission cannot be eliminated.

The last stage of FEC decoding is a hard decision checksum calculation of 
code-word bit values. If any of the checksum output is high, it is an indica-
tion that an error is present in the bit values and the code-word has not con-
verged/corrected to a valid word. A logical OR operation of all check-values 
is carried out to determine if retransmission is necessary.

FEC  R will only be used in an end-to-end fashion, because the area and 
energy cost for a hop-to-hop implementation will be very high. Our gate 
count estimate for the LDPC architecture at 0.18 microns TSMC was 27,126 
gate equivalents (per tile). Although this value may seem high, it is compara-
tively lower with respect to the routing elements.

The energy evaluation of this scheme will be similar to Equations (13.2) 
through (13.4). The difference is in the Er term, which reflects the energy 
consumption of the FEC scheme. Er for LDPC was found to be 262.1 pJ at 0.18 
microns TSMC and was obtained via synthesis with Cadence tools.

The FEC decoder that was used provided an improvement in the energy 
consumption for FERs over 0.04 (see Figure 13.7). The average flit latency was 
better for FERs above 0.01 (see Figure 13.8).

•
•
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13.5 Hybrid Scheme (FEC/ED + R)

Identifying the strengths of the aforementioned strategies, we developed a 
hybrid scheme that uses error detection and retransmission for shorter hop 
distances, and a FEC scheme for longer distances and real-time constrained 
communications. We introduced a simple controller into the CNI, whose 
function is to decide on the type of error reliability scheme that is to be used 
for the transmitted flit. This scheme required the presence of both ED  R 
and FEC modules in the CNI (see Figure 13.4d). To attain target energy and 
latency constraints, a compromise will be required towards the network 
logic area.

For the hybrid scheme to operate, the decision between the reliability 
schemes has to be obtained from either the transmitting IP core or the rout-
ing table. To achieve energy efficiency through the FEC scheme over long 
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hop distances, we determined the hop distance beyond which it would be 
beneficial. We obtained the crossover point from Figure 13.8. Therefore if the 
operational FER were to be around 0.09, the crossover point would be 6 hops. 
So communications beyond 6 hops would use FEC-based communication to 
control the energy consumption.

Figure 13.9 enumerates the structure of the flits used in our experiments. 
The header contents and field sizes are dependent on the size, topology, and 
routing policy of the network.

13.6 Summary and Conclusions

This research compares the energy and latency performances for error detec-
tion with retransmission (ED  R), forward error correction with retransmis-
sion (FEC  R), and the hybrid scheme. The ED  R scheme was implemented 
for two scenarios: end-to-end and hop-to-hop. The end-to-end scenario pro-
vides for better energy and latency performance at low error rates. But the 
graceful performance degradation in the hop-to-hop scenario would make it 
more attractive. The area overhead for the hop-to-hop scenario is four times 
larger when compared to end-to-end. But for high FERs, the degradation 
in latency and energy is as much as 25% and this may not be acceptable for 
communication with real-time constraints.

The FEC  R scheme was used to address the performance degradation at 
high FERs. We formulated a streamlined LDPC-based FEC decoder to pro-
vide reliability at an FER of 0.01 (inasmuch as the benefit for a lower FER is 
negligible). The energy efficiency of this scheme at long hop distances and 
the corresponding reduction in the average flit latency make a strong case for 
FEC-based reliability.

To obtain maximum energy efficiency, we designed a hybrid scheme that 
utilized ED  R for shorter hop distances and FEC  R for communication 
over long hop distances and with real-time communication constraints.

The results obtained here make a case for FEC-based communication reli-
ability in large on-chip networks under lower noise thresholds.
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14.1 Introduction

Growing transistor densities, less than ideal scaling of global wires, and 
increasing clock frequencies have led to excessive interconnect wire delay and 
significant heat dissipation in general-purpose microprocessors. The industry 
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move to multicore chips creates the quandary of how to balance the need for 
high-speed, high-bandwidth communication and reasonable power density 
levels. These two criteria are often at odds as the former calls for function-
ality to be tightly packed, and the latter requires separation. This chapter 
demonstrates that silicon-based on-chip optical interconnect technology is a 
promising solution to this growing problem.

In addition to interconnect delay, delay uncertainty has grown signifi-
cantly. Greater delay uncertainty necessitates the introduction of registers 
along long distance lines, reducing the amount of useful work that can be 
accomplished within a clock cycle. Delay uncertainty is further increased by 
local and global temperature swings.

Increased power dissipation is a critical concern in microprocessors. The 
heat generated by localized high-power dissipation leads to on-chip hot spots, 
producing potentially unstable circuit operation and local electromigration 
concerns. A solution to the problem of hot spots is to physically separate 
the high-power density components [13]. This strategy, however, exacer-
bates the problem of long lines and delay uncertainty. The temperature of a 
block is dependent on the amount of power dissipated in that block, and the 
temperature of the surrounding blocks. Highly active blocks interspersed 
with blocks containing low activity will reduce the maximum temperature, 
although the overall power dissipation will remain the same.

This separation of microprocessor functions to alleviate thermal con-
straints has the undesirable effect of longer cycle times or deeper pipelines. 
A clustered processor microarchitecture separates processing units into clusters,
with a dedicated interconnection network used for intercluster communi-
cation. Steering algorithms are used to limit intercore forwarding, thereby 
limiting the increase in delay. A possible solution to long interconnect delay 
in such distributed microarchitectures is the use of transmission-line connec-
tions [6]. Although transmission-line connections provide fast communica-
tion, these structures are highly bandwidth limited. Wide thick lines also 
consume a significant amount of the upper metal layer area, limiting the 
number of possible connections.

Optical interconnects have previously been suggested as a potential solution 
to the global wire delay problem [25]. Traditionally, the use of on-chip opti-
cal interconnections requires the integration of new materials, a prohibitively 
costly change, or bonding the optical components to a silicon CMOS circuit, 
also an expensive option. Accordingly, it was believed that optical intercon-
nections are inappropriate for intrachip communication [24]. Recent advances 
in silicon-based optical devices have solved many of the issues associated 
with CMOS-based optical devices. These proposed devices are constructed 
using traditional CMOS processing and materials, and significant progress 
has been made in electrical/optical conversion [8]. By 2010, for a 1 cm on-chip 
interconnect length, the propagation delay of an optical link is expected to be 
half that of an optimal electrical link with repeaters [9].

