

 Engineering
 Computation
 with MATLAB®

 DAVID M. SMITH
 Georgia Institute of Technology

 International Edition contributions by

 Pournami P.N

 National Institute of Technology Calicut

 Third Edition

 Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Editorial Assistant: Emma Snider
Director of Marketing: Patrice Jones
 Marketing Manager: Yez Alayan
Marketing Assistant: Kathryn Ferranti
Vice President of Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Production Project Manager: Kayla Smith-Tarbox
Publisher, International Edition: Angshuman Chakraborty
Acquisitions Editor, International Edition: Somnath Basu
Publishing Assistant, International Edition: Shokhi Shah
Print and Media Editor, International Edition: Ashwitha
 Jayakumar
Project Editor, International Edition: Jayashree
 Arunachalam

Publishing Administrator, International Editions:
 Hema Mehta
Senior Manufacturing Controller, Production,
 International Editions: Trudy Kimber
Production Editor: Pat Brown
Senior Operations Supervisor: Alan Fischer
Manufacturing Buyer: Pat Brown
Art Director: Anthony Gemmellaro
Creative Director: Jayne Conte
Designer: Kathy Foot
Manager, Visual Research: Karen Sanatar
Manager, Rights and Permissions: Michael Joyce
Media Director: Daniel Sandin
Full-Service Project Management: Kailash Jadli/
 Aptara®, Inc.
Cover Printer: Lehigh-Phoenix Color

 Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoninternationaleditions.com

© Pearson Education Limited 2013

The right of David M. Smith to be identified as author of this work has been asserted by him in accordance with the
Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Engineering and Computation with MATLAB, 3rd
edition, ISBN 978-0-13-256870-8 by David M. Smith published by Pearson Education © 2013.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written
permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in
the documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all
warranties and conditions with regard to this information, including all warranties and conditions of merchantability,
whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make
improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen
shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-76913-8
ISBN 13: 978-0-273-76913-2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in Palatino Lt Std.by Aptara®, Inc.
Printed and bound by Courier Westford in The United States of America

The publisher's policy is to use paper manufactured from sustainable forests.

This book is dedicated to the

glory of Almighty God

 ~David M. Smith

This page intentionally left blank

 Contents

5

 Chapter 1 Introduction to Computers and Programming 19
 1.1 Background 20
 1.2 History of Computer Architectures 21

 1.2.1 Babbage’s Difference Engine 21
 1.2.2 Colossus 21
 1.2.3 The von Neumann Architecture 22

 1.3 Computing Systems Today 23
 1.3.1 Computer Hardware 23
 1.3.2 Computer Memory 24
 1.3.3 Computer Software 26
 1.3.4 Running a Computer Program 29

 1.4 Running an Interpreted Program 31
 1.5 Anticipated Outcomes 31

 1.5.1 Introduction to MATLAB 31
 1.5.2 Learning Programming Concepts 32
 1.5.3 Problem-Solving Skills 32

 Chapter 2 Getting Started 35
 2.1 Programming Language Background 36

 2.1.1 Abstraction 36
 2.1.2 Algorithms 37
 2.1.3 Programming Paradigms 38

 2.2 Basic Data Manipulation 38
 2.2.1 Starting and Stopping MATLAB 38
 2.2.2 Assigning Values to Variables 39
 2.2.3 Data Typing 40
 2.2.4 Classes and Objects 42

 2.3 MATLAB User Interface 42
 2.3.1 Command Window 43
 2.3.2 Command History 44
 2.3.3 Workspace Window 45
 2.3.4 Current Directory Window 48
 2.3.5 Variable Editor 49
 2.3.6 Figure Window 49
 2.3.7 Editor Window 50

 2.4 Scripts 51
 2.4.1 Text Files 51
 2.4.2 Creating Scripts 51
 2.4.3 The Current Directory 52
 2.4.4 Running Scripts 53
 2.4.5 Punctuating Scripts 53
 2.4.6 Debugging Scripts 54

 2.5 Engineering Example—Spacecraft Launch 54

 Chapter 3 Vectors and Arrays 63
 3.1 Concept: Using Built-in Functions 64
 3.2 Concept: Data Collections 64

 3.2.1 Data Abstraction 64
 3.2.2 Homogeneous Collection 64

 3.3 Vectors 64
 3.3.1 Creating a Vector 65
 3.3.2 Size of a Vector 66
 3.3.3 Indexing a Vector 66
 3.3.4 Shortening a Vector 68
 3.3.5 Operating on Vectors 69

 3.4 Engineering Example—Forces and Moments 76
 3.5 Arrays 78

 3.5.1 Properties of an Array 79
 3.5.2 Creating an Array 80
 3.5.3 Accessing Elements of an Array 80
 3.5.4 Removing Elements of an Array 81
 3.5.5 Operating on Arrays 82

 3.6 Engineering Example—Computing Soil Volume 89

 Chapter 4 Execution Control 99
 4.1 Concept: Code Blocks 100
 4.2 Conditional Execution in General 100
 4.3 if Statements 101

 4.3.1 General Template 102
 4.3.2 MATLAB Implementation 102
 4.3.3 Important Ideas 104

 4.4 switch Statements 106
 4.4.1 General Template 106
 4.4.2 MATLAB Implementation 107

 4.5 Iteration in General 108
 4.6 for Loops 108

 4.6.1 General for Loop Template 109
 4.6.2 MATLAB Implementation 109
 4.6.3 Indexing Implementation 111
 4.6.4 Breaking out of a for Loop 112

 4.7 while Loops 112
 4.7.1 General while Template 112
 4.7.2 MATLAB while Loop Implementation 113
 4.7.3 Loop-and-a-Half Implementation 114
 4.7.4 Breaking a while Loop 115

 4.8 Engineering Example—Computing Liquid Levels 115

 Chapter 5 Functions 123
 5.1 Concepts: Abstraction and Encapsulation 124
 5.2 Black Box View of a Function 124
 5.3 MATLAB Implementation 125

 5.3.1 General Template 125
 5.3.2 Function Defi nition 125
 5.3.3 Storing and Using Functions 127
 5.3.4 Calling Functions 127
 5.3.5 Variable Numbers of Parameters 127

6 Contents

 5.3.6 Returning Multiple Results 128
 5.3.7 Auxiliary Local Functions 129
 5.3.8 Encapsulation in MATLAB Functions 129
 5.3.9 Global Variables 130

 5.4 Engineering Example—Measuring a Solid Object 131

 Chapter 6 Character Strings 139
 6.1 Character String Concepts: Mapping Casting, Tokens,

and Delimiting 140
 6.2 MATLAB Implementation 141

 6.2.1 Slicing and Concatenating Strings 142
 6.2.2 Arithmetic and Logical Operations 143
 6.2.3 Useful Functions 143

 6.3 Format Conversion Functions 143
 6.3.1 Conversion from Numbers to Strings 143
 6.3.2 Conversion from Strings to Numbers 145

 6.4 Character String Operations 147
 6.4.1 Simple Data Output: The disp(...) Function 147
 6.4.2 Complex Output 147
 6.4.3 Comparing Strings 147

 6.5 Arrays of Strings 149
 6.6 Engineering Example—Encryption 150

 Chapter 7 Cell Arrays and Structures 159
 7.1 Concept: Collecting Dissimilar Objects 160
 7.2 Cell Arrays 160

 7.2.1 Creating Cell Arrays 160
 7.2.2 Accessing Cell Arrays 161
 7.2.3 Using Cell Arrays 163
 7.2.4 Processing Cell Arrays 163

 7.3 Structures 164
 7.3.1 Constructing and Accessing One Structure 165
 7.3.2 Constructor Functions 166

 7.4 Structure Arrays 168
 7.4.1 Constructing Structure Arrays 168
 7.4.2 Accessing Structure Elements 170
 7.4.3 Manipulating Structures 172

 7.5 Engineering Example—Assembling a Physical Structure 174

 Chapter 8 File Input and Output 185
 8.1 Concept: Serial Input and Output (I/O) 186
 8.2 Workspace I/O 186
 8.3 High-Level I/O Functions 187

 8.3.1 Exploration 187
 8.3.2 Spreadsheets 188
 8.3.3 Delimited Text Files 190

 8.4 Lower-Level File I/O 192
 8.4.1 Opening and Closing Files 192
 8.4.2 Reading Text Files 192
 8.4.3 Examples of Reading Text Files 193
 8.4.4 Writing Text Files 194

 8.5 Engineering Example—Spreadsheet Data 195

Contents 7

8 Contents

 Chapter 9 Recursion 203
 9.1 Concept: The Activation Stack 204

 9.1.1 A Stack 204
 9.1.2 Activation Stack 204
 9.1.3 Function Instances 205

 9.2 Recursion Defined 205
 9.3 Implementing a Recursive Function 206
 9.4 Exceptions 208

 9.4.1 Historical Approaches 209
 9.4.2 Generic Exception Implementation 209
 9.4.3 MATLAB Implementation 211

 9.5 Wrapper Functions 213
 9.6 Examples of Recursion 215

 9.6.1 Detecting Palindromes 215
 9.6.2 Fibonacci Series 216
 9.6.3 Zeros of a Function 217

 9.7 Engineering Example—Robot Arm Motion 220

 Chapter 10 Principles of Problem Solving 229
 10.1 Solving Simple Problems 230
 10.2 Assembling Solution Steps 230
 10.3 Summary of Operations 230

 10.3.1 Basic Arithmetic Operations 231
 10.3.2 Inserting into a Collection 231
 10.3.3 Traversing a Collection 233
 10.3.4 Building a Collection 234
 10.3.5 Mapping a Collection 234
 10.3.6 Filtering a Collection 235
 10.3.7 Summarizing a Collection 236
 10.3.8 Searching a Collection 237
 10.3.9 Sorting a Collection 238

 10.4 Solving Larger Problems 238
 10.5 Engineering Example—Processing Geopolitical Data 239

 Chapter 11 Plotting 249
 11.1 Plotting in General 250

 11.1.1 A Figure—The Plot Container 250
 11.1.2 Simple Functions for Enhancing Plots 250
 11.1.3 Multiple Plots on One Figure—Subplots 251
 11.1.4 Manually Editing Plots 252

 11.2 2-D Plotting 253
 11.2.1 Simple Plots 253
 11.2.2 Plot Options 255
 11.2.3 Parametric Plots 255
 11.2.4 Other 2-D Plot Capabilities 257

 11.3 3-D Plotting 257
 11.3.1 Linear 3-D Plots 257
 11.3.2 Linear Parametric 3-D Plots 259
 11.3.3 Other 3-D Plot Capabilities 260

 11.4 Surface Plots 261
 11.4.1 Basic Capabilities 261
 11.4.2 Simple Exercises 261
 11.4.3 3-D Parametric Surfaces 266

Contents 9

 11.4.4 Bodies of Rotation 268
 11.4.5 Other 3-D Surface Plot Capabilities 273
 11.4.6 Assembling Compound Surfaces 274

 11.5 Manipulating Plotted Data 274
 11.6 Engineering Example—Visualizing Geographic Data 274

 11.6.1 Analyzing the Data 275
 11.6.2 Displaying the Data 276

 Chapter 12 Matrices 285
 12.1 Concept: Behavioral Abstraction 286
 12.2 Matrix Operations 286

 12.2.1 Matrix Multiplication 286
 12.2.2 Matrix Division 289
 12.2.3 Matrix Exponentiation 289

 12.3 Implementation 289
 12.3.1 Matrix Multiplication 290
 12.3.2 Matrix Division 291

 12.4 Rotating Coordinates 292
 12.4.1 2-D Rotation 293
 12.4.2 3-D Rotation 296

 12.5 Solving Simultaneous Linear Equations 299
 12.5.1 Intersecting Lines 300

 12.6 Engineering Examples 301
 12.6.1 Ceramic Composition 301
 12.6.2 Analyzing an Electrical Circuit 303

 Chapter 13 Images 309
 13.1 Nature of an Image 310
 13.2 Image Types 311

 13.2.1 True Color Images 311
 13.2.2 Gray Scale Images 311
 13.2.3 Color Mapped Images 312
 13.2.4 Preferred Image Format 312

 13.3 Reading, Displaying, and Writing Images 313
 13.4 Operating on Images 313

 13.4.1 Stretching or Shrinking Images 313
 13.4.2 Color Masking 314
 13.4.3 Creating a Kaleidoscope 319
 13.4.4 Images on a Surface 321

 13.5 Engineering Example—Detecting Edges 324

 Chapter 14 Processing Sound 333
 14.1 The Physics of Sound 334
 14.2 Recording and Playback 334
 14.3 Implementation 335
 14.4 Time Domain Operations 336

 14.4.1 Slicing and Concatenating Sound 336
 14.4.2 Musical Background 339
 14.4.3 Changing Sound Frequency 340

 14.5 The Fast Fourier Transform 342
 14.5.1 Background 343
 14.5.2 Implementation 344
 14.5.3 Simple Spectral Analysis 345

10 Contents

 14.6 Frequency Domain Operations 346
 14.7 Engineering Example—Music Synthesizer 350

 Chapter 15 Numerical Methods 357
 15.1 Interpolation 358

 15.1.1 Linear Interpolation 358
 15.1.2 Cubic Spline Interpolation 361
 15.1.3 Extrapolation 362

 15.2 Curve Fitting 363
 15.2.1 Linear Regression 363
 15.2.2 Polynomial Regression 365
 15.2.3 Practical Application 367

 15.3 Numerical Integration 369
 15.3.1 Determination of the Complete Integral 369
 15.3.2 Continuous Integration Problems 371

 15.4 Numerical Differentiation 374
 15.4.1 Difference Expressions 374

 15.5 Analytical Operations 375
 15.5.1 Analytical Integration 375
 15.5.2 Analytical Differentiation 375

 15.6 Implementation 375
 15.7 Engineering Example—Shaping the Synthesizer Notes 377

 Chapter 16 Sorting 385
 16.1 Measuring Algorithm Cost 386

 16.1.1 Specifi c Big O Examples 387
 16.1.2 Analyzing Complex Algorithms 388

 16.2 Algorithms for Sorting Data 389
 16.2.1 Insertion Sort 389
 16.2.2 Bubble Sort 391
 16.2.3 Quick Sort 393
 16.2.4 Merge Sort 395
 16.2.5 Radix Sort 397

 16.3 Performance Analysis 398
 16.4 Applications of Sorting Algorithms 400

 16.4.1 Using sort(…) 400
 16.4.2 Insertion Sort 400
 16.4.3 Bubble Sort 401
 16.4.4 Quick Sort 401
 16.4.5 Merge Sort 401
 16.4.6 Radix Sort 401

 16.5 Engineering Example—A Selection of Countries 402

 Chapter 17 Processing Graphs 407
 17.1 Queues 408

 17.1.1 The Nature of a Queue 408
 17.1.2 Implementing Queues 408
 17.1.3 Priority Queues 409
 17.1.4 Testing Queues 411

 17.2 Graphs 414
 17.2.1 Graph Examples 414
 17.2.2 Processing Graphs 415
 17.2.3 Building Graphs 416

Contents 11

 17.2.4 Traversing Graphs 419
 17.2.5 Searching Graphs 421

 17.3 Minimum Spanning Trees 422
 17.4 Finding Paths through a Graph 424

 17.4.1 Exact Algorithms 425
 17.4.2 Breadth-First Search (BFS) 425
 17.4.3 Dijkstra’s Algorithm 426
 17.4.4 Approximation Algorithm 429
 17.4.5 Testing Graph Search Algorithms 431

 17.5 Engineering Applications 433
 17.5.1 Simple Applications 433
 17.5.2 Complex Extensions 433

 Appendices
 Appendix A MATLAB Special Characters, Reserved Words, and Functions A–1
 Appendix B The ASCII Character Set B–1
 Appendix C Internal Number Representation C–1
 Appendix D Answers to True or False and Fill in the Blanks D–1

 Index I–1

12 About the Author

 About the Author

 David Smith has been teaching introductory computer science classes for
engineers at the Georgia Institute of Technology since 1997 when he retired
from industry. Previously, he worked 31 years for Lockheed-Martin at its
Marietta, Georgia, facility as a systems and software specialist with a focus
on intelligent systems. He was active in designing and developing software
for the C-130J, C-27J, F-22, and C-5 aircraft and was the technical leader of
the Pilot’s Associate program, a $64 million research project sponsored by
the Defense Advanced Research Projects Agency.

 Mr. Smith has a bachelor’s degree in aeronautical engineering from
Southampton University and a master’s degree in control systems from
Imperial College, London.

13

 Preface

 “That of all the several ways of beginning a book which are now in practice
throughout the known world, I am confident my own way of doing it is the
best—I’m sure it is the most religious—for I begin with writing the first
sentence, and trusting to Almighty God for the second.”

 Laurence Sterne (1713–1768), British author, clergyman

 This book introduces the power, satisfaction, and joy of computing to
beginning engineering students who have little or no previous computing
experience. It began as a snapshot of the content of a Georgia Tech course
that introduces engineers to computing. However, it has been extensively
enhanced to meet the needs of a wider audience of students and educators
who want to understand programming for other reasons. In this book, to
understand computing, we use the basic syntax and capabilities of
MATLAB, a user-friendly language that is emerging as one of the most
popular computing languages in engineering.

 New to the Third Edition
 Many engineering disciplines use the concept of graphs to represent specific
ideas. We have added a chapter that deals with the fundamentals of graph
manipulation from an engineering standpoint—specifically, how to find a
minimum spanning tree, and both exact and approximate methods for
finding the best path from one point to another. We also try to note those
new features of MATLAB that are relevant to students in an introductory
programming class. For examples, features were added recently allowing a
user to manipulate plotted data by adjusting and saving values. Although
interesting, one can achieve the same result with more traceability and
repeatability by editing to the source data and repeating the plots.

 One interesting observation emerged when refreshing the analysis of
sorting algorithms in Chapter 16 . In older versions of MATLAB (prior to
R2008), our crude recursive implementations of Merge Sort and Quick Sort
did not achieve the expected performance. The reason we deduced was that
when data are passed into and out of a function, they must be copied
between the workspaces of the calling and called functions. With R2011,
however, the same code works splendidly, suggesting that the earlier
inefficient parameter passing mechanisms have been significantly
improved.

14 Preface

 Pedagogical Style
 Computing is not a spectator sport. Students learn computing by using a
computing system to solve problems. This text not only presents computing
concepts and their MATLAB implementation, but also offers students
extensive hands-on exercises. The text illustrates the ideas with examples
from the world of engineering, provides style points, and presents sample
problems that students might encounter. Each chapter includes topics that
go a step beyond the basic content of an introductory class. This gives
professors the choice to progress slowly, and more thoroughly, through the
material in two semesters. It also offers advanced students enrichment
materials for their personal study.

 The overall philosophy of this text approaches programming tools in the
following manner:

 1. Explain a computing concept in general
 2. Discuss its implementation in MATLAB
 3. Provide exercises to master the concept

 To help facilitate students’ understanding of the concept and its
implementation, the text uses two features: general templates and MATLAB
listings. The general templates provide a foundation for students to
 understand concepts in general and can be applied to any language. The
MATLAB listings show students how to implement concepts in MATLAB
and are followed by detailed explanations of the code.

 Features of the Text
 ■ Exercises: Allow students a “Do It Yourself” approach to master

concepts by trying what they just learned. Exercises follow each new
topic.

 ■ Style Points: Advise students about writing quality code that is easy
to understand, debug, and reuse.

 ■ Hints: Enrich students’ understanding of a topic. Hints are
interspersed through the book at points where students may benefit
from a little extra “aside.”

 ■ Engineering Examples: Provide robust models and apply to real-
world issues that will motivate students. Examples from different
engineering disciplines are presented at the end of each chapter.

 ■ Special Characters, Reserved Words, and Functions: Provides a quick
reference for the key MATLAB principles discussed in each chapter.

 ■ Self Test: Helps students to check their understanding of the
material in each chapter.

 ■ Programming Projects: Offer a variety of large-scale projects that
students can work on to solidify their skills.

Preface 15

 Chapter Overview
 Chapter 1 : Introduction to Computers and Programming discusses the history
of computer architectures as they apply to computing systems today. The
chapter provides an overview of computer hardware and software and
how programs execute.

 Chapter 2 : Getting Started discusses some basic concepts of computing and
then introduces the basic operation of the MATLAB user interface. The
chapter also describes how to capture simple MATLAB programs in the
form of scripts.

 Chapter 3 : Vectors and Arrays introduces the fundamental machinery that
sets MATLAB apart from other languages—its ability to perform
mathematical and logical operations on homogeneous collections of
numbers.

 Chapter 4 : Execution Control describes the common techniques used to
control the execution of code blocks—conditional operation and iteration.

 Chapter 5 : Functions describes how to implement procedural abstraction by
defining reusable code blocks.

 Chapter 6 : Character Strings discusses how MATLAB operates on variables
containing text.

 Chapter 7 : Cell Arrays and Structures discusses two kinds of heterogeneous
data collections accessed by index and by name.

 Chapter 8 : File Input and Output describes three levels of ability provided in
MATLAB for transferring data to and from data files—saving workspaces,
specific tools that read and write specific data files, and general-purpose
tools for processing any kind of file.

 Chapter 9 : Recursion discusses and illustrates a widely used alternative
approach to repetitive code execution.

 Chapter 10 : Principles of Problem Solving introduces ideas that help students
design solutions to new problems and avoid the “blank sheet of paper”
syndrome—how to start a program.

 Chapter 11 : Plotting takes the student from basic plotting in two dimensions
to the advanced tools that draw representations of three-dimensional
objects with smooth shading and even multiple light effects.

 Chapter 12 : Matrices describes specific MATLAB capabilities that implement
matrix algebra.

 Chapter 13 : Images discusses how to use vector and array algebra to
manipulate color pictures.

 Chapter 14 : Processing Sound shows how to analyze, synthesize, and operate
on sound files.

 Chapter 15 : Numerical Methods introduces numerical techniques that
commonly occur in engineering: interpolation, curve fitting, integration,
and differentiation.

 Chapter 16 : Sorting presents five algorithms for ordering data, each of
which has applicability under certain circumstances—Insertion Sort, Bubble
Sort, Quick Sort, Merge Sort, and Radix Sort—and then compares their
performance on large quantities of data.

 Chapter 17 : Processing Graphs discusses how to represent graphs in general
and then how to solve two important engineering problems—finding a
minimal spanning tree and finding an optimal path between two nodes of
the graph.

 Appendices provide a summary of the MATLAB special characters, reserved
words, and functions used throughout the text, the ASCII character set, the
internal number representation inside the computer, and answers to the
True or False and Fill in the Blank questions.

 Paths through the Book
 Not all courses that cover programming and MATLAB follow the same
syllabus. Engineering Computation with MATLAB is designed to facilitate
teaching the material with different styles and at different speeds. For
example, Chapters 3 , 4 , and 5 cover MATLAB array manipulation,
iteration, and writing your own functions. There are three schools of
thought about the appropriate way to introduce these concepts. One
would introduce array constructs first and follow up with the more
“traditional” concept of iteration; another would teach iteration first
and deal with the MATLAB-specific array operations later; and the third
would treat functions first. I chose to order the book according to the
arrays-first approach, to suit a particular teaching style. However,
should you prefer iteration or functions first, Chapters 3 , 4 , and 5 can be
used in any order you wish. In practice, over the years, our course has
shifted to a functions-first approach so that we can use function
interfaces to isolate students’ code for automated code grading. Chapters
 6 – 9 should be taught in sequence—there are dependencies between
chapters that would make it awkward change the order. Chapter 10 is
an important chapter that is difficult to place on a class schedule. Where
it stands in the book appears to be a logical position. However, at that
point in the semester, beginning students are still not ready to think
about larger problems. I have usually covered this material (if at all) at
the end of each semester by way of review. Chapter 11 provides basic
plotting capability and is necessary for the remaining chapters. After
that, Chapters 12 – 17 are virtually independent and can be taught in any
order, but should follow Chapters 2 – 9 and 11.

16 Preface

 Supplements
 Various supplemental materials for this text are available at the book’s
Companion Web site: www.pearsoninternationaleditions.com/smith . The
following are accessible to all readers:

 ■ Solutions to selected Programming Projects
 ■ Selected full-color figures
 ■ Source code for all MATLAB listings
 ■ Bonus chapters including: Object-Oriented Programming, Linked

Lists, N-ary Trees and Graphs, and the Cost of Computing

 In addition, the following supplements are available to qualified
instructors at Pearson’s Instructor Resource Center. Please visit www.
pearsoninternationaleditions.com/smith.

 ■ Solutions to all of the Programming Projects
 ■ PowerPoint lecture slides

 Acknowledgments
 The underlying philosophy of this book and the material that forms its
skeleton originated in the work of Professor Russell Shackelford around
1996. Dr. Melody Moore, currently an Associate Professor in the Interactive
Computing department of the College of Computing at Georgia Tech, was
instrumental in creating many of the teaching materials (then as overhead
transparencies) from which this class was first taught. I am deeply indebted
to Professor James Craig from the Aerospace Engineering department at
Georgia Tech, who joined me in co-teaching the first engineering version of
CS1, taught me much about MATLAB, and pioneered this class from the
original 35 students to its current size of over 1,000 engineering students
per semester. This engineering class became a vessel for introducing the
students to the MATLAB language.

 I would like to thank the following reviewers for their insight and
wisdom during the process of manuscript development:

 Kenneth Rouse, Auburn University
 Suparna Datta, Northeastern University
 Gerardine G. Botte, Ohio University
 Mica Grujicic, Clemson University
 Kuldip S. Rattan, Wright State University
 Y.J. Lin, The University of Akron
 Mark Nagurka, Marquette University
 Michael Peshkin, Northwestern University
 Howard Silver, Fairleigh Dickinson University
 Steve Swinnea, The University of Texas at Austin

Preface 17

 The material has benefited from the efforts of every Georgia Tech
teaching assistant (TA), graduate student, instructor, and professor who
has taught CS1, a list too long to enumerate. In particular, those wonderfully
creative TAs who developed the ideas for examples used in this text have
enriched it immeasurably. I wish to credit Professor Aaron Bobick with an
important contribution made in the course of one short conversation. That
conversation was responsible for pulling the class back from the brink of
being merely a MATLAB programming class to one with roots in CS
concepts. Professor Bobick taught CS1 with me in the fall of 2004. Early in
the semester he made a very simple request: he said it would be easier for
him to teach the class if we explicitly expressed the computing concepts
inherent in each lesson, rather than leaving him—and the students—to
tease the concepts out of the teaching materials.

 I cannot adequately express my appreciation for the team at Addison-
Wesley that helped bring this book to fruition. Many of them have done,
and I am sure continue to do, their work “behind the scenes”: Michael
Hirsch, Emma Snider, Yez Alayan, Kayla Smith-Tarbox, Pat Brown, and
Jeff Holcomb. I also really appreciate the work of Kailash Jadli and his team
at Aptara ® , Inc. for the care with which they designed the third edition.

 Most important, I would like to acknowledge the personal contributions
of those people without whom this book would not exist. My wife and best
friend, Julie, has been an unwavering source of strength and encouragement
during the process of writing this text. Bill Leahy was a student in the first
CS1 class I taught in the spring of 1998. In spite of this beginning, he
continued to a master’s in computer science from Tech and is now an
instructor in the College of Computing. Beyond his uncountable technical
contributions to the material in this book, I want to acknowledge his
friendship, encouragement, and wise judgment, all of which have been an
inspiration to me during the process of developing this text.

 The publishers wish to thank Himanshu Chaudhary of the Malaviya
National Institute of Technology, Jaipur, for reviewing the content of the
International Edition.

18 Preface

 Chapter Objectives

 This chapter presents an overview of the historical background of
computing and the computer hardware and software concepts that
build the foundation for the rest of this book:

 ■ Hardware architectures

 ■ Software categories

 ■ Programming languages

 ■ Anticipated outcomes

 Introduction to Computers
and Programming

 C H A P T E R 1

 1.1 Background
 1.2 History of Computer

Architectures
 1.2.1 Babbage’s

Difference Engine
 1.2.2 Colossus
 1.2.3 The von Neumann

Architecture
 1.3 Computing Systems

Today
 1.3.1 Computer

Hardware
 1.3.2 Computer Memory
 1.3.3 Computer Software
 1.3.4 Running a

Computer Program
 1.4 Running an Interpreted

Program
 1.5 Anticipated Outcomes
 1.5.1 Introduction to

MATLAB
 1.5.2 Learning

Programming
Concepts

 1.5.3 Problem-Solving
Skills

19

20 Chapter 1 Introduction to Computers and Programming

 1.1 Background

 Advances in technology are achieved in two steps as follows:

 ■ A visionary conceives an idea that has never been tried before
 ■ Engineers find or invent tools that will bring that vision to reality

 The search for new software tools is therefore an inescapable part of an
engineer’s life. The process of creating these tools frequently spawns sub-
problems, which themselves require creative solutions. The pace of change
in our world is increasing, and nowhere is this phenomenon more
dramatically obvious than computer science. In the span of just a few
generations, computers have invaded every conceivable aspect of our lives,
and there is no indication that this trend is slowing.

 This book will help you become familiar with one specific programming
tool: MATLAB. It is intended to bring you to a basic proficiency level so
that you can confidently proceed on your own to learn the features of other
programming languages that are useful to your interests.

 A word of caution: Learning a programming language is very much
like learning to speak a foreign language. In order to find something to
eat in Munich, you must be able to express yourself in terms a German
can understand. This involves knowing not only some vocabulary words,
but also the grammatical rules that make those words comprehensible—
in German, for example, this means putting the verbs at the ends of
phrases.

 If languages were a strictly theoretical exercise, you could make up your
own vocabulary and grammar, and it would undoubtedly be an
improvement over existing languages—especially English, with its
incredibly complex spelling and pronunciation rules. However, language is
not a theoretical exercise; it is a practical tool for communication, so we
can’t make up our own rules, but are constrained to the vocabulary and
grammar expected by the people with whom we want to converse.

 Similarly, this book is not an abstract text about the nature of computer
languages. It is a practical guide to creating solutions to problems.
Accomplishing this involves expressing your solutions in such a form that
the computer can “understand” your solutions; therefore, it requires that
you use the vocabulary (i.e., the appropriate key words) and grammar (the
syntax) of the language.

 To become proficient in this, as in any other language, it is not enough to
merely know the grammar and vocabulary. You have to practice your
language skills by communicating. For foreign languages, this means
traveling to the country, immersing yourself in the culture, and talking with
people. For computer languages, this means actually writing programs,

1.2 History of Computer Architectures 21

seeing what they do, and determining how to use their capabilities to solve
your engineering problems.

 1.2 History of Computer Architectures

 Computing concepts developed as tools to solve previously intractable
problems. This section will trace the growth of computing architectures,
review the basic organization of computer hardware components, and
emphasize the implementation of the data storage and processing
capabilities by highlighting three milestones on the road to today’s
computers: Babbage’s difference engine, Colossus, and the von Neumann
architecture.

 1.2.1 Babbage’s Difference Engine

 Charles Babbage (1791–1871) is generally recognized as the earliest pioneer
of the modern computer. Babbage’s difference engine—a relatively simple
device that can subtract adjacent values in a column of numbers—is a good
example of a computing device designed to improve the speed and
repeatability of mathematical operations. Babbage was concerned about the
process engineers used to develop the tables of logarithms and trigonometric
functions. In his day, the only way to develop these tables was for
mathematicians to calculate the values in the tables by hand. While the
algorithms were simple—combining tables of the differences between
adjacent values—the opportunity for human error was unacceptably high.
In 1854 Babbage designed a difference engine that could automate the
process of generating tables of mathematical functions. Since the objective
was to create numerical tables, the output device was to be a set of copper
plates ready for a printing press. The memory devices for storing numerical
values were wheels arranged in vertical columns. The arithmetic operations
were accomplished by ratchet devices cranked by hand.

 Sadly, the manufacturing tools and materials available then prevented
him from actually building his machine. However, in 1991 the Science
Museum in London built a machine to his specifications, as shown in
 Figure 1.1 . With only minor changes to the design, they were able to make
the machine work. Although limited in its flexibility, the machine was able
to compute difference equations up to the seventh order with up to 13
significant digits.

 1.2.2 Colossus

 Colossus was a computing machine developed to solve large, complex
problems quickly. Early in the Second World War, Britain was losing the
Battle of the Atlantic—German U-boats were sinking an enormous number
of cargo ships that were resupplying the Allied war effort. The Government

22 Chapter 1 Introduction to Computers and Programming

Code and Cypher School was established at Bletchley Hall in Britain with
the goal of breaking the German codes used to communicate with their
U-boats in the North Atlantic. They were using Enigma machines, relatively
simple devices that encrypted messages by shifting characters in the
alphabet. However, to crack the code they needed to exhaustively evaluate
text shifted by arbitrary amounts. Although the algorithm was known, the
manual solution took too long, and it was often too late to make use of the
information. A computer later named Colossus (see Figure 1.2) was
designed by Max Newman and was custom built for this purpose. While
not a general-purpose processor, Colossus was fast enough to crack all but
the most sophisticated Enigma codes. Sadly, due to security concerns, the
machine was destroyed when the war ended. However, the dawn of
ubiquitous computing was breaking, and general-purpose computers were
soon to be available.

 1.2.3 The von Neumann Architecture

 These and other contemporary achievements demonstrated the ability of
special-purpose machines to solve specific problems. However, the
creativity of John von Neumann ushered in the current era of general-
purpose computing in which computers are flexible enough to solve an

 Figure 1.2 Colossus

 Figure 1.1 Babbage’s difference engine

1.3 Computing Systems Today 23

astonishing array of different problems. Dr. von Neumann proposed a
computer architecture that separated the Central Processing Unit (CPU)
from the computer memory and the Input/Output (I/O) devices (see
 Figure 1.3).

 Together with binary encoding for storing numerical values, this was the
genesis of general-purpose computing as we know it today. Although the
implementation of each component has improved beyond recognition, the
fundamental processing architecture remains unchanged today.

 1.3 Computing Systems Today

 Today’s computing systems—the combination of hardware and software
that collectively solve problems—retain many of the key characteristics of
these inventions: they process more data than is humanly possible, quickly
enough for the results to be useful, and they basically follow the von
Neumann architecture. Computer hardware refers to the physical
equipment: the keyboard, mouse, monitor, hard disk, and printer. The
software refers to the programs that describe the steps we want the
computer to perform.

 1.3.1 Computer Hardware

 All computers have a similar internal organization, as shown in Figure 1.4 ,
that is closely related to the von Neumann architecture. The CPU is usually
separated into two parts: the Control Unit, which manages the flow of data
between the other modules, and the Arithmetic and Logic Unit (ALU), which
performs all the arithmetic and logical operations required by the software.

CPU Memory
Bus

I/O
Bus

Input/Output Memory

 Figure 1.3 von Neumann architecture

Internal
Memory

External
Memory

Input Output
Arithmetic and

Logic Unit (ALU)

Control Unit

CPU

 Figure 1.4 Internal organization of a computer

24 Chapter 1 Introduction to Computers and Programming

 The individual logic devices that comprise the electronic components of
the computer operate in a binary mode, which is represented electrically by
the presence or absence of voltage at a connection. These states, called bits,
have the value of 1 (present) or 0 (absent). Most computer operations
assemble these bits into larger collections—a byte being 8 bits, and words
consisting of 16, 32, 64, or more bits. We refer to the data items coming into
the computer as the input, and the results coming from the computations as
the output.

 Input and output (I/O) is accomplished by moving data between the
memory and external equipment designed to communicate with users or
other computers. In the early days, all devices had to be individually
installed in the computer with dedicated wiring—a process called
hardwiring. In contrast, today this is usually accomplished merely by
plugging devices into one of many data buses (see Figure 1.5). A data bus is
an electronic “pathway” for transporting data between devices. Since most
devices expect to be able to send data on the bus as well as receive data
from it, data bus design always involves a protocol that ensures that only
one device is writing to the bus at any given time.

 1.3.2 Computer Memory

 Memory comes in many forms. Not long ago it could be nicely divided
into two categories—solid state and mechanical. Solid-state memory
modules were directly connected to the processor and used digital
addresses to save and restore data. Mechanical memory relied upon

Register
s0

Register
s1

Arithmetic
Logical Unit

Register
s2

Register
s3

Register
s4

Register
s5

Instruction
Register

Program
Counter

Address
Register

Memory and I/O
Interface

Data Bus Address Bus

Test
Instruction
Decoder

Control Unit

 Figure 1.5 Internal computer details

1.3 Computing Systems Today 25

devices that moved rewriteable storage media past sensors that converted
the impressions on the storage media to digital form. Tape drives, floppy
disks, hard drives, and optical disks (CDs and DVDs) share this
architecture, and they are usually externally connected to the input/
output system. Recently, however, these distinctions have been blurred
by the arrival of devices like flash cards that are solid-state memory
devices but attach to the computer’s I/O ports and behave as if they were
mechanical memory.

 Today, CPUs use many forms of solid-state memory. The first instructions
executed when power is turned on are usually stored in Read-Only Memory
(ROM), sometimes referred to as the Basic Input/Output System (BIOS).
These instructions are just enough to wake up the keyboard and screen in
basic mode and look around for a memory device containing the real
programs. These real programs are transferred from the memory device,
frequently referred to as “mass memory,” to Random-Access Memory
(RAM)—large amounts of high-speed, solid-state memory used to hold all
of the programs and data users need immediately.

 Most processors achieve significant performance improvement by using
smaller amounts of even higher speed memory as cache. Cache memory
processors are smart devices that “guess” what instructions and data the
computer needs next, and preload those guesses into cache memory where
the CPU can reach them quickly. These guesses are based on the likelihood
that the program will continue linearly through the program as opposed to
branching to go somewhere else for the next instruction. A significant
amount of today’s computer architecture design effort focuses on the
effective use of cache memory to improve performance.

 As programs become larger and process more data, and the systems
allow more than one program to run simultaneously, RAM occasionally
fills up. Most operating systems today use virtual memory—a data file
usually on the hard drive that contains an image of everything you would
like to have in RAM divided into pages. When the CPU requires access to a
page that is not actually in RAM, it has to take the time to find a special area
in RAM referred to as a “page buffer” that it can safely use, write its contents
back to virtual memory, and read in the page needed. No matter how smart
this process might be about looking ahead and predicting required pages,
there is always a huge performance loss when a computer begins using
virtual memory.

 Figure 1.6 illustrates some aspects of how computer memory is managed.
The operating system (UNIX, Windows, Mac OS X, or whatever) consumes
some memory and determines from the I/O devices available what internal
software (drivers) must be present to enable the application programs to
communicate with the outside world. As mentioned earlier, many programs

26 Chapter 1 Introduction to Computers and Programming

are loaded automatically when the operating system starts, and others are
loaded upon user request. In addition to the memory needed to store the
instructions, each program is allocated some stack space for storing local
static data. The remaining memory, the heap, is accessible to all programs
upon request to the operating system. The heap is typically used to store
most of the data being manipulated by the programs. When a program
finishes with a block from the heap, it is usually released by that program
for other programs to use as necessary.

 1.3.3 Computer Software

 Computer software contains the instructions that the CPU uses to run
programs. There are several important categories of software, including
operating systems, software applications, and language compilers. Not all
processors need all these facilities. Figure 1.7 illustrates the interactions
among these categories of software and the computer hardware, and the
following sections describe each in more detail.

Heap

Operating System

Driver Driver Driver Driver Driver

Stack A Stack B Stack C

Program A Program B Program C

 Figure 1.6 Typical memory layout

PC, Macintosh,
Sun

UNIX, DOS, Windows

Compilers

Engineers

Spreadsheets

Accountants

Word Processors
Students Lawyers

Operating System

Application Software

User

Hardware

Scientists

 Figure 1.7 Interactions between computer hardware and software

1.3 Computing Systems Today 27

 Operating Systems The operating system (OS) serves as the manager of
the computer system as a whole. It controls access to the processor by users
and networked devices, and it organizes the hardware and software
according to the users’ specifications. The operating system is the first major
software component fetched by the BIOS from mass storage, and it
automatically loads and starts the myriad programs that make computers
“user friendly.” It also provides the tools for making the computer’s
peripheral devices—such as printers, scanners, and DVD drives—available
to other software. Common modern operating systems are Microsoft
Windows, Linux, UNIX, and Apple Mac OS.

 Operating systems also contain a group of programs called utilities that
allow you to perform functions, such as printing files, copying files from
one disk to another, and listing the files that you have saved on a disk.
Although these utilities are common to most operating systems, the
commands themselves vary from operating system to operating system.

 While computer systems give the appearance of stability, like automobiles,
they require periodic maintenance to maintain peak performance.

 ■ You should protect your computer by installing and configuring
utilities that protect it from viruses, intrusive advertising, and
external influences that make illegal use of the processor or its data.
Refer to the documentation for your specific operating system.

 ■ Over time, most disk drives become fragmented—the available
space gets chopped up into smaller and smaller pieces—and the
performance of your system begins to suffer. Defragmentation of a
large disk drive may be an overnight effort, but should be done
periodically.

 ■ While very reliable, computers are not indestructible. You should
establish a regular policy of backing up your personal files onto
removable media. Most operating systems provide such utilities,
and a number of services are now available at a modest cost that
automatically back up your files to encrypted storage whenever
your computer is connected to the Internet. You do not need to back
up commercial software that can be reloaded from the
manufacturer’s installation disks.

 Software Tools Software tools are commercial programs that have been
written to solve specific problems. They are highly sophisticated, complex
applications that use the facilities provided by the operating system to
enable you to create, save, recall, manipulate, and present ideas in the form
of data files on your computer. The specific nature of those files depends on
the nature of the problem. If you need a well-formatted document or report,
word processors are programs that enable you to enter and format text and
graphics. They allow you to develop documents in outline form; move

28 Chapter 1 Introduction to Computers and Programming

words, sentences, and paragraphs; and check your spelling and grammar.
Desktop publishing combines a very powerful word processor with a
high-quality printer to produce professional-grade documents.

 If you need sophisticated results from tabular data, spreadsheets let you
work easily with data that can be displayed in a grid of rows and columns.
Most spreadsheet packages include plotting capabilities to create charts
and graphs, so they can be especially useful in analyzing and displaying
information.

 If you need to store, quickly retrieve, and format large amounts of data,
database management programs are useful tools. They are used by large
organizations, such as banks, hospitals, universities, hotels, and airlines, to
store and organize crucial information; they are also used to analyze large
amounts of scientific data. Meteorology and oceanography are examples of
scientific fields that commonly require large databases for the storage and
analysis of data.

 Computer-aided design (CAD) packages let you define computer
models of real-world objects, assemble groups of such models, and then
manipulate them graphically. CAD packages are frequently used in
engineering applications, and the designs of most automobiles and aircraft
are now “paperless”—the essential information is in a CAD database
rather than on paper.

 Programming Languages All programming languages are merely tools a
programmer uses to express the logic for a computer to implement. Like
any spoken language, a computer language is defined by its grammar
(syntax) and its vocabulary. There are three necessary attributes of a
computer language: the scope of the logic expressed in each line of code
(the power of the language), the clarity of each line of code from the human
viewpoint, and its portability between different types of processor.
Computer languages are frequently described in terms of generations that
reflect the development of language power, clarity, and portability.

 First-generation, or machine languages, are the most primitive languages,
usually tied closely to the nature of the computer hardware. Since the basic
logic of the CPU is binary, the syntax of machine language is expressed as
sequences of 0s and 1s. This maximizes the control over the processor, but
results in programs that are completely incomprehensible to anyone,
including the original programmer, and are absolutely not portable.

 A second-generation language, frequently called assembly language,
is a means of expressing machine language in symbolic form where each
line of code usually produces a single machine instruction. While
programming in assembly language is easier than machine language, it is
still a tedious process that requires each detailed instruction to be

1.3 Computing Systems Today 29

specified; and like the first-generation languages, it is completely tied to
the nature of the CPU.

 Third-generation languages such as C, FORTRAN, and BASIC have
commands and instructions that are more similar to spoken languages. One
line of code of these languages creates many machine level instructions.
Consequently, they are much clearer expressions of the logic of a program,
and the power of each instruction is significantly increased. The resulting
programs are to some degree portable between processor types. Third-
generation languages and beyond are referred to as high-level languages.

 The fourth-generation languages that include Ada and Java take this
trend to the next level. They are completely portable between supported
processor types, and each line of code creates a significant amount of
machine instructions. MATLAB and its close competitors, Mathematica,
Mathcad, and Maple, are very powerful fourth-generation languages that
combine mathematical functions and commands with extensive capabilities
for presenting results in a graphical form. This combination of computation
and visualization power makes them particularly useful tools for engineers.

 The current language development trend is to allow the programmer to
express the overall program logic in a graphical form and have the
programming tools automatically convert the diagrams to working
programs. Programmers involved with these implementations still need
language skills to complete the implementation of the algorithms. The goal
of the fifth generation of languages is to allow a programmer to use natural
language. Programmers in this generation would program in the syntax of
natural speech. Implementation of a fifth-generation language will require
the achievement of one of the grand challenges of computer science:
computerized speech understanding.

 1.3.4 Running a Computer Program

 For most computer languages, getting the program to run involves
compilation, linking, loading, and then executing the program. These
processes are outlined in Figure 1.8 .

 Compilation: Programs written in most high-level languages, such as
C or Java, need to be compiled (i.e., translated into machine
language) before the instructions can be executed by the computer.
A special program called a compiler performs this translation. Thus,

Compile
C Language
 Program Link/Load

Machine
Language
Program

Execute Program
Output

Input Data

 Figure 1.8 Program compilation, linking, loading, and execution

30 Chapter 1 Introduction to Computers and Programming

in order to write and execute C programs on a computer, the
computer’s software must include a C compiler. If any errors 1 are
detected by the compiler during compilation, the compiler generates
corresponding error messages. Programmers must correct the
program statements and then perform the compilation step again.
The errors identified during this stage are called compile-time
errors. For example, if you want to divide the value stored in a
variable called sum by 3, the correct expression in C is sum/3. If you
incorrectly write the expression using the backslash, as in sum\3,
you will get a compiler error. For non-trivial programs, the process
of correcting statements (or debugging) and recompiling often must
be repeated several times before the program compiles without
compiler errors. When there are no compiler errors, the compiler
generates a program in machine language that performs the steps
specified by the original C program. The original C program is
referred to as the source code, and the machine-language version is
called the object code. Thus, the source code and the object code
specify the same logic, but the source code is specified in a high-
level language and the object code is specified in machine language.
 Linking: Once the program has compiled correctly, additional steps
are necessary to prepare the object code for execution. A linker will
search libraries of built-in capabilities required by this program
and collect them in a single executable file stored on the hard drive.
Errors generated in this phase are typically caused by the
programmer referring to program modules that are not, in fact,
defined in the current context.
 Loading: A loader is then used to copy the executable program into
memory where its instructions can be executed by the computer.
 Execution: New errors, synonymously called execution errors,
runtime errors, logic errors, or program bugs, may be identified in
this stage. Execution errors often cause the termination of a
program. For example, the program statements may attempt to
perform a division by zero, which usually generates an execution
error. Some execution errors, however, do not stop the program
from executing, but they cause incorrect results to be computed.
These types of errors can be caused by programmer errors in
determining the correct steps in the solutions and by errors in
the data processed by the program. When execution errors occur
because of errors in the program statements, you must correct the
errors in the source program and then begin again with the
compilation step. Even when a program appears to execute

 1 often called bugs, a reference to an unidentified insect that caused a short in one of the
early digital computers

1.5 Anticipated Outcomes 31

properly, you must check the results carefully to be sure that they
are correct. The computer will perform the steps precisely as you
specify them. If you specify the wrong steps, the computer will
execute these wrong (but syntactically legal) steps and present you
with an answer that is incorrect.

 1.4 Running an Interpreted Program

 An interpreted language is one that does not appear to require compilation.
Rather, the environment in which it is used gives the user the impression that
the instructions are taken one at a time and executed directly. The advantage
of interpreted code is that the programmer can run programs a line at a time
or from a stored text file, see the results immediately, and apply a number of
tools to find out why the results were not as expected. Programmers can
rapidly develop and execute programs (scripts) that contain commands and
executable instructions that allow them to gather data, perform calculations,
observe the results, and then execute other scripts. This interactive
environment does not require the formal compilation, linking/loading, and
execution process described earlier for high-level computer languages.

 The disadvantages of interpreted code are numerous. The code is very
slow to run relative to compiled code because every line must be syntactically
analyzed at run-time. In order to reduce the impact of this as much as possible,
the interpreter will often make use of a compilation step that is hidden from
users. Also, because there is no explicit compilation step, the programmer
does not have the compiler’s protection from syntax errors. Typographical
errors that cause unknown assets to be referenced from a program cannot be
caught by the linker. In fact, all programming errors—syntactic, typographical,
and logical—are postponed until the moment the interpreter tries to deal
with the offending line of code. They all become run-time errors.

 1.5 Anticipated Outcomes

 To conclude this chapter, we list in increasing order of importance three
outcomes for a diligent student: a brief introduction to MATLAB, some
understanding of programming concepts, and improvement in their
problem-solving skills.

 1.5.1 Introduction to MATLAB

 MATLAB is a highly successful engineering programming language that
includes not only the capabilities needed in this text to introduce
programming to novices, but also a vast collection of tools in toolboxes that
enable professional engineers to be highly productive. It is very likely that
you will encounter MATLAB in your career as an engineer. The concepts

32 Chapter 1 Introduction to Computers and Programming

you learn in this book will ensure that you know what to do when faced
with a MATLAB program.

 1.5.2 Learning Programming Concepts

 Even if you never see MATLAB again, you will certainly either need to use
other programming languages or be able to converse effectively with other
engineers who do. Converting to, or writing accurate specifications for,
other languages is greatly simplified if you have a general idea of the
capabilities of that language. When faced with a different programming
language, if the student has an understanding of the basic underlying
programming concepts, the transition from MATLAB to the new language
becomes just one question—“How do I express the concepts I need in the
new language?” We therefore have chosen to explain each programming
concept in a language-independent way before discussing the MATLAB
implementation of that concept.

 1.5.3 Problem-Solving Skills

 More important even than the computing concepts inherent in all computer
languages is the ability to use those concepts as tools to solve a problem.
Before we even start to program, we have to develop an idea of how to solve
the problem before us. If we think about a computer program as a logical
component that consumes data in one form and produces data in another,
we can think about problem solving as the process of designing a collection
of solutions to sub-problems. A brief illustration and example will suffice.

 In general terms, solutions to nontrivial problems are found by the two-
pronged approach illustrated in Figure 1.9 . We can consider the original
information and ask ourselves what could be done with that information
using existing tools, and we can also consider the objective and the different
ways in which that objective might be achieved. The process of creative
problem solving then becomes a search for a match between states that can
be achieved from the given data and states from which the answer can be
achieved.

 For example, say you have a big collection of baseball cards and you
want to find the names of the 10 “qualified” players with the highest lifetime

AnswerData
How you could
find the answer

What you could
do with the data

 Figure 1.9 Generalized problem solving

Chapter Summary 33

batting averages. To qualify, the players must have been in the league at
least five years, had at least 100 plate appearances per year, and made fewer
than 10 errors per year. The cards contain all the relevant information for
each player. You just have to organize the cards to solve the problem.
Clearly there are a number of steps between the stack of cards and the
solution. In no particular order, these are:

 a. Write down the names of the players from some cards

 b. Sort the stack of cards by the lifetime batting average

 c. Select all players from the stack with five years or more in the
league

 d. Select all players from the stack with fewer than 10 errors per
year

 e. Select all players from the stack with over 100 plate appearances
per year

 f. Keep the first 10 players from the stack

 When you think about it from right to left as shown in Figure 1.9 , step a is
probably the last step and step f is probably the step before that. The hard
work starts when you think about it from left to right. Intuitively, when you
think about sorting the stack of cards, this seems like a lengthy process.
Since the sorting should probably be done on a small number of cards, you
should do all the selecting before the sorting. Continuing that line of
reasoning, you would reduce the total effort if the first selection pass was
the criterion that eliminated most cards. You might even consider combining
all three selection steps into one.

 One logical way to find the players’ names that you need would be to
perform the steps in this order: c, d, and e in any order, followed by b, f, and
then a.

 Chapter Summary

 This chapter presented an overview of the historical background of computing and
the computer hardware and software concepts that build the foundation for the
rest of this book:

 ■ The spectrum of software products, ranging from operating
systems to the many flavors of specific programming tools

 ■ The rich variety of programming languages currently in use, and
the place of interpreted programs in that spectrum as a legitimate
fourth-generation language

 ■ The basics of problem solving as a search for a path from the data
provided to the answers required

34 Chapter 1 Introduction to Computers and Programming

 Self Test

 Use the following questions to check your understanding of the material in this chapter:

 True or False

 1. Computers were originally conceived as tools for solving specific
problems.

 2. Bill Gates designed the first working computer.

 3. Programs cannot interact with the world outside the computer
without an operating system.

 4. Programs cannot interact with the world outside the computer
without drivers.

 5. Programs cannot interact with the world outside the computer
without hardware interfaces.

 6. Application programs have access to shared memory.

 7. An algorithm bridges the gap between the available data and the
result to be achieved.

 Fill in the Blanks

 1. Like any human language, a computer language is also defined by
its _______________ and _______________.

 2. Together with the use of binary encoding for storing numerical
values, _______________was the genesis of general-purpose
computing as we know it today.

 3. The process of converting a high-level language program into the
machine language equivalent is called _______________.

 4. Most processors achieve significant performance improvement
by using smaller amounts of even higher speed memory as
_______________.

 5. Many ________________ are loaded automatically when the
operating system starts, and others are loaded upon user request.

 6. Even when a program appears to execute properly, you must check
the results carefully to find ____________ errors.

 7. The part of the ROM which stores the instructions that are executed
when a computer is turned on is known as _______________

 8. The process of problem solving is a search for a match between
_______________ one can achieve from the given data and
__________________ from which the answer can be achieved.

 Chapter Objectives

 This chapter introduces you to some of the fundamentals of
computing that apply to all programming languages, and specifically
to the programming environment used for program development.
The fundamentals of programming include:

 ■ How to use abstraction to think in a general way about a
collection of data and procedural steps

 ■ How to describe the solution of a problem as an algorithm

 ■ The three paradigms of computing and the position of MATLAB in
that spectrum

 ■ Three aspects of the apparently simple task of assigning a value to
a variable

 As you study the MATLAB user interface, you will understand:

 ■ How to use the Command window to explore single commands
interactively and how to recall earlier commands to be repeated
or changed

 ■ Where to examine the variables and files created in MATLAB

 ■ How to view data created in MATLAB

 ■ How MATLAB presents graphical data in separate windows

 ■ How to create scripts to solve simple arithmetic problems

 Introduction

 The name MATLAB is a contraction of Mat rix Lab oratory. It was developed for
engineers to create, manipulate, and visualize matrices—rectangular arrays of
numerical values. At its most basic level, MATLAB can perform the same functions as
your scientific calculator, but it has expanded far beyond its original capabilities and
now provides an interactive system and programming language for many applications,
including financial analysis as well as general scientific and technical computation.

 Getting Started
 C H A P T E R 2

 2.1 Programming Language
Background

 2.1.1 Abstraction
 2.1.2 Algorithms
 2.1.3 Programming

Paradigms
 2.2 Basic Data Manipulation
 2.2.1 Starting and

Stopping MATLAB
 2.2.2 Assigning Values to

Variables
 2.2.3 Data Typing
 2.2.4 Classes and Objects

 2.3 MATLAB User Interface
 2.3.1 Command Window
 2.3.2 Command History
 2.3.3 Workspace

Window
 2.3.4 Current Directory

Window
 2.3.5 Variable Editor
 2.3.6 Figure Window
 2.3.7 Editor Window

 2.4 Scripts
 2.4.1 Text Files
 2.4.2 Creating Scripts
 2.4.3 The Current

Directory
 2.4.4 Running Scripts
 2.4.5 Punctuating Scripts
 2.4.6 Debugging Scripts

 2.5 Engineering Example—
Spacecraft Launch

35

36 Chapter 2 Getting Started

 The following are the fundamental components of MATLAB:

 ■ A computing system that accepts one instruction at a time in text form and
implements the logic of that instruction. Instructions must conform to a
specific syntax and vocabulary, which will be the topic of Chapters 3 – 9 .

 ■ A large library of modules that provide high-level capabilities for processing
data. These modules will be the major topic of Chapters 10 – 17 .

 ■ A graphical user interface (GUI) that lets users assemble and implement
programs that solve specific problems. The rest of this chapter will describe
the basic behavior of these windows.

 MATLAB offers a number of advantages to users over conventional, compiled
languages like C++, Java, or FORTRAN:

 ■ Because MATLAB programs are interpreted rather than compiled, the process
of producing a working solution can be much quicker than with compiled
languages.

 ■ MATLAB excels at numerical calculations, especially matrix calculations.

 ■ MATLAB has built-in graphics capabilities that produce professional-looking
images for reports.

 However, the very attributes that make MATLAB convenient for a user to develop
quick solutions to certain problems make it unsuitable for other kinds of projects. For
example:

 ■ MATLAB does not work well for large computing projects where a number of
developers share coding responsibilities.

 ■ Professional GUIs and windowing applications (like the MATLAB system
itself) are best written in a compiled language.

 2.1 Programming Language Background

 Before learning about concepts in computing, you need to understand the
background of programming languages. This section discusses the following
aspects of programming languages: abstraction, algorithms, programming
paradigms, and three fundamental concepts of programming—assigning
values to variables, data typing, and the difference between classes and objects.

 2.1.1 Abstraction

 For the purpose of this text, we will define abstraction as “expressing a
quality apart from a particular implementation.” We use the concept of
abstraction in everyday conversation without thinking about it:

 “To convert from degrees Celsius to Kelvin, you add 273 to the
temperature .”

 “He drove home from the office.”

2.1 Programming Language Background 37

 The first is an example of data abstraction . “The temperature” could mean
a single reading from the thermometer hanging outside the window or a
table of temperature readings for the month of August. The specifics are
unimportant; the phrase captures all you need to know.

 The second example is actually much more complex—an example of
multiple levels of procedural abstraction . To a businessperson taking the
same route home every night, “drive home” is all that is required to
understand the idea. To a competent driver unfamiliar with the route, the
next level of abstraction might be necessary—turn right out of the parking
lot, left onto Main Street, and so on. For instructions to guide a future
robotic commuter vehicle, an incredibly fine-grained level of abstraction
will be required. Everything taken for granted in the higher level
abstractions will need to be meticulously spelled out for the robotic
vehicle—start the engine, accelerate the vehicle, look out for traffic, keep in
the lane, find the turn, steer the vehicle, control the speed, observe and
obey all signs, and so on.

 2.1.2 Algorithms

 Chapter 1 defined problem solving as the ability to isolate sub-problems
that seem simple and appropriate to solve, and then assemble the
solutions to these sub-problems. The solutions to each of these sub-
problems would be expressed as an algorithm , which is a sequence of
instructions for solving a sub-problem. The process of solving each sub-
problem and assembling the solutions to form the solution to the whole
problem would also be expressed as an algorithm at a higher level of
abstraction.

 The level of abstraction needed to describe an algorithm varies greatly
with the mechanism available. For example, describing the algorithm
(recipe) for baking cookies might take the following forms:

 ■ To your grandmother, who has been baking cookies for the last 50
years, it might be “Please bake some cookies.”

 ■ To others it might be “Buy a cookie mix and follow the directions.”
 ■ To a young person learning to cook from scratch, the algorithm

might include an intricate series of instructions for measuring,
sifting, and combining ingredients; setting the oven temperature
and preheating the oven; forming the cookies and putting them on
the cookie sheet; and so on.

 In programming terms, algorithms are frequently expressed first
conceptually at a high level of abstraction, as demonstrated in Section 1.5 .
The solutions to each sub-problem would then be expressed at lower and
lower levels of abstraction until the description is sufficient to write
programs that solve each sub-problem, thereby contributing the pieces that,
when assembled, solve the whole problem.

38 Chapter 2 Getting Started

 2.1.3 Programming Paradigms

 From the Greek word paradeigma —“to show alongside”—the American
Heritage Dictionary defines a paradigm as “a set of assumptions, concepts,
values, and practices that constitutes a way of viewing reality for the
community that shares them, especially in an intellectual discipline.” So
a programming paradigm becomes a codified set of practices allowing
the community of computing professionals to frame their ideas. This
section considers three radically different paradigms: functional
programming, procedural programming, and object-oriented
programming.

 Functional programming is typically associated with languages like
Lisp and Forth, in which every programming operation is actually
implemented as a function call with no side effects (changes of state of the
program surroundings) permitted or implemented in the language. Without
side effects, a programming solution can be mathematically proven to be
correct—an enormous advantage. Except for the discussion of recursion,
this paradigm will not be mentioned again.

 Procedural programming is typical of languages like FORTRAN, C, and
MATLAB, where the basic programs or sub-programs are sequences of
operations on data items that are generally accessible to all programs.
Although side effects from sub-programs—such as changing the values of
variables outside that sub-program—are considered poor practice, they are
not prohibited by the language.

 Object-oriented programming (OOP), typical of languages like C++,
Ada, and Java, is a relatively new addition to the world of programming
paradigms. It is characterized by the concept of encapsulating, or
packaging, data items together with the methods or functions that
manipulate those data items. In this paradigm, side effects are explicitly
managed by controlling access to the data and methods in a particular
grouping. The major theme in true OOP is that “everything is an object.”
You will see MATLAB exhibiting many traits of OOP as you work through
this book, but you will not need to use this programming paradigm.

 2.2 Basic Data Manipulation

 In order to use MATLAB to demonstrate basic data manipulation, we begin
with an exercise in starting and stopping the MATLAB system.

 2.2.1 Starting and Stopping MATLAB

 Exercise 2.1 shows you how to start and stop the MATLAB user interface.
We will soon see the details of all the program’s windows. For the moment,

2.2 Basic Data Manipulation 39

however, we will interact with MATLAB by typing instructions in the large
Command window that occupies the left side of your screen.

 2.2.2 Assigning Values to Variables

 The concept of assigning values to variables is the first challenge facing
novice programmers. The difficulty arises because many programming
languages (including MATLAB) present this simple concept in a syntax
that is very similar to conventional algebra, but with significantly different
meaning. Consider, for example, the following algebraic expression:

z = x + y

 In normal algebra, this is a two-way relationship that is an identity for the
duration of the problem. If you knew the values of z and x , you could derive
the value of y with no further analysis. To a programmer, however, this
statement has a different meaning. It means that you want to sum the values
given to the variables x and y , and store the result in a variable called z . If
either x or y is unknown at the time of executing this statement, an error
ensues. In particular, this relationship is true only for this statement . The
relationship can be revoked in the next instruction, which might be:

z = 4*x - y

 In algebra, this pair of statements collectively constrains the values of x , y ,
and z . In programming, the only significance is that the programmer
decided to calculate the current value of z differently. A few computer
languages are sensitive to this dilemma and use a different symbol for
assigning values to a variable. For example, in Pascal or Ada, an instruction
to assign the value z = x + y would be written as follows:

z := x + y

 The “:=” operator clearly indicates that this is an assignment statement, not
an algebraic identity.

 Variable names: In general, variable names may contain any combination
of uppercase and lowercase alphabetic letters, numbers, and the special

 Exercise 2.1 Starting and stopping MATLAB

 If you have not installed MATLAB on your computer yet, follow the directions
that came with your license for performing and testing the installation.
 To start MATLAB, double-click on its icon. In the Interactions window you
should see the MATLAB prompt (>>), which tells you that the MATLAB
system is waiting for you to enter a command.
 To exit MATLAB, type exit at the MATLAB prompt, choose the menu option
File > Exit, or click the close icon (x) in the upper-right corner of the screen.

40 Chapter 2 Getting Started

characters _ (underscore) and $ (dollar). The underscore character is
frequently used to represent a space in a variable name because spaces are
not allowed. However, variable names may not begin with a numeric
character, and even though the names may be hundreds of characters long,

the first 64 characters must be
unique. Exercise 2.2 demonstrates the
assignment of values to variables.

 2.2.3 Data Typing

 It is important to understand how
MATLAB treats the data stored in a
variable. Different languages take
varying approaches to this problem,
and languages in general fall into two
broad categories: untyped and typed.
In general, interpreted languages like
Lisp, Forth, Python, and MATLAB
determine the type of data contained
by a variable based on the type of
data being stored there. Such
languages are referred to as untyped
languages . Each assignment

 Exercise 2.2 Assigning variables

 When you start MATLAB, you should see the prompt ‘>> ’ in the Interactions
window. This is your invitation to type something. Text that you should type
will be shown like this throughout this book:

>> radius = 49

 Note that all entries in the Interactions window terminate with the e key.
The system response will be shown like this:

radius =
49

>>

 This response indicates that the value 49 has been stored in a variable named
 radius. To retrieve the value of radius, you just type its name and press
e.

>> radius
ans =
 49

 This response shows that the value 49 has been retrieved. Since you didn’t
specify where to put this result, it was stored in a default variable named ans.

 Style Points 2.1

 1. Some early versions of the FORTRAN and Basic languages
severely restricted the number of characters you could use
for variable names. It is no longer necessary to program as if
you were still in the “bad old days.” Choose names for
variables that describe their content. For example, a variable
used to store the velocity of an object should be named
velocity_in_feet_per_second rather than v.

 2. Since the space character is not permitted in variable
names, there are two conventions for joining multiple words
together to make a single variable name. One uses the
underscore character to separate the words (file_size),
and the other capitalizes the first letter of additional words
(fileSize).You should choose one convention and be
consistent with it. You cannot use a hyphen to concatenate
words—MATLAB treats the name file-size as the
arithmetic operation subtracting the value of the variable
size from the value of the variable file.

2.2 Basic Data Manipulation 41

statement is presumed to be correct. If the variable already exists, both its
type and value are reassigned; if it did not exist before, a new variable is
created. Exercise 2.3 illustrates the effect of performing simple mathematical
operations in MATLAB. By putting 49 into the variable radius, you
established its type as numeric and enabled it to be used in normal
arithmetic operations. Character strings are specified by including arbitrary
characters between single quote marks. These have the type char, and must
be handled differently, as discussed fully in Chapter 6 . When you stored a
character string in the variable radius, adding 1 to it did not cause an error
in MATLAB as it would in some other languages, because addition is
actually defined for character strings. It just did something radically
different—it actually converted the individual characters to numbers and
then added 1!

 While this ability to assign data types dynamically is good for interpreted
languages, it has two undesirable consequences that are really hard to
unravel as the program runs:

 ■ Typographical errors that misspell variable names in assignment
statements cause new variables to be declared unintentionally and
without the user noticing the error

 ■ Logical errors that assign incompatible data to the same variable
can cause obscure runtime errors

 Typed languages require that programmers declare both the name and
type of a variable before a value can be assigned to it. With this information,
a compiler can then do a better job of ensuring that the programmer is not
using a variable in an unintended way. Typed languages fall into two
categories: weak typing and strong typing. If programmers decide to use
only the normal data types, such as double and char as we saw above, this

 Exercise 2.3 Performing basic mathematical operations

 Make the following entries in the Interactions window. You should see the
responses as shown here:

>> radius = 49
radius =

49
>> radius + 1
ans =

50
>> radius = 'radius of a circle'
radius =
 radius of a circle
>> radius + 1
ans =
115 98 101 106 118 116 33 112 103 ...

42 Chapter 2 Getting Started

is known as weak typing and is the usual approach to typing. In some
extreme circumstances, programmers may choose to be more restrictive
and define specific data types with a limited set of permitted interactions.
This is called strong typing . For example, programmers might define the
following data types, all of which are actually of type double: meters,
seconds, and meters_per_second. The compiler would then be provided
with a set of rules specifying the legal relationships between these types. For
example, assignments can only be made to a variable of type meters_per_
second from another variable of the same type, or by dividing a variable of type
meters by a variable of type seconds.1

 2.2.4 Classes and Objects

 This section discusses two different attributes of a variable: its type and its
value. In Section 2.2.2 you saw that a variable is a container for data, whose
 value is determined by what is assigned to the variable. In Section 2.2.3 you
saw that by making that assignment to a variable, MATLAB also infers the
 type of data stored in that variable. You will see that while MATLAB is an
untyped language, the programs you write will behave differently if
applied to data of different types. For example, the type double specifies the
form and expected behavior of a number. Adding 1 to a variable of class
double containing 4 will, as expected, produce the result 5. Similarly, the
type char is intended to hold a single character. Adding 1 to a char variable
containing the value 'd' will produce the numerical equivalent of the
character 'e'. MATLAB refers to the type of data in a variable as its class ,
and the value contained in the variable at any time as an object , an instance
of that class. So in the operation:

this_number = 42.0

 the variable this_number would be defined (if it didn’t already exist); its
class would be set to double, the inherent type of a floating point number;
and its value to 42.0. So the word double corresponds to a type definition
or class, while the variable this_number is a variable of that type, which is
an instance of that class or, in programming terms, an object.

 2.3 MATLAB User Interface

 MATLAB uses several display windows (see Figure 2.1). The default view
includes a large Command window on the left, and stacked on the right are
the Files, Workspace, and Command History windows. The tabs near the

 1 Before rushing to judge on the pickiness of this approach, note that this would have
avoided the loss in 1999 of the Mars Climate Orbiter, which crashed into Mars because
one group of programmers used English units while another used metric.

2.3 MATLAB User Interface 43

middle of the windows on the right indicate which
views are layered in that particular window. Selecting
a tab will bring that view to the top. Other windows,
such as an Editor window or a Figure window, will
automatically open when needed.

 2.3.1 Command Window

 You can use MATLAB in two modes: Command
mode, which is useful if you need instant responses
to specific MATLAB commands, and Edit mode, in
which practical solutions are developed. When
working in Command mode, we use the Command
window, which offers an environment similar to a
scientific calculator. This window lets you save any
values you calculate, but you cannot permanently
save the commands used to generate those values.
You will see in the next section how to use the
Editor window to create and execute a text file of
commands as the first step to unleashing the full
programming capability of the language. The
Command window is useful for performing quick
experiments to discover the effects of different
commands in MATLAB before embedding them
in a larger program. You can perform calculations
in the Command window much like doing
calculations on a scientific calculator. Most of the

Command History

Workspace Tab

Current Folder

Command Window

 Figure 2.1 The MATLAB default window configuration

 Hint 2.1

 If you are using MATLAB, you can
customize how your initial window will
display. If you make a mistake and close
an essential window, you can always
restore the default configuration by
choosing Desktop > Desktop Layout >
Default.

 Hint 2.2

 When you make a mistake, you cannot
easily correct it as you would in a word
processor. The Interactions window
really is functioning like a calculator,
performing one instruction at a time
exactly as you specify them. When you
enter the command, it is immediately
executed, regardless of whether that is
what you intended. MATLAB offers
several ways to correct erroneous
commands. One way is to use the arrow
keys on your keyboard. The up and
down arrows let you move through the
list of commands you have executed.
Once you find the appropriate
command, you can edit it and then press
e to execute your new version.

44 Chapter 2 Getting Started

syntax is even the same. Exercise 2.4 shows how you might use the
Command window to test two simple calculations.

 Notice that in both of the examples in Exercise 2.4 , MATLAB echoes the
result as if it were saved in a variable called ans. This is the default variable
used to save the result of any calculation you perform in the Command
window that is not specifically assigned to another variable. Notice also the
use of one of MATLAB’s many built-in functions, cos(...), that compute
the cosine of an angle in radians, and of the built-in constant pi.

 2.3.2 Command History

 The Command History window records the commands you issued in the
Command window in chronological sequence. When you exit MATLAB or
when you issue the clc (Clear Commands) instruction, the commands

listed in the Command window are cleared.
However, the Command History window
retains a list of all the commands you
issued. You can clear the Command
History using the Edit menu if you need to
by selecting Edit and then Clear Command
History. If you entered the sample
commands in Exercise 2.4 , notice that they

are repeated in the Command History window. This window lets you
review previous MATLAB sessions, and you can transfer the commands to
the Command window by copying and pasting. Exercise 2.5 demonstrates
the use of the Command History window. You will find the Command
History window useful as you perform more and more complicated
calculations in the Command window.

 Hint 2.3

 As a security precaution, if you use MATLAB on a
public computer, you can set its defaults to clear the
Command History window when you exit MATLAB
or when you log off the computer.

 Exercise 2.4 Using the Interactions window

 To compute the value of 5 2 , type this command:

>> 5^2

 The following output will be displayed:

ans =
 25

 To find the cosine of p, type:

>> cos(pi)

 which results in the following output:

ans =
-1

2.3 MATLAB User Interface 45

 2.3.3 Workspace Window

 The Workspace window keeps track of the variables you have defined as
you execute commands in the Command window. As you have seen in the
exercises so far, because you have not created other variables yet, the
Workspace window should just show one variable, ans. The columns in the
window display the name of the variable, its current value, and an entry in
the class column (see Figure 2.2). In this case, the variable ans has a value of
25 and is a double array. Actually, even a single number you would usually
consider a scalar is a 1 3 1 array to MATLAB. Exercise 2.6 shows how to
obtain more information about a particular variable. Figure 2.2 shows the
normal Variable window display for the variable ans. Figure 2.3 shows that
the variable ans is a 1 3 1 array, uses 8 bytes of memory, and is an object of
class double.

 In Exercise 2.7 , variable A has been added to the Workspace window,
which lists variables in alphabetical order. Variables beginning with capital

 Exercise 2.6 Showing more details in the Workspace window

 Set the Variables window to show more about the variable ans by right-clicking
on the bar with the column labels. On the drop-down menu, check the boxes
next to Size and Bytes, so that these will display in addition to Name,Value, and
Class. Your Variables window should now look like Figure 2.3 .

 Exercise 2.5 Using the Command History window

 In the Interactions window, type:

>> clc

 This should clear the Interactions window but leave the data in the Command
History window intact. You can transfer any command from the Command
History window to the Interactions window by double-clicking it (which also
executes the command) or by clicking and dragging the line of code into the
Interactions window. Try double-clicking:

cos(pi)

 This should result in the following display in the Interactions window:

ans =
-1

 Now click and drag 5^2 from the Command History window into the
Interactions window. The command won’t execute until you press the e
key, and then you’ll get the following result:

ans =
25

46 Chapter 2 Getting Started

letters are listed first, followed by variables starting with lowercase letters,
as shown in Figure 2.4 .

 Exercise 2.8 added the variable B to the Workspace window, and in
 Figure 2.5 you can see that its size is a 1 3 4 array.

 You define two-dimensional arrays in a similar fashion. Semicolons
are used to separate rows, as illustrated in Exercise 2.9 . As you can see in

 Figure 2.3 Additional information in the Workspace window

 Figure 2.2 The Workspace window

 Exercise 2.8 Creating a vector

 Entering matrices is not discussed in detail in this section. However, you can
enter a simple one-dimensional matrix by typing:

>> B = [1, 2, 3, 4]

 This returns:

B =
1 2 3 4

 The commas are optional. You would see the same result from:

>> B = [1 2 3 4]

 Exercise 2.7 Defining other variables

 You can define additional variables in the Interactions window, and they will
be listed in the Variables window. For example, type:

>> A = 5

 This returns:

A =
 5

2.3 MATLAB User Interface 47

 Figure 2.6 , variable c appears in the Workspace window as a 3 3 4 array.
Vectors and arrays are discussed fully in Chapter 3 .

 You can recall the values for any
variable by just typing in the variable
name, as shown in Exercise 2.10 .

 If you prefer to have a less cluttered
desktop, you can close any of the
windows (except the Command
window) by clicking the x in the
upper-right corner of each window.

 Figure 2.4 Additional variables

 Figure 2.5 Vector added in the Workspace window

Note:

MATLAB presents numerical results in the
following default format: if the value is an integer,
there are no decimal places presented; but if there
is a fractional part, four decimal places appear.
You can change this by using the format
command. See MATLAB help for details.

 Exercise 2.9 Creating a 3 3 4 matrix

>> C = [1 2 3 4; 10 20 30 40; 5 10 15 20]

 returns:

C =
 1 2 3 4

10 20 30 40
5 10 15 20

 Now, enter

>> C = [1 2 3 4; 10 20 30 40];

 You will see the value of C change in the Variables window, but not echoed in
the Interactions window. The semicolon on the end of the line suppresses
presentation of the result.

48 Chapter 2 Getting Started

You can also personalize which windows you prefer to keep open by
selecting View from the menu bar and checking the appropriate windows.
If you suppress the Workspace window, you can still find out what variables
have been defined by using the commands who or whos. The command who
lists the variable names, and whos lists the variable names together with
their size and class. Exercise 2.11 illustrates this capability.

 2.3.4 Current Directory Window

 When MATLAB accesses files from and saves information to your hard
drive, it uses the current directory. The default for the current directory
depends on your version of the software and how it was installed. The
current directory is listed at the top of the main window (see Figure 2.7).
This can be changed by selecting another directory from the drop-down list
to the right of the current directory name, or by browsing through your

 Figure 2.6 Array added in the Workspace window

 Exercise 2.11 Using the whos command

>> whos

 You should see the following display in the Command window:

Name Size Bytes Class
A 1x1 8 double array
B 1x4 32 double array
C 3x4 96 double array
ans 1x1 8 double array
Grand total is 18 elements using 144 bytes

 Exercise 2.10 Recalling values for variables

>> A

returns:

ans =
5

2.3 MATLAB User Interface 49

computer files using the browse button located to the right of the drop-
down list (circled in Figure 2.7).

 2.3.5 Variable Editor

 Double-clicking on any variable listed in the Workspace window
automatically launches a Variable Editor window. Values stored in the
variable are displayed in a spreadsheet-like format. You can change values
in the Variable editor, or you can add new values.

 2.3.6 Figure Window

 A Figure window is created automatically when a MATLAB command
requests a graph. Exercise 2.12 guides you through creating a graph. The
MATLAB window opens automatically (see Figure 2.8). Any additional
graphs you create will overwrite the plot in the current Figure window

unless you specifically command
MATLAB to open a new Figure window
with the figure command. If you are using
MATLAB version R2008a or newer, the
first time you open a Figure window, a
pop-up window appears with links to
information about brushing and linking.
As with the use of the Variable Editor, this

Browse Button

 Figure 2.7 The current directory

 Hint 2.4

 It is generally considered to be poor practice to edit
the values of data by hand. A more rigorous
approach would be to change the script that
generated the data, thereby making the data changes
repeatable.

 Exercise 2.12 Creating a graph

>> x = [1 2 3 4 5];

 A new variable, x , appears in the Workspace window.

>> y = (x-3).^2;

 To create a graph, use the plot command:

>> plot(x,y)

50 Chapter 2 Getting Started

is not the best way to modify data. See Hint 2.4 . You can permanently
hide this window by clicking the X at its right side.

 MATLAB makes it easy to modify graphs by adding titles, x and y labels,
multiple lines, and more with MATLAB built-in commands. Details of these
commands will be presented in Chapter 11 .

 2.3.7 Editor Window

 MATLAB provides a text editor, enabling you to create or modify text files
that run in the Editor window. The Editor window is opened by choosing
File > New > M-File. This window lets you type and save a series of
commands without executing them. You can also open the Editor window
by double-clicking a file name in the Current Directory window or by
typing:

>> edit <file_name>

 in the Command window, where <file_name> is the name of the file you
want to open. You can open multiple files at the same time, using the

 Figure 2.8 A Graphics window

2.4 Scripts 51

tabbed overlays to identify the files. An asterisk appears on the tab with
the file name to indicate that the file has been modified since it was saved.
Options under the Window menu let you organize the multiple files in
various ways that make more than one file visible at once. When closing
the Editor window, MATLAB displays a dialog asking if you need to save
any changed files.

 2.4 Scripts

 This section describes the basic mechanism for creating, saving, and
executing scripts as m-files. Building script files lets you save and
reuse program statements without retyping them in the Command
window.

 2.4.1 Text Files

 MATLAB uses text files as a permanent means of saving scripts (sets of
instructions) rather than just entering commands in the Command window.
As you will see in Chapter 8 , text files are streams of characters stored
sequentially with “markers” that indicate the end of each line of text. For
now, think of a script much like writing an e-mail message—a number of
lines of text written in a “smart” editor. The MATLAB Editor uses various
techniques to help you format commands in these files.

 2.4.2 Creating Scripts

 A MATLAB script consists of a combination of executable instructions
that MATLAB interprets and comment statements that help readers
understand the script. You create comments by putting a percent sign (%)
in the text file. MATLAB will ignore all text from that mark to the end of
the current line. The MATLAB Editor colors all such comments green to
distinguish them from the executable instructions. Most applications that
use files specify a particular file name extension (the characters after the
period in the file name) to identify how the text files will be used. MATLAB
uses the extension .m, and the script files are often referred to as m-files .
You create a new script file either by choosing File > New > M-File or by
clicking the new file icon on the far left of the tool bar. The MATLAB

Editor will then open a blank file in which
you can enter the commands and
comments of your script.

 Import Note : Because MATLAB treats
the names of .m files much like variable
names, the names of your files must follow
the same rules as those for variables in
 Section 2.2.2 above.

 Hint 2.5

 We began this first script with two commands:
 clear and clc . Every script should have these two
commands (and later, also close all) before its
first executable instruction. However, to avoid
repetition, we will not include these commands in
subsequent listings in this test.

52 Chapter 2 Getting Started

 In Listing 2 . 1 :

 Line 1: Instructs MATLAB to delete all variables in your working
directory.
 Line 2: Instructs MATLAB to clear the Command window. Any text
that now appears in the Command window will be the result of
running this script, not the result of previous activities.
 Lines 3–4: Assign values to A and B. The semicolons prevent
MATLAB from displaying the result in the Command window; the
percent sign begins the legible comment. Lines may contain nothing
but a comment.
 Line 5: Intermediate results with suitable names sometimes
improve the legibility of the algorithm.
 Line 6: Invokes the built-in library function sqrt(...) to compute the
final result.

 2.4.3 The Current Directory

 After you have entered a script, you must name it and save it in a directory.
MATLAB will need to find that directory—its working directory—in order
to run the script. By default, MATLAB expects scripts to be stored in the

 Exercise 2.13 Creating a script

 In this exercise, you will create a script derived from the Pythagorean theorem
to compute the hypotenuse of a right triangle:

H2 = A 2 + B 2

 where A and B are the sides adjacent to the right angle, and H is the hypotenuse
opposite. Open a new script file and type the commands shown in Listing 2 . 1
(don’t type the accompanying line numbers—they will be automatically
displayed).

 Listing 2.1 Script to solve for the hypotenuse

1. clear
2. clc
3. A = 3; % the first side of a triangle
4. B = 4; % the second side of a triangle
5. hypSq = A^2 + B^2; % the square of the

% hypotenuse
6. H = sqrt(hypSq) % the answer

 Try creating the script described in Exercise 2.13 and shown in Listing 2 . 1 .

2.4 Scripts 53

working directory, displayed in the tool bar at the top of the MATLAB main
window. The specific path will vary with your version of MATLAB.
However, the Current Directory window circled in Figure 2.7 always shows
the default location when MATLAB starts. If you decide to store your
scripts elsewhere, you will need to redirect MATLAB to that directory by
typing it into the Current Directory window or using the browse button to
the right of the display.

 Once script files are saved in your working directory, you can edit them
again by selecting and opening them with the MATLAB Editor. To open
them, either use the File > Open menu command or double-click the file
name in the Current Directory window. Before you close MATLAB, you
should save the file created in Exercise 2.13 .

 2.4.4 Running Scripts

 After you have built and saved a script, you can run it using any of the
following methods:

 ■ Type the name of the script in the Command window.
 ■ Choose the Debug > Run menu item in the MATLAB Editor

window.
 ■ Press the F5 key when the script is visible in the editor. Doing this

saves the script automatically before executing it.

 The latest versions of MATLAB will echo the file name in the Command
window when you invoke the script by the latter two methods. After you
execute the script, the trace output is written to the Command window as if
you had typed the script instructions there one at a time. For practice, run
the script created in Exercise 2.13 .

 2.4.5 Punctuating Scripts

 Many programming languages put a semicolon (;) at the end of a line to
indicate the end of a command. Since the MATLAB language uses the end
of a line to indicate the end of a command, it does not require an end-of-
command character. If a long command needs to be extended to the next
line for convenience in viewing the program, three periods, frequently
referred to as ellipses , must be placed at the end of the line to continue
the script.

 The MATLAB language uses the semicolon for a different purpose. By
default, all assignment commands display their results in the Command
window in text form. For complex programs, the volume of this output can
become too large. Whenever you really don’t want to see all that output,
putting a semicolon character at the end of a line will prevent the results of
that assignment from displaying in the Command window.

54 Chapter 2 Getting Started

 2.4.6 Debugging Scripts

 MATLAB provides extensive debugging
capabilities based on the use of break
points , which are places in your program
where you want to stop and verify that the
code is doing what you expect. You insert
break points as you edit a code segment by
clicking the small dash between the line
number and the start of the text. If the
program is ready to run, a red dot appears
in place of the dash where you clicked. If
the file has been changed and hasn’t been
saved, the dot will be gray, in which case
you should save the file. You can set any
number of break points throughout your
code.

 After you start running a program, when
MATLAB reaches a break point, execution
stops, an arrow overwrites the break point
symbol, and you can examine the contents
of the variables either in the Workspace
window or by passing the mouse slowly
over the variable in the Editor window. A
Debugging tool bar is available with icons
that let you:

 ■ Continue executing the logic from this point (other break points
may come into effect)

 ■ Step over the logic in this line to the next line in this code block
 ■ Step into any modules referenced by this line of code
 ■ Step out of this current code block

 Use the script from Exercise 2.13 to practice inserting break points.

 2.5 Engineering Example—Spacecraft Launch

 In 1996, the Ansari X Prize was offered for the first time for a private venture: a
reusable spacecraft. The requirements were for the same vehicle to carry three
people into outer space twice in a two-week time period. The competition was
won in 2004 by Tier 1, a company led by Burt Rutan. Their concept was to have
a mother ship take off and land on a conventional runway carrying Space Ship
One (see Figure 2.9). The spacecraft would be launched at 25,000 feet altitude
and would reach outer space (an altitude of 100 km), then glide back and land
on the same runway. They repeated this within a week, and they won the prize.

 Style Points 2.2

 1. When writing scripts, you should invest some
time to add comments. Comments make the scripts
easier to understand as you are developing them,
and make it more likely that you will be able to
reuse the script later. Note: The listings included in
this text will not have an appropriate level of
commenting a. to save space and b. because they are
explained in detail in the text.

 2. Scripts should be written incrementally—build a
little, test a little—rather than writing a whole script
and then trying to find out where in that pile of code
you made the mistake(s).

 Common Pitfalls 2.1

 You will quickly become accustomed to
understanding the general flow of your script by
observing the assignment statements reported in
the Interactions window. However, especially if you
have programmed in a language that requires
semicolons at the end of a command, you may
inadvertently put semicolons in your script. These
will suppress the presentation of results and could
mislead you into believing that a specific set of
instructions has not been executed.

2.5 Engineering Example—Spacecraft Launch 55

 Problem:

 Assuming that the spacecraft uses all its fuel to achieve a vertical velocity u
at 25,000 feet, what is the value of u for the spacecraft to reach outer space?

 Solution:

 There are two parts to this problem:
converting units to the metric system,
and choosing and solving an equation
for motion under constant
acceleration (the rocket motor is no
longer burning).

 1. Convert the launch altitude from feet to meters. I like to remember as
few numbers as possible. I do remember that 1 inch 5 2.54 cm, so we
will use this in a MATLAB script to find the conversion from feet to
meters. The appropriate chain of calculations is this:

meters � feet �

meters
cm

�
cm
inch

�
inch
feet

 Listing 2 . 2 shows the beginning of the script to solve this problem.

 In Listing 2 . 2 :

 Lines 1–3: Define general knowledge with meaningful variable names
to enable subsequent use of these values without ambiguity.

 Figure 2.9 Space Ship One

 Style Points 2.3

 Notice that when presented in this manner, the “inner
values” like cm and inch cancel to ensure that the conversions
are consistent.

56 Chapter 2 Getting Started

 Line 4: The conversion factor we need. Notice that because the
variable names are consistent with the logic, they help to avoid
errors.
 Lines 5–6: Develop the initial conditions with suitable units.

 2. Find and solve the equation. Given the following:

 ■ Initial and final altitudes from which you can compute the distance
traveled: s

 ■ The motion is under constant acceleration, the force of gravity: g
 ■ To just reach outer space, the final velocity, v , is 0
 ■ The initial velocity, u , is needed

 So after some diligent head scratching, we remember the equation of motion
under constant acceleration connecting u, v, s, and a is:

 v 2 = u 2 + 2 as

 However, this is not yet in a useful form. For computers to be able to solve
an equation, you need the unknown quantity on the left of the equation and
everything known on the right. Since u is the unknown, we move this to the
left side of the assignment, and organize the known quantities to the right.
These are the final velocity, v (i.e., 0) the given distance, s , and the
acceleration, a . Since the positive direction for u and s is upward, but
gravity is downward, we must use a = −g , and the equation can be
transformed to:

u = 22gs

 With this information, you can now solve this problem. Listing 2 . 3 shows the
rest of Listing 2 . 2 to complete this calculation.

 Listing 2 . 3 Script to complete the computation of the spacecraft’s velocity

1. g = 9.81; % m/sec^2
2. top = 100; % km - given
3. s = (top*1000) - startM; % m
4. initialV = (2*g*s)^0.5 % the final answer

 Listing 2 . 2 Script to compute the spacecraft’s velocity (Part 1)

1. cmPerInch = 2.54; % general knowledge
2. inchesPerFt = 12; % general knowledge
3. metersPerCm = 1/100; % general knowledge
4. MetersPerFt = metersPerCm * cmPerInch * inchesPerFt;
5. startFt = 25000; % ft - given
6. startM = startFt * MetersPerFt;

Chapter Summary 57

 In Listing 2 . 3 :

 Line 1: The standard value for the acceleration due to gravity.
 Line 2: The altitude of outer space is given in the problem statement.
 Line 3: Computes the distance traveled, including the unit conversion
from kilometers to meters. Note the optional, and in this case
unnecessary, use of parentheses to define the order of operations.
 Line 4: The final computation. The operator ^ is the MATLAB
expression for exponentiation; x^y in MATLAB results in computing x y .
Notice that the parentheses are required here to force the multiplication
to happen before the exponentiation.

 Although most modern computing environments, including MATLAB, have
tools that actually solve symbolic equations, these tools are not appropriate
for an introduction to programming and will not be discussed in this book.

 Chapter Summary

 This chapter presented some fundamental notions of computing and introduced
you to the nature of MATLAB , its user interface, and the fundamental tools for
making programs work.

 ■ Abstraction lets you refer to collections of data or instructions as a
whole

 ■ An algorithm is a set of instructions at an appropriate level of
abstraction for solving a specific problem

 ■ A data class describes the type of data and the nature of operations
that can be performed on that data

 ■ An object is a specific instance of a class with specific values that
can be assigned to a variable

 ■ The Command window lets you experiment with ideas by entering
commands line-by-line and seeing immediate results

 ■ The Command History window lets you review and recall previous
commands

 ■ The Workspace window lists the names, values, and class of your
local variables.

 ■ The Current Directory window lists the current files in the directory
to which MATLAB is currently pointed

 ■ A Document window opens when a variable in the Workspace
window is selected, to let you view and edit data items

 ■ A Figure window presents data and/or images when invoked by
programs

 ■ The Editor window lets you view and modify text files
 ■ Scripts provide the basic mechanism for implementing solutions to

problems

58 Chapter 2 Getting Started

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

'abc' Single quotes enclose a literal character string 2.2.3

 % A percent sign indicates a comment in an M-file 2.4.2

 ; A semicolon suppresses output from assignment
statements

 2.4.5

 ... Ellipses continue a MATLAB command to the next line 2.4.5

 = The assignment operator assigns a value to a memory
location; this is not the same as an equality test

 2.2.2

ans The default variable name for results of MATLAB
calculations

 2.3.1

clc Clears the Command window 2.3.2

clear Clears the Workspace window 2.4.2

sqrt(x) Calculates the square root of x 2.4.2

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. A bag of groceries is an example of abstraction.

