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  Preface 

  “That of all the several ways of beginning a book which are now in practice 
throughout the known world, I am confident my own way of doing it is the 
best—I’m sure it is the most religious—for I begin with writing the first 
sentence, and trusting to Almighty God for the second.” 

   Laurence Sterne (1713–1768), British author, clergyman    

 This book introduces the power, satisfaction, and joy of computing to 
beginning engineering students who have little or no previous computing 
experience. It began as a snapshot of the content of a Georgia Tech course 
that introduces engineers to computing. However, it has been extensively 
enhanced to meet the needs of a wider audience of students and educators 
who want to understand programming for other reasons. In this book, to 
understand computing, we use the basic syntax and capabilities of 
MATLAB, a user-friendly language that is emerging as one of the most 
popular computing languages in engineering. 

  New to the Third Edition 
 Many engineering disciplines use the concept of graphs to represent specific 
ideas. We have added a chapter that deals with the fundamentals of graph 
manipulation from an engineering standpoint—specifically, how to find a 
minimum spanning tree, and both exact and approximate methods for 
finding the best path from one point to another. We also try to note those 
new features of MATLAB that are relevant to students in an introductory 
programming class. For examples, features were added recently allowing a 
user to manipulate plotted data by adjusting and saving values. Although 
interesting, one can achieve the same result with more traceability and 
repeatability by editing to the source data and repeating the plots. 

 One interesting observation emerged when refreshing the analysis of 
sorting algorithms in  Chapter   16   . In older versions of MATLAB (prior to 
R2008), our crude recursive implementations of Merge Sort and Quick Sort 
did not achieve the expected performance. The reason we deduced was that 
when data are passed into and out of a function, they must be copied 
between the workspaces of the calling and called functions. With R2011, 
however, the same code works splendidly, suggesting that the earlier 
inefficient parameter passing mechanisms have been significantly 
improved.  
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  Pedagogical Style 
 Computing is not a spectator sport. Students learn computing by using a 
computing system to solve problems. This text not only presents computing 
concepts and their MATLAB implementation, but also offers students 
extensive hands-on exercises. The text illustrates the ideas with examples 
from the world of engineering, provides style points, and presents sample 
problems that students might encounter. Each chapter includes topics that 
go a step beyond the basic content of an introductory class. This gives 
professors the choice to progress slowly, and more thoroughly, through the 
material in two semesters. It also offers advanced students enrichment 
materials for their personal study. 

 The overall philosophy of this text approaches programming tools in the 
following manner: 

    1.   Explain a computing concept in general  
   2.   Discuss its implementation in MATLAB  
   3.   Provide exercises to master the concept   

 To help facilitate students’ understanding of the concept and its 
implementation, the text uses two features: general templates and MATLAB 
listings. The general templates provide a foundation for students to  
 understand concepts in general and can be applied to any language. The 
MATLAB listings show students how to implement concepts in MATLAB 
and are followed by detailed explanations of the code.  

  Features of the Text 
    ■    Exercises:     Allow students a “Do It Yourself” approach to master 

concepts by trying what they just learned. Exercises follow each new 
topic.  

   ■    Style Points:     Advise students about writing quality code that is easy 
to understand, debug, and reuse.  

   ■    Hints:     Enrich students’ understanding of a topic. Hints are 
interspersed through the book at points where students may benefit 
from a little extra “aside.”  

   ■    Engineering Examples:     Provide robust models and apply to real-
world issues that will motivate students. Examples from different 
engineering disciplines are presented at the end of each chapter.  

   ■    Special Characters, Reserved Words, and Functions:     Provides a quick 
reference for the key MATLAB principles discussed in each chapter.  

   ■    Self Test:     Helps students to check their understanding of the 
material in each chapter.  

   ■    Programming Projects:     Offer a variety of large-scale projects that 
students can work on to solidify their skills.    
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  Chapter Overview 
    Chapter   1   :  Introduction to Computers and Programming  discusses the history 
of computer architectures as they apply to computing systems today. The 
chapter provides an overview of computer hardware and software and 
how programs execute.  

   Chapter   2   :  Getting Started  discusses some basic concepts of computing and 
then introduces the basic operation of the MATLAB user interface. The 
chapter also describes how to capture simple MATLAB programs in the 
form of scripts.  

   Chapter   3   :  Vectors and Arrays  introduces the fundamental machinery that 
sets MATLAB apart from other languages—its ability to perform 
mathematical and logical operations on homogeneous collections of 
numbers.  

   Chapter   4   :  Execution Control  describes the common techniques used to 
control the execution of code blocks—conditional operation and iteration.  

   Chapter   5   :  Functions  describes how to implement procedural abstraction by 
defining reusable code blocks.  

   Chapter   6   :  Character Strings  discusses how MATLAB operates on variables 
containing text.  

   Chapter   7   :  Cell Arrays and Structures  discusses two kinds of heterogeneous 
data collections accessed by index and by name.  

   Chapter   8   :  File Input and Output  describes three levels of ability provided in 
MATLAB   for transferring data to and from data files—saving workspaces, 
specific tools that read and write specific data files, and general-purpose 
tools for processing any kind of file.  

   Chapter   9   :  Recursion  discusses and illustrates a widely used alternative 
approach to repetitive code execution.  

   Chapter   10   :  Principles of Problem Solving  introduces ideas that help students 
design solutions to new problems and avoid the “blank sheet of paper” 
syndrome—how to start a program.  

   Chapter   11   :  Plotting  takes the student from basic plotting in two dimensions 
to the advanced tools that draw representations of three-dimensional 
objects with smooth shading and even multiple light effects.  

   Chapter   12   :  Matrices  describes specific MATLAB capabilities that implement 
matrix algebra.  

   Chapter   13   :  Images  discusses how to use vector and array algebra to 
manipulate color pictures.  

   Chapter   14   :  Processing Sound  shows how to analyze, synthesize, and operate 
on sound files.  



   Chapter   15   :  Numerical Methods  introduces numerical techniques that 
commonly occur in engineering: interpolation, curve fitting, integration, 
and differentiation.  

   Chapter   16   :  Sorting  presents five algorithms for ordering data, each of 
which has applicability under certain circumstances—Insertion Sort, Bubble 
Sort, Quick Sort, Merge Sort, and Radix Sort—and then compares their 
performance on large quantities of data.  

   Chapter   17   :  Processing Graphs  discusses how to represent graphs in general 
and then how to solve two important engineering problems—finding a 
minimal spanning tree and finding an optimal path between two nodes of 
the graph.  

   Appendices  provide a summary of the MATLAB special characters, reserved 
words, and functions used throughout the text, the ASCII character set, the 
internal number representation inside the computer, and answers to the 
True or False and Fill in the Blank questions.    

  Paths through the Book 
 Not all courses that cover programming and MATLAB follow the same 
syllabus.  Engineering Computation with MATLAB  is designed to facilitate 
teaching the material with different styles and at different speeds. For 
example,  Chapters   3   ,    4   , and    5    cover MATLAB array manipulation, 
iteration, and writing your own functions. There are three schools of 
thought about the appropriate way to introduce these concepts. One 
would introduce array constructs first and follow up with the more 
“traditional” concept of iteration; another would teach iteration first 
and deal with the MATLAB-specific array operations later; and the third 
would treat functions first. I chose to order the book according to the 
arrays-first approach, to suit a particular teaching style. However, 
should you prefer iteration or functions first,  Chapters   3   ,    4   , and    5    can be 
used in any order you wish. In practice, over the years, our course has 
shifted to a functions-first approach so that we can use function 
interfaces to isolate students’ code for automated code grading.  Chapters 
  6   –   9    should be taught in sequence—there are dependencies between 
chapters that would make it awkward change the order.  Chapter   10    is 
an important chapter that is difficult to place on a class schedule. Where 
it stands in the book appears to be a logical position. However, at that 
point in the semester, beginning students are still not ready to think 
about larger problems. I have usually covered this material (if at all) at 
the end of each semester by way of review.    Chapter 11 provides basic 
plotting capability and is necessary for the remaining chapters. After 
that, Chapters   12   –   17    are virtually independent and can be taught in any 
order, but should follow  Chapters   2   –   9    and 11.  
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  Supplements 
 Various supplemental materials for this text are available at the book’s 
Companion Web site:  www.pearsoninternationaleditions.com/smith . The 
following are accessible to all readers: 

    ■   Solutions to selected Programming Projects  
   ■   Selected full-color figures  
   ■   Source code for all MATLAB listings  
   ■    Bonus chapters including: Object-Oriented Programming, Linked 

Lists, N-ary Trees and Graphs, and the Cost of Computing   

 In addition, the following supplements are available to qualified 
instructors at Pearson’s Instructor Resource Center. Please visit  www.
pearsoninternationaleditions.com/smith.  

    ■   Solutions to all of the Programming Projects  
   ■   PowerPoint lecture slides     
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  Chapter Objectives 

 This chapter presents an overview of the historical background of 
computing and the computer hardware and software concepts that 
build the foundation for the rest of this book: 

    ■   Hardware architectures  

  ■   Software categories  

  ■   Programming languages  

  ■   Anticipated outcomes      
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      1.1  Background 

 Advances in technology are achieved in two steps as follows: 

   ■   A visionary conceives an idea that has never been tried before  
  ■   Engineers find or invent tools that will bring that vision to reality   

 The search for new software tools is therefore an inescapable part of an 
engineer’s life. The process of creating these tools frequently spawns sub-
problems, which themselves require creative solutions. The pace of change 
in our world is increasing, and nowhere is this phenomenon more 
dramatically obvious than computer science. In the span of just a few 
generations, computers have invaded every conceivable aspect of our lives, 
and there is no indication that this trend is slowing. 

 This book will help you become familiar with one specific programming 
tool: MATLAB. It is intended to bring you to a basic proficiency level so 
that you can confidently proceed on your own to learn the features of other 
programming languages that are useful to your interests. 

 A word of caution: Learning a programming language is very much 
like learning to speak a foreign language. In order to find something to 
eat in Munich, you must be able to express yourself in terms a German 
can understand. This involves knowing not only some vocabulary words, 
but also the grammatical rules that make those words comprehensible—
in German, for example, this means putting the verbs at the ends of 
phrases. 

 If languages were a strictly theoretical exercise, you could make up your 
own vocabulary and grammar, and it would undoubtedly be an 
improvement over existing languages—especially English, with its 
incredibly complex spelling and pronunciation rules. However, language is 
not a theoretical exercise; it is a practical tool for communication, so we 
can’t make up our own rules, but are constrained to the vocabulary and 
grammar expected by the people with whom we want to converse. 

 Similarly, this book is not an abstract text about the nature of computer 
languages. It is a practical guide to creating solutions to problems. 
Accomplishing this involves expressing your solutions in such a form that 
the computer can “understand” your solutions; therefore, it requires that 
you use the vocabulary (i.e., the appropriate key words) and grammar (the 
syntax) of the language. 

 To become proficient in this, as in any other language, it is not enough to 
merely know the grammar and vocabulary. You have to practice your 
language skills by communicating. For foreign languages, this means 
traveling to the country, immersing yourself in the culture, and talking with 
people. For computer languages, this means actually writing programs, 
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seeing what they do, and determining how to use their capabilities to solve 
your engineering problems.  

   1.2  History of Computer Architectures 

 Computing concepts developed as tools to solve previously intractable 
problems. This section will trace the growth of computing architectures, 
review the basic organization of computer hardware components, and 
emphasize the implementation of the data storage and processing 
capabilities by highlighting three milestones on the road to today’s 
computers: Babbage’s difference engine, Colossus, and the von Neumann 
architecture. 

   1.2.1  Babbage’s Difference Engine 

 Charles Babbage (1791–1871) is generally recognized as the earliest pioneer 
of the modern computer. Babbage’s difference engine—a relatively simple 
device that can subtract adjacent values in a column of numbers—is a good 
example of a computing device designed to improve the speed and 
repeatability of mathematical operations. Babbage was concerned about the 
process engineers used to develop the tables of logarithms and trigonometric 
functions. In his day, the only way to develop these tables was for 
mathematicians to calculate the values in the tables by hand. While the 
algorithms were simple—combining tables of the differences between 
adjacent values—the opportunity for human error was unacceptably high. 
In 1854 Babbage designed a difference engine that could automate the 
process of generating tables of mathematical functions. Since the objective 
was to create numerical tables, the output device was to be a set of copper 
plates ready for a printing press. The memory devices for storing numerical 
values were wheels arranged in vertical columns. The arithmetic operations 
were accomplished by ratchet devices cranked by hand. 

 Sadly, the manufacturing tools and materials available then prevented 
him from actually building his machine. However, in 1991 the Science 
Museum in London built a machine to his specifications, as shown in 
 Figure   1.1   . With only minor changes to the design, they were able to make 
the machine work. Although limited in its flexibility, the machine was able 
to compute difference equations up to the seventh order with up to 13 
significant digits.   

   1.2.2  Colossus 

 Colossus was a computing machine developed to solve large, complex 
problems quickly. Early in the Second World War, Britain was losing the 
Battle of the Atlantic—German U-boats were sinking an enormous number 
of cargo ships that were resupplying the Allied war effort. The Government 



22 Chapter 1  Introduction to Computers and Programming

Code and Cypher School was established at Bletchley Hall in Britain with 
the goal of breaking the German codes used to communicate with their 
U-boats in the North Atlantic. They were using Enigma machines, relatively 
simple devices that encrypted messages by shifting characters in the 
alphabet. However, to crack the code they needed to exhaustively evaluate 
text shifted by arbitrary amounts. Although the algorithm was known, the 
manual solution took too long, and it was often too late to make use of the 
information. A computer later named Colossus (see  Figure   1.2   ) was 
designed by Max Newman and was custom built for this purpose. While 
not a general-purpose processor, Colossus was fast enough to crack all but 
the most sophisticated Enigma codes. Sadly, due to security concerns, the 
machine was destroyed when the war ended. However, the dawn of 
ubiquitous computing was breaking, and general-purpose computers were 
soon to be available.   

   1.2.3  The von Neumann Architecture 

 These and other contemporary achievements demonstrated the ability of 
special-purpose machines to solve specific problems. However, the 
creativity of John von Neumann ushered in the current era of general-
purpose computing in which computers are flexible enough to solve an 

 Figure 1.2   Colossus       

 Figure 1.1   Babbage’s difference engine       
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astonishing array of different problems. Dr. von Neumann proposed a 
computer architecture that separated the Central Processing Unit (CPU) 
from the computer memory and the Input/Output (I/O) devices (see 
 Figure   1.3   ).  

 Together with binary encoding for storing numerical values, this was the 
genesis of general-purpose computing as we know it today. Although the 
implementation of each component has improved beyond recognition, the 
fundamental processing architecture remains unchanged today.   

   1.3  Computing Systems Today 

 Today’s computing systems—the combination of hardware and software 
that collectively solve problems—retain many of the key characteristics of 
these inventions: they process more data than is humanly possible, quickly 
enough for the results to be useful, and they basically follow the von 
Neumann architecture. Computer hardware refers to the physical 
equipment: the keyboard, mouse, monitor, hard disk, and printer. The 
software refers to the programs that describe the steps we want the 
computer to perform. 

   1.3.1  Computer Hardware 

 All computers have a similar internal organization, as shown in  Figure   1.4   , 
that is closely related to the von Neumann architecture. The CPU is usually 
separated into two parts: the Control Unit, which manages the flow of data 
between the other modules, and the Arithmetic and Logic Unit (ALU), which 
performs all the arithmetic and logical operations required by the software.  
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 Figure 1.3   von Neumann architecture       
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 The individual logic devices that comprise the electronic components of 
the computer operate in a binary mode, which is represented electrically by 
the presence or absence of voltage at a connection. These states, called bits, 
have the value of 1 (present) or 0 (absent). Most computer operations 
assemble these bits into larger collections—a byte being 8 bits, and words 
consisting of 16, 32, 64, or more bits. We refer to the data items coming into 
the computer as the input, and the results coming from the computations as 
the output. 

 Input and output (I/O) is accomplished by moving data between the 
memory and external equipment designed to communicate with users or 
other computers. In the early days, all devices had to be individually 
installed in the computer with dedicated wiring—a process called 
hardwiring. In contrast, today this is usually accomplished merely by 
plugging devices into one of many data buses (see  Figure   1.5   ). A data bus is 
an electronic “pathway” for transporting data between devices. Since most 
devices expect to be able to send data on the bus as well as receive data 
from it, data bus design always involves a protocol that ensures that only 
one device is writing to the bus at any given time.   

   1.3.2  Computer Memory 

 Memory comes in many forms. Not long ago it could be nicely divided 
into two categories—solid state and mechanical. Solid-state memory 
modules were directly connected to the processor and used digital 
addresses to save and restore data. Mechanical memory relied upon 

Register
s0

Register
s1

Arithmetic
Logical Unit

Register
s2

Register
s3

Register
s4

Register
s5

Instruction
Register

Program
Counter

Address
Register

Memory and I/O
Interface

Data Bus Address Bus

Test
Instruction
Decoder

Control Unit

 Figure 1.5   Internal computer details       



1.3  Computing Systems Today      25

devices that moved rewriteable storage media past sensors that converted 
the impressions on the storage media to digital form. Tape drives, floppy 
disks, hard drives, and optical disks (CDs and DVDs) share this 
architecture, and they are usually externally connected to the input/
output system. Recently, however, these distinctions have been blurred 
by the arrival of devices like flash cards that are solid-state memory 
devices but attach to the computer’s I/O ports and behave as if they were 
mechanical memory. 

 Today, CPUs use many forms of solid-state memory. The first instructions 
executed when power is turned on are usually stored in Read-Only Memory 
(ROM), sometimes referred to as the Basic Input/Output System (BIOS). 
These instructions are just enough to wake up the keyboard and screen in 
basic mode and look around for a memory device containing the real 
programs. These real programs are transferred from the memory device, 
frequently referred to as “mass memory,” to Random-Access Memory 
(RAM)—large amounts of high-speed, solid-state memory used to hold all 
of the programs and data users need immediately. 

 Most processors achieve significant performance improvement by using 
smaller amounts of even higher speed memory as cache. Cache memory 
processors are smart devices that “guess” what instructions and data the 
computer needs next, and preload those guesses into cache memory where 
the CPU can reach them quickly. These guesses are based on the likelihood 
that the program will continue linearly through the program as opposed to 
branching to go somewhere else for the next instruction. A significant 
amount of today’s computer architecture design effort focuses on the 
effective use of cache memory to improve performance. 

 As programs become larger and process more data, and the systems 
allow more than one program to run simultaneously, RAM occasionally 
fills up. Most operating systems today use virtual memory—a data file 
usually on the hard drive that contains an image of everything you would 
like to have in RAM divided into pages. When the CPU requires access to a 
page that is not actually in RAM, it has to take the time to find a special area 
in RAM referred to as a “page buffer” that it can safely use, write its contents 
back to virtual memory, and read in the page needed. No matter how smart 
this process might be about looking ahead and predicting required pages, 
there is always a huge performance loss when a computer begins using 
virtual memory. 

  Figure   1.6    illustrates some aspects of how computer memory is managed. 
The operating system (UNIX, Windows, Mac OS X, or whatever) consumes 
some memory and determines from the I/O devices available what internal 
software (drivers) must be present to enable the application programs to 
communicate with the outside world. As mentioned earlier, many programs 
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are loaded automatically when the operating system starts, and others are 
loaded upon user request. In addition to the memory needed to store the 
instructions, each program is allocated some stack space for storing local 
static data. The remaining memory, the heap, is accessible to all programs 
upon request to the operating system. The heap is typically used to store 
most of the data being manipulated by the programs. When a program 
finishes with a block from the heap, it is usually released by that program 
for other programs to use as necessary.   

   1.3.3  Computer Software 

 Computer software contains the instructions that the CPU uses to run 
programs. There are several important categories of software, including 
operating systems, software applications, and language compilers. Not all 
processors need all these facilities.  Figure   1.7    illustrates the interactions 
among these categories of software and the computer hardware, and the 
following sections describe each in more detail. 
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 Figure 1.6   Typical memory layout       
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   Operating Systems     The operating system (OS) serves as the manager of 
the computer system as a whole. It controls access to the processor by users 
and networked devices, and it organizes the hardware and software 
according to the users’ specifications. The operating system is the first major 
software component fetched by the BIOS from mass storage, and it 
automatically loads and starts the myriad programs that make computers 
“user friendly.” It also provides the tools for making the computer’s 
peripheral devices—such as printers, scanners, and DVD drives—available 
to other software. Common modern operating systems are Microsoft 
Windows, Linux, UNIX, and Apple Mac OS. 

 Operating systems also contain a group of programs called utilities that 
allow you to perform functions, such as printing files, copying files from 
one disk to another, and listing the files that you have saved on a disk. 
Although these utilities are common to most operating systems, the 
commands themselves vary from operating system to operating system. 

 While computer systems give the appearance of stability, like automobiles, 
they require periodic maintenance to maintain peak performance. 

   ■   You should protect your computer by installing and configuring 
utilities that protect it from viruses, intrusive advertising, and 
external influences that make illegal use of the processor or its data. 
Refer to the documentation for your specific operating system.  

  ■   Over time, most disk drives become fragmented—the available 
space gets chopped up into smaller and smaller pieces—and the 
performance of your system begins to suffer. Defragmentation of a 
large disk drive may be an overnight effort, but should be done 
periodically.  

  ■   While very reliable, computers are not indestructible. You should 
establish a regular policy of backing up your personal files onto 
removable media. Most operating systems provide such utilities, 
and a number of services are now available at a modest cost that 
automatically back up your files to encrypted storage whenever 
your computer is connected to the Internet. You do not need to back 
up commercial software that can be reloaded from the 
manufacturer’s installation disks.    

  Software Tools     Software tools are commercial programs that have been 
written to solve specific problems. They are highly sophisticated, complex 
applications that use the facilities provided by the operating system to 
enable you to create, save, recall, manipulate, and present ideas in the form 
of data files on your computer. The specific nature of those files depends on 
the nature of the problem. If you need a well-formatted document or report, 
word processors are programs that enable you to enter and format text and 
graphics. They allow you to develop documents in outline form; move 
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words, sentences, and paragraphs; and check your spelling and grammar. 
Desktop publishing combines a very powerful word processor with a 
high-quality printer to produce professional-grade documents. 

 If you need sophisticated results from tabular data, spreadsheets let you 
work easily with data that can be displayed in a grid of rows and columns. 
Most spreadsheet packages include plotting capabilities to create charts 
and graphs, so they can be especially useful in analyzing and displaying 
information. 

 If you need to store, quickly retrieve, and format large amounts of data, 
database management programs are useful tools. They are used by large 
organizations, such as banks, hospitals, universities, hotels, and airlines, to 
store and organize crucial information; they are also used to analyze large 
amounts of scientific data. Meteorology and oceanography are examples of 
scientific fields that commonly require large databases for the storage and 
analysis of data. 

 Computer-aided design (CAD) packages let you define computer 
models of real-world objects, assemble groups of such models, and then 
manipulate them graphically. CAD packages are frequently used in 
engineering applications, and the designs of most automobiles and aircraft 
are now “paperless”—the essential information is in a CAD database 
rather than on paper.  

  Programming Languages     All programming languages are merely tools a 
programmer uses to express the logic for a computer to implement. Like 
any spoken language, a computer language is defined by its grammar 
(syntax) and its vocabulary. There are three necessary attributes of a 
computer language: the scope of the logic expressed in each line of code 
(the power of the language), the clarity of each line of code from the human 
viewpoint, and its portability between different types of processor. 
Computer languages are frequently described in terms of generations that 
reflect the development of language power, clarity, and portability. 

 First-generation, or machine languages, are the most primitive languages, 
usually tied closely to the nature of the computer hardware. Since the basic 
logic of the CPU is binary, the syntax of machine language is expressed as 
sequences of 0s and 1s. This maximizes the control over the processor, but 
results in programs that are completely incomprehensible to anyone, 
including the original programmer, and are absolutely not portable. 

 A second-generation language, frequently called assembly language, 
is a means of expressing machine language in symbolic form where each 
line of code usually produces a single machine instruction. While 
programming in assembly language is easier than machine language, it is 
still a tedious process that requires each detailed instruction to be 
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specified; and like the first-generation languages, it is completely tied to 
the nature of the CPU. 

 Third-generation languages such as C, FORTRAN, and BASIC have 
commands and instructions that are more similar to spoken languages. One 
line of code of these languages creates many machine level instructions. 
Consequently, they are much clearer expressions of the logic of a program, 
and the power of each instruction is significantly increased. The resulting 
programs are to some degree portable between processor types. Third-
generation languages and beyond are referred to as high-level languages. 

 The fourth-generation languages that include Ada and Java take this 
trend to the next level. They are completely portable between supported 
processor types, and each line of code creates a significant amount of 
machine instructions. MATLAB and its close competitors, Mathematica, 
Mathcad, and Maple, are very powerful fourth-generation languages that 
combine mathematical functions and commands with extensive capabilities 
for presenting results in a graphical form. This combination of computation 
and visualization power makes them particularly useful tools for engineers. 

 The current language development trend is to allow the programmer to 
express the overall program logic in a graphical form and have the 
programming tools automatically convert the diagrams to working 
programs. Programmers involved with these implementations still need 
language skills to complete the implementation of the algorithms. The goal 
of the fifth generation of languages is to allow a programmer to use natural 
language. Programmers in this generation would program in the syntax of 
natural speech. Implementation of a fifth-generation language will require 
the achievement of one of the grand challenges of computer science: 
computerized speech understanding.   

   1.3.4  Running a Computer Program 

 For most computer languages, getting the program to run involves 
compilation, linking, loading, and then executing the program. These 
processes are outlined in  Figure   1.8   .  

   Compilation:     Programs written in most high-level languages, such as 
C or Java, need to be compiled (i.e., translated into machine 
language) before the instructions can be executed by the computer. 
A special program called a compiler performs this translation. Thus, 
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 Figure 1.8   Program compilation, linking, loading, and execution       
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in order to write and execute C programs on a computer, the 
computer’s software must include a C compiler. If any errors  1   are 
detected by the compiler during compilation, the compiler generates 
corresponding error messages. Programmers must correct the 
program statements and then perform the compilation step again. 
The errors identified during this stage are called compile-time 
errors. For example, if you want to divide the value stored in a 
variable called sum by 3, the correct expression in C is sum/3. If you 
incorrectly write the expression using the backslash, as in sum\3, 
you will get a compiler error. For non-trivial programs, the process 
of correcting statements (or debugging) and recompiling often must 
be repeated several times before the program compiles without 
compiler errors. When there are no compiler errors, the compiler 
generates a program in machine language that performs the steps 
specified by the original C program. The original C program is 
referred to as the source code, and the machine-language version is 
called the object code. Thus, the source code and the object code 
specify the same logic, but the source code is specified in a high-
level language and the object code is specified in machine language.   
  Linking:     Once the program has compiled correctly, additional steps 
are necessary to prepare the object code for execution. A linker will 
search libraries of built-in capabilities required by this program 
and collect them in a single executable file stored on the hard drive. 
Errors generated in this phase are typically caused by the 
programmer referring to program modules that are not, in fact, 
defined in the current context.  
  Loading:     A loader is then used to copy the executable program into 
memory where its instructions can be executed by the computer.  
  Execution:     New errors, synonymously called execution errors, 
runtime errors, logic errors, or program bugs, may be identified in 
this stage. Execution errors often cause the termination of a 
program. For example, the program statements may attempt to 
perform a division by zero, which usually generates an execution 
error. Some execution errors, however, do not stop the program 
from executing, but they cause incorrect results to be computed. 
These types of errors can be caused by programmer errors in 
determining the correct steps in the solutions and by errors in 
the data processed by the program. When execution errors occur 
because of errors in the program statements, you must correct the 
errors in the source program and then begin again with the 
compilation step. Even when a program appears to execute 

    1 often called bugs, a reference to an unidentified insect that caused a short in one of the 
early digital computers 
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properly, you must check the results carefully to be sure that they 
are correct. The computer will perform the steps precisely as you 
specify them. If you specify the wrong steps, the computer will 
execute these wrong (but syntactically legal) steps and present you 
with an answer that is incorrect.     

   1.4  Running an Interpreted Program 

 An interpreted language is one that does not appear to require compilation. 
Rather, the environment in which it is used gives the user the impression that 
the instructions are taken one at a time and executed directly. The advantage 
of interpreted code is that the programmer can run programs a line at a time 
or from a stored text file, see the results immediately, and apply a number of 
tools to find out why the results were not as expected. Programmers can 
rapidly develop and execute programs (scripts) that contain commands and 
executable instructions that allow them to gather data, perform calculations, 
observe the results, and then execute other scripts. This interactive 
environment does not require the formal compilation, linking/loading, and 
execution process described earlier for high-level computer languages. 

 The disadvantages of interpreted code are numerous. The code is very 
slow to run relative to compiled code because every line must be syntactically 
analyzed at run-time. In order to reduce the impact of this as much as possible, 
the interpreter will often make use of a compilation step that is hidden from 
users. Also, because there is no explicit compilation step, the programmer 
does not have the compiler’s protection from syntax errors. Typographical 
errors that cause unknown assets to be referenced from a program cannot be 
caught by the linker. In fact, all programming errors—syntactic, typographical, 
and logical—are postponed until the moment the interpreter tries to deal 
with the offending line of code. They all become run-time errors.  

   1.5  Anticipated Outcomes 

 To conclude this chapter, we list in increasing order of importance three 
outcomes for a diligent student: a brief introduction to MATLAB, some 
understanding of programming concepts, and improvement in their 
problem-solving skills. 

   1.5.1  Introduction to MATLAB 

 MATLAB is a highly successful engineering programming language that 
includes not only the capabilities needed in this text to introduce 
programming to novices, but also a vast collection of tools in toolboxes that 
enable professional engineers to be highly productive. It is very likely that 
you will encounter MATLAB in your career as an engineer. The concepts 
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you learn in this book will ensure that you know what to do when faced 
with a MATLAB program.  

   1.5.2  Learning Programming Concepts 

 Even if you never see MATLAB again, you will certainly either need to use 
other programming languages or be able to converse effectively with other 
engineers who do. Converting to, or writing accurate specifications for, 
other languages is greatly simplified if you have a general idea of the 
capabilities of that language. When faced with a different programming 
language, if the student has an understanding of the basic underlying 
programming concepts, the transition from MATLAB to the new language 
becomes just one question—“How do I express the concepts I need in the 
new language?” We therefore have chosen to explain each programming 
concept in a language-independent way before discussing the MATLAB 
implementation of that concept.  

   1.5.3  Problem-Solving Skills 

 More important even than the computing concepts inherent in all computer 
languages is the ability to use those concepts as tools to solve a problem. 
Before we even start to program, we have to develop an idea of how to solve 
the problem before us. If we think about a computer program as a logical 
component that consumes data in one form and produces data in another, 
we can think about problem solving as the process of designing a collection 
of solutions to sub-problems. A brief illustration and example will suffice. 

 In general terms, solutions to nontrivial problems are found by the two-
pronged approach illustrated in  Figure   1.9   . We can consider the original 
information and ask ourselves what could be done with that information 
using existing tools, and we can also consider the objective and the different 
ways in which that objective might be achieved. The process of creative 
problem solving then becomes a search for a match between states that can 
be achieved from the given data and states from which the answer can be 
achieved.  

 For example, say you have a big collection of baseball cards and you 
want to find the names of the 10 “qualified” players with the highest lifetime 

AnswerData
How you could
find the answer

What you could
do with the data

 Figure 1.9   Generalized problem solving       
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batting averages. To qualify, the players must have been in the league at 
least five years, had at least 100 plate appearances per year, and made fewer 
than 10 errors per year. The cards contain all the relevant information for 
each player. You just have to organize the cards to solve the problem. 
Clearly there are a number of steps between the stack of cards and the 
solution. In no particular order, these are: 

    a.   Write down the names of the players from some cards  

   b.   Sort the stack of cards by the lifetime batting average  

   c.    Select all players from the stack with five years or more in the 
league  

   d.    Select all players from the stack with fewer than 10 errors per 
year  

   e.    Select all players from the stack with over 100 plate appearances 
per year  

   f.   Keep the first 10 players from the stack   

 When you think about it from right to left as shown in  Figure   1.9   , step a is 
probably the last step and step f is probably the step before that. The hard 
work starts when you think about it from left to right. Intuitively, when you 
think about sorting the stack of cards, this seems like a lengthy process. 
Since the sorting should probably be done on a small number of cards, you 
should do all the selecting before the sorting. Continuing that line of 
reasoning, you would reduce the total effort if the first selection pass was 
the criterion that eliminated most cards. You might even consider combining 
all three selection steps into one. 

 One logical way to find the players’ names that you need would be to 
perform the steps in this order: c, d, and e in any order, followed by b, f, and 
then a.    

     Chapter Summary 

 This chapter presented an overview of the historical background of computing and 
the computer hardware and software concepts that build the foundation for the 
rest of this book: 

   ■   The spectrum of software products, ranging from operating 
systems to the many flavors of specific programming tools  

  ■   The rich variety of programming languages currently in use, and 
the place of interpreted programs in that spectrum as a legitimate 
fourth-generation language  

  ■   The basics of problem solving as a search for a path from the data 
provided to the answers required    
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  Self Test 

 Use the following questions to check your understanding of the material in this chapter:   

  True or False  

   1.    Computers were originally conceived as tools for solving specific 
problems.   

   2.    Bill Gates designed the first working computer.   

   3.    Programs cannot interact with the world outside the computer 
without an operating system.   

   4.    Programs cannot interact with the world outside the computer 
without drivers.   

   5.    Programs cannot interact with the world outside the computer 
without hardware interfaces.   

   6.    Application programs have access to shared memory.   

   7.    An algorithm bridges the gap between the available data and the 
result to be achieved.    

  Fill in the Blanks 

   1.    Like any human language, a computer language is also defined by 
its _______________ and _______________.    

   2.    Together with the use of binary encoding for storing numerical 
values, _______________was the genesis of general-purpose 
computing as we know it today.   

   3.    The process of converting a high-level language program into the 
machine language equivalent is called _______________.   

   4.    Most processors achieve significant performance improvement
by using smaller amounts of even higher speed memory as 
_______________.   

   5.    Many ________________ are loaded automatically when the 
operating system starts, and others are loaded upon user request.   

   6.    Even when a program appears to execute properly, you must check 
the results carefully to find ____________ errors.   

   7.    The part of the ROM which stores the instructions that are executed 
when a computer is turned on is known as _______________   

   8.    The process of problem solving is a search for a match between 
_______________ one can achieve from the given data and 
__________________ from which the answer can be achieved.      



  Chapter Objectives 

 This chapter introduces you to some of the fundamentals of 
computing that apply to all programming languages, and specifically 
to the programming environment used for program development. 
The fundamentals of programming include: 

      ■   How to use abstraction to think in a general way about a 
collection of data and procedural steps  

  ■   How to describe the solution of a problem as an algorithm  

  ■   The three paradigms of computing and the position of MATLAB in 
that spectrum  

  ■   Three aspects of the apparently simple task of assigning a value to 
a variable    

 As you study the MATLAB user interface, you will understand: 

      ■   How to use the Command window to explore single commands 
interactively and how to recall earlier commands to be repeated 
or changed  

  ■   Where to examine the variables and files created in MATLAB  

  ■   How to view data created in MATLAB  

  ■   How MATLAB presents graphical data in separate windows  

  ■   How to create scripts to solve simple arithmetic problems     

  Introduction 

 The name MATLAB is a contraction of  Mat rix  Lab oratory. It was developed for 
engineers to create, manipulate, and visualize matrices—rectangular arrays of 
numerical values. At its most basic level, MATLAB can perform the same functions as 
your scientific calculator, but it has expanded far beyond its original capabilities and 
now provides an interactive system and programming language for many applications, 
including financial analysis as well as general scientific and technical computation. 

 Getting Started 
    C H A P T E R  2 

       2.1    Programming Language 
Background     

    2.1.1   Abstraction      
    2.1.2   Algorithms      
    2.1.3    Programming 

Paradigms       
   2.2    Basic Data Manipulation     
    2.2.1    Starting and 

Stopping MATLAB      
    2.2.2    Assigning Values to 

Variables      
    2.2.3   Data Typing      
    2.2.4    Classes and Objects       

   2.3    MATLAB User Interface     
    2.3.1    Command Window      
    2.3.2   Command History      
    2.3.3    Workspace 

Window     
    2.3.4    Current Directory 

Window      
    2.3.5   Variable Editor      
    2.3.6   Figure Window      
    2.3.7   Editor Window       

   2.4   Scripts     
    2.4.1   Text Files      
    2.4.2   Creating Scripts     
    2.4.3    The Current 

Directory     
    2.4.4   Running Scripts      
    2.4.5   Punctuating Scripts      
    2.4.6   Debugging Scripts       

   2.5    Engineering Example—
Spacecraft Launch       

35



36 Chapter 2  Getting Started

 The following are the fundamental components of MATLAB: 

   ■    A computing system that accepts one instruction at a time in text form and 
implements the logic of that instruction. Instructions must conform to a 
specific syntax and vocabulary, which will be the topic of  Chapters   3   –   9   .  

  ■    A large library of modules that provide high-level capabilities for processing 
data. These modules will be the major topic of  Chapters   10   –   17   .  

  ■    A graphical user interface (GUI) that lets users assemble and implement 
programs that solve specific problems. The rest of this chapter will describe 
the basic behavior of these windows.   

 MATLAB offers a number of advantages to users over conventional, compiled 
languages like C++, Java, or FORTRAN: 

   ■    Because MATLAB programs are interpreted rather than compiled, the process 
of producing a working solution can be much quicker than with compiled 
languages.  

  ■   MATLAB excels at numerical calculations, especially matrix calculations.  

  ■    MATLAB has built-in graphics capabilities that produce professional-looking 
images for reports.   

 However, the very attributes that make MATLAB convenient for a user to develop 
quick solutions to certain problems make it unsuitable for other kinds of projects. For 
example: 

   ■    MATLAB does not work well for large computing projects where a number of 
developers share coding responsibilities.  

  ■    Professional GUIs and windowing applications (like the MATLAB system 
itself) are best written in a compiled language.     

      2.1  Programming Language Background 

 Before learning about concepts in computing, you need to understand the 
background of programming languages. This section discusses the following 
aspects of programming languages: abstraction, algorithms, programming 
paradigms, and three fundamental concepts of programming—assigning 
values to variables, data typing, and the difference between classes and objects. 

   2.1.1  Abstraction 

 For the purpose of this text, we will define  abstraction  as “expressing a 
quality apart from a particular implementation.” We use the concept of 
abstraction in everyday conversation without thinking about it: 

  “To convert from degrees Celsius to Kelvin, you add 273 to  the 
temperature .” 

 “He  drove home  from the office.”  
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 The first is an example of  data abstraction . “The temperature” could mean 
a single reading from the thermometer hanging outside the window or a 
table of temperature readings for the month of August. The specifics are 
unimportant; the phrase captures all you need to know. 

 The second example is actually much more complex—an example of 
multiple levels of  procedural abstraction . To a businessperson taking the 
same route home every night, “drive home” is all that is required to 
understand the idea. To a competent driver unfamiliar with the route, the 
next level of abstraction might be necessary—turn right out of the parking 
lot, left onto Main Street, and so on. For instructions to guide a future 
robotic commuter vehicle, an incredibly fine-grained level of abstraction 
will be required. Everything taken for granted in the higher level 
abstractions will need to be meticulously spelled out for the robotic 
vehicle—start the engine, accelerate the vehicle, look out for traffic, keep in 
the lane, find the turn, steer the vehicle, control the speed, observe and 
obey all signs, and so on.  

   2.1.2  Algorithms 

  Chapter   1    defined problem solving as the ability to isolate sub-problems 
that seem simple and appropriate to solve, and then assemble the 
solutions to these sub-problems. The solutions to each of these sub-
problems would be expressed as an  algorithm , which is a sequence of 
instructions for solving a sub-problem. The process of solving each sub-
problem and assembling the solutions to form the solution to the whole 
problem would also be expressed as an algorithm at a higher level of 
abstraction. 

 The level of abstraction needed to describe an algorithm varies greatly 
with the mechanism available. For example, describing the algorithm 
(recipe) for baking cookies might take the following forms: 

   ■   To your grandmother, who has been baking cookies for the last 50 
years, it might be “Please bake some cookies.”  

  ■   To others it might be “Buy a cookie mix and follow the directions.”  
  ■   To a young person learning to cook from scratch, the algorithm 

might include an intricate series of instructions for measuring, 
sifting, and combining ingredients; setting the oven temperature 
and preheating the oven; forming the cookies and putting them on 
the cookie sheet; and so on.   

 In programming terms, algorithms are frequently expressed first 
conceptually at a high level of abstraction, as demonstrated in  Section   1.5   . 
The solutions to each sub-problem would then be expressed at lower and 
lower levels of abstraction until the description is sufficient to write 
programs that solve each sub-problem, thereby contributing the pieces that, 
when assembled, solve the whole problem.  
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   2.1.3  Programming Paradigms 

 From the Greek word  paradeigma —“to show alongside”—the  American 
Heritage Dictionary  defines a paradigm as “a set of assumptions, concepts, 
values, and practices that constitutes a way of viewing reality for the 
community that shares them, especially in an intellectual discipline.” So 
a programming paradigm becomes a codified set of practices allowing 
the community of computing professionals to frame their ideas. This 
section considers three radically different paradigms: functional 
programming, procedural programming, and object-oriented 
programming. 

   Functional programming     is typically associated with languages like 
Lisp and Forth, in which every programming operation is actually 
implemented as a function call with no side effects (changes of state of the 
program surroundings) permitted or implemented in the language. Without 
side effects, a programming solution can be mathematically proven to be 
correct—an enormous advantage. Except for the discussion of recursion, 
this paradigm will not be mentioned again.  

  Procedural programming     is typical of languages like FORTRAN, C, and 
MATLAB, where the basic programs or sub-programs are sequences of 
operations on data items that are generally accessible to all programs. 
Although side effects from sub-programs—such as changing the values of 
variables outside that sub-program—are considered poor practice, they are 
not prohibited by the language.  

  Object-oriented programming (OOP),     typical of languages like C++, 
Ada, and Java, is a relatively new addition to the world of programming 
paradigms. It is characterized by the concept of encapsulating, or 
packaging, data items together with the methods or functions that 
manipulate those data items. In this paradigm, side effects are explicitly 
managed by controlling access to the data and methods in a particular 
grouping. The major theme in true OOP is that “everything is an object.” 
You will see MATLAB exhibiting many traits of OOP as you work through 
this book, but you will not need to use this programming paradigm.     

   2.2  Basic Data Manipulation 

 In order to use MATLAB to demonstrate basic data manipulation, we begin 
with an exercise in starting and stopping the MATLAB system. 

   2.2.1  Starting and Stopping MATLAB 

  Exercise   2.1    shows you how to start and stop the MATLAB user interface. 
We will soon see the details of all the program’s windows. For the moment, 
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however, we will interact with MATLAB by typing instructions in the large 
Command window that occupies the left side of your screen.   

   2.2.2  Assigning Values to Variables 

 The concept of assigning values to variables is the first challenge facing 
novice programmers. The difficulty arises because many programming 
languages (including MATLAB) present this simple concept in a syntax 
that is very similar to conventional algebra, but with significantly different 
meaning. Consider, for example, the following algebraic expression: 

z = x + y 

 In normal algebra, this is a two-way relationship that is an identity for the 
duration of the problem. If you knew the values of  z  and  x , you could derive 
the value of  y  with no further analysis. To a programmer, however, this 
statement has a different meaning. It means that you want to sum the values 
given to the variables  x  and  y , and store the result in a variable called  z . If 
either  x  or  y  is unknown at the time of executing this statement, an error 
ensues. In particular, this relationship is true  only for this statement . The 
relationship can be revoked in the next instruction, which might be: 

z = 4*x - y 

 In algebra, this pair of statements collectively constrains the values of  x ,  y , 
and  z . In programming, the only significance is that the programmer 
decided to calculate the current value of z differently. A few computer 
languages are sensitive to this dilemma and use a different symbol for 
assigning values to a variable. For example, in Pascal or Ada, an instruction 
to assign the value z = x + y would be written as follows: 

z := x + y 

 The “:=” operator clearly indicates that this is an assignment statement, not 
an algebraic identity. 

   Variable names:     In general, variable names may contain any combination 
of uppercase and lowercase alphabetic letters, numbers, and the special 

 Exercise 2.1  Starting and stopping MATLAB 

 If you have not installed MATLAB on your computer yet, follow the directions 
that came with your license for performing and testing the installation. 
 To start MATLAB, double-click on its icon. In the Interactions window you 
should see the MATLAB prompt (>> ), which tells you that the MATLAB 
system is waiting for you to enter a command. 
 To exit MATLAB, type exit at the MATLAB prompt, choose the menu option 
File > Exit, or click the close icon (x) in the upper-right corner of the screen. 
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characters _ (underscore) and $ (dollar). The underscore character is 
frequently used to represent a space in a variable name because spaces are 
not allowed. However, variable names may not begin with a numeric 
character, and even though the names may be hundreds of characters long, 

the first 64 characters must be 
unique.  Exercise   2.2    demonstrates the 
assignment of values to variables.        

   2.2.3  Data Typing 

 It is important to understand how 
MATLAB treats the data stored in a 
variable. Different languages take 
varying approaches to this problem, 
and languages in general fall into two 
broad categories: untyped and typed. 
In general, interpreted languages like 
Lisp, Forth, Python, and MATLAB 
determine the type of data contained 
by a variable based on the type of 
data being stored there. Such 
languages are referred to as  untyped 
languages  .  Each assignment 

 Exercise 2.2  Assigning variables 

 When you start MATLAB, you should see the prompt ‘>> ’ in the Interactions 
window. This is your invitation to type something. Text that you should type 
will be shown like this throughout this book: 

>> radius = 49 

 Note that all entries in the Interactions window terminate with the e key. 
The system response will be shown like this: 

radius = 
49

>>

 This response indicates that the value  49  has been stored in a variable named 
 radius.  To retrieve the value of  radius,  you just type its name and press 
e. 

>> radius 
ans = 
   49 

 This response shows that the value  49  has been retrieved. Since you didn’t 
specify where to put this result, it was stored in a default variable named  ans.  

 Style Points 2.1 

   1.   Some early versions of the FORTRAN and Basic languages 
severely restricted the number of characters you could use 
for variable names. It is no longer necessary to program as if 
you were still in the “bad old days.” Choose names for 
variables that describe their content. For example, a variable 
used to store the velocity of an object should be named 
velocity_in_feet_per_second rather than v.  

  2.   Since the space character is not permitted in variable 
names, there are two conventions for joining multiple words 
together to make a single variable name. One uses the 
underscore character to separate the words (file_size), 
and the other capitalizes the first letter of additional words 
(fileSize).You should choose one convention and be 
consistent with it. You cannot use a hyphen to concatenate 
words—MATLAB treats the name file-size as the 
arithmetic operation subtracting the value of the variable 
size from the value of the variable file.   
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statement is presumed to be correct. If the variable already exists, both its 
type and value are reassigned; if it did not exist before, a new variable is 
created.  Exercise   2.3    illustrates the effect of performing simple mathematical 
operations in MATLAB. By putting 49 into the variable radius, you 
established its type as numeric and enabled it to be used in normal 
arithmetic operations. Character strings are specified by including arbitrary 
characters between single quote marks. These have the type char, and must 
be handled differently, as discussed fully in  Chapter   6   . When you stored a 
character string in the variable radius, adding 1 to it did not cause an error 
in MATLAB as it would in some other languages, because addition is 
actually defined for character strings. It just did something radically 
different—it actually converted the individual characters to numbers and 
then added 1! 

 While this ability to assign data types dynamically is good for interpreted 
languages, it has two undesirable consequences that are really hard to 
unravel as the program runs: 

   ■   Typographical errors that misspell variable names in assignment 
statements cause new variables to be declared unintentionally and 
without the user noticing the error  

  ■   Logical errors that assign incompatible data to the same variable 
can cause obscure runtime errors    

  Typed languages  require that programmers declare both the name and 
type of a variable before a value can be assigned to it. With this information, 
a compiler can then do a better job of ensuring that the programmer is not 
using a variable in an unintended way. Typed languages fall into two 
categories: weak typing and strong typing. If programmers decide to use 
only the normal data types, such as double and char as we saw above, this 

 Exercise 2.3  Performing basic mathematical operations 

 Make the following entries in the Interactions window. You should see the 
responses as shown here: 

>> radius = 49 
radius = 

49
>> radius + 1 
ans = 

50
>> radius = 'radius of a circle' 
radius = 
   radius of a circle 
>> radius + 1 
ans = 
115 98 101 106 118 116 33 112 103 ... 
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is known as  weak typing  and is the usual approach to typing. In some 
extreme circumstances, programmers may choose to be more restrictive 
and define specific data types with a limited set of permitted interactions. 
This is called  strong typing . For example, programmers might define the 
following data types, all of which are actually of type double:  meters, 
seconds, and meters_per_second.  The compiler would then be provided 
with a set of rules specifying the legal relationships between these types. For 
example, assignments can only be made to a variable of type meters_per_
second from another variable of the same type, or by dividing a variable of type 
meters by a variable of type seconds.1     

   2.2.4  Classes and Objects 

 This section discusses two different attributes of a variable: its type and its 
value. In  Section   2.2.2    you saw that a variable is a container for data, whose 
 value  is determined by what is assigned to the variable. In  Section   2.2.3    you 
saw that by making that assignment to a variable, MATLAB also infers the 
 type  of data stored in that variable. You will see that while MATLAB is an 
untyped language, the programs you write will behave differently if 
applied to data of different types. For example, the type double specifies the 
form and expected behavior of a number. Adding 1 to a variable of class 
double containing 4 will, as expected, produce the result 5. Similarly, the 
type char is intended to hold a single character. Adding 1 to a char variable 
containing the value 'd' will produce the numerical equivalent of the 
character 'e'. MATLAB refers to the type of data in a variable as its  class , 
and the value contained in the variable at any time as an  object , an instance 
of that class. So in the operation: 

this_number = 42.0 

 the variable this_number would be defined (if it didn’t already exist); its 
class would be set to double, the inherent type of a floating point number; 
and its value to 42.0. So the word double corresponds to a type definition 
or class, while the variable this_number is a variable of that type, which is 
an instance of that class or, in programming terms, an object.   

   2.3  MATLAB User Interface 

 MATLAB uses several display windows (see  Figure   2.1   ). The default view 
includes a large Command window on the left, and stacked on the right are 
the Files, Workspace, and Command History windows. The tabs near the 

 1    Before rushing to judge on the pickiness of this approach, note that this would have 
avoided the loss in 1999 of the Mars Climate Orbiter, which crashed into Mars because 
one group of programmers used English units while another used metric. 
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middle of the windows on the right indicate which 
views are layered in that particular window. Selecting 
a tab will bring that view to the top. Other windows, 
such as an Editor window or a Figure window, will 
automatically open when needed.     

   2.3.1  Command Window 

 You can use MATLAB in two modes: Command 
mode, which is useful if you need instant responses 
to specific MATLAB commands, and Edit mode, in 
which practical solutions are developed. When 
working in Command mode, we use the Command 
window, which offers an environment similar to a 
scientific calculator. This window lets you save any 
values you calculate, but you cannot permanently 
save the commands used to generate those values. 
You will see in the next section how to use the 
Editor window to create and execute a text file of 
commands as the first step to unleashing the full 
programming capability of the language. The 
Command window is useful for performing quick 
experiments to discover the effects of different 
commands in MATLAB before embedding them 
in a larger program. You can perform calculations 
in the Command window much like doing 
calculations on a scientific calculator. Most of the 

Command History

Workspace Tab

Current Folder

Command Window

 Figure 2.1   The MATLAB default window configuration       

 Hint 2.1 

 If you are using MATLAB, you can 
customize how your initial window will 
display. If you make a mistake and close 
an essential window, you can always 
restore the default configuration by 
choosing Desktop > Desktop Layout > 
Default. 

 Hint 2.2 

 When you make a mistake, you cannot 
easily correct it as you would in a word 
processor. The Interactions window 
really is functioning like a calculator, 
performing one instruction at a time 
exactly as you specify them. When you 
enter the command, it is immediately 
executed, regardless of whether that is 
what you intended.  MATLAB  offers 
several ways to correct erroneous 
commands. One way is to use the arrow 
keys on your keyboard. The up and 
down arrows let you move through the 
list of commands you have executed. 
Once you find the appropriate 
command, you can edit it and then press 
e to execute your new version. 



44 Chapter 2  Getting Started

syntax is even the same.  Exercise   2.4    shows how you might use the 
Command window to test two simple calculations.     

 Notice that in both of the examples in  Exercise   2.4   , MATLAB echoes the 
result as if it were saved in a variable called ans. This is the default variable 
used to save the result of any calculation you perform in the Command 
window that is not specifically assigned to another variable. Notice also the 
use of one of MATLAB’s many built-in functions, cos(...), that compute 
the cosine of an angle in radians, and of the built-in constant pi.  

   2.3.2  Command History 

 The Command History window records the commands you issued in the 
Command window in chronological sequence. When you exit MATLAB or 
when you issue the clc (Clear Commands) instruction, the commands 

listed in the Command window are cleared. 
However, the Command History window 
retains a list of all the commands you 
issued. You can clear the Command 
History using the Edit menu if you need to 
by selecting Edit and then Clear Command 
History. If you entered the sample 
commands in  Exercise   2.4   , notice that they 

are repeated in the Command History window. This window lets you 
review previous MATLAB sessions, and you can transfer the commands to 
the Command window by copying and pasting.  Exercise   2.5    demonstrates 
the use of the Command History window. You will find the Command 
History window useful as you perform more and more complicated 
calculations in the Command window.      

 Hint 2.3 

 As a security precaution, if you use MATLAB on a 
public computer, you can set its defaults to clear the 
Command History window when you exit MATLAB 
or when you log off the computer. 

 Exercise 2.4  Using the Interactions window 

 To compute the value of 5 2 , type this command: 

>> 5^2 

 The following output will be displayed: 

ans = 
     25 

 To find the cosine of p, type: 

>> cos(pi) 

 which results in the following output: 

ans = 
-1
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   2.3.3  Workspace Window 

 The Workspace window keeps track of the variables you have defined as 
you execute commands in the Command window. As you have seen in the 
exercises so far, because you have not created other variables yet, the 
Workspace window should just show one variable, ans. The columns in the 
window display the name of the variable, its current value, and an entry in 
the class column (see  Figure   2.2   ). In this case, the variable ans has a value of 
25 and is a double array. Actually, even a single number you would usually 
consider a scalar is a 1 3 1 array to MATLAB.  Exercise   2.6    shows how to 
obtain more information about a particular variable.  Figure   2.2    shows the 
normal Variable window display for the variable ans.  Figure   2.3    shows that 
the variable ans is a 1 3 1 array, uses 8 bytes of memory, and is an object of 
class double.   

 In  Exercise   2.7   , variable A has been added to the Workspace window, 
which lists variables in alphabetical order. Variables beginning with capital 

 Exercise 2.6  Showing more details in the Workspace window 

 Set the Variables window to show more about the variable  ans  by right-clicking 
on the bar with the column labels. On the drop-down menu, check the boxes 
next to Size and Bytes, so that these will display in addition to Name,Value, and 
Class. Your Variables window should now look like  Figure   2.3   .  

 Exercise 2.5  Using the Command History window 

 In the Interactions window, type: 

>> clc 

 This should clear the Interactions window but leave the data in the Command 
History window intact. You can transfer any command from the Command 
History window to the Interactions window by double-clicking it (which also 
executes the command) or by clicking and dragging the line of code into the 
Interactions window. Try double-clicking: 

cos(pi)

 This should result in the following display in the Interactions window: 

ans = 
-1

 Now click and drag  5^2  from the Command History window into the 
Interactions window. The command won’t execute until you press the e 
key, and then you’ll get the following result: 

ans = 
25
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letters are listed first, followed by variables starting with lowercase letters, 
as shown in  Figure   2.4   .   

  Exercise   2.8    added the variable B to the Workspace window, and in 
 Figure   2.5    you can see that its size is a 1 3 4 array.   

 You define two-dimensional arrays in a similar fashion. Semicolons 
are used to separate rows, as illustrated in  Exercise   2.9   . As you can see in 

 Figure 2.3   Additional information in the Workspace window       

 Figure 2.2   The Workspace window       

 Exercise 2.8  Creating a vector 

 Entering matrices is not discussed in detail in this section. However, you can 
enter a simple one-dimensional matrix by typing: 

>> B = [1, 2, 3, 4] 

 This returns: 

B = 
1 2 3 4 

 The commas are optional. You would see the same result from: 

>> B = [1 2 3 4] 

 Exercise 2.7  Defining other variables 

 You can define additional variables in the Interactions window, and they will 
be listed in the Variables window. For example, type: 

>> A = 5 

 This returns: 

A = 
         5 



2.3  MATLAB User Interface      47

 Figure   2.6   , variable c appears in the Workspace window as a 3 3 4 array. 
Vectors and arrays are discussed fully in  Chapter   3   .   

 You can recall the values for any 
variable by just typing in the variable 
name, as shown in  Exercise   2.10   .  

 If you prefer to have a less cluttered 
desktop, you can close any of the 
windows (except the Command 
window) by clicking the x in the 
upper-right corner of each window. 

 Figure 2.4   Additional variables       

 Figure 2.5   Vector added in the Workspace window       

Note:

MATLAB presents numerical results in the 
following default format: if the value is an integer, 
there are no decimal places presented; but if there 
is a fractional part, four decimal places appear. 
You can change this by using the format 
command. See MATLAB help for details.

 Exercise 2.9  Creating a 3 3 4 matrix 

>> C = [ 1 2 3 4; 10 20 30 40; 5 10 15 20] 

 returns: 

C = 
     1   2   3   4 

10  20  30  40 
5  10  15  20 

 Now, enter 

>> C = [1 2 3 4; 10 20 30 40]; 

 You will see the value of C change in the Variables window, but not echoed in 
the Interactions window. The semicolon on the end of the line suppresses 
presentation of the result. 
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You can also personalize which windows you prefer to keep open by 
selecting View from the menu bar and checking the appropriate windows. 
If you suppress the Workspace window, you can still find out what variables 
have been defined by using the commands who or whos. The command who 
lists the variable names, and whos lists the variable names together with 
their size and class.  Exercise   2.11    illustrates this capability.      

   2.3.4  Current Directory Window 

 When MATLAB accesses files from and saves information to your hard 
drive, it uses the current directory. The default for the current directory 
depends on your version of the software and how it was installed. The 
current directory is listed at the top of the main window (see  Figure   2.7   ). 
This can be changed by selecting another directory from the drop-down list 
to the right of the current directory name, or by browsing through your 

 Figure 2.6   Array added in the Workspace window       

 Exercise 2.11  Using the whos command 

>> whos 

 You should see the following display in the Command window: 

Name  Size  Bytes  Class 
A      1x1       8     double array 
B      1x4      32     double array 
C      3x4      96     double array 
ans    1x1       8     double array 
Grand total is 18 elements using 144 bytes 

 Exercise 2.10  Recalling values for variables  

>> A

returns: 

ans = 
5
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computer files using the browse button located to the right of the drop-
down list (circled in  Figure   2.7   ).   

   2.3.5  Variable Editor 

 Double-clicking on any variable listed in the Workspace window 
automatically launches a Variable Editor window. Values stored in the 
variable are displayed in a spreadsheet-like format. You can change values 
in the Variable editor, or you can add new values.   

   2.3.6  Figure Window 

 A Figure window is created automatically when a MATLAB command 
requests a graph.  Exercise   2.12    guides you through creating a graph. The 
MATLAB window opens automatically (see  Figure   2.8   ). Any additional 
graphs you create will overwrite the plot in the current Figure window 

unless you specifically command 
MATLAB to open a new Figure window 
with the figure command. If you are using 
MATLAB version R2008a or newer, the 
first time you open a Figure window, a 
pop-up window appears with links to 
information about brushing and linking. 
As with the use of the Variable Editor, this 

Browse Button

 Figure 2.7   The current directory       

 Hint 2.4 

 It is generally considered to be poor practice to edit 
the values of data by hand. A more rigorous 
approach would be to change the script that 
generated the data, thereby making the data changes 
repeatable. 

 Exercise 2.12  Creating a graph 

>> x = [ 1 2 3 4 5]; 

 A new variable,  x , appears in the Workspace window. 

>> y = (x-3).^2; 

 To create a graph, use the plot command: 

>> plot(x,y) 
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is not the best way to modify data. See  Hint   2.4   . You can permanently 
hide this window by clicking the X at its right side.  

 MATLAB makes it easy to modify graphs by adding titles,  x  and  y  labels, 
multiple lines, and more with MATLAB built-in commands. Details of these 
commands will be presented in  Chapter   11   .  

   2.3.7  Editor Window 

 MATLAB provides a text editor, enabling you to create or modify text files 
that run in the Editor window. The Editor window is opened by choosing 
File > New > M-File. This window lets you type and save a series of 
commands without executing them. You can also open the Editor window 
by double-clicking a file name in the Current Directory window or by 
typing: 

>> edit <file_name> 

 in the Command window, where <file_name> is the name of the file you 
want to open. You can open multiple files at the same time, using the 

 Figure 2.8   A Graphics window       
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tabbed overlays to identify the files. An asterisk appears on the tab with 
the file name to indicate that the file has been modified since it was saved. 
Options under the Window menu let you organize the multiple files in 
various ways that make more than one file visible at once. When closing 
the Editor window, MATLAB displays a dialog asking if you need to save 
any changed files.   

   2.4  Scripts 

 This section describes the basic mechanism for creating, saving, and 
executing scripts as m-files. Building script files lets you save and 
reuse program statements without retyping them in the Command 
window. 

   2.4.1  Text Files 

 MATLAB uses text files as a permanent means of saving scripts (sets of 
instructions) rather than just entering commands in the Command window. 
As you will see in  Chapter   8   , text files are streams of characters stored 
sequentially with “markers” that indicate the end of each line of text. For 
now, think of a script much like writing an e-mail message—a number of 
lines of text written in a “smart” editor. The MATLAB Editor uses various 
techniques to help you format commands in these files.  

   2.4.2  Creating Scripts 

 A MATLAB script consists of a combination of executable instructions 
that MATLAB interprets and comment statements that help readers 
understand the script. You create  comments  by putting a percent sign (%) 
in the text file. MATLAB will ignore all text from that mark to the end of 
the current line. The MATLAB Editor colors all such comments green to 
distinguish them from the executable instructions. Most applications that 
use files specify a particular file name extension (the characters after the 
period in the file name) to identify how the text files will be used. MATLAB 
uses the extension .m, and the script files are often referred to as  m-files . 
You create a new script file either by choosing File > New > M-File or by 
clicking the new file icon on the far left of the tool bar. The MATLAB 

Editor will then open a blank file in which 
you can enter the commands and 
comments of your script. 

  Import Note : Because MATLAB treats 
the names of .m files much like variable 
names, the names of your files must follow 
the same rules as those for variables in 
 Section   2.2.2    above. 

 
 Hint 2.5 

 We began this first script with two commands: 
 clear  and  clc . Every script should have these two 
commands (and later, also  close all ) before its 
first executable instruction. However, to avoid 
repetition, we will not include these commands in 
subsequent listings in this test. 
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 In Listing  2 . 1 : 

   Line 1: Instructs MATLAB to delete all variables in your working 
directory.  
  Line 2: Instructs MATLAB to clear the Command window. Any text 
that now appears in the Command window will be the result of 
running this script, not the result of previous activities.  
  Lines 3–4: Assign values to A and B. The semicolons prevent 
MATLAB from displaying the result in the Command window; the 
percent sign begins the legible comment. Lines may contain nothing 
but a comment.  
  Line 5: Intermediate results with suitable names sometimes 
improve the legibility of the algorithm.  
  Line 6: Invokes the built-in library function sqrt(...) to compute the 
final result.    

   2.4.3  The Current Directory 

 After you have entered a script, you must name it and save it in a directory. 
MATLAB will need to find that directory—its working directory—in order 
to run the script. By default, MATLAB expects scripts to be stored in the 

 Exercise 2.13  Creating a script 

 In this exercise, you will create a script derived from the Pythagorean theorem 
to compute the hypotenuse of a right triangle: 

H2 = A 2 + B 2

 where A and B are the sides adjacent to the right angle, and H is the hypotenuse 
opposite. Open a new script file and type the commands shown in Listing  2 . 1  
(don’t type the accompanying line numbers—they will be automatically 
displayed). 

         Listing 2.1 Script to solve for the hypotenuse 

1. clear 
2. clc 
3. A = 3; % the first side of a triangle
4. B = 4; % the second side of a triangle
5. hypSq = A^2 + B^2; % the square of the

% hypotenuse
6. H = sqrt(hypSq) % the answer

 Try creating the script described in  Exercise   2.13    and shown in Listing  2 . 1 .      
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working directory, displayed in the tool bar at the top of the MATLAB main 
window. The specific path will vary with your version of MATLAB. 
However, the Current Directory window circled in  Figure   2.7    always shows 
the default location when MATLAB starts. If you decide to store your 
scripts elsewhere, you will need to redirect MATLAB to that directory by 
typing it into the Current Directory window or using the browse button to 
the right of the display. 

 Once script files are saved in your working directory, you can edit them 
again by selecting and opening them with the MATLAB Editor. To open 
them, either use the File > Open menu command or double-click the file 
name in the Current Directory window. Before you close MATLAB, you 
should save the file created in  Exercise   2.13   .  

   2.4.4  Running Scripts 

 After you have built and saved a script, you can run it using any of the 
following methods: 

   ■   Type the name of the script in the Command window.  
  ■   Choose the Debug > Run menu item in the MATLAB Editor 

window.  
  ■   Press the F5 key when the script is visible in the editor. Doing this 

saves the script automatically before executing it.   

 The latest versions of MATLAB will echo the file name in the Command 
window when you invoke the script by the latter two methods. After you 
execute the script, the trace output is written to the Command window as if 
you had typed the script instructions there one at a time. For practice, run 
the script created in  Exercise   2.13   .  

   2.4.5  Punctuating Scripts 

 Many programming languages put a semicolon (;) at the end of a line to 
indicate the end of a command. Since the MATLAB language uses the end 
of a line to indicate the end of a command, it does not require an end-of-
command character. If a long command needs to be extended to the next 
line for convenience in viewing the program, three periods, frequently 
referred to as  ellipses , must be placed at the end of the line to continue 
the script. 

 The MATLAB language uses the semicolon for a different purpose. By 
default, all assignment commands display their results in the Command 
window in text form. For complex programs, the volume of this output can 
become too large. Whenever you really don’t want to see all that output, 
putting a semicolon character at the end of a line will prevent the results of 
that assignment from displaying in the Command window.  
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   2.4.6  Debugging Scripts 

 MATLAB provides extensive debugging 
capabilities based on the use of  break 
points , which are places in your program 
where you want to stop and verify that the 
code is doing what you expect. You insert 
break points as you edit a code segment by 
clicking the small dash between the line 
number and the start of the text. If the 
program is ready to run, a red dot appears 
in place of the dash where you clicked. If 
the file has been changed and hasn’t been 
saved, the dot will be gray, in which case 
you should save the file. You can set any 
number of break points throughout your 
code. 

 After you start running a program, when 
MATLAB reaches a break point, execution 
stops, an arrow overwrites the break point 
symbol, and you can examine the contents 
of the variables either in the Workspace 
window or by passing the mouse slowly 
over the variable in the Editor window. A 
Debugging tool bar is available with icons 
that let you: 

   ■   Continue executing the logic from this point (other break points 
may come into effect)  

  ■   Step over the logic in this line to the next line in this code block  
  ■   Step into any modules referenced by this line of code  
  ■   Step out of this current code block   

 Use the script from  Exercise   2.13    to practice inserting break points.            

    2.5  Engineering Example—Spacecraft Launch 

 In 1996, the Ansari X Prize was offered for the first time for a private venture: a 
reusable spacecraft. The requirements were for the same vehicle to carry three 
people into outer space twice in a two-week time period. The competition was 
won in 2004 by Tier 1, a company led by Burt Rutan. Their concept was to have 
a mother ship take off and land on a conventional runway carrying Space Ship 
One (see  Figure   2.9   ). The spacecraft would be launched at 25,000 feet altitude 
and would reach outer space (an altitude of 100 km), then glide back and land 
on the same runway. They repeated this within a week, and they won the prize.  

 Style Points 2.2 

   1.   When writing scripts, you should invest some 
time to add comments. Comments make the scripts 
easier to understand as you are developing them, 
and make it more likely that you will be able to 
reuse the script later. Note: The listings included in 
this text will not have an appropriate level of 
commenting a. to save space and b. because they are 
explained in detail in the text.  

  2.   Scripts should be written incrementally—build a 
little, test a little—rather than writing a whole script 
and then trying to find out where in that pile of code 
you made the mistake(s).   

 Common Pitfalls 2.1 

 You will quickly become accustomed to 
understanding the general flow of your script by 
observing the assignment statements reported in 
the Interactions window. However, especially if you 
have programmed in a language that requires 
semicolons at the end of a command, you may 
inadvertently put semicolons in your script. These 
will suppress the presentation of results and could 
mislead you into believing that a specific set of 
instructions has not been executed. 
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  Problem: 

 Assuming that the spacecraft uses all its fuel to achieve a vertical velocity  u  
at 25,000 feet, what is the value of  u  for the spacecraft to reach outer space?  

  Solution: 

 There are two parts to this problem: 
converting units to the metric system, 
and choosing and solving an equation 
for motion under constant 
acceleration (the rocket motor is no 
longer burning). 

   1.    Convert the launch altitude from feet to meters.     I like to remember as 
few numbers as possible. I do remember that 1 inch 5 2.54 cm, so we 
will use this in a MATLAB script to find the conversion from feet to 
meters. The appropriate chain of calculations is this: 

  
meters � feet �

meters
cm

�
cm
inch

�
inch
feet

     
 Listing  2 . 2  shows the beginning of the script to solve this problem.  

 In Listing  2 . 2 : 

   Lines 1–3: Define general knowledge with meaningful variable names 
to enable subsequent use of these values without ambiguity.  

 Figure 2.9   Space Ship One       

 Style Points 2.3 

 Notice that when presented in this manner, the “inner 
values” like cm and inch cancel to ensure that the conversions 
are consistent. 
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  Line 4: The conversion factor we need. Notice that because the 
variable names are consistent with the logic, they help to avoid 
errors.  
  Lines 5–6: Develop the initial conditions with suitable units.    

  2.   Find and solve the equation.     Given the following: 

    ■    Initial and final altitudes from which you can compute the distance 
traveled:  s   

   ■   The motion is under constant acceleration, the force of gravity:  g   
   ■   To just reach outer space, the final velocity,  v , is 0  
   ■   The initial velocity,  u , is needed     

 So after some diligent head scratching, we remember the equation of motion 
under constant acceleration connecting  u, v, s,  and  a  is: 

   v 2   =  u  2  + 2 as   

 However, this is not yet in a useful form. For computers to be able to solve 
an equation, you need the unknown quantity on the left of the equation and 
everything known on the right. Since  u  is the unknown, we move this to the 
left side of the assignment, and organize the known quantities to the right. 
These are the final velocity,  v  (i.e., 0) the given distance,  s , and the 
acceleration,  a . Since the positive direction for  u  and  s  is upward, but 
gravity is downward, we must use  a  =  −g , and the equation can be 
transformed to:  

u = 22gs

 With this information, you can now solve this problem. Listing  2 . 3  shows the 
rest of Listing  2 . 2  to complete this calculation.  

 Listing  2 . 3      Script to complete the computation of the spacecraft’s velocity 

1. g = 9.81; % m/sec^2
2. top = 100; % km - given 
3. s = (top*1000) - startM; % m 
4. initialV = (2*g*s)^0.5 % the final answer 

 Listing  2 . 2      Script to compute the spacecraft’s velocity (Part  1 ) 

1. cmPerInch = 2.54;    % general knowledge 
2. inchesPerFt = 12;    % general knowledge 
3. metersPerCm = 1/100; % general knowledge 
4. MetersPerFt = metersPerCm * cmPerInch * inchesPerFt; 
5. startFt = 25000; % ft - given 
6. startM = startFt * MetersPerFt; 
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 In Listing  2 . 3 : 

   Line 1: The standard value for the acceleration due to gravity.  
  Line 2: The altitude of outer space is given in the problem statement.  
  Line 3: Computes the distance traveled, including the unit conversion 
from kilometers to meters. Note the optional, and in this case 
unnecessary, use of parentheses to define the order of operations.  
  Line 4: The final computation. The operator ^ is the MATLAB 
expression for exponentiation; x^y in MATLAB results in computing x y . 
Notice that the parentheses are required here to force the multiplication 
to happen before the exponentiation.   

 Although most modern computing environments, including MATLAB, have 
tools that actually solve symbolic equations, these tools are not appropriate 
for an introduction to programming and will not be discussed in this book.       

     Chapter Summary 

  This chapter presented some fundamental notions of computing and introduced 
you to the nature of  MATLAB , its user interface, and the fundamental tools for 
making programs work.  

   ■   Abstraction lets you refer to collections of data or instructions as a 
whole  

  ■   An algorithm is a set of instructions at an appropriate level of 
abstraction for solving a specific problem  

  ■   A data class describes the type of data and the nature of operations 
that can be performed on that data  

  ■   An object is a specific instance of a class with specific values that 
can be assigned to a variable  

  ■   The Command window lets you experiment with ideas by entering 
commands line-by-line and seeing immediate results  

  ■   The Command History window lets you review and recall previous 
commands  

  ■   The Workspace window lists the names, values, and class of your 
local variables.  

  ■   The Current Directory window lists the current files in the directory 
to which MATLAB is currently pointed  

  ■   A Document window opens when a variable in the Workspace 
window is selected, to let you view and edit data items  

  ■   A Figure window presents data and/or images when invoked by 
programs  

  ■   The Editor window lets you view and modify text files  
  ■   Scripts provide the basic mechanism for implementing solutions to 

problems    
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  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

'abc'  Single quotes enclose a literal character string  2.2.3 

 %  A percent sign indicates a comment in an M-file  2.4.2 

 ;  A semicolon suppresses output from assignment 
statements 

 2.4.5 

 ...   Ellipses continue a MATLAB command to the next line  2.4.5 

 =  The assignment operator assigns a value to a memory 
location; this is not the same as an equality test 

 2.2.2 

ans  The default variable name for results of MATLAB 
calculations 

 2.3.1 

clc  Clears the Command window  2.3.2 

clear  Clears the Workspace window  2.4.2 

sqrt(x)  Calculates the square root of x  2.4.2 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    A bag of groceries is an example of abstraction.   

   2.    An algorithm is a series of logical steps that solves one specific problem.   

   3.    It is impossible to write a complete, practical program in any 
paradigm other than procedural.   

   4.    To be useful to an algorithm, the result of every computation must 
be assigned to a variable.   

   5.    In programming, if you know the values of z and x in the expression 
z = x + y, you can derive the value of y.   

   6.    Untyped languages are free to ignore the nature of the data in 
variables.   

   7.    Anything assigned to be the value of a variable is an object.   

   8.    Class is a concept restricted to object-oriented programming.   

   9.    You can permanently save the commands entered in the Command 
window.   
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   10.    Double-clicking an entry in the Command History window lets you 
rerun that command.   

   11.    You can manually change the values of variables displayed in the 
Workspace window.   

   12.    You double-click a file name in the Current Directory window to 
run that script.   

   13.    A Document window lets you view and edit data items.   

   14.    MATLAB permits multiple Figure windows to be open simultaneously.   

   15.    An asterisk on the File Name tab in the Editor window indicates 
that this is a script that can be executed.   

   16.    MATLAB echoes comments entered in a script in the Command 
window.   

   17.    When the name of script is typed in the Command window, it will 
be saved if necessary before it is executed.    

  Fill in the Blanks 

   1.    Popular programming languages like FORTRAN, C, and MATLAB 
follow the ______________ programming paradigm.   

   2.    ______________ languages insist that programmers declare both the 
name and type of a variable before a value can be assigned to it so 
that the variable will not be used in an unintended way.   

   3.    The ______________ in MATLAB retains a list of all the commands 
you issued even after a clc command is entered.   

   4.    Unlike other programming languages which indicate the end 
of a command with a semicolon, MATLAB uses a semicolon to 
______________.   

   5.    MATLAB works in ______________ mode and in ______________ mode.   

   6.    The result of any calculation performed in the Command window is 
saved in the default variable called ______________.   

   7.    MATLAB comments start with a ______________ sign and are 
______________ in colour in order to differentiate them from 
executable commands.   

   8.    The keyboard shortcut keys for adding and removing a MATLAB 
comment are ______________ and ______________ , respectively.   

   9.    The columns in the Workspace window show the __________of the 
variable, its ___________, and its __________.   

   10.    You _______ the name of a file in the Current Directory window to 
edit that file.   
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   11.    A Document window opens automatically when you _________ a(n) 
________ in the Workspace window.   

   12.    Graphics windows are created when a(n) ___________requests a graph.   

   13.    You create comments by putting a(n) ____________in the text file.   

   14.    MATLAB will ______________all text from the comment mark to 
_____________.    

  Programming Projects 

   1.    Enter two numbers and store them in variables a and b. Write a 
script to interchange the values without using a third variable.   

   2.    In the bottom of the ninth inning, the bases are loaded and the 
Braves are down by three runs. Chipper Jones steps to the plate. 
Twice he swings and misses. The crowd heads for the exits. The 
next pitch is a fast ball down the middle. He swings and makes 
perfect contact with the ball, sending it up at a 45-degree angle 
toward the fence 400 ft away. 
   a.   Write a script to determine how fast he must hit the ball to land 

at the base of the fence, neglecting the air resistance.  
  b.   Perform a brief experiment to determine whether there was 

a better angle at which to hit the ball so that it could clear a 
12 ft fence.     

   3.    If an ice cream cone is 6 inches tall, and its rim has a diameter of 2 
inches, write a script to determine the weight of the ice cream that 
can fit in the cone, assuming that the ice cream above the cone is a 
perfect hemisphere. You may neglect the thickness of the cone 
material. Assume that a gallon of ice cream weighs 8 lb and 
occupies 7.5 cubic feet.   

   4.    Write a script that validates the relationship between sin u, cos u, 
and tan u by evaluating these functions at suitably chosen values 
of u.   

   5.    I like my shower to remain hot for hours at 100°F, but am too cheap 
to buy one of those on-demand hot water systems. I don’t care how 
slowly the water runs. The water supply is at 50°F, and the water 
heater is rated at 50,000 BTU/hour. Write a script to compute the 
maximum flow rate of my shower (in cubic feet per minute) that 
keeps the water temperature above 100°F.   

   6.    It takes an average of 45 horsepower to run an electric car at an 
average speed of 35 mph. Write a script to compute the electrical 
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storage capacity of the battery system that would make this car 
practical for a 25-mile commute, recharging the batteries only at 
home at night when the electricity is cheap. How many D cell 
alkaline batteries would be needed for this?   

   7.    You want to buy a $300,000 home with 20% down payment. The 
current compound interest rate is 4.5%. 
   a.   Write a script to determine: 

   •   the monthly payments for a 30-year loan,  
  •   the equivalent simple interest rate,  
  •   the total interest paid over the life of the loan.    

  b.   Now, repeat the computation for a 15-year loan at 5%. Is this a 
better deal?     

   8.    The distance from my house to my office is 1.5 miles. Every 
morning, I have to decide whether to take the bus that averages 
(once it arrives) 25 mph, or to walk. I can walk at 4 mph. Write 
a script to determine how frequently the buses should run to 
give them a 50% chance of getting me to the office faster than 
walking.   

   9.    A glass has the shape of a truncated cone of height 5 inches. Its top 
diameter is 3.5 inches, and its base diameter is 2 inches. If water is 
poured into the glass at 2 gallons per minute, write a script to 
calculate how long it takes to fill the glass to the brim. One gallon is 
7.5 cubic feet.   

   10.    You can calculate the aerodynamic drag on an object by the 
formula: 

  Drag 5 1/2 r V 2  C d  S  

   The air density, r, is 1.3 kg/m3 and the value of the drag area, C d S, 
is a measure of the resistance of the object as it moves through the 
air. An object falling through air reaches terminal velocity when the 
aerodynamic drag equals the object’s weight. 

   A sky diver weighing 80 kg has a C d  S value of 0.7 when horizontal 
with arms and legs extended, and 0.15 when head down with 
arms and legs in line. One diver jumps from a plane at an altitude 
of 5,000 m in the horizontal position. After 20 sec, another diver 
jumps. Write a script to determine how much time the second 
diver must spend head down in order to catch up to the first 
diver. Also compute the height above the ground where they first 
meet. For simplicity, you may assume that the sky divers 
immediately reach their terminal velocity when jumping.   
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   11.    You are given a circle with radius 5 centered at x = 1, y = 2.
You want to calculate the intersection of some lines with that 
circle. Write a script to find the x and y coordinates of both 
points of intersection. You should test this code at least with 
these lines: 

y = 2 x - 1 
y = -2 x - 10 
y = x + 5.9054 



  Chapter Objectives 

 This chapter discusses the basic calculations involving rectangular 
collections of numbers in the form of arrays. For each of these 
collections, you will learn how to: 

      ■   Create them  

  ■   Manipulate them  

  ■   Access their elements  

  ■   Perform mathematical and logical operations on them    

 This study of arrays will introduce the first of many language charac-
teristics that sets MATLAB apart from other languages: its ability to 
perform arithmetic and logical operations on collections of numbers 
as a whole. You need to understand how to create these collections, 
access the data in them, and manipulate the values in the collections 
with mathematical and logical operators. First, however, we need to 
understand the idea of functions built into the language.   

 Vectors and Arrays    
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      3.1  Concept: Using Built-in Functions 

 We are familiar with the use of a trigonometric function like cos(u) that 
consumes an angle in radians and produces the cosine of that angle. In 
general, a function is a named collection of instructions that operates on the 
data provided to produce a result according to the specifications of that 
function. In  Chapter   5   , we will see how to write our own functions. In this 
chapter, we will see the use of some of the functions built into MATLAB. At 
the end of each chapter that uses built-in functions, you will find a summary 
table listing the function specifications. For help on a specific function, you 
can either select the Help menu and look up the function or type the 
following in the Interactions window: 

>> help <function name> 

 where  <function name>  is the name of a MATLAB function. This will 
produce a detailed discussion of the capabilities of that function.  

   3.2  Concept: Data Collections 

  Chapter   2    showed how to perform mathematical operations on single data 
items. This section considers the concept of grouping data items in general, 
and then specifically considers two very common ways to group data: in 
arrays and in vectors, which are a powerful subset of arrays. 

   3.2.1  Data Abstraction 

 It is frequently convenient to refer to groups of data collectively, for example, 
“all the temperature readings for May” or “all the purchases from Wal-
Mart.” This allows us not only to move these items around as a group, but 
also to consider mathematical or logical operations on these groups. For 
example, we could discuss the average, maximum, or minimum temperatures 
for a month, or that the cost of the Wal-Mart purchases had gone up 3%.  

   3.2.2  Homogeneous Collection 

 In  Chapter   7   , we will encounter more general collection implementations 
that allow items in a collection to be of different data types. The collections 
discussed in this chapter, however, will be constrained to accept only items 
of the same data type. Collections with this constraint are called 
homogeneous collections.   

   3.3  Vectors 

 A vector is an array with only one row of elements. It is the simplest means 
of grouping a collection of like data items. Initially we will consider vectors 
of numbers or logical values. Some languages refer to vectors as  linear arrays  
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or  linear matrices . As these names suggest, a vector is a one-dimensional 
grouping of data, as shown in  Figure   3.1   . Individual items in a vector are 
usually referred to as its elements. Vector elements have two separate and 
distinct attributes that make them unique in a specific vector: their  numerical 
value  and their  position  in that vector. For example, the individual number 
66 is in the third position in the vector in  Figure   3.1   . Its value is 66 and its 
index is 3. There may be other items in the vector with the value of 66, but 
no other item will be located in this vector at position 3. Experienced 
programmers should note that due to its FORTRAN roots, indices in the 
MATLAB language start from 1 and not 0.  

   3.3.1  Creating a Vector 

 There are seven ways to create vectors that are directly analogous to the 
techniques for creating individual data items and fall into two broad 
categories: 

   ■   Creating vectors from constant values  
  ■   Producing new vectors with special-purpose functions   

 The following shows how you can create vectors from constant values: 

   ■   Entering the values directly, for example,  A = [2, 5, 7, 1, 3]  (the 
commas are optional and are frequently omitted)  

  ■   Entering the values as a range of numbers using the colon operator, 
for example,  B = 1:3:20 , where the first number is the starting 
value, the second number is the increment, and the third number is 
the ending value (you may omit the increment if the desired 
increment is 1)   

 The following introduces the most common MATLAB functions that create 
vectors from scratch: 

   ■   The  linspace(...)  function creates a fixed number of values between 
two limits, for example,  C = linspace (0, 20, 11)  , where the first 
parameter is the lower limit, the second parameter is the upper limit, 
and the third parameter is the number of values in the vector  

  ■   The functions  zeros(1,n), ones(1,n), rand(1,n)  (uniformly 
distributed random numbers), and randn(1,n) (random numbers 
with normal distribution) create vectors filled with  0, 1 , or random 
values between  0  and  1 .   

 Try working with vectors in  Exercise   3.1   .  

45 57 66 48 39

1 2 3 4 5

Value:

Index:

71 68

n-1 n

 Figure 3.1   A vector       
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 The Workspace window gives you three pieces of information about each 
of the variables you created: the name, the value, and the “class,” which for 
now you can equate to “data type.” Notice that if the size of the vector is 
small enough, the value field shows its actual contents; otherwise, you see a 
description of its attributes, like  <1 X 11 double> .  Exercise   3.1    deliberately 
created the vector  D  with only one element, and perhaps the result surprised 
you.  D  was presented in both the Interactions window and the Workspace 
window as if it were a scalar quantity. This is generally true in the MATLAB 
language—all scalar quantities are considered vectors of unit length.  

   3.3.2  Size of a Vector 

 A vector also has a specific attribute: its length ( n  in  Figure   3.1   ). In most 
implementations, this length is fixed when the vector is created. However, 
as you will see shortly, the MATLAB language provides the ability to 
increase or decrease the size of a vector by inserting or selecting certain 
elements. MATLAB provides two functions to determine the size of arrays 
in general, and of vectors in particular. The function  size(V)  when applied 
to the vector V returns another vector containing two quantities: the number 
of rows in the vector (always 1) and the number of columns (the length of 
the vector). The function  length(V)  returns the maximum value in the size 
of an array—for a vector, this is a number indicating its length.  

   3.3.3  Indexing a Vector 

 As mentioned earlier, each element in a vector has two attributes: its value 
and its position in the vector. You can access the elements in a vector in 
either of two ways: using a numerical vector or a logical vector. We refer to 
the process of accessing array elements by their position as “indexing.” 

 Exercise 3.1  Working with vectors 

>> A = [2 5 7 1 3]
A = 
     2 5 7 1 3 
>> B = 1:3:20
B = 
     1 4 7 10 13 16 19 
>> C = linspace(0, 20, 11) 
C = 
     0 2 4  6 8 10 12 14 16 18 20 
>> D = [4] 
D = 
     4 
>> E = zeros(1,4) 
E = 
  0  0  0  0 

 Now, open the Variables tab and study the contents.  
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  Numerical Indexing     The elements of a vector can be accessed individually 
or in groups by enclosing the index of zero or more elements in parentheses. 
Continuing  Exercise   3.1   ,  A(3)  would return the third element of the vector 
 A, 7 . If you attempt to read beyond the length of the vector or below 
index 1, an error will result. 