Although on-chip optical interconnects have recently been evaluated from 
device and circuit-level perspectives, similar work has yet to be performed at 
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the architectural level. Thus, it is unclear from a systems perspective whether 
the use of optical interconnects to replace global on-chip wires is an attrac-
tive solution. In this chapter, silicon-based optics for on-chip interconnects 
are investigated for a large-scale Clustered Multi-Threaded (CMT) proces-
sor microarchitecture [14]. Projections for optical and electrical interconnects 
for 45 nm CMOS are presented based on prior work [6,8,9,16]. One potential 
benefit of optical interconnects is explored. Specifically, the processing ele-
ments are separated and interleaved with L2 cache banks to alleviate heat 
constraints, and low-latency optical connections from the centralized front 
end to these back-end elements prevent undue performance loss. The result-
ing architecture exhibits a significant reduction in heat dissipation (translat-
ing into an increase in clock speed and improved reliability) for the same 
total power level with higher IPC. Although these results are obtained for 
a large-scale CMT organization, similar benefits can be achieved in a chip 
multiprocessor microarchitecture. 

14.2 Optical System

The successful introduction of optical interconnects onto a microprocessor 
requires overcoming a number of barriers, the most significant being com-
patibility with a monolithic (silicon) microelectronic device technology. Due 
to the poor light-emitting properties of crystalline silicon, the most viable 
option is to use an external light source (VCSEL laser, etc.) for optical sig-
nal generation. An external light source allows more compact and energy-
efficient electrooptical modulators as optical information transmitters. 
Furthermore, low-refractive index polymer waveguides for light propaga-
tion and SiGe detectors as receivers are potentially satisfactory candidates. 

14.2.1 Modulator

An important example of an ultrafast silicon-based modulator has been 
demonstrated by Liu et al. [23]. The authors herein indicate that the physical 
device structure (without considering the driver delay) can operate at speeds 
in excess of 8 GHz. Moreover, Liu et al. mention that by thinning the gate 
oxide and using an epitaxial overgrowth technique, it is possible to enhance 
the phase modulation efficiency. Through additional device geometric opti-
mization, it is also possible to increase the optical mode/active medium 
interaction volume. Thus, it is reasonable to assume that with technology 
improvements, the modulator speed will operate in the 30–40 GHz range 
by 2015. However, because the chosen device structure is a Mach–Zehnder 
interferometer, this type of modulator has a large footprint, resulting in 
excessive power consumption and increased driver delay. Simulations and 
initial experiments performed by Barrios et al. [2,3] show that an alternative 
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modulator topology—an optical microcavity—can drastically decrease the 
modulator area to 10–30 m while maintaining the same operating speed. 
Based on these considerations, the capacitance of the modulator structure is 
estimated to be 1.36 pF.

A block diagram of a driver circuit is shown in Figure 14.1. The micro-
cavity-based optical modulator is assumed to be a purely capacitive load. A 
series of tapered inverters is used to drive the capacitor [11].

14.2.2 Receiver

The role of an optical receiver is to convert an optical signal into an electri-
cal signal, thereby recovering the data transmitted through the lightwave 
system. The optical receiver has two primary components: a photodetec-
tor that converts light into electricity, and receiver circuits that amplify and 
digitize the electrical signal. A simplified equivalent circuit model is shown 
in Figure 14.2. In the context of on-chip optical interconnects, only those 
technologies that are fully compatible with silicon microelectronics are con-
sidered.  A practical solution is a SiGe photodetector operating at a 1.3 m
wavelength. 

Many types of photodetectors exist due to the many different device struc-
tures and operating principles. Interdigitated SiGe p-i-n photodiodes and SiGe 

Electrical
Logic

Cell CM

…

Optical Modulator

FIGURE 14.1
Circuit model of an optical transmitter. 

Vbias

Cdec

Light

Ibias

Photodetector Receiver Circuits

FIGURE 14.2
Circuit model of an optical receiver.
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Metal-Semiconductor-Metal (MSM) detectors are considered here because 
these detectors tend to respond faster with the same quantum efficiency. In 
2002, an interdigitated SiGe p-i-n detector fabricated on a Si substrate with a 3 
dB bandwidth of 3.8 GHz at a 1.3 m wavelength was demonstrated [26].

A summary of the delays of the individual elements along the optical data 
path is listed in Table 14.1. Note the significant delay advantage over opti-
mal electrical interconnects with repeaters for a target length of 1 cm. More 
details describing the device/circuit aspects of the optical technology can be 
found in [6,8,9,16]. 

14.3 Architectural Design

The baseline processor is a clustered multi-threaded (CMT) machine [14] with 
a unified front-end, and 16 cores containing functional units, register files, and 
data caches for a back end, as shown in Figure 14.3. The simulator is based on 
Simplescalar-3.0 [5] for the Alpha AXP instruction set with the Wattch [4] and 
HotSpot [18] extensions. Processor parameters are listed in Table 14.2. 

14.3.1 Core Layout

A floorplan of the processing core (back end) is illustrated in Figure 14.4. 
Each back end is linearly scaled from the Alpha 21264 floorplan [19] to the 
2010 (45 nm) technology node. Units whose parameters differ from the 21264 
(i.e., there are 64 integer registers rather than 80) are also linearly scaled.

The layout of the processor requires that each core has a level one data 
cache. The cache is assumed to use a simplified coherence scheme. The mesh 
interconnect network is inherently unordered, and the delay from one point 
to another point is nonuniform. The cache coherence actions are performed 
in the order seen by the simulator. The level two data cache is a nonuniform 

TABLE 14.1

Delay (ps) in a 1 cm Optical Data Path as Compared 
with the Electrical Interconnect Delay [9]

Modulator driver 25.8
Modulator 30.4
Waveguide 46.7
Photo-detector 0.3
Receiver amplifier 10.4
Total optical 113.6
Electrical 200.0
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FIGURE 14.3
Clustered multithreaded architecture with two cores per thread.

TABLE 14.2

Processor Parameters

Cluster
L1 data cache 16 KB per core 2 way, 2 cycles
Load/store queue 64 entries
Register file 64 Int, 64 FP
Issue queue 64 Int, 64 FP
Integer units 2 ALU, 1 Mult
Floating point 1 ALU, 1 Mult
Front end
Combined branch predictor 2048 entry BTB
Return address stack 32 entries
Branch mispredict penalty 12
Fetch queue size 64 shared
Fetch width 32 instructions from 2 threads
Dispatch 16 shared
Commit 12 per thread
Reorder buffer 256 per thread
L1 instruction cache 32 kB 2 way
Unified L2 cache 64 MB 32 way
TLB (each, I and D) 128 entries, 8KB fully associative per thread
Memory latency 200 cycles
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access time structure; for simplicity, however, it is simulated as a uniform 
access time structure. This approximation is accurate if the cache allows fre-
quently accessed blocks to be moved closer to the utilizing cores [12]. 

14.3.2 Processor Layout

Two layout strategies are compared to demonstrate the advantages of on-
chip optical interconnects. The grid floorplan, as shown in Figure 14.5, is 
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FIGURE 14.4
Core floorplan.