 2. An algorithm is a series of logical steps that solves one specific problem.

 3. It is impossible to write a complete, practical program in any
paradigm other than procedural.

 4. To be useful to an algorithm, the result of every computation must
be assigned to a variable.

 5. In programming, if you know the values of z and x in the expression
z = x + y, you can derive the value of y.

 6. Untyped languages are free to ignore the nature of the data in
variables.

 7. Anything assigned to be the value of a variable is an object.

 8. Class is a concept restricted to object-oriented programming.

 9. You can permanently save the commands entered in the Command
window.

Self Test 59

 10. Double-clicking an entry in the Command History window lets you
rerun that command.

 11. You can manually change the values of variables displayed in the
Workspace window.

 12. You double-click a file name in the Current Directory window to
run that script.

 13. A Document window lets you view and edit data items.

 14. MATLAB permits multiple Figure windows to be open simultaneously.

 15. An asterisk on the File Name tab in the Editor window indicates
that this is a script that can be executed.

 16. MATLAB echoes comments entered in a script in the Command
window.

 17. When the name of script is typed in the Command window, it will
be saved if necessary before it is executed.

 Fill in the Blanks

 1. Popular programming languages like FORTRAN, C, and MATLAB
follow the ______________ programming paradigm.

 2. ______________ languages insist that programmers declare both the
name and type of a variable before a value can be assigned to it so
that the variable will not be used in an unintended way.

 3. The ______________ in MATLAB retains a list of all the commands
you issued even after a clc command is entered.

 4. Unlike other programming languages which indicate the end
of a command with a semicolon, MATLAB uses a semicolon to
______________.

 5. MATLAB works in ______________ mode and in ______________ mode.

 6. The result of any calculation performed in the Command window is
saved in the default variable called ______________.

 7. MATLAB comments start with a ______________ sign and are
______________ in colour in order to differentiate them from
executable commands.

 8. The keyboard shortcut keys for adding and removing a MATLAB
comment are ______________ and ______________ , respectively.

 9. The columns in the Workspace window show the __________of the
variable, its ___________, and its __________.

 10. You _______ the name of a file in the Current Directory window to
edit that file.

60 Chapter 2 Getting Started

 11. A Document window opens automatically when you _________ a(n)
________ in the Workspace window.

 12. Graphics windows are created when a(n) ___________requests a graph.

 13. You create comments by putting a(n) ____________in the text file.

 14. MATLAB will ______________all text from the comment mark to
_____________.

 Programming Projects

 1. Enter two numbers and store them in variables a and b. Write a
script to interchange the values without using a third variable.

 2. In the bottom of the ninth inning, the bases are loaded and the
Braves are down by three runs. Chipper Jones steps to the plate.
Twice he swings and misses. The crowd heads for the exits. The
next pitch is a fast ball down the middle. He swings and makes
perfect contact with the ball, sending it up at a 45-degree angle
toward the fence 400 ft away.
 a. Write a script to determine how fast he must hit the ball to land

at the base of the fence, neglecting the air resistance.
 b. Perform a brief experiment to determine whether there was

a better angle at which to hit the ball so that it could clear a
12 ft fence.

 3. If an ice cream cone is 6 inches tall, and its rim has a diameter of 2
inches, write a script to determine the weight of the ice cream that
can fit in the cone, assuming that the ice cream above the cone is a
perfect hemisphere. You may neglect the thickness of the cone
material. Assume that a gallon of ice cream weighs 8 lb and
occupies 7.5 cubic feet.

 4. Write a script that validates the relationship between sin u, cos u,
and tan u by evaluating these functions at suitably chosen values
of u.

 5. I like my shower to remain hot for hours at 100°F, but am too cheap
to buy one of those on-demand hot water systems. I don’t care how
slowly the water runs. The water supply is at 50°F, and the water
heater is rated at 50,000 BTU/hour. Write a script to compute the
maximum flow rate of my shower (in cubic feet per minute) that
keeps the water temperature above 100°F.

 6. It takes an average of 45 horsepower to run an electric car at an
average speed of 35 mph. Write a script to compute the electrical

Programming Projects 61

storage capacity of the battery system that would make this car
practical for a 25-mile commute, recharging the batteries only at
home at night when the electricity is cheap. How many D cell
alkaline batteries would be needed for this?

 7. You want to buy a $300,000 home with 20% down payment. The
current compound interest rate is 4.5%.
 a. Write a script to determine:

 • the monthly payments for a 30-year loan,
 • the equivalent simple interest rate,
 • the total interest paid over the life of the loan.

 b. Now, repeat the computation for a 15-year loan at 5%. Is this a
better deal?

 8. The distance from my house to my office is 1.5 miles. Every
morning, I have to decide whether to take the bus that averages
(once it arrives) 25 mph, or to walk. I can walk at 4 mph. Write
a script to determine how frequently the buses should run to
give them a 50% chance of getting me to the office faster than
walking.

 9. A glass has the shape of a truncated cone of height 5 inches. Its top
diameter is 3.5 inches, and its base diameter is 2 inches. If water is
poured into the glass at 2 gallons per minute, write a script to
calculate how long it takes to fill the glass to the brim. One gallon is
7.5 cubic feet.

 10. You can calculate the aerodynamic drag on an object by the
formula:

 Drag 5 1/2 r V 2 C d S

 The air density, r, is 1.3 kg/m3 and the value of the drag area, C d S,
is a measure of the resistance of the object as it moves through the
air. An object falling through air reaches terminal velocity when the
aerodynamic drag equals the object’s weight.

 A sky diver weighing 80 kg has a C d S value of 0.7 when horizontal
with arms and legs extended, and 0.15 when head down with
arms and legs in line. One diver jumps from a plane at an altitude
of 5,000 m in the horizontal position. After 20 sec, another diver
jumps. Write a script to determine how much time the second
diver must spend head down in order to catch up to the first
diver. Also compute the height above the ground where they first
meet. For simplicity, you may assume that the sky divers
immediately reach their terminal velocity when jumping.

62 Chapter 2 Getting Started

 11. You are given a circle with radius 5 centered at x = 1, y = 2.
You want to calculate the intersection of some lines with that
circle. Write a script to find the x and y coordinates of both
points of intersection. You should test this code at least with
these lines:

y = 2 x - 1
y = -2 x - 10
y = x + 5.9054

 Chapter Objectives

 This chapter discusses the basic calculations involving rectangular
collections of numbers in the form of arrays. For each of these
collections, you will learn how to:

 ■ Create them

 ■ Manipulate them

 ■ Access their elements

 ■ Perform mathematical and logical operations on them

 This study of arrays will introduce the first of many language charac-
teristics that sets MATLAB apart from other languages: its ability to
perform arithmetic and logical operations on collections of numbers
as a whole. You need to understand how to create these collections,
access the data in them, and manipulate the values in the collections
with mathematical and logical operators. First, however, we need to
understand the idea of functions built into the language.

 Vectors and Arrays
 C H A P T E R 3

 3.1 Concept: Using Built-in
Functions

 3.2 Concept: Data Collections
 3.2.1 Data Abstraction
 3.2.2 Homogeneous

Collection
 3.3 Vectors
 3.3.1 Creating a Vector
 3.3.2 Size of a Vector
 3.3.3 Indexing a Vector
 3.3.4 Shortening a Vector
 3.3.5 Operating on

Vectors
 3.4 Engineering Example—

Forces and Moments
 3.5 Arrays
 3.5.1 Properties of an

Array
 3.5.2 Creating an Array
 3.5.3 Accessing Elements

of an Array
 3.5.4 Removing Elements

of an Array
 3.5.5 Operating on Arrays

 3.6 Engineering Example—
Computing Soil Volume

63

64 Chapter 3 Vectors and Arrays

 3.1 Concept: Using Built-in Functions

 We are familiar with the use of a trigonometric function like cos(u) that
consumes an angle in radians and produces the cosine of that angle. In
general, a function is a named collection of instructions that operates on the
data provided to produce a result according to the specifications of that
function. In Chapter 5 , we will see how to write our own functions. In this
chapter, we will see the use of some of the functions built into MATLAB. At
the end of each chapter that uses built-in functions, you will find a summary
table listing the function specifications. For help on a specific function, you
can either select the Help menu and look up the function or type the
following in the Interactions window:

>> help <function name>

 where <function name> is the name of a MATLAB function. This will
produce a detailed discussion of the capabilities of that function.

 3.2 Concept: Data Collections

 Chapter 2 showed how to perform mathematical operations on single data
items. This section considers the concept of grouping data items in general,
and then specifically considers two very common ways to group data: in
arrays and in vectors, which are a powerful subset of arrays.

 3.2.1 Data Abstraction

 It is frequently convenient to refer to groups of data collectively, for example,
“all the temperature readings for May” or “all the purchases from Wal-
Mart.” This allows us not only to move these items around as a group, but
also to consider mathematical or logical operations on these groups. For
example, we could discuss the average, maximum, or minimum temperatures
for a month, or that the cost of the Wal-Mart purchases had gone up 3%.

 3.2.2 Homogeneous Collection

 In Chapter 7 , we will encounter more general collection implementations
that allow items in a collection to be of different data types. The collections
discussed in this chapter, however, will be constrained to accept only items
of the same data type. Collections with this constraint are called
homogeneous collections.

 3.3 Vectors

 A vector is an array with only one row of elements. It is the simplest means
of grouping a collection of like data items. Initially we will consider vectors
of numbers or logical values. Some languages refer to vectors as linear arrays

3.3 Vectors 65

or linear matrices . As these names suggest, a vector is a one-dimensional
grouping of data, as shown in Figure 3.1 . Individual items in a vector are
usually referred to as its elements. Vector elements have two separate and
distinct attributes that make them unique in a specific vector: their numerical
value and their position in that vector. For example, the individual number
66 is in the third position in the vector in Figure 3.1 . Its value is 66 and its
index is 3. There may be other items in the vector with the value of 66, but
no other item will be located in this vector at position 3. Experienced
programmers should note that due to its FORTRAN roots, indices in the
MATLAB language start from 1 and not 0.

 3.3.1 Creating a Vector

 There are seven ways to create vectors that are directly analogous to the
techniques for creating individual data items and fall into two broad
categories:

 ■ Creating vectors from constant values
 ■ Producing new vectors with special-purpose functions

 The following shows how you can create vectors from constant values:

 ■ Entering the values directly, for example, A = [2, 5, 7, 1, 3] (the
commas are optional and are frequently omitted)

 ■ Entering the values as a range of numbers using the colon operator,
for example, B = 1:3:20 , where the first number is the starting
value, the second number is the increment, and the third number is
the ending value (you may omit the increment if the desired
increment is 1)

 The following introduces the most common MATLAB functions that create
vectors from scratch:

 ■ The linspace(...) function creates a fixed number of values between
two limits, for example, C = linspace (0, 20, 11) , where the first
parameter is the lower limit, the second parameter is the upper limit,
and the third parameter is the number of values in the vector

 ■ The functions zeros(1,n), ones(1,n), rand(1,n) (uniformly
distributed random numbers), and randn(1,n) (random numbers
with normal distribution) create vectors filled with 0, 1 , or random
values between 0 and 1 .

 Try working with vectors in Exercise 3.1 .

45 57 66 48 39

1 2 3 4 5

Value:

Index:

71 68

n-1 n

 Figure 3.1 A vector

66 Chapter 3 Vectors and Arrays

 The Workspace window gives you three pieces of information about each
of the variables you created: the name, the value, and the “class,” which for
now you can equate to “data type.” Notice that if the size of the vector is
small enough, the value field shows its actual contents; otherwise, you see a
description of its attributes, like <1 X 11 double> . Exercise 3.1 deliberately
created the vector D with only one element, and perhaps the result surprised
you. D was presented in both the Interactions window and the Workspace
window as if it were a scalar quantity. This is generally true in the MATLAB
language—all scalar quantities are considered vectors of unit length.

 3.3.2 Size of a Vector

 A vector also has a specific attribute: its length (n in Figure 3.1). In most
implementations, this length is fixed when the vector is created. However,
as you will see shortly, the MATLAB language provides the ability to
increase or decrease the size of a vector by inserting or selecting certain
elements. MATLAB provides two functions to determine the size of arrays
in general, and of vectors in particular. The function size(V) when applied
to the vector V returns another vector containing two quantities: the number
of rows in the vector (always 1) and the number of columns (the length of
the vector). The function length(V) returns the maximum value in the size
of an array—for a vector, this is a number indicating its length.

 3.3.3 Indexing a Vector

 As mentioned earlier, each element in a vector has two attributes: its value
and its position in the vector. You can access the elements in a vector in
either of two ways: using a numerical vector or a logical vector. We refer to
the process of accessing array elements by their position as “indexing.”

 Exercise 3.1 Working with vectors

>> A = [2 5 7 1 3]
A =
 2 5 7 1 3
>> B = 1:3:20
B =
 1 4 7 10 13 16 19
>> C = linspace(0, 20, 11)
C =
 0 2 4 6 8 10 12 14 16 18 20
>> D = [4]
D =
 4
>> E = zeros(1,4)
E =
 0 0 0 0

 Now, open the Variables tab and study the contents.

3.3 Vectors 67

 Numerical Indexing The elements of a vector can be accessed individually
or in groups by enclosing the index of zero or more elements in parentheses.
Continuing Exercise 3.1 , A(3) would return the third element of the vector
 A, 7 . If you attempt to read beyond the length of the vector or below
index 1, an error will result.

 You can also change the values of a vector element by using an assignment
statement where the left-hand side indexes that specific element (try
 Exercise 3.2).

 A feature unique to the MATLAB language is its behavior when attempting
to write beyond the bounds of a vector. While it is still illegal to write below
the index 1, MATLAB will automatically extend the vector if you write beyond
its current end. If there are missing elements between the current vector
elements and the index at which you attempt to store a new value, MATLAB
will zero-fill the missing elements. Try Exercise 3.3 to see how this works.

 In Exercise 3.3 we asked to store a value in the eighth element of a vector
with length 5. Rather than complaining, MATLAB was able to complete the

instruction by doing two things
automatically. It extended the length
to 8 and stored the value 0 in the as yet
unassigned elements. In these simple
examples, we used a single number as
the index. However, in general, we
can use a vector of index values to
index another vector. Furthermore,
the size of the index vector does not
need to match the size of the vector

being indexed—it can be either shorter or longer. However, all values in an
index vector must be positive; and if they are being used to extract values

 Exercise 3.2 Changing elements of a vector

 Extending the exercise above:

>> A(5) = 42
A =
 2 5 7 1 42

 Exercise 3.3 Extending a vector

 Again extending the exercises above:

>> A(8) = 3
A =
 2 5 7 1 42 0 0 3

 Notes:

 1. The key word end in an indexing context represents the
index of the last element in that vector.

 2. The vector generated by the colon operator does not
necessarily include the ending value. In this case, since there
are 8 values in the vector, end takes the value 8, but since
that is not odd, the index vector is [1 3 5 7]

68 Chapter 3 Vectors and Arrays

from a vector, the values must not exceed the length of that vector. Again
continuing from Exercise 3.3 , if we asked for B = A(1:2:end) , we would see
the value of B to be [2 7 42 0] , the values of A in odd index positions. Later,
we will see how to find the elements in A that have odd values.

 Logical Indexing So far, the only type of data we have used has been
numerical values of type double . The result of a logical operation, however,
is data of a different type, with values either true or false . Such data are
called Boolean or logical values. Like numbers, logical values can be
assembled into arrays by specifying true or false values. For example, we
might enter the following line in MATLAB to specify the variable mask :

>> mask = [true false false true]
mask =
 t f f t 1

 We can index any vector with a logical vector as follows:

>> A = [2 4 6 8 10];
>> A(mask)
ans =
 2 8

 When indexing with a logical vector, the result will contain the elements of
the original vector corresponding in position to the true values in the logical
index vector. The logical index vector can be either shorter or longer than
the source vector; but if it is longer, all the values beyond the length of the
source vector must be false .

 3.3.4 Shortening a Vector

 There are times when we need to remove elements from a vector. For
example, if we had a vector of measurements from an instrument, and it was
known that the setup for the third reading was incorrect, we would want to
remove that erroneous reading before processing the data. To accomplish
this, we make a rather strange use of the empty vector, [] . The empty vector,
as its name and symbol suggest, is a vector with no elements in it. When you
assign the empty vector to an element in another vector—say, A —that element
is removed from A , and A is shortened by one element. Try Exercise 3.4 .

 1 If you are using MATLAB, logical vectors are presented with values 0 or 1, but they
are not numerical values and should not be used as such

 Exercise 3.4 Shortening a vector

 Using the vector A from Exercise 3.3 :

>> A(4) = []
A =
 2 5 7 42 0 0 3

3.3 Vectors 69

 As you can see, we asked for the fourth element to be removed from a
vector initially with eight elements. The resulting vector has only seven
elements, and the fourth element, originally with value 1, has been removed.

 3.3.5 Operating on Vectors

 The essential core of the MATLAB language is a rich collection of tools for
manipulating vectors and arrays. This section first shows how these tools
operate on vectors, and then generalizes to how they apply to arrays (multi-
dimensional vectors) and, later, matrices. Three techniques extend directly
from operations on scalar values:

 ■ Arithmetic operations
 ■ Logical operations
 ■ Applying library functions

 Two techniques are unique to arrays in general, and to vectors in
particular:

 ■ Concatenation
 ■ Slicing (generalized indexing)

 Arithmetic Operations Arithmetic operations can be performed
collectively on the individual components of two vectors as long as both
vectors are the same length, or one of the vectors is a scalar (i.e., a vector
of length 1). Addition and subtraction have exactly the syntax you would
expect, as illustrated in Exercise 3.5 . Multiplication, division, and
exponentiation, however, have a small syntactic idiosyncrasy related to
the fact that these are element-by-element operations, not matrix
operations. We will discuss matrix operations in Chapter 12 . When the
MATLAB language was designed, the ordinary symbols (* , / , and ̂)
were reserved for matrix operations. However, since element-by-

element multiplicative operations are
fundamentally different from matrix
operations, a new set of operators is
required to specify these operations. The
symbols .* , ./ , and .^ (the dots are part
of the operators, but the commas are not)
are used respectively for element-by-
element multiplication, division, and

exponentiation. Note that because matrix and element-by-element
addition and subtraction are identical, no special operation symbols are
required for + and -.

 Here, we first see the addition and multiplication of a vector by a
scalar quantity, and then element-by-element multiplication of A and B .
The first error is generated because we omitted the ‘.’ on the multiply

 Common Pitfalls 3 . 1

 Shortening a vector is very rarely the right solution
to a problem and can lead to logical difficulties.
Wherever possible, you should use indexing to copy
the elements you want to keep rather than using []
to erase elements you want to remove.

70 Chapter 3 Vectors and Arrays

symbol, thereby invoking matrix multiplication, which is improper
with the vector A and B . The second error occurs because two vectors
involved in arithmetic operations must have the same size. Notice,
incidentally, the use of the % sign indicating that the rest of the line is a
comment.

 You can change the signs of all the values of a vector with the unary
minus (-) operator.

 Logical Operations In the earlier discussion about logical indexing, you
might have wondered why you would ever use that. In this section, we
will see that logical operations on vectors produce vectors of logical
results. We can then use these logical result vectors to index vectors in a
style that makes the logic of complex expressions very clear. As with
arithmetic operations, logical operations can be performed element-by-
element on two vectors as long as both vectors are the same length, or if
one of the vectors is a scalar (i.e., a vector of length 1). The result will be
a vector of logical values with the same length as the longer of the original
vector(s).

 Try Exercise 3.6 to see how vector logical expressions work.

 First we built the vectors A and B , and then we performed two legal
logical operations: finding where A is not less than 5, and where each

 Exercise 3.5 Using vector mathematics

>> A = [2 5 7 1 3];
>> A + 5
ans =
 7 10 12 6 8
>> A .* 2
ans =
 4 10 14 2 6
>> B = -1:1:3
B =
 -1 0 1 2 3
>> A .* B % element-by-element multiplication
ans =
 -2 0 7 2 9
>> A * B % matrix multiplication!!
??? Error using ==> mtimes
Inner matrix dimensions must agree.
>> C = [1 2 3]
C =
 1 2 3
>> A .* C % A and C must have the same length
??? Error using ==> times
Matrix dimensions must agree.

3.3 Vectors 71

element of A is not less than the corresponding element of B . As with
arithmetic operations, an error occurs if you attempt a logical operation
with vectors of different sizes (neither size being 1).

 Logical operators can be assembled into more complex operations using
logical and (&) and or (|) operators. These operators actually come in two
flavors: & / | and && / || . The single operators operate on logical arrays of
matching size to perform element-wise matches of the individual logical
values. The doubled operators combine individual logical results and are
usually associated with conditional statements (see Chapter 4). Try
 Exercise 3.7 to see how logical operators work.

 In Exercise 3.7 , we combine two logical vectors of the same length
successfully, but fail, as with arithmetic operations, to combine vectors of
different lengths. If you need the indices in a vector where the elements of a
logical vector are true , the function find(...) accomplishes this by
consuming an array of logical values and producing a vector of the positions
of the true elements.

 Exercise 3.6 Working with vector logical expressions

>> A = [2 5 7 1 3];
>> B = [0 6 5 3 2];
>> A >= 5
ans =

0 1 1 0 0
>> A >= B
ans =

1 0 1 0
>> C = [1 2 3]
>> A > C
??? Error using ==> gt
Matrix dimensions must agree.

 Exercise 3.7 Working with logical vectors

>> A = [true true false false];
>> B = [true false true false];
>> A & B
ans =

1 0 0 0
>> A | B
ans =

1 1 1 0
>> C = [1 0 0]
>> A & C
??? Error using ==> and
Matrix dimensions must agree.

72 Chapter 3 Vectors and Arrays

 Try Exercise 3.8 to see how this function works.

 You can invert the values of all elements of a logical vector (changing true
to false and false to true) using the unary not operator, ~ . For example:

>> na = ~[true true false true]
na = 0 0 1 0

 As you can see, each element of na is the logical inverse of the corresponding
original element. As is usual with arithmetic and logical operations, the
precedence of operators governs the order in which operations are
performed. Table 3.1 shows the operator precedence in the MATLAB
language. Operations listed on the same row of the table are performed
from left to right. The normal precedence of operators can be overruled by
enclosing preferred operations in parentheses: (...) .

 Applying Library Functions The MATLAB language defines a rich collection
of mathematical functions that cover mathematical, trigonometric, and
statistics capabilities. A partial list is provided in Appendix A . For a complete

 Table 3.1 Operator precedence

 Operators Description

 .', .^ Scalar transpose and power

 ', ^ Matrix transpose and power

 +, −, ~ Unary operators

 .*,./,.\,*,/,\ Multiplication, division, left division

 +, − Addition and subtraction

 : Colon operator

 <, <=, >=, >, ==, ~= Comparison

 & Element-wise AND

 | Element-wise OR

 && Logical AND

 || Logical OR

 Exercise 3.8 Using the find(…) function

>> A = [2 5 7 1 3];
>> A > 4
ans =
 0 1 1 0 0
>> find(A > 4)
ans =
 2 3

3.3 Vectors 73

list of those implemented in MATLAB, refer to the Help menu option in the
MATLAB tool bar. With few exceptions, all functions defined in the
MATLAB language accept vectors of numbers rather than single values and
return a vector of the same length. The following functions deserve special
mention because they provide specific capabilities that are frequently useful:

 ■ sum(v) and mean(v) consume a vector and return the sum and mean
of all the elements of the vector respectively.

 ■ min(v) and max(v) return two quantities: the minimum or
maximum value in a vector, as well as the position in that vector
where that value occurred. For example:

> [value where] = max([2 7 42 9 -4])

value = 42

where = 3

 indicates that the largest value is 42, and it occurs in the third element of
the vector. You will see in Chapter 5 how to implement returning multiple
results from a function.

 ■ round(v) , ceil(v) , floor(v) , and fix(v) remove the fractional part
of the numbers in a vector by conventional rounding, rounding up,
rounding down, and rounding toward zero, respectively.

 Concatenation In Section 3.3.1 , we saw the technique for creating a vector
by assembling numbers between square brackets:

A = [2 5 7 1 3]

 This is in fact a special case of concatenation. The MATLAB language lets
you construct a new vector by concatenating other vectors:

A = [B C D ... X Y Z]

 where the individual items in the brackets may be any vector defined as a
constant or variable, and the length of A will be the sum of the lengths of the
individual vectors. The simple vector constructor in Section 3.3.1 is a special
case of this rule because each number is implicitly a 1 × 1 vector. The result
is therefore a 1 3 N vector, where N is the number of values in the brackets.
Try concatenating the vectors in Exercise 3.9 .

 Exercise 3.9 Concatenating vectors

>> A = [2 5 7];
>> B = [1 3];
>> [A B]
ans =
2 5 7 1 3

 Notice that the resulting vector is not nested like [[2 5 7], [1 3]] but is completely
“flat.”

74 Chapter 3 Vectors and Arrays

 Slicing is the name given to complex operations where elements are
copied from specified locations in one vector to different locations in
another vector. As we saw earlier, the basic operation of extracting and
replacing the elements of a vector is called indexing. Furthermore, we
saw that indexing is not confined to single elements in a vector; you can
also use vectors of indices. These index vectors either can be the values
of previously named variables, or they can be created anonymously as
they are needed. When you index a single element in a vector—for
example, A(4) —you are actually creating an anonymous 1 3 1 index
vector, 4, and then using it to access the specified element(s) from the
array A .

 Creating anonymous index vectors as needed makes some additional
features of the colon operator available. The general form for generating a
vector of numbers is: <start> : <increment> : <end> . We already know
that by omitting the <increment> portion, the default increment is 1. When
used anonymously while indexing a vector, the following features are
also available:

 ■ The key word end is defined as the length of the vector
 ■ The operator : by itself is short for 1:end

 Finally, as you saw earlier, it is legal to index with a vector of logical values.
For example, if A is defined as:

A = [2 5 7 1 3];

 then A([false true false true]) returns:

ans =
5 1

 yielding a new vector containing only those values of the original vector
where the corresponding logical index is true . This is extremely useful, as
you will see later in this chapter, for indexing items in a vector that match a
specific test.

 The general form of statements for slicing vectors is:

B(<rangeB>) = A(<rangeA>)

 where <rangeA> and <rangeB> are both index vectors, A is an existing array,
and B can be an existing array or a new array. The values in B at the indices
in rangeB are assigned the values of A from rangeA . The rules for use of this
template are as follows:

 ■ Either the size of rangeB must be equal to the size of rangeA or
 rangeA must be of size 1

 ■ If B did not exist before this statement was implemented, it is zero
filled where assignments were not explicitly made

3.3 Vectors 75

 ■ If B did exist before this statement, the values not directly assigned
in rangeB remain unchanged

 Study the comments in Listing 3 . 1 and do Exercise 3.10 .

 Listing 3 . 1 Vector indexing script

 1. A = [2 5 7 1 3 4];
 2. odds = 1:2:length(A);
 3. disp('odd values of A using predefined indices')
 4. A(odds)
 5. disp('odd values of A using anonymous indices')
 6. A(1:2:end)
 7. disp('put evens into odd values in a new array')
 8. B(odds) = A(2:2:end)
 9. disp('set the even values in B to 99')
10. B(2:2:end) = 99
11. disp('find the small values in A')
12. small = A < 4
13. disp('add 10 to the small values')
14. A(small) = A(small) + 10
15. disp('this can be done in one ugly operation')
16. A(A < 10) = A(A < 10) + 10

 Exercise 3.10 Running the vector indexing script

 Execute the script in Listing 3 . 1 .You should see the following output:

odd values of A using predefined indices
ans =
 2 7 3
odd values of A using anonymous indices
ans =
 2 7 3
put even values into odd values in a new array
B =
 5 0 1 0 4
set the even values in B to 99
B =
 5 99 1 99 4
find the small values in A
small =
 1 0 0 1 1 0
add 10 to the small values
A =
 12 5 7 11 13 4
this can be done in one ugly operation
A =
 12 5 7 11 13 4
>>

76 Chapter 3 Vectors and Arrays

 In Listing 3 . 1 :

 Line 1: Creates a vector A with five elements.
 Line 2: When predefining an index vector, if you want to refer to
the size of a vector, you must use either the length(...) function or
the size(...) function.
 Line 3: The disp(...) function shows the contents of its parameter
in the Interactions window, in this case: 'odd values of A using
predefined indices' . We use disp(...) rather than comments
because comments are visible only in the script itself, not in the
program output, which we need here.
 Line 4: Using a predefined index vector to access elements in vector
 A . Since no assignment is made, the variable ans takes on the value
of a three-element vector containing the odd-numbered elements of
 A . Notice that these are the odd-numbered elements, not the
elements with odd values.
 Line 6: The anonymous version of the command given in Line 4.
Notice that the anonymous version allows you to use the word end
within the vector meaning the index of its last element.
 Line 8: Since B did not previously exist (a good reason to run the
 clear command at the beginning of a script is to be sure this is
true), a new vector is created with five elements (the largest index
assigned in B). Elements in B at positions less than five that were not
assigned are zero filled.
 Line 10: If you assign a scalar quantity to a range of indices in a
vector, all values at those indices are assigned the scalar value.
 Line 12: Logical operations on a vector produce a vector of Boolean
results. This is not the same as typing small = [1 0 0 1 1 0] . If
you want to create a logical vector, you must use true and false ,
for example:

small = [true false false true true false]

 Line 14: This is actually performing the scalar arithmetic operation
 + 10 on an anonymous vector of three elements, and then assigning
those values to the range of elements in A .
 Line 16: Not only is this unnecessarily complex, but it is also less
efficient because it is applying the logical operator to A twice. It is
better to use the form in Line 14.

 3.4 Engineering Example—Forces and Moments

 Vectors are ideal representations of the concept of a vector used in
physics. Consider two forces acting on an object at a point P, as shown
in Figure 3.2 . Calculate the resultant force at P, the unit vector in the

3.4 Engineering Example—Forces and Moments 77

direction of that resultant, and the moment of that force about the
point M. We can represent each of the vectors in this problem as a
MATLAB vector with three components: the x, y, and z values of the
vector. The solution to this problem for specific vectors is shown in
Listing 3 . 2 .

y
C

B

P

z

O

M

x

A

 Figure 3.2 Vector analysis problem

 Listing 3 . 2 Script to solve vector problems

1. PA = [0 1 1]
2. PB = [1 1 0]
3. P = [2 1 1]
4. M = [4 0 1]
 % find the resultant of PA and PB
5. PC = PA + PB
 % find the unit vector in the direction of PC
6. mag = sqrt(sum(PC.ˆ2))
7. unit_vector = PC/mag
 % find the moment of the force PC about M
 % this is the cross product of MP and PC
8. MP = P - M
9. moment = cross(MP, PC)

78 Chapter 3 Vectors and Arrays

 In Listing 3 . 2 :

 Lines 1–4: Typical initial values
for the problem.

 Line 5: PC is the sum of the
vectors PA and PB .

 Lines 6–7: The unit vector along
 PC is PC divided by its magnitude.
The magnitude is the square root
of the sum of the squares of the
individual components.

 Line 8: The vector PM is the vector
difference between P and M .

 Line 9: There is a built-in
function, cross(..) , to compute
the cross product of two vectors.

 3.5 Arrays

 In Section 3.2 , we saw that a vector is the simplest way to group a collection
of similar data items. We will now extend these ideas to include arrays of
multiple dimensions, initially confined to two dimensions. Each row will
have the same number of columns, and each column will have the same
number of rows.

 At this point, we will refer to these collections as arrays to distinguish
them from the matrices discussed in Chapter 12 . While arrays and matrices
are stored in the same way, they differ in their multiplication, division,
and exponentiation operations. Figure 3.3 illustrates a typical two-
dimensional array A with m rows and n columns, commonly referred to as
an m 3 n array.

 After any nontrivial computation, a good engineer will always
perform a sanity check on the answers. When you run the
code for this problem, the answers returned are:

PC = [1 2 1]
unit_vector = [0.4082 0.8165 0.4082]
moment = [1 2 -5]

 To check the moment result, visualize the rotation of PC
about M and apply the right-hand rule to find the axis of
rotation of the moment. Roughly speaking, the right-hand
rule states that the direction of the moment is the direction
in which a normal, right-handed screw at point M would turn
under the influence of this force. Without being too accurate,
we can conclude that the axis of the moment is approximately
along the negative z -axis, an estimate confirmed by the
result shown.

 Common Pitfalls 3 . 2

A(m x n) =

a11 . . .a12 a1n

a21 . . .a22 a2n

am1 . . .

. .
 .

.

. .
 .

.

am2 amn

 Figure 3.3 An array

3.5 Arrays 79

 3.5.1 Properties of an Array

 As with vectors, individual items in an array are referred to as its elements .
These elements also have the unique attributes combining their value and
their position. In a two-dimensional array, the position will be the row and
column (in that order) of the element. In general, in an n-dimensional array,
the element position will be a vector of n index values.

 When applied to an array A with n dimensions, the function size(...)
will return the information in one of two forms.

 ■ If called with a single return value like sz = size(A) , it will return a
vector of length n containing the size of each dimension of the array.

 ■ If called with multiple return values like [rows, cols] = size(A) ,
it returns the individual array dimension up to the number of
values requested. To avoid erroneous results, you should always
provide as many variables as there are dimensions of the array.

 The length(...) function returns the maximum dimension of the array. So
if we created an array A dimensioned 2 3 8 3 3, size(A) would return [2 8 3]
and length(A) would return 8.

 The transpose of an m 3 n array, indicated by the apostrophe character (')
placed after the array identifier, returns an n 3 m array with the values in
the rows and columns interchanged. Figure 3.4 shows a transposed array.

 A number of special cases arise that are worthy of note:

 ■ When a 2-D matrix has the same number of rows and columns, it is
called square.

 ■ When the only nonzero values in an array occur when the row and
column indices are the same, the array is called diagonal.

 ■ When there is only one row, the array is a row vector, or just a
 vector as you saw earlier.

 ■ When there is only one column, the array is a column vector, the
transpose of a row vector.

A�(n x m) =

a11 . . .a21 am1

a12 . . .a22 am2

a1n . . .

. .
 .

.

. .
 .

.

a2n amn

 Figure 3.4 Transpose of an array

80 Chapter 3 Vectors and Arrays

 3.5.2 Creating an Array

 Arrays can be created either by entering values directly or by using one
of a number of built-in functions that create arrays with specific
characteristics.

 ■ As with vectors, you can directly enter the values in an array using
either a semicolon (;) or a new line to indicate the end of a row, for
example: A = [2, 5, 7; 1, 3, 42] .

 ■ The functions zeros(m, n) and ones(m, n) create arrays with m
rows and n columns filled with zeros and ones, respectively.

 ■ The function rand(m, n) fills an array with random numbers in the
range 0 .. 1.

 ■ The function randn(m, n) fills an array with random numbers
normally distributed about 0 with a standard deviation of 1.

 ■ The function diag(...) takes several forms, the most useful of
which are diag(A) , where A is an array, that returns its diagonal
as a vector, and diag(V) , where V is a vector, that returns a
square matrix with that diagonal. Type help diag in the
Command window for a full description of the capabilities
of diag(...)

 ■ The MATLAB language also defines the function magic(m) , which
fills a square matrix with the numbers 1 to m2 organized in such a
way that its rows, columns, and diagonals all add up to the same
value.

 Try Exercise 3.11 to practice working with arrays.

 3.5.3 Accessing Elements of an Array

 The elements of an array may be addressed by enclosing the indices of the
required element in parentheses, with the first index being the row index
and the second index the column index. Considering the values produced
by Exercise 3.11 , A(2, 3) would return the element in the second row, third
column: 42. If you were to attempt to read outside the length of the rows or
columns, an error would result.

 We can also store values that are elements of an array. For example,
continuing Example 3 . 11 , A(2, 3) = 0 would result in this answer:

A =
 2 5 7
 1 3 0

 As with vectors, MATLAB will automatically extend the array if you write
beyond its boundaries. If there are missing elements between the current
array elements and the index at which you attempt to store a new value,

3.5 Arrays 81

the missing elements will be zero filled. For example, again continuing
Example 3 . 11 , A(4, 1) = 3 would result in this answer:

A =
 2 5 7
 1 3 0
 0 0 0
 3 0 0

 3.5.4 Removing Elements of an Array

 You can remove elements from arrays in the same way that you remove
elements from a vector. However, since the arrays must remain rectangular,

 Exercise 3.11 Creating arrays

>> A = [2, 5, 7; 1, 3, 42]
A =

2 5 7
1 3 42

>> z = zeros(3,2)
z =

0 0
0 0
0 0

>> [z ones(3, 4)] % concatenating arrays
ans =

0 0 1 1 1 1
0 0 1 1 1 1
0 0 1 1 1 1

>> rand(3,4)
ans =

0.9501 0.4860 0.4565 0.4447
0.2311 0.8913 0.0185 0.6154
0.6068 0.7621 0.8214 0.7919

>> rand(size(A))
ans =

0.9218 0.1763 0.9355
0.7382 0.4057 0.9169

>> diag(A)
ans =

2
3

>> diag(diag(A))
ans =

2 0
0 3

>> magic(4)
ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

>>

82 Chapter 3 Vectors and Arrays

elements have to be removed as complete rows or columns. For example,
for the array A in the previous section, entering A(3, :) = [] would remove
all elements from the third row, and the result would be:

A =
 2 5 7
 1 3 0
 3 0 0

 Similarly, if A(:, 3) = [] was then entered, the result would be:

A =
 2 5
 1 3
 3 0

 3.5.5 Operating on Arrays

 This section discusses how array operations extend directly from vector
operations: arithmetic and logical operations, the application of functions,

concatenation, and slicing. This section will
also discuss two topics peculiar to arrays:
reshaping and linearizing arrays.

 Array Arithmetic Operations Arithmetic
operations can be performed collectively on
the individual components of two arrays as
long as both arrays have the same
dimensions or one of them is a scalar (i.e.,
has a vector of length 1). Addition and
subtraction have exactly the syntax you
would expect, as shown in Exercise 3.12 .
Multiplication, division, and exponentiation,
however, must use the “dot operator”
symbols: .* , ./ , and .^ (the dot is part of the
symbol, but the commas are not) for scalar
multiplication, division, and exponentiation.

 Array Logical Operations As with vectors,
logical array operations can be performed
collectively on the individual components
of two arrays as long as both arrays have
the same dimensions or one of the arrays is

a scalar (i.e., has a vector of length 1). The result will be an array of logical
values with the same size as the original array(s). Do Exercise 3.13 to see
how array logical operations work. Here, we successfully compare the
array A to a scalar value, and to the array B that has the same dimensions as
A. However, comparing to the array C that has the same number of elements
but the wrong shape produces an error.

 Performing array multiplication, division, or
exponentiation without appending a dot operator
requests one of the specialized matrix operations that
will be covered in Chapter 12 . The error message
when this occurs is quite obscure if you are not
expecting it:

??? Error using ==> mtimes
Inner matrix dimensions must agree.

 Even more obscure is the case where the dimensions
of the arrays happen to be consistent (when
multiplying square arrays), but the results are not the
scalar products of the two arrays.

 Common Pitfalls 3 . 4

 Removing rows or columns from an array is very
rarely the right solution to a problem and can lead to
logical difficulties. Wherever possible, use indexing to
copy the rows and columns you want to keep.

 Common Pitfalls 3 . 3

3.5 Arrays 83

 Applying Library Functions In addition to being able to consume vectors,
most mathematical functions in the MATLAB language can consume an
array of numbers and return an array of the same shape. The following

 Exercise 3.12 Working with array mathematics

>> A = [2 5 7
1 3 2]

A =
 2 5 7

1 3 2
>> A + 5
ans =

7 10 12
6 8 7

B = ones(2, 3)
B =

1 1 1
1 1 1

>> B = B * 2
B =

2 2 2
2 2 2

>> A.*B % scalar multiplication
ans =

4 10 14
2 6 4

>> A*B % matrix multiplication does not work here
??? Error using ==> mtimes
Inner matrix dimensions must agree.

 Exercise 3.13 Working with array logical operations

>> A = [2 5; 1 3]
A =

2 5
1 3

>> B = [0 6; 3 2];
>> A >= 4
ans =

0 1
0 0

>> A >= B
ans =

1 0
0 1

>> C = [1 2 3 4]
>> A > C
??? Error using ==> gt
Matrix dimensions must agree.

84 Chapter 3 Vectors and Arrays

functions deserve special mention because they are exceptions to this rule
and provide specific capabilities that are frequently useful:

 ■ sum(v) and mean(v) when applied to a 2-D array return a row vector
containing the sum and mean of each column of the array,
respectively. If you want the sum of the whole array, use
 sum(sum(v)) .

 ■ min(v) and max(v) return two row vectors: the minimum or
maximum value in each column and also the row in that column
where that value occurred. For example:

>> [values rows] = max([2 7 42;
 9 14 8;
 10 12 -6])
values = [10 14 42]
rows = [3 2 1]

 This indicates that the maximum values in each column are 10, 14, and 42,
respectively, and they occur in rows 3, 2, and 1. If you really need the row
and column containing, say, the maximum value of the whole array,
continue the preceding example with the following lines:

>> [value col] = max(values)
value = 42
col = 3

 This finds the maximum value in the whole array and determines that it
occurs in column 3. So to determine the row in which that maximum
occurred, we index the vector of row maximum locations, rows , with the
column in which the maximum occurred.

>> row = rows(col)
row = 1

 Therefore, we correctly conclude that the maximum number in this array is
42, and it occurs at row 1, column 3.

 Array Concatenation The MATLAB language permits programmers to
construct a new array by concatenating other arrays in the following
ways:

 ■ Horizontally, as long as each component has the same number of
rows:

A = [B C D ... X Y Z]

 ■ Vertically, as long as each has the same number of columns:
A = [B; C; D; ... X; Y; Z]

 The result will be an array with that number of rows and a number of
columns equaling the sum of the number of columns in each individual
item.

 Exercise 3.14 gives you the opportunity to concatenate an array.

3.5 Arrays 85

 Slicing Arrays The general form of
statements for moving sections of one array
into sections of another is as follows:

B(<rangeBR>, <rangeBC>) =
A(<rangeAR>,<rangeAC>)

 where each <range..> is an index vector, A
is an existing array, and B can be an existing
array or a new array. The values in B at the

specified indices are all assigned the corresponding values copied from A .
The rules for using this template are as follows:

 ■ Either each dimension of each sliced array must be equal, or the size
of the slice from A must be 1 3 1.

 ■ If B did not exist before this statement was implemented, it would
be zero filled where assignments were not explicitly made.

 ■ If B did exist before this statement, the values not directly assigned
would remain unchanged.

 Reshaping Arrays Occasionally, it is useful to take an array with one set of
dimensions and reshape it to another set. The function reshape(...)
accomplishes this. The command reshape(A, rows, cols, ...) will take
the array A , whatever its dimensions, and reform it into an array sized (rows
3 cols 3 ...) out to as many dimensions as desired. However, reshape(...)
neither discards excess data nor pads the data to fill any empty space. The
product of all the original dimensions of A must equal the product of the
new dimensions. Try Exercise 3.15 to see how to reshape an array.

 Here, we first take a 1 3 10 array, A , and attempt to reshape it to 4 3 3. Since
the element count does not match, an error results. When we concatenate two
zeros to the array A , it has the right element count and the reshape succeeds.

 Linearized Arrays A discussion of arrays would not be complete without
revealing an infamous secret of the MATLAB language: multi-dimensional
arrays are not stored in some nice, rectangular chunk of memory. Like all
other blocks of memory, the block allocated for an array is sequential, and
the array is stored in that space in column order. Normally, if MATLAB
behaved as we “have a right to expect,” we would not care how an array is

 The MATLAB language does not encourage
concatenating data of different classes. However, it
tolerates such concatenation with sometimes odd
results. If you really want to achieve this in an
unambiguous manner, you should explicitly cast the
data to the same class.

 Style Points 3 . 1

 Exercise 3.14 Concatenating an array

>> A = [2 5; 1 7];
>> B = [1 3]'; % makes a column vector
>> [A B]
ans =
2 5 1
1 7 3

86 Chapter 3 Vectors and Arrays

stored. However, there are circumstances under which the designers of
MATLAB needed to expose this secret. The primary situation in which
array linearization becomes evident is the mechanization of the find(...)
function. If we perform a logical operation on an array, the result is an array
of logical values of the same size as the original array. In general, the true
values would be scattered randomly about that result array. If we wanted
to convert this to a collection of indices, what would we expect to see? The
 find(...) function has two modes of operation: we can give it separate
variables in which to store the rows and columns by saying [rows cols] =
find(...) or we can receive back just one result by calling ndx = find(...) .
Indexing with this result exposes the linearized nature of arrays. The way
this feature manifests itself is shown in Exercise 3.16 .

 Here, we build a 4 3 3 array A and calculate the logical array where A is
greater than 5. When we save the result of finding these locations in the variable
 ix , we see that this is a vector of values. If we count down the columns from the
top left, we see that the second, seventh, eighth, and eleventh values in the
linearized version of A are indeed true . We also see that it is legal to use this
linearized index vector to access the values in the original array—in this case, to
add 3 to each one. Finally, we would expect a loud complaint when trying to
reference the eleventh element of an array with only three rows. In fact

MATLAB “unwinds” the storage of the
array, counts down to the eleventh
entry—3 for column 1, 3 for column 2,
and 3 for column 3—and then extracts
the second element of column 4.

 To understand all these array
manipulation ideas fully, you should
work carefully through the script in
Listing 3 . 3 , study the explanatory
notes that follow, and do Exercise 3.17 .

 1. It is best not to expose the detailed steps of finding logical
results in arrays, but to use an integrated approach:

A(A>5) = A(A>5) + 3

This produces the expected answers without exposing the
nasty secrets underneath.

 2. Never use an array linearization as part of your program
logic. It makes the code hideous to look at and/or understand,
and it is never the “only way to do” anything.

 Style Points 3 . 2

 Exercise 3.15 Reshaping an array

>> A = 1:10
A =

1 2 3 4 5 6 7 8 9 10
>> reshape(A, 4, 3)
??? Error using ==> reshape
To RESHAPE the number of elements must not change.
>> reshape([A 0 0], 4, 3)
ans =

1 5 9
2 6 10
3 7 0
4 8 0

3.5 Arrays 87

 Listing 3 . 3 Array manipulation script

 1. A = [2 5 7 3
 2. 1 3 4 2]
 3. [rows, cols] = size(A)
 4. odds = 1:2:cols
 5. disp('odd columns of A using predefined indices')
 6. A(:, odds)
 7. disp('odd columns of A using anonymous indices')
 8. A(end, 1:2:end)
 9. disp('put evens into odd values in a new array')
10. B(:, odds) = A(:, 2:2:end)
11. disp('set the even values in B to 99')
12. B(1, 2:2:end) = 99
13. disp('find the small values in A')
14. small = A < 4
15. disp('add 10 to the small values')
16. A(small) = A(small) + 10
17. disp('this can be done in one ugly operation')
18. A(A < 4) = A(A < 4) + 10
19. small_index = find(small)
20. A(small_index) = A(small_index) + 100

 In Listing 3 . 3 :

 Lines 1 and 2: Create a 2 3 4 array A .
 Line 3: Determines the number of rows and columns.

 Exercise 3.16 Linearizing an array

>> A = [2 5 7 3
8 0 9 42
1 3 4 2]

A =
 2 5 7 3

8 0 9 42
1 3 4 2

>> A > 5
ans =

0 0 1 0
1 0 1 1
0 0 0 0

>> ix = find(A > 5)
ix =

2 7 8 11
>> A(ix) = A(ix) + 3
A =

 2 5 10 3
11 0 12 45
 1 3 4 2

>> A(11)
ans =

42 % (sigh!)

88 Chapter 3 Vectors and Arrays

 Line 4: Builds a vector odds containing the indices of the odd
numbered columns.
 Line 6: Uses odds to access the columns in A . The : specifies that this
is using all the rows.
 Line 8: The anonymous version of the command in Line 6. Notice
that you can use the keyword end in any dimension of the array to
represent the last index on that dimension.
 Line 10: Because B did not previously exist (a good reason to have
 clear at the beginning of the script to be sure this is true), a new
array is created. Elements in B that were not assigned are zero filled.

 Exercise 3.17 Running the array manipulation script

Run the script in Listing 3 . 3 and observe the results:
odds =
 1 3
odd columns of A using predefined indices
ans = 2 7
 1 4
odd columns of A using anonymous indices
ans =
 1 4
put evens into odd values in a new array
B =
 5 0 3
 3 0 2
set the even values in B to 99
B =
 5 99 3
 3 0 2
find the small values in A
small =
 1 0 0 1
 1 1 0 1
add 10 to the small values
A =
 12 5 7 13
 11 13 4 12
this can be done in one ugly operation
A =
 12 5 7 13
 11 13 4 12
do the same thing with indices
small_index =
 1
 2
 4
 7
 8
A =
 112 5 7 113
 111 113 4 112

3.6 Engineering Example—Computing Soil Volume 89

 Line 12: Puts 99 into selected
locations in B .
 Line 14: Logical operations on arrays
produce an array of logical results.
 Line 16: Adds 10 to the values in A
that are small.
 Line 18: Not only is this
unnecessarily complex, but it is also
less efficient because it is applying
the logical operator to A twice.
 Line 19: The function find(...)
actually returns a column vector of
the index values in the linearized
version of the original array, as
shown in Exercise 3.16
 Line 20: As illustrated in Line 18, it
is not necessary to use find(...)
before indexing an array. However,
this command does work.

 Notice that all the results are consistent with our expectations.

 1. Do not forget to begin all scripts with the two commands
clear and clc.

 a. clear empties the current Workspace window of all
variables and prevents the values of old variables from
causing strange behavior in this script.
 b. clc clears the Command window to prevent
confusion about whether a display was caused by this
script or some earlier activity.

 2. It is better to enter a few lines at a time and run each
version of the script incrementally, rather than editing one
huge script and running the whole thing for the first time.
When you have added only a few lines to a previously
working script, it is easy to locate the source of logic
problems that arise.

 3. It is very tempting to build large, complex vector operation
expressions that solve messy problems “in one line of code.”
While this might be an interesting mental exercise, the code
is much more maintainable if the solution is expressed one
step at a time using intermediate variables.

 Style Points 3 . 3

 3.6 Engineering Example—Computing Soil Volume

 When digging the foundations for a building, it is necessary to estimate the
amount of soil that must be removed. The first step is to survey the land on
which the building is to be built, which results in a rectangular grid defining
the height of each grid point as shown in Figure 3.5 .

0
2

4
6

8
10

12
14

16
18

0
2

4
6

8
10

12
20
22
24
26
28
30
32
34

 Figure 3.5 Landscape survey

90 Chapter 3 Vectors and Arrays

 The next step is to consider an architectural drawing of the basement of the
building as shown in Figure 3.6 . The shaded areas indicate those places where
the soil really must be removed to make the building foundation. We can
estimate from this figure the fraction of each surveyed square (for our purposes,
a number between 0 and 1) where the soil must actually be removed.

 The total amount of soil to move is then the sum of the individual square
depths multiplied by the area in each square to be removed. The code in
Listing 3 . 4 solves this problem.

 Figure 3.6 Calculating soil volume

 Listing 3 . 4 Script to compute total soil

% soil depth data for each square produced by the survey
 1. dpth = [8 8 9 8 8 8 8 8 7 8 7 7 7 7 8 8 8 7
 2. 8 8 8 8 8 8 8 7 7 7 7 7 8 7 8 8 8 7
 3. 8 8 8 8 7 7 8 7 8 8 8 8 8 7 8 8 8 8
 4. 7 7 7 8 7 8 8 8 8 8 8 8 7 6 7 7 7 7
 5. 8 8 8 8 8 8 8 8 7 7 7 7 7 6 6 7 7 8
 6. 8 7 7 8 7 7 8 7 7 7 7 7 7 7 7 7 7 8
 7. 9 8 8 9 8 7 8 7 7 7 7 7 6 7 6 7 7 8
 8. 8 8 8 9 9 8 8 8 7 6 6 6 6 7 7 8 7 8
 9. 9 8 8 7 7 7 7 7 7 6 6 7 7 7 8 8 7 8
10. 9 8 8 7 7 7 6 7 7 6 6 8 8 8 9 9 7 8
11. 9 9 8 8 8 8 7 7 7 7 7 8 8 9 9 9 8 8
12. 9 8 8 7 7 8 7 7 7 7 8 8 9 9 9 8 7 8];

% estimated proportion of each square that should be excavated
13. area = [1 1 1 1 1 1 1 1 1 1 .3 0 0 0 0 0 0 0
14. 1 1 1 1 1 1 1 1 1 1 .7 0 0 0 0 0 0 0
15. 1 1 1 1 1 1 1 1 1 1 1 .8 .4 0 0 0 0 0
16. 1 1 1 1 1 1 1 1 1 1 1 1 1 .8 .3 0 0 0
17. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .7 .2 0 0
18. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 .6 0 0
19. 0 0 0 .7 1 1 1 1 1 1 1 1 1 1 1 .8 0 0
20. 0 0 0 .7 1 1 1 1 1 1 1 1 1 1 1 .7 0 0
21. 0 0 0 .4 1 1 1 1 1 1 1 1 1 1 1 .6 0 0
22. 0 0 0 .1 .8 1 1 1 1 1 1 1 1 1 1 1 .4 0
23. 0 0 0 0 .2 .7 1 1 1 1 1 1 1 1 1 1 .9 .1
24. 0 0 0 0 0 0 .4 .8 .9 1 1 1 1 1 1 1 1 .6];

25. square_volume = dpth .* area;
26. total_soil = sum(sum(square_volume))

Special Characters, Reserved Words, and Functions 91

 Chapter Summary

 This chapter introduced you to vectors and arrays. For each collection, you saw
how to:

 ■ Create a vectors and arrays by concatenation and a variety of
special-purpose functions

 ■ Access and remove elements, rows, or columns
 ■ Perform mathematical and logical operations on them
 ■ Apply library functions, including those that summarize whole

columns or rows
 ■ Move arbitrary selected rows and columns from one array to

another
 ■ Reshape and linearize arrays

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 [] The empty vector 3.3.4

 [...] Concatenates data, vectors, and arrays 3.2.1

 : Specifies a vector as from:incr:to 3.2.1

 : Used in slicing vectors and arrays 3.3.5

 () Used with an array name to identify specific elements 3.3.3

 ' Transposes an array 3.5.1

 ; Separates rows in an array definition 3.5.2

 + Scalar and array addition 3.3.5

 - Scalar and array subtraction or unary negation 3.3.5

 The code in Listing 3 . 4 produces an answer around 1,120,
and we should ask whether this is reasonable. There are
12 3 18 squares, each with area 1 unit, about 80% of which
are to be excavated, giving a surface area of about 180 square
units. The average depth of soil is about 7 units, so the
answer ought to be about 180 3 7 > 1,300 cubic units. This
is reasonably close to the computed result.

 Common Pitfalls 3 . 5

 When you run this script, it produces the answer: 1,117.5 cubic units.

92 Chapter 3 Vectors and Arrays

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 .* Array multiplication 3.3.5

 ./ Array division 3.3.5

 .^ Array exponentiation 3.3.5

 < Less than 3.3.5

 <= Less than or equal to 3.3.5

 > Greater than 3.3.5

 >= Greater than or equal to 3.3.5

 == Equal to 3.3.5

 > Not equal to 3.3.5

 & Element-wise logical AND (vectors) 3.3.5

 && Short-circuit logical AND (scalar) 3.3.5

 | Element-wise logical OR (vectors) 3.3.5

 || Short-circuit logical OR (scalar) 3.3.5

 ~ Unary not 3.3.5

 end Last element in a vector 3.3.5

 false Logical false 3.2.2

 true Logical true 3.2.2

 ceil(x) Rounds x to the nearest integer toward positive
infinity

 3.3.5

 cross(a, b) Vector cross product 3.3

 diag(a) Extracts the diagonal from an array or, if provided
with a vector, constructs an array with the given
diagonal

 3.5.2

 disp(value) Displays an array or text 3.3.5

 find() Computes a vector of the locations of the true
values in a logical array

 3.3.5, 3.5.5

 [rows cols] =
find()

 Computes vectors of row and column locations of
the true values in a logical array

 3.5.5

 fix(x) Rounds x to the nearest integer toward zero 3.3.5

 floor(x) Rounds x to the nearest integer toward minus infinity 3.3.5

 length(a) Determines the largest dimension of an array 3.2.2, 3.5.1

 linspace(fr,to,n) Defines a linearly spaced vector 3.2.1

Self Test 93

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 magic(n) Generates a magic square 3.5.2

 [v,in] = max(a) Finds the maximum value and its position in a 3.3.5

 mean(a) Computes the average of the elements in a 3.3.5

 [v,in] = min(a) Finds the minimum value and its position in a 3.3.5

 ones(r, c) Generates an array filled with the value 1 3.2.1

 rand(r, c) Calculates an r 3 c array of evenly distributed
random numbers in the range 0…1

 3.2.1

 randn(r, c) Calculates an r 3 c array of normally distributed
random numbers

 3.2.1

 round(x) Rounds x to the nearest integer 3.3.5

 size(a) Determines the dimensions of an array 3.2.2, 3.5.1

 sum(a) Totals the values in a 3.3.5

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. A homogeneous collection must consist entirely of numbers.

 2. The function linspace(...) can create only vectors, whereas the
functions zeros(...) , ones(...) , and rand(...) produce either
vectors or arrays of any dimension.

 3. The length(...) function applied to a column vector gives you the
number of rows.

 4. You can access any element(s) of an array of any dimension using a
single index vector.

 5. Mathematical or logical operators are allowed only between two
arrays of the same shape (rows and columns).

 6. You can access data in a vector A with an index vector that is longer
than A .

 7. You can access data in a vector A with a logical vector that is longer
than A .

94 Chapter 3 Vectors and Arrays

 8. When moving a block of data in the form of specified rows and
columns from array A to array B , the shape of the block in A must
match the shape of the block in B .

 Fill in the Blanks

 1. Vector elements have two attributes that make them unique: their
____________ and their ____________.

 2. The operators *, / and ^ are reserved for _____________ arithmetic,
whereas the operators .*, ./ and .^ are reserved for _____________
operations.

 3. If an array of size 2*4 is defined as a = [1 2 3 4;5 6 7 8;],
_____________ and _____________ are the values of the operations
max(a) and max(max(a)), respectively.

 4. The length() function returns the _____________ of the array.

 5. Arithmetic operations can be performed collectively on the
individual components of two arrays as long as both arrays
_______________or one of them is _____________.

 6. _____________ and _____________ are two built-in functions used
for creating arrays of any dimension m*n.

 7. Removing rows or columns from an array is ________________, and
can lead to ______________. Wherever possible, use _____________
to _____________________.

 Programming Projects

 1. For these exercises, do not use the direct entry method to construct
the vectors. Write a script that does the following:
 a. Construct a vector containing multiples of 3 between 6 and 55,

inclusive of the end points. Store your answer in the variable
multiple_three.

 b. Construct a vector, evens, containing even numbers in between 8
and 25, inclusive of the end points.

 c. Construct a vector, reverse, containing the numbers starting at
45 and counting backwards by 1 to 35.

 d. Construct a vector, theta, containing 16 evenly spaced values
between 0 and π.

 e. Construct a vector, fib, containing the first 10 Fibonacci numbers.
(Hint: F(n) = F(n 2 1) 1 F(n 2 2) and F(1) 5 0, F(2) 5 1).

 f. Construct a vector, random, containing 15 randomly generated
numbers between 1 and 12.

Programming Projects 95

 2. Write a script that performs the following exercises on vectors:
 a. You are given a vector vec, defined as: vec = [24 12 33 6 85 43

68 -48 99]. You decide that you need the even and odd numbers
of vec separately. Write a script to separate even and odd
numbers into two different vectors named even and odd. Since
your commands must work for any vector of any length, you
must not use direct entry.

 b. Create a variable called vecLength that holds the number of
elements in the vector vec modified in part a. You should use
a built-in function to calculate the value based on the vector
itself.

 c. Create variables called vecSum and vecMean which hold the sum
and mean value of the elements in vector vec. You should use a
built-in function to calculate the value based on the vector
itself.

 d. Calculate the sum and average of the values in the vector vec
without the help of built-in functions. Compare the values with
those obtained in part c.

 e. Create a variable called vecProd that holds the product of the
elements in vector vec. You should use a built-in function to
calculate the value based on the vector itself.

 3. Write a script to solve the following problems using only vector
operations:
 a. Assume that you have two vectors named A1 and B1 of equal

length, and create a vector C1 that combines A1 and B1 such that
 C1 = [A1(1) B1(1) A1(2) B1(2) A1(end) B1(end)] . For
example, if A1 = [2, 4, 8] and B1 = [3, 9, 27] , C1 should
contain [2, 3, 4, 9, 8, 27]

 b. Assume that you have two vectors named A2 and B2 of different
lengths. Create a vector C2 that combines A2 and B2 in a manner
similar to part a. However, if you run out of elements in one of
the vectors, C2 also contains the elements remaining from the
longer vector. For example, if A2 = [1, 2, 3, 4, 5, 6] and B2 =
[10, 20, 30] , then C2 = [1, 10, 2, 20, 3, 30, 4, 5, 6] ; if
 A2 = [1, 2, 3] and B2 = [10, 20, 30, 40, 50] , then C2 = [1, 10,
2, 20, 3, 30, 40, 50]

 4. Write a script that, when given a vector of numbers, nums , creates
a vector newNums containing every other element of the original
vector, starting with the first element. For example, if nums =
[6 3 56 7 8 9 445 6 7 437 357 5 4 3] , newNums should be [6 56
8 445 7 357 4] . Note: You must not simply hard-code the
numbers into your answer; your script should work with any
vector of numbers.

96 Chapter 3 Vectors and Arrays

 5. You are given a vector, tests, of test scores and wish to normalize
these scores by computing a new vector, normTests , that will contain
the test scores on linear scale from 0 to 100. A zero still corresponds
to a zero, and the highest test score will correspond to 100. For
example, if tests = [90 45 76 21 85 97 91 84 79 67 76 72 89
95 55] , normTests should be

[92.78 46.39 78.35 21.65 87.63 100 93.81 86.6 ...
81.44 69.07 78.35 74.23 91.75 97.94 56.7];

 6. Write a script that takes a vector of numbers, A, and return a new
vector B, containing the factorial of the positive numbers in A. If a
particular entry is negative, replace its factorial with 0. For example,
if A = [1 2 -1 5 4 3 -2], B should be [1 2 0 120 24 6 0].

 7. Great news! You have just been selected to appear on Jeopardy
this fall. You decide that it might be to your advantage to
generate an array representing the values of the questions on
the board.
 a. Write a script to generate the matrix jeopardy that consists of

six columns and five rows. The columns are all identical, but
the values of the rows range from 200 to 1,000 in equal
increments.

 b. Next, generate the matrix doubleJeopardy , which has the same
dimensions as jeopardy but whose values range from 400 to
2,000.

 c. You’ve decided to go even one step further and practice for a
round that doesn’t even exist yet. Generate the matrix
 squaredJeopardy that contains each entry of the original jeopardy
matrix squared.

 8. Write a script named arrayOperations that will do the following on
the given arrays, and then return a new array of the same size.
 • Add A to B
 • Subtract A from B

 The input arguments to your script should be as given below.
• A: a 2D array of any size
• B: another 2D array that has the same size as A. If not so, display

an error message and the script should terminate execution.

Programming Projects 97

 Your script should produce an array, res, of size M3N that contains
the results of the corresponding operations on A and B. Test this
script by writing another script that repeatedly sets the values of A,
B, M, and N, and then invokes your arrayOperations script.

 For example, if A = [1 2 3; 5 4 6], B = [7 8 9;10 11 12], M = 2,
and M = 3, res will be [8 10 12; 15 15 18]. If A = [1 2 3;4 5 6],
B = [1 2;3 4;5 6], then res will be an error message "Incompatible
Matrix dimensions".

This page intentionally left blank

 Chapter Objectives

 This chapter discusses techniques for changing the flow of control in
a program, which may be necessary for two reasons:

 ■ You may want to execute some parts of the code under certain
circumstances only

 ■ You may want to repeat a section of code a certain number of
times

 In Chapter 3 we used the array notation to gather numbers into a
form where they could be processed collectively rather than
individually. This chapter deals with code blocks (collections of one
or more lines of code) that solve a particular segment of a problem
in the same way. We will see how to define a code block, how to
decide to execute a code block under certain conditions only, and
how to repeat execution of a code block.

 Execution Control
 C H A P T E R 4

 4.1 Concept: Code Blocks
 4.2 Conditional Execution in

General
 4.3 if Statements
 4.3.1 General Template
 4.3.2 MATLAB

Implementation
 4.3.3 Important Ideas

 4.4 switch Statements
 4.4.1 General Template
 4.4.2 MATLAB

Implementation
 4.5 Iteration in General
 4.6 for Loops
 4.6.1 General for Loop

Template
 4.6.2 MATLAB

Implementation
 4.6.3 Indexing

Implementation
 4.6.4 Breaking out of a

for Loop
 4.7 while Loops
 4.7.1 General while

Template
 4.7.2 MATLAB

while Loop
Implementation

 4.7.3 Loop-and-a-Half
Implementation

 4.7.4 Breaking a while
Loop

 4.8 Engineering Example—
Computing Liquid Levels

99

100 Chapter 4 Execution Control

Statements

True

FalseIf
Condition

 Figure 4.1 Simple if statement

 4.1 Concept: Code Blocks

 Some languages identify code blocks by enclosing them in braces ({. . .});
others identify them by the level of indentation of the text. The MATLAB
language uses the occurrence of key command words in the text to define
the extent of code blocks. Keywords like if, switch, while, for, case,
otherwise, else, elseif, and end are identified with blue coloring by the
MATLAB text editor. They are not part of the code block, but they serve as
instructions on what to do with the code block and as delimiters that define
the extent of the code block.

 4.2 Conditional Execution in General

 To this point, the statements written in our scripts (single code blocks)
have been executed in sequence from the instruction at the top to the
instruction at the bottom. However, it is frequently necessary to make
choices about how to process a set of data based on some characteristic of
that data. We have seen logical expressions that result in a Boolean result—
true or false. This section discusses the code that implements the idea
shown in Figure 4.1 .

 In the flowchart shown in Figure 4.1 , a set of statements (the code block
to be executed) is shown as a rectangle, a decision point is shown as a
diamond, and the flow of program control is indicated by arrows. When
decision points are drawn, there will be at least two arrows leaving that
symbol, each labeled with the reason one would take that path. This
concept makes the execution of a code block conditional upon some test. If
the result of the test is true, the code block is executed. Otherwise, the code
block is omitted, and the instruction(s) after the end of that code block is
executed next.

 An important generalization of this concept is shown in Figure 4.2 .
Here the solution is generalized to permit the first code block to be
implemented under the first condition as before. Now, however, if that

4.3 if Statements 101

first logical test returns false, a second test is performed to determine
whether the second code block should be executed. If that test returns
false, as many further tests as necessary may be performed, each with the
appropriate code block to be implemented when the result is true. Finally,
if none of these tests return true, the last code block, usually identified by
the else keyword—(n 1 1) in the figure—is executed. As the flowchart
shows, as soon as one of the code blocks is executed, the next instruction
to execute is the one that follows the conditional code after the end
statement. In particular, if there is no else clause, it is possible that no
code at all is executed in this conditional statement.

 There are two common styles in which to implement this conditional
behavior. First we will discuss the most general form, the if statement, and
then we will discuss the more restrictive, but tidier, switch statement. Both
implementations are found in most modern languages, albeit with slightly
different syntax. In each case, the code block to be implemented is all the
statements between the key words colored blue by the MATLAB editor.

Statements (1)

True

FalseIf
Condition

Statements (2)

True

False

. . .

Elseif
Condition

Statements (n)

FalseElseif
Condition

Statements (n+1)

Else

 Figure 4.2 Compound if statement

 4.3 if Statements

 Here we introduce the concept of a programming template. Many
programming texts still use the idea of flowcharts, such as those illustrated
in Figures 4.1 and 4.2 , to describe the design of a solution in a manner
independent of the code implementation. However, since this graphical
form cannot be maintained with a text editor, if the design of the solution
changes, it is difficult to maintain any design description that is separate
from the code itself.

 Throughout the remainder of this text, we will describe the overall design
of a code module using a design template. Design templates are a textual
form of flowchart consisting of the key words that control program flow
and placeholders that identify the code blocks and expressions that are

102 Chapter 4 Execution Control

necessary to implement the solution logic. Design templates are powerful
tools for the novice programmer to overcome the “blank sheet of paper”
problem—“how do I start solving this problem?” All programmers need to
do is recognize the nature of the solution and write down the appropriate
template. Then solving a particular problem becomes the relatively simple
task of writing the code blocks identified by the template.

 To discuss the if statement, first we consider its general, language
independent template and then its MATLAB implementation.

 4.3.1 General Template

 Template 4.1 shows the general template for the if statement. Note the
following:

 ■ The only essential ingredients are the first if statement, one code
block, and the end statement. All other features may be added as the
logic requires.

 ■ The code blocks may contain any sequence of legal MATLAB
statements, including other if statements (nested ifs), switch
statements, or iterations (see Section 4.5).

 ■ Nested if statements with a code block are an alternative
implementation of a logical AND statement.

 ■ Recall that logical operations can be applied to a vector, resulting in
a vector of Boolean values. This vector may be used as a logical
expression. The if statement will accept this expression as true if
all of the elements are true.

 4.3.2 MATLAB Implementation

 Listing 4 . 1 shows the MATLAB solution to a typical logical problem:
determining whether a day is a weekday or a weekend day. It is assumed
that the variable day is a number containing integer values from 1 to 7.

 Template 4.1 General template for the if statement

if <logical expression 1>
<code block 1>

elseif <logical expression 2>
<code block 2>
.
.
.

elseif <logical expression n>
<code block n>

else
<default code block>

End

4.3 if Statements 103

 In Listing 4 . 1 :

 Line 1: The first logical expression determines whether day is 7.

 Line 2: The corresponding code block sets the value of the variable
state to the string 'weekend'. In general, there can be as many
statements within a code block as necessary.

 Line 3: The second logical expression determines whether day is 1.

 Line 4: The corresponding code block also sets the value of the
variable state to the string 'weekend'.

 Line 5: The key word else introduces the default code block
executed when none of the previous tests pass.

 Line 6: The default code block sets the value of the variable state to
the string 'weekday'.

 Exercise 4.1 gives you the opportunity to practice using if statements,
and Listing 4 . 2 shows a script that will satisfy Exercise 4.1 .

 Listing 4 . 1 if statement example

1. if day == 7 % Saturday
2. state = 'weekend'
3. elseif day == 1 % Sunday
4. state = 'weekend'
5. else
6. state = 'weekday'
7. end

 Exercise 4.1 Using if statements

 Write a script that uses input(...) to request a numerical grade in percentage
and uses if statements to convert that grade to a letter grade according to the
following table:

 90% and better: A
 80%–90%: B
70%–80%: C
 60%–70%: D
 Below 60%: F

 Test your script by running it repeatedly for legal and illegal values of the
grade percentage.

Check your work against the script shown in Listing 4 . 2 .

104 Chapter 4 Execution Control

 In Listing 4 . 2 :

 Line 1: Requests a grade value from the user with the input(...)
function. The prompt appears in the Command window, and the
system waits for a line of text from the user and converts that line
as it would any other Command window line, returning the result
to the variable grade.
 Line 2: The first logical expression looks for the grade that earns
an A.
 Line 3: The corresponding code block sets the value of the variable
letter to 'A'.
 Lines 4–9: The corresponding logic for letter grades B, C, and D.
 Lines 10–12: The default logic setting the variable letter to 'F'.

 4.3.3 Important Ideas

 There are two important ideas that are necessary for the successful
implementation of if statements: the general form of the logical expressions
and short-circuit analysis.

 Logical Expressions The if statement
requires a logical expression for its
condition. A logical expression is any
collection of constants, variables, and
operators whose result is a Boolean true or
false value.

 Logical expressions can be created in the following ways:

 ■ The value of a Boolean constant (e.g., true or false)
 ■ The value of a variable containing a Boolean result (e.g., found)
 ■ The result of a logical operation on two scalar quantities (e.g., A > 5)

 Listing 4 . 2 Script with if statements

 1. grade = input('what grade? ');
 2. if grade >= 90
 3. letter = 'A'
 4. elseif grade >= 80
 5. letter = 'B'
 6. elseif grade >= 70
 7. letter = 'C'
 8. elseif grade >= 60
 9. letter = 'D'
10. else
11. letter = 'F'
12. end

 The MATLAB Command window echoes logical
results as 1 (true) or 0 (false). In spite of this
appearance, logical values are not numeric and should
never be treated as if they were.

 Common Pitfalls 4.1

4.3 if Statements 105

 ■ The result of logically negating a Boolean quantity using the unary
negation operator (e.g., ~found)

 ■ The result of combining multiple scalar logical expressions with the
operators && or || (e.g., A && B or A || B)

 ■ The results of the functions that are the logical equivalent of the && ,
 || , and ~ operators: and(A, B) or(A, B) and not(A)

 ■ The results of other functions that operate on Boolean vectors:
any(...) and all(...)

 The result from any(...) will be true if any logical value in the vector is
true. The result from all(...) will be true only if all logical values in the
vector are true. The function all(...) is implicitly called if you supply a
vector of logical values to the if statement, as shown in Listing 4 . 3 .

 In Listing 4 . 3 :

 Line 1: Makes the variable A a logical vector.
 Line 2: Using this as a logical expression, internally converts this
expression to all(A).
 Line 3: All the values of A are not true; therefore, the above code
body does not execute.
 Line 4: Now, all the elements of A are true.
 Lines 5–6: If we repeat the test, the code body will now execute.

 Short-Circuit Evaluation When evaluating a sequence of logical && or || ,
MATLAB will stop processing when it finds the first result that makes all
subsequent processing irrelevant. This concept is best illustrated by an
example. Assume that A and B are logical results and you want to evaluate
A && B. Since the result of this is true only if both A and B are true, if you
evaluate A and the result is false, no value of B can change the outcome A &&
B. Therefore, there is no reason to evaluate any more components of a logical
and expression once a false result has been found. Similarly, if you want A
|| B, if A is found to be true, you do not need to evaluate B. For example,
suppose you want to test the n th element of a vector v using a variable n,
and you are concerned that n might not be a legal index value.

 Listing 4 . 3 The if statement with a logical vector

1. A = [true true false]
2. if A

% will not execute
3. end
4. A(3) = true;
5. if A

% will execute
6. end

106 Chapter 4 Execution Control

 The following code could be used:

if (n <= length(v)) && (v(n) > 0)
% success!

end

 If n were not a legal index, the indexed accessor v(n) would cause an
error for attempting to reach beyond the end of the vector. However, by
putting the test of n first, the short-circuit logic would not process the
second part of the expression if the test of n failed.

 Template 4.2 General template for the switch statement

switch <parameter>
case <case specification 1>

<code block 1>
case <case specification 2>

<code block 2>
.
.

case <case specification n>
<code block n>

otherwise
<default code block>

end

 4.4 switch Statements

 A switch statement implements the logic shown in Figure 4.2 in a different
programming style by allowing the programmer to consider a number of
different cases for the value of one variable. First we consider the general,
language-independent template for switch statements, and then its
MATLAB implementation.

 4.4.1 General Template

 Template 4.2 shows the general template for the switch statement.

 Note the following:

 ■ All tests refer to the value of the same parameter
 ■ case specifications may be either a single value or a set of

parameters enclosed in braces { ... }
 ■ otherwise specifies the code block to be executed when none of the

case values apply
 ■ The code blocks may contain any sequence of legal MATLAB

statements, including other if statements (nested ifs), switch
statements, or iterations

4.4 switch Statements 107

 4.4.2 MATLAB Implementation

 Listing 4 . 4 shows the MATLAB implementation of a typical logical problem:
determining the number of days in a month. It assumes that the value of
month is 1 . . . 12, and leapYear is a logical variable identifying the current
year as a leap year.

 Listing 4 . 4 Example of a switch statement

 1. switch month
 2. case {9, 4, 6, 11}
 % Sept, Apr, June, Nov
 3. days = 30;
 4. case 2 % Feb
 5. if leapYear
 6. days = 29;
 7. else
 8. days = 28;
 9. end
10. case {1, 3, 5, 7, 8, 10, 12}

% other months
11. days = 31;
12. otherwise
13. error('bad month index')
14. end

 The usual description of the logic suggests that the last case
in Listing 4 . 4 could be the otherwise clause. However, that
would prevent you from being able to detect bad month
number values, as this code does.

 Style Points 4.1

 The second parameter to the input(...) statement
prevents MATLAB from attempting to parse the data
provided, returning a string instead. Without that activity
suppressed, if you enter the string 'yes', MATLAB will rush
off looking for a variable by that name.

 Hint 4.1

 The use of indentation is not required in the MATLAB
language, and it has no significance with regard to syntax.
However, the appropriate use of indentation greatly
improves the legibility of code and you should use it. You
have probably already noted that in addition to colorizing
control statements, the text editor automatically places the
control statements in the indented positions illustrated in
Listings 4.3 and 4.4.

 Style Points 4.2

 In Listing 4 . 4 :

 Line 1: All tests refer to the value
of the variable month.
 Line 2: This case specification is
a cell array (See Chapter 7 for
specifics) containing the indices
of the months with 30 days.
 Line 3: The code block extends
from the case statement to the
next control statement (case,
otherwise, or end).
 Line 5: This code block contains
an if statement to deal with the
February case. It presumes that a
Boolean variable leapYear has
been created to indicate whether
this month is in a leap year.
 Lines 10–11: Deal with the
remaining months.
 Line 13: A built-in MATLAB
function that announces the
error and terminates the script.

108 Chapter 4 Execution Control

 Try using the switch statement in Exercise 4.2 .

 Exercise 4.2 Using the switch statement

 Write and test the script in Listing 4 . 4 using input(...) to request a numerical
month value.
You will need to preset a value for leapYear .
 Test your script by running it repeatedly for legal and illegal values of the
month.
 Modify your script to ask whether the current year is a leap year. (It’s best to
ask only for February.) You could use code like the following:

ans = input('leap year (yes/no)', 's');
leapYear = (ans(1) == 'y');

 Test this new script thoroughly.
 Try this script without the second parameter to input(...) . Can you explain
what is happening?
 Modify the script again to accept the year rather than yes/no, and implement
the logic to determine whether that year is a leap year.

 4.5 Iteration in General

 Iteration allows controlled repetition of a code block. Control statements at
the beginning of the code block specify the manner and extent of the
repetition:

 ■ The for loop is designed to repeat its code block a fixed number of
times and largely automates the process of managing the iteration.

 ■ The while loop is more flexible in character. In contrast to the fixed
repetition of the for loop, its code block can be repeated a variable
number of times, depending on the values of data being processed.
It is much more of a “do-it-yourself” iteration kit.

 The if and switch statements allow us to decide to skip code blocks
based on conditions in the data. The for and while constructs allow us to
repeat code blocks. Note, however, that the MATLAB language is designed
to avoid iteration. Under most circumstances of processing numbers, the
array processing operations built into the language make do-it-yourself
loop constructs unnecessary.

 4.6 for Loops

 Figure 4.3 shows a simple for loop. The hexagonal shape illustrates the
control of repetition. The repeated execution of the code block is performed
under the control of a loop-control variable. It is first set to an initial value

4.6 for Loops 109

that is tested against a terminating condition. If the terminating test
succeeds, the program leaves the for loop. Otherwise, the computations in
the code block are performed using the current value of that variable. When
one pass through the code block is finished, the variable is updated to its
next value, and control returns to the termination test.

 4.6.1 General for Loop Template

 The general template for implementing for loops is shown in Template 4.3.
All of the mechanics of iteration control are handled automatically in the
variable specification section. In some languages—especially those with
their origins in C—the variable specification is a formidable collection of
statements that provide great generality of loop management. The designers
of the MATLAB language, with its origins in matrix processing, chose a
much simpler approach for specifying the variable range, as shown in the
general template. The repetition of the code block is managed completely
by the specification of the loop control variable.

 4.6.2 MATLAB Implementation

 The core concept in the MATLAB for loop implementation is in the style of
the variable specification, which is accomplished as follows:

<variable specification>: <variable> = <vector>

 where <variable> is the name of the loop control variable and <vector> is
any vector that can be created by the techniques discussed in Chapter 3 . If

Computations

For
<Loop>

Done

 Figure 4.3 Structure of a for loop

 Template 4.3 General template for the for statement

for <variable specification>
 <code block>
end

110 Chapter 4 Execution Control

we were to use the variable specification x = A, MATLAB would proceed as
follows:

 1. Set an invisible index to 1.

 2. Repeat steps 3 to 5 as long as that index is less than or equal to the
length of A.

 3. Set the value of x to A(index)

 4. Evaluate the code block with that value of x

 5. Increment the index

 For a simple example of for loops, the code shown in Listing 4 . 5 solves a
problem that should be done in a single MATLAB instruction: max(A) where
A is a vector of integers. However, by expanding this into a for loop, we see
the basic structure of the for loop at work.

 In Listing 4 . 5 :

 Line 1: Creates a vector A with six elements.
 Line 2: The tidiest way to find limits of a collection of numbers is to
seed the result, theMax, with the first number.
 Line 3: Iterates across the values of A.

 Lines 4–6: The code block extends
from the for statement to the
associated end statement. The code
will be executed the same number
of times as the length of A even if
you change the value of x within the
code block . At each iteration, the
value of x will be set to the next
element from the array A.

 Line 8: The fprintf(...)function is a very flexible means of
formatting output to the Command window. See the discussion in
 Chapter 8 , or enter the following in the Command window:

> help fprintf

 Listing 4 . 5 Example of a for statement

1. A = [6 12 6 91 13 6] % initial vector
2. theMax = A(1); % set initial max value
3. for x = A % iterate through A
4. if x > theMax % test each element
5. theMax = x;
6. end
7. end
8. fprintf('max(A) is %d\n', theMax);

 By setting the default answer to the first value, we avoid the
problem of seeding the result with a value that could be
already outside the range of the vector values. For example,
we might think that theMax = 0; would be a satisfactory
seed. However, this would not do well if all the elements of
 A were negative.

 Common Pitfalls 4.2

4.6 for Loops 111

 4.6.3 Indexing Implementation

 The above for loop implementation may seem very strange to those with a
C-based language background, in which the loop-control variable is usually
an index into the array being traversed rather than an element from that
array. In order to illustrate the difference, we will adapt the code from
Listing 4 . 5 to solve a slightly different problem that approximates the
behavior of max(A). This time we need to know not only the maximum
value in the array, but also its index. This requires that we resort to indexing
the array in a more conventional style, as shown in Listing 4 . 6 .

 In Listing 4 . 6 :

 Line 1: Generalizes the creation of the vector A using the rand(...)
function to create a vector with 10 elements each between 0 and 100.
The ceil(...) function rounds each value up to the next higher
integer.
 Lines 2 and 3: Initialize theMax and theIndex.
 Line 4: Creates an anonymous vector of indices from 1 to the length
of A and uses it to define the loop-control variable, index.
 Line 5: Extracts the appropriate element from A to operate with as
before.
 Lines 6 and 7: The same comparison logic as shown in Listing 4 . 5 .
 Line 8: In addition to saving the new max value, we save the index
where it occurs.
 Line 11: This is our first occurrence where a logical line of code
extends beyond the physical limitations of a single line. Since
MATLAB normally uses the end of the line to indicate the end of an
operation, we use ellipses (...) to specify that the logic is
continued onto the next line.

 You can enter and run these scripts by following Exercise 4.3 .

 Listing 4 . 6 for statement using indexing

 1. A = floor(rand(1,10)*100)
 2. theMax = A(1);
 3. theIndex = 1;
 4. for index = 1:length(A)
 5. x = A(index);
 6. if x > theMax
 7. theMax = x;
 8. theIndex = index;
 9. end
10. end
11. fprintf('the max value in A is %d at %d\n', ...
12. theMax, theIndex);

112 Chapter 4 Execution Control

 4.6.4 Breaking out of a for Loop

 If you are in a for loop and find a circumstance where you really do not
want to continue iterating, the break statement will skip immediately out of
the innermost containing loop. If you want to continue iterating but omit all
further steps of the current iteration, you can use the continue statement.

Computations

Initialization

while
<Expression>

False

True

 Figure 4.4 Structure of a while loop

 Exercise 4.3 Producing for statement results

 Enter and run the scripts in Listings 4.5 and 4.6. They should each produce the
following results:

A =
6 12 6 91 13 61 26 22 71 54

the max value in A is 91 at 4
>>

 4.7 while Loops

 We use while loops in general to obtain more control over the number of
times the iteration is repeated. Figure 4.4 illustrates the control flow for a
while loop. Since the termination test is performed before the loop is
entered, the loop control expression must be initialized to a state that will
normally permit loop entry. It is possible that the code block is not executed
at all—for example—if there is no data to process.

 4.7.1 General while Template

 Template 4.4 shows the general template for implementing while loops.
The logical expression controlling the iteration is testing some state of the
workspace; therefore, two things that were automatic in the for loop must
be manually accomplished with the while loop: initializing the test and
updating the workspace in the code block so that the test will eventually
fail and the iteration will stop.

4.7 while Loops 113

 4.7.2 MATLAB while Loop Implementation

 For the sake of consistency, Listing 4 . 7 shows you how to solve the same
problem using the while syntax.

 In Listing 4 . 7 :

 Lines 1–3: Create a test vector and initialize the answers as before.
 Line 4: Initializes the index value since this is manually updated.
 Line 5: This test will fail immediately if the vector A is empty.
 Line 6: Extracts the item x from the array (good practice in general
to clarify your code).
 Lines 7–9: The same test as before to update the maximum value.
 Line 11: “Manually” updates the index to move the loop closer to
finishing.

 Enter and run the script as described in Exercise 4.4 .

 Template 4.4 General template for the while statement

<initialization>
while <logical expression>

<code block> % must make some changes
% to enable the loop to terminate

end

 Listing 4 . 7 while statement example

 1. A = floor(rand(1,10)*100)
 2. theMax = A(1);
 3. theIndex = 1;
 4. index = 1;
 5. while index <= length(A)
 6. x = A(index);
 7. if x > theMax
 8. theMax = x;
 9. theIndex = index;
10. end
11. index = index + 1;
12. end
13. fprintf('the max value in A is %d at %d\n', ...
14. theMax, theIndex);

 Exercise 4.4 Producing while statement results

 Enter and run the script in Listing 4 . 7 . It should produce the following results:

A =
6 12 6 91 13 61 26 22 71 54

the max value in A is 91 at 4
>>

114 Chapter 4 Execution Control

 4.7.3 Loop-and-a-Half Implementation

 Listing 4 . 8 illustrates the implementation of the loop-and-a-half iteration
style, in which we must enter the loop and perform some computation
before realizing that we do not need to continue. Here we continually ask
the user for the radius of a circle until an illegal radius is entered, which is
our cue to terminate the iteration. For each radius entered, we want to
display the area and circumference of the circle with that radius.

 Listing 4 . 8 Loop-and-a-half example

 1. clear
 2. clc
 3. close all
 % Listing 04.08 Loop-and-a-half example
 4. R = 1;
 5. while R > 0
 6. R = input('Enter a radius: ');
 7. if R > 0
 8. area = pi * R^2;
 9. circum = 2 * pi * R;
10. fprintf('area = %f; circum = %f\n', ...
11. area, circum);
12. end
13. end

 We wrote the for loop examples in two styles: the
direct access style and the indexing style. Many people
code in the indexing style even when the index value
is not explicitly required. This is slightly tacky and
demonstrates a lack of appreciation for the full power
of the MATLAB language.

 Style Points 4.3

 The use of break and continue statements is
frowned upon in programming circles for the same
reason that the goto statement has fallen into
disrepute—they make it more difficult to understand
the flow of control through a complex program. It is
preferable to express the logic for remaining in a
while loop explicitly in its controlling logical
expression, combined with if statements inside the
loop to skip blocks of code. However, sometimes this
latter approach causes code to be more complex than
would be the case with judicious use of break or
continue.

 Style Points 4.4

 In Listing 4 . 8 :

 Line 1: Initializes the radius value
to allow the loop to be entered the
first time.
 Line 2: We will remain in this loop
until the user enters an illegal radius.
 Line 3: The input(...)function
shows the user the text string,
parses what is typed, and stores the
result in the variable provided.
This is described fully in Chapter 8 .
 Line 4: We want to present the area
and circumference only if the
radius has a legal value. Since this
test occurs in the middle of the
while loop, we call this “loop-and-
a-half” processing.
 Lines 5–8: Compute and display the
area and circumference of a circle.

 Try this script in Exercise 4.5 .

4.8 Engineering Example—Computing Liquid Levels 115

 4.7.4 Breaking a while Loop

 As with the for loop, break will exit the innermost while loop, and continue
will skip to the end of the loop but remain within it.

H

rh

 Figure 4.5 A tank containing liquid

 Exercise 4.5 Producing loop-and-a-half test results

 Enter and run the script in Listing 4 . 8 . It should produce the following results:

Enter a radius: 4
area = 50.265482; circum = 25.132741
Enter a radius: 3
area = 28.274334; circum = 18.849556
Enter a radius: 100
area = 31415.926536; circum = 628.318531
Enter a radius: 0

 >>

 4.8 Engineering Example—Computing Liquid Levels

 Figure 4.5 shows a cylindrical tank of height H and radius r with a spherical
cap on each end (also of radius, r). If the height of the liquid is h , what is the
volume of liquid in the tank? Clearly, the calculation of the volume of liquid
in the tank depends upon the relationship between h, H, and r :

 ■ If h is less than r , we need the volume, v , of a partially fi lled sphere
given by:

v =

1
3
ph2(3r - h)

 ■ If h is greater than r but less than H 2 r , we need the volume of a
fully fi lled hemisphere plus the volume of a cylinder of height h 2 r :

v =
2
3
pr 3 + pr 2(h - r)

116 Chapter 4 Execution Control

 ■ If h is greater than H 1 r , we need the volume of a fully fi lled sphere
plus the volume of a cylinder of height H 1 2r minus the partially
empty upper hemisphere of height H 1 h :

v =
4
3
pr 3 + pr 2(H - 2r) -

1
3
p(H - h)2(3r - H + h)

 The script to perform this calculation is shown in Listing 4 . 9 . Rather than
performing the computations for one liquid level only, we should write the
script so that we continue to consider tanks of different dimensions and
different liquid heights for each tank until the user indicates that he needs no
more results.

 In Listing 4 . 9 :

 Line 1: Initializes the value to keep it in the first while loop.
 Lines 3 and 4: Get the tank sizes.
 Line 5: Initializes the value to keep it in the inner while loop.
 Line 7: Gets the liquid height.
 Lines 8–14: Calculations for legal values of h . Notice that no dot
operators are required here, because these conditional computations
will not work correctly with vectors of H, r, or h .

 Listing 4 . 9 Script to compute liquid levels

 1. another_tank = true;
 2. while another_tank
 3. H = input('Overall tank height: ');
 4. r = input('tank radius: ');
 5. more_heights = true;
 6. while more_heights
 7. h = input('liquid height: ');
 8. if h < r
 9. v = (1/3)*pi*h.^2.*(3*r-h);
10. elseif h < H-r
11. v = (2/3)*pi*r^3 + pi*r^2*(h-r);
12. elseif h <= H
13. v = (4/3)*pi*r^3 + pi*r^2*(H-2*r) ...
14. - (1/3)*pi*(H-h)^2*(3*r-H+h);
15. else
16. disp('liquid level too high')
17. continue
18. end
19. fprintf(...
20. 'rad %0.2f ht %0.2f level %0.2f vol %0.2f\n', ...
21. r, H, h, v);
22. more_heights = input('more levels? (y/n)','s')=='y';
23. end
24. another_tank = input('another tank? (y/n)','s')=='y';
25. end

Chapter Summary 117

 Lines 15 and 16: Illegal h values end up here.