 You can also change the values of a vector element by using an assignment 
statement where the left-hand side indexes that specific element (try 
 Exercise   3.2   ).  

 A feature unique to the MATLAB language is its behavior when attempting 
to write beyond the bounds of a vector. While it is still illegal to write below 
the index 1, MATLAB will automatically extend the vector if you write beyond 
its current end. If there are missing elements between the current vector 
elements and the index at which you attempt to store a new value, MATLAB 
will zero-fill the missing elements. Try  Exercise   3.3    to see how this works.  

 In  Exercise   3.3    we asked to store a value in the eighth element of a vector 
with length 5. Rather than complaining, MATLAB was able to complete the 

instruction by doing two things 
automatically. It extended the length 
to 8 and stored the value 0 in the as yet 
unassigned elements. In these simple 
examples, we used a single number as 
the index. However, in general, we 
can use a vector of index values to 
index another vector. Furthermore, 
the size of the index vector does not 
need to match the size of the vector 

being indexed—it can be either shorter or longer. However, all values in an 
index vector must be positive; and if they are being used to extract values 

 Exercise 3.2  Changing elements of a vector 

 Extending the exercise above: 

>> A(5) = 42 
A = 
     2   5   7   1   42 

 Exercise 3.3  Extending a vector 

 Again extending the exercises above: 

>> A(8) = 3 
A = 
     2  5  7  1  42  0  0  3 

 Notes: 

   1.   The key word  end  in an indexing context represents the 
index of the last element in that vector.  

  2.   The vector generated by the colon operator does not 
necessarily include the ending value. In this case, since there 
are 8 values in the vector, end takes the value 8, but since 
that is not odd, the index vector is  [1 3 5 7]    
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from a vector, the values must not exceed the length of that vector. Again 
continuing from  Exercise   3.3   , if we asked for  B = A(1:2:end) , we would see 
the value of  B  to be  [2 7 42 0]  , the values of  A  in odd index positions. Later, 
we will see how to find the elements in  A  that have odd values.   

  Logical Indexing     So far, the only type of data we have used has been 
numerical values of type  double . The result of a logical operation, however, 
is data of a different type, with values either  true  or  false . Such data are 
called Boolean or logical values. Like numbers, logical values can be 
assembled into arrays by specifying  true  or  false  values. For example, we 
might enter the following line in MATLAB to specify the variable  mask : 

>> mask = [true false false true] 
mask = 
      t  f  f  t 1   

 We can index any vector with a logical vector as follows: 

>> A = [2 4 6 8 10]; 
>> A(mask) 
ans = 
       2 8 

 When indexing with a logical vector, the result will contain the elements of 
the original vector corresponding in position to the true values in the logical 
index vector. The logical index vector can be either shorter or longer than 
the source vector; but if it is longer, all the values beyond the length of the 
source vector must be  false .   

   3.3.4  Shortening a Vector 

 There are times when we need to remove elements from a vector. For 
example, if we had a vector of measurements from an instrument, and it was 
known that the setup for the third reading was incorrect, we would want to 
remove that erroneous reading before processing the data. To accomplish 
this, we make a rather strange use of the empty vector,  [] . The empty vector, 
as its name and symbol suggest, is a vector with no elements in it. When you 
assign the empty vector to an element in another vector—say,  A —that element 
is removed from  A , and  A  is shortened by one element. Try  Exercise   3.4   .  

  1 If you are using MATLAB, logical vectors are presented with values 0 or 1, but they 
are not numerical values and should not be used as such 

 Exercise 3.4  Shortening a vector 

 Using the vector A from  Exercise   3.3   : 

>> A(4) = [] 
A = 
     2   5   7   42   0   0   3 
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 As you can see, we asked for the fourth element to be removed from a 
vector initially with eight elements. The resulting vector has only seven 
elements, and the fourth element, originally with value 1, has been removed.  

   3.3.5  Operating on Vectors 

 The essential core of the MATLAB language is a rich collection of tools for 
manipulating vectors and arrays. This section first shows how these tools 
operate on vectors, and then generalizes to how they apply to arrays (multi-
dimensional vectors) and, later, matrices. Three techniques extend directly 
from operations on scalar values: 

   ■   Arithmetic operations  
  ■   Logical operations  
  ■   Applying library functions   

 Two techniques are unique to arrays in general, and to vectors in 
particular: 

   ■   Concatenation  
  ■   Slicing (generalized indexing)   

  Arithmetic Operations     Arithmetic operations can be performed 
collectively on the individual components of two vectors as long as both 
vectors are the same length, or one of the vectors is a scalar (i.e., a vector 
of length 1). Addition and subtraction have exactly the syntax you would 
expect, as illustrated in  Exercise   3.5   . Multiplication, division, and 
exponentiation, however, have a small syntactic idiosyncrasy related to 
the fact that these are element-by-element operations, not matrix 
operations. We will discuss matrix operations in  Chapter   12   . When the 
MATLAB language was designed, the ordinary symbols ( * , / , and  ̂  ) 
were reserved for matrix operations. However, since element-by-

element multiplicative operations are 
fundamentally different from matrix 
operations, a new set of operators is 
required to specify these operations. The 
symbols  .* ,  ./ , and  .^  (the dots are part 
of the operators, but the commas are not) 
are used respectively for element-by-
element multiplication, division, and 

exponentiation. Note that because matrix and element-by-element 
addition and subtraction are identical, no special operation symbols are 
required for  +  and -.           

 Here, we first see the addition and multiplication of a vector by a 
scalar quantity, and then element-by-element multiplication of  A  and  B . 
The first error is generated because we omitted the ‘.’ on the multiply 

 Common Pitfalls  3 . 1  

 Shortening a vector is very rarely the right solution 
to a problem and can lead to logical difficulties. 
Wherever possible, you should use indexing to copy 
the elements you want to keep rather than using  [ ]  
to erase elements you want to remove. 
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symbol, thereby invoking matrix multiplication, which is improper 
with the vector  A  and  B . The second error occurs because two vectors 
involved in arithmetic operations must have the same size. Notice, 
incidentally, the use of the  %  sign indicating that the rest of the line is a 
comment. 

 You can change the signs of all the values of a vector with the unary 
minus ( - ) operator.  

  Logical Operations     In the earlier discussion about logical indexing, you 
might have wondered why you would ever use that. In this section, we 
will see that logical operations on vectors produce vectors of logical 
results. We can then use these logical result vectors to index vectors in a 
style that makes the logic of complex expressions very clear. As with 
arithmetic operations, logical operations can be performed element-by-
element on two vectors as long as both vectors are the same length, or if 
one of the vectors is a scalar (i.e., a vector of length 1). The result will be 
a vector of logical values with the same length as the longer of the original 
vector(s). 

 Try  Exercise   3.6    to see how vector logical expressions work.  

 First we built the vectors  A  and  B , and then we performed two legal 
logical operations: finding where  A  is not less than 5, and where each 

 Exercise 3.5  Using vector mathematics 

>> A = [2 5 7 1 3]; 
>> A + 5 
ans = 
     7   10   12   6   8 
>> A .* 2 
ans = 
     4   10   14   2   6 
>> B = -1:1:3 
B = 
    -1    0     1   2   3 
>> A .* B % element-by-element multiplication 
ans = 
    -2    0    7   2   9 
>> A * B % matrix multiplication!! 
??? Error using ==> mtimes 
Inner matrix dimensions must agree. 
>> C = [1 2 3] 
C = 
     1   2   3 
>> A .* C % A and C must have the same length 
??? Error using ==> times
Matrix dimensions must agree.
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element of  A  is not less than the corresponding element of  B . As with 
arithmetic operations, an error occurs if you attempt a logical operation 
with vectors of different sizes (neither size being 1). 

 Logical operators can be assembled into more complex operations using 
logical and (&) and or (|) operators. These operators actually come in two 
flavors:  & / |  and  &&  /  || . The single operators operate on logical arrays of 
matching size to perform element-wise matches of the individual logical 
values. The doubled operators combine individual logical results and are 
usually associated with conditional statements (see  Chapter   4   ). Try 
 Exercise   3.7    to see how logical operators work.  

 In  Exercise   3.7   , we combine two logical vectors of the same length 
successfully, but fail, as with arithmetic operations, to combine vectors of 
different lengths. If you need the indices in a vector where the elements of a 
logical vector are  true , the function  find(...)  accomplishes this by 
consuming an array of logical values and producing a vector of the positions 
of the  true  elements. 

 Exercise 3.6  Working with vector logical expressions 

>> A = [2 5 7 1 3]; 
>> B = [0 6 5 3 2]; 
>> A >= 5 
ans = 

0 1 1 0 0
>> A >= B 
ans = 

1 0 1 0
>> C = [1 2 3] 
>> A > C 
??? Error using ==> gt
Matrix dimensions must agree. 

 Exercise 3.7  Working with logical vectors 

>> A = [true true false false]; 
>> B = [true false true false]; 
>> A & B 
ans = 

1 0 0 0
>> A | B 
ans = 

1 1 1 0
>> C = [1 0 0] 
>> A & C 
??? Error using ==> and 
Matrix dimensions must agree. 
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 Try  Exercise   3.8    to see how this function works.  

 You can invert the values of all elements of a logical vector (changing  true  
to  false  and  false  to  true ) using the unary not operator,  ~ . For example: 

>> na = ~[true true false true] 
na = 0 0 1 0 

 As you can see, each element of  na  is the logical inverse of the corresponding 
original element. As is usual with arithmetic and logical operations, the 
precedence of operators governs the order in which operations are 
performed.  Table   3.1    shows the operator precedence in the MATLAB 
language. Operations listed on the same row of the table are performed 
from left to right. The normal precedence of operators can be overruled by 
enclosing preferred operations in parentheses:  (...) .   

  Applying Library Functions     The MATLAB language defines a rich collection 
of mathematical functions that cover mathematical, trigonometric, and 
statistics capabilities. A partial list is provided in  Appendix   A   . For a complete 

 Table 3.1   Operator precedence 

 Operators  Description 

 .', .^  Scalar transpose and power 

 ', ^  Matrix transpose and power 

 +, −, ~  Unary operators 

 .*,./,.\,*,/,\  Multiplication, division, left division 

 +, −  Addition and subtraction 

 :  Colon operator 

 <, <=, >=, >, ==, ~=  Comparison 

 &  Element-wise AND 

 |  Element-wise OR 

 &&  Logical AND 

 ||  Logical OR 

 Exercise 3.8  Using the find(…) function 

>> A = [2 5 7 1 3]; 
>> A > 4 
ans = 
     0 1 1 0 0 
>> find(A > 4) 
ans = 
     2 3 
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list of those implemented in MATLAB, refer to the Help menu option in the 
MATLAB tool bar. With few exceptions, all functions defined in the 
MATLAB language accept vectors of numbers rather than single values and 
return a vector of the same length. The following functions deserve special 
mention because they provide specific capabilities that are frequently useful: 

   ■    sum(v)  and  mean(v)  consume a vector and return the sum and mean 
of all the elements of the vector respectively.  

  ■    min(v)  and  max(v)  return two quantities: the minimum or 
maximum value in a vector, as well as the position in that vector 
where that value occurred. For example: 

> [value where] = max([2 7 42 9 -4]) 

value = 42 

where = 3 

 indicates that the largest value is 42, and it occurs in the third element of 
the vector. You will see in  Chapter   5    how to implement returning multiple 
results from a function.  

  ■    round(v)  ,  ceil(v)  ,  floor(v)  , and  fix(v)  remove the fractional part 
of the numbers in a vector by conventional rounding, rounding up, 
rounding down, and rounding toward zero, respectively.    

  Concatenation     In  Section   3.3.1   , we saw the technique for creating a vector 
by assembling numbers between square brackets: 

A = [2 5 7 1 3] 

 This is in fact a special case of concatenation. The MATLAB language lets 
you construct a new vector by concatenating other vectors: 

A = [B C D ... X Y Z] 

 where the individual items in the brackets may be any vector defined as a 
constant or variable, and the length of  A  will be the sum of the lengths of the 
individual vectors. The simple vector constructor in  Section   3.3.1    is a special 
case of this rule because each number is implicitly a 1 × 1 vector. The result 
is therefore a 1 3 N vector, where N is the number of values in the brackets. 
Try concatenating the vectors in  Exercise   3.9   .  

 Exercise 3.9  Concatenating vectors 

>> A = [2 5 7]; 
>> B = [1 3]; 
>> [A B] 
ans = 
2 5 7 1 3 

 Notice that the resulting vector is not nested like  [[2 5 7], [1 3]]  but is completely 
“flat.”  
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  Slicing     is the name given to complex operations where elements are 
copied from specified locations in one vector to different locations in 
another vector. As we saw earlier, the basic operation of extracting and 
replacing the elements of a vector is called indexing. Furthermore, we 
saw that indexing is not confined to single elements in a vector; you can 
also use vectors of indices. These index vectors either can be the values 
of previously named variables, or they can be created anonymously as 
they are needed. When you index a single element in a vector—for 
example,  A(4) —you are actually creating an anonymous 1 3 1 index 
vector, 4, and then using it to access the specified element(s) from the 
array  A . 

 Creating anonymous index vectors as needed makes some additional 
features of the colon operator available. The general form for generating a 
vector of numbers is:  <start> : <increment> : <end> . We already know 
that by omitting the  <increment>  portion, the default increment is 1. When 
used anonymously while indexing a vector, the following features are 
also available: 

   ■   The key word  end  is defined as the length of the vector  
  ■   The operator  :  by itself is short for  1:end    

 Finally, as you saw earlier, it is legal to index with a vector of logical values. 
For example, if  A  is defined as: 

A = [2 5 7 1 3]; 

 then  A([false true false true])  returns: 

ans = 
5    1 

 yielding a new vector containing only those values of the original vector 
where the corresponding logical index is  true . This is extremely useful, as 
you will see later in this chapter, for indexing items in a vector that match a 
specific test. 

 The general form of statements for slicing vectors is: 

B(<rangeB>) = A(<rangeA>) 

 where  <rangeA>  and  <rangeB>  are both index vectors,  A  is an existing array, 
and  B  can be an existing array or a new array. The values in  B  at the indices 
in  rangeB  are assigned the values of  A  from  rangeA . The rules for use of this 
template are as follows: 

   ■   Either the size of  rangeB  must be equal to the size of  rangeA  or 
 rangeA  must be of size 1  

  ■   If  B  did not exist before this statement was implemented, it is zero 
filled where assignments were not explicitly made  
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  ■   If  B  did exist before this statement, the values not directly assigned 
in  rangeB  remain unchanged   

 Study the comments in Listing  3 . 1  and do  Exercise   3.10   .   

 Listing  3 . 1      Vector indexing script 

 1. A = [2 5 7 1 3 4]; 
 2. odds = 1:2:length(A); 
 3. disp('odd values of A using predefined indices') 
 4. A(odds) 
 5. disp('odd values of A using anonymous indices') 
 6. A(1:2:end) 
 7. disp('put evens into odd values in a new array') 
 8. B(odds) = A(2:2:end) 
 9. disp('set the even values in B to 99') 
10. B(2:2:end) = 99 
11. disp('find the small values in A') 
12. small = A < 4 
13. disp('add 10 to the small values') 
14. A(small) = A(small) + 10 
15. disp('this can be done in one ugly operation') 
16. A(A < 10) = A(A < 10) + 10 

 Exercise 3.10  Running the vector indexing script 

 Execute the script in Listing  3 . 1 .You should see the following output: 

odd values of A using predefined indices 
ans = 
     2   7   3 
odd values of A using anonymous indices 
ans = 
     2   7   3 
put even values into odd values in a new array 
B = 
     5   0   1   0   4 
set the even values in B to 99 
B = 
     5   99   1   99   4 
find the small values in A 
small = 
     1   0   0   1   1   0 
add 10 to the small values 
A = 
    12   5   7   11   13   4 
this can be done in one ugly operation 
A = 
    12   5   7   11   13   4 
>>
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 In Listing  3 . 1 : 

   Line 1: Creates a vector  A  with five elements.  
  Line 2: When predefining an index vector, if you want to refer to 
the size of a vector, you must use either the  length(...)  function or 
the  size(...)  function.  
  Line 3: The  disp(...)  function shows the contents of its parameter 
in the Interactions window, in this case:  'odd values of A using 
predefined indices' . We use  disp(...)  rather than comments 
because comments are visible only in the script itself, not in the 
program output, which we need here.  
  Line 4: Using a predefined index vector to access elements in vector 
 A . Since no assignment is made, the variable  ans  takes on the value 
of a three-element vector containing the odd-numbered elements of 
 A . Notice that these are the odd-numbered elements, not the 
elements with odd values.  
  Line 6: The anonymous version of the command given in Line 4. 
Notice that the anonymous version allows you to use the word  end  
within the vector meaning the index of its last element.  
  Line 8: Since  B  did not previously exist (a good reason to run the 
 clear  command at the beginning of a script is to be sure this is 
true), a new vector is created with five elements (the largest index 
assigned in  B ). Elements in  B  at positions less than five that were not 
assigned are zero filled.  
  Line 10: If you assign a scalar quantity to a range of indices in a 
vector, all values at those indices are assigned the scalar value.  
  Line 12: Logical operations on a vector produce a vector of Boolean 
results. This is not the same as typing  small = [1 0 0 1 1 0]  . If 
you want to create a logical vector, you must use  true  and  false , 
for example: 

small = [true false false true true false] 

  Line 14: This is actually performing the scalar arithmetic operation 
 + 10  on an anonymous vector of three elements, and then assigning 
those values to the range of elements in  A .  
  Line 16: Not only is this unnecessarily complex, but it is also less 
efficient because it is applying the logical operator to  A  twice. It is 
better to use the form in Line 14.   

    3.4  Engineering Example—Forces and Moments 

 Vectors are ideal representations of the concept of a vector used in 
physics. Consider two forces acting on an object at a point P, as shown 
in  Figure   3.2   . Calculate the resultant force at P, the unit vector in the 
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direction of that resultant, and the moment of that force about the 
point M. We can represent each of the vectors in this problem as a 
MATLAB vector with three components: the x, y, and z values of the 
vector. The solution to this problem for specific vectors is shown in 
Listing  3 . 2 .   

y
C

B

P

z

O

M

x

A

 Figure 3.2   Vector analysis problem       

 Listing  3 . 2      Script to solve vector problems 

1. PA = [0 1 1] 
2. PB = [1 1 0] 
3. P = [2 1 1] 
4. M = [4 0 1] 
   % find the resultant of PA and PB 
5. PC = PA + PB 
   % find the unit vector in the direction of PC 
6. mag = sqrt(sum(PC.ˆ2)) 
7. unit_vector = PC/mag 
   % find the moment of the force PC about M 
   % this is the cross product of MP and PC 
8. MP = P - M 
9. moment = cross( MP, PC ) 
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 In Listing  3 . 2 : 

      Lines 1–4: Typical initial values 
for the problem.  

     Line 5:  PC  is the sum of the 
vectors  PA  and  PB .  

     Lines 6–7: The unit vector along 
 PC  is  PC  divided by its magnitude. 
The magnitude is the square root 
of the sum of the squares of the 
individual components.  

     Line 8: The vector  PM  is the vector 
difference between  P  and  M .  

     Line 9: There is a built-in 
function,  cross(..) , to compute 
the cross product of two vectors.        

   3.5  Arrays 

 In  Section   3.2   , we saw that a vector is the simplest way to group a collection 
of similar data items. We will now extend these ideas to include arrays of 
multiple dimensions, initially confined to two dimensions. Each row will 
have the same number of columns, and each column will have the same 
number of rows.    

 At this point, we will refer to these collections as  arrays  to distinguish 
them from the  matrices  discussed in  Chapter   12   . While arrays and matrices 
are stored in the same way, they differ in their multiplication, division, 
and exponentiation operations.  Figure   3.3    illustrates a typical two-
dimensional array  A  with m rows and n columns, commonly referred to as 
an m 3 n array.  

 After any nontrivial computation, a good engineer will always 
perform a sanity check on the answers. When you run the 
code for this problem, the answers returned are: 

PC = [ 1 2 1] 
unit_vector = [0.4082  0.8165  0.4082] 
moment = [ 1  2  -5] 

 To check the moment result, visualize the rotation of PC 
about M and apply the right-hand rule to find the axis of 
rotation of the moment. Roughly speaking, the right-hand 
rule states that the direction of the moment is the direction 
in which a normal, right-handed screw at point M would turn 
under the influence of this force. Without being too accurate, 
we can conclude that the axis of the moment is approximately 
along the negative  z -axis, an estimate confirmed by the 
result shown. 

 Common Pitfalls  3 . 2  

A(m x n) =

a11 . . .a12 a1n

a21 . . .a22 a2n

am1 . . .

. .
 . 

.

. .
 . 

.

am2 amn

 Figure 3.3   An array       
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   3.5.1  Properties of an Array 

 As with vectors, individual items in an array are referred to as its  elements . 
These elements also have the unique attributes combining their value and 
their position. In a two-dimensional array, the position will be the row and 
column (in that order) of the element. In general, in an n-dimensional array, 
the element position will be a vector of  n  index values. 

 When applied to an array  A  with n dimensions, the function  size(...)  
will return the information in one of two forms. 

   ■   If called with a single return value like  sz = size(A)  , it will return a 
vector of length n containing the size of each dimension of the array.  

  ■   If called with multiple return values like  [rows, cols] = size(A)  , 
it returns the individual array dimension up to the number of 
values requested. To avoid erroneous results, you should always 
provide as many variables as there are dimensions of the array.   

 The  length(...)  function returns the maximum dimension of the array. So 
if we created an array  A  dimensioned 2 3 8 3 3,  size(A)  would return  [2 8 3]  
and  length(A)  would return 8. 

 The transpose of an m 3 n array, indicated by the apostrophe character ( ' ) 
placed after the array identifier, returns an n 3 m array with the values in 
the rows and columns interchanged.  Figure   3.4    shows a transposed array.  

 A number of special cases arise that are worthy of note: 

   ■   When a 2-D matrix has the same number of rows and columns, it is 
called square.  

  ■   When the only nonzero values in an array occur when the row and 
column indices are the same, the array is called diagonal.  

  ■   When there is only one row, the array is a row vector, or just a 
 vector  as you saw earlier.  

  ■   When there is only one column, the array is a column vector, the 
transpose of a row vector.    

A�(n x m) =

a11 . . .a21 am1

a12 . . .a22 am2

a1n . . .

. .
 . 

.

. .
 . 

.

a2n amn

 Figure 3.4   Transpose of an array       
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   3.5.2  Creating an Array 

 Arrays can be created either by entering values directly or by using one 
of a number of built-in functions that create arrays with specific 
characteristics. 

   ■   As with vectors, you can directly enter the values in an array using 
either a semicolon ( ; ) or a new line to indicate the end of a row, for 
example:  A = [2, 5, 7; 1, 3, 42]  .  

  ■   The functions  zeros(m, n)  and  ones(m, n)  create arrays with m 
rows and n columns filled with zeros and ones, respectively.  

  ■   The function  rand(m, n)  fills an array with random numbers in the 
range 0 .. 1.  

  ■   The function  randn(m, n)  fills an array with random numbers 
normally distributed about 0 with a standard deviation of 1.  

  ■   The function  diag(...)  takes several forms, the most useful of 
which are  diag(A)  , where  A  is an array, that returns its diagonal 
as a vector, and  diag(V)  , where V is a vector, that returns a 
square matrix with that diagonal. Type help diag in the 
Command window for a full description of the capabilities 
of  diag(...)   

  ■   The MATLAB language also defines the function  magic(m)  , which 
fills a square matrix with the numbers 1 to  m2  organized in such a 
way that its rows, columns, and diagonals all add up to the same 
value.   

 Try  Exercise   3.11    to practice working with arrays.  

   3.5.3  Accessing Elements of an Array 

 The elements of an array may be addressed by enclosing the indices of the 
required element in parentheses, with the first index being the row index 
and the second index the column index. Considering the values produced 
by  Exercise   3.11   ,  A(2, 3)  would return the element in the second row, third 
column: 42. If you were to attempt to read outside the length of the rows or 
columns, an error would result. 

 We can also store values that are elements of an array. For example, 
continuing Example  3 . 11 ,  A(2, 3) = 0  would result in this answer: 

A = 
       2   5   7 
       1   3   0 

 As with vectors, MATLAB will automatically extend the array if you write 
beyond its boundaries. If there are missing elements between the current 
array elements and the index at which you attempt to store a new value, 
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the missing elements will be zero filled. For example, again continuing 
Example  3 . 11 ,  A(4, 1) = 3  would result in this answer: 

A = 
       2   5   7 
       1   3   0 
       0   0   0 
       3   0   0 

   3.5.4  Removing Elements of an Array 

 You can remove elements from arrays in the same way that you remove 
elements from a vector. However, since the arrays must remain rectangular, 

 Exercise 3.11  Creating arrays 

>> A = [2, 5, 7; 1, 3, 42]
A = 

2   5   7 
1   3  42 

>> z = zeros(3,2) 
z = 

0   0 
0   0 
0   0 

>> [z ones(3, 4)] % concatenating arrays 
ans = 

0   0   1   1   1   1 
0   0   1   1   1   1 
0   0   1   1   1   1 

>> rand(3,4) 
ans = 

0.9501  0.4860  0.4565  0.4447 
0.2311  0.8913  0.0185  0.6154 
0.6068  0.7621  0.8214  0.7919 

>> rand(size(A)) 
ans = 

0.9218  0.1763  0.9355 
0.7382  0.4057  0.9169 

>> diag(A) 
ans = 

2
3

>> diag(diag(A)) 
ans = 

2   0 
0   3 

>> magic(4) 
ans = 

16   2   3  13 
5  11  10   8 
9   7   6  12 
4  14  15   1 

>>
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elements have to be removed as complete rows or columns. For example, 
for the array  A  in the previous section, entering  A(3, :) = []  would remove 
all elements from the third row, and the result would be:   

A = 
       2   5   7 
       1   3   0 
       3   0   0 

 Similarly, if  A(:, 3) = []  was then entered, the result would be: 

A = 
       2   5 
       1   3 
       3   0 

   3.5.5  Operating on Arrays 

 This section discusses how array operations extend directly from vector 
operations: arithmetic and logical operations, the application of functions, 

concatenation, and slicing. This section will 
also discuss two topics peculiar to arrays: 
reshaping and linearizing arrays. 

  Array Arithmetic Operations     Arithmetic 
operations can be performed collectively on 
the individual components of two arrays as 
long as both arrays have the same 
dimensions or one of them is a scalar (i.e., 
has a vector of length 1). Addition and 
subtraction have exactly the syntax you 
would expect, as shown in  Exercise   3.12   . 
Multiplication, division, and exponentiation, 
however,  must  use the “dot operator” 
symbols:  .* ,  ./ , and  .^  (the dot is part of the 
symbol, but the commas are not) for scalar 
multiplication, division, and exponentiation.      

  Array Logical Operations     As with vectors, 
logical array operations can be performed 
collectively on the individual components 
of two arrays as long as both arrays have 
the same dimensions or one of the arrays is 

a scalar (i.e., has a vector of length 1). The result will be an array of logical 
values with the same size as the original array(s). Do  Exercise   3.13    to see 
how array logical operations work. Here, we successfully compare the 
array A to a scalar value, and to the array B that has the same dimensions as 
A. However, comparing to the array C that has the same number of elements 
but the wrong shape produces an error.  

 Performing array multiplication, division, or 
exponentiation without appending a dot operator 
requests one of the specialized matrix operations that 
will be covered in  Chapter   12   . The error message 
when this occurs is quite obscure if you are not 
expecting it: 

??? Error using ==> mtimes 
Inner matrix dimensions must agree.

 Even more obscure is the case where the dimensions 
of the arrays happen to be consistent (when 
multiplying square arrays), but the results are not the 
scalar products of the two arrays. 

 Common Pitfalls  3 . 4  

 Removing rows or columns from an array is very 
rarely the right solution to a problem and can lead to 
logical difficulties. Wherever possible, use indexing to 
copy the rows and columns you want to keep. 

 Common Pitfalls  3 . 3  
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  Applying Library Functions     In addition to being able to consume vectors, 
most mathematical functions in the MATLAB language can consume an 
array of numbers and return an array of the same shape. The following 

 Exercise 3.12  Working with array mathematics 

>> A = [2 5 7 
1 3 2] 

A = 
     2   5   7 

1   3   2 
>> A + 5 
ans = 

7  10  12 
6   8   7 

B = ones(2, 3) 
B = 

1   1   1 
1   1   1 

>> B = B * 2 
B = 

2   2   2 
2   2   2 

>> A.*B % scalar multiplication
ans = 

4  10  14 
2   6   4 

>> A*B % matrix multiplication does not work here 
??? Error using ==> mtimes 
Inner matrix dimensions must agree. 

 Exercise 3.13  Working with array logical operations 

>> A = [2 5; 1 3] 
A = 

2  5 
1  3 

>> B = [0 6; 3 2]; 
>> A >= 4 
ans = 

0 1
0 0

>> A >= B 
ans = 

1 0
0 1

>> C = [1 2 3 4] 
>> A > C 
??? Error using ==> gt 
Matrix dimensions must agree. 
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functions deserve special mention because they are exceptions to this rule 
and provide specific capabilities that are frequently useful: 

   ■    sum(v)  and  mean(v)  when applied to a 2-D array return a row vector 
containing the sum and mean of each column of the array, 
respectively. If you want the sum of the whole array, use 
 sum(sum(v)) .  

  ■    min(v)  and  max(v)  return two row vectors: the minimum or 
maximum value in each column and also the row in that column 
where that value occurred. For example:   

>> [values rows] = max([2  7 42; 
                        9 14  8; 
                       10 12 -6]) 
values = [10 14 42] 
rows = [3 2 1] 

 This indicates that the maximum values in each column are 10, 14, and 42, 
respectively, and they occur in rows 3, 2, and 1. If you really need the row 
and column containing, say, the maximum value of the whole array, 
continue the preceding example with the following lines: 

>> [value col] = max(values) 
value = 42 
col = 3 

 This finds the maximum value in the whole array and determines that it 
occurs in column 3. So to determine the row in which that maximum 
occurred, we index the vector of row maximum locations,  rows , with the 
column in which the maximum occurred. 

>> row = rows(col) 
row = 1 

 Therefore, we correctly conclude that the maximum number in this array is 
42, and it occurs at row 1, column 3.  

  Array Concatenation     The MATLAB language permits programmers to 
construct a new array by concatenating other arrays in the following 
ways: 

   ■   Horizontally, as long as each component has the same number of 
rows: 

A = [B C D ... X Y Z] 

  ■   Vertically, as long as each has the same number of columns: 
A = [B; C; D; ... X; Y; Z] 

 The result will be an array with that number of rows and a number of 
columns equaling the sum of the number of columns in each individual 
item. 

  Exercise   3.14    gives you the opportunity to concatenate an array.      
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  Slicing Arrays     The general form of 
statements for moving sections of one array 
into sections of another is as follows: 

B(<rangeBR>, <rangeBC>) = 
A(<rangeAR>,<rangeAC>)

 where each  <range..>  is an index vector,  A  
is an existing array, and  B  can be an existing 
array or a new array. The values in  B  at the 

specified indices are all assigned the corresponding values copied from  A . 
The rules for using this template are as follows: 

   ■   Either each dimension of each sliced array must be equal, or the size 
of the slice from  A  must be 1 3 1.  

  ■   If  B  did not exist before this statement was implemented, it would 
be zero filled where assignments were not explicitly made.  

  ■   If  B  did exist before this statement, the values not directly assigned 
would remain unchanged.    

  Reshaping Arrays     Occasionally, it is useful to take an array with one set of 
dimensions and reshape it to another set. The function  reshape( ... )  
accomplishes this. The command  reshape(A, rows, cols, ...)  will take 
the array  A , whatever its dimensions, and reform it into an array sized (rows 
3 cols 3 ...) out to as many dimensions as desired. However,  reshape(...)  
neither discards excess data nor pads the data to fill any empty space. The 
product of all the original dimensions of  A  must equal the product of the 
new dimensions. Try  Exercise   3.15    to see how to reshape an array.  

 Here, we first take a 1 3 10 array,  A , and attempt to reshape it to 4 3 3. Since 
the element count does not match, an error results. When we concatenate two 
zeros to the array  A , it has the right element count and the reshape succeeds.  

  Linearized Arrays     A discussion of arrays would not be complete without 
revealing an infamous secret of the MATLAB language: multi-dimensional 
arrays are not stored in some nice, rectangular chunk of memory. Like all 
other blocks of memory, the block allocated for an array is sequential, and 
the array is stored in that space in column order. Normally, if MATLAB 
behaved as we “have a right to expect,” we would not care how an array is 

 The MATLAB language does not encourage 
concatenating data of different classes. However, it 
tolerates such concatenation with sometimes odd 
results. If you really want to achieve this in an 
unambiguous manner, you should explicitly cast the 
data to the same class. 

 Style Points  3 . 1  

 Exercise 3.14  Concatenating an array 

>> A = [2 5; 1 7]; 
>> B = [1 3]';  % makes a column vector 
>> [A B] 
ans = 
2 5 1 
1 7 3 
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stored. However, there are circumstances under which the designers of 
MATLAB needed to expose this secret. The primary situation in which 
array linearization becomes evident is the mechanization of the  find(...)  
function. If we perform a logical operation on an array, the result is an array 
of logical values of the same size as the original array. In general, the  true  
values would be scattered randomly about that result array. If we wanted 
to convert this to a collection of indices, what would we expect to see? The 
 find(...)  function has two modes of operation: we can give it separate 
variables in which to store the rows and columns by saying  [rows cols] = 
find(...)  or we can receive back just one result by calling  ndx = find(...) . 
Indexing with this result exposes the linearized nature of arrays. The way 
this feature manifests itself is shown in  Exercise   3.16   .  

 Here, we build a 4 3 3 array A and calculate the logical array where  A  is 
greater than 5. When we save the result of finding these locations in the variable 
 ix , we see that this is a vector of values. If we count down the columns from the 
top left, we see that the second, seventh, eighth, and eleventh values in the 
linearized version of  A  are indeed  true . We also see that it is legal to use this 
linearized index vector to access the values in the original array—in this case, to 
add 3 to each one. Finally, we would expect a loud complaint when trying to 
reference the eleventh element of an array with only three rows. In fact 

MATLAB “unwinds” the storage of the 
array, counts down to the eleventh 
entry—3 for column 1, 3 for column 2, 
and 3 for column 3—and then extracts 
the second element of column 4.    

 To understand all these array 
manipulation ideas fully, you should 
work carefully through the script in 
Listing  3 . 3 , study the explanatory 
notes that follow, and do  Exercise   3.17   .      

   1.   It is best not to expose the detailed steps of finding logical 
results in arrays, but to use an integrated approach: 

A(A>5) = A(A>5) + 3

This produces the expected answers without exposing the 
nasty secrets underneath.   

  2.   Never use an array linearization as part of your program 
logic. It makes the code hideous to look at and/or understand, 
and it is never the “only way to do” anything. 

 Style Points  3 . 2  

 Exercise 3.15  Reshaping an array 

>> A = 1:10 
A = 

1   2   3   4  5   6   7  8   9   10 
>> reshape(A, 4, 3) 
??? Error using ==> reshape 
To RESHAPE the number of elements must not change. 
>> reshape([A 0 0], 4, 3) 
ans = 

1  5   9 
2  6  10 
3  7   0 
4  8   0 
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 Listing  3 . 3      Array manipulation script 

 1. A = [2 5 7 3 
 2.      1 3 4 2] 
 3. [rows, cols] = size(A) 
 4. odds = 1:2:cols 
 5. disp('odd columns of A using predefined indices') 
 6. A(:, odds) 
 7. disp('odd columns of A using anonymous indices') 
 8. A(end, 1:2:end) 
 9. disp('put evens into odd values in a new array') 
10. B(:, odds) = A(:, 2:2:end) 
11. disp('set the even values in B to 99') 
12. B(1, 2:2:end) = 99 
13. disp('find the small values in A') 
14. small = A < 4 
15. disp('add 10 to the small values') 
16. A(small) = A(small) + 10 
17. disp('this can be done in one ugly operation') 
18. A(A < 4) = A(A < 4) + 10 
19. small_index = find(small) 
20. A(small_index) = A(small_index) + 100 

 In Listing  3 . 3 : 

   Lines 1 and 2: Create a 2 3 4 array  A .  
  Line 3: Determines the number of rows and columns.  

 Exercise 3.16  Linearizing an array 

>> A = [2 5 7 3 
8 0 9 42 
1 3 4 2] 

A = 
     2  5   7   3 

8  0   9  42 
1  3   4   2 

>> A > 5 
ans = 

0  0  1   0 
1  0  1   1 
0  0  0   0 

>> ix = find(A > 5) 
ix = 

2  7   8  11 
>> A(ix) = A(ix) + 3 
A = 

 2  5  10   3 
11  0  12  45 
 1  3   4   2 

>> A(11) 
ans = 

42 % (sigh!)
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  Line 4: Builds a vector  odds  containing the indices of the odd 
numbered columns.  
  Line 6: Uses  odds  to access the columns in  A . The  :  specifies that this 
is using all the rows.  
  Line 8: The anonymous version of the command in Line 6. Notice 
that you can use the keyword  end  in any dimension of the array to 
represent the last index on that dimension.  
  Line 10: Because  B  did not previously exist (a good reason to have 
 clear  at the beginning of the script to be sure this is true), a new 
array is created. Elements in  B  that were not assigned are zero filled.  

  Exercise   3.17     Running the array manipulation script

Run the script in Listing  3 . 3  and observe the results: 
odds = 
      1    3 
odd columns of A using predefined indices
ans = 2    7 
      1    4 
odd columns of A using anonymous indices 
ans = 
      1    4 
put evens into odd values in a new array 
B = 
      5    0   3 
      3    0   2 
set the even values in B to 99 
B = 
      5   99   3 
      3    0   2 
find the small values in A 
small = 
      1 0 0 1 
      1 1 0 1 
add 10 to the small values 
A = 
     12   5  7  13 
     11  13  4  12 
this can be done in one ugly operation
A = 
     12   5  7  13 
     11 13  4  12 
do the same thing with indices 
small_index = 
      1 
      2 
      4 
      7 
      8 
A = 
    112    5  7  113 
    111  113  4  112 
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  Line 12: Puts 99 into selected 
locations in  B .  
  Line 14: Logical operations on arrays 
produce an array of logical results.  
  Line 16: Adds 10 to the values in  A  
that are small.  
  Line 18: Not only is this 
unnecessarily complex, but it is also 
less efficient because it is applying 
the logical operator to  A  twice.  
  Line 19: The function  find(...)  
actually returns a column vector of 
the index values in the linearized 
version of the original array, as 
shown in  Exercise   3.16     
  Line 20: As illustrated in Line 18, it 
is not necessary to use  find(...)  
before indexing an array. However, 
this command does work.   

 Notice that all the results are consistent with our expectations.    

   1.   Do not forget to begin all scripts with the two commands 
clear and clc. 

   a.   clear empties the current Workspace window of all 
variables and prevents the values of old variables from 
causing strange behavior in this script.  
  b.   clc clears the Command window to prevent 
confusion about whether a display was caused by this 
script or some earlier activity.    

  2.   It is better to enter a few lines at a time and run each 
version of the script incrementally, rather than editing one 
huge script and running the whole thing for the first time. 
When you have added only a few lines to a previously 
working script, it is easy to locate the source of logic 
problems that arise.  

  3.   It is very tempting to build large, complex vector operation 
expressions that solve messy problems “in one line of code.” 
While this might be an interesting mental exercise, the code 
is much more maintainable if the solution is expressed one 
step at a time using intermediate variables.   

 Style Points  3 . 3  

    3.6  Engineering Example—Computing Soil Volume 

 When digging the foundations for a building, it is necessary to estimate the 
amount of soil that must be removed. The first step is to survey the land on 
which the building is to be built, which results in a rectangular grid defining 
the height of each grid point as shown in  Figure   3.5   .  
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 Figure 3.5   Landscape survey       
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 The next step is to consider an architectural drawing of the basement of the 
building as shown in  Figure   3.6   . The shaded areas indicate those places where 
the soil really must be removed to make the building foundation. We can 
estimate from this figure the fraction of each surveyed square (for our purposes, 
a number between 0 and 1) where the soil must actually be removed.  

 The total amount of soil to move is then the sum of the individual square 
depths multiplied by the area in each square to be removed. The code in 
Listing  3 . 4  solves this problem.  

 Figure 3.6   Calculating soil volume       

 Listing  3 . 4      Script to compute total soil 

% soil depth data for each square produced by the survey 
 1. dpth = [8  8  9  8  8  8  8  8  7  8  7  7  7  7  8  8  8  7 
 2.         8  8  8  8  8  8  8  7  7  7  7  7  8  7  8  8  8  7 
 3.         8  8  8  8  7  7  8  7  8  8  8  8  8  7  8  8  8  8 
 4.         7  7  7  8  7  8  8  8  8  8  8  8  7  6  7  7  7  7 
 5.         8  8  8  8  8  8  8  8  7  7  7  7  7  6  6  7  7  8 
 6.         8  7  7  8  7  7  8  7  7  7  7  7  7  7  7  7  7  8 
 7.         9  8  8  9  8  7  8  7  7  7  7  7  6  7  6  7  7  8 
 8.         8  8  8  9  9  8  8  8  7  6  6  6  6  7  7  8  7  8 
 9.         9  8  8  7  7  7  7  7  7  6  6  7  7  7  8  8  7  8 
10.         9  8  8  7  7  7  6  7  7  6  6  8  8  8  9  9  7  8 
11.         9  9  8  8  8  8  7  7  7  7  7  8  8  9  9  9  8  8 
12.         9  8  8  7  7  8  7  7  7  7  8  8  9  9  9  8  7  8]; 

% estimated proportion of each square that should be excavated 
13. area = [1  1  1  1  1  1  1  1  1  1 .3  0  0  0  0  0  0  0 
14.         1  1  1  1  1  1  1  1  1  1 .7  0  0  0  0  0  0  0 
15.         1  1  1  1  1  1  1  1  1  1  1 .8 .4  0  0  0  0  0 
16.         1  1  1  1  1  1  1  1  1  1  1  1  1 .8 .3  0  0  0 
17.         1  1  1  1  1  1  1  1  1  1  1  1  1  1 .7 .2  0  0 
18.         1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 .6  0  0 
19.         0  0  0 .7  1  1  1  1  1  1  1  1  1  1  1 .8  0  0 
20.         0  0  0 .7  1  1  1  1  1  1  1  1  1  1  1 .7  0  0 
21.         0  0  0 .4  1  1  1  1  1  1  1  1  1  1  1 .6  0  0 
22.         0  0  0 .1 .8  1  1  1  1  1  1  1  1  1  1  1 .4  0 
23.         0  0  0  0 .2 .7  1  1  1  1  1  1  1  1  1  1 .9 .1 
24.         0  0  0  0  0  0 .4 .8 .9  1  1  1  1  1  1  1  1 .6]; 

25. square_volume = dpth .* area; 
26. total_soil = sum(sum(square_volume)) 
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     Chapter Summary 

 This chapter introduced you to vectors and arrays. For each collection, you saw 
how to: 

   ■   Create a vectors and arrays by concatenation and a variety of 
special-purpose functions  

  ■   Access and remove elements, rows, or columns  
  ■   Perform mathematical and logical operations on them  
  ■   Apply library functions, including those that summarize whole 

columns or rows  
  ■   Move arbitrary selected rows and columns from one array to 

another  
  ■   Reshape and linearize arrays      

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in 

This Section 

  []   The empty vector  3.3.4 

  [...]   Concatenates data, vectors, and arrays  3.2.1 

  :   Specifies a vector as from:incr:to  3.2.1 

  :   Used in slicing vectors and arrays  3.3.5 

  ( )   Used with an array name to identify specific elements  3.3.3 

  '   Transposes an array  3.5.1 

  ;   Separates rows in an array definition  3.5.2 

  +   Scalar and array addition  3.3.5 

  -   Scalar and array subtraction or unary negation  3.3.5 

 The code in Listing  3 . 4  produces an answer around 1,120, 
and we should ask whether this is reasonable. There are 
12 3 18 squares, each with area 1 unit, about 80% of which 
are to be excavated, giving a surface area of about 180 square 
units. The average depth of soil is about 7 units, so the 
answer ought to be about 180 3 7 > 1,300 cubic units. This 
is reasonably close to the computed result. 

 Common Pitfalls  3 . 5  

 When you run this script, it produces the answer: 1,117.5 cubic units.          
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 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in 

This Section 

  .*   Array multiplication  3.3.5 

  ./   Array division  3.3.5 

  .^   Array exponentiation  3.3.5 

  <   Less than  3.3.5 

  <=   Less than or equal to  3.3.5 

  >   Greater than  3.3.5 

  >=   Greater than or equal to  3.3.5 

  ==   Equal to  3.3.5 

  >   Not equal to  3.3.5 

  &   Element-wise logical AND (vectors)  3.3.5 

  &&   Short-circuit logical AND (scalar)  3.3.5 

  |   Element-wise logical OR (vectors)  3.3.5 

  ||   Short-circuit logical OR (scalar)  3.3.5 

  ~   Unary not  3.3.5 

  end   Last element in a vector  3.3.5 

  false   Logical false  3.2.2 

  true   Logical true  3.2.2 

  ceil(x)   Rounds x to the nearest integer toward positive 
infinity 

 3.3.5 

  cross(a, b)   Vector cross product  3.3 

  diag(a)   Extracts the diagonal from an array or, if provided 
with a vector, constructs an array with the given 
diagonal 

 3.5.2 

  disp(value)   Displays an array or text  3.3.5 

  find()   Computes a vector of the locations of the true 
values in a logical array 

 3.3.5, 3.5.5 

  [rows cols] = 
find()  

 Computes vectors of row and column locations of 
the true values in a logical array 

 3.5.5 

  fix(x)   Rounds x to the nearest integer toward zero  3.3.5 

  floor(x)   Rounds x to the nearest integer toward minus infinity  3.3.5 

  length(a)   Determines the largest dimension of an array  3.2.2, 3.5.1 

  linspace(fr,to,n)   Defines a linearly spaced vector  3.2.1 



Self Test      93

 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in 

This Section 

  magic(n)   Generates a magic square  3.5.2 

  [v,in] = max(a)   Finds the maximum value and its position in a  3.3.5 

  mean(a)   Computes the average of the elements in a  3.3.5 

  [v,in] = min(a)   Finds the minimum value and its position in a  3.3.5 

  ones(r, c)   Generates an array filled with the value 1  3.2.1 

  rand(r, c)   Calculates an r 3 c array of evenly distributed 
random numbers in the range 0…1 

 3.2.1 

  randn(r, c)   Calculates an r 3 c array of normally distributed 
random numbers 

 3.2.1 

  round(x)   Rounds x to the nearest integer  3.3.5 

  size(a)   Determines the dimensions of an array  3.2.2, 3.5.1 

  sum(a)   Totals the values in a  3.3.5 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    A homogeneous collection must consist entirely of numbers.   

   2.    The function  linspace(...)  can create only vectors, whereas the 
functions  zeros(...) ,  ones(...) , and  rand(...)  produce either 
vectors or arrays of any dimension.   

   3.    The  length(...)  function applied to a column vector gives you the 
number of rows.   

   4.    You can access any element(s) of an array of any dimension using a 
single index vector.   

   5.    Mathematical or logical operators are allowed only between two 
arrays of the same shape (rows and columns).   

   6.    You can access data in a vector  A  with an index vector that is longer 
than  A .   

   7.    You can access data in a vector  A  with a logical vector that is longer 
than  A .   
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   8.    When moving a block of data in the form of specified rows and 
columns from array  A  to array  B , the shape of the block in  A  must 
match the shape of the block in  B .   

  Fill in the Blanks  

   1.    Vector elements have two attributes that make them unique: their 
____________ and their ____________.   

   2.    The operators *, / and ^ are reserved for _____________ arithmetic, 
whereas the operators .*, ./ and .^ are reserved for _____________ 
operations.   

   3.    If an array of size 2*4 is defined as a = [1 2 3 4;5 6 7 8;], 
_____________ and _____________ are the values of the operations 
max(a) and max(max(a)), respectively.   

   4.    The length() function returns the _____________ of the array.   

   5.    Arithmetic operations can be performed collectively on the 
individual components of two arrays as long as both arrays 
_______________or one of them is _____________.   

   6.    _____________ and _____________ are two built-in functions used 
for creating arrays of any dimension m*n.   

   7.    Removing rows or columns from an array is ________________, and 
can lead to ______________. Wherever possible, use _____________ 
to _____________________.    

  Programming Projects 

   1.    For these exercises, do not use the direct entry method to construct 
the vectors. Write a script that does the following: 
   a.   Construct a vector containing multiples of 3 between 6 and 55, 

inclusive of the end points. Store your answer in the variable 
multiple_three.  

  b.   Construct a vector, evens, containing even numbers in between 8 
and 25, inclusive of the end points.  

  c.   Construct a vector, reverse, containing the numbers starting at 
45 and counting backwards by 1 to 35.   

  d.   Construct a vector, theta, containing 16 evenly spaced values 
between 0 and π.  

  e.   Construct a vector, fib, containing the first 10 Fibonacci numbers. 
(Hint: F(n) = F(n 2 1) 1 F(n 2 2) and F(1) 5 0, F(2) 5 1).  

  f.   Construct a vector, random, containing 15 randomly generated 
numbers between 1 and 12.     
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   2.    Write a script that performs the following exercises on vectors: 
   a.   You are given a vector vec, defined as: vec = [24 12 33 6 85 43 

68 -48 99]. You decide that you need the even and odd numbers 
of vec separately. Write a script to separate even and odd 
numbers into two different vectors named even and odd. Since 
your commands must work for any vector of any length, you 
must not use direct entry.  

  b.   Create a variable called vecLength that holds the number of 
elements in the vector vec modified in part a. You should use 
a built-in function to calculate the value based on the vector 
itself.  

  c.   Create variables called vecSum and vecMean which hold the sum 
and mean value of the elements in vector vec. You should use a 
built-in function to calculate the value based on the vector 
itself.  

  d.   Calculate the sum and average of the values in the vector vec 
without the help of built-in functions. Compare the values with 
those obtained in part c.  

  e.   Create a variable called vecProd that holds the product of the 
elements in vector vec. You should use a built-in function to 
calculate the value based on the vector itself.     

   3.    Write a script to solve the following problems using only vector 
operations: 
   a.   Assume that you have two vectors named  A1  and  B1  of equal 

length, and create a vector  C1  that combines  A1  and  B1  such that 
 C1 = [A1(1) B1(1) A1(2) B1(2) ... . A1(end) B1(end)]  . For 
example, if  A1 = [2, 4, 8]  and  B1 = [3, 9, 27]  ,  C1  should 
contain  [2, 3, 4, 9, 8, 27]   

  b.   Assume that you have two vectors named  A2  and  B2  of different 
lengths. Create a vector  C2  that combines  A2  and  B2  in a manner 
similar to part a. However, if you run out of elements in one of 
the vectors,  C2  also contains the elements remaining from the 
longer vector. For example, if  A2 = [1, 2, 3, 4, 5, 6]  and  B2 = 
[10, 20, 30]  , then  C2 = [1, 10, 2, 20, 3, 30, 4, 5, 6]  ; if 
 A2 = [1, 2, 3]  and  B2 = [10, 20, 30, 40, 50]  , then  C2 = [1, 10, 
2, 20, 3, 30, 40, 50]      

   4.    Write a script that, when given a vector of numbers,  nums , creates 
a vector  newNums  containing every other element of the original 
vector, starting with the first element. For example, if  nums = 
[6 3 56 7 8 9 445 6 7 437 357 5 4 3]  ,  newNums  should be  [6 56 
8 445 7 357 4] .  Note:  You must not simply hard-code the 
numbers into your answer; your script should work with any 
vector of numbers.   
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   5.    You are given a vector,  tests,  of test scores and wish to normalize 
these scores by computing a new vector,  normTests , that will contain 
the test scores on linear scale from 0 to 100. A zero still corresponds 
to a zero, and the highest test score will correspond to 100. For 
example, if  tests = [90 45 76 21 85 97 91 84 79 67 76 72 89 
95 55]  ,  normTests  should be 

[92.78 46.39 78.35 21.65 87.63 100 93.81 86.6 ... 
81.44 69.07 78.35 74.23 91.75 97.94 56.7]; 

   6.    Write a script that takes a vector of numbers, A, and return a new 
vector B, containing the factorial of the positive numbers in A. If a 
particular entry is negative, replace its factorial with 0. For example, 
if A = [1 2 -1 5 4 3 -2], B should be [1 2 0 120 24 6 0].   

   7.    Great news! You have just been selected to appear on Jeopardy 
this fall. You decide that it might be to your advantage to 
generate an array representing the values of the questions on 
the board. 
   a.   Write a script to generate the matrix  jeopardy  that consists of 

six columns and five rows. The columns are all identical, but 
the values of the rows range from 200 to 1,000 in equal 
increments.  

  b.   Next, generate the matrix  doubleJeopardy , which has the same 
dimensions as jeopardy but whose values range from 400 to 
2,000.  

  c.   You’ve decided to go even one step further and practice for a 
round that doesn’t even exist yet. Generate the matrix 
 squaredJeopardy  that contains each entry of the original jeopardy 
matrix squared.     

   8.    Write a script named arrayOperations that will do the following on 
the given arrays, and then return a new array of the same size.  
   •    Add A to B   
  • Subtract A from B                 

  The input arguments to your script should be as given below.
• A: a 2D array of any size
• B: another 2D array that has the same size as A. If not so, display 

an error message and the script should terminate execution. 
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   Your script should produce an array, res, of size M3N that contains 
the results of the corresponding operations on A and B. Test this 
script by writing another script that repeatedly sets the values of A, 
B, M, and N, and then invokes your arrayOperations script.  

  For example, if A = [1 2 3; 5 4 6], B = [7 8 9;10 11 12], M = 2, 
and M = 3, res will be [8 10 12; 15 15 18]. If A = [1 2 3;4 5 6], 
B = [1 2;3 4;5 6], then res will be an error message "Incompatible
Matrix dimensions".
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  Chapter Objectives 

 This chapter discusses techniques for changing the flow of control in 
a program, which may be necessary for two reasons: 

      ■   You may want to execute some parts of the code under certain 
circumstances only  

  ■   You may want to repeat a section of code a certain number of 
times   

 In  Chapter   3    we used the array notation to gather numbers into a 
form where they could be processed collectively rather than 
individually. This chapter deals with  code blocks  (collections of one 
or more lines of code) that solve a particular segment of a problem 
in the same way. We will see how to define a code block, how to 
decide to execute a code block under certain conditions only, and 
how to repeat execution of a code block.    

 Execution Control 
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Statements

True

FalseIf
Condition

 Figure 4.1   Simple if statement       

      4.1  Concept: Code Blocks 

 Some languages identify code blocks by enclosing them in braces ({. . .}); 
others identify them by the level of indentation of the text. The MATLAB 
language uses the occurrence of key command words in the text to define 
the extent of code blocks. Keywords like if, switch, while, for, case, 
otherwise, else, elseif, and end are identified with blue coloring by the 
MATLAB text editor. They are not part of the code block, but they serve as 
instructions on what to do with the code block and as delimiters that define 
the extent of the code block.  

   4.2  Conditional Execution in General 

 To this point, the statements written in our scripts (single code blocks) 
have been executed in sequence from the instruction at the top to the 
instruction at the bottom. However, it is frequently necessary to make 
choices about how to process a set of data based on some characteristic of 
that data. We have seen logical expressions that result in a Boolean result—
true or false. This section discusses the code that implements the idea 
shown in  Figure   4.1   .  

 In the flowchart shown in  Figure   4.1   , a set of statements (the code block 
to be executed) is shown as a rectangle, a decision point is shown as a 
diamond, and the flow of program control is indicated by arrows. When 
decision points are drawn, there will be at least two arrows leaving that 
symbol, each labeled with the reason one would take that path. This 
concept makes the execution of a code block conditional upon some test. If 
the result of the test is true, the code block is executed. Otherwise, the code 
block is omitted, and the instruction(s) after the end of that code block is 
executed next. 

 An important generalization of this concept is shown in  Figure   4.2   . 
Here the solution is generalized to permit the first code block to be 
implemented under the first condition as before. Now, however, if that 
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first logical test returns false, a second test is performed to determine 
whether the second code block should be executed. If that test returns 
false, as many further tests as necessary may be performed, each with the 
appropriate code block to be implemented when the result is true. Finally, 
if none of these tests return true, the last code block, usually identified by 
the else keyword—(n 1 1) in the figure—is executed. As the flowchart 
shows, as soon as one of the code blocks is executed, the next instruction 
to execute is the one that follows the conditional code after the end 
statement. In particular, if there is no else clause, it is possible that no 
code at all is executed in this conditional statement. 

 There are two common styles in which to implement this conditional 
behavior. First we will discuss the most general form, the if statement, and 
then we will discuss the more restrictive, but tidier, switch statement. Both 
implementations are found in most modern languages, albeit with slightly 
different syntax. In each case, the code block to be implemented is all the 
statements between the key words colored blue by the MATLAB editor.   

Statements (1)

True

FalseIf
Condition

Statements (2)

True

False

. . .

Elseif
Condition

Statements (n)

FalseElseif
Condition

Statements (n+1)

Else

 Figure 4.2   Compound if statement       

   4.3  if Statements 

 Here we introduce the concept of a programming template. Many 
programming texts still use the idea of flowcharts, such as those illustrated 
in  Figures   4.1    and    4.2   , to describe the design of a solution in a manner 
independent of the code implementation. However, since this graphical 
form cannot be maintained with a text editor, if the design of the solution 
changes, it is difficult to maintain any design description that is separate 
from the code itself. 

 Throughout the remainder of this text, we will describe the overall design 
of a code module using a design template. Design templates are a textual 
form of flowchart consisting of the key words that control program flow 
and placeholders that identify the code blocks and expressions that are 
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necessary to implement the solution logic. Design templates are powerful 
tools for the novice programmer to overcome the “blank sheet of paper” 
problem—“how do I start solving this problem?” All programmers need to 
do is recognize the nature of the solution and write down the appropriate 
template. Then solving a particular problem becomes the relatively simple 
task of writing the code blocks identified by the template. 

 To discuss the if statement, first we consider its general, language 
independent template and then its MATLAB implementation. 

   4.3.1  General Template 

 Template 4.1 shows the general template for the if statement. Note the 
following: 

   ■   The only essential ingredients are the first if statement, one code 
block, and the end statement. All other features may be added as the 
logic requires.  

  ■   The code blocks may contain any sequence of legal MATLAB 
statements, including other if statements (nested ifs), switch 
statements, or iterations (see  Section   4.5   ).  

  ■   Nested if statements with a code block are an alternative 
implementation of a logical AND statement.  

  ■   Recall that logical operations can be applied to a vector, resulting in 
a vector of Boolean values. This vector may be used as a logical 
expression. The if statement will accept this expression as true if 
all of the elements are true.    

   4.3.2  MATLAB Implementation 

 Listing  4 . 1  shows the MATLAB solution to a typical logical problem: 
determining whether a day is a weekday or a weekend day. It is assumed 
that the variable day is a number containing integer values from 1 to 7.  

 Template 4.1     General template for the if statement 

if <logical expression 1> 
<code block 1> 

elseif <logical expression 2> 
<code block 2> 
.
.
.

elseif <logical expression n> 
<code block n> 

else
<default code block> 

End
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 In Listing  4 . 1 : 

   Line 1: The first logical expression determines whether day is 7.  

  Line 2: The corresponding code block sets the value of the variable 
state to the string 'weekend'. In general, there can be as many 
statements within a code block as necessary.  

  Line 3: The second logical expression determines whether day is 1.  

  Line 4: The corresponding code block also sets the value of the 
variable state to the string 'weekend'.  

  Line 5: The key word else introduces the default code block 
executed when none of the previous tests pass.  

  Line 6: The default code block sets the value of the variable state to 
the string 'weekday'.  

   Exercise   4.1    gives you the opportunity to practice using if statements, 
and Listing  4 . 2  shows a script that will satisfy  Exercise   4.1   .     

 Listing  4 . 1      if statement example 

1. if day == 7      % Saturday
2. state = 'weekend' 
3. elseif day == 1    % Sunday
4. state = 'weekend'
5. else 
6. state = 'weekday'
7. end 

 Exercise 4.1  Using if statements 

 Write a script that uses input(...) to request a numerical grade in percentage 
and uses if statements to convert that grade to a letter grade according to the 
following table: 

  90% and better: A 
 80%–90%: B
70%–80%: C 
 60%–70%: D 
 Below 60%: F  

 Test your script by running it repeatedly for legal and illegal values of the 
grade percentage. 

Check your work against the script shown in Listing  4 . 2 . 
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 In Listing  4 . 2 : 

   Line 1: Requests a grade value from the user with the input(...) 
function. The prompt appears in the Command window, and the 
system waits for a line of text from the user and converts that line 
as it would any other Command window line, returning the result 
to the variable grade.  
  Line 2: The first logical expression looks for the grade that earns 
an A.  
  Line 3: The corresponding code block sets the value of the variable 
letter to 'A'.  
  Lines 4–9: The corresponding logic for letter grades B, C, and D.  
  Lines 10–12: The default logic setting the variable letter to 'F'.    

   4.3.3  Important Ideas 

 There are two important ideas that are necessary for the successful 
implementation of if statements: the general form of the logical expressions 
and short-circuit analysis. 

  Logical Expressions     The if  statement 
requires a logical expression for its 
condition. A logical expression is any 
collection of constants, variables, and 
operators whose result is a Boolean true or 
false value.    

 Logical expressions can be created in the following ways: 

   ■   The value of a Boolean constant (e.g., true or false)  
  ■   The value of a variable containing a Boolean result (e.g., found)  
  ■   The result of a logical operation on two scalar quantities (e.g.,  A > 5 )  

 Listing  4 . 2      Script with if statements 

 1. grade = input('what grade? ');
 2. if grade >= 90 
 3.     letter = 'A'
 4. elseif grade >= 80 
 5.     letter = 'B'
 6. elseif grade >= 70 
 7.     letter = 'C'
 8. elseif grade >= 60 
 9.     letter = 'D'
10. else
11.     letter = 'F'
12. end

 The MATLAB Command window echoes logical 
results as 1 (true) or 0 (false). In spite of this 
appearance, logical values are  not  numeric and should 
never be treated as if they were. 

 Common Pitfalls 4.1 
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  ■   The result of logically negating a Boolean quantity using the unary 
negation operator (e.g., ~found)  

  ■   The result of combining multiple scalar logical expressions with the 
operators  &&  or  ||  (e.g.,  A && B  or  A || B )  

  ■   The results of the functions that are the logical equivalent of the  && , 
 || , and  ~  operators: and(A, B) or(A, B) and not(A)  

  ■   The results of other functions that operate on Boolean vectors: 
any(...) and all(...)   

 The result from any(...) will be true if any logical value in the vector is 
true. The result from all(...) will be true only if all logical values in the 
vector are true. The function all(...) is implicitly called if you supply a 
vector of logical values to the if statement, as shown in Listing  4 . 3 .  

 In Listing  4 . 3 : 

   Line 1: Makes the variable A a logical vector.  
  Line 2: Using this as a logical expression, internally converts this 
expression to all(A).  
  Line 3: All the values of A are not true; therefore, the above code 
body does not execute.  
  Line 4: Now, all the elements of A are true.  
  Lines 5–6: If we repeat the test, the code body will now execute.    

  Short-Circuit Evaluation     When evaluating a sequence of logical  &&  or  || , 
MATLAB will stop processing when it finds the first result that makes all 
subsequent processing irrelevant. This concept is best illustrated by an 
example. Assume that A and B are logical results and you want to evaluate 
A && B. Since the result of this is true only if both A and B are true, if you 
evaluate A and the result is false, no value of B can change the outcome A && 
B. Therefore, there is no reason to evaluate any more components of a logical 
and expression once a false result has been found. Similarly, if you want A
|| B, if A is found to be true, you do not need to evaluate B. For example, 
suppose you want to test the  n th element of a vector v using a variable n, 
and you are concerned that n might not be a legal index value. 

 Listing  4 . 3      The if statement with a logical vector 

1. A = [true true false] 
2. if A 

% will not execute
3. end
4. A(3) = true; 
5. if A 

% will execute
6. end
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 The following code could be used: 

if (n <= length(v)) && (v(n) > 0) 
% success! 

end

 If n were not a legal index, the indexed accessor v(n) would cause an 
error for attempting to reach beyond the end of the vector. However, by 
putting the test of n first, the short-circuit logic would not process the 
second part of the expression if the test of n failed.    

 Template 4.2     General template for the switch statement 

switch <parameter> 
case <case specification 1> 

<code block 1> 
case <case specification 2> 

<code block 2> 
.
.

case <case specification n> 
<code block n> 

otherwise
<default code block> 

end

   4.4  switch Statements 

 A switch statement implements the logic shown in  Figure   4.2    in a different 
programming style by allowing the programmer to consider a number of 
different cases for the value of one variable. First we consider the general, 
language-independent template for switch statements, and then its 
MATLAB implementation. 

   4.4.1  General Template 

 Template 4.2 shows the general template for the switch statement.  

 Note the following: 

   ■   All tests refer to the value of the same parameter  
  ■   case specifications may be either a single value or a set of 

parameters enclosed in braces { ... }  
  ■   otherwise specifies the code block to be executed when none of the 

case values apply  
  ■   The code blocks may contain any sequence of legal MATLAB 

statements, including other if statements (nested ifs), switch 
statements, or iterations    
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   4.4.2  MATLAB Implementation 

 Listing  4 . 4  shows the MATLAB implementation of a typical logical problem: 
determining the number of days in a month. It assumes that the value of 
month is 1 . . . 12, and leapYear is a logical variable identifying the current 
year as a leap year.  

 Listing  4 . 4      Example of a switch statement 

 1. switch month 
 2. case {9, 4, 6, 11} 
           % Sept, Apr, June, Nov 
 3.          days = 30; 
 4. case 2              % Feb 
 5. if leapYear 
 6.                days = 29; 
 7. else
 8.                days = 28; 
 9. end
10. case {1, 3, 5, 7, 8, 10, 12} 

% other months
11.                days = 31; 
12. otherwise
13.                  error('bad month index')
14. end

 The usual description of the logic suggests that the last case 
in Listing  4 . 4  could be the otherwise clause. However, that 
would prevent you from being able to detect bad month 
number values, as this code does. 

 Style Points 4.1 

 The second parameter to the input(...) statement 
prevents  MATLAB  from attempting to parse the data 
provided, returning a string instead. Without that activity 
suppressed, if you enter the string 'yes',  MATLAB  will rush 
off looking for a variable by that name. 

 Hint 4.1 

 The use of indentation is not required in the MATLAB 
language, and it has no significance with regard to syntax. 
However, the appropriate use of indentation greatly 
improves the legibility of code and you should use it. You 
have probably already noted that in addition to colorizing 
control statements, the text editor automatically places the 
control statements in the indented positions illustrated in 
Listings 4.3 and 4.4. 

 Style Points 4.2 

 In Listing  4 . 4 : 

   Line 1: All tests refer to the value 
of the variable month.  
  Line 2: This case specification is 
a cell array (See  Chapter   7    for 
specifics) containing the indices 
of the months with 30 days.  
  Line 3: The code block extends 
from the case statement to the 
next control statement (case, 
otherwise, or end).  
  Line 5: This code block contains 
an if statement to deal with the 
February case. It presumes that a 
Boolean variable leapYear has 
been created to indicate whether 
this month is in a leap year.  
  Lines 10–11: Deal with the 
remaining months.  
  Line 13: A built-in MATLAB 
function that announces the 
error and terminates the script.  



108 Chapter 4  Execution Control

  Try using the switch statement in  Exercise   4.2   .               

 Exercise 4.2  Using the switch statement 

 Write and test the script in Listing  4 . 4  using input(...) to request a numerical 
month value. 
You will need to preset a value for  leapYear . 
 Test your script by running it repeatedly for legal and illegal values of the 
month. 
 Modify your script to ask whether the current year is a leap year. (It’s best to 
ask only for February.) You could use code like the following: 

ans = input('leap year (yes/no)', 's');
leapYear = (ans(1) == 'y');

 Test this new script thoroughly. 
 Try this script without the second parameter to  input(...) . Can you explain 
what is happening? 
 Modify the script again to accept the year rather than yes/no, and implement 
the logic to determine whether that year is a leap year. 

   4.5  Iteration in General 

 Iteration allows controlled repetition of a code block. Control statements at 
the beginning of the code block specify the manner and extent of the 
repetition: 

   ■   The for loop is designed to repeat its code block a fixed number of 
times and largely automates the process of managing the iteration.  

  ■   The while loop is more flexible in character. In contrast to the fixed 
repetition of the for loop, its code block can be repeated a variable 
number of times, depending on the values of data being processed. 
It is much more of a “do-it-yourself” iteration kit.   

 The if and switch statements allow us to decide to skip code blocks 
based on conditions in the data. The for and while constructs allow us to 
repeat code blocks. Note, however, that the MATLAB language is designed 
to avoid iteration. Under most circumstances of processing numbers, the 
array processing operations built into the language make do-it-yourself 
loop constructs unnecessary.  

   4.6  for Loops 

  Figure   4.3    shows a simple for loop. The hexagonal shape illustrates the 
control of repetition. The repeated execution of the code block is performed 
under the control of a loop-control variable. It is first set to an initial value 
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that is tested against a terminating condition. If the terminating test 
succeeds, the program leaves the for loop. Otherwise, the computations in 
the code block are performed using the current value of that variable. When 
one pass through the code block is finished, the variable is updated to its 
next value, and control returns to the termination test. 

   4.6.1  General for Loop Template 

 The general template for implementing for loops is shown in Template 4.3. 
All of the mechanics of iteration control are handled automatically in the 
variable specification section. In some languages—especially those with 
their origins in C—the variable specification is a formidable collection of 
statements that provide great generality of loop management. The designers 
of the MATLAB language, with its origins in matrix processing, chose a 
much simpler approach for specifying the variable range, as shown in the 
general template. The repetition of the code block is managed completely 
by the specification of the loop control variable.   

   4.6.2  MATLAB Implementation 

 The core concept in the MATLAB for loop implementation is in the style of 
the variable specification, which is accomplished as follows: 

<variable specification>: <variable> = <vector> 

 where <variable> is the name of the loop control variable and <vector> is 
any vector that can be created by the techniques discussed in  Chapter   3   . If 

Computations

For
<Loop>

Done

 Figure 4.3   Structure of a for loop       

 Template 4.3     General template for the for statement 

for <variable specification>
      <code block>
end



110 Chapter 4  Execution Control

we were to use the variable specification x = A, MATLAB would proceed as 
follows: 

   1.   Set an invisible index to 1.  

  2.   Repeat steps 3 to 5 as long as that index is less than or equal to the 
length of A.  

  3.   Set the value of x to A(index)  

  4.   Evaluate the code block with that value of x  

  5.   Increment the index   

 For a simple example of for loops, the code shown in Listing  4 . 5  solves a 
problem that should be done in a single MATLAB instruction: max(A) where 
A is a vector of integers. However, by expanding this into a for loop, we see 
the basic structure of the for loop at work.  

 In Listing  4 . 5 : 

   Line 1: Creates a vector A with six elements.  
  Line 2: The tidiest way to find limits of a collection of numbers is to 
seed the result, theMax, with the first number.      
   Line 3: Iterates across the values of A.  

  Lines 4–6: The code block extends 
from the for statement to the 
associated end statement. The code 
will be executed the same number 
of times as the length of A  even if 
you change the value of  x  within the 
code block . At each iteration, the 
value of x will be set to the next 
element from the array A.  

  Line 8: The fprintf(...)function is a very flexible means of 
formatting output to the Command window. See the discussion in 
 Chapter   8   , or enter the following in the Command window:   

> help fprintf 

 Listing  4 . 5      Example of a for statement 

1. A = [6 12 6 91 13 6] % initial vector
2. theMax = A(1); % set initial max value
3. for x = A % iterate through A
4.     if x > theMax % test each element 
5.         theMax = x; 
6. end
7. end
8. fprintf('max(A) is %d\n', theMax); 

 By setting the default answer to the first value, we avoid the 
problem of seeding the result with a value that could be 
already outside the range of the vector values. For example, 
we might think that  theMax = 0;  would be a satisfactory 
seed. However, this would not do well if all the elements of 
 A  were negative. 

 Common Pitfalls 4.2 
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   4.6.3  Indexing Implementation 

 The above for loop implementation may seem very strange to those with a 
C-based language background, in which the loop-control variable is usually 
an index into the array being traversed rather than an element from that 
array. In order to illustrate the difference, we will adapt the code from 
Listing  4 . 5  to solve a slightly different problem that approximates the 
behavior of max(A). This time we need to know not only the maximum 
value in the array, but also its index. This requires that we resort to indexing 
the array in a more conventional style, as shown in Listing  4 . 6 .  

 In Listing  4 . 6 : 

   Line 1: Generalizes the creation of the vector A using the rand(...) 
function to create a vector with 10 elements each between 0 and 100. 
The ceil(...) function rounds each value up to the next higher 
integer.  
  Lines 2 and 3: Initialize theMax and theIndex.  
  Line 4: Creates an anonymous vector of indices from 1 to the length 
of A and uses it to define the loop-control variable, index.  
  Line 5: Extracts the appropriate element from A to operate with as 
before.  
  Lines 6 and 7: The same comparison logic as shown in Listing  4 . 5 .  
  Line 8: In addition to saving the new max value, we save the index 
where it occurs.  
  Line 11: This is our first occurrence where a logical line of code 
extends beyond the physical limitations of a single line. Since 
MATLAB normally uses the end of the line to indicate the end of an 
operation, we use ellipses (...) to specify that the logic is 
continued onto the next line.  

  You can enter and run these scripts by following  Exercise   4.3   .    

 Listing  4 . 6      for statement using indexing 

 1. A = floor(rand(1,10)*100) 
 2. theMax = A(1); 
 3. theIndex = 1; 
 4. for index = 1:length(A) 
 5.     x = A(index); 
 6. if x > theMax 
 7.         theMax = x; 
 8.         theIndex = index; 
 9. end
10. end
11. fprintf('the max value in A is %d at %d\n', ... 
12.             theMax, theIndex); 
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   4.6.4  Breaking out of a for Loop 

 If you are in a for loop and find a circumstance where you really do not 
want to continue iterating, the break statement will skip immediately out of 
the innermost containing loop. If you want to continue iterating but omit all 
further steps of the current iteration, you can use the continue statement.   

Computations

Initialization

while
<Expression>

False

True

 Figure 4.4   Structure of a while loop       

 Exercise 4.3  Producing for statement results 

 Enter and run the scripts in Listings 4.5 and 4.6. They should each produce the 
following results: 

A = 
6 12 6 91 13 61 26 22 71 54 

the max value in A is 91 at 4 
>>

   4.7  while Loops 

 We use while loops in general to obtain more control over the number of 
times the iteration is repeated.  Figure   4.4    illustrates the control flow for a 
while loop. Since the termination test is performed before the loop is 
entered, the loop control expression must be initialized to a state that will 
normally permit loop entry. It is possible that the code block is not executed 
at all—for example—if there is no data to process. 

   4.7.1  General while Template 

 Template 4.4 shows the general template for implementing while loops. 
The logical expression controlling the iteration is testing some state of the 
workspace; therefore, two things that were automatic in the for loop must 
be manually accomplished with the while loop: initializing the test and 
updating the workspace in the code block so that the test will eventually 
fail and the iteration will stop.  
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   4.7.2  MATLAB while Loop Implementation 

 For the sake of consistency, Listing  4 . 7  shows you how to solve the same 
problem using the while syntax.   

 In Listing  4 . 7 : 

   Lines 1–3: Create a test vector and initialize the answers as before.  
  Line 4: Initializes the index value since this is manually updated.  
  Line 5: This test will fail immediately if the vector A is empty.  
  Line 6: Extracts the item x from the array (good practice in general 
to clarify your code).  
  Lines 7–9: The same test as before to update the maximum value.  
  Line 11: “Manually” updates the index to move the loop closer to 
finishing.  

  Enter and run the script as described in  Exercise   4.4   .    

 Template 4.4     General template for the while statement 

<initialization>
while <logical expression> 

<code block> % must make some changes
% to enable the loop to terminate 

end

 Listing  4 . 7      while statement example 

 1. A = floor(rand(1,10)*100) 
 2. theMax = A(1); 
 3. theIndex = 1; 
 4. index = 1; 
 5. while index <= length(A) 
 6.     x = A(index); 
 7. if x > theMax 
 8.         theMax = x; 
 9.         theIndex = index; 
10. end
11.     index = index + 1; 
12. end
13. fprintf('the max value in A is %d at %d\n', ... 
14.             theMax, theIndex); 

 Exercise 4.4  Producing while statement results 

 Enter and run the script in Listing  4 . 7 . It should produce the following results: 

A = 
6 12 6 91 13 61 26 22 71 54 

the max value in A is 91 at 4 
>>
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   4.7.3  Loop-and-a-Half Implementation 

 Listing  4 . 8  illustrates the implementation of the loop-and-a-half iteration 
style, in which we must enter the loop and perform some computation 
before realizing that we do not need to continue. Here we continually ask 
the user for the radius of a circle until an illegal radius is entered, which is 
our cue to terminate the iteration. For each radius entered, we want to 
display the area and circumference of the circle with that radius.  

 Listing  4 . 8      Loop-and-a-half example 

 1. clear 
 2. clc 
 3. close all 
    % Listing 04.08 Loop-and-a-half example 
 4. R = 1; 
 5. while R > 0 
 6.     R = input('Enter a radius: '); 
 7. if R > 0 
 8.         area = pi * R^2; 
 9.         circum = 2 * pi * R; 
10.         fprintf('area = %f; circum = %f\n', ... 
11.             area, circum); 
12.     end
13. end

 We wrote the for loop examples in two styles: the 
direct access style and the indexing style. Many people 
code in the indexing style even when the index value 
is not explicitly required. This is slightly tacky and 
demonstrates a lack of appreciation for the full power 
of the MATLAB language. 

 Style Points 4.3 

 The use of break and continue statements is 
frowned upon in programming circles for the same 
reason that the goto statement has fallen into 
disrepute—they make it more difficult to understand 
the flow of control through a complex program. It is 
preferable to express the logic for remaining in a 
while loop explicitly in its controlling logical 
expression, combined with if statements inside the 
loop to skip blocks of code. However, sometimes this 
latter approach causes code to be more complex than 
would be the case with judicious use of break or 
continue. 

 Style Points 4.4 

 In Listing  4 . 8 : 

   Line 1: Initializes the radius value 
to allow the loop to be entered the 
first time.  
  Line 2: We will remain in this loop 
until the user enters an illegal radius.  
  Line 3: The input(...)function 
shows the user the text string, 
parses what is typed, and stores the 
result in the variable provided. 
This is described fully in  Chapter   8   .  
  Line 4: We want to present the area 
and circumference only if the 
radius has a legal value. Since this 
test occurs in the middle of the 
while loop, we call this “loop-and-
a-half” processing.  
  Lines 5–8: Compute and display the 
area and circumference of a circle.   

 Try this script in  Exercise   4.5   .           
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   4.7.4  Breaking a while Loop 

 As with the for loop, break will exit the innermost while loop, and continue 
will skip to the end of the loop but remain within it. 

H

rh

 Figure 4.5   A tank containing liquid       

 Exercise 4.5  Producing loop-and-a-half test results 

  Enter and run the script in Listing  4 . 8 . It should produce the following results: 

Enter a radius: 4 
area = 50.265482; circum = 25.132741 
Enter a radius: 3 
area = 28.274334; circum = 18.849556 
Enter a radius: 100 
area = 31415.926536; circum = 628.318531 
Enter a radius: 0 

 >>  

    4.8  Engineering Example—Computing Liquid Levels 

  Figure   4.5    shows a cylindrical tank of height  H  and radius  r  with a spherical 
cap on each end (also of radius,  r  ). If the height of the liquid is  h , what is the 
volume of liquid in the tank? Clearly, the calculation of the volume of liquid 
in the tank depends upon the relationship between  h, H,  and  r : 

   ■   If  h  is less than  r , we need the volume,  v , of a partially fi lled sphere 
given by: 

   
v =

1
3
ph2(3r - h)

    

  ■   If  h  is greater than  r  but less than  H 2 r , we need the volume of a 
fully fi lled hemisphere plus the volume of a cylinder of height  h 2 r :

v =
2
3
pr 3 + pr 2(h - r )
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  ■   If  h  is greater than  H 1 r , we need the volume of a fully fi lled sphere 
plus the volume of a cylinder of height  H 1 2r  minus the partially 
empty upper hemisphere of height  H 1 h :

v =
4
3
pr 3 + pr 2(H - 2r ) -

1
3
p(H - h)2(3r - H + h)

     

 The script to perform this calculation is shown in Listing  4 . 9 . Rather than 
performing the computations for one liquid level only, we should write the 
script so that we continue to consider tanks of different dimensions and 
different liquid heights for each tank until the user indicates that he needs no 
more results.   

 In Listing  4 . 9 : 

   Line 1: Initializes the value to keep it in the first while loop.  
  Lines 3 and 4: Get the tank sizes.  
  Line 5: Initializes the value to keep it in the inner while loop.  
  Line 7: Gets the liquid height.  
  Lines 8–14: Calculations for legal values of  h . Notice that no dot 
operators are required here, because these conditional computations 
will not work correctly with vectors of  H, r,  or  h .  

 Listing  4 . 9      Script to compute liquid levels 

 1. another_tank = true; 
 2. while another_tank 
 3.     H = input('Overall tank height: ');
 4.     r = input('tank radius: ');
 5.     more_heights = true; 
 6. while more_heights 
 7.         h = input('liquid height: '); 
 8. if h < r 
 9.            v = (1/3)*pi*h.^2.*(3*r-h); 
10. elseif h < H-r 
11.             v = (2/3)*pi*r^3 + pi*r^2*(h-r); 
12. elseif h <= H 
13.             v = (4/3)*pi*r^3 + pi*r^2*(H-2*r) ... 
14.                 - (1/3)*pi*(H-h)^2*(3*r-H+h); 
15. else
16.             disp('liquid level too high')
17. continue
18.         end 
19.         fprintf( ... 
20. 'rad %0.2f ht %0.2f level %0.2f vol %0.2f\n', ... 
21.                   r,          H,             h,        v); 
22.         more_heights = input('more levels? (y/n)','s')=='y';
23.    end 
24.    another_tank = input('another tank? (y/n)','s')=='y';
25. end
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  Lines 15 and 16: Illegal  h  values end up here.  

  Line 17: Goes to the end of the inner loop, skipping the printout.  

  Lines 19–21: Print the result.  

  Line 22: More levels when “y” is entered.  

  Line 24: Another tank when “y” is entered.   

  Table   4.1    shows some typical results.     

 Table 4.1   Results for liquid levels 

  Overall tank height: 10  

  tank radius: 2  

  liquid height: 1  

  radius 2.00 height 10.00 level 1.00 vol 5.24  

  more levels? (y/n)y  

  liquid height: 8  

  radius 4.00 height 8.00 level 8.00 vol 268.08  

  more levels? (y/n)  

  another tank? (y/n)  

     Chapter Summary 

   This chapter presented techniques for changing the flow of control of a program 
for condition execution and repetitive execution:  

   ■   The most general conditional form is the if statement, with or 
without the accompanying elseif and else statements  

  ■   The switch statement considers different cases of the values of a 
countable variable  

  ■   A for loop in its most basic form executes a code block for each of 
the elements of a vector  

  ■   A while loop repeats a code block a variable number of times, as 
long as the conditions specified for continuing the repetition remain 
true   
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  Special Characters, Reserved Words, and Functions 

 Special Characters,

Reserved Words,

and Functions  Description 

 Discussed in

This Section 

false  Logical false  4.2 

true  Logical true  4.2 

break  A command within a loop module that forces 
control to the statement following the 
innermost loop 

 4.6.4, 4.7.4 

case  A specific value within a switch statement  4.1, 4.4.1 

continue  Skips to the end of the innermost loop, but 
remains inside it 

 4.6.4, 4.7.4 

else  Within an if statement, begins the code block 
executed when the condition is false 

 4.1, 4.3.2 

elseif  Within an if statement, begins a second test 
when the first condition is false 

 4.1, 4.3.2 

end  Terminates an if, switch, for, or while module  4.1, 4.3.2 

for  var = v   A code module repeats as many times as there 
are elements in the vector v 

 4.1, 4.6 

if <exp>  Begins a conditional module; the following 
code block is executed if the logical expression 
<exp> is true 

 4.1, 4.3.2 

input(str)  Requests and parses input from the user  4.3.2 

otherwise  Catch-all code block at the end of a switch 
statement 

 4.1, 4.4.1 

switch(variable)  Begins a code module selecting specific 
values of the variable (must be countable) 

 4.1, 4.4.1 

while <exp>  A code module repeats as long as the logical 
expression <exp> is true 

 4.1 

all(a)  True if all the values in a, a logical vector, a, 
are true 

 4.3.3 

and(a, b)  True if both a and b are true (can be vectors)  4.3.3 

any(a)  True if any of the values in a, a logical vector, 
is true 

 4.3.3 

not(a)  True if a is false; false if a is true (can be vectors)  4.3.3 

or(a, b)  True if either a or b is true (can be vectors)  4.3.3 

  Self Test 

 Use the following questions to check your understanding of the material in 
this chapter: 
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  True or False  

   1.    MATLAB keywords are colored green by the editor.   

   2.    Indentation is required in MATLAB to define code blocks.   

   3.    It is possible that no code at all is executed by if or switch
constructs.   

   4.    The word true is a valid logical expression.   

   5.    When evaluating a sequence of logical  &&  expressions, MATLAB 
will stop processing when it finds the first true result.   

   6.    The for loop repeats the enclosed code block a fixed number of 
times even if you modify the index variable within the code block.   

   7.    Using a break statement is illegal in a while loop.   

   8.    The logical expression used in a while loop specifies the conditions 
for exiting the loop.   

  Fill in the Blanks  

   1.    MATLAB uses ______________ in the text to define the extent of 
code blocks.   

   2.    A logical expression is any collection of constants, variables, and 
operators whose result is a(n) ______________   .

   3.    If you want to continue iterating but omit all further steps of the 
current iteration, you can use the ______________ statement.   

   4.    The ______________ command is used to get an input from user.   

   5.    The looping instructions for() and while() are called 
______________ looping operations, since the condition is evaluated 
before the control is passed into the statements inside the loop.   

   6.    If you are in a(n) _____________ loop, you can use the break 
statement to skip immediately out of the _____________ loop.    