FIGURE 14.5
Grid floorplan. The back-end cores are in the center, above the common front end, completely 
surrounded by a 64 MB unified L2 cache.
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the baseline configuration, in which the cores are closely packed to mini-
mize intercluster delay. This floorplan consists of 16 replicated cores sur-
rounded by 64 banks of a unified level 2 cache. The second floorplan, shown 
in Figure 14.6, is proposed to reduce the maximum temperature while main-
taining IPC performance. This floorplan has the advantage of spreading out 
the hot cores, thereby allowing the cool cache to reduce the temperature. 
Each of the 16 cores is surrounded by four banks of a unified level 2 cache.

A mesh Manhattan interconnection scheme is simulated; each core can 
communicate via electrical links with neighbors at a cost of one cycle. Com-
munication between distant cores requires multiple hops, and congestion is 
considered. All of the electrical links are capable of serving two 64 bit values 
(two registers) per cycle for each layout configuration. The shared front-end 
is located along the bottom of the core elements. In this study, optical links 
are only used for direct communication between the front-end (shown at the 
bottom) and each core. Communication over these optical links requires two 
cycles, compared to a worst case of seven cycles for wire interconnects. 

14.4 Methodology

In this analysis, the maximum transient temperature of any functional unit 
limits the clock frequency. The maximum temperature is determined by exe-
cuting the workload on a checkers layout (see Figure 14.6) without an optical 

FIGURE 14.6
Checkers floorplan. Each core is surrounded by four unified L2 cache banks. The front end is 
along the bottom edge of the layout.
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front-end communication network for a mix of benchmarks. To obtain the 
frequency for a grid layout (see Figure 14.5) with the same maximum tem-
perature, three different clock frequencies are simulated and interpolated. 
(In the region of interest, the temperature is approximately linear with the 
clock frequency.)

To measure the effect of the impact on performance by spreading out the 
processing cores, the IPC performance of a microarchitecture with optical 
links between the front end and back end is compared with a system with 
only electrical interconnects. In future work, the use of optical interconnects 
to reduce long distance inter-back-end communication latencies will also be 
investigated. 

14.4.1 Power Model

Wattch version 1.02 [4] is used to compute the dynamic power of the units. 
Parameters for the 45 nm technology node are derived from the ITRS [30]. 
The wire resistance and capacitance scaling factors are determined by log–
log extrapolation from the technology nodes supplied with Wattch. Simi-
larly, the sense voltage factor is determined by linear extrapolation from 
earlier technology nodes.

A simple temperature-dependent computation of leakage power is applied. 
Gate oxide leakage is assumed to not be significant (as a result of the adop-
tion of a high-k dielectric technology) [20]. Therefore, only subthreshold 
leakage is considered. The units are divided into logic and SRAM groups, 
due to differences in ITRS predictions [28] for these two groups. The power 
is determined from the ITRS-predicted transistor density, static power per 
transistor width, and several additional assumptions: an average W/L of 
3 for the SRAM circuitry and 3.6 for the logic, each PMOS transistor leaks 
twice as much as an NMOS transistor, and the NMOS and PMOS transistors 
are each on 50% of the time. The ITRS value for leakage power at room tem-
perature provides a reference, and the BSIM3 model [35] is used to correlate 
leakage power with temperature. Equation (14.1) is used to adjust the leakage 
power of each unit based on the temperature of that individual unit, continu-
ally recalculated as the temperature changes. 

P
P W L L Q area

T
T Wastatic gate density

ITRS

( / ) *
 

2
2 ttts (14.1)

where 

P
P P

static
N leak N static p leak N static, , , ,2

2
(14.2)

Equation (14.2) is given in terms of watts per meter of the transistor gate 
width with leak,N and leak,P referring to the fraction of the time that the N and P
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transistors, respectively, dissipate leakage (rather than dynamic) power. Lgate

is the printed length of the gate, Qdensity is the density of transistors, and area
is the actual die area of the device. T refers to the absolute temperature of the 
unit and is a function of time. 

14.4.2 Temperature Model

Chip temperatures are derived from the power numbers using the HotSpot 
(version 2) [18] simulation tool. HotSpot determines the transient tempera-
tures, so maximum transient temperatures are used. (Steady-state tempera-
tures are not used because potential short-period hot spots are ignored.) 

The HotSpot parameters are listed in Table 14.3. High-end cooling tech-
nologies are assumed, because cooling will be more important in future 
processors. For the heat sink, the resistance of a “folded-fin” heat sink is 
used [22], as well as a thermal interface material with a resistivity of 0.14 
mK/W [1] and a thickness of 30 m. This thickness is about half of the 
coverage thickness used as a default in HotSpot or assumed by the Arctic 
Silver specifications [1]. Because the thermal interface material may play an 
important role in dissipating heat from the hot spots, it is assumed that by 
2010 the thickness will be reduced from the current 70 m. Parameters not 
explicitly listed are the same as the default values specified in the HotSpot 
software. 

14.4.3 Benchmarks

Two classes of workloads are considered, mixes of SPEC2000 CPU bench-
marks (groupA) and SPLASH-2 benchmarks operating in multithreaded 
mode (groupB). Using the same classification system as [14], two commu-
nication bound workloads and an instruction-level parallelism (ILP) bound 
workload are examined. The mixes are listed in Table 14.4.

TABLE 14.3

HotSpot Parameters

Heat Sink
Convection resistance 0.02 K/W
Convection capacitance 140.4 J/K

Thermal Interface Material
Thickness 30 m
Thermal resistivity 0.14 mK/W
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GroupA benchmarks are mixes of independent threads. These bench-
marks do not share virtual memory address space and therefore there is no 
interthread communication. Each SPEC benchmark in this group is run with 
the reference input set. The benchmarks are individually fast forwarded as 
suggested in [29], and run simultaneously until each thread reaches 100 million 
instructions. The geometric mean of the speedup of all of the threads is used 
as the performance metric.

GroupB benchmarks are parallel programs from the SPLASH-2 bench-
mark suite [36]. The relevant parameters are listed in Table 14.5. The threads 
share virtual address space and communicate with one another by means of 
shared memory facilitated by cache coherence. Each benchmark in groupB is 
run to completion. Speedup is calculated as the ratio of the execution times 
in cycles.

Each individual thread has exclusive access to two adjacent cores. Prior 
research has shown that the communication delays involved with additional 
cores negate any performance gain from the increase in the number of func-
tional units [14,21]. 