 Line 17: Goes to the end of the inner loop, skipping the printout.

 Lines 19–21: Print the result.

 Line 22: More levels when “y” is entered.

 Line 24: Another tank when “y” is entered.

 Table 4.1 shows some typical results.

 Table 4.1 Results for liquid levels

 Overall tank height: 10

 tank radius: 2

 liquid height: 1

 radius 2.00 height 10.00 level 1.00 vol 5.24

 more levels? (y/n)y

 liquid height: 8

 radius 4.00 height 8.00 level 8.00 vol 268.08

 more levels? (y/n)

 another tank? (y/n)

 Chapter Summary

 This chapter presented techniques for changing the flow of control of a program
for condition execution and repetitive execution:

 ■ The most general conditional form is the if statement, with or
without the accompanying elseif and else statements

 ■ The switch statement considers different cases of the values of a
countable variable

 ■ A for loop in its most basic form executes a code block for each of
the elements of a vector

 ■ A while loop repeats a code block a variable number of times, as
long as the conditions specified for continuing the repetition remain
true

118 Chapter 4 Execution Control

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

false Logical false 4.2

true Logical true 4.2

break A command within a loop module that forces
control to the statement following the
innermost loop

 4.6.4, 4.7.4

case A specific value within a switch statement 4.1, 4.4.1

continue Skips to the end of the innermost loop, but
remains inside it

 4.6.4, 4.7.4

else Within an if statement, begins the code block
executed when the condition is false

 4.1, 4.3.2

elseif Within an if statement, begins a second test
when the first condition is false

 4.1, 4.3.2

end Terminates an if, switch, for, or while module 4.1, 4.3.2

for var = v A code module repeats as many times as there
are elements in the vector v

 4.1, 4.6

if <exp> Begins a conditional module; the following
code block is executed if the logical expression
<exp> is true

 4.1, 4.3.2

input(str) Requests and parses input from the user 4.3.2

otherwise Catch-all code block at the end of a switch
statement

 4.1, 4.4.1

switch(variable) Begins a code module selecting specific
values of the variable (must be countable)

 4.1, 4.4.1

while <exp> A code module repeats as long as the logical
expression <exp> is true

 4.1

all(a) True if all the values in a, a logical vector, a,
are true

 4.3.3

and(a, b) True if both a and b are true (can be vectors) 4.3.3

any(a) True if any of the values in a, a logical vector,
is true

 4.3.3

not(a) True if a is false; false if a is true (can be vectors) 4.3.3

or(a, b) True if either a or b is true (can be vectors) 4.3.3

 Self Test

 Use the following questions to check your understanding of the material in
this chapter:

Programming Projects 119

 True or False

 1. MATLAB keywords are colored green by the editor.

 2. Indentation is required in MATLAB to define code blocks.

 3. It is possible that no code at all is executed by if or switch
constructs.

 4. The word true is a valid logical expression.

 5. When evaluating a sequence of logical && expressions, MATLAB
will stop processing when it finds the first true result.

 6. The for loop repeats the enclosed code block a fixed number of
times even if you modify the index variable within the code block.

 7. Using a break statement is illegal in a while loop.

 8. The logical expression used in a while loop specifies the conditions
for exiting the loop.

 Fill in the Blanks

 1. MATLAB uses ______________ in the text to define the extent of
code blocks.

 2. A logical expression is any collection of constants, variables, and
operators whose result is a(n) ______________ .

 3. If you want to continue iterating but omit all further steps of the
current iteration, you can use the ______________ statement.

 4. The ______________ command is used to get an input from user.

 5. The looping instructions for() and while() are called
______________ looping operations, since the condition is evaluated
before the control is passed into the statements inside the loop.

 6. If you are in a(n) _____________ loop, you can use the break
statement to skip immediately out of the _____________ loop.

 Programming Projects

 1. Write a script to solve this problem. Assume you have a vector of
positive integers named D. Using iteration (for and/or while) and
conditionals (if and/or switch), separate vector D into four vectors
mulTwo, mulThree, mulFour, and mulFive.
 • mulTwo all of the positive even numbers in D.
 • mulThree contains all the multiples of 3 in D.
 • mulFour contains all the multiples of 4 in D.
 • mulFive contains all the multiples of 5 in D.

120 Chapter 4 Execution Control

 For example:

if D = [1,8,2,6,3,15],
mulTwo = [2,4,6,8], mulThree = [3,6,15]
mulFour = [8], mulTwo = [15]

 2. You must use either for or while to solve the following problems.
 a. Iterate through a vector, A, using a for loop, and create a new

vector, B, containing logical values. The new vector should
contain true for positive values and false for all other values. For
example, if A = [−300 2 5 −63 4 0 −46], the result should be
B = [false true true false true true false]

 b. Iterate through the vector, A, using a while loop, and return a new
vector, B, containing true for positive values and false for all
other values.

 c. Iterate through a logical array, N, using a for loop, and return a
new vector, M, containing the value 2 wherever an element of N is
true and the value −1 (not a logical value) wherever N is false.
For example, if N = [true false false true true false true],
the result should be M = [2 −1 −1 2 2 −1 2]

 d. Iterate through an array, Z, using a while loop. Replace every
element with the number 3 until you reach a number larger than
50. Leave the rest unchanged. For example, if Z = [4 3 2 5 7 9 0
64 34 43], after running your script, Z = [3 3 3 3 3 3 3 3 34 43]

 3. Your class teacher needs your help. He is preparing the final test
scores of all 35 students in his class. He has the rollNo, interimTest1,
interimTest2, quizMark, and endExam scores of all the students.
The interimTest1 and interimTest2 scores are out of 20 each. The
quizMark is out of 15 and the endExam is out of 45. He needs to
calculate the GPAs of all the students. Your class teacher has asked
you to write a script that will help him to prepare the Grade chart
of all the students. GPAs will be awarded according to the
following rules:

totalMark GPA
 100-90 S (Excellent)
 89-80 A
 79-70 B
 69-60 C
 59-50 D
 49-40 E
0-39 F (Fail)

 Your script should repeatedly ask for the details of each student and
compute the student grade. It should continue until the details of all
35 students are entered.

Programming Projects 121

 4. You were just hired for a summer internship with one of the area’s
best software companies; however, on your first day of work you
learn that for the next three months, the only job you will have is to
convert binary (base 2) numbers into decimal numbers (base 10).
You decide to write a script that will repetitively ask the user for a
binary number and return its decimal equivalent until an illegal
number (one containing digits other than 0 or 1) is entered. The
number entered should contain only the digits 0 and 1. The
rightmost digit has the value 2 0 and the digit N places to the left of
that has the value 2 N . For example, entering 110101 returns

53 = 2 5 + 2 4 + 2 3 + 2 0

 You must use iteration to solve this problem. Note: The input (...)
function prompts the user for a value, parses the characters entered
according to normal MATLAB rules, and returns the result.

 5. You have a friend who has too many clothes to store in his or her
tiny wardrobe. Being a good friend, you offer to help to decide
whether each piece of clothing is worth saving. You decide to
write a script that will compute the value of each piece of clothing.
A piece of clothing has five attributes that can be used to
determine its value. The attributes are: condition, color, price,
number of matches, and comfort. Each attribute will be rated on a
scale of 1 to 5. Write a script called clothes that will ask the user
for the ratings for each attribute and store the result in a vector.
The order of attributes in the vector is: [condition color price
matches comfort]

 The script should compute a value between 0 and 100; 100 represents
a good piece of clothing, while 0 represents a bad piece of clothing.
The points that should be given for each attribute are shown below:

 Condition: 1=>0; 2=>5; 3=>10; 4=>15; 5=>20
 Color: 1 => blue => 12;

2 => red => 2;
3 => pink => 15;
4 => yellow => 20;
5 => white => 12

 Price: 1 => 8, 2–3 => 16, 4–5 => 20
 Matches: 1–2 => 8, 3–5 => 19
 Comfort: 1 => 6, 2–3 => 13, 4–5 =>18

 Note: If a number other than 1–5 is assigned for one of the
attributes, no points should be given.

 6. Write a function called divideVector. It should take in an array of
positive and negative integers and return two vectors, pos and neg,

122 Chapter 4 Execution Control

which store positive integers and negative numbers, respectively.
For example,

 divideVector([4 -5 2 1 -7 -3]) should return [4 2 1] and
[-5 -7 -3]

divideVector([2 -3 4 5 -6 7]) should return [2 4 5 7] and
[-3 -6]

 7. Now that you’re comfortable with iteration, you’re going to have to
solve an interesting problem. It seems that the Math department at a
rival university has once again dropped the ball, and forgotten the
value of pi. You are to write a function called mypi, which consumes
a number that specifies the required accuracy and then
approximates the value of pi to that accuracy. You are going to use
the following algorithm based on geometric probability.

 Think about a quarter circle inside of a unit square (the quarter
circle has area p/4). You pick a random point inside the square. If it
is in the quarter circle, you get a “hit”; and if not, you get a “miss.”
The approximate area of the quarter circle will be given by the
number of hits divided by the number of points you chose.

 Your function should repeat the process of counting
hits and misses until at least 10,000 tries have been
made, and the successive estimates of pi are within
the prescribed accuracy. It should return the
estimated value of pi.

 8 Your junior students have to study multiplication tables as part of
their curriculum. Unfortunately, they don't know how to generate a
multiplication table, given a positive integer less than or equal to 12.
You can help them by writing a function which prints this for them.
The function should read in any positive number less than 12 and
print its multiplication table in the following format.

 For example, if the value entered is 5, then the output should be:

 1 x 5 = 5

 2 x 5 = 10

 12 x 5 = 60

 Hint

you could use the function rand (...)
in this problem.

 Chapter Objectives

 This chapter discusses the nature, implementation, and behavior of
user-defined functions in MATLAB:

 ■ How to define a function

 ■ How data are passed into a function

 ■ How to return data, including multiple results

 ■ How to include other functions not needed except as helpers to
your own function

 Writing a user-defined function allows you to isolate and package
together a code block, so that you can apply that code block to dif-
ferent sets of input data. We have already made use of some built-in
functions like sin(...) and plot(...) by calling them; this chap-
ter will deal with creating and using your own functions.

 Functions
 C H A P T E R 5

 5.1 Concepts: Abstraction
and Encapsulation

 5.2 Black Box View of a
Function

 5.3 MATLAB Implementation
 5.3.1 General Template
 5.3.2 Function Definition
 5.3.3 Storing and Using

Functions
 5.3.4 Calling Functions
 5.3.5 Variable Numbers

of Parameter
 5.3.6 Returning Multiple

Results
 5.3.7 Auxiliary Local

Functions
 5.3.8 Encapsulation in

MATLAB Functions
 5.3.9 Global Variables

 5.4 Engineering Example—
Measuring a Solid Object

123

124 Chapter 5 Functions

<Param 1><Name>

<Item 2> <Item n><Item 1>

<Param 2>

<Results>

<Param n>

 Figure 5.1 Black box view of a function

 5.1 Concepts: Abstraction and Encapsulation

 A function is an implementation of procedural abstraction and encapsulation.
Procedural abstraction is the concept that permits a code block that solves a
particular sub-problem to be packaged and applied to different data inputs.
This is exactly analogous to the concept of data abstraction we discussed in
 Chapter 3 where individual data items are gathered to form a collection. We
have already used a number of built-in procedural abstractions in the form
of functions. All the mathematical functions that compute—for example, the
sine of a collection of angles or the maximum value of a vector—are examples
of procedural abstraction. They allow us to apply a code block about which
we know nothing to data sets that we provide. To make use of a built-in
function, all we have to do is provide data in the form the function expects
and interpret the results according to the function’s specification.

 Encapsulation is the concept of putting a wrapper around a collection
that you wish to protect from outside influence. Functions encapsulate the
code they contain in two ways: the variables declared within the function
are not visible from elsewhere, and the function’s ability to change the
values of variables (otherwise known as causing side effects) is restricted to
its own code body.

 5.2 Black Box View of a Function

 The most abstract view of a function can be seen in Figure 5.1 . It consists of
two parts: the definition of the interface by which the user passes data items
to and from the function, and the code block that produces the results
required by that interface. A function definition consists of the following
components:

 ■ A name that follows the same syntactic rules as a variable name
 ■ A set of 0 or more parameters provided to the function
 ■ Zero or more results to be returned to the caller of the function

 The basic operation of a function begins before execution of the function
actually starts. If the function definition requires n parameters, the calling
instructions first prepare n items of data from its workspace to be provided

5.3 MATLAB Implementation 125

to the function. These data are then passed to the function, the code body is
executed, and the results are returned to the caller.

 Template 5 . 1 General template for a function

function <return info> <function name> (<parameters>)
<documentation>
<code body> % must return the results

 5.3 MATLAB Implementation

 In this section, first we consider the general template for implementing
functions and then the MATLAB implementation of that template.

 5.3.1 General Template

 The general layout of a function definition is shown in Template 5 . 1 . The
 <return info> section for most functions involves providing the name(s) of
the results returned followed by an = sign. If more than one result is to be
returned, they are defined in a vector-like container. If nothing is to be returned
from this function, both the result list and the = sign are omitted. The <function
name> is a name with the same syntactic rules as a variable name and will be
used to invoke the code body. The <parameters> section is a comma-separated
list of the names of the data to be provided to the function. The <documentation>
section is one or more lines of comments that describe what the function does
and how to call it. These lines will appear in two situations:

 ■ All the documentation lines up to the first non-document line are
printed in the Command window when you type the following:

>> help <function name>

 ■ The first line is listed next to the file name in the Current Directory
listing

 5.3.2 Function Definition

 In the MATLAB language, functions must be stored in a separate file located
in a directory accessible to any script or function that calls it. The file
containing the definition of a function named function_name must be
 <function_name>.m . For the general user, the Current Directory is the normal
place to store it. Listing 5 . 1 illustrates a typical MATLAB function called
 cylinder that consumes two parameters, the height and radius of a cylinder,
and produces the return variable volume .

 In Listing 5 . 1 :

 Line 1: The MATLAB function definition is introduced by the key
word function, followed by the name of the return variable (if any)

126 Chapter 5 Functions

and the = sign, then the name of the function and the names of the
formal parameters in parentheses. All comments written
immediately after the function header are available to the MATLAB
Command window when you enter:

>>help <function_name>

 The first comment line also appears in the Current Directory
window as an indication of the basic purpose of the function. It is a
good idea to include in the comments a usage statement showing
copy of the function header line, sometimes referred to as the
Application Programmer Interface (API), to remind a user exactly
how to use this function.
 Line 3: Although encapsulation rules forbid access to the caller’s
variables, the code body still has access to all built-in MATLAB
variables and functions (e.g., pi, as used here).
 Line 5: You must make at least one assignment to the result
variable.
 Line 6: Regrettably, the end statement is not required if there is only
one function in the file; without it, the code body terminates at the
end of the file. However, it must be present if there are other
function definitions in the same file.

 Try saving and testing the cylinder function in Exercise 5 . 1 .

 Listing 5 . 1 Cylinder function

1. function volume = cylinder(height, radius)
% function to compute the volume of a cylinder
% volume = cylinder(height, radius)

2. base = pi * radius^2
3. volume = base * height
4. end

 Exercise 5.1 Saving and testing the cylinder function

 Enter the function definition from Listing 5 . 1 in the Text Editor and save it as
 cylinder.m in your Current Directory. Then enter the following experiments
in the Interactions window. Notice that the first help line appears next to this
file name in the Current Directory.
>> help cylinder
 function to compute the volume of a cylinder
 volume = cylinder(height, radius)
>> cylinder(1, 1)
ans =
 3.1416
>>

5.3 MATLAB Implementation 127

 5.3.3 Storing and Using Functions

 All user-defined MATLAB functions must be created like scripts in an
m-file. When the file is first created, it must be saved in an m-file with the
same file name as the function. For example, the function in Listing 5 . 1
named cylinder must be saved in a file named cylinder.m . Once the file has
been saved, you may invoke the function by entering its name and
parameters of the right type and number in the Command window, in a
script, or in other function definitions. If you do not specify an assignment
for the result of the function call, it will be assigned to the variable ans .

 5.3.4 Calling Functions

 When a function is defined, the user provides a list of the names of each
data item expected to be provided by the caller. These are called the formal
parameters. When this function is called, the caller must provide the same
number of data values expected by the function definition. These are the
actual parameters and can be generated in the following ways:

 ■ Constants
 ■ Variables that have been defined
 ■ The result of some mathematical operation(s)
 ■ The result returned from other functions

 When the actual parameters have been computed, copies of their values are
assigned as the values of the formal parameters the function is expecting.

Values are assigned to parameters by
position in the calling statement and
function definition.

 The process of copying the actual
parameters into the formal parameters
is referred to as “passing by value”—
the only technique defined in the
MATLAB language for passing data
into a function.

 Once the parameter names have
been defined in the function’s
workspace, the function’s code body

is executed, beginning with the first instruction. If return variables have
been defined for the function, every exit from the code body must assign
valid values for the results.

 5.3.5 Variable Numbers of Parameters

 Although the number of parameters is usually fixed, most languages,
including MATLAB, provide the ability to deal with a variable number of

 Some languages provide an alternative technique—“passing
by reference”—whereby the memory location for the
parameters is passed to the function while the values remain
in the caller’s workspace. Syntactically, this is usually a bad
thing, allowing deliberate or accidental assignments to “reach
back” into the scope of the calling code and thereby perhaps
causing undesirable side effects. However, restricting
parameter access to passing by value can result in poor
program performance. When a function needs access to
large sets of data, consider improving the efficiency by using
global variables.

 Style Point 5 . 1 Parameter Passing

128 Chapter 5 Functions

parameters, both incoming and returning. The built-in function nargin
computes the actual number of parameters provided by the user in the
current function call. If the function is designed to make use of nargin , the
user calling this function can provide any values he deems important and
allow the function to set default values for the unnecessary parameters.

 Similarly, the function nargout computes the number of storage variables
actually provided by the user. So if one or more of the results requires
extensive computation or user interaction and the caller has not asked for
that data, that computation can be omitted.

 5.3.6 Returning Multiple Results

 The MATLAB language is unique among programming languages in
providing the ability to return more than one result from a function by
name. The multiple results are specified as a “vector” of variable names, for
example, [area, volume] , as shown in Listing 5 . 2 . Assignments must be
made to each of the result variables. However, the calling program is not
required to make use of all the return values.

 In Listing 5 . 2 :

 Line 1: Multiple results to be returned are specified as a “vector” of
variable names, each of which must be assigned from the code
body.
 Lines 2–3: Same as Listing 5 . 1
 Line 4: Added to set the value of the second result.

 Exercise 5 . 2 shows how to invoke a function that can return multiple results.
Notice that the normal method to access the multiple answers is to put the
names of the variable to receive the results in a vector. The names may be
any legal variable name, and the values are returned in the order of the
results defined. If you choose less than the full number of results (or none at
all), the answers that are specified are allocated from left to right from the
available results. As with parameter assignment, the results are allocated
by position in these vectors. Although we called the variable v in the last
test, it still receives the value of the first result, area . If you really only want

 Listing 5 . 2 cylinder function with multiple results

1. function [area, volume] = cylinder(height, radius)
% function to compute the area and volume of a cylinder
% usage: [area, volume]=cylinder(height, radius)

2. base = pi .* radius.^2;
3. volume = base .* height;
4. area = 2 * pi * radius .* height + 2 * base;
5. end

5.3 MATLAB Implementation 129

the second result value, you must put either a '~' marker or a dummy
variable name like 'junk' in the place of any variable you wish to ignore. So
this call:

[~, v] = cylinder(1, 1);

 will put the volume in the variable v.

 5.3.7 Auxiliary Local Functions

 Since the MATLAB language uses the name of the file to identify a function,
every function should normally be saved in its own m-file. However, there
are times when auxiliary functions (sometimes called “helper functions”)
are needed to implement the algorithm contained in the main function in a
file. If this auxiliary function is only used in the main function or its helpers,
it can be written in the same file as its calling function after the definition of
the main function. By convention, some people append the word local_ to
the name of local functions.

 Scripts or functions that use the code in an m-file can reach only the
first function. Other functions in the m-file, the auxiliary functions, can
only be called from the first function or other auxiliary functions in the
same file.

 5.3.8 Encapsulation in MATLAB Functions

 Encapsulation is accomplished in most modern languages, including
MATLAB, by implementing the concept of variable scoping. In practice, this
is achieved by allocating a separate workspace to each function. When

 Exercise 5.2 Testing multiple returns

 Adapt the original cylinder function as shown in Listing 5 . 2 and perform the
following tests in the Command window:

>> [a, v] = cylinder(1, 1)

a =
 6.2832
v =
 3.1416
>> cylinder(1, 1)
ans =
 6.2832
>> a = cylinder(1, 1)
a =
 6.2832
>> v = cylinder(1, 1)
v =
 6.2832
>>

130 Chapter 5 Functions

MATLAB is first started, a default workspace is created in which variables
created in the Command window or by running scripts are stored. When a
function is called, a fresh workspace is created (see Section 9 . 1 . 2 for details),
and the actual parameter values are copied into the formal parameter names
in that new workspace. When the function finishes, this operation is reversed.
The returning parameters are copied into the variables provided by the caller
in the previous workspace, and the function’s workspace is released. The
Variables window always shows you the contents of the current workspace.

 Variable scoping defines the places within your Command window,
MATLAB system, and m-files to which instructions have access. It is related to
the Variables window, which shows you your current workspace. When using
the Command window or running a script and you access the value of a
variable, the system will reach into your current workspace and then into the
MATLAB system libraries to find its current value. This is referred to as Global
Scope. When you run a function, its local variables, including the internal
names of its parameters, are not included in your current workspace, and it
does not look into your current workspace for values of variables it needs. This
is referred to as Local Scope, wherein the variables within a function are not
visible from outside and the function is unable to cause side effects by making
assignments to variables in other workspaces except by returning results.

 To illustrate variable scoping, do Exercise 5 . 3 .

 5.3.9 Global Variables

 Because MATLAB always copies the input data into the function’s workspace,
there are occasions when it is very inefficient to pass large data sets into and
out of a function. To avoid passing large amounts of data, we can use global
variables. Global variables must be defined in both the calling script and the
function using the key word global. For example, suppose we collect a large

volume of data in a variable buffer and
do not want to copy the whole buffer
into and out of a function that processes
that data. In this case, we declare the
variable to be global in both the calling
space and the called function by placing
the following line of code before the
variable is first used in both places:

global buffer

 The function will then be able to access
and modify the values in buffer
without having to pass it in and out as
a parameter. This feature must be
used with caution, however, because

 1. Before you include a function in a complex algorithm, you
should always test its behavior in isolation in a script. This
test script should validate not only the normal operation of
the function, but also its response to erroneous input data it
might receive.

 2. Although any legal MATLAB instruction is permitted within
the code body of a function, it is considered bad form (except
temporarily for debugging purposes) to display values in the
Interactions window.

 3. We also actively discourage the use of the input(...)
function within the code body. If you need to input some
values to test a function, do so from the Interactions window
or a test script.

 Style Points 5 . 2

5.4 Engineering Example—Measuring a Solid Object 131

any function with global access to data is empowered to change that data. In
other words, the use of global data circumvents the natural MATLAB
language’s encapsulation mechanisms.

 Figure 5.2 Disk with holes

 Solution:

 Listing 5 . 3 shows the code that solves this problem.

In Listing 5 . 3 :

 Lines 1–3: Set up the disk sizes. Notice that the script works fine with a
vector of disk thicknesses to check the behavior as thickness varies.

 Exercise 5.3 Observing variable scoping

 Put a break point at Line 6 of your version of the code in Listing 5 . 2 , and then
rerun the function by entering:

>> [a, v] = cylinder(1, 1)

 Notice that the logic stops at that break point and the Text Editor displays an
arrow. The Workspace window shows you the values of height , radius , and
 base but none of the variables you left in the workspace for the Interactions
window. The function has no access to other workspaces.
Observe that as you step through the function, the variables appear in the
Variables window and are updated. When you return from the cylinder
function to display the results, the workspace for the function disappears. The
calling environment has no access to the variables within the function.

 5.4 Engineering Example—Measuring a Solid Object

 Problem:

 Consider the disk shown in Figure 5.2 . It has a radius R , height h , and eight
cylindrical holes each of radius r bored in it. This might be a component of a
machine that must be painted and then assembled with other components.
During the process of designing this machine, we may need to know the
weight of this disk and the amount of paint required to finish it. The weight
and the amount of paint for the machine is the sum of the values for each
component. Since the weight of our disk is proportional to its volume and
the amount of paint is proportional to its “wetted area,” we need the volume
and area of this disk.

 Write a script to compute the volume of the disk and its wetted area.

132 Chapter 5 Functions

 Line 4: Area and volume of the large
disk.
 Line 5: Area and volume of one
hole.
 Line 6: Volume computation.
 Line 7: The area computation.

 Table 5.1 shows the results when
this code is run. Notice that for thin

disks, the area is smaller with the holes. However, as the thickness
increases, the area with the holes is larger than without, as one would
expect.

 Listing 5 . 3 Volume and area of a disk

1. h = 1:5; % set a range of disk thicknesses
2. R = 25;
3. r = 3;

4. [Area Vol] = cylinder(h, R) % dimensions of large disk
5. [area vol] = cylinder(h, r) % dimensions of the hole

% compute remaining volume
6. Vol = Vol - 8*vol

% the wetted area is a little messier. If we total the
% large disk area and the areas of the holes, we get the
% wetted area of the curved edges inside and out.
% However, for each hole, the top and bottom areas have
% been included not only in the top and bottom of the big
% disk, but also as the contributions of each hole.
% From the sum of the top areas, we therefore have to
% remove 32 times the hole top area

7. Area = Area + 8*(area - 2*2*pi*r.^2)

 Table 5.1 Volume and area results
 Area = 4,084 4,241 4,398 4,555 4,712

 Vol = 1,963 3,927 5,890 7,854 9,817

 area = 75 94 113 132 151

 vol = 28 57 85 113 141

 Vol = 1,737 3,474 5,212 6,949 8,687

 Area = 3,782 4,090 4,398 4,706 5,014

 If you experiment with this script a little, you will discover
the power of vector processing for rapidly determining the
sensitivity of results to different parameters. The mathematics
may not work if you provide vectors for more than one of
the given data items. However, vectors supplied for each of
them in turn provide insight into the sensitivity of the results
to each parameter.

 Hint 5 . 1

Self Test 133

 Chapter Summary

 This chapter showed you how to encapsulate a code block to allow it to be reused:

 ■ Functions are defined in a file of the same name using the key word
function to distinguish them from scripts

 ■ Parameters are copied in sequence into the function and given the
names of the formal parameters

 ■ Results are returned to the caller by assigning value(s) to the return
variable(s)

 ■ Variables within the function can be accessed only in the function’s
code block unless they are declared global

 ■ Helper functions accessible only to functions within the same file
may be added below the main function and otherwise obey the
same rules as the main function

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

() Used to identify the formal and actual parameters
of a function

 5.3.2, 5.3.4

 help Invokes help utility 5.3.1

 function Identifies an m-file as a function 5.3.2

 nargin Determines the number of input parameters actually
supplied by a function’s caller

 5.3.4

 nargout Determines the number of output parameters actually
requested by a function’s caller

 5.3.4

 global <var> Defines the scope of the variable <var> as globally
accessible

 5.3.8

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. All data used by a function must be passed in as parameters to the
function.

 2. The name of the first function in an m-file must match the name of
the file containing its definition.

 3. The first documentation line appears in the Current Directory listing.

134 Chapter 5 Functions

 Programming Projects

 1. Write a function called checkPrime that takes in a number, and
checks whether it is prime or not. A number is prime if it has only 1
and itself as its factors. You may assume that number entered is

positive. Your function should return a
logical value, true or false.

For example:
checkPrime(5) should return true.
checkPrime(24) should return false.

 2. Write and test the code for the function mysteryFunction that
consumes a vector, V, and produces a new vector, W, of the same
length where each element of W is the sum of the corresponding
element in V and the previous element of V. Consider the previous
element of V(1) to be 0.

 For example:

 myster yFunction(1:8) should return
[1 3 5 7 9 11 13 15]

 myster yFunction([1:6].^2) should return
[1 5 13 25 41 61]

 Hint:

 mod(x, y) gives the remainder when x is divided
by y .

 4. Functions must consume at least one parameter.

 5. The calling code must provide assignments for every result returned
from a function.

 6. The names of auxiliary functions must begin with local_.

 Fill in the Blanks

 1. The file containing the definition of a function named function_name
must be ___________

 2. All the mathematical functions that compute are examples
of ___________.

 3. The list of the names of each data item when a function is defined is
called the ___________. When this function is called, the caller must
provide the same number of data values expected by the function
definition, which is known as the ___________.

 4. _____________ describes the situation where the variables within a
function are not visible from outside, and the function is unable to
cause side effects by making assignments to outside variables.

 5. Calling code can only reach the ___________ function in an m-file.
Other functions in the m-file can only be called from the
_____________________ or _____________________________.

Programming Projects 135

 3. Coming off a respectable 7–6 record last year, your football team is
looking to improve on that this season. They have contacted you
and asked for your help projecting some of the scenarios for their
win–loss record. They want you to write a function called
 teamRecord that takes in two parameters— wins , and losses , and
returns two values— season and wPercentage . Season should be a
logical result that is true for a winning season. wPercentage is the
percentage of games won (ranging from 0 to 100).

 For example:

[season wPercentage] = teamRecord(3, 9)
should return season = false, wPercentage = 25

[season wPercentage] = teamRecord(10, 2)
should return season = true, wPercentage = 83.3

 4. Write a function called classAverage that takes in an array of
numbers and, after normalizing the grades in such a way that
the highest corresponds to 100 (see Chapter 3 , Problem 5),
returns the letter grade of the class average. The grade ranges
are as follows:

 average>90 => A
 80<=average<90 => B
 70<=average<80 => C
 60<=average<70 => D
 average<60 => F

 For example:

 classAverage([7 0 87 95 80 80 78 85 90 66
89 89 100]) should return B

 classAverage([50 90 61 82 75 92 81 76 87 41
 31 98]) should return C

 classAverage([10 10 11 32 53 12 34 74 31 30
 26 22]) should return F

 5. Given an array of numbers that could be negative, write a
function NegPos(a) to calculate and return the sum and average of
the positive and negative numbers separately in the single
dimensional array, a. In order to test your understanding of class
concepts, implement the NegPos(a) function using iteration. You
may not use the built-in functions sum(...), find(...), or
mean(...) in your solution.

 6. Write and test the code for the function factFun that allows the
user to give a vector V of N positive integers and produces a new
vector, F, of the same length where each element of F is the
factorial of the corresponding element in V. For example,
factFunction(1 4 2 8) should produce [1 24 2 40320]. If the user
accidentally inputs a negative number, an appropriate message

136 Chapter 5 Functions

should be displayed and the function should continue working on
the remaining numbers.

 7. Write a function called largest3 that will take in 3 numbers and
returns the largest value and an index showing which parameter it
was. You may not use the built-in max() function.

 For example:

 largest3(1,3,5) should return 5 and 3
 largest3(8,9,4) should return 9 and 2

 8. Write a function called sumAndAverage . It should take in an array of
numbers and return the sum and average of the array in that order.

 For example:

 sumAndAverage([3 2 3 2]) should return 10 and 2.5

 sumAndAverage([5 -5 2 8 0]) should return 10 and 2
 sumAndAverage([]) should return 0 and 0

 9. You are already familiar with the logical operators && (and)
and || (or), as well as the unary negation operator ~(not). In a
weakly typed language such as MATLAB, the binary states true
and false could be equivalently expressed as a 1 or a 0,
respectively. Let us now consider a ternary number system,
consisting of the states true (1), maybe (2), and false(0) . The truth
table for such a system is shown below. Implement the truth table
by writing the functions f=tnot(x), f=tand(x,y) , and f=tor(x,y) .
You may not assume that only valid input numbers will be entered.

 x y tnot(x) tand(x,y) tor(x,y)

 1 1 0 1 1

 1 0 0 0 1

 1 2 0 2 1

 0 1 1 0 1

 0 0 1 0 0

 0 2 1 2 0

 2 1 2 2 1

 2 0 2 2 0

 2 2 2 2 2

 10. Write a function called transpose(A). This particular function
should take in a N3M array, A, find the transpose of A, and store in
the array transA.

 For example:

 1 2 3 4
 A = 5 6 7 8 ;
 1 4 5 6

Programming Projects 137

 then

transA =

 1 5 1
 2 6 4
 3 7 5
 4 8 6

 11. You are playing a game where you roll a die 10 times. If you roll a 5
or 6 seven or more times, you win 2 dollars; four or more times, you
win 1 dollar; and if you roll a 5 or 6 three or less times, you win no
money. Write a function called diceGame that takes in a vector
representing the die values and returns the amount of money won.

 For example:

diceGame([5 1 4 6 5 5 6 6 5 2]) should return 2
diceGame([2 4 1 3 6 6 6 4 5 3]) should return 1
diceGame([1 4 3 2 5 3 4 2 6 5]) should return 0

 Note: This function should work for any length vector.

This page intentionally left blank

 Chapter Objectives

 This chapter discusses the nature, implementation, and behavior of
character strings in the MATLAB language:

 ■ The internal workings of character strings as vectors

 ■ Operations on character strings

 ■ Converting between numeric and character string representations

 ■ Input and output functions

 ■ The construction and uses for arrays of strings

 To this point in the text, we have seen the use of character strings
that we can store in variables and display in the Command window.
In reality, we have already seen a significant amount of character
manipulation that we have taken for granted. The m-files we use to
store scripts and functions contain lines of legible characters sepa-
rated by an invisible “new-line” character.

 Introduction

 This chapter presents the underlying concept of character storage
and the tools MATLAB provides for operating on character strings.
We need to distinguish two different relationships between characters and
numbers:

 1. Individual characters have an internal numerical representation: the visible
character shapes we see in windows are created as a collection of white and
black dots by special software called a character generator. Character
generators allow us to take the underlying concept of a character—say, “w”—
and “draw” that character on screen or paper in accordance with the rules
defined by the current font. A complete study of fonts is beyond the scope of
this discussion, but we need to understand how computers in general and the
MATLAB language in particular represent that “underlying concept” of a

 Character Strings
 C H A P T E R 6

 6.1 Character String
Concepts: Mapping
Casting, Tokens, and
Delimiting

 6.2 MATLAB Implementation
 6.2.1 Slicing and

Concatenating
Strings

 6.2.2 Arithmetic and
Logical Operations

 6.2.3 Useful Functions
 6.3 Format Conversion

Functions
 6.3.1 Conversion from

Numbers to Strings
 6.3.2 Conversion from

Strings to Numbers
 6.4 Character String

Operations
 6.4.1 Simple Data Output:

The disp(...)
Function

 6.4.2 Complex Output
 6.4.3 Comparing Strings

 6.5 Arrays of Strings
 6.6 Engineering Example—

Encryption

139

140 Chapter 6 Character Strings

character. This is achieved by representing each individual character by its
numerical equivalent. Not long ago, there were many different representations.
Today, the dominant representation is the one defined by the American
Standard Code for Information Interchange (ASCII). In this representation, the
most common uppercase and lowercase characters, numbers, and many
punctuation marks are represented by numbers between 0 and 127. A
complete listing of the first 255 values is included in Appendix B .

 2. Strings of characters represent numerical values to the user: numerical values
are stored in a special, internal representation for efficient numerical
computation as described in Appendix C . However, whenever we need to see
the value of that number in the Command window, that internal
representation is automatically converted by MATLAB into a character string
representing its value in a form we can read. For example, if the variable a
contained the integer value 124, internally that number could be stored in a
single byte (8 bits) with a binary value of 011111100—not a very meaningful
representation, but efficient internally for performing arithmetic and logical
operations. For the user to understand that value, internal MATLAB logic must
convert it to the three printable characters: '124' . Similarly, when we type in
the Command window or use the input(...) function, the set of characters
that we enter is automatically translated from a character string into the
internal number representation.

 6.1 Character String Concepts: Mapping Casting,
Tokens, and Delimiting

 Here we see the MATLAB language tools that deal with the first relationship
between characters and numbers: the numerical representation of individual
characters.

 The basic idea of mapping is that it defines a relationship between two
entities. The most obvious example of mapping is the idea that the function
 f(x) = x 2 defines the mapping between the value of x and the value of f(x) .
We will apply that concept to the process of translating a character (like
“A”) from its graphical form to a numerical internal code. Character
mapping allows each individual graphic character to be uniquely
represented by a numerical value.

 Casting is the process of changing the way a language views a piece of
data without actually changing the data value. Under normal circumstances,
a language like MATLAB automatically presents a set of data in the “right”
form. However, there are times when we wish to force the language to
treat a data item in a specific way. For example, if we create a variable

6.2 MATLAB Implementation 141

containing a character string, MATLAB will consistently display it as a
character string. However, we might want to view the underlying
numerical representation as a number, in which case we have to cast the
variable containing the characters to a numerical data type. MATLAB
implements casting as a function with the name of the data type expected.
In essence, these functions implement the mapping from one character
representation to another.

 A token is a collection of characters to which we may wish to attach
meaning. Obvious examples of tokens are the name of a MATLAB variable
or the characters representing the values of a number to be used in an
expression.

 A delimiter is a character used to separate tokens. The space character,
for example, can delimit words in a sentence; punctuation marks provide
additional delimiters with specific meanings.

 6.2 MATLAB Implementation

 When you enter a string in the Command window or the editor, MATLAB
requires that you delimit the characters of a string with a single quote mark
('). Note that you can include a single quote mark within the string by
doubling the character. For example, if you entered the following in the
Command window:

>>refusal = 'I can''t do that!'

 The result displayed would be

refusal = I can't do that

 Exercise 6 . 1 illustrates the concept of casting between data types char and
 double .

 In Exercise 6 . 1 the casting function uint8(...) takes a character or
character string and changes its representation to a vector of the same
length as the original string. Then the casting function char(...) takes a
number or vector and causes it to be presented as a string. The casting
function double(...) appears to act in the same way as uint8(...) , but it
actually uses 64 bits to store the values. Single quotes delimit a string to be
assigned to the variable fred . Notice that when a string is presented as a
result, the delimiters are omitted. When you apply arithmetic operations to
a string, the operation is illegal on characters; therefore, an implicit casting
to the numerical equivalent occurs.

 You can perform any mathematical operation on the vector and use the
cast, char(...) , to cast it back to a string.

142 Chapter 6 Character Strings

 6.2.1 Slicing and Concatenating Strings

 Strings are internally represented as vectors; therefore, we can perform all
the usual vector operations on strings. Try it in Exercise 6 . 2 .

 Exercise 6.1 Character casting

 Enter the following in the Command window and study the results:

>> uint8('A') % uint8 is an integer data type
% with values 0 - 255

ans =
65

>> char(100) % char is the character class
ans =
d
>> char([97 98 99 100 101])
ans =
abcde
>> double('fred')
ans =

102 114 101 100
>> fred = 'Fred'
fred =
Fred
>> next = fred + 1
next =

71 115 102 101
>> a = uint8(fred)
a =

70 114 101 100
>> name = char(a + 1)
name =
Gsfe

 Exercise 6.2 Character strings

>> first = 'Fred'
first =
Fred
>> last = 'Jones'
last =
Jones
>> name = [first, ' ', last]
name =
Fred Jones
>> name(1:2:end)
ans =
Fe oe
>> name(end:-1:1)
ans =
senoJ derF

6.3 Format Conversion Functions 143

 6.2.2 Arithmetic and Logical Operations

 Mathematical operations can be performed on the numerical mapping of a
character string. If you do not explicitly perform that casting first, MATLAB
will do the cast for you and create a result of type double (not usually
suitable for character values). Note that char('a' + 1) returning 'b' is an
accident of the character type mapping.

 Logical operations on character strings are also exactly equivalent to
logical operations on vectors, with the same automatic casting. Exercise 6 . 3
gives you an opportunity to try it yourself.

 6.2.3 Useful Functions

 The following functions are useful in analyzing character strings:

 ■ ischar(a) returns true if a is a character string
 ■ isspace(ch) returns true if the character ch is the space character

 Exercise 6.3 Character string logic

>> n = 'fred'
n =
fred
>> n > 'g'
ans =
0 1 0 0

 6.3 Format Conversion Functions

 Now we turn to the second relationship between characters and numbers:
using character strings to represent individual number values. We need
two separate capabilities: converting numbers from the efficient, internal
form to legible strings and converting strings provided by users of MATLAB
into the internal number representation. MATLAB provides a number of
functions that transform data between string format and numerical format.

 6.3.1 Conversion from Numbers to Strings

 Use the following built-in MATLAB functions for a simple conversion of a
single number, x , to its string representation:

 ■ int2str(x) if you want it displayed as an integer value
 ■ num2str(x, n) to see the decimal parts; the parameter n represents

the number of decimal places required—if not specified, its default
value is 3

144 Chapter 6 Character Strings

 Frequently you need better control over the data conversion, and the
function sprintf(...) provides fine-grained control. The MATLAB version
of sprintf(...) is very similar to the C / C++ implementation of this
capability. The first parameter to sprintf is a format control string that
defines exactly how the resulting string should be formatted. A variable
number of value parameters follow the format string, providing data items
as necessary to satisfy the formatting.

 Basically the format string contains characters to be copied to the result
string; however, it also contains two types of special entry introduced by
the following two special characters:

 ■ The '%' character introduces a conversion specification, indicating
how one of the value parameters should be represented. The most
common conversions are %d (integer), %f (real), %g (general), %c
(character), and %s (string). A number may be placed immediately
after the % character to specify the minimum number of characters
in the conversion. If more characters than the specified minimum
are required to represent the data, they will be added. In addition,
the %f and %g conversions can include '.n' to indicate the number
of decimal places required. If you actually want a '%' character, it
must be doubled, for example, '%%' . MATLAB processes each of the
value parameters in turn, inserting them in the result string
according to the corresponding conversion specification. If there are
more parameters than conversion specifications in the format
control string, the format control string is repeated.

 ■ The '\' character introduces format control information, the most
common of which are \n (new line) and \t (tab). If the '\' character
is actually wanted in the result string, it should be doubled, for
example, '\\' .

 Consider the following statements:

A = [4.7 1321454.47 4.8];
index = 1;
v = 'values';
str = sprintf('%8s of A(%d) are \t%8.3f\t%12.4g\t%f\n'...

v, index, A(index,1), A(index,2), A(index,3))
str =
 values of A(1) are 4.700 1.321e+006 4.800000

 The first conversion, '%8s' , took the value of the first parameter, v , allowed
eight spaces for its conversion, and copied its contents to the result. Since this
was a string conversion, the characters were merely copied. The characters
 ' of A(' were then appended to the output string. The second conversion,
 '%d' , took the value of the second parameter, index , and converted it as an
integer with the minimum space allocated. The characters ') are' were then
appended to the output string, followed by a tab character that inserted

6.3 Format Conversion Functions 145

enough spaces to bring the next characters to a column that is an even
multiple of eight. The following three conversions appended the next three
value parameters converted with three decimal places, a general conversion
with at least 12 spaces and 4 decimal places, and the default numerical
conversion. Finally, a new line character was inserted into the string.

 6.3.2 Conversion from Strings to Numbers

 Conversion from strings to numbers is much messier, and it should be
avoided if possible. When possible, allow MATLAB’s built-in function
 input(...) to do the conversion for you. If you have to do the conversion
yourself, you can either split a string into tokens and then convert each
token with the str2num(str) function or, if you are really desperate and
using licensed MATLAB software, you can use the function sscanf(...) .

 The function input(str) presents the string parameter to the user in the
Command window and waits for the user to type some characters and the
e key, all of which are echoed in the Command window. Then it parses
the input string according to the following rules:

 ■ If the string begins with a numerical character, MATLAB converts
the string to a number

 ■ If it begins with a non-numeric character, MATLAB constructs a
variable name and looks for its current value

 ■ If it begins with an open bracket, '[' , a vector is constructed
 ■ If it begins with the single quote character, MATLAB creates a

string
 ■ If a format error occurs, MATLAB repeats the prompt

 This behavior can be modified if 's' is provided as the second parameter,
 input(str, 's') , in which case the complete input character sequence is
saved as a string. Exercise 6 . 4 demonstrates a number of capabilities of the
 input(...) function.

 In Exercise 6 . 4 , first we define the variable fred . Then MATLAB attempts
to interpret the result either as a number or as the name of an existing
variable. Since the variable fred was defined (although not a number), it
was assigned correctly to the variable n . MATLAB will distinguish between
a variable and a number input by the first digit. Here, the information
entered was an illegal variable name beginning with a number. When
 input(...) detects an error parsing the text entered, it automatically resets
and requests a new entry.

 On the second attempt, although this is a correctly formed variable name,
its value is not known. On the third attempt, the input(...) function
actually treats the string entered as an expression, to be evaluated by the
same process as MATLAB parses the Command window entries.

146 Chapter 6 Character Strings

 If you actually want a string literal entered, it must be enclosed in the
string delimiters. If you are sure you want a string literal entered, the second
parameter, 's' , forces MATLAB to return the string entered without
attempting to parse it.

 The function str2num(str) consumes a token (string) representing a single
numerical value and returns the numerical equivalent. Do Exercise 6 . 5 to
understand this function.

 Exercise 6.4 The input(...) function

>> fred = 'Fred';
>> n = input('Enter a number: ')
Enter a number: 5
n =

5
>> n = input('Enter a number: ')
Enter a number: fred
n =
Fred
>> n = input('Enter a number: ')
Enter a number: 1sdf
??? 1sdf
Error: Missing MATLAB operator.
Enter a number: s1df
??? Error using ==> input
Undefined function or variable 's1df'.
Enter a number: char(fred - 2)
n =
Dpcb
>> n = input('Enter a number: ')
Enter a number: 'ABCD'
n =
ABCD
>> n = input('Enter a number: ', 's')
Enter a number: ABCD
n =
ABCD

 Exercise 6.5 Converting strings to numbers

>> value = str2num('3.14159')
value =
 3.1416
Now, to check the class of the variable value, either look in the
Variables window or enter the whos command:
>> whos

Name Size Bytes Class Attributes
value 1x1 8 double

>>

 We observe that the function has indeed interpreted the string as its numerical
value.

6.4 Character String Operations 147

 The function sscanf(...) was designed to extract the values of variables
from a string, but is really difficult to use. The author recommends the use
of strtok(...) followed by str2num(...) as necessary to accomplish the
same goal in a more controlled manner.

 6.4 Character String Operations

 As with the string-to-number conversions, input and output in the
Command window can be accomplished with simple functions that have
little flexibility or with complex functions that have better control.

 6.4.1 Simple Data Output: The disp(. . .) Function

 We have already seen the use of the disp(...) function to present data in
readable form in the Intractions window. As the exercises indicate, it can
present the values of any variable, regardless of type, or of strings
constructed by concatenation. Note, however, that an explicit number
conversion is required to concatenate variables with strings. Try
Exercise 6 . 6 .

 Note that although you can concatenate strings for output, conversion
from the ASCII code is not automatic; the second result produced a character
whose ASCII code is 4. You must use the simple string conversion functions
to enforce consistent information for concatenation.

 6.4.2 Complex Output

 The function fprintf(...) is similar to sprintf(...) , except that it prints
its results to the Command window instead of returning a string.
 fprintf(...) returns the number of characters actually printed. Exercise 6 . 7
demonstrates this.

 6.4.3 Comparing Strings

 Since strings are readily translated into vectors of numbers, they may be
compared in the obvious way with the logical operators we used on
numbers. However, there is the restriction that either the strings must be

 Exercise 6.6 The disp(...) function

>> a = 4;
>> disp(a)

4
>> disp(['the answer is ', a])
the answer is
>> disp(['the answer is ', int2str(a)])
the answer is 4

148 Chapter 6 Character Strings

of the same length or one of them must be of length 1 before it is legal to
compare them with these operators. To avoid this restriction, MATLAB
provides the C-style function strcmp(<s1>, <s2>) that returns true if the
strings are identical and false if they are not.

 Unfortunately, this is not quite the same behavior as the C version, which
does a more rigorous comparison returning −1, 0, or 1. You can try a
character string comparison in Exercise 6 . 8 .

 Exercise 6.7 fprintf(...) and sprintf (. . .)

>> a = 42;
>> b = 'fried okra';
>> n = fprintf('the answer is %d\n cooking %s', ...

a, b);
the answer is 42
cooking fried okra
n =

37
>> s = sprintf('the answer is %d\n cooking %s\n', ...

a, b)
s =
the answer is 42
cooking fried Okra

>> str = input('Enter the data: ', 's');
Enter the data: 42 3.14159 -1
A = sscanf(str,'%f')
A =

42.0000
3.1416

-1.0000
>>

 Exercise 6.8 Character string comparison

>> 'abcd' == 'abcd'
1 1 1 1

>> 'abcd' == 'abcde'
??? Error using ==> eq
Array dimensions must match for binary array op.
>> strcmp('abcd', 'abcde')
ans =

0
>> strcmp('abcd', 'abcd')
ans =

1
>> 'abc' == 'a'
ans =

1 0 0
>> strcmpi('ABcd', 'abcd')
ans =

1

6.5 Arrays of Strings 149

 In Exercise 6 . 8 , we see that strings
of the same length compare exactly to
vectors returning a logical vector
result. You cannot use the equality
test on strings of unequal length.
 strcmp(...) deals gracefully with
strings of unequal length. As with
vectors, the equality test works if one
of the inputs is a single character. For
case-independent testing, use
 strcmpi(...) .

 The if statement uses a logical expression as its controlling
test; therefore, it is bound by the same comparison rules
as those applied to vectors. Two strings being compared
must be of the same length, and all of the comparisons
must match to result in a logical true . Frequently, we
expect the if statement to compare strings of unequal
length. However, this will cause an error whenever two
strings of unequal length are compared (unless one string
is just one character). You should use the switch
statement, which will correctly compare strings of unequal
length in the case tests.

 Common Pitfalls 6 . 1

 Exercise 6.9 Character string arrays

>> v = ['Character strings having more than'
'one row must have the same number '
'of columns just like arrays! ']

v =
Character strings having more than
one row must have the same number
of columns just like arrays!
>> v = [' MATLAB gets upset'

'when rows have'
'different lengths']

??? Error using ==> vertcat
All rows in the bracketed expression must have the
same number of columns.

>>eng=char('Timoshenko','Maxwell','Mach','von Braun')
eng =
Timoshenko
Maxwell
Mach
von Braun
>> size(eng)
ans =

4 10

 6.5 Arrays of Strings

 Since a single character string is stored as a vector, it seems natural to
consider storing a collection of strings as an array. The most obvious way to
do this, as shown in previous examples, has some limitations, for which
there are nice, tidy cures built into the MATLAB language. Consider the
example shown in Exercise 6 . 9 . Character arrays can be constructed by
either of the following:

 ■ As a vertical vector of strings, all of which must be the same
length

150 Chapter 6 Character Strings

 ■ By using a special version of
the char(&) cast function that
accepts a variable number of
strings with different lengths,
pads them with blanks to
make all rows the same length,
and stores them in an array of
characters

 Trying to concatenate strings of unequal length vertically
into column arrays of strings will cause errors because the
vertical concatenation must use rows of equal length. Use
the version of the char(...) function that pads the strings
with spaces.

 Common Pitfalls 6 . 2

 6.6 Engineering Example—Encryption

 The Problem

 As public access to information becomes more pervasive, there is increasing
interest in the use of encryption to protect intellectual property and private
communications from unauthorized access. The following discussion is
based on no direct knowledge of the latest encryption technology.
However, it illustrates a very simple approach to developing an algorithm
that is immune to all but the most obvious, brute-force code-breaking
techniques.

 Background

 Historically, simple encryption has been accomplished by substituting one
character for another in the message, so that 'Fred' becomes 'Iuhg' when
substituting the letter three places down the alphabet for each letter in the
message. More advanced techniques use a random letter selection to
substitute new letters. However, any constant letter substitution is vulnerable
to elementary code-cracking techniques based on the frequency of letters in
the alphabet, for example.

 The Solution

 We propose a simple algorithm where a predetermined random series is
used to select the replacement letters. Since the same letter in the original
message is never replaced by the same substitute, no simple language
analysis will crack the code. The rand(...) function is an excellent source
for an appropriate random sequence. If the encryption and decryption
processes use the same value to seed the generator, the same sequence of
apparently random (pseudo-random) values will be generated.

 Since the seed can take on 2 31 –2 values, it is virtually impossible to
determine the decryption without knowing the seed value. The seed (i.e., the
decryption key) can be transmitted to anyone authorized to decrypt the
message by any number of ways. Furthermore, since there are abundant
different techniques for generating pseudo-random sequences, the specific
generation technique must be known in addition to the seed value for
successful decryption. Listing 6 . 1 shows the code for encrypting and

6.6 Engineering Example—Encryption 151

 Listing 6 . 1 Encryption exercise

 1. disp('original text')
 2. txt = ['For example, consider the following:' 13 ...
 3. 'A = [4.7 1321454.47 4.8];' 13 ...
 4. 'index = 1;' 13 ...
 5. 'v = ''values'';' 13 ...
 6. 'str = sprintf(''%8s of A(%d) are \t%8.3f ' 13 ...
 7. ' v, index, A(index,1) ' 13 ...
 8. 'str = ' 13 ...
 9. ' values of A(1) are 4.700' 13 ...
10. 'The first conversion, ''%8s'', took the value' ...
11. ' of the first ' ...
12. 'parameter, v, allowed 8 spaces. ' 13]

% % encryption section
13. rand('state', 123456)
14. loch = 33;
15. hich = 126;
16. range = hich+1-loch;
17. rn = floor(range * rand(1, length(txt)));
18. change = (txt>=loch) & (txt<=hich);
19. enc = txt;
20. enc(change) = enc(change) + rn(change);
21. enc(enc > hich) = enc(enc > hich) - range;
22. disp('encrypted text')
23. encrypt = char(enc)

% % good decryption
24. rand('state', 123456);
25. rn = floor(range * rand(1, length(txt)));
26. change = (encrypt>=loch) & (encrypt<=hich);
27. dec = encrypt;
28. dec(change) = dec(change) - rn(change) + range;
29. dec(dec > hich) = dec(dec > hich) - range;
30. disp('good decrypt');
31. decrypt = char(dec)

 % % bad seed
32. rand('seed', 123457);
33. rn = floor(range * rand(1, length(txt)));
34. change = (encrypt>=loch) & (encrypt<=hich);
35. dec = encrypt;
36. dec(change) = dec(change) - rn(change) + range;
37. dec(dec > hich) = dec(dec > hich) - range;
38. disp('decrypt with bad seed')
39. decrypt = char(dec)

% % different generator
40. rand('seed', 123456)
41. rn = mod(floor(range * abs(randn(1, length(txt)))/10), ...
42. range);
43. change = (encrypt>=loch) & (encrypt<=hich);
44. dec = encrypt;
45. dec(change) = dec(change) - rn(change) + range;
46. dec(dec > hich) = dec(dec > hich) - range;
47. disp('decrypt with wrong generator')
48. decrypt = char(dec)

152 Chapter 6 Character Strings

decrypting by this technique and two attempts to decrypt—once with the
wrong key and once with the wrong generator.

 In Listing 6 . 1 :

 Lines 2–12: This is the original text taken from earlier in this chapter.
Multiple lines of characters can be concatenated as shown. The
number 13 inserted in the string is the numerical equivalent of the new
line escape sequence, '\n' .

 Line 13: Seeds the random generator with a known value.

 Lines 14–16: Set the upper and lower bounds and the range of the
characters we will convert. This range excludes 32, the space
character, and 13, the new line character. This choice was deliberate—
it leaves the encrypted text with the appearance of a character
substitution algorithm since all the characters are printable, and seem
to be grouped in words.

 Line 17: Generates the random values between 0 and range-1 .

 Line 18: Identifies the indices of the printable characters.

 Line 19: Makes a copy of the original text.

 Line 20: Adds the random offsets to those characters we intend to
change.

 Line 21: If the addition pushes a character value above the maximum
printable character, this brings it back within range.

 Lines 22–23: Display the encrypted text. Notice that no two characters
of the original text are replaced by the same character.

 Lines 24–27: Begin the decryption by seeding the generator with
the same value, creating the same random sequence, finding the
printable characters, and copying the original file to the decrypt
string.

 Lines 28–29: We must subtract the random sequence from the
encrypted string and correct for the underflow. However, there
are some numerical issues involved. It is best to add the range
value to all the letters while subtracting the random offsets, and then
bring back those values that remain above the highest printable
character.

 Lines 30–31: Display the decrypted values.

 Lines 32–39: Attempt to decrypt with the same code but a bad seed.

 Lines 40–48: Attempt to decrypt with the right seed but a different
generator—in this case, MATLAB’s normal random generator limited to
positive values within the letter range of interest.

 Table 6.1 shows the output from this encryption exercise.

Chapter Summary 153

 Table 6.1 Encryption exercise results

original text

txt =

For example, consider the following:

A = [4.7 1321454.47 4.8];

encrypted text encrypt =

@;J _a,Q/V_Q X/|IW?*q %;{ $Ctr:$&r3>

5 - v$zh uvqzmE@P(N Bh}.H

good decrypt

decrypt =

For example, consider the following:

A = [4.7 1321454.47 4.8];

decrypt with bad seed

decrypt =

tDQ <6VfMiS^ }1FI92/P c'@ eYrW%Q^2t+

6 L 4x5> B$rQ4XHpG# G;*<r

decrypt with wrong generator

decrypt =

>1E o-P:'P=p :xLjV+bi {!d 3)[Az$~c7<

' l fny& tHWB Vve6o

 Chapter Summary

 This chapter discussed the nature, implementation, and behavior of character
strings. We learned the following:

 ■ Character strings are merely vectors of numbers that are presented
to the user as single characters

 ■ We can perform on strings the same operations that can be
performed on vectors; if mathematical operations are
performed, MATLAB first converts the characters to double
values

 ■ We can convert between string representations of numbers and the
numbers themselves using built-in functions

 ■ MATLAB provides functions that convert numbers to text strings
for presentation in the Command window

 ■ Arrays of strings can be assembled using the char(...) function

154 Chapter 6 Character Strings

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. Casting changes the value of a piece of data.

 2. The ASCII code maps individual characters to their internal
numerical representation.

 3. Because the single quote mark (') delimits strings, you cannot use it
within a string.

 4. If you attempt mathematical operations on a character string,
MATLAB will throw an error.

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

'...' Encloses a literal character string 6.2

 char(...) Casts to a character type 6.2, 6.5

 disp(...) Displays matrix or text 6.4.1

 double(a) Casts to type double 6.2

 fprintf(...) Prints formatted information 6.4.2

 input(...) Prompts the user to enter a value 6.3.2

 int2str(a) Converts an integer to its numerical
representation

 6.3.1

 ischar(ch) Determines whether the given object is of
type char

 6.2.3

 isspace(a) Tests for the space character 6.2.3

 num2str(a,n) Converts a number to its numerical representation
with n decimal places

 6.3.1

 sscanf(...) Formatted input conversion 6.3.2

 sprintf(...) Formats a string result 6.3.1

 str2num(...) Convert a string to its numerical equivalent 6.3.2

 strcmp(s1, s2) Compares two strings; returns true if equal 6.4.3

 strcmpi(s1, s2) Compares two strings without regard to case;
returns true if equal

 6.4.3

 uint8(...) Casts to unsigned integer type with 8 bits 6.2

 Programming Projects

 1. Solve the following introductory problems on strings.
 a. Write a function dayName that consumes a parameter, day ,

containing the numerical value of a day in the month of
September 2008. Your function should return the name of that
day as a string. For example:

dayName(8) should return 'Monday'

 b. You are now given a variable named days , a vector that contains
the numeric values of days in the month of
September 2008. Write a script that will
convert each numeric value in the vector
 days into a string named daysOfWeek with
the day names separated by a comma and

Programming Projects 155

 5. The function disp(...) can display multiple values to the
Command window.

 6. The function strcmp(...) throws an error if the two strings are of
unequal length, unless one of them is a single character.

 7. The switch statement will correctly compare strings of unequal
length in the case tests.

 Fill in the Blanks

 1. Numerical values are stored in MATLAB in _______________ for
efficient numerical computation.

 2. Most common __________________, _______________, and many
_________________are represented in ASCII by the numbers
________________.

 3. Two built-in MATLAB functions for the conversion of a single
number, x, to its string representation are _______________ and
_______________ .

 4. The function fprintf(...) requires a(n) _____________ that defines
exactly how the resulting string should be formatted and a variable
number of ________________.

 5. Since the _____________ statement tests a logical expression, it
_____________ test strings of unequal length.

 6. Strings of unequal length are compared using the MATLAB
function ________________

 You should probably be concatenating the day names
and the delimiters.

 Hint

156 Chapter 6 Character Strings

a space. For example, if days = [8, 9, 10], daysOfWeek should
be 'Monday, Tuesday, Wednesday'

 Notice that there is no separator before the first day name or after
the last one.

 2. Consider the problem the MATLAB system has in parsing the string:
'V=[1 2 3 4; 5,6, 7;8; 9 10]'

 Your task is to use strtok to parse this line and construct the array it
represents. You will write a function arrayParse that consumes a
string and returns two variables: a string that is the variable name
and an array.
 a. Tokenize the string first using ' = ' as the delimiter to isolate the

variable name and the expression to be evaluated. Return the
variable name to the user and save the rest of the line as the
variable str1 for further processing. You may assume that there
are no spaces outside the characters ' [. . .] ' .

 b. Tokenize str1 with ' [' and '] ' to remove the concatenation
operators and save the first token as str2 .

 c. Tokenize str2 using ' ; ' as the delimiter. This will produce 0 or
more strings that represent the rows of the array. Save each in the
variable rowString . You may assume for now that the first row is
the longest one.

 d. Using nested while loops, tokenize each rowString with ' , ' and
 ' ' as delimiters and use str2num (. . .) to extract the numerical
value of each array entry. Save it as rowEntry .

 e. Concatenate the rowEntry elements horizontally to produce each
row of the array. If the row is too short, pad it with zeros.

 f. Concatenate each row vertically to produce the resulting array
and return that array to the caller.

 g. Test the function with cases like:
 empty=[]
row=[1 2 3 4]

diag=[0 0 0 1; 0 0 1; 0 1; 1]

 3. Write and test the code for a function countVowel that reads in a
string of characters of length N. The function checks whether each
element in the string is a vowel or not. The function should test both
uppercase and lowercase characters. You are not allowed to use any
of the built-in functions to do this check.

 For example, both the function calls countVowel(‘i have a CAR’)
and countVowel(‘I HAVE A CAR’) should return the same count, 5.

 4. The function rot(s, n) is a simple Caesar cipher encryption
algorithm that replaces each English letter in places forward or
backward along the alphabet in the strings. For example, the result

Programming Projects 157

of rot('Baz!',3) is 'Edc!' . An encrypted string can be deciphered
by simply performing the inverse rotation on it, that is,
 rot('Edc!',3), which rotates each English letter in the strings three
places to the left. Numbers, symbols, and non-letters are not
transformed. Implement the following function:

function rotatedText=rot(text,n)

 To assist you as you solve this problem, you could write several
functions as local functions in the rot.m file:
 isUppercaseLetter(letter), getUppercaseLetter(n),
getLowercaseLetter(n) , and getPosition(letter) . You may also
wish to use the built-in functions isletter (. . .), find (. . .), and
 mod (. . .).

 5. You have a big problem. In one of your CS courses, your professor
decides that the only way you will pass the class is if you write a
function to get him out of a mess. All the grades in his class have
been accidentally stored into one long string of characters
containing only the letters A, B, C, D, F, and Y.
 a. Your job is to write a function called CrazyGrade that will take in

the string and flip the grades according to the following
specifications:

 A becomes F
 B becomes D
 C remains unchanged
 D becomes B
 F becomes A
 Y becomes W

 Your function should take in a string and return an inverted string.
You may assume that the string will only consist of valid letter
grades. For example,

CrazyGrade('BADDAD') should return 'DFBBFB'
CrazyGrade('BAYBAY') should return 'DFWDFW'

 b. To make matters worse, he wants you to organize this modified
grade set. Write a function called GradeDist to bunch together all
the similar grades (put all the A ’s next to each other, B ’s next to
each other, etc.) Then, calculate and return the professor’s grade
distribution. Your function should take in a string and return a
string with all similar grades grouped together, along with an
array containing percentage values from A ’s all the way to F ’s. For
example, if there are 15% A ’s, 16% B ’s, 33% C ’s, 16% D ’s, 16% F ’s,
and 4% W ’s, GradeDist should return [15 16 33 16 16 4] .

This page intentionally left blank

 Chapter Objectives

 This chapter discusses the nature, implementation, and behavior of
collections that may contain data items of any class, size, or shape.
We will deal with two different heterogeneous storage mechanisms:

 ■ Those accessed by index (cell arrays)

 ■ Those accessed by field name (structures)

 In addition, we will consider collecting structures into arrays of
structures.

 Introduction

 This chapter covers data collections that are more general and
flexible than the arrays we have considered so far. Heterogeneous
collections may contain objects of any type, rather than just
numbers. Consequently, none of the collective operations defined
for numerical arrays can be applied to cell arrays or structures. To
perform most operations on their contents, the items must be
extracted one at a time and replaced if necessary. We will consider
three different mechanisms for building heterogeneous collections:
you access components of a cell array with a numerical index; you access
components of a structure with a symbolic field name; and you access components
of a structure array by way of a numerical index to reach a specific structure, and
then a symbolic field name.

 Cell Arrays and
Structures

 C H A P T E R 7

 7.1 Concept: Collecting
Dissimilar Objects

 7.2 Cell Arrays
 7.2.1 Creating Cell Arrays
 7.2.2 Accessing Cell

Arrays
 7.2.3 Using Cell Arrays
 7.2.4 Processing Cell

Arrays
 7.3 Structures
 7.3.1 Constructing and

Accessing One
Structure

 7.3.2 Constructor
Functions

 7.4 Structure Arrays
 7.4.1 Constructing Cell

Arrays
 7.4.2 Accessing Structure

Elements
 7.4.3 Manipulating

Structures
 7.5 Engineering Example—

Assembling a Physical
Structure

159

160 Chapter 7 Cell Arrays and Structures

 1 Java programmers might recognize a cell array as an array of Objects.

 7.1 Concept: Collecting Dissimilar Objects

 Heterogeneous collections permit objects of different data types to be
grouped in a collection. They allow data abstraction to apply to a much
broader range of content. However, the fact that the contents of these
collections may be of any data type severely restricts the operations that can
be performed on the collections as a whole. Whereas a significant number
of arithmetic and logical operations can be performed on whole number
arrays, algorithms that process heterogeneous collections almost always
deal with the data contents one item at a time.

 7.2 Cell Arrays

 Cell arrays, as the name suggests, have the general form of arrays and
can be indexed numerically as arrays. However, each element of a cell
array should be considered as a container in which one data object of any
class can be stored. 1 They can be treated as arrays of containers for the
purpose of concatenation and slicing. However, if you wish to access or
modify the contents of the containers, the cells must be accessed
individually.

 7.2.1 Creating Cell Arrays

 Cell arrays may be constructed in the following ways:

 ■ By assigning values individually to a variable indexed with braces:

>> A{1} = 42
A =

 [42]

 ■ By assigning containers individually to a variable indexed with
brackets:

>> B[1] = {[4 6]};
B =

 [1x2 double]

 ■ By concatenating cell contents using braces {. . .}:

C = {3, [1,2,3], 'abcde'}
C =

 [3] [1x3 double] 'abcde'

 ■ By concatenating cell containers:

>> D = [A B C {'xyz'}]
D =

 [42] [1x2 double] [3] [1x3 double] 'abcde' 'xyz'

7.2 Cell Arrays 161

 Based on these examples, we observe the following:

 ■ A cell array can contain any legal MATLAB object
 ■ Just as with number arrays, cell arrays can be created “on the fly”

by assigning values to an indexed variable

 When the values from a cell array are displayed, their appearance is
different from that of the contents of a number array. Individual numbers
are shown in brackets, for example, [3] ; larger numerical arrays display
their size, for example, [1x3 double] ; and character strings are displayed
with the enclosing quotes, for example, 'abcde' .

 7.2.2 Accessing Cell Arrays

 Since cell arrays can be considered as conventional arrays of containers, the
containers can be accessed and manipulated normally. For example,
continuing the previous examples, we have the following:

>> E = D(2) % parentheses - a container
E =
 [4 6]

 However, braces are used to access the contents of the containers as follows:

>> D{2} % braces - the contents
ans =
 4 6

 If the right-hand side of an assignment statement results in multiple cell arrays,
the assignment must be to the same number of variables. The built-in function
 deal(...) is used to make these allocations. Exercise 7 . 1 shows its use.

 Notice the following observations:

 ■ When we extract the contents of multiple cells using A{1:2} , this
results in multiple assignments being made. These multiple
assignments must go to separate variables. This is the fundamental
mechanism behind returning multiple results from a function.

 ■ These multiple assignments cannot be made to a single variable;
sufficient storage must be provided either as a collection of
variables or explicitly as a vector.

 ■ Cell arrays can be “sliced” with normal vector indexing assignments
as long as the sizes match on the left and right sides of the assignment.
Any unassigned array elements are filled with an empty vector.

 ■ The assignment B{[1 3]} = A{[1 2]} that produced an error needs
some thought. Since A{[1 2]} produces two separate assignments,
MATLAB will not assign the answers, even to the right number of
places in another cell array. The deal(...) function is provided to
capture these multiple results in different variables. Notice the
difference between A{:} and A as a parameter to deal(...) . When

162 Chapter 7 Cell Arrays and Structures

 Exercise 7.1 Cell arrays

>> A = { 3, [1,2,3] 'abcde'}
A =

[3] [1x3 double] 'abcde'
>> A{1:2}
ans =

3
ans =

1 2 3
>> [x y] = A{1:2}
x =

3
y =

1 2 3
>> B = A{1:2}
??? Illegal right-hand side in assignment.

Too many elements.
>> B([1 3]) = A([1 2])
B =
[3] [] [1x3 double]

>> B{[1 3]} = A{[1 2]}
??? Illegal right-hand side in assignment.

Too many elements.
>> [a, b, c] = deal(A{:})
a =

3
b =

1 2 3
c =
abcde

>> [a, b] = deal(A)
a =

[3] [1x3 double] 'abcde'
b =

[3] [1x3 double] 'abcde'
>> B = A(1:2)
B =

[3] [1x3 double]
>> for i = 1:2

s(i) = sum(A{i})
end

s =
3

s =
3 6

>> F{2} = 42
F =

[] [42]
>> F{3} = {42}
F =

[] [42] {1x1 cell}

7.2 Cell Arrays 163

 deal(...) is provided with a parameter other than a collection of
cells, it copies that parameter to each variable.

 ■ Assignments work normally if cell arrays are treated as vectors and
the extraction of items can be indexed— s is a vector of the sums of
the elements in A .

 ■ Finally, notice that when accessing cell arrays, it is normal to have
braces on one side or the other of an assignment; it is rarely
appropriate to have braces on both sides of an assignment. The
result here is that a cell array is loaded into the third container in
the cell array.

 7.2.3 Using Cell Arrays

 There are a number of uses for cell arrays, some of which will be evident in
upcoming chapters. For now, the following examples will suffice:

 ■ Containing lists of possible values for switch/case statements, as
we saw in Chapter 4

 ■ Substituting for parameter lists in function calls

 For example, suppose you have a function largest(a, b, c) that consumes
three variables and produces the largest of the three values provided. It can
be used in the following styles, as shown in Listing 7 . 1 .

 In Listing 7 . 1 :

 Lines 1–3: Set the values of A , B , and C .
 Line 4: A conventional function call that results in a value of 6 for N .
 Lines 5–6: The same function call implemented as a cell array,
returning the same answer.

 7.2.4 Processing Cell Arrays

 The general template for processing cell arrays is shown in Template 7 . 1 .

 Checking the class of the element can be achieved in one of two ways:

 ■ The function class(item) returns a string specifying the item type
that can be used in a switch statement

 Listing 7 . 1 Using cell arrays of parameters

1. A = 4;
2. B = 6;
3. C = 5;
4. N = largest(A, B, C)
5. params = { 4, 6, 5 };
6. N = largest(params{1:3})

164 Chapter 7 Cell Arrays and Structures

 ■ Individual test functions can be used in an if... elseif construct;
examples of the individual test functions are isa(item, 'class'),
iscell(...), ischar(...), islogical(...), isnumeric(...), and
 isstruct(...).

 For example, suppose you are provided with a cell array and have been
asked for a function that finds the total length of all the vectors it contains.
The function might look like that shown in Listing 7 . 2 .

 In Listing 7 . 2 :

 Line 1: Typical function header accepting a cell array as input.
 Line 2: Initializes the result.
 Line 3: Traverses the whole cell array.
 Line 4: Extracts each item in turn.
 Line 5: Determines whether this item is of type double . If so, it
proceeds to line 6.
 Line 6: Accumulates the number of items in this array. Recall that the
 size(...) function returns a vector of the sizes of each dimension.
The total number of numbers is therefore the product of these values.

 Listing 7 . 2 Cell array processing example

1. function ans = totalNums(ca)
% count the numbers in a cell array

2. ans = 0 ;
3. for in = 1 :length(ca)
4. item = ca{i} ; % extract the item
5. if isnumeric(item) % check if a vector
6. ans = ans + prod(size(item));
7. end
8. end

 Template 7 . 1 General template for processing cell arrays

<initialize result>
for <index specification>

<extract an element>
<check the element accordingly>
<process the element accordingly>

end
<finalize result>

 7.3 Structures

 Where cell arrays implemented the concept of homogeneous collections as
indexed collections, structures allow items in the collection to be indexed
by field name. Most modern languages implement the concept of a structure
in a similar style. The data contained in a structure are referenced by field

7.3 Structures 165

name, for example, item1 . The rules for making a field name are the same as
those for a variable. Fields of a structure, like the elements of a cell array,
are heterogeneous—they can contain any MATLAB object. First, we will
see how to construct and manipulate one structure, and then how to
aggregate individual structures into an array of structures.

 7.3.1 Constructing and Accessing One Structure

 To set the value of items in a structure A , the syntax is as follows:
>> A.item1 = 'abcde'
A =
 item1: 'abcde'
>> A.item2 = 42
A =
 item1: 'abcde'
 item2: 42

 Notice that MATLAB displays the elements of an emerging structure by
name. Fields in a structure are accessed in the same way—by using the
dotted notation.
>> A.item2 = A.item2 ./ 2
A =
 item1: 'abcde'
 item2: 21

 You can determine the names of the fields in a structure using the built-in
function fieldnames(...) . It returns a cell array containing the field names
as strings.
>> names = fieldnames(A)
names =
 'item1'
 'item2'

 Fields can also be accessed “indirectly” by setting a variable to the name of
the field, and then by using parentheses to indicate that the variable contents
should be used as the field name:
>> fn = names{1};
>> A.(fn) = [A.(fn) 'fg']
A =
 item1: 'abcdefg'
 item2: 21

 You can also remove a field from a
structure using the built-in function
 rmfield(...) . Exercise 7 . 2 gives you
an opportunity to understand how
to build structures. Here we build a
typical structure that could be used
as one entry in a telephone book.
Since phone numbers usually
contain punctuation, we could store

 Be careful. rmfield(...) returns a new structure with the
requested field removed. It does not remove that field from
your original structure. If you want the field removed from
the original, you must assign the result from rmfield(...)
to replace the original structure:

>> A = rmfield(A, 'item1')
A =
 item2: 21

 Common Pitfalls 7 . 1

166 Chapter 7 Cell Arrays and Structures

them as strings. Notice that since a structure may contain any object, it is
quite legal to make a structure containing a date and insert that structure
in the date field of the entry. The structure display function, however,
does not display the contents of the structures.

 7.3.2 Constructor Functions

 This section discusses functions that assign their parameters to the fields of
a structure and then return that structure. You do this, as opposed to
“manually” entering data into structures, for the following reasons:

 ■ Manual entry can result in strange behavior due to typographical
errors or having fields in the wrong order

 Exercise 7.2 Building structures

 Suppose that you want to use structures to maintain your address book. In the
Command window, enter the following commands:

>> entry.first = 'Fred'
entry =

first: 'Fred'
>> entry.last = 'Jones';
>> entry.phone = '(123) 555-1212'
entry =

first: 'Fred”
last: 'Jones'
phone: '(123) 555-1212'

>> entry.phone
ans =
(123) 555-1212

>> date.day = 31;
>> date.month = 'February';
>> date.year = 1965
date =

day: 31
month:'February'
year: 1965

>> entry.birth = date
entry =

first: 'Fred'
last: 'Jones'
phone: '(123) 555-1212'
birth: [1x1 struct]

>> entry.birth
ans =

day: 31
month: 'February'
year: '1965'

>> entry.birth.year
ans =

1965

7.3 Structures 167

 ■ The resulting code is generally more compact and easier to
understand

 ■ When constructing collections of structures, it enforces consistency
across the collections

 There are two approaches to the use of constructor functions: using built-in
capabilities and writing your own constructor. There is a built-in function,
 struct(...) , that consumes pairs of entries (each consisting of a field name
as a string and a cell array of field contents) and produces a structure. If all
the cell arrays have more than one entry, this actually creates a structure
array, as discussed in Section 7 . 4 . 1 .

 The following command would construct the address book entry created
in the previous section. Note the use of ellipses (...) to indicate to the
MATLAB machinery that the logic is continued onto the next line.

>> struct('first','Fred', ...
'last','Jones', ...
'phone','(123) 555-1212', ...
'birth', struct('day', 31,
 'month', 'February',
 'year', 1965))
ans =
 first: 'Fred'
 last: 'Jones'
 phone: '(123) 555-1212'
 birth: [1x1 struct]

 This is useful in general to create structures, but the need to repeat the field
names makes this general-purpose approach a little annoying. We can
create a special-purpose function that “knows” the necessary field names to
create multiple structures in an organized way.

 Listing 7 . 3 shows the code for a function that consumes parameters that
describe a CD and assembles a structure containing those attributes by
name.

 In Exercise 7 . 3 , you can try your hand at using this function to construct
a CD structure and then verify the structure contents.

 Listing 7 . 3 Constructor for a CD structure

1. function ans = makeCD(gn, ar, ti, yr, st, pr)
% integrate CD data into a structure

2. ans.genre = gn ;
3. ans.artist = ar ;
4. ans.title = ti;
5. ans.year = yr;
6. ans.stars = st;
7. ans.price = pr;

168 Chapter 7 Cell Arrays and Structures

 Exercise 7.3 A CD structure

 Create one entry of CD information:

>> CD = makeCD('Blues', 'Charles, Ray', ...
'Genius Loves Company', 2004, 4.5, 15.35)
CD =

genre: 'Blues'
artist: 'Charles, Ray'
title: 'Genius Loves Company'
year: 2004
stars: 4.5000
price: 15.3500

>> flds = fieldnames(CD)
flds =

'genre'
'artist'
'title'
'year'
'stars'
'price'

>> field = flds{2}
field =
artist
>> CD.(field)
ans =
 Charles, Ray

 7.4 Structure Arrays

 To be useful, collections like address books or CD collections require
multiple structure entries with the same fields. This is accomplished by
forming an array of data items, each of which contains the same fields of
information.

 MATLAB implements the concept of structure arrays with the properties
described in the following paragraphs.

 7.4.1 Constructing Structure Arrays

 Structure arrays can be created either by creating values for individual
fields, as shown in Exercise 7 . 4 ; by using MATLAB’s struct(...)
function to build the whole structure array, as shown in Listing 7 . 4 ; or
by using a custom function to create each individual structure, as shown
in Listing 7 . 5 . This latter listing illustrates these concepts by implementing
a collection of CDs as a structure array using the function makeCD(...)
from Listing 7 . 3 .

7.4 Structure Arrays 169

 In Listing 7 . 4 :

 Lines 1–5: Build cell arrays containing field values for five CDs.
 Line 6: Uses the built-in struct(...) function to create the CD
collection. The function consumes a variable number of pairs of
parameters. The first parameter of the pair is a string containing
the name of a field to be created. The second parameter is the
content of that field expressed as either a cell array or any other
data type. If the field content is a cell array, the structure to be
created becomes a structure array whose length is the length of
that cell array. Each field of the structure array receives the
corresponding value from the cell array. If the field content is
anything other than a cell array, the content of each structure array
field becomes a copy of that item.

 Listing 7 . 4 Building a structure array using struct(...)

 1. genres = { 'Blues', 'Classical', 'Country' };
 2. artists = { 'Clapton, Eric', 'Bocelli, Andrea', 'Twain, Shania' };
 3. years = { 2004, 2004, 2004 };
 4. stars = { 2, 4.6, 3.9 };
 5. prices = { 18.95, 14.89, 13.49 };
 6. cds = struct('genre', genres, ...
 7. 'artist', artists, ...
 8. 'year', years, ...
 9. 'stars', stars, ...
10. 'price', prices)

 Exercise 7.4 Building a structure array “by hand”

>> entry(1).first = 'Fred';
>> entry(1).last = 'Jones';
>> entry(1).age = 37;
>> entry(1).phone = ' (123) 555-1212';
>> entry(2).first = 'Sally';
>> entry(2).last = 'Smith';
>> entry(2).age = 29;
>> entry(2).phone = '(000) 555-1212'
entry =
1x2 structure array with fields:

first
last
age
phone

170 Chapter 7 Cell Arrays and Structures

 In Listing 7 . 5 :

 Lines 1–2: Call the makeCD(...) function defined in Listing 7 . 3 to
generate the description of the first CD.
 Lines 3–16: Repeat the process for seven more CDs, each of which is
added to the collection.

 7.4.2 Accessing Structure Elements

 Like normal arrays or cell arrays, items can be stored and retrieved by their
index in the array. As structures are added to the array, MATLAB forces all
elements in the structure array to implement the same field names in the
same order. Elements can be accessed either manually (not recommended)
or by creating new structures with a constructor and adding them
(recommended).

 If you elect to manipulate them manually, you merely identify the array
element by indexing and use the .field operator. For example, for the CD
collection cds , we could change the price of one of them as follows:

>> cds(3).price = 11.95
cds =

1x31 struct array with fields:
 genre,
 artist,
 title,
 year,
 stars,
 price

 This is a little hazardous when making manual additions to a structure
array. A typographical error while entering a field name results in all

 Listing 7 . 5 Building a structure array using a custom constructor

% extracts from http://www.cduniverse.com/ 12/30/04
 1. cds(1) = makeCD('Blues', 'Clapton, Eric', ...
 2. 'Sessions For Robert J', 2004, 2, 18.95);
 3. cds(2) = makeCD('Classical', ...
 4. 'Bocelli, Andrea', 'Andrea', 2004, 4.6, 14.89);
 5. cds(3) = makeCD('Country', 'Twain, Shania', ...
 6. 'Greatest Hits', 2004, 3.9, 13.49);
 7. cds(4) = makeCD('Latin', 'Trevi, Gloria', ...
 8. 'Como Nace El Universo', 2004, 5, 12.15);
 9. cds(5) = makeCD('Rock/Pop', 'Ludacris', ...
10. 'The Red Light District', 2004, 4, 13.49);
11. cds(6) = makeCD('R & B', '2Pac', ...
12. 'Loyal To The Game', 2004, 3.9, 13.49);
13. cds(7) = makeCD('Rap', 'Eminem', ...
14. 'Encore', 2004, 3.5, 15.75);
15. cds(8) = makeCD('Heavy Metal', 'Rammstein', ...
16. 'Reise, Reise', 2004, 4.2, 12.65)

7.4 Structure Arrays 171

the structures having that bad field name. For example, consider this
error:

>> cds(3).prce = 11.95
cds =
1x31 struct array with fields:
 genre,
 artist,
 title,
 year,
 stars,
 price,
 prce

 You have accidentally added a new field to the whole collection. You can
check this by looking at one entry:

>> cds(1)
ans =
 genre: 'Blues'
 artist: 'Sessions For Robert J'
 title: 'Clapton, Eric'
 year: 2004
 stars: 2
 price: 18.95
 prce: []

 If this happens, you can use the fieldnames(...) function to determine the
situation and then the rmfield(...) function to remove the offending
entry.

>> fieldnames(cds)
ans =

 'genre'
 'artist'
 'title'
 'year'
 'stars'
 'price'
 'prce'

>> cds = rmfield(cds,'prce')
cds =
1x32 struct array with fields:
 genre,
 artist,
 title,
 year,
 stars,
 price

 It is best to construct a complete structure and then insert it into the structure
array. For example:

>> newCD = makeCD('Oldies', 'Greatest Hits', ...
 'Ricky Nelson', 2005, 5, 15.79);
>> cds(8) = newCD

172 Chapter 7 Cell Arrays and Structures

cds =
1x8 struct array with fields:
 genre,
 artist,
 title,
 year,
 stars,
 price

 If you insert that new CD beyond the end of the array, as one might expect,
MATLAB fills out the array with empty structures:

>> cds(50) = newCD
cds =

1x50 struct array with fields:
 genre,
 artist,
 title,
 year,
 stars,
 price
>> cds(49)
ans =
 genre: []
 artist: []
 title: []
 year: []
 stars: []
 price: []

 7.4.3 Manipulating Structures

 Structures and structure arrays can be manipulated in the following
ways:

 I. Single values can be changed using the “.” (dot) notation directly
with a field name:

>> cds(5).price = 19.95;

 II. or indirectly using the “.” (dot) notation with a variable containing
the field name:

 A few very understandable but sneaky errors occur when
adding structures that have been created “manually” rather
than by means of a standardized constructor function. If the
new structure has fields not in the original structure, or extra
fields, you see a slightly obscure error: "Subscripted
assignment between dissimilar structures."

 Perhaps more puzzling, if you are using an older version of
MATLAB, this same error occurs if all the fields are present,
but are in the wrong order.

 Common Pitfalls 7 . 2 >> fld = 'price';
>> cds(5).(fld) = 19.95;

 or by using built-in functions:
 III. nms = fieldnames(str)

returns a cell array
containing the names of the
fields in a structure or
structure array.

>> flds = fieldnames(cds)

7.4 Structure Arrays 173

 IV. it = isfield(str, <fldname>) determines whether the given
name is a field in this structure or structure array.
>> if isfield(cds, 'price') ...

 V. str = setfield(str, <fldname>, <value>) returns a new structure
array with the specified field set to the specified value.
>> cds(1) = setfield(cds(1), 'price', 19.95);

 VI. val = getfield(str, <fldname>) returns the value of the specified
field.
>> disp(getfield(cds(1), 'price'));

 VII. str = rmfield(str, <fldname>) returns a new structure array with
the specified field removed.
>> noprice = rmfield(cds, 'price');

 VIII. Values across the whole array can be retrieved using the “.”
notation by accumulating them into arrays either into cell arrays:
>> titles = {cds.title};
>> [alpha order] = sort(titles);

 IX. or, if the values are all numeric, into a vector:
>> prices = [cds.price];
>> total = sum(prices);

 Notice that after extracting the price values into a cell array or vector, all the
normal operations—in this case, sort(...) and sum(...)—can be utilized.

 Exercise 7 . 5 provides some practice in manipulating structure arrays
using the above CD collection as an example.

 Exercise 7.5 The CD collection

 Retrieve and run the script named buildCDs.m from the Companion Web site.
Then, in the Interactions window, enter the following commands to create
your collection of CD information:

>> cds(5)
ans =
 genre: 'Rock/Pop'
 artist: 'Ludacris'
 title: 'The Red Light District'
 year: 2004
 stars: 4
 price: 13.49
>> flds = fieldnames(collection)
flds =

'genre'
'artist'
'title'
'year'
'stars'
'price' continued on next page

174 Chapter 7 Cell Arrays and Structures

cds(5).strs = 0.5;
>> cds(5)
ans =

genre: 'Rock/Pop'
artist: 'Ludacris'

 title: 'The Red Light District'
year: 2004
stars: 4
price: 13.4900
strs: 0.5

>> cds(1)
ans =

genre: 'Blues'
artist: 'Clapton, Eric'
title: 'Sessions For Robert J'
year: 2004
stars: 2
price: 18.9500
strs: []

>> cds = rmfield(cds, 'strs');
>> cds(1)
ans =

genre: 'Blues'
artist: 'Clapton, Eric'
title: 'Sessions For Robert J'
year: 2004
stars: 2
price: 18.9500

>> sum([cds.price])
ans =

409.1100

 7.5 Engineering Example—Assembling a Physical Structure

 Many large buildings today have steel frames as their basic structure.
Engineers perform the analysis and design work for each steel component
and deliver these designs to the steel company. The steel company
manufactures all the components, and prepares them for delivery to the
building site. At this point, each component is identified only by a unique
identifier string stamped and/or chalked onto that component. For even a
modest-sized building, this transportation may require a significant number
of truckloads of components. The question we address here is how to
decide the sequence in which the components are delivered to the building
site so that components are available when needed, but not piled up
waiting to be used.

 Consider the relatively simple structure shown in Figure 7.1 . The
components have individual labels, and we can obtain from the architect
the identities of the components that are connected together. The

7.5 Engineering Example—Assembling a Physical Structure 175

construction needs to start from the fixed point A. We need to analyze this
information and compute the order in which the components would be
used to assemble the structure.

 The data will be organized as a structure array with one entry for each
component. One of the fields in that structure will be a cell array of the
names of the components to which this component is connected.

 The code in Listing 7 . 6 shows the solution to this problem.

A-1

A C

A-3 B-1 B-3 C-1 C-3 1.732m

A-2 B-2

6m

C-2

D-2D-1

 Figure 7.1 Simple structure assembly

 Listing 7 . 6 Connectivity of a structure

 1. data(1) = beam('A-1', 0.866, 0.5, ...
 2. { 'A','A-2','A-3','D-1'});
 3. data(2) = beam('A-2', 0, 1, ...
 4. { 'A', 'A-3', 'B-1', 'B-2'});
 5. data(3) = beam('A-3', 0.866, 1.5, ...
 6. { 'A-1', 'A-2', 'B-1', 'D-1'});
 7. data(4) = beam('B-1', 0.866, 2.5, ...
 8. { 'A-2', 'A-3', 'B-2', 'B-3', 'D-1', 'D-2'});
 9. data(5) = beam('B-2', 0, 3, ...
10. { 'A-2', 'A-3', 'B-1', 'B-3', 'C-1', 'C-2'});
11. data(6) = beam('B-3', 0.866, 3.5, ...
12. { 'B-1', 'B-2', 'C-1', 'C-2', 'D-1', 'D-2'});
13. data(7) = beam('C-1', 0.866, 4.5, ...
14. { 'B-2', 'B-3', 'C-2', 'C-3', 'D-2'});
15. data(8) = beam('C-2', 0, 5, ...
16. { 'B-2', 'B-3', 'C-1', 'C-3', 'C'});
17. data(9) = beam('C-3', 0.866, 5.5, ...
18. { 'C-1', 'C-2', 'D-2', 'C'});
19. data(10) = beam('D-1', 1.732, 2, ...
20. { 'A-1', 'A-3', 'B-1', 'B-3', 'D-2'});
21. data(11) = beam('D-2', 1.732, 4, ...
22. { 'B-1', 'B-3', 'C-1', 'C-3', 'D-1'})
23. conn = 'A';
24. clist = {conn};
25. while true

continued on next page

176 Chapter 7 Cell Arrays and Structures

 In Listing 7 . 6 :

 Lines 1–22: Construct the structure array using the beam(...)
constructor function below.