  Programming Projects 

   1.    Write a script to solve this problem. Assume you have a vector of 
positive integers named D. Using iteration (for and/or while) and 
conditionals (if and/or switch), separate vector D into four vectors 
mulTwo, mulThree, mulFour, and mulFive. 
   •   mulTwo all of the positive even numbers in D.  
  •   mulThree contains all the multiples of 3 in D.  
  •   mulFour contains all the multiples of 4 in D.  
  • mulFive contains all the multiples of 5 in D.   
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  For example:  

if D = [1,8,2,6,3,15], 
mulTwo = [2,4,6,8], mulThree = [3,6,15] 
mulFour = [8], mulTwo = [15] 

   2.    You must use either for or while to solve the following problems. 
   a.   Iterate through a vector, A, using a for loop, and create a new 

vector, B, containing logical values. The new vector should 
contain true for positive values and false for all other values. For 
example, if A = [−300 2 5 −63 4 0 −46], the result should be 
B = [false true true false true true false]  

  b.   Iterate through the vector, A, using a while loop, and return a new 
vector, B, containing true for positive values and false for all 
other values.  

  c.   Iterate through a logical array, N, using a for loop, and return a 
new vector, M, containing the value 2 wherever an element of N is 
true and the value −1 (not a logical value) wherever N is false. 
For example, if N = [true false false true true false true], 
the result should be M = [2 −1 −1 2 2 −1 2]  

  d.   Iterate through an array, Z, using a while loop. Replace every 
element with the number 3 until you reach a number larger than 
50. Leave the rest unchanged. For example, if Z = [4 3 2 5 7 9 0 
64 34 43], after running your script, Z = [3 3 3 3 3 3 3 3 34 43]     

   3.    Your class teacher needs your help. He is preparing the final test 
scores of all 35 students in his class. He has the rollNo, interimTest1, 
interimTest2, quizMark, and endExam scores of all the students. 
The interimTest1 and interimTest2 scores are out of 20 each. The 
quizMark is out of 15 and the endExam is out of 45. He needs to 
calculate the GPAs of all the students. Your class teacher has asked 
you to write a script that will help him to prepare the Grade chart 
of all the students. GPAs will be awarded according to the 
following rules: 

totalMark GPA 
  100-90 S (Excellent)   
  89-80 A  
  79-70 B  
  69-60 C  
  59-50 D  
  49-40 E
0-39 F (Fail)   

   Your script should repeatedly ask for the details of each student and 
compute the student grade. It should continue until the details of all 
35 students are entered.                 
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   4.    You were just hired for a summer internship with one of the area’s 
best software companies; however, on your first day of work you 
learn that for the next three months, the only job you will have is to 
convert binary (base 2) numbers into decimal numbers (base 10). 
You decide to write a script that will repetitively ask the user for a 
binary number and return its decimal equivalent until an illegal 
number (one containing digits other than 0 or 1) is entered. The 
number entered should contain only the digits 0 and 1. The 
rightmost digit has the value 2 0  and the digit N places to the left of 
that has the value 2 N . For example, entering 110101 returns 

53 = 2 5 + 2 4 + 2 3 + 2 0

   You must use iteration to solve this problem. Note: The input (...) 
function prompts the user for a value, parses the characters entered 
according to normal MATLAB rules, and returns the result.   

   5.    You have a friend who has too many clothes to store in his or her 
tiny wardrobe. Being a good friend, you offer to help to decide 
whether each piece of clothing is worth saving. You decide to 
write a script that will compute the value of each piece of clothing. 
A piece of clothing has five attributes that can be used to 
determine its value. The attributes are: condition, color, price, 
number of matches, and comfort. Each attribute will be rated on a 
scale of 1 to 5. Write a script called clothes that will ask the user 
for the ratings for each attribute and store the result in a vector. 
The order of attributes in the vector is: [condition color price 
matches comfort] 

   The script should compute a value between 0 and 100; 100 represents 
a good piece of clothing, while 0 represents a bad piece of clothing. 
The points that should be given for each attribute are shown below: 

   Condition: 1=>0; 2=>5; 3=>10; 4=>15; 5=>20  
  Color:  1 => blue => 12; 

2 => red => 2; 
3 => pink => 15; 
4 => yellow => 20; 
5 => white => 12  

  Price: 1 => 8, 2–3 => 16, 4–5 => 20  
  Matches: 1–2 => 8, 3–5 => 19  
  Comfort: 1 => 6, 2–3 => 13, 4–5 =>18   

  Note: If a number other than 1–5 is assigned for one of the 
attributes, no points should be given.    

   6.    Write a function called divideVector. It should take in an array of 
positive and negative integers and return two vectors, pos and neg, 
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which store positive integers and negative numbers, respectively. 
For example, 

     divideVector([4 -5 2 1 -7 -3]) should return [4 2 1] and
[-5 -7 -3]  

divideVector([2 -3 4 5 -6 7]) should return [2 4 5 7] and 
[-3 -6] 

   7.    Now that you’re comfortable with iteration, you’re going to have to 
solve an interesting problem. It seems that the Math department at a 
rival university has once again dropped the ball, and forgotten the 
value of pi. You are to write a function called mypi, which consumes 
a number that specifies the required accuracy and then 
approximates the value of pi to that accuracy. You are going to use 
the following algorithm based on geometric probability. 

   Think about a quarter circle inside of a unit square (the quarter 
circle has area p/4). You pick a random point inside the square. If it 
is in the quarter circle, you get a “hit”; and if not, you get a “miss.” 
The approximate area of the quarter circle will be given by the 
number of hits divided by the number of points you chose. 

 Your function should repeat the process of counting 
hits and misses until at least 10,000 tries have been 
made, and the successive estimates of pi are within 
the prescribed accuracy. It should return the 
estimated value of pi.

 8 Your junior students have to study multiplication tables as part of 
their curriculum. Unfortunately, they don't know how to generate a 
multiplication table, given a positive integer less than or equal to 12. 
You can help them by writing a function which prints this for them. 
The function should read in any positive number less than 12 and 
print its multiplication table in the following format. 

  For example, if the value entered is 5, then the output should be:

  1 x 5 = 5

  2 x 5 = 10

  ......

  12 x 5 = 60 

 Hint

you could use the function rand (...) 
in this problem. 



  Chapter Objectives 

 This chapter discusses the nature, implementation, and behavior of 
user-defined functions in MATLAB: 

    ■   How to define a function  

  ■   How data are passed into a function  

  ■   How to return data, including multiple results  

  ■   How to include other functions not needed except as helpers to 
your own function   

 Writing a user-defined function allows you to isolate and package 
together a code block, so that you can apply that code block to dif-
ferent sets of input data. We have already made use of some built-in 
functions like  sin(...)  and  plot(...)  by calling them; this chap-
ter will deal with creating and using your own functions.    

 Functions 
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<Param 1> . . . .<Name>

<Item 2> <Item n><Item 1>

<Param 2>

<Results>

<Param n>

 Figure 5.1   Black box view of a function       

      5.1  Concepts: Abstraction and Encapsulation 

 A function is an implementation of procedural abstraction and encapsulation. 
Procedural abstraction is the concept that permits a code block that solves a 
particular sub-problem to be packaged and applied to different data inputs. 
This is exactly analogous to the concept of data abstraction we discussed in 
 Chapter   3    where individual data items are gathered to form a collection. We 
have already used a number of built-in procedural abstractions in the form 
of functions. All the mathematical functions that compute—for example, the 
sine of a collection of angles or the maximum value of a vector—are examples 
of procedural abstraction. They allow us to apply a code block about which 
we know nothing to data sets that we provide. To make use of a built-in 
function, all we have to do is provide data in the form the function expects 
and interpret the results according to the function’s specification. 

 Encapsulation is the concept of putting a wrapper around a collection 
that you wish to protect from outside influence. Functions encapsulate the 
code they contain in two ways: the variables declared within the function 
are not visible from elsewhere, and the function’s ability to change the 
values of variables (otherwise known as causing side effects) is restricted to 
its own code body.  

   5.2  Black Box View of a Function 

 The most abstract view of a function can be seen in  Figure   5.1   . It consists of 
two parts: the definition of the interface by which the user passes data items 
to and from the function, and the code block that produces the results 
required by that interface. A function definition consists of the following 
components: 

   ■   A name that follows the same syntactic rules as a variable name  
  ■   A set of 0 or more parameters provided to the function  
  ■   Zero or more results to be returned to the caller of the function   

 The basic operation of a function begins before execution of the function 
actually starts. If the function definition requires  n  parameters, the calling 
instructions first prepare  n  items of data from its workspace to be provided 
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to the function. These data are then passed to the function, the code body is 
executed, and the results are returned to the caller.   

 Template  5 . 1      General template for a function 

function <return info> <function name> (<parameters>) 
<documentation>
<code body> % must return the results

   5.3  MATLAB Implementation 

 In this section, first we consider the general template for implementing 
functions and then the MATLAB implementation of that template. 

   5.3.1  General Template 

 The general layout of a function definition is shown in Template  5 . 1 . The 
 <return info>  section for most functions involves providing the name(s) of 
the results returned followed by an = sign. If more than one result is to be 
returned, they are defined in a vector-like container. If nothing is to be returned 
from this function, both the result list and the = sign are omitted. The  <function 
name>  is a name with the same syntactic rules as a variable name and will be 
used to invoke the code body. The  <parameters>  section is a comma-separated 
list of the names of the data to be provided to the function. The <documentation> 
section is one or more lines of comments that describe what the function does 
and how to call it. These lines will appear in two situations: 

   ■   All the documentation lines up to the first non-document line are 
printed in the Command window when you type the following: 

>> help <function name> 

  ■   The first line is listed next to the file name in the Current Directory 
listing    

   5.3.2  Function Definition 

 In the MATLAB language, functions must be stored in a separate file located 
in a directory accessible to any script or function that calls it. The file 
containing the definition of a function named  function_name  must be 
 <function_name>.m . For the general user, the Current Directory is the normal 
place to store it. Listing  5 . 1  illustrates a typical MATLAB function called 
 cylinder  that consumes two parameters, the  height  and  radius  of a cylinder, 
and produces the return variable  volume .   

 In Listing  5 . 1 : 

   Line 1: The MATLAB function definition is introduced by the key 
word function, followed by the name of the return variable (if any) 
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and the = sign, then the name of the function and the names of the 
formal parameters in parentheses. All comments written 
immediately after the function header are available to the MATLAB 
Command window when you enter: 

>>help <function_name> 

 The first comment line also appears in the Current Directory 
window as an indication of the basic purpose of the function. It is a 
good idea to include in the comments a usage statement showing 
copy of the function header line, sometimes referred to as the 
Application Programmer Interface (API), to remind a user exactly 
how to use this function.  
  Line 3: Although encapsulation rules forbid access to the caller’s 
variables, the code body still has access to all built-in MATLAB 
variables and functions (e.g., pi, as used here).  
  Line 5: You must make at least one assignment to the result 
variable.  
  Line 6: Regrettably, the end statement is not required if there is only 
one function in the file; without it, the code body terminates at the 
end of the file. However, it must be present if there are other 
function definitions in the same file.   

 Try saving and testing the cylinder function in Exercise  5 . 1 .  

 Listing  5 . 1      Cylinder function 

1. function volume = cylinder(height, radius) 
% function to compute the volume of a cylinder
% volume = cylinder(height, radius)

2.     base = pi * radius^2 
3.     volume = base * height 
4. end 

 Exercise 5.1    Saving and testing the  cylinder  function 

 Enter the function definition from Listing  5 . 1  in the Text Editor and save it as 
 cylinder.m  in your Current Directory. Then enter the following experiments 
in the Interactions window. Notice that the first help line appears next to this 
file name in the Current Directory. 
>> help cylinder 
  function to compute the volume of a cylinder 
    volume = cylinder(height, radius) 
>> cylinder(1, 1) 
ans = 
    3.1416 
>>
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   5.3.3  Storing and Using Functions 

 All user-defined MATLAB functions must be created like scripts in an 
m-file. When the file is first created, it must be saved in an m-file with the 
same file name as the function. For example, the function in Listing  5 . 1  
named  cylinder  must be saved in a file named  cylinder.m . Once the file has 
been saved, you may invoke the function by entering its name and 
parameters of the right type and number in the Command window, in a 
script, or in other function definitions. If you do not specify an assignment 
for the result of the function call, it will be assigned to the variable  ans .  

   5.3.4  Calling Functions 

 When a function is defined, the user provides a list of the names of each 
data item expected to be provided by the caller. These are called the formal 
parameters. When this function is called, the caller must provide the same 
number of data values expected by the function definition. These are the 
actual parameters and can be generated in the following ways: 

   ■   Constants  
  ■   Variables that have been defined  
  ■   The result of some mathematical operation(s)  
  ■   The result returned from other functions   

 When the actual parameters have been computed,  copies of  their values are 
assigned as the values of the formal parameters the function is expecting. 

Values are assigned to parameters by 
position in the calling statement and 
function definition. 

 The process of copying the actual 
parameters into the formal parameters 
is referred to as “passing by value”—
the only technique defined in the 
MATLAB language for passing data 
into a function.    

 Once the parameter names have 
been defined in the function’s 
workspace, the function’s code body 

is executed, beginning with the first instruction. If return variables have 
been defined for the function, every exit from the code body must assign 
valid values for the results.  

   5.3.5  Variable Numbers of Parameters 

 Although the number of parameters is usually fixed, most languages, 
including MATLAB, provide the ability to deal with a variable number of 

 Some languages provide an alternative technique—“passing 
by reference”—whereby the memory location for the 
parameters is passed to the function while the values remain 
in the caller’s workspace. Syntactically, this is usually a bad 
thing, allowing deliberate or accidental assignments to “reach 
back” into the scope of the calling code and thereby perhaps 
causing undesirable side effects. However, restricting 
parameter access to passing by value can result in poor 
program performance. When a function needs access to 
large sets of data, consider improving the efficiency by using 
global variables. 

 Style Point  5 . 1    Parameter Passing 
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parameters, both incoming and returning. The built-in function  nargin  
computes the actual number of parameters provided by the user in the 
current function call. If the function is designed to make use of  nargin , the 
user calling this function can provide any values he deems important and 
allow the function to set default values for the unnecessary parameters. 

 Similarly, the function  nargout  computes the number of storage variables 
actually provided by the user. So if one or more of the results requires 
extensive computation or user interaction and the caller has not asked for 
that data, that computation can be omitted.  

   5.3.6  Returning Multiple Results 

 The MATLAB language is unique among programming languages in 
providing the ability to return more than one result from a function by 
name. The multiple results are specified as a “vector” of variable names, for 
example,  [area, volume] , as shown in Listing  5 . 2 . Assignments must be 
made to each of the result variables. However, the calling program is not 
required to make use of all the return values.  

 In Listing  5 . 2 : 

   Line 1: Multiple results to be returned are specified as a “vector” of 
variable names, each of which must be assigned from the code 
body.  
  Lines 2–3: Same as Listing  5 . 1   
  Line 4: Added to set the value of the second result.   

 Exercise  5 . 2  shows how to invoke a function that can return multiple results. 
Notice that the normal method to access the multiple answers is to put the 
names of the variable to receive the results in a vector. The names may be 
any legal variable name, and the values are returned in the order of the 
results defined. If you choose less than the full number of results (or none at 
all), the answers that are specified are allocated from left to right from the 
available results. As with parameter assignment, the results are allocated 
by position in these vectors. Although we called the variable v in the last 
test, it still receives the value of the first result,  area . If you really only want 

 Listing  5 . 2       cylinder  function with multiple results 

1. function [area, volume] = cylinder(height, radius) 
% function to compute the area and volume of a cylinder
% usage: [area, volume]=cylinder(height, radius)

2.     base = pi .* radius.^2; 
3.     volume = base .* height; 
4.     area = 2 * pi * radius .* height + 2 * base; 
5. end 
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the second result value, you must put either a  '~'  marker or a dummy 
variable name like  'junk'  in the place of any variable you wish to ignore. So 
this call: 

[~, v] = cylinder(1, 1); 

 will put the volume in the variable v.  

   5.3.7  Auxiliary Local Functions 

 Since the MATLAB language uses the name of the file to identify a function, 
every function should normally be saved in its own m-file. However, there 
are times when auxiliary functions (sometimes called “helper functions”) 
are needed to implement the algorithm contained in the main function in a 
file. If this auxiliary function is only used in the main function or its helpers, 
it can be written in the same file as its calling function after the definition of 
the main function. By convention, some people append the word  local_  to 
the name of local functions. 

 Scripts or functions that use the code in an m-file can reach only the 
first function. Other functions in the m-file, the auxiliary functions, can 
only be called from the first function or other auxiliary functions in the 
same file.  

   5.3.8  Encapsulation in MATLAB Functions 

 Encapsulation is accomplished in most modern languages, including 
MATLAB, by implementing the concept of variable scoping. In practice, this 
is achieved by allocating a separate workspace to each function. When 

 Exercise 5.2    Testing multiple returns 

 Adapt the original  cylinder  function as shown in Listing  5 . 2  and perform the 
following tests in the Command window: 

>> [a, v] = cylinder(1, 1) 

a = 
    6.2832 
v = 
    3.1416 
>> cylinder(1, 1) 
ans = 
    6.2832 
>> a = cylinder(1, 1) 
a = 
    6.2832 
>> v = cylinder(1, 1) 
v = 
    6.2832 
>>
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MATLAB is first started, a default workspace is created in which variables 
created in the Command window or by running scripts are stored. When a 
function is called, a fresh workspace is created (see Section  9 . 1 . 2  for details), 
and the actual parameter values are copied into the formal parameter names 
in that new workspace. When the function finishes, this operation is reversed. 
The returning parameters are copied into the variables provided by the caller 
in the previous workspace, and the function’s workspace is released. The 
Variables window always shows you the contents of the current workspace. 

 Variable scoping defines the places within your Command window, 
MATLAB system, and m-files to which instructions have access. It is related to 
the Variables window, which shows you your current workspace. When using 
the Command window or running a script and you access the value of a 
variable, the system will reach into your current workspace and then into the 
MATLAB system libraries to find its current value. This is referred to as Global 
Scope. When you run a function, its local variables, including the internal 
names of its parameters, are not included in your current workspace, and it 
does not look into your current workspace for values of variables it needs. This 
is referred to as Local Scope, wherein the variables within a function are not 
visible from outside and the function is unable to cause side effects by making 
assignments to variables in other workspaces except by returning results. 

 To illustrate variable scoping, do Exercise  5 . 3 .  

   5.3.9  Global Variables 

 Because MATLAB always copies the input data into the function’s workspace, 
there are occasions when it is very inefficient to pass large data sets into and 
out of a function. To avoid passing large amounts of data, we can use global 
variables. Global variables must be defined in both the calling script and the 
function using the key word global. For example, suppose we collect a large 

volume of data in a variable buffer and 
do not want to copy the whole buffer 
into and out of a function that processes 
that data. In this case, we declare the 
variable to be global in both the calling 
space and the called function by placing 
the following line of code before the 
variable is first used in both places: 

global buffer 

 The function will then be able to access 
and modify the values in buffer 
without having to pass it in and out as 
a parameter. This feature must be 
used with caution, however, because 

   1.   Before you include a function in a complex algorithm, you 
should always test its behavior in isolation in a script. This 
test script should validate not only the normal operation of 
the function, but also its response to erroneous input data it 
might receive.  

  2.   Although any legal  MATLAB  instruction is permitted within 
the code body of a function, it is considered bad form (except 
temporarily for debugging purposes) to display values in the 
Interactions window.  

  3.   We also actively discourage the use of the  input(...)  
function within the code body. If you need to input some 
values to test a function, do so from the Interactions window 
or a test script.   

 Style Points  5 . 2  
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any function with global access to data is empowered to change that data. In 
other words, the use of global data circumvents the natural MATLAB 
language’s encapsulation mechanisms.   

 Figure 5.2   Disk with holes       

  Solution:  

 Listing  5 . 3  shows the code that solves this problem.

In Listing  5 . 3 : 

   Lines 1–3: Set up the disk sizes. Notice that the script works fine with a 
vector of disk thicknesses to check the behavior as thickness varies.  

 Exercise 5.3    Observing variable scoping 

 Put a break point at Line 6 of your version of the code in Listing  5 . 2 , and then 
rerun the function by entering: 

>> [a, v] = cylinder(1, 1) 

 Notice that the logic stops at that break point and the Text Editor displays an 
arrow. The Workspace window shows you the values of  height ,  radius , and 
 base  but none of the variables you left in the workspace for the Interactions 
window. The function has no access to other workspaces.
Observe that as you step through the function, the variables appear in the 
Variables window and are updated. When you return from the cylinder 
function to display the results, the workspace for the function disappears. The 
calling environment has no access to the variables within the function.   

    5.4  Engineering Example—Measuring a Solid Object 

 Problem: 

 Consider the disk shown in  Figure   5.2   . It has a radius  R , height  h , and eight 
cylindrical holes each of radius  r  bored in it. This might be a component of a 
machine that must be painted and then assembled with other components. 
During the process of designing this machine, we may need to know the 
weight of this disk and the amount of paint required to finish it. The weight 
and the amount of paint for the machine is the sum of the values for each 
component. Since the weight of our disk is proportional to its volume and 
the amount of paint is proportional to its “wetted area,” we need the volume 
and area of this disk.  

 Write a script to compute the volume of the disk and its wetted area. 
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  Line 4: Area and volume of the large 
disk.  
  Line 5: Area and volume of one 
hole.  
  Line 6: Volume computation.  
  Line 7: The area computation.   

  Table   5.1    shows the results when 
this code is run. Notice that for thin 

disks, the area is smaller with the holes. However, as the thickness 
increases, the area with the holes is larger than without, as one would 
expect.             

 Listing  5 . 3      Volume and area of a disk 

1. h = 1:5; % set a range of disk thicknesses
2. R = 25; 
3. r = 3;

4. [Area Vol] = cylinder(h, R) % dimensions of large disk 
5. [area vol] = cylinder(h, r) % dimensions of the hole

% compute remaining volume
6. Vol = Vol - 8*vol 

% the wetted area is a little messier. If we total the
% large disk area and the areas of the holes, we get the
% wetted area of the curved edges inside and out.
% However, for each hole, the top and bottom areas have
% been included not only in the top and bottom of the big
% disk, but also as the contributions of each hole.
% From the sum of the top areas, we therefore have to
% remove 32 times the hole top area

7. Area = Area + 8*(area - 2*2*pi*r.^2) 

 Table 5.1   Volume and area results 
  Area = 4,084 4,241 4,398 4,555 4,712  

  Vol = 1,963 3,927 5,890 7,854 9,817  

  area = 75 94 113 132 151  

  vol = 28 57 85 113 141  

  Vol = 1,737 3,474 5,212 6,949 8,687  

  Area = 3,782 4,090 4,398 4,706 5,014  

 If you experiment with this script a little, you will discover 
the power of vector processing for rapidly determining the 
sensitivity of results to different parameters. The mathematics 
may not work if you provide vectors for more than one of 
the given data items. However, vectors supplied for each of 
them in turn provide insight into the sensitivity of the results 
to each parameter. 

 Hint  5 . 1  
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     Chapter Summary 

  This chapter showed you how to encapsulate a code block to allow it to be reused:  

   ■   Functions are defined in a file of the same name using the key word 
function to distinguish them from scripts  

  ■   Parameters are copied in sequence into the function and given the 
names of the formal parameters  

  ■   Results are returned to the caller by assigning value(s) to the return 
variable(s)  

  ■   Variables within the function can be accessed only in the function’s 
code block unless they are declared global  

  ■   Helper functions accessible only to functions within the same file 
may be added below the main function and otherwise obey the 
same rules as the main function      

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in 

This Section 

( )  Used to identify the formal and actual parameters 
of a function 

 5.3.2, 5.3.4 

  help   Invokes help utility  5.3.1 

  function   Identifies an m-file as a function  5.3.2 

  nargin   Determines the number of input parameters actually 
supplied by a function’s caller 

 5.3.4 

  nargout   Determines the number of output parameters actually 
requested by a function’s caller 

 5.3.4 

  global <var>   Defines the scope of the variable  <var>  as globally 
accessible 

 5.3.8 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    All data used by a function must be passed in as parameters to the 
function.   

   2.    The name of the first function in an m-file must match the name of 
the file containing its definition.   

   3.    The first documentation line appears in the Current Directory listing.   
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  Programming Projects 

   1.    Write a function called checkPrime that takes in a number, and 
checks whether it is prime or not. A number is prime if it has only 1 
and itself as its factors. You may assume that number entered is 

positive. Your function should return a 
logical value, true or false.

For example: 
checkPrime(5) should return true. 
checkPrime(24) should return false. 

   2.    Write and test the code for the function mysteryFunction that 
consumes a vector, V, and produces a new vector, W, of the same 
length where each element of W is the sum of the corresponding 
element in V and the previous element of V. Consider the previous 
element of V(1) to be 0.

  For example: 

     myster yFunction( 1:8 ) should return
[1 3 5 7 9 11 13 15] 

     myster yFunction([1:6].^2) should return
[1 5 13 25 41 61] 

 Hint: 

 mod(x, y)  gives the remainder when  x  is divided 
by  y .

   4.    Functions must consume at least one parameter.   

   5.    The calling code must provide assignments for every result returned 
from a function.   

   6.    The names of auxiliary functions must begin with local_.   

  Fill in the Blanks  

   1.    The file containing the definition of a function named function_name 
must be ___________   

   2.    All the mathematical functions that compute are examples 
of ___________.   

   3.    The list of the names of each data item when a function is defined is 
called the ___________. When this function is called, the caller must 
provide the same number of data values expected by the function 
definition, which is known as the ___________.   

   4.    _____________ describes the situation where the variables within a 
function are not visible from outside, and the function is unable to 
cause side effects by making assignments to outside variables.   

   5.    Calling code can only reach the ___________ function in an m-file. 
Other functions in the m-file can only be called from the 
_____________________ or _____________________________.    
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   3.    Coming off a respectable 7–6 record last year, your football team is 
looking to improve on that this season. They have contacted you 
and asked for your help projecting some of the scenarios for their 
win–loss record. They want you to write a function called 
 teamRecord  that takes in two parameters— wins , and  losses , and 
returns two values— season  and  wPercentage . Season should be a 
logical result that is true for a winning season.  wPercentage  is the 
percentage of games won (ranging from 0 to 100).

  For example: 

[season wPercentage] = teamRecord(3, 9) 
should return season = false, wPercentage = 25 

[season wPercentage] = teamRecord(10, 2) 
should return season = true, wPercentage = 83.3 

   4.    Write a function called classAverage that takes in an array of 
numbers and, after normalizing the grades in such a way that 
the highest corresponds to 100 (see  Chapter   3   , Problem 5), 
returns the letter grade of the class average. The grade ranges 
are as follows: 

    average>90 =>     A 
     80<=average<90 => B 
     70<=average<80 => C 
     60<=average<70 => D 
     average<60     => F 

   For example: 

    classAverage( [7 0 87 95 80 80 78 85 90 66 
89 89 100] ) should return B 

    classAverage( [50 90 61 82 75 92 81 76 87 41 
                       31 98] ) should return C 

    classAverage( [10 10 11 32 53 12 34 74 31 30 
                       26 22] ) should return F 

   5.    Given an array of numbers that could be negative, write a 
function NegPos(a) to calculate and return the sum and average of 
the positive and negative numbers separately in the single 
dimensional array, a. In order to test your understanding of class 
concepts, implement the NegPos(a) function using iteration. You 
may not use the built-in functions sum(...), find(...), or 
mean(...) in your solution.         

   6.    Write and test the code for the function factFun that allows the 
user to give a vector V of N positive integers and produces a new 
vector, F, of the same length where each element of F is the 
factorial of the corresponding element in V. For example, 
factFunction(1 4 2 8) should produce [1 24 2 40320]. If the user 
accidentally inputs a negative number, an appropriate message 
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should be displayed and the function should continue working on 
the remaining numbers.         

   7.    Write a function called largest3 that will take in 3 numbers and 
returns the largest value and an index  showing which parameter it 
was. You may not use the built-in max() function. 

     For example:

  largest3(1,3,5) should return 5 and 3
  largest3(8,9,4) should return 9 and 2

   8.    Write a function called  sumAndAverage . It should take in an array of 
numbers and return the sum and average of the array in that order. 

  For example: 

   sumAndAverage([3 2 3 2]) should return 10 and 2.5 

      sumAndAverage([5 -5 2 8 0]) should return 10 and 2 
      sumAndAverage([]) should return 0 and 0    

   9.    You are already familiar with the logical operators && (and) 
and || (or), as well as the unary negation operator ~(not). In a 
weakly typed language such as MATLAB, the binary states  true  
and  false  could be equivalently expressed as a 1 or a 0, 
respectively. Let us now consider a ternary number system, 
consisting of the states  true (1),  maybe (2), and  false(0) . The truth 
table for such a system is shown below. Implement the truth table 
by writing the functions  f=tnot(x), f=tand(x,y) , and  f=tor(x,y) . 
You may not assume that only valid input numbers will be entered. 

    x   y   tnot(x)  tand(x,y)  tor(x,y)   

   1 1 0 1 1 

  1 0 0 0 1 

  1 2 0 2 1 

  0 1 1 0 1 

  0 0 1 0 0 

  0 2 1 2 0 

  2 1 2 2 1 

  2 0 2 2 0 

  2 2 2 2 2 

   10.    Write a function called transpose(A). This particular function 
should take in a N3M array, A, find the transpose of A, and store in 
the array transA. 

   For example:         

    1 2 3 4
   A = 5 6 7 8 ;
    1 4 5 6
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  then 

     

transA =

 1 5 1
     2 6 4
     3 7 5
     4 8 6

   11.    You are playing a game where you roll a die 10 times. If you roll a 5 
or 6 seven or more times, you win 2 dollars; four or more times, you 
win 1 dollar; and if you roll a 5 or 6 three or less times, you win no 
money. Write a function called diceGame that takes in a vector 
representing the die values and returns the amount of money won. 

  For example: 

diceGame([5 1 4 6 5 5 6 6 5 2]) should return 2 
diceGame([2 4 1 3 6 6 6 4 5 3]) should return 1 
diceGame([1 4 3 2 5 3 4 2 6 5]) should return 0 

   Note:  This function should work for any length vector.       
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  Chapter Objectives 

 This chapter discusses the nature, implementation, and behavior of 
character strings in the MATLAB language: 

    ■   The internal workings of character strings as vectors  

  ■   Operations on character strings  

  ■   Converting between numeric and character string representations  

  ■   Input and output functions  

  ■   The construction and uses for arrays of strings   

 To this point in the text, we have seen the use of character strings 
that we can store in variables and display in the Command window. 
In reality, we have already seen a significant amount of character 
manipulation that we have taken for granted. The m-files we use to 
store scripts and functions contain lines of legible characters sepa-
rated by an invisible “new-line” character.   

  Introduction 

 This chapter presents the underlying concept of character storage 
and the tools MATLAB provides for operating on character strings. 
We need to distinguish two different relationships between characters and 
numbers: 

    1.   Individual characters have an internal numerical representation: the visible 
character shapes we see in windows are created as a collection of white and 
black dots by special software called a character generator. Character 
generators allow us to take the underlying concept of a character—say, “w”— 
and “draw” that character on screen or paper in accordance with the rules 
defined by the current font. A complete study of fonts is beyond the scope of 
this discussion, but we need to understand how computers in general and the 
MATLAB language in particular represent that “underlying concept” of a 
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character. This is achieved by representing each individual character by its 
numerical equivalent. Not long ago, there were many different representations. 
Today, the dominant representation is the one defined by the American 
Standard Code for Information Interchange (ASCII). In this representation, the 
most common uppercase and lowercase characters, numbers, and many 
punctuation marks are represented by numbers between 0 and 127. A 
complete listing of the first 255 values is included in  Appendix   B   .  

   2.   Strings of characters represent numerical values to the user: numerical values 
are stored in a special, internal representation for efficient numerical 
computation as described in  Appendix   C   . However, whenever we need to see 
the value of that number in the Command window, that internal 
representation is automatically converted by MATLAB into a character string 
representing its value in a form we can read. For example, if the variable  a  
contained the integer value 124, internally that number could be stored in a 
single byte (8 bits) with a binary value of 011111100—not a very meaningful 
representation, but efficient internally for performing arithmetic and logical 
operations. For the user to understand that value, internal MATLAB logic must 
convert it to the three printable characters:  '124' . Similarly, when we type in 
the Command window or use the  input(...)  function, the set of characters 
that we enter is automatically translated from a character string into the 
internal number representation.     

      6.1   Character String Concepts: Mapping Casting, 
Tokens, and Delimiting 

 Here we see the MATLAB language tools that deal with the first relationship 
between characters and numbers: the numerical representation of individual 
characters. 

 The basic idea of mapping is that it defines a relationship between two 
entities. The most obvious example of mapping is the idea that the function 
 f(x) = x 2   defines the mapping between the value of  x  and the value of  f(x) . 
We will apply that concept to the process of translating a character (like 
“A”) from its graphical form to a numerical internal code. Character 
mapping allows each individual graphic character to be uniquely 
represented by a numerical value. 

 Casting is the process of changing the way a language views a piece of 
data without actually changing the data value. Under normal circumstances, 
a language like MATLAB automatically presents a set of data in the “right” 
form. However, there are times when we wish to force the language to 
treat a data item in a specific way. For example, if we create a variable 
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containing a character string, MATLAB will consistently display it as a 
character string. However, we might want to view the underlying 
numerical representation as a number, in which case we have to cast the 
variable containing the characters to a numerical data type. MATLAB 
implements casting as a function with the name of the data type expected. 
In essence, these functions implement the mapping from one character 
representation to another. 

 A token is a collection of characters to which we may wish to attach 
meaning. Obvious examples of tokens are the name of a MATLAB variable 
or the characters representing the values of a number to be used in an 
expression. 

 A delimiter is a character used to separate tokens. The space character, 
for example, can delimit words in a sentence; punctuation marks provide 
additional delimiters with specific meanings.  

   6.2  MATLAB Implementation 

 When you enter a string in the Command window or the editor, MATLAB 
requires that you delimit the characters of a string with a single quote mark 
( ' ). Note that you can include a single quote mark within the string by 
doubling the character. For example, if you entered the following in the 
Command window: 

>>refusal = 'I can''t do that!' 

 The result displayed would be 

refusal = I can't do that 

 Exercise  6 . 1  illustrates the concept of casting between data types  char  and 
 double .  

 In Exercise  6 . 1  the casting function  uint8(...)  takes a character or 
character string and changes its representation to a vector of the same 
length as the original string. Then the casting function  char(...)  takes a 
number or vector and causes it to be presented as a string. The casting 
function  double(...)  appears to act in the same way as  uint8(...) , but it 
actually uses 64 bits to store the values. Single quotes delimit a string to be 
assigned to the variable  fred . Notice that when a string is presented as a 
result, the delimiters are omitted. When you apply arithmetic operations to 
a string, the operation is illegal on characters; therefore, an implicit casting 
to the numerical equivalent occurs. 

 You can perform any mathematical operation on the vector and use the 
cast,  char(...) , to cast it back to a string. 
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   6.2.1  Slicing and Concatenating Strings 

 Strings are internally represented as vectors; therefore, we can perform all 
the usual vector operations on strings. Try it in Exercise  6 . 2 .  

 Exercise 6.1    Character casting 

 Enter the following in the Command window and study the results: 

>> uint8('A') % uint8 is an integer data type 
% with values 0 - 255 

ans = 
65

>> char(100) % char is the character class 
ans = 
d
>> char([97 98 99 100 101]) 
ans = 
abcde
>> double('fred') 
ans = 

102 114 101 100 
>> fred = 'Fred' 
fred = 
Fred
>> next = fred + 1 
next = 

71 115 102 101 
>> a = uint8(fred) 
a = 

70 114 101 100 
>> name = char(a + 1) 
name = 
Gsfe

 Exercise 6.2    Character strings 

>> first = 'Fred'
first =
Fred
>> last = 'Jones' 
last = 
Jones
>> name = [first, ' ', last] 
name = 
Fred Jones 
>> name(1:2:end) 
ans = 
Fe oe 
>> name(end:-1:1) 
ans = 
senoJ derF 
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   6.2.2  Arithmetic and Logical Operations 

 Mathematical operations can be performed on the numerical mapping of a 
character string. If you do not explicitly perform that casting first, MATLAB 
will do the cast for you and create a result of type double (not usually 
suitable for character values). Note that  char('a' + 1 ) returning  'b'  is an 
accident of the character type mapping. 

 Logical operations on character strings are also exactly equivalent to 
logical operations on vectors, with the same automatic casting. Exercise  6 . 3  
gives you an opportunity to try it yourself.    

   6.2.3  Useful Functions 

 The following functions are useful in analyzing character strings: 

   ■    ischar(a)  returns  true  if  a  is a character string  
  ■    isspace(ch)  returns  true  if the character  ch  is the space character     

 Exercise 6.3    Character string logic 

>> n = 'fred' 
n = 
fred
>> n > 'g' 
ans = 
0  1  0  0 

   6.3  Format Conversion Functions 

 Now we turn to the second relationship between characters and numbers: 
using character strings to represent individual number values. We need 
two separate capabilities: converting numbers from the efficient, internal 
form to legible strings and converting strings provided by users of MATLAB 
into the internal number representation. MATLAB provides a number of 
functions that transform data between string format and numerical format. 

   6.3.1  Conversion from Numbers to Strings 

 Use the following built-in MATLAB functions for a simple conversion of a 
single number,  x , to its string representation: 

   ■    int2str(x)  if you want it displayed as an integer value  
  ■    num2str(x, n)  to see the decimal parts; the parameter  n  represents 

the number of decimal places required—if not specified, its default 
value is 3   
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 Frequently you need better control over the data conversion, and the 
function  sprintf(...)  provides fine-grained control. The MATLAB version 
of  sprintf(...)  is very similar to the C / C++ implementation of this 
capability. The first parameter to  sprintf  is a format control string that 
defines exactly how the resulting string should be formatted. A variable 
number of value parameters follow the format string, providing data items 
as necessary to satisfy the formatting. 

 Basically the format string contains characters to be copied to the result 
string; however, it also contains two types of special entry introduced by 
the following two special characters: 

   ■   The  '%'  character introduces a conversion specification, indicating 
how one of the value parameters should be represented. The most 
common conversions are  %d  (integer),  %f  (real),  %g  (general),  %c  
(character), and  %s  (string). A number may be placed immediately 
after the  %  character to specify the minimum number of characters 
in the conversion. If more characters than the specified minimum 
are required to represent the data, they will be added. In addition, 
the  %f  and  %g  conversions can include  '.n'  to indicate the number 
of decimal places required. If you actually want a  '%'  character, it 
must be doubled, for example,  '%%' . MATLAB processes each of the 
value parameters in turn, inserting them in the result string 
according to the corresponding conversion specification. If there are 
more parameters than conversion specifications in the format 
control string, the format control string is repeated.  

  ■   The  '\'  character introduces format control information, the most 
common of which are  \n  (new line) and  \t  (tab). If the  '\'  character 
is actually wanted in the result string, it should be doubled, for 
example,  '\\' .   

 Consider the following statements: 

A = [4.7 1321454.47 4.8]; 
index = 1; 
v = 'values';
str = sprintf('%8s of A(%d) are \t%8.3f\t%12.4g\t%f\n'...

v, index, A(index,1), A(index,2), A(index,3)) 
str = 
      values of A(1) are  4.700       1.321e+006       4.800000 

 The first conversion,  '%8s' , took the value of the first parameter,  v , allowed 
eight spaces for its conversion, and copied its contents to the result. Since this 
was a string conversion, the characters were merely copied. The characters 
 ' of A('  were then appended to the output string. The second conversion, 
 '%d' , took the value of the second parameter,  index , and converted it as an 
integer with the minimum space allocated. The characters  ') are'  were then 
appended to the output string, followed by a tab character that inserted 
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enough spaces to bring the next characters to a column that is an even 
multiple of eight. The following three conversions appended the next three 
value parameters converted with three decimal places, a general conversion 
with at least 12 spaces and 4 decimal places, and the default numerical 
conversion. Finally, a new line character was inserted into the string.  

   6.3.2  Conversion from Strings to Numbers 

 Conversion from strings to numbers is much messier, and it should be 
avoided if possible. When possible, allow MATLAB’s built-in function 
 input(...)  to do the conversion for you. If you have to do the conversion 
yourself, you can either split a string into tokens and then convert each 
token with the  str2num(str)  function or, if you are really desperate and 
using licensed MATLAB software, you can use the function  sscanf(...) . 

 The function  input(str)  presents the string parameter to the user in the 
Command window and waits for the user to type some characters and the 
e key, all of which are echoed in the Command window. Then it parses 
the input string according to the following rules: 

   ■   If the string begins with a numerical character, MATLAB converts 
the string to a number  

  ■   If it begins with a non-numeric character, MATLAB constructs a 
variable name and looks for its current value  

  ■   If it begins with an open bracket,  '[' , a vector is constructed  
  ■   If it begins with the single quote character, MATLAB creates a 

string  
  ■   If a format error occurs, MATLAB repeats the prompt   

 This behavior can be modified if  's'  is provided as the second parameter, 
 input(str, 's') , in which case the complete input character sequence is 
saved as a string. Exercise  6 . 4  demonstrates a number of capabilities of the 
 input(...)  function.  

 In Exercise  6 . 4 , first we define the variable  fred . Then MATLAB attempts 
to interpret the result either as a number or as the name of an existing 
variable. Since the variable  fred  was defined (although not a number), it 
was assigned correctly to the variable  n . MATLAB will distinguish between 
a variable and a number input by the first digit. Here, the information 
entered was an illegal variable name beginning with a number. When 
 input(...)  detects an error parsing the text entered, it automatically resets 
and requests a new entry. 

 On the second attempt, although this is a correctly formed variable name, 
its value is not known. On the third attempt, the  input(...)  function 
actually treats the string entered as an expression, to be evaluated by the 
same process as MATLAB parses the Command window entries. 
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 If you actually want a string literal entered, it must be enclosed in the 
string delimiters. If you are sure you want a string literal entered, the second 
parameter,  's' , forces MATLAB to return the string entered without 
attempting to parse it. 

 The function  str2num(str)  consumes a token (string) representing a single 
numerical value and returns the numerical equivalent. Do Exercise  6 . 5  to 
understand this function.  

 Exercise 6.4    The  input(...)  function 

>> fred = 'Fred';
>> n = input( 'Enter a number: ')
Enter a number: 5 
n = 

5
>> n = input( 'Enter a number: ')
Enter a number: fred 
n = 
Fred
>> n = input( 'Enter a number: ')
Enter a number: 1sdf 
??? 1sdf
Error: Missing MATLAB operator.
Enter a number: s1df 
??? Error using ==> input
Undefined function or variable 's1df'. 
Enter a number: char(fred - 2) 
n = 
Dpcb
>> n = input( 'Enter a number: ')
Enter a number: 'ABCD' 
n = 
ABCD
>> n = input( 'Enter a number: ', 's' ) 
Enter a number: ABCD 
n = 
ABCD

 Exercise 6.5    Converting strings to numbers 

>> value = str2num('3.14159') 
value = 
       3.1416 
Now, to check the class of the variable value, either look in the 
Variables window or enter the whos command: 
>> whos 

Name        Size          Bytes Class         Attributes 
value       1x1              8 double 

>>

 We observe that the function has indeed interpreted the string as its numerical 
value. 
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 The function  sscanf(...)  was designed to extract the values of variables 
from a string, but is really difficult to use. The author recommends the use 
of  strtok(...)  followed by  str2num(...)  as necessary to accomplish the 
same goal in a more controlled manner.   

   6.4  Character String Operations 

 As with the string-to-number conversions, input and output in the 
Command window can be accomplished with simple functions that have 
little flexibility or with complex functions that have better control. 

   6.4.1  Simple Data Output: The disp(. . .) Function 

 We have already seen the use of the  disp(...)  function to present data in 
readable form in the Intractions window. As the exercises indicate, it can 
present the values of any variable, regardless of type, or of strings 
constructed by concatenation. Note, however, that an explicit number 
conversion is required to concatenate variables with strings. Try 
Exercise  6 . 6 . 

 Note that although you can concatenate strings for output, conversion 
from the ASCII code is not automatic; the second result produced a character 
whose ASCII code is 4. You must use the simple string conversion functions 
to enforce consistent information for concatenation.   

   6.4.2  Complex Output 

 The function  fprintf(...)  is similar to  sprintf(...) , except that it prints 
its results to the Command window instead of returning a string. 
 fprintf(...)  returns the number of characters actually printed. Exercise  6 . 7  
demonstrates this.  

   6.4.3  Comparing Strings 

 Since strings are readily translated into vectors of numbers, they may be 
compared in the obvious way with the logical operators we used on 
numbers. However, there is the restriction that either the strings must be 

 Exercise 6.6    The  disp(...)  function 

>> a = 4; 
>> disp(a) 

4
>> disp(['the answer is ', a]) 
the answer is 
>> disp(['the answer is ', int2str(a)]) 
the answer is 4 
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of the same length or one of them must be of length 1 before it is legal to 
compare them with these operators. To avoid this restriction, MATLAB 
provides the C-style function  strcmp(<s1>, <s2>)  that returns  true  if the 
strings are identical and  false  if they are not. 

 Unfortunately, this is not quite the same behavior as the C version, which 
does a more rigorous comparison returning −1, 0, or 1. You can try a 
character string comparison in Exercise  6 . 8 .     

 Exercise 6.7     fprintf(...)  and  sprintf (. . .) 

>> a = 42; 
>> b = 'fried okra'; 
>> n = fprintf( 'the answer is %d\n cooking %s', ... 

a,            b); 
the answer is 42 
cooking fried okra 
n = 

37
>> s = sprintf( 'the answer is %d\n cooking %s\n', ... 

a,           b) 
s = 
the answer is 42 
cooking fried Okra 

>> str = input( 'Enter the data: ', 's');
Enter the data: 42 3.14159 -1 
A = sscanf( str,'%f') 
A = 

42.0000
3.1416

-1.0000
>>

 Exercise 6.8    Character string comparison 

>> 'abcd' == 'abcd' 
1     1     1     1 

>> 'abcd' == 'abcde' 
??? Error using ==> eq
Array dimensions must match for binary array op.
>> strcmp('abcd', 'abcde') 
ans = 

0
>> strcmp('abcd', 'abcd') 
ans = 

1
>> 'abc' == 'a' 
ans = 

1     0     0 
>> strcmpi('ABcd', 'abcd') 
ans = 

1
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 In Exercise  6 . 8 , we see that strings 
of the same length compare exactly to 
vectors returning a logical vector 
result. You cannot use the equality 
test on strings of unequal length. 
 strcmp(...)  deals gracefully with 
strings of unequal length. As with 
vectors, the equality test works if one 
of the inputs is a single character. For 
case-independent testing, use 
 strcmpi(...) .   

 The  if  statement uses a logical expression as its controlling 
test; therefore, it is bound by the same comparison rules 
as those applied to vectors. Two strings being compared 
must be of the same length, and all of the comparisons 
must match to result in a logical  true . Frequently, we 
expect the  if  statement to compare strings of unequal 
length. However, this will cause an error whenever two 
strings of unequal length are compared (unless one string 
is just one character). You should use the  switch  
statement, which will correctly compare strings of unequal 
length in the case tests. 

 Common Pitfalls  6 . 1  

 Exercise 6.9    Character string arrays 

>> v = ['Character strings having more than' 
'one row must have the same number ' 
'of columns just like arrays!      '] 

v = 
Character strings having more than
one row must have the same number
of columns just like arrays!
>> v = [' MATLAB gets upset'

'when rows have'
'different lengths']

??? Error using ==> vertcat
All rows in the bracketed expression must have the
same number of columns.

>>eng=char('Timoshenko','Maxwell','Mach','von Braun') 
eng = 
Timoshenko
Maxwell
Mach
von Braun 
>> size(eng) 
ans = 

4    10 

   6.5  Arrays of Strings 

 Since a single character string is stored as a vector, it seems natural to 
consider storing a collection of strings as an array. The most obvious way to 
do this, as shown in previous examples, has some limitations, for which 
there are nice, tidy cures built into the MATLAB language. Consider the 
example shown in Exercise  6 . 9 . Character arrays can be constructed by 
either of the following: 

   ■   As a vertical vector of strings, all of which must be the same 
length  
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  ■   By using a special version of 
the  char( &)  cast function that 
accepts a variable number of 
strings with different lengths, 
pads them with blanks to 
make all rows the same length, 
and stores them in an array of 
characters       

 Trying to concatenate strings of unequal length vertically 
into column arrays of strings will cause errors because the 
vertical concatenation must use rows of equal length. Use 
the version of the  char(...)  function that pads the strings 
with spaces. 

 Common Pitfalls  6 . 2  

   6.6  Engineering Example—Encryption 

  The Problem 

 As public access to information becomes more pervasive, there is increasing 
interest in the use of encryption to protect intellectual property and private 
communications from unauthorized access. The following discussion is 
based on no direct knowledge of the latest encryption technology. 
However, it illustrates a very simple approach to developing an algorithm 
that is immune to all but the most obvious, brute-force code-breaking 
techniques.  

  Background 

 Historically, simple encryption has been accomplished by substituting one 
character for another in the message, so that  'Fred'  becomes  'Iuhg'  when 
substituting the letter three places down the alphabet for each letter in the 
message. More advanced techniques use a random letter selection to 
substitute new letters. However, any constant letter substitution is vulnerable 
to elementary code-cracking techniques based on the frequency of letters in 
the alphabet, for example.  

  The Solution 

 We propose a simple algorithm where a predetermined random series is 
used to select the replacement letters. Since the same letter in the original 
message is never replaced by the same substitute, no simple language 
analysis will crack the code. The  rand(...)  function is an excellent source 
for an appropriate random sequence. If the encryption and decryption 
processes use the same value to seed the generator, the same sequence of 
apparently random (pseudo-random) values will be generated. 

 Since the seed can take on 2 31 –2 values, it is virtually impossible to 
determine the decryption without knowing the seed value. The seed (i.e., the 
decryption key) can be transmitted to anyone authorized to decrypt the 
message by any number of ways. Furthermore, since there are abundant 
different techniques for generating pseudo-random sequences, the specific 
generation technique must be known in addition to the seed value for 
successful decryption. Listing  6 . 1  shows the code for encrypting and 
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 Listing  6 . 1      Encryption exercise 

 1. disp( 'original text')
 2. txt = [ 'For example, consider the following:' 13 ... 
 3. 'A = [4.7 1321454.47 4.8];' 13 ... 
 4. 'index = 1;' 13 ... 
 5. 'v = ''values'';' 13 ... 
 6. 'str = sprintf(''%8s of A(%d) are \t%8.3f ' 13 ... 
 7. ' v, index, A(index,1) ' 13 ... 
 8. 'str = ' 13 ... 
 9. ' values of A(1) are 4.700' 13 ... 
10. 'The first conversion, ''%8s'', took the value' ... 
11. ' of the first ' ... 
12. 'parameter, v, allowed 8 spaces. ' 13 ] 

% % encryption section
13. rand( 'state', 123456) 
14. loch = 33; 
15. hich = 126; 
16. range = hich+1-loch; 
17. rn = floor( range * rand(1, length(txt) ) ); 
18. change = (txt>=loch) & (txt<=hich); 
19. enc = txt; 
20. enc(change) = enc(change) + rn(change); 
21. enc(enc > hich) = enc(enc > hich) - range; 
22. disp( 'encrypted text')
23. encrypt = char(enc) 

% % good decryption
24. rand( 'state', 123456); 
25. rn = floor( range * rand(1, length(txt) ) ); 
26. change = (encrypt>=loch) & (encrypt<=hich); 
27. dec = encrypt; 
28. dec(change) = dec(change) - rn(change) + range; 
29. dec(dec > hich) = dec(dec > hich) - range; 
30. disp( 'good decrypt');
31. decrypt = char(dec) 

    % % bad seed
32. rand( 'seed', 123457); 
33. rn = floor( range * rand(1, length(txt) ) ); 
34. change = (encrypt>=loch) & (encrypt<=hich); 
35. dec = encrypt; 
36. dec(change) = dec(change) - rn(change) + range; 
37. dec(dec > hich) = dec(dec > hich) - range; 
38. disp( 'decrypt with bad seed')
39. decrypt = char(dec) 

% % different generator
40. rand('seed', 123456) 
41. rn = mod(floor( range * abs(randn(1, length(txt) ))/10 ),  ... 
42.      range); 
43. change = (encrypt>=loch) & (encrypt<=hich); 
44. dec = encrypt; 
45. dec(change) = dec(change) - rn(change) + range; 
46. dec(dec > hich) = dec(dec > hich) - range; 
47. disp( 'decrypt with wrong generator')
48. decrypt = char(dec) 
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decrypting by this technique and two attempts to decrypt—once with the 
wrong key and once with the wrong generator.  

 In Listing  6 . 1 : 

   Lines 2–12: This is the original text taken from earlier in this chapter. 
Multiple lines of characters can be concatenated as shown. The 
number 13 inserted in the string is the numerical equivalent of the new 
line escape sequence,  '\n' .  

  Line 13: Seeds the random generator with a known value.  

  Lines 14–16: Set the upper and lower bounds and the range of the 
characters we will convert. This range excludes 32, the space 
character, and 13, the new line character. This choice was deliberate—
it leaves the encrypted text with the appearance of a character 
substitution algorithm since all the characters are printable, and seem 
to be grouped in words.  

  Line 17: Generates the random values between 0 and  range-1 .  

  Line 18: Identifies the indices of the printable characters.  

  Line 19: Makes a copy of the original text.  

  Line 20: Adds the random offsets to those characters we intend to 
change.  

  Line 21: If the addition pushes a character value above the maximum 
printable character, this brings it back within range.  

  Lines 22–23: Display the encrypted text. Notice that no two characters 
of the original text are replaced by the same character.  

  Lines 24–27: Begin the decryption by seeding the generator with
the same value, creating the same random sequence, finding the 
printable characters, and copying the original file to the decrypt 
string.  

  Lines 28–29: We must subtract the random sequence from the 
encrypted string and correct for the underflow. However, there 
are some numerical issues involved. It is best to add the  range  
value to all the letters while subtracting the random offsets, and then 
bring back those values that remain above the highest printable 
character.  

  Lines 30–31: Display the decrypted values.  

  Lines 32–39: Attempt to decrypt with the same code but a bad seed.  

  Lines 40–48: Attempt to decrypt with the right seed but a different 
generator—in this case, MATLAB’s normal random generator limited to 
positive values within the letter range of interest.  

   Table   6.1    shows the output from this encryption exercise.        
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 Table 6.1   Encryption exercise results 

original text

txt = 

For example, consider the following: 

A = [4.7 1321454.47 4.8];

encrypted text encrypt = 

@;J _a,Q/V_Q X/|IW?*q %;{ $Ctr:$&r3> 

5 - v$zh uvqzmE@P(N Bh}.H

good decrypt 

decrypt = 

For example, consider the following: 

A = [4.7 1321454.47 4.8];

decrypt with bad seed 

decrypt = 

tDQ <6VfMiS^ }1FI92/P c'@ eYrW%Q^2t+ 

6 L 4x5> B$rQ4XHpG# G;*<r 

decrypt with wrong generator 

decrypt = 

>1E o-P:'P=p :xLjV+bi {!d 3)[Az$~c7<

' l fny& tHWB Vve6o 

     Chapter Summary 

  This chapter discussed the nature, implementation, and behavior of character 
strings. We learned the following:  

   ■   Character strings are merely vectors of numbers that are presented 
to the user as single characters  

  ■   We can perform on strings the same operations that can be 
performed on vectors; if mathematical operations are 
performed, MATLAB first converts the characters to double 
values  

  ■   We can convert between string representations of numbers and the 
numbers themselves using built-in functions  

  ■   MATLAB provides functions that convert numbers to text strings 
for presentation in the Command window  

  ■   Arrays of strings can be assembled using the  char(...)  function    
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  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    Casting changes the value of a piece of data.   

   2.    The ASCII code maps individual characters to their internal 
numerical representation.   

   3.    Because the single quote mark ( ' ) delimits strings, you cannot use it 
within a string.   

   4.    If you attempt mathematical operations on a character string, 
MATLAB will throw an error.   

  Special Characters, Reserved Words, and Functions 

 Special Characters,

Reserved Words,

and Functions  Description 

 Discussed in

This Section 

'...'  Encloses a literal character string  6.2 

  char(...)   Casts to a character type  6.2, 6.5 

  disp(...)   Displays matrix or text  6.4.1 

  double(a)   Casts to type  double   6.2 

  fprintf(...)   Prints formatted information  6.4.2 

  input(...)   Prompts the user to enter a value  6.3.2 

  int2str(a)   Converts an integer to its numerical
representation 

 6.3.1 

  ischar(ch)   Determines whether the given object is of
type  char  

 6.2.3 

  isspace(a)   Tests for the space character  6.2.3 

  num2str(a,n)   Converts a number to its numerical representation 
with  n  decimal places 

 6.3.1 

  sscanf(...)   Formatted input conversion  6.3.2 

  sprintf(...)   Formats a string result  6.3.1 

  str2num(...)   Convert a string to its numerical equivalent  6.3.2 

  strcmp(s1, s2)   Compares two strings; returns  true  if equal  6.4.3 

  strcmpi(s1, s2)   Compares two strings without regard to case; 
returns  true  if equal 

 6.4.3 

  uint8(...)   Casts to unsigned integer type with 8 bits  6.2 



  Programming Projects 

   1.    Solve the following introductory problems on strings. 
   a.   Write a function  dayName  that consumes a parameter,  day , 

containing the numerical value of a day in the month of 
September 2008. Your function should return the name of that 
day as a string. For example: 

dayName( 8 ) should return 'Monday' 

  b.   You are now given a variable named  days , a vector that contains 
the numeric values of days in the month of 
September 2008. Write a script that will 
convert each numeric value in the vector 
 days  into a string named  daysOfWeek  with 
the day names separated by a comma and 
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   5.    The function  disp(...)  can display multiple values to the 
Command window.   

   6.    The function  strcmp(...)  throws an error if the two strings are of 
unequal length, unless one of them is a single character.   

   7.    The  switch  statement will correctly compare strings of unequal 
length in the  case  tests.   

  Fill in the Blanks  

   1.    Numerical values are stored in MATLAB in _______________ for 
efficient numerical computation.   

   2.    Most common __________________, _______________, and many 
_________________are represented in ASCII by the numbers 
________________.   

   3.    Two built-in MATLAB functions for the conversion of a single 
number, x, to its string representation are _______________ and 
_______________ .   

   4.    The function  fprintf(...)  requires a(n) _____________ that defines 
exactly how the resulting string should be formatted and a variable 
number of ________________.   

   5.    Since the _____________ statement tests a logical expression, it 
_____________ test strings of unequal length.   

   6.    Strings of unequal length are compared using the MATLAB 
function ________________    

 You should probably be concatenating the day names 
and the delimiters. 

 Hint 
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a space. For example,  if days = [8, 9, 10], daysOfWeek  should 
be  'Monday, Tuesday, Wednesday'       

   Notice that there is no separator before the first day name or after 
the last one.   

   2.    Consider the problem the MATLAB system has in parsing the string: 
'V=[1 2 3 4; 5,6, 7;8; 9 10]' 

   Your task is to use  strtok  to parse this line and construct the array it 
represents. You will write a function  arrayParse  that consumes a 
string and returns two variables: a string that is the variable name 
and an array. 
   a.   Tokenize the string first using  ' = '  as the delimiter to isolate the 

variable name and the expression to be evaluated. Return the 
variable name to the user and save the rest of the line as the 
variable  str1  for further processing. You may assume that there 
are no spaces outside the characters  ' [. . .] ' .  

  b.   Tokenize  str1  with  ' [ '  and  ' ] '  to remove the concatenation 
operators and save the first token as  str2 .  

  c.   Tokenize  str2  using  ' ; '  as the delimiter. This will produce 0 or 
more strings that represent the rows of the array. Save each in the 
variable  rowString . You may assume for now that the first row is 
the longest one.  

  d.   Using nested while loops, tokenize each  rowString  with  ' , '  and 
 '  '  as delimiters and use  str2num (. . .) to extract the numerical 
value of each array entry. Save it as  rowEntry .  

  e.   Concatenate the  rowEntry  elements horizontally to produce each 
row of the array. If the row is too short, pad it with zeros.  

  f.   Concatenate each row vertically to produce the resulting array 
and return that array to the caller.  

  g.   Test the function with cases like:
 empty=[]
row=[1 2 3 4]

diag=[0 0 0 1; 0 0 1; 0 1; 1]      

   3.    Write and test the code for a function countVowel that reads in a 
string of characters of length N. The function checks whether each 
element in the string is a vowel or not. The function should test both 
uppercase and lowercase characters. You are not allowed to use any 
of the built-in functions to do this check.  

    For example, both the function calls countVowel(‘i have a CAR’) 
and countVowel(‘I HAVE A CAR’) should return the same count, 5.    

   4.    The function  rot(s, n)  is a simple Caesar cipher encryption 
algorithm that replaces each English letter in places forward or 
backward along the alphabet in the strings. For example, the result 
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of  rot('Baz!',3)  is  'Edc!' . An encrypted string can be deciphered 
by simply performing the inverse rotation on it, that is, 
 rot('Edc!',3),  which rotates each English letter in the strings three 
places to the left. Numbers, symbols, and non-letters are not 
transformed. Implement the following function: 

function rotatedText=rot(text,n) 

   To assist you as you solve this problem, you could write several 
functions as local functions in the  rot.m  file: 
 isUppercaseLetter(letter), getUppercaseLetter(n), 
getLowercaseLetter(n) , and  getPosition(letter) . You may also 
wish to use the built-in functions  isletter  (. . .),  find  (. . .), and 
 mod  (. . .).   

   5.    You have a big problem. In one of your CS courses, your professor 
decides that the only way you will pass the class is if you write a 
function to get him out of a mess. All the grades in his class have 
been accidentally stored into one long string of characters 
containing only the letters A, B, C, D, F, and Y. 
   a.   Your job is to write a function called  CrazyGrade  that will take in 

the string and flip the grades according to the following 
specifications: 

    A  becomes  F   
   B  becomes  D   
   C  remains unchanged  
   D  becomes  B   
   F  becomes  A   
   Y  becomes  W    

 Your function should take in a string and return an inverted string. 
You may assume that the string will only consist of valid letter 
grades. For example, 

CrazyGrade('BADDAD') should return 'DFBBFB' 
CrazyGrade('BAYBAY') should return 'DFWDFW' 

  b.   To make matters worse, he wants you to organize this modified 
grade set. Write a function called  GradeDist  to bunch together all 
the similar grades (put all the  A ’s next to each other,  B ’s next to 
each other, etc.) Then, calculate and return the professor’s grade 
distribution. Your function should take in a string and return a 
string with all similar grades grouped together, along with an 
array containing percentage values from  A ’s all the way to  F ’s. For 
example, if there are 15%  A ’s, 16%  B ’s, 33%  C ’s, 16%  D ’s, 16%  F ’s, 
and 4%  W ’s,  GradeDist  should return  [15 16 33 16 16 4] .        
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  Chapter Objectives 

 This chapter discusses the nature, implementation, and behavior of 
collections that may contain data items of any class, size, or shape. 
We will deal with two different heterogeneous storage mechanisms: 

    ■   Those accessed by index (cell arrays)  

  ■   Those accessed by field name (structures)    

 In addition, we will consider collecting structures into arrays of 
structures.  

  Introduction 

 This chapter covers data collections that are more general and 
flexible than the arrays we have considered so far. Heterogeneous 
collections may contain objects of any type, rather than just 
numbers. Consequently, none of the collective operations defined 
for numerical arrays can be applied to cell arrays or structures. To 
perform most operations on their contents, the items must be 
extracted one at a time and replaced if necessary. We will consider 
three different mechanisms for building heterogeneous collections: 
you access components of a cell array with a numerical index; you access 
components of a structure with a symbolic field name; and you access components 
of a structure array by way of a numerical index to reach a specific structure, and 
then a symbolic field name.   

 Cell Arrays and 
Structures 

    C H A P T E R  7 

         7.1    Concept: Collecting 
Dissimilar Objects     

   7.2   Cell Arrays    
    7.2.1   Creating Cell Arrays     
    7.2.2    Accessing Cell 

Arrays     
    7.2.3   Using Cell Arrays     
    7.2.4    Processing Cell 

Arrays      
   7.3   Structures    
    7.3.1    Constructing and 

Accessing One 
Structure     

    7.3.2    Constructor 
Functions      

   7.4   Structure Arrays    
    7.4.1    Constructing Cell 

Arrays     
    7.4.2    Accessing Structure 

Elements     
    7.4.3    Manipulating 

Structures      
   7.5    Engineering Example—

Assembling a Physical 
Structure      
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    1 Java programmers might recognize a cell array as an array of Objects. 

      7.1  Concept: Collecting Dissimilar Objects 

  Heterogeneous collections  permit objects of different data types to be 
grouped in a collection. They allow data abstraction to apply to a much 
broader range of content. However, the fact that the contents of these 
collections may be of any data type severely restricts the operations that can 
be performed on the collections as a whole. Whereas a significant number 
of arithmetic and logical operations can be performed on whole number 
arrays, algorithms that process heterogeneous collections almost always 
deal with the data contents one item at a time.  

   7.2  Cell Arrays 

 Cell arrays, as the name suggests, have the general form of arrays and 
can be indexed numerically as arrays. However, each element of a cell 
array should be considered as a container in which one data object of any 
class can be stored.  1   They can be treated as arrays of containers for the 
purpose of concatenation and slicing. However, if you wish to access or 
modify the contents of the containers, the cells must be accessed 
individually.  

   7.2.1  Creating Cell Arrays 

 Cell arrays may be constructed in the following ways: 

   ■   By assigning values individually to a variable indexed with braces: 

>> A{1} = 42 
A =

     [42] 

  ■   By assigning containers individually to a variable indexed with 
brackets: 

>> B[1] = {[4 6]}; 
B =

     [1x2 double] 

  ■   By concatenating cell contents using braces {. . .}: 

C = {3, [1,2,3], 'abcde'} 
C = 

     [3] [1x3 double] 'abcde' 

  ■   By concatenating cell containers: 

>> D = [A B C {'xyz'}] 
D = 

     [42] [1x2 double] [3] [1x3 double] 'abcde' 'xyz' 
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 Based on these examples, we observe the following: 

   ■   A cell array can contain any legal MATLAB object  
  ■   Just as with number arrays, cell arrays can be created “on the fly” 

by assigning values to an indexed variable   

 When the values from a cell array are displayed, their appearance is 
different from that of the contents of a number array. Individual numbers 
are shown in brackets, for example,  [3] ; larger numerical arrays display 
their size, for example,  [1x3 double] ; and character strings are displayed 
with the enclosing quotes, for example,  'abcde' .  

   7.2.2  Accessing Cell Arrays 

 Since cell arrays can be considered as conventional arrays of containers, the 
containers can be accessed and manipulated normally. For example, 
continuing the previous examples, we have the following: 

>> E = D(2) % parentheses - a container 
E = 
    [4 6] 

 However, braces are used to access the contents of the containers as follows: 

>> D{2} % braces - the contents 
ans = 
    4 6 

 If the right-hand side of an assignment statement results in multiple cell arrays, 
the assignment must be to the same number of variables. The built-in function 
 deal(...)  is used to make these allocations. Exercise  7 . 1  shows its use.  

 Notice the following observations: 

   ■   When we extract the contents of multiple cells using  A{1:2} , this 
results in multiple assignments being made. These multiple 
assignments must go to separate variables. This is the fundamental 
mechanism behind returning multiple results from a function.  

  ■   These multiple assignments cannot be made to a single variable; 
sufficient storage must be provided either as a collection of 
variables or explicitly as a vector.  

  ■   Cell arrays can be “sliced” with normal vector indexing assignments 
as long as the sizes match on the left and right sides of the assignment. 
Any unassigned array elements are filled with an empty vector.  

  ■   The assignment  B{[1 3]} = A{[1 2]}  that produced an error needs 
some thought. Since  A{[1 2]}  produces two separate assignments, 
MATLAB will not assign the answers, even to the right number of 
places in another cell array. The  deal(...)  function is provided to 
capture these multiple results in different variables. Notice the 
difference between  A{:}  and  A  as a parameter to  deal(...) . When 
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 Exercise 7.1    Cell arrays 

>> A = { 3, [1,2,3] 'abcde'} 
A = 

[3] [1x3 double] 'abcde' 
>> A{1:2} 
ans = 

3
ans = 

1    2    3 
>> [x y] = A{1:2} 
x = 

3
y = 

1    2    3 
>> B = A{1:2} 
??? Illegal right-hand side in assignment.

Too many elements.
>> B([1 3]) = A([1 2]) 
B = 
[3]     []    [1x3 double] 

>> B{[1 3]} = A{[1 2]} 
??? Illegal right-hand side in assignment.

Too many elements.
>> [a, b, c] = deal(A{:}) 
a = 

3
b = 

1    2    3 
c = 
abcde

>> [a, b] = deal(A) 
a = 

[3]    [1x3 double]    'abcde' 
b = 

[3]    [1x3 double]    'abcde' 
>> B = A(1:2) 
B = 

[3]    [1x3 double] 
>> for i = 1:2 

s(i) = sum(A{i}) 
end

s = 
3

s = 
3    6 

>> F{2} = 42 
F = 

[]     [42] 
>> F{3} = {42} 
F = 

[]     [42]    {1x1 cell} 
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 deal(...)  is provided with a parameter other than a collection of 
cells, it copies that parameter to each variable.  

  ■   Assignments work normally if cell arrays are treated as vectors and 
the extraction of items can be indexed— s  is a vector of the sums of 
the elements in  A .  

  ■   Finally, notice that when accessing cell arrays, it is normal to have 
braces on one side or the other of an assignment; it is rarely 
appropriate to have braces on both sides of an assignment. The 
result here is that a cell array is loaded into the third container in 
the cell array.    

   7.2.3  Using Cell Arrays 

 There are a number of uses for cell arrays, some of which will be evident in 
upcoming chapters. For now, the following examples will suffice: 

   ■   Containing lists of possible values for  switch/case  statements, as 
we saw in  Chapter   4     

  ■   Substituting for parameter lists in function calls   

 For example, suppose you have a function  largest(a, b, c)  that consumes 
three variables and produces the largest of the three values provided. It can 
be used in the following styles, as shown in Listing  7 . 1 .  

 In Listing  7 . 1 : 

   Lines 1–3: Set the values of  A ,  B , and  C .  
  Line 4: A conventional function call that results in a value of 6 for  N .  
  Lines 5–6: The same function call implemented as a cell array, 
returning the same answer.    

   7.2.4  Processing Cell Arrays 

 The general template for processing cell arrays is shown in Template  7 . 1 .  

 Checking the class of the element can be achieved in one of two ways: 

   ■   The function  class(item)  returns a string specifying the item type 
that can be used in a  switch  statement  

 Listing  7 . 1      Using cell arrays of parameters 

1. A = 4; 
2. B = 6; 
3. C = 5; 
4. N = largest(A, B, C) 
5. params = { 4, 6, 5 }; 
6. N = largest(params{1:3}) 



164 Chapter 7  Cell Arrays and Structures

  ■   Individual test functions can be used in an  if... elseif  construct; 
examples of the individual test functions are  isa(item, 'class'), 
iscell(...), ischar(...), islogical(...), isnumeric(...),  and 
 isstruct(...).    

 For example, suppose you are provided with a cell array and have been 
asked for a function that finds the total length of all the vectors it contains. 
The function might look like that shown in Listing  7 . 2 .  

 In Listing  7 . 2 : 

   Line 1: Typical function header accepting a cell array as input.  
  Line 2: Initializes the result.  
  Line 3: Traverses the whole cell array.  
  Line 4: Extracts each item in turn.  
  Line 5: Determines whether this item is of type  double . If so, it 
proceeds to line 6.  
  Line 6: Accumulates the number of items in this array. Recall that the 
 size(...)  function returns a vector of the sizes of each dimension. 
The total number of numbers is therefore the product of these values.     

 Listing  7 . 2      Cell array processing example 

1. function ans = totalNums(ca) 
% count the numbers in a cell array

2.     ans = 0 ; 
3. for in = 1 :length(ca) 
4.         item = ca{i} ; % extract the item
5.         if isnumeric(item) % check if a vector
6.             ans = ans + prod(size(item)); 
7. end
8. end

 Template  7 . 1      General template for processing cell arrays 

<initialize result> 
for <index specification> 

<extract an element> 
<check the element accordingly> 
<process the element accordingly> 

end
<finalize result> 

   7.3  Structures 

 Where cell arrays implemented the concept of homogeneous collections as 
indexed collections, structures allow items in the collection to be indexed 
by field name. Most modern languages implement the concept of a structure 
in a similar style. The data contained in a structure are referenced by field 
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name, for example,  item1 . The rules for making a field name are the same as 
those for a variable. Fields of a structure, like the elements of a cell array, 
are heterogeneous—they can contain any MATLAB object. First, we will 
see how to construct and manipulate one structure, and then how to 
aggregate individual structures into an array of structures. 

   7.3.1  Constructing and Accessing One Structure 

 To set the value of items in a structure  A , the syntax is as follows: 
>> A.item1 = 'abcde' 
A =
    item1: 'abcde' 
>> A.item2 = 42 
A =
    item1: 'abcde' 
    item2: 42 

 Notice that MATLAB displays the elements of an emerging structure by 
name. Fields in a structure are accessed in the same way—by using the 
dotted notation. 
>> A.item2 = A.item2 ./ 2 
A =
    item1: 'abcde' 
    item2: 21 

 You can determine the names of the fields in a structure using the built-in 
function  fieldnames(...) . It returns a cell array containing the field names 
as strings. 
>> names = fieldnames(A) 
names =
    'item1' 
    'item2' 

 Fields can also be accessed “indirectly” by setting a variable to the name of 
the field, and then by using parentheses to indicate that the variable contents 
should be used as the field name: 
>> fn = names{1}; 
>> A.(fn) = [A.(fn) 'fg'] 
A =
     item1: 'abcdefg' 
     item2: 21 

 You can also remove a field from a 
structure using the built-in function 
 rmfield(...) . Exercise  7 . 2  gives you 
an opportunity to understand how 
to build structures. Here we build a 
typical structure that could be used 
as one entry in a telephone book. 
Since phone numbers usually 
contain punctuation, we could store 

 Be careful.  rmfield(...)  returns a new structure with the 
requested field removed. It does not remove that field from 
your original structure. If you want the field removed from 
the original, you must assign the result from  rmfield(...)  
to replace the original structure: 

>> A = rmfield(A, 'item1') 
A = 
     item2: 21 

 Common Pitfalls  7 . 1  
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them as strings. Notice that since a structure may contain any object, it is 
quite legal to make a structure containing a date and insert that structure 
in the date field of the entry. The structure display function, however, 
does not display the contents of the structures.      

   7.3.2  Constructor Functions 

 This section discusses functions that assign their parameters to the fields of 
a structure and then return that structure. You do this, as opposed to 
“manually” entering data into structures, for the following reasons: 

   ■   Manual entry can result in strange behavior due to typographical 
errors or having fields in the wrong order  

 Exercise 7.2    Building structures 

 Suppose that you want to use structures to maintain your address book. In the 
Command window, enter the following commands: 

>> entry.first = 'Fred' 
entry = 

first: 'Fred' 
>> entry.last = 'Jones'; 
>> entry.phone = '(123) 555-1212' 
entry = 

first: 'Fred” 
last: 'Jones' 
phone: '(123) 555-1212' 

>> entry.phone 
ans = 
(123) 555-1212 

>> date.day = 31; 
>> date.month = 'February'; 
>> date.year = 1965 
date = 

day: 31 
month:'February'
year: 1965 

>> entry.birth = date 
entry = 

first: 'Fred' 
last: 'Jones' 
phone: '(123) 555-1212' 
birth: [1x1 struct] 

>> entry.birth 
ans = 

day: 31 
month: 'February' 
year: '1965' 

>> entry.birth.year 
ans = 

1965
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  ■   The resulting code is generally more compact and easier to 
understand  

  ■   When constructing collections of structures, it enforces consistency 
across the collections   

 There are two approaches to the use of constructor functions: using built-in 
capabilities and writing your own constructor. There is a built-in function, 
 struct(...) , that consumes pairs of entries (each consisting of a field name 
as a string and a cell array of field contents) and produces a structure. If all 
the cell arrays have more than one entry, this actually creates a structure 
array, as discussed in Section  7 . 4 . 1 . 

 The following command would construct the address book entry created 
in the previous section. Note the use of ellipses  (...)  to indicate to the 
MATLAB machinery that the logic is continued onto the next line. 

>> struct('first','Fred', ... 
'last','Jones', ... 
'phone','(123) 555-1212', ... 
'birth', struct( 'day', 31, 
                 'month', 'February', 
                 'year', 1965 )) 
ans =
    first: 'Fred' 
     last: 'Jones' 
    phone: '(123) 555-1212' 
    birth: [1x1 struct] 

 This is useful in general to create structures, but the need to repeat the field 
names makes this general-purpose approach a little annoying. We can 
create a special-purpose function that “knows” the necessary field names to 
create multiple structures in an organized way. 

 Listing  7 . 3  shows the code for a function that consumes parameters that 
describe a CD and assembles a structure containing those attributes by 
name.  

 In Exercise  7 . 3 , you can try your hand at using this function to construct 
a CD structure and then verify the structure contents.  

 Listing  7 . 3      Constructor for a CD structure 

1. function ans = makeCD(gn, ar, ti, yr, st, pr) 
% integrate CD data into a structure

2.     ans.genre = gn ; 
3.     ans.artist = ar ; 
4.     ans.title = ti; 
5.     ans.year = yr; 
6.     ans.stars = st; 
7.     ans.price = pr; 
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 Exercise 7.3    A CD structure 

 Create one entry of CD information: 

>> CD = makeCD('Blues', 'Charles, Ray', ... 
'Genius Loves Company', 2004, 4.5, 15.35 ) 
CD = 

genre: 'Blues' 
artist: 'Charles, Ray' 
title: 'Genius Loves Company' 
year: 2004 
stars: 4.5000 
price: 15.3500 

>> flds = fieldnames(CD) 
flds = 

'genre'
'artist'
'title'
'year'
'stars'
'price'

>> field = flds{2} 
field = 
artist
>> CD.(field) 
ans = 
     Charles, Ray 

   7.4  Structure Arrays 

 To be useful, collections like address books or CD collections require 
multiple structure entries with the same fields. This is accomplished by 
forming an array of data items, each of which contains the same fields of 
information. 

 MATLAB implements the concept of structure arrays with the properties 
described in the following paragraphs. 

   7.4.1  Constructing Structure Arrays 

 Structure arrays can be created either by creating values for individual 
fields, as shown in Exercise  7 . 4 ; by using MATLAB’s  struct(...)  
function to build the whole structure array, as shown in Listing  7 . 4 ; or 
by using a custom function to create each individual structure, as shown 
in Listing  7 . 5 . This latter listing illustrates these concepts by implementing 
a collection of CDs as a structure array using the function  makeCD(...)  
from Listing  7 . 3 .   
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 In Listing  7 . 4 : 

   Lines 1–5: Build cell arrays containing field values for five CDs.  
  Line 6: Uses the built-in  struct(...)  function to create the CD 
collection. The function consumes a variable number of pairs of 
parameters. The first parameter of the pair is a string containing 
the name of a field to be created. The second parameter is the 
content of that field expressed as either a cell array or any other 
data type. If the field content is a cell array, the structure to be 
created becomes a structure array whose length is the length of 
that cell array. Each field of the structure array receives the 
corresponding value from the cell array. If the field content is 
anything other than a cell array, the content of each structure array 
field becomes a copy of that item.    

 Listing  7 . 4      Building a structure array using  struct(...)  

 1. genres = { 'Blues', 'Classical', 'Country' }; 
 2. artists = { 'Clapton, Eric', 'Bocelli, Andrea', 'Twain, Shania' }; 
 3. years = { 2004, 2004, 2004 }; 
 4. stars = { 2, 4.6, 3.9 }; 
 5. prices = { 18.95, 14.89, 13.49 }; 
 6. cds = struct( 'genre', genres, ... 
 7. 'artist', artists, ... 
 8. 'year', years, ... 
 9. 'stars', stars, ... 
10. 'price', prices) 

 Exercise 7.4    Building a structure array “by hand” 

>> entry(1).first = 'Fred'; 
>> entry(1).last = 'Jones'; 
>> entry(1).age = 37; 
>> entry(1).phone = ' (123) 555-1212'; 
>> entry(2).first = 'Sally'; 
>> entry(2).last = 'Smith'; 
>> entry(2).age = 29; 
>> entry(2).phone = '(000) 555-1212' 
entry = 
1x2 structure array with fields: 

first
last
age
phone
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 In Listing  7 . 5 : 

   Lines 1–2: Call the  makeCD(...)  function defined in Listing  7 . 3  to 
generate the description of the first CD.  
  Lines 3–16: Repeat the process for seven more CDs, each of which is 
added to the collection.    

   7.4.2  Accessing Structure Elements 

 Like normal arrays or cell arrays, items can be stored and retrieved by their 
index in the array. As structures are added to the array, MATLAB forces all 
elements in the structure array to implement the same field names in the 
same order. Elements can be accessed either manually (not recommended) 
or by creating new structures with a constructor and adding them 
(recommended). 

 If you elect to manipulate them manually, you merely identify the array 
element by indexing and use the  .field  operator. For example, for the CD 
collection  cds , we could change the price of one of them as follows: 

>> cds(3).price = 11.95 
cds =

1x31 struct array with fields: 
    genre,
    artist,
    title,
    year,
    stars,
    price 

 This is a little hazardous when making manual additions to a structure 
array. A typographical error while entering a field name results in all 

 Listing  7 . 5      Building a structure array using a custom constructor 

% extracts from http://www.cduniverse.com/   12/30/04
 1. cds(1) = makeCD( 'Blues', 'Clapton, Eric', ... 
 2. 'Sessions For Robert J', 2004, 2, 18.95 ); 
 3. cds(2) = makeCD( 'Classical', ... 
 4. 'Bocelli, Andrea', 'Andrea', 2004, 4.6, 14.89 ); 
 5. cds(3) = makeCD( 'Country', 'Twain, Shania', ... 
 6. 'Greatest Hits', 2004, 3.9, 13.49 ); 
 7. cds(4) = makeCD( 'Latin', 'Trevi, Gloria', ... 
 8. 'Como Nace El Universo', 2004, 5, 12.15 ); 
 9. cds(5) = makeCD( 'Rock/Pop', 'Ludacris', ... 
10. 'The Red Light District', 2004, 4, 13.49 ); 
11. cds(6) = makeCD( 'R & B', '2Pac', ... 
12. 'Loyal To The Game', 2004, 3.9, 13.49 ); 
13. cds(7) = makeCD( 'Rap', 'Eminem', ... 
14. 'Encore', 2004, 3.5, 15.75 ); 
15. cds(8) = makeCD( 'Heavy Metal', 'Rammstein', ... 
16. 'Reise, Reise', 2004, 4.2, 12.65 ) 
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the structures having that bad field name. For example, consider this 
error: 

>> cds(3).prce = 11.95 
cds =
1x31 struct array with fields: 
    genre,
    artist,
    title,
    year,
    stars,
    price,
    prce 

 You have accidentally added a new field to the whole collection. You can 
check this by looking at one entry: 

>> cds(1) 
ans =
     genre: 'Blues' 
    artist: 'Sessions For Robert J' 
     title: 'Clapton, Eric' 
      year: 2004 
     stars: 2 
     price: 18.95 
      prce: [] 

 If this happens, you can use the  fieldnames(...)  function to determine the 
situation and then the  rmfield(...)  function to remove the offending 
entry. 

>> fieldnames(cds) 
ans =

    'genre'
    'artist'
    'title'
    'year'
    'stars'
    'price'
    'prce' 

>> cds = rmfield(cds,'prce') 
cds =
1x32 struct array with fields: 
    genre,
    artist,
    title,
    year,
    stars,
    price 

 It is best to construct a complete structure and then insert it into the structure 
array. For example: 

>> newCD = makeCD( 'Oldies', 'Greatest Hits', ... 
 'Ricky Nelson', 2005, 5, 15.79 ); 
>> cds(8) = newCD 
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cds =
1x8 struct array with fields: 
    genre,
    artist,
    title,
    year,
    stars,
    price 

 If you insert that new CD beyond the end of the array, as one might expect, 
MATLAB fills out the array with empty structures: 

>> cds(50) = newCD 
cds =

1x50 struct array with fields: 
    genre,
    artist,
    title,
    year,
    stars,
    price 
>> cds(49) 
ans =
     genre: [] 
    artist: [] 
     title: [] 
      year: [] 
     stars: [] 
     price: [] 

   7.4.3  Manipulating Structures 

 Structures and structure arrays can be manipulated in the following 
ways: 

    I.   Single values can be changed using the “.” (dot) notation directly 
with a field name: 

>> cds(5).price = 19.95; 

   II.   or indirectly using the “.” (dot) notation with a variable containing 
the field name: 

 A few very understandable but sneaky errors occur when 
adding structures that have been created “manually” rather 
than by means of a standardized constructor function. If the 
new structure has fields not in the original structure, or extra 
fields, you see a slightly obscure error:  "Subscripted 
assignment between dissimilar structures."  

 Perhaps more puzzling, if you are using an older version of 
MATLAB, this same error occurs if all the fields are present, 
but are in the wrong order. 

 Common Pitfalls  7 . 2  >> fld = 'price'; 
>> cds(5).(fld) = 19.95; 

 or by using built-in functions:  
   III.    nms = fieldnames(str)  

returns a cell array 
containing the names of the 
fields in a structure or 
structure array. 

>> flds = fieldnames(cds) 
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   IV.    it = isfield(str, <fldname>)  determines whether the given 
name is a field in this structure or structure array. 
>> if isfield(cds, 'price') ... 

   V.    str = setfield(str, <fldname>, <value>)  returns a new structure 
array with the specified field set to the specified value. 
>> cds(1) = setfield(cds(1), 'price', 19.95); 

   VI.    val = getfield(str, <fldname>)  returns the value of the specified 
field. 
>> disp(getfield(cds(1), 'price') ); 

   VII.    str = rmfield(str, <fldname>)  returns a new structure array with 
the specified field removed. 
>> noprice = rmfield(cds, 'price'); 

   VIII.   Values across the whole array can be retrieved using the “.” 
notation by accumulating them into arrays either into cell arrays: 
>> titles = {cds.title}; 
>> [alpha order] = sort(titles); 

   IX.   or, if the values are all numeric, into a vector: 
>> prices = [cds.price]; 
>> total = sum(prices); 

 Notice that after extracting the price values into a cell array or vector, all the 
normal operations—in this case, sort(...) and sum(...)—can be utilized.    

 Exercise  7 . 5  provides some practice in manipulating structure arrays 
using the above CD collection as an example.  

 Exercise 7.5    The CD collection 

 Retrieve and run the script named  buildCDs.m  from the Companion Web site. 
Then, in the Interactions window, enter the following commands to create 
your collection of CD information: 

>> cds(5) 
ans = 
     genre: 'Rock/Pop' 
    artist: 'Ludacris' 
     title: 'The Red Light District' 
      year: 2004 
     stars: 4 
     price: 13.49 
>> flds = fieldnames(collection) 
flds = 

'genre'
'artist'
'title'
'year'
'stars'
'price' continued on next page
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cds(5).strs = 0.5; 
>> cds(5) 
ans = 

genre: 'Rock/Pop' 
artist: 'Ludacris' 

     title: 'The Red Light District' 
year: 2004 
stars: 4 
price: 13.4900 
strs: 0.5 

>> cds(1) 
ans = 

genre: 'Blues' 
artist: 'Clapton, Eric' 
title: 'Sessions For Robert J' 
year: 2004 
stars: 2 
price: 18.9500 
strs: [] 

>> cds = rmfield(cds, 'strs'); 
>> cds(1) 
ans = 

genre: 'Blues' 
artist: 'Clapton, Eric' 
title: 'Sessions For Robert J' 
year: 2004 
stars: 2 
price: 18.9500 

>> sum([cds.price]) 
ans = 

409.1100

    7.5  Engineering Example—Assembling a Physical Structure 

 Many large buildings today have steel frames as their basic structure. 
Engineers perform the analysis and design work for each steel component 
and deliver these designs to the steel company. The steel company 
manufactures all the components, and prepares them for delivery to the 
building site. At this point, each component is identified only by a unique 
identifier string stamped and/or chalked onto that component. For even a 
modest-sized building, this transportation may require a significant number 
of truckloads of components. The question we address here is how to 
decide the sequence in which the components are delivered to the building 
site so that components are available when needed, but not piled up 
waiting to be used. 