TABLE 14.4

Single-Threaded Mixes

Load Benchmarks Included Bound

Mix 1 bzip, parser, art, galgel Communication
Mix 2 bzip, vpr, gzip, parser, perlbmk, 

lucas, art, galgel
Communication

Mix 3 gcc, mcf, twolf, applu, mgrid, 
swim, equake, mesa

ILP

TABLE 14.5

Parallel Programs

Program Command Line Arguments

FFT -m18 -p8 -n1024 -16 -t
Jacobi -p8 -v -s512 -i10
LU -n512 -p8 -b16 -t
Radix -p8 -n131072 -r16 -m524288 -t
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14.5 Results

The results are relative to a benchmark run with a grid layout (see Figure 14.5) 
with no optical communication lines. Mixes of independent threads are first 
presented followed by parallel programs.

14.5.1 GroupA

The left bars in each group shown in Figure 14.7 quantify the change in 
the clock frequency (and therefore the performance) achieved by using the 
spread-out checkers layout (Figure 14.6). The middle bars include the opti-
cal communication lines from the shared front end to each of the cores. The 
direct communication lines allow for faster dispatch of instructions to the 
cores and a shorter branch mispredict penalty (the recovery is started ear-
lier). This modest application of optical interconnect leads to an increase 
in performance of up to 10% for multithreaded workloads of independent 
applications.

The right bars combine the two techniques. The average speedup for these 
benchmark mixes is 35% with a maximum of 38%. The two enhancements 
are not completely orthogonal. The faster communication with the front end 
leads to enhanced utilization of the functional units, which in turn increases 
the baseline temperature. The increase in clock speed is therefore partly 
reduced.
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Speedup resulting for GroupA.
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14.5.2 GroupB

The multithreaded benchmarks produce greater improvements. The left bars 
shown in Figure 14.8 describe improvements from spreading out the cores. 
The speedup is roughly 40% across all of the benchmarks.

The middle bars are obtained by adding the high-speed optical links from 
the front end to each core. The improvement varies depending on the nature 
of each benchmark, but reaches 25% for FFT.

The right bars present the results of combining the two techniques. The 
average speedup for these benchmarks is 55% with a maximum of 78%.

14.6 Related Work

Modeling the effects of leakage current on power dissipation and temperature 
at the architectural level was first studied by Sohi and Butts [32] and later by 
Zhang et al. [37], the former based on the BSIM3 transistor leakage model [35].

Others have investigated dynamic temperature management schemes, 
such as frequency, voltage, and fetch rate control [31], software scheduling 
behavior [28], asymmetric dual core designs [15], and a combination of these 
techniques [17].

Additional researchers have also considered the impact of circuit layout on 
temperature, such as Cheng and Kang with their iTAS simulator [10]. Inves-
tigations have also been promoted by other VLSI-based simulation research, 
such as Rencz et al. [27], the SISSI package [33], and others [34].
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Donald and Martonosi investigated thermal issues in SMT and CMP architec-
tures [13], although these authors only consider steady-state temperatures and do 
not translate the temperature results into the effect on application performance.

In contrast to these previous research results, this work is the first to inves-
tigate the use of on-chip optical interconnects to reduce the performance gap 
created by increasing the physical distances between the front and back ends 
of the processor in order to alleviate thermal constraints. 

14.7 Conclusions

With recent advances in silicon photonics, on-chip optical interconnects have 
become a prime candidate to alleviate a number of global communication 
challenges in future highly integrated microprocessors. In this chapter, the 
use of optical interconnects to ameliorate the increased global wire delay 
due to intermixing hot and cold processing units is investigated. It is shown 
that the selective introduction of a few optical connections can significantly 
enhance overall processor performance. This study has also shown that 
intermingling the cluster cores with the on-chip cache reduces the maxi-
mum on-chip temperature. Because the maximum temperature limits the 
clock speed, spreading the cores can lead to increased clock frequencies. 
This technique does not reduce overall power dissipation (other than the 
decreased leakage current due to lower on-chip temperatures) but more uni-
formly redistributes the dissipated power. The use of optical interconnect 
for long distance communication makes spreading the cores a more viable 
proposition in terms of maintaining high-performance levels.

In future work, the use of optical interconnect will be investigated to reduce 
inter-back-end communication for parallel workloads, increase link band-
width through the use of Wave Division Multiplexing (WDM), and reduce 
the worst case latencies of large cache and main memory RAMs. 
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architecture, use of for benchmarking, 
166–167

Average-case path delay, 130–131
dual-rail approach and, 137

B

Backward error recovery, 303
Barycenter, 242
Barycentric combination, 242–243
Berger codes, 326
Bioinformatics, 281–282. See also MSA
Block commit protocol

latency to complete, 32
TRIPS, 26–27

Block digest, SHA algorithm for producing, 
68

Block encryption, 45–46
Block execution flags, 5
Block fetch protocol, TRIPS, 22–24
Block opcode
Block-atomic execution, 4
Block-matching algorithms, 119–120
Block-Structured ISA, 36
Block/pipeline flush protocol, TRIPS, 26
Blocks, dataflow execution of, TRIPS, 24–26
Blunt switching, hybrid trace/decoupled 

processor, 207
experimental results, 209–213

Body chunks, 5
Bottom-up clustering algorithm, 251–252
Branch prediction, 36, 213

ARM Cortex-A8 processor, 85–87
instruction execution by subordinate 

threads, 205
MSA software, 292–293

Branch resolution logic, ARM Cortex-A8 
processor, 95–96

Branch target buffer. See BTB
BSIM3 transistor leakage model, 351
BTB, 85, 87, 286
Bundled data approach, 134

comparison with dual-rail approach, 
136–137

completion generation and detection 
using, 137–138

use of by Montage, 142
use of in PGA-STC architecture, 144
use of with STACC architecture, 143

Bundling constraint, 136
bzip, analysis of the performance variance of, 

200–201

C

C-elements, 138–139, 148
Cache design, 84
Cache misses, MSA programs, 290–291
Cache performance, 213
Careful switching, hybrid trace/decoupled 

processor, 207
experimental results, 209–213

Carry logic, 155
Carry propagation cycle, simulation of 

RASTER architecture logic cells, 161
Carry-select method, 155
CBC, 46
Cell (IBM), 35
Centaur Technology Inc., 42
CFB, 46
Channels, push- vs. pull- handshaking 

protocols, 135–136
Checkpointing, 36
Chinese Remainder Theorem. See CRT
Chip Multiprocessor. See CMP
Chip temperatures, 348
Chip verification, TRIPS, 29–30
Chips specifications, TRIPS, 27–29
Chipset, power consumption of, 234

use of power sampling to calculate, 
220–224

Chipwide activity factors, 163
Cipher block chaining. See CBC
Cipher feedback. See CFB
Circuit synthesis, asynchronous, 140–141
CISC processor, comparison of TRIPS 

register tile with, 14
ClearSpeed CSX600 SIMD processor, 

259–260, 265, 271–272
performance of with Sweep3D in two-level 

system, 272–277
Clock domains, synchronous/asynchronous 

interface, 142
Clock frequency, effect of transient 

temperature on, 346–347
Clock gating, 89, 231

power consumption and, 131
programmable, 133

Clock signal, synchronous design and, 
127–128

Clock trees, 130
Closed triangle mesh, 251–252
Clouds, modeling of, 241, 248–250
Clustal w, 284

instruction characteristics, 288
phase behavior, 294–295

Clustered Multi-Threaded architectures. See
CMT architectures
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Clustered processor microarchitecture, 340
CMOS-based optical devices, 340–341
CMP, 178
CMT architectures, 341

optical interconnect simulation using
  architectural design, 343–346
  methodology for, 346–351