 Line 23: The current connection point, conn —originally, the point A.

 Line 24: Initializes the connection list, a cell array of names.

 Line 25: An infinite loop to be exited with break statements.

 Lines 26–33: Traverse the components to make a structure array, found ,
containing all the components connected to the current connection
point, conn .

 Lines 34–40: Go through the found array, removing any component
already on the connected list and appending the names of those not
removed to the connected list.

 Lines 41–45: We will exit the while loop when there are no new
components found; until then, choose the next component to
connect.

 The support functions for this script are assembled for convenience into
Listing 7 . 7 . They should be in separate files with the appropriate file names
to be accessible by MATLAB.

26. index = 0;
% find all the beams connected to conn

27. for in = 1:length(data)
28. str = data(in);
29. if touches(str, conn)
30. index = index + 1;
31. found(index) = str;
32. end
33. end

% eliminate those already connected
34. for jn = index:-1:1
35. if ison(found(jn).name, clist)
36. found(jn) = [];
37. else
38. clist = [clist {found(jn).name}];
39. end
40. end
41. if length(found) > 0
42. conn = nextconn(found, clist);
43. else
44. break;
45. end
46. end
47. disp('the order of assembly is:')
48. disp(clist)

7.5 Engineering Example—Assembling a Physical Structure 177

 In Listing 7 . 7 :

 Lines 1–5: Constructor for one structure defining one component.
 Lines 6–14: A function to determine whether a beam touches this
connecting point.

 Listing 7 . 7 Support functions

 1. function ans = beam(nm, xp, yp, conn)
% construct a beam structure with fields:
% name - beam name
% xp, yp - coordinates of its centroid
% conn - cell array - names of adjacent beams
% useage: ans = beam(nm, xp, yp, conn)

 2. ans.name = nm;
 3. ans.pos = [xp, yp];
 4. ans.connect = conn;
 5. end
 6. function res = touches(beam, conn)

% does the beam touch this connecting point?
% usage: res = touches(beam, conn)

 7. res = false;
 8. for in = 1:length(beam.connect)
 9. item = beam.connect{in};
10. if strcmp(item,conn)
11. res = true; break;
12. end
13. end
14. end
15. function res = ison(nm, cl)

% is this beam on the connection list,
% a cell array of beam names
% usage: res = ison(beam, cl)

16. res = false;
17. for in = 1:length(cl)
18. item = cl{in};
19. if strcmp(item, nm)
20. res = true; break;
21. end
22. end
23. end
24. function nm = nextconn(fnd, cl)

% find a connection name among
% those found not already connected
% usage: nm = nextconn(fnd, cl)

25. for in = 1:length(fnd)
26. item = fnd(in);
27. cn = item.connect;
28. for jn = 1:length(cn)
29. nm = cn{jn};
30. if ~ison(nm, cl)
31. break;
32. end
33. end
34. end
35. end

178 Chapter 7 Cell Arrays and Structures

 Lines 15–23: A similar function to determine whether a particular string
is on the connection list, a cell array of strings.
 Lines 24–35: Function to find the next connection to use based on the
latest components found—the “outer edges” of the emerging
structure—and its not being already on the connected list.

 Here is the resulting output:

data =

1x11 struct array with fields:
name,

 pos,
 connect

the order of assembly is:
'A' 'A-2' 'A-1' 'D-1' 'A-3' 'B-2' 'B-1' 'D-2' 'B-3' 'C-2' 'C-1' 'C-3'

 Chapter Summary

 This chapter covered the nature, implementation, and behavior of two
heterogeneous collections:

 ■ Cell arrays are vectors of containers; their elements can be
manipulated either as vectors of containers, or individually by
inserting or extracting the contents of the container using braces in
place of parentheses

 ■ The elements of a structure are accessed by name rather than by
indexing, using the dot operator, ‘.’, to specify the field name to be
used

 ■ Structures can be collected into structure arrays whose elements are
structures all with the same field names. These elements can then
be indexed and manipulated in the same manner as the cells in a
cell array

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words, and

Functions Description

 Discussed in

This Section

 { ... } Defines a cell array 7.2

 . <field> Used to access fields of a structure 7.3.1

 .(<variable>) Allows a variable to be used as a structure field 7.3.1

 class(<object>) Determines the data type of an object 7.2.4

 deal(...) Distributes cell array results among variables 7.2.2

 getfield
(<str>, <fld>)

 Extracts the value of the field <fld> from a
structure

 7.4.3

Self Test 179

 Special Characters,

Reserved Words, and

Functions Description

 Discussed in

This Section

 isa(<object>,
<class>)

 Determines whether the <object> is of the
given data type, <class>

 7.2.4

 iscell(<object>) Determines whether <object> is of type cell 7.2.4

 ischar(<object>) Determines whether <object> is of type char 7.2.4

 isfield(<str>,
<fld>)

 true if the string <fld> is a field in the
structure <str>

 7.4.3

 islogical
(<object>)

 Determines whether <object> is of type
 logical

 7.2.4

 isnumeric
(<object>)

 Determines whether <object> is of type
 double

 7.2.4

 isstruct
(<object>)

 Determines whether <object> is of type
 struct

 7.2.4

 str =
setfield(<str>,
<fld>, <value>)

 Constructs a new structure that is a copy of
 <str> in which the value of the field <fld>
has been changed to <value>

 7.4.3

 [values order]
= sort(<object>)

 Sorts either vectors (increasing numerical order)
or cell arrays of strings (alphabetically) returning
the sorted data and the index order for the sort

 7.4.3

 struct(...) Constructs a structure from <fieldname>
<value> pairs of parameters

 7.3.2

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. Of all the collective operations defined for numerical arrays, only
logical operations can be applied to a whole cell array.

 2. A cell array or a structure can contain any legal MATLAB object.

 3. You gain access to the contents of a cell by using braces, {...} .

 4. Since the contents of a structure are heterogeneous, we can store
other structures in any structure.

 5. The statement rmfield(str, 'price') removes the field 'price' and
its value from the structure str.

 6. The statement getfield(str, <fldname>) returns the value of the
specified field.

180 Chapter 7 Cell Arrays and Structures

 7. You cannot extract and process all of the values of a field in a
structure array.

 Fill in the Blanks

 1. To perform any operations on the contents of a heterogeneous
collection, the items must be _________ and if necessary,
________________.

 2. One way of checking the class of an element inside a cell array is
using the function ______________, which returns a string
specifying the item type.

 3. The assignment B{3} = {42} results in the third entry in the cell
array B being a(n) ______________.

 4. If a variable called field contains the name of a field in a structure
 str , the expression ______________ will set the value of that field to
42.

 5. MATLAB has a built-in function __________ that consumes pairs of
entries, each consisting of a(n) _________and a(n) __________, and
produces a structure array.

 Programming Projects

 1. Write a function named cellParse that takes in a cell array with
each element being either a string (character array), or a vector
(containing numbers), or a boolean value (logical array of length 1).

 Your function should return the following:

 • nStr: the number of strings
 • nVec: the number of vectors
 • nBool: the number of boolean values
 • cString: a cell array of all the strings in alphabetical order
 • vecLength: the average length of all the vectors
 • allTrue: true if all the boolean values are true and false

otherwise

 For example,

[a b c d e f] =
 cellParse({ [1 2 3], true, 'hi there!',
 42, false, 'abc'})

should return a = 2, b = 2, c = 2, d = {'abc','hi there!},
 e = 2, and f = false.

 2. It turns out that since you have become an expert on rating clothing
(Chapter 4 , Problem 5), Acme Clothing Company has hired you to

Programming Projects 181

rate its clothes. Clothes are now represented as structures instead of
vectors with the fields (all of which are numbers between 0 and 5):

 Condition, Color, Price, Matches, and Comfort

 Acme has a much simpler way of rating its clothes than you used
before:

 Rating = 5 * Condition + 3 * Color + 2 * Price + Matches
 + 9 * Comfort

 You have a script called makeClothes.m that will create a structure
array called acmeClothes that contains clothes structures. You are to
write a script called rateClothes that will add a Rating field and a
 Quality field to each of the structures in the acmeClothes array. The
Rating field in each structure should contain the rating of that
particular article of clothing. The Quality field is a string that is
 'premium' if the Rating is over 80, 'good' over 60, 'poor' over 20,
and 'liquidated' for anything else.

 Note:

 a. You MUST use iteration to solve this problem.

 b. To make things easy, just place the line makeClothes at the top of
your script, so you’re guaranteed to have the correct acmeClothes
array to work with.

 c. The fields are case sensitive, so make sure that you capitalize them.

 3. You have been hired by a used-car dealership to modify the price of
cars that are up for sale. You will get the information about a car,
and then change its price tag depending on a number of factors.

 Write a function called usedCar that takes in a structure with the
following fields:

 Make: A string that represents the make of the car (e.g., 'Toyota
Corolla')

 Year: A number that corresponds to the year of the car (e.g., 1997)

 Cost : A number that holds the marked price of the car (e.g., 7,000)

 Miles : The number of miles clocked (e.g., 85,000)

 Accidents: The number of accidents the car has been in (e.g., 1)

 Your function should return a structure with all the above fields,
with *exactly* the same names. It should have the same make, year,
accidents, and miles. Here are the changes you must make:

 1. Add 5,000 to the cost if the car has clocked less than
20,000 miles.

182 Chapter 7 Cell Arrays and Structures

 2. Subtract 5,000 if it has clocked more than 100,000 miles.

 3. Reduce the price by 10,000 for every accident.

 4. This problem deals with structures that represent dates.
 a. First, write a MATLAB function called createDate that will take

in three numeric parameters. The first parameter represents the
 month , the second the day , and the third the year . The function
should return a structure with the following fields:

 Day: a number
 Month: a 3 character string containing the first three characters

of the month name
 Year: a number containing the year.

 For example,

 it = createDate(3,30,2008) should return a structure containing:

Day: 30
Month: Mar
Year: 2008

 b. Write a function called printDate that displays a date in the form
 Mar 30, 2007

 c. Write a function inBetween that will take in three date
structures. The function should return true if the second date is
between the first and third dates, otherwise the function should
return false .

 d. Write a function called isSorted that takes in a single parameter,
an array of date structures. This function should return true if
all the dates in the array are in a chronological order (regardless
of whether they are in ascending or descending order),

 ■ It might help to add a field to the date class.

 ■ The third date does not have to be chronologically
later than the first date.

 Hints

otherwise the function should
return false .

 e. Write a test script that creates an
array of date structures, prints out
each date, and then states whether
or not the dates are in order.

 5. Your university has added a new award for students who were “almost there” last
semester and just missed getting into the Dean’s List. Write a function called almost
that consumes an array of student structures, and produces an array of names of
those who have a semester GPA between 2.9 and 2.99 (inclusive). The student
structure has the following fields:

Name - string (e.g., 'George P. Burdell')
Semester_GPA - decimal number (e.g., 2.97)
Cumulative_GPA - decimal number (e.g., 3.01)

Programming Projects 183

 6. The MATLAB language has the built-in ability to perform
mathematical operations on complex numbers. However, there are
times when it is useful to treat complex numbers as a structure.
Write a set of functions with the following capability and a script to
verify that they work correctly:

cmplx = makeComplex(real, imag)
res = cmplxAdd(cmpxa, cmpxb)
res = cmplxMult(cmpxa, cmpxb)

 7. In terms of atomic physics, every electron has four numbers
associated with it, called the quantum numbers. These are
 'principal' (energy), 'azimuthal' (angular momentum), 'magnetic'
(orientation of angular momentum), and 'spin' (particle spin)
quantum numbers. Wolfgang Pauli hypothesized (correctly) that no
two electrons in an atom can have the same set of four quantum
numbers; that is, if the Principal, Azimuthal, and Magnetic
numbers are the same for two electrons, then it is necessary for the
electrons to have different Spin numbers.

 You need to write a function called spinSwitch that takes in two
structures and returns both structures. Each structure represents an
electron in a hydrogen atom and has the following fields:

principal (this is always > 0)
azimuthal (a number)
magnetic (a number)
spin (a string with value 'up' or 'down')

 Your function will compare the values in the two structures and
check if they all have the same values for the four fields. If true, you
are required to switch the spin of the second structure. You also
have to add a field called “energy” to both structures. The value
stored in this field must be (−2.18*(10^18))/(n^2), where n is the
value of the principal quantum number for that electron. You have
to return both the structures with the energy field added to both, so
that the one with the higher energy is first. If the energies are equal,
return the one with the ‘up’ spin first. If both have the same spin
and the same energy, the order does not matter.

This page intentionally left blank

 Chapter Objectives

 This chapter discusses three levels of capability for reading and
writing files in MATLAB, each including a discussion of the
circumstances under which they are appropriate:

 ■ Saving and restoring the workspace

 ■ High-level functions for accessing files in specific formats

 ■ Low-level file access programs for general-purpose file processing

 Reading and writing data in data files are fundamental to the utility of
programming languages in general, and MATLAB in particular. In
addition to the obvious need to save and restore scripts and functions
(covered in Chapter 2), here we consider three types of activities that
read and write data files.

 ■ The MATLAB language provides for the basic ability to save your workspace (or
parts of your workspace) to a file and restore it later for further processing.

 ■ There are high-level functions that consume the name of a file whose contents are
in any one of a number of popular formats and produce an internal representation
of the data from that file in a form ready for processing.

 ■ Almost all these functions have an equivalent write function that will write a new
file in the same format after you have manipulated the data.

 ■ However, we also need to deal with lower-level capabilities for manipulating text
files that do not contain recognizable structures.

 Introduction

 This chapter discusses files that contain workspace variables, spreadsheet data, and
text files containing delimited numbers and plain text. Subsequent chapters will
discuss image files and sound files. For information on the other file formats, consult
the help documentation for details of their usage.

 File Input and Output
 C H A P T E R 8

 8.1 Concept: Serial Input and
Output (I/O)

 8.2 Workspace I/O
 8.3 High-level I/O Functions
 8.3.1 Exploration
 8.3.2 Spreadsheets
 8.3.3 Delimited Text Files

 8.4 Lower-level File I/O
 8.4.1 Opening and

Closing Files
 8.4.2 Reading Text Files
 8.4.3 Examples of Reading

Text Files
 8.4.4 Writing Text Files

 8.5 Engineering Example—
Spreadsheet Data

185

186 Chapter 8 File Input and Output

 The MATLAB language also provides the ability to access binary files—files
whose data are not in text form—but the interpretation of binary data is beyond the
scope of this text, and we will not consider binary files here. Refer to MATLAB
documentation for information about binary files.

I N FOR M A T I O N

Destination
Writes

A Stream

Program

 Figure 8.2 An output stream

I N FOR M A T I O N

Program
Reads

A Stream

Source

 Figure 8.1 An input stream

 8.1 Concept: Serial Input and Output (I/O)

 We frequently refer to the process of reading and writing data files as
Input/Output (I/O). We have already seen and used examples of file I/O
to store and retrieve data and programs. Your script and function files are
stored in your current directory and could be invoked from there by name
from the Command window. In general, any computer file system saves
and retrieves data as a sequential (serial) stream of characters, as shown in
 Figure 8.1 . Mixed in with the characters that represent the data are special
characters (“delimiters”) that specify the organization of the data.

 When a program opens a file by name for reading, it continually requests
blocks of data from the file data stream until the end of the file is reached.
As the data are received, the program must identify the delimiting
characters and reformat the data to reconstruct the organization of the data
as represented in the file. Similarly, when writing data to a file, the program
must serialize the data, as shown in Figure 8.2 . To preserve the organization
of the data, the appropriate delimiting characters must be inserted into the
serial character stream.

 The purpose of the file I/O functions discussed in this chapter is to
encapsulate these fundamental operations into a single system function, or
at least into a manageable collection of functions.

 8.2 Workspace I/O

 The MATLAB language defines the tools to save your complete workspace
to a file with the save command and reload it with the load command. If
you provide a file name with the save command, a file of that name will be

 8.3 High-Level I/O Functions

 We turn to the general case of file I/O in which we expect to load data from
external sources, process that data, and perhaps save data back to the file

system with enhancements created by
your program. When you try to
process data from some unknown
source, it is difficult to write code to
process the data without some initial
exploration of the nature and
organization of that data. So a good
habit is to explore the data in a file by
whatever means you have available
and then decide how to process the
data according to your observations.

 Most programming languages
require the programmer to write
detailed programs to read and write

files, especially those produced by other application programs or data
acquisition packages. Fortunately for MATLAB programmers, much of this
messy work has been built into special file readers and writers. Table 8.1
identifies the type of data, the name of the appropriate reader and writer,
and the internal form in which MATLAB returns the data.

 8.3.1 Exploration

 The types of data of immediate interest are text files and spreadsheets. In
 Table 8.1 notice that the delimited text files are presumed to contain
numerical values, whereas the spreadsheet data may be either numerical
data stored as doubles or string data stored in cell arrays. Typically, text
files are delimited by a special character (comma, tab, or anything else) to
designate the column divider and a new-line character to designate the

8.3 High-Level I/O Functions 187

 In a practical sense, saving workspace data is very rarely an
appropriate approach to saving work because it saves the
results but not the code that generated the results. It is
almost always better to save the scripts and raw data that
created the workspace. For example, this is a good idea
when you have a lengthy computation (perhaps one run
overnight) to prepare data for a display. You could split that
script into two halves. The first half would do the overnight
calculation and save the workspace. The second part can
then read the workspace quickly, and you can develop
sophisticated ways to display the data without having to
re-run the lengthy calculations.

 Style Points 8 . 1

written into your current directory in such a form that a subsequent load
command with that file name will restore the saved workspace. By
convention, these files will have a .mat extension. If you do not provide a
file name, the workspace is saved as matlab.mat .

 If you are using MATLAB, you can also identify specific variables that
you want to save—either by listing them explicitly or by providing logical
expressions to indicate the variable names. For example:

>> save mydata.mat a b c*

 would save the variables a and b and any variable beginning with the letter
 c . For more details, consult the MATLAB help documentation.

188 Chapter 8 File Input and Output

rows. Once the data are imported, all of our normal array and matrix
processing tools can be applied. The exception to this rule is the plain text
reader that must be provided with a format specifier to define the data,
and the names of the variables in which the data are to be stored.

 So when you are approached with a file, the file extension (the part of
the file name after the dot) gives you a significant clue to the nature of the
data. For example, if it is the output from a spreadsheet, you should open
the data in that spreadsheet program to explore its contents and
organization. [Typically, spreadsheet data will not open well in a plain
text editor.] If you do not recognize the file extension as coming from a
spreadsheet, try opening the file in a plain text editor such as that used for
your scripts and functions and see if the data are legible. You should be
able to discern the field delimiters and the content of each line if the file
contains plain text.

 8.3.2 Spreadsheets

 Excel is a Microsoft product that implements spreadsheets. Spreadsheets
are rectangular arrays containing labeled rows and columns of cells. The
data in the cells may be numbers, strings, or formulae that combine the data
values in other cells. Because of this computational capability, spreadsheets
can be used to solve many problems, and most offer flexible plotting
packages for presenting the results in colorful charts. There are occasions,
however, when we need to apply the power of the MATLAB language to
the data in a spreadsheet.

 Table 8.1 File reading and writing

 File Content Reader Writer Data Format Extension

 Plain text

 Any

 textscan fprintf Specified in the
function calls

 .txt usually

 CSV

 Comma separated
values

 csvread csvwrite double array .csv

 Delimited

 Numbers separated
by delimiters

 dlmread dlmwrite double array .txt usually

 Excel
worksheet

 Microsoft specific

 xlsread xlswrite Double array + 2
cell arrays

 .xls

 Image data

 Various

 imread imwrite True color, grayscale,
or indexed image

 various

 Audio file

 AU or WAV

 auread or
wavread

 Auwrite or
wavwrite

 Sound data and
sample rate

 .au or .wav

 Movie AVI aviread no movie .avi

8.3 High-Level I/O Functions 189

 MATLAB provides a reader for Excel spreadsheets that gives you a
significant amount of flexibility in retrieving the data from the spreadsheet.
Consider the typical set of data in a spreadsheet named grades.xls shown in
 Table 8.2 . The goal of your spreadsheet reader is to separate the text and
numerical portions of the spreadsheet. The parameter consumed by your
spreadsheet reader is the name of the file; you can ask for up to three return
variables: the first will hold all the numerical values in an array of doubles;
the second will hold all the text data in cell arrays; and the third, if you request
it, will hold both string and numerical data in cell arrays (try Exercise 8 . 1).

 Table 8.2 Sample spreadsheet date

 name age grade

 fred 19 78

Joe 22 83

 Sally 98 99

Charlie 21 56

 Mary 23 89

 Ann 19 51

 Exercise 8.1 Reading Excel data

>> [nums txt raw] = csvread('grades.csv')
% or xlsread('grades.xls') with MATLAB
nums =
 19 78
 22 83
 98 99
 21 56
 23 89
 19 51
txt =
 'name' 'age' 'grade'
 'fred' " "
 'joe' " "
 'sally' " "
 'charlie' " "
 'mary' " "
 'ann' " "
raw =
 'name' 'age' 'grade'
 'fred' [19] [78]
 'joe' [22] [83]
 'sally' [98] [99]
 'charlie' [21] [56]
 'mary' [23] [89]
 'ann' [19] [51]
 'ann' [19] [51]

190 Chapter 8 File Input and Output

 The reader first determines the smallest rectangle on the spreadsheet
containing all of the numerical data; we will refer to this as the “number
rectangle.” Then it produces the following results:

 1. The fi rst returned result is an array with the same number of rows
and columns as the number rectangle and containing the values
of all the numeric data in that rectangle. If there are non-numeric
values within that rectangle, they are replaced by NaN , the built-in
name for anything that is not a number.

 2. The second returned result is a cell array with the same size as the
original spreadsheet, containing only the string data; to ensure the
consistency of this cell array, all numbers present are replaced by
the empty string.

 3. The third returned result is a cell array also with the same size as
the original spreadsheet, containing both the strings and the num-
bers. Cells that are blank are presumed to be numerical, and are
assigned as a cell containing an empty vector.

 Frequently, after processing data, you need to write the results back to a
spreadsheet. Excel spreadsheets can be written using:

xlswrite(<filename>, <array>, <sheet>, <range>)

 where <filename> is the name of the file, <array> is the data source (a cell
array), <sheet> is the sheet name, and <range> is the range of cells in Excel
cell identity notation. The sheet name and range are optional.

 8.3.3 Delimited Text Files

 If information is not available specifically in spreadsheet form, it can
frequently be presented in text file form. If the data in a text file are numerical
values only and are organized in a reasonable form, you can read the file
directly into an array. It is necessary that the data values are separated
(delimited) by commas, spaces, or tab characters. Rows in the data are
separated as expected by the new-line character. These values might be
saved in a file named nums.txt . This type of numerical data (not strings) in
general delimited form can be read using dlmread(<file>,<delimiter>) ,
where the delimiter parameter is a single character that can be used to
specify an unusual delimiting character. However, the function can usually
determine common delimiter situations without specifying the parameter.

 The dlmread(...) function produces a numerical array containing the data
values. Try reading delimited files in Exercise 8 . 2 . Table 8.3 shows the
content of the file nums.txt.

 Notice that the array elements where data are not supplied are filled with
zero.

8.3 High-Level I/O Functions 191

 Delimited data files can be written using: dlmwrite(<filename>,

<array>, <dlm>) where <filename> is the name of the file, <array> is
the data source (a numerical array), and <dlm> is the delimiting character.
If the delimiting character is not specified, it is presumed to be a
comma.

 The csvread(...) function is a special case of dlm read(...) where the
delimiter is presumed to be a comma, and it produces a numerical array
containing the data values. As noted above, the MATLAB version of
 csvread(...) has been enhanced so that if the data contain only numerical

values, it will return an array.
However, if the data contain some
strings, it produces the three results
specified above for xls read(...) .
The normal content of CSV files
allows embedded strings to contain
the comma character. This is
accomplished by surrounding any
such string with double quotes—for

example, "Jones, Tom" in a CSV file would prevent the embedded comma
from separating this string into the two strings: 'Jones' and 'Tom' .

 Table 8.3 Sample delimited text file

 19 78 42

 22 83 100

 98 99 34

 21 56 12

 23 89

 19 51

 It is best not to provide the delimiter unless you have to.
Without it, MATLAB will assume that repeated delimiters—
like tabs and spaces—are single delimiters. If you do specify a
delimiter, it will assume that repeated delimiter characters
are separating different, absent field values.

 Common Pitfalls 8 . 1

 Exercise 8.2 Reading delimited files

>> A = dlmread('nums.txt')
A =
 19 78 42
 22 83 100
 98 99 34
 21 56 12
 23 89 0
 19 51 0

192 Chapter 8 File Input and Output

 8.4 Lower-Level File I/O

 Some text files contain data in mixed format that are not readable by the
high-level file reading functions. The MATLAB language provides a set of
lower-level I/O functions that permit general-purpose text file reading and
writing. The following is a partial discussion of these functions that is
sufficient for most text file processing needs. In general, the file must be
opened to return a value to be used by subsequent functions to identify its
data stream. We usually refer to this identifier as the “file handle.” After the
file contents have been manipulated, the file must be closed to complete the
activity. Because these are lower-level functions used in combination to
solve problems, we will need to discuss the behavior of several of them
before we can show examples of their use.

 8.4.1 Opening and Closing Files

 To open a file for reading or writing, use fh = fopen(<filename>,

<purpose>) where fh is a file handle used in subsequent function calls to
identify this particular input stream, <filename> is the name of the file, and
 <purpose> is a string specifying the purpose for opening the file. The most
common purposes are 'r' to read the file, 'w' to write it, or 'a' to append
to an existing file. See the help files for more complex situations. If the
purpose is 'r' , the file must already exist; if 'w' and the file already exists,
it will be overwritten; if 'a' and the file already exists, the new data will be
appended to the end. The consequence of failure to open the file is system
dependent. In the standard version on a PC, this is indicated by returning a
file handle of –1.

 To close the file, call fclose(fh).

 8.4.2 Reading Text Files

 To read a file, three levels of support are provided: reading whole lines
with or without the new-line character, parsing into tokens with delimiters,
or parsing into cell arrays using a format string.

 ■ To read a whole line including the new-line character, use str =
fgets(fh) that will return each line as a string until the end of the
file, when the value –1 is returned instead of a string. To leave out
each new-line character, use fgetl(...) instead (the last character is
a lowercase L).

 ■ To parse each line into tokens (elementary text strings) separated by
white space delimiters, use a combination of fgetl(...) and the
tokenizer function [<tk>, <rest>] = strtok(<ln>); where <tk>
is a string token, <rest> is the remainder of the line, and <ln> is a
string to be parsed into tokens.

8.4 Lower-Level File I/O 193

 ■ If you are using MATLAB, you could try to parse a line according
to a specific format string into a cell array by using ca = textscan(fh,
<format>); where ca is the resulting cell array, fh is the file handle,
and <format> is a format control string such as we used for
 sscanf(...) in Chapter 6 .

 8.4.3 Examples of Reading Text Files

 To illustrate the use of these functions for reading a text file, the script shown
in Listing 8 . 1 shows a script that will list any text file in the Command window.

 In Listing 8 . 1 :

 Line 1: Asks the user for the name of a file.
 Line 2: Opens the file for reading and returns the file handle.
 Line 3: Initializes the while loop control variable.
 Line 4: When the file read reaches the end of the file, the reading
function returns −1 instead of a string.
 Line 5: Reads a string, including the end of line character.
 Line 6: Classic loop-and-a-half logic that determines whether there
is a line to process.
 Line 7: Displays that line if present.
 Line 10: Closes the file when finished.

 As an example of the use of a tokenizer, consider the code shown in
Listing 8 . 2 , which performs the same function as Listing 8 . 1 but uses tokens.

 Line 5: Uses fgetl(...) instead of fgets(...) because the tokenizer
does not need the new-line character.
 Line 7: Initializes the resulting cell array.
 Line 8: The tokenizer will be finished when it leaves an empty line
as the result.
 Line 9: Creates a token from the remains of the line and puts the
remains back into the variable ln .

 Listing 8 . 1 Script to list a text file

 1. fn = input('file name: ', 's');
 2. fh = fopen(fn, 'r');
 3. ln = '';
 4. while ischar(ln)
 5. ln = fgets(fh);
 6. if ischar(ln)
 7. fprintf(ln);
 8. end
 9. end
10. fclose(fh);

194 Chapter 8 File Input and Output

 Line 10: Adds the current token to the result.
 Line 12: Shows the tokens for one line.
 Line 15: Closes the file.

 Run the scripts in Listings 8 . 1 and 8 . 2 . This will show the difference in
output results between the conventional listing script and the tokenizing
lister. With the tokenizer, we see each individual token (really, each word
in a normal text file) separately listed.

 8.4.4 Writing Text Files

 Once a file has been opened for writing, the fprintf(...) function can be
used to write to it by including its file handle as the first parameter. For
example, Listing 8 . 3 is a minor alteration to Listing 8 . 1 , copying a text file
instead of listing it in the Command window.

 Listing 8 . 2 Listing a file using tokens

 1. fn = input('file name: ' , 's');
 2. fh = fopen(fn, 'r');
 3. ln = '';
 4. while ischar(ln)
 5. ln = fgetl(fh);
 6. if ischar(ln)
 7. ca = [];
 8. while ~isempty(ln)
 9. [tk, ln] = strtok(ln);
10. ca = [ca {tk}];
11. end
12. disp(ca);
13. end
14. end
15. fclose(fh);

 Listing 8 . 3 Script to copy a text file

 1. ifn = input('input file name: ', 's');
 2. ofn = input('output file name: ', 's');
 3. ih = fopen(ifn, 'r');
 4. oh = fopen(ofn, 'w');
 5. ln = '';
 6. while ischar(ln)
 7. ln = fgets(ih);
 8. if ischar(ln)
 9. fprintf(oh, ln);
10. end
11. end
12. fclose(ih);
13. fclose(oh);

8.5 Engineering Example—Spreadsheet Data 195

 In Listing 8 . 3 :

 Line 2: Fetches the output file name.
 Line 4: Opens the output file for writing.
 Line 9: Adding oh as the first parameter to fprintf(...) redirects
the output to the specified file.
 Line 13: Closes the output file.

 Figure 8.3 Data in a spreadsheet

 8.5 Engineering Example—Spreadsheet Data

 ■ Frequently, engineering data are provided in spreadsheets. Here we
will adapt the structure assembly problem from Chapter 7 . The script
for that solution created the data using a constructor function.
Consider the situation in which the data are provided in a spreadsheet
such as that shown in Figure 8.3 . We have to start by examining the
layout of the data and the process necessary to extract what we need.
Bearing in mind the three results returned from xlsread(...) , first we
determine which of the three is most appropriate:

 ■ The { xlsread(...) } function is going to include all the numerical
cells from the spreadsheet in the numerical array. This is awkward
because there are numbers in the first column; and since the primary
interest in this problem is not the numerical data, we will not use the
numerical array directly.

 ■ However, this is not exclusively a text processing problem. Since we
need the numerical coordinates, the second, text-only result is not
what we need.

 ■ Therefore, in this particular application, we will process the raw
data provided by csvread(...) , giving both the string and
numerical data.

 The other concern is that there are a different number of connections on
each row of the sheet. When a connection is present, it is a string. When it is

196 Chapter 8 File Input and Output

not there, we refer to the behavior of the raw data to discover that the
contents of empty cells appear as [] of type double .

 We need a function that will read this file and produce the same model of
the structure used in Chapter 7 . Such a function is shown in Listing 8 . 4 .

 In Listing 8 . 4 :

 Line 1: The function consumes the file name and produces a
structure array with the fields described in the following comments.
 Line 2: Reads the spreadsheet and keeps only the raw data.
 Line 3: Gets the rows and columns in the raw data; we need to
ignore the top row and left column.
 Line 4: Initializes the output index for the structure array.
 Line 5: Ignoring the first row, traverses all the remaining rows.
 Line 6: The component name is in the second column.
 Line 7: The coordinates of the component are in the third and fourth
columns.

 Listing 8 . 4 Reading structure data

 1. function data = readStruct(filename)
% read a spreadsheet and produce a
% structure array:
% name - the second column value
% pos - columns 3 and 4 in a vector
% connect - cell array with the remaining
% data on the row

 2. [no no raw] = xlsread(filename);
 3. [rows cols] = size(raw);

% ignore the first row and column
 4. out = 1;
 5. for row = 2:rows
 6. str.name = raw{row,2};
 7. str.pos = [raw{row,3} raw{row,4}];
 8. cni = 1;
 9. conn = {};
10. for col = 5:cols
11. item = raw{row, col};
12. if ~ischar(item)
13. break;
14. end
15. conn{cni} = item;
16. cni = cni + 1;
17. end
18. str.connect = conn;
19. data(out) = str;
20. out = out + 1;
21. end
22. end

Special Characters, Reserved Words, and Functions 197

 Lines 8–9: Initialize the search for the connections for this
component. It is important to empty the array conn before each pass
to avoid “inheriting” data from a previous row.
 Lines 10–11: Extract each item in turn from the row.
 Lines 12–14: If the item is not of class char , this is the blank cell at
the end of the row; the break command exits the for loop moving
across the row.
 Lines 15–16: Otherwise, it stores the connection and keeps going.
 Lines 18–20: When the connections are complete, it stores them in
the structure, stores the structure in the structure array, and
continues to the next row.
 Line 21: When the rows are completed, the data are ready to return
to the calling script.

 To test this function, replace the structure array construction in lines 1–22
of Listing 7 . 6 in Chapter 7 with the following line:

data = readStruct('Structure_data.xls');

 The script should then produce the same results as before.

 Chapter Summary

 We have described three levels of capability for reading and writing files:

 ■ The save and load operators allow you to save variables from the
workspace and restore them to the workspace

 ■ Specialized functions read and write spreadsheets and delimited
text files

 ■ Lower-level functions provide the ability to open and close files,
and to read and write text files in any form that is required

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 [nums,txt,raw] =
csvread(<file>)

 Reads comma-separated text files 8.3

 csvwrite(<file>,<data>) Writes comma-separated text files 8.3

 dlmread(<file>,<dlm>) Reads text files separated by the given
delimiting character

 8.3

 dlmwrite (<file>,
<data>, <dlm>)

 Reads text files separated by the given
delimiting character

 8.3

198 Chapter 8 File Input and Output

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 fclose(fh) Closes a text file 8.4.1

 fgetl(fh) Reads a line, omitting the new-line character 8.4.2

 fgets(fh) Reads a line, including the new-line character 8.4.2

 fh = fopen(<file>,
<why>)

 Opens a text file for reading or writing 8.4.1

 fprintf(...) Writes to the console, or to plain text files 8.3, 8.4.4

 load <filename> Loads the workspace from a file 8.2

 save <filename> Saves workspace variables in a file 8.2

 [tk rest] = strtok
(<str>, <dlm>)

 Extracts a token from a string and returns
the remainder of the string

 8.4.2

 ca = textscan(fh,
format)

 Acquires and scans a line of text according
to a specific format

 8.3, 8.4.2

 [nums, txt, raw] =
xlsread(<file>)

 Reads an Excel spreadsheet 8.3.2

 xlswrite(<file>,<data>,
<sheet>, <,range>)

 Writes an Excel spreadsheet in a specific
row/column range

 8.3.2

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. All data files should be treated as a sequential series of characters.

 2. When you save a workspace, you are actually saving the scripts that
generate the data in the workspace.

 3. MATLAB reads strings from tab- or comma-delimited files by
recognizing the double quotes that delimit strings.

 4. If you use fopen(...) to open an existing file and write to it, the
original data in the file will be overwritten.

 5. The function fgets(fh) does not always return a string.

 Fill in the Blanks

 1. In general, data files contain text that represents the ________ of the
data and control characters that specify the _____________ of the
data.

Programming Projects 199

 2. If the <purpose> field has ‘a’ while opening an existing file system,
the contents entered will be ____________.

 3. When using dlmread(...) to populate a(n) ___________, any
unassigned values are ___________.

 4. Numerical data (not strings) in general delimited form can be read
using the MATLAB function _____________.

 Programming Projects

 1. Write a script that performs the following operations:
 a. Set the value of variables a, b, c1, c2, c3, and x . The values

don’t matter, except you should set c2 to 42 .
 b. Save the values of all the variable except x to mydata.mat using

the save operation.
 c. Set the value of c2 to -99 .
 d. Load myData.mat and check that c2 is now 42 .
 e. Clear all variables.
 f. Load myData.mat again and note that the variable x is not present.

 2. One requirement for all freshmen classes is an issue of a 'Standing'
during the middle of the term. The results are either Satisfactory (S)
or Unsatisfactory (U) . Since you are the office employee in charge of
issuing these grades, you decide to write a function called
 midtermGrades to help yourself. You discover that the grades are on
a spreadsheet organized like this:
 • Each student is represented by one row on the spreadsheet.
 • Unfortunately, since these sheets are created by different

instructors, they are not necessarily consistent in their layout.
 • The first row will contain the following six strings in any order:

'name', 'math', 'science', 'english', 'history', and 'cs'.

 • Under the name column will be a string with the student’s name.
 • Grades in the other columns can be 'A', 'B', 'C', 'D', 'F', or

 'W' .
 • A student’s grade is 'S' if there are more A’s, B’s and C’s than

not.

 Your function should print out grades ready to be entered consisting
of a table with headings 'Name' and 'S/U'

 3. Write a function called genStats that will compute statistics for a set
of class grades. The grades will be stored in a spreadsheet, and your
function will compute statistics and then write the grades along
with the statistics to another spreadsheet.

200 Chapter 8 File Input and Output

 You may assume that the initial spreadsheet will have a format
similar too:

 Student Name Exam1 Exam2 Exam3 ...
 student 1 100 76 45 ...
 student 2 34 83 89 ...

 The first row is the header row, and the first column is the list of
student names. There may be any number of exam grades, and there
may be any number of students. Although, you may assume that
there will be at least one student and that there will be at least one
exam.

 Also, every student will have a grade for every exam.

 Your function should only have one input (a string containing the
file name of the grades file) and no outputs. You must write your
function to perform the following steps:
 a. Calculate the average grade of each student (across the rows) and

store it in a new column called 'Average' (to the right of the last
exam grade).

 b. Calculate the deviation of each student’s overall average
(calculated in step a) from the maximum student average and
store it in a new column called 'Deviation' (to the right of the
 'Average' column). Note that deviation is just the difference
between the maximum student average and a student’s overall
average.

 c. Calculate the average of each column’s data (each exam), the
averages calculated in step a, and the deviations calculated in
step b, then store these averages below the last row of the original
data and name that row 'Total Average' .

 d. Write the original data along with all of the new data to a file
named 'Stats_<name_of_original_file>' (so if the inputted file
name was 'Student_Grades.csv' , the new data would be written
to the file named 'Stats_Student_Grades.csv').

 e. Construct a spreadsheet with suitable test data and use it to test
your function.

 4. Write a function called replaceStr . Your function should take in the
following order:

 filename: A string that corresponds to the name of a file

 wordA: A string that is a word (contains no spaces)

 wordB: Another string that is also a word (contains no spaces)

 Your function should do the following:
 a. Read the file a line at a time.
 b. On each line, replace every occurrence of wordA with wordB .

Programming Projects 201

 c. Write the modified text file with the same name as the original
file, but preprended with 'new_' . For instance, if the input
filename was 'data.txt' , the output filename would be 'new_
data.txt' .

 d. Prepare a test file by downloading a text file from the Internet.
For example, the complete works of Shakespeare are accessible at
 http://www.william-shakespeare.info

 e. Examine the file for repeated words, and test your function by
writing a script that replaces frequently repeated words.

This page intentionally left blank

 Chapter Objectives

 This chapter discusses the following basic ideas of recursive
programming:

 ■ Three basic characteristics must be present for a recursive function
to work

 ■ Exceptions are a powerful mechanism for detecting and trapping
errors

 ■ A wrapper function is used to set up the recursion

 ■ Other forms of recursion occur in special circumstances

 Introduction

 Recursion is an alternative technique by which a code block can be
repeated in a controlled manner. In Chapter 4 , we saw repetition
achieved by inserting control statements in the code (either for or
 while) to determine how many times a code block would be
repeated. Recursion uses the basic mechanism for invoking functions
to manage the repetition of a block of code.

 While some problems are naturally solved by iterative solutions, there are many
problems for which a recursive solution is elegant and easily understood. Frequently,
a recursive function needs a “wrapper function” to set up the recursion correctly,
and to check for erroneous initial conditions that might cause errors. The actual
recursive function then becomes a private helper function.

 Recursion
 C H A P T E R 9

 9.1 Concept: The Activation
Stack

 9.1.1 A Stack
 9.1.2 Activation Stack
 9.1.3 Function Instances

 9.2 Recursion Defined
 9.3 Implementing a Recursive

Function
 9.4 Exceptions
 9.4.1 Historical

Approaches
 9.4.2 Generic Exception

Implementation
 9.4.3 MATLAB

Implementation
 9.5 Wrapper Functions
 9.6 Examples of Recursion
 9.6.1 Detecting

Palindromes
 9.6.2 Fibonacci Series
 9.6.3 Zeros of a Function

 9.7 Engineering Example—
Robot Arm Motion

203

204 Chapter 9 Recursion

PopPush

 Figure 9.1 Behavior of a stack

 9.1 Concept: The Activation Stack

 In order to understand recursive programming, we must look deeper
into the mechanism by which function calls are mechanized. Calling any
function depends on a special kind of data structure built into the
architecture of the central processing unit (CPU). This is called the
activation stack. It enables the CPU to determine which functions are
active or suspended awaiting the completion of other function calls. To
understand the activation stack, first we consider the basic concept of a
stack.

 9.1.1 A Stack

 A stack is one of the fundamental data structures of computer science. It is
best modeled by considering the trays at the front of the cafeteria line.
You cannot see how many trays there are on the stack, and the only access
you have to them is to take a tray off the stack or put one on. So a stack is
a collection of objects of arbitrary size with a restricted number of
operations we are allowed to perform on that collection (see Figure 9.1).
Unlike a vector, where it is permissible to read, add, or remove items
anywhere in the collection, we are only allowed the following operations
with a stack:

 ■ Push an object onto the stack
 ■ Pop an object off the stack
 ■ Peek at the top object without removing it
 ■ Check whether the stack is empty

 9.1.2 Activation Stack

 The core concept that enables any function (especially a recursive function)
to operate is the concept of an activation stack. The activation stack is the
means by which the operating system allocates memory to functions for

9.2 Recursion Defined 205

local storage. Typically, local storage is required by a function for the
following reasons:

 ■ Storing the location in memory to which control must be returned
when the function execution completes

 ■ Storing copies of the function parameter values
 ■ Providing space for the values of any local variables defined within

the function

 When MATLAB is initializing, the operating system allocates a block of
memory to contain its activation stack and allocates the first item (usually
called a “frame”) on the activation stack to store variables defined in the
Command window and by scripts. An astute reader might recognize this as
the initial workspace for the system. When the user starts a script or makes an
entry in the Command window, any variables created are stored in that stack
frame. When that application calls a function, a new stack frame is allocated
and “pushed” onto the activation stack. The calling program is then suspended,
actual parameters are copied to formal parameters in the new workspace and
control is passed to the function. Any new variables created are stored in its
stack frame. When that function completes, its frame is popped off the stack

and destroyed, and control is returned
to the frame beneath, which is now
the top of the stack. If an active
function calls another function, this
process is repeated. The calling
function is suspended, a stack frame is
pushed onto the activation stack for
the new function, and the original
function is suspended until the new
function completes.

 9.1.3 Function Instances

 In Chapter 2 we discussed the difference between the type of data defined
by its class and an object—an instance of that class assigned to a variable. In
the same way, we draw the distinction between the .m file that defines the
behavior of a function and the instance(s) of that function that results when
the function is called. Each new instance of a function has its own workspace
that occupies a temporary stack frame allocated from the activation stack.

 In most computer languages, user programs and functions
are compiled before they can be run. Part of that compilation
process is defining the variable names and data types. This
allows the system processes to compute the exact size of
each stack frame before the program begins to run. Since the
MATLAB language is interpreted and interactive, this
information is not available. Consequently, every stack frame
must be dynamically sized to allow for the “surprises”
inherent in this style of programming.

 Technical Insight 9 . 1

 9.2 Recursion Defined

 Following the previous line of reasoning, in principle there is no reason
why a function could not in fact “call itself,” and this is the logical basis for
recursive programming. Of course, as with iterative programming, if there

206 Chapter 9 Recursion

is no mechanism to stop the recursion, the process would repeat endlessly.
In the case of endless recursion, since space is being consumed on the
activation stack, the system will eventually terminate the process when the
memory originally allocated for the activation stack is exhausted.

 The canonical illustration of recursion is the computation of n factorial.
We could view the calculation of 5! in the following ways:

5! = 5 × 4 × 3 × 2 × 1
5! = 5 × 4!

 The second representation is the recursive view, which warrants a closer
examination as follows:

n! = n × (n-1)!

 This definition would not be complete, however, without realizing that it
must stop somewhere. In the original definition above, we did not continue
the chain of multiplication with " * 0 * (-1) * (-2) ..." for obvious
reasons—multiplying by 0 makes all factorial values 0! Mathematically, we
“artificially” define the terminating condition for the factorial calculation as
the state where 0! = 1 .

 We can derive from this example the three necessary characteristics of a
recursive function:

 1. There must be a terminating condition to stop the process

 2. The function must call a clone of itself

 3. The parameters to that call must move the function toward the
terminating condition

 The word clone is important here—a recursive function really does not “call
itself,” because it requests a new stack frame and passes different parameters
to the instance of the function that occupies the new frame.

 9.3 Implementing a Recursive Function

 Template 9 . 1 shows the general template for recursive functions. The
following general guidelines indicate how the recursive template is
implemented:

 ■ The <function_name> , like the name of any other function, may be
any legal variable name

 ■ The variable <result> may be any legal variable name or a vector of
variable names

 ■ As usual with functions, you should supply at least one line of
 <documentation> to define its purpose and implementation

9.3 Implementing a Recursive Function 207

 ■ Each exit from the function must assign values to all the result
variables

 ■ The first design decision is to determine the condition(s) under
which the recursive process should stop, and how to express this as
the <terminating condition N> tests

 ■ The <initial value N> entries are the value(s) of the result(s) at the
terminating condition(s)

 ■ The second design decision is to determine the <operation> —the
specific mathematical or logical operation that must be performed
to combine the current formal parameters with the result of the
recursive call to create a new value of the <result>

 ■ The last design decision is to determine how to compute the
 <actual_params> of the recursive call to ensure that the process
moves toward at least one of the <terminating condition N> states

 The implementation of the factorial function is shown in Listing 9 . 1 .

 In Listing 9 . 1 :

 Before Line 2, we show a diagnostic print call that, if not
commented, enables you to observe the sequence of events.
 Line 2: The terminating condition.

 Template 9 . 1 General template for a recursive function

function <result> = <function_name> (<formal_params>)
<documentation>

if <terminating condition 1>
<result> = <initial value 1>

elseif <terminating condition 2>
<result> = <initial value 2>
...

else
<result> = <operation> ...

(<formal_params>, ...
 <function_name> (<new_params>))

end

 Listing 9 . 1 Function to compute N factorial

1. function result = fact(N)
% recursive computation of N!
% fprintf('fact(%d)\n', N); % testing only

2. if N == 0
3. result = 1;
4. else
5. result = N * fact(N - 1);
6. end
7. end

208 Chapter 9 Recursion

 Line 5: The result at termination.
 Line 7: Calls a clone of the function, which moves closer to
termination by reducing N and computing the result.

 Exercise 9 . 1 provides an analysis of recursive behavior. In particular, notice
that all the mathematical operations are performed as the activation stack
“unwinds.”

 Exercise 9.1 Analyzing recursive behavior

 1. Create the fact(...) function from Listing 9 . 1 , remove the first ‘%’ from
Line 3 to enable the printout, and run it from the Command window:

>> fact(4)
fact(4)
fact(3)
fact(2)
fact(1)
fact(0)
ans =

 24

 2. Put a break point at Line 4 and run fact(2) . The function should pause in
the first stack frame. Notice that the only variable in the workspace is N
with a value 2 .

 3. Find the “step into” button and click it. Since N is not 0 , the arrow should
move to Line 7.

 4. Click again, and the workspace should change to a new workspace with
the value N = 1 — you just called a clone of the original function with its
own stack frame. There should be a second, transparent arrow at Line 7
to indicate that some clone of this function is waiting at that point for a
result.

 5. Continue stepping into functions until you return from the copy where
 N = 0 . When this return happens, you return to the frame with N = 1 , the
frame “underneath,”at Line 7, and are then able to compute the first
result.

 6. Further stepping will return from each stack frame until you finally return
to your script’s workspace with the final answer.

 9.4 Exceptions

 We digress here to discuss how programs deal with unexpected
circumstances. Exceptions are a powerful tool for gracefully managing run-
time errors caused by programming errors or bad data. The general need
for an exception mechanism might best be established by way of an
example.

9.4 Exceptions 209

 Suppose you write a program that requests some data from a user and
then launches a significant number of nested function calls—perhaps even
a recursive function—to perform an analysis on the data received.
Somewhere in the depths of these function calls, the program divides
something by a value, but in this instance that value is zero. The cause of
this problem is probably bad data entered by the user in the top-level script.
However, the effect is discovered deep in the activation stack in the middle
of some obscure numerical computation.

 9.4.1 Historical Approaches

 Early programming languages attempted to deal with this problem in one
of two equally unpleasant ways:

 ■ Some languages require any mathematical function that might
produce an error to return the status of that calculation to the
calling function. They allow errors to be reported and processed,
but they have two unpleasant consequences: using up the ability
of a function to return a value and calling this function, which
means choosing between testing for errors and solving the
problem locally and passing the error condition back to its
calling function in the hope that somewhere the error will be
dealt with.

 ■ Perhaps worse than this are the languages that use a globally
accessible variable, such as ierror , to report status. For example, if
 ierror were normally set to 0 , an error could be announced by
setting its value to something other than 0 to indicate the nature of
the failure. This frees the function from needing to return status,
but it does not relieve the calling function of the need to check
whether the ierror value is bad, or solving the problem, or
elevating it. Furthermore, if an error does occur within a function,
since it is now still returning a value, what value should it return if
it is unable to complete its assigned calculation?

 9.4.2 Generic Exception Implementation

 By contrast, most modern programming languages provide an exception
mechanism whereby if an error occurs, regardless of how deep in the
activation stack, program implementation is immediately suspended in the
current stack frame. The activation stack below this frame is then searched
for the frame of a program that has “volunteered” to process this type of
exception. When it is found, all the stack frames above this frame are
removed from the stack and the code in the exception handling mechanism
is activated. If no such frame is discovered, the overall program aborts with
an error code.

210 Chapter 9 Recursion

 The following mechanisms are necessary to implement the exception
mechanism effectively:

 ■ Throwing an exception. Whenever a problem occurs, the operating
system must suspend operations at that point in the activation stack
and go looking for a function equipped to handle the specific
exception. If no such function is found, the program is terminated
and an exception is shown to the user (in MATLAB, it is written in
red in the Command window).

 ■ Catching an exception. A function that is able to deal with a specific
exception uses a try ... catch construct to identify the suspect
code and resolve the problem. Between try and catch , the
programmer puts a code block that contains activities that could
throw exceptions. After the catch statement, there is a code block
that should fix the problem.

 Depending on the specific language implementation, the exception-catching
mechanism usually offers facilities both for determining exactly where the
exception occurred and for reconstructing the activation stack with all the
variable values as they were at the time of the exception.

 In the previous example, the general template for successfully
interacting with the user is shown in Template 9 . 2 . The successful Boolean
flag will be set only if the data are processed without error. It does not
matter how deep in the data processing code the error occurs—the user
interface catches the error, reports it to the user, and prompts the user for
better data.

 For example, you might have noticed earlier that the input(...) function
has a built-in try ... catch mechanism to deal with erroneous user input.
If something is entered that cannot be parsed, rather than throw red ink in
the Command window, the exception is caught and the prompt repeated
for the user.

 Template 9 . 2 General template for processing exceptions

successful = false
while <not successful>

try
 <request data from the user>
 <process the data>
 successful = true

catch
 <announce the error to the user>

end
end

9.4 Exceptions 211

 9.4.3 MATLAB Implementation

 MATLAB implements a simplified version of the most general form of
exception processing. The try ... catch ... end construct is fully
supported. However, unlike some languages, the MATLAB language does
not distinguish between the kinds of exception that can be thrown.

 ■ All built-in functions throw exceptions when they discover error
conditions—attempting to open a nonexistent file for reading, for
example—and expect the programmer to catch these exceptions if
they are recoverable.

 ■ To throw an exception manually, the program calls the
 error(...) function that takes one parameter, a string defining
the error. If the exception is not caught, the string provided is
displayed in red to the user. If the exception is caught, that string
is ignored.

 ■ To handle an exception, a code block we suspect might throw an
exception is placed between try and catch statements. If no error
occurs in the code block, the catch statement is ignored. If an
exception is thrown from that code block, however, execution is
suspended at that point. No further processing is performed, no
data are returned from functions, and the code in the closest catch
block is executed up to the associated end statement. To determine
the cause of the exception, you can use the lasterror function. It
returns the textual information provided at the exception and a
structure array describing the activation stack.

 ■ In more complex situations where this function may not be able to
actually handle the error, a further exception can be thrown from
the catch block. This exception will escape from this try ... catch
block and must be caught (if at all) by another function or script
deeper in the activation stack.

 Listing 9 . 2 illustrates a simple example. The objective is to have the user
define a triangle by entering a vector of three sides and to calculate the
angle between the first two sides. The acosd(...) function computes the
inverse cosine of a ratio. If that ratio is greater than one, there is something
seriously wrong with the triangle, and acosd returns a complex number.
This script detects that the answer is complex and throws an exception.

 In Listing 9 . 2 :

 Lines 1 and 2: We will repeat the attempts to compute the angle of a
triangle until successful.

 Line 3: Begins the suspect code.

 Line 8: Detects the problem with the data.

212 Chapter 9 Recursion

 Line 9: Throws the exception. In this case, the exception occurs
visibly in this script. However, the try ... catch behavior is the

same if the exception occurs deep in
a set of nested function calls.
 Line 11: The end of the suspect code
block and the beginning of the
exception handler—in this case, it’s
a warning to the user that the data
are bad.
 Line 14: This line is reached only if
the suspect code block executed
correctly, in which case we can exit
the while loop.

 You have an opportunity to work with
exception processing in Exercise 9 . 2 .

 Listing 9 . 2 MATLAB script using exception processing

 1. OK = false;
 2. while ~OK
 3. try
 4. side = input('enter a triangle: ');
 5. a = side(1); b = side(2); c = side(3);
 6. cosC = (c^2 - a^2 - b^2)/(2 * a * b);
 7. angle = acosd(cosC);
 8. if imag(angle) ~= 0
 9. error('bad triangle')
10. end
11. catch
12. disp('bad triangle - try again')
13. end
14. OK = true;
15. end
16. fprintf('the angle is %f\n', angle)

 1. You should allow the exception-processing mechanism to
simplify the structure of your code. Rather than attempting
to detect every possible data error and return error
condition, perhaps from deeply nested function calls, allow
the exception mechanism to return control directly to the
code that can deal with the problem.

 2. Exception processing is for processing events that occur
outside the normal thread of execution. It may be tempting
at times to use the exception mechanism as a clever means
of changing the normal flow of program control, but resist
that temptation. It produces ugly, untraceable code and
should be avoided.

 Style Points 9 . 1

 Exercise 9.2 Processing exceptions

 Put the code from Listing 9 . 2 in a script and execute it, using the following data:

enter a triangle: [3 4 8]
bad triangle - try again
enter a triangle: [3 4 6]
the angle is 62.720387

 Then, edit the script to remove the try statement and the catch block and
repeat the test.

9.5 Wrapper Functions 213

 9.5 Wrapper Functions

 Consider the factorial function again for a moment—specifically, ask how
you would deal with a user who accidentally called for the factorial of a
negative number or of a number containing a fractional part. Our original
recursive fact(...) function is not protected from these programmer
errors. There are three possible strategies for dealing with this situation:

 1. The legalist approach ignores the bad values, lets the user’s program
die, and then responds to user complaints by pointing out that the
documentation clearly indicates that you should not call for the facto-
rial of a negative number. Usually this is not the best approach from
the customer relations viewpoint or from the technical support effort
viewpoint, especially since recursive code that hangs up typically
crashes with a stack overfl ow—not the easiest symptom to diagnose!

 2. In-line coding builds into the code a test for N less than zero (or
fractional) and throws an exception with a meaningful error mes-
sage. Although this is an improvement over the fi rst choice because
it exits gracefully, the test is in a bad place. The function is recursive;
therefore, the code for that test is repeated as many times as the
function is called. While modern computers are fast enough that one
would probably not notice the difference, in general this is a poor
implementation that punishes those who are using the function cor-
rectly with the same test each time the recursive function is called.

 3. A wrapper function is the best solution. A wrapper function is called
once to perform any tests or setup that the recursion requires and
then to call the recursive function as a helper to the main function
call. While there is a small computational cost to using a wrapper, it
is only executed once rather than each time the recursive function is
called. Template 9 . 3 illustrates this idea.

 The first function named <function_name> is actually the wrapper
function with the return result, parameters, and documentation expected
by the caller. It makes whatever tests are necessary to validate the input
data, cleans it up if necessary, and calls the helper function named
 <private_name> .

 Listing 9 . 3 is the implementation of the factorial function with protection
from bad data.

 In Listing 9 . 3 :

 Line 1: To the outside world, this is the function actually called.
(Ugly secret: even if the name is not the same name as the file, the
first function in the file is always executed first.)
 Line 2: Checks for negative and fractional inputs.

214 Chapter 9 Recursion

 Line 4: Throws an exception if the data are bad.

 Line 6: Calls the recursive version if the data are valid.

 Line 9: Definition of the recursive function. By convention, some
MATLAB users tend to give the prefix local_ to private functions
like this, but this has no significance to the system.

 Line 15: Calls the local recursive function—it is not necessary to go
back to the wrapper by calling fact(..) here.

 Exercise 9 . 3 gives you an opportunity to work with the protected
factorial.

 Template 9 . 3 General template for a wrapper function

function <result> = <function_name> (<formal_params>)
<documentation>
 if <bad_condition>
 <throw exception>

else
<result> = <private_name> (<actual_params>)

end

function <result> = <private_name> (<formal_params>)
<documentation>

if <terminating condition 1>
<result> = <initial value 1>

elseif <terminating condition 2>
<result> = <initial value 2>

else
<result> = <operation>

(<formal_params>, ...
<private_name> (<new_params>))

end

 Listing 9 . 3 Wrapper implementation for the factorial function

 1. function result = fact(N)
% computation of N!

 2. if (N < 0) || ((N - floor(N)) > 0)
 3. error('bad parameter for fact');
 4. else
 5. result = local_fact(N);
 6. end
 7. end
 8. function result = local_fact(N)

% recursive computation of N!
 9. fprintf('fact(%d)\n', N);
10. if N == 0
11. result = 1;
12. else
13. result = N * local_fact(N - 1);
14. end
15. end

9.6 Examples of Recursion 215

 Exercise 9.3 Writing the protected factorial

 Write the fact(...) function as shown in Listing 9 . 3 , and test it in the
Command window:

>> fact(-1)
??? Error using ==> fact
bad parameter for fact
>> fact(.5)
??? Error using ==> fact
bad parameter for fact
>> fact(4)
ans =

24

 9.6 Examples of Recursion

 We conclude this chapter with three examples of recursive programming:
detecting palindromes, computing the Fibonacci series of numbers, and
finding zeros of a function. The examples are followed by a practical
engineering example of the use of zero finding.

 9.6.1 Detecting Palindromes

 We might want to determine whether a word or phrase received as a
string is a palindrome, that is, whether it is spelled the same forward and
backward. Of course, you could accomplish this in one line with vector
operations (think about it!) but that would not be a good recursive
exercise. One could design a recursive function named isPal(<string>)
as follows:

 ■ The function isPal(<string>) terminates if the <string> has zero or
one character, returning true .

 ■ It also terminates if the first and last characters are not equal,
returning false .

 ■ Otherwise (first and last are equal), the function returns
 isPal(<shorter string>) , where the shorter string is obtained by
removing the first and last characters of the original string.

 ■ Clearly, since the string is always being shortened, the recursive
solution is approaching the terminating condition.

 The MATLAB implementation of the palindrome detector is shown in
Listing 9 . 4 .

 In Listing 9 . 4 :

 Line 3: The successful terminating condition is when the length of
the string is under 2.

216 Chapter 9 Recursion

 Line 5: The failure condition is when the first and last characters do
not match.
 Line 8: To move toward termination, remove the first and last
characters that have already been checked.

 We should observe further that a serious student of palindromes might
know that real palindromes contain spaces, punctuation marks, and
uppercase and lowercase characters. We leave it as an exercise for you to
write a wrapper function that cleans up strings containing these issues
before passing the string to the recursive palindrome detector.

 9.6.2 Fibonacci Series

 The Fibonacci series was originally named for the Italian mathematician
Leonardo Pisano Fibonacci, who was studying the growth of rabbit
populations in the eleventh century. He hypothesized that rabbits mature
one month after birth, after which time each pair would produce a new pair
of rabbits each month. Starting with a pair of newborn rabbits free in a field,
he wanted to calculate the rabbit population after a year. Figure 9.2
illustrates the calculation for the first six months, counting rabbit pairs. It

 Listing 9 . 4 Recursive palindrome detector

1. function ans = isPal(str)
% recursive palindrome detector

2. if length(str) < 2
3. ans = true;
4. elseif str(1) ~= str(end)
5. ans = false;
6. else
7. ans = isPal(str(2:end-1));
8. end
9. end

M
on

th

= 1 Pair of Rabbits (m/f)

3

2

1

4

5

6

 Figure 9.2 Computing rabbit populations

9.6 Examples of Recursion 217

soon becomes clear that the number
of rabbits in month N comprises the
number in month N-1 (since in this
ideal example, none of them die) plus
the new rabbits born to the mature
pairs (shown in boxes in the figure).
Since the rabbits mature after a
month, the number of mature pairs

that produce a new pair is the number of rabbits in the month before, N-2 .
So the algorithm for computing the population of pairs after N months,
 fib(N) , is recursive:

 ■ There is a terminating condition: when N = 1 or N = 2 , the answer is 1
 ■ The recursive condition is: fib(N) = fib(N-1) + fib(N-2)
 ■ The solution is moving toward the terminating condition, since as

long as N is a positive integer, computing N-1 and N-2 will move
toward 1 or 2 .

 The implementation of the Fibonacci function is shown in Listing 9 . 5 .

 The algorithm produces the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, . . ., giving a population after a year of 144.

 A closely related phenomenon is the golden ratio or golden number
computed as the limit of the ratio of successive Fibonacci series values—
approximately 1.618034—that has been found to occur in nature. To the
surprise of naturalists, this series of numbers occurs in nature in a
remarkable number of circumstances. Consider Figure 9.3 for example,
where a set of squares placed side by side in a rotating sequence is drawn
using the Fibonacci series for the size of each square. The resulting geometric
figure is a close approximation to the logarithmic spiral so frequently found
in nature, such as the nautilus shell pictured in the figure.

 9.6.3 Zeros of a Function

 Frequently we need to solve nonlinear equations by seeking the values of
the independent variable that produced a zero result. There are a number of
well-known numerical techniques for achieving this goal. We will examine

 Listing 9 . 5 The Fibonacci function

1. function result = fib(N)
% recursive computation the Nth Fibonacci number

2. if N == 1 || N == 2
3. result = 1;
4. else
5. result = fib(N-1) + fib(N-2);
6. end
7. end

 Truthfulness requires pointing out that while computing the
Fibonacci series recursively is a very nice, conceptually simple
approach, it is a nightmare as far as the computational load
on your processor. Do not try to compute beyond about 27
numbers in the series. An iterative solution, while less
elegant, runs in linear time rather than exponential.

 Technical Insight 9 . 2

218 Chapter 9 Recursion

a recursive approach to determining the zeros of functions. However,
especially when there are multiple zero crossings, it is very helpful to have
a good initial estimate of the location(s) of the crossing(s). As an example,
consider a function f (x). We will use the function given by:

 f (x) = 0.0333x 6 2 0.3x 5 2 1.3333x 4 1 16x 3 2 187.2x 1 172.9

 as plotted in Figure 9.4 . However, this algorithm will work for any function
of x . We assume that the continuous line describes the exact function, and
the plus marks indicate locations for which we have measurements. Clearly,
there are a number of zero crossings of this function, including a very messy
looking crossing at around = 6.

 We will find the exact value of one of the zeros of this function by first
estimating the zero crossings and then by using a recursive technique for
refining a better estimate to arbitrary levels of accuracy.

 Figure 9.3 Fibonacci in nature

-8 -6 -4 -2 0 2 4 6 8 10
-500

0

500

1,000

1,500

2,000

 Figure 9.4 A function f(x)

9.6 Examples of Recursion 219

 Estimating Critical Points of a Function First, we need to compute an
approximation to the roots of this equation. These approximations will be
found by finding the x values at which adjacent values of the function
change sign. The technique for determining where adjacent points change
sign is simply to multiply adjacent values of f (x) and find where that product
is not positive, as shown in Listing 9 . 6 .

 In Listing 9 . 6 :

 Line 1: Establishes samples of x .
 Line 2: Computes y = f (x).
 Line 3: Detects the indices where the zero crossings occur by
shifting y to the right by one and by shortening the original by one
to keep the vector size equal.
 Lines 4 and 5: Display the zero crossing estimates.
 Line 6: Calls the recursive function to find the third zero crossing
that estimates one root of this equation. Clearly, one could iterate
here to find all of the roots.

 Listing 9 . 6 produces the following results, which can be verified by
observing the circled data points shown in Figure 9.4 :
zeros occur just after
ans =
 -6.3000 -4.6667 0.2333 5.9500

 Having observed these results, we decide to compute the exact value of the
first positive root, occurring at the third crossing.

 Recursive Refinement of the Estimate The recursive function to find the
third root of f (x) works on the principle of binary division. It consumes a vector
of adjacent values of x that are guaranteed to have values of f(x) of opposite
sign. The fundamental features of the recursive solution are as follows:

 ■ The terminating condition is when the two x values are within
acceptable error—in this case, 0.001

 ■ Otherwise, we find the middle of this x range, mx , find its f(mx) , and
then make the recursive call either with [x(1) mx] or [mx x(2)] ,
depending on the sign of f(mx) × f(x(1))

 ■ This will always converge because each recursive call halves the
distance between the x limits.

 Listing 9 . 6 Initial zero crossings

1. px = linspace(-6.3, 8.4, 19);
2. py = f(px);
3. zeros = find(py(1:end-1) .* py(2:end) <= 0)
4. disp('zeros occur just after')
5. px(zeros)
6. root = findZero([px(zeros(3)) px(zeros(3)+1)])

220 Chapter 9 Recursion

 In general, this method is a little slower than Newton’s method, which uses
the slope of f (x) to compute the next estimate. However, it is very strong
and somewhat immune from the instability suffered by Newton’s method
on undulating data. The function that solves this problem is shown in
Listing 9 . 7 .

 In Listing 9 . 7 :

 Line 1: The function consumes a pair of x limits and produces the x
root.
 Lines 2–4: Check for the terminating condition and return the x
root.
 Lines 5 and 6: Calculate the x and y values of the midpoint of the x
range.
 Line 7: Checks the sign of the y value of the midpoint.
 Line 8: If different from the sign at first limit, it makes the recursive
call with the first limit and the midpoint.
 Lines 9 and 10: Otherwise, it uses the range from the midpoint to
the second limit.

 This function computes the correct crossing at x = 1.00.

 Listing 9 . 7 Recursive root finding

 1. function pt = findZero(x)
% x is a lower-upper pair guaranteed to have
% y values of opposite sign
% return the x coordinate of the root

 2. if abs(x(1)-x(2)) < .001
 3. pt = x(1);
 4. else
 5. mx = sum(x)/2;
 6. my = f(mx);
 7. if my*f(x(1)) <= 0
 8. pt = findZero([x(1) mx]);
 9. else
10. pt = findZero([mx x(2)]);
11. end
12. end
13. end

 9.7 Engineering Example—Robot Arm Motion

 Here we consider the problem of programming the arm of a robot to move
in a straight line. Consider the arm shown in Figure 9.5 . It consists of two
jointed limbs of length r1 and r2 at angles a and b, respectively, to the
horizontal.

9.7 Engineering Example—Robot Arm Motion 221

 Overall Objective

 The ultimate challenge of this situation is to calculate the sequence of values
of a and b that will guide the end of the arm along the straight line:

 x 1 y = r1 1 r2 (1)

 However, this complete problem is more complex than necessary for this
point in the text. First, we will address a necessary component of the problem.

 Immediate Objective

 The sub-problem we address here is to determine for a given value of a, the
value b that will place the end of the arm at some place on the line. The
algebra and trigonometry of this problem are quite simple. The position of
the end of the arm, [x2 y2], is expressed as:

 x2 5 r1 cos a 1 r2 cos b (2)

 y2 5 r1 sin a 1 r2 sin b (3)

 Combining these two relationships with Equation (1) gives the equation for
F(b), the difference between the end point derived from b and the straight
line. We need to solve this for F(b) = 0:

 F(b) 5 r1 cos a 1 r2 cos b 1 r1 sin a 1 r2 sin b 2 (r1 1 r2) (4)

 If we are given values for r1, r2, and the angle a, we will use the method of
 Section 9.6.3 to find the value(s) of a that satisfies this equation. By
inspecting Figure 9.5 , we might expect two answers—one with a small
negative value and one “bending backward” at an angle greater than 90°.

 Figure 9.6 shows a plot of this function for r1 = 4, r2 = 3, and a = 30°. The
zero crossings of this function confirm our intuition that there are two values

x + y = r1 + r2

(x1 , y1)

(x2 , y2)
r1 r2

β

α

 Figure 9.5 The robot arm problem

222 Chapter 9 Recursion

of a that satisfy the equation for small, positive values of b: one around –30°
and one around 110°.

 The Solution to the Sub-problem

 As before, since there is no analytical solution to this function, we will find
the approximate location of the zero crossings and then use a recursive
function to find the exact roots. The script that accomplishes this is shown
in Listing 9 . 8 .

 In Listing 9 . 8 :

 Lines 1–6: Establish the parameters of the problem as global variables
to avoid the overhead cost of passing them into recursive functions.

-200 -150 -100 -50 0 50 100 150 200
-6

-5

-4

-3

-2

-1

0

1

2

3

beta, degrees

f(
be

ta
)

 Figure 9.6 The relationship between b and the value of F(b)

 Listing 9 . 8 Finding arm position

 1. global r1
 2. r1 = 4
 3. global r2
 4. r2 = 3
 5. global alpha
 6. alpha = pi/6 % 30 deg
 7. beta = linspace(-pi, pi, 19);
 8. pf = fab(beta);
 9. zeros = find(pf(1:end-1) .* pf(2:end) <= 0)
10. disp('zeros occur just after')
11. beta(zeros)

%
12. zero = findZeroAB([beta(zeros(1)) ...
13. beta(zeros(1)+1)])

9.7 Engineering Example—Robot Arm Motion 223

 Lines 7 and 8: Sample the possible range of b values with enough
values to identify the zero crossings, and compute the corresponding
values of F(b).
 Lines 9–11: Estimate the zero locations by multiplying adjacent
function values and display the results.
 Line 12: Calls the recursive function to find the zero crossing.

 Running this script produces the following:

r1 =
 4
r2 =
 3
alpha =
 0.5236
zeros =
 8 15
zeros occur just after
ans =
 -0.6981 1.7453
zero =
 -0.4152 -0.0009

 The function for which we are seeking the zero is shown in Listing 9 . 9 .

 In Listing 9 . 9 :

 Lines 2–4: Gain access to the global parameters.
 Lines 5–6: Compute the left-hand side of Equation (4).

 The function that finds the zero crossings of fab(beta) is shown in Listing 9 . 10 .

 In Listing 9 . 10 :

 Line 2: Computes the y values corresponding to the x limits.
 Lines 3 and 4: Check the terminating condition and return the [x y]
coordinates of the result.
 Lines 6 and 7: Find the x and y values of the midpoint.
 Lines 8 and 9: If the midpoint is on the opposite side of the x-axis from
the lower limit, make a recursive call using these limits.

 Listing 9 . 9 Function for zeros

 1. function res = fab(beta)
% f(beta) = r1 (cos(alpha) + sin(alpha) - 1)
% + r2 (cos(beta) + sin(beta) - 1)

 2. global r1
 3. global r2
 4. global alpha
 5. res = r1 * (cos(alpha) + sin(alpha) - 1) ...
 6. + r2 * (cos(beta) + sin(beta) - 1);

224 Chapter 9 Recursion

 Line 11: Otherwise, makes the recursive call using the midpoint and
the upper limit.

 Reflection

 A modest amount of code is all that is required to create an elegant
solution to a nontrivial problem. The structure of the recursive function
shown in Listing 9 . 8 clearly reflects the standard recursive template, and
that function can be used to find zeros of any continuous function defined
in fab(x) .

 Listing 9 . 10 Recursive zero finder

 1. function pt = findZeroAB(x)
% x is a lower-upper pair guaranteed to have
% y values of opposite sign

 2. y = fab(x);
 3. if abs(x(1)-x(2)) < .001
 4. pt = [x(1) y(1)];
 5. else
 6. mx = sum(x)/2;
 7. my = fab(mx);
 8. if my*y(1) < 0
 9. pt = findZeroAB([x(1) mx]);
10. else
11. pt = findZeroAB([mx x(2)]);
12. end
13. end
14. end

 Chapter Summary

 This chapter discussed the three basic principles of recursive programming that
must be present for a recursive program to succeed:

 ■ There must be a terminating condition
 ■ The function must call a clone of itself
 ■ The parameters of that clone must move the function toward the

terminating condition

 We have also seen some other important capabilities as follows:

 ■ Exceptions are declared either within system functions or by the
user using the error(...) function; they are trapped and perhaps
remedied using try ... catch code blocks

 ■ A wrapper function is used to set up a recursive solution by
validating the incoming data

Self Test 225

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions Description

 Discussed in

This Section

 catch End of a suspect code block where the
exception is trapped

 9.4.3

 error(str) Announces an error with the string provided 9.4.3

 global <var> Defines the variable <var> as globally
accessible

 9.1

 lasterror Provides a structure describing the environment
from which the last exception was thrown

 9.4.3

 try Begins a block of suspect code from which an
exception might be thrown

 9.4.3

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. We limit the functionality of a stack in order to protect the data from
corruption.

 2. The only way to remove a stack frame from the activation stack is to
exit from the function instance hosted by that frame.

 3. All the math operations in a recursive function are performed as the
activation stack unwinds.

 4. Exception processing can be used as a clever means of changing the
normal flow of program control.

 5. The name of the first function in a function definition m-file must
match the name of the file.

 Fill in the Blanks

 1. The basic stack operations are _________________,
_________________, _________________, and _________________.

 2. Exceptions are a powerful tool for gracefully managing
_________________ caused by programming errors or bad data.

 3. To throw an exception manually, the program calls the
_________________ function that takes one parameter, a string
defining the error.

226 Chapter 9 Recursion

 4. A wrapper function is called once to perform _________________
that the recursion requires, and then to call the recursive function
_________________.

 5. You can ________ one of the zeros of a function by first
_______________, and then using a(n) ____________ for refining a
better estimate to arbitrary levels of accuracy.

 Programming Projects

 1. For this problem, you will be required to write three functions:
 recurSum, recurProd, and fibVector . The first one will take in a
vector and compute the sum of the elements of the vector. The
second one will take in a vector and compute the product of the
elements of the vector. The third one will take in a number, N , and
return a vector containing the first N terms of the Fibonacci
sequence. You must use recursion to complete these functions. You
may not use for loops, while loops or the functions sum , prod, or
factorial . Your function headers should be:

function ans = recurSum(arr)
function ans = recurProd(arr)
function vec = fibVector (num)

 2. Write a recursive function called oddfact(n) that takes in a number
and returns the factorial of the odd numbers between the given
number and 1.

 For example:

oddfact(4) returns 3
oddfact(9) returns 945 = 9*7*5*3*1

 3. Consider the problem of structures with nested fields.
 a. Write a function called tracker that takes in a structure and

returns the number of levels at which it has a field called
 'Inner' . Each of these fields can also be structures having a field
called 'Inner' , but at each level there can be only one field called
 'Inner' . The innermost structure will not contain a field called
 'Inner' . You must use recursion. Hint: use the isfield(...)
function. Your function header should be:

function num = tracker(astruct)

 b. Create a structure with at least three levels of recurring fields,
and use it to test your tracker function.

 4. Create a recursive function with a wrapper to protect it from illegal
values. The function name should be recursiveFib . It should take in

Programming Projects 227

a number n and return the n th Fibonacci number. You should ensure
that n is a non-negative integer, and announce an error if that is not
the case.

 Fibonacci numbers are defined as:

F(n) = 0 if n = 0
F(n) = 1 if n = 1
F(n) = F(n-1) + F(n-2) otherwise.

 This produces the following sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55...

 For example:

a = recursiveFib(0) should return 0
b = recursiveFib(1) should return 1
c = recursiveFib(-1) should cause an error
d = recursiveFib(8) should return 21

 5. Create and test a function called recursiveMin that takes in a vector
and returns the element with the minimum value and the index of
that element as separate returned values, much as the standard
 min(...) function. If the input vector is of length zero, your function
should return two empty vectors. If the input vector contains two
minimum elements of equal value, your function should return the
index of the first element. Create suitable test cases and use the
built-in function min(...) only to test your answers.

 For example:

[m n] = recursiveMin([]) should return [] and []
[m n] = recursiveMin([5]) should return 5 and 1
[m n] = recursiveMin([5 2]) should return 2 and 2
[m n] = recursiveMin([2 5 2]) should return 2 and 1
[m n] = recursiveMin([2 5 2 1 6 7]) should return 1 and 4

This page intentionally left blank

 Chapter Objectives

 This chapter presents an overview of framing the solutions to
problems:

 ■ We begin with simple problems that can be solved in a single step

 ■ We continue to strategies for solving more complex problems
involving data collections by dividing the solution into the
following fundamental operations that can be performed on any
collection of data:

 • Inserting

 • Traversing

 • Building

 • Mapping

 • Filtering

 • Summarizing

 • Searching

 • Sorting

 Then we will briefly discuss how to combine these fundamental
tools to solve more complex data manipulation problems.

 Introduction

 Programming is really all about applying the computer as a tool to solve problems.
One of the most difficult tasks facing novice programmers is the blank sheet of
paper. Faced with a problem you have never seen before, how do you start to solve
it? The problem-solving style recommended in this text is first to identify the basic
character of the data and the basic operation(s) we are asked to perform. If these two
ideas are clear, we can create a template or outline of the solution and begin to fill in
the blanks.

 Principles of
Problem Solving

 C H A P T E R 1 0

 10.1 Solving Simple Problems
 10.2 Assembling Solution

Steps
 10.3 Summary of Operations
 10.3.1 Basic Arithmetic

Operations
 10.3.2 Inserting into a

Collection
 10.3.3 Traversing a

Collection
 10.3.4 Building a

Collection
 10.3.5 Mapping a

Collection
 10.3.6 Filtering a

Collection
 10.3.7 Summarizing a

Collection
 10.3.8 Searching a

Collection
 10.3.9 Sorting a

Collection
 10.4 Solving Larger Problems
 10.5 Engineering Example—

Processing Geopolitical
Data

229

230 Chapter 10 Principles of Problem Solving

 10.3 Summary of Operations

 First, we document the operations we expect to be able to perform on
collections. Table 10.1 lists the generic operations, a brief description of each,
and a discussion of the consequences. The following paragraphs illustrate

these fundamental operations, using
the array of structures from Chapter 7
as examples. The discussion of each
step takes the form of a written
description, a flowchart, and a template
for writing the code.

 As we gain more experience with the language, we have more computing tools to
apply, and we can attack larger, more complex problems. We now have sufficient
tools available to consider a more principled approach to data manipulation and
problem solving. We will begin with the typical plan for solving simple problems in
one step and then continue to consider assembling multiple steps to solve more
complex problems.

 It is conceivable—and in fact, a common practice—to
combine multiple operations into one computing module,
but it is poor abstraction and leads to code that is hard to
understand and/or debug.

 Style Points 10 . 1

 10.1 Solving Simple Problems

 In Chapter 2 we saw the basic plan for solving simple problems:

 ■ Define the input data
 ■ Define the output data
 ■ Discover the underlying equations to solve the problem
 ■ Implement the solution
 ■ Test the results
 ■ Repair the code until it conforms to the specifications

 This plan works whenever the problem is simple enough to be able to
visualize the complete solution. Typically, however, problems are more
complex and require a number of steps to be assembled.

 10.2 Assembling Solution Steps

 Problem complexity frequently comes in the form of data collections that
need to be transformed into other collections or summarized as intermediate
results. Identifying the operation(s) that will create the output from the
input requires some experience. The rest of this chapter provides some
guidelines for identifying elementary steps whose solutions can be
combined to create solutions to many complex problems.

10.3 Summary of Operations 231

 10.3.1 Basic Arithmetic Operations

 The simple problem solution described in Section 10.1 frequently needs to
be used as part of a larger problem solution. We include this activity in this
list for completeness.

 10.3.2 Inserting into a Collection

 Inserting an item into a collection is a process usually used to build or
maintain a collection of information. In this text, we have seen four basic
data collection types to which insertion applies: vectors, arrays, cell arrays,
and structure arrays. We will discuss the peculiarities of each collection and
then the common processing algorithm that can be used to insert a new
entry into the collection.

 ■ Vectors are very flexible collections in the MATLAB language, and
suffer only from the obvious limitation that one can add only
numbers to a vector

 Table 10.1 Taxonomy of solution steps

 Operation Description Consequence

 Insert Inserts one item into a collection Collection with one more item

 Build Creates a collection from a data source
(external file or traversing another collection);
usually accomplished by starting with an empty
collection and inserting one item at a time

 A new collection of data

 Traverse Touches each item of data in the collection—
frequently used to display or copy a collection

 The collection is unchanged

 Map Changes the content of some or all of the items
in the collection

 A new collection of the same
length, but the content of some
or all items is changed

 Filter Removes some items from the collection A new collection with reduced
length, but the content of the
items remains unchanged

 Fold Traverses the collection, summarizing the contents
with a single result (e.g., sum, max, or mean)

 A single result summarizing the
collection in some way; the
collection is unchanged

 Search Traverses the collection until an item matches a
given search criterion and then stops, returning
the result

 A single result or the indication that
the desired match was not achieved;
the collection is unchanged

 Sort Puts the collection in order by some specific
criterion

 A new collection of the same
length

232 Chapter 10 Principles of Problem Solving

 ■ Arrays are as flexible as vectors, except that they require that new
data be inserted a row or column at a time, and that the size of the
new item must match the existing array dimensions

 ■ Cell arrays can be indexed like numerical arrays and can contain
any object; however, to compare one element to another usually
requires a special-purpose comparison function

 ■ Structure arrays as a collection behave like cell arrays, except that
any structure inserted must have the same fields as those in the
existing structure

 In general, inserting into any of these collections involves insertion into the
front of the collection, the back of the collection, or at some position in the
middle in order to keep the collection in order by a specific comparison method.

 Inserting into the front is accomplished by concatenating the new element
before the existing collection. For example, adding item to the front of an
existing cell array, ca , is accomplished as follows:

>> ca = [{item} ca] % note the braces needed for a cell array

 Inserting at the back is accomplished by concatenating the new element
after the existing collection. For example, adding item to the back of an
existing cell array, ca , is accomplished as follows:

>> ca = [ca {item}] % note the braces needed for a cell array

 Inserting in order is usually accomplished using a while loop. If we are
inserting item into a collection coll , we will use a while loop to find the
index of the insertion point, ins , and then concatenate the three parts of the
new collection. Figure 10.1 shows the flowchart that applies here, and
Template 10 . 1 shows the template for the general solution.

ins=ins+1

Set Insertion
Point ins to 1

Concatenate Front of the
Collection with the Item Then

the Back of the Collection

while
Coll(ins) Comes

before Item

 Figure 10.1 Inserting in order

10.3 Summary of Operations 233

 For example, adding item in order to a vector, v , is accomplished as follows:

ins = 1;
while ins <= length(v) && before(item, v(ins))
 ins = ins + 1;
end
v = [v(1:ins-1) item v(ins:end)]

 where before(a,b) is a generic comparator that determines whether a
comes before b in the ordering scheme. Notice that this covers the cases
where item must be the first or last item in the collection. Consequently, we
could include the case of front or back insertion by having before(a,b)
return true for inserting in the front and false for inserting at the back.

 10.3.3 Traversing a Collection

 Traversal involves moving across all elements of a collection and performing
some step (not necessarily the same step) on each element without changing
that element. Figure 10.2 and Template 10 . 2 illustrate the flowchart and
basic template for traversing a collection. They assume that you are doing
something like writing a file that needs to be initialized and finalized. These
two steps may not always be required.

 Template 10 . 1 Template for inserting

%inserting item into a collection coll

<set insert point, ins, at the front>
while <insertion point in coll and

item comes before coll(ins)>
 <move insertion point forward>
<end of the while loop>
<concatenate coll before ins with item and
 coll at and beyond ins>

Perform the
Required Operation

on the Item

Initialize the Result

Finalize the Result

for Item in
Collection

Done

 Figure 10.2 Traversing a collection

234 Chapter 10 Principles of Problem Solving

 10.3.4 Building a Collection

 In practice, frequently we combine traversal of one collection and building
of another to copy data from one collection into another. Building a
collection is the process of beginning with an empty collection and
assembling data elements by inserting them one at a time into the new
collection. The size of the collection increases continually until the process
is finished. Figure 10.3 and Template 10 . 3 illustrate the algorithm for
building a collection.

 Template 10 . 2 Template for traversing

<initialize the result>
for item <across the whole collection>
 <operate on the item>
<end of the loop>
<finalize the result>

Insert Item in the
Collection

Initialize an Empty
Collection

Finalize the
Collection

for Item
in the Data

Source

Done

 Figure 10.3 Building a collection

 Template 10 . 3 Template for building

<initialize the new collection>
for item <across the data source>
 <extract the item>
 <insert item in new collection>
<end of the loop>
<finalize the new collection>

 10.3.5 Mapping a Collection

 The purpose of mapping is to transform a collection by changing the data in
some or all of its elements according to some functional description without
changing its length. It is distinct from traversal because its intent is to change

10.3 Summary of Operations 235

 Template 10 . 4 Template for mapping

<initialize the result>
for item <across the whole collection>
 <extract the item>
 <modify the item>
 <insert modified item in the result>
<end of the loop>
<finalize the result>

Change or Combine
the Item(s) to Make

a New Item

Initialize the Result

Insert the New Item
into the Result

Finalize the Result

for Item(s)
in the Data
Source(s)

Done

 Figure 10.4 Mapping a collection

the data elements. While many
languages permit collections to be
modified in place, the MATLAB
language usually requires you to
create a new collection. However,
this is still considered mapping. The
scalar mathematical and logical
operations on vectors are good
examples of mapping. Figure 10.4
and Template 10 . 4 illustrate the basic
algorithm for mapping. As illustrated

in the example of operations on vectors, mapping may involve combining
two or more collections of the same length.

 A simpler example of collection building occurred when we
built the CD collection initially by repeated calls to the
 makeCD method, as shown in Chapter 7 when we were
inserting each item at the end of the collection. However,
while that example seems to simplify the process of building
the collection, it really did not. The data for the function
calls had to be extracted from a CD listing and edited to
construct the function calls—normally not an efficient or
effective way to compose a collection. Such hard-wiring
should generally be avoided.

 Style Points 10 . 2

 10.3.6 Filtering a Collection

 Filtering involves removing items from a collection according to specified
selection criteria. The data contents of the remaining items in the collection
should not be changed, and the collection will usually be shorter than before.

236 Chapter 10 Principles of Problem Solving

For example, we filter vectors by applying built-in logical operations and
then indexing with the results to produce new, shorter arrays. Figure 10.5
and Template 10 . 5 illustrate the general algorithm for filtering a collection.

Initialize the Result

Insert the New Item
into the Result

Finalize the Result

for Item in
the Collection

if Keep
This Item

Done

True

False

 Figure 10.5 Filtering a collection

 Template 10 . 5 Template for filtering

<initialize the new collection>
for item <across the whole collection>
 <extract the item>
 if <keep the item>
 <insert item in new collection>
 <end if>
<end for>
<finalize the new collection>

 10.3.7 Summarizing a Collection

 Folding is the name given to summarizing a collection. It is a special case of
traversal where all of the items in the collection are summarized as a single
result. The collection is not altered in size or values by the operation.
Totaling, averaging, and finding the largest element in a vector are typical
examples of folding. For example, we might want to find the CD with the
best value in a collection. Figure 10.6 and Template 10 . 6 show the basic
algorithm for folding a collection. The general form of a fold should be to
initialize the summary value and then traverse the whole collection,
updating the summary when necessary.

10.3 Summary of Operations 237

 10.3.8 Searching a Collection

 Searching is the process of traversing the collection and applying a specified
test to each element in turn, terminating the process as soon as the test is
satisfied. This is superficially similar to filtering, except that it is not necessary
to touch all the elements of the collection; the search stops as soon as one
element of the collection matches the search criteria. If the criteria are extremely
complex, it is sometimes advisable to perform a mapping or folding before the
search is performed. Figure 10.7 and Template 10 . 7 illustrate one way to

Initialize the Result

Accumulate Its
Value in the Result

for Item
in the

Collection

Done

 Figure 10.6 Folding a collection

Answer = Empty

Answer = Item

for Item in
the Collection

If This Is
the Item

Done

True

False

 Figure 10.7 Searching a collection

 Template 10 . 6 Template for folding

<initialize the summary value>
for item <across the whole collection>
 <extract the item>
 <update the summary value>
<end for>
<finalize the summary value>

238 Chapter 10 Principles of Problem Solving

implement searching a collection using a for loop with a break exit. There are
always two exit criteria from a search—finding what you seek and failing to
find it. Searching can also be implemented with a while loop, but the multiple
exit criteria make the code generally more complex.

 10.3.9 Sorting a Collection

 Sorting involves reordering the elements in a collection according to a
specified ranking function that defines which item “comes before” another.
Sorting is computationally expensive. However, if a large collection of data
is stable—items are added or removed infrequently—but is frequently
searched for specific items, keeping the data sorted can greatly improve the
efficiency of the searches. Chapter 16 is devoted to the details of sorting
algorithms, but the concept is included here to complete the list of operations
we can perform on a collection.

 Template 10 . 7 Template for searching

<initialize result to not succeeded>
for <item in the collection>
 if <found criteria>
 <set result to succeeded>
 <break the loop>
 <end if>
<end for>
<check for failure>

 10.4 Solving Larger Problems

 Problem statements are rarely simple enough to be able to seize one of the
above steps and solve the whole problem. Usually, the solution involves
choosing a number of known operations and performing those operations
in order to solve the complete problem. Solution steps are combined in one
of two ways—in sequence or nested. When considering the overall strategy
for solving a problem, one might identify steps A and B as contributing to
the solution. Your logical statement might say either “do A and then B”
sequential steps—or “for each part of A, do B”—nested steps.

 For example, consider the baseball card problem originally proposed in
 Chapter 1 . You have collected over the years a huge number of baseball
cards, and you wish to find the names of the 10 “qualified” players with the
highest lifetime batting average. To qualify, the players must have been in
the league at least five years, had at least 100 plate appearances per year,
and made less than 10 errors per year.