 Consider the relatively simple structure shown in  Figure   7.1   . The 
components have individual labels, and we can obtain from the architect 
the identities of the components that are connected together. The 
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construction needs to start from the fixed point A. We need to analyze this 
information and compute the order in which the components would be 
used to assemble the structure. 

  The data will be organized as a structure array with one entry for each 
component. One of the fields in that structure will be a cell array of the 
names of the components to which this component is connected. 

 The code in Listing  7 . 6  shows the solution to this problem.  

A-1

A C

A-3 B-1 B-3 C-1 C-3 1.732m

A-2 B-2

6m

C-2

D-2D-1

 Figure 7.1   Simple structure assembly       

 Listing  7 . 6      Connectivity of a structure 

 1. data(1) = beam( 'A-1', 0.866, 0.5, ... 
 2.            { 'A','A-2','A-3','D-1'} ); 
 3. data(2) = beam( 'A-2', 0, 1, ... 
 4.            { 'A', 'A-3', 'B-1', 'B-2'} ); 
 5. data(3) = beam( 'A-3', 0.866, 1.5, ... 
 6.            { 'A-1', 'A-2', 'B-1', 'D-1'} ); 
 7. data(4) = beam( 'B-1', 0.866, 2.5, ... 
 8.            { 'A-2', 'A-3', 'B-2', 'B-3', 'D-1', 'D-2'} ); 
 9. data(5) = beam( 'B-2', 0, 3, ... 
10.            { 'A-2', 'A-3', 'B-1', 'B-3', 'C-1', 'C-2'} ); 
11. data(6) = beam( 'B-3', 0.866, 3.5, ... 
12.            { 'B-1', 'B-2', 'C-1', 'C-2', 'D-1', 'D-2'} ); 
13. data(7) = beam( 'C-1', 0.866, 4.5, ... 
14.            { 'B-2', 'B-3', 'C-2', 'C-3', 'D-2'} ); 
15. data(8) = beam( 'C-2', 0, 5, ... 
16.            { 'B-2', 'B-3', 'C-1', 'C-3', 'C'} ); 
17. data(9) = beam( 'C-3', 0.866, 5.5, ... 
18.            { 'C-1', 'C-2', 'D-2', 'C'} ); 
19. data(10) = beam( 'D-1', 1.732, 2, ... 
20.            { 'A-1', 'A-3', 'B-1', 'B-3', 'D-2'} ); 
21. data(11) = beam( 'D-2', 1.732, 4, ... 
22.            { 'B-1', 'B-3', 'C-1', 'C-3', 'D-1'} ) 
23. conn = 'A';
24. clist = {conn}; 
25. while true 

continued on next page
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 In Listing  7 . 6 : 

   Lines 1–22: Construct the structure array using the  beam(...)  
constructor function below.  

  Line 23: The current connection point,  conn —originally, the point A.  

  Line 24: Initializes the connection list, a cell array of names.  

  Line 25: An infinite loop to be exited with break statements.  

  Lines 26–33: Traverse the components to make a structure array,  found , 
containing all the components connected to the current connection 
point,  conn .  

  Lines 34–40: Go through the  found  array, removing any component 
already on the connected list and appending the names of those not 
removed to the connected list.  

  Lines 41–45: We will exit the  while  loop when there are no new 
components found; until then, choose the next component to 
connect.   

 The support functions for this script are assembled for convenience into 
Listing  7 . 7 . They should be in separate files with the appropriate file names 
to be accessible by MATLAB.  

26.     index = 0; 
% find all the beams connected to conn

27. for in = 1:length(data) 
28.         str = data(in); 
29. if touches(str, conn) 
30.             index = index + 1; 
31.             found(index) = str; 
32. end
33. end

% eliminate those already connected
34. for jn = index:-1:1 
35. if ison(found(jn).name, clist) 
36.             found(jn) = []; 
37. else
38.            clist = [clist {found(jn).name}]; 
39. end
40. end
41. if length(found) > 0 
42.         conn = nextconn( found, clist ); 
43. else
44. break;
45. end
46. end
47. disp( 'the order of assembly is:')
48. disp(clist) 
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 In Listing  7 . 7 : 

   Lines 1–5: Constructor for one structure defining one component.  
  Lines 6–14: A function to determine whether a beam touches this 
connecting point.  

 Listing  7 . 7      Support functions 

 1. function ans = beam( nm, xp, yp, conn ) 
% construct a beam structure with fields:
% name - beam name
% xp, yp - coordinates of its centroid
% conn - cell array - names of adjacent beams
% useage: ans = beam( nm, xp, yp, conn )

 2.     ans.name = nm; 
 3.     ans.pos = [xp, yp]; 
 4.     ans.connect = conn; 
 5. end
 6. function res = touches(beam, conn) 

% does the beam touch this connecting point?
% usage: res = touches(beam, conn)

 7.     res = false; 
 8. for in = 1:length(beam.connect) 
 9.         item = beam.connect{in}; 
10. if strcmp(item,conn) 
11.             res = true; break; 
12. end
13. end
14. end
15. function res = ison( nm, cl ) 

% is this beam on the connection list,
% a cell array of beam names
% usage: res = ison( beam, cl )

16.     res = false; 
17. for in = 1:length(cl) 
18.         item = cl{in}; 
19. if strcmp(item, nm) 
20.             res = true; break; 
21. end
22. end
23. end
24. function nm = nextconn( fnd, cl ) 

% find a connection name among
% those found not already connected
% usage: nm = nextconn( fnd, cl )

25. for in = 1:length(fnd) 
26.         item = fnd(in); 
27.         cn = item.connect; 
28. for jn = 1:length(cn) 
29.             nm = cn{jn}; 
30.             if ~ison(nm, cl) 
31. break;
32. end
33. end
34. end
35. end
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  Lines 15–23: A similar function to determine whether a particular string 
is on the connection list, a cell array of strings.  
  Lines 24–35: Function to find the next connection to use based on the 
latest components found—the “outer edges” of the emerging 
structure—and its not being already on the connected list. 

 Here is the resulting output: 

data = 

1x11 struct array with fields: 
name,

    pos,
    connect 

the order of assembly is: 
'A' 'A-2' 'A-1' 'D-1' 'A-3' 'B-2' 'B-1' 'D-2' 'B-3' 'C-2' 'C-1' 'C-3' 

     Chapter Summary 

 This chapter covered the nature, implementation, and behavior of two 
heterogeneous collections: 

   ■   Cell arrays are vectors of containers; their elements can be 
manipulated either as vectors of containers, or individually by 
inserting or extracting the contents of the container using braces in 
place of parentheses  

  ■   The elements of a structure are accessed by name rather than by 
indexing, using the dot operator, ‘.’, to specify the field name to be 
used  

  ■   Structures can be collected into structure arrays whose elements are 
structures all with the same field names. These elements can then 
be indexed and manipulated in the same manner as the cells in a 
cell array      

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, and 

Functions  Description 

 Discussed in 

This Section 

  { ... }   Defines a cell array  7.2 

 . <field>   Used to access fields of a structure  7.3.1 

  .(<variable>)   Allows a variable to be used as a structure field  7.3.1 

  class(<object>)   Determines the data type of an object  7.2.4 

  deal(...)   Distributes cell array results among variables  7.2.2 

  getfield
(<str>, <fld>)  

 Extracts the value of the field  <fld>  from a
structure 

 7.4.3 
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 Special Characters, 

Reserved Words, and 

Functions  Description 

 Discussed in 

This Section 

  isa(<object>,
<class>)  

 Determines whether the  <object>  is of the 
given data type,  <class>  

 7.2.4 

  iscell(<object>)   Determines whether  <object>  is of type  cell   7.2.4 

  ischar(<object>)   Determines whether  <object>  is of type  char   7.2.4 

  isfield(<str>,
<fld>)  

   true  if the string  <fld>  is a field in the 
structure  <str>  

 7.4.3 

  islogical
(<object>)  

 Determines whether  <object>  is of type
 logical  

 7.2.4 

  isnumeric
(<object>)  

 Determines whether  <object>  is of type
 double  

 7.2.4 

  isstruct
(<object>)  

 Determines whether  <object>  is of type
 struct  

 7.2.4 

  str = 
setfield(<str>,
<fld>, <value>)  

 Constructs a new structure that is a copy of
 <str>  in which the value of the field  <fld>  
has been changed to  <value>  

 7.4.3 

  [values order] 
= sort(<object>)  

 Sorts either vectors (increasing numerical order) 
or cell arrays of strings (alphabetically) returning 
the sorted data and the index order for the sort 

 7.4.3 

  struct(...)   Constructs a structure from  <fieldname>
<value>  pairs of parameters 

 7.3.2 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    Of all the collective operations defined for numerical arrays, only 
logical operations can be applied to a whole cell array.   

   2.    A cell array or a structure can contain any legal MATLAB object.   

   3.    You gain access to the contents of a cell by using braces,  {...} .   

   4.    Since the contents of a structure are heterogeneous, we can store 
other structures in any structure.   

   5.    The statement  rmfield(str, 'price')  removes the field  'price'  and 
its value from the structure  str.    

   6.    The statement  getfield(str, <fldname>)  returns the value of the 
specified field.   
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   7.    You cannot extract and process all of the values of a field in a 
structure array.   

  Fill in the Blanks  

   1.    To perform any operations on the contents of a heterogeneous 
collection, the items must be _________ and if necessary, 
________________.   

   2.    One way of checking the class of an element inside a cell array is 
using the function ______________, which returns a string 
specifying the item type.   

   3.    The assignment  B{3} = {42}  results in the third entry in the cell 
array B being a(n) ______________.   

   4.    If a variable called  field  contains the name of a field in a structure 
 str , the expression ______________ will set the value of that field to 
42.   

   5.    MATLAB has a built-in function __________ that consumes pairs of 
entries, each consisting of a(n) _________and a(n) __________, and 
produces a structure array.    

  Programming Projects 

   1.    Write a function named  cellParse  that takes in a cell array with 
each element being either a string (character array), or a vector 
(containing numbers), or a boolean value (logical array of length 1). 

   Your function should return the following: 

   •    nStr:  the number of strings  
  •    nVec:  the number of vectors  
  •    nBool:  the number of boolean values  
  •    cString:  a cell array of all the strings in alphabetical order  
  •    vecLength:  the average length of all the vectors  
  •    allTrue:  true if all the boolean values are  true  and  false  

otherwise   

   For example, 

[a b c d e f] =
  cellParse( { [1 2 3], true, 'hi there!', 
                        42, false, 'abc'} ) 

should return a = 2, b = 2, c = 2, d = {'abc','hi there!}, 
                         e = 2, and f = false. 

   2.    It turns out that since you have become an expert on rating clothing 
( Chapter   4   , Problem 5), Acme Clothing Company has hired you to 
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rate its clothes. Clothes are now represented as structures instead of 
vectors with the fields (all of which are numbers between 0 and 5): 

 Condition, Color, Price, Matches, and Comfort 

   Acme has a much simpler way of rating its clothes than you used 
before: 

    Rating = 5 * Condition + 3 * Color + 2 * Price + Matches 
                         + 9 * Comfort  

   You have a script called  makeClothes.m  that will create a structure 
array called  acmeClothes  that contains clothes structures. You are to 
write a script called  rateClothes  that will add a  Rating  field and a 
 Quality  field to each of the structures in the  acmeClothes  array. The 
Rating field in each structure should contain the rating of that 
particular article of clothing. The  Quality  field is a string that is 
 'premium'  if the  Rating  is over 80,  'good'  over 60,  'poor'  over 20, 
and  'liquidated'  for anything else. 

   Note:  

   a.   You MUST use iteration to solve this problem.  

  b.   To make things easy, just place the line  makeClothes  at the top of 
your script, so you’re guaranteed to have the correct  acmeClothes  
array to work with.  

  c.   The fields are case sensitive, so make sure that you capitalize them.      

   3.    You have been hired by a used-car dealership to modify the price of 
cars that are up for sale. You will get the information about a car, 
and then change its price tag depending on a number of factors. 

   Write a function called usedCar that takes in a structure with the 
following fields: 

    Make:  A string that represents the make of the car (e.g.,  'Toyota 
Corolla' )  

   Year:  A number that corresponds to the year of the car (e.g.,  1997 )  

   Cost :  A number that holds the marked price of the car (e.g.,  7,000 )  

   Miles :  The number of miles clocked (e.g.,  85,000 )  

   Accidents:  The number of accidents the car has been in (e.g.,  1 )   

   Your function should return a structure with all the above fields, 
with *exactly* the same names. It should have the same make, year, 
accidents, and miles. Here are the changes you must make: 

   1.   Add 5,000 to the cost if the car has clocked less than 
20,000 miles.  
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  2.   Subtract 5,000 if it has clocked more than 100,000 miles.  

  3.   Reduce the price by 10,000 for every accident.     

   4.    This problem deals with structures that represent dates. 
   a.   First, write a MATLAB function called  createDate  that will take 

in three numeric parameters. The first parameter represents the 
 month , the second the  day , and the third the  year . The function 
should return a structure with the following fields: 

   Day:  a number 
   Month:  a 3 character string containing the first three characters 

of the month name 
   Year:  a number containing the year. 

  For example,

  it = createDate(3,30,2008)  should return a structure containing: 

Day: 30 
Month: Mar 
Year: 2008 

  b.   Write a function called  printDate  that displays a date in the form 
 Mar 30, 2007   

  c.   Write a function  inBetween  that will take in three date 
structures. The function should return  true  if the second date is 
between the first and third dates, otherwise the function should 
return  false .  

  d.   Write a function called  isSorted  that takes in a single parameter, 
an array of date structures. This function should return  true  if 
all the dates in the array are in a chronological order (regardless 
of whether they are in ascending or descending order), 

   ■   It might help to add a field to the date class.  

  ■    The third date does not have to be chronologically 
later than the first date.   

 Hints 

otherwise the function should 
return  false .  

  e.   Write a test script that creates an 
array of date structures, prints out 
each date, and then states whether 
or not the dates are in order.        

   5.    Your university has added a new award for students who were “almost there” last 
semester and just missed getting into the Dean’s List. Write a function called  almost  
that consumes an array of student structures, and produces an array of names of 
those who have a semester GPA between 2.9 and 2.99 (inclusive). The student 
structure has the following fields: 

Name - string (e.g., 'George P. Burdell') 
Semester_GPA - decimal number (e.g., 2.97) 
Cumulative_GPA - decimal number (e.g., 3.01) 
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   6.    The MATLAB language has the built-in ability to perform 
mathematical operations on complex numbers. However, there are 
times when it is useful to treat complex numbers as a structure. 
Write a set of functions with the following capability and a script to 
verify that they work correctly: 

cmplx = makeComplex(real, imag) 
res = cmplxAdd( cmpxa, cmpxb ) 
res = cmplxMult( cmpxa, cmpxb ) 

   7.    In terms of atomic physics, every electron has four numbers 
associated with it, called the quantum numbers. These are 
 'principal'  (energy),  'azimuthal'  (angular momentum),  'magnetic'  
(orientation of angular momentum), and  'spin'  (particle spin) 
quantum numbers. Wolfgang Pauli hypothesized (correctly) that no 
two electrons in an atom can have the same set of four quantum 
numbers; that is, if the  Principal, Azimuthal,  and  Magnetic  
numbers are the same for two electrons, then it is necessary for the 
electrons to have different  Spin  numbers. 

   You need to write a function called  spinSwitch  that takes in two 
structures and returns both structures. Each structure represents an 
electron in a hydrogen atom and has the following fields: 

principal (this is always > 0) 
azimuthal (a number) 
magnetic (a number) 
spin (a string with value 'up' or 'down') 

   Your function will compare the values in the two structures and 
check if they all have the same values for the four fields. If true, you 
are required to switch the spin of the second structure. You also 
have to add a field called “energy” to both structures. The value 
stored in this field must be (−2.18*(10^18))/(n^2), where n is the 
value of the principal quantum number for that electron. You have 
to return both the structures with the energy field added to both, so 
that the one with the higher energy is first. If the energies are equal, 
return the one with the ‘up’ spin first. If both have the same spin 
and the same energy, the order does not matter.      
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  Chapter Objectives 

 This chapter discusses three levels of capability for reading and 
writing files in MATLAB, each including a discussion of the 
circumstances under which they are appropriate: 

      ■   Saving and restoring the workspace  

  ■   High-level functions for accessing files in specific formats  

  ■   Low-level file access programs for general-purpose file processing   

 Reading and writing data in data files are fundamental to the utility of 
programming languages in general, and MATLAB in particular. In 
addition to the obvious need to save and restore scripts and functions 
(covered in  Chapter   2   ), here we consider three types of activities that 
read and write data files.  

      ■   The MATLAB language provides for the basic ability to save your workspace (or 
parts of your workspace) to a file and restore it later for further processing.  

  ■   There are high-level functions that consume the name of a file whose contents are 
in any one of a number of popular formats and produce an internal representation 
of the data from that file in a form ready for processing.  

  ■   Almost all these functions have an equivalent write function that will write a new 
file in the same format after you have manipulated the data.  

  ■   However, we also need to deal with lower-level capabilities for manipulating text 
files that do not contain recognizable structures.     

  Introduction 

 This chapter discusses files that contain workspace variables, spreadsheet data, and 
text files containing delimited numbers and plain text. Subsequent chapters will 
discuss image files and sound files. For information on the other file formats, consult 
the help documentation for details of their usage. 
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 The MATLAB language also provides the ability to access binary files—files 
whose data are not in text form—but the interpretation of binary data is beyond the 
scope of this text, and we will not consider binary files here. Refer to MATLAB 
documentation for information about binary files.   

I N FOR M A T I O N

Destination
Writes

A Stream

Program

 Figure 8.2   An output stream       

I N FOR M A T I O N

Program
Reads

A Stream

Source

 Figure 8.1   An input stream       

      8.1  Concept: Serial Input and Output (I/O) 

 We frequently refer to the process of reading and writing data files as 
Input/Output (I/O). We have already seen and used examples of file I/O 
to store and retrieve data and programs. Your script and function files are 
stored in your current directory and could be invoked from there by name 
from the Command window. In general, any computer file system saves 
and retrieves data as a sequential (serial) stream of characters, as shown in 
 Figure   8.1   . Mixed in with the characters that represent the data are special 
characters (“delimiters”) that specify the organization of the data. 

 When a program opens a file by name for reading, it continually requests 
blocks of data from the file data stream until the end of the file is reached. 
As the data are received, the program must identify the delimiting 
characters and reformat the data to reconstruct the organization of the data 
as represented in the file. Similarly, when writing data to a file, the program 
must serialize the data, as shown in  Figure   8.2   . To preserve the organization 
of the data, the appropriate delimiting characters must be inserted into the 
serial character stream. 

 The purpose of the file I/O functions discussed in this chapter is to 
encapsulate these fundamental operations into a single system function, or 
at least into a manageable collection of functions.    

   8.2  Workspace I/O 

 The MATLAB language defines the tools to save your complete workspace 
to a file with the  save  command and reload it with the  load  command. If 
you provide a file name with the save command, a file of that name will be 



   8.3  High-Level I/O Functions 

 We turn to the general case of file I/O in which we expect to load data from 
external sources, process that data, and perhaps save data back to the file 

system with enhancements created by 
your program. When you try to 
process data from some unknown 
source, it is difficult to write code to 
process the data without some initial 
exploration of the nature and 
organization of that data. So a good 
habit is to explore the data in a file by 
whatever means you have available 
and then decide how to process the 
data according to your observations. 

 Most programming languages 
require the programmer to write 
detailed programs to read and write 

files, especially those produced by other application programs or data 
acquisition packages. Fortunately for MATLAB programmers, much of this 
messy work has been built into special file readers and writers.  Table   8.1    
identifies the type of data, the name of the appropriate reader and writer, 
and the internal form in which MATLAB returns the data.  

   8.3.1  Exploration 

 The types of data of immediate interest are text files and spreadsheets. In 
 Table   8.1    notice that the delimited text files are presumed to contain 
numerical values, whereas the spreadsheet data may be either numerical 
data stored as doubles or string data stored in cell arrays. Typically, text 
files are delimited by a special character (comma, tab, or anything else) to 
designate the column divider and a new-line character to designate the 
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 In a practical sense, saving workspace data is very rarely an 
appropriate approach to saving work because it saves the 
results but not the code that generated the results. It is 
almost always better to save the scripts and raw data that 
created the workspace. For example, this is a good idea 
when you have a lengthy computation (perhaps one run 
overnight) to prepare data for a display. You could split that 
script into two halves. The first half would do the overnight 
calculation and save the workspace. The second part can 
then read the workspace quickly, and you can develop 
sophisticated ways to display the data without having to 
re-run the lengthy calculations. 

 Style Points  8 . 1  

written into your current directory in such a form that a subsequent load 
command with that file name will restore the saved workspace. By 
convention, these files will have a  .mat  extension. If you do not provide a 
file name, the workspace is saved as  matlab.mat . 

 If you are using MATLAB, you can also identify specific variables that 
you want to save—either by listing them explicitly or by providing logical 
expressions to indicate the variable names. For example: 

>> save mydata.mat a b c* 

 would save the variables  a  and  b  and any variable beginning with the letter 
 c . For more details, consult the MATLAB help documentation.     
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rows. Once the data are imported, all of our normal array and matrix 
processing tools can be applied. The exception to this rule is the plain text 
reader that must be provided with a format specifier to define the data, 
and the names of the variables in which the data are to be stored. 

 So when you are approached with a file, the file extension (the part of 
the file name after the dot) gives you a significant clue to the nature of the 
data. For example, if it is the output from a spreadsheet, you should open 
the data in that spreadsheet program to explore its contents and 
organization. [Typically, spreadsheet data will not open well in a plain 
text editor.] If you do not recognize the file extension as coming from a 
spreadsheet, try opening the file in a plain text editor such as that used for 
your scripts and functions and see if the data are legible. You should be 
able to discern the field delimiters and the content of each line if the file 
contains plain text.  

   8.3.2  Spreadsheets 

 Excel   is a Microsoft   product that implements spreadsheets. Spreadsheets 
are rectangular arrays containing labeled rows and columns of cells. The 
data in the cells may be numbers, strings, or formulae that combine the data 
values in other cells. Because of this computational capability, spreadsheets 
can be used to solve many problems, and most offer flexible plotting 
packages for presenting the results in colorful charts. There are occasions, 
however, when we need to apply the power of the MATLAB language to 
the data in a spreadsheet. 

 Table 8.1   File reading and writing 

 File  Content  Reader  Writer  Data Format  Extension 

 Plain text
 

 Any
 

  textscan    fprintf   Specified in the 
function calls 

 .txt usually
 

 CSV
 

 Comma separated 
values 

  csvread    csvwrite   double array  .csv 

 Delimited
 

 Numbers separated 
by delimiters 

  dlmread    dlmwrite   double array  .txt usually 

 Excel 
worksheet 

 Microsoft specific
 

  xlsread    xlswrite   Double array + 2 
cell arrays 

 .xls 

 Image data
 

 Various
 

  imread    imwrite   True color, grayscale,
or indexed image 

 various 

 Audio file
 

 AU or WAV
 

  auread or
wavread  

  Auwrite or
wavwrite  

 Sound data and 
sample rate 

 .au or .wav 

 Movie  AVI   aviread    no   movie  .avi 
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 MATLAB provides a reader for Excel spreadsheets that gives you a 
significant amount of flexibility in retrieving the data from the spreadsheet. 
Consider the typical set of data in a spreadsheet named  grades.xls  shown in 
 Table   8.2   . The goal of your spreadsheet reader is to separate the text and 
numerical portions of the spreadsheet. The parameter consumed by your 
spreadsheet reader is the name of the file; you can ask for up to three return 
variables: the first will hold all the numerical values in an array of doubles; 
the second will hold all the text data in cell arrays; and the third, if you request 
it, will hold both string and numerical data in cell arrays (try Exercise  8 . 1 ).   

 Table 8.2   Sample spreadsheet date 

  name age grade 

 fred 19 78 

Joe 22 83 

 Sally 98 99

Charlie 21 56 

 Mary 23 89  

 Ann 19 51  

 Exercise 8.1    Reading Excel data 

>> [nums txt raw] = csvread('grades.csv')
% or xlsread('grades.xls') with MATLAB 
nums = 
    19     78 
    22     83 
    98     99 
    21     56 
    23     89 
    19     51 
txt = 
    'name'    'age'   'grade' 
    'fred'         "           " 
    'joe'          "           " 
    'sally'        "           " 
    'charlie'    "       " 
    'mary'         "           " 
    'ann'          "           " 
raw = 
    'name'      'age'     'grade' 
    'fred'      [ 19]     [   78] 
    'joe'       [ 22]     [   83] 
    'sally'     [ 98]     [   99] 
    'charlie'   [ 21]     [   56] 
    'mary'      [ 23]     [   89] 
    'ann'       [ 19]     [   51] 
    'ann'       [ 19]     [   51] 
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 The reader first determines the smallest rectangle on the spreadsheet 
containing all of the numerical data; we will refer to this as the “number 
rectangle.” Then it produces the following results: 

   1.   The fi rst returned result is an array with the same number of rows 
and columns as the number rectangle and containing the values 
of all the numeric data in that rectangle. If there are non-numeric 
values within that rectangle, they are replaced by  NaN , the built-in 
name for anything that is not a number.  

  2.   The second returned result is a cell array with the same size as the 
original spreadsheet, containing only the string data; to ensure the 
consistency of this cell array, all numbers present are replaced by 
the empty string.  

  3.   The third returned result is a cell array also with the same size as 
the original spreadsheet, containing both the strings and the num-
bers. Cells that are blank are presumed to be numerical, and are 
assigned as a cell containing an empty vector.   

 Frequently, after processing data, you need to write the results back to a 
spreadsheet. Excel spreadsheets can be written using: 

xlswrite(<filename>, <array>, <sheet>, <range>) 

 where  <filename>  is the name of the file,  <array>  is the data source (a cell 
array),  <sheet>  is the sheet name, and  <range>  is the range of cells in Excel 
cell identity notation. The sheet name and range are optional.  

   8.3.3  Delimited Text Files 

 If information is not available specifically in spreadsheet form, it can 
frequently be presented in text file form. If the data in a text file are numerical 
values only and are organized in a reasonable form, you can read the file 
directly into an array. It is necessary that the data values are separated 
(delimited) by commas, spaces, or tab characters. Rows in the data are 
separated as expected by the new-line character. These values might be 
saved in a file named  nums.txt . This type of numerical data (not strings) in 
general delimited form can be read using  dlmread(<file>,<delimiter>) , 
where the delimiter parameter is a single character that can be used to 
specify an unusual delimiting character. However, the function can usually 
determine common delimiter situations without specifying the parameter. 

 The  dlmread(...)  function produces a numerical array containing the data 
values. Try reading delimited files in Exercise  8 . 2 .  Table   8.3    shows the 
content of the file nums.txt. 

 Notice that the array elements where data are not supplied are filled with 
zero. 
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 Delimited data files can be written using:  dlmwrite( <filename>, 

<array>, <dlm>)  where  <filename>  is the name of the file,  <array>  is 
the data source (a numerical array), and  <dlm>  is the delimiting character. 
If the delimiting character is not specified, it is presumed to be a 
comma.      

 The  csvread(...)  function is a special case of dlm  read(...)  where the 
delimiter is presumed to be a comma, and it produces a numerical array 
containing the data values. As noted above, the MATLAB version of 
 csvread(...)  has been enhanced so that if the data contain only numerical 

values, it will return an array. 
However, if the data contain some 
strings, it produces the three results 
specified above for xls  read(...) . 
The normal content of CSV files 
allows embedded strings to contain 
the comma character. This is 
accomplished by surrounding any 
such string with double quotes—for 

example,  "Jones, Tom"  in a CSV file would prevent the embedded comma 
from separating this string into the two strings:  'Jones'  and  'Tom' .   

 Table 8.3   Sample delimited text file 

  19 78  42 

 22 83 100 

 98 99  34 

 21 56  12 

 23 89  

 19 51   

 It is best not to provide the delimiter unless you have to. 
Without it,  MATLAB  will assume that repeated delimiters—
like tabs and spaces—are single delimiters. If you do specify a 
delimiter, it will assume that repeated delimiter characters 
are separating different, absent field values. 

 Common Pitfalls  8 . 1  

 Exercise 8.2    Reading delimited files 

>> A = dlmread('nums.txt') 
A = 
    19    78    42 
    22    83   100 
    98    99    34 
    21    56    12 
    23    89     0 
    19    51     0 
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   8.4  Lower-Level File I/O 

 Some text files contain data in mixed format that are not readable by the 
high-level file reading functions. The MATLAB language provides a set of 
lower-level I/O functions that permit general-purpose text file reading and 
writing. The following is a partial discussion of these functions that is 
sufficient for most text file processing needs. In general, the file must be 
opened to return a value to be used by subsequent functions to identify its 
data stream. We usually refer to this identifier as the “file handle.” After the 
file contents have been manipulated, the file must be closed to complete the 
activity. Because these are lower-level functions used in combination to 
solve problems, we will need to discuss the behavior of several of them 
before we can show examples of their use. 

   8.4.1  Opening and Closing Files 

 To open a file for reading or writing, use  fh = fopen( <filename>, 

<purpose>)  where  fh  is a file handle used in subsequent function calls to 
identify this particular input stream,  <filename>  is the name of the file, and 
 <purpose>  is a string specifying the purpose for opening the file. The most 
common purposes are  'r'  to read the file,  'w'  to write it, or  'a'  to append 
to an existing file. See the help files for more complex situations. If the 
purpose is  'r' , the file must already exist; if  'w'  and the file already exists, 
it will be overwritten; if  'a'  and the file already exists, the new data will be 
appended to the end. The consequence of failure to open the file is system 
dependent. In the standard version on a PC, this is indicated by returning a 
file handle of –1. 

 To close the file, call  fclose( fh ).   

   8.4.2  Reading Text Files 

 To read a file, three levels of support are provided: reading whole lines 
with or without the new-line character, parsing into tokens with delimiters, 
or parsing into cell arrays using a format string. 

   ■   To read a whole line including the new-line character, use  str = 
fgets( fh )  that will return each line as a string until the end of the 
file, when the value –1 is returned instead of a string. To leave out 
each new-line character, use  fgetl(...)  instead (the last character is 
a lowercase  L ).  

  ■   To parse each line into tokens (elementary text strings) separated by 
white space delimiters, use a combination of  fgetl(...)  and the 
tokenizer function  [<tk>, <rest>] = strtok( <ln> );  where  <tk>  
is a string token,  <rest>  is the remainder of the line, and  <ln>  is a 
string to be parsed into tokens.  
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  ■   If you are using MATLAB, you could try to parse a line according 
to a specific format string into a cell array by using  ca = textscan( fh, 
<format> );  where  ca  is the resulting cell array,  fh  is the file handle, 
and  <format>  is a format control string such as we used for 
 sscanf(...)  in  Chapter   6   .    

   8.4.3  Examples of Reading Text Files 

 To illustrate the use of these functions for reading a text file, the script shown 
in Listing  8 . 1  shows a script that will list any text file in the Command window.  

 In Listing  8 . 1 : 

   Line 1: Asks the user for the name of a file.  
  Line 2: Opens the file for reading and returns the file handle.  
  Line 3: Initializes the  while  loop control variable.  
  Line 4: When the file read reaches the end of the file, the reading 
function returns −1 instead of a string.  
  Line 5: Reads a string, including the end of line character.  
  Line 6: Classic loop-and-a-half logic that determines whether there 
is a line to process.  
  Line 7: Displays that line if present.  
  Line 10: Closes the file when finished.   

 As an example of the use of a tokenizer, consider the code shown in 
Listing  8 . 2 , which performs the same function as Listing  8 . 1  but uses tokens.  

   Line 5: Uses  fgetl(...)  instead of  fgets(...)  because the tokenizer 
does not need the new-line character.  
  Line 7: Initializes the resulting cell array.  
  Line 8: The tokenizer will be finished when it leaves an empty line 
as the result.  
  Line 9: Creates a token from the remains of the line and puts the 
remains back into the variable  ln .  

 Listing  8 . 1      Script to list a text file 

 1. fn = input( 'file name: ', 's' ); 
 2. fh = fopen( fn, 'r' ); 
 3. ln = '';
 4. while ischar( ln ) 
 5.     ln = fgets( fh ); 
 6. if ischar( ln ) 
 7.         fprintf( ln ); 
 8. end
 9. end
10. fclose( fh ); 
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  Line 10: Adds the current token to the result.  
  Line 12: Shows the tokens for one line.  
  Line 15: Closes the file.   

 Run the scripts in Listings  8 . 1  and  8 . 2 . This will show the difference in 
output results between the conventional listing script and the tokenizing 
lister. With the tokenizer, we see each individual token (really, each word 
in a normal text file) separately listed.  

   8.4.4  Writing Text Files 

 Once a file has been opened for writing, the  fprintf(...)  function can be 
used to write to it by including its file handle as the first parameter. For 
example, Listing  8 . 3  is a minor alteration to Listing  8 . 1 , copying a text file 
instead of listing it in the Command window.  

 Listing  8 . 2      Listing a file using tokens 

 1. fn = input( 'file name: ' , 's' ); 
 2. fh = fopen( fn, 'r' ); 
 3. ln = ''; 
 4. while ischar( ln ) 
 5.     ln = fgetl( fh ); 
 6. if ischar( ln ) 
 7.         ca = []; 
 8. while ~isempty( ln ) 
 9.             [tk, ln] = strtok( ln ); 
10.             ca = [ca {tk}]; 
11. end
12.         disp( ca ); 
13. end
14. end
15. fclose( fh ); 

 Listing  8 . 3      Script to copy a text file 

 1. ifn = input( 'input file name: ', 's' ); 
 2. ofn = input( 'output file name: ', 's' ); 
 3. ih = fopen( ifn, 'r' ); 
 4. oh = fopen( ofn, 'w' ); 
 5. ln = '';
 6. while ischar( ln ) 
 7.     ln = fgets( ih ); 
 8. if ischar( ln ) 
 9.         fprintf( oh, ln ); 
10. end
11. end
12. fclose( ih ); 
13. fclose( oh ); 
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 In Listing  8 . 3 : 

   Line 2: Fetches the output file name.  
  Line 4: Opens the output file for writing.  
  Line 9: Adding  oh  as the first parameter to  fprintf(...)  redirects 
the output to the specified file.  
  Line 13: Closes the output file.   

 Figure 8.3   Data in a spreadsheet       

   8.5  Engineering Example—Spreadsheet Data 

   ■    Frequently, engineering data are provided in spreadsheets. Here we 
will adapt the structure assembly problem from  Chapter   7   . The script 
for that solution created the data using a constructor function. 
Consider the situation in which the data are provided in a spreadsheet 
such as that shown in  Figure   8.3   . We have to start by examining the 
layout of the data and the process necessary to extract what we need. 
Bearing in mind the three results returned from  xlsread(...) , first we 
determine which of the three is most appropriate:   

  ■    The { xlsread(...) } function is going to include all the numerical 
cells from the spreadsheet in the numerical array. This is awkward 
because there are numbers in the first column; and since the primary 
interest in this problem is not the numerical data, we will not use the 
numerical array directly.  

  ■    However, this is not exclusively a text processing problem. Since we 
need the numerical coordinates, the second, text-only result is not 
what we need.  

  ■    Therefore, in this particular application, we will process the raw 
data provided by  csvread(...) , giving both the string and 
numerical data.    

 The other concern is that there are a different number of connections on 
each row of the sheet. When a connection is present, it is a string. When it is 
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not there, we refer to the behavior of the raw data to discover that the 
contents of empty cells appear as [] of type  double . 

 We need a function that will read this file and produce the same model of 
the structure used in  Chapter   7   . Such a function is shown in Listing  8 . 4 .  

 In Listing  8 . 4 : 

   Line 1: The function consumes the file name and produces a 
structure array with the fields described in the following comments.  
  Line 2: Reads the spreadsheet and keeps only the raw data.  
  Line 3: Gets the rows and columns in the raw data; we need to 
ignore the top row and left column.  
  Line 4: Initializes the output index for the structure array.  
  Line 5: Ignoring the first row, traverses all the remaining rows.  
  Line 6: The component name is in the second column.  
  Line 7: The coordinates of the component are in the third and fourth 
columns.  

 Listing  8 . 4      Reading structure data 

 1. function data = readStruct(filename) 
% read a spreadsheet and produce a
% structure array:
% name - the second column value
% pos - columns 3 and 4 in a vector
% connect - cell array with the remaining
% data on the row

 2.     [no no raw] = xlsread(filename); 
 3.     [rows cols] = size(raw); 

% ignore the first row and column
 4.     out = 1; 
 5. for row = 2:rows 
 6.         str.name = raw{row,2}; 
 7.         str.pos = [raw{row,3} raw{row,4}]; 
 8.         cni = 1; 
 9.         conn = {}; 
10. for col = 5:cols 
11.             item = raw{row, col}; 
12.             if ~ischar(item) 
13. break;
14. end
15.             conn{cni} = item; 
16.             cni = cni + 1; 
17. end
18.         str.connect = conn; 
19.         data(out) = str; 
20.         out = out + 1; 
21. end
22. end



Special Characters, Reserved Words, and Functions      197

  Lines 8–9: Initialize the search for the connections for this 
component. It is important to empty the array  conn  before each pass 
to avoid “inheriting” data from a previous row.  
  Lines 10–11: Extract each item in turn from the row.  
  Lines 12–14: If the item is not of class  char , this is the blank cell at 
the end of the row; the  break  command exits the  for  loop moving 
across the row.  
  Lines 15–16: Otherwise, it stores the connection and keeps going.  
  Lines 18–20: When the connections are complete, it stores them in 
the structure, stores the structure in the structure array, and 
continues to the next row.  
  Line 21: When the rows are completed, the data are ready to return 
to the calling script.   

 To test this function, replace the structure array construction in lines 1–22 
of Listing  7 . 6  in  Chapter   7    with the following line: 

data = readStruct('Structure_data.xls'); 

 The script should then produce the same results as before.    

     Chapter Summary 

  We have described three levels of capability for reading and writing files:  

   ■   The save and load operators allow you to save variables from the 
workspace and restore them to the workspace  

  ■   Specialized functions read and write spreadsheets and delimited 
text files  

  ■   Lower-level functions provide the ability to open and close files, 
and to read and write text files in any form that is required    

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in

This Section 

  [nums,txt,raw] = 
csvread(<file>)  

 Reads comma-separated text files  8.3 

  csvwrite(<file>,<data>)   Writes comma-separated text files  8.3 

  dlmread(<file>,<dlm>)   Reads text files separated by the given 
delimiting character 

 8.3 

  dlmwrite (<file>, 
<data>, <dlm>)  

 Reads text files separated by the given 
delimiting character 

 8.3 
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 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in

This Section 

  fclose(fh)   Closes a text file  8.4.1 

  fgetl(fh)   Reads a line, omitting the new-line character  8.4.2 

  fgets(fh)   Reads a line, including the new-line character  8.4.2 

  fh = fopen(<file>, 
<why>)  

 Opens a text file for reading or writing  8.4.1 

  fprintf(...)   Writes to the console, or to plain text files  8.3, 8.4.4 

  load <filename>   Loads the workspace from a file  8.2 

  save <filename>   Saves workspace variables in a file  8.2 

  [tk rest] =   strtok
(<str>, <dlm>)  

 Extracts a token from a string and returns 
the remainder of the string 

 8.4.2 

  ca = textscan(fh, 
format)  

 Acquires and scans a line of text according 
to a specific format 

 8.3, 8.4.2 

  [nums, txt, raw] = 
xlsread(<file>)  

 Reads an Excel spreadsheet  8.3.2 

  xlswrite(<file>,<data>,
<sheet>, <,range>)  

 Writes an Excel spreadsheet in a specific 
row/column range 

 8.3.2 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    All data files should be treated as a sequential series of characters.   

   2.    When you save a workspace, you are actually saving the scripts that 
generate the data in the workspace.   

   3.    MATLAB reads strings from tab- or comma-delimited files by 
recognizing the double quotes that delimit strings.   

   4.    If you use  fopen(...)  to open an existing file and write to it, the 
original data in the file will be overwritten.   

   5.    The function  fgets(fh)  does not always return a string.   

  Fill in the Blanks  

   1.    In general, data files contain text that represents the ________ of the 
data and control characters that specify the _____________ of the 
data.   
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   2.    If the <purpose> field has ‘a’ while opening an existing file system, 
the contents entered will be ____________.   

   3.    When using  dlmread(...)  to populate a(n) ___________, any 
unassigned values are ___________.   

   4.    Numerical data (not strings) in general delimited form can be read 
using the MATLAB function _____________.    

  Programming Projects 

   1.    Write a script that performs the following operations: 
   a.   Set the value of variables  a, b, c1, c2, c3,  and  x . The values 

don’t matter, except you should set  c2  to  42 .  
  b.   Save the values of all the variable except  x  to  mydata.mat  using 

the save operation.  
  c.   Set the value of  c2  to  -99 .  
  d.   Load  myData.mat  and check that  c2  is now  42 .  
  e.   Clear all variables.  
  f.   Load  myData.mat  again and note that the variable  x  is not present.     

   2.    One requirement for all freshmen classes is an issue of a  'Standing'  
during the middle of the term. The results are either Satisfactory  (S)  
or Unsatisfactory  (U) . Since you are the office employee in charge of 
issuing these grades, you decide to write a function called 
 midtermGrades  to help yourself. You discover that the grades are on 
a spreadsheet organized like this: 
   •   Each student is represented by one row on the spreadsheet.  
  •   Unfortunately, since these sheets are created by different 

instructors, they are not necessarily consistent in their layout.  
  •   The first row will contain the following six strings in any order: 

'name', 'math', 'science', 'english', 'history', and 'cs'. 

  •   Under the name column will be a string with the student’s name.  
  •   Grades in the other columns can be  'A', 'B', 'C', 'D', 'F',  or 

 'W' .  
  •   A student’s grade is  'S'  if there are more A’s, B’s and C’s than 

not.   

   Your function should print out grades ready to be entered consisting 
of a table with headings  'Name'  and  'S/U'    

   3.    Write a function called  genStats  that will compute statistics for a set 
of class grades. The grades will be stored in a spreadsheet, and your 
function will compute statistics and then write the grades along 
with the statistics to another spreadsheet. 
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   You may assume that the initial spreadsheet will have a format 
similar too: 

   Student Name Exam1 Exam2 Exam3 ...  
  student 1 100 76 45 ...  
  student 2 34 83 89 ...   

   The first row is the header row, and the first column is the list of 
student names. There may be any number of exam grades, and there 
may be any number of students. Although, you may assume that 
there will be at least one student and that there will be at least one 
exam. 

   Also, every student will have a grade for every exam. 

   Your function should only have one input (a string containing the 
file name of the grades file) and no outputs. You must write your 
function to perform the following steps: 
   a.   Calculate the average grade of each student (across the rows) and 

store it in a new column called  'Average'  (to the right of the last 
exam grade).  

  b.   Calculate the deviation of each student’s overall average 
(calculated in step a) from the maximum student average and 
store it in a new column called  'Deviation'  (to the right of the 
 'Average'  column). Note that deviation is just the difference 
between the maximum student average and a student’s overall 
average.  

  c.   Calculate the average of each column’s data (each exam), the 
averages calculated in step a, and the deviations calculated in 
step b, then store these averages below the last row of the original 
data and name that row  'Total Average' .  

  d.   Write the original data along with all of the new data to a file 
named  'Stats_<name_of_original_file>'  (so if the inputted file 
name was  'Student_Grades.csv' , the new data would be written 
to the file named  'Stats_Student_Grades.csv' ).  

  e.   Construct a spreadsheet with suitable test data and use it to test 
your function.     

   4.    Write a function called  replaceStr . Your function should take in the 
following order: 

    filename:  A string that corresponds to the name of a file  

   wordA:  A string that is a word (contains no spaces)  

   wordB:  Another string that is also a word (contains no spaces)   

   Your function should do the following: 
   a.   Read the file a line at a time.  
  b.   On each line, replace every occurrence of  wordA  with  wordB .  



Programming Projects      201

  c.   Write the modified text file with the same name as the original 
file, but preprended with  'new_' . For instance, if the input 
filename was  'data.txt' , the output filename would be  'new_
data.txt' .  

  d.   Prepare a test file by downloading a text file from the Internet. 
For example, the complete works of Shakespeare are accessible at 
 http://www.william-shakespeare.info   

  e.   Examine the file for repeated words, and test your function by 
writing a script that replaces frequently repeated words.        
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  Chapter Objectives 

 This chapter discusses the following basic ideas of recursive 
programming: 

      ■   Three basic characteristics must be present for a recursive function 
to work  

  ■   Exceptions are a powerful mechanism for detecting and trapping 
errors  

  ■   A wrapper function is used to set up the recursion  

  ■   Other forms of recursion occur in special circumstances     

  Introduction 

 Recursion is an alternative technique by which a code block can be 
repeated in a controlled manner. In  Chapter   4   , we saw repetition 
achieved by inserting control statements in the code (either  for  or 
 while ) to determine how many times a code block would be 
repeated. Recursion uses the basic mechanism for invoking functions 
to manage the repetition of a block of code. 

 While some problems are naturally solved by iterative solutions, there are many 
problems for which a recursive solution is elegant and easily understood. Frequently, 
a recursive function needs a “wrapper function” to set up the recursion correctly, 
and to check for erroneous initial conditions that might cause errors. The actual 
recursive function then becomes a private helper function.   

 Recursion 
    C H A P T E R  9 

       9.1    Concept: The Activation 
Stack     

    9.1.1   A Stack      
    9.1.2   Activation Stack      
    9.1.3   Function Instances       
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   9.3    Implementing a Recursive 

Function      
   9.4   Exceptions      
    9.4.1    Historical 

Approaches      
    9.4.2    Generic Exception 

Implementation      
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Implementation       
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   9.6   Examples of Recursion     
    9.6.1    Detecting 

Palindromes      
    9.6.2   Fibonacci Series      
    9.6.3   Zeros of a Function       

   9.7    Engineering Example—
Robot Arm Motion       
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PopPush

 Figure 9.1   Behavior of a stack       

      9.1  Concept: The Activation Stack 

 In order to understand recursive programming, we must look deeper 
into the mechanism by which function calls are mechanized. Calling any 
function depends on a special kind of data structure built into the 
architecture of the central processing unit (CPU). This is called the 
activation stack. It enables the CPU to determine which functions are 
active or suspended awaiting the completion of other function calls. To 
understand the activation stack, first we consider the basic concept of a 
stack. 

   9.1.1  A Stack 

 A stack is one of the fundamental data structures of computer science. It is 
best modeled by considering the trays at the front of the cafeteria line. 
You cannot see how many trays there are on the stack, and the only access 
you have to them is to take a tray off the stack or put one on. So a stack is 
a collection of objects of arbitrary size with a restricted number of 
operations we are allowed to perform on that collection (see  Figure   9.1   ). 
Unlike a vector, where it is permissible to read, add, or remove items 
anywhere in the collection, we are only allowed the following operations 
with a stack:  

  ■   Push an object onto the stack  
  ■   Pop an object off the stack  
  ■   Peek at the top object without removing it  
  ■   Check whether the stack is empty     

   9.1.2  Activation Stack 

 The core concept that enables any function (especially a recursive function) 
to operate is the concept of an activation stack. The activation stack is the 
means by which the operating system allocates memory to functions for 
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local storage. Typically, local storage is required by a function for the 
following reasons:  

  ■   Storing the location in memory to which control must be returned 
when the function execution completes  

  ■   Storing copies of the function parameter values  
  ■   Providing space for the values of any local variables defined within 

the function   

 When MATLAB is initializing, the operating system allocates a block of 
memory to contain its activation stack and allocates the first item (usually 
called a “frame”) on the activation stack to store variables defined in the 
Command window and by scripts. An astute reader might recognize this as 
the initial workspace for the system. When the user starts a script or makes an 
entry in the Command window, any variables created are stored in that stack 
frame. When that application calls a function, a new stack frame is allocated 
and “pushed” onto the activation stack. The calling program is then suspended, 
actual parameters are copied to formal parameters in the new workspace and 
control is passed to the function. Any new variables created are stored in its 
stack frame. When that function completes, its frame is popped off the stack 

and destroyed, and control is returned 
to the frame beneath, which is now 
the top of the stack. If an active 
function calls another function, this 
process is repeated. The calling 
function is suspended, a stack frame is 
pushed onto the activation stack for 
the new function, and the original 
function is suspended until the new 
function completes.     

   9.1.3  Function Instances 

 In  Chapter   2    we discussed the difference between the type of data defined 
by its class and an object—an instance of that class assigned to a variable. In 
the same way, we draw the distinction between the  .m  file that defines the 
behavior of a function and the instance(s) of that function that results when 
the function is called. Each new instance of a function has its own workspace 
that occupies a temporary stack frame allocated from the activation stack.   

 In most computer languages, user programs and functions 
are compiled before they can be run. Part of that compilation 
process is defining the variable names and data types. This 
allows the system processes to compute the exact size of 
each stack frame before the program begins to run. Since the 
MATLAB language is interpreted and interactive, this 
information is not available. Consequently, every stack frame 
must be dynamically sized to allow for the “surprises” 
inherent in this style of programming. 

 Technical Insight  9 . 1  

   9.2  Recursion Defined 

 Following the previous line of reasoning, in principle there is no reason 
why a function could not in fact “call itself,” and this is the logical basis for 
recursive programming. Of course, as with iterative programming, if there 
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is no mechanism to stop the recursion, the process would repeat endlessly. 
In the case of endless recursion, since space is being consumed on the 
activation stack, the system will eventually terminate the process when the 
memory originally allocated for the activation stack is exhausted. 

 The canonical illustration of recursion is the computation of  n  factorial. 
We could view the calculation of  5!  in the following ways: 

5! = 5 × 4 × 3 × 2 × 1 
5! = 5 × 4! 

 The second representation is the recursive view, which warrants a closer 
examination as follows: 

n! = n × (n-1)! 

 This definition would not be complete, however, without realizing that it 
must stop somewhere. In the original definition above, we did not continue 
the chain of multiplication with  " * 0 * (-1) * (-2) ..."  for obvious 
reasons—multiplying by 0 makes all factorial values 0! Mathematically, we 
“artificially” define the terminating condition for the factorial calculation as 
the state where  0! = 1 . 

 We can derive from this example the three necessary characteristics of a 
recursive function:  

   1.   There must be a terminating condition to stop the process  

   2.   The function must call a  clone  of itself  

   3.    The parameters to that call must move the function toward the 
terminating condition   

 The word  clone  is important here—a recursive function really does not “call 
itself,” because it requests a new stack frame and passes different parameters 
to the instance of the function that occupies the new frame.  

   9.3  Implementing a Recursive Function 

 Template  9 . 1  shows the general template for recursive functions. The 
following general guidelines indicate how the recursive template is 
implemented: 

   ■   The  <function_name> , like the name of any other function, may be 
any legal variable name  

  ■   The variable  <result>  may be any legal variable name or a vector of 
variable names  

  ■   As usual with functions, you should supply at least one line of 
 <documentation>  to define its purpose and implementation  
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  ■   Each exit from the function must assign values to all the result 
variables  

  ■   The first design decision is to determine the condition(s) under 
which the recursive process should stop, and how to express this as 
the  <terminating condition N>  tests  

  ■   The  <initial value N>  entries are the value(s) of the result(s) at the 
terminating condition(s)  

  ■   The second design decision is to determine the  <operation> —the 
specific mathematical or logical operation that must be performed 
to combine the current formal parameters with the result of the 
recursive call to create a new value of the  <result>   

  ■   The last design decision is to determine how to compute the 
 <actual_params>  of the recursive call to ensure that the process 
moves toward at least one of the  <terminating condition N>  states    

 The implementation of the factorial function is shown in Listing  9 . 1 .  

 In Listing  9 . 1 :  

  Before Line 2, we show a diagnostic print call that, if not 
commented, enables you to observe the sequence of events.  
  Line 2: The terminating condition.  

 Template  9 . 1      General template for a recursive function 

function <result> = <function_name> (<formal_params>) 
<documentation>

if <terminating condition 1> 
<result> = <initial value 1> 

elseif <terminating condition 2> 
<result> = <initial value 2> 
...

else
<result> = <operation> ... 

(<formal_params>, ... 
          <function_name> (<new_params>)) 

end

 Listing  9 . 1      Function to compute N factorial 

1. function result = fact(N) 
% recursive computation of N!
% fprintf('fact( %d )\n', N); % testing only

2.     if N == 0 
3.         result = 1; 
4.     else 
5.         result = N * fact(N - 1); 
6. end 
7.     end 
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  Line 5: The result at termination.  
  Line 7: Calls a clone of the function, which moves closer to 
termination by reducing  N  and computing the result.   

 Exercise  9 . 1  provides an analysis of recursive behavior. In particular, notice 
that all the mathematical operations are performed as the activation stack 
“unwinds.”   

 Exercise 9.1    Analyzing recursive behavior 

    1.   Create the  fact(...)  function from Listing  9 . 1 , remove the first ‘%’ from 
Line 3 to enable the printout, and run it from the Command window: 

>> fact(4) 
fact( 4 ) 
fact( 3 ) 
fact( 2 ) 
fact( 1 ) 
fact( 0 ) 
ans = 

      24

   2.   Put a break point at Line 4 and run  fact(2) . The function should pause in 
the first stack frame. Notice that the only variable in the workspace is  N  
with a value  2 .  

   3.   Find the “step into” button and click it. Since  N  is not  0 , the arrow should 
move to Line 7.  

   4.   Click again, and the workspace should change to a new workspace with 
the value  N = 1 — you just called a clone of the original function with its 
own stack frame. There should be a second, transparent arrow at Line 7 
to indicate that some clone of this function is waiting at that point for a 
result.  

   5.   Continue stepping into functions until you return from the copy where 
 N = 0 . When this return happens, you return to the frame with  N = 1 , the 
frame “underneath,”at Line 7, and are then able to compute the first 
result.  

   6.   Further stepping will return from each stack frame until you finally return 
to your script’s workspace with the final answer.   

   9.4  Exceptions 

 We digress here to discuss how programs deal with unexpected 
circumstances. Exceptions are a powerful tool for gracefully managing run-
time errors caused by programming errors or bad data. The general need 
for an exception mechanism might best be established by way of an 
example. 
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 Suppose you write a program that requests some data from a user and 
then launches a significant number of nested function calls—perhaps even 
a recursive function—to perform an analysis on the data received. 
Somewhere in the depths of these function calls, the program divides 
something by a value, but in this instance that value is zero. The cause of 
this problem is probably bad data entered by the user in the top-level script. 
However, the effect is discovered deep in the activation stack in the middle 
of some obscure numerical computation. 

   9.4.1  Historical Approaches 

 Early programming languages attempted to deal with this problem in one 
of two equally unpleasant ways: 

   ■   Some languages require any mathematical function that might 
produce an error to return the status of that calculation to the 
calling function. They allow errors to be reported and processed, 
but they have two unpleasant consequences: using up the ability 
of a function to return a value and calling this function, which 
means choosing between testing for errors and solving the 
problem locally and passing the error condition back to its 
calling function in the hope that somewhere the error will be 
dealt with.  

  ■   Perhaps worse than this are the languages that use a globally 
accessible variable, such as  ierror , to report status. For example, if 
 ierror  were normally set to  0 , an error could be announced by 
setting its value to something other than  0  to indicate the nature of 
the failure. This frees the function from needing to return status, 
but it does not relieve the calling function of the need to check 
whether the  ierror  value is bad, or solving the problem, or 
elevating it. Furthermore, if an error does occur within a function, 
since it is now still returning a value, what value should it return if 
it is unable to complete its assigned calculation?    

   9.4.2  Generic Exception Implementation 

 By contrast, most modern programming languages provide an exception 
mechanism whereby if an error occurs, regardless of how deep in the 
activation stack, program implementation is immediately suspended in the 
current stack frame. The activation stack below this frame is then searched 
for the frame of a program that has “volunteered” to process this type of 
exception. When it is found, all the stack frames above this frame are 
removed from the stack and the code in the exception handling mechanism 
is activated. If no such frame is discovered, the overall program aborts with 
an error code. 
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 The following mechanisms are necessary to implement the exception 
mechanism effectively: 

   ■   Throwing an exception.     Whenever a problem occurs, the operating 
system must suspend operations at that point in the activation stack 
and go looking for a function equipped to handle the specific 
exception. If no such function is found, the program is terminated 
and an exception is shown to the user (in MATLAB, it is written in 
red in the Command window).  

  ■   Catching an exception.     A function that is able to deal with a specific 
exception uses a  try ... catch  construct to identify the suspect 
code and resolve the problem. Between  try  and  catch , the 
programmer puts a code block that contains activities that could 
throw exceptions. After the  catch  statement, there is a code block 
that should fix the problem.   

 Depending on the specific language implementation, the exception-catching 
mechanism usually offers facilities both for determining exactly where the 
exception occurred and for reconstructing the activation stack with all the 
variable values as they were at the time of the exception. 

 In the previous example, the general template for successfully 
interacting with the user is shown in Template  9 . 2 . The successful Boolean 
flag will be set only if the data are processed without error. It does not 
matter how deep in the data processing code the error occurs—the user 
interface catches the error, reports it to the user, and prompts the user for 
better data. 

 For example, you might have noticed earlier that the input(...) function 
has a built-in  try ... catch  mechanism to deal with erroneous user input. 
If something is entered that cannot be parsed, rather than throw red ink in 
the Command window, the exception is caught and the prompt repeated 
for the user.  

 Template  9 . 2      General template for processing exceptions 

successful = false 
while <not successful> 

try
       <request data from the user> 
       <process the data> 
       successful = true 

catch
       <announce the error to the user> 

end
end
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   9.4.3  MATLAB Implementation 

 MATLAB implements a simplified version of the most general form of 
exception processing. The  try ... catch ... end  construct is fully 
supported. However, unlike some languages, the MATLAB language does 
not distinguish between the kinds of exception that can be thrown. 

   ■   All built-in functions throw exceptions when they discover error 
conditions—attempting to open a nonexistent file for reading, for 
example—and expect the programmer to catch these exceptions if 
they are recoverable.  

  ■   To throw an exception manually, the program calls the 
 error(...)  function that takes one parameter, a string defining 
the error. If the exception is not caught, the string provided is 
displayed in red to the user. If the exception is caught, that string 
is ignored.  

  ■   To handle an exception, a code block we suspect might throw an 
exception is placed between  try  and  catch  statements. If no error 
occurs in the code block, the  catch  statement is ignored. If an 
exception is thrown from that code block, however, execution is 
suspended at that point. No further processing is performed, no 
data are returned from functions, and the code in the closest  catch  
block is executed up to the associated  end  statement. To determine 
the cause of the exception, you can use the  lasterror  function. It 
returns the textual information provided at the exception and a 
structure array describing the activation stack.  

  ■   In more complex situations where this function may not be able to 
actually handle the error, a further exception can be thrown from 
the  catch  block. This exception will escape from this  try ... catch  
block and must be caught (if at all) by another function or script 
deeper in the activation stack.    

 Listing  9 . 2  illustrates a simple example. The objective is to have the user 
define a triangle by entering a vector of three sides and to calculate the 
angle between the first two sides. The  acosd(...)  function computes the 
inverse cosine of a ratio. If that ratio is greater than one, there is something 
seriously wrong with the triangle, and  acosd  returns a complex number. 
This script detects that the answer is complex and throws an exception.  

 In Listing  9 . 2 :  

  Lines 1 and 2: We will repeat the attempts to compute the angle of a 
triangle until successful.  

  Line 3: Begins the suspect code.  

  Line 8: Detects the problem with the data.  
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  Line 9: Throws the exception. In this case, the exception occurs 
visibly in this script. However, the  try ... catch  behavior is the 

same if the exception occurs deep in 
a set of nested function calls.  
  Line 11: The end of the suspect code 
block and the beginning of the 
exception handler—in this case, it’s 
a warning to the user that the data 
are bad.  
  Line 14: This line is reached only if 
the suspect code block executed 
correctly, in which case we can exit 
the  while  loop.   

 You have an opportunity to work with 
exception processing in Exercise  9 . 2 .     

 Listing  9 . 2      MATLAB script using exception processing 

 1. OK = false; 
 2. while ~OK 
 3.     try 
 4.         side = input('enter a triangle: '); 
 5.         a = side(1); b = side(2); c = side(3); 
 6.         cosC = (c^2 - a^2 - b^2)/(2 * a * b); 
 7.         angle = acosd(cosC); 
 8.         if imag(angle) ~= 0 
 9.             error('bad triangle') 
10.         end 
11.     catch 
12.         disp('bad triangle - try again') 
13.     end 
14.     OK = true; 
15. end 
16. fprintf('the angle is %f\n', angle) 

  1.   You should allow the exception-processing mechanism to 
simplify the structure of your code. Rather than attempting 
to detect every possible data error and return error 
condition, perhaps from deeply nested function calls, allow 
the exception mechanism to return control directly to the 
code that can deal with the problem.  

  2.   Exception processing is for processing events that occur 
outside the normal thread of execution. It may be tempting 
at times to use the exception mechanism as a clever means 
of changing the normal flow of program control, but resist 
that temptation. It produces ugly, untraceable code and 
should be avoided.   

 Style Points  9 . 1   

 Exercise 9.2    Processing exceptions 

 Put the code from Listing  9 . 2  in a script and execute it, using the following data: 

enter a triangle: [3 4 8] 
bad triangle - try again 
enter a triangle: [3 4 6] 
the angle is 62.720387 

 Then, edit the script to remove the  try  statement and the  catch  block and 
repeat the test.   
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   9.5  Wrapper Functions 

 Consider the factorial function again for a moment—specifically, ask how 
you would deal with a user who accidentally called for the factorial of a 
negative number or of a number containing a fractional part. Our original 
recursive  fact(...)  function is not protected from these programmer 
errors. There are three possible strategies for dealing with this situation:  

  1.    The legalist approach  ignores the bad values, lets the user’s program 
die, and then responds to user complaints by pointing out that the 
documentation clearly indicates that you should not call for the facto-
rial of a negative number. Usually this is not the best approach from 
the customer relations viewpoint or from the technical support effort 
viewpoint, especially since recursive code that hangs up typically 
crashes with a stack overfl ow—not the easiest symptom to diagnose!  

  2.    In-line coding  builds into the code a test for N less than zero (or 
fractional) and throws an exception with a meaningful error mes-
sage. Although this is an improvement over the fi rst choice because 
it exits gracefully, the test is in a bad place. The function is recursive; 
therefore, the code for that test is repeated as many times as the 
function is called. While modern computers are fast enough that one 
would probably not notice the difference, in general this is a poor 
implementation that punishes those who are using the function cor-
rectly with the same test each time the recursive function is called.  

  3.    A wrapper function  is the best solution. A wrapper function is called 
once to perform any tests or setup that the recursion requires and 
then to call the recursive function as a helper to the main function 
call. While there is a small computational cost to using a wrapper, it 
is only executed once rather than each time the recursive function is 
called. Template  9 . 3  illustrates this idea.    

 The first function named  <function_name>  is actually the wrapper 
function with the return result, parameters, and documentation expected 
by the caller. It makes whatever tests are necessary to validate the input 
data, cleans it up if necessary, and calls the helper function named 
 <private_name> . 

 Listing  9 . 3  is the implementation of the factorial function with protection 
from bad data.  

 In Listing  9 . 3 :  

  Line 1: To the outside world, this is the function actually called. 
(Ugly secret: even if the name is not the same name as the file, the 
first function in the file is always executed first.)  
  Line 2: Checks for negative and fractional inputs.  
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  Line 4: Throws an exception if the data are bad.  

  Line 6: Calls the recursive version if the data are valid.  

  Line 9: Definition of the recursive function. By convention, some 
MATLAB users tend to give the prefix  local_  to private functions 
like this, but this has no significance to the system.  

  Line 15: Calls the local recursive function—it is not necessary to go 
back to the wrapper by calling  fact(..)  here.   

 Exercise  9 . 3  gives you an opportunity to work with the protected 
factorial.  

 Template  9 . 3      General template for a wrapper function 

function <result> = <function_name> (<formal_params>) 
<documentation>
      if <bad_condition> 
         <throw exception> 

else
<result> = <private_name> (<actual_params>) 

end

function <result> = <private_name> (<formal_params>) 
<documentation>

if <terminating condition 1> 
<result> = <initial value 1> 

elseif <terminating condition 2> 
<result> = <initial value 2> 

else
<result> = <operation> 

(<formal_params>, ... 
<private_name> (<new_params>) ) 

end

 Listing  9 . 3      Wrapper implementation for the factorial function 

 1. function result = fact(N) 
% computation of N!

 2.     if (N < 0) || ((N - floor(N)) > 0) 
 3.         error('bad parameter for fact'); 
 4.     else 
 5.         result = local_fact(N); 
 6.     end 
 7. end 
 8. function result = local_fact(N) 

% recursive computation of N!
 9.     fprintf('fact( %d )\n', N);
10.     if N == 0 
11.         result = 1; 
12.     else 
13.         result = N * local_fact(N - 1); 
14. end 
15.     end 



9.6 Examples of Recursion      215

 Exercise 9.3    Writing the protected factorial 

 Write the  fact(...)  function as shown in Listing  9 . 3 , and test it in the 
Command window: 

>> fact(-1) 
??? Error using ==> fact
bad parameter for fact
>> fact(.5) 
??? Error using ==> fact
bad parameter for fact
>> fact(4) 
ans = 

24

   9.6  Examples of Recursion 

 We conclude this chapter with three examples of recursive programming: 
detecting palindromes, computing the Fibonacci series of numbers, and 
finding zeros of a function. The examples are followed by a practical 
engineering example of the use of zero finding. 

   9.6.1  Detecting Palindromes 

 We might want to determine whether a word or phrase received as a 
string is a palindrome, that is, whether it is spelled the same forward and 
backward. Of course, you could accomplish this in one line with vector 
operations (think about it!) but that would not be a good recursive 
exercise. One could design a recursive function named  isPal(<string>)  
as follows:  

  ■   The function  isPal(<string>)  terminates if the  <string>  has zero or 
one character, returning  true .  

  ■   It also terminates if the first and last characters are not equal, 
returning  false .  

  ■   Otherwise (first and last are equal), the function returns 
 isPal(<shorter string>) , where the shorter string is obtained by 
removing the first and last characters of the original string.  

  ■   Clearly, since the string is always being shortened, the recursive 
solution is approaching the terminating condition.   

 The MATLAB implementation of the palindrome detector is shown in 
Listing  9 . 4 .  

 In Listing  9 . 4 :  

  Line 3: The successful terminating condition is when the length of 
the string is under 2.  
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  Line 5: The failure condition is when the first and last characters do 
not match.  
  Line 8: To move toward termination, remove the first and last 
characters that have already been checked.   

 We should observe further that a serious student of palindromes might 
know that real palindromes contain spaces, punctuation marks, and 
uppercase and lowercase characters. We leave it as an exercise for you to 
write a wrapper function that cleans up strings containing these issues 
before passing the string to the recursive palindrome detector.  

   9.6.2  Fibonacci Series 

 The Fibonacci series was originally named for the Italian mathematician 
Leonardo Pisano Fibonacci, who was studying the growth of rabbit 
populations in the eleventh century. He hypothesized that rabbits mature 
one month after birth, after which time each pair would produce a new pair 
of rabbits each month. Starting with a pair of newborn rabbits free in a field, 
he wanted to calculate the rabbit population after a year.  Figure   9.2    
illustrates the calculation for the first six months, counting rabbit pairs. It 

 Listing  9 . 4      Recursive palindrome detector 

1. function ans = isPal(str) 
% recursive palindrome detector

2.     if length(str) < 2 
3.         ans = true; 
4.     elseif str(1) ~= str(end) 
5.         ans = false; 
6.     else 
7.         ans = isPal(str(2:end-1)); 
8.     end 
9. end 
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 Figure 9.2   Computing rabbit populations       
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soon becomes clear that the number 
of rabbits in month  N  comprises the 
number in month  N-1  (since in this 
ideal example, none of them die) plus 
the new rabbits born to the mature 
pairs (shown in boxes in the figure). 
Since the rabbits mature after a 
month, the number of mature pairs 

that produce a new pair is the number of rabbits in the month before,  N-2 . 
So the algorithm for computing the population of pairs after  N  months, 
 fib(N) , is recursive:  

   ■   There is a terminating condition: when  N = 1  or  N = 2 , the answer is  1   
  ■   The recursive condition is:  fib(N) = fib(N-1) + fib(N-2)   
  ■   The solution is moving toward the terminating condition, since as 

long as  N  is a positive integer, computing  N-1  and  N-2  will move 
toward  1  or  2 .   

 The implementation of the Fibonacci function is shown in Listing  9 . 5 . 

 The algorithm produces the Fibonacci series: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 
89, 144, 233, . . ., giving a population after a year of 144.     

 A closely related phenomenon is the golden ratio or golden number 
computed as the limit of the ratio of successive Fibonacci series values—
approximately 1.618034—that has been found to occur in nature. To the 
surprise of naturalists, this series of numbers occurs in nature in a 
remarkable number of circumstances. Consider  Figure   9.3    for example, 
where a set of squares placed side by side in a rotating sequence is drawn 
using the Fibonacci series for the size of each square. The resulting geometric 
figure is a close approximation to the logarithmic spiral so frequently found 
in nature, such as the nautilus shell pictured in the figure.   

   9.6.3  Zeros of a Function 

 Frequently we need to solve nonlinear equations by seeking the values of 
the independent variable that produced a zero result. There are a number of 
well-known numerical techniques for achieving this goal. We will examine 

 Listing  9 . 5      The Fibonacci function 

1. function result = fib(N) 
% recursive computation the Nth Fibonacci number

2.     if N == 1 || N == 2 
3.         result = 1; 
4.     else 
5.         result = fib(N-1) + fib(N-2); 
6.     end 
7. end 

 Truthfulness requires pointing out that while computing the 
Fibonacci series recursively is a very nice, conceptually simple 
approach, it is a nightmare as far as the computational load 
on your processor. Do not try to compute beyond about 27 
numbers in the series. An iterative solution, while less 
elegant, runs in linear time rather than exponential. 

 Technical Insight  9 . 2  
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a recursive approach to determining the zeros of functions. However, 
especially when there are multiple zero crossings, it is very helpful to have 
a good initial estimate of the location(s) of the crossing(s). As an example, 
consider a function  f  ( x ). We will use the function given by: 

   f (x) = 0.0333x 6  2 0.3x 5  2 1.3333x 4  1 16x 3  2 187.2x 1 172.9   

 as plotted in  Figure   9.4   . However, this algorithm will work for any function 
of  x . We assume that the continuous line describes the exact function, and 
the plus marks indicate locations for which we have measurements. Clearly, 
there are a number of zero crossings of this function, including a very messy 
looking crossing at around = 6.  

 We will find the exact value of one of the zeros of this function by first 
estimating the zero crossings and then by using a recursive technique for 
refining a better estimate to arbitrary levels of accuracy. 

 Figure 9.3   Fibonacci in nature       
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 Figure 9.4   A function f(x)       
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  Estimating Critical Points of a Function     First, we need to compute an 
approximation to the roots of this equation. These approximations will be 
found by finding the  x  values at which adjacent values of the function 
change sign. The technique for determining where adjacent points change 
sign is simply to multiply adjacent values of  f ( x ) and find where that product 
is not positive, as shown in Listing  9 . 6 .  

 In Listing  9 . 6 :  

  Line 1: Establishes samples of  x .  
  Line 2: Computes  y = f  ( x ).  
  Line 3: Detects the indices where the zero crossings occur by 
shifting  y  to the right by one and by shortening the original by one 
to keep the vector size equal.  
  Lines 4 and 5: Display the zero crossing estimates.  
  Line 6: Calls the recursive function to find the third zero crossing 
that estimates one root of this equation. Clearly, one could iterate 
here to find all of the roots.  

  Listing  9 . 6  produces the following results, which can be verified by 
observing the circled data points shown in  Figure   9.4   :   
zeros occur just after 
ans = 
   -6.3000    -4.6667    0.2333    5.9500 

 Having observed these results, we decide to compute the exact value of the 
first positive root, occurring at the third crossing.  

  Recursive Refinement of the Estimate     The recursive function to find the 
third root of  f ( x ) works on the principle of binary division. It consumes a vector 
of adjacent values of  x  that are guaranteed to have values of  f(x)  of opposite 
sign. The fundamental features of the recursive solution are as follows: 

   ■   The terminating condition is when the two  x  values are within 
acceptable error—in this case, 0.001  

  ■   Otherwise, we find the middle of this  x  range,  mx , find its  f(mx) , and 
then make the recursive call either with  [x(1) mx]  or  [mx x(2)] , 
depending on the sign of  f(mx) × f(x(1))   

  ■   This will always converge because each recursive call halves the 
distance between the  x  limits.   

 Listing  9 . 6      Initial zero crossings 

1. px = linspace(-6.3, 8.4, 19); 
2. py = f(px); 
3. zeros = find(py(1:end-1) .* py(2:end) <= 0) 
4. disp('zeros occur just after') 
5. px(zeros) 
6. root = findZero([px(zeros(3)) px(zeros(3)+1)]) 
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 In general, this method is a little slower than Newton’s method, which uses 
the slope of  f  ( x ) to compute the next estimate. However, it is very strong 
and somewhat immune from the instability suffered by Newton’s method 
on undulating data. The function that solves this problem is shown in 
Listing  9 . 7 .  

 In Listing  9 . 7 :  

  Line 1: The function consumes a pair of  x  limits and produces the  x  
root.  
  Lines 2–4: Check for the terminating condition and return the  x  
root.  
  Lines 5 and 6: Calculate the  x  and  y  values of the midpoint of the  x  
range.  
  Line 7: Checks the sign of the  y  value of the midpoint.  
  Line 8: If different from the sign at first limit, it makes the recursive 
call with the first limit and the midpoint.  
  Lines 9 and 10: Otherwise, it uses the range from the midpoint to 
the second limit.  

  This function computes the correct crossing at  x =  1.00.   

 Listing  9 . 7      Recursive root finding 

 1. function pt = findZero(x) 
% x is a lower-upper pair guaranteed to have
% y values of opposite sign
% return the x coordinate of the root

 2.     if abs(x(1)-x(2)) < .001 
 3.         pt = x(1); 
 4.     else 
 5.         mx = sum(x)/2; 
 6.         my = f(mx); 
 7.         if my*f(x(1)) <= 0 
 8.             pt = findZero([x(1) mx]); 
 9.         else 
10.             pt = findZero([mx x(2)]); 
11.         end 
12.     end 
13. end 

    9.7  Engineering Example—Robot Arm Motion 

 Here we consider the problem of programming the arm of a robot to move 
in a straight line. Consider the arm shown in  Figure   9.5   . It consists of two 
jointed limbs of length r1 and r2 at angles a and b, respectively, to the 
horizontal.  
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  Overall Objective 

 The ultimate challenge of this situation is to calculate the sequence of values 
of a and b that will guide the end of the arm along the straight line: 

   x 1 y = r1 1 r2 (1)  

 However, this complete problem is more complex than necessary for this 
point in the text. First, we will address a necessary component of the problem.  

  Immediate Objective 

 The sub-problem we address here is to determine for a given value of a, the 
value b that will place the end of the arm at some place on the line. The 
algebra and trigonometry of this problem are quite simple. The position of 
the end of the arm, [x2 y2], is expressed as: 

     x2 5 r1 cos a 1 r2 cos b (2) 

  y2 5 r1 sin a 1 r2 sin b (3)  

 Combining these two relationships with Equation (1) gives the equation for 
F(b), the difference between the end point derived from b and the straight 
line. We need to solve this for F(b) = 0: 

   F(b) 5 r1 cos a 1 r2 cos b 1 r1 sin a 1 r2 sin b 2 (r1 1 r2) (4)  

 If we are given values for r1, r2, and the angle a, we will use the method of 
 Section   9.6.3     to find the value(s) of a that satisfies this equation. By 
inspecting  Figure   9.5   , we might expect two answers—one with a small 
negative value and one “bending backward” at an angle greater than 90°. 

  Figure   9.6    shows a plot of this function for r1 = 4, r2 = 3, and a = 30°. The 
zero crossings of this function confirm our intuition that there are two values 

x + y = r1 + r2

(x1 , y1)

(x2 , y2)
r1 r2

β

α

 Figure 9.5   The robot arm problem       
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of a that satisfy the equation for small, positive values of b: one around –30° 
and one around 110°.   

  The Solution to the Sub-problem 

 As before, since there is no analytical solution to this function, we will find 
the approximate location of the zero crossings and then use a recursive 
function to find the exact roots. The script that accomplishes this is shown 
in Listing  9 . 8 .  

 In Listing  9 . 8 :  

  Lines 1–6: Establish the parameters of the problem as  global  variables 
to avoid the overhead cost of passing them into recursive functions.  
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 Figure 9.6   The relationship between b and the value of F(b)       

 Listing  9 . 8      Finding arm position 

 1. global r1 
 2. r1 = 4 
 3. global r2 
 4. r2 = 3 
 5. global alpha 
 6. alpha = pi/6 % 30 deg
 7. beta = linspace(-pi, pi, 19); 
 8. pf = fab(beta); 
 9. zeros = find(pf(1:end-1) .* pf(2:end) <= 0) 
10. disp( 'zeros occur just after')
11. beta(zeros) 

%
12. zero = findZeroAB([beta(zeros(1)) ... 
13.         beta(zeros(1)+1)]) 
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  Lines 7 and 8: Sample the possible range of b values with enough 
values to identify the zero crossings, and compute the corresponding 
values of F(b).  
  Lines 9–11: Estimate the zero locations by multiplying adjacent 
function values and display the results.  
  Line 12: Calls the recursive function to find the zero crossing.   

 Running this script produces the following: 

r1 = 
     4 
r2 =
     3 
alpha =
    0.5236 
zeros = 
     8 15 
zeros occur just after 
ans = 
   -0.6981 1.7453 
zero = 
   -0.4152 -0.0009 

 The function for which we are seeking the zero is shown in Listing  9 . 9 .  

 In Listing  9 . 9 : 

   Lines 2–4: Gain access to the global parameters.  
  Lines 5–6: Compute the left-hand side of Equation (4).   

 The function that finds the zero crossings of  fab(beta)  is shown in Listing  9 . 10 .  

 In Listing  9 . 10 : 

   Line 2: Computes the  y  values corresponding to the  x  limits.  
  Lines 3 and 4: Check the terminating condition and return the  [x y]  
coordinates of the result.  
  Lines 6 and 7: Find the  x  and  y  values of the midpoint.  
  Lines 8 and 9: If the midpoint is on the opposite side of the x-axis from 
the lower limit, make a recursive call using these limits.  

 Listing  9 . 9      Function for zeros 

 1. function res = fab(beta) 
% f(beta) = r1 (cos(alpha) + sin(alpha) - 1)
%         + r2 (cos(beta) + sin(beta) - 1)

 2. global r1 
 3. global r2 
 4. global alpha 
 5. res = r1 * (cos(alpha) + sin(alpha) - 1) ... 
 6.     + r2 * (cos(beta) + sin(beta) - 1); 
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  Line 11: Otherwise, makes the recursive call using the midpoint and 
the upper limit.    

  Reflection 

 A modest amount of code is all that is required to create an elegant 
solution to a nontrivial problem. The structure of the recursive function 
shown in Listing  9 . 8  clearly reflects the standard recursive template, and 
that function can be used to find zeros of any continuous function defined 
in  fab(x) .        

 Listing  9 . 10      Recursive zero finder 

 1. function pt = findZeroAB(x) 
% x is a lower-upper pair guaranteed to have
% y values of opposite sign

 2.     y = fab(x); 
 3.     if abs(x(1)-x(2)) < .001 
 4.         pt = [x(1) y(1)]; 
 5.     else 
 6.         mx = sum(x)/2; 
 7.         my = fab(mx); 
 8.         if my*y(1) < 0 
 9.             pt = findZeroAB([x(1) mx]); 
10.         else 
11.             pt = findZeroAB([mx x(2)]); 
12.         end 
13.     end 
14. end 

     Chapter Summary 

 This chapter discussed the three basic principles of recursive programming that 
must be present for a recursive program to succeed: 

   ■   There must be a terminating condition  
  ■   The function must call a clone of itself  
  ■   The parameters of that clone must move the function toward the 

terminating condition   

  We have also seen some other important capabilities as follows:  

   ■   Exceptions are declared either within system functions or by the 
user using the  error(...)  function; they are trapped and perhaps 
remedied using  try ... catch  code blocks  

  ■   A wrapper function is used to set up a recursive solution by 
validating the incoming data    
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  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions  Description 

 Discussed in

This Section 

  catch   End of a suspect code block where the 
exception is trapped 

 9.4.3 

  error(str)   Announces an error with the string provided  9.4.3 

  global <var>   Defines the variable  <var>  as globally 
accessible 

 9.1 

  lasterror   Provides a structure describing the environment 
from which the last exception was thrown 

 9.4.3 

  try   Begins a block of suspect code from which an 
exception might be thrown 

 9.4.3 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    We limit the functionality of a stack in order to protect the data from 
corruption.   

   2.    The only way to remove a stack frame from the activation stack is to 
exit from the function instance hosted by that frame.   

   3.    All the math operations in a recursive function are performed as the 
activation stack unwinds.   

   4.    Exception processing can be used as a clever means of changing the 
normal flow of program control.   

   5.    The name of the first function in a function definition m-file must 
match the name of the file.   

  Fill in the Blanks  

   1.    The basic stack operations are _________________, 
_________________, _________________, and _________________.   

   2.    Exceptions are a powerful tool for gracefully managing 
_________________ caused by programming errors or bad data.   

   3.    To throw an exception manually, the program calls the 
_________________ function that takes one parameter, a string 
defining the error.   
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   4.    A wrapper function is called once to perform _________________ 
that the recursion requires, and then to call the recursive function 
_________________.   

   5.    You can ________ one of the zeros of a function by first 
_______________, and then using a(n) ____________ for refining a 
better estimate to arbitrary levels of accuracy.    

  Programming Projects 

   1.    For this problem, you will be required to write three functions: 
 recurSum, recurProd,  and  fibVector . The first one will take in a 
vector and compute the sum of the elements of the vector. The 
second one will take in a vector and compute the product of the 
elements of the vector. The third one will take in a number,  N , and 
return a vector containing the first  N  terms of the Fibonacci 
sequence. You must use recursion to complete these functions. You 
may not use  for  loops,  while  loops or the functions  sum ,  prod, or 
factorial . Your function headers should be: 

function ans = recurSum(arr) 
function ans = recurProd(arr) 
function vec = fibVector (num) 

   2.    Write a recursive function called oddfact(n) that takes in a number 
and returns the factorial of the odd numbers between the given 
number and 1.

  For example: 

oddfact(4) returns 3 
oddfact(9) returns 945 = 9*7*5*3*1 

   3.    Consider the problem of structures with nested fields.  
  a.   Write a function called  tracker  that takes in a structure and 

returns the number of levels at which it has a field called 
 'Inner' . Each of these fields can also be structures having a field 
called  'Inner' , but at each level there can be only one field called 
 'Inner' . The innermost structure will not contain a field called 
 'Inner' . You must use recursion. Hint: use the  isfield(...)  
function. Your function header should be: 

function num = tracker(astruct) 

  b.   Create a structure with at least three levels of recurring fields, 
and use it to test your tracker function.     

   4.    Create a recursive function with a wrapper to protect it from illegal 
values. The function name should be  recursiveFib . It should take in 
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a number  n  and return the  n th Fibonacci number. You should ensure 
that  n  is a non-negative integer, and announce an error if that is not 
the case. 

   Fibonacci numbers are defined as: 

F(n) = 0    if n = 0 
F(n) = 1    if n = 1 
F(n) = F(n-1) + F(n-2) otherwise. 

   This produces the following sequence of numbers: 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55... 

   For example: 

a = recursiveFib(0) should return 0 
b = recursiveFib(1) should return 1 
c = recursiveFib(-1) should cause an error 
d = recursiveFib(8) should return 21 

   5.    Create and test a function called  recursiveMin  that takes in a vector 
and returns the element with the minimum value and the index of 
that element as separate returned values, much as the standard 
 min(...)  function. If the input vector is of length zero, your function 
should return two empty vectors. If the input vector contains two 
minimum elements of equal value, your function should return the 
index of the first element. Create suitable test cases and use the 
built-in function  min(...)  only to test your answers. 

   For example: 

[m n] = recursiveMin([]) should return [] and [] 
[m n] = recursiveMin([5]) should return 5 and 1 
[m n] = recursiveMin([5 2]) should return 2 and 2 
[m n] = recursiveMin([2 5 2]) should return 2 and 1 
[m n] = recursiveMin([2 5 2 1 6 7]) should return 1 and 4 
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  Chapter Objectives 

 This chapter presents an overview of framing the solutions to 
problems: 

      ■   We begin with simple problems that can be solved in a single step  

  ■   We continue to strategies for solving more complex problems 
involving data collections by dividing the solution into the 
following fundamental operations that can be performed on any 
collection of data: 

   •   Inserting  

  •   Traversing  

  •   Building  

  •   Mapping  

  •   Filtering  

  •   Summarizing  

  •   Searching  

  •   Sorting     

 Then we will briefly discuss how to combine these fundamental 
tools to solve more complex data manipulation problems.   

  Introduction 

 Programming is really all about applying the computer as a tool to solve problems. 
One of the most difficult tasks facing novice programmers is the blank sheet of 
paper. Faced with a problem you have never seen before, how do you start to solve 
it? The problem-solving style recommended in this text is first to identify the basic 
character of the data and the basic operation(s) we are asked to perform. If these two 
ideas are clear, we can create a template or outline of the solution and begin to fill in 
the blanks. 
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   10.3  Summary of Operations 

 First, we document the operations we expect to be able to perform on 
collections.  Table   10.1    lists the generic operations, a brief description of each, 
and a discussion of the consequences. The following paragraphs illustrate 

these fundamental operations, using 
the array of structures from  Chapter   7    
as examples. The discussion of each 
step takes the form of a written 
description, a flowchart, and a template 
for writing the code.     

 As we gain more experience with the language, we have more computing tools to 
apply, and we can attack larger, more complex problems. We now have sufficient 
tools available to consider a more principled approach to data manipulation and 
problem solving. We will begin with the typical plan for solving simple problems in 
one step and then continue to consider assembling multiple steps to solve more 
complex problems.   

 It is conceivable—and in fact, a common practice—to 
combine multiple operations into one computing module, 
but it is poor abstraction and leads to code that is hard to 
understand and/or debug. 

 Style Points  10 . 1  

      10.1  Solving Simple Problems 

 In  Chapter   2    we saw the basic plan for solving simple problems: 

   ■   Define the input data  
  ■   Define the output data  
  ■   Discover the underlying equations to solve the problem  
  ■   Implement the solution  
  ■   Test the results  
  ■   Repair the code until it conforms to the specifications   

 This plan works whenever the problem is simple enough to be able to 
visualize the complete solution. Typically, however, problems are more 
complex and require a number of steps to be assembled.  

   10.2  Assembling Solution Steps 

 Problem complexity frequently comes in the form of data collections that 
need to be transformed into other collections or summarized as intermediate 
results. Identifying the operation(s) that will create the output from the 
input requires some experience. The rest of this chapter provides some 
guidelines for identifying elementary steps whose solutions can be 
combined to create solutions to many complex problems.  
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   10.3.1  Basic Arithmetic Operations 

 The simple problem solution described in  Section   10.1     frequently needs to 
be used as part of a larger problem solution. We include this activity in this 
list for completeness.  