CNI, 328
end-to-end retransmission, 332–333

Code generation, TRIPS, 6–8
Code region characteristics, trace processor 

vs. decoupled processor, 203–205
Coefficient of variation, power consumption, 

231–232
Column-mix, 59

logic, 65–66
Communication bound workloads, 

benchmarking for optical 
interconnect simulation, 348–349

Communication costs, 263
Completion signals, generation and 

detection of, 137–138
Complex shapes, subdividing, 239–240, 

256–257
Compression of geometric data, 239
Computation cycles

bundled data vs. dual-rail handshaking 
protocols for, 137–138

synchronous vs. asynchronous design 
issues, 130–131

Computations, overlaps of with trace and 
decoupled processors, 203–205

Compute nodes, use of in two-level 
processing system, 264–265

Compute register file, RACE-H processor, 
111

Compute time, analysis of on Sweep3D/
CSX600 system, 273–275

Conditional instructions, ARM Cortex-A8 
processor, 94

Contention, 34
Continuation, 178–180
Continuation-based multithreading model, 

178–180. See also Exclusive multithread 
execution model

Contraction mapping theorem, 244
Control signals, combining with data signals 

in routing fabric, 149
Control software routines, RACE-H library 

of, 117
Copy units, PAPA architecture, 145
Core-network interface. See CNI
Cortex-A8. See ARM Cortex-A8 processor
Counter mode. See CTR
CPSR, 95

CPU, power consumption of, 229–230
use of power sampling to calculate, 

220–224
CRC, 326
Critical path, FPGAs, 131–133
Crosstalk, 326
CRT, 74
Cryptographically secure pseudorandom 

numbers, 45
CSCD, 138
CTR, 46
Current shunt monitor (TI INA168), 

222–223
Current-Sensing Completion Detection. See

CSCD
Current-sensing resistors, subsystem power 

sampling and, 220–221
Cycle-time, impact of acceleration devices 

on, 266–270
Cyclic executive approach, 302
Cyclic redundancy check. See CRC

D

D flop, 140
D-latches, use of to initialize asynchronous 

elements, 141
Data cache misses, MSA programs, 290–291
Data Encryption Standard (DES), 46
Data encryption, use of AES encryption 

hardware for, 45–46
Data parallelism, 111
Data reliability, on-chip, 331
Data routers, 127
Data security, hardware implementation of 

on x86 processors, 42–43
Data signals, combining with control signals 

in routing fabric, 149
Data Status Network. See DSN
Data tile, 16
Data tokens, 145
Data translation lookaside buffer. See DTLB
Data-driven execution

multithread programming technique, 
180–182

performance of in Fuce processor 
simulation, 192–193

Dataflow architectures, 36
Dataflow computing model, 178
Datapath design, RASTER architecture, 

benchmarking of, 165
Datapath logic, AES hardware design, 63–64
Datapath stack, VIA C7 x86 processor, 51
Datapaths, 135. See also channels
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Dbt-2, 224
subsystem power consumption using, 

229–230
De Casteljau algorithm, 243
Deblocking filtering, 119–120
Decoder, approach to in RASTER 

architecture, 153
Decoupled architectures, 198

simulated processor used for dual thread 
execution modes, 200

Decoupled execution, vs. trace execution, 
analysis of, 201–203

Delay performance, handshaking protocols 
and, 136

Delay queues, 307–309
area used by, 320–321
design analysis, 314–315
implementation of on VHDL state 

machines, 315–319
speed of, 321–322

Delay times, 309
Delay uncertainty, 340
Delay-independent circuits, 129
Delta times, 309
Demand-driven execution

multithread programming technique, 
182–183

performance of in Fuce processor 
simulation, 192–193

Demultiplexing, 145
Demux. See Demultiplexing
Dependability, Gurkh framework, 303
Dependence prediction, 36
Dependence predictor. See DPR
Dependent instructions, dual-issuing 

off, 90
Dependent loads, latency of in TRIPS, 19
Determinism, increasing in real-time 

embedded systems, 306
Deterministic random bit generators. See

DRBG
DGEMM (Clearspeed), 260
Dialign, 285

instruction characteristics, 288
trace cache, 289

Diehard tests, 52
Direct instruction communication, 5
Disk, power consumption of, 229–230, 234

use of power sampling to calculate, 
220–224

Distributed design, area overheads of, 30–31
Distributed execution

ISA support for, 4–8
TRIPS, 24–26

Distributed fetch protocol, 22–24

Distributed microarchitectural protocols, 
TRIPS, 22–27

Distributed microarchitectures, 340
Distributed protocol, overheads of, 32–34
DMA subsystem of RACE-H processors, 

117–118
DNA sequences, evolutionary relationships 

between, 282–283
Domino circuits, dual-rail, 148
Domino logic

implementation of S-box with, 65
use of with PAPA architecture, 153

DPR, 16, 18
DRBG, 45
DSN, 18
DSPs

programmable, 108
RACE-H library of routines, 117

DTLB, 291–292
Dual-rail approach, 134

comparison with bundled data approach, 
136–137

completion generation and detection 
using, 137–138

use of by LUT4s in PAPA architecture, 
146

use of domino logic with, 153
Dual-rail pipeline registers, RASTER 

architecture, 159
Duration strata, phase classification using, 

225–226
Dynamic adaptation, 219–220
Dynamic instruction profiles, MSA 

programs, 287–288
Dynamic logic

dual-rail, 137–138
implementation of S-box with, 65

Dynamic programming algorithm, 
287–288

Dynamic scheduling and execution, 3
Dynamic temperature management, 351
Dynamic voltage scaling, 218

E

ECB, 46
ECC, 326
ED + R, 331–334
EDC, 326
EDGE, 4, 6
EFLAGS, 62
Electronic Code Book. See ECB
Electrooptical modulators, 341–342
Embedded scalability, RACE-H processor, 

110
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Embedded systems
dependability of, 303
design of, 302–303
real-time, 300
  timing requirements of, 306

End-to-end retransmission, 332–333
Energy consumption

ED + R, 332–334
model of for NoC, 329

Error detection and retransmission. 
See ED + R

Error-correcting codes. See ECC
Error-detecting codes. See EDC
Event-handling threads, Fuce processor, 187
Exact MSA algorithms, 283
Exception models, TRIPS, 15–16
Exclusive multithread execution model. 