 The first step is to build a collection containing the relevant information
on the cards for each player, and the use of a structure array seems a good

10.5 Engineering Example—Processing Geopolitical Data 239

choice. Next, we need to operate on this collection to solve the problem.
Consider again the overall problem situation, as shown in Figure 10.8 . The
original data are the structure array containing all the player data. The final
result is a list of 10 names of the qualified players with the highest batting
averages. There may be more than one sequence of operations to solve this
problem, and some may be more efficient than others.

 First, we consider the operations that could be performed on the original
data. Since the end result is a collection, it is unlikely that the first step
would reduce the collection to one answer. This eliminates folding and
searching. Since the collection is already built, we do not need to insert or
build, leaving four possible operations to consider—traversal, mapping,
filtering, and sorting.

 Now, consider the last operation—it seems reasonable that the last thing
to do is a mapping—taking the 10 selected structures and extracting the
names.

 Now, we must think about how to find these 10 structures. If we had a
collection of qualified players sorted by their batting average, we could
accomplish this with a special filter taking the first 10 from these sorted,
qualified players. Backing up one more step, we can see that the sorted
collection we need is just a sort of the qualified players, and we can chain
these steps together to solve the whole problem.

List of
Player
Names

How You Could
Find the Answer

Structure
Array of

Player Data

What You Could
Do with the Data

 Figure 10.8 Generalized problem solving

 1 Credit: Alan Heston, Robert Summers, and Bettina Aten, Penn World Table Version
6.1, Center for International Comparisons at the University of Pennsylvania (CICUP),
October 2002.

 10.5 Engineering Example—Processing Geopolitical Data

 Imagine that you have decided to move your prosperous business overseas
to the country with the most business-friendly environment. After
considerable study, you decide that the best measure of friendliness would
be to compute the rate of growth of the gross domestic product for candidate
countries, subtract their rate of population growth, and use this measure to
choose the best country. An Internet search provides an interesting source of
data. Figure 10.9 shows an excerpt from a spreadsheet containing historical
data for 154 countries from Penn World Table Version 6.1. 1 The data
columns of interest to us contain the following information:

240 Chapter 10 Principles of Problem Solving

A

Country

Angola
Angola

Angola

Angola

B

Code

AGO
AGO

AGO

AGO

C

Year

1960
1961

1962

1963

D

POP

4816.00
4884.19

4955.35

5028.69

F

PPP

0.01
0.00

0.00

0.01

G

cgdp

542.68
564.37

573.94

593.72

H

cc

76.75
74.23

75.48

73.68

I

ci

8.84
7.92

6.76

5.72

J

cg

9.45
9.85

10.55

13.56

K

P

17.51
17.36

17.28

17.73

L

pc

13.07
13.18

13.41

13.90

M

pg

24.03
23.65

23.65

24.04

N

pi

49.11
48.67

50.44

52.06

O

openc

36.98
35.23

38.79

38.69

P

cgnp

na
na

na

na

E

XRAT

0.03
0.03

0.03

0.035

4

3
2

1

Angola

Angola

Angola
Angola

Angola

AGO

AGO

AGO
AGO

AGO

1994

1995

1996
1997

1998
1999

2000

1991
1992

1993

10627.18

10972.00

11316.94
na

na

53.32

1007.53

54873.28
na

na

1095.94

1244.73

1362.32
na

na

34.66

41.86

37.17
na

na

9.09

9.43

8.57
na

na

46.75

57.65

56.75
na

na

89.59

36.63

42.86
na

na

70.34

29.58

34.35
na

na

76.84

31.91

37.77
na

na

228.63

96.85

113.51
na

na

160.87

146.58

134.87
na

na

47.86

48.19

52.97
59.09

50.08

59.51

2750.23

128029.20
na

na
Angola AGO na na na na na na na na na na na 44.52na

Angola AGO na na na na na na na na na na na 53.81na

Albania ALB 3277.00 3.13 1605.36 82.81 6.92 36.66 20.04 23.78 12.02 17.70 54.89 98.1015.63

Albania ALB 3179.00 19.33 2031.94 109.39 12.54 25.73 18.94 20.80 10.51 20.01 77.14 99.02102.06

Albania ALB 3225.00 10.53 1566.99 136.94 5.11 35.08 14.03 15.59 7.88 14.42 108.94 95.9475.03

41

42

43
44

45

40

39
38

37

36

Zambia

Zambia

Zambia
Zimbabwe

Zimbabwe

ZMB

ZMB

ZMB
ZWE

ZWE

1998

1999

2000
1954

1955

1956

9665.71

9881.21

10089.00
3011.69

3127.52

744.91

941.87

1157.63
0.37

0.36

800.69

765.24

840.97
400.19

429.04

85.12

91.82

86.33
66.89

65.87

13.75

15.30

15.38
41.48

50.95

14.14

12.54

12.34
4.03

3.47

40.00

39.44

37.21
50.97

50.40

39.54

39.02

37.70
60.59

60.80

33.22

31.89

29.54
135.99

136.52

49.87

48.14

40.65
29.92

31.10

68.86

66.55

70.45
77.30

78.43

93.36

94.97

95.88
na

na

1862.07

2388.02

3110.84
0.71

0.71

Zimbabwe ZWE 3264.42 0.36 471.08 63.51 54.77 3.53 50.08 62.11 136.86 30.53 74.27 na0.715800

5799

5798
5797

5796

5795

Zimbabwe

Zimbabwe
Zimbabwe

ZWE

ZWE
ZWE

1998

1999
2000

12153.85

12388.32
12627.00

4.06

6.12
9.48

2799.85

2770.48
2607.03

77.66

76.89
69.23

10.75

10.73
8.62

13.39

12.81
22.44

17.16

15.98
21.33

14.97

14.35
19.26

22.03

19.01
23.63

26.87

24.02
31.96

91.96

92.99
62.61

93.25

93.75
96.62

23.68

38.30
44.425844

5843

5842

 Figure 10.9 Spreadsheet samples

 ■ Country—Country name
 ■ Code—Country code
 ■ Year—Year in which the data in this row were recorded
 ■ POP—Population that year
 ■ XRAT—Exchange rate versus U.S. currency that year
 ■ PPP—Purchasing power parity over GDP that year
 ■ CGDP —Real gross domestic product per capita that year

 Figure 10.9 also illustrates one of the weaknesses of spreadsheets: they are
inherently two dimensional, and the data in this case are three dimensional;
each country has several sets of data as functions of the year when the
information was recorded. Therefore, the data must be massaged into a
form more useful to us. A careful examination of the data also reveals the
following challenges:

 ■ The years in which the data were available vary from country to
country—most have data from 1950 to 2000

10.5 Engineering Example—Processing Geopolitical Data 241

 ■ There are some places within the numerical data where the values are
not available, signified by the letters “na” at those locations

 Our algorithm must take into account the variable number of years and the
potential presence of strings within the data. Fortunately, the cvsread(...)
function discussed earlier 2 recognizes this situation and inserts NaN in the
numerical data fields. To ensure clarity and reliability in our solution, we
need a careful design for this data processing task as follows.

 ■ Looking at the end result desired, eventually we need to fold a
collection of data about each country and choose the friendliest one.

 ■ The information describing each country must include not only its
name, but also vectors of the population and CGDP as a function of
the year. It seems that a structure array by country would be an
appropriate form for the data.

 ■ Therefore, before actually solving the problem, we have to build this
structure.

 ■ Having built the structure, the folding operation to find the friendliest
country follows the folding template shown in Section 10.3.7 .

 Listing 10 . 1 shows the script that accomplishes this analysis, although
most of the work is actually done in the following functions.

 In Listing 10 . 1 :

 Line 1: worldData will be a structure array containing the relevant data
from the spreadsheet.
 Line 2: best will be the index of the friendliest country according to the
criteria defined in the function findBest(...) .
 Lines 3–4: Here we can look up and print the name of the best country.

 Listing 10 . 2 lists the function that builds the country data. The algorithm
violates the best style by taking advantage of the logical ordering of the data
in the spreadsheet to traverse the data from the spreadsheets simultaneously,
filter out the data for each country in turn, and then map the available data
for that country into the emerging structure array.

 2 For MATLAB users, xlsread(…) should be used here.

 Listing 10 . 1 Country analysis

% build the country array
1. worldData = buildData('World_data.xls');
2. best = findBest(worldData);
3. fprintf('best country is %s\n', ...
4. worldData(best).name)

242 Chapter 10 Principles of Problem Solving

 In Listing 10 . 2 :

 Line 2: Reads the Excel spreadsheet—we need the numerical data and
the text part for the names of the countries.
 Lines 3 and 4: Initialize the results of the traversal, setting an unknown
country name and the initial country count.
 Lines 5–20: Traverse the rows of the numerical data.
 Line 6: Since the numerical data skipped the header row, the name of
the country corresponding to each row of data is in the text file at
 row+1 . When the country changes, we step to the next country index,
reset the year counter, col , for that country, and empty the structure
used to accumulate the country data.

 Listing 10 . 2 Building the country data

 1. function worldData = buildData(name)
% read the spreadsheet into a data array
% and a text cell array

 2. [data txt] = xlsread(name);
 3. country = ' '; % force the first data row
 % to change the country
 4. cntry_index = 0;

% Traverse the data and cell arrays producing
% an array of structures,
% one for each country

 5. for row = 1:length(data)
% Because the text data in txt contains
% the header row of the spreadsheet,
% the data at a given row belongs to the country
% whose name is at txt{row+1}.
% if the country name changes,
% begin a new structure.

 6. if ~strcmp(txt{row+1}, country)
 7. col = 1;
 8. country = txt{row+1};
 9. cntry_index = cntry_index + 1;
10. cntry.year = 1;
11. cntry.pop = 1;
12. cntry.gdp = 1;
13. end
14. cntry.name = country;
15. cntry.year(col) = data(row, 1);
16. cntry.pop(col) = data(row, 2);
17. cntry.gdp(col) = data(row, 5);
18. col = col + 1;
19. worldData(cntry_index) = cntry;
20. end
21. end

10.5 Engineering Example—Processing Geopolitical Data 243

 Line 7: Resets the counter that indexes the year storage for the current
country.
 Line 8: Saves the name of the new country to continue retrieving its data.
 Line 9: Increases the country count.
 Lines 10–12: Reset the structure used to store the vectors of data. This is
crucial because the number of annual data items for all countries is not
the same.
 Lines 14–17: Add this row of data to the structure. Column 1 is the
year, column 2 is the population, and column 5 is the CGDP.
 Line 18: Moves to the next year.
 Line 19: Saves all this in the structure array.

 Listing 10 . 3 Folding the country data

 1. function besti = findbest(worldData)
% find the index of the best country
% according to the criterion in the function
% fold

 2. best = fold(worldData(1));
 3. besti = 1;
 4. for ndx = 2:length(worldData)
 5. cntry = worldData(ndx);
 6. tryThis = fold(cntry);
 7. if tryThis > best
 8. best = tryThis;
 9. besti = ndx
10. end
11. end
12. end
13. function ans = fold(st)

% s1 is the rate of growth of population
14. pop = st.pop(~isnan(st.pop));
15. yr = st.year(~isnan(st.pop));
16. s1 = slope(yr, pop)/mean(pop);

% s2 is the rate of growth of the GDP
17. gdp = st.gdp(~isnan(st.gdp));
18. yr = st.year(~isnan(st.gdp));
19. s2 = slope(yr, gdp)/mean(gdp);

% Measure of merit is how much faster
% the gdp grows than the population

20. ans = s2 - s1;
21. end
22. function sl = slope(x, y)

% Estimate the slope of a curve
23. if length(x) == 0 || x(end) == x(1)
24. error('bad data')
25. else
26. sl = (y(end) - y(1))/(x(end) - x(1));
27. end
28. end

244 Chapter 10 Principles of Problem Solving

 Listing 10 . 3 shows the function that finds the best country by folding the
country structure array, together with the two supporting functions that
provide the comparison criteria. Notice that the complexity of the data has
forced the solution into nested folds: to fold the country data array, we have
to summarize (fold) the annual data for each country.

 In Listing 10 . 3 :

 Lines 2 and 3: As with any folding function that is looking for the
maximum or minimum of a collection, the best place to start is the first
item in the collection. The remaining items can then be compared to
this one.

 Lines 4–11: Loop through the remaining countries in the array.

 Line 5: Extracts one structure.

 Line 6: Computes its friendliness value.

 Lines 7–10: If the result is improved, these lines update the stored
values. The index besti is returned when the loop finishes.

 Line 13: This function computes the measure of friendliness for each
country. The goal is to subtract the rate of population growth from the
rate of growth of the GDP. So first we compute the rate of population
growth.

 Lines 14 and 15: These lines establish two local vectors containing the
population value and the corresponding year without the values that
are NaN , the places where “na” appears in the spreadsheet.

 Line 16: Calls the helper function for the slope of this relationship, and
non-dimensionalizes the result by dividing by the mean population.

 Lines 17–19: Repeat the same logic for the non-dimensional rate of
increase of the GDP.

 Line 20: Returns the difference in growth rates.

 Line 22: The function that estimates the rates of growth.

 Lines 23 and 24: We have a problem if there is no data or if the value
we will subsequently use as a divisor is zero.

 Line 26: A very crude measure of the slope is to divide the difference
between the first and last data points by the difference between the
first and last x values. (We will be able to improve on this approach
later.)

 When we run this program, we see the following result:

>> best country is Equatorial Guinea

 This may not be exactly the result we were hoping for. In Chapter 16 we will
revisit this example with some better tools that will allow us to apply
additional criteria to selecting countries.

Self Test 245

 Chapter Summary

 This chapter presented the fundamental operations that can be applied to problem
solving:

 ■ Using normal arithmetic operations with specific input and output
values

 ■ Inserting new elements in a collection
 ■ Traversing a collection
 ■ Building a collection by repetitive insertion
 ■ Mapping a collection—changing the values of the data items in the

collection, but not the number of them
 ■ Filtering a collection—reducing the number of entries, but not

changing the data contents of the collection
 ■ Folding—summarizing the values in a collection into a single quantity
 ■ Searching for a specific match in a collection
 ■ Sorting a collection

 Then we briefly discussed how to combine these fundamental tools to solve
more complex data manipulation problems.

 Self Test

 Use the following questions to check your understanding of the material in this chapter:

 True or False

 1. Copying the elements of a structure array into a cell array is a
combination of traversal and insertion.

 2. If you map a collection, you must change at least one of its elements.

 3. When you filter a collection, at least one data element is changed.

 4. The function max(...) is not folding because it returns two values.

 5. You can use a for loop to search a collection even if you need to
stop the search when you find the answer.

 6. Sorting must involve putting the items in a collection in numerical
order (ascending or descending).

 Fill in the Blanks

 1. Vectors store only ____________ data, but arrays can store any type
of data provided that the size of the new item ____________ the
existing array.

 2. _____ is an example of an operation that traverses a collection and
summarizes the contents with a single result.

246 Chapter 10 Principles of Problem Solving

 3. _______________ is an operation which produces a new collection
with reduced length, but the content of the items remains unchanged.

 4. We _______________ vectors by applying built-in logical operations
and then indexing with the results to produce new, shorter arrays.

 5. Totaling, averaging, and finding the smallest element in a vector are
typical examples of _____________.

 6. There are almost always two exit criteria for a search: ___________
_______________ or ________________.

 7. To save a collection to a text file, you ____________ the collection
____________ it to the file.

 Programming Projects

 1. The purpose of this problem is to write a set of functions that
calculate the volume of a slant cylinder with an irregular pentagonal
cross section shown in Figure 10.10 .

 (x5, y5)

(x1, y1)

(x2, y2)

(x4, y4)

(x3, y3) h

 Figure 10.10 The Slant Cylinder

 You will be given two vectors, x and y , containing the coordinates of
the corners of the pentagon, and the value h , the vertical height of
the cylinder. We will need to break this problem apart, writing
functions to solve each part:
 a. The volume of the cylinder is the area of the pentagon multiplied by

the vertical height; write a function polyvol(x, y, h) to solve this.
 b. The area of the pentagon is the sum of the areas of three

triangles shown in Figure 10.11 . So we need to write a function
 pent_area(x, y) that asks for the area of the three triangles and
adds them together.

Programming Projects 247

(x1, y1)

(x5, y5)

(x4, y4)

(x3, y3)(x2, y2)

 Figure 10.11 Break down the pentagon

 c. Given the coordinates of the corners of a triangle, we need a
function tri_area(x, y) to calculate the area of the triangle—see
 Figure 10.12 . To compute the area of the triangle, we need the
values of a , b , and c . So if we had the lengths of the lines, the area
of the triangle is given by Heron’s formula:

(x1, y1) (x3, y3)

(x2, y2)

a

b

c

 Figure 10.12 Area of a triangle

A = (s(s-a)(s-b)(s-c))

 where s is half the sum of a , b, and c
 d. So we need a function tri_side(x, y) that computes the length

of a line when given its end points.
 e. Then, we can put the pieces back together by calling the functions

with the right parameters, and then build and test polyvol using
the test cases provided.

 2. This problem is about processing structure arrays. Write a function
named structSort that sorts a structure array based on a given field
that contains numerical values. Your function should take in a
structure array and a string that should correspond to one of the
fields of the structure array and return the original structure array
sorted on the given field. It should check to be sure that the
specified field name is in fact one of the fields of the structure array,
and call the error(...) function if it is not.

 Test your function by using the buildCDs script from Chapter 7 ,
using the input function to specify the sorting field.

This page intentionally left blank

 Chapter Objectives

 This chapter presents the principles and practice of plotting in the
following forms:

 ■ Basic two-dimensional (2-D) line plots

 ■ 2-D parametric plots

 ■ Three-dimensional (3-D) line and parametric plots

 ■ Basic 3-D surface plots

 ■ Parametric surface plots

 ■ Bodies of rotation

 There is a much-quoted expression that “a picture is worth a
 thousand words,” and this is never more appropriate than when
 talking about data. In previous chapters, we used some simple plot
commands to display data to illustrate its behavior. The capability of
the MATLAB language to present data reaches far beyond ordinary
data plotting, and far beyond the limited confines of a textbook. This
chapter will present the fundamental concepts of the different forms
in which data can be presented, but it leaves to the reader the
 challenge of exploring the full range of capabilities available. You
only really discover the power inherent in the plotting capabilities of
MATLAB when you have some unusual data to visualize.

 Plotting
 C H A P T E R 1 1

 11.1 Plotting in General
 11.1.1 A Figure—The

Plot Container
 11.1.2 Simple Functions

for Enhancing
Plots

 11.1.3 Multiple Plots on
One Figure—
Subplots

 11.1.4 Manually Editing
Plots

 11.2 2-D Plotting
 11.2.1 Simple Plots
 11.2.2 Plot Options
 11.2.3 Parametric Plots
 11.2.4 Other 2-D Plot

Capabilities
 11.3 3-D Plotting
 11.3.1 Linear 3-D Plots
 11.3.2 Linear Parametric

3-D Plots
 11.3.3 Other 3-D Plot

Capabilities
 11.4 Surface Plots
 11.4.1 Basic Capabilities
 11.4.2 Simple Exercises
 11.4.3 3-D Parametric

Surfaces
 11.4.4 Bodies of Rotation
 11.4.5 Other 3-D Surface

Plot Capabilities
 11.4.6 Assembling

Compound
Surfaces

 11.5 Manipulating Plotted Data
 11.6 Engineering Example—

Visualizing Geographic
Data

 11.6.1 Analyzing the Data
 11.6.2 Displaying the

Data

249

250 Chapter 11 Plotting

 11.1 Plotting in General

 Before considering the details of how each plotting mode works, we should
set the context. In this section, we will discuss the general container for all
graphical types, the figure, and some basic operations that apply to all
figures—functions that enhance them, the ability to assemble subplots into
a single figure, and the advisability of making manual changes to plots.

 11.1.1 A Figure—The Plot Container

 The fundamental container for plotting is a figure. In a simple script, if you
just start plotting data, figure number 1 is automatically generated to present
the data. You can manage the figures by asserting the figure command.
Each time figure is called, a new figure is made available, with the next
higher figure number. If you use the form figure <number>, you can select
a specific figure for the next plot.

 To clear the current figure, put the key word clf in the header of your
script. To remove all the figures, put the key phrase close all at the
beginning of your script. The listing examples below will assume that each
script begins with clear, clc, close all .

 11.1.2 Simple Functions for Enhancing Plots

 We have already introduced plot(x, y) , the basic function that creates a simple
plot of x versus y . The following functions can be used to enhance any of the
plots discussed in this chapter. Note that they enhance an existing plot; they
should all be called after the fundamental function that creates a plot figure.

 ■ axis <param> provides a rich set of tools for managing the
appearance of the axes, including the following:
 • tight reduces the axes to their smallest possible size
 • equal sets the x and y scales to the same value
 • square makes the plot figure of equal width and height
 • off does not show the axes at all

 ■ axis([xl xu yl yu zl zu]) overrides the automatic computation of
the axis values, forcing the x-axis to reach from xl to xu , the y-axis
from yl to yu , and the z-axis from zl to zu . For 2-D plots, the z
values should be omitted.

 ■ colormap <specification> establishes a sequence of colors, the
color map, to be used under a number of circumstances to cycle
through a series of colors automatically. The legal specification
values are listed in Appendix A .

 ■ grid on puts a grid on the plot; grid off (the default) removes grid
lines.

11.1 Plotting in General 251

 ■ hold on holds the existing data on the figure to allow subsequent
plotting calls to be added to the current figure without first erasing
the existing plot; hold off (the default) redraws the current figure,
erasing the previous contents.

 ■ legend(...) takes a cell array of strings, one for each of the multiple
plots on a single figure, and creates a legend box. By default, that
box appears in the top-right corner of the figure. However, this
default can be overridden by explicitly specifying the location of the
legend. See the help files for a complete discussion of the legend
options.

 ■ shading <spec> defines the method for shading surfaces. See the
help files for a complete discussion of the shading specification
options.

 ■ text(x, y, {z,}, str) places the text provided at the specified
(x, y) location on a 2-D plot, or at the (x, y, z) location on a
3-D plot.

 ■ title(...) places the text provided as the title of the current plot.
 ■ view(az, el) sets the angle from which to view a plot. The

parameters are az , the azimuth, an angle measured in the horizontal
plane, and el , the elevation, an angle measured upward from the
horizontal. Both angles are specified in degrees.

 ■ xlabel(...) sets the string provided as the label for the x-axis.
 ■ ylabel(...) sets the string provided as the label for the y-axis.
 ■ zlabel(...) sets the string provided as the label for the z-axis. (As

we will see, all plots actually have a third axis.)

 11.1.3 Multiple Plots on One Figure—Subplots

 Within the current figure, you can place multiple plots with the subplot
command, as shown in Figure 11.1 . The function subplot(r, c, n) divides
the current figure into r rows and c columns of equally spaced plot areas,
and then establishes the nth of these (counting across the rows first) as the
current figure. You do not have to draw in all of the areas you specify.
 Figure 11.1 was generated by the code shown in Listing 11 . 1 .

 In Listing 11 . 1 :

 Line 1: close all closes all figures currently open. This command
should always be present at the beginning of a script but will be
omitted from the example listings that follow.
 Line 2: Specifies a suitable range of x values.
 Line 3: Sets the first subplot region.
 Line 4: This is the simple version of the plot(...) function
introduced earlier, plotting x against y and automatically

252 Chapter 11 Plotting

creating the axes, creating subplot 1, the plot in the top-left
corner. Note that although in the figure seen here the line is
gray, when you run the script, the line will appear in its default
color, blue.
 Line 5: The title(...) function puts the specified string at the top
of the plot as its title.
 Lines 6–8: Create subplot 2, the second plot on the first row.
 Lines 9–11: Create subplot 3, the first plot on the second row.
 Lines 12–14: Create subplot 4, the second plot on the second
row.
 Lines 15–17: Create subplot 5, the first plot on the bottom row.
 Lines 18–20: Create subplot 6, the second plot on the bottom
row.

 11.1.4 Manually Editing Plots

 When a figure has been created, you
are free to manipulate many of its
characteristics by using its menu
items and tool bars. They provide the
ability to resize the plot, change the
view characteristics, and annotate it
with legends, axis labels, lines, and
text callouts.

 Listing 11 . 1 Creating a subplot

 1. close all
 2. x = -2*pi:.05:2*pi;
 3. subplot(3,2,1)
 4. plot(x, sin(x))
 5. title('1 - sin(x)');
 6. subplot(3,2,2)
 7. plot(x, cos(x))
 8. title('2 - cos(x)');
 9. subplot(3,2,3)
10. plot(x, tan(x))
11. title('3 - tan(x)');
12. subplot(3,2,4)
13. plot(x, x.^2)
14. title('4 - x^2');
15. subplot(3,2,5)
16. plot(x, sqrt(x))
17. title('5 - sqrt(x)');
18. subplot(3,2,6)
19. plot(x, exp(x))
20. title('4 - e^x');

 All of these capabilities are also available to the script that
creates the plots, and you are very likely to want to generate
a plot more than once. Therefore, it is unwise to put a
significant amount of manual effort into adjusting a plot. It is
better to experiment with the manual adjustments and then
find out how to make the same adjustments in the script that
creates the plots. This also leaves you a permanent record of
how the plot was generated.

 Style Points 11 . 1

11.2 2-D Plotting 253

-10 -5 0 5 10
-1

-0.5

0

0.5

1
1 - sin(x)

-10 -5 0 5 10
-1

-0.5

0

0.5

1
2 - cos(x)

-10 -5 0 5 10
-400

-200

0

200

400
3 - tan(x)

-10 -5 0 5 10
0

10

20

30

40
4 - x2

-10 -5 0 5 10
0

1

2

3
5 - sqrt(x)

-10 -5 0 5 10
0

200

400

600
4 - ex

 Figure 11.1 Plotting effects

 11.2 2-D Plotting

 11.2.1 Simple Plots

 The basic function to use for 2-D plots is plot(...) . The normal use of this
function is to give it three parameters, plot(x, y, str) , where x and y are
vectors of the same length containing the x and y coordinates, respectively,
and str is a string containing one or more optional line color and style control
characters. A complete list of these control characters is included in
 Appendix A . If the vector x is omitted, MATLAB assumes that the x coordinates
are 1:N, where N is the length of the y vector. If the str is omitted, the default
line is solid blue. The MATLAB definition of this function also permits multiple
 (x, y, str) data sets in a single function call. It is always possible to produce
the same result with multiple function calls in hold on mode.

254 Chapter 11 Plotting

 Since we have already seen basic 2-D plotting at work, it should be
sufficient to observe and comment on the simple example seen in Figure 11.2 ,
generated by the code shown in Listing 11 . 2 .

 In Listing 11 . 2 :

 Line 1: Sets the range of x values.
 Line 2: Color specifications for the plots—red, green, blue, and black.
 Lines 4–7: Plot x, x 2 , x 3 , and x 4 with the above colors used in
sequence.

 Listing 11 . 2 Simple 2-D plots

 1. x = linspace(-1.5, 1.5, 30);
 2. clr = 'rgbk';
 3. for pwr = 1:4
 4. plot(x, x.^pwr, clr(pwr))
 5. hold on
 6. end
 7. xlabel('x')
 8. ylabel('x^N')
 9. title('powers of x')
10. legend({'N=1', 'N=2', 'N=3', 'N=4'}, ...
11. 'Location','SouthEast')

-1.5 -1 -0.5 0 0.5 1 1.5
-4

-3

-2

-1

0

1

2

3

4

5

6

x

xN

powers of x

N=1
N=2
N=3
N=4

 Figure 11.2 Powers of x

11.2 2-D Plotting 255

 Lines 7–11: Add enhancements to the plot as noted above.
 Line 11: One of many possible parameters to the legend(...)
function—this one forces its location to the lower-right corner of the
figure, out of the way of the data.

 11.2.2 Plot Options

 In addition to the plot enhancement tools listed in Section 11.1.2 , the
following capabilities are available.

 ■ Setting line styles and symbols to mark the data points (details in
 Appendix A)

 ■ Using plotyy(...) to put a second axis on the right side of the figure
 ■ Obtaining logarithmic plots on the x-axis (semilogx(...)), y-axis

(semilogy(...)), or both axes (loglog(...))

 We strongly suggest that the reader experiment with these features and
observe their effects.

 11.2.3 Parametric Plots

 Plotting is not restricted to the situation where the data along one axis are
the independent variable and that
along the other are dependent.
Parametric plots allow the variables
on each axis to be dependent on a
separate, independent variable. That
independent variable will define a
path on the plotting surface. Consider
the plot shown in Figure 11.3 , which
presents a simple exercise in
transforming a circle into an airfoil. It
was generated using the code shown
in Listing 11 . 3 .

 By convention, good engineers are expected to represent
the data with appropriate line styles to avoid misleading the
reader. For example, if you have some raw data that is only
valid at the measurement points, it should be plotted with
symbols only. Connecting the data with a line would imply
that the data have some interpolated values, which may not
be the case. On the other hand, if you calculate a theoretical
curve that is good throughout the range of x, it should be
plotted as a continuous curve, perhaps even at a better
resolution (more x values) than the raw data samples.

 Style Points 11 . 2

 Listing 11 . 3 Parametric plots

 1. th = linspace(0, 2*pi, 40);
 2. r = 1.1; g = .1;
 3. cx = sqrt(r^2-g^2) - 1; cy = g;
 4. x = r*cos(th) + cx;
 5. y = r*sin(th) + cy;
 6. plot(x, y, 'r')
 7. axis equal
 8. grid on
 9. hold on
10. z = complex(x, y);
11. w = z + 1./z;
12. plot(real(w), imag(w), 'k');

256 Chapter 11 Plotting

 In Listing 11 . 3 :

 Line 1: The independent variable in this case is the angle th varying
from 0 to 2p.
 Line 2: The particular transformation we use here requires a circle
with a radius, r , slightly greater than 1 offset by a small distance, g ,
from the x-axis, passing through the point (−1, 0).
 Line 3: We compute the center of the circle passing through the
point (−1, 0).
 Lines 4–5: A standard polar-to-Cartesian coordinate transformation
computing the coordinates of the circle.
 Line 6: Plots the two dependent variables x and y with a red line.
 Line 7: Equalizes the axes and forces the circle to be drawn
correctly.
 Line 8: Displays a grid on which to estimate specific values.
 Line 9: Here we want to add a second plot to the figure.
 Lines 10–11: The Joukowski transformation is easiest when
expressed in complex terms: if z is the path around the
required circle, w = z + 1/z traces a very credible looking
airfoil shape.
 Line 12: Adds the plot of w , and reverts from the complex plane
to plot the real and imaginary parts of the answer colored in
black.

-1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

 Figure 11.3 Parametric 2-D plot

11.3 3-D Plotting 257

 11.2.4 Other 2-D Plot Capabilities

 You can also create some more exotic plots that are not necessary to
understand the basic principles of plotting, but are powerful methods for
visualizing real data:

 ■ bar(x, y) produces a bar graph with the values in y positioned at
the horizontal locations in x . The options available can be studied
with >> help bar .

 ■ barh(x, y) produces a bar graph with the values in y positioned at
the horizontal locations in x . The options available can be studied
with >> help barh .

 ■ fill(x,y,n) produces a filled polygon defined by the coordinates in
 x and y . The fill color is specified by indexing n into the color map.
The options available can be studied with >> help fill .

 ■ hist(y, x) produces a histogram plot with the values in y counted
into bins defined by x . The options available can be studied with
 >>help hist .

 ■ pie(y) makes a pie chart of the values in y . For more options, see >>
help pie .

 ■ polar(th, y) makes a polar plot of the angle th (radians) with the
radius r specified for each angle. For more options, see >> help
polar .

 11.3 3-D Plotting

 Before attacking the details of plotting in three dimensions, it should be
noted that even 2-D plots are actually 3-D plots. Consider the picture shown
in Figure 11.4 , which was generated originally as the 2-D plot in Figure 11.3 .
By selecting the Rotate 3-D icon on the tool bar and moving the mouse on
your figure, it becomes apparent that what appeared to be a 2-D plot in
the x-y plane is really a 3-D plot in the x-y-z plane “suspended in space”
at z = 0.

 11.3.1 Linear 3-D Plots

 The simplest method of 3-D plotting is to extend our 2-D plots by adding a
set of z values. In the same style as plot(...) , plot3(x, y, z, str) consumes
three vectors of equal size and connects the points defined by those vectors
in 3-D space. The optional str specifies the color and/or line style. If the str
is omitted, the default line is solid blue.

 Figure 11.5 shows three curves plotted in three dimensions, using the
script shown in Listing 11 . 4 . Each plot is in the z-x plane: the red curve at
y = 0, the blue curve at y = 0.5, and the green curve at y = 1.

258 Chapter 11 Plotting

-1
0

1
2

-1
-0.5

0
0.5

1
1.5-1

-0.5

0

0.5

1

 Figure 11.4 Rotated 2-D plot

0
2

4
6

8
10

0

0.5

1
-1

-0.5

0

0.5

1

x-axisy-axis

z-
a

xi
s

 Figure 11.5 3-D lines

 In Listing 11 . 4 :

 Line 1: Each plot has the same set of x values.
 Lines 2–3: The y values for the first plot are all 0.
 Lines 4–5: The second and third plots are sin(x) at different frequencies.

11.3 3-D Plotting 259

 Lines 6–7: The y values of the second and third plots are all 0.5 and 1,
respectively.
 Lines 8–10: Plot and annotate the results.

 11.3.2 Linear Parametric 3-D Plots

 We can generalize the concept of parametric plots to 3-D, as shown in
 Figure 11.6 , in which the x, y, and z values are mappings of some linear
parameter. On the left side, the spiral is an example of a 3-D plot where two
of the dimensions, x and y, are dependent on the third, independent
parameter. The independent parameter in this example is the rotation
angle, p, varying from 0 to 10p (five complete revolutions). The x and y

 Listing 11 . 4 Simple 3-D line plots

 1. x=0:0.1:3.*pi;
 2. y1=zeros(size(x));
 3. z1=sin(x);
 4. z2=sin(2.*x);
 5. z3=sin(3.*x);
 6. y3=ones(size(x));
 7. y2=y3./2;
 8. plot3(x,y1,z1, 'r',x,y2,z2, 'b',x,y3,z3, 'g')
 9. grid on
10. xlabel('x-axis'), ylabel('y-axis'), zlabel('z-axis')

-1

0

1

-1

-0.5

0

0.5

1
0

10

20

30

40

parametric curve based on angle

-4

-2

0

2

-15

-10

-5

0

5
-15

-10

-5

0

5

end

all 3 axes varying with parameter t

start

 Figure 11.6 Parametric 3-D plots

260 Chapter 11 Plotting

values are mapped as sin(u) and cos(u)—the classic means of describing a
circle. The spiral effect is accomplished by plotting u on the z-axis.

 The right half of Figure 11.6 illustrates a fully parametric plot, where
the values of all three coordinates are mappings of an independent
parameter, t. This particular example is a plot of the 3-D motion of a
particle receiving random impulses in all three axes. Note the use of text
anchored in x-y-z space to label points on the graph. The figure is drawn
using Listing 11 . 5 .

 In Listing 11 . 5 :

 Lines 2–5: Draw the spiral plot with a simple plot3(...) call.
 Lines 8–10: Define random velocity increments in x, y, and z.
 Lines 11–13: Integrate to compute the position in x, y, z space. There
will be a full discussion of integration in Chapter 15 .
 Lines 14–16: Plot and enhance the time history of the particle.
 Lines 17 and 18: Add labels to indicate the start and end of the
trace.

 11.3.3 Other 3-D Plot Capabilities

 If you are using MATLAB, you can also create some more exotic 3-D plots
that are not necessary to understand the basic principles of plotting, but are
powerful methods for visualizing real data:

 ■ bar3(x, y) produces a bar graph with the values in y positioned at
the horizontal locations in x . The options available can be studied
with >> help bar3 .

 Listing 11 . 5 Linear parametric 3-D plots

 1. subplot(1, 2, 1)
 2. theta = 0:0.1:10.*pi;
 3. plot3(sin(theta),cos(theta),theta)
 4. title('parametric curve based on angle');
 5. grid on
 6. subplot(1, 2, 2)
 7. N = 20;
 8. dvx = rand(1, N) - 0.5 % random v changes
 9. dvy = rand(1, N) - 0.5
10. dvz = rand(1, N) - 0.5
11. x = cumsum(cumsum(dvx)); % integrate to get pos
12. y = cumsum(cumsum(dvy));
13. z = cumsum(cumsum(dvz));
14. plot3(x,y,z)
15. grid on
16. title('all 3 axes varying with parameter t')
17. text(0,0,0, 'start');
18. text(x(N),y(N),z(N), 'end');

11.4 Surface Plots 261

 ■ barh3(x, y) produces a bar graph with the values in y positioned
at the horizontal locations in x . The options available can be studied
with >> help barh .

 ■ pie3(y) makes a 3-D pie chart of the values in y . For more options,
see >> help pie3 .

 11.4 Surface Plots

 In Section 11.3.2 , we saw that data can be generated for all three axes based
on one linear parameter. However, more dramatic graphics are produced
by a different group of 3-D graphics functions that produce images based
on mapping a 2-D surface. The underlying 2-D surface is sometimes referred
to as plaid because of its conceptual similarity to a Scottish tartan pattern. To
design such a pattern, one needs only to specify the color sequence of the
horizontal and vertical threads. In the same way, we specify a plaid by
defining vectors of the row and column data configurations.

 11.4.1 Basic Capabilities

 Three fundamental functions are used to create 3-D surface plots:

 ■ meshgrid(x, y) accepts the x 1*m and y 1*n vectors that bound the edges
of the plaid and replicates the rows and columns appropriately to
produce xx n*m and yy n*m , containing the x and y values (respectively)
of the complete plaid. This enables us in general to compute mappings
for the 3-D coordinates of the figure we want to plot.

 ■ mesh(xx, yy, zz) plots the surface as white facets outlined by
colored lines. The line coloring uses one of many color maps (listed
in Appendix A), where the color is selected in proportion to the zz
parameter. You can turn the white facets transparent with the
command hidden off .

 ■ surf(xx, yy, zz) plots the surface as colored facets outlined by
black lines. The line coloring by default is selected in proportion to
the zz parameter. You can remove the lines by using one of a
number of shading commands listed in Appendix A .

 11.4.2 Simple Exercises

 We will consider some simple situations that illustrate many of the features
of surface drawing.

 Drawing a Cube In the first example, in order to understand the underlying
logic, we will develop the basic concept of drawing surfaces without the
help of the meshgrid(...) function. Figure 11.7 shows the coordinates of a
cube of side 2 units centered at the origin. Listing 11 . 6 shows the code that
plots a cube from scratch. Figure 11.8 shows the results from this script. To

262 Chapter 11 Plotting

define the top and bottom of the cube, we must add the points P and Q.
Although only one point each is required to define P and Q, the array must
have the same number of columns in each row. Therefore, P and Q must be
replicated five times to keep the arrays rectangular.

 One could think about the way the surf(...) function works by drawing
the line defined by the top row of the xx , yy , and zz arrays. Then it locates
the line defined by the next row and makes a smooth surface between the
two lines. Physically, this has the following effect:

 ■ Beginning at point P, it draws expanding squares until it reaches
ABCD

z

y

x

B(-1,-1,1)

H(1,1,-1)

Q(0,0,-1)

P(0,0,1)

C(1,-1,1)

D(1,1,1)

G(1,-1,-1)

E(-1,1,-1)

A(-1,1,1)

F(-1,-1,-1)

 Figure 11.7 A simple cube

 Figure 11.8 The solid cube plot

11.4 Surface Plots 263

 ■ “Sliding down” the sides of the cube to EFGH
 ■ Shrinking that square down to the point Q

 In Listing 11 . 6 :

 Lines 1–12: Establish the plaid defining the point P, the A-B-C-D
plane, the E-F-G-H plane, and the point Q. Notice that the first
corner is repeated on each row to close the figure shape.
 Lines 13–18: Plot the cube top, sides, and bottom.

 A Simple Parabolic Dish The simplest surface plots are obtained by defining
a z value for each point on an x-y plaid. We will continue with a simple
example illustrating the use of meshgrid(...) to define the plaid. Consider
how we might plot the data shown in Figure 11.9 . Before we look at the code,
consider what the picture represents. Clearly, the independent variables are x
and y, each covering the range from −3 to 3, each having seven discrete
values. As the label indicates, the z values are calculated as the sum of x 2 and
y 2 . There are not, however, 14 z values as the range of x and y values might
suggest, but 49! In order to plot the 3-D shape of our parabolic bowl, we must
have a z value for every point on the x-y surface. Each of these points has a
value of x corresponding to the reading on the x-axis, and a value of y from
the y-axis. Therefore, the process of creating this plot has three parts:

 1. Develop the underlying plaid specifying the x-y location of every
point on the x-y plane.

 2. Calculate the z values from the plaid.

 3. Call a plotting function that will accept the plaid and these z
values to produce the required plot.

 Listing 11 . 6 Simple solid cube

 1. xx = [0 0 0 0 0 % P-P-P-P-P
 2. -1 -1 1 1 -1 % A-B-C-D-A
 3. -1 -1 1 1 -1 % E-F-G-H-E
 4. 0 0 0 0 0] % Q-Q-Q-Q-Q
 5. yy = [0 0 0 0 0 % P-P-P-P-P
 6. 1 -1 -1 1 1 % A-B-C-D-A
 7. 1 -1 -1 1 1 % E-F-G-H-E
 8. 0 0 0 0 0] % Q-Q-Q-Q-Q
 9. zz = [1 1 1 1 1 % P-P-P-P-P
10. 1 1 1 1 1 % A-B-C-D-A
11. -1 -1 -1 -1 -1 % E-F-G-H-E
12. -1 -1 -1 -1 -1] % Q-Q-Q-Q-Q
13. surf(xx, yy, zz)
14. colormap bone
15. axis equal
16. shading interp
17. view(-36, 44)
18. axis off

264 Chapter 11 Plotting

 The code to accomplish this is shown in Listing 11 . 7 .

 In Listing 11 . 7 :

 Line 1: The x and y vectors define the edges of the plaid.
 Line 2: Generates the plaid.
 Line 3: In this particular example, we map only the z coordinate,
leaving the plaid (xx and yy) as the x and y coordinates of the
figure.
 Line 4: mesh(...) is one of the many functions that represent 3-D
mappings of a plaid in different ways. Notice in the figure that the
faces between line segments are solid white, and the line colors
change with the z coordinate.
 Lines 5–7: Annotate the plot.

-3
-2

-1
0

1
2

3

-2

0

2

0

5

10

15

x

z = x2 + y2

y

z

 Figure 11.9 A mesh plot

 Listing 11 . 7 Simple surface plot

1. x=-3:3; y = x ;
2. [xx,yy]=meshgrid(x,y);
3. zz=xx.^2 + yy.^2;
4. mesh(xx,yy,zz)
5. axis tight
6. title('z = x^2 + y^2')
7. xlabel('x'),ylabel('y'),zlabel('z')

11.4 Surface Plots 265

 Try Exercise 11 . 1 and make your observations.

 Manipulating Plots Thoughtful students might develop their own tests to
investigate the behavior of the following tools:

 ■ The function surfc(xx, yy, zz) puts contour lines on the x-y plane
base.

 ■ The function view(az, el) changes the viewing angle. This is useful
to capture a specific view angle after you have used the rotation
tool to select a good presentation of the data.

 ■ The command colorbar allows you to show how the colors are
quantified on the plot.

 ■ Adding a 4 th parameter to surf(xx, yy, zz, yy) overrides
the default color direction z with, in this case, the y
direction.

 Exercise 11.1 Exploring the simple plot

 1. run script in Listing 11 . 7 without the semicolon on Line 2, and observe the
following:

xx =
 -3 -2 -1 0 1 2 3
{etc}
yy =
 -3 -3 -3 -3 -3 -3 -3
-{etc}
 3 3 3 3 3 3 3

 Notice that in general, if x is length m and y is length n , the xx values
consist of the x vector in rows replicated n times, and the yy values consist
of the y vector as a column replicated m times. Together, they provide the
underlying x and y values for the “floor” of the bowl plot from which the z
values are computed to draw the picture.

 2. Insert the line hidden off after mesh(xx, yy, zz) . Notice that the faces
are now transparent.

 3. Change mesh(xx, yy, zz) to surf(xx, yy, zz) . Notice that the panels
are now colored and the lines are black. This form is also insensitive to the
hidden parameter.

 4. Replace hidden off with shading flat , and notice that the lines have
disappeared.

 5. Replace shading flat with shading interp , and notice that the surface
coloring now varies smoothly.

 6. Insert the line colormap 'summer' after surf(xx, yy, zz) . Look up
 colormap in Appendix A for details.

 7. Do not forget to rotate your images and examine them from different
points of view using the 3-D rotate tool bar icon.

266 Chapter 11 Plotting

 ■ The 4 th parameter can also be a function like del2(zz) that
computes the second derivative, or curvature, of the plot, so now
the coloring highlights the areas of maximum curvature.

 ■ The 4 th parameter can also be an image (see Chapter 13) that will
appear to be pasted onto the plotting surface.

 ■ For an eye-catching effect, add the line lightangle(60, 45) at the
bottom of the script. This illuminates the surface with a light at the
specified azimuth and elevation angle (degrees). The resulting
faceted appearance can be alleviated by decreasing the granularity
of the underlying plaid coordinates.

 11.4.3 3-D Parametric Surfaces

 Cylinder Consider first the construction of a cylinder as illustrated in
 Figure 11.10 . One could consider this figure as a sheet of paper rolled up in
a circular shape. We could visualize that piece of paper as a plaid of values,
not of x-y in this case, but perhaps x − u. The range of x would be from 0 to
the length of the cylinder, and the range of u would be 0 to 360°.

 To plot this, one would then merely need to create a plaid in x and u, and
then decide on the mapping from u to the y and z values of the cylinder.
The resulting picture is shown in Figure 11.11 , and the code is shown in
Listing 11 . 8 .

 In Listing 11 . 8 :

 Line 1: Constants to define the smoothness of the cylinder.
 Lines 2–4: Define a plaid in x and u. Note that only two points are
needed in the x direction because that contour is straight.
 Lines 5 and 6: The circular cross-section is achieved by using the
parametric definition of a circle of a given radius.

 Listing 11 . 8 Constructing a cylinder

 1. facets = 120; len = 2; radius = 1;
 2. thr = linspace(0, 2*pi, facets);
 3. xr = [0 len];
 4. [xx, tth] = meshgrid(xr, thr);
 5. yy = radius * cos(tth);
 6. zz = radius * sin(tth);
 7. surf(xx, yy, zz);
 8. shading interp
 9. colormap bone
10. axis equal,axis tight,axis off
11. lightangle(60, 45)
12. alpha(0.8)
13. view(-20, 35)

11.4 Surface Plots 267

 Line 9: Changes the color to a pleasant metallic scale.
 Line 10: Squares up and removes the axes.
 Line 11: Illuminates the figure.
 Line 12: Sets the transparency of the surface so that a portion of the
hidden details can show through.

 Sphere Now, we construct a sphere as shown in Figure 11.12 , starting
with the cylinder. However, instead of using a constant radius in the x
direction, we will calculate the radius in that direction by rotating a
second angle, c, from 0 to 180°. Think of this as mapping or “wrapping” a
plaid with two angles as the independent variables around the sphere.
The coordinate in the x direction would be r cos c, and the radii of the y-z

R

z

y

x

 Figure 11.10 Creating a cylinder image

 Figure 11.11 A cylinder plot

268 Chapter 11 Plotting

circles would be r sin c. The code for drawing this sphere is shown in
Listing 11 . 9 .

 In Listing 11 . 9 :

 Line 1: The radius set here is the sphere radius.
 Lines 2 and 3: Set the ranges of u and c.
 Line 4: Builds the plaid in u and c.
 Line 5: As c rotates, the value of x varies as its cosine.
 Lines 6 and 7: The radius of rotation about the x-axis varies as the
sine of c.
 Lines 8–12: Draw and annotate the plot.

 11.4.4 Bodies of Rotation

 The cylinder and sphere drawn in the above section are special cases of a
more general form of solid body. Bodies of rotation are created in general

 Figure 11.12 A sphere

 Listing 11 . 9 Constructing a sphere

 1. facets = 120; radius = 1;
 2. thr = linspace(0, 2*pi, facets); % range of theta
 3. phir = linspace(0, pi, facets); % range of phi
 4. [th, phi] = meshgrid(thr, phir);
 5. x = radius * cos(phi);
 6. y = radius * sin(phi) .* cos(th);
 7. z = radius * sin(phi) .* sin(th);
 8. surf(x, y, z);
 9. shading interp
10. colormap copper
11. axis equal, axis tight, axis off
12. lightangle(60, 45)

11.4 Surface Plots 269

by rotating a general function v = f(u) defined over a range of u values
about the x or z axes. Note: this is perfectly general because rotating such a
function about the y-axis would result merely in “smearing” the function
across a flat surface in the x-z plane. We use z rather than y for the dependent
variable here because in our 3-D plots, the z-axis is drawn as the vertical
axis. In general, we make no claims about the nature of f () . It could be a
rational function, or merely a “lookup table” specifying a value of v for
every u .

 Rotating Continuous Functions First, we consider rotating a continuous
function v = f(u) about the x and z axes.

 ■ To rotate v = f(u) about the x-axis, we could consider this equation
as r = f(x) . Figure 11.13 shows the logic of this rotation. The
independent variable is x, and the values of y and z are computed
as the usual polar-to-Cartesian conversion:

y = r cos(u)
z = r sin(u)

 Notice that these are the two axes about which we are not
rotating.

 ■ To rotate v = f(u) about the z-axis, we could consider this equation
as z = f(r) . Figure 11.14 shows the logic of this rotation. The
independent variable is now r , and the values of x and y are
computed as the usual polar-to-Cartesian conversion:

x = r cos(u)
y = r sin(u)

z

x

(Independent)

r = f(x)

y

 Figure 11.13 Rotating v = f(u) about the x-axis

270 Chapter 11 Plotting

 Notice again that these are the two axes about which we are not
rotating. Notice also a simple rule of thumb: if you rewrite v = f(u)
correctly for each rotation, the independent variable is always the
parameter of f(...) .

 Figure 11.15 shows the result of the rotations generated by the code shown
in Listing 11 . 10 .

r

z

y

x

z = f(r)

(Independent)

 Figure 11.14 Rotating v = f(u) about the z-axis

 Figure 11.15 Rotation of u 2

11.4 Surface Plots 271

 In Listing 11 . 10 :

 Lines 1–4: Set up the plaid of u , the independent variable for the
function, and u for the rotations.
 Lines 6–13: Compute the rotation about the x-axis. Notice that when
rotating about a specific axis, that axis must be treated separately;
the other two axes will always have the form of a polar-to-Cartesian
transformation. In rotating about the x-axis, since u is the
independent variable for our function, we only need to compute the
yy and zz values.
 Line 10: We use the fourth parameter to surf(...) to set the
direction of color variation.
 Lines 15–22: Compute the z-axis rotation. Some apparent sleight of
hand is necessary here. In this case, the axis containing the
independent variable is being rotated about the z-axis. Because the
radius of the rotated surface is the original independent variable,
 uu , we copy uu to the variable radius. Then we define xx together
with yy as the polar-to-Cartesian transformation to achieve the
rotation. In this case, the z value of the surface is f(u) , u 2 .

 Rotating Discrete Functions There is no need to restrict ourselves to
continuous functions as the profiles for bodies of rotation. Figure 11.16
shows the 2-D profile of a fictitious machine part and the picture created

 Listing 11 . 10 Rotating v = u 2 about the x and z axes

 1. facets = 100;
 2. u = linspace(0, 5, facets);
 3. th = linspace(0, 2*pi, facets);
 4. [uu tth] = meshgrid(u, th);

% rotate about the x-axis
 5. subplot(1, 2, 1)
 6. rr = uu.^2;
 7. xx = uu;
 8. yy = rr .* cos(tth);
 9. zz = rr .* sin(tth);
10. surf(xx, yy, zz, xx);
11. shading interp, axis tight
12. xlabel('x'), ylabel('y'), zlabel('z')
13. title('u^2 rotated about the x-axis')

% rotate about the z-axis
14. subplot(1, 2, 2)
15. rr = uu;
16. zz = rr.^2;
17. xx = rr .* cos(tth);
18. yy = rr .* sin(tth);
19. surf(xx, yy, zz);
20. shading interp, axis tight
21. xlabel('x'), ylabel('y'), zlabel('z')
22. title('u^2 rotated about the z-axis')

272 Chapter 11 Plotting

when that profile is rotated about the x-axis. The figure was generated by
the code shown in Listing 11 . 11 .

 In Listing 11 . 11 :

 Lines 1–9: Define and plot the initial 2-D profile.
 Lines 10–22: Perform the rotation about the x-axis. The only
unusual idea here is how to turn this discrete collection of points

 Figure 11.16 Rotation of an irregular shape

 Listing 11 . 11 Rotating an irregular shape

 1. u = [0 0 3 3 1.75 1.75 2 2 1.75 1.75 3 4 ...
 2. 5.25 5.25 5 5 5.25 5.25 3 3 6 6];
 3. v = [0 .5 .5 .502 .502 .55 .55 1.75 1.75 ...
 4. 2.5 2.5 1.5 1.5 1.4 1.4 ...
 5. .55 .55 .502 .502 .5 .5 0];
 6. subplot(1, 2, 1)
 7. plot(u, v, 'k')
 8. axis ([-1 7 -1 3]), axis equal, axis off
 9. title('2-D profile')
10. facets = 200;
11. subplot(1, 2, 2)
12. [xx tth] = meshgrid(u, linspace(0, 2*pi, facets));
13. rr = meshgrid(v, 1:facets);
14. yy = rr .* cos(tth);
15. zz = rr .* sin(tth);
16. surf(xx, yy, zz);
17. shading interp
18. axis square, axis tight, axis off
19. colormap bone
20. lightangle(60, 45)
21. alpha(0.8)
22. title('rotated object')

11.4 Surface Plots 273

into the equivalent of v = f(u) . Line 12 shows an elegant way to
solve this dilemma. After going through the meshgrid(..) to
produce a plaid of xx and tth , we run meshgrid(...) again, but
keeping only the first result, rr .

 Rotating about an Arbitrary Axis Bodies of rotation are not confined to
rotating about the x, y, or z axes. The simplest approach to rotating z = f(x)
about an arbitrary axis is as follows:

 ■ Calculate the matrix that will place your axis of rotation along the
x-axis (see Chapter 12)

 ■ Transform u and v with that rotation
 ■ Rotate the transformed u and v about the x-axis
 ■ Invert the transformation on the resulting surface

 11.4.5 Other 3-D Surface Plot Capabilities

 The MATLAB language also defines special-purpose functions to enhance
the quality of surface plots:

 ■ alpha(x) sets the transparency of the surfaces. 0<=x<=1 , where 0
means completely transparent and 1 (the default value) is
opaque. The options available can be studied with >> help
alpha .

 ■ contour(z) produces a contour plot of the plaid surface defined by
 z . The options available can be studied with >> help bar3 .

 ■ [x,y,z] = cylinder(n) constructs the meshgrid for a cylinder
with n facets in each direction. For more options, see >> help
cylinder .

 ■ [x,y,z] = ellipsoid(n) constructs the meshgrid for an ellipsoid
with n facets in each direction. For more options, see >> help
ellipsoid .

 ■ [x,y,z] = sphere(n) constructs the meshgrid for ansphere with n
facets in each direction. For more options, see >> help sphere .

 ■ meshc(x,y,z) makes a mesh plot with contours below. For more
options, see >> help meshc .

 ■ meshz(x,y,z) makes a mesh plot with vertical line extensions. For
more options, see >> help meshz .

 ■ surfc(x,y,z) makes a surface plot with contours below. For more
options, see >> help surfc .

 ■ surfz(x,y,z) makes a surface plot with vertical line extensions. For
more options, see >> help surfz .

 ■ waterfall(x,y,z) makes a mesh plot with vertical line extensions
only in the x direction. For more options, see >> help waterfall .

274 Chapter 11 Plotting

 11.4.6 Assembling Compound Surfaces

 We can assemble more complex solid bodies by constructing simple surfaces
and concatenating the data before submitting it to the rendering machine.
Shapes of considerable complexity can be assembled this way. Consider, for
example, the Klein bottle, a well-documented example of topological
curiosity. The particular example shown in Figure 11.17 was constructed by
building the individual components and then concatenating the arrays.

 The code is a little too complex to be included here, but can be found on
the companion Web site.

 Figure 11.17 The Klein bottle

 11.5 Manipulating Plotted Data

 Two new features introduced with MATLAB 7.6 (R2008a) allow you to
interact with the data presented in a plot. Brushing allows you to select
portions of the data presented in a plot and make changes to the values
presented. Linking allows you to connect the plotted data to the underlying
data source, so that when you make changes to the plotted data, these
changes are reflected in the data source. Whereas these tools allow the user
to change the appearance of data presentations interactively, a careful user
would return to the original tools that created the plots and explicitly insert
the logic that changes the appearance of the results. This provides a
traceable set of programs that show exactly how the data were generated.

 11.6 Engineering Example—Visualizing Geographic Data

 You have been given two files of data: atlanta.txt , which presents the
streets of Atlanta in graphical form, and ttimes.txt , which gives the travel
times between Atlanta suburbs and the city center. You have been asked to

11.6 Engineering Example—Visualizing Geographic Data 275

present these data sets in a manner that will help to visualize and validate
the data.

 11.6.1 Analyzing the Data

 First, we proceed to determine the nature of the data by opening the files
and examining their format and content.

 1. Determine the file format: the first step is to open the data files in a
plain text editor. The format appears to be consistent with that of a text
file delimited by tab characters. Since there are no strings in the file, it
should be suitable to be read using the built-in dlmread(...) function.

 2. Discern the street map file content: Table 11.1 shows the first few lines
of the file atlanta.txt simplified by omitting certain irrelevant
columns. The numbers in columns 3–6 are pairs, the first of the pair
being a large negative number, and the second a smaller positive
number. Assuming that each row of this file is a street segment, these
could be the x-y coordinates of the ends of a line. A little thought
confirms this guess when we realize that the latitude of Atlanta is −84°
429 relative to the Greenwich meridian, and its longitude is 33° 659—
clearly, the values in these columns are 1,000,000 times the latitude
and longitude of points within the city, probably each end of street
segments. Column 7 contains numbers mostly in the range 1–6, which
could indicate the type of street. We could explore this idea by
coloring each line according to that value.

 3. Discern the travel time file content: Table 11.2 shows the first few lines of
the file ttimes.txt simplified by omitting certain irrelevant columns. The

 Table 11.1 Street map data

 –84546100.00 33988160.00 –84556050.00 33993620.00 1.00 ...

 –84546080.00 33988480.00 –84558400.00 33995480.00 1.00 ...

 –84243880.00 33780010.00 –84249980.00 33800840.00 1.00 ...

 {etc}

 Table 11.2 Travel time data

 1 1 . . . – 8 4 5 7 5 7 2 5 3 3 5 5 4 5 7 3 1 4 . 3 4

 1 2 . . . – 8 4 5 6 9 6 1 2 3 3 5 5 4 5 7 3 0

 1 3 . . . – 8 4 5 6 3 4 9 9 3 3 5 5 4 5 7 3 0

 1 4 . . . – 8 4 5 5 7 3 8 7 3 3 5 5 4 5 7 3 0

 { etc}

276 Chapter 11 Plotting

same latitude/longitude values occur in columns 4 and 5, but they are
not repeated, suggesting that the data in this file are in a different form.
Examining the first two columns, the numbers in column 2 cycle
repeatedly from 1 to 75, with column 1 counting the number of cycles
up to 75. Furthermore, the values in column 5 are the same whenever
column 1 is the same, and the values in column 4 are the same
whenever the value in column 2 matches. This seems to be much like
the plaid that results from a meshgrid(...) function call. The values in
column 6 then become evident—they would be the z values of the
plaid, and it seems reasonable to assume that they represent the travel
time in minutes.

 11.6.2 Displaying the Data

 With this much understanding of the data sources, we proceed to solve the
problem of presenting the data. The script shown in Listing 11 . 12 shows the
code used to visualize these data files.

 Listing 11 . 12 Map data analysis

% draw the streets
 1. raw = dlmread('atlanta.txt');
 2. streets = raw(:,3:7);
 3. [rows,cols] = size(streets)
 4. colors = 'rgbkcmo';
 5. for in = 1:rows
 6. x = streets(in,[1 3])/1000000;
 7. y = streets(in,[2 4])/1000000;
 8. col = streets(in,5);
 9. col(col < 1) = 7;
10. col(col > 6) = 7;
11. plot(x,y,colors(col));
12. hold on
13. end

% plot the travel times
14. tt = dlmread('ttimes.txt');
15. [rows,cols] = size(tt)
16. for in = 1:rows
17. r = tt(in, 1); c = tt(in, 2);
18. xc(r,c) = tt(in, 4)/1000000;
19. yc(r,c) = tt(in, 5)/1000000;
20. zc(r,c) = tt(in, 6);
21. end
22. surf(xc, yc, zc)
23. shading interp
24. alpha(.5)
25. grid on
26. axis tight
27. xlabel('Longitude')
28. ylabel('Latitude')
29. zlabel('Travel Time (min)')
30. view(-30, 45)

11.6 Engineering Example—Visualizing Geographic Data 277

 In Listing 11 . 12 :

 Line 1: Reads the street map data.
 Lines 2–3: Extract the relevant columns and determine the size of the array.
 Line 4: Color symbols to use for the lines.
 Line 5: Traverses the rows of the file.
 Lines 6 and 7: Extract the longitude and latitude in degrees.
 Lines 8–10: Extract and limit the line colors.
 Lines 11 and 12: Plot the street lines on the same figure.
 Lines 14 and 15: Read the travel times.
 Line 16: Constructs the plaid by traversing the array.
 Line 17: Extracts the row and column numbers.
 Lines 18–20: Extract the plaid values.
 Lines 22–30: Plot and display the results.

 Figure 11.18 shows the resulting plot. As a credibility check, the plot has
been rotated to look straight down on the map. Rotate the plot to other view
angles to understand the 3-D nature of the information. The travel time
surface shows “valleys” of low travel times that follow the paths of the major
expressways through the city.

 Figure 11.18 Atlanta travel times

278 Chapter 11 Plotting

 Chapter Summary

 This chapter presented the principles and practice of plotting:

 ■ Basic 2-D line plots are accomplished by using plot(x,y) , where x is
the independent variable and y the dependent variable

 ■ 2-D parametric plots are accomplished by using plot(x,y) , where
both x and y are dependent on another independent variable

 ■ 3-D line and parametric plots are accomplished by using plot3(x,y,z)
 ■ Basic 3-D surface plots are accomplished by building a plaid using

 [xx yy] = meshgrid(x,y) , computing the zz layer as a function of
 xx and yy , and then plotting the surface using mesh(xx, yy, zz) or
 surf(xx, yy, zz)

 ■ Parametric surface plots, like parametric line plots, are achieved by
building the plaid with two independent variables and making xx ,
 yy , and zz functions of those independent variables

 ■ Bodies of rotation are a special case of parametric surface plots
where one of the independent variables is an angle with values
between 0 and 2p.

 Special Characters, Reserved Words, and Functions—2-D

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 axis(...) Freezes the current axis scaling for subsequent plots
or specifies the axis dimensions

 11.1.2

 bar Generates a bar graph 11.2.4

 barh Generates a horizontal bar graph 11.2.4

 clf Clears the current figure 11.1.1

 close all Closes all graphics windows 11.1.1

 colormap <spec> Specifies a sequence of colors to be used when a
cycle of color values is required

 11.1.2

 figure Opens a new figure window 11.1.1

 fill(x,y,n) Fills a polygon defined by x and y with color index n 11.2.4

 grid off Turns the grid off (default is on) 11.1.2

 grid on Adds a grid to the current and all subsequent graphs
in the current figure

 11.1.2

 hist Generates a histogram 11.2.4

 hold off Sets a flag to erase figure contents before adding
new information (the default state)

 11.1.2

Special Characters, Reserved Words, and Functions—3-D 279

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 hold on Sets a flag not to erase figure contents before
adding new information

 11.1.2

 legend(ca) Adds a legend to a graph 11.1.2

 loglog Generates an x-y plot, with both axes scaled
logarithmically

 11.2.4

 pie Generates a pie chart 11.2.4

 plot(...) Creates an x-y plot 11.1.2

 polar Creates a polar plot 11.2.4

 semilogx Generates an x-y plot, with the x-axis scaled
logarithmically

 11.2.4

 semilogy Generates an x-y plot, with the y-axis scaled
logarithmically

 11.2.4

 shading <spec> Shades a surface according to the specification 11.1.2

 subplot(plts, n) Divides the graphics window into sections available
for plotting

 11.1.1

 text(x,y,{z,} str) Adds a text string to a graph 11.1.2

 title(str) Adds a title to a plot 11.1.2

 view(az,el) Sets the angle from which to view a plot 11.1.2

 xlabel(str) Adds a label to the x-axis 11.1.2

 ylabel(str) Adds a label to the y-axis 11.1.2

 zlabel(str) Adds a label to the z-axis 11.1.2

 Special Characters, Reserved Words, and Functions—3-D

 Special Characters,

Reserved Words, and

Functions

Description

Discussed in

This Section

 alpha(x) Sets the transparency of the surface 11.3.3

 bar3 Generates a 3-D bar graph 11.3.3

 barh3 Generates a horizontal 3-D bar graph 11.3.3

 contour(xx, yy, zz) Generates a contour plot 11.4.5

 cylinder(n) Constructs the plaid for a cylinder with n facets 11.4.5

 ellipsoid(n) Constructs the plaid for an ellipsoid with n facets 11.4.5

 lightangle(az,el) Sets the angle of a light source, angles in degrees 11.4.5

 mesh(xx,yy,zz) Generates a mesh plot of a surface 11.4.1

280 Chapter 11 Plotting

 Special Characters,

Reserved Words, and

Functions

Description

Discussed in

This Section

 meshc(xx,yy,zz) Generates a mesh plot of a surface with a contour
below it

 11.4.5

 meshz(xx,yy,zz) Generates a mesh plot of a surface with vertical
line extensions

 11.4.5

 [rr cc] =
meshgrid(r,c)

 Creates a plaid for 3-D plots 11.4.1

 pie3 Generates a 3-D pie chart 11.3.3

 plot3(...) Generates a 3-D line plot 11.3.1

 sphere(n) Example function used to demonstrate graphing 11.4.5

 surf(xx,yy,zz) Generates a surface plot 11.4.1

 surfc(xx,yy,zz) Generates a combination surface and contour plot 11.4.5

 waterfall(xx,yy,zz) Generates a mesh plot of a surface with vertical
line extensions in the x direction only

 11.4.5

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. The plot(...) function needs only one parameter to function
correctly.

 2. Plot enhancement functions may be called before or after the
function that plots the data.

 3. You must provide plots for all the specified sub-plot areas.

 4. meshgrid(...) accepts vectors of length m and n that bound the
edges of the plaid and produces two arrays sized m × n giving the
complete plaid.

 5. To construct a parametric surface, both independent parameters
must be angles.

 6. When rotating a function about the y-axis, the variables along the x
and y axes are computed from a classic polar-to-Cartesian
conversion.

 7. To compute a body of rotation, the curve must be a continuous,
differentiable function.

 8. Bodies of rotation are confined rotating about the x, y, or z axes.

Programming Projects 281

 Fill in the Blanks

 1. Each time figure is called, a(n) ___________ is made available, with
figure number _____________.

 2. The fundamental container for plotting is a(n) _____________.

 3. ______________ provide a key to the various data plotted on a
graph.

 4. N = HIST(Y,M), bins the elements of Y into _________________
containers and returns the number of elements in each container.

 5. We construct a sphere by wrapping a(n) ___________with two
_________________ as the independent variables around the sphere.

 6. Within the current figure, you can place multiple plots with the
___________ command.

 Programming Projects

 1. Write a script that creates four sub-plots in two rows each with two
columns. Each plot should have an appropriate title and labels on
the x and y axes. The plot in the top left sub-plot should be y = sin(u)
for values of theta from –2π to 2π. Subsequent plots going across the
rows before going down the columns should be of y = sin(0* u),
y = sin(2* u), etc., to y = sin(8* u) over the same range of u.

 2. Your task is to create a script called squarePlot. This script should
do the following:
 a. Ask the user to enter in a positive number, N, greater than 2.
 b. Calculate the square of each number from 1 to N. Each of these

values should be stored into a vector named sqVector.
 c. Display a stem plot with the title ‘Square Function’, where the

squares for each of the numbers are displayed.
 d. Add to this plot a continuous linear line that follows the equation

y = log(x2) with x values from 1 to N.
 e. Since the numbers will have different magnitudes, use plotyy to

plot the values on the right hand axis.

 3. Write a function called sineGraph that graphs a sine function four
times between the interval [start,stop] on the same graph. The
 start and stop values should be parameters of the function. The
number of points per interval will vary. More specifically:
 • The first time you graph the sine function, you should have two

evenly spaced points, start and stop
 • The next plot should have four evenly spaced points— start ,

 stop, and two points between them

282 Chapter 11 Plotting

 • The third should have eight evenly spaced points and the fourth
256 points.

 • Make sure to add a legend and a title— 'Multiple graphs on one
plot' —and to label the axes. Make sure that each line has a
different color.

 • The function should return the x and y values for the 256 point set.

 Test your function with the following intervals [0, p /2] , [0,2 p] ,
 [0,4 p] , [0,16 p]

 4. This program compares different 3-D plots of the 2-D exponential
function. There should be two subplots.
 a. On the left side, plot the function f(x,y)=x2+y in the range x =

-2*p:2*p and y= -2*p:2*p using mesh and name your plot
‘Mesh Plot’.

 b. On the right side, plot the same function, in the same range, but
using surf. Name your plot 'Surf Plot’ . You should label all
axes and title your plot .

 5. Georgia Tech wants to tear down the Campanile and build a new
one that is ridiculously tall. However, before it is built, it needs you
to model it. Using the equation z = 1/(x^2 + y^2) as the model,
write a script that will plot the Campanile. Your domain should be
 -.75 <= x <=.75 and -.75 <= y <= .75 using an increment of .05 for
each range. Set your axes such that all of the x, y domain is seen and
z runs from 0 to 300. Use surf(...) to plot your image.

 6. You have a Microsoft Excel sheet which stores numerical as well as
text data. There are two columns and each column contains the same
number of elements. The first row contains the titles of the two
columns. The first column has natural numbers 'i' up to 15, and the
second column has the corresponding factorials. Create a script called
excelSheetPlot that plots the data in this file. Read the numbers from
the file and make a plot of the 'i' versus fact(i)values. Title your
plot ‘excelSheetPlot’ and use the first row data to label the x and y
axes. For example, the spreadsheet might look like:

[inputData, titleText] = xlsread('TestData.xls',

'Factorial');

i = inputData(:,1);

fact = inputData(:,2);

figure;

plot(i,fact,'-');title('excelSheetPlot');xlabel(titleText(1));

ylabel(titleText(2));

 7. You just realized that February 14th has passed and you haven’t
gotten anything for your Valentine. Since your date is a CS major,

Programming Projects 283

sending the lucky person a coded heart seems like a cool and sincere
thing to do. Make sure that you follow each and every instruction
carefully, or your heart will end up broken. Trust us.

 You are going to write a script to draw this heart using the
following steps:
 a. Create a plaid [xx, yy] using x values with range (0 to 2p, with an

interval 0.05p) and y values with the range (0 to 1, with an
interval 0.05).

 b. Define the following variables:
c=[0.1 + 0.9*(p-abs(xx - p))/p] .* yy

aa = c .* cos(xx)

bb = c.* sin(xx)

zz = (-2)*aa.^3 + (3/2)*c.^2 + 0.5

 c. Plot zz against aa and bb using the surf() function with
interpolated colors.

 8. Write a function named plotRotation that takes in two vectors, x
and z , and a vector th . Your function should plot three plots in the
same figure by using the subplot command. The figure should have
 1 × 3 plots. The plots should be as follows:
 a. z vs. x, titled 'z vs. x' . Note that you will have to use plot3() to

correctly plot this in the x-z plane rather than the x-y plane a
 plot() would do. Also, you should use view(0, 0) to make the
plot produced by plot3() show up as 2-D.

 b. z vs. x rotated around the x-axis using mesh() with flat shading
and a square axis, titled 'z vs. x about x using mesh' .

 c. z vs. x rotated around the z-axis using surf() with interp
shading and a square axis, titled 'z vs. x about z using surf' .

 For plots b and c, the input vector th should be used for your
independent vector theta, which is used to convert from polar-to-
Cartesian coordinates. Don’t forget to title and label each of the
three plots.

This page intentionally left blank

 Chapter Objectives

 This chapter shows matrices as logical extensions of arrays. You will
learn about two specialized operations performed with matrices:

 ■ Multiplication for coordinate rotation

 ■ Division for solving simultaneous equations

 Although the matrix operations that are the subject of this chapter
can be performed on pairs of vectors or arrays that meet certain cri-
teria, when using these operations, we tend to refer to the data
objects as matrices. In most mathematical discussions, the words
“matrix” and “array” can be used interchangeably, and rightly so,
because they store data in exactly the same form. Moreover, almost
all of the operations we can perform on an array can also be per-
formed on a matrix—logical operations, concatenation, slicing, and
most of the arithmetic operations behave identically. The fact that
some of the mathematical operations are defined differently gives us
a chance to think about an important concept that is usually well
hidden within the MATLAB language definition.

 Matrices
 C H A P T E R 1 2

 12.1 Concept: Behavioral
Abstraction

 12.2 Matrix Operations
 12.2.1 Matrix

Multiplication
 12.2.2 Matrix Division
 12.2.3 Matrix

Exponentiation
 12.3 Implementation
 12.3.1 Matrix

Multiplication
 12.3.2 Matrix Division

 12.4 Rotating Coordinates
 12.4.1 2-D Rotation
 12.4.2 3-D Rotation

 12.5 Solving Simultaneous
Linear Equations

 12.5.1 Intersecting Lines
 12.6 Engineering Examples
 12.6.1 Ceramic

Composition
 12.6.2 Analyzing an

Electrical Circuit

285

286 Chapter 12 Matrices

 12.1 Concept: Behavioral Abstraction

 Recall the following concepts:

 ■ Abstraction is the ability to ignore specific details and generalize the
description of an entity

 ■ Data abstraction is the specific example of abstraction that we first
considered whereby we could treat vectors of data (and later other
collections like structures and arrays) as single entities rather than
enumerating their elements individually

 ■ Procedural abstraction are functions that collect multiple operations
into a form; once they are developed, we can overlook the specific
details and treat them as a “black box,” much as we treat built-in
functions

 Behavioral abstraction combines data and procedural abstraction,
encapsulating not only collections of data, but also the operations that are
legal to perform on that data. One might argue that this is a new, irrelevant
concept best ignored until “we just have to!” However, consider the rules
we have had to establish for what we can and cannot do with data collections
we have seen so far. For example, am I able to add two arrays together? Yes,
but only if they have the same number of rows and columns, or if one of
them is scalar. Can I add two character strings? Almost the same answer,
except that each string is first converted to a numerical quantity and the
result is a vector of numbers and not a string. Can I add two cell arrays? No.

 So at least some, and maybe all, data collections also “understand” the
set of operations that are permitted on the data. This encapsulation of data
and operations is the essence of behavioral abstraction. Therefore, we
distinguish arrays from matrices not by the data they collect, but by the
operations that are legal to perform on them.

 12.2 Matrix Operations

 The arithmetic operations that differ between arrays and matrices are
multiplication, division, and exponentiation.

 12.2.1 Matrix Multiplication

 Previously, when we considered multiplying two arrays, we called this
scalar multiplication, and it had the following typical array operation
characteristics:

 ■ Either the two arrays must be the same size, or one of them must be
scalar

 ■ The multiplication was indicated with the .* operator

12.2 Matrix Operations 287

 ■ The result was an array with the same size as the larger original
array

 ■ Each element of the result was the product of the corresponding
elements in the original two arrays

 This is best illustrated in Figure 12.1 . Scalar division and exponentiation
have the same constraints.

 Matrix multiplication, on the other hand, performed using the normal *
operator, is an entirely different logical operation, as shown in Figure 12.2 .
The logical characteristics of matrix multiplication are as follows:

 ■ The two matrices do not have to be the same size. The requirements
are either:
 • One of the matrices is a scalar, in which case the matrix operation

reduces to a scalar multiply.
 • The number of columns in the first matrix must equal the

number of rows in the second. We refer to these as the inner
dimensions. The result is a new matrix with the column count of
the first matrix and the row count of the second.

 ■ If, as illustrated, A is an m 3 n matrix and B is an n 3 p matrix, the
result of A * B is an m 3 p matrix.

 ■ The item at (i, j) in the result matrix is the sum of the scalar
product of the ith row of A and the jth column of B .

amn x bmn

a2n x b2n

a1n x b1n

am2 x bm2

a22 x b22

a12 x b12

am1 x bm1

a21 x b21

a11 x b11 . . .

. . .

. . .

. .
 .

.

bmnbm2bm1

.* B(mxn) =

b2nb22b21

b1nb12b11 . . .

. . .

. . .

. .
 .

.

. .
 .

.

amnam2am1

A(mxn) =

a2na22a21

a1na12a11 . . .

. . .

. . .

. .
 .

.

. .
 .

.

 Figure 12.1 Matrix dot multiply

288 Chapter 12 Matrices

 ■ Whereas with scalar multiplication A .* B gives the same result as
 B .* A , this is not the case with matrix multiplication. In fact, if A *
B works, B * A will not work unless both matrices are square, and
even then the results are different. (Proof of this can be derived
immediately from Figure 12.3 by eliminating the third row and
column and exchanging a for b . All four terms of the result of A * B
are different from B * A .)

 ■ Whereas with scalar multiplication the original array A can be
recovered by dividing the result by B , this is not the case with
matrix multiplication unless both matrices are square.

 ■ The identity matrix, sometimes given the symbol In , is a square
matrix with n rows and n columns that is zero everywhere except
on its major diagonal, which contains the value 1. In has the special
property that when pre-multiplied by any matrix A with n columns,
or post-multiplied with any matrix A with n rows, the result is A . We
will need this property to derive matrix division below. (The
built-in function eye(...) generates the identity matrix.)

 Figure 12.3 illustrates the mathematics for the case where a 3 3 2 matrix is
multiplied by a 2 3 3 matrix, resulting in a 3 3 3 matrix.

m

n

m=

pp

*
n

 Figure 12.2 Mechanics of matrix multiplication

(a31 x b13 + a32 x b23)

(a21 x b13 + a22 x b23)

(a11 x b13 + a12 x b23)

(a31 x b12 + a32 x b22)

(a21 x b12 + a22 x b22)

(a11 x b12 + a12 x b22)

(a31 x b11 + a32 x b21)

(a21 x b11 + a22 x b21)

(a11 x b11 + a12 x b21)

* B(mxn) =

b23b22b21

b13b12b11

am2am1

A(mxn) = a22a21

a12a11

 Figure 12.3 Matrix multiplication

12.3 Implementation 289

 12.2.2 Matrix Division

 Matrix division is the logical process of reversing the effects of a matrix
multiplication. The goal is as follows: given A n3n , B n3p , and C n3p , where
 C = A * B , we wish to define the mathematical equivalent of C/A that will
result in B .

 Since C = A * B , we are actually searching for some matrix K n3n by which
we can multiply each side of the above equation:

K * C = K * A * B

 This multiplication would accomplish the division we desire if K * A
were to result in In , the identity matrix. If this were the case, pre-
multiplying C by K would result in In * B , or simply B by the definition of
 In above. The matrix K is referred to as the inverse of A , or A-1 . The algebra
for computing this inverse is messy but well defined. In fact, Gaussian
Elimination to solve linear simultaneous equations accomplishes the
same thing. The MATLAB language defines both functions (inv(A)) and
operators (“back divide,” \) that accomplish this. However, two things
should be noted:

 ■ This inverse does not exist for all matrices—if any two rows or
columns of a matrix are linearly related, the matrix is singular and
does not have an inverse

 ■ Only non-singular, square matrices have an inverse (just as a set of
linear equations is soluble only if there are as many equations as
there are unknown variables)

 12.2.3 Matrix Exponentiation

 For completeness, we mention here that matrix operations include
exponentiation. However, this does not suggest that one would encounter
 An3 n^Bn3 n in the scope of our applications. Rather, our usage of matrix
exponentiation will be confined to Ak where k is any non-zero integer value.
The result for positive k is accomplished by multiplying A by itself k times
(using matrix multiplication). The result for negative k is accomplished by
inverting A-k . (There is, in fact, meaning in matrix exponentials with non-
scalar exponents, but this involves advanced concepts with eigen values
and eigenvectors and is beyond the scope of this text.)

 12.3 Implementation

 In this section, we see how MATLAB implements matrix multiplication and
division. However, since applications that require matrix exponentiation
A k where k is anything but a scalar quantity are beyond the scope of this
text, we will not look at its implementation in MATLAB.

290 Chapter 12 Matrices

 12.3.1 Matrix Multiplication

 Matrix multiplication is accomplished by using the “normal” multiplication
symbol, as illustrated in Exercise 12.1 .

 In Exercise 12.1 we make the following observations:

 ■ Entry 1 creates a 2 3 3 matrix, A
 ■ Entry 2 creates a 3 3 1 matrix, B , a column vector
 ■ Entry 3 indicates that this multiplication is legal because the

columns in A match the rows in B
 ■ Entry 4 shows that, likewise, it is legal to multiply a 1 3 2 vector by

a 2 3 3 matrix
 ■ Entry 5 creates an identity matrix
 ■ Entry 6 shows that pre-multiplying A by this is legal because the

inner dimensions match

 Exercise 12.1 Matrix multiply

1. >> A = [2 5 7; 1 3 42]
A =
 2 5 7
 1 3 42
2. >> B = [1 2 3]'
B =
 1
 2
 3
3. >> A * B
ans =
 33
 133
4. >> (1:2) * A
ans =
 4 11 91
5. >> I2 = eye(2)
I2 =
 1 0
 0 1
6. >> I2 * A
ans =
 2 5 7
 1 3 42
7. >> A*I2
??? Error using ==> mtimes
Inner matrix dimensions must agree.
8. >> A*eye(3)
ans =
 2 5 7
 1 3 42

 Exercise 12.2 Matrix divide

>> A = magic(3)
A =
 8 1 6
 3 5 7
 4 9 2
>> B = [1 26 24; 9 22 20; 5 12 16]
B =
 1 26 24
 9 22 20
 5 12 16
>> AB = A * B
AB =
 47 302 308
 83 272 284
 95 326 308
>> BA = B * A
BA =
 182 347 236
 218 299 248
 140 209 146

12.3 Implementation 291

 ■ Entry 7 shows that post-multiplying A by I2 does not work because
the inner dimensions do not match

 ■ Entry 8 uses I3 to post-multiply legally

 12.3.2 Matrix Division

 Matrix division is accomplished in a number of ways, all of which appear to
work, but some give the wrong answer. Returning to the division problem
described in Section 12.2.2 , we know that A is a square matrix of side n,
and B and C have n rows, and C = A * B . If we are actually given the matrices
A and B , we can compute B in one of the following ways:

 ■ B = inv(A) * C —using the MATLAB inv(...) function to
compute the inverse of B

 ■ B = A \ C —“back dividing” B into C to produce the same result
 ■ B = C / A —apparently performing the same operation, but giving

different answers

 The order in which the matrix multiply is
done affects the value of the result;
therefore, care must be taken to ensure that
the appropriate inversion or division is
used. Study the results of Exercise 12.2
carefully.

 According to the MATLAB language help system, the
third way really computes (C‘\A’)’, which can only
work if C is also square.

 Technical Insight 12.1

continued on next page

292 Chapter 12 Matrices

 In Exercise 12.2 we make the following observations:

 Entries 1 and 2 construct two 3 3 3 matrices, A and B
 Entries 3 and 4 pre-multiply and post-multiply B and A ; recall that
we expect this to produce different answers
 Entry 5 shows that since we defined inv(B) as that function that
produces the result B*inv(B)=I , this should produce a matrix with
the same values as A
 Entry 6 reveals that normal division by B should also produce a
matrix with the same values as A
 Entry 7 shows that back dividing B into BA should also produce a
matrix equal to A
 Entry 8 verifies that dividing BA by B works but does not return the
matrix A

>> AB * inv(B)
ans =
 8 1 6
 3 5 7
 4 9 2
>> AB / B
ans =
 8 1 6
 3 5 7
 4 9 2
>> B \ BA
ans =
 8 1 6
 3 5 7
 4 9 2
>> BA / B
ans =
 -4.3000 29.2000 -15.3000
 -9.9667 27.5333 -3.9667
 -5.7333 20.7667 -8.2333

 12.4 Rotating Coordinates

 A common use for matrix multiplication is for rotating coordinates in two
or three dimensions. Previously we have seen the ability to rotate a complete
picture by changing the viewing angle. We can move and scale items on a
plot by adding coordinate offsets or multiplying them by scalar quantities.
However, frequently the need arises to rotate the coordinates of a graphical
object by some angle. We can use matrix multiplication to rotate individual
items in a picture in two or three dimensions.

12.4 Rotating Coordinates 293

 12.4.1 2-D Rotation

 The mathematics implementing rotation in two dimensions is relatively
straightforward, as shown in Figure 12.4 . If the original point location P is
(x, y) and you wish to find the point P* (x*, y*) that is the result of rotating P
by the angle u about the origin of coordinates, the mathematics are as
follows:

x* = x cosu − y sinu
y* = x sinu + y cosu

 which can be expressed as the matrix equation:

P* = A * P

 where A is found by:

A = [cosu −sinu
 sinu cosu]

 To rotate the x-y coordinates of a graphic object in the x-y plane about some
point, P, other than the origin, you would do as follows:

 1. Translate the object so that P is at the origin by subtracting P from
all the object’s coordinates

 2. Perform the rotation by multiplying each coordinate by the rotation
matrix shown above

 3. Translate the rotated object back to P by adding P to all the rotated
coordinates

 Rotating a Line Listing 12 . 1 illustrates a simple script to rotate a line about
the origin.

y

(x*,y*)

(x,y)

R

x
α

 Figure 12.4 Rotating Cartesian coordinates

294 Chapter 12 Matrices

 In Listing 12 . 1 :

 Lines 1 and 2: Considering the form of the rotation equations, we
need to define the points where the x values are in the first row and
the y values are in the second row.
 Line 3: Plots the line in its original location from (3, 1) to (10, 3).
 Lines 4 and 5: Fix the axes at a suitable size.
 Line 6: Iterates across a selection of angles (in radians).
 Line 7: Computes the rotation matrix.
 Line 8: Rotates the original line by the current angle.
 Line 9: Plots the rotated line.

 Figure 12.5 shows the plot resulting from this script.

 Listing 12 . 1 Script to rotate a line

 1. pts = [3, 10
 2. 1, 3];
 3. plot(pts(1,:), pts(2,:))
 4. axis ([0 10 0 10]), axis equal
 5. hold on
 6. for angle = 0.05:0.05:1
 7. A = [cos(angle), -sin(angle); sin(angle), cos(angle)];
 8. pr = A * pts;
 9. plot(pr(1,:), pr(2,:))
10. end

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

 Figure 12.5 Line rotations

12.4 Rotating Coordinates 295

 Twinkling Stars As a second example, consider the problem of simulating
twinkling stars. One way to accomplish this is to draw two triangles for
each star rotating in opposite directions. The script shown in Listing 12 . 2
accomplishes this.

 In Listing 12 . 2 :

 Line 1: Sets the number of stars and the initial rotation angle.
 Lines 2–6: Establish the location, size, and rotation speed of each star.
 Lines 7–19: Continue drawing until interrupted by Ctrl-C.
 Lines 8–13: Draw each star at the current rotation (see Listing 12 . 3
for the star(...) function).
 Line 14: Chooses a color map with yellow as the first color.
 Lines 15 and 16: Show the normal display environment setup.
 Line 17: Updates the angle of rotation.
 Line 18: Waits 1/10 sec for the figure to be displayed. Without this,
the computation would be continuous and the user would never
see the result.

 In Listing 12 . 3 :

 Line 1: Draws one star at location [pt(1), pt(2)] with scale sc ,
rotation speed v , and angle th .
 Lines 2–4: Invoke the helper function triangle(...) to draw two
triangles rotating in opposite directions.
 Line 6: Function to draw one triangle with the following parameters:
 up , with values 1 for upright and -1 for point down; th , the scaled

 Listing 12 . 2 Simulating stars

 1. nst = 20; th = 0;
 2. for ndx = 1:nst
 3. pos(ndx,:) = rand(1,2)*10;
 4. scale(ndx) = rand(1,1) * .9 + .1;
 5. rate(ndx) = rand(1,1) * 3 + 1;
 6. end
 7. while true
 8. for str = 1:nst
 9. star(pos(str,:), ... % location
10. scale(str), ... % scale
11. th, ... % basic angle
12. rate(str)) % angle multiplier
13. end
14. colormap autumn
15. axis equal; axis([−.5 10.5 −.5 10.5])
16. axis off; hold off
17. th = mod(th + .1, 20*pi);
18. pause(0.1)
19. end

296 Chapter 12 Matrices

rotation angle; and pt and sc , which are passed directly through
from the star(...) function.
 Lines 7 and 8: Are coordinates of an equilateral triangle.
 Line 9: Computes the rotation matrix and applies the scaling
factor.
 Line 10: Rotates and scales the points of the triangle.
 Lines 11 and 12: Call the function fill(...) to fill the triangle,
offsetting the x and y coordinates by the original location of the
triangle, and scaling y by the up multiplier to invert the triangle if
necessary.

 The results of this script are shown in Figure 12.6 .

 12.4.2 3-D Rotation

 The mathematics implementing rotation in three dimensions is a natural
extension of the 2-D rotation case. We present here a simple way to make
this extension. The 2-D rotation in Section 12.4.1 that rotates by the angle
u in the x-y plane is actually rotating about the z-axis. If P* and P are now
3-D coordinates, we can rotate P by an angle u about the z-axis with the
equation:

P* = R z * P

 where R z is computed as

Rz = [cosu, -sinu, 0
 sinu, cosu, 0
 0, 0, 1]

 Listing 12 . 3 Drawing one star

 1. function star(pt, sc, v, th)
% draw a star at pt(1), pt(2),
% scaled with sc, at angle v*th

 2. triangle(1, v*th, pt, sc)
 3. hold on
 4. triangle(-1, v*th, pt, sc)
 5. end
 6. function triangle(up, th, pt, sc)
 7. pts = [−.5 .5 0 −.5; % x values
 8. −.289 −.289 .577 −.289]; % y values

% rotation matrix
 9. A = sc * [cos(th), -sin(th); sin(th), cos(th)];
10. thePts = A * pts;
11. fill(thePts(1,:) + pt(1), ...
12. up*thePts(2,:) + pt(2), 1);
13. end

12.4 Rotating Coordinates 297

 Similarly, we can develop matrices R x and R y that rotate about the x and y
axes by angles f and c, respectively.

 Rx = [1, 0, 0
 0, cosf, -sinf
 0, sinf, cosf]
 Ry = [cosc, 0, sinc
 0, 1, 0
 -sinc, 0, cosc]
 P* = Rx * Ry * Rz * P

 An example of a script to rotate the solid cube drawn in Chapter 11 is
shown in Listing 12 . 4 . The major problem with rotating solid objects is that
the coordinates of the object are defined as arrays of points. However, the
rotation matrices need each set of coordinates in single rows. To accomplish
this, we will use the reshape(...) function to transform the coordinates to
and from the row vectors necessary for the coordinate rotation.

 In Listing 12 . 4 :

 Lines 1–12: Build the coordinates of the cube centered at the origin.
 Lines 13 and 14: Determine the length of the linearized row vector
for the reshape(...) function.
 Lines 15 and 16: Set up the three rotation angle parameters—the
initial values and the increments.
 Lines 17 and 18: Repeat the drawing loop until the variable go is
reset.