   10.3.2  Inserting into a Collection 

 Inserting an item into a collection is a process usually used to build or 
maintain a collection of information. In this text, we have seen four basic 
data collection types to which insertion applies: vectors, arrays, cell arrays, 
and structure arrays. We will discuss the peculiarities of each collection and 
then the common processing algorithm that can be used to insert a new 
entry into the collection. 

   ■   Vectors are very flexible collections in the MATLAB language, and 
suffer only from the obvious limitation that one can add only 
numbers to a vector  

 Table 10.1   Taxonomy of solution steps 

 Operation  Description  Consequence 

 Insert  Inserts one item into a collection  Collection with one more item 

 Build  Creates a collection from a data source 
(external file or traversing another collection); 
usually accomplished by starting with an empty 
collection and inserting one item at a time 

 A new collection of data 

 Traverse  Touches each item of data in the collection—
frequently used to display or copy a collection 

 The collection is unchanged 

 Map  Changes the content of some or all of the items 
in the collection 

 A new collection of the same 
length, but the content of some 
or all items is changed 

 Filter  Removes some items from the collection  A new collection with reduced 
length, but the content of the 
items remains unchanged 

 Fold  Traverses the collection, summarizing the contents 
with a single result (e.g., sum, max, or mean) 

 A single result summarizing the 
collection in some way; the 
collection is unchanged 

 Search  Traverses the collection until an item matches a 
given search criterion and then stops, returning 
the result 

 A single result or the indication that 
the desired match was not achieved; 
the collection is unchanged 

 Sort  Puts the collection in order by some specific 
criterion 

 A new collection of the same 
length 
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  ■   Arrays are as flexible as vectors, except that they require that new 
data be inserted a row or column at a time, and that the size of the 
new item must match the existing array dimensions  

  ■   Cell arrays can be indexed like numerical arrays and can contain 
any object; however, to compare one element to another usually 
requires a special-purpose comparison function  

  ■   Structure arrays as a collection behave like cell arrays, except that 
any structure inserted must have the same fields as those in the 
existing structure   

 In general, inserting into any of these collections involves insertion into the 
front of the collection, the back of the collection, or at some position in the 
middle in order to keep the collection in order by a specific comparison method. 

  Inserting into the front  is accomplished by concatenating the new element 
before the existing collection. For example, adding  item  to the front of an 
existing cell array,  ca , is accomplished as follows: 

>> ca = [{item} ca] % note the braces needed for a cell array 

  Inserting at the back  is accomplished by concatenating the new element 
after the existing collection. For example, adding  item  to the back of an 
existing cell array,  ca , is accomplished as follows: 

>> ca = [ca {item}] % note the braces needed for a cell array

  Inserting in order  is usually accomplished using a  while  loop. If we are 
inserting  item  into a collection  coll , we will use a  while  loop to find the 
index of the insertion point,  ins , and then concatenate the three parts of the 
new collection.  Figure   10.1    shows the flowchart that applies here, and 
Template  10 . 1  shows the template for the general solution.  

ins=ins+1

Set Insertion
Point ins to 1

Concatenate Front of the
Collection with the Item Then

the Back of the Collection

while
Coll(ins) Comes 

before Item

 Figure 10.1   Inserting in order       
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 For example, adding  item  in order to a vector,  v , is accomplished as follows: 

ins = 1; 
while ins <= length(v) && before(item, v(ins)) 
      ins = ins + 1; 
end
v = [v(1:ins-1) item v(ins:end)] 

 where  before(a,b)  is a generic comparator that determines whether  a  
comes before  b  in the ordering scheme. Notice that this covers the cases 
where  item  must be the first or last item in the collection. Consequently, we 
could include the case of front or back insertion by having  before(a,b)  
return  true  for inserting in the front and  false  for inserting at the back.  

   10.3.3  Traversing a Collection 

 Traversal involves moving across all elements of a collection and performing 
some step (not necessarily the same step) on each element without changing 
that element.  Figure   10.2    and Template  10 . 2  illustrate the flowchart and 
basic template for traversing a collection. They assume that you are doing 
something like writing a file that needs to be initialized and finalized. These 
two steps may not always be required.  

  Template  10 . 1      Template for inserting 

%inserting item into a collection coll 

<set insert point, ins, at the front> 
while <insertion point in coll and 

item comes before coll(ins)> 
  <move insertion point forward> 
<end of the while loop> 
<concatenate coll before ins with item and 
   coll at and beyond ins> 

Perform the 
Required Operation 

on the Item 

Initialize the Result 

Finalize the Result 

for Item in
Collection

Done

 Figure 10.2   Traversing a collection       



234 Chapter 10  Principles of Problem Solving

   10.3.4  Building a Collection 

 In practice, frequently we combine traversal of one collection and building 
of another to copy data from one collection into another. Building a 
collection is the process of beginning with an empty collection and 
assembling data elements by inserting them one at a time into the new 
collection. The size of the collection increases continually until the process 
is finished.  Figure   10.3    and Template  10 . 3  illustrate the algorithm for 
building a collection.  

  Template  10 . 2      Template for traversing 

<initialize the result> 
for item <across the whole collection> 
  <operate on the item> 
<end of the loop> 
<finalize the result> 

Insert Item in the 
Collection

Initialize an Empty 
Collection

Finalize the
Collection

for Item
in the Data

Source

Done

 Figure 10.3   Building a collection       

  Template  10 . 3      Template for building 

<initialize the new collection> 
for item <across the data source> 
  <extract the item> 
  <insert item in new collection> 
<end of the loop> 
<finalize the new collection> 

   10.3.5  Mapping a Collection 

 The purpose of mapping is to transform a collection by changing the data in 
some or all of its elements according to some functional description without 
changing its length. It is distinct from traversal because its intent is to change 
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  Template  10 . 4      Template for mapping 

<initialize the result> 
for item <across the whole collection> 
  <extract the item> 
  <modify the item> 
  <insert modified item in the result> 
<end of the loop> 
<finalize the result>  

Change or Combine
the Item(s) to Make

a New Item

Initialize the Result

Insert the New Item
into the Result

Finalize the Result

for Item(s)
in the Data
Source(s)

Done

 Figure 10.4   Mapping a collection       

the data elements. While many 
languages permit collections to be 
modified in place, the MATLAB 
language usually requires you to 
create a new collection. However, 
this is still considered mapping. The 
scalar mathematical and logical 
operations on vectors are good 
examples of mapping.  Figure   10.4    
and Template  10 . 4  illustrate the basic 
algorithm for mapping. As illustrated 

in the example of operations on vectors, mapping may involve combining 
two or more collections of the same length.   

 A simpler example of collection building occurred when we 
built the CD collection initially by repeated calls to the 
 makeCD  method, as shown in  Chapter   7    when we were 
inserting each item at the end of the collection. However, 
while that example seems to simplify the process of building 
the collection, it really did not. The data for the function 
calls had to be extracted from a CD listing and edited to 
construct the function calls—normally not an efficient or 
effective way to compose a collection. Such hard-wiring 
should generally be avoided. 

 Style Points  10 . 2  

   10.3.6  Filtering a Collection 

 Filtering involves removing items from a collection according to specified 
selection criteria. The data contents of the remaining items in the collection 
should not be changed, and the collection will usually be shorter than before. 
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For example, we filter vectors by applying built-in logical operations and 
then indexing with the results to produce new, shorter arrays.  Figure   10.5    
and Template  10 . 5  illustrate the general algorithm for filtering a collection.  

Initialize the Result

Insert the New Item
into the Result

Finalize the Result

for Item in
the Collection

if Keep
This Item

Done

True

False

 Figure 10.5   Filtering a collection       

  Template  10 . 5      Template for filtering 

<initialize the new collection> 
for item <across the whole collection> 
  <extract the item> 
  if <keep the item> 
    <insert item in new collection> 
  <end if> 
<end for> 
<finalize the new collection> 

   10.3.7  Summarizing a Collection 

 Folding is the name given to summarizing a collection. It is a special case of 
traversal where all of the items in the collection are summarized as a single 
result. The collection is not altered in size or values by the operation. 
Totaling, averaging, and finding the largest element in a vector are typical 
examples of folding. For example, we might want to find the CD with the 
best value in a collection.  Figure   10.6    and Template  10 . 6  show the basic 
algorithm for folding a collection. The general form of a fold should be to 
initialize the summary value and then traverse the whole collection, 
updating the summary when necessary.  
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   10.3.8  Searching a Collection 

 Searching is the process of traversing the collection and applying a specified 
test to each element in turn, terminating the process as soon as the test is 
satisfied. This is superficially similar to filtering, except that it is not necessary 
to touch all the elements of the collection; the search stops as soon as one 
element of the collection matches the search criteria. If the criteria are extremely 
complex, it is sometimes advisable to perform a mapping or folding before the 
search is performed.  Figure   10.7    and Template  10 . 7  illustrate one way to 

Initialize the Result 

Accumulate Its
Value in the Result

for Item
in the

Collection

Done

 Figure 10.6   Folding a collection       

Answer = Empty 

Answer = Item 

for Item in 
the Collection 

If This Is 
the Item 

Done

True

False

 Figure 10.7   Searching a collection       

  Template  10 . 6      Template for folding 

<initialize the summary value> 
for item <across the whole collection> 
  <extract the item> 
  <update the summary value> 
<end for> 
<finalize the summary value> 
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implement searching a collection using a  for  loop with a break exit. There are 
always two exit criteria from a search—finding what you seek and failing to 
find it. Searching can also be implemented with a  while  loop, but the multiple 
exit criteria make the code generally more complex.   

   10.3.9  Sorting a Collection 

 Sorting involves reordering the elements in a collection according to a 
specified ranking function that defines which item “comes before” another. 
Sorting is computationally expensive. However, if a large collection of data 
is stable—items are added or removed infrequently—but is frequently 
searched for specific items, keeping the data sorted can greatly improve the 
efficiency of the searches.  Chapter   16    is devoted to the details of sorting 
algorithms, but the concept is included here to complete the list of operations 
we can perform on a collection.   

 Template  10 . 7      Template for searching 

<initialize result to not succeeded> 
for <item in the collection> 
  if <found criteria> 
     <set result to succeeded> 
     <break the loop> 
  <end if> 
<end for> 
<check for failure> 

   10.4  Solving Larger Problems 

 Problem statements are rarely simple enough to be able to seize one of the 
above steps and solve the whole problem. Usually, the solution involves 
choosing a number of known operations and performing those operations 
in order to solve the complete problem. Solution steps are combined in one 
of two ways—in sequence or nested. When considering the overall strategy 
for solving a problem, one might identify steps A and B as contributing to 
the solution. Your logical statement might say either “do A and then B” 
sequential steps—or “for each part of A, do B”—nested steps. 

 For example, consider the baseball card problem originally proposed in 
 Chapter   1   . You have collected over the years a huge number of baseball 
cards, and you wish to find the names of the 10 “qualified” players with the 
highest lifetime batting average. To qualify, the players must have been in 
the league at least five years, had at least 100 plate appearances per year, 
and made less than 10 errors per year. 

 The first step is to build a collection containing the relevant information 
on the cards for each player, and the use of a structure array seems a good 
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choice. Next, we need to operate on this collection to solve the problem. 
Consider again the overall problem situation, as shown in  Figure   10.8   . The 
original data are the structure array containing all the player data. The final 
result is a list of 10 names of the qualified players with the highest batting 
averages. There may be more than one sequence of operations to solve this 
problem, and some may be more efficient than others.  

 First, we consider the operations that could be performed on the original 
data. Since the end result is a collection, it is unlikely that the first step 
would reduce the collection to one answer. This eliminates folding and 
searching. Since the collection is already built, we do not need to insert or 
build, leaving four possible operations to consider—traversal, mapping, 
filtering, and sorting. 

 Now, consider the last operation—it seems reasonable that the last thing 
to do is a mapping—taking the 10 selected structures and extracting the 
names. 

 Now, we must think about how to find these 10 structures. If we had a 
collection of qualified players sorted by their batting average, we could 
accomplish this with a special filter taking the first 10 from these sorted, 
qualified players. Backing up one more step, we can see that the sorted 
collection we need is just a sort of the qualified players, and we can chain 
these steps together to solve the whole problem. 

List of 
Player
Names

How You Could 
Find the Answer 

Structure
Array of 

Player Data 

What You Could 
Do with the Data 

 Figure 10.8   Generalized problem solving       

 1    Credit: Alan Heston, Robert Summers, and Bettina Aten, Penn World Table Version 
6.1, Center for International Comparisons at the University of Pennsylvania (CICUP), 
October 2002. 

    10.5  Engineering Example—Processing Geopolitical Data 

 Imagine that you have decided to move your prosperous business overseas 
to the country with the most business-friendly environment. After 
considerable study, you decide that the best measure of friendliness would 
be to compute the rate of growth of the gross domestic product for candidate 
countries, subtract their rate of population growth, and use this measure to 
choose the best country. An Internet search provides an interesting source of 
data.  Figure   10.9    shows an excerpt from a spreadsheet containing historical 
data for 154 countries from Penn World Table Version 6.1.  1   The data 
columns of interest to us contain the following information:   
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A

Country

Angola
Angola

Angola

Angola

B

Code

AGO
AGO

AGO

AGO

C

Year

1960
1961

1962

1963

D

POP

4816.00
4884.19

4955.35

5028.69

F

PPP

0.01
0.00

0.00

0.01

G

cgdp

542.68
564.37

573.94

593.72

H

cc

76.75
74.23

75.48

73.68

I

ci

8.84
7.92

6.76

5.72

J

cg

9.45
9.85

10.55

13.56

K

P

17.51
17.36

17.28

17.73

L

pc

13.07
13.18

13.41

13.90

M

pg

24.03
23.65

23.65

24.04

N

pi

49.11
48.67

50.44

52.06

O

openc

36.98
35.23

38.79

38.69

P

cgnp

na
na

na

na

E

XRAT

0.03
0.03

0.03

0.035

4

3
2

1

Angola

Angola

Angola
Angola

Angola

AGO

AGO

AGO
AGO

AGO

1994

1995

1996
1997

1998
1999

2000

1991
1992

1993

10627.18

10972.00

11316.94
na

na

53.32

1007.53

54873.28
na

na

1095.94

1244.73

1362.32
na

na

34.66

41.86

37.17
na

na

9.09

9.43

8.57
na

na

46.75

57.65

56.75
na

na

89.59

36.63

42.86
na

na

70.34

29.58

34.35
na

na

76.84

31.91

37.77
na

na

228.63

96.85

113.51
na

na

160.87

146.58

134.87
na

na

47.86

48.19

52.97
59.09

50.08

59.51

2750.23

128029.20
na

na
Angola AGO na na na na na na na na na na na 44.52na

Angola AGO na na na na na na na na na na na 53.81na

Albania ALB 3277.00 3.13 1605.36 82.81 6.92 36.66 20.04 23.78 12.02 17.70 54.89 98.1015.63

Albania ALB 3179.00 19.33 2031.94 109.39 12.54 25.73 18.94 20.80 10.51 20.01 77.14 99.02102.06

Albania ALB 3225.00 10.53 1566.99 136.94 5.11 35.08 14.03 15.59 7.88 14.42 108.94 95.9475.03

41

42

43
44

45

40

39
38

37

36

Zambia

Zambia

Zambia
Zimbabwe

Zimbabwe

ZMB

ZMB

ZMB
ZWE

ZWE

1998

1999

2000
1954

1955

1956

9665.71

9881.21

10089.00
3011.69

3127.52

744.91

941.87

1157.63
0.37

0.36

800.69

765.24

840.97
400.19

429.04

85.12

91.82

86.33
66.89

65.87

13.75

15.30

15.38
41.48

50.95

14.14

12.54

12.34
4.03

3.47

40.00

39.44

37.21
50.97

50.40

39.54

39.02

37.70
60.59

60.80

33.22

31.89

29.54
135.99

136.52

49.87

48.14

40.65
29.92

31.10

68.86

66.55

70.45
77.30

78.43

93.36

94.97

95.88
na

na

1862.07

2388.02

3110.84
0.71

0.71

Zimbabwe ZWE 3264.42 0.36 471.08 63.51 54.77 3.53 50.08 62.11 136.86 30.53 74.27 na0.715800

5799

5798
5797

5796

5795

Zimbabwe

Zimbabwe
Zimbabwe

ZWE

ZWE
ZWE

1998

1999
2000

12153.85

12388.32
12627.00

4.06

6.12
9.48

2799.85

2770.48
2607.03

77.66

76.89
69.23

10.75

10.73
8.62

13.39

12.81
22.44

17.16

15.98
21.33

14.97

14.35
19.26

22.03

19.01
23.63

26.87

24.02
31.96

91.96

92.99
62.61

93.25

93.75
96.62

23.68

38.30
44.425844

5843

5842

 Figure 10.9   Spreadsheet samples       

   ■   Country—Country name  
  ■   Code—Country code  
  ■   Year—Year in which the data in this row were recorded  
  ■   POP—Population that year  
  ■   XRAT—Exchange rate versus U.S. currency that year  
  ■   PPP—Purchasing power parity over GDP that year  
  ■   CGDP —Real gross domestic product per capita that year   

  Figure   10.9    also illustrates one of the weaknesses of spreadsheets: they are 
inherently two dimensional, and the data in this case are three dimensional; 
each country has several sets of data as functions of the year when the 
information was recorded. Therefore, the data must be massaged into a 
form more useful to us. A careful examination of the data also reveals the 
following challenges: 

   ■    The years in which the data were available vary from country to 
country—most have data from 1950 to 2000  
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  ■    There are some places within the numerical data where the values are 
not available, signified by the letters “na” at those locations   

 Our algorithm must take into account the variable number of years and the 
potential presence of strings within the data. Fortunately, the  cvsread(...)  
function discussed earlier  2   recognizes this situation and inserts  NaN  in the 
numerical data fields. To ensure clarity and reliability in our solution, we 
need a careful design for this data processing task as follows.  

   ■    Looking at the end result desired, eventually we need to fold a 
collection of data about each country and choose the friendliest one.  

  ■    The information describing each country must include not only its 
name, but also vectors of the population and CGDP as a function of 
the year. It seems that a structure array by country would be an 
appropriate form for the data.  

  ■    Therefore, before actually solving the problem, we have to build this 
structure.  

  ■    Having built the structure, the folding operation to find the friendliest 
country follows the folding template shown in  Section   10.3.7   .   

 Listing  10 . 1  shows the script that accomplishes this analysis, although 
most of the work is actually done in the following functions.  

 In Listing  10 . 1 : 

   Line 1:  worldData  will be a structure array containing the relevant data 
from the spreadsheet.  
  Line 2:  best  will be the index of the friendliest country according to the 
criteria defined in the function  findBest(...) .  
  Lines 3–4: Here we can look up and print the name of the best country.   

 Listing  10 . 2  lists the function that builds the country data. The algorithm 
violates the best style by taking advantage of the logical ordering of the data 
in the spreadsheet to traverse the data from the spreadsheets simultaneously, 
filter out the data for each country in turn, and then map the available data 
for that country into the emerging structure array.  

    2 For MATLAB users, xlsread(…) should be used here. 

 Listing  10 . 1      Country analysis 

% build the country array
1. worldData = buildData( 'World_data.xls');
2. best = findBest(worldData); 
3. fprintf('best country is %s\n', ... 
4.     worldData(best).name) 
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 In Listing  10 . 2 : 

   Line 2: Reads the Excel spreadsheet—we need the numerical data and 
the text part for the names of the countries.  
  Lines 3 and 4: Initialize the results of the traversal, setting an unknown 
country name and the initial country count.  
  Lines 5–20: Traverse the rows of the numerical data.  
  Line 6: Since the numerical data skipped the header row, the name of 
the country corresponding to each row of data is in the text file at 
 row+1 . When the country changes, we step to the next country index, 
reset the year counter,  col , for that country, and empty the structure 
used to accumulate the country data.  

 Listing  10 . 2      Building the country data 

 1. function worldData = buildData(name) 
% read the spreadsheet into a data array
% and a text cell array

 2.     [data txt] = xlsread(name); 
 3.     country = ' '; % force the first data row
               % to change the country
 4.     cntry_index = 0; 

% Traverse the data and cell arrays producing
% an array of structures,
% one for each country

 5.     for row = 1:length(data) 
% Because the text data in txt contains
% the header row of the spreadsheet,
% the data at a given row belongs to the country
% whose name is at txt{row+1}.
% if the country name changes,
% begin a new structure.

 6.         if ~strcmp(txt{row+1}, country) 
 7.             col = 1; 
 8.             country = txt{row+1}; 
 9.             cntry_index = cntry_index + 1; 
10.             cntry.year = 1; 
11.             cntry.pop = 1; 
12.             cntry.gdp = 1; 
13.         end 
14.         cntry.name = country; 
15.         cntry.year(col) = data(row, 1); 
16.         cntry.pop(col) = data(row, 2); 
17.         cntry.gdp(col) = data(row, 5); 
18.         col = col + 1; 
19.         worldData(cntry_index) = cntry; 
20.     end 
21. end 
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  Line 7: Resets the counter that indexes the year storage for the current 
country.  
  Line 8: Saves the name of the new country to continue retrieving its data.  
  Line 9: Increases the country count.  
  Lines 10–12: Reset the structure used to store the vectors of data. This is 
crucial because the number of annual data items for all countries is not 
the same.  
  Lines 14–17: Add this row of data to the structure. Column 1 is the 
year, column 2 is the population, and column 5 is the CGDP.  
  Line 18: Moves to the next year.  
  Line 19: Saves all this in the structure array.   

 Listing  10 . 3      Folding the country data 

 1. function besti = findbest(worldData) 
% find the index of the best country
% according to the criterion in the function
% fold

 2.     best = fold(worldData(1)); 
 3.     besti = 1; 
 4.     for ndx = 2:length(worldData) 
 5.         cntry = worldData(ndx); 
 6.         tryThis = fold(cntry); 
 7.         if tryThis > best 
 8.             best = tryThis; 
 9.             besti = ndx 
10.         end 
11.     end 
12. end 
13. function ans = fold(st) 

% s1 is the rate of growth of population
14.     pop = st.pop(~isnan(st.pop)); 
15.     yr = st.year(~isnan(st.pop)); 
16.     s1 = slope(yr, pop)/mean(pop); 

% s2 is the rate of growth of the GDP
17.     gdp = st.gdp(~isnan(st.gdp)); 
18.     yr = st.year(~isnan(st.gdp)); 
19.     s2 = slope(yr, gdp)/mean(gdp); 

% Measure of merit is how much faster
% the gdp grows than the population

20.     ans = s2 - s1; 
21. end 
22. function sl = slope(x, y) 

% Estimate the slope of a curve
23.     if length(x) == 0 || x(end) == x(1) 
24.         error( 'bad data')
25.     else 
26.         sl = (y(end) - y(1))/(x(end) - x(1)); 
27.     end 
28. end 
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 Listing  10 . 3  shows the function that finds the best country by folding the 
country structure array, together with the two supporting functions that 
provide the comparison criteria. Notice that the complexity of the data has 
forced the solution into nested folds: to fold the country data array, we have 
to summarize (fold) the annual data for each country.  

 In Listing  10 . 3 : 

   Lines 2 and 3: As with any folding function that is looking for the 
maximum or minimum of a collection, the best place to start is the first 
item in the collection. The remaining items can then be compared to 
this one.  

  Lines 4–11: Loop through the remaining countries in the array.  

  Line 5: Extracts one structure.  

  Line 6: Computes its friendliness value.  

  Lines 7–10: If the result is improved, these lines update the stored 
values. The index  besti  is returned when the loop finishes.  

  Line 13: This function computes the measure of friendliness for each 
country. The goal is to subtract the rate of population growth from the 
rate of growth of the GDP. So first we compute the rate of population 
growth.  

  Lines 14 and 15: These lines establish two local vectors containing the 
population value and the corresponding year without the values that 
are  NaN , the places where  “na”  appears in the spreadsheet.  

  Line 16: Calls the helper function for the slope of this relationship, and 
non-dimensionalizes the result by dividing by the mean population.  

  Lines 17–19: Repeat the same logic for the non-dimensional rate of 
increase of the GDP.  

  Line 20: Returns the difference in growth rates.  

  Line 22: The function that estimates the rates of growth.  

  Lines 23 and 24: We have a problem if there is no data or if the value 
we will subsequently use as a divisor is zero.  

  Line 26: A very crude measure of the slope is to divide the difference 
between the first and last data points by the difference between the 
first and last  x  values. (We will be able to improve on this approach 
later.)   

 When we run this program, we see the following result: 

>> best country is Equatorial Guinea 

 This may not be exactly the result we were hoping for. In  Chapter   16    we will 
revisit this example with some better tools that will allow us to apply 
additional criteria to selecting countries.     



Self Test      245

     Chapter Summary 

  This chapter presented the fundamental operations that can be applied to problem 
solving:  

   ■   Using normal arithmetic operations with specific input and output 
values  

  ■   Inserting new elements in a collection  
  ■   Traversing a collection  
  ■   Building a collection by repetitive insertion  
  ■   Mapping a collection—changing the values of the data items in the 

collection, but not the number of them  
  ■   Filtering a collection—reducing the number of entries, but not 

changing the data contents of the collection  
  ■   Folding—summarizing the values in a collection into a single quantity  
  ■   Searching for a specific match in a collection  
  ■   Sorting a collection   

 Then we briefly discussed how to combine these fundamental tools to solve 
more complex data manipulation problems.  

  Self Test 

 Use the following questions to check your understanding of the material in this chapter: 

  True or False  

   1.    Copying the elements of a structure array into a cell array is a 
combination of traversal and insertion.   

   2.    If you map a collection, you must change at least one of its elements.   

   3.    When you filter a collection, at least one data element is changed.   

   4.    The function  max(...)  is not folding because it returns two values.   

   5.    You can use a  for  loop to search a collection even if you need to 
stop the search when you find the answer.   

   6.    Sorting must involve putting the items in a collection in numerical 
order (ascending or descending).   

  Fill in the Blanks  

   1.    Vectors store only ____________ data, but arrays can store any type 
of data provided that the size of the new item ____________ the 
existing array.   

   2.    _____ is an example of an operation that traverses a collection and 
summarizes the contents with a single result.   
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   3.    _______________ is an operation which produces a new collection 
with reduced length, but the content of the items remains unchanged.   

   4.    We _______________ vectors by applying built-in logical operations 
and then indexing with the results to produce new, shorter arrays.   

   5.    Totaling, averaging, and finding the smallest element in a vector are 
typical examples of _____________.   

   6.    There are almost always two exit criteria for a search: ___________ 
_______________ or ________________.   

   7.    To save a collection to a text file, you ____________ the collection 
____________ it to the file.    

  Programming Projects 

   1.    The purpose of this problem is to write a set of functions that 
calculate the volume of a slant cylinder with an irregular pentagonal 
cross section shown in  Figure   10.10   . 

 (x5, y5)

(x1, y1)

(x2, y2)

(x4, y4)

(x3, y3) h

              Figure 10.10   The Slant Cylinder        

   You will be given two vectors,  x  and  y , containing the coordinates of 
the corners of the pentagon, and the value  h , the vertical height of 
the cylinder. We will need to break this problem apart, writing 
functions to solve each part: 
   a.   The volume of the cylinder is the area of the pentagon multiplied by 

the vertical height; write a function  polyvol(x, y, h)  to solve this.  
  b.   The area of the pentagon is the sum of the areas of three 

triangles shown in  Figure   10.11   . So we need to write a function 
 pent_area(x, y)  that asks for the area of the three triangles and 
adds them together. 
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(x1, y1)

(x5, y5)

(x4, y4)

(x3, y3)(x2, y2)

                   Figure 10.11   Break down the pentagon         

  c.   Given the coordinates of the corners of a triangle, we need a 
function  tri_area(x, y)  to calculate the area of the triangle—see 
 Figure   10.12   . To compute the area of the triangle, we need the 
values of  a ,  b , and  c . So if we had the lengths of the lines, the area 
of the triangle is given by Heron’s formula: 

 
(x1, y1) (x3, y3)

(x2, y2)

a

b

c

                    Figure 10.12   Area of a triangle        

A = ( s(s-a)(s-b)(s-c) ) 

 where  s  is half the sum of  a ,  b,  and  c   
  d.   So we need a function  tri_side(x, y)  that computes the length 

of a line when given its end points.  
  e.   Then, we can put the pieces back together by calling the functions 

with the right parameters, and then build and test  polyvol  using 
the test cases provided.     

   2.    This problem is about processing structure arrays. Write a function 
named  structSort  that sorts a structure array based on a given field 
that contains numerical values. Your function should take in a 
structure array and a string that should correspond to one of the 
fields of the structure array and return the original structure array 
sorted on the given field. It should check to be sure that the 
specified field name is in fact one of the fields of the structure array, 
and call the  error(...)  function if it is not. 

   Test your function by using the  buildCDs  script from  Chapter   7   , 
using the input function to specify the sorting field.      
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  Chapter Objectives 

 This chapter presents the principles and practice of plotting in the 
following forms: 

      ■   Basic two-dimensional (2-D) line plots  

  ■   2-D parametric plots  

  ■   Three-dimensional (3-D) line and parametric plots  

  ■   Basic 3-D surface plots  

  ■   Parametric surface plots  

  ■   Bodies of rotation   

 There is a much-quoted expression that “a picture is worth a 
 thousand words,” and this is never more appropriate than when 
 talking about data. In previous chapters, we used some simple plot 
commands to display data to illustrate its behavior. The capability of 
the MATLAB language to present data reaches far beyond ordinary 
data plotting, and far beyond the limited confines of a textbook. This 
chapter will present the fundamental concepts of the different forms 
in which data can be presented, but it leaves to the reader the 
 challenge of exploring the full range of capabilities available. You 
only really discover the power inherent in the plotting capabilities of 
MATLAB when you have some unusual data to visualize.    
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      11.1  Plotting in General 

 Before considering the details of how each plotting mode works, we should 
set the context. In this section, we will discuss the general container for all 
graphical types, the figure, and some basic operations that apply to all 
figures—functions that enhance them, the ability to assemble subplots into 
a single figure, and the advisability of making manual changes to plots. 

   11.1.1  A Figure—The Plot Container 

 The fundamental container for plotting is a figure. In a simple script, if you 
just start plotting data,  figure number 1  is automatically generated to present 
the data. You can manage the figures by asserting the  figure  command. 
Each time  figure  is called, a new figure is made available, with the next 
higher figure number. If you use the form  figure <number>,  you can select 
a specific figure for the next plot. 

 To clear the current figure, put the key word  clf  in the header of your 
script. To remove all the figures, put the key phrase  close all  at the 
beginning of your script. The listing examples below will assume that each 
script begins with  clear, clc, close all .  

   11.1.2  Simple Functions for Enhancing Plots 

 We have already introduced  plot(x, y) , the basic function that creates a simple 
plot of  x  versus  y . The following functions can be used to enhance any of the 
plots discussed in this chapter. Note that they enhance an existing plot; they 
should all be called after the fundamental function that creates a plot figure. 

   ■    axis <param>  provides a rich set of tools for managing the 
appearance of the axes, including the following: 
   •    tight  reduces the axes to their smallest possible size  
  •    equal  sets the x and y scales to the same value  
  •    square  makes the plot figure of equal width and height  
  •    off  does not show the axes at all    

  ■    axis([xl xu yl yu zl zu])  overrides the automatic computation of 
the axis values, forcing the x-axis to reach from  xl  to  xu , the y-axis 
from  yl  to  yu , and the z-axis from  zl  to  zu . For 2-D plots, the z 
values should be omitted.  

  ■    colormap <specification>  establishes a sequence of colors, the 
color map, to be used under a number of circumstances to cycle 
through a series of colors automatically. The legal specification 
values are listed in  Appendix   A   .  

  ■    grid on  puts a grid on the plot;  grid off  (the default) removes grid 
lines.  
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  ■    hold on  holds the existing data on the figure to allow subsequent 
plotting calls to be added to the current figure without first erasing 
the existing plot;  hold off  (the default) redraws the current figure, 
erasing the previous contents.  

  ■    legend(...)  takes a cell array of strings, one for each of the multiple 
plots on a single figure, and creates a legend box. By default, that 
box appears in the top-right corner of the figure. However, this 
default can be overridden by explicitly specifying the location of the 
legend. See the help files for a complete discussion of the legend 
options.  

  ■    shading <spec>  defines the method for shading surfaces. See the 
help files for a complete discussion of the shading specification 
options.  

  ■    text(x, y, {z,}, str)  places the text provided at the specified 
(x, y) location on a 2-D plot, or at the (x, y, z) location on a 
3-D plot.  

  ■    title(...)  places the text provided as the title of the current plot.  
  ■    view(az, el)  sets the angle from which to view a plot. The 

parameters are  az , the azimuth, an angle measured in the horizontal 
plane, and  el , the elevation, an angle measured upward from the 
horizontal. Both angles are specified in degrees.  

  ■    xlabel(...)  sets the string provided as the label for the x-axis.  
  ■    ylabel(...)  sets the string provided as the label for the y-axis.  
  ■    zlabel(...)  sets the string provided as the label for the z-axis. (As 

we will see, all plots actually have a third axis.)    

   11.1.3  Multiple Plots on One Figure—Subplots 

 Within the current figure, you can place multiple plots with the  subplot  
command, as shown in  Figure   11.1   . The function  subplot(r, c, n)  divides 
the current figure into  r  rows and  c  columns of equally spaced plot areas, 
and then establishes the  nth  of these (counting across the rows first) as the 
current figure. You do not have to draw in all of the areas you specify. 
 Figure   11.1    was generated by the code shown in Listing  11 . 1 .   

 In Listing  11 . 1 : 

   Line 1:  close all  closes all figures currently open. This command 
should always be present at the beginning of a script but will be 
omitted from the example listings that follow.  
  Line 2: Specifies a suitable range of x values.  
  Line 3: Sets the first subplot region.  
  Line 4: This is the simple version of the  plot(...)  function 
introduced earlier, plotting  x  against  y  and automatically 
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creating the axes, creating subplot 1, the plot in the top-left 
corner. Note that although in the figure seen here the line is 
gray, when you run the script, the line will appear in its default 
color, blue.  
  Line 5: The  title(...)  function puts the specified string at the top 
of the plot as its title.  
  Lines 6–8: Create subplot 2, the second plot on the first row.  
  Lines 9–11: Create subplot 3, the first plot on the second row.  
  Lines 12–14: Create subplot 4, the second plot on the second 
row.  
  Lines 15–17: Create subplot 5, the first plot on the bottom row.  
  Lines 18–20: Create subplot 6, the second plot on the bottom 
row.    

   11.1.4  Manually Editing Plots 

 When a figure has been created, you 
are free to manipulate many of its 
characteristics by using its menu 
items and tool bars. They provide the 
ability to resize the plot, change the 
view characteristics, and annotate it 
with legends, axis labels, lines, and 
text callouts.      

 Listing  11 . 1      Creating a subplot 

 1. close all 
 2. x = -2*pi:.05:2*pi; 
 3. subplot(3,2,1) 
 4. plot(x, sin(x)) 
 5. title('1 - sin(x)'); 
 6. subplot(3,2,2) 
 7. plot(x, cos(x)) 
 8. title('2 - cos(x)'); 
 9. subplot(3,2,3) 
10. plot(x, tan(x)) 
11. title('3 - tan(x)'); 
12. subplot(3,2,4) 
13. plot(x, x.^2) 
14. title('4 - x^2'); 
15. subplot(3,2,5) 
16. plot(x, sqrt(x)) 
17. title('5 - sqrt(x)'); 
18. subplot(3,2,6) 
19. plot(x, exp(x)) 
20. title('4 - e^x'); 

 All of these capabilities are also available to the script that 
creates the plots, and you are very likely to want to generate 
a plot more than once. Therefore, it is unwise to put a 
significant amount of manual effort into adjusting a plot. It is 
better to experiment with the manual adjustments and then 
find out how to make the same adjustments in the script that 
creates the plots. This also leaves you a permanent record of 
how the plot was generated. 

 Style Points  11 . 1  
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 Figure 11.1   Plotting effects       

   11.2  2-D Plotting 

   11.2.1  Simple Plots 

 The basic function to use for 2-D plots is  plot(...) . The normal use of this 
function is to give it three parameters,  plot(x, y, str) , where  x  and  y  are 
vectors of the same length containing the x and y coordinates, respectively, 
and  str  is a string containing one or more optional line color and style control 
characters. A complete list of these control characters is included in 
 Appendix   A   . If the vector  x  is omitted, MATLAB assumes that the x coordinates 
are 1:N, where N is the length of the  y  vector. If the  str  is omitted, the default 
line is solid blue. The MATLAB definition of this function also permits multiple 
 (x, y, str)  data sets in a single function call. It is always possible to produce 
the same result with multiple function calls in  hold on  mode. 
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 Since we have already seen basic 2-D plotting at work, it should be 
sufficient to observe and comment on the simple example seen in  Figure   11.2   , 
generated by the code shown in Listing  11 . 2 .   

 In Listing  11 . 2 : 

   Line 1: Sets the range of x values.  
  Line 2: Color specifications for the plots—red, green, blue, and black.  
  Lines 4–7: Plot x, x 2 , x 3 , and x 4  with the above colors used in 
sequence.  

 Listing  11 . 2      Simple 2-D plots 

 1. x = linspace(-1.5, 1.5, 30); 
 2. clr = 'rgbk'; 
 3. for pwr = 1:4 
 4.     plot(x, x.^pwr, clr(pwr)) 
 5.     hold on 
 6. end 
 7. xlabel( 'x')
 8. ylabel( 'x^N')
 9. title( 'powers of x')
10. legend({'N=1', 'N=2', 'N=3', 'N=4'}, ... 
11. 'Location','SouthEast')
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 Figure 11.2   Powers of x       
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  Lines 7–11: Add enhancements to the plot as noted above.  
  Line 11: One of many possible parameters to the  legend(...)  
function—this one forces its location to the lower-right corner of the 
figure, out of the way of the data.    

   11.2.2  Plot Options 

 In addition to the plot enhancement tools listed in  Section   11.1.2   , the 
following capabilities are available. 

   ■   Setting line styles and symbols to mark the data points (details in 
 Appendix   A   )  

  ■   Using  plotyy(...)  to put a second axis on the right side of the figure  
  ■   Obtaining logarithmic plots on the x-axis ( semilogx(...) ), y-axis 

( semilogy(...) ), or both axes ( loglog(...) )   

 We strongly suggest that the reader experiment with these features and 
observe their effects.     

   11.2.3  Parametric Plots 

 Plotting is not restricted to the situation where the data along one axis are 
the independent variable and that 
along the other are dependent. 
Parametric plots allow the variables 
on each axis to be dependent on a 
separate, independent variable. That 
independent variable will define a 
path on the plotting surface. Consider 
the plot shown in  Figure   11.3   , which 
presents a simple exercise in 
transforming a circle into an airfoil. It 
was generated using the code shown 
in Listing  11 . 3 .   

 By convention, good engineers are expected to represent 
the data with appropriate line styles to avoid misleading the 
reader. For example, if you have some raw data that is only 
valid at the measurement points, it should be plotted with 
symbols only. Connecting the data with a line would imply 
that the data have some interpolated values, which may not 
be the case. On the other hand, if you calculate a theoretical 
curve that is good throughout the range of x, it should be 
plotted as a continuous curve, perhaps even at a better 
resolution (more x values) than the raw data samples. 

 Style Points  11 . 2  

 Listing  11 . 3      Parametric plots 

 1. th = linspace(0, 2*pi, 40); 
 2. r = 1.1; g = .1; 
 3. cx = sqrt(r^2-g^2) - 1; cy = g; 
 4. x = r*cos(th) + cx; 
 5. y = r*sin(th) + cy; 
 6. plot( x, y, 'r' ) 
 7. axis equal
 8. grid on
 9. hold on
10. z = complex(x, y); 
11. w = z + 1./z; 
12. plot( real(w), imag(w), 'k' ); 



256 Chapter 11  Plotting

 In Listing  11 . 3 : 

   Line 1: The independent variable in this case is the angle  th  varying 
from 0 to 2p.  
  Line 2: The particular transformation we use here requires a circle 
with a radius,  r , slightly greater than 1 offset by a small distance,  g , 
from the x-axis, passing through the point (−1, 0).  
  Line 3: We compute the center of the circle passing through the 
point (−1, 0).  
  Lines 4–5: A standard polar-to-Cartesian coordinate transformation 
computing the coordinates of the circle.  
  Line 6: Plots the two dependent variables  x  and  y  with a red line.  
  Line 7: Equalizes the axes and forces the circle to be drawn 
correctly.  
  Line 8: Displays a grid on which to estimate specific values.  
  Line 9: Here we want to add a second plot to the figure.  
  Lines 10–11: The Joukowski transformation is easiest when 
expressed in complex terms: if  z  is the path around the 
required circle,  w = z + 1/z  traces a very credible looking 
airfoil shape.  
  Line 12: Adds the plot of  w , and reverts from the complex plane 
to plot the real and imaginary parts of the answer colored in 
black.    
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 Figure 11.3   Parametric 2-D plot       
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   11.2.4  Other 2-D Plot Capabilities 

 You can also create some more exotic plots that are not necessary to 
understand the basic principles of plotting, but are powerful methods for 
visualizing real data: 

   ■    bar(x, y)  produces a bar graph with the values in  y  positioned at 
the horizontal locations in  x . The options available can be studied 
with  >> help bar .  

  ■    barh(x, y)  produces a bar graph with the values in  y  positioned at 
the horizontal locations in  x . The options available can be studied 
with  >> help barh .  

  ■    fill(x,y,n)  produces a filled polygon defined by the coordinates in 
 x  and  y . The fill color is specified by indexing  n  into the color map. 
The options available can be studied with  >> help fill .  

  ■    hist(y, x)  produces a histogram plot with the values in  y  counted 
into bins defined by  x . The options available can be studied with 
 >>help hist .  

  ■    pie(y)  makes a pie chart of the values in  y . For more options, see  >>
help pie .  

  ■    polar(th, y)  makes a polar plot of the angle  th  (radians) with the 
radius  r  specified for each angle. For more options, see  >> help 
polar .     

   11.3  3-D Plotting 

 Before attacking the details of plotting in three dimensions, it should be 
noted that even 2-D plots are actually 3-D plots. Consider the picture shown 
in  Figure   11.4   , which was generated originally as the 2-D plot in  Figure   11.3   . 
By selecting the Rotate 3-D icon on the tool bar and moving the mouse on 
your figure, it becomes apparent that what appeared to be a 2-D plot in 
the x-y plane is really a 3-D plot in the x-y-z plane “suspended in space” 
at z = 0. 

   11.3.1  Linear 3-D Plots 

 The simplest method of 3-D plotting is to extend our 2-D plots by adding a 
set of z values. In the same style as  plot(...) ,  plot3(x, y, z, str)  consumes 
three vectors of equal size and connects the points defined by those vectors 
in 3-D space. The optional  str  specifies the color and/or line style. If the  str  
is omitted, the default line is solid blue.  

  Figure   11.5    shows three curves plotted in three dimensions, using the 
script shown in Listing  11 . 4 . Each plot is in the z-x plane: the red curve at 
y = 0, the blue curve at y = 0.5, and the green curve at y = 1.   
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 Figure 11.4   Rotated 2-D plot       
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 Figure 11.5   3-D lines       

 In Listing  11 . 4 : 

   Line 1: Each plot has the same set of x values.  
  Lines 2–3: The y values for the first plot are all 0.  
  Lines 4–5: The second and third plots are sin(x) at different frequencies.  
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  Lines 6–7: The y values of the second and third plots are all 0.5 and 1, 
respectively.  
  Lines 8–10: Plot and annotate the results.    

   11.3.2  Linear Parametric 3-D Plots 

 We can generalize the concept of parametric plots to 3-D, as shown in 
 Figure   11.6   , in which the x, y, and z values are mappings of some linear 
parameter. On the left side, the spiral is an example of a 3-D plot where two 
of the dimensions, x and y, are dependent on the third, independent 
parameter. The independent parameter in this example is the rotation 
angle, p, varying from 0 to 10p (five complete revolutions). The x and y 

 Listing  11 . 4      Simple 3-D line plots 

 1. x=0:0.1:3.*pi; 
 2. y1=zeros(size(x)); 
 3. z1=sin(x); 
 4. z2=sin(2.*x); 
 5. z3=sin(3.*x); 
 6. y3=ones(size(x)); 
 7. y2=y3./2; 
 8. plot3(x,y1,z1, 'r',x,y2,z2, 'b',x,y3,z3, 'g')
 9. grid on 
10. xlabel( 'x-axis'), ylabel( 'y-axis'), zlabel( 'z-axis')
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 Figure 11.6   Parametric 3-D plots       
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values are mapped as sin(u) and cos(u)—the classic means of describing a 
circle. The spiral effect is accomplished by plotting u on the z-axis. 

 The right half of  Figure   11.6    illustrates a fully parametric plot, where 
the values of all three coordinates are mappings of an independent 
parameter, t. This particular example is a plot of the 3-D motion of a 
particle receiving random impulses in all three axes. Note the use of text 
anchored in x-y-z space to label points on the graph. The figure is drawn 
using Listing  11 . 5 .   

 In Listing  11 . 5 : 

   Lines 2–5: Draw the spiral plot with a simple  plot3(...)  call.  
  Lines 8–10: Define random velocity increments in x, y, and z.  
  Lines 11–13: Integrate to compute the position in x, y, z space. There 
will be a full discussion of integration in  Chapter   15   .  
  Lines 14–16: Plot and enhance the time history of the particle.  
  Lines 17 and 18: Add labels to indicate the start and end of the 
trace.    

   11.3.3  Other 3-D Plot Capabilities 

 If you are using MATLAB, you can also create some more exotic 3-D plots 
that are not necessary to understand the basic principles of plotting, but are 
powerful methods for visualizing real data: 

   ■     bar3(x, y)  produces a bar graph with the values in  y  positioned at 
the horizontal locations in  x . The options available can be studied 
with  >> help bar3 .  

 Listing  11 . 5      Linear parametric 3-D plots 

 1. subplot(1, 2, 1) 
 2. theta = 0:0.1:10.*pi; 
 3. plot3(sin(theta),cos(theta),theta) 
 4. title( 'parametric curve based on angle');
 5. grid on 
 6. subplot(1, 2, 2) 
 7. N = 20; 
 8. dvx = rand(1, N) - 0.5 % random v changes
 9. dvy = rand(1, N) - 0.5 
10. dvz = rand(1, N) - 0.5 
11. x = cumsum(cumsum(dvx)); % integrate to get pos
12. y = cumsum(cumsum(dvy)); 
13. z = cumsum(cumsum(dvz)); 
14. plot3(x,y,z) 
15. grid on 
16. title( 'all 3 axes varying with parameter t')
17. text(0,0,0, 'start');
18. text(x(N),y(N),z(N), 'end');
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  ■     barh3(x, y)  produces a bar graph with the values in  y  positioned 
at the horizontal locations in  x . The options available can be studied 
with  >> help barh .  

  ■     pie3(y)  makes a 3-D pie chart of the values in  y . For more options, 
see  >> help pie3 .     

   11.4  Surface Plots 

 In  Section   11.3.2   , we saw that data can be generated for all three axes based 
on one linear parameter. However, more dramatic graphics are produced 
by a different group of 3-D graphics functions that produce images based 
on mapping a 2-D surface. The underlying 2-D surface is sometimes referred 
to as  plaid  because of its conceptual similarity to a Scottish tartan pattern. To 
design such a pattern, one needs only to specify the color sequence of the 
horizontal and vertical threads. In the same way, we specify a plaid by 
defining vectors of the row and column data configurations. 

   11.4.1  Basic Capabilities 

 Three fundamental functions are used to create 3-D surface plots: 

   ■    meshgrid(x, y)  accepts the x 1*m  and y 1*n  vectors that bound the edges 
of the plaid and replicates the rows and columns appropriately to 
produce xx n*m  and yy n*m , containing the x and y values (respectively) 
of the complete plaid. This enables us in general to compute mappings 
for the 3-D coordinates of the figure we want to plot.  

  ■    mesh(xx, yy, zz)  plots the surface as white facets outlined by 
colored lines. The line coloring uses one of many color maps (listed 
in  Appendix   A   ), where the color is selected in proportion to the  zz  
parameter. You can turn the white facets transparent with the 
command  hidden off .  

  ■    surf(xx, yy, zz)  plots the surface as colored facets outlined by 
black lines. The line coloring by default is selected in proportion to 
the  zz  parameter. You can remove the lines by using one of a 
number of  shading  commands listed in  Appendix   A   .    

   11.4.2  Simple Exercises 

 We will consider some simple situations that illustrate many of the features 
of surface drawing. 

  Drawing a Cube     In the first example, in order to understand the underlying 
logic, we will develop the basic concept of drawing surfaces  without  the 
help of the  meshgrid(...)  function.  Figure   11.7    shows the coordinates of a 
cube of side 2 units centered at the origin. Listing  11 . 6  shows the code that 
plots a cube from scratch.  Figure   11.8    shows the results from this script. To 
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define the top and bottom of the cube, we must add the points P and Q. 
Although only one point each is required to define P and Q, the array must 
have the same number of columns in each row. Therefore, P and Q must be 
replicated five times to keep the arrays rectangular.   

 One could think about the way the  surf(...)  function works by drawing 
the line defined by the top row of the  xx ,  yy , and  zz  arrays. Then it locates 
the line defined by the next row and makes a smooth surface between the 
two lines. Physically, this has the following effect: 

   ■   Beginning at point P, it draws expanding squares until it reaches 
ABCD  
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 Figure 11.7   A simple cube       

 Figure 11.8   The solid cube plot       
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  ■   “Sliding down” the sides of the cube to EFGH  
  ■   Shrinking that square down to the point Q    

 In Listing  11 . 6 : 

   Lines 1–12: Establish the plaid defining the point P, the A-B-C-D 
plane, the E-F-G-H plane, and the point Q. Notice that the first 
corner is repeated on each row to close the figure shape.  
  Lines 13–18: Plot the cube top, sides, and bottom.    

  A Simple Parabolic Dish     The simplest surface plots are obtained by defining 
a z value for each point on an x-y plaid. We will continue with a simple 
example illustrating the use of  meshgrid(...)  to define the plaid. Consider 
how we might plot the data shown in  Figure   11.9   . Before we look at the code, 
consider what the picture represents. Clearly, the independent variables are x 
and y, each covering the range from −3 to 3, each having seven discrete 
values. As the label indicates, the z values are calculated as the sum of x 2  and 
y 2 . There are not, however, 14 z values as the range of x and y values might 
suggest, but 49! In order to plot the 3-D shape of our parabolic bowl, we must 
have a z value for every point on the x-y surface. Each of these points has a 
value of x corresponding to the reading on the x-axis, and a value of y from 
the y-axis. Therefore, the process of creating this plot has three parts:  

    1.    Develop the underlying plaid specifying the x-y location of every 
point on the x-y plane.  

   2.   Calculate the z values from the plaid.  

   3.    Call a plotting function that will accept the plaid and these z 
values to produce the required plot.   

 Listing  11 . 6      Simple solid cube 

 1. xx = [  0  0  0  0  0 % P-P-P-P-P
 2.        -1 -1  1  1 -1 % A-B-C-D-A
 3.        -1 -1  1  1 -1 % E-F-G-H-E
 4.         0  0  0  0  0] % Q-Q-Q-Q-Q
 5. yy = [  0  0  0  0  0 % P-P-P-P-P
 6.         1 -1 -1  1  1 % A-B-C-D-A
 7.         1 -1 -1  1  1 % E-F-G-H-E
 8.         0  0  0  0  0] % Q-Q-Q-Q-Q
 9. zz = [  1  1  1  1  1 % P-P-P-P-P
10.         1  1  1  1  1 % A-B-C-D-A
11.        -1 -1 -1 -1 -1 % E-F-G-H-E
12.        -1 -1 -1 -1 -1] % Q-Q-Q-Q-Q
13. surf(xx, yy, zz) 
14. colormap bone 
15. axis equal
16. shading interp
17. view(-36, 44) 
18. axis off
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 The code to accomplish this is shown in Listing  11 . 7 .  

 In Listing  11 . 7 : 

   Line 1: The x and y vectors define the edges of the plaid.  
  Line 2: Generates the plaid.  
  Line 3: In this particular example, we map only the z coordinate, 
leaving the plaid (xx and yy) as the x and y coordinates of the 
figure.  
  Line 4:  mesh(...)  is one of the many functions that represent 3-D 
mappings of a plaid in different ways. Notice in the figure that the 
faces between line segments are solid white, and the line colors 
change with the z coordinate.  
  Lines 5–7: Annotate the plot.   
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 Figure 11.9   A mesh plot       

 Listing  11 . 7      Simple surface plot 

1. x=-3:3; y = x ; 
2. [xx,yy]=meshgrid(x,y); 
3. zz=xx.^2 + yy.^2; 
4. mesh(xx,yy,zz) 
5. axis tight 
6. title( 'z = x^2 + y^2')
7. xlabel( 'x'),ylabel('y'),zlabel('z')
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 Try Exercise  11 . 1  and make your observations.   

  Manipulating Plots     Thoughtful students might develop their own tests to 
investigate the behavior of the following tools: 

   ■   The function  surfc(xx, yy, zz)  puts contour lines on the x-y plane 
base.  

  ■   The function  view(az, el)  changes the viewing angle. This is useful 
to capture a specific view angle after you have used the rotation 
tool to select a good presentation of the data.  

  ■   The command  colorbar  allows you to show how the colors are 
quantified on the plot.  

  ■   Adding a 4 th  parameter to  surf(xx, yy, zz, yy)  overrides 
the default color direction z with, in this case, the y 
direction.  

 Exercise 11.1    Exploring the simple plot 

    1.   run script in Listing  11 . 7  without the semicolon on Line 2, and observe the 
following: 

xx = 
    -3 -2 -1  0  1  2  3 
{etc}
yy = 
    -3 -3 -3 -3 -3 -3 -3 
-{etc}
     3  3  3  3  3  3  3 

   Notice that in general, if  x  is length  m  and  y  is length  n , the  xx  values 
consist of the  x  vector in rows replicated n times, and the  yy  values consist 
of the  y  vector as a column replicated m times. Together, they provide the 
underlying  x  and  y  values for the “floor” of the bowl plot from which the  z  
values are computed to draw the picture.  

   2.   Insert the line  hidden off  after  mesh(xx, yy, zz) . Notice that the faces 
are now transparent.  

   3.   Change  mesh(xx, yy, zz)  to  surf(xx, yy, zz) . Notice that the panels 
are now colored and the lines are black. This form is also insensitive to the 
hidden parameter.  

   4.   Replace  hidden off  with  shading flat , and notice that the lines have 
disappeared.  

   5.   Replace  shading flat  with  shading interp , and notice that the surface 
coloring now varies smoothly.  

   6.   Insert the line  colormap 'summer'  after  surf(xx, yy, zz) . Look up 
 colormap  in  Appendix   A    for details.  

   7.   Do not forget to rotate your images and examine them from different 
points of view using the 3-D rotate tool bar icon.   
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  ■   The 4 th  parameter can also be a function like  del2(zz)  that 
computes the second derivative, or curvature, of the plot, so now 
the coloring highlights the areas of maximum curvature.  

  ■   The 4 th  parameter can also be an image (see  Chapter   13   ) that will 
appear to be pasted onto the plotting surface.  

  ■   For an eye-catching effect, add the line  lightangle(60, 45)  at the 
bottom of the script. This illuminates the surface with a light at the 
specified azimuth and elevation angle (degrees). The resulting 
faceted appearance can be alleviated by decreasing the granularity 
of the underlying plaid coordinates.     

   11.4.3  3-D Parametric Surfaces 

  Cylinder     Consider first the construction of a cylinder as illustrated in 
 Figure   11.10   . One could consider this figure as a sheet of paper rolled up in 
a circular shape. We could visualize that piece of paper as a plaid of values, 
not of x-y in this case, but perhaps x − u. The range of x would be from 0 to 
the length of the cylinder, and the range of u would be 0 to 360°.  

 To plot this, one would then merely need to create a plaid in x and u, and 
then decide on the mapping from u to the y and z values of the cylinder. 
The resulting picture is shown in  Figure   11.11   , and the code is shown in 
Listing  11 . 8 .   

 In Listing  11 . 8 : 

   Line 1: Constants to define the smoothness of the cylinder.  
  Lines 2–4: Define a plaid in x and u. Note that only two points are 
needed in the x direction because that contour is straight.  
  Lines 5 and 6: The circular cross-section is achieved by using the 
parametric definition of a circle of a given radius.  

 Listing  11 . 8      Constructing a cylinder 

 1. facets = 120; len = 2; radius = 1; 
 2. thr = linspace(0, 2*pi, facets); 
 3. xr = [0 len]; 
 4. [xx, tth] = meshgrid( xr, thr ); 
 5. yy = radius * cos(tth); 
 6. zz = radius * sin(tth); 
 7. surf(xx, yy, zz); 
 8. shading interp 
 9. colormap bone 
10. axis equal,axis tight,axis off 
11. lightangle(60, 45) 
12. alpha(0.8) 
13. view(-20, 35) 
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  Line 9: Changes the color to a pleasant metallic scale.  
  Line 10: Squares up and removes the axes.  
  Line 11: Illuminates the figure.  
  Line 12: Sets the transparency of the surface so that a portion of the 
hidden details can show through.    

  Sphere     Now, we construct a sphere as shown in  Figure   11.12   , starting 
with the cylinder. However, instead of using a constant radius in the x 
direction, we will calculate the radius in that direction by rotating a 
second angle, c, from 0 to 180°. Think of this as mapping or “wrapping” a 
plaid with two angles as the independent variables around the sphere. 
The coordinate in the x direction would be r cos c, and the radii of the y-z 
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 Figure 11.10   Creating a cylinder image       

 Figure 11.11   A cylinder plot       
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circles would be r sin c. The code for drawing this sphere is shown in 
Listing  11 . 9 .   

 In Listing  11 . 9 : 

   Line 1: The  radius  set here is the sphere radius.  
  Lines 2 and 3: Set the ranges of u and c.  
  Line 4: Builds the plaid in u and c.  
  Line 5: As c rotates, the value of  x  varies as its cosine.  
  Lines 6 and 7: The radius of rotation about the x-axis varies as the 
sine of c.  
  Lines 8–12: Draw and annotate the plot.     

   11.4.4  Bodies of Rotation 

 The cylinder and sphere drawn in the above section are special cases of a 
more general form of solid body. Bodies of rotation are created in general 

 Figure 11.12   A sphere       

 Listing  11 . 9      Constructing a sphere 

 1. facets = 120; radius = 1; 
 2. thr = linspace(0, 2*pi, facets); % range of theta
 3. phir = linspace(0, pi, facets); % range of phi
 4. [th, phi] = meshgrid( thr, phir ); 
 5. x = radius * cos(phi); 
 6. y = radius * sin(phi) .* cos(th); 
 7. z = radius * sin(phi) .* sin(th); 
 8. surf(x, y, z); 
 9. shading interp 
10. colormap copper 
11. axis equal, axis tight, axis off 
12. lightangle(60, 45) 
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by rotating a general function  v = f(u)  defined over a range of  u  values 
about the x or z axes. Note: this is perfectly general because rotating such a 
function about the y-axis would result merely in “smearing” the function 
across a flat surface in the x-z plane. We use z rather than y for the dependent 
variable here because in our 3-D plots, the z-axis is drawn as the vertical 
axis. In general, we make no claims about the nature of f () . It could be a 
rational function, or merely a “lookup table” specifying a value of  v  for 
every  u . 

  Rotating Continuous Functions     First, we consider rotating a continuous 
function  v = f(u)  about the x and z axes. 

   ■   To rotate  v = f(u)  about the x-axis, we could consider this equation 
as  r = f(x) .  Figure   11.13    shows the logic of this rotation. The 
independent variable is x, and the values of y and z are computed 
as the usual polar-to-Cartesian conversion:  

y = r cos(u)
z = r sin(u)

  Notice that these are the two axes about which we are not 
rotating.  

  ■   To rotate  v = f(u)  about the z-axis, we could consider this equation 
as  z = f(r) .  Figure   11.14    shows the logic of this rotation. The 
independent variable is now  r , and the values of x and y are 
computed as the usual polar-to-Cartesian conversion:  

x = r cos(u)
y = r sin(u)

z

x

(Independent)

r = f(x)

y

 Figure 11.13   Rotating  v = f(u)  about the x-axis       
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  Notice again that these are the two axes about which we are not 
rotating. Notice also a simple rule of thumb: if you rewrite  v = f(u)  
correctly for each rotation, the independent variable is always the 
parameter of  f(...) .   

  Figure   11.15    shows the result of the rotations generated by the code shown 
in Listing  11 . 10 .   

r

z

y

x

z = f(r) 

(Independent)

 Figure 11.14   Rotating v = f(u) about the z-axis       

 Figure 11.15   Rotation of u 2        
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 In Listing  11 . 10 : 

   Lines 1–4: Set up the plaid of  u , the independent variable for the 
function, and u for the rotations.  
  Lines 6–13: Compute the rotation about the x-axis. Notice that when 
rotating about a specific axis, that axis must be treated separately; 
the other two axes will always have the form of a polar-to-Cartesian 
transformation. In rotating about the x-axis, since u is the 
independent variable for our function, we only need to compute the 
yy and zz values.  
  Line 10: We use the fourth parameter to  surf(...)  to set the 
direction of color variation.  
  Lines 15–22: Compute the z-axis rotation. Some apparent sleight of 
hand is necessary here. In this case, the axis containing the 
independent variable is being rotated about the z-axis. Because the 
radius of the rotated surface is the original independent variable, 
 uu , we copy  uu  to the variable radius. Then we define  xx  together 
with  yy  as the polar-to-Cartesian transformation to achieve the 
rotation. In this case, the z value of the surface is  f(u) ,  u  2 .    

  Rotating Discrete Functions     There is no need to restrict ourselves to 
continuous functions as the profiles for bodies of rotation.  Figure   11.16    
shows the 2-D profile of a fictitious machine part and the picture created 

 Listing  11 . 10      Rotating v = u 2  about the x and z axes 

 1. facets = 100; 
 2. u = linspace(0, 5, facets); 
 3. th = linspace(0, 2*pi, facets); 
 4. [uu tth] = meshgrid(u, th); 

% rotate about the x-axis
 5. subplot(1, 2, 1) 
 6. rr = uu.^2; 
 7. xx = uu; 
 8. yy = rr .* cos(tth); 
 9. zz = rr .* sin(tth); 
10. surf(xx, yy, zz, xx); 
11. shading interp, axis tight
12. xlabel( 'x'), ylabel( 'y'), zlabel( 'z')
13. title( 'u^2 rotated about the x-axis')

% rotate about the z-axis
14. subplot(1, 2, 2) 
15. rr = uu; 
16. zz = rr.^2; 
17. xx = rr .* cos(tth); 
18. yy = rr .* sin(tth); 
19. surf(xx, yy, zz); 
20. shading interp, axis tight
21. xlabel( 'x'), ylabel( 'y'), zlabel( 'z')
22. title( 'u^2 rotated about the z-axis')
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when that profile is rotated about the x-axis. The figure was generated by 
the code shown in Listing  11 . 11 .   

 In Listing  11 . 11 : 

   Lines 1–9: Define and plot the initial 2-D profile.  
  Lines 10–22: Perform the rotation about the x-axis. The only 
unusual idea here is how to turn this discrete collection of points 

 Figure 11.16   Rotation of an irregular shape       

 Listing  11 . 11      Rotating an irregular shape 

 1. u = [0 0 3 3 1.75 1.75 2 2 1.75 1.75 3 4 ... 
 2.      5.25 5.25 5 5 5.25 5.25 3 3 6 6]; 
 3. v = [0 .5 .5 .502 .502 .55 .55 1.75 1.75 ... 
 4.       2.5 2.5 1.5 1.5 1.4 1.4 ... 
 5.      .55 .55 .502 .502 .5 .5 0]; 
 6. subplot(1, 2, 1) 
 7. plot(u, v, 'k') 
 8. axis ([-1 7 -1 3]), axis equal, axis off
 9. title( '2-D profile')
10. facets = 200; 
11. subplot(1, 2, 2) 
12. [xx tth] = meshgrid( u, linspace(0, 2*pi, facets) ); 
13. rr = meshgrid( v, 1:facets); 
14. yy = rr .* cos(tth); 
15. zz = rr .* sin(tth); 
16. surf(xx, yy, zz); 
17. shading interp
18. axis square, axis tight, axis off
19. colormap bone
20. lightangle(60, 45) 
21. alpha(0.8) 
22. title( 'rotated object')
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into the equivalent of  v = f(u) . Line 12 shows an elegant way to 
solve this dilemma. After going through the  meshgrid(..)  to 
produce a plaid of  xx  and  tth , we run  meshgrid(...)  again, but 
keeping only the first result,  rr .    

  Rotating about an Arbitrary Axis     Bodies of rotation are not confined to 
rotating about the x, y, or z axes. The simplest approach to rotating  z = f(x)  
about an arbitrary axis is as follows: 

   ■   Calculate the matrix that will place your axis of rotation along the 
x-axis (see  Chapter   12   )  

  ■   Transform u and v with that rotation  
  ■   Rotate the transformed u and v about the x-axis  
  ■   Invert the transformation on the resulting surface     

   11.4.5  Other 3-D Surface Plot Capabilities 

 The MATLAB language also defines special-purpose functions to enhance 
the quality of surface plots: 

   ■    alpha(x)  sets the transparency of the surfaces.  0<=x<=1 , where  0  
means completely transparent and  1 (the default value)  is 
opaque. The options available can be studied with  >> help 
alpha .  

  ■    contour(z)  produces a contour plot of the plaid surface defined by 
 z . The options available can be studied with  >> help bar3 .  

  ■    [x,y,z] = cylinder(n)  constructs the  meshgrid  for a cylinder 
with  n  facets in each direction. For more options, see  >> help 
cylinder .  

  ■    [x,y,z] = ellipsoid(n)  constructs the  meshgrid  for an ellipsoid 
with  n  facets in each direction. For more options, see  >> help 
ellipsoid .  

  ■    [x,y,z] = sphere(n)  constructs the  meshgrid  for ansphere with  n  
facets in each direction. For more options, see  >> help sphere .  

  ■    meshc(x,y,z)  makes a mesh plot with contours below. For more 
options, see  >> help meshc .  

  ■    meshz(x,y,z)  makes a mesh plot with vertical line extensions. For 
more options, see  >> help meshz .  

  ■    surfc(x,y,z)  makes a surface plot with contours below. For more 
options, see  >> help surfc .  

  ■    surfz(x,y,z)  makes a surface plot with vertical line extensions. For 
more options, see  >> help surfz .  

  ■    waterfall(x,y,z)  makes a mesh plot with vertical line extensions 
only in the x direction. For more options, see  >> help waterfall .    
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   11.4.6  Assembling Compound Surfaces 

 We can assemble more complex solid bodies by constructing simple surfaces 
and concatenating the data before submitting it to the rendering machine. 
Shapes of considerable complexity can be assembled this way. Consider, for 
example, the Klein bottle, a well-documented example of topological 
curiosity. The particular example shown in  Figure   11.17    was constructed by 
building the individual components and then concatenating the arrays.  

 The code is a little too complex to be included here, but can be found on 
the companion Web site.   

 Figure 11.17   The Klein bottle       

   11.5  Manipulating Plotted Data 

 Two new features introduced with MATLAB 7.6 (R2008a) allow you to 
interact with the data presented in a plot. Brushing allows you to select 
portions of the data presented in a plot and make changes to the values 
presented. Linking allows you to connect the plotted data to the underlying 
data source, so that when you make changes to the plotted data, these 
changes are reflected in the data source. Whereas these tools allow the user 
to change the appearance of data presentations interactively, a careful user 
would return to the original tools that created the plots and explicitly insert 
the logic that changes the appearance of the results. This provides a 
traceable set of programs that show exactly how the data were generated. 

    11.6  Engineering Example—Visualizing Geographic Data 

 You have been given two files of data:  atlanta.txt , which presents the 
streets of Atlanta in graphical form, and  ttimes.txt , which gives the travel 
times between Atlanta suburbs and the city center. You have been asked to 
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present these data sets in a manner that will help to visualize and validate 
the data. 

  11.6.1 Analyzing the Data 

 First, we proceed to determine the nature of the data by opening the files 
and examining their format and content. 

   1.    Determine the file format: the first step is to open the data files in a 
plain text editor. The format appears to be consistent with that of a text 
file delimited by tab characters. Since there are no strings in the file, it 
should be suitable to be read using the built-in  dlmread(...)  function.  

  2.    Discern the street map file content:  Table   11.1    shows the first few lines 
of the file  atlanta.txt  simplified by omitting certain irrelevant 
columns. The numbers in columns 3–6 are pairs, the first of the pair 
being a large negative number, and the second a smaller positive 
number. Assuming that each row of this file is a street segment, these 
could be the x-y coordinates of the ends of a line. A little thought 
confirms this guess when we realize that the latitude of Atlanta is −84° 
429 relative to the Greenwich meridian, and its longitude is 33° 659—
clearly, the values in these columns are 1,000,000 times the latitude 
and longitude of points within the city, probably each end of street 
segments. Column 7 contains numbers mostly in the range 1–6, which 
could indicate the type of street. We could explore this idea by 
coloring each line according to that value.   

  3.    Discern the travel time file content:  Table   11.2    shows the first few lines of 
the file  ttimes.txt  simplified by omitting certain irrelevant columns. The 

 Table 11.1   Street map data 

  ... ... –84546100.00 33988160.00 –84556050.00 33993620.00 1.00 ... 

 ... ... –84546080.00 33988480.00 –84558400.00 33995480.00 1.00 ... 

 ... ... –84243880.00 33780010.00 –84249980.00 33800840.00 1.00 ... 

 {etc}  

 Table 11.2   Travel time data 

  1  1  . . .  – 8 4 5 7 5 7 2 5  3 3 5 5 4 5 7 3  1 4 . 3 4 

 1  2  . . .  – 8 4 5 6 9 6 1 2  3 3 5 5 4 5 7 3   0 

 1  3  . . .  – 8 4 5 6 3 4 9 9  3 3 5 5 4 5 7 3   0 

 1  4  . . .  – 8 4 5 5 7 3 8 7  3 3 5 5 4 5 7 3   0 

 { etc}  
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same latitude/longitude values occur in columns 4 and 5, but they are 
not repeated, suggesting that the data in this file are in a different form. 
Examining the first two columns, the numbers in column 2 cycle 
repeatedly from 1 to 75, with column 1 counting the number of cycles 
up to 75. Furthermore, the values in column 5 are the same whenever 
column 1 is the same, and the values in column 4 are the same 
whenever the value in column 2 matches. This seems to be much like 
the plaid that results from a  meshgrid(...)  function call. The values in 
column 6 then become evident—they would be the z values of the 
plaid, and it seems reasonable to assume that they represent the travel 
time in minutes.     

  11.6.2 Displaying the Data 

 With this much understanding of the data sources, we proceed to solve the 
problem of presenting the data. The script shown in Listing  11 . 12  shows the 
code used to visualize these data files.  

 Listing  11 . 12      Map data analysis 

% draw the streets
 1. raw = dlmread( 'atlanta.txt');
 2. streets = raw(:,3:7); 
 3. [rows,cols] = size(streets) 
 4. colors = 'rgbkcmo';
 5. for in = 1:rows 
 6.      x = streets(in,[1 3])/1000000; 
 7.      y = streets(in,[2 4])/1000000; 
 8.      col = streets(in,5); 
 9.      col(col < 1) = 7; 
10.      col(col > 6) = 7; 
11.      plot(x,y,colors(col)); 
12.      hold on 
13. end

% plot the travel times
14. tt = dlmread( 'ttimes.txt');
15. [rows,cols] = size(tt) 
16. for in = 1:rows 
17.      r = tt(in, 1); c = tt(in, 2); 
18.      xc(r,c) = tt(in, 4)/1000000; 
19.      yc(r,c) = tt(in, 5)/1000000; 
20.      zc(r,c) = tt(in, 6); 
21. end
22. surf(xc, yc, zc) 
23. shading interp
24. alpha(.5) 
25. grid on
26. axis tight
27. xlabel( 'Longitude')
28. ylabel( 'Latitude')
29. zlabel( 'Travel Time (min)')
30. view(-30, 45) 
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 In Listing  11 . 12 : 

   Line 1: Reads the street map data.  
  Lines 2–3: Extract the relevant columns and determine the size of the array.  
  Line 4: Color symbols to use for the lines.  
  Line 5: Traverses the rows of the file.  
  Lines 6 and 7: Extract the longitude and latitude in degrees.  
  Lines 8–10: Extract and limit the line colors.  
  Lines 11 and 12: Plot the street lines on the same figure.  
  Lines 14 and 15: Read the travel times.  
  Line 16: Constructs the plaid by traversing the array.  
  Line 17: Extracts the row and column numbers.  
  Lines 18–20: Extract the plaid values.  
  Lines 22–30: Plot and display the results.   

  Figure   11.18    shows the resulting plot. As a credibility check, the plot has 
been rotated to look straight down on the map. Rotate the plot to other view 
angles to understand the 3-D nature of the information. The travel time 
surface shows “valleys” of low travel times that follow the paths of the major 
expressways through the city.       

 Figure 11.18   Atlanta travel times       
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     Chapter Summary 

  This chapter presented the principles and practice of plotting:  

   ■   Basic 2-D line plots are accomplished by using  plot(x,y) , where  x  is 
the independent variable and  y  the dependent variable  

  ■   2-D parametric plots are accomplished by using  plot(x,y) , where 
both  x  and  y  are dependent on another independent variable  

  ■   3-D line and parametric plots are accomplished by using  plot3(x,y,z)   
  ■   Basic 3-D surface plots are accomplished by building a plaid using 

 [xx yy] = meshgrid(x,y) , computing the  zz  layer as a function of 
 xx  and  yy , and then plotting the surface using  mesh(xx, yy, zz)  or 
 surf(xx, yy, zz)   

  ■   Parametric surface plots, like parametric line plots, are achieved by 
building the plaid with two independent variables and making  xx , 
 yy , and  zz  functions of those independent variables  

  ■   Bodies of rotation are a special case of parametric surface plots 
where one of the independent variables is an angle with values 
between 0 and 2p.    

  Special Characters, Reserved Words, and Functions—2-D 

 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

  axis(...)   Freezes the current axis scaling for subsequent plots 
or specifies the axis dimensions 

 11.1.2 

  bar   Generates a bar graph  11.2.4 

  barh   Generates a horizontal bar graph  11.2.4 

  clf   Clears the current figure  11.1.1 

  close all   Closes all graphics windows  11.1.1 

  colormap <spec>   Specifies a sequence of colors to be used when a 
cycle of color values is required 

 11.1.2 

  figure   Opens a new figure window  11.1.1 

  fill(x,y,n)   Fills a polygon defined by  x  and  y  with color index  n   11.2.4 

  grid off   Turns the grid off (default is on)  11.1.2 

  grid on   Adds a grid to the current and all subsequent graphs 
in the current figure 

 11.1.2 

  hist   Generates a histogram  11.2.4 

  hold off   Sets a flag to erase figure contents before adding 
new information (the default state) 

 11.1.2 
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 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

  hold on   Sets a flag not to erase figure contents before 
adding new information 

 11.1.2 

  legend(ca)   Adds a legend to a graph  11.1.2 

  loglog   Generates an x-y plot, with both axes scaled 
logarithmically 

 11.2.4 

  pie   Generates a pie chart  11.2.4 

  plot(...)   Creates an x-y plot  11.1.2 

  polar   Creates a polar plot  11.2.4 

  semilogx   Generates an x-y plot, with the x-axis scaled 
logarithmically 

 11.2.4 

  semilogy   Generates an x-y plot, with the y-axis scaled 
logarithmically 

 11.2.4 

  shading <spec>   Shades a surface according to the specification  11.1.2 

  subplot(plts, n)   Divides the graphics window into sections available 
for plotting 

 11.1.1 

  text(x,y,{z,} str)   Adds a text string to a graph  11.1.2 

  title(str)   Adds a title to a plot  11.1.2 

  view(az,el)   Sets the angle from which to view a plot  11.1.2 

  xlabel(str)   Adds a label to the x-axis  11.1.2 

  ylabel(str)   Adds a label to the y-axis  11.1.2 

  zlabel(str)   Adds a label to the z-axis  11.1.2 

  Special Characters, Reserved Words, and Functions—3-D 

 Special Characters, 

Reserved Words, and 

Functions 

 

Description 

 

Discussed in 

This Section 

  alpha(x)   Sets the transparency of the surface  11.3.3 

  bar3   Generates a 3-D bar graph  11.3.3 

  barh3   Generates a horizontal 3-D bar graph  11.3.3 

  contour(xx, yy, zz)   Generates a contour plot  11.4.5 

  cylinder(n)   Constructs the plaid for a cylinder with  n  facets  11.4.5 

  ellipsoid(n)   Constructs the plaid for an ellipsoid with  n  facets  11.4.5 

  lightangle(az,el)   Sets the angle of a light source, angles in degrees  11.4.5 

  mesh(xx,yy,zz)   Generates a mesh plot of a surface  11.4.1 
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 Special Characters, 

Reserved Words, and 

Functions 

 

Description 

 

Discussed in 

This Section 

  meshc(xx,yy,zz)   Generates a mesh plot of a surface with a contour 
below it 

 11.4.5 

  meshz(xx,yy,zz)   Generates a mesh plot of a surface with vertical 
line extensions 

 11.4.5 

  [rr cc] = 
meshgrid(r,c)  

 Creates a plaid for 3-D plots  11.4.1 

  pie3   Generates a 3-D pie chart  11.3.3 

  plot3(...)   Generates a 3-D line plot  11.3.1 

  sphere(n)   Example function used to demonstrate graphing  11.4.5 

  surf(xx,yy,zz)   Generates a surface plot  11.4.1 

  surfc(xx,yy,zz)   Generates a combination surface and contour plot  11.4.5 

  waterfall(xx,yy,zz)   Generates a mesh plot of a surface with vertical 
line extensions in the x direction only 

 11.4.5 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    The  plot(...)  function needs only one parameter to function 
correctly.   

   2.    Plot enhancement functions may be called before or after the 
function that plots the data.   

   3.    You must provide plots for all the specified sub-plot areas.   

   4.     meshgrid(...)  accepts vectors of length m and n that bound the 
edges of the plaid and produces two arrays sized m × n giving the 
complete plaid.   

   5.    To construct a parametric surface, both independent parameters 
must be angles.   

   6.    When rotating a function about the y-axis, the variables along the x 
and y axes are computed from a classic polar-to-Cartesian 
conversion.   

   7.    To compute a body of rotation, the curve must be a continuous, 
differentiable function.   

   8.    Bodies of rotation are confined rotating about the x, y, or z axes.   
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  Fill in the Blanks  

   1.    Each time  figure  is called, a(n) ___________ is made available, with 
figure number _____________.   

   2.    The fundamental container for plotting is a(n) _____________.   

   3.    ______________ provide a key to the various data plotted on a 
graph.   

   4.    N = HIST(Y,M), bins the elements of Y into _________________ 
containers and returns the number of elements in each container.   

   5.    We construct a sphere by wrapping a(n) ___________with two 
_________________ as the independent variables around the sphere.   

   6.    Within the current figure, you can place multiple plots with the 
___________ command.    

  Programming Projects 

   1.    Write a script that creates four sub-plots in two rows each with two 
columns. Each plot should have an appropriate title and labels on 
the  x  and  y  axes. The plot in the top left sub-plot should be  y = sin( u) 
for values of theta from –2π to 2π. Subsequent plots going across the 
rows before going down the columns should be of  y = sin(0* u),
y = sin(2* u), etc., to y = sin(8* u)  over the same range of u.   

   2.    Your task is to create a script called squarePlot. This script should 
do the following: 
   a.   Ask the user to enter in a positive number, N, greater than 2.  
  b.   Calculate the square of each number from 1 to N. Each of these 

values should be stored into a vector named sqVector.  
  c.   Display a stem plot with the title ‘Square Function’, where the 

squares for each of the numbers are displayed.  
  d.   Add to this plot a continuous linear line that follows the equation 

y = log(x2) with x values from 1 to N.  
  e.   Since the numbers will have different magnitudes, use plotyy to 

plot the values on the right hand axis.     

   3.    Write a function called  sineGraph  that graphs a sine function four 
times between the interval  [start,stop]  on the same graph. The 
 start  and  stop  values should be parameters of the function. The 
number of points per interval will vary. More specifically: 
   •   The first time you graph the sine function, you should have two 

evenly spaced points,  start  and  stop   
  •   The next plot should have four evenly spaced points— start , 

 stop,  and two points between them  
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  •   The third should have eight evenly spaced points and the fourth 
256 points.  

  •   Make sure to add a legend and a title— 'Multiple graphs on one 
plot' —and to label the axes. Make sure that each line has a 
different color.  

  •   The function should return the  x  and  y  values for the 256 point set.   

   Test your function with the following intervals  [0, p /2] ,  [0,2 p ] , 
 [0,4 p ] ,  [0,16 p ]    

   4.    This program compares different 3-D plots of the 2-D exponential 
function. There should be two subplots.          
   a.   On the left side, plot the function  f(x,y)=x2+y  in the range  x = 

-2*p:2*p and y= -2*p:2*p using mesh and name your plot   
‘Mesh Plot’.  

  b.   On the right side, plot the same function, in the same range, but 
using surf. Name your plot  'Surf Plot’ . You should label all 
axes and title your plot  .     

   5.    Georgia Tech wants to tear down the Campanile and build a new 
one that is ridiculously tall. However, before it is built, it needs you 
to model it. Using the equation  z = 1/(x^2 + y^2)  as the model, 
write a script that will plot the Campanile. Your domain should be 
 -.75 <= x <=.75  and  -.75 <= y <= .75  using an increment of .05 for 
each range. Set your axes such that all of the x, y domain is seen and 
z runs from 0 to 300. Use  surf(...)  to plot your image.   

   6.    You have a Microsoft Excel sheet which stores numerical as well as 
text data. There are two columns and each column contains the same 
number of elements. The first row contains the titles of the two 
columns. The first column has natural numbers 'i' up to 15, and the 
second column has the corresponding factorials. Create a script called 
excelSheetPlot that plots the data in this file. Read the numbers from 
the file and make a plot of the 'i' versus fact(i)values. Title your 
plot ‘excelSheetPlot’ and use the first row data to label the x and y 
axes. For example, the spreadsheet might look like:

[inputData,  titleText]  =  xlsread('TestData.xls', 

'Factorial');

i = inputData(:,1);

fact = inputData(:,2);

figure;

plot(i,fact,'-');title('excelSheetPlot');xlabel(titleText(1)); 

ylabel(titleText(2));      

   7.    You just realized that February 14th has passed and you haven’t 
gotten anything for your Valentine. Since your date is a CS major, 
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sending the lucky person a coded heart seems like a cool and sincere 
thing to do. Make sure that you follow each and every instruction 
carefully, or your heart will end up broken. Trust us. 

   You are going to write a script to draw this heart using the 
following steps: 
   a.   Create a plaid [xx, yy] using x values with range (0 to 2p, with an 

interval 0.05p) and y values with the range (0 to 1, with an 
interval 0.05).  

  b.   Define the following variables: 
c=[0.1 + 0.9*(p-abs(xx - p))/p ] .* yy 

aa = c .* cos(xx) 

bb = c.* sin(xx) 

zz = (-2)*aa.^3 + (3/2)*c.^2 + 0.5 

  c.   Plot  zz  against  aa  and  bb  using the  surf()  function with 
interpolated colors.     

   8.    Write a function named  plotRotation  that takes in two vectors,  x  
and  z , and a vector  th . Your function should plot three plots in the 
same figure by using the  subplot  command. The figure should have 
 1 × 3  plots. The plots should be as follows: 
   a.   z vs. x, titled  'z vs. x' . Note that you will have to use  plot3()  to 

correctly plot this in the x-z plane rather than the x-y plane a 
 plot()  would do. Also, you should use  view(0, 0)  to make the 
plot produced by  plot3()  show up as 2-D.  

  b.   z vs. x rotated around the x-axis using  mesh()  with flat shading 
and a square axis, titled  'z vs. x about x using mesh' .  

  c.   z vs. x rotated around the z-axis using  surf()  with  interp  
shading and a square axis, titled  'z vs. x about z using surf' . 

   For plots b and c, the input vector  th  should be used for your 
independent vector theta, which is used to convert from polar-to-
Cartesian coordinates. Don’t forget to title and label each of the 
three plots.        
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  Chapter Objectives 

 This chapter shows matrices as logical extensions of arrays. You will 
learn about two specialized operations performed with matrices: 

    ■   Multiplication for coordinate rotation  

  ■   Division for solving simultaneous equations   

 Although the matrix operations that are the subject of this chapter 
can be performed on pairs of vectors or arrays that meet certain cri-
teria, when using these operations, we tend to refer to the data 
objects as matrices. In most mathematical discussions, the words 
“matrix” and “array” can be used interchangeably, and rightly so, 
because they store data in exactly the same form. Moreover, almost 
all of the operations we can perform on an array can also be per-
formed on a matrix—logical operations, concatenation, slicing, and 
most of the arithmetic operations behave identically. The fact that 
some of the mathematical operations are defined differently gives us 
a chance to think about an important concept that is usually well 
hidden within the MATLAB language definition.    

 Matrices 
    C H A P T E R  1 2 

       12.1    Concept: Behavioral 
Abstraction      

   12.2   Matrix Operations     
    12.2.1    Matrix 

Multiplication     
    12.2.2   Matrix Division      
    12.2.3    Matrix 

Exponentiation      
   12.3   Implementation     
    12.3.1    Matrix 

Multiplication     
    12.3.2   Matrix Division       

   12.4   Rotating Coordinates     
    12.4.1   2-D Rotation      
    12.4.2   3-D Rotation       

   12.5    Solving Simultaneous 
Linear Equations     

    12.5.1   Intersecting Lines       
   12.6   Engineering Examples     
    12.6.1    Ceramic 

Composition      
    12.6.2    Analyzing an 

Electrical Circuit        
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      12.1  Concept: Behavioral Abstraction 

 Recall the following concepts: 

   ■    Abstraction  is the ability to ignore specific details and generalize the 
description of an entity  

  ■    Data abstraction  is the specific example of abstraction that we first 
considered whereby we could treat vectors of data (and later other 
collections like structures and arrays) as single entities rather than 
enumerating their elements individually  

  ■    Procedural abstraction  are functions that collect multiple operations 
into a form; once they are developed, we can overlook the specific 
details and treat them as a “black box,” much as we treat built-in 
functions   

  Behavioral abstraction  combines data and procedural abstraction, 
encapsulating not only collections of data, but also the operations that are 
legal to perform on that data. One might argue that this is a new, irrelevant 
concept best ignored until “we just have to!” However, consider the rules 
we have had to establish for what we can and cannot do with data collections 
we have seen so far. For example, am I able to add two arrays together? Yes, 
but only if they have the same number of rows and columns, or if one of 
them is scalar. Can I add two character strings? Almost the same answer, 
except that each string is first converted to a numerical quantity and the 
result is a vector of numbers and not a string. Can I add two cell arrays? No. 

 So at least some, and maybe all, data collections also “understand” the 
set of operations that are permitted on the data. This encapsulation of data 
and operations is the essence of behavioral abstraction. Therefore, we 
distinguish arrays from matrices not by the data they collect, but by the 
operations that are legal to perform on them.  