See also Continuation-based 
multithreading model

multithread programming technique for, 
180–184

Execution tile, 15–16
Expanded key, 61–62

logic, 65
RAM, 66

Explicit Data Graph Execution. See EDGE
Export licenses, symmetric-key encryption 

and, 68

F

Fan-in, 179
Fan-out, 179
Fast adders, 155
Fast bit generation speed, VIA x86 processors 

design goals and, 53
Fast Fourier Transform, use of for 

benchmarking Fuce processor, 
189–193

Fast ripple logic, 155
Fast-carry path, PAPA architecture, 146
Fault forecasting, 303
Fault prevention, 303
Fault removal, 303
Fault tolerance, 303
FEC, 326

determination of decoder complexity, 329
LDPC-based, 328–329

FEC + R, 331, 335
FEC/ED + R, 336–337
Federal Information Processing Standards. 

See FIPS standards
Feedback paths, 140–141

fast, RASTER architecture, 155–156

FER, 329
Fetch protocol, distributed, 22–24
Fetch unit, 10, 12
Field Programmable Gate Arrays. See FPGAs
FIFO buffer

asynchronous, use of C-elements to create, 
139

VIA x86 processor, 55–56
Fine-grain power sampling, 227
Finite-State Machines. See FSM
Finite-state machines, translation of 

UPPAAL automata to, 315
FIPS standards, 46, 58
First-in first-out buffer. See FIFO buffer
Flexible analysis, VIA x86 processor design 

goals and, 53
Flit, energy consumption of, 329
Floating-point operations, 81
Floating-point pipelines, Cortex-A8 NEON 

media processing engine unit, 105
Forward error correction. See FEC
Forward error correction and 

retransmission. See FEC + R
Forward error recovery, 303
Forwarding paths, ARM Cortex-A8 

processor, 95
Four-phase internal logic cell 

synchronization, RASTER 
architecture, 157–158

FPGAs, 126–127, 259–260. See also specific 
architectures

asynchronous architectures
  preexisting, 140–147
  problems with preexisting, 147–150
asynchronous design of, 131–133
delay queues, 311, 316
implementation of Fuce processor on, 

187–193
maximum throughput simulation of 

RASTER architecture logic cells, 
160–162

Frame error rate. See FER
Frequency response, synchronous vs.

asynchronous design and, 131
FSM, asynchronous, 133–134
Fuce processor, 178

continuation in, 178–180
hardware cost of, 187–188
implementation of on FPGA board, 

187–188
register files, 185–186
simulation result, 189–193
thread activation controller, 186–187
thread execution unit of, 184–185

Function instances, 180
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G

GCN, 10
block/pipeline flush protocol in TRIPS, 26

GDN, 10
block/pipeline flush protocol in TRIPS, 26

General-purpose register. See GPR
Genomic data, analysis of, 282
Geodesic distance, 253
Geometric data, operations performed on, 

239–240
Geometric distance, 253
GF(28), 58
GHB, 85, 87
GHR, 85
Gladman library of cryptography functions, 

67
Glitches, 129, 138
Global Control Network. See GCN
Global control tile, 9–14
Global Dispatch Network. See GDN
Global history buffer. See GHB
Global history register. See GHR
Global Status Network. See GSN
Glue logic, 126

potential use of RASTER architecture for, 
174

GPR, 56
GPUs, 259
Graphic processing units. See GPUs
GSN, 10
Gurkh framework, 301

components, 305–307
foundations of, 303–305
system architecture, 302
system dependability, 303
system design, 302–303
system verification, 303

H

H.264/AVC video encoding standard, 108, 
119

Hamming code, use of for error detection on 
NoC, 326

Handshaking protocols, 134–138
Handshaking signals, 128

asynchronous FSM and, 134
Hard decision decoding, 328
Hardware counters, use of for MSA 

algorithm experiments, 286–287
Hardware random number generation. See

RNG
Hardware-software codesign, 302

Hashed virtual address buffer array. See
HVAB array

Hazard-free logic, 141
High-definition multistandard video 

processing, 108
hardware assists, 119–120

High-performance network, use of in two-
level processing system, 264–265

High-throughput designs, potential use of 
RASTER architecture for, 173

Hmmer, 285
branches, 292

Hop latencies, 34
Hop-to-hop retransmission, 333–334
Host processors, coprocessor attachment of 

RACE-H to, 109, 116
HotSpot simulation tool, 348
Human tooth data. See also tooth-shape 

segmentation
modeling, 241

HVAB array, 84
Hybrid trace/decoupled processor, 205–208

experimental results for, 208–213
hardware overhead, 207

Hyperbolic IFS, 244
Hyperthreading technology, 178

I

I-cache, 12
I/O, power consumption of, 229–230

use of power sampling to calculate, 
220–224

IBM CU-11 ASIC process, TRIPS chip 
implementation in, 27

IBM-Toshiba-Sony Cell processor, 259–260
IFS, 240–241, 243–244

clouds, controlling with QBCs, 248–250
QBC attractors and, 244–247, 255–256

Image segmentation algorithms, 242
Instruction cache, ARM Cortex-A8 processor, 

83–84
Instruction characteristics, MSA programs, 

287–288
Instruction decode unit, ARM Cortex-A8 

processor
instruction scheduling, 89–90
NEON SIMD instructions, 92
pipeline overview, 87–88
replay and pending queue, 91–92
static scheduling scoreboard, 89

Instruction distribution delays, 32
Instruction fetch unit, ARM Cortex-A8 

processor
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branch prediction, 85–87
instruction queue, 84–85
pipeline overview, 83
return stack, 87

Instruction formats, TRIPS, 5–6
Instruction set architecture. See ISA
Instruction tile, 14
Instruction timing, 36
Instruction translation lookaside buffer. See

ITLB
Instruction-level parallelism bound 

workload, benchmarking of for 
optical interconnect simulation, 
348–349

Instructions per cycle. See IPC
Instructions, dual-issuing off, 90
Integer execution unit, ARM Cortex-A8 

processor
exceptions and branches, 95–96
pipeline overview, 93
processing flags and conditional 

instructions, 93–95
Intellectual property cores. See IP cores
Interblock communication, RASTER 

architecture, 150–152
Interblock routing, FPGAs and, 142
Interconnect power, 325
Interconnect technology, optical. See optical 

interconnects
Interface logic, AES hardware design, 64–65
Internal logic cell synchronization, RASTER 

architecture, 157–158
Internal pipelining, RASTER architecture, 

158–159
Intertile connectivity, 3
Intrachip communication, use of optical 

interconnects for, 340
IP cores, 327
IPC, power variation due to, 232–233
Irregular meshes, 261
ISA, support for distributed execution, 4–8
Isochronic fork constraints, 141–142
Iterated function systems. See IFS
ITLB, 291–292