 Figure 12.6 Stars

298 Chapter 12 Matrices

 Lines 19–21: Draw one cube not rotated four units down the x-axis.
 Lines 22–30: Set up the rotation matrices.
 Lines 31–33: Reshape the x, y, and z arrays into linear form.
 Line 34: Performs the rotation.

 Listing 12 . 4 Rotating a solid cube

 1. xx = [0 0 0 0 0;
 2. -1 -1 1 1 -1;
 3. -1 -1 1 1 -1;
 4. 0 0 0 0 0]
 5. yy = [0 0 0 0 0;
 6. -1 1 1 -1 -1;
 7. -1 1 1 -1 -1;
 8. 0 0 0 0 0]
 9. zz = [1 1 1 1 1;
10. 1 1 1 1 1;
11. -1 -1 -1 -1 -1;
12. -1 -1 -1 -1 -1]
13. [r c] = size(xx);
14. ln = r*c; % length of reshaped vector
15. th = 0; ph = 0; ps = 0;
16. dth = 0.05; dph = 0.03; dps = 0.01;
17. go = true
18. while go
19. surf(xx+4, yy, zz)
20. shading interp; colormap autumn
21. hold on; alpha(0.5)
22. Rz = [cos(th) -sin(th) 0
23. sin(th) cos(th) 0
24. 0 0 1];
25. Ry = [cos(ph) 0 -sin(ph)
26. 0 1 0
27. sin(ph) 0 cos(ph)];
28. Rx = [1 0 0
29. 0 cos(ps) -sin(ps)
30. 0 sin(ps) cos(ps)];
31. P(1,:) = reshape(xx, 1, ln);
32. P(2,:) = reshape(yy, 1, ln);
33. P(3,:) = reshape(zz, 1, ln);
34. Q = Rx*Ry*Rz*P;
35. qx = reshape(Q(1,:), r, c);
36. qy = reshape(Q(2,:), r, c);
37. qz = reshape(Q(3,:), r, c);
38. surf(qx, qy, qz)
39. shading interp
40. axis equal; axis off; hold off
41. axis([-2 6 -2 2 -2 2])
42. lightangle(40, 65); alpha(0.5)
43. th = th+dth; ph = ph+dph; ps = ps+dps;
44. go = ps < pi/4
45. pause(0.03)
46. end

12.5 Solving Simultaneous Linear Equations 299

 Lines 35–37: Recover the original array shapes.
 Lines 38–42: Draw the rotated cube.
 Line 43: Updates the rotation angles.
 Line 44: Shows the terminating condition.
 Line 45: Pauses to give the figure time to draw.

 The results after running this script are shown in Figure 12.7 . Notice that
the mechanization of the top face has caused a “wrapped parcel” effect on
the light reflections off that surface.

 12.5 Solving Simultaneous Linear Equations

 A common use for matrix division is solving simultaneous linear equations.
To be solvable, simultaneous linear equations must be expressed as N
independent equations involving N unknown variables, xi. They are
usually expressed in the following form:

 A 11 x 1 1 A 12 x 2 1 ... 1 A 1N x N 5 c 1
 A 21 x 1 1 A 22 x 2 1 ... 1 A 2N x N 5 c 2

 A N1 x 1 1 A N2 x 2 1 ... 1 A NN x N 5 c N

 In matrix form, they can be expressed as follows:

AN3N 5 XN31 5 CN31

 from which, since all of the values in A and C are constants, we can
immediately solve for the column vector X by back division:

X 5 A\C

 or by using the matrix inverse function:

X 5 inv(A) * C

 Figure 12.7 Solid cubes

300 Chapter 12 Matrices

 12.5.1 Intersecting Lines

 A typical example of a simultaneous equation problem might take the following
form. Consider two straight lines on a plot with the following general form:

A11 x 1 A 12y 5 c 1
A21 x 1 A 22y 5 c 2

 These lines intersect at some point P (x, y) that is the solution to both of
these equations. The equations can be rewritten in matrix form as follows:

A * V 5 c

 where c is the column vector [c 1 c 2]' and V is the required result, the column
vector [x y] '. The solution is obtained by matrix division as follows:

V 5 A \ c

 Recall that back divide, like the inv(...) function, will fail to produce a
result if the matrix is singular, that is, has two rows or columns that have a
linear relationship. In the specific example of two intersecting lines, this
singularity occurs when the two lines are parallel, in which case there is no

 Listing 12 . 5 Plotting line intersections

% equations are y = m1 x + c1
% y = m2 x + c2
% in matrix form:
% [-m1 1; * [xp; = [c1
% -m2 1] yp] c2]

 1. ax = [-0.5 6]; ay = [-4.5 18];
% plot the two lines

 2. m1 = 3; c1 = -2;
 3. y1 = m1*ax + c1;
 4. m2 = -2; c2 = 9;
 5. y2 = m2*ax + c2;
 6. plot(ax, y1)
 7. hold on
 8. plot(ax, y2, 'b—')

% solve for the intersection point
 9. A = [-m1 1; -m2 1];
10. c = [c1; c2];
11. P = A\c;

% draw intersection identification lines
12. ix = P(1); iy = P(2);
13. plot([ix ix], [0 iy*1.2], 'r:')
14. plot([0 ix*1.2],[iy iy], 'r:')

% draw the axes
15. plot(ax, [0 0], 'k');
16. axis([ax ay])
17. plot([0 0], ay, 'k');
18. legend({'Line 1','Line 2','Intersect'}, ...
19. 'Location','NorthWest')

12.6 Engineering Examples 301

point of intersection. Listing 12 . 5 shows the solution to a pair of simultaneous
equations.

 In Listing 12 . 5 :

 Line 1: Sets the x and y limits of the plot.
 Lines 2–8: Plot the original lines.
 Line 9: Sets the simultaneous equation matrix.
 Line 10: Shows the right-hand side of the equation.
 Line 11: Solves the linear equations—P(1) is the x value; P(2) is the y
value.
 Lines 12–14: Plot the lines identifying the intersection point.
 Lines 15–17: Plot the axes.
 Lines 18–19: Finish the plot.

 Figure 12.8 shows the result of this script.

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8

10

12

14

16

18
Line 1
Line 2
Intersect

 Figure 12.8 Lines intersecting

 12.6 Engineering Examples

 The following examples illustrate applications of the matrix capabilities
discussed in this chapter.

 12.6.1 Ceramic Composition
 Industrial ceramics plants require mixtures with precise formulations in
order to produce products of consistent quality. For example, a factory

302 Chapter 12 Matrices

might require 100 kg of a mix consisting of 67% silica, 5% alumina, 2%
calcium oxide, and 26% magnesium oxide. However, the raw material
provided is not pure quantities of these materials. Rather, they are
delivered as batches of material that consist of the required components
in different proportions. Each batch of raw materials is analyzed to
determine their composition, and we will need to do the analysis to
determine the proportions of the raw materials to mix in order to
accomplish the appropriate formulation. The raw materials we will use
here are feldspar, diatomite, magnesite, and talc. Table 12.1 illustrates a
typical analysis of the composition of these compounds.

 For example, if we mixed Wf kg of feldspar, Wd kg of diatomite, Wm kg of
magnesite, and Wt kg of talc, the amount of silica would be 0.695 Wf 1
0.897 Wd 1 0.067 Wm 1 0.692 Wt. Repeating this equation for the other
components produces a matrix equation that reduces to:

C = A * W

 where C is the required composition of the resulting mix, A is a 4 3 4
matrix showing the results of analyzing the four raw materials, and W is
the proportions in which should we mix the raw material to produce the
desired result. We find the appropriate amounts of the raw material by
solving these equations:

W = A\B

 A script that works this problem is shown in Listing 12 . 6 .

 Table 12.1 Compound compositions

 Silica Alumina CaO MgO

 Feldspar 0.6950 0.1750 0.0080 0.1220

 Diatomite 0.8970 0.0372 0.0035 0.0623

 Magnesite 0.0670 0.0230 0.0600 0.8500

 Talc 0.6920 0.0160 0.0250 0.2670

 Listing 12 . 6 Analyzing ceramic composition

1. A = [0.6950 0.8970 0.0670 0.6920
2. 0.1750 0.0372 0.0230 0.0160
3. 0.0080 0.0035 0.0600 0.0250
4. 0.1220 0.0623 0.8500 0.2670]
5. B = [67 5 2 26]'
6. W = (inv(A) * B)'

12.6 Engineering Examples 303

 In Listing 12 . 6 :

 Lines 1–4: Matrix A is the transpose of the original data table.
 Line 5: Shows the required composition in kg.
 Line 6: Shows the computed weights of the raw materials in kg, which
produces the following result:

W =
 16.0083 35.3043 15.1766 33.5108

 12.6.2 Analyzing an Electrical Circuit
 Figure 12.9 illustrates a typical electrical circuit with two voltage sources
connected to five resistors with three closed loops. The voltages and
resistances are given. We are asked to determine the voltage drop across
R1. Solution techniques apply Ohm’s Law to the voltage drops around
each closed circuit. When this technique is applied, the equations are
as follows:

V1 = i1 * R1 + (i1 – i2) * R4
0 = i2 * R2 + (i2 – i3) * R5 + (i2 – i1) * R4
–V2 = i3 * R3 + (i3 – i2) * R5

 When these three equations are manipulated to isolate the three currents, we
have the following matrix equation:

V = A * I

 which can be solved as usual by:

I = A \ V

 The script to accomplish this is shown in Listing 12 . 7 .

R1

V1 V2

R2

R4

i1 i2 i3

R5

R3

 Figure 12.9 Typical electrical circuit

304 Chapter 12 Matrices

 In Listing 12 . 7 :

 Lines 1–3: Set up the parameters of the problem.
 Lines 4–7: Set up the coefficient matrices.
 Lines 8–10: Compute and display the answers.

 Running this script produces the following printout:
curr = 0.0283

 0.0104
 0.0003
drop across R1 is 2.83 volts

 Listing 12 . 7 Analyzing an electrical circuit

 1. R1 = 100; R2 = 200; R3 = 300;
 2. R4 = 400; R5 = 500;
 3. V1 = 10; V2 = 5;
 4. A = [R1+R4 -R4 0
 5. -R4 R2+R4+R5 -R5
 6. 0 -R5 R3+R5];
 7. B = [V1; 0; -V2];
 8. curr = inv(A) * B
 9. fprintf('drop across R1 is %6.2f volts\n', ...
10. curr(1) * R1);

 Chapter Summary

 This chapter presented two specialized operations performed with matrices:

 ■ Matrix multiplication can be used for 2-D and 3-D coordinate
rotations by building the appropriate rotation matrices

 ■ Matrix division can be used for solving simultaneous equations by
setting up the equations in the general form B 5 A * x, where the
known matrix A is n 3 n and the known column vector B is n 3 1;
the unknown vector x is then found by x 5 A\B or x = inv(A) * B

 Special Characters, Reserved Words, and Functions—2 -D

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 * Matrix multiplication 12.2.1

 / Matrix division 12.2.2

 \ Matrix back division 12.2.2

 ̂ Matrix exponentiation 12.2.3

 eye(n) Computes the identity matrix 12.2.1

 inv(a) Computes the inverse of a matrix 12.2.3

 reshape(a,r,c) Changes the row/column configuration of the array a 12.4.2

Programming Projects 305

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. All MATLAB classes exhibit some form of behavioral abstraction.

 2. Matrix multiplication requires that the inner dimensions match.

 3. The results of A * B and B * A are identical.

 4. Both A * A -1 and A-1 * A return the identity matrix.

 5. Multiplying inv(A) * B is logically equivalent to B / A .

 6. All sets of simultaneous linear equations can be solved by matrix
inversion.

 Fill in the Blanks

 1. If, A is an m×n matrix and B is an n3p matrix, the result of A3B is a(n)
___________ matrix.

 2. Only ___________________ matrices have an inverse.

 3. The built-in function _____________ generates the identity matrix.

 4. To be soluble, simultaneous linear equations must be expressed as
______________ equations involving _______________variables, xi,
and _____________values.

 Programming Projects

 1. This is a set of simple matrix manipulations.
 a. Create a five by six matrix, A , that contains random numbers

between 0 and 10.
 b. Create a six by five matrix, B , that contains random numbers

between 0 and 10.
 c. Find the inverse of matrix A*B and store it in the variable, C .
 d. Without iteration, create a new matrix D that is the same as A

except that all values less than 5 are replaced by zero.
 e. Using iteration, create a new matrix F that is the same as A except

that all values less than 5 are replaced by zero.
 f. Create a new matrix G that is the matrix A with the columns

reversed.

306 Chapter 12 Matrices

For example:

if A is [1 2 3; 3 2 5; 1 7 4], G should be
[3 2 1; 5 2 3; 4 7 1]

 g. Find the minimum value among all the elements in A and store
your answer in the variable H .

 2. Write a program that reads in a matrix A of M rows and N columns.
The matrix has all positive integers. Write a script to find the min
element of each row of the matrix.
For example:

If A = [1 2 3 4;5 6 7 8], then the output is a vector [1 5]

 3. As an enthusiastic and motivated student, you decided to go
out and buy plenty of pens for all your classes this semester.

This spending spree unfortunately
occurred before you realized your
engineering classes seldom required the
use of “ink.” So now, you’re left with four
different types of pens and no receipt—
you only remember the total amount you
spent, and not the price of each type of
pen. You decide to get together with three
of your friends who coincidentally did
the same thing as you, buying the same

four types of pens and knowing only the total amount. Write a
script to find the prices of each type of pen.

 4. Write a function called rotateLine that takes in two vectors, x and
 y , of the same length that represent a set or ordered pairs that
could be used to plot a line. Your function should also take in a
third parameter, theta , representing an angle in degrees. Your
function should return xprime and yprime where xprime and yprime
represent the line that is x and y rotated about the origin by the
angle theta.

 For example:

x = [7 7 11 11 7];
y = [-5 -9 -9 -5 -5];
[xprime yprime] = rotateLine(x, y, 90) returns
xprime = [5 9 9 5 5]
yprime = [7 7 11 11 7]

Hint:

In order to find the price of each individual pen, you
could create a matrix called “pens,” where each
column represents a different type of pen and each
row represents a different person and a column
vector totals that contains the amount of money
each of you spent on the pens.

Programming Projects 307

 5. Write a function named solveSystem that has three inputs: two
vectors consisting of the coefficients [a b c] of two line equations of
the form ax + by = c and a vector of x values
 a. The function should output a vector giving the x and y values of

the point of intersection between the two lines. If the lines are
parallel, return the empty vector.

 b. Your function should also plot the two lines using the inputted
vector of x values as x . In addition, on the same graph, plot the
intersection point of the two lines. Make the first line blue, the
second line red, and the intersection point a magenta diamond.
Make sure that you label your plot appropriately.

This page intentionally left blank

 Chapter Objectives

 This chapter covers:

 ■ The basic representation of images

 ■ How to read, display, and write JPEG image files

 ■ Some basic operations on images

 ■ Some advanced image processing techniques

 Introduction

 The graphical techniques we have seen so far have been 2-D and
3-D plots, whose basic concept is to write in places on the screen
where data are required and to leave the rest of the screen blank.
These presentations are easily generated when we have a
mathematical model of the data and wish to represent it graphically.
However, many sensors observing the world do not have that
underlying model of the data. Rather, they passively generate 2-D representations
that we see as images, leaving the interpretation of those images to a human
observer. This kind of presentation is exemplified by a digital photograph but
includes images from many other sources like radar or X-ray machines.

 This chapter discusses some of the elementary processes that can be applied to
images in order to begin to extract meaning from them.

 Images
 C H A P T E R 1 3

 13.1 Nature of an Image
 13.2 Image Types
 13.2.1 True Color

Images
 13.2.2 Gray Scale Images
 13.2.3 Color Mapped

Images
 13.2.4 Preferred Image

Format
 13.3 Reading, Displaying, and

Writing Images
 13.4 Operating on Images
 13.4.1 Stretching or

Shrinking Images
 13.4.2 Color Masking
 13.4.3 Creating a

Kaleidoscope
 13.4.4 Images on a

Surface
 13.5 Engineering Example—

Detecting Edges

309

310 Chapter 13 Images

N Columns

BlueRed

Green

M
 R

ow
s

 Figure 13.1 The nature of images

 13.1 Nature of an Image

 Before we confine ourselves to practical, computational reality, we need to
understand the general nature of an image. The easiest answer would be
that an image is a 2-D sheet on which the color at any point can have
essentially infinite variability. However, since we live in a digital world, we
will immediately confine ourselves to the conventional representation of
images required for most digital display processors, as shown in Figure 13.1 .
We can represent any image as a 2-D, M 3 N array of points usually referred
to as picture elements, or pixels, where M and N are the number of rows
and columns, respectively. Each pixel is “painted” by blending variable
amounts of the three primary colors: red, green, and blue. (Notice that this
is not the same blending process used in painting with oils or water colors,
where the second primary color is yellow and the combination process is
reversed—increasing amounts of the primary colors tends toward black,
not white.)

 The resolution of a picture is measured by the number of pixels per unit
of picture width and height. This governs the fuzziness of its appearance in
print, and controls the maximum size of good-quality photo printing. The
color resolution is measured by the number of bits in the words containing
the red, green, and blue (RGB) components. Since one value generally exists
for each of the M 3 N pixels in the array, increasing the number of bits for
each pixel color will have a significant effect on the stored size of the image.
Typically, 8 bits (values 0–255) are assigned to each color.

 The MATLAB language has a data type, uint8 , which uses 8 bits to store
an unsigned integer in the range 0–255. It is unsigned because we are not
interested in negative color values, and to specify the sign value would cost
a data bit and reduce the resolution of the data to 0–127. By combining the
three color values, there are actually 2 24 different combinations of color
available to a true-color image—many more possible combinations than the
human eye can distinguish.

13.2 Image Types 311

Blue

Red
Green

N Columns

M
 R

ow
s

 Figure 13.2 A true color image

 13.2 Image Types

 Our sources for images to process are data files captured by imaging devices
such as cameras, scanners, and graphic arts systems, and these image files
are provided in a wide variety of formats. According to the MATLAB
documentation, it recognizes files in TIFF, PNG, HDF, BMP, JPEG (JPG),
GIF, PCX, XWD, CUR, and ICO formats. The various file formats are usually
identified by their file extensions. While this seems a bewildering collection
of formats, MATLAB provides one image reading function that converts
these file formats to one of three internal representations: true color, gray
scale, or color mapped images. In the MATLAB implementation, we will
confine our interests to two formats: .png files when absolute color fidelity
is required and .jpg files that offer better compression ratios to give a
smaller file size for a given image.

 13.2.1 True Color Images

 True color images are stored according to the scheme shown in Figure 13.2
as an M 3 N 3 3 array where every pixel is directly stored as uint8 values
in three layers of the 3-D array. The first layer contains the red value, the
second layer the green value, and the third layer the blue value. The
advantage of this approach, as the name suggests, is that every pixel can be
represented as its true color value without compromise. The only
disadvantage is the size of the image in memory because there are three
color values for every pixel.

 13.2.2 Gray Scale Images

 Gray scale images are also directly stored, but save the black-to-white
intensity value for each pixel as a single uint8 value rather than three
values.

312 Chapter 13 Images

 13.2.3 Color Mapped Images

 Color mapped, or indexed, images keep a separate color map either 256
items long (for maximum economy of memory) or up to 32,768 items long.
Each item in the color map contains the red, blue, and green values of a
color, respectively. As illustrated in Figure 13.3 , the image itself is stored as
an M 3 N array of indices into the color map. So, for example, a certain
pixel index might contain the value 143. The color to be shown at that pixel
location would be the 143rd color set (RGB) on the color map.

 If the color map is restricted to 256 colors, each pixel can be drawn at the
same color resolution as a true color image, as three 8-bit values, but the
choice of colors is very restricted, and normal pictures of scenery—sky, for
instance—take on a “layered color” appearance. Color mapped images can
be used effectively, however, to store “cartoon pictures” economically where
limited color choices are not a problem. Using a larger color map provides a
larger, but still sometimes restrictive, range of color choices; but since the
indices in the picture array must be 16-bit values and the color map is larger,
the memory size advantages of this method of storage are diminished.
Computationally, it is possible to convert a color mapped image to true
color, but true color or black-and-white images cannot normally be converted
to color mapped format without loss of fidelity in the color representation.

 13.2.4 Preferred Image Format

 In order to avoid confusion in the format of images, we will confine our
discussions to one specific image file format that is prevalent at the time of
writing and that provides a nice compromise between economy of storage
as an image file and accessibility within MATLAB. We will discuss files
compressed according to a standard algorithm originally proposed by the
Joint Photographic Experts Group (JPEG). When MATLAB reads JPEG
images, they are decoded as true color images; when MATLAB writes them,
they are again encoded in compressed form. The file size for a typical JPEG
file is 30 times less than the size you would need to store the M 3 N 3 3

N Columns

M
 R

ow
s

143

25
6

R
ow

s

3

Red
Blue
Green

 Figure 13.3 A color mapped image

13.4 Operating on Images 313

bytes of the image. As we will see later, however, this compression does not
come without cost.

 13.3 Reading, Displaying, and Writing Images

 MATLAB uses one image reading function, imread(...) , for all image file
types. To read a file named myPicture.jpg , we use the following command:

>> pic = imread('myPicture.jpg', 'jpg')

 where the result, pic , is an M 3 N 3 3 uint8 array of pixel color values, and
the second parameter, 'jpg' , provides the format of the file explicitly. This
parameter is optional; MATLAB usually infers the file format correctly
from the file contents.

 Once the picture has been read, you can display it in a figure window
with fixed size and axes visible by using the following command:

>> image(pic)

 This actually stretches or shrinks the image to fit the size of the normal plot
figure, a behavior you normally desire; however, occasionally, you want
the plot figure to match the actual image size (or at least, preserving its
aspect ratio). Releases of MATLAB after R20008a provide the imshow(...)
function, which presents the image without stretching, shrinking, or axes
(unless the figure window is too small).

 Similarly, there is one function for writing files: imwrite(...) , which can
be used to write most common file formats. If we have made some changes
to pic , the internal representation of the image, we could write a new
version to the disk by using the following:

>> imwrite(pic, 'newPicture.jpg', 'jpg')

 where the third parameter, 'jpg' , is required to specify the output format
of the file.

 13.4 Operating on Images

 Since images are stored as arrays, it is not surprising that we can employ
the normal operations of creation, manipulation, slicing, and concatenation.
We will note one particular matrix operation that will be of great value
before examining some applications of array manipulation related to image
processing.

 13.4.1 Stretching or Shrinking Images

 In earlier chapters we have seen the basic ability to use index vectors to
extract rows and columns from an array. Now we extend these ideas to

314 Chapter 13 Images

understand how to uniformly shrink or stretch an array to match an exact
size. Consider, for example, A , a rows 3 cols array. Assume for a moment
that the vertical size is good, but we want to stretch or shrink the image
horizontally to newRows —a number that might be larger or smaller than
 rows . We use linspace(...) to create an index vector as follows:

>> rowVector = linspace(1, rows, newRows)

 where the third parameter is the desired size of the new array. In general,
this index vector will contain fractional values, but MATLAB will truncate
the index values. We can round the results as follows:

>> rowVector = round(rowVector)

 Then we can use this vector to shrink or stretch the picture pic as follows:

>> newPic = pic(rowVector, cols, :)

 Clearly, this can be applied to both dimensions simultaneously, as shown
in Exercise 13.1 .

 In this exercise, first we read an image and determine its size. Note that
with 3-D images, you must give to the size(...) function three variables.
Then we illustrate the “normal” slicing operations by reducing the image
to the even rows, and every third column. Next, we generalize this
image slicing by stretching the number of rows by a factor 1.43 and
shrinking the number of columns by a factor 0.75. This is accomplished
by building a row index vector, rowVec , and a column index vector,
 colVec , according to the algorithm above. The stretching is achieved by
repeating selected values in the index vector, and shrinking is achieved
by omitting some.

 13.4.2 Color Masking

 As an example of image manipulation, consider the image shown in Fig-
ure 13.4 . This is a 2400 3 1600 JPEG image that can be taken with any good
digital camera. However, the appearance of the Vienna garden is somewhat

 Exercise 13.1 Working with image stretching

>> pic = imread(<your favorite image>);
>> [rows cols clrs] = size(pic)
>> imshow(pic(2:2:end, 3:3:end, :);
>> RFactor = 1.43; CFactor = 0.75; % shrink / stretch factors
>> rowVec = round(linspace(1, rows, Rfactor*rows));
>> colVec = round(linspace(1, cols, Cfactor*cols));
>> imshow(pic(rowVec, colVec,:)); % shrunk / stretched image
>> imshow(pic(:, :, [2 3 1])); % re-ordering the color layers

13.4 Operating on Images 315

marred by the fact that the sky is gray, not blue. Fortunately, we have a
picture of a cottage, as shown in Figure 13.5 , with a nice, clear blue sky. So
our goal is to replace the gray sky in the Vienna garden with the blue sky
from the cottage picture.

 Initial Exploration Before we can do this, however, we need to explore the
Vienna picture to determine how to distinguish the gray sky from the rest
of the picture. In particular, there are patches of sky visible between the tree

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

 Figure 13.4 A garden in Vienna

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

 Figure 13.5 A cottage in Oxfordshire

316 Chapter 13 Images

branches that must be changed as well as the open sky. Listing 13 . 1
illustrates a good way to accomplish this. Here we display the image in one
figure; choose a representative row in the image that includes some sky
showing through the tree (we chose row 350); and then plot the red, blue,
and green values of the pixels across that row. Figure 13.6 shows the
resulting plot.

 In Listing 13 . 1 :

 Line 1: Reads the image.
 Line 2: Displays the image.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

 Figure 13.6 Plot of the color values on one row of the Vienna image

 Listing 13 . 1 Exploring the sky situation

 1. v = imread('Vienna.jpg');
 2. image(v)
 3. figure
 4. row = 400;
 5. red = v(row, :, 1);
 6. gr = v(row, :, 2);
 7. bl = v(row, :, 3);
 8. plot(red, 'r');
 9. hold on
10. plot(gr, 'g');
11. plot(bl, 'b');

13.4 Operating on Images 317

 Line 3: Creates a new figure window for the next plots.
 Line 4: Determines a suitable row (350 is a good choice).
 Lines 5–7: Extract the three color layers for the chosen row.
 Lines 8–11: Plot the three colors. Since we omitted one of the axis
values, we make the assumption that the x values are the integers
 1:length(y) , which give us the horizontal pixel number across the
row.

 Analysis As we examine Figure 13.6 , we see that the red, green, and blue
values for the open sky are all around 250 because the sky is almost white.
However, the color “spikes” that correspond to the color values of the sky
elements that show through the tree are actually lower. We could decide,
for example, to define the sky as all those pixels where the red, blue, and
green values are all above a chosen threshold, and we could comfortably
set that threshold at 160.

 There is one more important consideration. It would be unfortunate to
turn the hair of the lady (the author’s wife) blue, and there are fountains
and walkways that might also logically appear to be “sky.” We can prevent
this embarrassment by limiting the color replacement to the upper portion
of the picture above row 700.

 Final Computation So we are ready to create the code that will replace
the gray sky with blue. The code in Listing 13 . 2 accomplishes this, and
 Figure 13.7 shows the resulting image.

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

 Figure 13.7 The Vienna garden with a blue sky

318 Chapter 13 Images

 In Listing 13 . 2 :

 Lines 1 and 2: Read the two images.
 Line 3: Draws the cottage picture.
 Line 4: Makes a new figure window.
 Line 5: Sets the arbitrary threshold.
 Lines 6–8: Define a 2-D layer containing logic that separates the
Vienna sky from the rest of the picture.
 Lines 9–11: Build a logical mask to replace the appropriate pixels
from the cottage picture into the Vienna picture by populating each
color layer of the mask with that layer.
 Line 12: Refuses to replace any pixels below row 700.
 Line 13: Copies the original image.
 Line 14: Replaces the sky.
 Line 15: Shows the image.
 Line 16: Saves the JPEG result.

 Post-operative Analysis We realize that this is not quite the end of the
story, because a wire has suddenly become evident in the picture.
Furthermore, if we take a close look at the wire (Figure 13.8), we see a
number of disturbing things:

 ■ The sky is by no means uniform in color—justifying the assertion
that color mapped images do not have enough different colors to
draw a true sky effectively

 ■ The color of the wire is not far removed from the color of some
parts of the blue sky—so replacing slightly darker blue would be
problematic

 Listing 13 . 2 Replacing the gray sky

 1. v = imread('Vienna.jpg');
 2. w = imread('Witney.jpg');
 3. image(w)
 4. figure
 5. thres = 160;
 6. layer = (v(:,:,1) > thres) ...
 7. & (v(:,:,2) > thres) ...
 8. & (v(:,:,3) > thres);
 9. mask(:,:,1) = layer;
10. mask(:,:,2) = layer;
11. mask(:,:,3) = layer;
12. mask(700:end,:,:) = false;
13. nv = v;
14. nv(mask) = w(mask);
15. image(nv);
16. imwrite(nv, 'newVienna.jpg', 'jpg')

13.4 Operating on Images 319

 ■ There is a light colored “halo” around the wire that is actually a
result of the original JPEG compression of the image so that even if
we did replace the darker colors, the “ghost” of the wire would still
be visible

 So pixel replacement will probably
not solve our wire problem. We will
take a different approach to solve this
problem in Chapter 15 .

 13.4.3 Creating a Kaleidoscope

 Originally, a kaleidoscope was a
cardboard tube in which a number of
mirrors were arranged in such a
manner that one image—usually, a

collection of colored beads—was reflected to produce a symmetrical
collection of images. We will replicate that general idea using MATLAB.
 Figure 13.9 illustrates the geometric manipulation necessary to create one
particular kaleidoscope picture. We start with an arbitrary image and use
shrinking or stretching to generate a square picture—the ‘F’ in the figure.
We then mirror it horizontally and concatenate it horizontally with the
original image. We then mirror these two images vertically and concatenate
them vertically. Finally, we take that compound image and repeat the
process to produce the 4 3 4 image on the right side.

 Figure 13.10 shows the original image and the results. The overall logic
flow of the solution matches that shown in Figure 13.9 .

1750 1760 1770 17801710 1720 1730 1740 1790

310

300

290

280

270

260

250

 Figure 13.8 Magnified image of the wire

 Be careful requesting the size of 3-D (and more) arrays. If
you leave off variables—as here, you might be tempted not
to ask for the number of colors because you know it’s
three—the size(...) function multiplies together the
remaining dimension sizes. So if img is sized 1200 * 1600,
 [r,c] = size(img) would return r = 1200 and c = 4800 !
If you provide to only one variable, it returns a vector of the
sizes of each dimension of the array. So v = size(img)
returns [1200 1600 3] .

 Common Pitfalls 13.1

320 Chapter 13 Images

 Listing 13 . 3 shows the code that makes the kaleidoscope.

 In Listing 13 . 3 :

 Line 2: Reads the original image.
 Lines 2–3: Draw it on the left subplot.

 Figure 13.9 Logic for the kaleidoscope

 Figure 13.10 The kaleidoscope

 Listing 13 . 3 Making a kaleidoscope

 1. function kaleidoscope(name)
 % Making a kaleidoscope
 % usage: kaleidoscope(file_name)
 %read the image
 2. picture = imread(name);
 3. subplot(1,2,1); imshow(picture(ceil(1:1.5:end),:,:))
 % resize it to 128*128
 4. [rows cols ~] = size(picture);
 5. n = 128;
 6. rndx = ceil(linspace(1,rows, n));
 7. cndx = ceil(linspace(1,cols, n));

13.4 Operating on Images 321

 Lines 4–8: Make it square.
 Line 9: Calls the helper function to build the first set of 4, and then
immediately call it again to build the 4 3 4 compound image.
 Line 10: Draws it on the right panel.
 Lines 12–15: Helper function to build four mirrored images from
the original.

 13.4.4 Images on a Surface

 In Chapter 11 we saw how to create a surface representing solid objects
and, in particular, how to create a spherical image that rotates with lighting.

 Spectacular effects can be created by “pasting” images onto these
surfaces, as will be illustrated in this last example. Here, we are given an
image of the surface of the earth using Mercator projection, shown in Fig-
ure 13.11. 1 It is important to use the Mercator projection, named for the
sixteenth-century Flemish cartographer Gerardus Mercator, because this
projection keeps the lines of latitude and longitude on a rectangular
grid. This allows a correct representation of the map as it is pasted onto
the spherical surface. However, it also presents a challenge because
in this projection, the north and south poles would be stretched to
infinite length across the top and bottom of the map. This map, therefore,
leaves off the region near the poles, and we have to replace those
regions.

 The objective of this exercise is to paste this image onto a rotating globe.
The trick to accomplishing this is to use a feature of the surf(...) function,
whereby the image is supplied in a specific form as the fourth parameter, as
follows:

surf(xx, yy, zz, img)

 8. pic = picture(rndx, cndx, :);
 % build the kaleidoscope
 9. img = buildIt(buildIt(pic));
10. subplot(1,2,2); imshow(img)
11. end
12. function img = buildIt(img)
 % helper function to do the manipulations
 % top left top right
 % bottom left bottom right
13. img = [img img(:,end:-1:1,:)
14. img(end:-1:1,:,:) img(end:-1:1,end:-1:1,:)];
15. end

 1 The file earth_s.jpg is provided as part of the MATLAB system.

322 Chapter 13 Images

 It will replace the normal coloring scheme of the surface with the image
under the following conditions:

 ■ The rows and columns of the image match the rows and columns of
the xx , yy , zz plaid

 ■ The image supplies the red, green, and blue layers in the same form
as true color images

 ■ The color values, however, must be of type double in the range 0..1

 In the following code, rather than stretching the image to the size of
the plaid, we choose to size the plaid to the image, thereby preserving
all the image resolution. Clearly, in different circumstances where
the size of the plaid is specified, the image can be stretched to
suit those dimensions. The code to accomplish all this is shown in
Listing 13 . 4 .

 In Listing 13 . 4 :

 Line 1: Reads the JPEG image.
 Line 2: Enables good closure at the image edge by copying the first
column of the map beyond the last column.
 Line 3: Computes the mean image intensity of the snow on the top
edge of the image. This will be used to fill the circles at the north
and south poles.
 Line 4: Fetches the size of the map.
 Line 5: To calculate the size of the circles at the poles, we assume
that the map takes us to ±85° of latitude, so we need the equivalent
of 5° at the top and bottom of the map. This line calculates how
many rows represent 1° of latitude.

 Figure 13.11 Map projection

13.4 Operating on Images 323

 Line 6: Shows the number of rows to add to the map.
 Line 7: Computes the values of a single color layer by making
an array with ones(...) using the number of rows to add and
the number of map columns, and multiplying by the snow
intensity.
 Lines 8–10: Build the strips to add to the globe map by copying this
layer to the red, green, and blue layers of a new image array.
 Line 11: Prepares the complete map by concatenating this image to
the top and bottom of the map.
 Line 12: Retrieves the size of this map.
 Lines 13 and 14: Prepare the vectors defining the plaid by spreading
the map dimensions across p radians in latitude and 2p radians in
longitude.
 Lines 15–19: Prepare the sphere.

 Listing 13 . 4 Rotating a globe

 1. WM = imread('earthmap_s.jpg');
 2. WM(:,end+1,:) = WM(:,1,:);
 3. snow = mean(mean(WM(1,:,:)));
 4. [WMr, WMc, clr] = size(WM);
 5. rowsperdeglat = WMr/170
 6. add = floor(rowsperdeglat * 5)
 7. addlayer = uint8(ones(add, WMc) * snow);
 8. toAdd(:,:,1) = addlayer;
 9. toAdd(:,:,2) = addlayer;
10. toAdd(:,:,3) = addlayer;
11. worldMap = [toAdd; WM; toAdd];
12. [nlat nlong clr] = size(worldMap)
13. lat = double(0:nlat-1) * pi / nlat;
14. long = double(0:nlong-1) * 2 * pi / (nlong-1);
15. [th phi] = meshgrid(long, lat);
16. radius = 10;
17. zz = radius * cos(phi);
18. xx = radius * sin(phi) .* cos(th);
19. yy = radius * sin(phi) .* sin(th);
20. wM = double(worldMap) / 256;
21. surf(xx, yy, zz, wM);
22. shading interp
23. axis equal, axis off, axis tight
24. material dull
25. th = 0;
26. handle = light('Color',[int,int,int]); % a custom light source
27. while true
28. th = th - 1;
29. view([th 20]);
30. lightangle(handle, th+50, 20)
31. pause(.001)
32. end

324 Chapter 13 Images

 Line 20: Scales the image to double values between 0 and 1 as
required by surf(...) .
 Lines 21–23: Draw the surface as usual, using the image as the color
distribution.
 Lines 24–26: Special preparation of the surface luminosity and light
characteristics to prevent glare spots.
 Lines 27–32: The perpetual rotation with the angle th moving
backward one degree at a time.
 Line 30: This keeps the light in the same position relative to the
observer.
 Line 31: The usual pause to allow the drawing to take place for each
iteration.

 A snapshot of the globe as it is rotating is shown in Figure 13.12 .

 Figure 13.12 Globe

 13.5 Engineering Example—Detecting Edges

 While images are powerful methods of delivering information to the human
eye, they have limitations when being used by computer programs. Our eyes
have an astonishing ability to interpret the content of an image, such as the
one shown in Figure 13.13 . Even a novice observer would have no difficulty
seeing that it is a picture of an aircraft in flight. An experienced observer
would be able to identify the type of aircraft as a Lockheed C-130 and
perhaps some other characteristics of the aircraft.

13.5 Engineering Example—Detecting Edges 325

 Figure 13.13 C-130 in flight

 While our eyes are excellent at interpreting images, computer programs
need a lot of help. One operation commonly performed to reduce the
complexity of an image is edge detection, in which the complete image is
replaced by a very small number of points that mark the edges of “interesting
artifacts.” Figure 13.14 shows the results from a simple program attempting
to paint the outline of the aircraft in black by putting a black pixel at an
identified edge. The key element of the algorithm is the ability to determine
unambiguously whether a pixel is part of the object of interest or not. An
edge is then defined as a pixel where some of the surrounding pixels are on
the object and some are not. The image selected for this exercise makes

 Figure 13.14 Result of edge detection

326 Chapter 13 Images

edge detection simple since the aircraft is everywhere darker than the
surrounding sky.

 The script used to generate this picture is shown in Listing 13 . 5 . The basic
approach of the algorithm is to use simple array processing tools to detect

pt - Shifted up 1 Pixel

pix - Original Locationp1 - Shifted
Left 1 Pixel

pt1 - Shifted up
and Left 1 Pixel

All off (Sky)

Part on,
Part off
(Edge)

All on (Object)

 Figure 13.15 Overlapping picture layers

 Listing 13 . 5 Edge detection

 1. pic = imread('C-130.jpg');
 2. imshow(pic)
 3. figure
 4. [rows, cols, cl] = size(pic);
 5. amps = uint16(pic(:,:,1))...
 6. + uint16(pic(:,:,2))...
 7. + uint16(pic(:,:,3));
 8. up = max(max(amps))
 9. dn = min(min(amps))
10. fact = .5
11. thresh = uint16(dn + fact * (up - dn))
12. pix = amps(2:end, 2:end);
13. ptl = amps(1:end-1, 1:end-1);
14. pt = amps(1:end-1, 2:end);
15. pl = amps(2:end, 1:end-1);
16. alloff= and(and((pix > thresh), (pt > thresh)),...
17. and((pl > thresh), (ptl > thresh)));
18. allon = and(and((pix <= thresh), (pt <= thresh)),...
19. and((pl <= thresh), (ptl <= thresh)));
20. edges = and(not(allon), not(alloff));
21. layer = uint8(ones(rows-1, cols-1) *255);
22. layer(edges) = 0;
23. outline(:,:,1) = layer;
24. outline(:,:,2) = layer;
25. outline(:,:,3) = layer;
26. image(outline)
27. imwrite(outline, 'c-130 edges.jpg', 'jpg')

Chapter Summary 327

the edges across the whole image at once. To accomplish this, we create
four arrays, each one row and one column less than the original image and
each offset by one pixel, as illustrated in Figure 13.15 . The array pix is in the
original location, pt is one row up from that location, pl is one row left, and
 ptl is one row left and up. If we now collapse these arrays on top of each
other, we are simultaneously comparing the values of a square of four pixels
across the whole image (less one row and one column).

 In Listing 13 . 5 :

 Lines 1–4: Read the original image, display it, and determine its size.
 Lines 5–7: Construct an array of size rows 3 cols containing the total
color intensity of each pixel. The class uint16 , using two bytes instead
of one, is big enough for the sum of three unit8 s.
 Lines 8–11: Rather than guess an amplitude threshold, we compute a
threshold halfway between the maximum and minimum intensities
across the picture.
 Lines 12–15: Set up the four overlapping arrays offset by a pixel each.
 Lines 16–17: The logical array alloff will be true wherever all four
adjacent pixels have an intensity above the threshold—these are on
the sky.
 Lines 18–19: The logical array allon will be true wherever all four adjacent
pixels have an intensity below the threshold—these are on the aircraft.
 Line 20: The pixels we are looking for are those where the pixel is
neither completely sky nor completely aircraft.
 Line 21: Makes a white image the same size as the logical arrays.
 Line 22: Sets the edges to black.
 Lines 23–27: Put that layer into the RGB layers, show the image, and
write it to the disk.

 Observation Clearly, while there is much more to be done with this data
for it to be useful, the complexity of this image has been reduced from 12
million uint8 values with no real meaning to a small number of data values
that outline an object of interest. Algorithms beyond the scope of this text
could be used to convert these outlining points to polynomial shapes. These
shapes could then be matched against projections of 3-D models to actually
identify the object in the picture.

 Chapter Summary

 This chapter covered the following:

 ■ Images represented internally in bit-mapped, gray scale, or true
color form

328 Chapter 13 Images

 ■ Image files that come in a large variety of formats; MATLAB
provides a single reader function and a single writer function to
manipulate all the common image types

 ■ Common operations on images, including cropping, stretching
or shrinking, and concatenating and pasting an image onto a
surface

 ■ An engineering example showing how edge detection begins the
process of extracting meaning from an image

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words, and

Functions

Description

Discussed in

This Section

 image(<picture>) Displays an image in a figure of fixed dimensions
with axes

 13.3

 imread(<file_name>) Reads an image file 13.3

 imshow(<picture>) Displays an image in a figure of variable
dimensions without axes

 13.3

 imwrite(data,
file, format)

 Writes an image file 13.3

 linspace(from,
to, n)

 Defines a linearly spaced vector 13.2.1, 13.4.1

 rot90(A,n) Rotates A by 90° clockwise n times 13.4.4

 tril(A) Reduces A to its lower triangular half with zeros
in the upper triangle

 13.4.4

 uint8/16 Unsigned integer type with the specified number
of bits

 13.1

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. An image whose color values are all 0 will be all white on the screen.

 2. The MATLAB language defines one image reader for all image file
types.

 3. The normal operations of creation, slicing, and concatenation can be
used to manipulate images.

 4. rot90(A) rotates a 3-D array by 90° clockwise.

Programming Projects 329

 5. Edge detection dramatically reduces the amount of data to be
processed by image identification software.

 Fill in the Blanks

 1. The basic building unit of a picture is called a(n) _____________.

 2. A true color image is represented as a __________ matrix in MATLAB.

 3. _________ bits are required to represent a color image of size M3N if
it is read as a uint8 array of pixel values.

 4. Once a picture has been read, you can display it in a(n)
_______________ with the function _____________.

 5. The operator ____________ mirrors an array about its ____________.

 Programming Projects

 1. As an introduction to image problems, perform the following by
writing a script that does various manipulations on an image.
 a. Read a JPEG image and save it in inputImage. Display it.
 b. Copy the image into duplicateImage1. Read and display only a

portion of it.
 c. Copy the image into duplicateImage2. Convert it into a gray

image and display the result.
 d. Copy the image into duplicateImage3. Resize the image into half

its size.
 e. Copy the image into duplicateImage4. Resize the image into

double its size.

 2. An image could be scrambled by doing the following in order:
 a. image quadrant manipulations:

 • Select the top left quadrant and then add 50 to the intensity
values in this quadrant.

 • Select the top right quadrant and then multiply the intensity
values with 0.50 in this quadrant.

 • Interchange the top left and bottom right quadrants.
 • Interchange the top right and bottom left quadrants.

 b. Split the image into the red, green, and blue components. Display
the original, R component, G component, and B component in a
single figure in 4 subplots. Give appropriate titles.

 c. Untouched image is returned.

 Write a script called imageManipulator that takes in an RGB image
and a string. The input string helps the user to choose among the
various operations a, b, or c. If the string corresponds to operation

330 Chapter 13 Images

'c', your function should return the array untouched. You may
assume that the image array provided will always contain an even
number of rows and columns. Test your solution by reading a
selected image, img, ensures that there is an even number of rows
and columns, and test the various operations on the image.

 3. An image histogram is a chart that shows the distribution of
intensities in an indexed or grayscale image. To create an image
histogram, MATLAB provides a built-in function 'imhist()'. This
function creates a histogram plot by making n equally spaced bins,
each representing a range of data values. It then calculates the
number of pixels within each range. Write a script named
imgHistogram which reads in a grayscale image. Calculate the
image histogram without the help of the built-in function. Display
the input image and the histogram in the same figure with
appropriate titles .

 4. Thresholding is an operation that enhances the required image
features. Write a script that reads in an 8-bit grayscale image. The
script should enhance the image intensities greater than 120, but
preserve the background. Display the input image and the modified
image in the same figure with proper titles.

 5. We have obtained new intelligence that the Housing Department
has plans to renovate all the rooms in the dorms with a new
prototype. However, the prototype has been encoded into three
separate images to avoid rival students finding out about it and
thus seeking refuge here. Each image only contains one layer of
color (e.g., roomScrambledRed.jpg only contains the Red layer). As a
loyal student, it is your job to reconstruct a new image out of these
three images.
 a. Create a script called room , and read the three layers using

 'imread' . Create the new matrix ReconImage with the three layers,
and display it using 'imshow' .

 b. After detailed analysis of the image, you find that it is also
scrambled. Using advanced crytography and whizbang
mathematical formulas, you have come to the conclusion that the
four quadrants of the image have been re-arranged. Manipulate
the composite image from part a. and re-arrange the pieces to
form the proper image. Display it using subplot(...) , below the
first image.

 6. For this exercise, you will visit—at least in MATLAB—a place you
have always wanted to go.

Programming Projects 331

 a. Find or take a picture of yourself with a plain background such
as a green screen, using the JPEG image format. It would be a
good idea not to wear the color of the background.

 b. Find a JPEG image of the place you want to go and decide on the
rectangle in that scene where your image should appear. Save the
width and height of the rectangle and the row and column of its
top left corner.

 c. Re-size your image to be the width and height of the rectangle.
 d. Use the color masking technique of section 13.4.2 to copy your

image without the green screen into the selected rectangle of
your dream scene.

 7. Image transforms are powerful tools for achieving compression.
One popular technique is to use discrete cosine transform. Write a
script that reads in a grayscale or RGB image and transforms that
using discrete cosine transform. After that, compression is
achieved by the following steps.
• Discard some of the DCT coefficients depending upon a

threshold value.
• Reconstruct the image from the remaining coefficients.

 Compare the two images visually by plotting on the same figure.
Give them meaningful titles too.

This page intentionally left blank

 Chapter Objectives

 This chapter discusses the following:

 ■ How sound is physically recorded and played back and our
internal storage of sound

 ■ Operations that can be performed with the original time trace

 ■ The ability to transform the data into the frequency domain and
the physical significance of the transformed data

 ■ Operations that can be performed in the frequency domain

 Processing Sound
 C H A P T E R 1 4

 14.1 The Physics of Sound
 14.2 Recording and Playback
 14.3 Implementation
 14.4 Time Domain

Operations
 14.4.1 Slicing and

Concatenating
Sound

 14.4.2 Musical
Background

 14.4.3 Changing Sound
Frequency

 14.5 The Fast Fourier
Transform

 14.5.1 Background
 14.5.2 Implementation
 14.5.3 Simple Spectral

Analysis
 14.6 Frequency Domain

Operations
 14.7 Engineering Example—

Music Synthesizer

333

334 Chapter 14 Processing Sound

 14.1 The Physics of Sound

 Any sound source produces sound in the form of pressure fluctuations in
the air. While the air molecules move infinitesimal distances in order to
propagate the sound, the important part of sound propagation is that
pressure waves move rapidly through the air by causing air molecules to
“jostle” each other. These pressure fluctuations can be viewed as analog
signals—data that have a continuous range of values. These signals have
two attributes: their amplitude and their frequency characteristics.

 In absolute terms, sound is measured as the amplitude of pressure
fluctuations on a surface like an eardrum or a microphone. However, the
challenging characteristic of these data is their dynamic range. Our ears are
able to detect small sounds with amplitudes around 10 10 (10 billion) times
smaller than the loudest comfortable sound. Sound intensity is therefore
usually reported logarithmically, measured in decibels where the intensity
of a sound in decibels is calculated as follows:

IDB = 10 log 10(I / I 0)

 where I is the measured pressure fluctuation and I 0 is a reference pressure
usually established as the lowest pressure fluctuation a really good ear can
detect, 2 310 −4 dynes/cm 2 .

 Also, sounds are pressure fluctuations at certain frequencies. The human
ear can hear sounds as low as 50 Hz and as high as 20 kHz. Voices on the
telephone sound odd because the upper frequency is limited by the
telephone equipment to 4 kHz. Typically, hearing damage due to aging or
exposure to excessive sound levels causes an ear to lose sensitivity to high
and/or low frequencies.

 14.2 Recording and Playback

 Early attempts at sound recording concentrated first on mechanical, and
later magnetic, methods for storing and reproducing sound. The
phonograph/record player depended on the motion of a needle in a groove
as a cylinder or disk rotated at constant speed under the playback head.
Not surprisingly, when you see the incredible dynamic range required,
even the best stereos could not reproduce high-quality sound. Later, analog
magnetic tape in various forms replaced the phonograph, offering less wear
on the recording and better, but still limited, dynamic range. Digital
recording has almost completely supplanted analog recording and will be
the subject of this chapter.

 Of course, sound amplitude in analog form is unintelligible to a
computer—it must be turned into an electrical signal by a microphone,
amplified to suitable voltage levels, digitized, and stored, as shown in

14.3 Implementation 335

 Figure 14.1 . The key to successful digital recording and playback—whether
by digital tape machines, compact disks, or computer files—is the design of
the analog-to-digital (A/D) and digital-to-analog (D/A) devices. The reader
should remember that this is still low-level data. Each word coming out of
the A/D or going into the D/A merely represents the pressure on the
microphone at a point in time.

 The primary parameter governing the sound quality is the recording
rate—how quickly the mechanism records samples of the sound (the
sampling rate). Basic sampling theory suggests that we should use a
sampling rate twice the highest frequency you are interested in reproducing,
usually around 20,000 samples per second for good music, 5,000 samples
per second for speech.

 The other parameter, the resolution of the recorded data, has remarkably
little effect on the quality of the recording to an untrained ear. The resolution
is usually either 8 bits (−128 to 127) or 16 bits (−32,768 to 32767). While 8-bit
resolution ought to offer very limited dynamic range, and theoretically
should be used only for recording speech, in practice it results in a quality

of reproduction for music that is, to
an untrained ear, indistinguishable
from that provided by 16-bit
resolution.

 These parameters must be stored
with any digital sound recording

medium and retrieved by the tools that play those sounds. To be able to
play such a file, we must receive not only the data stream, but also
information indicating the sample frequency, Fs , and the word size.

A / D D / A

Fs

 Figure 14.1 Mechanics of sound recording and playback

 The background theory of sampling is beyond the scope of
this text. Interested readers should research Nyquist on a
good search engine.

 Technical Insight 14.1

 14.3 Implementation

 MATLAB offers a number of tools for reading sound files: wavread(...)
for wav files and auread(...) for .au files, for example. Both return three
variables: a vector of sound values, the sampling frequency in Hz (samples
per second), and the number of bits used to record the data (8 or 16).

336 Chapter 14 Processing Sound

 To play a sound file, MATLAB provides the function sound(data, rate)
where data is the vector of sound values, and rate is the playback frequency,
usually the frequency at which the sound values were recorded. We will
see that the function sound(...) passes the data directly to the computer’s
sound card, but different implementations will manage the behavior of the
software that plays the sound in one of two ways.

 Blocking vs. Non-blocking: “Blocking” refers to the behavior of your
system after you have called the sound(...) function to play a
sound. Blocking players will not return control to the code playing
the sound until the sound has completed. This will allow only one
sound to be played from an application at a time. Non-blocking
players will not wait for the sound card to finish playing the sound,
so multiple calls to the sound(...) function will overlay different
sounds. You will need to experiment with your particular system to
determine whether it blocks or not.

 A number of .wav files are included on the book’s Companion Web site to
demonstrate many aspects of sound files.

 14.4 Time Domain Operations

 First, we consider three kinds of operations on sound files in the time
domain: slicing, playback frequency changes, and sound file frequency
changes.

 14.4.1 Slicing and Concatenating Sound

 Consider the problem of constructing comedic sayings by choosing and
assembling words from published speeches. The Companion Web site
contains a sampling of speech clips selected from various Web sites. In
particular, it has the Apollo 13 speech, “Houston, we have a problem”;
“Frankly, my dear . . .” from Gone with the Wind ; and “You can’t handle the
truth” from A Few Good Men . Exercise 14.1 describes the process of
assembling parts of these speeches into a semi-coherent conversation.

 The first part of Exercise 14.1 reads the Apollo 13 speech, plays the speech,
and plots the data (with the data index as x-axis). The resulting plot is
shown in the left half of Figure 14.2 . Since the sound actually includes more
than we need, the next step is to crop this file to keep only the words we

 Exercise 14.1 Locating the first part of the speech

>> [houston, Fsh] = wavread('a13prob.wav');
>> subplot(1, 2, 1)
>> plot(houston);
>> sound(houston, Fsh);

14.4 Time Domain Operations 337

need. By listening to the speech using the function sound(...) , and
judiciously zooming and panning the plot, it is possible to narrow down
the location in the file where the problem speech starts, at about 111000. In
 Exercise 14.2 you will extract the first part of the speech.

 In Exercise 14.2 we truncate the speech file to the words we need and
also, realizing that the amplitude of these words is a little low, raise its
amplitude by a factor of 2.

 In Exercise 14.3 , by a similar process, we remove “my dear” from the
“frankly, my dear . . .” speech, reducing its amplitude by one-half, which
results in Figure 14.3 .

0 2 4 6 8 10 12 14

x 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

14
00

0

16
00

0

18
00

0
-1.5

-1

-0.5

0

0.5

1

1.5

 Figure 14.2 Apollo 13 speech

 Exercise 14.2 Extracting the first part of the speech

>> clip = 110000;
>> prob = houston(clip:end)*2;
>> subplot(1, 2, 2)
>> plot(prob)

 Exercise 14.3 Extracting “my dear”

>> figure
>> [damn, Fsd] = wavread('givdamn2.wav');
>> subplot(1, 2, 1)
>> plot(damn);
>> lo = 4500;
>> hi = 8700;
>> sdamn = [damn(1:lo); damn(hi:end)] * .5;
>> subplot(1, 2, 2)
>> plot(sdamn);

338 Chapter 14 Processing Sound

 Finally, in Exercise 14.4 , we assemble the complete speech by
concatenating these two fragments with the speech from A Few Good Men .
The resulting picture is shown in Figure 14.4 .

0 0.5 1 1.5 2 2.5 3

x 104x 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 Figure 14.3 Gone with the Wind speech

0 1 2 3 4 5 6 7

x 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Figure 14.4 The complete speech

 Exercise 14.4 Assemble the speech

>> [truth, Fst] = wavread('truth1.wav');
>> speech = [prob; sdamn; truth * .7];
>> figure
>> plot(speech);
>> sound(speech, Fst);

14.4 Time Domain Operations 339

 14.4.2 Musical Background

 For good historical reasons, music is usually described graphically on a
music score. The graphics describe for each note to be played its pitch and
its duration, together with other notations indicating how to introduce
expression and quality into the music. However, this graphical notation is
not amenable to the simple representation of music we need for these
experiments. Rather, we will use the representation illustrated in Figure 14.5 .
The right side of this figure shows a standard piano keyboard, the index of
each white note, and the number of half steps necessary to achieve the pitch
of each note. On the left side of the figure, we see the method to be used in
this text to describe simple tunes. It will consist of an array with two
columns and n rows, where n is the number of notes to be played for each
tune. The first column is the key number to play, and the second column is
the number of beats each note should be played.

 The examples to follow will manipulate the file piano.wav to produce a
snippet of music. This file is a recording of a single note played on a piano.
Other files provided in the Companion Web site are the same note played
on a variety of instruments. There are two ways to accomplish this, as
follows:

 1. Playing each note at a different playback frequency

 2. Stretching or shrinking each note to match the required note pitch
and playing them all at the same playback frequency

 The first way is easier to understand and code, but very inflexible; the
second method is a little more difficult to implement, but completely
extensible. Musically speaking, if a sound is played at twice its natural
frequency, it is heard as one musical octave higher. When you play a scale
by playing each white key in turn from one note to the next octave, there
are 8 keys to play with 7 frequency changes: 5 whole note steps (those
separated by a black note) and 2 half note steps, for a total of 12 half note
steps. These 12 half steps are logarithmically divided where the frequency
multiplier between half note steps is 2 1/12 .

1Key:

Key
Duration

Small World =

1/2 Steps:

2 3 4 5 6 7 8

0 2 4 5 7 9 11 12

[1 3;
 1 1;
 3 2;
 1 2;
 2 3;
 2 1;
 2 4]

 Figure 14.5 Musical notes

340 Chapter 14 Processing Sound

 14.4.3 Changing Sound Frequency

 We will leave as an exercise for the reader the question of playing a tune
by changing the playback frequency of each note, which is really never a
practical thing to do, and concentrate on playing all the notes of a tune
with the same playback frequency. This allows the different notes to be
copied into a single sound file and saved to be played back on any digital
sound system.

 In order to change the perceived note frequency without changing the
playback frequency, we have to change the number of data samples in the
original data file much as we stretched or shrunk an image in Section 13.4.1 .
Use Exercise 14.5 to experiment with this technique for playing notes at
different pitches.

 In Exercise 14.5 we first read and play the note at its natural frequency.
Then we raise its pitch by removing about one-third of the samples and
then lower the pitch by an octave by doubling the number of samples.

 Play a Scale Listing 14 . 1 shows a script that uses this capability to play the
C Major scale (all white notes) on the piano. It repeatedly shortens the
vector newNote to increase the frequency of the note played.

 In Listing 14 . 1 :

 Lines 1–3: Read the note and set the step multipliers.
 Lines 4–12: Play eight notes of a major scale.

 Listing 14 . 1 Play a scale by shrinking the note

 1. [note, Fs] = wavread('instr_piano.wav');
 2. half = 2^(1/12);
 3. whole = half^2;
 4. for index = 1:8
 5. sound(note, Fs);
 6. if (index == 3) || (index == 7)
 7. mult = half;
 8. else
 9. mult = whole;
10. end
11. note = note(ceil(1:mult:end));
12. end;

 Exercise 14.5 Note pitch experiment

>> [note Fs] = wavread('instr_piano.wav');
>> sound(note, Fs);
>> sound(note(ceil(1:1.3:end)), Fs);
>> sound(note(ceil(1:0.5:end)), Fs);

14.4 Time Domain Operations 341

 Line 5: Plays the note. This implementation uses a blocking
 sound(...) function. If your system does not block, you will need to
insert pause(0.3) here to wait for most of the note to complete.
 Lines 6–10: Choose the appropriate frequency multiplying factor.
 Line 11: Shrinks the note file by the chosen factor.

 Play a Simple Tune We now write a script to build a playable .wav file using
the note shrinking technique. The script is shown in Listing 14 . 2 . It uses the
array steps to decide how many half-tone steps are necessary to reach the
nth note on the scale and uses the array doremi to define the tune. The first
column specifies the relative pitch (the note on the scale) and the second the
duration in “beats.” The script sets the beat time to be 0.2 seconds.

 The goal of the script is to put the notes into a single sound array called
 tune , as illustrated in Figure 14.6 , rather than playing the notes “on the fly.”
This is accomplished as follows:

 ■ Create an empty array, tune , of the appropriate length (the length of
the original note plus the total number of beats in the song)

 ■ Initialize storeAt to store the first note at the start of the tune
 ■ Iterate across the tune definition array doremi with the following

steps:
 • Start with the original note
 • Get the key index to decide how many times to raise the note

array by half a step
 • Raise the note to the right pitch and save it as theNote
 • Add that theNote vector to the tune vector, starting at storeAt
 • Move the storeAt variable down the tune vector a distance

equivalent to the duration of that note
 ■ When all the notes have been added to the tune file, play the tune

and save it as a .wav file.

Note

1Get Key =
Get 1/2 Steps =

Change Length

Copy to Vector

Get Length =

Move Down Vector

Beat = 0.2 Sec

1 3
0 0 4

3 1 2

Note 1 Note 2

Note 2------Note 1------ ------Note 3------

Note 3

 Figure 14.6 Building a tune file

342 Chapter 14 Processing Sound

 In Listing 14 . 2 :

 Lines 1–6: Read the file and set up the parameters.
 Line 7: A vector defining how many half steps it takes to set the
frequency of notes 1–8.
 Line 8: The time between notes of length 1—the beat of the tune.
 Line 9: The number of samples to play for one beat of the tune.
 Line 10: Begins storing notes at the beginning of the tune.
 Lines 11–19: Insert each note in the song file into the tune file.
 Line 12: Fetches the key number.
 Line 13: Extracts the number of half steps required for this note.
 Line 14: Stretches the original note by this multiplier.
 Lines 15 and 16: Compute where the end of the note will be stored.
 Line 17: Copies the note into the tune file.
 Line 18: Advances the storeAt index down the tune file by the beat
count multiplied by the beats required for this note.
 Lines 20 and 21: Play the complete tune and save it as a .wav file.

 Listing 14 . 2 Building a tune file

 1. [note, Fs] = wavread('instr_piano.wav');
 2. half = 2^(1/12);
 3. doremi = [1 3; 2 1; 3 3; 1 1; 3 2; 1 2; 3 4; 2 3;
 4. 3 1; 4 1; 4 1; 3 1; 2 1; 4 8; 3 3; 4 1;
 5. 5 3; 3 1; 5 2; 3 2; 5 4; 4 3; 5 1; 6 1;
 6. 6 1; 5 1; 4 1; 6 4];
 7. steps = [0 2 4 5 7 9 11 12];
 8. dt = .2;
 9. nCt = floor(dt*Fs);
10. storeAt = 1;
11. for index = 1:length(doremi)
12. key = doremi(index,1);
13. pow = steps(key);
14. theNote = note(ceil(1:half^pow:end));
15. noteLength = length(theNote);
16. noteEnd = storeAt + noteLength - 1;
17. tune(storeAt:noteEnd,1) = theNote;
18. storeAt = storeAt + doremi(index,2) * nCt;
19. end
20. sound(tune, Fs)
21. wavwrite(tune, Fs, 'dohAdeer.wav')

 14.5 The Fast Fourier Transform

 Typically, the time history display of a sound shows you the amplitude of
the sound as a function of time but makes no attempt at showing the
frequency content. While this works for the exercises above, we are often

14.5 The Fast Fourier Transform 343

more interested in the frequency content of a sound file, for which we need
a different presentation—a spectrum display.

 14.5.1 Background

 In general, a spectrum display shows the amount of sound energy in a
given frequency band throughout the duration of the sound analyzed but
ignores the time at which the sound at that frequency was generated. Many
acoustic amplifiers (see Figure 14.7) include two features that allow you to
customize the sound output:

 ■ A spectral display that changes values as the sound is played,
indicating the amount of sound energy (vertically) in different
frequency bands (horizontally)

 ■ Filter controls to change the relative amplification in different
frequency bands

 In the following paragraphs, we will consider only the analysis of the sound
frequency content. The ability to reshape the sound frequency content as
the sound plays is beyond the scope of this text.

 To achieve the motion of the spectrum display, software to analyze a
segment of the sound file runs periodically and updates the spectrum
display. Typically, perhaps 20 times a second, 1/20th second of sound file is
analyzed and transformed. The software used for this conversion is known
as the Fourier transform.

 While the mathematics of the Fourier transform is beyond the scope of
this book, we can make use of the tools it offers without concerning
ourselves with the details. There are a number of implementations of this
transform; perhaps the most commonly used is the Fast Fourier Transform
(FFT). The FFT uses clever matrix manipulations to optimize the

 Figure 14.7 A typical spectrum display

344 Chapter 14 Processing Sound

mathematics needed to generate the forward (time to frequency) and
reverse (frequency to time) transforms.

 14.5.2 Implementation

 Figure 14.8 illustrates the overall process of transforming between the time
domain and frequency domain. It starts with a simple sound file, a vector of
 N sound values in the range (−1.0 to 1.0), which, if played back at a sample
frequency Fs samples per second, reproduces the sound. The parameters of
interest for characterizing the time trace are:

N the number of samples
Fs the sampling frequency
Dt the time between samples, computed as 1/F s
Tmax the maximum time is N 3 Dt

 The FFT consumes a file with these characteristics and produces a frequency
spectrum with a corresponding set of characteristics. The frequency
spectrum consists of the same number, N , of data points, each of which is a
complex value with real and imaginary parts. (While many displays
actually plot the magnitude of the spectrum values, to accomplish the
inverse transform, the complex values must be retained.) The frequency

0.20.10
-1

1

-0.5

0

0.5

0.3 0.4 0.5

Time (Sec)

Time Domain Signal

0.6 0.7 0.8 0.9 1

100500
-2000

500

1000

1500

2000

-1500

-1000

-500

0

150 200

Power Spectral Density

Fourier
Transform

Inverse
Fourier

Transform

Frequency (Hz)

P
ow

er

A
m

pl
itu

de

250 300 350 400

 Figure 14.8 Mechanics of the Fourier Transform

14.5 The Fast Fourier Transform 345

values are “folded” on the plot so that zero frequency occurs at either end
of the spectrum, and the maximum frequency occurs in the middle, at
spectrum data point N/2 .

 The equivalent characteristics for the spectrum data are as follows:

 N the number of samples
 D f the frequency difference between samples, computed as

 1/Tmax
 Fmax , the frequency value at the end of the plot, is N 3 D f.

However, since the mathematics force this frequency to
actually replicate the beginning frequency, the maximum

effective frequency actually occurs
at the mid-point with value Fmax/2.

 The FFT is mechanized using the
function fft(...) , which consumes
the time history and produces the
complex spectrum file. The inverse
FFT function, ifft(...) , takes a

spectrum array and reconstructs the time history. This pair of functions
provides a powerful set of tools for manipulating sound files.

 14.5.3 Simple Spectral Analysis

 Listing 14 . 3 illustrates a script that creates 10 seconds of an 8 Hz sine wave,
plots the first second of it, performs the FFT, and plots the real and
imaginary parts of the spectrum. Notice the following:

 ■ A sine wave in the time domain transforms to a line in the
frequency domain because all its energy is concentrated at that
frequency—8 Hz in this example.

 ■ Since the FFT is a linear process, multiple sine or cosine waves
added together at different frequencies have additive effects in the
spectrum.

 ■ The resulting spectrum is complex (with real and imaginary parts)
and symmetrical about its center, the point of maximum frequency.
On the plot, of course, one cannot make the frequency axis labels
reduce from the center to the end.

 ■ The real part of the spectrum is mirrored about the center; the
imaginary part is mirrored and inverted (the complex conjugate of
the original data).

 ■ The phase of the complex spectrum retains the position of the sine
wave in the time domain—it would be totally real for a cosine wave
symmetrically placed in time and totally imaginary for a sine wave
in the same relationship.

 The fact that the actual maximum frequency is half of the
sampling frequency is consistent with the Nyquist criterion
that the maximum frequency you can discern with digital
sampling is half the sampling frequency.

 Technical Insight 14.2

346 Chapter 14 Processing Sound

 The script in Listing 14 . 3 creates three sub-plots: the original sine wave and
then the amplitude and phase of the spectrum.

 In Listing 14 . 3 :

 Lines 1–5: Set up the time domain signal.
 Lines 6–10: Plot the front part of the time trace.
 Line 11: Performs the FFT.
 Lines 12–14: Set up the frequency plots.
 Lines 15–19: Plot the spectrum real part.
 Lines 20–24: Plot the spectrum imaginary part.

 Figure 14.9 shows the result from running this script. It confirms the earlier
statement that the real part of the spectrum is mirrored about the center
frequency, and the imaginary part is mirrored and inverted.

 Listing 14 . 3 FFT of a sine wave

 1. dt = 1/400 % sampling period (sec)
 2. pts = 10000 % number of points
 3. f = 8 % frequency
 4. t = (1:pts) * dt; % time array for plotting
 5. x = sin(2*pi*f*t);
 6. subplot(3, 1, 1)
 7. plot(t(1:end/25), x(1:end/25));
 8. title('Time Domain Sine Wave')
 9. ylabel('Amplitude')
10. xlabel('Time (Sec)')
11. Y = fft(x); % perform the transform
12. df = 1 / t(end) % the frequency interval
13. fmax = df * pts / 2
14. f = (1:pts) * 2 * fmax / pts;

% frequencies for plotting
15. subplot(3, 1, 2)
16. plot(f, real(Y))
17. title('Real Part')
18. xlabel('Frequency (Hz)')
19. ylabel('Energy')
20. subplot(3, 1, 3)
21. plot(f, imag(Y))
22. title('Imaginary Part')
23. xlabel('Frequency (Hz)')
24. ylabel('Energy')

 14.6 Frequency Domain Operations

 As a typical example of operating in the frequency domain, we will consider
analyzing the spectral quality of different musical instruments. The intent
of this section is to develop a plot showing the spectra of a selection of
different musical instruments. We will first build a function that plots the
spectrum for a single instrument and then build the script to create all the

14.6 Frequency Domain Operations 347

plots. Listing 14 . 4 shows a function that reads the .wav file of an instrument
from the music samples in the University of Miami’s Audio and Signal
Processing Laboratory. 1 All the instruments are carefully playing a note at
about 260 Hz.

 1 http://chronos.ece.miami.edu/~dasp/samples/samples.html

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1
Time Domain Sine Wave

A
m

p
lit

u
d

e

Time (Sec)

0 50 100 150 200 250 300 350 400
-200

0

200

400

600

800
Real Part

Frequency (Hz)

E
n

e
rg

y

0 50 100 150 200 250 300 350 400
-5000

0

5000
Imaginary Part

Frequency (Hz)

E
n

e
rg

y

 Figure 14.9 FFT of a sine wave

348 Chapter 14 Processing Sound

 In Listing 14 . 4 :

 Line 1: Shows a function consuming two strings: the name of the
instrument and the title of the plot.
 Lines 2–5: Read the file and set up the plot parameters.
 Line 6: Performs the FFT and computes the absolute value.
 Lines 7 and 8: Scale the plot to be a percentage of the maximum
energy at any frequency.
 Lines 9–16: Set up and plot the first 10% of the spectrum.

 The script that uses this function to plot the instrument data is shown in
Listing 14 . 5 .

 In Listing 14 . 5 :

 Line 1: Sets up the sub-plots configuration.
 Lines 2–17: Each pair of lines makes the sub-plots of one instrument.

 Listing 14 . 4 Plotting the spectrum of one instrument

 1. function inst(name, ttl)
% plot the spectrum of the instrument with
% the given name, with the given plot title

 2. [x, Fs] = wavread(['instr_' name '.wav']);
 3. N = length(x);
 4. dt = 1/Fs; % sampling period (sec)
 5. t = (1:N) * dt; % time array for plotting
 6. Y = abs(fft(x)); % perform the transform
 7. mx = max(Y);
 8. Y = Y * 100 / mx;
 9. df = 1 / t(end) ; % the frequency interval
10. fmax = df * N / 2 ;
11. f = (1:N) * 2 * fmax / N;
12. up = floor(N/10);
13. plot(f(1:up), Y(1:up));
14. title(ttl)
15. xlabel('Frequency (Hz)')
16. ylabel('Energy')

 Listing 14 . 5 Script to plot eight-instrument spectra

 1. rows = 4; cols = 2
 2. subplot(rows, cols, 1)
 3. inst('sax', 'Saxophone');
 4. subplot(rows, cols, 2)
 5. inst('flute', 'Flute');
 6. subplot(rows, cols, 3)
 7. inst('tbone', 'Trombone');
 8. subplot(rows, cols, 4)
 9. inst('piano', 'Piano');
10. subplot(rows, cols, 5)
11. inst('tpt', 'Trumpet');

continued on next page

14.6 Frequency Domain Operations 349

 The results are shown in Figure 14.10 . It is interesting to notice the
following:

 ■ None of the instruments produce a pure tone. The lowest frequency
at which there is energy is usually called the fundamental

12. subplot(rows, cols, 6)
13. inst('mutetpt', 'Muted Trumpet');
14. subplot(rows, cols, 7)
15. inst('violin', 'Violin');
16. subplot(rows, cols, 8)
17. inst('cello', 'Cello');

0 2000 4000 6000
0

50

100
Saxophone

0 2000 4000 6000
0

50

100
Flute

0 2000 4000 6000
0

50

100
Trombone

0 2000 4000 6000
0

50

100
Piano

0 2000 4000 6000
0

50

100
Trumpet

0 2000 4000 6000
0

50

100
Muted Trumpet

0 2000 4000 6000
0

50

100
Violin

0 2000 4000 6000
0

50

100
Cello

 Figure 14.10 Instrument spectra

350 Chapter 14 Processing Sound

frequency, and successive peaks to the right at multiples of the
fundamental frequency are referred to, for example, as the first,
second, and third harmonics.

 ■ Several instruments have much more energy in the harmonics than
in the fundamental frequency.

 ■ “Families” of instruments have similar spectral shapes—the strings,
for example, have strong fundamental and second harmonic
energy. In principle, these characteristic spectral “signatures” can
be used to synthesize the sound of instruments, and even to
identify individual instruments when played in groups.

 Listing 14 . 6 Synthesizing a piano

 1. [snd Fs] = wavread('instr_piano.wav');
 2. N = length(snd)
 3. sound(snd, Fs)
 4. tMax = N / Fs
 5. dt = 1 / Fs
 6. Y = fft(snd);
 7. Ns = N/4;
 8. fMax = Fs/4;
 9. df = fMax / Ns;
10. f = ((1:Ns) - 1) * df;
11. rl = real(Y(1:Ns));
12. im = imag(Y(1:Ns));
13. plot(f, abs(Y(1:Ns)))
14. xlabel('frequency (Hz)')
15. ylabel('real amplitude')
16. zlabel('imag amplitude')
17. amps = abs(Y(1:end/2));
18. Nc = 25;
19. for ndx = 1:Nc
20. [junk where] = max(amps);

continued on next page

 14.7 Engineering Example—Music Synthesizer

 A music synthesizer is an electronic instrument with a piano style keyboard
that is able to simulate the sound of multiple instruments. Unlike the
instrument sounds we have used so far, the instrument sounds are not stored
as large time histories. Rather, they are stored as the Fourier coefficients
similar to those illustrated in Figure 14.10 . The sound is then reconstructed by
multiplying sin or cosine waves of the right frequency by the stored
coefficients. For some instruments, this is sufficient. Other instruments such as
pianos need to have the amplitude of the resulting sound modified to match a
typical profile. Listing 14 . 6 illustrates a possible technique for extracting the
most important Fourier coefficients from the piano sound. The result will be a
little disappointing because the sound does not fade with time. We will need
some techniques from the next chapter to complete the story.

14.7 Engineering Example—Music Synthesizer 351

 In Listing 14 . 6 :

 Lines 1–5: Read the sound file and compute the representative parameters.
 Lines 6–9: Perform the FFT and compute its representative parameters
and Ns, the number of samples we are interested in.
 Lines 10–12: Compute a vector of the frequencies and extract the real
and imaginary coefficients.
 Lines 13–16: Plot the coefficient absolute values (see Figure 14.11).

21. C(ndx).freq = where;
22. C(ndx).coeff = Y(where);
23. amps(where-25:where+25) = 0;
24. end
25. frq = [C.freq];
26. [frq order] = sort(frq);
27. sortedStr = C(order);
28. Nt = 25;
29. t = (1:2*Fs) * dt;
30. f = zeros(1, length(t));
31. for ndx = 1:Nt
32. w = frq(ndx) * df * 2 * pi;
33. ct = cos(w*t);
34. st = sin(w*t);
35. Cf = sortedStr(ndx).coeff;
36. f = f + real(Cf) * ct + imag(Cf) * st;
37. end
 % amplitude shaping goes here
38. sf = f ./ max(f);
39. sound(sf, Fs)

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

4000

frequency (Hz)

re
a

l a
m

p
lit

u
d

e

 Figure 14.11 Instrument spectrum

352 Chapter 14 Processing Sound

 Line 17: Stores the absolute values of the coefficients.
 Lines 18–24: Extract the 25 largest coefficients by first finding the
maximum absolute coefficient (Line 20), saving the frequency and
complex amplitudes (Lines 21–22), and then removing that peak from
the amplitude vector.
 Lines 25–27: Sort the complex coefficients in frequency order.
 Lines 29 and 30: Set up the time trace parameters and storage.
 Lines 31–37: Build the sound file composed of the real coefficients
times the cosine of the frequency and the imaginary coefficients times
the sine of the frequency.
 Lines 38–39: Scale and play the sound.

 We will complete this synthesis for a piano sound in the next chapter.

 Chapter Summary

 This chapter presented the following:

 ■ Sounds are read with specific readers that provide a time history
and sampling frequency

 ■ Sounds can be played through the computer’s sound system and
saved to disk as a sound file ready for playing on any digital player

 ■ We can slice and concatenate sounds to edit speeches and change
the frequency of the sound to change its pitch

 ■ We can analyze the frequency content of sound using the Fast
Fourier Transform (FFT)

 ■ We can modify the spectra by adding, deleting, or changing the
sound levels at chosen frequencies under certain controlled
conditions

 ■ We can reconstruct a sound from the FFT coefficients.

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 [data Fs nb]
= auread(file)

 Reads an .au sound file in .wav format 14.3

 auwrite((data,
Fs, nb, file)

 Writes a sound file in .au format 14.3

 fft(ftime) Performs the Fast Fourier Transform on a sound file 14.5.2

 ifft(ffreq) Performs the inverse Fourier Transform on a
spectrum file

 14.5.2

Self Test 353

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 sound(data, Fs) Plays a sound file 14.3

 [data Fs nb] =
wavread(file)

 Reads a .wav sound file in .wav format 14.3

 wavwrite(data,
Fs, nb, file)

 Writes a sound file in .wav format 14.3

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. Playing a sound file at double the recorded sample frequency raises
its pitch by an octave.

 2. Removing every other sample from a sound file lowers the pitch by
an octave.

 3. The resolution of the recorded data has a significant effect on the
quality of the recording.

 4. After performing an FFT, the zero frequency occurs at either end of
the spectrum and the maximum frequency occurs in the middle.

 5. Since the mathematics of the FFT are linear, the spectrum of a sound
added in the time domain is also added in the frequency domain.

 Fill in the Blanks

 1. The human ear can hear sounds where the frequency is in between
____________ and ___________.

 2. Sound spectrum analysis is possible with the MATLAB functions
__________ and ___________.

 3. The steps from one note to the next higher octave are divided into
_______________ increments: _______________ whole note steps and
_______________ half note steps, for a total of _______________ half
note steps.

 4. A spectrum display shows the amount of _______________ in a
given _______________ throughout the duration of the sound
analyzed.

354 Chapter 14 Processing Sound

 Programming Projects

 1. These are fundamental exercises with sound files. You should not
hard-code any of the answers for this problem, and you should not
need iteration.
 a. Select and read a suitable .wav file, and save the sound values

and sampling frequency.
 b. Create a new sound that has double the frequency of the original

sound, and store your answer in the variable sound_Double .
 c. Create a new sound that is the same as the original except that

the pitch is raised by five half tones. Store your answer in the
variable raised_pitch .

 d. We need a figure showing two views each of these three
sounds, created using subplot . In the left column, plot the
original sound, sound_Double , and raised_pitch , labeling each
plot accordingly.

 In the right column, plot the first quarter of the values of the
power spectrum of each sound with the proper frequency values
on the horizontal axis.

 e. Play each of the sounds in the following order: original sound,
 sound_Double , and raised_pitch each at the original sampling
frequency.

 2. Write a function that will accept a string specifying a sound file and
do the following:
 a. Play back the sound.
 b. Plot the sound in the time domain, titling and labeling your plot

appropriately.
 c. Compute the frequency with the most energy in this file.
 Validate your answer by plotting the lower quarter of the

frequencies of the Fourier Transform of the sound. Don’t forget
that the Fourier Transform is complex; you will need to reason
with and plot the absolute value of the spectrum.

 d. Test this function with suitable .wav files.

 3. Write a function named plotSound that takes in the name of a sound
file and produces a 1 3 2 figure with two plots. The first plot should
be a plot of the sound in the time domain. The second plot should
be a plot of the sound in the frequency domain. Your function
should not return anything. Label the first plot 'Time Domain' and
label its axes appropriately. Label second plot 'Frequency Domain'
and label its axes appropriately.

 The Time Domain plot should be an amplitude vs. time plot. For
simplicity make sure that your time vector starts at dt (delta time)
and goes to n*dt (t max) where n is the number of samples.

Programming Projects 355

 The Frequency Domain plot should be a power vs. frequency plot
where power is the absolute value of the FFT of the amplitude
values. For simplicity make sure that your frequency vector starts at
 df (delta frequency) and goes to n*df (2*f max).

 4. In this exercise, we will write a script to create an instrument sound
from scratch.
 a. Create a vector, t , of time values from 0 to 2 seconds with length

40,000 samples.
 b. Convert the frequency of middle C (261.6 Hz) to v radians per

second.
 c. Compute a sound sample as cos(vt) over the range of t in part a.
 d. Play that sound at a sample frequency of 20,000, and verify that it

sounds “about right.”
 e. Perform the Fourier Transform on the sound vector, establish the

correct axis values, and prove that the sound is exactly Middle C.

 5. Write a function named playNote that takes in a string representing
a note on the piano. Your function should return a vector
representing the amplitude values of the note in addition to the
correct sampling frequency to be used to play it back. You should
do this by modifying the sound in the provided instr_piano.wav file
which is Middle C played on the piano. Note that the returned
sampling frequency should be the same as that in instr_piano..wav .

 Here is a list of all the possible note names representing notes that
your function should work with and below that is the number of
half steps above/below the middle C for that note:

 cn cn# dn dn# en fn fn# gn gn# a(n+1) a(n+1)# b(n+1) c(n+1)
-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

 where c4 is the middle C, c5 is 1 octave above it, and c3 is 1 octave
below it. Similarly, f5 is 1 octave higher than f4, etc. For example,
 [y1 fs] = playNote('c5'); should return a vector such that
 sound(y1, fs) should sound like middle C

 6. Finally, you will use these tools to play your favorite song.
 a. Find the music for your favorite song, and translate it into the

symbology of Problem 14.5.
 b. Write a script that uses the playNote function to play your song

on the piano.
 c. Modify playNote to use your synthetic instrument from Problem

14.3, and save it as playSynthetic .
 d. Write a script that uses playSynthetic to play your song in

futuristic style.

This page intentionally left blank

 Chapter Objectives

 This chapter discusses the implementations of four common
numerical techniques:

 ■ Interpolating data

 ■ Fitting polynomial curves to data

 ■ Numerical integration

 ■ Numerical differentiation

 Introduction

 Real-world data are rarely in such a form that you can use it
immediately. Frequently, the data must be manipulated according to
the user’s actual needs:

 ■ If the data samples have correct values but are not close
enough together to be used directly, we can use interpolation
to compute data points between the samples provided.

 ■ There are occasions where the data-gathering facilities add
some amount of noise to the data. To minimize the effects of
the noise, we can compute the coefficients of a polynomial
function that best matches the data.

 ■ There are also times when the data must be integrated or
differentiated to derive the quantities of interest.

 Numerical Methods

 C H A P T E R 1 5

 15.1 Interpolation
 15.1.1 Linear

Interpolation
 15.1.2 Cubic Spline

Interpolation
 15.1.3 Extrapolation

 15.2 Curve Fitting
 15.2.1 Linear Regression
 15.2.2 Polynomial

Regression
 15.2.3 Practical

Application
 15.3 Numerical Integration
 15.3.1 Determination of

the Complete
Integral

 15.3.2 Continuous
Integration
Problems

 15.4 Numerical Differentiation
 15.4.1 Difference

Expressions
 15.5 Analytical Operations
 15.5.1 Analytical

Integration
 15.5.2 Analytical

Differentiation
 15.6 Implementation
 15.7 Engineering Example—

Shaping Synthesizer
Notes

357

358 Chapter 15 Numerical Methods

0
0

0

0

1 2 3 4 5 6

2

4

6

What Is the
Corresponding Value of
y for This Value of x?

8

10

12

y
V

al
ue

s

x Values

 Figure 15.1 The interpolation problem

 15.1 Interpolation

 If our data samples have correct values but are not close enough to be used
directly, we can use either linear or cubic interpolation to compute data
points between the samples provided. For example, plotting functions use
linear interpolation to draw the lines between data points. In general,
interpolation is a technique by which we estimate a variable’s value between
known values. In this section, we present the two most common types of
interpolation: linear interpolation and cubic spline interpolation. In both
techniques, we assume that we have a set of data points that represents x - y
coordinates for which y is a function of x ; that is,

y = f(x).

 We then have a value of x that is not part of the data set for which we want
to find the y value. Figure 15.1 illustrates the definition of the interpolation
problem.

 15.1.1 Linear Interpolation

 Linear interpolation is one of the most common techniques for estimating
data values between two given data points. With this technique, we assume
that the function between the points can be represented by a straight line
drawn between the points, as shown in Figure 15.2 . Since we can find the
equation of a straight line defined by the two known points, we can find y
for any value of x . The closer the points are to each other, the more accurate
our approximation is likely to be. Of course, we could use this equation to

15.1 Interpolation 359

extrapolate points past our collected data. This is rarely wise, however, and
often leads to significant errors.

 The function that performs linear interpolation is as follows:

new_y = interpl(x, y, new_x)

 where the vectors x and y contain the original data values and the vector
 new_x contains the point(s) for which we want to compute interpolated
 new_y values. The x values should be in ascending order, and the new_x
values should be within the range of the original x values. Note that the last
character in the name interpl is the numeric 1 (one), not a lowercase L.

 The use of interpl(...) is demonstrated in Listing 15 . 1 .

-1 0 1 2 3 4 5 6
-20

0

20

40

60

80

100

120

 Figure 15.2 Interpolation raw data

 Listing 15 . 1 Linear interpolation

 1. x = 0:5;
 2. y = [0, 20, 60, 68, 77, 110];
 3. plot(x, y, 'r+')
 4. hold on
 5. fprintf('value at 1.5 is %2.2f\n', interp1(x, y ,1.5));
 6. new_x = 0:0.241:5;
 7. new_y = interp1(x,y,new_x);
 8. plot(new_x, new_y, 'o')
 9. axis([-1,6,-20,120])
10. title('linear Interpolation Plot')
11. xlabel('x values') ; ylabel('y values')
12. fprintf('value at 7 is %2.2f\n', interp1(x, y ,7));

360 Chapter 15 Numerical Methods

 In Listing 15 . 1 :

 Lines 1–3: We use the data illustrated in Figure 15.2 .
 Line 5: We take a single interpolated reading from the data at x = 1.5 .
 Lines 4–8: We plot points spaced 0.241 units apart on the x-axis
marked with circles, as shown in Figure 15.3 . Notice that the circles
fall on the straight lines between the given data values.
Lines 9–11: Document the plot.
Line 12: Finally, we attempt to extrapolate to the point x = 7 and
see that NaN (Not a Number) is returned because interp1 refuses to
extrapolate outside the original range of x values. The output from
running this script is:
value at 1.5 is 40.00
value at 7 is NaN

 The MATLAB language allows us to provide a fourth parameter to the
 interp1 function that must be a string that modifies its behavior. The
choices are as follows:

 'nearest' nearest neighbor interpolation
 ' 1inear' linear interpolation—the default
 'spline' piecewise cubic spline interpolation (see Section 15.1.2)
 'pchip' shape-preserving piecewise cubic interpolation
 'cubic' same as 'pchip'
 'v5cubic' cubic interpolation that does not extrapolate, and uses
 'spline' if x is not equally spaced

-1 0 1 2 3 4 5 6
-20

0

20

40

60

80

100

120
Linear Interpolation Plot

x values

y
va

lu
e

s

 Figure 15.3 Linear interpolation

15.1 Interpolation 361

 The MATLAB language also provides for two-dimensional (interp2) and
three-dimensional (interp3) interpolation functions, which are not
discussed here.

 15.1.2 Cubic Spline Interpolation

 A cubic spline is a smooth curve constructed to go through a set of points.
The curve between each pair of points is a third-degree polynomial that has
the general form:

 x 5 a x 0 t 3 1 a x1 t 2 1 a x2 t 1 a x3 and
 y 5 a y0 t 3 1 a y1 t 2 1 a y2 t 1 a y3

 where t is a parameter ranging from 0 to 1 between each pair of points. The
coefficients are computed so that this provides a smooth curve between
pairs of points and a smooth transition between the adjacent curves. Fig-
ure 15.4 shows a cubic spline smoothly connecting six points using a total
of five different cubic equations.

 The function that performs linear interpolation is as follows:

new_y = spline(x, y, new_x);

 where the vectors x and y contain the original data values, and the vector
 x_new contains the point(s) for which we want to compute interpolated
 y_new values. The x values should be in ascending order, and while the
x_new values should be within the range of the x values, this function will
attempt to extrapolate outside that range.

-1 0 1 2 3 4 5 6
-20

0

20

40

60

80

100

120
Cubic-Spline Data Plot

x values

y
va

lu
e

s

 Figure 15.4 Cubic spline interpolation

362 Chapter 15 Numerical Methods

 The curve in Figure 15.4 was created using the code shown in Listing 15 . 2 .

 In Listing 15 . 2 :

 Lines 1 and 2: Show the original
 x and y values.
 Line 3: Shows dense x values to
define the curve.
 Line 4: Computes the spline
function.
 Lines 5–8: Plot the original data
and the smooth curve.

 15.1.3 Extrapolation

 A note of caution about extrapolation—attempting to infer the values of data
points outside the range of data provided is problematic at best and usually
gives misleading results. Although logically your code may allow you to, you
should never do it. The interp1 and spline functions behave differently in
this respect. As we saw previously, the interp1 function refuses to supply
results outside the range of the original x data. If you try, for every new_x value
outside the range of the original x values, it will return NaN —not a number.

 This is actually quite nice because if you accidentally request interpolated
data like this, the plot programs ignore NaN values. The spline function,
however, has no such scruples and allows you to request any x values you
want, using the equation of the closest line segment. So considering Fig-
ure 15.4 , if you asked for the value at x = -3 , it would use the segment between
0 and 1, which has a violent upswing at the lower end (see Exercise 15.1).

 Listing 15 . 2 Spline interpolation

1. x = 0:5;
2. y = [0, 20, 60, 68, 77, 110];
3. new_x = 0:0.2:5;
4. new_y = spline(x, y, new_x);
5. plot(x, y, 'o', new_x, new_y, '-')
6. axis([-1,6,-20,120])
7. title('Cubic-Spline Data Plot')
8. xlabel('x values'); ylabel('y values')

 A good convention to adopt is shown in Figure 15.4 :

 • Use symbols to plot data points that are real values with
no associated information connecting them

 • Draw lines between data points only when there is an
analytic relationship that connects the data points

Here, we use a circle symbol for the raw data to emphasize
the original source of the information, and a smooth line for
the spline curve to indicate that we are assuming a possibly
erroneous but continuous relationship between data points.