   12.2  Matrix Operations 

 The arithmetic operations that differ between arrays and matrices are 
multiplication, division, and exponentiation. 

   12.2.1  Matrix Multiplication 

 Previously, when we considered multiplying two arrays, we called this 
scalar multiplication, and it had the following typical array operation 
characteristics: 

   ■   Either the two arrays must be the same size, or one of them must be 
scalar  

  ■   The multiplication was indicated with the  .*  operator  
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  ■   The result was an array with the same size as the larger original 
array  

  ■   Each element of the result was the product of the corresponding 
elements in the original two arrays   

 This is best illustrated in  Figure   12.1   . Scalar division and exponentiation 
have the same constraints.  

 Matrix multiplication, on the other hand, performed using the normal * 
operator, is an entirely different logical operation, as shown in  Figure   12.2   . 
The logical characteristics of matrix multiplication are as follows: 

   ■   The two matrices do not have to be the same size. The requirements 
are either: 
   •   One of the matrices is a scalar, in which case the matrix operation 

reduces to a scalar multiply.  
  •   The number of columns in the first matrix must equal the 

number of rows in the second. We refer to these as the inner 
dimensions. The result is a new matrix with the column count of 
the first matrix and the row count of the second.    

  ■   If, as illustrated,  A  is an  m 3   n  matrix and  B  is an  n 3   p  matrix, the 
result of  A * B  is an  m 3   p  matrix.  

  ■   The item at  (i, j)  in the result matrix is the sum of the scalar 
product of the  ith  row of  A  and the  jth  column of  B .  

amn x bmn

a2n x b2n

a1n x b1n

am2 x bm2

a22 x b22

a12 x b12

am1 x bm1

a21 x b21

a11 x b11 . . .

. . .

. . .

. .
 . 

.

bmnbm2bm1

.* B(mxn) =

b2nb22b21

b1nb12b11 . . .

. . .

. . .

. .
 . 

.

. .
 . 

.

amnam2am1

A(mxn) =

a2na22a21

a1na12a11 . . .

. . .

. . .

. .
 . 

.

. .
 . 

.

 .   .   .   .   .

 Figure 12.1   Matrix dot multiply       
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  ■   Whereas with scalar multiplication  A .* B  gives the same result as 
 B .* A , this is not the case with matrix multiplication. In fact, if  A * 
B  works,  B * A  will not work unless both matrices are square, and 
even then the results are different. (Proof of this can be derived 
immediately from  Figure   12.3    by eliminating the third row and 
column and exchanging  a  for  b . All four terms of the result of  A * B  
are different from  B * A .)  

  ■   Whereas with scalar multiplication the original array  A  can be 
recovered by dividing the result by  B , this is not the case with 
matrix multiplication unless both matrices are square.  

  ■   The identity matrix, sometimes given the symbol  In , is a square 
matrix with  n  rows and  n  columns that is zero everywhere except 
on its major diagonal, which contains the value 1.  In  has the special 
property that when pre-multiplied by any matrix  A  with  n  columns, 
or post-multiplied with any matrix  A  with  n  rows, the result is  A . We 
will need this property to derive matrix division below. (The 
built-in function  eye(...)  generates the identity matrix.)    

  Figure   12.3    illustrates the mathematics for the case where a 3 3 2 matrix is 
multiplied by a 2 3 3 matrix, resulting in a 3 3 3 matrix.   

m

n

m=

pp

*
n

 Figure 12.2   Mechanics of matrix multiplication       

(a31 x b13 + a32 x b23)

(a21 x b13 + a22 x b23)

(a11 x b13 + a12 x b23)

(a31 x b12 + a32 x b22)

(a21 x b12 + a22 x b22)

(a11 x b12 + a12 x b22)

(a31 x b11 + a32 x b21)

(a21 x b11 + a22 x b21)

(a11 x b11 + a12 x b21)

* B(mxn) =

b23b22b21

b13b12b11

am2am1

A(mxn) = a22a21

a12a11

 Figure 12.3   Matrix multiplication       
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   12.2.2  Matrix Division 

 Matrix division is the logical process of reversing the effects of a matrix 
multiplication. The goal is as follows: given  A  n3n ,  B  n3p , and  C  n3p , where 
 C = A * B , we wish to define the mathematical equivalent of  C/A  that will 
result in  B . 

 Since  C = A * B , we are actually searching for some matrix  K  n3n  by which 
we can multiply each side of the above equation: 

K * C = K * A * B 

 This multiplication would accomplish the division we desire if  K * A  
were to result in  In , the identity matrix. If this were the case, pre-
multiplying  C  by  K  would result in  In * B , or simply  B  by the definition of 
 In  above. The matrix  K  is referred to as the inverse of  A , or  A-1 . The algebra 
for computing this inverse is messy but well defined. In fact, Gaussian 
Elimination to solve linear simultaneous equations accomplishes the 
same thing. The MATLAB language defines both functions ( inv(A) ) and 
operators (“back divide,” \) that accomplish this. However, two things 
should be noted: 

   ■   This inverse does not exist for all matrices—if any two rows or 
columns of a matrix are linearly related, the matrix is  singular  and 
does not have an inverse  

  ■   Only non-singular, square matrices have an inverse (just as a set of 
linear equations is soluble only if there are as many equations as 
there are unknown variables)    

   12.2.3  Matrix Exponentiation 

 For completeness, we mention here that matrix operations include 
exponentiation. However, this does not suggest that one would encounter 
 An3  n^Bn3  n  in the scope of our applications. Rather, our usage of matrix 
exponentiation will be confined to  Ak  where  k  is any non-zero integer value. 
The result for positive  k  is accomplished by multiplying  A  by itself  k  times 
(using matrix multiplication). The result for negative  k  is accomplished by 
inverting  A-k . (There is, in fact, meaning in matrix exponentials with non-
scalar exponents, but this involves advanced concepts with eigen values 
and eigenvectors and is beyond the scope of this text.)   

   12.3  Implementation 

 In this section, we see how MATLAB implements matrix multiplication and 
division. However, since applications that require matrix exponentiation 
A k  where k is anything but a scalar quantity are beyond the scope of this 
text, we will not look at its implementation in MATLAB. 
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   12.3.1  Matrix Multiplication 

 Matrix multiplication is accomplished by using the “normal” multiplication 
symbol, as illustrated in  Exercise   12.1   .  

 In  Exercise   12.1    we make the following observations: 

   ■   Entry 1 creates a 2 3 3 matrix,  A   
  ■   Entry 2 creates a 3 3 1 matrix,  B , a column vector  
  ■   Entry 3 indicates that this multiplication is legal because the 

columns in  A  match the rows in  B   
  ■   Entry 4 shows that, likewise, it is legal to multiply a 1 3 2 vector by 

a 2 3 3 matrix  
  ■   Entry 5 creates an identity matrix  
  ■   Entry 6 shows that pre-multiplying  A  by this is legal because the 

inner dimensions match  

 Exercise 12.1    Matrix multiply 

1. >> A = [2 5 7; 1 3 42] 
A = 
     2     5     7 
     1     3    42 
2. >> B = [1 2 3]'
B = 
     1 
     2 
     3 
3. >> A * B
ans = 
    33
   133 
4. >> (1:2) * A
ans =
     4    11    91 
5. >> I2 = eye(2)
I2 = 
     1     0 
     0     1 
6. >> I2 * A 
ans = 
     2     5     7 
     1     3    42 
7. >> A*I2 
??? Error using ==> mtimes 
Inner matrix dimensions must agree. 
8. >> A*eye(3) 
ans = 
     2     5     7 
     1     3    42 



 Exercise 12.2    Matrix divide 

>> A = magic(3) 
A = 
    8    1    6 
    3    5    7 
    4    9    2 
>> B = [1 26 24; 9 22 20; 5 12 16] 
B = 
    1   26   24 
    9   22   20 
    5   12   16 
>> AB = A * B 
AB = 
   47  302  308 
   83  272  284 
   95  326  308 
>> BA = B * A 
BA = 
  182  347  236 
  218  299  248 
  140  209  146 
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  ■   Entry 7 shows that post-multiplying  A  by  I2  does not work because 
the inner dimensions do not match  

  ■   Entry 8 uses  I3  to post-multiply legally    

   12.3.2  Matrix Division 

 Matrix division is accomplished in a number of ways, all of which appear to 
work, but some give the wrong answer. Returning to the division problem 
described in  Section   12.2.2   , we know that  A is a  square matrix of side n, 
and B and C have n rows, and  C = A * B . If we are actually given the matrices 
A and  B , we can compute B in one of the following ways: 

   ■     B = inv(A) * C  —using the MATLAB  inv(...)  function to 
compute the inverse of  B   

  ■     B = A \ C —“back dividing”  B  into  C  to produce the same result  
  ■     B = C / A —apparently performing the same operation,  but giving 

different answers       

 The order in which the matrix multiply is 
done affects the value of the result; 
therefore, care must be taken to ensure that 
the appropriate inversion or division is 
used. Study the results of  Exercise   12.2    
carefully.  

 According to the MATLAB language help system, the 
third way really computes (C‘\A’)’, which can only 
work if C is also square. 

 Technical Insight 12.1 

continued on next page
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 In  Exercise   12.2    we make the following observations: 

   Entries 1 and 2 construct two 3 3 3 matrices,  A  and  B   
  Entries 3 and 4 pre-multiply and post-multiply  B  and  A ; recall that 
we expect this to produce different answers  
  Entry 5 shows that since we defined  inv(B)  as that function that 
produces the result  B*inv(B)=I , this should produce a matrix with 
the same values as  A   
  Entry 6 reveals that normal division by  B  should also produce a 
matrix with the same values as  A   
  Entry 7 shows that back dividing  B  into  BA  should also produce a 
matrix equal to  A   
  Entry 8 verifies that dividing  BA  by  B  works but does not return the 
matrix  A      

>> AB * inv(B) 
ans = 
    8    1    6 
    3    5    7 
    4    9    2 
>> AB / B 
ans = 
    8    1    6 
    3    5    7 
    4    9    2 
>> B \ BA 
ans = 
    8    1    6 
    3    5    7 
    4    9    2 
>> BA / B 
ans = 
   -4.3000  29.2000  -15.3000 
   -9.9667  27.5333   -3.9667 
   -5.7333  20.7667   -8.2333 

   12.4  Rotating Coordinates 

 A common use for matrix multiplication is for rotating coordinates in two 
or three dimensions. Previously we have seen the ability to rotate a complete 
picture by changing the viewing angle. We can move and scale items on a 
plot by adding coordinate offsets or multiplying them by scalar quantities. 
However, frequently the need arises to rotate the coordinates of a graphical 
object by some angle. We can use matrix multiplication to rotate individual 
items in a picture in two or three dimensions. 
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   12.4.1  2-D Rotation 

 The mathematics implementing rotation in two dimensions is relatively 
straightforward, as shown in  Figure   12.4   . If the original point location P is 
(x, y) and you wish to find the point P* (x*, y*) that is the result of rotating P 
by the angle u about the origin of coordinates, the mathematics are as 
follows: 

x* = x cosu − y sinu
y* = x sinu + y cosu

 which can be expressed as the matrix equation: 

P* = A * P 

 where A is found by: 

A = [cosu −sinu
     sinu  cosu]

 To rotate the x-y coordinates of a graphic object in the x-y plane about some 
point, P, other than the origin, you would do as follows: 

   1.   Translate the object so that P is at the origin by subtracting P from 
all the object’s coordinates  

  2.   Perform the rotation by multiplying each coordinate by the rotation 
matrix shown above  

  3.   Translate the rotated object back to P by adding P to all the rotated 
coordinates    

  Rotating a Line     Listing  12 . 1  illustrates a simple script to rotate a line about 
the origin.  

y

(x*,y*)

(x,y)

R

x
α

 Figure 12.4   Rotating Cartesian coordinates       
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 In Listing  12 . 1 : 

   Lines 1 and 2: Considering the form of the rotation equations, we 
need to define the points where the x values are in the first row and 
the y values are in the second row.  
  Line 3: Plots the line in its original location from (3, 1) to (10, 3).  
  Lines 4 and 5: Fix the axes at a suitable size.  
  Line 6: Iterates across a selection of angles (in radians).  
  Line 7: Computes the rotation matrix.  
  Line 8: Rotates the original line by the current angle.  
  Line 9: Plots the rotated line.   

  Figure   12.5    shows the plot resulting from this script.   

 Listing  12 . 1      Script to rotate a line 

 1. pts =    [3, 10 
 2.           1, 3]; 
 3. plot(pts(1,:), pts(2,:)) 
 4. axis ([0 10 0 10]), axis equal 
 5. hold on
 6. for angle = 0.05:0.05:1 
 7.     A = [ cos(angle), -sin(angle); sin(angle), cos(angle) ]; 
 8.     pr = A * pts; 
 9.     plot(pr(1,:), pr(2,:)) 
10. end
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 Figure 12.5   Line rotations       
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  Twinkling Stars     As a second example, consider the problem of simulating 
twinkling stars. One way to accomplish this is to draw two triangles for 
each star rotating in opposite directions. The script shown in Listing  12 . 2  
accomplishes this.  

 In Listing  12 . 2 : 

   Line 1: Sets the number of stars and the initial rotation angle.  
  Lines 2–6: Establish the location, size, and rotation speed of each star.  
  Lines 7–19: Continue drawing until interrupted by Ctrl-C.  
  Lines 8–13: Draw each star at the current rotation (see Listing  12 . 3  
for the  star(...)  function).  
  Line 14: Chooses a color map with yellow as the first color.  
  Lines 15 and 16: Show the normal display environment setup.  
  Line 17: Updates the angle of rotation.  
  Line 18: Waits 1/10 sec for the figure to be displayed. Without this, 
the computation would be continuous and the user would never 
see the result.    

 In Listing  12 . 3 : 

   Line 1: Draws one star at location  [pt(1), pt(2)]  with scale  sc , 
rotation speed  v , and angle  th .  
  Lines 2–4: Invoke the helper function  triangle(...)  to draw two 
triangles rotating in opposite directions.  
  Line 6: Function to draw one triangle with the following parameters: 
 up , with values  1  for upright and  -1  for point down;  th , the scaled 

 Listing  12 . 2      Simulating stars 

 1. nst = 20; th = 0; 
 2. for ndx = 1:nst 
 3.     pos(ndx,:) = rand(1,2)*10; 
 4.     scale(ndx) = rand(1,1) * .9 + .1; 
 5.     rate(ndx) = rand(1,1) * 3 + 1; 
 6. end
 7. while true 
 8. for str = 1:nst 
 9.             star(pos(str,:), ... % location
10.                     scale(str), ... % scale
11.                     th, ... % basic angle
12.                     rate(str)) % angle multiplier
13. end
14.     colormap autumn
15.     axis equal; axis([−.5 10.5 −.5 10.5]) 
16.     axis off; hold off
17.     th = mod(th + .1, 20*pi); 
18.     pause(0.1) 
19. end
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rotation angle; and  pt  and  sc , which are passed directly through 
from the  star(...)  function.  
  Lines 7 and 8: Are coordinates of an equilateral triangle.  
  Line 9: Computes the rotation matrix and applies the scaling 
factor.  
  Line 10: Rotates and scales the points of the triangle.  
  Lines 11 and 12: Call the function  fill(...)  to fill the triangle, 
offsetting the  x  and  y  coordinates by the original location of the 
triangle, and scaling  y  by the  up  multiplier to invert the triangle if 
necessary.   

 The results of this script are shown in  Figure   12.6   .    

   12.4.2  3-D Rotation 

 The mathematics implementing rotation in three dimensions is a natural 
extension of the 2-D rotation case. We present here a simple way to make 
this extension. The 2-D rotation in  Section   12.4.1    that rotates by the angle 
u in the x-y plane is actually rotating about the z-axis. If P* and P are now 
3-D coordinates, we can rotate P by an angle u about the z-axis with the 
equation: 

P* = R z * P 

 where R z  is computed as 

Rz =    [ cosu,    -sinu,    0 
          sinu,     cosu,    0 
             0,       0,     1] 

 Listing  12 . 3      Drawing one star 

 1. function star(pt, sc, v, th) 
% draw a star at pt(1), pt(2),
% scaled with sc, at angle v*th

 2.     triangle(1, v*th, pt, sc) 
 3.     hold on 
 4.     triangle(-1, v*th, pt, sc) 
 5. end 
 6. function triangle( up, th, pt, sc ) 
 7.     pts = [−.5   .5     0   −.5;  % x values
 8.            −.289 −.289 .577 −.289]; % y values

% rotation matrix
 9.     A = sc * [cos(th), -sin(th); sin(th), cos(th)]; 
10.     thePts = A * pts; 
11.     fill( thePts(1,:) + pt(1), ... 
12.           up*thePts(2,:) + pt(2), 1); 
13. end 
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 Similarly, we can develop matrices R x  and R y  that rotate about the x and y 
axes by angles f and c, respectively. 

      Rx =    [    1,      0,         0 
                    0,     cosf,    -sinf
                    0,     sinf,    cosf]
        Ry =   [  cosc,     0,      sinc
                    0,      1,        0 
                 -sinc,     0,       cosc]
        P* = Rx * Ry * Rz * P 

 An example of a script to rotate the solid cube drawn in  Chapter   11    is 
shown in Listing  12 . 4 . The major problem with rotating solid objects is that 
the coordinates of the object are defined as arrays of points. However, the 
rotation matrices need each set of coordinates in single rows. To accomplish 
this, we will use the  reshape(...)  function to transform the coordinates to 
and from the row vectors necessary for the coordinate rotation.  

 In Listing  12 . 4 : 

   Lines 1–12: Build the coordinates of the cube centered at the origin.  
  Lines 13 and 14: Determine the length of the linearized row vector 
for the  reshape(...)  function.  
  Lines 15 and 16: Set up the three rotation angle parameters—the 
initial values and the increments.  
  Lines 17 and 18: Repeat the drawing loop until the variable  go  is 
reset.  

 Figure 12.6   Stars       
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  Lines 19–21: Draw one cube not rotated four units down the x-axis.  
  Lines 22–30: Set up the rotation matrices.  
  Lines 31–33: Reshape the x, y, and z arrays into linear form.  
  Line 34: Performs the rotation.  

 Listing  12 . 4      Rotating a solid cube 

 1. xx = [ 0  0  0  0  0; 
 2.       -1 -1  1  1 -1; 
 3.       -1 -1  1  1 -1; 
 4.        0  0  0  0  0] 
 5. yy = [ 0  0  0  0  0; 
 6.       -1  1  1 -1 -1; 
 7.       -1  1  1 -1 -1; 
 8.        0  0  0  0  0] 
 9. zz = [ 1  1  1  1  1; 
10.        1  1  1  1  1; 
11.       -1 -1 -1 -1 -1; 
12.       -1 -1 -1 -1 -1] 
13. [r c] = size(xx); 
14. ln = r*c; % length of reshaped vector
15. th = 0; ph = 0; ps = 0; 
16. dth = 0.05; dph = 0.03; dps = 0.01; 
17. go = true 
18. while go 
19.     surf(xx+4, yy, zz) 
20.     shading interp; colormap autumn
21.     hold on; alpha(0.5) 
22.     Rz = [cos(th) -sin(th)  0 
23.           sin(th)  cos(th)  0 
24.            0        0       1]; 
25.     Ry = [cos(ph)   0   -sin(ph) 
26.            0        1       0 
27.           sin(ph)   0 cos(ph)]; 
28.     Rx = [ 1        0       0 
29.            0      cos(ps) -sin(ps) 
30.            0      sin(ps) cos(ps)]; 
31.     P(1,:) = reshape(xx, 1, ln); 
32.     P(2,:) = reshape(yy, 1, ln); 
33.     P(3,:) = reshape(zz, 1, ln); 
34.     Q = Rx*Ry*Rz*P; 
35.     qx = reshape(Q(1,:), r, c); 
36.     qy = reshape(Q(2,:), r, c); 
37.     qz = reshape(Q(3,:), r, c); 
38.     surf(qx, qy, qz) 
39.     shading interp
40.     axis equal; axis off; hold off
41.     axis([-2 6 -2 2 -2 2]) 
42.     lightangle(40, 65); alpha(0.5) 
43.     th = th+dth; ph = ph+dph; ps = ps+dps; 
44.     go = ps < pi/4 
45.     pause(0.03) 
46. end
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  Lines 35–37: Recover the original array shapes.  
  Lines 38–42: Draw the rotated cube.  
  Line 43: Updates the rotation angles.  
  Line 44: Shows the terminating condition.  
  Line 45: Pauses to give the figure time to draw.   

 The results after running this script are shown in  Figure   12.7   . Notice that 
the mechanization of the top face has caused a “wrapped parcel” effect on 
the light reflections off that surface.    

   12.5  Solving Simultaneous Linear Equations 

 A common use for matrix division is solving simultaneous linear equations. 
To be solvable, simultaneous linear equations must be expressed as N 
independent equations involving N unknown variables, xi. They are 
usually expressed in the following form: 

  A 11  x 1  1 A 12  x 2  1 ... 1 A 1N  x N  5 c 1  
 A 21  x 1  1 A 22  x 2  1 ... 1 A 2N  x N  5 c 2  
 . . . . 
 . . . . 
 A N1  x 1  1 A N2  x 2  1 ... 1 A NN  x N  5 c N   

 In matrix form, they can be expressed as follows: 

AN3N 5 XN31 5 CN31

 from which, since all of the values in A and C are constants, we can 
immediately solve for the column vector X by back division: 

X 5 A\C 

 or by using the matrix inverse function: 

X 5 inv(A) * C 

 Figure 12.7   Solid cubes       
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   12.5.1  Intersecting Lines 

 A typical example of a simultaneous equation problem might take the following 
form. Consider two straight lines on a plot with the following general form: 

A11 x 1 A 12y 5 c 1
A21 x 1 A 22y 5 c 2

 These lines intersect at some point P (x, y) that is the solution to both of 
these equations. The equations can be rewritten in matrix form as follows: 

A * V 5 c 

 where  c  is the column vector  [c  1   c  2  ]'  and  V  is the required result, the column 
vector  [x y] '. The solution is obtained by matrix division as follows: 

V 5 A \ c 

 Recall that back divide, like the  inv(...)  function, will fail to produce a 
result if the matrix is singular, that is, has two rows or columns that have a 
linear relationship. In the specific example of two intersecting lines, this 
singularity occurs when the two lines are parallel, in which case there is no 

 Listing  12 . 5      Plotting line intersections 

% equations are y = m1 x + c1
% y = m2 x + c2
% in matrix form:
% [ -m1 1; * [xp; = [c1
% -m2 1 ] yp] c2]

 1. ax = [-0.5 6]; ay = [-4.5 18]; 
% plot the two lines

 2. m1 = 3; c1 = -2; 
 3. y1 = m1*ax + c1; 
 4. m2 = -2; c2 = 9; 
 5. y2 = m2*ax + c2; 
 6. plot(ax, y1) 
 7. hold on
 8. plot(ax, y2, 'b—')

% solve for the intersection point
 9. A = [-m1 1; -m2 1]; 
10. c = [c1; c2]; 
11. P = A\c; 

% draw intersection identification lines
12. ix = P(1); iy = P(2); 
13. plot([ix ix], [0 iy*1.2], 'r:')
14. plot([0 ix*1.2],[iy iy], 'r:')

% draw the axes
15. plot(ax, [0 0], 'k');
16. axis([ax ay]) 
17. plot([0 0], ay, 'k');
18. legend({'Line 1','Line 2','Intersect'}, ... 
19. 'Location','NorthWest' ) 
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point of intersection. Listing  12 . 5  shows the solution to a pair of simultaneous 
equations.  

 In Listing  12 . 5 : 

   Line 1: Sets the x and y limits of the plot.  
  Lines 2–8: Plot the original lines.  
  Line 9: Sets the simultaneous equation matrix.  
  Line 10: Shows the right-hand side of the equation.  
  Line 11: Solves the linear equations—P(1) is the x value; P(2) is the y 
value.  
  Lines 12–14: Plot the lines identifying the intersection point.  
  Lines 15–17: Plot the axes.  
  Lines 18–19: Finish the plot.   

  Figure   12.8    shows the result of this script.  
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 Figure 12.8   Lines intersecting       

    12.6  Engineering Examples 

 The following examples illustrate applications of the matrix capabilities 
discussed in this chapter. 

  12.6.1 Ceramic Composition 
 Industrial ceramics plants require mixtures with precise formulations in 
order to produce products of consistent quality. For example, a factory 
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might require 100 kg of a mix consisting of 67% silica, 5% alumina, 2% 
calcium oxide, and 26% magnesium oxide. However, the raw material 
provided is not pure quantities of these materials. Rather, they are 
delivered as batches of material that consist of the required components 
in different proportions. Each batch of raw materials is analyzed to 
determine their composition, and we will need to do the analysis to 
determine the proportions of the raw materials to mix in order to 
accomplish the appropriate formulation. The raw materials we will use 
here are feldspar, diatomite, magnesite, and talc.  Table   12.1    illustrates a 
typical analysis of the composition of these compounds.  

 For example, if we mixed Wf kg of feldspar, Wd kg of diatomite, Wm kg of 
magnesite, and Wt kg of talc, the amount of silica would be 0.695 Wf 1 
0.897 Wd 1 0.067 Wm 1 0.692 Wt. Repeating this equation for the other 
components produces a matrix equation that reduces to: 

C = A * W 

 where C is the required composition of the resulting mix, A is a 4 3 4 
matrix showing the results of analyzing the four raw materials, and W is 
the proportions in which should we mix the raw material to produce the 
desired result. We find the appropriate amounts of the raw material by 
solving these equations: 

W = A\B 

 A script that works this problem is shown in Listing  12 . 6 .  

 Table 12.1   Compound compositions 

   Silica  Alumina  CaO  MgO 

 Feldspar  0.6950  0.1750  0.0080  0.1220 

 Diatomite  0.8970  0.0372  0.0035  0.0623 

 Magnesite  0.0670  0.0230  0.0600  0.8500 

 Talc  0.6920  0.0160  0.0250  0.2670 

 Listing  12 . 6      Analyzing ceramic composition 

1. A = [0.6950  0.8970  0.0670  0.6920 
2.      0.1750  0.0372  0.0230  0.0160 
3.      0.0080  0.0035  0.0600  0.0250 
4.      0.1220  0.0623  0.8500  0.2670] 
5. B = [67 5 2 26]' 
6. W = (inv(A) * B)' 
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 In Listing  12 . 6 : 

   Lines 1–4: Matrix A is the transpose of the original data table.  
  Line 5: Shows the required composition in kg.  
  Line 6: Shows the computed weights of the raw materials in kg, which 
produces the following result:   

W = 
    16.0083 35.3043 15.1766 33.5108 

  12.6.2 Analyzing an Electrical Circuit 
  Figure   12.9    illustrates a typical electrical circuit with two voltage sources 
connected to five resistors with three closed loops. The voltages and 
resistances are given. We are asked to determine the voltage drop across 
R1. Solution techniques apply Ohm’s Law to the voltage drops around 
each closed circuit. When this technique is applied, the equations are 
as follows: 

V1 = i1 * R1 + (i1 – i2) * R4
0 = i2 * R2 + (i2 – i3) * R5 + (i2 – i1) * R4
–V2 = i3 * R3 + (i3 – i2) * R5

 When these three equations are manipulated to isolate the three currents, we 
have the following matrix equation: 

V = A * I 

 which can be solved as usual by: 

I = A \ V 

 The script to accomplish this is shown in Listing  12 . 7 .  
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i1 i2 i3

R5

R3

 Figure 12.9   Typical electrical circuit       
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 In Listing  12 . 7 : 

   Lines 1–3: Set up the parameters of the problem.  
  Lines 4–7: Set up the coefficient matrices.  
  Lines 8–10: Compute and display the answers.   

 Running this script produces the following printout: 
curr =    0.0283 

   0.0104 
   0.0003 
drop across R1 is 2.83 volts 

 Listing  12 . 7      Analyzing an electrical circuit 

 1. R1 = 100; R2 = 200; R3 = 300; 
 2. R4 = 400; R5 = 500; 
 3. V1 = 10; V2 = 5; 
 4. A = [R1+R4   -R4     0 
 5.     -R4    R2+R4+R5 -R5 
 6.     0       -R5     R3+R5]; 
 7. B = [V1; 0; -V2]; 
 8. curr = inv(A) * B 
 9. fprintf( 'drop across R1 is %6.2f volts\n', ... 
10.     curr(1) * R1 ); 

     Chapter Summary 

  This chapter presented two specialized operations performed with matrices:  

   ■   Matrix multiplication can be used for 2-D and 3-D coordinate 
rotations by building the appropriate rotation matrices  

  ■   Matrix division can be used for solving simultaneous equations by 
setting up the equations in the general form B 5 A * x, where the 
known matrix A is n 3 n and the known column vector B is n 3 1; 
the unknown vector x is then found by x 5 A\B or x = inv(A) * B    

  Special Characters, Reserved Words, and Functions—2 -D 

 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

  *   Matrix multiplication  12.2.1 

  /   Matrix division  12.2.2 

  \   Matrix back division  12.2.2 

  ̂    Matrix exponentiation  12.2.3 

  eye(n)   Computes the identity matrix  12.2.1 

  inv(a)   Computes the inverse of a matrix  12.2.3 

  reshape(a,r,c)   Changes the row/column configuration of the array  a   12.4.2 
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  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    All MATLAB classes exhibit some form of behavioral abstraction.   

   2.    Matrix multiplication requires that the inner dimensions match.   

   3.    The results of  A * B  and  B * A  are identical.   

   4.    Both  A * A -1  and  A-1 * A  return the identity matrix.   

   5.    Multiplying  inv(A) * B  is logically equivalent to  B / A .   

   6.    All sets of simultaneous linear equations can be solved by matrix 
inversion.   

  Fill in the Blanks  

   1.    If, A is an m×n matrix and B is an n3p matrix, the result of A3B is a(n) 
___________ matrix.   

   2.    Only ___________________ matrices have an inverse.   

   3.    The built-in function _____________ generates the identity matrix.   

   4.    To be soluble, simultaneous linear equations must be expressed as 
______________ equations involving _______________variables, xi, 
and _____________values.    

  Programming Projects 

   1.    This is a set of simple matrix manipulations. 
   a.   Create a five by six matrix,  A , that contains random numbers 

between 0 and 10.  
  b.   Create a six by five matrix,  B , that contains random numbers 

between 0 and 10.  
  c.   Find the inverse of matrix  A*B  and store it in the variable,  C .  
  d.   Without iteration, create a new matrix  D  that is the same as  A  

except that all values less than 5 are replaced by zero.  
  e.   Using iteration, create a new matrix  F  that is the same as  A  except 

that all values less than 5 are replaced by zero.  
  f.   Create a new matrix  G  that is the matrix  A  with the columns 

reversed.
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For example:

if A is [1 2 3; 3 2 5; 1 7 4], G should be
[3 2 1; 5 2 3; 4 7 1] 

  g.   Find the minimum value among all the elements in  A  and store 
your answer in the variable  H .  

 2. Write a program that reads in a matrix A of M rows and N columns. 
The matrix has all positive integers. Write a script to find the min 
element of each row of the matrix.
For example: 

If A = [1 2 3 4;5 6 7 8], then the output is a vector [1 5]

          3.    As an enthusiastic and motivated student, you decided to go 
out and buy plenty of pens for all your classes this semester. 

This spending spree unfortunately 
occurred before you realized your 
engineering classes seldom required the 
use of “ink.” So now, you’re left with four 
different types of pens and no receipt—
you only remember the total amount you 
spent, and not the price of each type of 
pen. You decide to get together with three 
of your friends who coincidentally did 
the same thing as you, buying the same 

four types of pens and knowing only the total amount. Write a 
script to find the prices of each type of pen.    

   4.    Write a function called  rotateLine  that takes in two vectors,  x  and 
 y , of the same length that represent a set or ordered pairs that 
could be used to plot a line. Your function should also take in a 
third parameter,  theta , representing an angle in degrees. Your 
function should return  xprime  and  yprime  where  xprime  and  yprime  
represent the line that is  x  and  y  rotated about the origin by the 
angle theta. 

  For example: 

x = [ 7 7 11 11 7]; 
y = [-5 -9 -9 -5 -5]; 
[xprime yprime] = rotateLine(x, y, 90) returns
xprime = [5     9      9    5     5] 
yprime = [7     7     11   11     7] 

Hint:

In order to find the price of each individual pen, you 
could create a matrix called “pens,” where each 
column represents a different type of pen and each 
row represents a different person and a column 
vector  totals  that contains the amount of money 
each of you spent on the pens.
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   5.    Write a function named  solveSystem  that has three inputs: two 
vectors consisting of the coefficients  [a b c]  of two line equations of 
the form  ax + by = c   and a vector of  x  values 
   a.   The function should output a vector giving the  x  and  y  values of 

the point of intersection between the two lines. If the lines are 
parallel, return the empty vector.  

  b.   Your function should also plot the two lines using the inputted 
vector of  x  values as  x . In addition, on the same graph, plot the 
intersection point of the two lines. Make the first line blue, the 
second line red, and the intersection point a magenta diamond. 
Make sure that you label your plot appropriately.        
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  Chapter Objectives 

 This chapter covers: 

    ■   The basic representation of images  

  ■   How to read, display, and write JPEG image files  

  ■   Some basic operations on images  

  ■   Some advanced image processing techniques     

  Introduction 

 The graphical techniques we have seen so far have been 2-D and 
3-D plots, whose basic concept is to write in places on the screen 
where data are required and to leave the rest of the screen blank. 
These presentations are easily generated when we have a 
mathematical model of the data and wish to represent it graphically. 
However, many sensors observing the world do not have that 
underlying model of the data. Rather, they passively generate 2-D representations 
that we see as images, leaving the interpretation of those images to a human 
observer. This kind of presentation is exemplified by a digital photograph but 
includes images from many other sources like radar or X-ray machines. 

 This chapter discusses some of the elementary processes that can be applied to 
images in order to begin to extract meaning from them.   

 Images 
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 Figure 13.1   The nature of images       

      13.1  Nature of an Image 

 Before we confine ourselves to practical, computational reality, we need to 
understand the general nature of an image. The easiest answer would be 
that an image is a 2-D sheet on which the color at any point can have 
essentially infinite variability. However, since we live in a digital world, we 
will immediately confine ourselves to the conventional representation of 
images required for most digital display processors, as shown in  Figure   13.1   . 
We can represent any image as a 2-D, M 3 N array of points usually referred 
to as picture elements, or pixels, where M and N are the number of rows 
and columns, respectively. Each pixel is “painted” by blending variable 
amounts of the three primary colors: red, green, and blue. (Notice that this 
is not the same blending process used in painting with oils or water colors, 
where the second primary color is yellow and the combination process is 
reversed—increasing amounts of the primary colors tends toward black, 
not white.) 

 The resolution of a picture is measured by the number of pixels per unit 
of picture width and height. This governs the fuzziness of its appearance in 
print, and controls the maximum size of good-quality photo printing. The 
color resolution is measured by the number of bits in the words containing 
the red, green, and blue (RGB) components. Since one value generally exists 
for each of the M 3 N pixels in the array, increasing the number of bits for 
each pixel color will have a significant effect on the stored size of the image. 
Typically, 8 bits (values 0–255) are assigned to each color. 

 The MATLAB language has a data type,  uint8 , which uses 8 bits to store 
an unsigned integer in the range 0–255. It is unsigned because we are not 
interested in negative color values, and to specify the sign value would cost 
a data bit and reduce the resolution of the data to 0–127. By combining the 
three color values, there are actually 2 24  different combinations of color 
available to a true-color image—many more possible combinations than the 
human eye can distinguish.   
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 Figure 13.2   A true color image       

   13.2  Image Types 

 Our sources for images to process are data files captured by imaging devices 
such as cameras, scanners, and graphic arts systems, and these image files 
are provided in a wide variety of formats. According to the MATLAB 
documentation, it recognizes files in TIFF, PNG, HDF, BMP, JPEG (JPG), 
GIF, PCX, XWD, CUR, and ICO formats. The various file formats are usually 
identified by their file extensions. While this seems a bewildering collection 
of formats, MATLAB provides one image reading function that converts 
these file formats to one of three internal representations: true color, gray 
scale, or color mapped images. In the MATLAB implementation, we will 
confine our interests to two formats: .png files when absolute color fidelity 
is required and .jpg files that offer better compression ratios to give a 
smaller file size for a given image. 

   13.2.1  True Color Images 

 True color images are stored according to the scheme shown in  Figure   13.2    
as an M 3 N 3 3 array where every pixel is directly stored as  uint8  values 
in three layers of the 3-D array. The first layer contains the red value, the 
second layer the green value, and the third layer the blue value. The 
advantage of this approach, as the name suggests, is that every pixel can be 
represented as its true color value without compromise. The only 
disadvantage is the size of the image in memory because there are three 
color values for every pixel. 

     13.2.2  Gray Scale Images 

 Gray scale images are also directly stored, but save the black-to-white 
intensity value for each pixel as a single  uint8  value rather than three 
values.  
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   13.2.3  Color Mapped Images 

 Color mapped, or indexed, images keep a separate color map either 256 
items long (for maximum economy of memory) or up to 32,768 items long. 
Each item in the color map contains the red, blue, and green values of a 
color, respectively. As illustrated in  Figure   13.3   , the image itself is stored as 
an M 3 N array of indices into the color map. So, for example, a certain 
pixel index might contain the value 143. The color to be shown at that pixel 
location would be the 143rd color set (RGB) on the color map. 

 If the color map is restricted to 256 colors, each pixel can be drawn at the 
same color resolution as a true color image, as three 8-bit values, but the 
choice of colors is very restricted, and normal pictures of scenery—sky, for 
instance—take on a “layered color” appearance. Color mapped images can 
be used effectively, however, to store “cartoon pictures” economically where 
limited color choices are not a problem. Using a larger color map provides a 
larger, but still sometimes restrictive, range of color choices; but since the 
indices in the picture array must be 16-bit values and the color map is larger, 
the memory size advantages of this method of storage are diminished. 
Computationally, it is possible to convert a color mapped image to true 
color, but true color or black-and-white images cannot normally be converted 
to color mapped format without loss of fidelity in the color representation.   

   13.2.4  Preferred Image Format 

 In order to avoid confusion in the format of images, we will confine our 
discussions to one specific image file format that is prevalent at the time of 
writing and that provides a nice compromise between economy of storage 
as an image file and accessibility within MATLAB. We will discuss files 
compressed according to a standard algorithm originally proposed by the 
Joint Photographic Experts Group (JPEG). When MATLAB reads JPEG 
images, they are decoded as true color images; when MATLAB writes them, 
they are again encoded in compressed form. The file size for a typical JPEG 
file is 30 times less than the size you would need to store the M 3 N 3 3 
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 Figure 13.3   A color mapped image       
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bytes of the image. As we will see later, however, this compression does not 
come without cost.   

   13.3  Reading, Displaying, and Writing Images 

 MATLAB uses one image reading function,  imread(...) , for all image file 
types. To read a file named  myPicture.jpg , we use the following command: 

>> pic = imread('myPicture.jpg', 'jpg') 

 where the result,  pic , is an M 3 N 3 3  uint8  array of pixel color values, and 
the second parameter,  'jpg' , provides the format of the file explicitly. This 
parameter is optional; MATLAB usually infers the file format correctly 
from the file contents. 

 Once the picture has been read, you can display it in a figure window 
with fixed size and axes visible by using the following command: 

>> image(pic) 

 This actually stretches or shrinks the image to fit the size of the normal plot 
figure, a behavior you normally desire; however, occasionally, you want 
the plot figure to match the actual image size (or at least, preserving its 
aspect ratio). Releases of MATLAB after R20008a provide the  imshow(...)  
function, which presents the image without stretching, shrinking, or axes 
(unless the figure window is too small). 

 Similarly, there is one function for writing files:  imwrite(...) , which can 
be used to write most common file formats. If we have made some changes 
to  pic , the internal representation of the image, we could write a new 
version to the disk by using the following: 

>> imwrite( pic, 'newPicture.jpg', 'jpg') 

 where the third parameter,  'jpg' , is required to specify the output format 
of the file.  

   13.4  Operating on Images 

 Since images are stored as arrays, it is not surprising that we can employ 
the normal operations of creation, manipulation, slicing, and concatenation. 
We will note one particular matrix operation that will be of great value 
before examining some applications of array manipulation related to image 
processing. 

   13.4.1  Stretching or Shrinking Images 

 In earlier chapters we have seen the basic ability to use index vectors to 
extract rows and columns from an array. Now we extend these ideas to 
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understand how to uniformly shrink or stretch an array to match an exact 
size. Consider, for example,  A , a  rows 3 cols  array. Assume for a moment 
that the vertical size is good, but we want to stretch or shrink the image 
horizontally to  newRows —a number that might be larger or smaller than 
 rows . We use  linspace(...)  to create an index vector as follows: 

>> rowVector = linspace(1, rows, newRows) 

 where the third parameter is the desired size of the new array. In general, 
this index vector will contain fractional values, but MATLAB will truncate 
the index values. We can round the results as follows: 

>> rowVector = round(rowVector) 

 Then we can use this vector to shrink or stretch the picture  pic  as follows: 

>> newPic = pic(rowVector, cols, :) 

 Clearly, this can be applied to both dimensions simultaneously, as shown 
in  Exercise   13.1   .  

 In this exercise, first we read an image and determine its size. Note that 
with 3-D images, you must give to the size(...) function three variables. 
Then we illustrate the “normal” slicing operations by reducing the image 
to the even rows, and every third column. Next, we generalize this 
image slicing by stretching the number of rows by a factor 1.43 and 
shrinking the number of columns by a factor 0.75. This is accomplished 
by building a row index vector,  rowVec , and a column index vector, 
 colVec , according to the algorithm above. The stretching is achieved by 
repeating selected values in the index vector, and shrinking is achieved 
by omitting some.  

   13.4.2  Color Masking 

 As an example of image manipulation, consider the image shown in  Fig-
ure   13.4   . This is a 2400 3 1600 JPEG image that can be taken with any good 
digital camera. However, the appearance of the Vienna garden is somewhat 

 Exercise 13.1    Working with image stretching 

>> pic = imread(<your favorite image>); 
>> [rows cols clrs] = size(pic) 
>> imshow( pic(2:2:end, 3:3:end, :); 
>> RFactor = 1.43; CFactor = 0.75; % shrink / stretch factors 
>> rowVec = round(linspace(1, rows, Rfactor*rows)); 
>> colVec = round(linspace(1, cols, Cfactor*cols)); 
>> imshow(pic(rowVec, colVec,:)); % shrunk / stretched image 
>> imshow(pic(:, :, [2 3 1])); % re-ordering the color layers 
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marred by the fact that the sky is gray, not blue. Fortunately, we have a 
picture of a cottage, as shown in  Figure   13.5   , with a nice, clear blue sky. So 
our goal is to replace the gray sky in the Vienna garden with the blue sky 
from the cottage picture. 

  Initial Exploration     Before we can do this, however, we need to explore the 
Vienna picture to determine how to distinguish the gray sky from the rest 
of the picture. In particular, there are patches of sky visible between the tree 
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 Figure 13.4   A garden in Vienna       
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 Figure 13.5   A cottage in Oxfordshire       
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branches that must be changed as well as the open sky. Listing  13 . 1  
illustrates a good way to accomplish this. Here we display the image in one 
figure; choose a representative row in the image that includes some sky 
showing through the tree (we chose row 350); and then plot the red, blue, 
and green values of the pixels across that row.  Figure   13.6    shows the 
resulting plot.     

 In Listing  13 . 1 : 

   Line 1: Reads the image.  
  Line 2: Displays the image.  
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 Figure 13.6   Plot of the color values on one row of the Vienna image       

 Listing  13 . 1      Exploring the sky situation 

 1. v = imread( 'Vienna.jpg');
 2. image(v) 
 3. figure 
 4. row = 400; 
 5. red = v(row, :, 1); 
 6. gr = v(row, :, 2); 
 7. bl = v(row, :, 3); 
 8. plot(red, 'r');
 9. hold on
10. plot(gr,  'g');
11. plot(bl, 'b');
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  Line 3: Creates a new figure window for the next plots.  
  Line 4: Determines a suitable row (350 is a good choice).  
  Lines 5–7: Extract the three color layers for the chosen row.  
  Lines 8–11: Plot the three colors. Since we omitted one of the axis 
values, we make the assumption that the x values are the integers 
 1:length(y) , which give us the horizontal pixel number across the 
row.    

  Analysis     As we examine  Figure   13.6   , we see that the red, green, and blue 
values for the open sky are all around 250 because the sky is almost white. 
However, the color “spikes” that correspond to the color values of the sky 
elements that show through the tree are actually lower. We could decide, 
for example, to define the sky as all those pixels where the red, blue, and 
green values are all above a chosen threshold, and we could comfortably 
set that threshold at 160. 

 There is one more important consideration. It would be unfortunate to 
turn the hair of the lady (the author’s wife) blue, and there are fountains 
and walkways that might also logically appear to be “sky.” We can prevent 
this embarrassment by limiting the color replacement to the upper portion 
of the picture above row 700.  

  Final Computation     So we are ready to create the code that will replace 
the gray sky with blue. The code in Listing  13 . 2  accomplishes this, and 
 Figure   13.7    shows the resulting image.   
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 Figure 13.7   The Vienna garden with a blue sky       
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 In Listing  13 . 2 : 

   Lines 1 and 2: Read the two images.  
  Line 3: Draws the cottage picture.  
  Line 4: Makes a new figure window.  
  Line 5: Sets the arbitrary threshold.  
  Lines 6–8: Define a 2-D layer containing logic that separates the 
Vienna sky from the rest of the picture.  
  Lines 9–11: Build a logical mask to replace the appropriate pixels 
from the cottage picture into the Vienna picture by populating each 
color layer of the mask with that layer.  
  Line 12: Refuses to replace any pixels below row 700.  
  Line 13: Copies the original image.  
  Line 14: Replaces the sky.  
  Line 15: Shows the image.  
  Line 16: Saves the JPEG result.    

  Post-operative Analysis     We realize that this is not quite the end of the 
story, because a wire has suddenly become evident in the picture. 
Furthermore, if we take a close look at the wire ( Figure   13.8   ), we see a 
number of disturbing things: 

   ■   The sky is by no means uniform in color—justifying the assertion 
that color mapped images do not have enough different colors to 
draw a true sky effectively  

  ■   The color of the wire is not far removed from the color of some 
parts of the blue sky—so replacing slightly darker blue would be 
problematic  

 Listing  13 . 2      Replacing the gray sky 

 1. v = imread( 'Vienna.jpg');
 2. w = imread( 'Witney.jpg');
 3. image(w)
 4. figure 
 5. thres = 160; 
 6. layer = (v(:,:,1) > thres) ... 
 7.       & (v(:,:,2) > thres) ... 
 8.       & (v(:,:,3) > thres); 
 9. mask(:,:,1) = layer; 
10. mask(:,:,2) = layer; 
11. mask(:,:,3) = layer; 
12. mask(700:end,:,:) = false; 
13. nv = v; 
14. nv(mask) = w(mask); 
15. image(nv); 
16. imwrite(nv, 'newVienna.jpg', 'jpg')
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  ■   There is a light colored “halo” around the wire that is actually a 
result of the original JPEG compression of the image so that even if 
we did replace the darker colors, the “ghost” of the wire would still 
be visible   

 So pixel replacement will probably 
not solve our wire problem. We will 
take a different approach to solve this 
problem in  Chapter   15   .       

   13.4.3  Creating a Kaleidoscope 

 Originally, a kaleidoscope was a 
cardboard tube in which a number of 
mirrors were arranged in such a 
manner that one image—usually, a 

collection of colored beads—was reflected to produce a symmetrical 
collection of images. We will replicate that general idea using MATLAB. 
 Figure   13.9    illustrates the geometric manipulation necessary to create one 
particular kaleidoscope picture. We start with an arbitrary image and use 
shrinking or stretching to generate a square picture—the ‘F’ in the figure. 
We then mirror it horizontally and concatenate it horizontally with the 
original image. We then mirror these two images vertically and concatenate 
them vertically. Finally, we take that compound image and repeat the 
process to produce the 4 3 4 image on the right side.  

  Figure   13.10    shows the original image and the results. The overall logic 
flow of the solution matches that shown in  Figure   13.9   .  
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 Figure 13.8   Magnified image of the wire       

 Be careful requesting the size of 3-D (and more) arrays. If 
you leave off variables—as here, you might be tempted not 
to ask for the number of colors because you know it’s 
three—the  size(...)  function multiplies together the 
remaining dimension sizes. So if  img  is sized 1200 * 1600, 
 [r,c] = size(img)  would return  r = 1200  and  c = 4800 ! 
If you provide to only one variable, it returns a vector of the 
sizes of each dimension of the array. So  v = size(img)  
returns  [1200 1600 3] . 

 Common Pitfalls 13.1 
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 Listing  13 . 3  shows the code that makes the kaleidoscope.  

 In Listing  13 . 3 : 

   Line 2: Reads the original image.  
  Lines 2–3: Draw it on the left subplot.  

 Figure 13.9   Logic for the kaleidoscope       

 Figure 13.10   The kaleidoscope       

 Listing  13 . 3      Making a kaleidoscope 

 1. function kaleidoscope(name)
    % Making a kaleidoscope
    % usage: kaleidoscope(file_name)
        %read the image 
 2.     picture = imread(name); 
 3.     subplot(1,2,1); imshow(picture(ceil(1:1.5:end),:,:))
        % resize it to 128*128 
 4.     [rows cols ~] = size(picture); 
 5.     n = 128; 
 6.     rndx = ceil(linspace(1,rows, n)); 
 7.     cndx = ceil(linspace(1,cols, n)); 
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  Lines 4–8: Make it square.  
  Line 9: Calls the helper function to build the first set of 4, and then 
immediately call it again to build the 4 3 4 compound image.  
  Line 10: Draws it on the right panel.  
  Lines 12–15: Helper function to build four mirrored images from 
the original.   

    13.4.4  Images on a Surface 

 In  Chapter   11    we saw how to create a surface representing solid objects 
and, in particular, how to create a spherical image that rotates with lighting. 

 Spectacular effects can be created by “pasting” images onto these 
surfaces, as will be illustrated in this last example. Here, we are given an 
image of the surface of the earth using Mercator projection, shown in  Fig-
ure   13.11.     1   It is important to use the Mercator projection, named for the 
sixteenth-century Flemish cartographer Gerardus Mercator, because this 
projection keeps the lines of latitude and longitude on a rectangular 
grid. This allows a correct representation of the map as it is pasted onto 
the spherical surface. However, it also presents a challenge because 
in this projection, the north and south poles would be stretched to 
infinite length across the top and bottom of the map. This map, therefore, 
leaves off the region near the poles, and we have to replace those 
regions.  

 The objective of this exercise is to paste this image onto a rotating globe. 
The trick to accomplishing this is to use a feature of the  surf(...)  function, 
whereby the image is supplied in a specific form as the fourth parameter, as 
follows: 

surf(xx, yy, zz, img) 

 8.     pic = picture(rndx, cndx, :);
        % build the kaleidoscope 
 9.     img = buildIt(buildIt(pic)); 
10.     subplot(1,2,2); imshow(img) 
11. end
12. function img = buildIt(img)
    % helper function to do the manipulations
    %          top left          top right
    %          bottom left       bottom right
13.     img = [img               img(:,end:-1:1,:)
14.            img(end:-1:1,:,:) img(end:-1:1,end:-1:1,:)];
15. end 

 1    The file  earth_s.jpg  is provided as part of the MATLAB system. 
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 It will replace the normal coloring scheme of the surface with the image 
under the following conditions: 

   ■   The rows and columns of the image match the rows and columns of 
the  xx ,  yy ,  zz  plaid  

  ■   The image supplies the red, green, and blue layers in the same form 
as true color images  

  ■   The color values, however, must be of type  double  in the range  0..1    

 In the following code, rather than stretching the image to the size of 
the plaid, we choose to size the plaid to the image, thereby preserving 
all the image resolution. Clearly, in different circumstances where 
the size of the plaid is specified, the image can be stretched to 
suit those dimensions. The code to accomplish all this is shown in 
Listing  13 . 4 .   

 In Listing  13 . 4 : 

   Line 1: Reads the JPEG image.  
  Line 2: Enables good closure at the image edge by copying the first 
column of the map beyond the last column.  
  Line 3: Computes the mean image intensity of the snow on the top 
edge of the image. This will be used to fill the circles at the north 
and south poles.  
  Line 4: Fetches the size of the map.  
  Line 5: To calculate the size of the circles at the poles, we assume 
that the map takes us to ±85° of latitude, so we need the equivalent 
of 5° at the top and bottom of the map. This line calculates how 
many rows represent 1° of latitude.  

 Figure 13.11   Map projection       
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  Line 6: Shows the number of rows to add to the map.  
  Line 7: Computes the values of a single color layer by making 
an array with  ones(...)  using the number of rows to add and 
the number of map columns, and multiplying by the snow 
intensity.  
  Lines 8–10: Build the strips to add to the globe map by copying this 
layer to the red, green, and blue layers of a new image array.  
  Line 11: Prepares the complete map by concatenating this image to 
the top and bottom of the map.  
  Line 12: Retrieves the size of this map.  
  Lines 13 and 14: Prepare the vectors defining the plaid by spreading 
the map dimensions across p radians in latitude and 2p radians in 
longitude.  
  Lines 15–19: Prepare the sphere.  

 Listing  13 . 4      Rotating a globe 

 1. WM = imread('earthmap_s.jpg'); 
 2. WM(:,end+1,:) = WM(:,1,:); 
 3. snow = mean( mean(WM(1,:,:))); 
 4. [WMr, WMc, clr] = size(WM); 
 5. rowsperdeglat = WMr/170 
 6. add = floor(rowsperdeglat * 5) 
 7. addlayer = uint8(ones(add, WMc) * snow); 
 8. toAdd(:,:,1) = addlayer; 
 9. toAdd(:,:,2) = addlayer; 
10. toAdd(:,:,3) = addlayer; 
11. worldMap = [toAdd; WM; toAdd]; 
12. [nlat nlong clr] = size(worldMap) 
13. lat = double(0:nlat-1) * pi / nlat; 
14. long = double(0:nlong-1) * 2 * pi / (nlong-1); 
15. [th phi] = meshgrid(long, lat); 
16. radius = 10; 
17. zz = radius * cos(phi); 
18. xx = radius * sin(phi) .* cos(th); 
19. yy = radius * sin(phi) .* sin(th); 
20. wM = double(worldMap) / 256; 
21. surf(xx, yy, zz, wM); 
22. shading interp 
23. axis equal, axis off, axis tight
24. material dull 
25. th = 0;
26. handle = light('Color',[int,int,int]); % a custom light source 
27. while true 
28.     th = th - 1; 
29.     view([th 20]); 
30.     lightangle(handle, th+50, 20) 
31.     pause(.001) 
32. end 
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  Line 20: Scales the image to double values between 0 and 1 as 
required by  surf(...) .  
  Lines 21–23: Draw the surface as usual, using the image as the color 
distribution.  
  Lines 24–26: Special preparation of the surface luminosity and light 
characteristics to prevent glare spots.  
  Lines 27–32: The perpetual rotation with the angle  th  moving 
backward one degree at a time.  
  Line 30: This keeps the light in the same position relative to the 
observer.  
  Line 31: The usual  pause  to allow the drawing to take place for each 
iteration.   

 A snapshot of the globe as it is rotating is shown in  Figure   13.12   .  

 Figure 13.12   Globe       

    13.5  Engineering Example—Detecting Edges 

 While images are powerful methods of delivering information to the human 
eye, they have limitations when being used by computer programs. Our eyes 
have an astonishing ability to interpret the content of an image, such as the 
one shown in  Figure   13.13   . Even a novice observer would have no difficulty 
seeing that it is a picture of an aircraft in flight. An experienced observer 
would be able to identify the type of aircraft as a Lockheed C-130 and 
perhaps some other characteristics of the aircraft. 
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 Figure 13.13   C-130 in flight       

 While our eyes are excellent at interpreting images, computer programs 
need a lot of help. One operation commonly performed to reduce the 
complexity of an image is edge detection, in which the complete image is 
replaced by a very small number of points that mark the edges of “interesting 
artifacts.”  Figure   13.14    shows the results from a simple program attempting 
to paint the outline of the aircraft in black by putting a black pixel at an 
identified edge. The key element of the algorithm is the ability to determine 
unambiguously whether a pixel is part of the object of interest or not. An 
edge is then defined as a pixel where some of the surrounding pixels are on 
the object and some are not. The image selected for this exercise makes 

 Figure 13.14   Result of edge detection       
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edge detection simple since the aircraft is everywhere darker than the 
surrounding sky. 

 The script used to generate this picture is shown in Listing  13 . 5 . The basic 
approach of the algorithm is to use simple array processing tools to detect 

pt - Shifted up 1 Pixel

pix - Original Locationp1 - Shifted
Left 1 Pixel

pt1 - Shifted up
and Left 1 Pixel

All off (Sky)

Part on,
Part off
(Edge)

All on (Object)

 Figure 13.15   Overlapping picture layers       

 Listing  13 . 5      Edge detection 

 1. pic = imread( 'C-130.jpg');
 2. imshow(pic) 
 3. figure 
 4. [rows, cols, cl] = size(pic); 
 5. amps = uint16(pic(:,:,1))... 
 6.      + uint16(pic(:,:,2))... 
 7.      + uint16(pic(:,:,3)); 
 8. up = max(max(amps)) 
 9. dn = min(min(amps)) 
10. fact = .5 
11. thresh = uint16(dn + fact * (up - dn)) 
12. pix = amps(2:end, 2:end); 
13. ptl = amps(1:end-1, 1:end-1); 
14.  pt = amps(1:end-1, 2:end); 
15.  pl = amps(2:end, 1:end-1); 
16. alloff= and(and((pix > thresh), ( pt  > thresh)),... 
17.             and(( pl > thresh), (ptl  > thresh))); 
18. allon = and(and((pix <= thresh), ( pt <= thresh)),... 
19.             and(( pl <= thresh), (ptl <= thresh))); 
20. edges = and(not(allon), not(alloff)); 
21. layer = uint8(ones(rows-1, cols-1) *255); 
22. layer(edges) = 0; 
23. outline(:,:,1) = layer; 
24. outline(:,:,2) = layer; 
25. outline(:,:,3) = layer; 
26. image(outline) 
27. imwrite(outline, 'c-130 edges.jpg', 'jpg')



Chapter Summary      327

the edges across the whole image at once. To accomplish this, we create 
four arrays, each one row and one column less than the original image and 
each offset by one pixel, as illustrated in  Figure   13.15   . The array  pix  is in the 
original location,  pt  is one row up from that location,  pl  is one row left, and 
 ptl  is one row left and up. If we now collapse these arrays on top of each 
other, we are simultaneously comparing the values of a square of four pixels 
across the whole image (less one row and one column).    

 In Listing  13 . 5 : 

   Lines 1–4: Read the original image, display it, and determine its size.  
  Lines 5–7: Construct an array of size  rows 3 cols  containing the total 
color intensity of each pixel. The class  uint16 , using two bytes instead 
of one, is big enough for the sum of three  unit8 s.  
  Lines 8–11: Rather than guess an amplitude threshold, we compute a 
threshold halfway between the maximum and minimum intensities 
across the picture.  
  Lines 12–15: Set up the four overlapping arrays offset by a pixel each.  
  Lines 16–17: The logical array  alloff  will be true wherever all four 
adjacent pixels have an intensity above the threshold—these are on 
the sky.  
  Lines 18–19: The logical array  allon  will be true wherever all four adjacent 
pixels have an intensity below the threshold—these are on the aircraft.  
  Line 20: The pixels we are looking for are those where the pixel is 
neither completely sky nor completely aircraft.  
  Line 21: Makes a white image the same size as the logical arrays.  
  Line 22: Sets the edges to black.  
  Lines 23–27: Put that layer into the RGB layers, show the image, and 
write it to the disk.    

     Observation   Clearly, while there is much more to be done with this data 
for it to be useful, the complexity of this image has been reduced from 12 
million  uint8  values with no real meaning to a small number of data values 
that outline an object of interest. Algorithms beyond the scope of this text 
could be used to convert these outlining points to polynomial shapes. These 
shapes could then be matched against projections of 3-D models to actually 
identify the object in the picture.        

     Chapter Summary 

  This chapter covered the following:  

   ■   Images represented internally in bit-mapped, gray scale, or true 
color form  
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  ■   Image files that come in a large variety of formats; MATLAB 
provides a single reader function and a single writer function to 
manipulate all the common image types  

  ■   Common operations on images, including cropping, stretching 
or shrinking, and concatenating and pasting an image onto a 
surface  

  ■   An engineering example showing how edge detection begins the 
process of extracting meaning from an image    

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, and 

Functions 

 

Description 

 

Discussed in 

This Section 

  image(<picture>)   Displays an image in a figure of fixed dimensions 
with axes 

 13.3 

  imread(<file_name>)   Reads an image file  13.3 

  imshow(<picture>)   Displays an image in a figure of variable 
dimensions without axes 

 13.3 

  imwrite(data,
file, format)  

 Writes an image file  13.3 

  linspace(from,
to, n)  

 Defines a linearly spaced vector  13.2.1, 13.4.1 

  rot90(A,n)   Rotates  A  by 90° clockwise  n  times  13.4.4 

  tril(A)   Reduces  A  to its lower triangular half with zeros 
in the upper triangle 

 13.4.4 

  uint8/16   Unsigned integer type with the specified number 
of bits 

 13.1 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    An image whose color values are all 0 will be all white on the screen.   

   2.    The MATLAB language defines one image reader for all image file 
types.   

   3.    The normal operations of creation, slicing, and concatenation can be 
used to manipulate images.   

   4.     rot90(A)  rotates a 3-D array by 90° clockwise.   
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   5.    Edge detection dramatically reduces the amount of data to be 
processed by image identification software.   

  Fill in the Blanks  

   1.    The basic building unit of a picture is called a(n) _____________.   

   2.    A true color image is represented as a __________ matrix in MATLAB.   

   3.    _________ bits are required to represent a color image of size M3N if 
it is read as a uint8 array of pixel values.   

   4.    Once a picture has been read, you can display it in a(n) 
_______________ with the function _____________.   

   5.    The operator ____________ mirrors an array about its ____________.    

  Programming Projects 

   1.    As an introduction to image problems, perform the following by 
writing a script that does various manipulations on an image. 
   a.   Read a JPEG image and save it in inputImage. Display it.    
  b.   Copy the image into duplicateImage1. Read and display only a 

portion of it.  
  c.   Copy the image into duplicateImage2. Convert it into a gray 

image and display the result.  
  d.   Copy the image into duplicateImage3. Resize the image into half 

its size.  
  e.   Copy the image into duplicateImage4. Resize the image into 

double its size.     

   2.    An image could be scrambled by doing the following in order: 
   a.   image quadrant manipulations: 

   •   Select the top left quadrant and then add 50 to the intensity 
values in this quadrant.  

  •   Select the top right quadrant and then multiply the intensity 
values with 0.50 in this quadrant.   

  •   Interchange the top left and bottom right quadrants.  
  •   Interchange the top right and bottom left quadrants.    

  b.   Split the image into the red, green, and blue components. Display 
the original, R component, G component, and B component in a 
single figure in 4 subplots. Give appropriate titles.  

  c.   Untouched image is returned.  

    Write a script called imageManipulator that takes in an RGB image 
and a string. The input string helps the user to choose among the 
various operations a, b, or c. If the string corresponds to operation 
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'c', your function should return the array untouched. You may 
assume that the image array provided will always contain an even 
number of rows and columns. Test your solution by reading a 
selected image, img, ensures that there is an even number of rows 
and columns, and test the various operations on the image. 

     3.    An image histogram is a chart that shows the distribution of 
intensities in an indexed or grayscale image. To create an image 
histogram, MATLAB provides a built-in function 'imhist()'. This 
function creates a histogram plot by making n equally spaced bins, 
each representing a range of data values. It then calculates the 
number of pixels within each range. Write a script named 
imgHistogram which reads in a grayscale image. Calculate the 
image histogram without the help of the built-in function. Display 
the input image and the histogram in the same figure with 
appropriate titles  .   

   4.    Thresholding is an operation that enhances the required image 
features. Write a script that reads in an 8-bit grayscale image. The 
script should enhance the image intensities greater than 120, but 
preserve the background. Display the input image and the modified 
image in the same figure with proper titles.   

   5.    We have obtained new intelligence that the Housing Department 
has plans to renovate all the rooms in the dorms with a new 
prototype. However, the prototype has been encoded into three 
separate images to avoid rival students finding out about it and 
thus seeking refuge here. Each image only contains one layer of 
color (e.g.,  roomScrambledRed.jpg  only contains the Red layer). As a 
loyal student, it is your job to reconstruct a new image out of these 
three images. 
   a.   Create a script called  room , and read the three layers using 

 'imread' . Create the new matrix  ReconImage  with the three layers, 
and display it using  'imshow' .  

  b.   After detailed analysis of the image, you find that it is also 
scrambled. Using advanced crytography and whizbang 
mathematical formulas, you have come to the conclusion that the 
four quadrants of the image have been re-arranged. Manipulate 
the composite image from part a. and re-arrange the pieces to 
form the proper image. Display it using  subplot(...) , below the 
first image.     

   6.    For this exercise, you will visit—at least in MATLAB—a place you 
have always wanted to go. 



Programming Projects      331

   a.   Find or take a picture of yourself with a plain background such 
as a green screen, using the JPEG image format. It would be a 
good idea not to wear the color of the background.  

  b.   Find a JPEG image of the place you want to go and decide on the 
rectangle in that scene where your image should appear. Save the 
width and height of the rectangle and the row and column of its 
top left corner.  

  c.   Re-size your image to be the width and height of the rectangle.  
  d.   Use the color masking technique of  section   13.4.2    to copy your 

image without the green screen into the selected rectangle of 
your dream scene.     

   7.    Image transforms are powerful tools for achieving compression. 
One popular technique is to use discrete cosine transform. Write a 
script that reads in a grayscale or RGB image and transforms that 
using discrete cosine transform. After that, compression is 
achieved by the following steps.
• Discard some of the DCT coefficients depending upon a 

threshold value. 
• Reconstruct the image from the remaining coefficients.

  Compare the two images visually by plotting on the same figure. 
Give them meaningful titles too.           
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  Chapter Objectives 

 This chapter discusses the following: 

    ■   How sound is physically recorded and played back and our 
internal storage of sound  

  ■   Operations that can be performed with the original time trace  

  ■   The ability to transform the data into the frequency domain and 
the physical significance of the transformed data  

  ■   Operations that can be performed in the frequency domain      

 Processing Sound 
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      14.1  The Physics of Sound 

 Any sound source produces sound in the form of pressure fluctuations in 
the air. While the air molecules move infinitesimal distances in order to 
propagate the sound, the important part of sound propagation is that 
pressure waves move rapidly through the air by causing air molecules to 
“jostle” each other. These pressure fluctuations can be viewed as analog 
signals—data that have a continuous range of values. These signals have 
two attributes: their amplitude and their frequency characteristics. 

 In absolute terms, sound is measured as the amplitude of pressure 
fluctuations on a surface like an eardrum or a microphone. However, the 
challenging characteristic of these data is their dynamic range. Our ears are 
able to detect small sounds with amplitudes around 10 10  (10 billion) times 
smaller than the loudest comfortable sound. Sound intensity is therefore 
usually reported logarithmically, measured in decibels where the intensity 
of a sound in decibels is calculated as follows: 

IDB = 10 log 10(I / I 0)

 where I is the measured pressure fluctuation and I 0  is a reference pressure 
usually established as the lowest pressure fluctuation a really good ear can 
detect, 2 310 −4  dynes/cm 2 . 

 Also, sounds are pressure fluctuations at certain frequencies. The human 
ear can hear sounds as low as 50 Hz and as high as 20 kHz. Voices on the 
telephone sound odd because the upper frequency is limited by the 
telephone equipment to 4 kHz. Typically, hearing damage due to aging or 
exposure to excessive sound levels causes an ear to lose sensitivity to high 
and/or low frequencies.  

   14.2  Recording and Playback 

 Early attempts at sound recording concentrated first on mechanical, and 
later magnetic, methods for storing and reproducing sound. The 
phonograph/record player depended on the motion of a needle in a groove 
as a cylinder or disk rotated at constant speed under the playback head. 
Not surprisingly, when you see the incredible dynamic range required, 
even the best stereos could not reproduce high-quality sound. Later, analog 
magnetic tape in various forms replaced the phonograph, offering less wear 
on the recording and better, but still limited, dynamic range. Digital 
recording has almost completely supplanted analog recording and will be 
the subject of this chapter. 

 Of course, sound amplitude in analog form is unintelligible to a 
computer—it must be turned into an electrical signal by a microphone, 
amplified to suitable voltage levels, digitized, and stored, as shown in 
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 Figure   14.1   . The key to successful digital recording and playback—whether 
by digital tape machines, compact disks, or computer files—is the design of 
the analog-to-digital (A/D) and digital-to-analog (D/A) devices. The reader 
should remember that this is still low-level data. Each word coming out of 
the A/D or going into the D/A merely represents the pressure on the 
microphone at a point in time.  

 The primary parameter governing the sound quality is the recording 
rate—how quickly the mechanism records samples of the sound (the 
sampling rate). Basic sampling theory suggests that we should use a 
sampling rate twice the highest frequency you are interested in reproducing, 
usually around 20,000 samples per second for good music, 5,000 samples 
per second for speech. 

 The other parameter, the resolution of the recorded data, has remarkably 
little effect on the quality of the recording to an untrained ear. The resolution 
is usually either 8 bits (−128 to 127) or 16 bits (−32,768 to 32767). While 8-bit 
resolution ought to offer very limited dynamic range, and theoretically 
should be used only for recording speech, in practice it results in a quality 

of reproduction for music that is, to 
an untrained ear, indistinguishable 
from that provided by 16-bit 
resolution. 

 These parameters must be stored 
with any digital sound recording 

medium and retrieved by the tools that play those sounds. To be able to 
play such a file, we must receive not only the data stream, but also 
information indicating the sample frequency,  Fs , and the word size.     

A / D D / A

Fs

 Figure 14.1   Mechanics of sound recording and playback       

 The background theory of sampling is beyond the scope of 
this text. Interested readers should research Nyquist on a 
good search engine. 

 Technical Insight 14.1 

   14.3  Implementation 

 MATLAB offers a number of tools for reading sound files:  wavread(...)  
for  wav  files and  auread(...)  for  .au  files, for example. Both return three 
variables: a vector of sound values, the sampling frequency in Hz (samples 
per second), and the number of bits used to record the data (8 or 16). 
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 To play a sound file, MATLAB provides the function  sound(data, rate)  
where  data  is the vector of sound values, and  rate  is the playback frequency, 
usually the frequency at which the sound values were recorded. We will 
see that the function  sound(...)  passes the data directly to the computer’s 
sound card, but different implementations will manage the behavior of the 
software that plays the sound in one of two ways. 

   Blocking vs. Non-blocking:     “Blocking” refers to the behavior of your 
system after you have called the  sound(...)  function to play a 
sound. Blocking players will not return control to the code playing 
the sound until the sound has completed. This will allow only one 
sound to be played from an application at a time. Non-blocking 
players will not wait for the sound card to finish playing the sound, 
so multiple calls to the  sound(...)  function will overlay different 
sounds. You will need to experiment with your particular system to 
determine whether it blocks or not.   

 A number of  .wav  files are included on the book’s Companion Web site to 
demonstrate many aspects of sound files.  

   14.4  Time Domain Operations 

 First, we consider three kinds of operations on sound files in the time 
domain: slicing, playback frequency changes, and sound file frequency 
changes. 

   14.4.1  Slicing and Concatenating Sound 

 Consider the problem of constructing comedic sayings by choosing and 
assembling words from published speeches. The Companion Web site 
contains a sampling of speech clips selected from various Web sites. In 
particular, it has the  Apollo 13  speech, “Houston, we have a problem”; 
“Frankly, my dear . . .” from  Gone with the Wind ; and “You can’t handle the 
truth” from  A Few Good Men .  Exercise   14.1    describes the process of 
assembling parts of these speeches into a semi-coherent conversation.  

 The first part of  Exercise   14.1    reads the  Apollo 13  speech, plays the speech, 
and plots the data (with the data index as x-axis). The resulting plot is 
shown in the left half of  Figure   14.2   . Since the sound actually includes more 
than we need, the next step is to crop this file to keep only the words we 

 Exercise 14.1    Locating the first part of the speech 

>> [houston, Fsh] = wavread('a13prob.wav'); 
>> subplot(1, 2, 1) 
>> plot(houston); 
>> sound(houston, Fsh); 
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need. By listening to the speech using the function  sound(...) , and 
judiciously zooming and panning the plot, it is possible to narrow down 
the location in the file where the problem speech starts, at about 111000. In 
 Exercise   14.2    you will extract the first part of the speech.   

 In  Exercise   14.2    we truncate the speech file to the words we need and 
also, realizing that the amplitude of these words is a little low, raise its 
amplitude by a factor of 2. 

 In  Exercise   14.3   , by a similar process, we remove “my dear” from the 
“frankly, my dear . . .” speech, reducing its amplitude by one-half, which 
results in  Figure   14.3   .   
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 Figure 14.2   Apollo 13 speech       

 Exercise 14.2    Extracting the first part of the speech 

>> clip = 110000; 
>> prob = houston(clip:end)*2; 
>> subplot(1, 2, 2) 
>> plot(prob) 

 Exercise 14.3    Extracting “my dear” 

>> figure 
>> [damn, Fsd] = wavread('givdamn2.wav'); 
>> subplot(1, 2, 1) 
>> plot(damn); 
>> lo = 4500; 
>> hi = 8700; 
>> sdamn = [damn(1:lo); damn(hi:end) ] * .5; 
>> subplot(1, 2, 2) 
>> plot(sdamn); 
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 Finally, in  Exercise   14.4   , we assemble the complete speech by 
concatenating these two fragments with the speech from  A Few Good Men . 
The resulting picture is shown in  Figure   14.4   .    
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 Figure 14.3   Gone with the Wind speech       
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 Figure 14.4   The complete speech       

 Exercise 14.4    Assemble the speech 

>> [truth, Fst] = wavread('truth1.wav'); 
>> speech = [prob; sdamn; truth * .7]; 
>> figure 
>> plot(speech); 
>> sound(speech, Fst); 
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   14.4.2  Musical Background 

 For good historical reasons, music is usually described graphically on a 
music score. The graphics describe for each note to be played its pitch and 
its duration, together with other notations indicating how to introduce 
expression and quality into the music. However, this graphical notation is 
not amenable to the simple representation of music we need for these 
experiments. Rather, we will use the representation illustrated in  Figure   14.5   . 
The right side of this figure shows a standard piano keyboard, the index of 
each white note, and the number of half steps necessary to achieve the pitch 
of each note. On the left side of the figure, we see the method to be used in 
this text to describe simple tunes. It will consist of an array with two 
columns and n rows, where n is the number of notes to be played for each 
tune. The first column is the key number to play, and the second column is 
the number of beats each note should be played.  

 The examples to follow will manipulate the file  piano.wav  to produce a 
snippet of music. This file is a recording of a single note played on a piano. 
Other files provided in the Companion Web site are the same note played 
on a variety of instruments. There are two ways to accomplish this, as 
follows: 

   1.   Playing each note at a different playback frequency  

  2.   Stretching or shrinking each note to match the required note pitch 
and playing them all at the same playback frequency   

 The first way is easier to understand and code, but very inflexible; the 
second method is a little more difficult to implement, but completely 
extensible. Musically speaking, if a sound is played at twice its natural 
frequency, it is heard as one musical octave higher. When you play a scale 
by playing each white key in turn from one note to the next octave, there 
are 8 keys to play with 7 frequency changes: 5 whole note steps (those 
separated by a black note) and 2 half note steps, for a total of 12 half note 
steps. These 12 half steps are logarithmically divided where the frequency 
multiplier between half note steps is 2 1/12 .  

1Key:

Key
Duration

Small World = 

1/2 Steps:

2 3 4 5 6 7 8

0 2 4 5 7 9 11 12

[1 3;
 1 1;
 3 2;
 1 2;
 2 3;
 2 1;
 2 4]

 Figure 14.5   Musical notes       
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   14.4.3  Changing Sound Frequency 

 We will leave as an exercise for the reader the question of playing a tune 
by changing the playback frequency of each note, which is really never a 
practical thing to do, and concentrate on playing all the notes of a tune 
with the same playback frequency. This allows the different notes to be 
copied into a single sound file and saved to be played back on any digital 
sound system. 

 In order to change the perceived note frequency without changing the 
playback frequency, we have to change the number of data samples in the 
original data file much as we stretched or shrunk an image in  Section   13.4.1   . 
Use  Exercise   14.5    to experiment with this technique for playing notes at 
different pitches.  

 In  Exercise   14.5    we first read and play the note at its natural frequency. 
Then we raise its pitch by removing about one-third of the samples and 
then lower the pitch by an octave by doubling the number of samples. 

  Play a Scale     Listing  14 . 1  shows a script that uses this capability to play the 
C Major scale (all white notes) on the piano. It repeatedly shortens the 
vector  newNote  to increase the frequency of the note played.  

 In Listing  14 . 1 : 

   Lines 1–3: Read the note and set the step multipliers.  
  Lines 4–12: Play eight notes of a major scale.  

 Listing  14 . 1      Play a scale by shrinking the note 

 1. [note, Fs] = wavread( 'instr_piano.wav');
 2. half = 2^(1/12); 
 3. whole = half^2; 
 4.  for index = 1:8 
 5.     sound(note, Fs); 
 6.      if (index == 3) || (index == 7) 
 7.         mult = half; 
 8.      else
 9.         mult = whole; 
10.      end
11.     note = note(ceil(1:mult:end)); 
12. end;

 Exercise 14.5    Note pitch experiment 

>> [note Fs] = wavread('instr_piano.wav'); 
>> sound(note, Fs); 
>> sound(note(ceil(1:1.3:end)), Fs); 
>> sound(note(ceil(1:0.5:end)), Fs); 
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  Line 5: Plays the note. This implementation uses a blocking 
 sound(...)  function. If your system does not block, you will need to 
insert  pause(0.3)  here to wait for most of the note to complete.  
  Lines 6–10: Choose the appropriate frequency multiplying factor.  
  Line 11: Shrinks the note file by the chosen factor.    

  Play a Simple Tune     We now write a script to build a playable  .wav  file using 
the note shrinking technique. The script is shown in Listing  14 . 2 . It uses the 
array  steps  to decide how many half-tone steps are necessary to reach the 
nth note on the scale and uses the array  doremi  to define the tune. The first 
column specifies the relative pitch (the note on the scale) and the second the 
duration in “beats.” The script sets the beat time to be 0.2 seconds. 

 The goal of the script is to put the notes into a single sound array called 
 tune , as illustrated in  Figure   14.6   , rather than playing the notes “on the fly.” 
This is accomplished as follows:  

   ■   Create an empty array,  tune , of the appropriate length (the length of 
the original note plus the total number of beats in the song)  

  ■   Initialize  storeAt  to store the first note at the start of the tune  
  ■   Iterate across the  tune  definition array  doremi  with the following 

steps: 
   •   Start with the original  note   
  •   Get the key index to decide how many times to raise the  note  

array by half a step  
  •   Raise the  note  to the right pitch and save it as  theNote   
  •   Add that  theNote  vector to the  tune  vector, starting at  storeAt   
  •   Move the  storeAt  variable down the  tune  vector a distance 

equivalent to the duration of that note    
  ■   When all the notes have been added to the tune file, play the tune 

and save it as a  .wav  file.    

Note

1Get Key =
Get 1/2 Steps =

Change Length

Copy to Vector

Get Length =

Move Down Vector

Beat = 0.2 Sec

1 3
0 0 4

3 1 2

Note 1 Note 2

Note 2------Note 1------ ------Note 3------

Note 3

 Figure 14.6   Building a tune file       
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 In Listing  14 . 2 : 

   Lines 1–6: Read the file and set up the parameters.  
  Line 7: A vector defining how many half steps it takes to set the 
frequency of notes 1–8.  
  Line 8: The time between notes of length 1—the beat of the tune.  
  Line 9: The number of samples to play for one beat of the tune.  
  Line 10: Begins storing notes at the beginning of the tune.  
  Lines 11–19: Insert each note in the song file into the tune file.  
  Line 12: Fetches the key number.  
  Line 13: Extracts the number of half steps required for this note.  
  Line 14: Stretches the original note by this multiplier.  
  Lines 15 and 16: Compute where the end of the note will be stored.  
  Line 17: Copies the note into the tune file.  
  Line 18: Advances the  storeAt  index down the tune file by the beat 
count multiplied by the beats required for this note.  
  Lines 20 and 21: Play the complete tune and save it as a  .wav  file.      

 Listing  14 . 2      Building a tune file 

 1. [note, Fs] = wavread( 'instr_piano.wav');
 2. half = 2^(1/12); 
 3. doremi = [1 3; 2 1; 3 3; 1 1; 3 2; 1 2; 3 4; 2 3; 
 4.           3 1; 4 1; 4 1; 3 1; 2 1; 4 8; 3 3; 4 1; 
 5.           5 3; 3 1; 5 2; 3 2; 5 4; 4 3; 5 1; 6 1; 
 6.           6 1; 5 1; 4 1; 6 4 ]; 
 7. steps = [0 2 4 5 7 9 11 12]; 
 8. dt = .2; 
 9. nCt = floor(dt*Fs); 
10. storeAt = 1; 
11. for index = 1:length(doremi) 
12.     key = doremi(index,1); 
13.     pow = steps(key); 
14.     theNote = note(ceil(1:half^pow:end)); 
15.     noteLength = length(theNote); 
16.     noteEnd = storeAt + noteLength - 1; 
17.     tune(storeAt:noteEnd,1) = theNote; 
18.     storeAt = storeAt + doremi(index,2) * nCt; 
19. end
20. sound(tune, Fs) 
21. wavwrite(tune, Fs, 'dohAdeer.wav')

   14.5  The Fast Fourier Transform 

 Typically, the time history display of a sound shows you the amplitude of 
the sound as a function of time but makes no attempt at showing the 
frequency content. While this works for the exercises above, we are often 
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more interested in the frequency content of a sound file, for which we need 
a different presentation—a spectrum display. 

   14.5.1  Background 

 In general, a spectrum display shows the amount of sound energy in a 
given frequency band throughout the duration of the sound analyzed but 
ignores the time at which the sound at that frequency was generated. Many 
acoustic amplifiers (see  Figure   14.7   ) include two features that allow you to 
customize the sound output:  

   ■   A spectral display that changes values as the sound is played, 
indicating the amount of sound energy (vertically) in different 
frequency bands (horizontally)  

  ■   Filter controls to change the relative amplification in different 
frequency bands   

 In the following paragraphs, we will consider only the analysis of the sound 
frequency content. The ability to reshape the sound frequency content as 
the sound plays is beyond the scope of this text. 

 To achieve the motion of the spectrum display, software to analyze a 
segment of the sound file runs periodically and updates the spectrum 
display. Typically, perhaps 20 times a second, 1/20th second of sound file is 
analyzed and transformed. The software used for this conversion is known 
as the Fourier transform. 

 While the mathematics of the Fourier transform is beyond the scope of 
this book, we can make use of the tools it offers without concerning 
ourselves with the details. There are a number of implementations of this 
transform; perhaps the most commonly used is the Fast Fourier Transform 
(FFT). The FFT uses clever matrix manipulations to optimize the 

 Figure 14.7   A typical spectrum display       
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mathematics needed to generate the forward (time to frequency) and 
reverse (frequency to time) transforms.  

   14.5.2  Implementation 

  Figure   14.8    illustrates the overall process of transforming between the time 
domain and frequency domain. It starts with a simple sound file, a vector of 
 N  sound values in the range (−1.0 to 1.0), which, if played back at a sample 
frequency  Fs  samples per second, reproduces the sound. The parameters of 
interest for characterizing the time trace are:  

N the number of samples 
Fs the sampling frequency 
Dt the time between samples, computed as 1/F s
Tmax the maximum time is N 3 Dt

 The FFT consumes a file with these characteristics and produces a frequency 
spectrum with a corresponding set of characteristics. The frequency 
spectrum consists of the same number,  N , of data points, each of which is a 
complex value with real and imaginary parts. (While many displays 
actually plot the magnitude of the spectrum values, to accomplish the 
inverse transform, the complex values must be retained.) The frequency 
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values are “folded” on the plot so that zero frequency occurs at either end 
of the spectrum, and the maximum frequency occurs in the middle, at 
spectrum data point  N/2 . 

 The equivalent characteristics for the spectrum data are as follows: 

    N  the number of samples  
  D f   the frequency difference between samples, computed as

 1/Tmax   
   Fmax ,  the frequency value at the end of the plot, is  N 3  D f.  

However, since the mathematics force this frequency to 
actually replicate the beginning frequency, the maximum 

effective frequency actually occurs 
at the mid-point with value  Fmax/2.       

 The FFT is mechanized using the 
function  fft(...) , which consumes 
the time history and produces the 
complex spectrum file. The inverse 
FFT function,  ifft(...) , takes a 

spectrum array and reconstructs the time history. This pair of functions 
provides a powerful set of tools for manipulating sound files.  

   14.5.3  Simple Spectral Analysis 

 Listing  14 . 3  illustrates a script that creates 10 seconds of an 8 Hz sine wave, 
plots the first second of it, performs the FFT, and plots the real and 
imaginary parts of the spectrum. Notice the following: 

   ■   A sine wave in the time domain transforms to a line in the 
frequency domain because all its energy is concentrated at that 
frequency—8 Hz in this example.  

  ■   Since the FFT is a linear process, multiple sine or cosine waves 
added together at different frequencies have additive effects in the 
spectrum.  

  ■   The resulting spectrum is complex (with real and imaginary parts) 
and symmetrical about its center, the point of maximum frequency. 
On the plot, of course, one cannot make the frequency axis labels 
reduce from the center to the end.  

  ■   The real part of the spectrum is mirrored about the center; the 
imaginary part is mirrored and inverted (the complex conjugate of 
the original data).  

  ■   The phase of the complex spectrum retains the position of the sine 
wave in the time domain—it would be totally real for a cosine wave 
symmetrically placed in time and totally imaginary for a sine wave 
in the same relationship.   

 The fact that the actual maximum frequency is half of the 
sampling frequency is consistent with the Nyquist criterion 
that the maximum frequency you can discern with digital 
sampling is half the sampling frequency. 

 Technical Insight 14.2 
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 The script in Listing  14 . 3  creates three sub-plots: the original sine wave and 
then the amplitude and phase of the spectrum.  

 In Listing  14 . 3 : 

   Lines 1–5: Set up the time domain signal.  
  Lines 6–10: Plot the front part of the time trace.  
  Line 11: Performs the FFT.  
  Lines 12–14: Set up the frequency plots.  
  Lines 15–19: Plot the spectrum real part.  
  Lines 20–24: Plot the spectrum imaginary part.   

  Figure   14.9    shows the result from running this script. It confirms the earlier 
statement that the real part of the spectrum is mirrored about the center 
frequency, and the imaginary part is mirrored and inverted.    