K

k-means clustering, 255
Key expansion, 61–62
Key RAM, 61–62

L

Lambda rules, 162
Large-window parallelism, 36

Latency, micronetwork routers and, 31
LDPC, 326. See also FEC, LDPC-based

decoder design, 327
Leakage current, effect of on power 

dissipation and temperature, 351
Leakage power, simulation of, 162–163, 

347–348
Link register, ARM Cortex-A8 processor, 

81
Lloyd’s algorithm, 255
Load processing, TRIPS, 16–18
Load-store/permute pipeline, Cortex-A8 

NEON media processing engine unit, 
104–105

Load/store queue. See LSQ
Lock operation technique, 181

Fuce processor simulation results, 
192–193

Lock-miss decreases, Fuce processor 
simulation results, 192–193

LOG MAP algorithm, 328
Logic cells

combining control and data lines between, 
149

PAPA architecture, 145–146
PGA-STC architecture, 144
RASTER architecture
  area, 162
  internal synchronization, 157–158
  lookup tables, 152–154
  maximum throughput simulation, 

160–162
Logic devices, configurable, 126
Logic-level timing optimization, 31
Long data dependency chains, decoupled 

processor performance and, 205
LookUp Tables. See LUTs
Low-density parity check. See LDPC
Low-refractive index polymer waveguides, 

341
Low-skew routing, 141–142

PVT variations and, 148
LSQ, 16, 18

distribution of in TRIPS, 19–20
overhead of, 31

LUT4s
PAPA architecture, 145
two-level dual-rail scheme for in RASTER 

architecture, 154
use of with RASTER logic cell architecture, 

152–154
LUTs, 140

address decoder, approach to in RASTER 
architecture, 153
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M

m-out-of-n codes, 326
Mach-Zehnder interferometer, 341
Mafft, 284–285

instruction characteristics, 288
Massively Parallel Processors. See MPP
Mavid, 284

trace cache, 289
Memory access latency, 198

Fuce processor simulation results, 
188–193

reduction of with Fuce processor, 184
Memory disambiguation hardware, 19
Memory system unit, ARM Cortex-A8 

processor
level-1 data-side structure, 97–98
level-2-cache structure, 98
pipeline overview, 96
request buffers, 99–100

Memory tiles, TRIPS, 20
Memory, power consumption of, 233

use of power sampling to calculate, 
220–224

Memory-side dependence processing, TRIPS, 
19

Merge Sort, use of for benchmarking Fuce 
processor, 189–193

Merge units, 145
Mesh segmentation, 251–255
Metal-Semiconductor-Metal detectors. See

MSM detectors
Microarchitectural networks. See micronets
Microarchitectural protocols, distributed, 

22–27
Microcode

design of, 73–74
implementation effort, 75
use of in VIA x86 processors, 48–49

Microcontrollers, spectral response of, 132
Micronets, 2
Microprocessors, 127
MIPS, coprocessor attachment of RACE-H 

to, 109, 116
Miscellaneous register file, RACE-H 

processors, 112
Miss buffers, ARM Cortex-A8 processor 

memory system unit, 99
Miss Status Handling Register. See MSHR
Mission-critical systems, Gurkh approach 

to, 301
Model-checking tools, 300

UPPAAL, 304–305
Modular multiplication, 43, 47
Modulators, ultrafast silicon-based, 341

Monitoring chip, use of in Gurkh approach, 
303

Montage architecture, 140–142
issues with, 147–148

Montgomery Multiplier hardware, 46–47
design, 72–73
microcode design, 73–74

Montgomery Multiply function, 47
performance, 74

Motion estimation algorithms, 119–120
MPEG-2, 108, 119
MPEG-4, 108
MPP, 261
MSA, 282–285

algorithms, 283
  architectural characteristics of, 287–295

Msa, 284
data cache misses, 290–291
instruction characteristics, 288
phase behavior, 294–295
TLB misses, 292

MSHR, 12, 18
MSM detectors, 343
Muller C-element. See C-elements
Multiblock operations, optimization of in 

VIA x86 processors, 48–49
Multicore chips, 198

potential use of RASTER architecture for 
glue logic for, 174

Multicycle instructions, ARM Cortex-A8 
processor, 92

Multimedia accelerators, 127
Multiple sequence alignment. See MSA
Multiplexing, 145
Multiply-accumulate NEON integer pipeline, 

102–104
Multiprocessors, symmetric, 261
Multithreading processors, 178
Muscle, 284

branches, 292–293
instruction characteristics, 288
phase behavior, 294–295
trace cache, 289

Muxing. See Multiplexing

N

National Center for Biotechnology 
Information, biological database of, 
286

Negative acknowledgment, energy 
consumption of, 332

NEON
execution pipelines, 102–105
floating-point pipelines, 105
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load-store/permute pipeline, 104–105
media instructions, 81
media processing engine, pipeline 

overview, 100–102
nonblocking load operations, 98
SIMD instructions, 92
store buffers, 97–98

Network address translation, TRIPS, 21–22
Networks-on-chips. See NoC
Next block predictor, 13–14
Niagara (Sun Microsystems), 35
NMOS drivers, use of in RASTER 

architecture, 151
NoC, 325

architecture, 327–328
communication data reliability, 331

Noise margins, 127
Noise tolerance, 326
Noise, minimization of, 153, 325–326
Non-return-to-zero method of handshaking, 

135
NUCA array, use of by TRIPS, 20
Nucleotides, 282

O

OCN, 9
overhead of, 31
router, use of by TRIPS, 20–21
testbench for TRIPS chip verification, 

29–30
TRIPS secondary memory system, 20

OFB, 46
On-Chip Network. See OCN
On-chip optical interconnects, 340–341
Opcodes, VIA x86 processors, 47
Open Ravenscar Run Time Kernel. See ORK
Open source operating systems, VIA x86 

processors and, 75
OpenSSL, 75
Operand Network. See OPN
Operand network latency, 32
Operand values, overhead of fanning out 

of, 34
OPN, 10

distributed execution in TRIPS, 24–26
overhead of, 30

Opteron processors (AMD)
compute time, comparison of with CSX600 

in two-level system, 273–275
parallel performance, comparison of with 

CSX600 in two-level system, 275–277
Optical interconnects, 340

barriers to use of, 341
use of on CMT machine

  architectural design for, 343–346
  methodology for, 346–351

Optical receivers, 342–343
ORK, 307
Outcomes buffer, hybrid trace/decoupled 

processor, 207
Output feedback. See OFB

P

PAPA architecture, 145–147
area estimates of logic cells, 162
issues with, 148
maximum throughput simulation of, 161
power consumption of, 164