 Style Points 15.1

 Exercise 15.1 The evils of extrapolation

 After running the script in Listing 15 . 1 , enter this code:

>> spline(x, y, -3)
ans =
 813.3333

15.2 Curve Fitting 363

 This might be what you want, but it looks odd! Chances are the data are
not as accurate as you thought, and you probably need to fit a curve to the
data, as explained in the following section.

 Listing 15 . 3 Eyeball linear estimation

1. x = 0:5;
2. y = [0 20 60 68 77 110];
3. y2 = 20 * x;
4. plot(x, y, 'o', x, y2);
5. axis([-1 7 -20 120])
6. title('Linear Estimate')
7. xlabel('Time (sec)')
8. ylabel('Temperature (degrees F)')
9. grid on

 15.2 Curve Fitting

 There are occasions where the data acquisition facilities add some amount
of noise to the data. To minimize the effects of the noise, we can smooth the
data by computing the coefficients of a polynomial function that best match
the data. The choice of the order of the polynomial must be made by the
users, depending upon their understanding of the underlying physics that
generated the data.

 For example, assume that we have a set of data points collected from an
experiment. After plotting the data points, we find that they generally fall in
a straight line. However, if we were to try to draw a straight line through the
points, probably only a couple of the points would fall exactly on the line. A
least squares curve fitting method could be used to find the straight line that
is the closest to the points, by minimizing the distance from each point to the
straight line. Although this line can be considered a “best fit” to the data
points, it is possible that none of the points would actually fall on the line of
best fit. (Note that this method is different from interpolation, because the
lines used in interpolation actually fall on all of the original data points.)

 In the following section, we will discuss fitting a straight line to a set of
data points, and then we will discuss fitting a polynomial of higher order.

 15.2.1 Linear Regression

 Linear regression is the process that determines the linear equation that is
the best fit to a set of data points in terms of minimizing the sum of the
squared distances between the line and the data points. To understand this
process, first we consider the same set of data values used previously and
attempt to “eyeball” a straight line through the data. Assume, for example,
that y = 20 x is a good estimate of the curve. Listing 15 . 3 shows the code to
plot the points and this estimate.

364 Chapter 15 Numerical Methods

 In Listing 15 . 3 :

 Lines 1 and 2: Show the original data points.
 Line 3: Is our eyeball estimate.
 Lines 4–9: Plot the original data and the estimate.

 Looking at the results in Figure 15.5 , it appears that y = 20 x is a reasonable
estimate of a line through the points. We really need the ability to compare
the quality of the fit of this line to other possible estimates, so we compute
the difference between the actual y value and the value calculated from the
estimate:

>> dy = [0, 0, 20, 8, -3, 10]

 It turns out that the best way to make this comparison is by the least
squares technique, whereby the measure of the quality of the fit is
the sum of the squared differences between the actual data points and
the linear estimates. This sum can be computed with the following
command:

>> sum_sq = sum(dy.^2)

 For the above set of data, the value of sum_sq is 573 . As we will see, MATLAB
can automatically produce the best linear fit shown in Figure 15.6 whose
sum of squares is 356.82 , a significant improvement over our original guess.
This result was achieved by running Exercise 15.2 .

-1 0 1 2 3 4 5 6 7
-20

0

20

40

60

80

100

120
Linear Estimate

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)

 Figure 15.5 An eyeball estimate of a linear fit

15.2 Curve Fitting 365

 15.2.2 Polynomial Regression

 Linear regression is a special case of the polynomial regression technique.
Recall that a polynomial with one variable can be written by using the
following formula:

 f (x) 5 a 0 x n 1 a 1 x n21 1 a 2 x n22 1 a 3 x n23 1 ... a n21 x 1 a n

 The degree of a polynomial is equal to the largest value used as an exponent.
MATLAB provides a pair of functions to compute the coefficients of the
best fit to a set of data and then interpolate on those coefficients to produce
the data to plot:

 ■ coef = polyfit(x, y, n) computes the coefficients of the
polynomial of degree n that best matches the given x and y values.
The function returns the coefficients, coef , in descending powers of
 x . For the least squares calculation to work, the length of x should

-1 0 1 2 3 4 5 6 7
-20

0

20

40

60

80

100

120
Optimal Linear Estimate

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)

 Figure 15.6 Linear curve fit

 Exercise 15.2 Optimal linear fit

 Again using the data from Section 15.1.1 :

>> x=0:5; y=[0,20,60,68,77,110]
>> polyfit(x, y, 1)
ans =
 20.8286 3.7619

366 Chapter 15 Numerical Methods

be greater than n - 1 . If this is not the case, the coefficients are still
computed, but the curve passes through all the data points.

 ■ new_y = polyval(coef, new_x) can then be used to interpolate the
polynomial defined by these coefficients for the new_y value(s)
corresponding to any new_x value(s).

 Note that there is nothing to prevent you from using these coefficients for
extrapolation.

 Exercise 15.2 illustrates fitting the best straight line to the data used in
 Section 15.1.1 , indicating that the first-order polynomial that best fits our
data is as follows:

 f (x) 5 20.8286 x 1 3.7169

 We could interpolate the values of new_x with:

new_y = coef(1) * new_x + coef(2)

 or we could use the function polyval :

new_y = polyfit(coef, new_x)

 We can use our new understanding of the polyfit and polyval functions to
write a program to study the improvement in the curve fit as n increases, as
shown in Listing 15 . 4 .

 In Listing 15 . 4 :

 Lines 1–3: Set up the data sets.
 Lines 4–14: Study second- through fifth-order fits.
 Line 5: Combines polyfit and polyval calls to compute the new y
values.
 Lines 6–12: Plot the results. Notice the use of sprintf(...) to make
a dynamic title for the plots.

 Listing 15 . 4 Higher-order fits

 1. x = 0:5;
 2. fine_x = 0:.1:5;
 3. y = [0 20 60 68 77 110];
 4. for order = 2:5
 5. y2=polyval(polyfit(x,y,order), fine_x);
 6. subplot(2,2,order-1)
 7. plot(x, y, 'o', fine_x, y2)
 8. axis([-1 7 -20 120])
 9. ttl = sprintf('Degree %d Polynomial Fit', ...
10. order);
11. title(ttl)
12. xlabel('Time (sec)')
13. ylabel('Temperature (degrees F)')
14. end

15.2 Curve Fitting 367

 The results are shown in Figure 15.7 . Notice that with six points, the fifth-
order fit goes through all the data points.

 15.2.3 Practical Application

 We return briefly to the problem of replacing the blue sky in Chapter 13 . The
sky we used to replace the gray skies of Vienna has a power line we need to
remove. We can use polynomial curve fitting to create an artificial sky with
exactly the same color characteristics as the blue sky in the cottage picture,
but without the wire. This is possible because each row of the image has so
much data that define its color profile that the presence of the wire is a minor
amount of “noise.” We merely need to process each row of the sky, fit a
second-order curve to it, interpolate a new sky row from the parameters, and
replace the row in the sky. The code to perform this is shown in Listing 15 . 5 .

 In Listing 15 . 5 :

 Line 1: Reads the original cottage picture.
 Line 2: Obtains its sizes.
 Line 3: The x values for the curve fitting.
 Line 4: Makes a copy of the original picture.
 Lines 5–12: Convert the top 700 rows where the sky is.
 Lines 6–11: Treat each color individually.

0 2 4 6
-20

0

20

40

60

80

100

120
Degree 2 Polynomial Fit

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)

0 2 4 6
-20

0

20

40

60

80

100

120
Degree 3 Polynomial Fit

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)

0 2 4 6
-20

0

20

40

60

80

100

120
Degree 4 Polynomial Fit

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)

0 2 4 6
-20

0

20

40

60

80

100

120
Degree 5 Polynomial Fit

Time (sec)

T
e

m
p

e
ra

tu
re

 (
d

e
g

re
e

s
F

)
 Figure 15.7 Higher-order polynomial fits

368 Chapter 15 Numerical Methods

 Line 7: The polynomial approximation needs each row as a double
vector.
 Lines 8–9: Compute a synthetic row.
 Line 10: Puts the row into the new sky.
 Lines 13 and 14: Show and save the new image.

 Figure 15.8 shows the cottage picture updated with a smooth sky. Notice
that the chimneys have been smeared off, but this does not affect the part of
the sky needed for the Vienna picture. This synthetic sky is ready to be used
in the script to replace the original sky (see Listing 13 . 1). Figure 15.9 shows
the Vienna picture with a clear blue synthetic sky.

 Listing 15 . 5 Removing the power line from the sky

 1. p = imread('Witney.jpg');
 2. [rows, cols, clrs] = size(p);
 3. x = 1:cols;
 4. sky = p;
 5. for row = 1:700
 6. for color = 1:3
 7. cv = double(p(row, :, color));
 8. coef = polyfit(x, cv, 2);
 9. ncr = polyval(coef, x);
10. sky(row,:,color) = uint8(ncr);
11. end
12. end
13. image(sky)
14. imwrite(sky, 'sky.jpg');

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

 Figure 15.8 Updated sky

15.3 Numerical Integration 369

500 1000 1500 2000

200

400

600

800

1000

1200

1400

1600

 Figure 15.9 Updated picture

 15.3 Numerical Integration

 The integral of a function f (x) over the interval [a , b] is defined to be the area
under the curve of f (x) between a and b , as shown in Figure 15.10 . If the
value of this integral is K , the notation to represent the integral of f (x)
between a and b is as follows:

K = L

b

a
f (x) dx

 For many functions, this integral can be computed analytically. However,
for a number of functions, this is not possible, and we require a numerical
technique to estimate its value. We look at two different scenarios:

 ■ Two different techniques for computing the complete integral with
various degrees of accuracy

 ■ A technique for evaluating the continuous integral of f (x)

 15.3.1 Determination of the Complete Integral

 Two of the most common numerical integration techniques estimate f (x)
either with a set of piecewise linear functions or with a set of piecewise
parabolic functions. If we use piecewise linear functions, we can compute
the area of the trapezoids that compose the area under the piecewise linear
function. This technique is called the trapezoidal rule. If we use piecewise
quadratic functions, we can compute and add the areas of these components.
This technique is called Simpson’s rule.

370 Chapter 15 Numerical Methods

 The Trapezoidal Rule If we represent the area under a curve by trapezoids,
as illustrated in Figure 15.11 , and if the interval [a , b] is divided into n equal
sections, then the area can be approximated by the following formula:

KT =

b - a
2n

 (f (x0) + 2 f (x1) + 2 f (x2) + Á + 2 f (xn-1) + f (xn))

 where the x i values represent the end points of the trapezoids and
where x 0 =a and x n =b . Listing 15 . 6 shows a function that computes this integral.

 Simpson’s Rule If the area under a curve is represented by areas under
quadratic sections of a curve, and if the interval [a , b] is divided into

0
0.5-1 1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

2.5

Linear Estimate

x

ba

K

 Figure 15.10 Integration of f(x)

y

tt1 t2

y1

y2

t3

y3

A1 A2 A3 A4 A5 A6

t4

y4

t5

y5

t6

y6

 Figure 15.11 Discrete integration

15.3 Numerical Integration 371

2 n equal sections, then the area can be approximated by the formula
(Simpson’s rule):

Ks =

h
3

 (f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + Á

+ 2 f (x2n-2) + 4 f (x2n-1) + f (x2n))

 where the x i values represent the end points of the sections, x 0 = a and
 x 2n = b , and h = (b − a) / (2 n). Listing 15 . 7 shows a function to integrate
using Simpson’s rule.

 15.3.2 Continuous Integration Problems

 We now consider a slightly different scenario. If f (t) is the rate of change of
 F (t) defined as f (t) = dF (t)/ dt , then given f (t), we can find the indefinite
integral F (t) according to the following formula:

F(t) = L

t

t0

f (x) dt

 For example, we might be given data that represent the velocity of a
sounding rocket, such as is plotted in Figure 15.12 . We need to approximate
the altitude of the rocket over time by integrating this data.

 To perform this kind of integral, the MATLAB language provides the
function F = cumsum(f) that computes the cumulative sum of the vector f .
The result, F , is a vector of the same length as f where F (i) is the sum of
f (1:i) . If the data values, f , are regularly sampled at a rate Δ t , the integral
is found by multiplying cumsum(f) by the time interval, Δ t . If they are not
regularly sampled, you have to compute the cumsum(...) of the scalar
product of f and the vector of time differences.

 Listing 15 . 6 Trapezoidal integration

 1. function K = trapezoid(v, a, b)
% usage: K = trapezoid(v, a, b)

 2. K = (b-a) * (v(1) + v(end) + ...
 3. 2*sum(v(2:end-1))) / (2*(length(v) - 1));
 4.

 Listing 15 . 7 Simpson’s rule integration

 1. function K = simpson(v, a, b)
% usage: K = simpson(v, a, b)

 2. K = (b-a) * (v(1) + v(end) + ...
 3. 4*sum(v(2:2:end-1)) + ...
 4. 2*sum(v(3:2:end-2))) / (3*(length(v) - 1));

372 Chapter 15 Numerical Methods

 To compute a more accurate integral, especially if the samples are not
regularly spaced along the independent axis, MATLAB also provides the
function cumtrapz(t, f) where t is the independent parameter and f the
dependent parameter. The function uses trapezoidal integration to calculate
the indefinite integral F(t) .

 Listing 15 . 8 shows the function that computes this continuous integral,
making use of cumsum(...) .

 Listing 15 . 8 Integrating rocket velocity

 1. v =[0.0 15.1 25.1 13.7 22.2 41.7 ...
 2. 39.8 54.8 57.6 62.6 61.6 63.9 69.6 ...
 3. 76.2 86.7 101.2 99.8 112.2 111.0 ...
 4. 116.8 122.6 127.7 143.4 131.3 143.0 ...
 5. 144.0 162.7 167.8 180.3 177.6 172.6 ...
 6. 166.6 173.1 173.3 176.0 178.5 ...
 7. 196.5 213.0 223.6 235.9 244.2 244.5 ...
 8. 259.4 271.4 270.5 294.5 297.6 ...
 9. 308.7 310.5 326.6 344.1 342.0 358.2 362.7];
10. lv = length(v);
11. dt = 0.2;
12. t = (0:lv-1) * dt;
13. h = dt * cumsum(v);
14. plot(t, v)
15. hold on
16. plot(t, h/5,'k--')
17. legend({ 'velocity', 'altitude/5' })

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400
Velocity of a Rocket

Time (sec)

V
e

lo
ci

ty
 (

m
/s

)

 Figure 15.12 Velocity of a rocket

continued on next page

15.3 Numerical Integration 373

 In Listing 15 . 8 :

 Lines 1–9: Generate the original velocity data.
 Lines 10–12: Parameters for plotting.
 Line 13: Performs the integration.
 Lines 14–19: Plot the results.
 Lines 20–24: Validate the three integration techniques by checking
the results.

 Figure 15.13 shows the resulting plot. The results displayed in the Command
window are:

cumsum height: 1848.5
trapezoidal height: 1811.85
Simpson's Rule height: 1811.14

 The continuous integration produces results within 2% of the “accurate”
integration techniques.

18. title('velocity and altitude of a rocket')
19. xlabel('time (sec)'); ylabel('v (m/s), h(m/5)')
20. fprintf('cumsum height: %g\n', h(end));
21. fprintf('trapezoidal height: %g\n', ...
22. trapezoid(v, t(1), t(end)));
23. fprintf('Simpson''s Rule height: %g\n', ...
24. simpson(v, t(1), t(end)));

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

time (sec)

v
(m

/s
),

 h
(m

/5
)

Velocity and Altitude of a Rocket

velocity
altitude/5

 Figure 15.13 Rocket velocity and altitude

374 Chapter 15 Numerical Methods

(a) Forward (b) Backward (c) Central

f(xk)
f(xk-1)

xk-1 xk+1xk

f(xk+1)

f(xk)

f(xk-1)

xk-1 xk+1xk

f(xk+1)

f(xk)
f(xk-1)

xk-1 xk+1xk

f(xk+1)

 Figure 15.14 Difference techniques

 15.4 Numerical Differentiation

 The derivative of a function f (x) is defined to be a function f ‘ (x) that is equal
to the rate of change of f (x) with respect to x . The derivative can be expressed
as a ratio, with the change in f (x) indicated by df (x) and the change in x
indicated by dx , giving us the following:

f ¿(x) =

df (x)
dx

 There are many physical processes for which we want to measure the rate
of change of a variable. For example, velocity is the rate of change of position
(as in meters per second), and acceleration is the rate of change of velocity
(as in meters per second squared).

 The derivative f‘ (x) can be described graphically as the slope of the
function f (x), which is defined to be the slope of the tangent line to the
function at the specified point. Thus, the value of f ‘ (x) at the point a is f ‘ (a),
and it is equal to the slope of the tangent line at the point a .

 15.4.1 Difference Expressions

 In general, numerical differentiation techniques estimate the derivative
of a function at a point x k by approximating the slope of the tangent line
at x k using values of the function at points near x k . The approximation of
the slope of the tangent line can be done in several ways, as shown in
 Figure 15.14 .

 ■ Backward Difference: Figure 15.14 (a) assumes that the derivative at x k is
estimated by computing the slope of the line between f (x k21) and f (x k)

 ■ Forward Difference: Figure 15.14 (b) assumes that the derivative at xk
is estimated by computing the slope of the line between f (x k) and
 f (x k11)

15.6 Implementation 375

 ■ Central Difference: Figure 15.14 (c) assumes that the derivative at x k is
estimated by computing the slope of the line between f (x k21) and
 f (x k11)

 The quality of all of these types of derivative computations depends on
the distance between the points used to estimate the derivative; the
estimate of the derivative improves as the distance between the two points
decreases.

 15.6 Implementation

 To facilitate differentiation, the MATLAB language defines the diff(...)
function, which computes differences between adjacent values in a vector,
generating a new vector with one less value than the original:

dv = diff(V) returns [V(2)-V(1), V(3)-V(2), ..., V(n)-V(n-1)]

 An approximate derivative dy / dx can be computed by using diff(y)./
diff(x) . Depending on the application, this can be used to compute the

 15.5 Analytical Operations

 We return to the discussion of fitting a polynomial to some raw data in
 Section 15.2.2 . We approximated a polynomial fit with the following
expression:

 f (x) 5 a 0 x n 1 a 1 x n21 1 a 2 x n22 1 a 3 x n23 1 ... a n21 x 1 a n

 Since this is an analytical expression, even if some or all of the coefficients
are complex, we can integrate it to estimate the integral of the raw data and
differentiate it to estimate the slope of the raw data.

 15.5.1 Analytical Integration

 The expression for F(x), the integral of f(x) with respect to x, is given by:

 F (x) 5 a 0 x n11 /(n11) 1 a 1 x n /n 1 a 2 x n21 /(n21) 1 a 3 x n22 /(n22) 1 ...

 a n21 x 2 /2 1 a n x 1 K

 Note that an arbitrary constant, K, is always required for analytical
integration representing the starting value F(0).

 15.5.2 Analytical Differentiation

 The expression for f’(x), the integral of f(x) with respect to x, is given by:

 f' (x) 5 na 0 x n21 1 (n21)a 1 x n22 1 (n22)a 2 x n23 1 (n23)a 3 x n24 1 ... a n21

376 Chapter 15 Numerical Methods

forward, backward, or central difference approximation. The solution to
the forward difference is shown in Listing 15 . 9 .

 In Listing 15 . 9 :

 Lines 1–4: Establish and plot f (x).
 Line 5: The difference expression—returns a vector one shorter than
the original.
 Lines 6–11: Plot the forward, backward, and central differences.

 The results are shown in Figure 15.15 . Since the original data were generated
from a series of coefficients, we could also plot the exact value of the slope
using the result of Section 15.5.2 .

 Listing 1 5 . 9 Differentiating a function

 1. x = -7:0.1:9;
 2. f = polyval([0.0333,-0.3,-1.3333,16,0,-187.2,0], x);
 3. plot(x, f)
 4. hold on
 5. df = diff(f)./diff(x);
 6. plot(x(2:end), df, 'g')
 7. plot(x(1:end-1), df, 'r')
 8. xm = (x(2:end)+x(2:end)) / 2
 9. plot(xm, df, 'c')
10. grid on
11. legend({ 'f(x)', 'forward', 'backward', 'central'})

-8 -6 -4 -2 0 2 4 6 8 10
-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

f(x)
forward
backward
central

 Figure 15.15 Differentiation

15.7 Engineering Example—Shaping the Synthesizer Notes 377

modest number of samples that describe the envelope of the sound
(marked by red * symbols). Then, we perform a high-order curve fit on
that data and check its accuracy by plotting it as the solid line on the
same figure.

 To demonstrate the essence of this capability, we begin with Listing 14 . 6
from Chapter 14 , reading the file ‘instr_piano.wav’ instead of ‘instr_tpt.wav.’
Now, we insert the code in Listing 15 . 10 in place of the last two lines of
Listing 14 . 6 .

 15.7 Engineering Example—Shaping the Synthesizer Notes

 As discussed in Chapter 14 , we can synthesize the frequency content of
an instrument by selecting an appropriate number of coefficients from the
energy spectrum, multiplying each by an appropriate sine or cosine wave
and summing the results. This gives a time trace with constant amplitude,
which is fine for an instrument like a trumpet, but notes played on other
instruments like a piano have a very non-linear time profile as shown in
 Figure 15.16 . That same figure has two overlays indicating how to
develop the decay profile typical of a piano note. First, we choose a

0 1 2 3 4 5 6 7 8 9

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 Figure 15.16 Piano note time history

378 Chapter 15 Numerical Methods

 In Listing 15 . 10 :

 Lines 1–3: Plot the sound’s time history in new figure window.
 Line 4: Arbitrarily choose a time sample increment to achieve a small
but representative set of amplitude samples.
 Lines 8–13: A loop to compute and store the amplitude samples and
the corresponding time indices. Each step calculates the maximum
amplitude during its time window and saves it with the window location.
 Line 14: Plots the sample locations.
 Lines 15–17: Compute and plot the polynomial fit to the amplitudes
using an eight-order fit.
 Lines 18–21: Modify the synthesized piano sound by multiplying by the
amplitude profile determined in this script.

 In conclusion, with these two engineering examples, we have shown how
the essence of the sound of a musical instrument can be derived from the
actual sound of an instrument and captured as a small set of complex
amplitudes with their frequency value and an even smaller set of real
coefficients of the function that multiplies the amplitude over time.

To construct from these data a real music synthesizer, one need only to
detect that a keyboard note has been pressed, determine the required
frequency, and play the synthesized note until the key is released. If the
synthesizer is equipped to specify that the sustain pedal is depressed, the
piano sound should not be cut off, but allowed to fade into silence.

 Listing 15 . 10 Modifying sound amplitude

 1. figure
 2. plot(snd)
 3. hold on
 4. incr = 1000;
 5. at = 1;
 6. samples = [];
 7. tm = [];
 8. while at < (N - incr)
 9. val = max(snd(at:at+incr-1));
10. samples = [samples val];
11. tm = [tm at+incr/2];
12. at = at + incr;
13. end
14. plot(tm, samples,'r*')
15. coeff = polyfit(tm, samples, 8);
16. samp = polyval(coeff, tm);
17. plot(tm, samp, 'c')
18. amult = polyval(coeff, 1:length(f));
19. f = f .* amult;
20. sf = f ./ max(f);
21. sound(sf, Fs)

Self Test 379

 Chapter Summary

 In this chapter, we saw the implementations of four common numerical
techniques:

 ■ We can estimate data points between given data values using linear
(interp1 / 2 / 3) or spline interpolation

 ■ We can smooth noisy data by fitting polynomial curves of suitable
order to the raw data

 ■ Given, for example, the velocity of an object over time, we can
determine its position by integrating using cumtrapz(...) or
 cumsum(...)

 ■ We can differentiate to generate its acceleration

 Special Characters, Reserved Words, and Functions

 Special Characters,

Reserved Words,

and Functions

Description

Discussed in

This Section

 NaN Not a number 15.1.1

 cumsum(y) Computes the integral of the function y(x),
assuming that Δx is 1

 15.3.2

 cumtrapz(x,y) Computes the integral of the function y(x), using
the trapezoidal rule

 15.3.2

 diff(v) Computes the differences between adjacent values
in a vector

 15.6

 interp1(x, y, nx) Computes linear and cubic interpolation 15.1.1

 interp2(x, y, z,
nx, ny)

 Computes linear and cubic interpolation 15.1.1

 interp3(x, y, z,
v, nx, ny, nz)

 Computes linear and cubic interpolation 15.1.1

 polyfit(x, y, n) Computes a least-squares polynomial 15.2.2

 polyval(c, x) Evaluates a polynomial 15.2.2

 spline(x, y) Spline interpolation 15.1.2

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. All MATLAB functions permit extrapolation beyond the limits of
the original independent variable.

380 Chapter 15 Numerical Methods

 2. The cubic spline is a series of parametric curves.

 3. You cannot extrapolate the equations generated by curve fitting.

 4. You should always match the order of a parametric curve fit to the
underlying physics of the data.

 5. Simpson’s rule is more accurate than the trapezoidal rule for
integrating a function.

 6. Numerical differentiation produces a vector that is the same length
as the original vector.

 Fill in the Blanks

 1. Polynomial regression can be achieved with the help of two
MATLAB functions, _________ and ________.

 2. The integral of a function f (x) over the interval [a, b] is defined to be
the __________ between a and b.

 3. The derivative f ’(x) can be described graphically as the
_____________ to the function at the specified point.

 4. To compute the continuous integral of a data set that is not regularly
sampled, you have to compute the _________________ of the
_______________ of ________________ and __________________.

 5. If a(n) ____________ is defined by its polynomial coefficients, you
can integrate or differentiate it by _______________ the vector of
coefficients.

 Programming Projects

 1. Do the following basic exercises with numerical methods.
 a. Define two vectors xi and yi of the same length where the xi

values are monotonically increasing and the yi values are
somehow related to the xi values. Then define a new vector x
with closer spacing than xi and extending below and above the
range of xi . Find the y values corresponding to the x values in xi
by linear interpolation. On the same figure, plot the original yi
vs. xi as red circles, and y vs. x as a black line. What do you
observe about the visible range of the x values?

 b. Repeat the exercise in part a using the spline(...) function to
interpolate. Explain the difference in the range of the resulting y
vs. x plot.

 c. Use polyfit(...) to find the coefficients of the third-order
polynomial that best fits the points represented by vectors xi and

Programming Projects 381

 yi and then use polyval(...) to evaluate that curve at the x points.
As before, plot yi vs. xi as red circles and y vs. x as a black line.

 d. Approximate the derivative, dxy = dy/dx, for the vectors xi and
 yi using the diff(...) function and plot yi vs. xi . Since
 diff(...) reduces the length of the vector by one, you will have
to plot dxy vs. either xi(1:end-1), xi(2:end) or compute xm , the
mid-points of xi .

 e. Find yp , the cumulative sum of the elements in dxy, and add this
to the plot of part d. With the exception of a constant offset, this
curve ought to track the original plot of yi vs. xi .

 f. Use cumtrapz to find the area under the curve represented by yp
vs. xi with the trapezoidal method of approximation. Compare
this result to the ending value of the yp curve.

 2. Write a function, bestFit , that takes in a vector of x-coordinates and
a vector of y-coordinates. Your function should fit a polynomial
curve to the data. The degree of the polynomial should be the
smallest degree polynomial with an average error (the average of
the absolute value of the difference between the new y-coordinates
and the original y-coordinates) less than 2. Your function should
return:
 • the vector of coefficients of your polynomial
 • the vector of new y-coordinates, which is the polynomial

evaluated at the original x-coordinates, and
 • the vector of the error magnitudes of your polynomial.

 Write a test program to provide reasonable data to your function
and plot the original data (in blue), the curve-fitted data (in green),
and the error (in red) on one figure. Title your plot and label your
axes accordingly, including a legend.

 3. You have been approached by the Rambling Wreck club to test the
performance of the Rambling Wreck. You are provided with the test
results of the car for 10 trial runs in the form of a vector d that
contains the displacement of the car from the origin at that second.
The first element is the displacement at the 0th second, the second
element is the displacement at the 1st second, and so on. Write a
script called testWreck that displays a plot of the speed of the
Rambling Wreck over time during the test run. You could test your
script using:

d = [0 20 35 50 60 55 30 25 15 5];

 4. Engineers often use tabulated data for various calculations. An
important method that any good engineer should be able to apply
to tabulated data is interpolation. In thermodynamics, the properties
of a gas can be known when two of its properties have been fixed.

382 Chapter 15 Numerical Methods

You are required to come up with a continuous function being given
the tabulated data below measured where the pressure is 0.10 MPa:

 Temperature (deg C) Specific Volume (cu meters/Kg)

 99.63 1.694
 100 1.696
 120 1.793
 160 1.984
 200 2.172
 240 2.359
 280 2.546
 320 2.732
 360 2.917
 400 3.103
 440 3.288
 500 3.565

 Write a function called lookup that consumes three parameters: the
above table in an array, a number value , and a logical control value
 getTemp . If getTemp is true , the function interpolates the value as a
specific volume and returns the corresponding temperature.
Otherwise, it interpolates the value as a temperature and returns the
corresponding specific volume. Your function must not extrapolate
the data (i.e., it should return NaN if the user tries to obtain values
outside the range of the table values).

 5. Mathematically speaking, a critical point occurs when the derivative
of a function equals zero. It is possible that a local minimum or a
local maximum occurs at a critical point. A local minimum is a point
where the function’s value to the left and right of it is larger, and a
local maximum is a point where the function’s value to the left and
right of it is smaller. You are going to write a function that finds the
local minimum and maximum points of a set of data. Call the
function find_points . It should take in vectors of x and y values and
return two vectors. The first vector should contain the x values
where the minimum points occur, while the second vector should
contain the x values where the maximum points occur.

 For example:

If x=linspace(-8,2,1000) and y=x.^2+6*x+3;
[min_p max_p]=find_points(x,y) should return

 min_p = -3, max_p = []
If x=linspace(-5,5,1000) and y=x.^3-12*x;
[min_p max_p]=find_points(x,y) should return:

 min_p = 2, max_p = -2

 You should plot x and y to confirm the answers.

Programming Projects 383

 6. Now that we used the derivative it only makes sense that you are
going to write a function that finds integrals. Call your function
 find_integral . Your function should take in a vector of x and y
values as Problem 15.5 does and should plot the integral and also
return the total area under the function. You are to use the
trapezoidal rule to find the integrals.

 For example:

If x=linspace(0,5,1000); and y=2*x+5;
find_integral(x,y) should return 50.0000

This page intentionally left blank

 Chapter Objectives

 This chapter discusses:

 ■ A technique for comparing the performance of algorithms

 ■ A range of algorithms for sorting a collection of data

 ■ Application areas in which these algorithms are most appropriate

 First, we will digress from the main thread of problem solving to dis-
cuss an “engineering algebra” for measuring the cost of an algorithm
in terms of the amount of work done. Then we will consider a
number of sorting algorithms, using this technique to assess their
 relative merits.

 Sorting
 C H A P T E R 1 6

 16.1 Measuring Algorithm
Cost

 16.1.1 Specific Big O
Examples

 16.1.2 Analyzing
Complex
Algorithms

 16.2 Algorithms for Sorting
Data

 16.2.1 Insertion Sort
 16.2.2 Bubble Sort
 16.2.3 Quick Sort
 16.2.4 Merge Sort
 16.2.5 Radix Sort

 16.3 Performance Analysis
 16.4 Applications of Sorting

Algorithms
 16.4.1 Using sort(. . .)
 16.4.2 Insertion Sort
 16.4.3 Bubble Sort
 16.4.4 Quick Sort
 16.4.5 Merge Sort
 16.4.6 Radix Sort
 16.5 Engineering Example—

A Selection of Countries

385

386 Chapter 16 Sorting

 16.1 Measuring Algorithm Cost

 How many times do you ask yourself, “Just how good is my algorithm?”
Probably not very often, if ever. After all, we have been creating relatively
simple programs that work on a small, finite set of data. Our functions
execute and return an answer within a second or two (except for the
recursive Fibonacci function on numbers over 25). You may have noticed
that some of the image processing scripts take a number of seconds to run.
However, as the problems become more complex and the volume of data
increases, we need to consider whether we are solving the problem in the
most efficient manner. In extreme cases, processes that manipulate huge
amounts of data like the inventory of a large warehouse or a national
telephone directory might be possible only with highly efficient
algorithms.

 Big O is an algebra that permits us to express how the amount of work
done in solving a problem relates to the
amount of data being processed. It is a gross
simplification for software engineering
analysis purposes, based on some sound
but increasingly complex theory.

 Big O is a means of estimating the worst case performance of a given
algorithm when presented with a certain number of data items, usually
referred to as N. In fact, the actual process attempts to determine the limit
of the relationship between the work done by an algorithm and N as N
approaches infinity.

 We report the Big O of an algorithm as O (<expression in terms of N>).
For example, O(1) describes the situation where the computing cost is
independent of the size of the data, O(N) describes the situation where the
computing cost is directly proportional to the size of the data, and O(2 N)
describes the situation where the computing cost doubles each time one
more piece of data is added. At this point, we should also observe some
simplifying assumptions:

 ■ We are not concerned with constant multipliers on the Big O of an
algorithm. As rapidly as processor performance and languages are
improving, multiplicative improvements can be achieved merely by
acquiring the latest hardware or software. Big O is a concept that
reports qualitative algorithm improvement. Therefore, we choose to
ignore constant multipliers on Big O analyses.

 ■ We are concerned with the performance of algorithms as N
approaches infinity. Consequently, when the Big O is expressed as
the sum of multiple terms, we keep only the term with the fastest
growth rate.

 Interested readers should look up little-O, Big-V,
little-v, and Big-Q.

 Technical Insight 16.1

16.1 Measuring Algorithm Cost 387

 16.1.1 Specific Big O Examples

 On the basis of algorithms we have already discussed, we will look at
examples of the most common Big O cases.

 O(1)—Independent of N O(1) describes the ideal case of an algorithm or
logical step whose amount of work is independent of the amount of data.
The most obvious example is accessing or modifying an entry in a vector.
Since all good languages permit direct access to elements of a vector, the
work of these simple operations is independent of the size of the vector.

 O(N)—Linear with N O(N) describes an algorithm whose performance is
linearly related to N. Copying a cell array of size N is an obvious example,
as is searching for a specific piece of data in such a cell array. One might
argue that occasionally one would find the data as the first element. There
is an equal chance that we would be unlucky and find the item as the last
element. On average, we would claim that the performance of this search is
the mean of these numbers: (N11) / 2. However, applying the simplification
rules above, we first reject the 1 as being N to a lower power, leaving N/2,
and then reject the constant multiplier, leaving O(N) for a linear search.

 O(logN)—Binary Search Consider searching for a number—say, 86—in a
sorted vector such as that shown in Figure 16.1 . One could use a linear
search without taking advantage of the ordering of the data. However, a
better algorithm might be as follows:

 1. Go to the middle of the vector (approximately) and compare that
element (59) to the number being sought.

 2. If this is the desired value, exit with the answer.

 3. If the number sought is less than that element, since the data are or-
dered, we can reject the half of the array to the right of, and includ-
ing the 59.

 4. Similarly, if the number sought is greater than that element, we can
reject the half of the array to the left of and including the 59.

 5. Repeat these steps with the remaining half vector until either the
number is found or the size of the remaining half is zero.

 Now consider how much data can be covered by each test—a measure of
the work done as shown in Table 16.1 .

 In general, we can state that the relationship is expressed as follows:

N = 2 W

7 12 42 59 71 86 104 212

 Figure 16.1 Binary search

388 Chapter 16 Sorting

 However, we need the expression for the work, W, as a function of N.
Therefore, we take the log base 2 of each side so that:

W = log 2N

 Now, we realize that we can convert log 2 N to log x N merely by multiplying
by log 2 x, a constant that we are allowed to ignore. Consequently, we lose
interest in representing the specific base of the logarithm, leaving the work
for a binary search as O(log N).
 O(N 2)—Proportional to N 2 O(N 2) describes an algorithm whose
performance is proportional to the square of N. It is a special case of
O(N 3 M), which describes any operation on an N 3 M array or image.

 O(2 N)—Exponential Growth or Worse Occasionally we run across very
nasty implementations of simple algorithms. For example, consider the
recursive implementation of the Fibonacci algorithm we discussed in
 Section 9.6.2 . In this implementation, fib(N) 5 fib(N 2 1) 1 fib(N 2 2). So
each time we add another term, the previous two terms have to be calculated
again, thereby doubling the amount of work. If we double the work when 1
is added to N, in general the Big O is O(2 N). Of course, in the case of this
particular algorithm, there is a simple iterative solution with a much
preferable performance of O(N).

 16.1.2 Analyzing Complex Algorithms

 We can easily calculate the Big O of simple algorithms. For more complex
algorithms, we determine the Big O by breaking the complex algorithm
into simpler abstractions, as we saw in Chapter 10 . We would continue
that process until the abstractions can be characterized as simple
operations on defined collections for which we can determine their Big
Os. The Big O of the overall algorithm is then determined from the

 Table 16.1 Work done in a binary search

 Work N

 1 2

 2 4

 3 8

 4 16

 5 32

 . .

 . .

 W 2 W

16.2 Algorithms for Sorting Data 389

individual components by combining them according to the following
rules:

 ■ If two components are sequential (do A and then do B), you add
their Big O expressions

 ■ If components are nested (for each A, do B), you multiply their Big
O expressions

 For example, we will see the merge sort algorithm in Section 16.2.5 . It can be
abstracted as follows:

 Perform a binary division of the data (O(logN)) and then for each
binary step (of which there are O(log(N)), merge all the data items
(O(N)).

 This has the general form:

 Do A, then for each B, do C

 which, according to the rules above, should result in O A 1 O B * O C . The
overall algorithm therefore costs O(log N) 1 O(N) * O(log N). We remove
the first term because its growth is slower, leaving O(N log N) as the overall
algorithm cost.

 16.2 Algorithms for Sorting Data

 Generally, sorting a collection of data will organize the data items in such a
way that it is possible to search for a specific item using a binary search
rather than a linear search. This concept is nice in principle when dealing
with simple collections like an array of numbers. However, it is more difficult
in practice with real data. For example, telephone books are always sorted
by the person’s last name. This facilitates searching by last name, but it does
not help if you are looking for the number of a neighbor whose name you do
not know. That search would require sorting the data by street name.

 There are many methods for sorting data. We present five representative
samples selected from many sorting algorithms because each has a practical,
engineering application. First we describe each algorithm, and then we
compare their performance and suggest engineering circumstances in
which you would apply each algorithm. Note that in all these algorithms,
the comparisons are done using functions (e.g., gt(...) , lt(...) , or
 equals(...)) rather than mathematical operators. This permits collections
containing arbitrarily complex objects to be sorted merely by customizing
the comparison functions.

 16.2.1 Insertion Sort

 Insertion sort is perhaps the most obvious sorting technique. Given the
original collection of objects to sort, it begins by initializing an empty

390 Chapter 16 Sorting

collection. For example, if the collection were a vector, you might allocate a
new vector of the same size and initialize an “output index” to the start of
that vector. Then the algorithm traverses the original vector, inserting each
object from that vector in order into the new vector. This usually requires
“shuffling” the objects in the new vector to make room for the new object.

 Figure 16.2 illustrates the situation where the first four numbers of the
original vector have been inserted into the new vector; the algorithm finds
the place to insert the next number (10) and then moves the 12 across to
make space for it.

 Listing 16 . 1 shows the MATLAB code for insertion sort on a vector of
numbers. The algorithm works for any data collection for which the function
 lt(A,B) compares two instances.

6Original 2 12 4 10 8

2New 4 6 12

2 4 6 12

 Figure 16.2 Insertion sort in progress

 Listing 16 . 1 The insertion sort function

 1. function b = insertionsort(a)
 % This function sorts a column vector,
 % using the insertion sort algorithm
 2. b = []; i = 1; sz = length(a);
 3. while i <= sz
 4. b = insert(b, a(i,1));
 5. i = i + 1;
 6. end
 7. end
 8. function a = insert(a, v)
 % insert the value v into column vector a
 9. i = 1; sz = length(a); done = false;
10. while i <= sz
11. if lt(v, a(i,1))
12. done = true;
13. a = [a(1:i-1); v; a(i:end)];
14. break;
15. end
16. i = i + 1;
17. end
18. if ~done
19. a(sz+1, 1) = v;
20. end
21. end

16.2 Algorithms for Sorting Data 391

 In Listing 16 . 1 :

 Line 2: Initializes the result and the while loop parameters.
 Line 4: Calls the helper function to insert the latest value into the
output vector.
 Lines 8−21: The helper function that inserts a new value into a
vector and returns that vector.

 Later we will refer to the selection sort algorithm that is similar in concept
to insertion sort. Rather than sorting as the new data are put into the new
vector, however, the selection sort algorithm repeatedly finds and deletes
the smallest item in the original vector and puts it directly into the new
vector.

 Both insertion sort and selection sort are O(N 2) if used to sort a whole
vector.

 16.2.2 Bubble Sort

 Where insertion sort is easy to visualize, it is normally implemented by
creating a new collection and growing that new collection as the algorithm
proceeds. Bubble sort is conceptually the easiest sorting technique to
visualize and is usually accomplished by rearranging the items in a
collection in place. Given the original collection of N objects to sort, it makes
(N 2 1) major passes through the data. The first major pass examines all N
objects in a minor pass, and subsequent passes reduce the number of
examinations by 1. On each minor pass through the data, beginning with
the first data item and moving incrementally through the data, the algorithm
checks to see whether the next item is smaller than the current one. If so, the
two items are swapped in place in the array.

 At the end of the first major pass, the largest item in the collection has
been moved to the end of the collection. After each subsequent major pass,
the largest remaining item is found at the end of the remaining items. The
process repeats until on the last major pass, the first two items are compared
and swapped if necessary. Figure 16.3 illustrates a bubble sort of a short
vector. On the first pass, the value 98 is moved completely across the vector
to the rightmost position. On the next pass, the 45 is moved into position.
On the third pass, the 23 reaches the right position, and the last pass finishes
the sort.

 Listing 16 . 2 shows the MATLAB code for bubble sort on a vector of
numbers. The algorithm works for any data type for which the function
 gt(A,B) compares two instances. Since bubble sort performs (N 2 1) *
(N 2 1)/2 comparisons on the data, it is also O(N 2). Some implementations
use a flag to determine whether any swaps occurred on the last major pass
and terminate the algorithm if none occurred. However, the efficiency

392 Chapter 16 Sorting

gained by stopping the algorithm early has to be weighed against the cost
of setting and testing a flag whenever a swap is accomplished.

 In Listing 16 . 2 :

 Line 2: In order to be able to access the array in place, we pass it as a
global variable instead of as a parameter.
 Lines 3–4: Since each pass puts the largest element in place, we can
reduce the item count by 1 each time. This initializes the size of the
first pass.
 Lines 4–14: Show the loop for the N 2 1 major passes.
 Lines 6–12: Show the loop for each major pass.

98 23 45 14 6

23 98 45 14 6

23 45 98 14

Pass 4 Moves 14
into Position

Pass 3 Moves 23
into Position

Pass 2 Moves 45
into Position

Pass 1 Moves 98
into Position

6

23 45 14 98 6

23 45 14 6 98

23 14 45 6 98

23 14 6 45 98

14 23 6 45 98

14 6 23 45 98

6 14 23 45 98

 Figure 16.3 Bubble sort

 Listing 16 . 2 Bubble sort

 1. function bubblesort()
 % This function sorts the column array b in place,
 % using the bubble sort algorithm
 2. global b
 3. N = length(b);
 4. right = N-1;
 5. for in = 1:(N-1)
 6. for jn = 1:right
 7. if gt(b(jn), b(jn+1))
 8. tmp = b(jn); % swap b(jn) with b(jn+1)
 9. b(jn) = b(jn+1);
10. b(jn+1) = tmp;
11. end
12. end
13. right = right - 1;
14. end
15. end

16.2 Algorithms for Sorting Data 393

 Lines 8–10: Swap the current item with its neighbor. By doing this
in place, the largest item is always considered the current item until
it reaches the end.
 Line 13: Shortens the row after each major pass because the largest
item in the last pass is placed at the right-hand end.

 16.2.3 Quick Sort

 As its name suggests, the quick sort algorithm is one of the fastest sorting
algorithms. Like Bubble Sort, it is designed to sort an array “in place.” The
quick sort algorithm is recursive and uses an elegant approach to
subdividing the original vector. Figure 16.4 illustrates this process. The
algorithm proceeds as follows:

 ■ The terminating condition occurs when the vector is of length 1,
which is obviously sorted.

 ■ A “pivot point” is then chosen. Some sophisticated versions go to a
significant amount of effort to calculate the most effective pivot
point. We are content to choose the first item in the vector.

 ■ The vector is then subdivided by moving all of the items less than
the pivot to its left and all those greater than the pivot to its right,
thereby placing the pivot in its final location in the resulting vector.

 ■ The items to the left and right of the pivot are then recursively
sorted by the same algorithm.

 ■ The algorithm always converges because these two halves are
always shorter than the original vector.

 Listing 16 . 3 shows the code for the quick sort algorithm. The
partitioning algorithm looks a little messy, but it is just performing the

36 23 45 14 6 67 33 42

6 14 23 33 36 42 45 67

23 14 6 33 45 67 42

42 45 67

36

14 6 23

6 14

33 42 45 67

6 14

6 14 23 33

 Figure 16.4 Quick sort

394 Chapter 16 Sorting

array adjustments. It starts with i and j outside the vector to the left and
right. Then it keeps moving each toward the middle as long as the values
at i and j are on the proper side of the pivot. When this process stops, i
and j are the indices of data items that are out of order. They are swapped,
and the process is repeated until i crosses past j . Quick sort is O(N log N).
As with the previous techniques, this algorithm applies to collections of
any data type for which the functions lt(A,B) and gt(A,B) compare two
instances.

 In Listing 16 . 3 :

 Line 1: Each recursive call is provided with the vector to sort and
the range of indices to sort. These are initially from = 1 and to =
length(a) .
 Line 2: The terminating condition for the recursion is when the
vector to sort has size 1—that is, when from == to .
 Line 3: The partition function performs three roles—it places the
pivot in the right place, moves the smaller and larger values to the

 Listing 16 . 3 Quick sort

 1. function a = quicksort(a, from, to)
 % This function sorts a column array,
 % using the quick sort algorithm
 2. if from < to
 3. [a p] = partition(a, from, to);
 4. a = quicksort(a, from, p);
 5. a = quicksort(a, p + 1, to);
 6. end
 7. end
 8. function [a lower] = partition(a, from, to)
 % This function partitions a column array
 9. pivot = a(from); i = from - 1; j = to + 1;
10. while i < j
11. i = i + 1;
12. while lt(a(i), pivot)
13. i = i + 1;
14. end
15. j = j - 1;
16. while gt(a(j), pivot)
17. j = j - 1;
18. end
19. if (i < j)
20. temp = a(i); % this section swaps
21. a(i) = a(j); % a(i) with a(j)
22. a(j) = temp;
23. end
24. end
25. lower = j;
26. end
27.

16.2 Algorithms for Sorting Data 395

correct sides, and returns the location of the pivot to permit the
recursive partitioning.
 Lines 4 and 5: Show recursive calls to sort the left and right parts of
the vector.
 Lines 8–26: Show the helper function.
 Line 9: Initializes the variables.
 Lines 10–24: The outer loop continues until i passes j .
 Lines 11–14: Skip i forward over all the items less than the pivot.
 Lines 15–18: Skip j backward over all the elements greater than the
pivot.
 Lines 20–22: If i < j , i is indexing an item greater than the pivot,
and j is indexing an item less than the pivot. By swapping the
contents of a(i) and a(j) , we rectify both inequities and can
continue the inner loop.
 Line 25: When the loop exits, both i and j are indexing the pivot.

 There is one performance caution about quick sort. Its speed depends on
the randomness of the data. If the data are mostly sorted, its performance
reduces to O(N 2).

 16.2.4 Merge Sort

 Merge sort is another O(N log N) algorithm that achieves speed by dividing
the original vector into two “equal” halves. It is difficult at best to perform a
merge sort in place in a collection. Equality, of course, is not possible when
there is an odd number of objects to be sorted, in which case the length of the
“halves” will differ by at most 1. The heart of the merge sort algorithm is the
technique used to reunite two smaller sorted vectors. This function is called
“merge.” Its objective is to merge two vectors that have been previously
sorted. Since the two vectors are sorted, the smallest object can only be at the
front of one of these two vectors. The smallest item is removed from its place
and added to the result vector. This merge process continues until one of the
two halves is empty, in which case the remaining half (whose values all
exceed those in the result vector) is copied into the result.

 The merge sort algorithm is shown in Figure 16.5 and proceeds as follows:

 ■ The terminating condition is a vector with length less than 2, which
is, obviously, in order

 ■ The recursive part invokes the merge function on the recursive call
to merge the two halves of the vector

 ■ The process converges because the halves are always smaller than
the original vector

 The code for merge sort is shown in Listing 16 . 4 .

396 Chapter 16 Sorting

98 23 45 14 6 67 33 42

6 14 23 33 42 45 67 98

98 23 45 14 6 67 33 42

14 23 45 98 6 33 42 67

98 23

23 98 14 45 6 67 33 42

45 14 6 67 33 42

98 23 45 14 6 67 33 42

 Figure 16.5 Merge sort

 Listing 16 . 4 Merge sort

 1. function b = mergesort(a)
 % This function sorts a column array,
 % using the merge sort algorithm
 2. b = a; sz = length(a);
 3. if sz > 1
 4. szb2 = floor(sz / 2);
 5. first = mergesort(a(1 : szb2));
 6. second = mergesort(a(szb2+1 : sz));
 7. b = merge(first, second);
 8. end
 9. end
10. function b = merge(first, second)
 % Merges two sorted arrays
11. i1 = 1; i2 = 1; out = 1;
 % as long as neither i1 nor i2 past the end,
 % move the smaller element into a
12. while (i1 <= length(first)) & (i2 <= length(second))
13. if lt(first(i1), second(i2))
14. b(out,1) = first(i1); i1 = i1 + 1;
15. else
16. b(out,1) = second(i2); i2 = i2 + 1;
17. end
18. out = out + 1;
19. end
 % copy any remaining entries of the first array
20. while i1 <= length(first)
21. b(out,1) = first(i1); i1 = i1 + 1; out = out + 1;
22. end
 % copy any remaining entries of the second array
23. while i2 <= length(second)
24. b(out,1) = second(i2); i2 = i2 + 1; out = out + 1;
25. end
26. end

16.2 Algorithms for Sorting Data 397

 In Listing 16 . 4 :

 Line 2: Initializes the parameters.
 Line 3: The terminating condition is an array of length 1, which
does not need sorting.
 Line 4: Divides the array in half.
 Lines 5 and 6: Sort the halves of the array.
 Line 7: Merges the two sorted halves.
 Lines 10–26: Show the helper function to merge sorted arrays.
 Lines 12–19: This loop repeats until one of the two arrays is used
up choosing and removing the smaller element out of the two
arrays.
 Lines 20–25: Copy the remains of each array to the result.

 16.2.5 Radix Sort

 A discussion of sorting techniques would not be complete without
discussing radix sort, commonly referred to as bucket sort. This is also an
O(N log N) algorithm whose most obvious application is for sorting
physical piles of papers, such as students’ test papers. However, the same
principle can be applied to sorting successively on the units, tens and
hundreds digit of numbers (hence, the term radix sort). The process
begins with a stack of unsorted papers, each with an identifier consisting
of a number or a unique name. One pass is made through the stack
separating the papers into piles based on the first digit or character of the
identifier. Subsequent passes sort each of these piles by subsequent
characters or digits until all the piles have a small number of papers that
can be sorted by insertion or selection sorts. The piles can then be
reassembled in order. Figure 16.6 illustrates the situation at the end of
the second sorting pass when piles for the first digit have also been
separated by the second digit.

 There are a number of reasons why this technique is popular for
sorting:

 ■ There is a minimal amount of “paper shuffling” or bookkeeping
 ■ The base of the logarithm in the O(N log N) is either 10 (numerical

identifier) or 26 (alphabetic identifier), thereby providing a
“constant multiplier” speed advantage

 ■ Once the first sorting pass is complete, one can use multi-processing
(in the form of extra people) to perform the remaining passes in
parallel, thereby reducing the effective performance to O(N) (given
sufficient parallel resources)

398 Chapter 16 Sorting

00xx 01xx 02xx 03xx

10xx 11xx 12xx 13xx

20xx 21xx 22xx 23xx

30xx 31xx 32xx 33xx

 Figure 16.6 Radix sort

 16.3 Performance Analysis

 In order to perform a comparison of the performance of different algorithms,
a script was written to perform each sort on a vector of increasing length
containing random numbers. The script started with a length of 4 and
continued doubling the length until it reached 262,144 (2 18). To obtain
precise timing measurements, each sort technique was repeated a sufficient
number of times to obtain moderately accurate timing measurements with
the internal millisecond clock. In order to eliminate common computation
costs, it was necessary to measure the overhead cost of the loops themselves
and subtract that time from the times of each sort algorithm. Note that in
order to show the results of the system internal sort on the same chart, its
execution time was multiplied by 1,000.

 Figure 16.7 shows a typical plot of the results of this analysis, illustrating
the relative power of O(N log N) algorithms versus O(N 2) algorithms. The
plot on a log-log scale shows the relative time taken by the selection sort,
insertion sort, bubble sort, merge sort, quick sort, and quick sort in place
algorithms, together with the internal sort function. Also on the chart are
plotted trend lines for O(N 2) and O(N log N) processes. We can make the
following observations from this chart:

 ■ Since the scales are each logarithmic, it is tempting to claim that
there is “not much difference” between O(N 2) and O(N log N)
algorithms. Looking closer, however, it is clear that for around
200,000 items, the O(N 2) sorts are around 100,000 times slower than
the O(N log N) algorithms.

16.3 Performance Analysis 399

 ■ The performance of most of the algorithms is extremely erratic
below 100 items. If you are sorting small amounts of data, the
algorithm does not matter.

 ■ The selection sort, bubble sort, and insertion sort algorithms clearly
demonstrate O(N 2) behavior.

 ■ The merge sort and quick sort algorithms seem to demonstrate
O(N log N). Notice, however, that the performance of quick sort is
slightly better than O(N log N). This slight improvement is due to
the fact that once the pivot has been moved, it is in the right place
and is eliminated from further sorting passes.

 ■ Clearly, the internal sort function, in addition to being 1,000 times
faster than any of the coded algorithms, is closely tracking the
O(N log N) performance curve, indicating that it is programmed

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Comparison of Sort Algorithms

Number of Items Sorted (log scale)

R
e

la
tiv

e
 S

o
rt

 T
im

e
 (

lo
g

 s
ca

le
)

Selection
Insertion
Bubble
Merge
Quick
Matlab
N squared
N log N

 Figure 16.7 Sort study results

400 Chapter 16 Sorting

with one of the many algorithms that use divide-and-conquer to
sort the data as efficiently as possible.

 16.4 Applications of Sorting Algorithms

 This section discusses the circumstances under which you might choose to
use one or another of the sorting algorithms presented above. We assert
here without proof that the theoretical lower bound of sorting is O(N log N).
Consequently, we should not be looking for a generalized sorting algorithm
that improves on this performance. However, within those constraints,
there are circumstances under which each of the sorting techniques
performs best. As we saw in the analysis above, the internal sort function is
blindingly fast and should be used whenever possible. The subsequent
paragraphs show the applicability and limitations of the other sort
algorithms if you cannot use sort(...) .

 16.4.1 Using sort(. . .)

 The first and most obvious question is why one would not always use the
built-in sort(...) function. Clearly, whenever that function works, you
should use it. Its applicability might seem at first glance to be limited to
sorting numbers in an array, and you will come across circumstances when
you need to sort more complex items. You might, for example, have a
structure array of addresses and telephone numbers that you wish to sort
by last name, first name, or telephone number. In this case, it seems that the
internal sort program does not help, and you have to create your own sort.

 Extracting and Sorting Vectors and Cell Arrays However, a closer
examination of the specification of the sort function allows us to generalize
the application of sort(...) significantly. When you call sort(v) , it actually
offers you a second result that contains the indices used to sort v . So in the
case where you have a cell array or a structure array and your sort criteria
can be extracted into a vector, you can sort that vector and use the second
result, the indexing order, to sort the original array. Furthermore, if you can
extract character string data into a cell array of strings, the internal sort
function will sort that cell array alphabetically.

 For example, consider again the CD collection from Chapter 10 . We
might want to find the most expensive CD in our collection and then make
a list of artists and titles ordered alphabetically by artist. We leave the
details of this as an exercise for the reader.

 16.4.2 Insertion Sort

 Insertion sort is the fastest means of performing incremental sorting. If a
small number of new items—say, M—are being added to a sorted collection

16.4 Applications of Sorting Algorithms 401

of size N, the process will be O(M*N), which will be fastest as long as
M < log N. For example, consider a national telephone directory with over
a billion numbers that must frequently be updated with new listings.
Adding a small number of entries (< 20) would be faster with insertion sort
than with merge sort, and quick sort would be a disaster because the data
are almost all sorted (see below).

 16.4.3 Bubble Sort

 Bubble sort is the simplest in-place sort to program and is fine for small
amounts of data. The major advantage of bubble sort is that in a fine-grained
multi-processor environment, if you have N/2 processors available with
access to the original data, you can reduce the Big O to O(N).

 16.4.4 Quick Sort

 As its name suggests, this is the quickest of the sorting algorithms and
should normally be used for a full sort. However, it has one significant
disadvantage: its performance depends on a fairly high level of
randomness in the distribution of the data in the original array. If there is
a significant probability that your original data might be already sorted,
or partially sorted, your quick sort is not going to be quick. You should
use merge sort.

 16.4.5 Merge Sort

 Since its algorithm does not depend on any specific characteristics of the
data, merge sort will always turn in a solid O(N log N) performance. You
should use it whenever you suspect that quick sort might get in trouble.

 16.4.6 Radix Sort

 It is theoretically possible to write the radix sort algorithm to attempt to
take advantage of its apparent performance improvements over the more
conventional algorithms shown above. However, some practical problems
arise:

 ■ In practice, the manipulation of the arrays of arrays necessary to
sort by this technique is quite complex

 ■ The performance gained for manual sorts by “parallel processing”
stacks using multiple people cannot be realized

 ■ The logic for extracting the character or digit for sorting is going to
detract from the overall performance

 Therefore, absent some serious parallel processing machines, we
recommend that the use of bucket sort be confined to manually sorting
large numbers of physical objects.

402 Chapter 16 Sorting

 16.5 Engineering Example—A Selection of Countries

 In the Engineering Application problem in Section 10.5 , we attempted to
find the best country for a business expansion based on the rate of growth of
the GNP for that country versus its population growth. The initial version of
the program returned the suggestion that the company should move to
Equatorial Guinea. However, when this was presented to the Board of
Directors, it was turned down, and you were asked to bring them a list of the
best 20 places to give them a good range of selection.

 We should make two changes to the algorithm:

 ■ Originally, we used a crude approximation to determine the slope
of the population and GNP curves. However, now we know that
 polyfit can perform this slope computation accurately, and we will
substitute that computation.

 ■ We will use the internal sort function to fi nd the 20 best countries.
The code to accomplish this, a major revision of the code in Chapter 10 ,
is shown in Listing 16 . 5 .

 Listing 16 . 5 Updated world data analysis

 1. function doit
 2. worldData = buildData('World_data.xls');
 3. n = 20;
 4. bestn = findBestn(worldData, n);
 5. fprintf('best %d countries are:\n', n)
 6. for best = bestn(end:-1:1)
 7. fprintf('%s\n', worldData(best).name)
 8. end
 9. end
10. function bestn = findBestn(worldData, n)

% find the indices of the n best countries
% according to the criterion in the function fold
% we first map world data to add the field growth

11. for ndx = 1:length(worldData)
12. cntry = worldData(ndx);
13. worldData(ndx).growth = fold(cntry);
14. end

% now, sort on this criterion
15. values = [worldData.growth];
16. [junk order] = sort(values);

% filter these to keep the best 10
17. bestn = order(end-n+1:end);
18. end
19. function ans = fold(st)

% s1 is the rate of growth of population
20. pop = st.pop(~isnan(st.pop));
21. yr = st.year(~isnan(st.pop));
22. s1 = slope(yr, pop)/mean(pop);

continued on next page

16.5 Engineering Example—A Selection of Countries 403

 In Listing 16 . 5 :

 Line 1: Wraps the script in a pseudo-function to allow the helper
functions to reside in the same file.
 Line 2: Reads in the world data.
 Line 3: Selects the number of countries to present.
 Line 4: Calls the function that will return the indices of the n best
countries.
 Lines 5–8: Print the list of country names in reverse order (the best first).
 Lines 10–18: Show an updated version of the original function to return
the indices of the n best countries.
 Lines 11–14: Map the worldData structure array, adding to each a
field called growth that contains the criterion specified in the fold
function.
 Lines 15 and 16: Extract and sort the values of growth for each country.
 Line 17: Returns the last n countries that will have the highest growth
values.

 Lines 19–27: The fold function
unchanged from Chapter 10 .
 Lines 28–35: The modified slope
function from Chapter 10 .
 Lines 32 and 33: Use polyfit to
compute an accurate slope and return
it to the calling function.

 The results from running this version
are shown in Table 16.2 . This seems to be an acceptable list of possibilities
to take back to the Board of Directors.

% s2 is the rate of growth of the GDP
23. gdp = st.gdp(~isnan(st.gdp));
24. yr = st.year(~isnan(st.gdp));
25. s2 = slope(yr, gdp)/mean(gdp);

% Measure of merit is how much faster
% the gdp grows than the population

26. ans = s2 - s1;
27. end
28. function sl = slope(x, y)

% Estimate the slope of a curve
29. if length(x) == 0 || x(end) == x(1)
30. error('bad data')
31. else
32. coef = polyfit(x, y, 1);
33. sl = coef(1);
34. end
35. end

 A deceptively simple question arises: Should you expect the
 worldData at line 6 of Listing 16 . 7 to contain the field
growth? Actually, it will not. Although it appears that the
function findBestn adds this field to worldData , it is
working with a copy of the worldData structure array that
is not returned to the calling script.

 Common Pitfalls 16.1

404 Chapter 16 Sorting

 Table 16.2 Updated world data results

 Best 20 countries are:

 Estonia Lebanon

 St. Kitts & Nevis Malta

 Albania Cyprus

 Vietnam Tajikistan

 Croatia Taiwan

 Kazakhstan Korea, Republic of

 Azerbaijan Grenada

 Uzbekistan Ireland

 Georgia Portugal

 Dominica Antigua

 Chapter Summary

 This chapter discussed:

 ■ A technique for comparing the performance of algorithms
 ■ A range of useful algorithms for sorting a collection of data
 ■ Application areas in which these algorithms are most

appropriate

 Self Test

 Use the following questions to check your understanding of the material in this
chapter:

 True or False

 1. When computing the Big O of sequential operations, you retain only
the term that grows fastest with N.

 2. All search algorithms have O(N).

 3. No sort algorithm can perform better than O(NlogN).

 4. All sorting algorithms with O(N 2) traverse the complete data
collection N times.

 5. Quick sort in reality should be listed as O(N 2).

Self Test 405

 Fill in the Blanks

 1. Bubble sort has a complexity of _____________.

 2. If for a particular operation on a given set of data of size N, you
have given three algorithms with complexities O(N Log N), O(N2)
and O(log N), _____________ would be chosen for faster output.

 3. ________________ is the fastest means of performing incremental
sorting.

 4. __________ sort and _____________ sort are designed to sort the
data in place.

 5. The system internal sort(...) returns the ___________ and a(n)
___________ that allow you to sort any collection from whose
elements one can derive a(n) ___________ or ______________________.

This page intentionally left blank

 Chapter Objectives

 This chapter demonstrates algorithms that solve two problems:
finding the minimum spanning tree for a graph and finding the best
path through a graph. However, first we need to understand the
following:

 ■ How to construct and use two special forms of data collection:
queues and priority queues

 ■ How to build a model of a graph

 ■ How to traverse and search a graph

 Introduction

 The collections we have considered so far—vectors, arrays, structure
arrays, and cell arrays—have essentially been collections whose
elements are linearly related to each other by being organized in
rows and columns. However, practical engineering frequently meets
data that are not organized so easily. Graphs are one such data set.
The ultimate goal of this chapter is to discuss this most general form
of data structure. We need first to resolve the semantic problem of
the name “graph.” We typically think of a graph as a plot. However,
in computer science, a graph is a collection of nodes connected by
edges. A street map might be a useful mental model of a graph
where the streets are the edges and the intersections are the nodes.

 To process graphs effectively, we must first consider two simpler
concepts: queues in general and priority queues in particular.

 Processing Graphs
 C H A P T E R 1 7

 17.1 Queues
 17.1.1 The Nature of a

Queue
 17.1.2 Implementing

Queues
 17.1.3 Priority Queues
 17.1.4 Testing Queues

 17.2 Graphs
 17.2.1 Graph Examples
 17.2.2 Processing

Graphs
 17.2.3 Building Graphs
 17.2.4 Traversing

Graphs
 17.2.5 Searching Graphs

 17.3 Minimum Spanning
Trees

 17.4 Finding Paths through a
Graph

 17.4.1 Exact Algorithms
 17.4.2 Breadth-First

Search (BFS)
 17.4.3 Dijkstra’s

Algorithm
 17.4.4 The

Approximation
Algorithm

 17.4.5 Testing Graph
Search Algorithms

 17.5 Engineering Applications
 17.5.1 Simple

Applications
 17.5.2 Complex

Extensions

407

408 Chapter 17 Processing Graphs

 17.1 Queues

 We first consider the nature and implementation of queues, special
collections that enable us to process graphs efficiently. We experience the
concept of a queue every day of our lives. A line of cars waiting for the light
to turn green is a queue; when we stand in line at a store or send a print job
to a printer, we experience typical queue behavior. In general, the first
object entering a queue is the first one to exit the other end.

 17.1.1 The Nature of a Queue

 Formally, we refer to a queue as a first in/first out (FIFO) collection, as
illustrated in Figure 17.1 . The most general form of a queue is permitted to
contain any kind of object, that is, an instance of any data type or class. A
cell array, therefore, would be a good underlying structure upon which to
build queue behavior.

 Typically, operations on a queue are restricted to the following:

 ■ enqueue puts an object into the queue
 ■ dequeue removes an object from the queue
 ■ peek copies the first object out of the queue without removing it
 ■ isempty determines that there are no items in the queue

 17.1.2 Implementing Queues

 Although there are many ways to implement a queue, a cell array is a good
choice because it is a linear collection of objects that may be of any type and
can be extended or shortened without any apparent effort. If we establish a
queue using a cell array, the implementation of the above behavior is trivial:

 ■ enqueue concatenates data at the end of the cell array
 ■ dequeue removes the item from the front of the cell array and

returns that item to the user
 ■ peek merely accesses the first item in the cell array
 ■ isempty is the standard MATLAB test for the empty vector

 Clearly, because all the cell array operations are also accessible to the
programmer, nothing prevents an unscrupulous programmer from using
other operations on the queue—for example, adding an item to the front of

DequeueEnqueue

 Figure 17.1 A queue

17.1 Queues 409

the queue rather than the back to effectively “jump in line.” There are
implementations beyond the scope of this text that use object-oriented
programming techniques to encapsulate the data and restrict the available
operations on that data to those that implement the required functionality.
However, for our purposes, the “open” cell array implementation is
sufficient.

 Functions that perform the enqueue and dequeue operations for a queue
are shown in Listing 17 . 1 .

 In Listing 17 . 1 :

 Line 1: Obviously, these two trivial functions should actually be in
separate files. Both functions must return the updated queue
because they receive copies of the original queue.
 Line 2: Concatenates the enqueued item in a cell (the braces) at the
back of the cell array.
 Line 3: The dequeue function must return the new queue and the
item being removed.
 Line 4: We return the first item on the cell array and remove it by
returning the rest.

 17.1.3 Priority Queues

 There are times when we wish ordinary queues were priority queues. For
example, at the printer where you wait an hour for one page while someone
prints large sections of an encyclopedia and you wonder why the print
queue can’t put really small jobs ahead of really large jobs.

 The only difference between an ordinary queue and a priority queue is in
the enqueue algorithm. On a priority queue, the enqueue function involves
adding the new item in order to the queue, as illustrated in Figure 17.2 . For
the enqueue function to add in order, there must be a means of comparing
two objects. Here, we use the function is_before that generally should be
able to compare any two objects.

 Listing 17 . 1 Enqueue and dequeue functions

1. function q = qEnq(q, data)
% enqueue onto a queue

2. q = [q {data}];
3. end
4. function [q ans] = qDeq(q)

% dequeue
5. ans = q{1};
6. q = q(2:end);
7. end

410 Chapter 17 Processing Graphs

 In this implementation, it is sufficient to be able to compare numbers or
structures that contain either the fields key or NaN . Clearly, this can be
extended as necessary to compare any two objects.

 The code for is_before is shown in Listing 17 . 2 .

 In Listing 17 . 2 :

 Line 1: Shows a function that consumes two objects and returns a
Boolean result.
 Line 2: Captures the data type (class) of the first object.
 Line 3: Initializes the result.
 Line 4: Checks that the second object is the same data type—
otherwise, the false answer is returned.
 Line 5: Decides how to compare the objects based on the data type.
 Lines 6 and 7: Numbers are easily compared.

Dequeue
Enqueue

 Figure 17.2 A priority queue

 Listing 17 . 2 Comparing two objects

 1. function ans = is_before(a, b)
% comparing two objects

 2. acl = class(a);
 3. ans = false;
 4. if isa(b, acl)
 5. switch acl
 6. case 'double'
 7. ans = a < b;
 8. case 'struct'
 9. if isfield(a, 'key')
10. ans = a.key < b.key;
11. elseif isfield(a, 'dod')
12. ans = age(a) < age(b);
13. else
14. error('comparing unknown structures')
15. end
16. otherwise
17. error(['can''t compare ' acl 's'])
18. end
19. end
20. end

17.1 Queues 411

 Line 8: Selects different structures to compare based on fields in the
structure.
 Lines 9 and 10: If the field key is present, compare these.
 Lines 11 and 12: If the field age is present, compare these.
 Lines 13–18: Show that an error exits.

 The enqueue function that uses is_before(...) to compare objects for a
priority queue is shown in Listing 17 . 3 .

 In Listing 17 . 3 :

 Line 1: Shows the same signature as the enqueue function for
ordinary queues.
 Lines 2 and 3: Initialize the while loop parameters.
 Line 4: Moves the index in down the existing queue until it falls off
the end of the cell array or finds something that the item to insert
goes before. This second exit is implemented with a break statement.
 Line 5: Checks whether the item is less than the current entry in the
queue.
 Lines 6 and 7: If so, mark the spot and exit the loop.
 Lines 8 and 9: Otherwise, keep moving down the queue.
 Line 11: Inserts the item in a container between the front part of the
queue and the remains of the queue from at to the end .

 17.1.4 Testing Queues

 It is always advisable to test utility functions thoroughly before using them
in complex algorithms. First we will build a simple utility for presenting the
contents of any cell array, and then we will write a script to test the queues.

 In order to observe the results from testing the queues, we need a function
that will convert a cell array to a string for printing. Although it is tempting

 Listing 17 . 3 Priority queue enqueue function

 1. function pq = pqEnq(pq, item)
% enqueue in order to a queue

 2. in = 1;
 3. at = length(pq)+1;
 4. while in <= length(pq)
 5. if is_before(item, pq{in})
 6. at = in;
 7. break;
 8. end
 9. in = in + 1;
10. end
11. pq = [pq(1:at-1) {item} pq(at:end)];
12. end

412 Chapter 17 Processing Graphs

to try to write a single function to accomplish this, we achieve more
maintainable code by separating the cell array traversal from the details of
converting each item to a string. The first function, CAToString , which
traverses the cell array, is shown in Listing 17 . 4 .

 In Listing 17 . 4 :

 Line 1: The function consumes any cell array and returns a string.
 Line 2: Initializes the string.
 Line 3: Traverses the cell array.
 Line 4: Extracts each item from the container, uses the toString
utility function below to convert it to a string, and appends it to the
end of the output string together with a new-line character (the
ASCII value 13).

 Of course, the real effort in creating this string is the second function that
converts each individual item from the cell array to its string representation.
This is shown in Listing 17 . 5 .

 In Listing 17 . 5 :

 Line 1: Java programmers might recognize the concept of
converting an object to its string equivalent.
 Lines 2 and 3: If the object is a string, surround it with single quotes.
 Lines 4–6: Individual scalar numbers are printed in %g form.
 Lines 7–12: Vectors are enclosed in braces.
 Line 14: Recursively uses toString to print the fields of a structure.
 Lines 15 and 16: A special case wherein if there is a name field in the
structure, the value of that field is used for the string.
 Lines 18–23: Extract the field names and iterate through them one at
a time, creating a string by appending each field name with its
value and a new line.

 Listing 17 . 6 illustrates a test script that exercises most of the available
functions for queues and priority queues using numbers. However, a queue
can contain any object you can display, and a priority queue can contain
any object you can display and compare to another of the same type.

 Listing 17 . 4 Converting a cell array to a string

1. function str = CAToString(ca)
% Traverse a cell array to make a string

2. str = '';
3. for in = 1:length(ca)
4. str = [str toString(ca{in}) 13];
5. end
6. end

17.1 Queues 413

 Listing 17 . 5 Converting any object to a string

 1. function str = toString(item)
% turn any object into its string representation

 2. if isa(item, 'char')
 3. str = ['''' item ''''];
 4. elseif isa(item, 'double')
 5. if length(item) == 1
 6. str = sprintf('%g', item);
 7. else
 8. str = '[';
 9. for in = 1:length(item)
10. str = [str ...
11. sprintf(' %g', item(in))];
12. end
13. str = [str ']'];
14. end
15. elseif isa(item, 'struct')
16. if isfield(item, 'name')
17. str = item.name;
18. else
19. nms = fieldnames(item);
20. str = [];
21. for in = 1:length(nms)
22. nm = nms{in};
23. str = [str nm ': ' ...
24. toString(item.(nm)) 13];
25. end
26. end
27. else
28. str = 'unknown data';
29. end
30. end

 Listing 17 . 6 Testing the queues

 1. q = [];
 2. for ix = 1:10
 3. q = qEnq(q, ix);
 4. end
 5. CAToString(q)
 6. [q ans] = qDeq(q);
 7. fprintf('dequeue -> %d leaving \n%s\n', ...
 8. ans, CAToString(q));
 9. fprintf('peek at queue -> %d leaving \n%s\n', ...
10. q{1}, CAToString(q));
11. pq = [];
12. for ix = 1:10
13. value = floor(100*rand);
14. fprintf(' %g:', value);
15. pq = pqEnq(pq, value);
16. end
17. fprintf('\npriority queue is \n%s\n', ...
18. CAToString(pq));

414 Chapter 17 Processing Graphs

 In Listing 17 . 6 :

 Line 1: Initializes a queue.
 Lines 2–4: Enqueue 10 numbers.
 Line 5: Displays the resulting queue.
 Lines 6–8: Dequeue and print one value and the remaining queue.
 Lines 9 and 10: Peek at the head of the queue and verify that we
have not changed its contents.
 Line 11: Creates a priority queue.
 Lines 12–16: Enqueue 10 random integers.
 Lines 17 and 18: List the queue to show that they were enqueued in
order.

 A serious reader can verify that this indicates correct queue behavior.

 17.2 Graphs

 This chapter focuses on processing a graph—the most general form of dynamic
data structure, an arbitrary collection of nodes connected by edges . The edges
may be directional to indicate that the graph can be traversed along that edge
in only one direction (like a one-way street). The edges may also have a value
associated with them to indicate, for example, the cost of traversing that edge.
We refer to this as a weighted graph . For a street map, this cost could either be
the distance, or in a more sophisticated system, the travel time—a function of
the distance, the speed limit, and the traffic congestion. Graphs are not
required to be completely connected, and they may contain cycles —closed
loops in which the unwary algorithm could become trapped. Graphs also
have no obvious starting and stopping points. A path on a graph is a connected
list of edges that is the result of traversing a graph.

 17.2.1 Graph Examples

 A simple graph is shown in Figure 17.3 . In the figure, the connection points
 A ... F are the nodes and the edges are the interconnecting lines, which are

A B

E D

F C

 Figure 17.3 A simple graph

17.2 Graphs 415

directional but not weighted. Graphs occur frequently in everyday life, as
illustrated by the street map shown in Figure 17.4 . Street maps can be
conveniently represented as graphs where intersections are the nodes and
streets are the edges. Streets can be directional (one-way), and they may
have weights associated with them—either the transit time (a function of
the length of the street and its speed limit) or with access to real-time traffic
information, a more complex estimate of the transit time.

 17.2.2 Processing Graphs

 In designing algorithms that operate on graphs in general, we need to
consider the following constraints:

 ■ With cycles permitted in the data, there is no natural starting point
like the beginning of a cell array. Consequently, the user must always
specify a place on the graph to start as well as the place to stop.

 ■ There are no natural “leaf nodes” where a search might have to stop
and back up. Consequently, an algorithm processing a graph must
have a means of determining that being at a given node is the “end
of the line.” Typically, this is accomplished by maintaining a
collection of visited nodes as it progresses around the graph. Each
time a node is considered, the algorithm must check to see whether

 Figure 17.4 A simple street map

416 Chapter 17 Processing Graphs

that node is already in the visited collection. If so, it refuses to return
to that node. The algorithm must backtrack if it reaches a node from
which there is no edge to a node that has not already been visited.

 ■ Whereas on a cell array there is only one feasible path from one node
to another, there may be many possible paths between two nodes on
a graph. The best algorithms that search for paths must take into
account a comparison between paths to determine the best one.

 For a simple, consistent example, consider the graph shown in Figure 17.5 .
We will use this simple example to demonstrate minimum spanning trees
(MSTs) and finding paths through the graph.

 17.2.3 Building Graphs

 We need to consider graphs as two collections of data as follows:

 ■ A list of n nodes with the properties of identity (a name) and
position

 ■ An n 3 n adjacency matrix that specifies the weight of the edge
from each node to any other node

 If one node is not reachable from another, by convention we will specify
that weight as 0. This is actually a rather intimidating structure to build “by
hand.” In order to facilitate reliable construction of the adjacency matrix,
we start with a simpler description of the graph shown in Figure 17.5 . This
graph can be described initially with the following data:

 ■ cost a vector of size m 3 1 containing the weights for each of m edges
 ■ dir a vector of size m 3 1 indicating the directionality of each edge

as follows:
 • 2 two-way edge
 • 1 one way in a positive direction
 • – 1 one way in the other direction

 ■ node a matrix of size n 3 rows containing the edge indices for each
node. For example, if node(i, j) contains x , it says that the i th
node connects to the x th edge. If x is 0, there is no connection. The

B

C

D
E

H

A

F
3

1

1
2

2
2

2

2
2

3

3

3

3

G

 Figure 17.5 A weighted graph

17.2 Graphs 417

value rows is the maximum number of nodes that can be reached
from any other node.

 ■ coord a matrix of size n × 2 containing the x-y coordinates of each
node that is used only for the graphical representation of the graph.

 The script shown in Listing 17 . 7 starts with the above representation of
the graph and calls the function grAdjacency(...) to produce the adjacency
matrix. We will save this script as the constructor script makeGraph.m . Again
referencing Figure 17.5 , the sequence of edges used in this script is:

A-B, A-C, A-D, A-E, A-F, B-F, B-C, C-D, D-E, F-G, E-G, G-H, E-H

 Large adjacency matrices usually contain very little data relative to their
size. Consequently, to store them as a conventional n × n array is to waste
most of the storage space and may even cause memory problems for the
processor. Recognizing this eventuality, the MATLAB language provides a
special class, sparse , that stores a matrix as lists of row and column indices
and the associated value. All normal array and matrix operations can be
applied to a sparse matrix. The assumption is that any value not specifically
allocated in a sparse matrix contains a zero. This is consistent with the
earlier treatment of vectors and arrays where unknown values are filled
with 0.

 The function grAdjacency(...) that converts graph data from arrays of
nodes, costs, and direction to the adjacency matrix form builds a sparse

 Listing 17 . 7 Constructing a simple graph

 % edge weights
 1. cost = [2 2 2 2 2 3 3 3 3 1 2 1 3];
 % edge directions
 2. dir = [2 2 2 2 2 2 2 2 2 2 2 2 2];
 % connectivity
 3. node = [1 2 3 4 5; ... % edges from A
 4. 1 6 7 0 0; ... % edges from B
 5. 2 7 8 0 0; ... % edges from C
 6. 3 8 9 0 0; ... % edges from D
 7. 4 11 13 9 0; ... % edges from E
 8. 5 6 10 0 0; ... % edges from F
 9. 10 11 12 0 0; ... % edges from G
10. 12 13 0 0 0]; % edges from H
 % coordinates
11. coord = [5 6; ... % A
12. 3 9; ... % B
13. 1 6; ... % C
14. 3 1; ... % D
15. 6 2; ... % E
16. 6 8; ... % F
17. 9 7; ... % G
18. 10 2]; % H
19. A = grAdjacency(node, cost, dir)

418 Chapter 17 Processing Graphs

matrix by establishing three vectors of the same length—the row index, the
column index, and the value of each point in the sparse matrix. The code to
accomplish this is shown in Listing 17 . 8 .

 In Listing 17 . 8 :

 Line 1: Shows a function consuming the node , cost , and direction
arrays defined above. The locations of the nodes are needed only
for plotting.
 Lines 2–4: Show initial parameters, where k is the number of entries
in the sparse matrix.

 Listing 17 . 8 Creating an adjacency matrix

 1. function A = grAdjacency(node, cost, dir)
% compute an adjacency matrix.
% it should contain the weight from one
% node to another (0 if the nodes
% are not connected)

 2. [m cols] = size(node);
 3. n = length(cost);
 4. k = 0;

% iterate across the edges
% finding the nodes at each end of the edge

 5. for is = 1:n
 6. iv = 0;
 7. for ir = 1:m
 8. for ic = 1:cols
 9. if node(ir, ic) == is
10. iv = iv + 1;
11. if iv > 2
12. error(

'bad intersection matrix');
13. end
14. ij(iv) = ir;
15. end
16. end
17. end
18. if iv ~= 2
19. error(sprintf(

'didn't find both ends of edge %d', is));
20. end
21. t = cost(is);
22. if dir(is) ~= -1
23. k = k + 1;
24. ip(k) = ij(1); jp(k) = ij(2); tp(k) = t;
25. end
26. if dir(is) ~= 1
27. k = k + 1;
28. ip(k) = ij(2); jp(k) = ij(1); tp(k) = t;
29. end
30. end
31. A = sparse(ip, jp, tp);
32. end

17.2 Graphs 419

 Line 5: Iterates down the list of edges.
 Line 6: Initializes the number of nodes found connected to the edge.
 Lines 7 and 8: Iterate across the nodes and columns of the node
array, looking for the nodes connected to the edge.
 Lines 9 and 10: When we find the edge value, we want to save that
node index.
 Lines 11–13: There can be only two ends to an edge; any more
indicates a bad data set.
 Line 14: Saves each end in the local variable ij .
 Lines 18–20: When we finish the traversal, there must be a node at
each end of the edge.
 Line 21: Retrieves the cost of this edge.
 Lines 22–25: Since bidirectional edges must be in the matrix twice,
we check to see if the edge is bidirectional or forward, and enter the
forward path in the sparse matrix.
 Lines 26–28: Similarly, the reverse path is entered only if the edge is
not forward.
 Line 31: Constructs the sparse adjacency matrix.

 17.2.4 Traversing Graphs

 In its simplest form, the template for graph traversal is shown in
Template 17 . 1 .

 In Template 17 . 1 :

 Line 1: This algorithm uses a queue to serialize the nodes to be
considered. The first in/first out behavior of the queue causes the
nearest nodes to emerge before the nodes farther away.

 Template 17 . 1 Template for graph traversal

 1. < create a queue >
 2. < enqueue the start node >
 3. < initialize the result >
 4. while < the queue is not empty >
 5. < dequeue a node >
 6. < operate on the node >
 7. < for each edge from this node >
 8. < retrieve the other node >
 9. if < not already used >
10. < enqueue the other node >
11. end
12. end
13. end
14. < return the result >

420 Chapter 17 Processing Graphs

 Line 2: Since all nodes have equal status on a graph, graph traversal
must be provided with the node from which to begin the traversal.
We enqueue that node to begin the traversal.
 Lines 3 and 4: Show the typical while loop traversal, initializing a
result.
 Lines 5 and 6: Extract and process one node.
 Lines 7 and 8: Traverse the edges from this node. There must be an
indication for each problem of which order to use in selecting the
edges to the children of the current path.
 Lines 9 and 10: Because the graph can contain cycles, the
mechanism for preventing the algorithm from becoming trapped
requires that we enqueue only those nodes that have not already
been visited.

 The choice of queue type governs the behavior of the traversal. If a simple
queue is used, the traversal will happen like ripples on a pond from the
starting node, touching all the nearest nodes before touching those
farther away.

 To illustrate the use of Template 17 . 1 , we will print the names of all the
nodes of the graph in Figure 17.5 in breadth-first order starting from node
E, assuming that all edges are bidirectional. When choosing the edges to the
next child node, the child nodes should be taken in alphabetical order:

 ■ To make sure that a node is not revisited, we will keep a list of the
visited nodes, beginning with the start node.

 ■ We find the children from the non-zero entries in the adjacency
matrix—because of the way we built the matrix, they are already in
alphabetical order.

 ■ We then traverse these children, adding to the queue those not
found on the visited list and adding each to the visited list.

 The script for this is shown in Listing 17 . 9 .

 In Listing 17 . 9 :

 Line 1: Invokes the script in Listing 17 . 7 to build the adjacency matrix.
 Line 2: The user-defined starting node—E.
 Line 3: Enqueues the starting node on a new queue.
 Line 4: Initializes the visited list.
 Line 5: Initializes the result—in this case, a printout.
 Line 6: Shows the while loop.
 Line 7: Dequeues a node.
 Line 8: In this case, processing the node involves printing its label
and a dash.

17.2 Graphs 421

 Line 9: The non-zero values from the row in the adjacency matrix
corresponding to this edge give us the children of this node.
 Line 10: Traverses the children.
 Lines 11–13: If they are not already on the visited list, enqueue them
and put them on the visited list.
 Line 17: Completes the result when the queue is empty.

 The results from this script are as follows:

trace: E - A - D - G - H - B - C - F –

 which, referring to Figure 17.5 , is a breadth-first traversal from node E
outward, taking children in alphabetical order as specified.

 17.2.5 Searching Graphs

 Rather than traversing a graph, we frequently need to know whether a
graph contains a specific node. Template 17 . 1 is easily modified to include a

 Listing 17 . 9 Breadth-first graph traversal

 1. makeGraph
% Constructs an adjacency matrix

 2. start = 5;
% start is a node number (in this case, 'E')
% Create a queue and
% enqueue a path containing home

 3. q = qEnq([], start);
% initialize the visited list

 4. visited = start;
% initialize the result

 5. fprintf('trace: ')
% While the queue is not empty

 6. while ~isempty(q)
% Dequeue a path

 7. [q thisNode] = qDeq(q);
% Traverse the children of this node

 8. fprintf('%s - ', char('A'+thisNode-1));
 9. children = find(A(thisNode,:) ~= 0);
10. for aChild = children

% If the child is not on the path
11. if ~any(aChild == visited)

% Enqueue the new path
12. q = qEnq(q, aChild);

% add to the visited list
13. visited = [visited aChild];
14. end % if ~any(eachchild == current)
15. end % for eachchild = children
16. end % while q not empty
17. fprintf('\n');
18.

422 Chapter 17 Processing Graphs

test to see if the current node is the one sought and to exit with success
when it is, leaving the existing exit for the failure case.

 17.3 Minimum Spanning Trees

 We will consider two practical algorithms commonly found in a large range
of engineering disciplines. The MST of a graph is used, for example, to
calculate the shortest cable necessary to connect all the houses in a
subdivision. Unlike path search, the second algorithm to be discussed later,
a spanning tree may have multiple branches essentially modeling side
streets in the subdivision.

 While there may be a large number of spanning trees, and there may be
mutiple MSTs in different configurations, they should all have the same
total length. We will consider one of the two major algorithms for computing
a MST—that commonly referred to as Prim’s algorithm. The other,
Kruscal’s, is similar and will not be covered here.

 Prim’s algorithm finds the subset of the edges of the graph that connect
every node exactly once and whose total cost is less than that of any other
spanning tree.

 The algorithm continuously
increases the size of a tree, one edge at
a time, starting with a tree consisting
of a single vertex, until it spans all the
vertices. The resulting tree, V, is a
collection of edges. It needs another
collection, N, the nodes currently
included in the MST.

 Specifically, given a graph as defined above, Prim’s algorithm proceeds
as follows:

 ■ Initialize the result V as an empty vector and N, the included nodes
5 { x }, where x is an arbitrary node chosen from the graph

 ■ Repeat the following while there are available edges:
 • Choose an edge (u , v) with minimal weight such that u is in N

and v is not (if there are multiple edges with the same weight,
any of them may be picked)

 • Add v to N, and (u , v) to V.
 ■ Report the contents of V as the resulting MST.

 Listing 17 . 10 shows the code that extracts MST from our sample graph.

 In Listing 17 : 10

 Lines 1 and 2: Invoke the script that builds the graph.

 According to Wikipedia, this algorithm was developed in
1930 by Czech mathematician Vojtech Jarník and later
independently by computer scientist Robert C. Prim in 1957
and rediscovered by Edsger Dijkstra in 1959. Therefore, it is
also sometimes called the DJP algorithm, the Jarník algorithm,
or the Prim–Jarník algorithm.

 Technical Insight 17.1

17.3 Minimum Spanning Trees 423

 Line 2: Sets the starting node (A).
 Line 3: Plots the basic graph structure using the built-in gplot(...)
function.
 Lines 4–10: Add plot axes and labels for all the nodes.
 Lines 11–13: Initialize the visited node list, N, a sparse matrix to
store the result and the while condition.
 Lines 14–37: Repeat as long as there are nodes to process.
 Line 16: Establishes a large initial best node.
 Line 17: Assumes failure to find a node.

 Listing 17 . 10 Prim’s Algorithm to compute a MST

 1. makeGraph
 2. start = 1;
 3. gplot(A, coord, 'ro-')
 4. hold on
 5. for index = 1:length(coord)
 6. str = char('A' + index - 1);
 7. text(coord(index,1) + 0.2, ...
 8. coord(index,2) + 0.3, str);
 9. end
10. axis([0 11 0 10]); axis off; hold on
11. N = start;
12. running = true;
13. result = sparse([0]);
14. while running
 % find the smallest edge
15. best = 10000;
16. running = false;
17. for ndx = 1:length(N)
18. node = N(ndx);
19. next = find(A(node,:) > 0);
20. for nxt = 1:length(next)
21. nxtn = next(nxt);
22. if ~any(N == nxtn)
23. running = true;
24. if A(node, nxtn) < best
25. best = A(node, nxtn);
26. from = node;
27. to = nxtn;
28. end
29. end
30. end
31. end
32. if running
33. N = [N to];
34. result(from, to) = 1;
35. end
36. end
37. gplot(result, coord, 'gx--')

424 Chapter 17 Processing Graphs

 Line 18: Looks through all the visited nodes.
 Line 19: Extracts a node.
 Line 20: Extracts from the adjacency matrix the edges from that
node. The indices with non-zero entries are the nodes to which the
edge connects; the value in the adjacency matrix is the weight or
cost of that edge.
 Lines 21 and 22: Examine each of the edges for the node it reaches
(nxtn).
 Line 23: Only continues if this is not already on the visited list.
 Lines 24–29: Report that an edge has been found, determine if it is
shorter than the previous best, and if so store the new best value
and the nodes at each end of the edge.
 Lines 33–36: Add the new node to the visited list and the edge to
the result array.
 Line 38: Plots the MST as green dashed lines.