 Listing  14 . 3      FFT of a sine wave 

 1. dt = 1/400 % sampling period (sec)
 2. pts = 10000 % number of points
 3. f = 8 % frequency
 4. t = (1:pts) * dt; % time array for plotting
 5. x = sin(2*pi*f*t); 
 6. subplot(3, 1, 1) 
 7. plot(t(1:end/25), x(1:end/25)); 
 8. title( 'Time Domain Sine Wave')
 9. ylabel( 'Amplitude')
10. xlabel( 'Time (Sec)')
11. Y = fft(x); % perform the transform
12. df = 1 / t(end) % the frequency interval
13. fmax = df * pts / 2 
14. f = (1:pts) * 2 * fmax / pts; 

% frequencies for plotting
15. subplot(3, 1, 2) 
16. plot(f, real(Y)) 
17. title( 'Real Part')
18. xlabel( 'Frequency (Hz)')
19. ylabel( 'Energy')
20. subplot(3, 1, 3) 
21. plot(f, imag(Y)) 
22. title( 'Imaginary Part')
23. xlabel( 'Frequency (Hz)')
24. ylabel( 'Energy')

   14.6  Frequency Domain Operations 

 As a typical example of operating in the frequency domain, we will consider 
analyzing the spectral quality of different musical instruments. The intent 
of this section is to develop a plot showing the spectra of a selection of 
different musical instruments. We will first build a function that plots the 
spectrum for a single instrument and then build the script to create all the 
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plots. Listing  14 . 4  shows a function that reads the  .wav  file of an instrument 
from the music samples in the University of Miami’s Audio and Signal 
Processing Laboratory.  1   All the instruments are carefully playing a note at 
about 260 Hz.   

    1  http://chronos.ece.miami.edu/~dasp/samples/samples.html  
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 In Listing  14 . 4 : 

   Line 1: Shows a function consuming two strings: the name of the 
instrument and the title of the plot.  
  Lines 2–5: Read the file and set up the plot parameters.  
  Line 6: Performs the FFT and computes the absolute value.  
  Lines 7 and 8: Scale the plot to be a percentage of the maximum 
energy at any frequency.  
  Lines 9–16: Set up and plot the first 10% of the spectrum.   

 The script that uses this function to plot the instrument data is shown in 
Listing  14 . 5 .  

 In Listing  14 . 5 : 

   Line 1: Sets up the sub-plots configuration.  
  Lines 2–17: Each pair of lines makes the sub-plots of one instrument.   

 Listing  14 . 4      Plotting the spectrum of one instrument 

 1. function inst(name, ttl) 
% plot the spectrum of the instrument with
% the given name, with the given plot title

 2. [x, Fs] = wavread([ 'instr_' name '.wav']);
 3. N = length(x); 
 4. dt = 1/Fs; % sampling period (sec)
 5. t = (1:N) * dt; % time array for plotting
 6. Y = abs(fft(x)); % perform the transform
 7. mx = max(Y); 
 8. Y = Y * 100 / mx; 
 9. df = 1 / t(end) ; % the frequency interval
10. fmax = df * N / 2 ; 
11. f = (1:N) * 2 * fmax / N; 
12. up = floor(N/10); 
13. plot(f(1:up), Y(1:up) ); 
14. title(ttl) 
15. xlabel( 'Frequency (Hz)')
16. ylabel( 'Energy')

 Listing  14 . 5      Script to plot eight-instrument spectra 

 1. rows = 4; cols = 2 
 2. subplot(rows, cols, 1) 
 3. inst( 'sax', 'Saxophone');
 4. subplot(rows, cols, 2) 
 5. inst( 'flute', 'Flute');
 6. subplot(rows, cols, 3) 
 7. inst( 'tbone', 'Trombone');
 8. subplot(rows, cols, 4) 
 9. inst( 'piano', 'Piano');
10. subplot(rows, cols, 5) 
11. inst( 'tpt', 'Trumpet');

continued on next page
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 The results are shown in  Figure   14.10   . It is interesting to notice the 
following:  

   ■   None of the instruments produce a pure tone. The lowest frequency 
at which there is energy is usually called the fundamental 

12. subplot(rows, cols, 6) 
13. inst( 'mutetpt', 'Muted Trumpet');
14. subplot(rows, cols, 7) 
15. inst( 'violin', 'Violin');
16. subplot(rows, cols, 8) 
17. inst( 'cello', 'Cello');

0 2000 4000 6000
0

50

100
Saxophone

0 2000 4000 6000
0

50

100
Flute

0 2000 4000 6000
0

50

100
Trombone

0 2000 4000 6000
0

50

100
Piano

0 2000 4000 6000
0

50

100
Trumpet

0 2000 4000 6000
0

50

100
Muted Trumpet

0 2000 4000 6000
0

50

100
Violin

0 2000 4000 6000
0

50

100
Cello

 Figure 14.10   Instrument spectra       
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frequency, and successive peaks to the right at multiples of the 
fundamental frequency are referred to, for example, as the first, 
second, and third harmonics.  

  ■   Several instruments have much more energy in the harmonics than 
in the fundamental frequency.  

  ■   “Families” of instruments have similar spectral shapes—the strings, 
for example, have strong fundamental and second harmonic 
energy. In principle, these characteristic spectral “signatures” can 
be used to synthesize the sound of instruments, and even to 
identify individual instruments when played in groups.   

 Listing  14 . 6      Synthesizing a piano  

 1. [snd Fs] = wavread('instr_piano.wav'); 
 2. N = length(snd) 
 3. sound(snd, Fs) 
 4. tMax = N / Fs 
 5. dt = 1 / Fs 
 6. Y = fft(snd); 
 7. Ns = N/4; 
 8. fMax = Fs/4; 
 9. df = fMax / Ns; 
10. f = ((1:Ns) - 1) * df; 
11. rl = real(Y(1:Ns)); 
12. im = imag(Y(1:Ns)); 
13. plot(f, abs(Y(1:Ns))) 
14. xlabel('frequency (Hz)') 
15. ylabel('real amplitude') 
16. zlabel('imag amplitude') 
17. amps = abs(Y(1:end/2)); 
18. Nc = 25; 
19. for ndx = 1:Nc 
20.    [junk where] = max(amps); 

continued on next page

    14.7  Engineering Example—Music Synthesizer 

 A music synthesizer is an electronic instrument with a piano style keyboard 
that is able to simulate the sound of multiple instruments. Unlike the 
instrument sounds we have used so far, the instrument sounds are not stored 
as large time histories. Rather, they are stored as the Fourier coefficients 
similar to those illustrated in  Figure   14.10   . The sound is then reconstructed by 
multiplying sin or cosine waves of the right frequency by the stored 
coefficients. For some instruments, this is sufficient. Other instruments such as 
pianos need to have the amplitude of the resulting sound modified to match a 
typical profile. Listing  14 . 6  illustrates a possible technique for extracting the 
most important Fourier coefficients from the piano sound. The result will be a 
little disappointing because the sound does not fade with time. We will need 
some techniques from the next chapter to complete the story.  
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 In Listing  14 . 6 : 

   Lines 1–5: Read the sound file and compute the representative parameters.  
  Lines 6–9: Perform the FFT and compute its representative parameters 
and Ns, the number of samples we are interested in.  
  Lines 10–12: Compute a vector of the frequencies and extract the real 
and imaginary coefficients.  
  Lines 13–16: Plot the coefficient absolute values (see  Figure   14.11   ).   

21.    C(ndx).freq = where; 
22.    C(ndx).coeff = Y(where); 
23. amps(where-25:where+25) = 0; 
24. end 
25. frq = [C.freq]; 
26. [frq order] = sort(frq); 
27. sortedStr = C(order); 
28. Nt = 25; 
29. t = (1:2*Fs) * dt; 
30. f = zeros(1, length(t)); 
31. for ndx = 1:Nt 
32. w = frq(ndx) * df * 2 * pi; 
33. ct = cos(w*t); 
34. st = sin(w*t); 
35. Cf = sortedStr(ndx).coeff; 
36. f = f + real(Cf) * ct + imag(Cf) * st; 
37. end 
    % amplitude shaping goes here 
38. sf = f ./ max(f); 
39. sound(sf, Fs) 
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  Line 17: Stores the absolute values of the coefficients.  
  Lines 18–24: Extract the 25 largest coefficients by first finding the 
maximum absolute coefficient (Line 20), saving the frequency and 
complex amplitudes (Lines 21–22), and then removing that peak from 
the amplitude vector.  
  Lines 25–27: Sort the complex coefficients in frequency order.  
  Lines 29 and 30: Set up the time trace parameters and storage.  
  Lines 31–37: Build the sound file composed of the real coefficients 
times the cosine of the frequency and the imaginary coefficients times 
the sine of the frequency.  
  Lines 38–39: Scale and play the sound.   

 We will complete this synthesis for a piano sound in the next chapter.     

     Chapter Summary 

   This chapter presented the following:  

   ■   Sounds are read with specific readers that provide a time history 
and sampling frequency  

  ■   Sounds can be played through the computer’s sound system and 
saved to disk as a sound file ready for playing on any digital player  

  ■   We can slice and concatenate sounds to edit speeches and change 
the frequency of the sound to change its pitch  

  ■   We can analyze the frequency content of sound using the Fast 
Fourier Transform (FFT)  

  ■   We can modify the spectra by adding, deleting, or changing the 
sound levels at chosen frequencies under certain controlled 
conditions  

  ■   We can reconstruct a sound from the FFT coefficients.    

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

  [data Fs nb] 
= auread(file)  

 Reads an  .au  sound file in  .wav  format  14.3 

  auwrite((data,
Fs, nb, file)  

 Writes a sound file in  .au  format  14.3 

  fft(ftime)   Performs the Fast Fourier Transform on a sound file  14.5.2 

  ifft(ffreq)   Performs the inverse Fourier Transform on a 
spectrum file 

 14.5.2 
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 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in 

This Section 

  sound(data, Fs)   Plays a sound file  14.3 

  [data Fs nb] = 
wavread(file)  

 Reads a  .wav  sound file in  .wav  format  14.3 

  wavwrite(data,
Fs, nb, file)  

 Writes a sound file in  .wav  format  14.3 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    Playing a sound file at double the recorded sample frequency raises 
its pitch by an octave.   

   2.    Removing every other sample from a sound file lowers the pitch by 
an octave.   

   3.    The resolution of the recorded data has a significant effect on the 
quality of the recording.   

   4.    After performing an FFT, the zero frequency occurs at either end of 
the spectrum and the maximum frequency occurs in the middle.   

   5.    Since the mathematics of the FFT are linear, the spectrum of a sound 
added in the time domain is also added in the frequency domain.   

  Fill in the Blanks  

   1.    The human ear can hear sounds where the frequency is in between 
____________ and ___________.   

   2.    Sound spectrum analysis is possible with the MATLAB functions 
__________ and ___________.   

   3.    The steps from one note to the next higher octave are divided into 
_______________ increments: _______________ whole note steps and 
_______________ half note steps, for a total of _______________ half 
note steps.   

   4.    A spectrum display shows the amount of _______________ in a 
given _______________ throughout the duration of the sound 
analyzed.    
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  Programming Projects 

   1.    These are fundamental exercises with sound files. You should not 
hard-code any of the answers for this problem, and you should not 
need iteration. 
   a.   Select and read a suitable  .wav  file, and save the sound values 

and sampling frequency.  
  b.   Create a new sound that has double the frequency of the original 

sound, and store your answer in the variable  sound_Double .  
  c.   Create a new sound that is the same as the original except that 

the pitch is raised by five half tones. Store your answer in the 
variable  raised_pitch .  

  d.   We need a figure showing two views each of these three 
sounds, created using  subplot . In the left column, plot the 
original sound,  sound_Double , and  raised_pitch , labeling each 
plot accordingly. 

  In the right column, plot the first quarter of the values of the 
power spectrum of each sound with the proper frequency values 
on the horizontal axis.  

  e.   Play each of the sounds in the following order: original sound, 
 sound_Double , and  raised_pitch  each at the original sampling 
frequency.     

   2.    Write a function that will accept a string specifying a sound file and 
do the following: 
   a.   Play back the sound.  
  b.   Plot the sound in the time domain, titling and labeling your plot 

appropriately.  
  c.   Compute the frequency with the most energy in this file. 
  Validate your answer by plotting the lower quarter of the 

frequencies of the Fourier Transform of the sound. Don’t forget 
that the Fourier Transform is complex; you will need to reason 
with and plot the absolute value of the spectrum.  

  d.   Test this function with suitable .wav files.     

   3.    Write a function named  plotSound  that takes in the name of a sound 
file and produces a 1 3 2 figure with two plots. The first plot should 
be a plot of the sound in the time domain. The second plot should 
be a plot of the sound in the frequency domain. Your function 
should not return anything. Label the first plot  'Time Domain'  and 
label its axes appropriately. Label second plot  'Frequency Domain'  
and label its axes appropriately. 

   The Time Domain plot should be an amplitude vs. time plot. For 
simplicity make sure that your time vector starts at  dt  (delta time) 
and goes to  n*dt  (t max ) where n is the number of samples. 
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   The Frequency Domain plot should be a power vs. frequency plot 
where power is the absolute value of the FFT of the amplitude 
values. For simplicity make sure that your frequency vector starts at 
 df  (delta frequency) and goes to  n*df  (2*f max ).   

   4.    In this exercise, we will write a script to create an instrument sound 
from scratch. 
   a.   Create a vector,  t , of time values from 0 to 2 seconds with length 

40,000 samples.  
  b.   Convert the frequency of middle C (261.6 Hz) to v radians per 

second.  
  c.   Compute a sound sample as  cos(vt)  over the range of  t  in part a.  
  d.   Play that sound at a sample frequency of 20,000, and verify that it 

sounds “about right.”  
  e.   Perform the Fourier Transform on the sound vector, establish the 

correct axis values, and prove that the sound is exactly Middle C.     

   5.    Write a function named  playNote  that takes in a string representing 
a note on the piano. Your function should return a vector 
representing the amplitude values of the note in addition to the 
correct sampling frequency to be used to play it back. You should 
do this by modifying the sound in the provided  instr_piano.wav  file 
which is Middle C played on the piano. Note that the returned 
sampling frequency should be the same as that in  instr_piano..wav . 

   Here is a list of all the possible note names representing notes that 
your function should work with and below that is the number of 
half steps above/below the middle C for that note: 

 cn cn#  dn dn# en fn fn# gn gn# a(n+1) a(n+1)# b(n+1) c(n+1) 
-12 -11 -10  -9 -8 -7  -6 -5  -4     -3      -2     -1      0 

   where  c4  is the middle C,  c5  is 1 octave above it, and  c3  is 1 octave 
below it. Similarly,  f5  is 1 octave higher than  f4,  etc. For example, 
 [y1 fs] = playNote('c5');  should return a vector such that 
 sound(y1, fs)  should sound like middle C   

   6.    Finally, you will use these tools to play your favorite song. 
   a.   Find the music for your favorite song, and translate it into the 

symbology of Problem 14.5.  
  b.   Write a script that uses the  playNote  function to play your song 

on the piano.  
  c.   Modify  playNote  to use your synthetic instrument from Problem 

14.3, and save it as  playSynthetic .  
  d.   Write a script that uses  playSynthetic  to play your song in 

futuristic style.        
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  Chapter Objectives 

 This chapter discusses the implementations of four common 
numerical techniques: 

      ■   Interpolating data  

  ■   Fitting polynomial curves to data  

  ■   Numerical integration  

  ■   Numerical differentiation     

  Introduction 

 Real-world data are rarely in such a form that you can use it 
immediately. Frequently, the data must be manipulated according to 
the user’s actual needs: 

   ■    If the data samples have correct values but are not close 
enough together to be used directly, we can use interpolation 
to compute data points between the samples provided.  

  ■    There are occasions where the data-gathering facilities add 
some amount of noise to the data. To minimize the effects of 
the noise, we can compute the coefficients of a polynomial 
function that best matches the data.  

  ■    There are also times when the data must be integrated or 
differentiated to derive the quantities of interest.     

 Numerical Methods 
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 Figure 15.1   The interpolation problem       

      15.1  Interpolation 

 If our data samples have correct values but are not close enough to be used 
directly, we can use either linear or cubic interpolation to compute data 
points between the samples provided. For example, plotting functions use 
linear interpolation to draw the lines between data points. In general, 
interpolation is a technique by which we estimate a variable’s value between 
known values. In this section, we present the two most common types of 
interpolation: linear interpolation and cubic spline interpolation. In both 
techniques, we assume that we have a set of data points that represents  x - y  
coordinates for which  y  is a function of  x ; that is, 

y = f(x).

 We then have a value of  x  that is not part of the data set for which we want 
to find the  y  value.  Figure   15.1    illustrates the definition of the interpolation 
problem.  

   15.1.1  Linear Interpolation 

 Linear interpolation is one of the most common techniques for estimating 
data values between two given data points. With this technique, we assume 
that the function between the points can be represented by a straight line 
drawn between the points, as shown in  Figure   15.2   . Since we can find the 
equation of a straight line defined by the two known points, we can find  y  
for any value of  x . The closer the points are to each other, the more accurate 
our approximation is likely to be. Of course, we could use this equation to 
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extrapolate points past our collected data. This is rarely wise, however, and 
often leads to significant errors.  

 The function that performs linear interpolation is as follows: 

new_y = interpl(x, y, new_x) 

 where the vectors  x  and  y  contain the original data values and the vector 
 new_x  contains the point(s) for which we want to compute interpolated 
 new_y  values. The  x  values should be in ascending order, and the  new_x  
values should be within the range of the original  x  values. Note that the last 
character in the name  interpl  is the numeric 1 (one), not a lowercase L. 

 The use of  interpl(...)  is demonstrated in Listing  15 . 1 .  
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 Figure 15.2   Interpolation raw data       

 Listing  15 . 1      Linear interpolation 

 1. x = 0:5; 
 2. y = [0, 20, 60, 68, 77, 110]; 
 3. plot(x, y, 'r+') 
 4. hold on 
 5. fprintf('value at 1.5 is %2.2f\n', interp1(x, y ,1.5)); 
 6. new_x = 0:0.241:5; 
 7. new_y = interp1(x,y,new_x); 
 8. plot(new_x, new_y, 'o') 
 9. axis([-1,6,-20,120]) 
10. title('linear Interpolation Plot') 
11. xlabel('x values') ; ylabel('y values') 
12. fprintf('value at 7 is %2.2f\n', interp1(x, y ,7)); 
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 In Listing  15 . 1 : 

   Lines 1–3: We use the data illustrated in  Figure   15.2   .  
  Line 5: We take a single interpolated reading from the data at  x = 1.5 .  
  Lines 4–8: We plot points spaced 0.241 units apart on the x-axis 
marked with circles, as shown in  Figure   15.3   . Notice that the circles 
fall on the straight lines between the given data values. 
Lines 9–11: Document the plot.
Line 12: Finally, we attempt to extrapolate to the point  x = 7  and 
see that  NaN (Not a Number)  is returned because  interp1  refuses to 
extrapolate outside the original range of x values. The output from 
running this script is:  
value at 1.5 is 40.00 
value at 7 is NaN 

 The MATLAB language allows us to provide a fourth parameter to the 
 interp1  function that must be a string that modifies its behavior. The 
choices are as follows: 

    'nearest'  nearest neighbor interpolation  
  ' 1inear'  linear interpolation—the default  
   'spline'  piecewise cubic spline interpolation (see  Section   15.1.2   )  
   'pchip'  shape-preserving piecewise cubic interpolation  
   'cubic'  same as  'pchip'   
   'v5cubic'  cubic interpolation that does not extrapolate, and uses 
 'spline'  if x is not equally spaced   
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 Figure 15.3   Linear interpolation       
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 The MATLAB language also provides for two-dimensional ( interp2 ) and 
three-dimensional ( interp3 ) interpolation functions, which are not 
discussed here.  

   15.1.2  Cubic Spline Interpolation 

 A cubic spline is a smooth curve constructed to go through a set of points. 
The curve between each pair of points is a third-degree polynomial that has 
the general form: 

   x 5 a x   0  t  3  1  a x1 t 2   1  a x2 t 1 a x3   and 
  y 5 a y0 t 3   1  a y1 t 2   1  a y2 t 1 a y3    

 where  t  is a parameter ranging from 0 to 1 between each pair of points. The 
coefficients are computed so that this provides a smooth curve between 
pairs of points and a smooth transition between the adjacent curves.  Fig-
ure   15.4    shows a cubic spline smoothly connecting six points using a total 
of five different cubic equations.  

 The function that performs linear interpolation is as follows: 

new_y = spline(x, y, new_x); 

 where the vectors  x  and  y  contain the original data values, and the vector 
 x_new  contains the point(s) for which we want to compute interpolated 
 y_new  values. The  x  values should be in ascending order, and while the  
x_new  values should be within the range of the  x  values, this function will 
attempt to extrapolate outside that range. 
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 Figure 15.4   Cubic spline interpolation       
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 The curve in  Figure   15.4    was created using the code shown in Listing  15 . 2 .     

 In Listing  15 . 2 : 

    Lines 1 and 2: Show the original 
 x  and  y  values.  
   Line 3: Shows dense  x  values to 
define the curve.  
   Line 4: Computes the spline 
function.  
   Lines 5–8: Plot the original data 
and the smooth curve.    

   15.1.3  Extrapolation 

 A note of caution about extrapolation—attempting to infer the values of data 
points outside the range of data provided is problematic at best and usually 
gives misleading results. Although logically your code may allow you to, you 
should never do it. The  interp1  and  spline  functions behave differently in 
this respect. As we saw previously, the  interp1  function refuses to supply 
results outside the range of the original  x  data. If you try, for every  new_x  value 
outside the range of the original  x  values, it will return  NaN —not a number. 

 This is actually quite nice because if you accidentally request interpolated 
data like this, the plot programs ignore  NaN  values. The  spline  function, 
however, has no such scruples and allows you to request any  x  values you 
want, using the equation of the closest line segment. So considering  Fig-
ure   15.4   , if you asked for the value at  x = -3 , it would use the segment between 
0 and 1, which has a violent upswing at the lower end (see  Exercise   15.1   ). 

 Listing  15 . 2      Spline interpolation 

1. x = 0:5; 
2. y = [0, 20, 60, 68, 77, 110]; 
3. new_x = 0:0.2:5; 
4. new_y = spline(x, y, new_x); 
5. plot(x, y, 'o', new_x, new_y, '-')
6. axis([-1,6,-20,120])
7. title('Cubic-Spline Data Plot')
8. xlabel(  'x values'); ylabel('y values')

 A good convention to adopt is shown in  Figure   15.4   : 

   •    Use symbols to plot data points that are real values with 
no associated information connecting them  

  •    Draw lines between data points only when there is an 
analytic relationship that connects the data points 

Here, we use a circle symbol for the raw data to emphasize 
the original source of the information, and a smooth line for 
the spline curve to indicate that we are assuming a possibly 
erroneous but continuous relationship between data points.   

 Style Points 15.1 

 Exercise 15.1    The evils of extrapolation 

 After running the script in Listing  15 . 1 , enter this code: 

>> spline(x, y, -3) 
ans = 
  813.3333 
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 This might be what you want, but it looks odd! Chances are the data are 
not as accurate as you thought, and you probably need to fit a curve to the 
data, as explained in the following section.  

 Listing  15 . 3      Eyeball linear estimation 

1. x = 0:5; 
2. y = [0 20 60 68 77 110]; 
3. y2 = 20 * x; 
4. plot(x, y, 'o', x, y2); 
5. axis([-1 7 -20 120]) 
6. title('Linear Estimate') 
7. xlabel('Time (sec)') 
8. ylabel('Temperature (degrees F)') 
9. grid on 

   15.2  Curve Fitting 

 There are occasions where the data acquisition facilities add some amount 
of noise to the data. To minimize the effects of the noise, we can smooth the 
data by computing the coefficients of a polynomial function that best match 
the data. The choice of the order of the polynomial must be made by the 
users, depending upon their understanding of the underlying physics that 
generated the data. 

 For example, assume that we have a set of data points collected from an 
experiment. After plotting the data points, we find that they generally fall in 
a straight line. However, if we were to try to draw a straight line through the 
points, probably only a couple of the points would fall exactly on the line. A 
least squares curve fitting method could be used to find the straight line that 
is the closest to the points, by minimizing the distance from each point to the 
straight line. Although this line can be considered a “best fit” to the data 
points, it is possible that none of the points would actually fall on the line of 
best fit. (Note that this method is different from interpolation, because the 
lines used in interpolation actually fall on all of the original data points.) 

 In the following section, we will discuss fitting a straight line to a set of 
data points, and then we will discuss fitting a polynomial of higher order. 

   15.2.1  Linear Regression 

 Linear regression is the process that determines the linear equation that is 
the best fit to a set of data points in terms of minimizing the sum of the 
squared distances between the line and the data points. To understand this 
process, first we consider the same set of data values used previously and 
attempt to “eyeball” a straight line through the data. Assume, for example, 
that  y =  20 x  is a good estimate of the curve. Listing  15 . 3  shows the code to 
plot the points and this estimate.  
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 In Listing  15 . 3 : 

   Lines 1 and 2: Show the original data points.  
  Line 3: Is our eyeball estimate.  
  Lines 4–9: Plot the original data and the estimate.   

 Looking at the results in  Figure   15.5   , it appears that  y =  20 x  is a reasonable 
estimate of a line through the points. We really need the ability to compare 
the quality of the fit of this line to other possible estimates, so we compute 
the difference between the actual  y  value and the value calculated from the 
estimate:  

>> dy = [0, 0, 20, 8, -3, 10] 

 It turns out that the best way to make this comparison is by the least 
squares technique, whereby the measure of the quality of the fit is 
the sum of the squared differences between the actual data points and 
the linear estimates. This sum can be computed with the following 
command: 

>> sum_sq = sum(dy.^2) 

 For the above set of data, the value of  sum_sq  is  573 . As we will see, MATLAB 
can automatically produce the best linear fit shown in  Figure   15.6    whose 
sum of squares is  356.82 , a significant improvement over our original guess. 
This result was achieved by running  Exercise   15.2   .    
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 Figure 15.5   An eyeball estimate of a linear fit       
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   15.2.2  Polynomial Regression 

 Linear regression is a special case of the polynomial regression technique. 
Recall that a polynomial with one variable can be written by using the 
following formula: 

   f ( x ) 5  a  0  x n  1 a 1 x n21   1  a 2 x n22   1  a 3 x n23   1 ...  a n21 x 1 a n    

 The degree of a polynomial is equal to the largest value used as an exponent. 
MATLAB provides a pair of functions to compute the coefficients of the 
best fit to a set of data and then interpolate on those coefficients to produce 
the data to plot: 

   ■    coef = polyfit(x, y, n)  computes the coefficients of the 
polynomial of degree  n  that best matches the given  x  and  y  values. 
The function returns the coefficients,  coef , in descending powers of 
 x . For the least squares calculation to work, the length of  x  should 
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 Figure 15.6   Linear curve fit       

 Exercise 15.2    Optimal linear fit 

 Again using the data from  Section   15.1.1   : 

>> x=0:5; y=[0,20,60,68,77,110] 
>> polyfit(x, y, 1) 
ans = 
      20.8286  3.7619 
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be greater than  n - 1 . If this is not the case, the coefficients are still 
computed, but the curve passes through all the data points.  

  ■    new_y = polyval(coef, new_x)  can then be used to interpolate the 
polynomial defined by these coefficients for the  new_y  value(s) 
corresponding to any  new_x  value(s).   

 Note that there is nothing to prevent you from using these coefficients for 
extrapolation. 

  Exercise   15.2    illustrates fitting the best straight line to the data used in 
 Section   15.1.1   , indicating that the first-order polynomial that best fits our 
data is as follows: 

   f ( x ) 5 20.8286 x 1  3.7169  

 We could interpolate the values of  new_x  with: 

new_y = coef(1) * new_x + coef(2) 

 or we could use the function  polyval : 

new_y = polyfit(coef, new_x) 

 We can use our new understanding of the  polyfit  and  polyval  functions to 
write a program to study the improvement in the curve fit as  n  increases, as 
shown in Listing  15 . 4 .  

 In Listing  15 . 4 : 

   Lines 1–3: Set up the data sets.  
  Lines 4–14: Study second- through fifth-order fits.  
  Line 5: Combines  polyfit  and  polyval  calls to compute the new y 
values.  
  Lines 6–12: Plot the results. Notice the use of  sprintf(...)  to make 
a dynamic title for the plots.   

 Listing  15 . 4      Higher-order fits 

 1. x = 0:5; 
 2. fine_x = 0:.1:5; 
 3. y = [0 20 60 68 77 110]; 
 4. for order = 2:5 
 5.     y2=polyval(polyfit(x,y,order), fine_x); 
 6.     subplot(2,2,order-1) 
 7.     plot(x, y, 'o', fine_x, y2) 
 8.     axis([-1 7 -20 120]) 
 9.     ttl = sprintf('Degree %d Polynomial Fit', ... 
10.                    order ); 
11.     title(ttl) 
12.     xlabel('Time (sec)') 
13.     ylabel('Temperature (degrees F)') 
14. end 
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 The results are shown in  Figure   15.7   . Notice that with six points, the fifth-
order fit goes through all the data points.   

   15.2.3  Practical Application 

 We return briefly to the problem of replacing the blue sky in  Chapter   13   . The 
sky we used to replace the gray skies of Vienna has a power line we need to 
remove. We can use polynomial curve fitting to create an artificial sky with 
exactly the same color characteristics as the blue sky in the cottage picture, 
but without the wire. This is possible because each row of the image has so 
much data that define its color profile that the presence of the wire is a minor 
amount of “noise.” We merely need to process each row of the sky, fit a 
second-order curve to it, interpolate a new sky row from the parameters, and 
replace the row in the sky. The code to perform this is shown in Listing  15 . 5 .  

 In Listing  15 . 5 : 

   Line 1: Reads the original cottage picture.  
  Line 2: Obtains its sizes.  
  Line 3: The x values for the curve fitting.  
  Line 4: Makes a copy of the original picture.  
  Lines 5–12: Convert the top 700 rows where the sky is.  
  Lines 6–11: Treat each color individually.  
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 Figure 15.7   Higher-order polynomial fits       
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  Line 7: The polynomial approximation needs each row as a double 
vector.  
  Lines 8–9: Compute a synthetic row.  
  Line 10: Puts the row into the new sky.  
  Lines 13 and 14: Show and save the new image.   

  Figure   15.8    shows the cottage picture updated with a smooth sky. Notice 
that the chimneys have been smeared off, but this does not affect the part of 
the sky needed for the Vienna picture. This synthetic sky is ready to be used 
in the script to replace the original sky (see Listing  13 . 1 ).  Figure   15.9    shows 
the Vienna picture with a clear blue synthetic sky.     

 Listing  15 . 5      Removing the power line from the sky 

 1. p = imread( 'Witney.jpg');
 2. [rows, cols, clrs] = size(p); 
 3. x = 1:cols; 
 4. sky = p; 
 5. for row = 1:700 
 6.     for color = 1:3 
 7.         cv = double(p(row, :, color)); 
 8.         coef = polyfit(x, cv, 2); 
 9.         ncr = polyval(coef, x); 
10.         sky(row,:,color) = uint8(ncr); 
11.     end 
12. end 
13. image(sky) 
14. imwrite(sky, 'sky.jpg');
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 Figure 15.8   Updated sky       
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 Figure 15.9   Updated picture       

   15.3  Numerical Integration 

 The integral of a function  f ( x ) over the interval [ a ,  b ] is defined to be the area 
under the curve of  f ( x ) between  a  and  b , as shown in  Figure   15.10   . If the 
value of this integral is  K , the notation to represent the integral of  f ( x ) 
between  a  and  b  is as follows:   

 
K = L

b

a
f (x) dx

        
 For many functions, this integral can be computed analytically. However, 
for a number of functions, this is not possible, and we require a numerical 
technique to estimate its value. We look at two different scenarios: 

   ■   Two different techniques for computing the complete integral with 
various degrees of accuracy  

  ■   A technique for evaluating the continuous integral of  f ( x )   

   15.3.1  Determination of the Complete Integral 

 Two of the most common numerical integration techniques estimate  f ( x ) 
either with a set of piecewise linear functions or with a set of piecewise 
parabolic functions. If we use piecewise linear functions, we can compute 
the area of the trapezoids that compose the area under the piecewise linear 
function. This technique is called the trapezoidal rule. If we use piecewise 
quadratic functions, we can compute and add the areas of these components. 
This technique is called Simpson’s rule. 
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  The Trapezoidal Rule     If we represent the area under a curve by trapezoids, 
as illustrated in  Figure   15.11   , and if the interval [ a ,  b ] is divided into  n  equal 
sections, then the area can be approximated by the following formula:   

 
KT =

b - a
2n

 ( f (x0) + 2 f (x1) + 2 f (x2) + Á + 2 f (xn-1) + f (xn))
        

 where the  x i   values represent the end points of the trapezoids and 
where  x 0 =a  and  x n =b . Listing  15 . 6  shows a function that computes this integral.  

  Simpson’s Rule     If the area under a curve is represented by areas under 
quadratic sections of a curve, and if the interval [ a ,  b ] is divided into 
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 Figure 15.10   Integration of f(x)       
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2 n  equal sections, then the area can be approximated by the formula 
(Simpson’s rule):   

 
Ks =

h
3

 ( f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + Á

 
+ 2 f (x2n-2) + 4 f (x2n-1) + f (x2n))

       
 where the  x i   values represent the end points of the sections,  x 0  = a  and 
 x 2n   = b , and  h =  ( b  −  a ) / (2 n ). Listing  15 . 7  shows a function to integrate 
using Simpson’s rule.  

   15.3.2  Continuous Integration Problems 

 We now consider a slightly different scenario. If  f ( t ) is the rate of change of 
 F ( t ) defined as  f ( t ) =  dF ( t )/ dt , then given  f ( t ), we can find the indefinite 
integral  F ( t ) according to the following formula:   

 
F(t) = L

t

t0

f (x) dt
       

 For example, we might be given data that represent the velocity of a 
sounding rocket, such as is plotted in  Figure   15.12   . We need to approximate 
the altitude of the rocket over time by integrating this data.  

 To perform this kind of integral, the MATLAB language provides the 
function F  = cumsum(f)  that computes the cumulative sum of the vector  f . 
The result,  F , is a vector of the same length as f where F (i)  is the sum of 
f (1:i) . If the data values,  f , are regularly sampled at a rate Δ t , the integral 
is found by multiplying  cumsum(f)  by the time interval, Δ t . If they are not 
regularly sampled, you have to compute the  cumsum(...)  of the scalar 
product of  f  and the vector of time differences. 

 Listing  15 . 6      Trapezoidal integration 

 1. function K = trapezoid( v, a, b ) 
% usage: K = trapezoid(v, a, b )

 2. K = (b-a) * (v(1) + v(end) + ... 
 3. 2*sum(v(2:end-1))) / (2*(length(v) - 1) ); 
 4. 

 Listing  15 . 7      Simpson’s rule integration 

 1. function K = simpson( v, a, b ) 
% usage: K = simpson(v, a, b )

 2. K = (b-a) * (v(1) + v(end) + ... 
 3.          4*sum(v(2:2:end-1)) + ... 
 4.          2*sum(v(3:2:end-2)) ) / (3*(length(v) - 1) ); 
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 To compute a more accurate integral, especially if the samples are not 
regularly spaced along the independent axis, MATLAB also provides the 
function  cumtrapz(t, f)  where  t  is the independent parameter and  f  the 
dependent parameter. The function uses trapezoidal integration to calculate 
the indefinite integral  F(t) . 

 Listing  15 . 8  shows the function that computes this continuous integral, 
making use of  cumsum(...) .  

 Listing  15 . 8      Integrating rocket velocity 

 1. v =[ 0.0 15.1 25.1 13.7 22.2 41.7 ... 
 2.     39.8 54.8 57.6 62.6 61.6 63.9 69.6 ... 
 3.     76.2 86.7 101.2 99.8 112.2 111.0 ... 
 4.    116.8 122.6 127.7 143.4 131.3 143.0 ... 
 5.    144.0 162.7 167.8 180.3 177.6 172.6 ... 
 6.    166.6 173.1 173.3 176.0 178.5 ... 
 7.    196.5 213.0 223.6 235.9 244.2 244.5 ... 
 8.    259.4 271.4 270.5 294.5 297.6 ... 
 9.    308.7 310.5 326.6 344.1 342.0 358.2 362.7 ]; 
10. lv = length(v); 
11. dt = 0.2; 
12. t = (0:lv-1) * dt; 
13. h = dt * cumsum(v); 
14. plot(t, v) 
15. hold on 
16. plot(t, h/5,'k--') 
17. legend({ 'velocity', 'altitude/5' }) 
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 Figure 15.12   Velocity of a rocket       

continued on next page
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 In Listing  15 . 8 : 

   Lines 1–9: Generate the original velocity data.  
  Lines 10–12: Parameters for plotting.  
  Line 13: Performs the integration.  
  Lines 14–19: Plot the results.  
  Lines 20–24: Validate the three integration techniques by checking 
the results.   

  Figure   15.13    shows the resulting plot. The results displayed in the Command 
window are:  

cumsum height: 1848.5 
trapezoidal height: 1811.85 
Simpson's Rule height: 1811.14 

 The continuous integration produces results within 2% of the “accurate” 
integration techniques.   

18. title( 'velocity and altitude of a rocket')
19. xlabel( 'time (sec)'); ylabel( 'v (m/s), h(m/5)')
20. fprintf('cumsum height: %g\n', h(end) ); 
21. fprintf('trapezoidal height: %g\n', ... 
22.           trapezoid(v, t(1), t(end) )); 
23. fprintf('Simpson''s Rule height: %g\n', ... 
24.           simpson(v, t(1), t(end) )); 
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 Figure 15.13   Rocket velocity and altitude       
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(a) Forward (b) Backward (c) Central
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 Figure 15.14   Difference techniques       

   15.4  Numerical Differentiation 

 The derivative of a function  f ( x ) is defined to be a function  f ‘ ( x ) that is equal 
to the rate of change of  f ( x ) with respect to  x . The derivative can be expressed 
as a ratio, with the change in  f ( x ) indicated by  df ( x ) and the change in  x  
indicated by  dx , giving us the following:   

 
f ¿(x) =

df (x)
dx        

 There are many physical processes for which we want to measure the rate 
of change of a variable. For example, velocity is the rate of change of position 
(as in meters per second), and acceleration is the rate of change of velocity 
(as in meters per second squared). 

 The derivative  f‘ ( x ) can be described graphically as the slope of the 
function  f ( x ), which is defined to be the slope of the tangent line to the 
function at the specified point. Thus, the value of  f ‘ ( x ) at the point  a  is  f ‘ ( a ), 
and it is equal to the slope of the tangent line at the point  a . 

   15.4.1  Difference Expressions 

 In general, numerical differentiation techniques estimate the derivative 
of a function at a point  x k   by approximating the slope of the tangent line 
at  x k   using values of the function at points near  x k  . The approximation of 
the slope of the tangent line can be done in several ways, as shown in 
 Figure   15.14   . 

   ■   Backward Difference:      Figure   15.14   (a) assumes that the derivative at  x k   is 
estimated by computing the slope of the line between  f ( x k21  ) and  f ( x k  )  

  ■   Forward Difference:      Figure   15.14   (b) assumes that the derivative at  xk  
is estimated by computing the slope of the line between  f ( x k  ) and 
 f ( x k11  )  
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  ■   Central Difference:      Figure   15.14   (c) assumes that the derivative at  x k   is 
estimated by computing the slope of the line between  f ( x k21  ) and 
 f ( x k11  )    

 The quality of all of these types of derivative computations depends on 
the distance between the points used to estimate the derivative; the 
estimate of the derivative improves as the distance between the two points 
decreases.   

   15.6  Implementation 

 To facilitate differentiation, the MATLAB language defines the  diff(...)  
function, which computes differences between adjacent values in a vector, 
generating a new vector with one less value than the original: 

dv = diff(V) returns [V(2)-V(1), V(3)-V(2), ..., V(n)-V(n-1)] 

 An approximate derivative  dy / dx  can be computed by using  diff(y)./
diff(x) . Depending on the application, this can be used to compute the 

   15.5  Analytical Operations 

 We return to the discussion of fitting a polynomial to some raw data in 
 Section   15.2.2   . We approximated a polynomial fit with the following 
expression: 

   f ( x ) 5  a  0  x n  1 a 1 x n21   1  a 2 x n22   1  a 3 x n23   1 ...  a n21 x 1 a n    

 Since this is an analytical expression, even if some or all of the coefficients 
are complex, we can integrate it to estimate the integral of the raw data and 
differentiate it to estimate the slope of the raw data. 

   15.5.1  Analytical Integration 

 The expression for F(x), the integral of f(x) with respect to x, is given by: 

   F ( x ) 5  a  0  x n11 /(n11) 1 a 1 x n /n 1  a 2 x n21 /(n21) 1  a 3 x n22 /(n22) 1 ...

 a n21 x 2 /2 1 a n  x 1 K   

 Note that an arbitrary constant, K, is always required for analytical 
integration representing the starting value F(0).  

   15.5.2  Analytical Differentiation 

 The expression for f’(x), the integral of f(x) with respect to x, is given by: 

   f' ( x ) 5  na  0  x n21  1 (n21)a 1 x n22   1  (n22)a 2 x n23   1  (n23)a 3 x n24   1 ...  a n21      
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forward, backward, or central difference approximation. The solution to 
the forward difference is shown in Listing  15 . 9 .  

 In Listing  15 . 9 : 

   Lines 1–4: Establish and plot  f ( x ).  
  Line 5: The difference expression—returns a vector one shorter than 
the original.  
  Lines 6–11: Plot the forward, backward, and central differences.   

 The results are shown in  Figure   15.15   . Since the original data were generated 
from a series of coefficients, we could also plot the exact value of the slope 
using the result of  Section   15.5.2   .  

 Listing 1 5 . 9      Differentiating a function 

 1. x = -7:0.1:9; 
 2. f = polyval([0.0333,-0.3,-1.3333,16,0,-187.2,0], x); 
 3. plot(x, f) 
 4. hold on
 5. df = diff(f)./diff(x); 
 6. plot(x(2:end), df, 'g') 
 7. plot(x(1:end-1), df, 'r') 
 8. xm = (x(2:end)+x(2:end)) / 2 
 9. plot(xm, df, 'c') 
10. grid on 
11. legend({ 'f(x)', 'forward', 'backward', 'central'})
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 Figure 15.15   Differentiation       
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modest number of samples that describe the envelope of the sound 
(marked by red * symbols). Then, we perform a high-order curve fit on 
that data and check its accuracy by plotting it as the solid line on the 
same figure.   

 To demonstrate the essence of this capability, we begin with Listing  14 . 6  
from  Chapter   14   , reading the file ‘instr_piano.wav’ instead of ‘instr_tpt.wav.’ 
Now, we insert the code in Listing  15 . 10  in place of the last two lines of 
Listing  14 . 6 .  

   15.7  Engineering Example—Shaping the Synthesizer Notes 

 As discussed in  Chapter   14   , we can synthesize the frequency content of 
an instrument by selecting an appropriate number of coefficients from the 
energy spectrum, multiplying each by an appropriate sine or cosine wave 
and summing the results. This gives a time trace with constant amplitude, 
which is fine for an instrument like a trumpet, but notes played on other 
instruments like a piano have a very non-linear time profile as shown in 
 Figure   15.16   . That same figure has two overlays indicating how to 
develop the decay profile typical of a piano note. First, we choose a 
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 Figure 15.16   Piano note time history       
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 In Listing  15 . 10 : 

   Lines 1–3: Plot the sound’s time history in new figure window.  
  Line 4: Arbitrarily choose a time sample increment to achieve a small 
but representative set of amplitude samples.  
  Lines 8–13: A loop to compute and store the amplitude samples and 
the corresponding time indices. Each step calculates the maximum 
amplitude during its time window and saves it with the window location.  
  Line 14: Plots the sample locations.  
  Lines 15–17: Compute and plot the polynomial fit to the amplitudes 
using an eight-order fit.  
  Lines 18–21: Modify the synthesized piano sound by multiplying by the 
amplitude profile determined in this script.    

 In conclusion, with these two engineering examples, we have shown how 
the essence of the sound of a musical instrument can be derived from the 
actual sound of an instrument and captured as a small set of complex 
amplitudes with their frequency value and an even smaller set of real 
coefficients of the function that multiplies the amplitude over time. 

To construct from these data a real music synthesizer, one need only to 
detect that a keyboard note has been pressed, determine the required 
frequency, and play the synthesized note until the key is released. If the 
synthesizer is equipped to specify that the sustain pedal is depressed, the 
piano sound should not be cut off, but allowed to fade into silence.    

 Listing  15 . 10      Modifying sound amplitude 

 1. figure 
 2. plot(snd) 
 3. hold on 
 4. incr = 1000; 
 5. at = 1; 
 6. samples = []; 
 7. tm = []; 
 8. while at < (N - incr) 
 9.    val = max(snd(at:at+incr-1)); 
10.    samples = [samples val]; 
11.    tm = [tm at+incr/2]; 
12.    at = at + incr; 
13. end 
14. plot(tm, samples,'r*') 
15. coeff = polyfit(tm, samples, 8); 
16. samp = polyval(coeff, tm); 
17. plot(tm, samp, 'c') 
18. amult = polyval(coeff, 1:length(f)); 
19. f = f .* amult; 
20. sf = f ./ max(f); 
21. sound(sf, Fs) 
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     Chapter Summary 

   In this chapter, we saw the implementations of four common numerical 
techniques:  

   ■   We can estimate data points between given data values using linear 
( interp1 / 2 / 3 ) or spline interpolation  

  ■   We can smooth noisy data by fitting polynomial curves of suitable 
order to the raw data  

  ■   Given, for example, the velocity of an object over time, we can 
determine its position by integrating using  cumtrapz(...)  or 
 cumsum(...)   

  ■   We can differentiate to generate its acceleration    

  Special Characters, Reserved Words, and Functions 

 Special Characters, 

Reserved Words, 

and Functions 

 

Description 

 

Discussed in

This Section 

  NaN   Not a number  15.1.1 

  cumsum(y)   Computes the integral of the function y(x), 
assuming that Δx is 1 

 15.3.2 

  cumtrapz(x,y)   Computes the integral of the function y(x), using 
the trapezoidal rule 

 15.3.2 

  diff(v)   Computes the differences between adjacent values
in a vector 

 15.6 

  interp1(x, y, nx)   Computes linear and cubic interpolation  15.1.1 

  interp2(x, y, z, 
nx, ny)  

 Computes linear and cubic interpolation  15.1.1 

  interp3(x, y, z, 
v, nx, ny, nz)  

 Computes linear and cubic interpolation  15.1.1 

  polyfit(x, y, n)   Computes a least-squares polynomial  15.2.2 

  polyval(c, x)   Evaluates a polynomial  15.2.2 

  spline(x, y)   Spline interpolation  15.1.2 

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    All MATLAB functions permit extrapolation beyond the limits of 
the original independent variable.   
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   2.    The cubic spline is a series of parametric curves.   

   3.    You cannot extrapolate the equations generated by curve fitting.   

   4.    You should always match the order of a parametric curve fit to the 
underlying physics of the data.   

   5.    Simpson’s rule is more accurate than the trapezoidal rule for 
integrating a function.   

   6.    Numerical differentiation produces a vector that is the same length 
as the original vector.   

  Fill in the Blanks  

   1.    Polynomial regression can be achieved with the help of two 
MATLAB functions, _________  and  ________.   

   2.    The integral of a function f (x) over the interval [a, b] is defined to be 
the __________ between a and b.   

   3.    The derivative f ’(x) can be described graphically as the 
_____________ to the function at the specified point.            

   4.    To compute the continuous integral of a data set that is not regularly 
sampled, you have to compute the _________________ of the 
_______________ of ________________ and __________________.   

   5.    If a(n) ____________ is defined by its polynomial coefficients, you 
can integrate or differentiate it by _______________ the vector of 
coefficients.    

  Programming Projects 

   1.    Do the following basic exercises with numerical methods. 
   a.   Define two vectors  xi  and  yi  of the same length where the  xi  

values are monotonically increasing and the  yi  values are 
somehow related to the  xi  values. Then define a new vector  x  
with closer spacing than  xi  and extending below and above the 
range of  xi . Find the  y  values corresponding to the  x  values in  xi  
by linear interpolation. On the same figure, plot the original  yi  
vs.  xi  as red circles, and  y  vs.  x  as a black line. What do you 
observe about the visible range of the  x  values?  

  b.   Repeat the exercise in part a using the  spline(...)  function to 
interpolate. Explain the difference in the range of the resulting  y  
vs.  x  plot.  

  c.   Use  polyfit(...)  to find the coefficients of the third-order 
polynomial that best fits the points represented by vectors  xi  and 
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 yi  and then use  polyval(...)  to evaluate that curve at the  x  points. 
As before, plot  yi  vs.  xi  as red circles and  y  vs.  x  as a black line.  

  d.   Approximate the derivative,  dxy  =  dy/dx,  for the vectors  xi  and 
 yi  using the  diff(...)  function and plot  yi  vs.  xi . Since 
 diff(...)  reduces the length of the vector by one, you will have 
to plot  dxy  vs. either  xi(1:end-1), xi(2:end)  or compute  xm , the 
mid-points of  xi .  

  e.   Find  yp , the cumulative sum of the elements in  dxy,  and add this 
to the plot of part d. With the exception of a constant offset, this 
curve ought to track the original plot of  yi  vs.  xi .  

  f.   Use  cumtrapz  to find the area under the curve represented by  yp  
vs.  xi  with the trapezoidal method of approximation. Compare 
this result to the ending value of the  yp  curve.     

   2.    Write a function,  bestFit , that takes in a vector of x-coordinates and 
a vector of y-coordinates. Your function should fit a polynomial 
curve to the data. The degree of the polynomial should be the 
smallest degree polynomial with an average error (the average of 
the absolute value of the difference between the new y-coordinates 
and the original y-coordinates) less than 2. Your function should 
return: 
   •   the vector of coefficients of your polynomial  
  •   the vector of new y-coordinates, which is the polynomial 

evaluated at the original x-coordinates, and  
  •   the vector of the error magnitudes of your polynomial.   

   Write a test program to provide reasonable data to your function 
and plot the original data (in blue), the curve-fitted data (in green), 
and the error (in red) on one figure. Title your plot and label your 
axes accordingly, including a legend.   

   3.    You have been approached by the Rambling Wreck club to test the 
performance of the Rambling Wreck. You are provided with the test 
results of the car for 10 trial runs in the form of a vector  d  that 
contains the displacement of the car from the origin at that second. 
The first element is the displacement at the 0th second, the second 
element is the displacement at the 1st second, and so on. Write a 
script called  testWreck  that displays a plot of the speed of the 
Rambling Wreck over time during the test run. You could test your 
script using: 

d = [0 20 35 50 60 55 30 25 15 5]; 

   4.    Engineers often use tabulated data for various calculations. An 
important method that any good engineer should be able to apply 
to tabulated data is interpolation. In thermodynamics, the properties 
of a gas can be known when two of its properties have been fixed. 
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You are required to come up with a continuous function being given 
the tabulated data below measured where the pressure is 0.10 MPa: 

    Temperature (deg C) Specific Volume (cu meters/Kg)   

    99.63 1.694   
    100 1.696   
    120 1.793   
    160 1.984   
    200 2.172   
    240 2.359   
    280 2.546   
    320 2.732   
    360 2.917   
    400 3.103   
    440 3.288   
    500 3.565    

   Write a function called lookup that consumes three parameters: the 
above table in an array, a number  value  , and a logical control value 
 getTemp . If  getTemp  is  true , the function interpolates the value as a 
specific volume and returns the corresponding temperature. 
Otherwise, it interpolates the value as a temperature and returns the 
corresponding specific volume. Your function must not extrapolate 
the data (i.e., it should return  NaN  if the user tries to obtain values 
outside the range of the table values).   

   5.    Mathematically speaking, a critical point occurs when the derivative 
of a function equals zero. It is possible that a local minimum or a 
local maximum occurs at a critical point. A local minimum is a point 
where the function’s value to the left and right of it is larger, and a 
local maximum is a point where the function’s value to the left and 
right of it is smaller. You are going to write a function that finds the 
local minimum and maximum points of a set of data. Call the 
function  find_points . It should take in vectors of  x and   y  values and 
return two vectors. The first vector should contain the  x  values 
where the minimum points occur, while the second vector should 
contain the  x  values where the maximum points occur.

  For example: 

If x=linspace(-8,2,1000) and y=x.^2+6*x+3; 
[min_p max_p]=find_points(x,y) should return

       min_p = -3, max_p = [] 
If x=linspace(-5,5,1000) and y=x.^3-12*x; 
[min_p max_p]=find_points(x,y) should return: 

       min_p = 2, max_p = -2 

   You should plot  x  and  y  to confirm the answers.   
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   6.    Now that we used the derivative it only makes sense that you are 
going to write a function that finds integrals. Call your function 
 find_integral . Your function should take in a vector of  x  and  y  
values as Problem 15.5 does and should plot the integral and also 
return the total area under the function. You are to use the 
trapezoidal rule to find the integrals.

  For example: 

If x=linspace(0,5,1000); and y=2*x+5; 
find_integral(x,y) should return 50.0000 
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  Chapter Objectives 

 This chapter discusses: 

    ■   A technique for comparing the performance of algorithms  

  ■   A range of algorithms for sorting a collection of data  

  ■   Application areas in which these algorithms are most appropriate   

 First, we will digress from the main thread of problem solving to dis-
cuss an “engineering algebra” for measuring the cost of an algorithm 
in terms of the amount of work done. Then we will consider a 
number of sorting algorithms, using this technique to assess their 
 relative merits.    

 Sorting 
    C H A P T E R  1 6 
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Examples      
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Algorithms       
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    16.2.2   Bubble Sort      
    16.2.3   Quick Sort      
    16.2.4   Merge Sort      
    16.2.5   Radix Sort       

   16.3   Performance Analysis      
   16.4    Applications of Sorting 

Algorithms     
    16.4.1   Using sort(. . .)      
    16.4.2   Insertion Sort      
    16.4.3   Bubble Sort      
    16.4.4   Quick Sort      
    16.4.5   Merge Sort      
    16.4.6   Radix Sort       
   16.5    Engineering Example—

A Selection of Countries       
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      16.1  Measuring Algorithm Cost 

 How many times do you ask yourself, “Just how good is my algorithm?” 
Probably not very often, if ever. After all, we have been creating relatively 
simple programs that work on a small, finite set of data. Our functions 
execute and return an answer within a second or two (except for the 
recursive Fibonacci function on numbers over 25). You may have noticed 
that some of the image processing scripts take a number of seconds to run. 
However, as the problems become more complex and the volume of data 
increases, we need to consider whether we are solving the problem in the 
most efficient manner. In extreme cases, processes that manipulate huge 
amounts of data like the inventory of a large warehouse or a national 
telephone directory might be possible only with highly efficient 
algorithms. 

 Big O is an algebra that permits us to express how the amount of work 
done in solving a problem relates to the 
amount of data being processed. It is a gross 
simplification for software engineering 
analysis purposes, based on some sound 
but increasingly complex theory.    

 Big O is a means of estimating the worst case performance of a given 
algorithm when presented with a certain number of data items, usually 
referred to as N. In fact, the actual process attempts to determine the limit 
of the relationship between the work done by an algorithm and N as N 
approaches infinity. 

 We report the Big O of an algorithm as O (<expression in terms of N>). 
For example, O(1) describes the situation where the computing cost is 
independent of the size of the data, O(N) describes the situation where the 
computing cost is directly proportional to the size of the data, and O(2 N ) 
describes the situation where the computing cost doubles each time one 
more piece of data is added. At this point, we should also observe some 
simplifying assumptions: 

   ■   We are not concerned with constant multipliers on the Big O of an 
algorithm. As rapidly as processor performance and languages are 
improving, multiplicative improvements can be achieved merely by 
acquiring the latest hardware or software. Big O is a concept that 
reports qualitative algorithm improvement. Therefore, we choose to 
ignore constant multipliers on Big O analyses.  

  ■   We are concerned with the performance of algorithms as N 
approaches infinity. Consequently, when the Big O is expressed as 
the sum of multiple terms, we keep only the term with the fastest 
growth rate.   

 Interested readers should look up little-O, Big-V, 
little-v, and Big-Q. 

 Technical Insight 16.1 
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   16.1.1  Specific Big O Examples 

 On the basis of algorithms we have already discussed, we will look at 
examples of the most common Big O cases. 

  O(1)—Independent of N     O(1) describes the ideal case of an algorithm or 
logical step whose amount of work is independent of the amount of data. 
The most obvious example is accessing or modifying an entry in a vector. 
Since all good languages permit direct access to elements of a vector, the 
work of these simple operations is independent of the size of the vector.  

  O(N)—Linear with N     O(N) describes an algorithm whose performance is 
linearly related to N. Copying a cell array of size N is an obvious example, 
as is searching for a specific piece of data in such a cell array. One might 
argue that occasionally one would find the data as the first element. There 
is an equal chance that we would be unlucky and find the item as the last 
element. On average, we would claim that the performance of this search is 
the mean of these numbers: (N11) / 2. However, applying the simplification 
rules above, we first reject the 1 as being N to a lower power, leaving N/2, 
and then reject the constant multiplier, leaving O(N) for a linear search.  

  O(logN)—Binary Search     Consider searching for a number—say, 86—in a 
sorted vector such as that shown in  Figure   16.1   . One could use a linear 
search without taking advantage of the ordering of the data. However, a 
better algorithm might be as follows: 

   1.   Go to the middle of the vector (approximately) and compare that 
element (59) to the number being sought.  

  2.   If this is the desired value, exit with the answer.  

  3.   If the number sought is less than that element, since the data are or-
dered, we can reject the half of the array to the right of, and includ-
ing the 59.  

  4.   Similarly, if the number sought is greater than that element, we can 
reject the half of the array to the left of and including the 59.  

  5.   Repeat these steps with the remaining half vector until either the 
number is found or the size of the remaining half is zero.   

 Now consider how much data can be covered by each test—a measure of 
the work done as shown in  Table   16.1   .  

 In general, we can state that the relationship is expressed as follows: 

N = 2 W

7 12 42 59 71 86 104 212

 Figure 16.1   Binary search       
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 However, we need the expression for the work, W, as a function of N. 
Therefore, we take the log base 2 of each side so that: 

W = log 2N

 Now, we realize that we can convert log 2 N to log x N merely by multiplying 
by log 2 x, a constant that we are allowed to ignore. Consequently, we lose 
interest in representing the specific base of the logarithm, leaving the work 
for a binary search as O(log N).   
  O(N 2 )—Proportional to N 2      O(N 2 ) describes an algorithm whose 
performance is proportional to the square of N. It is a special case of 
O(N 3 M), which describes any operation on an N 3 M array or image.  

  O(2 N )—Exponential Growth or Worse     Occasionally we run across very 
nasty implementations of simple algorithms. For example, consider the 
recursive implementation of the Fibonacci algorithm we discussed in 
 Section   9.6.2   . In this implementation, fib(N) 5 fib(N 2 1) 1 fib(N 2 2). So 
each time we add another term, the previous two terms have to be calculated 
again, thereby doubling the amount of work. If we double the work when 1 
is added to N, in general the Big O is O(2 N ). Of course, in the case of this 
particular algorithm, there is a simple iterative solution with a much 
preferable performance of O(N).   

   16.1.2  Analyzing Complex Algorithms 

 We can easily calculate the Big O of simple algorithms. For more complex 
algorithms, we determine the Big O by breaking the complex algorithm 
into simpler abstractions, as we saw in  Chapter   10   . We would continue 
that process until the abstractions can be characterized as simple 
operations on defined collections for which we can determine their Big 
Os. The Big O of the overall algorithm is then determined from the 

 Table 16.1   Work done in a binary search 

 Work  N 

 1   2  

 2   4   

 3   8  

 4   16  

 5   32  

 .  . 

 .  . 

 W  2 W  
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individual components by combining them according to the following 
rules: 

   ■   If two components are sequential (do A and then do B), you add 
their Big O expressions  

  ■   If components are nested (for each A, do B), you multiply their Big 
O expressions   

 For example, we will see the merge sort algorithm in  Section   16.2.5   . It can be 
abstracted as follows: 

   Perform a binary division of the data (O(logN)) and then for each 
binary step (of which there are O(log(N)), merge all the data items 
(O(N)).   

 This has the general form: 

   Do A, then for each B, do C   

 which, according to the rules above, should result in O A  1 O B  * O C . The 
overall algorithm therefore costs O(log N) 1 O(N) * O(log N). We remove 
the first term because its growth is slower, leaving O(N log N) as the overall 
algorithm cost.   

   16.2  Algorithms for Sorting Data 

 Generally, sorting a collection of data will organize the data items in such a 
way that it is possible to search for a specific item using a binary search 
rather than a linear search. This concept is nice in principle when dealing 
with simple collections like an array of numbers. However, it is more difficult 
in practice with real data. For example, telephone books are always sorted 
by the person’s last name. This facilitates searching by last name, but it does 
not help if you are looking for the number of a neighbor whose name you do 
not know. That search would require sorting the data by street name. 

 There are many methods for sorting data. We present five representative 
samples selected from many sorting algorithms because each has a practical, 
engineering application. First we describe each algorithm, and then we 
compare their performance and suggest engineering circumstances in 
which you would apply each algorithm. Note that in all these algorithms, 
the comparisons are done using functions (e.g.,  gt(...) ,  lt(...) , or 
 equals(...) ) rather than mathematical operators. This permits collections 
containing arbitrarily complex objects to be sorted merely by customizing 
the comparison functions. 

   16.2.1  Insertion Sort 

 Insertion sort is perhaps the most obvious sorting technique. Given the 
original collection of objects to sort, it begins by initializing an empty 
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collection. For example, if the collection were a vector, you might allocate a 
new vector of the same size and initialize an “output index” to the start of 
that vector. Then the algorithm traverses the original vector, inserting each 
object from that vector in order into the new vector. This usually requires 
“shuffling” the objects in the new vector to make room for the new object. 

  Figure   16.2    illustrates the situation where the first four numbers of the 
original vector have been inserted into the new vector; the algorithm finds 
the place to insert the next number (10) and then moves the 12 across to 
make space for it.  

 Listing  16 . 1  shows the MATLAB code for insertion sort on a vector of 
numbers. The algorithm works for any data collection for which the function 
 lt(A,B)  compares two instances.  

6Original 2 12 4 10 8

2New 4 6 12

2 4 6 12

 Figure 16.2   Insertion sort in progress       

 Listing  16 . 1      The insertion sort function 

 1. function b = insertionsort(a) 
    % This function sorts a column vector,
    % using the insertion sort algorithm
 2.     b = []; i = 1; sz = length(a); 
 3. while i <= sz 
 4.         b = insert(b, a(i,1) ); 
 5.         i = i + 1; 
 6.     end 
 7. end
 8. function a = insert(a, v) 
    % insert the value v into column vector a
 9.     i = 1; sz = length(a); done = false; 
10. while i <= sz 
11. if lt(v, a(i,1)) 
12.             done = true; 
13.             a = [a(1:i-1); v; a(i:end)]; 
14. break;
15. end
16.         i = i + 1; 
17. end
18. if ~done 
19.         a(sz+1, 1) = v; 
20. end
21. end 



16.2  Algorithms for Sorting Data      391

 In Listing  16 . 1 : 

   Line 2: Initializes the result and the  while  loop parameters.  
  Line 4: Calls the helper function to insert the latest value into the 
output vector.  
  Lines 8−21: The helper function that inserts a new value into a 
vector and returns that vector.   

 Later we will refer to the selection sort algorithm that is similar in concept 
to insertion sort. Rather than sorting as the new data are put into the new 
vector, however, the selection sort algorithm repeatedly finds and deletes 
the smallest item in the original vector and puts it directly into the new 
vector. 

 Both insertion sort and selection sort are O(N 2 ) if used to sort a whole 
vector.  

   16.2.2  Bubble Sort 

 Where insertion sort is easy to visualize, it is normally implemented by 
creating a new collection and growing that new collection as the algorithm 
proceeds. Bubble sort is conceptually the easiest sorting technique to 
visualize and is usually accomplished by rearranging the items in a 
collection in place. Given the original collection of N objects to sort, it makes 
(N 2 1) major passes through the data. The first major pass examines all N 
objects in a minor pass, and subsequent passes reduce the number of 
examinations by 1. On each minor pass through the data, beginning with 
the first data item and moving incrementally through the data, the algorithm 
checks to see whether the next item is smaller than the current one. If so, the 
two items are swapped in place in the array. 

 At the end of the first major pass, the largest item in the collection has 
been moved to the end of the collection. After each subsequent major pass, 
the largest remaining item is found at the end of the remaining items. The 
process repeats until on the last major pass, the first two items are compared 
and swapped if necessary.  Figure   16.3    illustrates a bubble sort of a short 
vector. On the first pass, the value 98 is moved completely across the vector 
to the rightmost position. On the next pass, the 45 is moved into position. 
On the third pass, the 23 reaches the right position, and the last pass finishes 
the sort. 

 Listing  16 . 2  shows the MATLAB code for bubble sort on a vector of 
numbers. The algorithm works for any data type for which the function 
 gt(A,B)  compares two instances. Since bubble sort performs (N 2 1) * 
(N 2 1)/2 comparisons on the data, it is also O(N 2 ). Some implementations 
use a flag to determine whether any swaps occurred on the last major pass 
and terminate the algorithm if none occurred. However, the efficiency 



392 Chapter 16  Sorting

gained by stopping the algorithm early has to be weighed against the cost 
of setting and testing a flag whenever a swap is accomplished.   

 In Listing  16 . 2 : 

   Line 2: In order to be able to access the array in place, we pass it as a 
global variable instead of as a parameter.  
  Lines 3–4: Since each pass puts the largest element in place, we can 
reduce the item count by 1 each time. This initializes the size of the 
first pass.  
  Lines 4–14: Show the loop for the N 2 1 major passes.  
  Lines 6–12: Show the loop for each major pass.  

98 23 45 14 6

23 98 45 14 6

23 45 98 14

Pass 4 Moves 14
into Position

Pass 3 Moves 23
into Position

Pass 2 Moves 45
into Position

Pass 1 Moves 98
into Position

6

23 45 14 98 6

23 45 14 6 98

23 14 45 6 98

23 14 6 45 98

14 23 6 45 98

14 6 23 45 98

6 14 23 45 98

 Figure 16.3   Bubble sort       

 Listing  16 . 2      Bubble sort 

 1. function bubblesort() 
    % This function sorts the column array b in place,
    % using the bubble sort algorithm
 2. global b 
 3.      N = length(b); 
 4.      right = N-1; 
 5. for in = 1:(N-1) 
 6. for jn = 1:right 
 7. if gt(b(jn), b(jn+1)) 
 8.                  tmp = b(jn); % swap b(jn) with b(jn+1) 
 9.                  b(jn) = b(jn+1); 
10.                  b(jn+1) = tmp; 
11. end
12. end
13.          right = right - 1; 
14. end
15. end 
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  Lines 8–10: Swap the current item with its neighbor. By doing this 
in place, the largest item is always considered the current item until 
it reaches the end.  
  Line 13: Shortens the row after each major pass because the largest 
item in the last pass is placed at the right-hand end.    

   16.2.3  Quick Sort 

 As its name suggests, the quick sort algorithm is one of the fastest sorting 
algorithms. Like Bubble Sort, it is designed to sort an array “in place.” The 
quick sort algorithm is recursive and uses an elegant approach to 
subdividing the original vector.  Figure   16.4    illustrates this process. The 
algorithm proceeds as follows:  

   ■   The terminating condition occurs when the vector is of length 1, 
which is obviously sorted.  

  ■   A “pivot point” is then chosen. Some sophisticated versions go to a 
significant amount of effort to calculate the most effective pivot 
point. We are content to choose the first item in the vector.  

  ■   The vector is then subdivided by moving all of the items less than 
the pivot to its left and all those greater than the pivot to its right, 
thereby placing the pivot in its final location in the resulting vector.  

  ■   The items to the left and right of the pivot are then recursively 
sorted by the same algorithm.  

  ■   The algorithm always converges because these two halves are 
always shorter than the original vector.   

 Listing  16 . 3  shows the code for the quick sort algorithm. The 
partitioning algorithm looks a little messy, but it is just performing the 

36 23 45 14 6 67 33 42

6 14 23 33 36 42 45 67

23 14 6 33 45 67 42

42 45 67

36

14 6 23

6 14

33 42 45 67

6 14

6 14 23 33

 Figure 16.4   Quick sort       
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array adjustments. It starts with  i  and  j  outside the vector to the left and 
right. Then it keeps moving each toward the middle as long as the values 
at  i  and  j  are on the proper side of the pivot. When this process stops,  i  
and  j  are the indices of data items that are out of order. They are swapped, 
and the process is repeated until  i crosses past   j . Quick sort is O(N log N). 
As with the previous techniques, this algorithm applies to collections of 
any data type for which the functions  lt(A,B)  and  gt(A,B)  compare two 
instances.  

 In Listing  16 . 3 : 

   Line 1: Each recursive call is provided with the vector to sort and 
the range of indices to sort. These are initially  from = 1  and  to = 
length(a) .  
  Line 2: The terminating condition for the recursion is when the 
vector to sort has size 1—that is, when  from == to .  
  Line 3: The partition function performs three roles—it places the 
pivot in the right place, moves the smaller and larger values to the 

 Listing  16 . 3      Quick sort 

 1. function a = quicksort(a, from, to) 
    % This function sorts a column array,
    % using the quick sort algorithm
 2. if from < to 
 3.         [a p] = partition(a, from, to); 
 4.         a = quicksort(a, from, p); 
 5.         a = quicksort(a, p + 1, to); 
 6.     end 
 7. end
 8. function [a lower] = partition(a, from, to) 
    % This function partitions a column array
 9.     pivot = a(from); i = from - 1; j = to + 1; 
10. while i < j 
11.         i = i + 1; 
12. while lt(a(i), pivot) 
13.             i = i + 1; 
14. end
15.         j = j - 1; 
16. while gt(a(j), pivot) 
17.             j = j - 1; 
18. end
19. if (i < j) 
20.             temp = a(i); % this section swaps
21.             a(i) = a(j); % a(i) with a(j)
22.             a(j) = temp; 
23.         end 
24. end
25.     lower = j; 
26. end 
27.
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correct sides, and returns the location of the pivot to permit the 
recursive partitioning.  
  Lines 4 and 5: Show recursive calls to sort the left and right parts of 
the vector.  
  Lines 8–26: Show the helper function.  
  Line 9: Initializes the variables.  
  Lines 10–24: The outer loop continues until  i  passes  j .  
  Lines 11–14: Skip  i  forward over all the items less than the pivot.  
  Lines 15–18: Skip  j  backward over all the elements greater than the 
pivot.  
  Lines 20–22: If  i   <   j ,  i  is indexing an item greater than the pivot, 
and  j  is indexing an item less than the pivot. By swapping the 
contents of  a(i)  and  a(j) , we rectify both inequities and can 
continue the inner loop.  
  Line 25: When the loop exits, both  i  and  j  are indexing the pivot.   

 There is one performance caution about quick sort. Its speed depends on 
the randomness of the data. If the data are mostly sorted, its performance 
reduces to O(N 2 ).  

   16.2.4  Merge Sort 

 Merge sort is another O(N log N) algorithm that achieves speed by dividing 
the original vector into two “equal” halves. It is difficult at best to perform a 
merge sort in place in a collection. Equality, of course, is not possible when 
there is an odd number of objects to be sorted, in which case the length of the 
“halves” will differ by at most 1. The heart of the merge sort algorithm is the 
technique used to reunite two smaller sorted vectors. This function is called 
“merge.” Its objective is to merge two vectors that have been previously 
sorted. Since the two vectors are sorted, the smallest object can only be at the 
front of one of these two vectors. The smallest item is removed from its place 
and added to the result vector. This merge process continues until one of the 
two halves is empty, in which case the remaining half (whose values all 
exceed those in the result vector) is copied into the result. 

 The merge sort algorithm is shown in  Figure   16.5    and proceeds as follows: 

   ■   The terminating condition is a vector with length less than 2, which 
is, obviously, in order  

  ■   The recursive part invokes the merge function on the recursive call 
to merge the two halves of the vector  

  ■   The process converges because the halves are always smaller than 
the original vector   

 The code for merge sort is shown in Listing  16 . 4 .           
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98 23 45 14 6 67 33 42

6 14 23 33 42 45 67 98

98 23 45 14 6 67 33 42

14 23 45 98 6 33 42 67

98 23

23 98 14 45 6 67 33 42

45 14 6 67 33 42

98 23 45 14 6 67 33 42

 Figure 16.5   Merge sort       

 Listing  16 . 4      Merge sort 

 1. function b = mergesort(a) 
    % This function sorts a column array,
    % using the merge sort algorithm
 2.    b = a; sz = length(a); 
 3. if sz > 1 
 4.         szb2 = floor(sz / 2); 
 5.         first = mergesort(a(1 : szb2)); 
 6.         second = mergesort(a(szb2+1 : sz)); 
 7.         b = merge(first, second); 
 8.     end 
 9. end
10. function b = merge(first, second) 
    %   Merges two sorted arrays 
11.     i1 = 1; i2 = 1; out = 1; 
        % as long as neither i1 nor i2 past the end, 
        % move the smaller element into a 
12. while (i1 <= length(first)) & (i2 <= length(second)) 
13.         if lt(first(i1), second(i2)) 
14.             b(out,1) = first(i1); i1 = i1 + 1; 
15.         else 
16.             b(out,1) = second(i2); i2 = i2 + 1; 
17. end
18.         out = out + 1; 
19.     end 
        % copy any remaining entries of the first array 
20. while i1 <= length(first) 
21.         b(out,1) = first(i1); i1 = i1 + 1; out = out + 1; 
22. end
        % copy any remaining entries of the second array 
23.     while i2 <= length(second) 
24.         b(out,1) = second(i2); i2 = i2 + 1; out = out + 1; 
25. end
26. end 
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 In Listing  16 . 4 : 

   Line 2: Initializes the parameters.  
  Line 3: The terminating condition is an array of length 1, which 
does not need sorting.  
  Line 4: Divides the array in half.  
  Lines 5 and 6: Sort the halves of the array.  
  Line 7: Merges the two sorted halves.  
  Lines 10–26: Show the helper function to merge sorted arrays.  
  Lines 12–19: This loop repeats until one of the two arrays is used 
up choosing and removing the smaller element out of the two 
arrays.  
  Lines 20–25: Copy the remains of each array to the result.    

   16.2.5  Radix Sort 

 A discussion of sorting techniques would not be complete without 
discussing radix sort, commonly referred to as bucket sort. This is also an 
O(N log N) algorithm whose most obvious application is for sorting 
physical piles of papers, such as students’ test papers. However, the same 
principle can be applied to sorting successively on the units, tens and 
hundreds digit of numbers (hence, the term radix sort). The process 
begins with a stack of unsorted papers, each with an identifier consisting 
of a number or a unique name. One pass is made through the stack 
separating the papers into piles based on the first digit or character of the 
identifier. Subsequent passes sort each of these piles by subsequent 
characters or digits until all the piles have a small number of papers that 
can be sorted by insertion or selection sorts. The piles can then be 
reassembled in order.  Figure   16.6    illustrates the situation at the end of 
the second sorting pass when piles for the first digit have also been 
separated by the second digit.  

 There are a number of reasons why this technique is popular for 
sorting: 

   ■   There is a minimal amount of “paper shuffling” or bookkeeping  
  ■   The base of the logarithm in the O(N log N) is either 10 (numerical 

identifier) or 26 (alphabetic identifier), thereby providing a 
“constant multiplier” speed advantage  

  ■   Once the first sorting pass is complete, one can use multi-processing 
(in the form of extra people) to perform the remaining passes in 
parallel, thereby reducing the effective performance to O(N) (given 
sufficient parallel resources)     
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00xx 01xx 02xx 03xx

10xx 11xx 12xx 13xx

20xx 21xx 22xx 23xx

30xx 31xx 32xx 33xx

 Figure 16.6   Radix sort       

   16.3  Performance Analysis 

 In order to perform a comparison of the performance of different algorithms, 
a script was written to perform each sort on a vector of increasing length 
containing random numbers. The script started with a length of 4 and 
continued doubling the length until it reached 262,144 (2 18 ). To obtain 
precise timing measurements, each sort technique was repeated a sufficient 
number of times to obtain moderately accurate timing measurements with 
the internal millisecond clock. In order to eliminate common computation 
costs, it was necessary to measure the overhead cost of the loops themselves 
and subtract that time from the times of each sort algorithm. Note that in 
order to show the results of the system internal sort on the same chart, its 
execution time was multiplied by 1,000. 

  Figure   16.7    shows a typical plot of the results of this analysis, illustrating 
the relative power of O(N log N) algorithms versus O(N 2 ) algorithms. The 
plot on a log-log scale shows the relative time taken by the selection sort, 
insertion sort, bubble sort, merge sort, quick sort, and quick sort in place 
algorithms, together with the internal sort function. Also on the chart are 
plotted trend lines for O(N 2 ) and O(N log N) processes. We can make the 
following observations from this chart:  

   ■   Since the scales are each logarithmic, it is tempting to claim that 
there is “not much difference” between O(N 2 ) and O(N log N) 
algorithms. Looking closer, however, it is clear that for around 
200,000 items, the O(N 2 ) sorts are around 100,000 times slower than 
the O(N log N) algorithms.  
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  ■   The performance of most of the algorithms is extremely erratic 
below 100 items. If you are sorting small amounts of data, the 
algorithm does not matter.  

  ■   The selection sort, bubble sort, and insertion sort algorithms clearly 
demonstrate O(N 2 ) behavior.  

  ■   The merge sort and quick sort algorithms seem to demonstrate 
O(N log N). Notice, however, that the performance of quick sort is 
slightly better than O(N log N). This slight improvement is due to 
the fact that once the pivot has been moved, it is in the right place 
and is eliminated from further sorting passes.  

  ■   Clearly, the internal sort function, in addition to being 1,000 times 
faster than any of the coded algorithms, is closely tracking the 
O(N log N) performance curve, indicating that it is programmed 
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with one of the many algorithms that use divide-and-conquer to 
sort the data as efficiently as possible.    

   16.4  Applications of Sorting Algorithms 

 This section discusses the circumstances under which you might choose to 
use one or another of the sorting algorithms presented above. We assert 
here without proof that the theoretical lower bound of sorting is O(N log N). 
Consequently, we should not be looking for a generalized sorting algorithm 
that improves on this performance. However, within those constraints, 
there are circumstances under which each of the sorting techniques 
performs best. As we saw in the analysis above, the internal sort function is 
blindingly fast and should be used whenever possible. The subsequent 
paragraphs show the applicability and limitations of the other sort 
algorithms if you cannot use  sort(...) . 

   16.4.1  Using sort(. . .) 

 The first and most obvious question is why one would not always use the 
built-in  sort(...)  function. Clearly, whenever that function works, you 
should use it. Its applicability might seem at first glance to be limited to 
sorting numbers in an array, and you will come across circumstances when 
you need to sort more complex items. You might, for example, have a 
structure array of addresses and telephone numbers that you wish to sort 
by last name, first name, or telephone number. In this case, it seems that the 
internal sort program does not help, and you have to create your own sort. 

  Extracting and Sorting Vectors and Cell Arrays     However, a closer 
examination of the specification of the sort function allows us to generalize 
the application of  sort(...)  significantly. When you call  sort(v) , it actually 
offers you a second result that contains the indices used to sort  v . So in the 
case where you have a cell array or a structure array and your sort criteria 
can be extracted into a vector, you can sort that vector and use the second 
result, the indexing order, to sort the original array. Furthermore, if you can 
extract character string data into a cell array of strings, the internal sort 
function will sort that cell array alphabetically. 

 For example, consider again the CD collection from  Chapter   10   . We 
might want to find the most expensive CD in our collection and then make 
a list of artists and titles ordered alphabetically by artist. We leave the 
details of this as an exercise for the reader.   

   16.4.2  Insertion Sort 

 Insertion sort is the fastest means of performing incremental sorting. If a 
small number of new items—say, M—are being added to a sorted collection 
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of size N, the process will be O(M*N), which will be fastest as long as 
M < log N. For example, consider a national telephone directory with over 
a billion numbers that must frequently be updated with new listings. 
Adding a small number of entries (< 20) would be faster with insertion sort 
than with merge sort, and quick sort would be a disaster because the data 
are almost all sorted (see below).  

   16.4.3  Bubble Sort 

 Bubble sort is the simplest in-place sort to program and is fine for small 
amounts of data. The major advantage of bubble sort is that in a fine-grained 
multi-processor environment, if you have N/2 processors available with 
access to the original data, you can reduce the Big O to O(N).  

   16.4.4  Quick Sort 

 As its name suggests, this is the quickest of the sorting algorithms and 
should normally be used for a full sort. However, it has one significant 
disadvantage: its performance depends on a fairly high level of 
randomness in the distribution of the data in the original array. If there is 
a significant probability that your original data might be already sorted, 
or partially sorted, your quick sort is not going to be quick. You should 
use merge sort.  

   16.4.5  Merge Sort 

 Since its algorithm does not depend on any specific characteristics of the 
data, merge sort will always turn in a solid O(N log N) performance. You 
should use it whenever you suspect that quick sort might get in trouble.  

   16.4.6  Radix Sort 

 It is theoretically possible to write the radix sort algorithm to attempt to 
take advantage of its apparent performance improvements over the more 
conventional algorithms shown above. However, some practical problems 
arise: 

   ■   In practice, the manipulation of the arrays of arrays necessary to 
sort by this technique is quite complex  

  ■   The performance gained for manual sorts by “parallel processing” 
stacks using multiple people cannot be realized  

  ■   The logic for extracting the character or digit for sorting is going to 
detract from the overall performance   

 Therefore, absent some serious parallel processing machines, we 
recommend that the use of bucket sort be confined to manually sorting 
large numbers of physical objects. 
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    16.5  Engineering Example—A Selection of Countries 

 In the Engineering Application problem in  Section   10.5   , we attempted to 
find the best country for a business expansion based on the rate of growth of 
the GNP for that country versus its population growth. The initial version of 
the program returned the suggestion that the company should move to 
Equatorial Guinea. However, when this was presented to the Board of 
Directors, it was turned down, and you were asked to bring them a list of the 
best 20 places to give them a good range of selection. 

 We should make two changes to the algorithm: 

   ■   Originally, we used a crude approximation to determine the slope 
of the population and GNP curves. However, now we know that 
 polyfit  can perform this slope computation accurately, and we will 
substitute that computation.  

  ■   We will use the internal sort function to fi nd the 20 best countries. 
The code to accomplish this, a major revision of the code in  Chapter   10   , 
is shown in Listing  16 . 5 .    

 Listing  16 . 5      Updated world data analysis 

 1. function doit 
 2.     worldData = buildData('World_data.xls');
 3.     n = 20; 
 4.     bestn = findBestn(worldData, n); 
 5. fprintf('best %d countries are:\n', n) 
 6. for best = bestn(end:-1:1) 
 7.         fprintf('%s\n', worldData(best).name) 
 8. end
 9. end
10. function bestn = findBestn(worldData, n) 

% find the indices of the n best countries 
% according to the criterion in the function fold 
% we first map world data to add the field growth

11. for ndx = 1:length(worldData) 
12.         cntry = worldData(ndx); 
13.         worldData(ndx).growth = fold(cntry); 
14. end

% now, sort on this criterion 
15.     values = [worldData.growth]; 
16.     [junk order] = sort(values); 

% filter these to keep the best 10 
17.     bestn = order(end-n+1:end); 
18. end 
19. function ans = fold(st) 

% s1 is the rate of growth of population 
20.     pop = st.pop(~isnan(st.pop)); 
21.     yr = st.year(~isnan(st.pop)); 
22.     s1 = slope(yr, pop)/mean(pop); 

continued on next page
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 In Listing  16 . 5 : 

   Line 1: Wraps the script in a pseudo-function to allow the helper 
functions to reside in the same file.  
  Line 2: Reads in the world data.  
  Line 3: Selects the number of countries to present.  
  Line 4: Calls the function that will return the indices of the n best 
countries.  
  Lines 5–8: Print the list of country names in reverse order (the best first).  
  Lines 10–18: Show an updated version of the original function to return 
the indices of the n best countries.  
  Lines 11–14: Map the  worldData  structure array, adding to each a 
field called  growth  that contains the criterion specified in the  fold  
function.  
  Lines 15 and 16: Extract and sort the values of  growth  for each country.  
  Line 17: Returns the last n countries that will have the highest  growth  
values.  

  Lines 19–27: The  fold  function 
unchanged from  Chapter   10   .  
  Lines 28–35: The modified  slope  
function from  Chapter   10   .  
  Lines 32 and 33: Use  polyfit  to 
compute an accurate slope and return 
it to the calling function.   

 The results from running this version 
are shown in  Table   16.2   . This seems to be an acceptable list of possibilities 
to take back to the Board of Directors.          

% s2 is the rate of growth of the GDP 
23.     gdp = st.gdp(~isnan(st.gdp)); 
24.     yr = st.year(~isnan(st.gdp)); 
25.     s2 = slope(yr, gdp)/mean(gdp); 

% Measure of merit is how much faster 
% the gdp grows than the population 

26.     ans = s2 - s1; 
27. end 
28. function sl = slope(x, y) 

% Estimate the slope of a curve 
29. if length(x) == 0 || x(end) == x(1) 
30.         error('bad data')
31.     else 
32.         coef = polyfit(x, y, 1); 
33.         sl = coef(1); 
34.     end 
35. end

 A deceptively simple question arises: Should you expect the 
 worldData  at line 6 of Listing  16 . 7  to contain the field 
growth? Actually, it will not. Although it appears that the 
function  findBestn  adds this field to  worldData , it is 
working with a copy of the  worldData  structure array that 
is not returned to the calling script. 

 Common Pitfalls 16.1 
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 Table 16.2   Updated world data results 

 Best 20 countries are: 

 Estonia Lebanon 

 St. Kitts & Nevis Malta 

 Albania Cyprus 

 Vietnam Tajikistan 

 Croatia Taiwan 

 Kazakhstan Korea, Republic of 

 Azerbaijan Grenada 

 Uzbekistan Ireland 

 Georgia Portugal 

 Dominica Antigua 

     Chapter Summary 

   This chapter discussed:  

   ■   A technique for comparing the performance of algorithms  
  ■   A range of useful algorithms for sorting a collection of data  
  ■   Application areas in which these algorithms are most 

appropriate    

  Self Test 

 Use the following questions to check your understanding of the material in this 
chapter: 

  True or False  

   1.    When computing the Big O of sequential operations, you retain only 
the term that grows fastest with N.   

   2.    All search algorithms have O(N).   

   3.    No sort algorithm can perform better than O(NlogN).   

   4.    All sorting algorithms with O(N 2 ) traverse the complete data 
collection N times.   

   5.    Quick sort in reality should be listed as O(N 2 ).   
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  Fill in the Blanks  

   1.    Bubble sort has a complexity of _____________.   

   2.    If for a particular operation on a given set of data of size N, you 
have given three algorithms with complexities O(N Log N), O(N2) 
and O(log N), _____________ would be chosen for faster output.   

   3.    ________________ is the fastest means of performing incremental 
sorting.   

   4.    __________ sort and _____________ sort are designed to sort the 
data in place.   

   5.    The system internal  sort(...)  returns the ___________ and a(n) 
___________ that allow you to sort any collection from whose 
elements one can derive a(n) ___________ or ______________________.      
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  Chapter Objectives 

 This chapter demonstrates algorithms that solve two problems: 
finding the minimum spanning tree for a graph and finding the best 
path through a graph. However, first we need to understand the 
following: 

    ■   How to construct and use two special forms of data collection: 
queues and priority queues  

  ■   How to build a model of a graph  

  ■   How to traverse and search a graph     

  Introduction 

 The collections we have considered so far—vectors, arrays, structure 
arrays, and cell arrays—have essentially been collections whose 
elements are linearly related to each other by being organized in 
rows and columns. However, practical engineering frequently meets 
data that are not organized so easily. Graphs are one such data set. 
The ultimate goal of this chapter is to discuss this most general form 
of data structure. We need first to resolve the semantic problem of 
the name “graph.” We typically think of a graph as a plot. However, 
in computer science, a  graph  is a collection of  nodes  connected by 
edges. A street map might be a useful mental model of a graph 
where the streets are the edges and the intersections are the nodes. 