Parallel computational efficiency. See PCE
Parallel performance, analysis of in two-level 

Sweep3D/CSX600 system, 275–277
Parallel processing flow, 262
Parallelism

available, 262
delay queues and, 312–313
exploitation of with trace and decoupled 

processors, 205
extraction of with thread programming 

technique, 180–183
impact of kernel component timing 

properties on, 308
instruction-level, 177–178
large-window, 36
level of in ClearSpeed CSX600 chip, 

277–278
selectable, 109, 121
techniques for exploiting, 198
thread pipelining and, 183–184

Parity codes, 326
Partial reconfiguration, 143
Partitioning, 198
Passthrough paths, RASTER architecture, 

157–159
Payne, Robert, 142
PCE, 263

impact of acceleration devices on, 
265–266

Pending queue, ARM Cortex-A8 processor, 
91–92

Pentium 4, 178
circuit scale of, 188
use of for MSA algorithm experiments, 

286–287
Performance-monitoring counters, 219
PGA-STC architecture, 143–145

issues with, 148
Phase behavior, MSA programs, 294–295
Photodetectors, 342–343
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Pipelines, ARM Cortex-A8 processor, 81–82
Pipelining, 130

critical path delays due to, 133
internal, use of in RASTER architecture, 

158–159
routing, 147
thread, 183–184

PMOS drivers, use of in RASTER 
architecture, 151

Poa, 284
instruction characteristics, 288

POR signal, use of in RASTER architecture, 
160

Power consumption
design issues with, 217–218
intraworkload variation, 231–234
phase duration, 234–236
synchronous vs. asynchronous design 

issues, 131
workload studies, 219

Power density, 127
Power dissipation, 340
Power domains, simultaneous sampling of, 

220–224
Power gating, asynchronous FPGAs, 133
Power phases

classification of, 225–226
fine-grain sampling of, 227–229

Power sampling, 220–224
Power traces, subsystem power analysis and, 

227–229
Power-On Reset signal. See POR signal
Power-up initialization, RASTER 

architecture, 159–160
POWER5 (IBM), 178
PowerPC processor

TRIPS, 28, 30
use of RavenHaRT-II kernel with, 307

Predecessor thread, 179
continuation point in for data-driven 

execution, 180
continuation point in for demand-driven 

execution, 182
Predecoder in RASTER architecture, 154
Predicated architectures, 15–16
Predicated hyperblocks, 36
Predictors, 13–14
PREP benchmarking suite, 164
Prescott microarchitecture, 286
Priority-ordered release, 314
Probabilistic MSA algorithms, 283
Probcons, 284

instruction characteristics, 288
Process, Voltage, Temperature variations. See

PVT variations

Processing elements
acceleration devices, 260
hybrid trace/decoupled processor, 205–206
RACE-H processors, 110–111

Processor cores, TRIPS, 8
Processor Status Register (Cortex-A8). See

CPSR
Productivity workloads, power consumption 

for, 229
Program counter, ARM Cortex-A8 processor, 

81
Program phases, techniques to exploit, 213
Programmable Asynchronous Pipeline 

Array architecture. See PAPA 
architecture

Programmable delay method
advantage of, 153
PGA-STC architecture, 144–145

Programmable Gate Array for Implementing 
Self-Timed Circuits architecture. See
PGA-STC architecture

Progressive MSA algorithms, 283
Prototyping, 302

asynchronous, 133
tools, use of in Gurkh framework, 305

Pruning, 213
Pseudorandom numbers, 45
Public-key encryption, 46–47
Public-key encryption performance 

assistance, 43
Pull-channel handshaking protocol, 135–136
Pulse encoding, RASTER architecture, 

150–152
Push-channel handshaking protocol, 135–136
PUSHF instruction, 62
PVT variations

low-skew routing and, 148
synchronous vs. asynchronous design 

issues and, 130–131

Q

QBCs, 240–241, 242–243, 255–256
Quadratic Bézier curves. See QBCs
Quick Sort, use of for benchmarking Fuce 

processor, 189–193

R

RACE-H processor, 108
architecture, 109–116
instruction sets, 112–113
performance evaluation, 120–122
platform, 116–119
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RACE-Hypercube network, 115
Radiosity, 240
Random-bit generator, VIA x86 processor, 

53–55
RASTER architecture, 150

benchmarking of, 164–171
future research areas, 171–173
intercell communication, 150–152
internal pipelining, 158–159
logic cells, 152–156
  area, 162
  internal synchronization, 157–158
potential uses for, 173–174
power-up initialization, 159–160
routing in, 156–157

RavenHaRT, 302
RavenHaRT-II kernel, 307–309
Ravenscar tasking profile, use of in Gurkh 

framework, 303–304
RAW, 3, 35–36

hazards, 90
Ready-queue, 186
Real-time embedded systems, 300

timing requirements of, 306
Reconfigurable Array of Self-Timed Elements 

for Rapid Throughput architecture. 
See RASTER architecture

Refill buffer, 14
Refill unit, 12
Register files, Fuce processor, 185–186
Register marker, hybrid trace/decoupled 

processor, 207
Register tile, 14–15
Register-based interprocessor 

communication, 35
Rendering, 239–240
Reorder buffer. See ROB
Reorder buffer occupancy, 213
REP

function, 48–49
string capability, 56–57

Replay queue, ARM Cortex-A8 processor, 
91–92

Replicating, overhead of, 34
Request buffers, ARM Cortex-A8 processor, 

99–100
Retire unit, 12–13
Retirement table, 13
Retransmission, cost of, 329
Return stack, ARM Cortex-A8 processor, 87
Return to zero method of handshaking, 
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Store tracking, TRIPS, 19
STOSB instruction, 56–57
Stratix II (Altera), use of for benchmarking 

RASTER architecture, 164–171
Subordinate threading, 198
Subsystems

power analysis of, 227–236
power consumption of, intraworkload 

variation, 231–234
use of power sampling to calculate power 

consumption by, 220–224
Successor thread, 179

continuation point in for data-driven 
execution, 180

continuation point in for demand-driven 
execution, 182

Sum-of-pairs score, 283
Superscalar architectures, 36, 177–178
Sweep3D, 260, 263–264

performance of on two-level processing 
system using CSX600, 272–277

Switching options, hybrid trace/decoupled 
processor, 207–208

experimental results, 209–213
Switching power, simulation of, 1620163



Index 369

Symmetric multiprocessors, 261
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Treealign, 284

branches, 292–293
instruction characteristics, 288
phase behavior, 294–295
trace cache, 289–290

TRIPS, 3
area overheads of distributed design, 

30–31
assembly code (TRIPS TASL), 7–8
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