 Figure 17.6 shows the MST resulting from this script. Note that if a different
starting node is used, the specific tree might be different but its total edge
length will be the same.

A

B

C

D

E

F

G

H

 Figure 17.6 MST result

 17.4 Finding Paths through a Graph

 This section discusses three algorithms for finding a path from one node
on the graph to another. The first two algorithms exhaustively search the
graph to find the absolute best path between node pairs by different
criteria. The third is one of many approximation algorithms typically used
to compute a good enough route in circumstances where an exact solution
is not feasible.

17.4 Finding Paths through a Graph 425

 17.4.1 Exact Algorithms

 In order to find a path rather than traverse it, we have to make the following
changes to Template 17 . 1 :

 ■ Since we need to return the complete path between the start and
target, the queue has to contain that path

 ■ Rather than use a global visited list, we can use the path taken from
the queue to determine whether a child node is causing a cycle

 ■ The order of the nodes on the path has the starting node at the front
of the path and the new node at the end

 17.4.2 Breadth-First Search (BFS)

 Frequently, we actually need the path with the smallest number of nodes
between the starting and ending nodes. For example, because changing
trains involves walking and waiting, the best path on a railway map (such
as the street map in Figure 17.4) is that with the fewest changes, even if the
resulting path is longer. The algorithm is based on Template 17 . 1 with the
changes noted above.

 To search for the path with the least nodes, we need a function that
performs a Breadth-First Search (BFS) on a graph. In order to be able to use
the built-in graph plotting program, the answer returned should be an
adjacency matrix showing the computed path. The function to perform this
search is shown in Listing 17 . 11 .

 Listing 17 . 11 Breadth-first graph search

 1. function D = grBFS(A, home, target)
 2. q = qEnq([], home);
 3. while ~isempty(q)
 4. [q current] = qDeq(q);
 5. if current(end) == target % success exit
 6. D = sparse([0]);
 7. for ans = 1:length(current)-1
 8. D(current(ans), current(ans+1)) = 1;
 9. end
10. return; % exit the function
11. end % if current == target
12. thisNode = current(end);
13. children = find(A(thisNode,:) ~= 0);
14. for thisChild = children
15. if ~any(thisChild == current)
16. q = qEnq(q, [current thisChild]);
17. end % if ~any(thisChild == current)
18. end % for thisChild = children
19. end % while q not empty

% if we reach here we never found a path
20. D = [];
21. end

426 Chapter 17 Processing Graphs

 In Listing 17 . 11 :

 Line 1: Shows a function consuming an adjacency matrix, the
starting and destination node indices.
 Line 2: Initializes the queue.
 Line 3: Repeats to Line 19 until the queue is empty.
 Line 4: The queue now contains a vector of the node indices on the
current path.
 Line 5: If the node dequeued (current(end)) is the target, the
function creates a new adjacency matrix representing the path from
the home node to the target.
 Line 6: Creates an empty sparse matrix.
 Lines 7–9: Add to it the edges between each node in the path.
 Line 10: Exits the function.
 Line 12: Otherwise, recovers the last node.
 Line 13: Retrieves its children.
 Lines 14–18: Traverse the children as before, checking for their
presence on the current path. When a child is enqueued, it is
appended to the end of the current path and the whole path is
enqueued.

 The BFS path from A to H is shown in Figure 17.7 . Note that it found the
path with the least number of nodes.

 17.4.3 Dijkstra’s Algorithm

 Although the minimal number of nodes is sometimes the right answer,
frequently there is a path that uses more nodes but has a smaller overall

A

B

C

D

E

F

G

H

 Figure 17.7 Breadth-first result

17.4 Finding Paths through a Graph 427

cost. This is evident from a quick glance at Figure 17.5 : the path A–F–G–H
has a lower cost than the A–E–H path found by the BFS algorithm, which
actually ignores the edge weights. Many algorithms exist for finding the
optimal path through a graph. Here we illustrate the algorithm attributed
to the Dutch computer scientist Dr. Edsger Dijkstra. Perhaps it is not the
most efficient algorithm; but for our purposes, this approach has the virtue
of being a minor extension to the while loop algorithm described in
Template 17 . 1 .

 ■ The major differences arise from the use of a priority queue in place
of the normal queue used in the BFS algorithm. As previously noted,
priority queues differ from basic queues only to the extent that the
 enqueue method puts the data in order, rather than at the tail.

 ■ The ordering criterion required by the algorithm is to place the
paths in increasing order of path cost (total weight).

 The objects contained in the priority queue need to contain not only the
path used for BFS, but also the total path weight. For this we will use a
structure with fields nodes and key , and implement a small collection of
helper functions. The helper functions to build a structure with a key and
extract the key of the last path entry are shown in Listing 17 . 12 .

 In Listing 17 . 12 :

 Line 1: Shows a function to construct a path structure from its
components.
 Lines 2 and 3: Build the structure.
 Line 5: Shows a function to retrieve the last node from a path.
 Line 6: Since the path nodes start at the path origin, the last entry is
the node we need.

 The function that performs Dijkstra’s algorithm is shown in Listing 17 . 13 .

 In Listing 17 . 13 :

 Line 1: Shows a function consuming an adjacency matrix, and the
starting and destination node indices.

 Listing 17 . 12 Helper functions for Dijkstra’s algorithm

1. function ret = Path(nodes, len)
% Path constructor

2. ret.nodes = nodes;
3. ret.key = len;
4. end
5. function ret = pthGetLast(apath)

% Returns number of last node on a path
6. ret = apath.nodes(end);
7. end

428 Chapter 17 Processing Graphs

 Line 2: Initializes the priority queue with a starting node and zero
cost.
 Line 3: Continues repeating until the queue is empty.
 Line 4: Shows that the queue now contains a path structure.
 Lines 5–12: If the node dequeued is the target, the function creates a
new adjacency matrix representing the path from the home node to
the target.
 Line 13: Otherwise, it recovers the last node.
 Line 14: Retrieves its children.
 Lines 15–23: Traverse the children as before, checking for their
presence on the current path. When a child is enqueued, it is
appended to the end of the current path, and the whole path is
enqueued.

 The optimal path from A to H is shown in Figure 17.8 . Note that it found
the path with the least cost.

 Listing 17 . 13 Code for Dijkstra’s algorithm

 1. function D = grDijkstra(A, home, target)
 2. pq = pqEnq([], Path(home, 0));
 3. while ~isempty(pq)
 4. [pq current] = qDeq(pq);
 5. if pthGetLast(current) == target
 6. D = sparse(0);
 7. answer = current.nodes;
 8. for ans = 1:length(answer)-1
 9. D(answer(ans), answer(ans+1)) = 1;
10. end
11. return;
12. end % if last(current) == target
13. endnode = pthGetLast(current);
14. children = A(endnode,:);
15. children = find(children ~= 0);
16. for achild = children
17. len = A(endnode, achild);
18. if ~any(achild == current.nodes)
19. clone = Path([clone.nodes achild] ...
20. current.key + len;
21. pq = pqEnq(pq, clone);
22. end % if ~any child == current.nodes
23. end % for achild = children
24. end % if pq not empty

% If we reach here we never found a path
25. D = [];
26. end

17.4 Finding Paths through a Graph 429

 17.4.4 Approximation Algorithm

 When a graph is very large, the computation complexity of the exact
solutions (roughly O(N 2)) becomes unmanageable. The A* algorithm is one
of many popular approximation techniques that will produce a solution,
but is not guaranteed to produce the best, and its computational complexity
is roughly O(N). This algorithm is quite simple:

 1. Beginning at the starting node, it evaluates the result of traveling
along each of the feasible edges to an adjacent node (eliminating
cyclic paths). The evaluation takes the form of summing the cost of
that edge and an estimate of the cost from that node to the destina-
tion. On a street map, for example, the estimated cost of each step
would be the length of the edge and the straight-line distance from
the new node to the destination.

 2. It selects the step with the least cost, adds the node reached to the
path, and repeats step 1 until the destination is reached.

 3. Back-tracking is sometimes necessary if a node is reached from which
there are no feasible paths, such as driving into a dead end street.

 4. Complete failure is also possible, as it is for the other algorithms, if
no physical path exists between the origin and destination nodes.

 Listing 17 . 14 shows the code that implements the A* algorithm. Notice that
some additional information is necessary to effectively compute the
estimated cost from a node to the destination. In our example, we can use
the location of each node, but in general, that location may not be readily
available.

A

B

C

D

E

F

G

H

 Figure 17.8 Dijkstra’s result

430 Chapter 17 Processing Graphs

 In Listing 17 . 14 :

 Lines 2 and 3: We will maintain two lists—the current path and the
visited list indicating all the nodes that have been visited. This
provides for the case when back-tracking is necessary to avoid
revisiting the dead end.
 Lines 4–29: Continue until the target node is reached.

 Listing 17 . 14 Code for A* algorithm

 1. function D = A_Star(A, home, target, coord)
 % initial path
 2. current = home;
 3. visited = home;
 4. while current(end) ~= target
 5. thisNode = current(end);
 % get possible paths from here
 6. children = find(A(thisNode,:) ~= 0);
 7. best = inf;
 8. node = -1; % no node seleected yet
 9. for thisChild = children
10. if ~any(thisChild == visited)
11. edgeCost = A(thisNode, thisChild);
12. estimate = dist(thisChild, target, coord);
13. cost = edgeCost + estimate;
14. if cost < best
15. best = cost;
16. node = thisChild;
17. end
18. end % if ~any(thisChild == current)
19. end % for thisChild = children
20. if node == -1
 % dead end -> back up one
21. current = current(1:end-1);
22. if length(current == 0)
23. error('path failed')
24. end
25. else
26. current = [current node];
27. visited = [visited node]; %
28. end
29. end
30. D = sparse([0]);
31. for it = 1:length(current)-1
32. D(current(it), current(it+1)) = 1;
33. end
34. end
35. function res = dist(a, b, coord)
36. from = coord(a,:);
37. to = coord(b,:);
38. res = sqrt((from(1)-to(1)).^2 + (from(2)-to(2)).^2);
39. end

17.4 Finding Paths through a Graph 431

 Lines 5 and 6: Find the nodes that can be reached from the current
node.
 Lines 7 and 8: Initialize the storage for the best next step.
 Lines 9–19: Iterate across all possibilities.
 Line 10: Only considers nodes not on the visited list.
 Lines 11–13: The cost of this step is the sum of the actual cost of one
step and the estimate of the remaining cost given in this case by the
distance between the nodes (invoking the helper function at lines
35–39).
 Lines 14–17: Check for improvement in the best cost.
 Lines 20 and 21: Check for a dead end.
 Lines 22 and 23: Check for total failure—we have backed up beyond
the starting node.
 Lines 26 and 27: Add a successful node to the current path (from
which it might later be remove by backing up) and the visited
nodes from which it is never removed.
 Lines 30–33: Prepare the results as a sparse matrix for plotting.
 Lines 35–39: Helper function calculating the distance between the
specified points.

 The A* path from A to H is shown in Figure 17.9 . Note that in this simple
case, it found the same path as the BFS, but that is not necessarily the case in
a more complex test.

 17.4.5 Testing Graph Search Algorithms

 The script that develops both search path solutions is shown in Listing 17 . 15 .
It requests the starting and ending node letters from the user and then

A

B

C

D

E

F

G

H

 Figure 17.9 A* result

432 Chapter 17 Processing Graphs

incrementally plots the original graph, the BFS solution, the optimal
solution, and the A* solution. The pause between plots allows the individual
paths to be examined. Without a parameter, pause waits for any keyboard
character.

 In Listing 17 . 15 :

 Lines 1–11: Initialize the experiment as before.
 Lines 12 and 13: Get the starting node.
 Lines 15 and 16: If valid, get the target node.
 Line 17: Shows the original graph and waits for a character.
 Lines 18–20: Compute and plot the BFS solution.
 Lines 21–23: Compute and plot the optimal solution.
 Lines 24–26: Compute and plot the A* solution.
 Lines 27 and 28: Repeat as necessary.

 Listing 17 . 15 Testing graph search algorithms

1. makeGraph; % call script to make the graph:
2. start = 1;
3. while start > 0
4. gplot(A, coord, 'ro-')
5. hold on
6. for index = 1:length(coord)
7. str = char('A' + index - 1);
8. text(coord(index,1) + 0.2, ...
9. coord(index,2) + 0.3, str);
10. end
11. axis([0 11 0 10]); axis off; hold on
12. ch = input('Starting node: ','s');
13. start = ch - 'A' + 1;
14. if start > 0
15. ch = input('Target node: ','s');
16. target = ch - 'A' + 1;
17. disp('original graph'); pause
18. D = grBFS(A, start, target);
19. gplot(D, coord, 'go-')
20. disp('BFS result'); pause
21. D = grDijkstra(A, start, target);
22. gplot(D, coord, 'bo-')
23. disp('Optimal result'); pause
24. D = A_Star(A, start, target, coord);
25. gplot(D, coord, 'm^-')
26. disp('A* result'); pause
27. hold off
28. end
29. end

Chapter Summary 433

 17.5 Engineering Applications

 Many practical engineering problems can be characterized as graph search
problems.

 17.5.1 Simple Applications
 MSTs are used by utility companies to find the least amount of cable that
must be used to wire a subdivision.

 Approximate path finding is used, for example, in navigation systems that
use GPS to find the current position of the vehicle and an approximate
algorithm like A* to determine the route to a destination.

 Exact path finding is used to optimize the flight profile of commercial aircraft
outside FAA-managed air space and can save as much as 10% of the fuel
burned on every flight.

 17.5.2 Complex Extensions
 In addition to the obvious examples above, consider these examples:

 ■ designing printed circuit boards is a complex extension of path fi nding

 ■ stresses in a redundant structure like an aircraft wing seek a path that is
in some sense optimal, and

 ■ the “traveling salesperson problem” is an unpleasant extension of
path fi nding in which the objective is to fi nd the shorted linear path
that connects all of the nodes of a graph visiting each exactly once.
For example, designing routes for garbage collection or school
buses.

 Each of these belongs to a large class of problems called N-P Complete
problems, a continued topic of research in many communities.

 Chapter Summary

 This chapter demonstrated effective algorithms for finding good paths through a
graph, and included the following:

 ■ How to construct and use queues and priority queues as the
underlying mechanism for graph traversal

 ■ The basic use of an adjacency matrix for defining a graph
 ■ Prim’s algorithm for finding the minimum spanning tree of a graph
 ■ Breadth-first and Dijkstra’s algorithms for finding exact paths

through a graph
 ■ The A* algorithm for finding approximate paths that are “good

enough”

434 Chapter 17 Processing Graphs

 Programming Project

 1. We would like to validate the assertion that the street map is
designed to have at most two train changes between any pair of
stations. Using the methodology of Section 17.2.3 and the picture in
 Figure 17.4 , construct a graph representing the major routes in that
system. You will not need all the stations identified for this
exercise—only one station per track segment between transfer
stations.
 a. Write a function that will determine the number of train changes

to travel between any pair of stations using a breadth-first search
to minimize the number of changes.

 b. Iterate across every pair of stations and find the station pair with
the maximum number of train changes.

 Special Characters Description

 <...> Used to indicate template parameters—data to be supplied

% Indicates a comment in an m-file

{...} Defines a cell array

[] The empty vector

[...] Concatenates data, vectors, and arrays

() Used to override operator precedence

() Used to identify the formal and actual parameters of a function

(...) Used to index an array

(<variable>) Used to allow a variable to be used as a structure field

'abc' Encloses a literal character string

 ‘ Transposes an array

; Suppresses output when used in commands

; Separates rows in an array definition

: Specifies a vector in the form <from:incr:to>

 : Used in slicing vectors and arrays

. Used to access fields of a structure

... Used to continue a MATLAB command to the next line

 Mathematical Operators Description

 = Assignment operator—assigns a value to a variable (memory
location); not the same as an equality test

+ Scalar and array addition

 − Scalar and array subtraction

− Unary negation

* Matrix multiplication

.* Element-by-element multiplication

/ Matrix division

./ Element-by-element division

^ Matrix exponentiation

.^ Element-by-element exponentiation

 MATLAB Special
Characters, Reserved
Words, and Functions

 A P P E N D I X A

A–1

A–2 Appendix A MATLAB Special Characters, Reserved Words, and Functions

 Logical Operators Description

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

˜= Not equal to

& Element-by-element logical AND

&& Short-circuit logical AND (scalar)

| Element-by-element logical OR (vectors)

|| Short-circuit logical OR (scalar)

˜ Unary not

 Logical Functions Description

all(a) True if all the values in a (a logical vector) are true

 and(a, b) True if both a and b are true

any(a) True if any of the values in a (a logical vector) are true

 not(a) True if a is false; false if a is true

 or(a, b) True if either a or b is true

 File Input and Output Description

[nums txt raw] = Read comma-separated text files
csvread(<file>)

csvread(<file>) Read comma-separated text files

csvwrite(<file>, Write comma-separated text files
<data>)

dlmread (<file>, Read text files separated by the given delimiting character(s)
< dlm>)

dlmwrite(<file>, Write text files separated by the given delimiting character(s)
<data>, <dlm>)

fclose(<handle>) Close a text file

fgetl(<handle>) Read a line omitting the new-line character

fgets(<handle>) Read a line including the new-line character

fh = fopen Open a text file for reading or writing
(<handle>,
<why>)

fprintf Write to the console, or to plain text files (when <handle> is present
(<handle>, ...)

imread(<file>) Read an image file

imwrite(<data>, Write an image file
<file>, <format>)

load <file> Load the current workspace from a file

Appendix A MATLAB Special Characters, Reserved Words, and Functions A–3

save <file> Save workspace variables in a file

[tk rest] = Extract a token from a string and return the remainder of the string
strtok(<str>,
<dlm>)

ca = textscan Acquire and scan a line of text according to a specific format and
(<handle>, save the data in a cell array
<format>)

[data Fs nb] = Read a sound file in .wav format
wavread(<file>)

wavwrite(<data>, Write a sound file in .wav format
<Fs>, <nb>,<file>)

[nums, txt, Read an Excel spreadsheet
raw] =
xlsread(<file>)

xlswrite(<file>, Write an Excel spreadsheet in a specific
<data>, <sheet>, row/column range
<range>)

 Format Control Description

%<m>.<n>e Exponential notation

%<m>.<n>f Fixed point or decimal notation

%<m>.<n>g Fixed point or exponential notation

%q A quoted string delimited by double quotes

%<n>s Character string

\b Backspace

\n New Line

\t Tab

 Display Formatting Description

format compact Set format to compact form

format long Set format to 14 decimal places

format long e Set format to 14 exponential places

format loose Set format back to default, non-compact form

format short Set format back to default, 4 decimal places

format short e Set format to 4 exponential places

 User Interface

Management Description

ans Default variable name for results of calculations

clc Clear the interactions window

clear <selection> Remove all (or slected) variables from the workspace

clf Clear the current figure
continued on next page

A–4 Appendix A MATLAB Special Characters, Reserved Words, and Functions

close all Close all graphics windows

exit Terminate the user interface system

help <topic Invoke the help utility
or function>

load <file> Load the current workspace from a file

quit Terminate the user interface system

save <file> Save workspace variables in a file

who List variables in the workspace

whos List variables and their sizes

 Special Constants Description

eps Smallest possible difference between two floating point numbers

false Logical false

inf Infinity

NaN Not a number

pi Ratio of the circumference of a circle to its diameter

true Logical true

 Basic Mathematical

Functions Description

abs(x) Compute the absolute value

ceil(x) Round x to the nearest integer toward positive infinity

cross(a, b) Vector cross product

exp(x) Compute e to the power x

fix(x) Round x to the nearest integer toward zero

floor(x) Round x to the nearest integer toward minus infinity

log(x) Compute the natural log of x

log10(x) Compute the log base 10 of x

mod(x, a) Compute the remainder when x is divided by a

rem(x, a) Compute the remainder when x is divided by a

round(x) Round x to the nearest integer

sqrt(x) Calculate the square root of x

 Trigonometry Description

acos(x) Compute the inverse cosine (arcsine) of x

asin(x) Compute the inverse sine (arcsine) of x

atan(x) Compute the inverse tangent (arctan) of x

atan2(y, x) Compute the inverse tangent given the x and y values (4 quadrant
resolution)

cos(x) Compute the cosine of x

sin(x) Compute the sine of x

tan(x) Compute the tangent of x

Appendix A MATLAB Special Characters, Reserved Words, and Functions A–5

 Vector, Array, and Matrix

Operations Description

cumsum(v) Compute a cumulative sum of the values in v

deal(...) Distribute cell array results among variables

det(a) Compute the determinant of a matrix

diag(a) Extract the diagonal from a matrix or (if provided a is a vector)
construct a matrix with a as the diagonal

eye(n) Generate the identity matrix of size n � n

find(<logical a>) Compute a linear list of the locations of the true values in a logical array

fliplr(a) Flip a matrix from left to right

inv(a) Compute the inverse of a matrix

length(a) Determine the largest dimension of an array

linspace(from, Define a linearly spaced vector
to, n)

magic(n) Generate a magic square of size n � n

[v,in] = max(a) Find the maximum value and its position in a

mean(a) Compute the average of the elements in a

meshgrid(x, y) Map each of two vectors into separate 2-D arrays

[v,in] = min(a) Find the minimum value and its position in a

ones(r, c) Generate an array filled with the value 1

prod(x) Compute the product of all the items in x

rand(r, c) Calculate an r � c array of evenly distributed random numbers in
the range 0…1

randn(r, c) Calculate an r � c array of normally distributed random numbers in
the range 0…1

size(a) Determine the dimensions of an array

sparse Define a sparse matrix

[v,in] = sort(v) Sort the vector v (a vector or a cell array of strings)

sum(a) Find the sum of an array

zeros(r, c) Build an array filled with the value 0

 2-D Plotting Description

bar Generate a bar graph

barh Generate a horizontal bar graph

contour Generate a contour plot

hist Draw a histogram

loglog Generate an x-y plot, with both axes scaled logarithmically

pie Generate a pie chart

plot Create an x-y plot

polar Create a polar plot

semilogx Generate an x-y plot, with the x-axis scaled logarithmically

 semilogy Generate an x-y plot, with the y-axis scaled logarithmically

A–6 Appendix A MATLAB Special Characters, Reserved Words, and Functions

 3-D Plotting Description

 bar3 Generate a 3-D bar graph

 barh3 Generate a horizontal 3-D bar graph

 gplot Plot a graph

 mesh Generate a mesh plot of a surface

 meshc Generate a mesh plot of a surface with contours

 meshz Generate a mesh plot of a surface with a skirt

 meshgrid(r, c) Create a plaid for 3-D plots

 peaks Create a sample matrix used to demonstrate graphing functions

 pie3 Generate a 3-D pie chart

 plot3 Generate a 3-D line plot

 sphere Example function used to demonstrate graphing

 surf Generate a surface plot

 surfc Generate a combination surface and contour plot

 waterfall Generate a mesh plot of a surface with one skirt edge

 Plot Appearance Line

Type Control Description

 - Solid

 : Dotted

 -. Dash-dot

 - - Dashed

 . Point

 o Circle

 x x-mark

 + Plus

 * Star

 s Square

 d Diamond

 ̌ Triangle down

 ̂ Triangle up

 < Triangle left

 > Triangle right

 p Pentagram

 h Hexagram

 Color Control Character Description

 b Blue

 c Cyan

 g Green

 k Black

 m Magenta

Appendix A MATLAB Special Characters, Reserved Words, and Functions A–7

 r Red

 w White

 y Yellow

 Figure Control Description

 axis Freezes the current axis scaling for the current plot or specifies the
axis dimensions

 figure <n> Open a new figure window. If present, <n> specifies a figure number

 grid off/on Turn the grid off or on

 hold off/on If hold is not set, erase figure contents before the next plotting instruction

 legend(ca) Add a legend to a graph

 shading <value> Shade a surface plot with one color per grid section

 subplot(plts, n) Divide the graphics window up into sections available for plotting

 text(x,y,str) Add text to a plot

 title(str) Add a title to a plot

 xlabel(str) Add a label to the x-axis

 ylabel(str) Add a label to the y-axis

 zlabel(str) Add a label to the z-axis

 Color Map Values Description

 autumn yellow, orange, and red colors

 bone shades of gray

 colorcube multiple multi-color bands

 cool light blue to purple

 copper shades of red-brown

 flag multiple red, white, and blue bands

 hot deep red through orange to white

 hsv single spectrum from red to purple

 jet (default) rainbow from blue to red

 pink from dark to light pink

 prism multiple bands of spectrum colors

 spring from purple to yellow

 summer from dark green to yellow

 white all white

 winter from dark blue to light green

 String Operations Description

 disp(...) Display matrix or text

 fprintf(...) Print formatted information

 input(...) Prompt the user to enter a value and parse the result

 int2str(a) Convert an integer to its numerical representation
continued on next page

A–8 Appendix A MATLAB Special Characters, Reserved Words, and Functions

 num2str(a,n) Convert a number to its numerical representation with n
decimal places

 sprintf(...) Format a string result

 sscanf(...) Formatted input conversion

 strcmp(s1, s2) Compare two strings—returns true if equal

 strcmpi(s1, s2) Compare two strings without regard to case—returns true if equal

 textscan Scan a text string

 Time-Related Functions Description

 clock Determine the current time on the CPU clock

 etime Find elapsed time

 pause Pause the execution of a program, either until any key is hit or for a
specified number of seconds

 tic Start a timing sequence

 toc Stop a timing sequence and returns the elapsed time

 Numerical Methods Description

 diff(v) Compute the differences between adjacent values in a vector

 interp1 Compute linear and cubic interpolation

 interp2 Compute linear and cubic interpolation

 interp3 Compute linear and cubic interpolation

 polyfit(x, y, n) Compute a least-squares polynomial

 polyval(c, x) Evaluate a polynomial

 spline(x, y) Spline interpolation

 Program Control Description

 break A command within a loop module that forces control to the statement
following the innermost loop

 case A specific value alternative within a switch statement

 catch End of a suspect code block where the exception is trapped

 continue Skip to the end of the innermost loop, but remains inside it

 else Within an if statement, begin the code block executed when the
condition is false

 elseif Within an if statement, begin a subsequent test when the result of
<expression> the previous test is false

 end Terminate a function specification or an if, switch, for,
while, or catch block.

 end When indexing, the value of the last element in an index vector

 for var = v A code block repeated as many times as there are elements in the
vector v

 function Identify an m-file as a function or begin a helper function within a
function file

Appendix A MATLAB Special Characters, Reserved Words, and Functions A–9

 error(str) Throw an exception to announce an error with the string provided

 global var Define a variable as globally accessible

 if <expression> Begin a conditional module—the following code block is executed if
the logical expression is true

 lasterror Provide a structure describing the environment from which an
exception was thrown

 nargin Determine the number of input parameters actually supplied by a
function’s caller

 nargout Determine the number of output parameters actually requested by a
function’s caller

 otherwise Catch-all code block at the end of a switch statement

 switch <variable> Begin a code module selecting specific values of the variable
(must be countable)

 try Begin a block of suspect code from which an exception might be thrown

 while <expression> A code module repeated as long as the logical expression is true

 Data Class Operations Description

 char(...) Cast to a character type

 class(<object>) Determine the data type of an object

 double(a) Cast a to type double

 int8/16/32/64(a) Cast a to integer type with the specified number of bits

 uint8/16/32/64(a) Cast a to unsigned integer type with the specified number of bits

 isa(obj, str) Test for a given data type

 ischar(ch) Determine whether the given object is of type char

 iscell(...) Determine whether the given object is a cell

 isempty(a) Test for the empty vector []

 islogical(a) Determine whether the given object is of type logical

 isnumeric(a) Determine whether the given object is of type double

 isspace(a) Test for the space character

 isstruct(a) Determine whether the given object is a structure

 Structure Operations Description

 fieldnames(str) Return a cell array containing strings that are the names of the fields
in the structure

 getfield(str, Extract the value of the field
field)

 isfield(str, field) Return true if the string is a field in the specified structure

 str = rmfield Return a copy of the given structure with the given field removed
(str, field)

 str = setfield Construct a structure in which the value of the field has been changed
(str, field, to the given value
value)

 struct(...) Construct a structure from <fieldname> <value> pairs of
parameters

This page intentionally left blank

 Originally, the American Standard Code for Information Interchange
(ASCII) specified the meaning of code numbers transmitted across
telephone lines one byte at a time. Frequently, the data were also stored on
paper tape. These data controlled communication between two simple
devices like a teletype machines. They had to not only deliver characters,
but also manage the communications link and control the behavior of the
teletype by forcing the print mechanism back to the first column (Carriage
Return, CR), advancing the platen to the next print row (Line Feed, LF) or
skipping to the column whose number was the next multiple of 8 (tabbing,
HT). The first 32 values were set aside as non-printable characters that
performed these control tasks. While most of the control characters are now
unused, we still make use of the three mentioned above as ‘\r’, ‘\n’, and ‘\t’
to control the behavior of text presented in a window or on a document.

 The original ASCII table defined a mapping, whereby a specific set of
printable characters was assigned the numerical values 32–126. This was
sufficient to represent the number symbols, the lowercase and uppercase
alphabet, and all the common punctuation marks. However, as the need
arose to represent more international characters, this numerical range was
inadequate, and the next 128 values were assigned to meet this need. There
is no universal agreement on this second mapping. The following table
shows the first 128 values used by the MATLAB language.

 When a still broader set of characters was required by the international
community, it became necessary to use multiple bytes to encode the
symbols. A Unicode Character Set was defined, followed by an international
agreement on how to transmit these codes efficiently called UTF-8, the UCS
Transformation Format.

 Two totally irrelevant historical observations:

 1. Astute observers will note that the values 0–127 occupy only the
lower 7 bits of one byte of data. The 8 th bit was used as an error
detection bit during transmission. An agreement was required in
transmitting between two machines as to the parity of the
transmission. Even parity meant that there would always be an

 The ASCII Character Set
 A P P E N D I X B

B–1

B–2 Appendix B The ASCII Character Set

even number of bits set, and the 8 th bit was set or reset to ensure
that this was true. If there were an odd number of bits set in a byte,
the system knew that the data had been corrupted.

 2. ASCII 127 is another non-printing control character used when
editing paper tape. Since the value 127 has all the bits set and a
hole in the tape signified 1, if operators made a mistake when
typing a message, they would back the tape up in the punch and
hit DEL to make holes all across the byte, thereby erasing the
erroneous character.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

 16 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

 32 ! " # $ % & ' () * + , - . /

 48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

 64 @ A B C D E F G H I J K L M N O

 80 P Q R S T U V W X Y Z [\] ̂ _

 96 ‘ a b c d e f g h i j k l m n o

 112 p q r s t u v w x y z { | } ~ DEL

 There are two different techniques whereby most computers today store
the values of numbers: integer and floating-point. Integer storage has the
nice property that it represents the exact value of the number stored;
floating-point storage only guarantees a certain number of digits of
precision. There is an upper limit to the values that can be stored in both
integer and floating-point form. However, significantly larger numbers can
be stored in floating-point storage than in integer storage.

 By default, MATLAB sets the storage of numbers to double-precision
floating-point representation. However, operations like reading images
into MATLAB present the large volume of data in the more compact
unsigned integer form.

 Integers

 Integers are represented in computer memory by blocks of data bits of
various sizes. Memory is allocated in 8-bit increments, usually referred to
as bytes; therefore, it is not surprising that integer storage comes in the
same size increments. For a given size, the values of the data bits are
represented in two different ways—signed or unsigned. Normally, of
course, we expect a number to have both positive and negative values, and
when the number of bits is large, this does not seem to have much impact.
However, when a small number of bits are used to store a value, one of
those bits must be used to show that the number is positive or negative. The
range of numbers that can be stored is therefore reduced by 1 bit, a factor of
2. The following figure illustrates the internal storage of 8-bit unsigned and
signed values.

 Clearly, for 8 bits, the maximum value is 127 signed, or 255 unsigned. If
this is not sufficient storage, numbers can be stored in 16-, 32-, or 64-bit
words, with the corresponding increase in the maximum stored size.

 Floating-Point Numbers

 Floating-point numbers are stored in single precision (32 bits) or double
precision (64 bits) using the IEEE 754 standard. As the name suggests, the
storage format includes a mantissa and an exponent, each expressed

 Internal Number
Representation

 A P P E N D I X C

C–1

C–2 Appendix C Internal Number Representation

internally in a manner similar to integer storage. The fixed size of the
mantissa leads to the fixed amount of precision of each storage type. The
float data type gives 7 significant decimal digits; the double data type gives
15 significant decimal digits. 1

 For details of these storage types, search the Web for “IEEE 754 standard.”
At the time of writing, there was a good explanation at: http://www.
geocities.com/SiliconValley/Pines/6639/docs/fp_summary.html

 Parameters of Each Storage Type

 The following table describes the most commonly used storage types
available in MATLAB, their minimum and maximum values, and their
equivalent names in C.

 MATLAB
Name

 Size
(Bytes)

 Minimum
 Value

 Maximum
 Value

 C Name

uint8 1 0 255 unsigned char

int8 1 −128 127 char

uint16 2 0 65,536 unsigned short

int16 2 −32,768 32,767 short

uint32 4 0 4,294,967,295 unsigned int

int32 4 −2,147,483,648 2,147,483,647 int

float 4 ~ −3.4E+38 ~ 3.4E+38 float

double 8 ~ −1.7E+308 ~ 1.7E+308 Double

 1Note that although this seems to be a large amount of precision, you must always
design your programs to preserve that precision. If, for example, you were to subtract
two numbers almost equal in value, the precision of the result would be significantly
worse than that of the original numbers.

 Chapter 1
Answers to True or False
 1. True.
 2. False. Although Charles Babbage is usually credited with the design of the

fi rst computer, one could argue that the counting boards in use in 500 BC from
which the abacus was derived would qualify as a computer design.

 3. False. Operating systems arrived on the scene quite late in the development of
computers. Before then, the computer ran one application that did all the work,
and this is still possible today.

 4. False. The driver is just a pluggable operating system component.
 5. True. For a computer to be useful, there has to be hardware to carry data to and

from the processor.
 6. True.
 7. False. A solution solves the whole problem by assembling solutions to manage-

able subproblems. An algorithm is a series of steps to solve a small subproblem.

 Answers to Fill in the Blanks
 1. syntax; vocabulary
 2. the Von Neumann architecture
 3. compilation
 4. cache
 5. application programs
 6. logic
 7. BIOS (Basic Input Output System)
 8. states; states

 Chapter 2
Answers to True or False
 1. True.
 2. False. Written correctly, algorithms can be generalized to solve a range of sub-

problems.
 3. True. Both functional and object-oriented programs require procedural compo-

nents to function on a processor.
 4. True.
 5. False. This is merely the assignment of the sum of x and y to z; you cannot make

any inference about the value of y from this expression.
 6. False. Untyped languages merely leave the programmer free of needing to de-

fi ne the type of data. The CPU has to have information about the nature of each
data item in order to process it correctly.

 7. True.

 Answers to True or False
and Fill in the Blanks

 A P P E N D I X D

D–1

D–2 Appendix D Answers to True or False and Fill in the Blanks

 8. False. In general, especially in MATLAB, the class of an item refers to its data
type. The more restrictive defi nition combining the data type with the opera-
tions performed on it is an OOP restriction.

 9. False. You must use scripts for permanent command storage.
 10. True.
 11. True. Clicking the icon to the left brings up the Document window.
 12. False. Double-clicking a fi le name opens the fi le in the editor.
 13. True.
 14. True.
 15. False. The asterisk indicates that the fi le has been changed since it was saved.
 16. False. Comments appear only in the text of the script for human understanding

of the logic.
 17. False. Only the % hot key saves before executing.

 Answers to Fill in the Blanks
 1. procedural
 2. typed
 3. command history window
 4. prevent the results of an assignment from displaying in the command window
 5. command mode; edit mode
 6. ans
 7. %; green
 8. CTRL+R; CTRL+T
 9. name; current value; data type
 10. double-click
 11. double-click; variable name
 12. automatically; MATLAB command
 13. percent sign (%)
 14. ignore; the end of the current line

 Chapter 3
Answers to True or False
 1. False. Homogeneous collections must consist of data of the same type. This

could be double, logical, char, or any of the types you saw in this text.
 2. True.
 3. False. Because a column vector has more columns than rows, it returns the

number of columns.
 4. True. Regrettably, you can. This is the array linearization. Should you use this?

No.
 5. False. Either array can be a scalar quantity (a 1 3 1 array).
 6. True, as long as the indices in the index vector do not exceed the dimensions of A.
 7. False. The position of the values in the logical index vector corresponds

to the position of values in the vector being indexed. Longer logical index
vectors are reaching beyond the end of the original vector.

 8. True.

 Answers to Fill in the Blanks
 1. numerical value; position in the vector
 2. matrix; element-by-element
 3. max(a) = 5 6 7 8; max(max(a)) = 8
 4. maximum dimension

Appendix D Answers to True or False and Fill in the Blanks D–3

 5. have the same dimensions; a scalar
 6. ones(m,n); zeros(m,n)
 7. bad; logical diffi culties; indexing; copy the rows and columns you want

to keep

 Chapter 4
Answers to True or False
 1. False. Comments are colored green; keywords that control execution are col-

ored blue.
 2. False. The MATLAB editor inserts indentation only to clarify for the reader the

fl ow of control in a script.
 3. True. If the if statement has no else clause, or the switch statement has no

otherwise clause and the data provided matches none of the specifi ed cases.
 4. True.
 5. False. The result that invalidates all other && expressions is false.
 6. True. But you can still use break to exit the loop early.
 7. False. But it ought to be. This is really bad programming practice.
 8. False. The expression specifi es the reason to stay in the loop.

 Answers to Fill in the Blanks
 1. key command words
 2. Boolean true or false value
 3. continue
 4. input()
 5. entry-controlled looping operations
 6. for or while; innermost containing

 Chapter 5
Answers to True or False
 1. False. Functions have access to all the system data and functions and can also

reach global data directly.
 2. False. Although this ought to be True. MATLAB calls user-defi ned functions by

the name of the m-fi le, and ignores the name specifi ed there.
 3. True.
 4. False. Functions can be defi ned with no parameters required.
 5. False. Any result for which a variable is not provided by the caller is ignored.
 6. False. This is merely a convention suggested to clarify the source of their defi nition.

 Answers to Fill in the Blanks
 1. <function_name>.m
 2. procedural abstraction
 3. formal parameters; actual parameters
 4. Local Scope
 5. fi rst; fi rst function; other auxiliary functions in the same fi le

 Chapter 6
Answers to True or False
 1. False. Casting changes the way the computer views a piece of data without

changing it.
 2. True.

D–4 Appendix D Answers to True or False and Fill in the Blanks

 3. False. It can be represented within a string by inserting two successive quote
marks: (' ').

 4. False. MATLAB will automatically cast the string to its ASCII values fi rst.
 5. True. But they have to be explicitly converted to characters and concatenated

into one string.
 6. False. Unequal length strings are reported as not being equal.
 7. True.

 Answers to Fill in the Blanks
 1. a special internal representation
 2. characters; numbers; punctuation marks; 0–127
 3. int2str(x); num2str(x, n)
 4. format control string; value parameters
 5. if; cannot
 6. strcmp(...)

 Chapter 7
Answers to True or False
 1. False. None of the collective operations defi ned for numerical arrays can be

applied to cell arrays or structures.
 2. True.
 3. True.
 4. True.
 5. False. It returns a new structure with the fi eld and value removed.
 6. True.
 7. False. If stra is a structure array with the fi eld data, the expression {stra.data}

will extract all the values into a cell array.

 Answers to Fill in the Blanks
 1. extracted one at a time; replaced
 2. class(item)
 3. cell containing 42
 4. str.(field) = 42
 5. struct(...); fi eld name as a string; cell array of fi eld contents

 Chapter 8
Answers to True or False
 1. True. Although the actual storage technique on a hard drive may have blocks

of characters distributed randomly on its surface, the software that reads and
writes the disk serializes the characters.

 2. False. You save the variable names and their current values, not the programs
that generated the data.

 3. False. While some applications permit delimited strings to be embedded in com-
ma- or tab-delimited fi les, MATLAB’s readers read only numerical data into arrays.

 4. False. You can use the qualifi er 'a' to indicate that you will append to the end
of an existing fi le.

 5. True. If you read past the end of a fi le, a numerical –1 is returned.

 Answers to Fill in the Blanks
 1. values; organization
 2. appended to the end of the fi le

Appendix D Answers to True or False and Fill in the Blanks D–5

 3. numerical array; fi lled with zero
 4. dlmread(<file>,<delimiter>)

 Chapter 9
Answers to True or False
 1. True.
 2. False. If that function or any function it calls throws an exception, all the

frames down to the function containing a try ... catch block are popped off
the stack.

 3. False. Tail recursive functions perform the math “on the way in.”
 4. True. But this is a bad practice.
 5. False. MATLAB actually does not care what the name of the fi le is. When a func-

tion is called, MATLAB fi nds the function by fi le name and starts the fi rst func-
tion in that fi le whatever it is called. Local functions in the fi le must be called
from that fi rst function.

 Answers to Fill in the Blanks
 1. push; pop; access stack top element; check empty stack
 2. run-time errors
 3. error()
 4. any tests or setup; as a helper to the main function call
 5. compute; estimating the answer; recursive function.

 Chapter 10
Answers to True or False
 1. True.
 2. False. All the elements might fail a test you apply to determine whether to

change them or not.
 3. False. Filtering might remove elements from the collection, but those that re-

main are not changed.
 4. False. It really is folding because the two results are different attributes of the

same element of the collection.
 5. True. The break statement allows you to exit a for loop early; the code is a little

obscure if written this way.
 6. False. Sorting requires some criterion for deciding that one element must pre-

cede another—alphabetical order is a good example.

 Answers to Fill in the Blanks
 1. numerical; matches
 2. max
 3. fi lter
 4. fi lter
 5. folding
 6. fi nding what you seek; failing to fi nd it
 7. traverse; writing

 Chapter 11
Answers to True or False
 1. True. If the x vector is omitted, 1:N is assumed for the independent parameter,

and if the str is omitted, a solid blue line is used.

D–6 Appendix D Answers to True or False and Fill in the Blanks

 2. False. To apply to a specifi c data plot, the enhancement functions must follow
the plotting function.

 3. False. Any area not provided with a plot remains blank.
 4. True.
 5. False. Bodies of rotation, for example, use one of the axis directions as an inde-

pendent parameter.
 6. False. It is the x and z axes (those axes not the axis of rotation).
 7. False. The curve does not need to be continuous.
 8. False. You can rotate the data to align an arbitrary axis with the x-axis, per-

form the body of rotation there, and invert the rotation.

 Answers to Fill in the Blanks
 1. new fi gure; the next higher
 2. fi gure
 3. Legends
 4. M equally-spaced
 5. plaid; angles
 6. subplot

 Chapter 12
Answers to True or False
 1. True. Even the most primitive data members encapsulate their data and control

the operations that can be performed on the data.
 2. False. It also works if one or both of the matrices are scalar.
 3. True, only if one is a scalar; otherwise, False. If A and B are not square, one

will fail; even if they are square, they will have different answers.
 4. True.
 5. False. It is equivalent to back dividing: A \ B.
 6. True.

 Answers to Fill in the Blanks
 1. m3p
 2. non-singular, square
 3. eye(…)
 4. N independent; N unknown; N * (N + 1) constant

 Chapter 13
Answers to True or False
 1. False. 0 is the absence of light, which will give a black screen.
 2. True. imread(...) can be adapted to read any supported image fi le, returning

different results for different image styles.
 3. True.
 4. False. For two reasons—it only works for 2-D arrays, and the rotation is coun-

ter-clockwise.
 5. True. Consider Figure 13.18 . The original number of 1600 3 1200 3 3 pixels has

been reduced to a smattering of pixels of interest.

 Answers to Fill in the Blanks
 1. pixel
 2. M3N33
 3. M3N3338.

Appendix D Answers to True or False and Fill in the Blanks D–7

 4. fi gure window; image(...)
 5. Cropping; shrinking; stretching
 6. transpose; major diagonal

 Chapter 14
Answers to True or False
 1. True.
 2. False. Removing samples raises the frequency.
 3. False. The number of bits in the recording has no signifi cant effect on an

untrained ear.
 4. True.
 5. True.

 Answers to Fill in the Blanks
 1. 50 Hz; 20 Hz
 2. fft(); ifft()
 3. 7; 5; 2; 12
 4. sound energy; frequency band

 Chapter 15
Answers to True or False
 1. True. The provision is that while the linear interpolation does not give an error,

it returns NaN for data points that are out of range.
 2. True. There is a unique cubic parametric curve between each pair of points. The

curve is parametric rather than a function of the independent variable in order
to permit the curve to “double back” if necessary for smoothness.

 3. False. All curve fi tting does is provide the coeffi cients of a polynomial. You can
insert any value of the independent variable.

 4. True.
 5. True. Simpson’s rule better captures fl uctuations in the function being integrated.
 6. False. The diff(...) function shortens the vector by one element.

 Answers to Fill in the Blanks
 1. polyfit(); polyval()
 2. area under the curve of f(x)
 3. slope of the tangent line
 4. cumsum(...); dot product; the data vector; a vector of time differences
 5. critical point; differentiating

 Chapter 16
Answers to True or False
 1. True. First we perform all the algebra to reduce the compound expression to a

sequential series of O(…) values, and then we add them and remove any terms
that increase more slowly with N than other terms.

 2. False. Linear search algorithms are O(N), but binary search is O(log N).
 3. True. Mathematicians have proven that one cannot sort with a faster Big O.

However, better algorithms can provide a constant multiplier improvement.
 4. False. Most of them have some kind of optimization that reduces the length of

the minor passes.

D–8 Appendix D Answers to True or False and Fill in the Blanks

 5. True. Since Big O should refl ect the worst case performance, and quick sort on
a sorted collection is O(N 2).

 Answers to Fill in the Blanks
 1. O(N2)
 2. O(log N)
 3. Insertion sort
 4. Bubble; Quick
 5. ad at the end; or string

I–1

 Index

 Symbols
 ./ (array division) 72 , 92
 .^ (array exponentiation) 72 , 92
 .* (array multiplication) 69 , 92
 = (assignment operator) 39
 \ (backslash) 144 , 289
 : (colon operator) 72 , 74 , 92
 . (dot) 172 , 178
 . . . (ellipses) 53 , 154 , 167
 [] (empty vector) 68
 = = (equal to) 72 , 92
 > (greater than) 72 , 92
 > = (greater than or equal to) 72 , 92
 < (less than) 72 , 92
 < = (less than or equal to) 72 , 92
 2 (minus sign) 70
 ~= (not equal to) 72 , 92
 2-D plots/plotting 252 – 257

 enhancement tools 255
 parametric 256 – 257
 simple plots 253 – 255

 3-D plots/plotting 257 – 261
 linear 257 – 259
 parametric plots 259 – 260

 & (element-wise AND) 71
 | (element-wise OR) 71
 / (matrix division). see matrix

division (/)
 ̂ (matrix exponentiation) 289 , 304
 * (matrix multiplication) 69 , 286 – 288 ,

 290 – 291 , 304
 % (percent sign) 51 , 144
 ; (semicolon) 46 , 80
 && (short-circuit AND) 71 , 105
 || (short-circuit OR) 71 , 105
 ~ (unary not) 72 , 105 , 118
 _ (underscore character) 40

 A
 A* algorithm 429 – 431

 code for 430
 A/D (analog-to-digital) device 335
 abstraction 36 – 37 , 64 , 124 , 286
 acosd() function 211
 activation stack 204 – 205
 actual parameters 127
 adjacency matrix 417 , 424

 creation of 418
 algorithms 37
 A* 429 – 431

 Breadth-First Search 425 – 426
 bubble sort 391 – 393 , 401
 complex, analyzing 388 – 389
 Dijkstra’s 426 – 429
 insertion sort 389 – 391 , 400 – 401
 measuring cost of 386 – 389
 merge sort 395 – 397 , 401
 performance analysis of 398 – 400
 Prim’s 422 – 424
 quick sort 393 – 395 , 401
 radix sort 397 – 398 , 401
 for sorting data 389 – 398

 all() function 105 , 118
 alpha() function 273 , 279
 ALU. see Arithmetic and Logic Unit

(ALU)
 American Standard Code for

Information
Interchange (ASCII) 140 , 147

 ampersand (&) 71
 analog-to-digital (A/D) device 335
 AND

 element-wise (&) 71
 short-circuit (&&) 71 , 72 , 105

 any() function 105 , 118
 API. see Application Programmer

Interface (API)

 Application Programmer Interface
(API) 126

 Arithmetic and Logic Unit
(ALU) 23

 arithmetic operations 231
 with arrays 82
 on character strings 143
 with vectors 69 – 70

 array division (./) 72
 array exponentiation (.^) 72
 array multiplication (.*) 69
 arrays 78 – 89

 arithmetic operations with 82
 cell (see cell arrays)
 of character strings 149 – 150
 concatenation 84 – 85
 creating 80
 elements of 79 , 80 – 82
 inserting data into 232
 library functions with 83 – 84
 linear 64
 linearized 85 – 89
 logical operations with 82 – 83
 matrices vs., 78
 operations 82 – 89
 properties of 79
 reshaping 85
 slicing of 85
 structure 168–174 (see also

structure arrays)
 transpose of 79

 ASCII. see American Standard Code
for Information Interchange
(ASCII)

 assignment operator (=) 39
 .au files 335
auread() function 335 , 352
auwrite() function 352
 auxiliary (local) functions 129
axis() function 250 , 278

I–2 Index

 B
 Babbage, Charles 21
 back dividing 289 , 291 , 304
 backslash (\) 144 , 289
 backward difference

approximation 374
 bar() function 257 , 278
bar3() function 260 , 279
barh() function 257 , 278
barh3() function 261 , 279
 Basic Input/Output System

(BIOS) 25 , 27
 before() function 233
 behavioral abstraction 286
 BFS. see Breadth-First Search (BFS)
 Big O algebra 386 – 389

 O(1) (independent of N) 387
 O(logN) (binary search)

 387 – 388
 O(2N) (exponential growth) 388
 O(N) (linear with N) 387
 O(N2) (proportional to N2) 388

 binary files 186
 binary search (O(logN)) 387 – 388
 BIOS. see Basic Input/Output System

(BIOS)
 bits 24
 black box view, functions 124 – 125
 bodies of rotation 268 – 273

 continuous functions,
rotating 269 – 271

 discrete functions, rotating
 271 – 273

 boolean value 68 , 100 , 102 , 104 – 105 , 118
 Breadth-First Search (BFS) 425 – 426
 break points 54
 break statement 112 , 114 , 115 , 118
 bubble sort 391 – 393 , 401
 building (operation) 231 , 234

 C
 C (programming language) 30
 cache memory 25
 CAD. see computer-aided design

(CAD)
case keyword 106 , 107 , 118
 casting 140 – 141
catch keyword 210 , 211 , 212 , 225
CAToString() function 412
ceil() function 73 , 92

 cell arrays 160 – 164
 accessing 161 – 163
 conversion to string 412
 creating 160 – 161
 extracting/sorting 400
 inserting data into 232
 processing 163 – 164
 using 163

 central difference
approximation 375

 Central Processing Unit (CPU)
 23 , 25 , 204

 char() function 141 , 143 , 150 , 154
 character generators 139
 character mapping 140
 character strings 139 – 153

 arithmetic operation on 143
 arrays of 149 – 150
 casting 140 – 141
 comparison of 147 – 149
 concatenation of 142
 conversion from numbers

to 143 – 145
 conversion to numbers 145 – 147
 and delimiter 141
 example using 150 – 153
 format control strings 144
 logical operation on 143
 mapping 140
 MATLAB implementation

 141 – 143
 as numerical values 140
 operations 147 – 149
 slicing of 142
 and token 141

class() function 163 , 178
 classes 42
 clc command 44 , 51
clear command 51
 clf command 250 , 278
close all command 250 , 278
 code blocks 99 , 100
coef() function 365 – 366
 colon operator (:) 74
 color mapped images 312
 color masking 314 – 319
 colormap() function 250 , 278
 Colossus 21 – 22
 column vector 79
 Command History window 44 – 45
 Command window 43 – 44 , 110 , 125 ,

 130 , 140
 comments 51

 compile-time errors 30
 compilers 29 – 30
 compound surfaces, assembling 274
 computer

 hardware (see hardware,
computer)

 internal details 24
 internal organization of 23
 memory (see memory, computer)
 software (see software, computer)

 computer-aided design (CAD) 28
 computer architectures, history

of 21 – 23
 computer languages 20 – 21 , 28 – 29
 concatenation

 of arrays 84 – 85
 of character strings 142
 of sounds 336 – 338
 of vectors 73

 conditional execution 100 – 101
 continue statement 114 , 118
 continuous function, rotating

 269 – 271
contour() function 273 , 279
 Control Unit 23
 CPU. see Central Processing Unit

(CPU)
 cross() function 78 , 92
csvread() function 188 , 191 , 195 , 197
 csvwrite() function 188 , 197
 cubic spline interpolation 361 – 362
 cumsum() function 371 , 372 , 379
 cumtrapz() function 372 , 379
 Current Directory window 48 – 49 ,

 52 – 53 , 125 , 126
 curve fitting 363 – 369

 example of 367 – 369
 linear regression 363 – 365
 polynomial regression 365 – 367

 cycles, graphs 414
 cylinder, construction of 266 – 267
 cylinder() function 125 – 127 ,

 273 , 279

 D
 D/A (digital-to-analog) device 335
 data abstraction 37 , 64 , 286
 data bus 24
 data collection. see also problem-

solving
 building 234
 filtering 235 – 236

 Index I–3

 inserting data into 231 – 233
 mapping 234 – 235
 searching 237 – 238
 sorting 238
 summarizing 236 – 237
 traversing 233 – 234

 data typing 40 – 42
 deal() function 161 – 163 , 178
 debugging 54
 del2() function 266
 delimited text files 187 , 190 – 191
 delimiter 141 , 186
 dequeue() function 408 , 409
 derivative, of function 374
 design templates 101 – 102

 for functions in MATLAB, 125
 for if statement 102
 for loop 109
 for switch statement 106
 for while loop 112 – 113

 diag() function 80 , 92
 diagonal array 79
 diff() function 375 , 379
 difference engine, Babbage 21
 differentiation 374 – 375
 digital-to-analog (D/A) device 335
 Dijkstra’s algorithm 426 – 429

 code for 428
 directional edges 414
 discrete functions, rotating 271 – 273
 disp() function 76 , 92 , 147 , 154
 division

 matrix 289 , 291 – 292
 dlmread() function 188 , 190 – 191 , 197
 dlmwrite() function 188 , 191 , 197
 documentation section 125
 dot (.) notation 172 , 178
 dot operator 82
 double() function 141 , 154
 drivers 25

 E
 edges, graphs 414
 Editor window 50 – 51 , 54
 element-wise AND (&) 71 , 72
 element-wise OR (|) 71 , 72
 elements

 arrays 79 , 80 – 82
 vectors 65

 ellipses (. . .) 53 , 154 , 167

 ellipsoid() function 273 , 279
 else keyword 101 , 118
 elseif keyword 102 , 118
 empty vector ([]) 68
 encapsulation 124 , 129 – 130
 end keyword 211
 end statement 101 , 102 , 107 , 110 , 118
 endless recursion 206
 engineering applications

 ceramic composition 301 – 303
 detecting edges 324 – 327
 electrical circuit analysis 303 – 304
 encryption 150 – 153
 forces and moments 76 – 78
 geographic data,

visualizing 274 – 277
 geopolitical data,

processing 239 – 244
 graphs 433
 liquid levels, computation of

 115 – 117
 music synthesizer 350 – 352
 physical structure,

assembling 174 – 178
 robot arm motion 220 – 224
 soil volume, computation of 89 – 91
 solid object measurement 131 – 132
 sorting 402 – 404
 spacecraft launch 54 – 57
 spreadsheet data 195 – 197
 synthesizer notes, shaping 377 – 378

 enqueue() function 408 , 409 , 411
 equal to (= =) 72 , 92
 error() function 211 , 225
 Excel spreadsheets 188 – 190
 exceptions 208 – 212

 generic implementation for
 209 – 210

 historical approach 209
 MATLAB implementation

 211 – 212
 execution errors 30
 exponential growth (O(2N)) 388
 extrapolation 362 – 363
 eye() function 288 , 304

 F
 fact() function 213
 false values 68 , 92 , 101 , 102 , 104 , 118
 Fast Fourier Transform (FFT)

 342 – 346
 implementation 344 – 345
 overview 343 – 344

 simple spectral analysis using
 345 – 346

 fclose() function 192 , 198
 FFT. see Fast Fourier Transform (FFT)
 fft() function 345 , 352
 fgetl() function 192 , 198
 fgets() function 192 , 198
 fib() function 217
 Fibonacci series 216 – 217
 .field operator 170
 fieldnames() function 165 , 171 , 172
 figure() function 250 , 278
 Figure window 49 – 50
 files

 binary 186
 delimited text 187
 opening/closing 192
 reading/writing 188
 text (see text files)

 fill() function 257 , 278
 filtering (operation) 231 , 235 – 236
 find() function 86 , 92
 fix() function 73 , 92
 floor() function 73 , 92
 flowcharts 101
 folding (operation) 231
 fopen() function 192 , 198
 for loop 108 – 112 , 118

 breaking out of 112
 example of 110
 indexing implementation

using 111 – 112
 MATLAB implementation 109 – 110
 structure of 109
 template 109
 while loop vs., 108

 formal parameters 127
 format control strings 144
 forward difference

approximation 374
 fprintf() function 110 , 147 , 148 ,

 154 , 194 , 198
 frame, stack 205
 frequency, sound 340 – 342
 function name section 125
 functional programming 38
 function(s)

 acosd() 211
 all() 105 , 118
 alpha() 273
 any() 105 , 118
 auread() 335 , 352

I–4 Index

function(s) (continued)
 axis() 250 , 278
 bar() 257 , 278
 bar3() 260
 barh() 257 , 278
 barh3() 261
 before() 233
 black box view of 124 – 125
 CAToString() 412
 ceil() 73
 char() 141 , 143 , 150 , 154
 class() 163 , 178
 coef() 365 – 366
 colormap() 250 , 278
 contour() 273
 cross() 78 , 92
 csvread() 188 , 191 , 195 , 197
 csvwrite() 188 , 197
 cumsum() 371 , 372 , 379
 cumtrapz() 372 , 379
 cylinder() 125 – 127 , 273
 deal() 161 – 163 , 178
 defined 124 , 125 – 126
 del2() 266
 dequeue() 408 , 409
 derivative of 374
 diag() 80
 diff() 375 , 379
 disp() 76 , 147 , 154
 dlmread() 188 , 190 – 191 , 197
 dlmwrite() 188 , 191 , 197
 double() 141 , 154
 ellipsoid() 273
 enqueue() 408 , 409 , 411
 error() 211 , 225
 eye() 288 , 304
 fact() 213
 fclose() 192
 fft() 345 , 352
 fgetl() 192 , 198
 fgets() 192 , 198
 fib() 217
 fieldnames() 165 , 171 , 172
 figure() 250 , 278
 fill() 257 , 278
 find() 86
 fix() 73
 floor() 73
 fopen() 192 , 198
 fprintf() 110 , 147 , 148 , 154 ,

 194 , 198
 getfield() 173
 gplot() 423
 grAdjacency() 417
 grid off() 250 , 278
 grid on() 250 , 278
 gt() 391 , 394
 hist() 257 , 278

 hold off() 251 , 278
 hold on() 251 , 279
 ifft() 345 , 352
 image() 313 , 328
 imread() 313 , 328
 imshow() 313 , 328
 imwrite() 313 , 328
 input() 107 , 108 , 114 , 130 ,

 145 – 146 , 154 , 210
 instances 205
 integral of 369
 interp1() 359 , 362 , 379
 interp2() 361 , 379
 interp3() 361 , 379
 int2str() 143 , 154
 inv() 289 , 304
 isa() 164 , 179
 is_before() 409 – 410 , 411
 iscell() 164 , 179
 ischar() 143 , 154 , 164 , 179
 isempty() 408
 isfield() 173 , 179
 islogical() 164 , 179
 isnumeric() 164 , 179
 isPal() 215
 isspace() 143 , 154
 isstruct() 164 , 179
 it() 390 , 394
 largest() 163
 lasterror() 211 , 225
 legend() 251 , 279
 length() 66 , 76 , 79
 lightangle() 266
 linspace() 65 , 92 , 328
 load() 198
 loglog() 255 , 279
 magic() 80 , 93
 MATLAB implementation (see

functions, in MATLAB)
 max() 84 , 110
 mean() 73 , 84
 mesh() 261
 meshc() 273
 meshgrid() 261 , 263 , 273
 meshz() 273
 min() 84
 nargin() 128
 nargout() 128
 num2str() 143 , 154
 ones() 65 , 80 , 323
 peek() 408
 pie() 257 , 279
 pie3() 261
 plot() 250 , 253 , 257 , 279
 plot3() 257
 plotyy() 255
 polar() 257 , 279
 polyfit() 365 – 366 , 379 , 402 , 403

 polyval() 366 , 379
 rand() 65 , 80
 randn() 65
 read() 191
 readStruct() 197
 reshape() 85 , 297 , 304
 rmfield() 165 , 171 , 173
 rot90() 328
 round() 73
 save() 198
 semilogx() 255 , 279
 semilogy() 255 , 279
 setfield() 173 , 179
 shading() 251 , 279
 size() 66 , 76 , 79 , 164
 sort() 173 , 179 , 400
 sound() 336 , 353
 sphere() 273
 spline() 362 , 379
 sprintf() 144 , 147 , 148 ,

 154 , 366
 sscanf() 145 , 147 , 154
 strcmp() 148 , 149 , 154
 strcmpi() 149 , 154
 str2num() 145 , 146 , 147 , 154
 strtok() 147 , 198
 struct() 167 , 168 , 179
 subplot() 251 – 252 , 279
 sum() 73 , 84 , 173
 surf() 261 , 262
 surfc() 265 , 273
 surfz() 273
 text() 251 , 279
 textscan() 193 , 198
 title() 251 , 279
 toString() 412
 tril() 328
 uint8/16() 141 , 154 , 328
 view() 265 , 279
 waterfall() 273
 wavread() 335 , 353
 wavwrite() 353
 xlabel() 251 , 279
 xlsread() 188 , 195 , 198
 xlswrite() 188 , 190 , 198
 ylabel() 251 , 279
 zeros() 65 , 80
 zeros of 217 – 220
 zlabel() 251 , 279

 functions, in MATLAB, 64 , 125 – 132
 auxiliary (local) 129
 calling 127
 defined 125 – 126
 encapsulation in 129 – 130
 and global variables 130 – 131
 returning multiple results

from 128 – 129
 storing/using 127

 Index I–5

 structures 166 – 168
 template of 125

 G
 Gaussian Elimination 289
 generations, of computer

language 28 – 29
 getfield() function 173
 global keyword 130 , 225
 Global Scope 130
 global variables 130 – 131 , 133
 gplot() function 423
 grAdjacency() function 417
 graphs 414 – 422

 A* algorithm 429 – 431
 Breadth-First Search 425 – 426
 building 416 – 419
 creating 49 , 50
 cycles 414
 defined 407
 Dijkstra’s algorithm 426 – 429
 examples 414 – 415 , 433
 minimum spanning trees of (see

minimum spanning trees (MSTs))
 nodes 407
 paths on 414 , 424 – 432
 processing 415 – 416
 searching 421 – 422
 traversal 419 – 421
 weighted 414 , 416

 gray scale images 311
 greater than (>) 72 , 92
 greater than or equal to (> =) 72 , 92
 grid off() function 250 , 278
 grid on() function 250 , 278
 gt() function 391 , 394

 H
 hardware, computer 23 – 24

 interaction with software 26
 hardwiring 24
 heap 26
 help command 126 , 133
 helper functions 129
 heterogeneous collections 160
 high-level I/O functions 187 – 191

 with delimited text files 190 – 191
 with Excel spreadsheets 188 – 190
 exploration 187 – 188

 hist() function 257 , 278
 hold off() function 251 , 278
 hold on() function 251 , 279
 homogeneous collections 64

 I
 I/O. see Input/Output (I/O)
 identity matrix 288
 if statements 101 – 106 , 118 , 149

 example 103
 in logical expressions 104 – 105
 MATLAB implementation 102 – 104
 script with 104
 short-circuit evaluation 105 – 106
 template for 102

 ifft() function 345 , 352
 image() function 313 , 328
 images 309 – 327

 color mapped 312
 color masking with 314 – 319
 displaying 313
 format of 312 – 313
 gray scale 311
 kaleidoscope, creation of 319 – 321
 nature of 310
 operation on 313 – 324
 reading 313
 resolution of 310
 stretching/shrinking 313 – 314
 on surface 321 – 324
 true color 311
 types 311 – 313
 writing 313

 imread() function 313 , 328
 imshow() function 313 , 328
 imwrite() function 313 , 328
 in-line coding 213
 inner dimensions 287
 input() function 107 , 108 , 114 , 118 ,

 130 , 145 – 146 , 154 , 210
 Input/Output (I/O) 24 , 186 – 197

 devices 23 , 25
 high-level 187–191 (see also high-

level I/O functions)
 lower-level 192–195 (see also

lower-level I/O functions)
 and MATLAB workspace 186 – 187

 inserting data, in collection 231 – 233
 template for 233

 insertion sort 389 – 391 , 400 – 401
 integral, of function 369
 integration 369 – 373
 interp1() function 359 , 362 , 379
 interp2() function 361 , 379
 interp3() function 361 , 379
 interpolation 358 – 363

 cubic spline 361 – 362
 extrapolation 362 – 363
 linear 358 – 361

 interpreted code 31
 int2str() function 143 , 154
 inv() function 289 , 291 , 292 , 304
 isa() function 164 , 179
 is_before() function 409 – 410 , 411
 iscell() function 164 , 179
 ischar() function 143 , 154 , 164 , 179
 isempty() function 408
 isfield() function 173 , 179
 islogical() function 164 , 179
 isnumeric() function 164 , 179
 isPal() function 215
 isspace() function 143 , 154
 isstruct() function 164 , 179
 it() function 390 , 394
 iteration 108

 J
 Joint Photographic Experts Group

(JPEG) 312 , 319

 K
 kaleidoscope, creation of 319 – 321

 L
 largest() function 163
 lasterror() function 211 , 225
 least squares technique 364
 legalist approach 213
 legend() function 251 , 279
 length() function 66 , 76 , 79 , 92
 less than (<) 72 , 92
 less than or equal to (< =) 72 , 92
 library functions

 with arrays 83 – 84
 with vectors 72 , 73

 lightangle() function 266 , 279
 linear arrays 64
 linear equations, simultaneous

 299 – 301
 linear interpolation 358 – 361
 linear matrices 65
 linear regression 363 – 365
 linearized array 85 – 89
 line(s)

 intersecting 300 – 301
 rotating 293 – 294

 linker 30
 linspace() function 65 , 92 , 328

I–6 Index

 load() function 198
 loader 30
 Local Scope 130
 logic errors 30 , 41
 logical expressions 104 – 105
 logical indexing 68
 logical operations

 with arrays 82 – 83
 on character strings 143
 with vectors 70 – 72

 logical value 68
 loglog() function 255 , 279
 loop-and-a-half iteration style

 114 – 115
 lower-level I/O functions 192 – 195

 opening/closing files 192

 M
 magic() function 80 , 93
 mapping

 character 140
 operation 231 , 234 – 235

 mass memory 25
 MATLAB

 advantages 36
 components of 36
 and data manipulation 38 – 42
 introduction to 31 – 32 , 35 – 36
 and problem-solving 32 – 33
 programming concepts 32
 starting/stopping 38 – 39
 user interface 42–51 (see also user

interface)
 matrix(-ces) 285 – 304

 adjacency 417 , 418 , 424
 arrays vs., 78
 examples using 301 – 304
 identity 288
 implementation 289 – 292
 linear 65
 operations on 286 – 292
 rotating coordinates 292 – 299
 sparse 417 , 418

 matrix division (/) 289 , 291 – 292 , 304
 for solving simultaneous linear

equations 299 – 301
 matrix exponentiation (^) 289 , 304
 matrix multiplication (*) 69 , 286 – 288 ,

 290 – 291 , 304
 for 2-D rotation 292 – 296
 for 3-D rotation 296 – 299

 max() function 84 , 93 , 110
 mean() function 73 , 84 , 93
 mechanical memory 24 – 25

 memory, computer 24 – 26
 layout 26

 Mercator projection 321
 merge sort 395 – 397 , 401
 mesh() function 261 , 279
 meshc() function 273 , 280
 meshgrid() function 261 , 263 ,

 273 , 280
 meshz() function 273 , 280
 min() function 84 , 93
 minimum spanning trees

(MSTs) 422 – 424
 minus, unary (2) 70
 multiplication

 array 69
 matrix. see matrix multiplication (*)

 music synthesizer 350 – 352
 musical sounds 339 – 342

 about 339
 changing frequency of 340 – 342

 N
 NaN keyword 362 , 379 , 410
 nargin() function 128 , 133
 nargout() function 128 , 133
 Newton’s method 220
 nodes, graphs 407
 not equal to (~=) 72
 numbers

 conversion, to strings 143 – 145
 conversion from strings to 145 – 147

 numerical indexing 67 – 68
 numerical methods 357 – 378

 analytical operations 375
 curve fitting 363–369 (see also

curve fitting)
 differentiation 374 – 375
 example using 377 – 378
 implementation 375 – 376
 integration 369 – 373
 interpolation 358–363 (see also

interpolation)
 numerical values 140
 num2str() function 143 , 154

 O
 object code 30
 object-oriented programming

(OOP) 38
 objects 42
 ones() function 65 , 80 , 93 , 323
 OOP. see object-oriented

programming (OOP)

 operating systems (OS) 25 – 26 , 27
 operation(s)

 analytical 375
 on arrays 82 – 89
 character string 147 – 149
 frequency domain 346 – 350
 on graphs 415 – 416
 on queues 408
 summary of 230 – 238
 on vectors 69 – 76

 operators
 dot 82
 .field 170
 logical 71
 precedence 72

 OR
 element-wise (|) 71 , 72
 short-circuit (||) 71 , 72 , 105

 OS. see operating systems (OS)
 otherwise keyword 106 , 107 , 118

 P
 page buffer 25
 palindromes, determination 215 – 216
 parabolic dish 263 – 265
 paradigms, programming 38
 parameters

 cell arrays of 163
 formal vs. actual 127
 value 144
 variable numbers of 127 – 128

 parameters section 125
 parametric plots

 2-D 256 – 257
 3-D 259 – 260

 passing by reference 127
 passing by value 127
 paths, on graphs 414

 A* algorithm 429 – 431
 Breadth-First Search 425 – 426
 Dijkstra’s algorithm 426 – 429
 searching 424 – 432

 pause() function 341
 peek() function 408
 percent sign (%) 51 , 144
 pie() function 257 , 279
 pie3() function 261 , 280
 pixels 310
 plaid surface 261
 playback 334 – 335
 plot() function 250 , 253 , 257 , 279
 plot3() function 257 , 280
 plots (plotting) 249 – 277

 Index I–7

 2-D 252–257 (see also 2-D plots/
plotting)

 3-D 257–261 (see also 3-D plots/
plotting)

 data, manipulation of 274
 enhancement tools 255
 figures as containers for 250
 functions for enhancement

 250 – 251
 manually editing 252 – 253
 subplots 251 – 252
 surface plots 261–274 (see also

surface plots)
 plotyy() function 255
 polar() function 257 , 279
 polyfit() function 365 – 366 , 379 ,

 402 , 403
 polynomial regression 365 – 367
 polyval() function 366 , 379
 Prim’s algorithm 422 – 424
 priority queues 409 – 411
 problem-solving 32–33, 229–244. see

also data collection
 assembling solution steps for 230
 example 239 – 244
 inserting into collection 231 – 233
 larger problems 238 – 239
 plan for 230

 procedural abstraction 37 , 124 , 286
 procedural programming 38
 program bugs 30
 programming 229
 programming languages 28 – 29

 overview of 36 – 38

 Q
 queue(s) 408 – 414

 implementation 408 – 409
 nature of 408
 operations on 408
 overview 408
 priority 409 – 411
 testing 411 – 414

 quick sort 393 – 395 , 401

 R
 radix sort 397 – 398 , 401
 RAM. see Random-Access Memory

(RAM)
 rand() function 65 , 80 , 93
 randn() function 65 , 80 , 93
 Random-Access Memory (RAM) 25
 read() function 191
 Read-Only Memory (ROM) 25

 readStruct() function 197
 recording, sound 334 – 335
 recursion 203 – 224

 activation stack 204 – 205
 defined 205 – 206
 endless 206
 examples 215 – 220
 implementation 206 – 208

 reshape() function 85 , 297 , 304
 resolution

 of images 310
 of recorded data 335

 <return info section> , 125
 RGB (red, green, and blue) 310
 rmfield() function 165 , 171 , 173
 ROM. see Read-Only Memory (ROM)
 rot90() function 328
 rotations

 2-D 293 – 296
 3-D 296 – 299

 round() function 73 , 93
 runtime errors 30

 S
 save() function 198
 scalar vectors 69
 scale, playing a musical 340 – 341
 scripts 51 – 57

 creating 51 – 52
 debugging 54
 example using 54 – 57
 punctuating 53
 running 53

 searching (operation) 231 , 237 – 238

 semicolon (;) 46 , 80

 semilogx() function 255 , 279

 semilogy() function 255 , 279

 setfield() function 173 , 179

 shading() function 251 , 279

 short-circuit AND (&&) 71 , 72 , 105

 short-circuit evaluation 105 – 106

 short-circuit OR (||) 71 , 72 , 105

 shortening, of vector 68 – 69

 shrinking images 313 – 314

 Simpson’s rule 369 , 371

 simultaneous linear equations,
solving 299 – 301

 size() function 66 , 76 , 79 , 93 , 164

 slicing
 of arrays 85
 of character strings 142

 of sounds 336 – 338
 of vectors 74 – 76

 software, computer 26 – 28
 categories of 26
 interaction with hardware 26
 tools (see software tools)

 software tools 27 – 28

 solid-state memory 24 – 25

 sort() function 173 , 179 , 400

 sorting 231 , 238 , 385 – 404
 algorithm for 389 – 398
 applications 400 – 401
 bubble 391 – 393 , 401
 example using 402 – 404
 insertion 389 – 391 , 400 – 401
 and measuring algorithm

cost 386 – 389
 merge 395 – 397 , 401
 quick 393 – 395 , 401
 radix 397 – 398 , 401

 sound() function 336 , 337 ,
 341 , 353

 sound(s) 333 – 352
 example using 350 – 352
 Fast Fourier Transform 343–346

(see also Fast Fourier Transform
(FFT))

 frequency domain
operations 346 – 350

 intensity 334
 musical 339 – 342
 physics of 334
 recording/playback 334 – 335
 slicing/concatenating 336 – 338

 source code 30

 spacecraft launch, example 54 – 57

 sparse matrix 417 , 418

 sphere, construction of 267 – 268

 sphere() function 273 , 280

 spline() function 362 , 379

 spreadsheets 188 – 190

 sprintf() function 144 , 147 , 148 ,
 154 , 366

 square array 79

 sscanf() function 145 , 147 , 154

 stack 26 , 204 – 205

 strcmp() function 148 , 149 , 154

 strcmpi() function 149 , 154

 stretching images 313 – 314

 strings
 cell arrays conversion to 412
 character 139–153 (see also

character strings)

I–8 Index

 strings (continued)
 conversion from numbers

to 143 – 145
 str2num() function 145 , 146 , 147 , 154
 strong typing 42
 strtok() function 147 , 198
 struct() function 167 , 168 , 179
 structure arrays 168 – 174

 constructing 168 – 170
 elements, acessing 170 – 172
 inserting data into 232
 manipulation 172 – 174

 structure(s) 164 – 168
 constructing/accessing 165 – 166
 functions 166 – 168
 manipulation 172 – 174

 subplot() function 251 – 252 , 279
 sum() function 73 , 84 , 93 , 173 , 364
 surf() function 261 , 262 , 280 , 321
 surface, images on 321 – 324
 surface plots 261 – 274

 3-D parametric surfaces 266 – 268
 bodies of rotation 268–273 (see

also bodies of rotation)
 compound surfaces, assembly

of 274
 cube 261 – 263
 functions to create 261
 manipulation of 265 – 266
 parabolic dish 263 – 265

 surfc() function 265 , 273 , 280
 surfz() function 273
 switch statement 106 – 108 , 118

 MATLAB implementation 107 – 108
 template for 106

 synthesizer notes, shaping 377 – 378

 T
 technology, advancement in 20
 text files 51

 delimited 187 , 190 – 191
 reading 192 – 194
 writing 194 – 195

 text() function 251 , 279
 textscan() function 193 , 198
 title() function 251 , 279
 token 141
 toString() function 412
 trapezoidal rule 369 , 370 – 371

 traversing (operation) 231 , 233 – 234
 graphs 419 – 421

 tril() function 328
 true color images 311
 true values 68 , 100 , 102 , 104 , 118
 try keyword 210 , 211 , 212 , 225
 tune, playing 341 – 342
 type, data 42
 typographical errors 31 , 41

 U
 uint8/16() function 141 , 154 , 311 ,

 328
 unary minus (2) 70
 unary not (�) 72 , 105 , 118
 underscore character (_) 40
 untyped languages 40
 user interface 42 – 51

 Command History window
 44 – 45

 Command window 43 – 44 , 110 ,
 125 , 130 , 140

 Current Directory window 48 –
 49 , 52 – 53 , 125

 Editor window 50 – 51 , 54
 Figure window 49 – 50
 Variable Editor window 49
 Workspace window 45 – 48 , 66

 utilities, operating systems 27

 V
 value parameters 144
 value(s) 42

 assigning, to variables 39 – 40
 boolean/logical 68
 parameters 144

 Variable Editor window 49
 variable scoping 130
 variable(s)

 assigning values to 39 – 40
 global 130 – 131
 names 39 – 40

 vector(s) 64 – 78
 arithmetic operations with 69 – 70
 concatenation of 73
 creating 65 – 66
 elements 65
 extracting/sorting 400
 indexing of 66 – 68
 inserting data into 231

 library functions with 72 , 73
 logical operations with 70 – 72
 operating on 69 – 76
 scalar 69
 shortening 68 – 69
 size of 66
 slicing 74 – 76

 vectors of indices 74
 view() function 265 , 279
 virtual memory 25
 von Neumann architecture 22 – 23

 W
 waterfall() function 273 , 280
 .wav files 335 , 336
 wavread() function 335 , 353
 wavwrite() function 353
 weak typing 42
 weighted graph 414 , 416
 while loop 112 – 115 , 118

 breaking 115
 example 113
 loop-and-a-half iteration

style 114 – 115
 for loop vs., 108
 MATLAB implementation 113
 structure of 112
 template for 112 – 113

 who command 48
 whos command 48
 workspace, saving 186 – 187
 Workspace window 45 – 48 , 66
 wrapper function 203 , 213 – 215

 template for 214

 X
 xlabel() function 251 , 279
 xlsread() function 188 , 195 , 198
 xlswrite() function 188 , 190 , 198

 Y
 ylabel() function 251 , 279

 Z
 zeros() function 65 , 80
 zlabel() function 251 , 279

	Cover
	Contents
	Chapter 1 Introduction to Computers and Programming
	1.1 Background
	1.2 History of Computer Architectures
	1.2.1 Babbage’s Difference Engine
	1.2.2 Colossus
	1.2.3 The von Neumann Architecture

	1.3 Computing Systems Today
	1.3.1 Computer Hardware
	1.3.2 Computer Memory
	1.3.3 Computer Software
	1.3.4 Running a Computer Program

	1.4 Running an Interpreted Program
	1.5 Anticipated Outcomes
	1.5.1 Introduction to MATLAB
	1.5.2 Learning Programming Concepts
	1.5.3 Problem-Solving Skills

	Chapter 2 Getting Started
	2.1 Programming Language Background
	2.1.1 Abstraction
	2.1.2 Algorithms
	2.1.3 Programming Paradigms

	2.2 Basic Data Manipulation
	2.2.1 Starting and Stopping MATLAB
	2.2.2 Assigning Values to Variables
	2.2.3 Data Typing
	2.2.4 Classes and Objects

	2.3 MATLAB User Interface
	2.3.1 Command Window
	2.3.2 Command History
	2.3.3 Workspace Window
	2.3.4 Current Directory Window
	2.3.5 Variable Editor
	2.3.6 Figure Window
	2.3.7 Editor Window

	2.4 Scripts
	2.4.1 Text Files
	2.4.2 Creating Scripts
	2.4.3 The Current Directory
	2.4.4 Running Scripts
	2.4.5 Punctuating Scripts
	2.4.6 Debugging Scripts

	2.5 Engineering Example—Spacecraft Launch

	Chapter 3 Vectors and Arrays
	3.1 Concept: Using Built-in Functions
	3.2 Concept: Data Collections
	3.2.1 Data Abstraction
	3.2.2 Homogeneous Collection

	3.3 Vectors
	3.3.1 Creating a Vector
	3.3.2 Size of a Vector
	3.3.3 Indexing a Vector
	3.3.4 Shortening a Vector
	3.3.5 Operating on Vectors

	3.4 Engineering Example—Forces and Moments
	3.5 Arrays
	3.5.1 Properties of an Array
	3.5.2 Creating an Array
	3.5.3 Accessing Elements of an Array
	3.5.4 Removing Elements of an Array
	3.5.5 Operating on Arrays

	3.6 Engineering Example—Computing Soil Volume

	Chapter 4 Execution Control
	4.1 Concept: Code Blocks
	4.2 Conditional Execution in General
	4.3 if Statements
	4.3.1 General Template
	4.3.2 MATLAB Implementation
	4.3.3 Important Ideas

	4.4 switch Statements
	4.4.1 General Template
	4.4.2 MATLAB Implementation

	4.5 Iteration in General
	4.6 for Loops
	4.6.1 General for Loop Template
	4.6.2 MATLAB Implementation
	4.6.3 Indexing Implementation
	4.6.4 Breaking out of a for Loop

	4.7 while Loops
	4.7.1 General while Template
	4.7.2 MATLAB while Loop Implementation
	4.7.3 Loop-and-a-Half Implementation

	4.7.4 Breaking a while Loop
	4.8 Engineering Example—Computing Liquid Levels

	Chapter 5 Functions
	5.1 Concepts: Abstraction and Encapsulation
	5.2 Black Box View of a Function
	5.3 MATLAB Implementation
	5.3.1 General Template
	5.3.2 Function Definition
	5.3.3 Storing and Using Functions
	5.3.4 Calling Functions
	5.3.5 Variable Numbers of Parameters
	5.3.6 Returning Multiple Results
	5.3.7 Auxiliary Local Functions
	5.3.8 Encapsulation in MATLAB Functions
	5.3.9 Global Variables

	5.4 Engineering Example—Measuring a Solid Object

	Chapter 6 Character Strings
	6.1 Character String Concepts: Mapping Casting, Tokens, and Delimiting
	6.2 MATLAB Implementation
	6.2.1 Slicing and Concatenating Strings
	6.2.2 Arithmetic and Logical Operations
	6.2.3 Useful Functions

	6.3 Format Conversion Functions
	6.3.1 Conversion from Numbers to Strings
	6.3.2 Conversion from Strings to Numbers

	6.4 Character String Operations
	6.4.1 Simple Data Output: The disp(...) Function
	6.4.2 Complex Output
	6.4.3 Comparing Strings

	6.5 Arrays of Strings
	6.6 Engineering Example—Encryption

	Chapter 7 Cell Arrays and Structures
	7.1 Concept: Collecting Dissimilar Objects
	7.2 Cell Arrays
	7.2.1 Creating Cell Arrays
	7.2.2 Accessing Cell Arrays
	7.2.3 Using Cell Arrays
	7.2.4 Processing Cell Arrays

	7.3 Structures
	7.3.1 Constructing and Accessing One Structure
	7.3.2 Constructor Functions

	7.4 Structure Arrays
	7.4.1 Constructing Structure Arrays
	7.4.2 Accessing Structure Elements
	7.4.3 Manipulating Structures

	7.5 Engineering Example—Assembling a Physical Structure

	Chapter 8 File Input and Output
	8.1 Concept: Serial Input and Output (I/O)
	8.2 Workspace I/O
	8.3 High-Level I/O Functions
	8.3.1 Exploration
	8.3.2 Spreadsheets
	8.3.3 Delimited Text Files

	8.4 Lower-Level File I/O
	8.4.1 Opening and Closing Files
	8.4.2 Reading Text Files
	8.4.3 Examples of Reading Text Files
	8.4.4 Writing Text Files

	8.5 Engineering Example—Spreadsheet Data

	Chapter 9 Recursion
	9.1 Concept: The Activation Stack
	9.1.1 A Stack
	9.1.2 Activation Stack
	9.1.3 Function Instances

	9.2 Recursion Defined
	9.3 Implementing a Recursive Function
	9.4 Exceptions
	9.4.1 Historical Approaches
	9.4.2 Generic Exception Implementation
	9.4.3 MATLAB Implementation

	9.5 Wrapper Functions
	9.6 Examples of Recursion
	9.6.1 Detecting Palindromes
	9.6.2 Fibonacci Series
	9.6.3 Zeros of a Function

	9.7 Engineering Example—Robot Arm Motion

	Chapter 10 Principles of Problem Solving
	10.1 Solving Simple Problems
	10.2 Assembling Solution Steps
	10.3 Summary of Operations
	10.3.1 Basic Arithmetic Operations
	10.3.2 Inserting into a Collection
	10.3.3 Traversing a Collection
	10.3.4 Building a Collection
	10.3.5 Mapping a Collection
	10.3.6 Filtering a Collection
	10.3.7 Summarizing a Collection
	10.3.8 Searching a Collection
	10.3.9 Sorting a Collection

	10.4 Solving Larger Problems
	10.5 Engineering Example—Processing Geopolitical Data

	Chapter 11 Plotting
	11.1 Plotting in General
	11.1.1 A Figure—The Plot Container
	11.1.2 Simple Functions for Enhancing Plots
	11.1.3 Multiple Plots on One Figure—Subplots
	11.1.4 Manually Editing Plots

	11.2 2-D Plotting
	11.2.1 Simple Plots
	11.2.2 Plot Options
	11.2.3 Parametric Plots
	11.2.4 Other 2-D Plot Capabilities

	11.3 3-D Plotting
	11.3.1 Linear 3-D Plots
	11.3.2 Linear Parametric 3-D Plots
	11.3.3 Other 3-D Plot Capabilities

	11.4 Surface Plots
	11.4.1 Basic Capabilities
	11.4.2 Simple Exercises
	11.4.3 3-D Parametric Surfaces
	11.4.4 Bodies of Rotation
	11.4.5 Other 3-D Surface Plot Capabilities
	11.4.6 Assembling Compound Surfaces

	11.5 Manipulating Plotted Data
	11.6 Engineering Example—Visualizing Geographic Data
	11.6.1 Analyzing the Data
	11.6.2 Displaying the Data

	Chapter 12 Matrices
	12.1 Concept: Behavioral Abstraction
	12.2 Matrix Operations
	12.2.1 Matrix Multiplication
	12.2.2 Matrix Division
	12.2.3 Matrix Exponentiation

	12.3 Implementation
	12.3.1 Matrix Multiplication
	12.3.2 Matrix Division

	12.4 Rotating Coordinates
	12.4.1 2-D Rotation
	12.4.2 3-D Rotation

	12.5 Solving Simultaneous Linear Equations
	12.5.1 Intersecting Lines

	12.6 Engineering Examples
	12.6.1 Ceramic Composition
	12.6.2 Analyzing an Electrical Circuit

	Chapter 13 Images
	13.1 Nature of an Image
	13.2 Image Types
	13.2.1 True Color Images
	13.2.2 Gray Scale Images
	13.2.3 Color Mapped Images
	13.2.4 Preferred Image Format

	13.3 Reading, Displaying, and Writing Images
	13.4 Operating on Images
	13.4.1 Stretching or Shrinking Images
	13.4.2 Color Masking
	13.4.3 Creating a Kaleidoscope
	13.4.4 Images on a Surface

	13.5 Engineering Example—Detecting Edges

	Chapter 14 Processing Sound
	14.1 The Physics of Sound
	14.2 Recording and Playback
	14.3 Implementation
	14.4 Time Domain Operations
	14.4.1 Slicing and Concatenating Sound
	14.4.2 Musical Background
	14.4.3 Changing Sound Frequency

	14.5 The Fast Fourier Transform
	14.5.1 Background
	14.5.2 Implementation
	14.5.3 Simple Spectral Analysis

	14.6 Frequency Domain Operations
	14.7 Engineering Example—Music Synthesizer

	Chapter 15 Numerical Methods
	15.1 Interpolation
	15.1.1 Linear Interpolation
	15.1.2 Cubic Spline Interpolation
	15.1.3 Extrapolation

	15.2 Curve Fitting
	15.2.1 Linear Regression
	15.2.2 Polynomial Regression
	15.2.3 Practical Application

	15.3 Numerical Integration
	15.3.1 Determination of the Complete Integral
	15.3.2 Continuous Integration Problems

	15.4 Numerical Differentiation
	15.4.1 Difference Expressions

	15.5 Analytical Operations
	15.5.1 Analytical Integration
	15.5.2 Analytical Differentiation

	15.6 Implementation
	15.7 Engineering Example—Shaping the Synthesizer Notes

	Chapter 16 Sorting
	16.1 Measuring Algorithm Cost
	16.1.1 Specific Big O Examples
	16.1.2 Analyzing Complex Algorithms

	16.2 Algorithms for Sorting Data
	16.2.1 Insertion Sort
	16.2.2 Bubble Sort
	16.2.3 Quick Sort
	16.2.4 Merge Sort
	16.2.5 Radix Sort

	16.3 Performance Analysis
	16.4 Applications of Sorting Algorithms
	16.4.1 Using sort(…)
	16.4.2 Insertion Sort
	16.4.3 Bubble Sort
	16.4.4 Quick Sort
	16.4.5 Merge Sort
	16.4.6 Radix Sort

	16.5 Engineering Example—A Selection of Countries

	Chapter 17 Processing Graphs
	17.1 Queues
	17.1.1 The Nature of a Queue
	17.1.2 Implementing Queues
	17.1.3 Priority Queues
	17.1.4 Testing Queues

	17.2 Graphs
	17.2.1 Graph Examples
	17.2.2 Processing Graphs
	17.2.3 Building Graphs
	17.2.4 Traversing Graphs
	17.2.5 Searching Graphs

	17.3 Minimum Spanning Trees
	17.4 Finding Paths through a Graph
	17.4.1 Exact Algorithms
	17.4.2 Breadth-First Search (BFS)
	17.4.3 Dijkstra’s Algorithm
	17.4.4 Approximation Algorithm
	17.4.5 Testing Graph Search Algorithms

	17.5 Engineering Applications
	17.5.1 Simple Applications
	17.5.2 Complex Extensions

	Appendices
	Appendix A: MATLAB Special Characters, Reserved Words, and Functions
	Appendix B: The ASCII Character Set
	Appendix C: Internal Number Representation
	Appendix D: Answers to True or False and Fill in the Blanks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