 To process graphs effectively, we must first consider two simpler 
concepts: queues in general and priority queues in particular.   
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      17.1  Queues 

 We first consider the nature and implementation of queues, special 
collections that enable us to process graphs efficiently. We experience the 
concept of a queue every day of our lives. A line of cars waiting for the light 
to turn green is a queue; when we stand in line at a store or send a print job 
to a printer, we experience typical queue behavior. In general, the first 
object entering a queue is the first one to exit the other end. 

   17.1.1  The Nature of a Queue 

 Formally, we refer to a queue as a first in/first out (FIFO) collection, as 
illustrated in  Figure   17.1   . The most general form of a queue is permitted to 
contain any kind of object, that is, an instance of any data type or class. A 
cell array, therefore, would be a good underlying structure upon which to 
build queue behavior.  

 Typically, operations on a queue are restricted to the following: 

   ■    enqueue  puts an object into the queue  
  ■    dequeue  removes an object from the queue  
  ■    peek  copies the first object out of the queue without removing it  
  ■    isempty  determines that there are no items in the queue    

   17.1.2  Implementing Queues 

 Although there are many ways to implement a queue, a cell array is a good 
choice because it is a linear collection of objects that may be of any type and 
can be extended or shortened without any apparent effort. If we establish a 
queue using a cell array, the implementation of the above behavior is trivial: 

   ■    enqueue  concatenates data at the end of the cell array  
  ■    dequeue  removes the item from the front of the cell array and 

returns that item to the user  
  ■    peek  merely accesses the first item in the cell array  
  ■    isempty  is the standard MATLAB test for the empty vector   

 Clearly, because all the cell array operations are also accessible to the 
programmer, nothing prevents an unscrupulous programmer from using 
other operations on the queue—for example, adding an item to the front of 

DequeueEnqueue

 Figure 17.1   A queue       
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the queue rather than the back to effectively “jump in line.” There are 
implementations beyond the scope of this text that use object-oriented 
programming techniques to encapsulate the data and restrict the available 
operations on that data to those that implement the required functionality. 
However, for our purposes, the “open” cell array implementation is 
sufficient. 

 Functions that perform the enqueue and dequeue operations for a queue 
are shown in Listing  17 . 1 .  

 In Listing  17 . 1 : 

   Line 1: Obviously, these two trivial functions should actually be in 
separate files. Both functions must return the updated queue 
because they receive copies of the original queue.  
  Line 2: Concatenates the enqueued item in a cell (the braces) at the 
back of the cell array.  
  Line 3: The  dequeue  function must return the new queue and the 
item being removed.  
  Line 4: We return the first item on the cell array and remove it by 
returning the rest.    

   17.1.3  Priority Queues 

 There are times when we wish ordinary queues were priority queues. For 
example, at the printer where you wait an hour for one page while someone 
prints large sections of an encyclopedia and you wonder why the print 
queue can’t put really small jobs ahead of really large jobs. 

 The only difference between an ordinary queue and a priority queue is in 
the  enqueue  algorithm. On a priority queue, the  enqueue  function involves 
adding the new item in order to the queue, as illustrated in  Figure   17.2   . For 
the  enqueue  function to add in order, there must be a means of comparing 
two objects. Here, we use the function  is_before  that generally should be 
able to compare any two objects.  

 Listing  17 . 1      Enqueue and dequeue functions 

1. function q = qEnq(q, data) 
% enqueue onto a queue 

2.    q = [q {data}]; 
3. end 
4. function [q ans] = qDeq(q) 

% dequeue 
5.    ans = q{1}; 
6.    q = q(2:end); 
7. end 
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 In this implementation, it is sufficient to be able to compare numbers or 
structures that contain either the fields  key  or  NaN . Clearly, this can be 
extended as necessary to compare any two objects. 

 The code for  is_before  is shown in Listing  17 . 2 .  

 In Listing  17 . 2 : 

   Line 1: Shows a function that consumes two objects and returns a 
Boolean result.  
  Line 2: Captures the data type (class) of the first object.  
  Line 3: Initializes the result.  
  Line 4: Checks that the second object is the same data type—
otherwise, the  false  answer is returned.  
  Line 5: Decides how to compare the objects based on the data type.  
  Lines 6 and 7: Numbers are easily compared.  

Dequeue
Enqueue

 Figure 17.2   A priority queue       

 Listing  17 . 2      Comparing two objects 

 1. function ans = is_before(a, b) 
% comparing two objects

 2.     acl = class(a); 
 3.     ans = false; 
 4.     if isa(b, acl) 
 5.         switch acl 
 6.             case 'double'
 7.                 ans = a < b; 
 8.             case 'struct'
 9.                 if isfield(a, 'key')
10.                     ans = a.key < b.key; 
11.                 elseif isfield(a, 'dod')
12.                     ans = age(a) < age(b); 
13.                 else 
14.                     error('comparing unknown structures')
15.                 end 
16.             otherwise 
17.                 error(['can''t compare ' acl 's'])
18.         end 
19. end
20. end 
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  Line 8: Selects different structures to compare based on fields in the 
structure.  
  Lines 9 and 10: If the field  key  is present, compare these.  
  Lines 11 and 12: If the field  age  is present, compare these.  
  Lines 13–18: Show that an error exits.   

 The  enqueue  function that uses  is_before(...)  to compare objects for a 
priority queue is shown in Listing  17 . 3 .  

 In Listing  17 . 3 : 

   Line 1: Shows the same signature as the  enqueue  function for 
ordinary queues.  
  Lines 2 and 3: Initialize the  while  loop parameters.  
  Line 4: Moves the index  in  down the existing queue until it falls off 
the end of the cell array or finds something that the  item  to insert 
goes before. This second exit is implemented with a  break  statement.  
  Line 5: Checks whether the  item  is less than the current entry in the 
queue.  
  Lines 6 and 7: If so, mark the spot and exit the loop.  
  Lines 8 and 9: Otherwise, keep moving down the queue.  
  Line 11: Inserts the  item  in a container between the front part of the 
queue and the remains of the queue from  at  to the  end .    

   17.1.4  Testing Queues 

 It is always advisable to test utility functions thoroughly before using them 
in complex algorithms. First we will build a simple utility for presenting the 
contents of any cell array, and then we will write a script to test the queues. 

 In order to observe the results from testing the queues, we need a function 
that will convert a cell array to a string for printing. Although it is tempting 

 Listing  17 . 3      Priority queue enqueue function 

 1. function pq = pqEnq(pq, item) 
% enqueue in order to a queue 

 2.     in = 1; 
 3.     at = length(pq)+1; 
 4.     while in <= length(pq) 
 5.         if is_before(item, pq{in}) 
 6.             at = in; 
 7.             break; 
 8.         end 
 9.         in = in + 1; 
10.     end 
11.     pq = [pq(1:at-1) {item} pq(at:end)]; 
12. end 
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to try to write a single function to accomplish this, we achieve more 
maintainable code by separating the cell array traversal from the details of 
converting each item to a string. The first function,  CAToString , which 
traverses the cell array, is shown in Listing  17 . 4 .  

 In Listing  17 . 4 : 

   Line 1: The function consumes any cell array and returns a string.  
  Line 2: Initializes the string.  
  Line 3: Traverses the cell array.  
  Line 4: Extracts each item from the container, uses the  toString  
utility function below to convert it to a string, and appends it to the 
end of the output string together with a new-line character (the 
ASCII value 13).   

 Of course, the real effort in creating this string is the second function that 
converts each individual item from the cell array to its string representation. 
This is shown in Listing  17 . 5 .  

 In Listing  17 . 5 : 

   Line 1: Java programmers might recognize the concept of 
converting an object to its string equivalent.  
  Lines 2 and 3: If the object is a string, surround it with single quotes.  
  Lines 4–6: Individual scalar numbers are printed in  %g  form.  
  Lines 7–12: Vectors are enclosed in braces.  
  Line 14: Recursively uses  toString  to print the fields of a structure.  
  Lines 15 and 16: A special case wherein if there is a  name  field in the 
structure, the value of that field is used for the string.  
  Lines 18–23: Extract the field names and iterate through them one at 
a time, creating a string by appending each field name with its 
value and a new line.   

 Listing  17 . 6  illustrates a test script that exercises most of the available 
functions for queues and priority queues using numbers. However, a queue 
can contain any object you can display, and a priority queue can contain 
any object you can display and compare to another of the same type.  

 Listing  17 . 4      Converting a cell array to a string 

1. function str = CAToString(ca) 
% Traverse a cell array to make a string

2.     str = ''; 
3.     for in = 1:length(ca) 
4.         str = [str toString(ca{in}) 13]; 
5.     end 
6. end 
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 Listing  17 . 5      Converting any object to a string 

 1. function str = toString(item) 
% turn any object into its string representation 

 2.     if isa(item, 'char')
 3.         str = ['''' item '''']; 
 4.     elseif isa(item, 'double')
 5.         if length(item) == 1 
 6.             str = sprintf('%g', item ); 
 7.         else 
 8.             str = '[';
 9.             for in = 1:length(item) 
10.                 str = [str ... 
11.                     sprintf(' %g', item(in) ) ]; 
12.             end 
13.             str = [str ' ]'];
14.         end 
15.     elseif isa(item, 'struct')
16.         if isfield(item, 'name')
17.             str = item.name; 
18.         else 
19.             nms = fieldnames(item); 
20.             str = []; 
21.             for in = 1:length(nms) 
22.                 nm = nms{in}; 
23.                 str = [str nm ': ' ... 
24.                     toString(item.(nm)) 13]; 
25.             end 
26.         end 
27.     else 
28.         str = 'unknown data';
29.     end 
30. end 

 Listing  17 . 6      Testing the queues 

 1. q = []; 
 2. for ix = 1:10 
 3.     q = qEnq(q, ix); 
 4. end 
 5. CAToString(q) 
 6. [q ans] = qDeq(q); 
 7. fprintf('dequeue -> %d leaving \n%s\n', ... 
 8.     ans, CAToString(q) ); 
 9. fprintf('peek at queue -> %d leaving \n%s\n', ... 
10.     q{1}, CAToString(q) ); 
11. pq = []; 
12. for ix = 1:10 
13.     value = floor(100*rand); 
14.     fprintf(' %g:', value );
15. pq = pqEnq(pq, value ); 
16. end 
17. fprintf('\npriority queue is \n%s\n', ... 
18.     CAToString(pq) ); 
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 In Listing  17 . 6 : 

   Line 1: Initializes a queue.  
  Lines 2–4: Enqueue 10 numbers.  
  Line 5: Displays the resulting queue.  
  Lines 6–8: Dequeue and print one value and the remaining queue.  
  Lines 9 and 10: Peek at the head of the queue and verify that we 
have not changed its contents.  
  Line 11: Creates a priority queue.  
  Lines 12–16: Enqueue 10 random integers.  
  Lines 17 and 18: List the queue to show that they were enqueued in 
order.   

 A serious reader can verify that this indicates correct queue behavior.   

   17.2  Graphs 

 This chapter focuses on processing a graph—the most general form of dynamic 
data structure, an arbitrary collection of  nodes  connected by  edges . The edges 
may be  directional  to indicate that the graph can be traversed along that edge 
in only one direction (like a one-way street). The edges may also have a value 
associated with them to indicate, for example, the cost of traversing that edge. 
We refer to this as a  weighted graph . For a street map, this cost could either be 
the distance, or in a more sophisticated system, the travel time—a function of 
the distance, the speed limit, and the traffic congestion. Graphs are not 
required to be completely connected, and they may contain  cycles —closed 
loops in which the unwary algorithm could become trapped. Graphs also 
have no obvious starting and stopping points. A  path  on a graph is a connected 
list of edges that is the result of traversing a graph. 

   17.2.1  Graph Examples 

 A simple graph is shown in  Figure   17.3   . In the figure, the connection points 
 A ... F  are the nodes and the edges are the interconnecting lines, which are 

A B

E D

F C

 Figure 17.3   A simple graph       
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directional but not weighted. Graphs occur frequently in everyday life, as 
illustrated by the street map shown in  Figure   17.4   . Street maps can be 
conveniently represented as graphs where intersections are the nodes and 
streets are the edges. Streets can be directional (one-way), and they may 
have weights associated with them—either the transit time (a function of 
the length of the street and its speed limit) or with access to real-time traffic 
information, a more complex estimate of the transit time.    

   17.2.2  Processing Graphs 

 In designing algorithms that operate on graphs in general, we need to 
consider the following constraints: 

   ■   With cycles permitted in the data, there is no natural starting point 
like the beginning of a cell array. Consequently, the user must always 
specify a place on the graph to start as well as the place to stop.  

  ■   There are no natural “leaf nodes” where a search might have to stop 
and back up. Consequently, an algorithm processing a graph must 
have a means of determining that being at a given node is the “end 
of the line.” Typically, this is accomplished by maintaining a 
collection of visited nodes as it progresses around the graph. Each 
time a node is considered, the algorithm must check to see whether 

 Figure 17.4   A simple street map       
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that node is already in the visited collection. If so, it refuses to return 
to that node. The algorithm must backtrack if it reaches a node from 
which there is no edge to a node that has not already been visited.  

  ■   Whereas on a cell array there is only one feasible path from one node 
to another, there may be many possible paths between two nodes on 
a graph. The best algorithms that search for paths must take into 
account a comparison between paths to determine the best one.   

 For a simple, consistent example, consider the graph shown in  Figure   17.5   . 
We will use this simple example to demonstrate minimum spanning trees 
(MSTs) and finding paths through the graph.   

   17.2.3  Building Graphs 

 We need to consider graphs as two collections of data as follows: 

   ■   A list of  n  nodes with the properties of identity (a name) and 
position  

  ■   An  n 3 n  adjacency matrix that specifies the weight of the edge 
from each node to any other node   

 If one node is not reachable from another, by convention we will specify 
that weight as 0. This is actually a rather intimidating structure to build “by 
hand.” In order to facilitate reliable construction of the adjacency matrix, 
we start with a simpler description of the graph shown in  Figure   17.5   . This 
graph can be described initially with the following data: 

   ■    cost  a vector of size  m  3  1  containing the weights for each of  m  edges  
  ■    dir  a vector of size  m  3  1  indicating the directionality of each edge 

as follows: 
   •     2  two-way edge  
  •     1  one way in a positive direction  
  •   – 1  one way in the other direction    

  ■    node  a matrix of size  n  3  rows  containing the edge indices for each 
node. For example, if  node(i, j)  contains  x , it says that the  i th 
node connects to the  x th edge. If  x  is 0, there is no connection. The 
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 Figure 17.5   A weighted graph       
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value  rows  is the maximum number of nodes that can be reached 
from any other node.  

  ■    coord  a matrix of size  n  ×  2  containing the x-y coordinates of each 
node that is used only for the graphical representation of the graph.   

 The script shown in Listing  17 . 7  starts with the above representation of 
the graph and calls the function  grAdjacency(...)  to produce the adjacency 
matrix. We will save this script as the constructor script  makeGraph.m . Again 
referencing  Figure   17.5   , the sequence of edges used in this script is: 

A-B, A-C, A-D, A-E, A-F, B-F, B-C, C-D, D-E, F-G, E-G, G-H, E-H 

 Large adjacency matrices usually contain very little data relative to their 
size. Consequently, to store them as a conventional  n   ×  n  array is to waste 
most of the storage space and may even cause memory problems for the 
processor. Recognizing this eventuality, the MATLAB language provides a 
special class,  sparse , that stores a matrix as lists of row and column indices 
and the associated value. All normal array and matrix operations can be 
applied to a sparse matrix. The assumption is that any value not specifically 
allocated in a sparse matrix contains a zero. This is consistent with the 
earlier treatment of vectors and arrays where unknown values are filled 
with 0. 

 The function  grAdjacency(...)  that converts graph data from arrays of 
nodes, costs, and direction to the adjacency matrix form builds a sparse 

 Listing  17 . 7      Constructing a simple graph 

    % edge weights 
 1. cost = [2 2 2 2 2 3 3 3 3 1 2 1 3]; 
    % edge directions 
 2. dir = [2 2 2 2 2 2 2 2 2 2 2 2 2]; 
    % connectivity 
 3. node = [ 1 2 3 4 5; ...   % edges from A 
 4.          1 6 7 0 0; ...   % edges from B 
 5.          2 7 8 0 0; ...   % edges from C 
 6.          3 8 9 0 0; ...   % edges from D 
 7.          4 11 13 9 0; ... % edges from E 
 8.          5 6 10 0 0; ...  % edges from F 
 9.         10 11 12 0 0; ... % edges from G 
10.         12 13 0 0 0];     % edges from H 
    % coordinates 
11. coord = [ 5 6; ... % A 
12.           3 9; ... % B 
13.           1 6; ... % C 
14.           3 1; ... % D 
15.           6 2; ... % E 
16.           6 8; ... % F 
17.           9 7; ... % G 
18.          10 2];    % H 
19. A = grAdjacency( node, cost, dir ) 
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matrix by establishing three vectors of the same length—the row index, the 
column index, and the value of each point in the sparse matrix. The code to 
accomplish this is shown in Listing  17 . 8 .  

 In Listing  17 . 8 : 

   Line 1: Shows a function consuming the  node ,  cost , and  direction  
arrays defined above. The locations of the nodes are needed only 
for plotting.  
  Lines 2–4: Show initial parameters, where  k  is the number of entries 
in the sparse matrix.  

 Listing  17 . 8      Creating an adjacency matrix 

 1. function A = grAdjacency( node, cost, dir ) 
% compute an adjacency matrix.
% it should contain the weight from one
% node to another (0 if the nodes 
%                  are not connected) 

 2. [m cols] = size(node); 
 3. n = length(cost); 
 4. k = 0; 

% iterate across the edges 
%    finding the nodes at each end of the edge

 5. for is = 1:n 
 6.     iv = 0; 
 7.     for ir = 1:m 
 8.         for ic = 1:cols 
 9.             if node(ir, ic) == is 
10.                 iv = iv + 1; 
11.                 if iv > 2 
12. error(

'bad intersection matrix');
13.                 end 
14.                 ij(iv) = ir; 
15.             end 
16.         end 
17.     end 
18.     if iv ~= 2 
19.         error(sprintf(

'didn't find both ends of edge %d', is)); 
20.     end 
21.     t = cost(is); 
22.     if dir(is) ~= -1 
23.         k = k + 1; 
24.         ip(k) = ij(1); jp(k) = ij(2); tp(k) = t; 
25.     end 
26.     if dir(is) ~= 1 
27.         k = k + 1; 
28.         ip(k) = ij(2); jp(k) = ij(1); tp(k) = t; 
29.     end 
30. end 
31. A = sparse( ip, jp, tp ); 
32. end 
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  Line 5: Iterates down the list of edges.  
  Line 6: Initializes the number of nodes found connected to the edge.  
  Lines 7 and 8: Iterate across the nodes and columns of the node 
array, looking for the nodes connected to the edge.  
  Lines 9 and 10: When we find the edge value, we want to save that 
node index.  
  Lines 11–13: There can be only two ends to an edge; any more 
indicates a bad data set.  
  Line 14: Saves each end in the local variable  ij .  
  Lines 18–20: When we finish the traversal, there must be a node at 
each end of the edge.  
  Line 21: Retrieves the cost of this edge.  
  Lines 22–25: Since bidirectional edges must be in the matrix twice, 
we check to see if the edge is bidirectional or forward, and enter the 
forward path in the sparse matrix.  
  Lines 26–28: Similarly, the reverse path is entered only if the edge is 
not forward.  
  Line 31: Constructs the sparse adjacency matrix.    

   17.2.4  Traversing Graphs 

 In its simplest form, the template for graph traversal is shown in 
Template  17 . 1 .  

 In Template  17 . 1 : 

   Line 1: This algorithm uses a queue to serialize the nodes to be 
considered. The first in/first out behavior of the queue causes the 
nearest nodes to emerge before the nodes farther away.  

 Template  17 . 1      Template for graph traversal 

 1. < create a queue > 
 2. < enqueue the start node > 
 3. < initialize the result > 
 4. while < the queue is not empty > 
 5.     < dequeue a node > 
 6.     < operate on the node > 
 7.     < for each edge from this node > 
 8.         < retrieve the other node > 
 9.         if < not already used > 
10.               < enqueue the other node > 
11.         end 
12.     end 
13. end 
14. < return the result > 
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  Line 2: Since all nodes have equal status on a graph, graph traversal 
must be provided with the node from which to begin the traversal. 
We enqueue that node to begin the traversal.  
  Lines 3 and 4: Show the typical  while  loop traversal, initializing a 
result.  
  Lines 5 and 6: Extract and process one node.  
  Lines 7 and 8: Traverse the edges from this node. There must be an 
indication for each problem of which order to use in selecting the 
edges to the children of the current path.  
  Lines 9 and 10: Because the graph can contain cycles, the 
mechanism for preventing the algorithm from becoming trapped 
requires that we enqueue only those nodes that have not already 
been visited.   

 The choice of queue type governs the behavior of the traversal. If a simple 
queue is used, the traversal will happen like ripples on a pond from the 
starting node, touching all the nearest nodes before touching those 
farther away. 

 To illustrate the use of Template  17 . 1 , we will print the names of all the 
nodes of the graph in  Figure   17.5    in breadth-first order starting from node 
E, assuming that all edges are bidirectional. When choosing the edges to the 
next child node, the child nodes should be taken in alphabetical order: 

   ■   To make sure that a node is not revisited, we will keep a list of the 
visited nodes, beginning with the start node.  

  ■   We find the children from the non-zero entries in the adjacency 
matrix—because of the way we built the matrix, they are already in 
alphabetical order.  

  ■   We then traverse these children, adding to the queue those not 
found on the visited list and adding each to the visited list.   

 The script for this is shown in Listing  17 . 9 .  

 In Listing  17 . 9 : 

   Line 1: Invokes the script in Listing  17 . 7  to build the adjacency matrix.  
  Line 2: The user-defined starting node—E.  
  Line 3: Enqueues the starting node on a new queue.  
  Line 4: Initializes the visited list.  
  Line 5: Initializes the result—in this case, a printout.  
  Line 6: Shows the  while  loop.  
  Line 7: Dequeues a node.  
  Line 8: In this case, processing the node involves printing its label 
and a dash.  
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  Line 9: The non-zero values from the row in the adjacency matrix 
corresponding to this edge give us the children of this node.  
  Line 10: Traverses the children.  
  Lines 11–13: If they are not already on the visited list, enqueue them 
and put them on the visited list.  
  Line 17: Completes the result when the queue is empty. 

 The results from this script are as follows: 

trace: E - A - D - G - H - B - C - F – 

 which, referring to  Figure   17.5   , is a breadth-first traversal from node E 
outward, taking children in alphabetical order as specified.  

   17.2.5  Searching Graphs 

 Rather than traversing a graph, we frequently need to know whether a 
graph contains a specific node. Template  17 . 1  is easily modified to include a 

 Listing  17 . 9      Breadth-first graph traversal 

 1. makeGraph 
% Constructs an adjacency matrix

 2. start = 5; 
% start is a node number (in this case, 'E') 
% Create a queue and 
% enqueue a path containing home 

 3. q = qEnq([], start); 
% initialize the visited list 

 4. visited = start; 
% initialize the result

 5. fprintf('trace: ') 
% While the queue is not empty

 6. while ~isempty(q) 
% Dequeue a path

 7.     [q thisNode] = qDeq(q); 
% Traverse the children of this node

 8.     fprintf('%s - ', char('A'+thisNode-1) );
 9.     children = find(A(thisNode,:) ~= 0); 
10.     for aChild = children 

% If the child is not on the path
11.         if ~any(aChild == visited) 

% Enqueue the new path 
12.             q = qEnq(q, aChild); 

% add to the visited list
13.             visited = [visited aChild]; 
14.         end % if ~any(eachchild == current)
15.     end % for eachchild = children 
16. end % while q not empty 
17. fprintf('\n');
18.
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test to see if the current node is the one sought and to exit with success 
when it is, leaving the existing exit for the failure case.   

   17.3  Minimum Spanning Trees 

 We will consider two practical algorithms commonly found in a large range 
of engineering disciplines. The MST of a graph is used, for example, to 
calculate the shortest cable necessary to connect all the houses in a 
subdivision. Unlike path search, the second algorithm to be discussed later, 
a spanning tree may have multiple branches essentially modeling side 
streets in the subdivision. 

 While there may be a large number of spanning trees, and there may be 
mutiple MSTs in different configurations, they should all have the same 
total length. We will consider one of the two major algorithms for computing 
a MST—that commonly referred to as Prim’s algorithm. The other, 
Kruscal’s, is similar and will not be covered here. 

 Prim’s algorithm finds the subset of the edges of the graph that connect 
every node exactly once and whose total cost is less than that of any other 
spanning tree.    

 The algorithm continuously 
increases the size of a tree, one edge at 
a time, starting with a tree consisting 
of a single vertex, until it spans all the 
vertices. The resulting tree, V, is a 
collection of edges. It needs another 
collection, N, the nodes currently 
included in the MST. 

 Specifically, given a graph as defined above, Prim’s algorithm proceeds 
as follows: 

   ■   Initialize the result  V  as an empty vector and N, the included nodes 
5 { x }, where  x  is an arbitrary node chosen from the graph  

  ■   Repeat the following while there are available edges: 
   •   Choose an edge ( u ,  v ) with minimal weight such that  u  is in N 

and  v  is not (if there are multiple edges with the same weight, 
any of them may be picked)  

  •   Add  v  to N, and ( u ,  v ) to V.    
  ■   Report the contents of V as the resulting MST.   

 Listing  17 . 10  shows the code that extracts MST from our sample graph.  

 In Listing  17 : 10  

   Lines 1 and 2: Invoke the script that builds the graph.  

 According to Wikipedia, this algorithm was developed in 
1930 by Czech mathematician Vojtech Jarník and later 
independently by computer scientist Robert C. Prim in 1957 
and rediscovered by Edsger Dijkstra in 1959. Therefore, it is 
also sometimes called the DJP algorithm, the Jarník algorithm, 
or the Prim–Jarník algorithm. 

 Technical Insight 17.1 
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  Line 2: Sets the starting node (A).  
  Line 3: Plots the basic graph structure using the built-in  gplot(...)  
function.  
  Lines 4–10: Add plot axes and labels for all the nodes.  
  Lines 11–13: Initialize the visited node list,  N,  a sparse matrix to 
store the result and the while condition.  
  Lines 14–37: Repeat as long as there are nodes to process.  
  Line 16: Establishes a large initial best node.  
  Line 17: Assumes failure to find a node.  

 Listing  17 . 10      Prim’s Algorithm to compute a MST 

 1. makeGraph 
 2. start = 1; 
 3. gplot(A, coord, 'ro-') 
 4. hold on 
 5. for index = 1:length(coord) 
 6.      str = char('A' + index - 1); 
 7.      text(coord(index,1) + 0.2, ... 
 8.           coord(index,2) + 0.3, str); 
 9. end 
10. axis([0 11 0 10]); axis off; hold on 
11. N = start; 
12. running = true; 
13. result = sparse([0]); 
14. while running 
        % find the smallest edge 
15.     best = 10000; 
16.     running = false; 
17.     for ndx = 1:length(N) 
18.         node = N(ndx); 
19.         next = find(A(node,:) > 0); 
20.         for nxt = 1:length(next) 
21.             nxtn = next(nxt); 
22.             if ~any(N == nxtn) 
23.                 running = true; 
24.                 if A(node, nxtn) < best 
25.                     best = A(node, nxtn); 
26.                     from = node; 
27.                     to = nxtn; 
28.                 end 
29.             end 
30.         end 
31.     end 
32.     if running 
33.         N = [N to]; 
34.         result(from, to) = 1; 
35.     end 
36. end 
37. gplot(result, coord, 'gx--') 
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  Line 18: Looks through all the visited nodes.  
  Line 19: Extracts a node.  
  Line 20: Extracts from the adjacency matrix the edges from that 
node. The indices with non-zero entries are the nodes to which the 
edge connects; the value in the adjacency matrix is the weight or 
cost of that edge.  
  Lines 21 and 22: Examine each of the edges for the node it reaches 
( nxtn ).  
  Line 23: Only continues if this is not already on the visited list.  
  Lines 24–29: Report that an edge has been found, determine if it is 
shorter than the previous best, and if so store the new best value 
and the nodes at each end of the edge.  
  Lines 33–36: Add the new node to the visited list and the edge to 
the result array.  
  Line 38: Plots the MST as green dashed lines.   

  Figure   17.6    shows the MST resulting from this script. Note that if a different 
starting node is used, the specific tree might be different but its total edge 
length will be the same.   
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 Figure 17.6   MST result       

   17.4  Finding Paths through a Graph 

 This section discusses three algorithms for finding a path from one node 
on the graph to another. The first two algorithms exhaustively search the 
graph to find the absolute best path between node pairs by different 
criteria. The third is one of many approximation algorithms typically used 
to compute a good enough route in circumstances where an exact solution 
is not feasible. 
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   17.4.1  Exact Algorithms 

 In order to find a path rather than traverse it, we have to make the following 
changes to Template  17 . 1 : 

   ■   Since we need to return the complete path between the start and 
target, the queue has to contain that path  

  ■   Rather than use a global visited list, we can use the path taken from 
the queue to determine whether a child node is causing a cycle  

  ■   The order of the nodes on the path has the starting node at the front 
of the path and the new node at the end    

   17.4.2  Breadth-First Search (BFS) 

 Frequently, we actually need the path with the smallest number of nodes 
between the starting and ending nodes. For example, because changing 
trains involves walking and waiting, the best path on a railway map (such 
as the street map in  Figure   17.4   ) is that with the fewest changes, even if the 
resulting path is longer. The algorithm is based on Template  17 . 1  with the 
changes noted above. 

 To search for the path with the least nodes, we need a function that 
performs a Breadth-First Search (BFS) on a graph. In order to be able to use 
the built-in graph plotting program, the answer returned should be an 
adjacency matrix showing the computed path. The function to perform this 
search is shown in Listing  17 . 11 .  

 Listing  17 . 11      Breadth-first graph search 

 1. function D = grBFS(A, home, target) 
 2.     q = qEnq([], home); 
 3.     while ~isempty(q) 
 4.         [q current] = qDeq(q); 
 5.         if current(end) == target % success exit 
 6.             D = sparse([0]); 
 7.             for ans = 1:length(current)-1 
 8.                 D(current(ans), current(ans+1)) = 1; 
 9.             end 
10.             return; % exit the function 
11.         end % if current == target
12.         thisNode = current(end); 
13.         children = find(A(thisNode,:) ~= 0); 
14.         for thisChild = children 
15.             if ~any(thisChild == current) 
16.                 q = qEnq(q, [current thisChild]); 
17.             end % if ~any(thisChild == current)
18.         end % for thisChild = children
19.     end % while q not empty

% if we reach here we never found a path 
20.     D = []; 
21. end 
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 In Listing  17 . 11 : 

   Line 1: Shows a function consuming an adjacency matrix, the 
starting and destination node indices.  
  Line 2: Initializes the queue.  
  Line 3: Repeats to Line 19 until the queue is empty.  
  Line 4: The queue now contains a vector of the node indices on the 
current path.  
  Line 5: If the node dequeued ( current(end) ) is the target, the 
function creates a new adjacency matrix representing the path from 
the home node to the target.  
  Line 6: Creates an empty sparse matrix.  
  Lines 7–9: Add to it the edges between each node in the path.  
  Line 10: Exits the function.  
  Line 12: Otherwise, recovers the last node.  
  Line 13: Retrieves its children.  
  Lines 14–18: Traverse the children as before, checking for their 
presence on the current path. When a child is enqueued, it is 
appended to the end of the current path and the whole path is 
enqueued.   

 The BFS path from A to H is shown in  Figure   17.7   . Note that it found the 
path with the least number of nodes.   

   17.4.3  Dijkstra’s Algorithm 

 Although the minimal number of nodes is sometimes the right answer, 
frequently there is a path that uses more nodes but has a smaller overall 
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 Figure 17.7   Breadth-first result       
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cost. This is evident from a quick glance at  Figure   17.5   : the path A–F–G–H 
has a lower cost than the A–E–H path found by the BFS algorithm, which 
actually ignores the edge weights. Many algorithms exist for finding the 
optimal path through a graph. Here we illustrate the algorithm attributed 
to the Dutch computer scientist Dr. Edsger Dijkstra. Perhaps it is not the 
most efficient algorithm; but for our purposes, this approach has the virtue 
of being a minor extension to the  while  loop algorithm described in 
Template  17 . 1 . 

   ■   The major differences arise from the use of a priority queue in place 
of the normal queue used in the BFS algorithm. As previously noted, 
priority queues differ from basic queues only to the extent that the 
 enqueue  method puts the data in order, rather than at the tail.  

  ■   The ordering criterion required by the algorithm is to place the 
paths in increasing order of path cost (total weight).   

 The objects contained in the priority queue need to contain not only the 
path used for BFS, but also the total path weight. For this we will use a 
structure with fields  nodes  and  key , and implement a small collection of 
helper functions. The helper functions to build a structure with a key and 
extract the key of the last path entry are shown in Listing  17 . 12 .  

 In Listing  17 . 12 : 

   Line 1: Shows a function to construct a path structure from its 
components.  
  Lines 2 and 3: Build the structure.  
  Line 5: Shows a function to retrieve the last node from a path.  
  Line 6: Since the path nodes start at the path origin, the last entry is 
the node we need.   

 The function that performs Dijkstra’s algorithm is shown in Listing  17 . 13 .  

 In Listing  17 . 13 : 

   Line 1: Shows a function consuming an adjacency matrix, and the 
starting and destination node indices.  

 Listing  17 . 12      Helper functions for Dijkstra’s algorithm 

1. function ret = Path(nodes, len) 
% Path constructor 

2.     ret.nodes = nodes; 
3.     ret.key = len; 
4. end 
5. function ret = pthGetLast(apath) 

% Returns number of last node on a path
6.     ret = apath.nodes(end); 
7. end 
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  Line 2: Initializes the priority queue with a starting node and zero 
cost.  
  Line 3: Continues repeating until the queue is empty.  
  Line 4: Shows that the queue now contains a path structure.  
  Lines 5–12: If the node dequeued is the target, the function creates a 
new adjacency matrix representing the path from the home node to 
the target.  
  Line 13: Otherwise, it recovers the last node.  
  Line 14: Retrieves its children.  
  Lines 15–23: Traverse the children as before, checking for their 
presence on the current path. When a child is enqueued, it is 
appended to the end of the current path, and the whole path is 
enqueued.   

 The optimal path from A to H is shown in  Figure   17.8   . Note that it found 
the path with the least cost.   

 Listing  17 . 13      Code for Dijkstra’s algorithm 

 1. function D = grDijkstra(A, home, target) 
 2.     pq = pqEnq([], Path(home, 0)); 
 3.     while ~isempty(pq) 
 4.         [pq current] = qDeq(pq); 
 5.         if pthGetLast(current) == target 
 6.             D = sparse(0); 
 7.             answer = current.nodes; 
 8.             for ans = 1:length(answer)-1 
 9.                 D(answer(ans), answer(ans+1)) = 1; 
10.             end 
11.             return; 
12.         end % if last(current) == target
13.         endnode = pthGetLast(current); 
14.         children = A(endnode,:); 
15.         children = find(children ~= 0); 
16.         for achild = children 
17.             len = A(endnode, achild); 
18.             if ~any(achild == current.nodes) 
19.                 clone = Path( [clone.nodes achild] ... 
20.                     current.key + len; 
21.                 pq = pqEnq(pq, clone); 
22.             end % if ~any child == current.nodes 
23.         end % for achild = children 
24.     end % if pq not empty 

% If we reach here we never found a path 
25.     D = []; 
26. end 
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   17.4.4  Approximation Algorithm 

 When a graph is very large, the computation complexity of the exact 
solutions (roughly O(N 2 )) becomes unmanageable. The A* algorithm is one 
of many popular approximation techniques that will produce a solution, 
but is not guaranteed to produce the best, and its computational complexity 
is roughly O(N). This algorithm is quite simple: 

   1.   Beginning at the starting node, it evaluates the result of traveling 
along each of the feasible edges to an adjacent node (eliminating 
cyclic paths). The evaluation takes the form of summing the cost of 
that edge and an estimate of the cost from that node to the destina-
tion. On a street map, for example, the estimated cost of each step 
would be the length of the edge and the straight-line distance from 
the new node to the destination.  

  2.   It selects the step with the least cost, adds the node reached to the 
path, and repeats step 1 until the destination is reached.  

  3.   Back-tracking is sometimes necessary if a node is reached from which 
there are no feasible paths, such as driving into a dead end street.  

  4.   Complete failure is also possible, as it is for the other algorithms, if 
no physical path exists between the origin and destination nodes.   

 Listing  17 . 14  shows the code that implements the A* algorithm. Notice that 
some additional information is necessary to effectively compute the 
estimated cost from a node to the destination. In our example, we can use 
the location of each node, but in general, that location may not be readily 
available.  
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 Figure 17.8   Dijkstra’s result       
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 In Listing  17 . 14 : 

   Lines 2 and 3: We will maintain two lists—the current path and the 
visited list indicating all the nodes that have been visited. This 
provides for the case when back-tracking is necessary to avoid 
revisiting the dead end.  
  Lines 4–29: Continue until the target node is reached.  

 Listing  17 . 14      Code for A* algorithm 

 1. function D = A_Star(A, home, target, coord) 
        % initial path 
 2.     current = home; 
 3.     visited = home; 
 4.     while current(end) ~= target 
 5.         thisNode = current(end); 
            % get possible paths from here 
 6.         children = find(A(thisNode,:) ~= 0); 
 7.         best = inf; 
 8.         node = -1; % no node seleected yet 
 9.         for thisChild = children 
10.             if ~any(thisChild == visited) 
11.                 edgeCost = A(thisNode, thisChild); 
12.                 estimate = dist(thisChild, target, coord); 
13.                 cost = edgeCost + estimate; 
14.                 if cost < best 
15.                     best = cost; 
16.                     node = thisChild; 
17.                 end 
18.             end % if ~any(thisChild == current) 
19.         end % for thisChild = children 
20.         if node == -1 
                % dead end -> back up one 
21.             current = current(1:end-1); 
22.             if length(current == 0) 
23.                 error('path failed') 
24.             end 
25.         else 
26.             current = [current node]; 
27.             visited = [visited node]; % 
28.         end 
29.     end 
30.     D = sparse([0]); 
31.     for it = 1:length(current)-1 
32.         D(current(it), current(it+1)) = 1; 
33.     end 
34. end 
35. function res = dist(a, b, coord) 
36.     from = coord(a,:); 
37.     to = coord(b,:); 
38.     res = sqrt((from(1)-to(1)).^2 + (from(2)-to(2)).^2); 
39. end 
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  Lines 5 and 6: Find the nodes that can be reached from the current 
node.  
  Lines 7 and 8: Initialize the storage for the best next step.  
  Lines 9–19: Iterate across all possibilities.  
  Line 10: Only considers nodes not on the visited list.  
  Lines 11–13: The cost of this step is the sum of the actual cost of one 
step and the estimate of the remaining cost given in this case by the 
distance between the nodes (invoking the helper function at lines 
35–39).  
  Lines 14–17: Check for improvement in the best cost.  
  Lines 20 and 21: Check for a dead end.  
  Lines 22 and 23: Check for total failure—we have backed up beyond 
the starting node.  
  Lines 26 and 27: Add a successful node to the current path (from 
which it might later be remove by backing up) and the visited 
nodes from which it is never removed.  
  Lines 30–33: Prepare the results as a sparse matrix for plotting.  
  Lines 35–39: Helper function calculating the distance between the 
specified points.   

 The A* path from A to H is shown in  Figure   17.9   . Note that in this simple 
case, it found the same path as the BFS, but that is not necessarily the case in 
a more complex test.   

   17.4.5  Testing Graph Search Algorithms 

 The script that develops both search path solutions is shown in Listing  17 . 15 . 
It requests the starting and ending node letters from the user and then 
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 Figure 17.9   A* result       
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incrementally plots the original graph, the BFS solution, the optimal 
solution, and the A* solution. The pause between plots allows the individual 
paths to be examined. Without a parameter,  pause  waits for any keyboard 
character.  

 In Listing  17 . 15 : 

   Lines 1–11: Initialize the experiment as before.  
  Lines 12 and 13: Get the starting node.  
  Lines 15 and 16: If valid, get the target node.  
  Line 17: Shows the original graph and waits for a character.  
  Lines 18–20: Compute and plot the BFS solution.  
  Lines 21–23: Compute and plot the optimal solution.  
  Lines 24–26: Compute and plot the A* solution.  
  Lines 27 and 28: Repeat as necessary.   

 Listing  17 . 15      Testing graph search algorithms 

1. makeGraph; % call script to make the graph: 
2. start = 1; 
3. while start > 0 
4.     gplot(A, coord, 'ro-')
5.     hold on 
6.     for index = 1:length(coord) 
7.         str = char('A' + index - 1); 
8.         text(coord(index,1) + 0.2, ... 
9.             coord(index,2) + 0.3, str); 
10.     end 
11.     axis([0 11 0 10]); axis off; hold on 
12.     ch = input('Starting node: ','s');
13. start = ch - 'A' + 1; 
14.     if start > 0 
15.         ch = input('Target node: ','s');
16.         target = ch - 'A' + 1; 
17.         disp('original graph'); pause 
18.         D = grBFS( A, start, target); 
19.         gplot(D, coord, 'go-')
20.         disp('BFS result'); pause 
21.         D = grDijkstra( A, start, target); 
22.         gplot(D, coord, 'bo-')
23.         disp('Optimal result'); pause 
24.         D = A_Star( A, start, target, coord); 
25.         gplot(D, coord, 'm^-') 
26.         disp('A* result'); pause 
27.         hold off
28.     end 
29. end 
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    17.5  Engineering Applications 

 Many practical engineering problems can be characterized as graph search 
problems. 

  17.5.1 Simple Applications 
 MSTs are used by utility companies to find the least amount of cable that 
must be used to wire a subdivision. 

 Approximate path finding is used, for example, in navigation systems that 
use GPS to find the current position of the vehicle and an approximate 
algorithm like A* to determine the route to a destination. 

 Exact path finding is used to optimize the flight profile of commercial aircraft 
outside FAA-managed air space and can save as much as 10% of the fuel 
burned on every flight.  

  17.5.2 Complex Extensions 
 In addition to the obvious examples above, consider these examples: 

   ■   designing printed circuit boards is a complex extension of path fi nding  

  ■   stresses in a redundant structure like an aircraft wing seek a path that is 
in some sense optimal, and  

  ■   the “traveling salesperson problem” is an unpleasant extension of 
path fi nding in which the objective is to fi nd the shorted linear path 
that connects all of the nodes of a graph visiting each exactly once. 
For example, designing routes for garbage collection or school 
buses.   

 Each of these belongs to a large class of problems called N-P Complete 
problems, a continued topic of research in many communities.       

     Chapter Summary 

  This chapter demonstrated effective algorithms for finding good paths through a 
graph, and included the following:  

   ■   How to construct and use queues and priority queues as the 
underlying mechanism for graph traversal  

  ■   The basic use of an adjacency matrix for defining a graph  
  ■   Prim’s algorithm for finding the minimum spanning tree of a graph  
  ■   Breadth-first and Dijkstra’s algorithms for finding exact paths 

through a graph  
  ■   The A* algorithm for finding approximate paths that are “good 

enough”    
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  Programming Project 

   1.    We would like to validate the assertion that the street map is 
designed to have at most two train changes between any pair of 
stations. Using the methodology of  Section   17.2.3    and the picture in 
 Figure   17.4   , construct a graph representing the major routes in that 
system. You will not need all the stations identified for this 
exercise—only one station per track segment between transfer 
stations. 
   a.   Write a function that will determine the number of train changes 

to travel between any pair of stations using a breadth-first search 
to minimize the number of changes.  

  b.   Iterate across every pair of stations and find the station pair with 
the maximum number of train changes.        



  Special Characters Description 

  <...> Used to indicate template parameters—data to be supplied  

%  Indicates a comment in an m-file  

{...}  Defines a cell array  

[ ]  The empty vector  

[...] Concatenates data, vectors, and arrays  

( )  Used to override operator precedence  

( )  Used to identify the formal and actual parameters of a function  

(...)  Used to index an array  

(<variable>)  Used to allow a variable to be used as a structure field  

'abc'  Encloses a literal character string  

   ‘   Transposes an array  

;  Suppresses output when used in commands  

;  Separates rows in an array definition  

:  Specifies a vector in the form <from:incr:to>  

   :  Used in slicing vectors and arrays  

.  Used to access fields of a structure  

...  Used to continue a MATLAB command to the next line   

  Mathematical Operators Description  

   =   Assignment operator—assigns a value to a variable (memory 
location); not the same as an equality test  

+  Scalar and array addition  

   −    Scalar and array subtraction  

−  Unary negation  

*  Matrix multiplication  

.*  Element-by-element multiplication  

/ Matrix division  

./  Element-by-element division  

^ Matrix exponentiation  

.^  Element-by-element exponentiation   
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  Logical Operators Description 

<  Less than  

<=   Less than or equal to  

>  Greater than  

>=   Greater than or equal to  

==   Equal to  

˜=  Not equal to  

&  Element-by-element logical AND  

&&  Short-circuit logical AND (scalar)  

|  Element-by-element logical OR (vectors)  

||  Short-circuit logical OR (scalar)  

˜ Unary not   

  Logical Functions Description 

all(a)  True if all the values in a (a logical vector) are true  

   and(a, b)  True if both a and b are true  

any(a)  True if any of the values in a (a logical vector) are true  

   not(a)  True if a is false; false if a is true  

   or(a, b)  True if either a or b is true   

  File Input and Output Description 

[nums txt raw] =   Read comma-separated text files
csvread(<file>)

csvread(<file>)  Read comma-separated text files  

csvwrite(<file>,  Write comma-separated text files
<data>)  

dlmread (<file>,   Read text files separated by the given delimiting character(s)
< dlm>)  

dlmwrite(<file>,    Write text files separated by the given delimiting character(s)
<data>, <dlm>)  

fclose(<handle>) Close a text file  

fgetl(<handle>)  Read a line omitting the new-line character  

fgets(<handle>)  Read a line including the new-line character  

fh = fopen  Open a text file for reading or writing
(<handle>,
<why>)  

fprintf  Write to the console, or to plain text files (when <handle> is present
(<handle>, ...)  

imread(<file>)  Read an image file  

imwrite(<data>,  Write an image file
<file>, <format>)  

load <file>  Load the current workspace from a file  
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save <file>  Save workspace variables in a file  

[tk rest] =  Extract a token from a string and return the remainder of the string
strtok(<str>,
<dlm>)  

ca = textscan  Acquire and scan a line of text according to a specific format and
(<handle>, save the data in a cell array
<format>)  

[data Fs nb] =  Read a sound file in .wav format
wavread(<file>)  

wavwrite(<data>,  Write a sound file in .wav format
<Fs>, <nb>,<file>)  

[nums, txt,  Read an Excel spreadsheet
raw] = 
xlsread(<file>)  

xlswrite(<file>,  Write an Excel spreadsheet in a specific 
<data>, <sheet>, row/column range
<range>)   

  Format Control Description 

%<m>.<n>e  Exponential notation  

%<m>.<n>f  Fixed point or decimal notation  

%<m>.<n>g  Fixed point or exponential notation  

%q  A quoted string delimited by double quotes  

%<n>s  Character string  

\b  Backspace  

\n New Line  

\t  Tab   

  Display Formatting Description 

format compact   Set format to compact form  

format long  Set format to 14 decimal places  

format long e  Set format to 14 exponential places  

format loose  Set format back to default, non-compact form  

format short  Set format back to default, 4 decimal places  

format short e  Set format to 4 exponential places   

  User Interface 

Management Description 

ans  Default variable name for results of calculations  

clc  Clear the interactions window  

clear <selection>  Remove all (or slected) variables from the workspace  

clf  Clear the current figure  
continued on next page
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close all  Close all graphics windows  

exit  Terminate the user interface system  

help <topic  Invoke the help utility
or function>  

load <file>  Load the current workspace from a file  

quit  Terminate the user interface system  

save <file>  Save workspace variables in a file  

who  List variables in the workspace  

whos List variables and their sizes   

  Special Constants Description 

eps  Smallest possible difference between two floating point numbers  

false Logical false  

inf Infinity  

NaN  Not a number  

pi  Ratio of the circumference of a circle to its diameter  

true  Logical true   

  Basic Mathematical

Functions Description 

abs(x)  Compute the absolute value  

ceil(x)  Round x to the nearest integer toward positive infinity  

cross(a, b)  Vector cross product  

exp(x)  Compute e to the power x  

fix(x)  Round x to the nearest integer toward zero  

floor(x)  Round x to the nearest integer toward minus infinity  

log(x) Compute the natural log of x  

log10(x)  Compute the log base 10 of x  

mod(x, a)  Compute the remainder when x is divided by a  

rem(x, a)  Compute the remainder when x is divided by a  

round(x)  Round x to the nearest integer  

sqrt(x)  Calculate the square root of x   

  Trigonometry Description 

acos(x)  Compute the inverse cosine (arcsine) of x  

asin(x)  Compute the inverse sine (arcsine) of x  

atan(x)  Compute the inverse tangent (arctan) of x  

atan2(y, x)   Compute the inverse tangent given the x and y values (4 quadrant 
resolution)  

cos(x)  Compute the cosine of x  

sin(x)  Compute the sine of x  

tan(x)  Compute the tangent of x   
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  Vector, Array, and Matrix

Operations Description 

cumsum(v)  Compute a cumulative sum of the values in v  

deal(...)  Distribute cell array results among variables  

det(a)  Compute the determinant of a matrix  

diag(a)  Extract the diagonal from a matrix or (if provided a is a vector) 
construct a matrix with a as the diagonal  

eye(n)  Generate the identity matrix of size n � n  

find(<logical a>)    Compute a linear list of the locations of the true values in a logical array  

fliplr(a)  Flip a matrix from left to right  

inv(a) Compute the inverse of a matrix  

length(a)  Determine the largest dimension of an array  

linspace(from,   Define a linearly spaced vector
to, n)  

magic(n)  Generate a magic square of size n � n  

[v,in] = max(a)   Find the maximum value and its position in a  

mean(a)  Compute the average of the elements in a  

meshgrid(x, y)   Map each of two vectors into separate 2-D arrays  

[v,in] = min(a)  Find the minimum value and its position in a  

ones(r, c)  Generate an array filled with the value 1  

prod(x)  Compute the product of all the items in x  

rand(r, c)   Calculate an r � c array of evenly distributed random numbers in 
the range 0…1  

randn(r, c)   Calculate an r � c array of normally distributed random numbers in 
the range 0…1  

size(a)  Determine the dimensions of an array  

sparse  Define a sparse matrix  

[v,in] = sort(v)   Sort the vector v (a vector or a cell array of strings)  

sum(a)  Find the sum of an array  

zeros(r, c)   Build an array filled with the value 0   

  2-D Plotting Description 

bar  Generate a bar graph  

barh  Generate a horizontal bar graph  

contour   Generate a contour plot  

hist  Draw a histogram  

loglog  Generate an x-y plot, with both axes scaled logarithmically  

pie  Generate a pie chart  

plot Create an x-y plot  

polar  Create a polar plot  

semilogx   Generate an x-y plot, with the x-axis scaled logarithmically  

   semilogy   Generate an x-y plot, with the y-axis scaled logarithmically   
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  3-D Plotting Description 

   bar3   Generate a 3-D bar graph  

   barh3   Generate a horizontal 3-D bar graph  

   gplot   Plot a graph  

   mesh   Generate a mesh plot of a surface  

   meshc   Generate a mesh plot of a surface with contours  

   meshz   Generate a mesh plot of a surface with a skirt  

   meshgrid(r, c)   Create a plaid for 3-D plots  

   peaks   Create a sample matrix used to demonstrate graphing functions  

   pie3   Generate a 3-D pie chart  

   plot3   Generate a 3-D line plot  

   sphere   Example function used to demonstrate graphing  

   surf   Generate a surface plot  

   surfc   Generate a combination surface and contour plot  

   waterfall   Generate a mesh plot of a surface with one skirt edge   

  Plot Appearance Line 

Type Control Description 

   -   Solid  

   :   Dotted  

   -.   Dash-dot  

   - -   Dashed  

   .   Point  

   o   Circle  

   x   x-mark  

   +   Plus  

   *   Star  

   s   Square  

   d   Diamond  

   ̌    Triangle down  

   ̂    Triangle up  

   <   Triangle left  

   >   Triangle right  

   p   Pentagram  

   h   Hexagram   

  Color Control Character Description 

   b   Blue  

   c   Cyan  

   g   Green  

   k   Black  

   m   Magenta  
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   r    Red  

   w   White  

   y   Yellow   

  Figure Control Description 

   axis   Freezes the current axis scaling for the current plot or specifies the 
axis dimensions  

   figure <n>  Open a new figure window. If present, <n> specifies a figure number  

   grid off/on   Turn the grid off or on  

   hold off/on  If hold is not set, erase figure contents before the next plotting instruction  

   legend(ca)   Add a legend to a graph  

   shading <value>   Shade a surface plot with one color per grid section  

   subplot(plts, n)   Divide the graphics window up into sections available for plotting  

   text(x,y,str)   Add text to a plot  

   title(str)  Add a title to a plot  

   xlabel(str)   Add a label to the x-axis  

   ylabel(str)   Add a label to the y-axis  

   zlabel(str)   Add a label to the z-axis   

  Color Map Values Description 

   autumn   yellow, orange, and red colors  

   bone   shades of gray  

   colorcube  multiple multi-color bands  

   cool   light blue to purple  

   copper  shades of red-brown  

   flag   multiple red, white, and blue bands  

   hot   deep red through orange to white  

   hsv   single spectrum from red to purple  

   jet  (default) rainbow from blue to red  

   pink   from dark to light pink  

   prism   multiple bands of spectrum colors  

   spring   from purple to yellow  

   summer   from dark green to yellow  

   white   all white  

   winter   from dark blue to light green   

  String Operations Description 

   disp(...)   Display matrix or text  

   fprintf(...)   Print formatted information  

   input(...)   Prompt the user to enter a value and parse the result  

   int2str(a)   Convert an integer to its numerical representation  
continued on next page
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   num2str(a,n)    Convert a number to its numerical representation with n 
decimal places  

   sprintf(...)   Format a string result  

   sscanf(...)  Formatted input conversion  

   strcmp(s1, s2)  Compare two strings—returns true if equal  

   strcmpi(s1, s2)   Compare two strings without regard to case—returns true if equal  

   textscan  Scan a text string   

  Time-Related Functions Description 

   clock   Determine the current time on the CPU clock  

   etime   Find elapsed time  

   pause    Pause the execution of a program, either until any key is hit or for a 
specified number of seconds  

   tic  Start a timing sequence  

   toc   Stop a timing sequence and returns the elapsed time   

  Numerical Methods Description 

   diff(v)   Compute the differences between adjacent values in a vector  

   interp1   Compute linear and cubic interpolation  

   interp2   Compute linear and cubic interpolation  

   interp3   Compute linear and cubic interpolation  

   polyfit(x, y, n)   Compute a least-squares polynomial  

   polyval(c, x)   Evaluate a polynomial  

   spline(x, y)   Spline interpolation   

  Program Control Description 

   break   A command within a loop module that forces control to the statement 
following the innermost loop  

   case  A specific value alternative within a switch statement  

   catch   End of a suspect code block where the exception is trapped  

   continue   Skip to the end of the innermost loop, but remains inside it  

   else    Within an if statement, begin the code block executed when the 
condition is false  

   elseif   Within an if statement, begin a subsequent test when the result of 
<expression> the previous test is false  

   end    Terminate a function specification or an if, switch, for, 
while, or catch block.  

   end   When indexing, the value of the last element in an index vector  

   for var = v    A code block repeated as many times as there are elements in the 
vector v  

   function    Identify an m-file as a function or begin a helper function within a 
function file  
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   error(str)   Throw an exception to announce an error with the string provided  

   global var   Define a variable as globally accessible  

   if <expression>    Begin a conditional module—the following code block is executed if 
the logical expression is true  

   lasterror    Provide a structure describing the environment from which an 
exception was thrown  

   nargin    Determine the number of input parameters actually supplied by a 
function’s caller  

   nargout    Determine the number of output parameters actually requested by a 
function’s caller  

   otherwise   Catch-all code block at the end of a switch statement  

   switch <variable>    Begin a code module selecting specific values of the variable 
(must be countable)  

   try    Begin a block of suspect code from which an exception might be thrown  

   while <expression>   A code module repeated as long as the logical expression is true   

  Data Class Operations Description 

   char(...)   Cast to a character type  

   class(<object>)   Determine the data type of an object  

   double(a)   Cast a to type double  

   int8/16/32/64(a)   Cast a to integer type with the specified number of bits  

   uint8/16/32/64(a)   Cast a to unsigned integer type with the specified number of bits  

   isa(obj, str)   Test for a given data type  

   ischar(ch)   Determine whether the given object is of type char  

   iscell(...)   Determine whether the given object is a cell  

   isempty(a)   Test for the empty vector [ ]  

   islogical(a)   Determine whether the given object is of type logical  

   isnumeric(a)   Determine whether the given object is of type double  

   isspace(a)   Test for the space character  

   isstruct(a)   Determine whether the given object is a structure   

  Structure Operations Description 

   fieldnames(str)    Return a cell array containing strings that are the names of the fields 
in the structure  

   getfield(str,    Extract the value of the field
field)  

   isfield(str, field)   Return true if the string is a field in the specified structure  

   str = rmfield  Return a copy of the given structure with the given field removed
(str, field)  

   str = setfield   Construct a structure in which the value of the field has been changed
(str, field,  to the given value
value)  

   struct(...)    Construct a structure from <fieldname> <value> pairs of 
parameters     
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 Originally, the American Standard Code for Information Interchange 
(ASCII) specified the meaning of code numbers transmitted across 
telephone lines one byte at a time. Frequently, the data were also stored on 
paper tape. These data controlled communication between two simple 
devices like a teletype machines. They had to not only deliver characters, 
but also manage the communications link and control the behavior of the 
teletype by forcing the print mechanism back to the first column (Carriage 
Return, CR), advancing the platen to the next print row (Line Feed, LF) or 
skipping to the column whose number was the next multiple of 8 (tabbing, 
HT). The first 32 values were set aside as non-printable characters that 
performed these control tasks. While most of the control characters are now 
unused, we still make use of the three mentioned above as ‘\r’, ‘\n’, and ‘\t’ 
to control the behavior of text presented in a window or on a document. 

 The original ASCII table defined a mapping, whereby a specific set of 
printable characters was assigned the numerical values 32–126. This was 
sufficient to represent the number symbols, the lowercase and uppercase 
alphabet, and all the common punctuation marks. However, as the need 
arose to represent more international characters, this numerical range was 
inadequate, and the next 128 values were assigned to meet this need. There 
is no universal agreement on this second mapping. The following table 
shows the first 128 values used by the MATLAB language. 

 When a still broader set of characters was required by the international 
community, it became necessary to use multiple bytes to encode the 
symbols. A Unicode Character Set was defined, followed by an international 
agreement on how to transmit these codes efficiently called UTF-8, the UCS 
Transformation Format.    

 Two totally irrelevant historical observations: 

    1.    Astute observers will note that the values 0–127 occupy only the 
lower 7 bits of one byte of data. The 8 th  bit was used as an error 
detection bit during transmission. An agreement was required in 
transmitting between two machines as to the  parity  of the 
transmission. Even parity meant that there would always be an 

 The ASCII Character Set 
     A P P E N D I X  B 

B–1



B–2 Appendix B  The ASCII Character Set

even number of bits set, and the 8 th  bit was set or reset to ensure 
that this was true. If there were an odd number of bits set in a byte, 
the system knew that the data had been corrupted.  

   2.    ASCII 127 is another non-printing control character used when 
editing paper tape. Since the value 127 has all the bits set and a 
hole in the tape signified 1, if operators made a mistake when 
typing a message, they would back the tape up in the punch and 
hit DEL to make holes all across the byte, thereby erasing the 
erroneous character.     

   0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

 0  NUL  SOH  STX  ETX  EOT  ENQ  ACK  BEL  BS  HT  LF  VT  FF  CR  SO  SI 

 16  DLE  DC1  DC2  DC3  DC4  NAK  SYN  ETB  CAN  EM  SUB  ESC  FS  GS  RS  US 

 32     !  "  #  $  %  &  '  (  )  *  +  ,  -  .  / 

 48  0  1  2  3  4  5  6  7  8  9  :  ;  <  =  >  ? 

 64  @  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O 

 80  P  Q  R  S  T  U  V  W  X  Y  Z  [  \  ]  ̂   _ 

 96  ‘  a  b  c  d  e  f  g  h  i  j  k  l  m  n  o 

 112  p  q  r  s  t  u  v  w  x  y  z  {  |  }  ~  DEL 



 There are two different techniques whereby most computers today store 
the values of numbers: integer and floating-point. Integer storage has the 
nice property that it represents the exact value of the number stored; 
floating-point storage only guarantees a certain number of digits of 
precision. There is an upper limit to the values that can be stored in both 
integer and floating-point form. However, significantly larger numbers can 
be stored in floating-point storage than in integer storage. 

 By default, MATLAB sets the storage of numbers to double-precision 
floating-point representation. However, operations like reading images 
into MATLAB present the large volume of data in the more compact 
unsigned integer form. 

  Integers 

 Integers are represented in computer memory by blocks of data bits of 
various sizes. Memory is allocated in 8-bit increments, usually referred to 
as bytes; therefore, it is not surprising that integer storage comes in the 
same size increments. For a given size, the values of the data bits are 
represented in two different ways—signed or unsigned. Normally, of 
course, we expect a number to have both positive and negative values, and 
when the number of bits is large, this does not seem to have much impact. 
However, when a small number of bits are used to store a value, one of 
those bits must be used to show that the number is positive or negative. The 
range of numbers that can be stored is therefore reduced by 1 bit, a factor of 
2. The following figure illustrates the internal storage of 8-bit unsigned and 
signed values. 

 Clearly, for 8 bits, the maximum value is 127 signed, or 255 unsigned. If 
this is not sufficient storage, numbers can be stored in 16-, 32-, or 64-bit 
words, with the corresponding increase in the maximum stored size.  

  Floating-Point Numbers 

 Floating-point numbers are stored in single precision (32 bits) or double 
precision (64 bits) using the IEEE 754 standard. As the name suggests, the 
storage format includes a mantissa and an exponent, each expressed 
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internally in a manner similar to integer storage. The fixed size of the 
mantissa leads to the fixed amount of precision of each storage type. The 
float data type gives 7 significant decimal digits; the double data type gives 
15 significant decimal digits. 1  

 For details of these storage types, search the Web for “IEEE 754 standard.” 
At the time of writing, there was a good explanation at:  http://www.
geocities.com/SiliconValley/Pines/6639/docs/fp_summary.html   

  Parameters of Each Storage Type 

 The following table describes the most commonly used storage types 
available in MATLAB, their minimum and maximum values, and their 
equivalent names in C. 

 MATLAB
Name 

 Size
(Bytes) 

  Minimum
 Value 

  Maximum
 Value 

 
 C Name 

uint8  1  0  255  unsigned char 

int8  1  −128  127 char

uint16  2  0  65,536 unsigned short 

int16  2  −32,768  32,767 short

uint32  4  0  4,294,967,295 unsigned int 

int32  4  −2,147,483,648  2,147,483,647 int

float  4  ~ −3.4E+38  ~ 3.4E+38 float

double  8  ~ −1.7E+308  ~ 1.7E+308 Double

 1Note that although this seems to be a large amount of precision, you must always 
design your programs to preserve that precision. If, for example, you were to subtract 
two numbers almost equal in value, the precision of the result would be significantly 
worse than that of the original numbers. 

    



  Chapter 1
Answers to True or False 
    1.   True.  
   2.   False. Although Charles Babbage is usually credited with the design of the 

fi rst computer, one could argue that the counting boards in use in 500 BC from 
which the abacus was derived would qualify as a computer design.  

   3.   False. Operating systems arrived on the scene quite late in the development of 
computers. Before then, the computer ran one application that did all the work, 
and this is still possible today.  

   4.   False. The driver is just a pluggable operating system component.  
   5.   True. For a computer to be useful, there has to be hardware to carry data to and 

from the processor.  
   6.   True.  
   7.   False. A solution solves the whole problem by assembling solutions to manage-

able subproblems. An algorithm is a series of steps to solve a small subproblem.    

  Answers to Fill in the Blanks 
    1.   syntax; vocabulary  
   2.   the Von Neumann architecture  
   3.   compilation  
   4.   cache  
   5.   application programs  
   6.   logic  
   7.   BIOS (Basic Input Output System)  
   8.   states; states    

  Chapter 2
Answers to True or False 
    1.   True.  
   2.   False. Written correctly, algorithms can be generalized to solve a range of sub-

problems.  
   3.   True. Both functional and object-oriented programs require procedural compo-

nents to function on a processor.  
   4.   True.  
   5.   False. This is merely the assignment of the sum of x and y to z; you cannot make 

any inference about the value of y from this expression. 
    6.   False. Untyped languages merely leave the programmer free of needing to de-

fi ne the type of data. The CPU has to have information about the nature of each 
data item in order to process it correctly.  

   7.   True.  

 Answers to True or False 
and Fill in the Blanks  
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   8.   False. In general, especially in MATLAB, the class of an item refers to its data 
type. The more restrictive defi nition combining the data type with the opera-
tions performed on it is an OOP restriction.  

   9.   False. You must use scripts for permanent command storage.  
   10.   True.  
   11.   True. Clicking the icon to the left brings up the Document window.  
   12.   False. Double-clicking a fi le name opens the fi le in the editor.  
   13.   True.  
   14.   True.  
   15.   False. The asterisk indicates that the fi le has been changed since it was saved.  
   16.   False. Comments appear only in the text of the script for human understanding 

of the logic.  
   17.   False. Only the % hot key saves before executing.    

  Answers to Fill in the Blanks 
    1.   procedural  
   2.   typed  
   3.   command history window  
   4.   prevent the results of an assignment from displaying in the command window  
   5.   command mode; edit mode  
   6.   ans  
   7.   %; green  
   8.   CTRL+R; CTRL+T  
   9.   name; current value; data type  
   10.   double-click  
   11.   double-click; variable name  
   12.   automatically; MATLAB command  
   13.   percent sign (%)  
   14.   ignore; the end of the current line    

  Chapter 3
Answers to True or False 
    1.   False. Homogeneous collections must consist of data of the same type. This 

could be double, logical, char, or any of the types you saw in this text.  
   2.   True.  
   3.   False. Because a column vector has more columns than rows, it returns the 

number of columns.  
   4.   True. Regrettably, you can. This is the array linearization. Should you use this? 

No.  
   5.   False. Either array can be a scalar quantity (a 1 3 1 array).  
   6.   True, as long as the indices in the index vector do not exceed the dimensions of A. 
    7.   False. The position of the values in the logical index vector corresponds 

to the position of values in the vector being indexed. Longer logical index 
vectors are reaching beyond the end of the original vector.  

   8.   True.    

  Answers to Fill in the Blanks 
    1.   numerical value; position in the vector  
   2.   matrix; element-by-element  
   3.   max(a) = 5 6 7 8; max(max(a)) = 8  
   4.   maximum dimension  
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   5.   have the same dimensions; a scalar  
   6.   ones(m,n); zeros(m,n)  
   7.   bad; logical diffi culties; indexing; copy the rows and columns you want

to keep    

  Chapter 4
Answers to True or False 
    1.   False. Comments are colored green; keywords that control execution are col-

ored blue.  
   2.   False. The MATLAB editor inserts indentation only to clarify for the reader the 

fl ow of control in a script.  
   3.   True. If the if statement has no else clause, or the switch statement has no 

otherwise clause and the data provided matches none of the specifi ed cases.  
   4.   True.  
   5.   False. The result that invalidates all other && expressions is false.  
   6.   True. But you can still use break to exit the loop early.  
   7.   False. But it ought to be. This is really bad programming practice.  
   8.   False. The expression specifi es the reason to stay in the loop.    

  Answers to Fill in the Blanks 
    1.   key command words  
   2.   Boolean true or false value  
   3.   continue  
   4.   input()  
   5.   entry-controlled looping operations  
   6.   for or while; innermost containing    

  Chapter 5
Answers to True or False 
    1.   False. Functions have access to all the system data and functions and can also 

reach global data directly.  
   2.   False. Although this ought to be True. MATLAB calls user-defi ned functions by 

the name of the m-fi le, and ignores the name specifi ed there.  
   3.   True.  
   4.   False. Functions can be defi ned with no parameters required.  
   5.   False. Any result for which a variable is not provided by the caller is ignored.  
   6.   False. This is merely a convention suggested to clarify the source of their defi nition. 

     Answers to Fill in the Blanks 
    1.   <function_name>.m  
   2.   procedural abstraction  
   3.   formal parameters; actual parameters  
   4.   Local Scope  
   5.   fi rst; fi rst function; other auxiliary functions in the same fi le    

  Chapter 6
Answers to True or False 
    1.   False. Casting changes the way the computer views a piece of data without 

changing it.  
   2.   True.  
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   3.   False. It can be represented within a string by inserting two successive quote 
marks: (' ').  

   4.   False. MATLAB will automatically cast the string to its ASCII values fi rst.  
   5.   True. But they have to be explicitly converted to characters and concatenated 

into one string.  
   6.   False. Unequal length strings are reported as not being equal.  
   7.   True.    

  Answers to Fill in the Blanks 
    1.   a special internal representation  
   2.   characters; numbers; punctuation marks; 0–127  
   3.   int2str(x); num2str(x, n)  
   4.   format control string; value parameters  
   5.   if; cannot  
   6.   strcmp(...)    

  Chapter 7
Answers to True or False 
    1.   False. None of the collective operations defi ned for numerical arrays can be 

applied to cell arrays or structures.  
   2.   True.  
   3.   True.  
   4.   True.  
   5.   False. It returns a new structure with the fi eld and value removed.  
   6.   True.  
   7.   False. If stra is a structure array with the fi eld data, the expression {stra.data} 

will extract all the values into a cell array.    

  Answers to Fill in the Blanks 
    1.   extracted one at a time; replaced  
   2.   class(item)  
   3.   cell containing 42  
   4.   str.(field) = 42  
   5.   struct(...); fi eld name as a string; cell array of fi eld contents      

  Chapter 8
Answers to True or False 
    1.   True. Although the actual storage technique on a hard drive may have blocks 

of characters distributed randomly on its surface, the software that reads and 
writes the disk serializes the characters.  

   2.   False. You save the variable names and their current values, not the programs 
that generated the data.  

   3.   False. While some applications permit delimited strings to be embedded in com-
ma- or tab-delimited fi les, MATLAB’s readers read only numerical data into arrays.  

   4.   False. You can use the qualifi er 'a' to indicate that you will append to the end 
of an existing fi le.  

   5.   True. If you read past the end of a fi le, a numerical –1 is returned.    

  Answers to Fill in the Blanks 
    1.   values; organization  
   2.   appended to the end of the fi le  
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   3.   numerical array; fi lled with zero  
   4. dlmread(<file>,<delimiter>)    

  Chapter 9
Answers to True or False 
    1.   True.  
   2.   False. If that function or any function it calls throws an exception, all the 

frames down to the function containing a try ... catch block are popped off 
the stack.  

   3.   False. Tail recursive functions perform the math “on the way in.”  
   4.   True. But this is a bad practice.  
   5.   False. MATLAB actually does not care what the name of the fi le is. When a func-

tion is called, MATLAB fi nds the function by fi le name and starts the fi rst func-
tion in that fi le whatever it is called. Local functions in the fi le must be called 
from that fi rst function.    

  Answers to Fill in the Blanks 
    1.   push; pop; access stack top element; check empty stack  
   2.   run-time errors  
   3. error()  
   4.   any tests or setup; as a helper to the main function call  
   5.   compute; estimating the answer; recursive function.    

  Chapter 10
Answers to True or False 
    1.   True.  
   2.   False. All the elements might fail a test you apply to determine whether to 

change them or not.    
   3.   False. Filtering might remove elements from the collection, but those that re-

main are not changed.  
   4.   False. It really is folding because the two results are different attributes of the 

same element of the collection.  
   5.   True. The break statement allows you to exit a for loop early; the code is a little 

obscure if written this way.  
   6.   False. Sorting requires some criterion for deciding that one element must pre-

cede another—alphabetical order is a good example.    

  Answers to Fill in the Blanks 
    1.   numerical; matches  
   2.   max  
   3.   fi lter  
   4.   fi lter  
   5.   folding  
   6.   fi nding what you seek; failing to fi nd it  
   7.   traverse; writing    

  Chapter 11
Answers to True or False 
    1.   True. If the x vector is omitted, 1:N is assumed for the independent parameter, 

and if the str is omitted, a solid blue line is used.  
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   2.   False. To apply to a specifi c data plot, the enhancement functions must follow 
the plotting function.  

   3.   False. Any area not provided with a plot remains blank.  
   4.   True.  
   5.   False. Bodies of rotation, for example, use one of the axis directions as an inde-

pendent parameter.  
   6.   False. It is the x and z axes (those axes not the axis of rotation).  
   7.   False. The curve does not need to be continuous.  
   8.   False. You can rotate the data to align an arbitrary axis with the x-axis, per-

form the body of rotation there, and invert the rotation.    

  Answers to Fill in the Blanks 
    1.   new fi gure; the next higher  
   2.   fi gure  
   3.   Legends  
   4.   M equally-spaced  
   5.   plaid; angles  
   6.   subplot    

  Chapter 12
Answers to True or False 
    1.   True. Even the most primitive data members encapsulate their data and control 

the operations that can be performed on the data.  
   2.   False. It also works if one or both of the matrices are scalar.    
   3.   True, only if one is a scalar; otherwise, False. If A and B are not square, one 

will fail; even if they are square, they will have different answers.  
   4.   True.  
   5.   False. It is equivalent to back dividing: A \ B.  
   6.   True.    

  Answers to Fill in the Blanks 
    1. m3p  
   2.   non-singular, square  
   3.   eye(…)  
   4.   N independent; N unknown; N * (N + 1) constant    

  Chapter 13
Answers to True or False 
    1.   False. 0 is the absence of light, which will give a black screen.  
   2.   True. imread(...) can be adapted to read any supported image fi le, returning 

different results for different image styles.  
   3.   True.  
   4.   False. For two reasons—it only works for 2-D arrays, and the rotation is coun-

ter-clockwise.  
   5.   True. Consider Figure  13.18 . The original number of 1600 3 1200 3 3 pixels has 

been reduced to a smattering of pixels of interest.    

  Answers to Fill in the Blanks 
    1.   pixel  
   2.   M3N33  
   3.   M3N3338.  
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   4.   fi gure window; image(...)  
   5.   Cropping; shrinking; stretching  
   6.   transpose; major diagonal    

  Chapter 14
Answers to True or False 
    1.   True.  
   2.   False. Removing samples raises the frequency.  
   3.   False. The number of bits in the recording has no signifi cant effect on an 

untrained ear.  
   4.   True.  
   5.   True.    

  Answers to Fill in the Blanks 
    1.   50 Hz; 20 Hz  
   2. fft(); ifft()  
   3.   7; 5; 2; 12  
   4.   sound energy; frequency band      

  Chapter 15
Answers to True or False 
    1.   True. The provision is that while the linear interpolation does not give an error, 

it returns NaN for data points that are out of range.  
   2.   True. There is a unique cubic parametric curve between each pair of points. The 

curve is parametric rather than a function of the independent variable in order 
to permit the curve to “double back” if necessary for smoothness.  

   3.   False. All curve fi tting does is provide the coeffi cients of a polynomial. You can 
insert any value of the independent variable.  

   4.   True.  
   5.   True. Simpson’s rule better captures fl uctuations in the function being integrated.  
   6.   False. The diff(...) function shortens the vector by one element.    

  Answers to Fill in the Blanks 
    1.   polyfit(); polyval()  
   2.   area under the curve of f(x)  
   3.   slope of the tangent line  
   4.   cumsum(...); dot product; the data vector; a vector of time differences  
   5.   critical point; differentiating    

  Chapter 16
Answers to True or False 
    1.   True. First we perform all the algebra to reduce the compound expression to a 

sequential series of O(…) values, and then we add them and remove any terms 
that increase more slowly with N than other terms.  

   2.   False. Linear search algorithms are O(N), but binary search is O(log N).  
   3.   True. Mathematicians have proven that one cannot sort with a faster Big O. 

However, better algorithms can provide a constant multiplier improvement.  
   4.   False. Most of them have some kind of optimization that reduces the length of 

the minor passes.  
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   5.   True. Since Big O should refl ect the worst case performance, and quick sort on 
a sorted collection is O(N 2 ).    

  Answers to Fill in the Blanks 
    1.   O(N2)  
   2.   O(log N)  
   3.   Insertion sort  
   4.   Bubble; Quick  
   5.   ad at the end; or string         
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     Index 

  Symbols 
  ./ (array division)  72 ,  92   
  .^ (array exponentiation)  72 ,  92   
  .* (array multiplication)  69 ,  92   
  = (assignment operator)  39   
  \ (backslash)  144 ,  289   
  : (colon operator)  72 ,  74 ,  92   
  . (dot)  172 ,  178   
  . . . (ellipses)  53 ,  154 ,  167   
  [] (empty vector)  68   
  = = (equal to)  72 ,  92   
  > (greater than)  72 ,  92   
  > = (greater than or equal to)  72 ,  92   
  < (less than)  72 ,  92   
  < = (less than or equal to)  72 ,  92   
  2 (minus sign)  70   
  ~= (not equal to)  72 ,  92   
  2-D plots/plotting  252 – 257  

 enhancement tools  255  
 parametric  256 – 257  
 simple plots  253 – 255   

  3-D plots/plotting  257 – 261  
 linear  257 – 259  
 parametric plots  259 – 260   

  & (element-wise AND)  71   
  | (element-wise OR)  71   
  / (matrix division). see matrix 

division (/)  
  ̂  (matrix exponentiation)  289 ,  304   
  * (matrix multiplication)  69 ,  286 – 288 , 

 290 – 291 ,  304   
  % (percent sign)  51 ,  144   
  ; (semicolon)  46 ,  80   
  && (short-circuit AND)  71 ,  105   
  || (short-circuit OR)  71 ,  105   
  ~ (unary not)  72 ,  105 ,  118   
  _ (underscore character)  40    

  A 
  A* algorithm  429 – 431  

 code for  430   
  A/D (analog-to-digital) device  335   
  abstraction  36 – 37 ,  64 ,  124 ,  286   
   acosd()  function  211   
  activation stack  204 – 205   
  actual parameters  127   
  adjacency matrix  417 ,  424  

 creation of  418   
  algorithms  37   
  A*  429 – 431  

 Breadth-First Search  425 – 426  
 bubble sort  391 – 393 ,  401  
 complex, analyzing  388 – 389  
 Dijkstra’s  426 – 429  
 insertion sort  389 – 391 ,  400 – 401  
 measuring cost of  386 – 389  
 merge sort  395 – 397 ,  401  
 performance analysis of  398 – 400  
 Prim’s  422 – 424  
 quick sort  393 – 395 ,  401  
 radix sort  397 – 398 ,  401  
 for sorting data  389 – 398   

   all()  function  105 ,  118   
   alpha()  function  273 ,  279   
  ALU. see Arithmetic and Logic Unit

(ALU)  
  American Standard Code for 

Information
Interchange (ASCII)  140 ,  147   

  ampersand ( & )  71   
  analog-to-digital (A/D) device  335   
  AND 

 element-wise ( & )  71  
 short-circuit ( && )  71 ,  72 ,  105   

   any()  function  105 ,  118   
  API. see Application Programmer 

Interface (API)  

  Application Programmer Interface 
(API)  126   

  Arithmetic and Logic Unit
(ALU)  23   

  arithmetic operations  231  
 with arrays  82  
 on character strings  143  
 with vectors  69 – 70   

  array division (./)  72   
  array exponentiation (.^)  72   
  array multiplication (.*)  69   
  arrays  78 – 89  

 arithmetic operations with  82  
 cell (see cell arrays) 
 of character strings  149 – 150  
 concatenation  84 – 85  
 creating  80  
 elements of  79 ,  80 – 82  
 inserting data into  232  
 library functions with  83 – 84  
 linear  64  
 linearized  85 – 89  
 logical operations with  82 – 83  
 matrices vs.,  78  
 operations  82 – 89  
 properties of  79  
 reshaping  85  
 slicing of  85  
 structure 168–174 (see also 

structure arrays) 
 transpose of  79   

  ASCII. see American Standard Code 
for Information Interchange 
(ASCII)  

  assignment operator ( = )  39   
   .au  files  335   
auread()  function  335 ,  352   
auwrite()  function  352   
 auxiliary (local)  functions  129   
axis()  function  250 ,  278    
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  B 
  Babbage, Charles  21   
  back dividing  289 ,  291 ,  304   
  backslash (\)  144 ,  289   
  backward difference

approximation  374   
 bar()  function  257 ,  278   
bar3()  function  260 ,  279   
barh()  function  257 ,  278   
barh3()  function  261 ,  279   
  Basic Input/Output System

(BIOS)  25 ,  27   
   before() function  233   
  behavioral abstraction  286   
  BFS.  see  Breadth-First Search (BFS)  
   Big O  algebra  386 – 389  

 O(1) (independent of N)  387  
 O(logN) (binary search) 

 387 – 388  
 O(2N) (exponential growth)  388  
 O(N) (linear with N)  387  
 O(N2) (proportional to N2)  388   

  binary files  186   
  binary search (O(logN))  387 – 388   
  BIOS. see Basic Input/Output System

(BIOS)  
  bits  24   
  black box view, functions  124 – 125   
  bodies of rotation  268 – 273  

 continuous functions,
rotating  269 – 271  

 discrete functions, rotating 
 271 – 273   

  boolean value  68 ,  100 ,  102 ,  104 – 105 ,  118   
  Breadth-First Search (BFS)  425 – 426   
  break points  54   
  break statement  112 ,  114 ,  115 ,  118   
  bubble sort  391 – 393 ,  401   
  building (operation)  231 ,  234    

  C 
  C (programming language)  30   
  cache memory  25   
  CAD. see computer-aided design 

(CAD)  
case keyword  106 ,  107 ,  118   
  casting  140 – 141   
catch  keyword  210 ,  211 ,  212 ,  225   
CAToString()  function  412   
ceil()  function  73 ,  92   

  cell arrays  160 – 164  
 accessing  161 – 163  
 conversion to string  412  
 creating  160 – 161  
 extracting/sorting  400  
 inserting data into  232  
 processing  163 – 164  
 using  163   

  central difference
approximation  375   

  Central Processing Unit (CPU) 
 23 ,  25 ,  204   

   char() function  141 ,  143 ,  150 ,  154   
  character generators  139   
  character mapping  140   
  character strings  139 – 153  

 arithmetic operation on  143  
 arrays of  149 – 150  
 casting  140 – 141  
 comparison of  147 – 149  
 concatenation of  142  
 conversion from numbers 

to  143 – 145  
 conversion to numbers  145 – 147  
 and delimiter  141  
 example using  150 – 153  
 format control strings  144  
 logical operation on  143  
 mapping  140  
 MATLAB implementation 

 141 – 143  
 as numerical values  140  
 operations  147 – 149  
 slicing of  142  
 and token  141   

class()  function  163 ,  178   
  classes  42   
  clc  command  44 ,  51   
clear command  51   
   clf  command  250 ,  278   
close all  command  250 ,  278   
  code blocks  99 ,  100   
coef()  function  365 – 366   
  colon operator (:)  74   
  color mapped images  312   
  color masking  314 – 319   
 colormap()  function  250 ,  278   
  Colossus  21 – 22   
  column vector  79   
  Command History window  44 – 45   
  Command window  43 – 44 ,  110 ,  125 ,

 130 ,  140   
  comments  51   

  compile-time errors  30   
  compilers  29 – 30   
  compound surfaces, assembling  274   
  computer 

 hardware (see hardware,
computer) 

 internal details  24  
 internal organization of  23  
 memory (see memory, computer) 
 software (see software, computer)  

  computer-aided design (CAD)  28   
  computer architectures, history 

of  21 – 23   
  computer languages  20 – 21 ,  28 – 29   
  concatenation 

 of arrays  84 – 85  
 of character strings  142  
 of sounds  336 – 338  
 of vectors  73   

  conditional execution  100 – 101   
   continue  statement  114 ,  118   
  continuous function, rotating 

 269 – 271   
contour()  function  273 ,  279   
  Control Unit  23   
  CPU. see Central Processing Unit

(CPU)  
   cross()  function  78 ,  92   
csvread()  function  188 ,  191 ,  195 ,  197   
   csvwrite()  function  188 ,  197   
  cubic spline interpolation  361 – 362   
   cumsum()  function  371 ,  372 ,  379   
   cumtrapz()  function  372 ,  379   
  Current Directory window  48 – 49 , 

 52 – 53 ,  125 ,  126   
  curve fitting  363 – 369  

 example of  367 – 369  
 linear regression  363 – 365  
 polynomial regression  365 – 367   

  cycles, graphs  414   
  cylinder, construction of  266 – 267   
   cylinder()  function  125 – 127 ,

 273 ,  279    

  D 
  D/A (digital-to-analog) device  335   
  data abstraction  37 ,  64 ,  286   
  data bus  24   
  data collection. see also problem-

solving 
 building  234  
 filtering  235 – 236  
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 inserting data into  231 – 233  
 mapping  234 – 235  
 searching  237 – 238  
 sorting  238  
 summarizing  236 – 237  
 traversing  233 – 234   

  data typing  40 – 42   
   deal()  function  161 – 163 ,  178   
  debugging  54   
   del2()  function  266   
  delimited text files  187 ,  190 – 191   
  delimiter  141 ,  186   
   dequeue()  function  408 ,  409   
  derivative, of function  374   
  design templates  101 – 102  

 for functions in MATLAB,  125  
 for  if  statement  102  
  for  loop  109  
 for  switch  statement  106  
 for  while  loop  112 – 113   

   diag()  function  80 ,  92   
  diagonal array  79   
   diff()  function  375 ,  379   
  difference engine, Babbage  21   
  differentiation  374 – 375   
  digital-to-analog (D/A) device  335   
  Dijkstra’s algorithm  426 – 429  

 code for  428   
  directional edges  414   
  discrete functions, rotating  271 – 273   
   disp()  function  76 ,  92 ,  147 ,  154   
  division 

 matrix  289 ,  291 – 292   
   dlmread()  function  188 ,  190 – 191 ,  197   
   dlmwrite()  function  188 ,  191 ,  197   
  documentation section  125   
  dot (.) notation  172 ,  178   
  dot operator  82   
   double()  function  141 ,  154   
  drivers  25    

  E 
  edges, graphs  414   
  Editor window  50 – 51 ,  54   
  element-wise AND ( & )  71 ,  72   
  element-wise OR (|)  71 ,  72   
  elements 

 arrays  79 ,  80 – 82  
 vectors  65   

  ellipses (. . .)  53 ,  154 ,  167   

   ellipsoid()  function  273 ,  279   
   else  keyword  101 ,  118   
   elseif  keyword  102 ,  118   
  empty vector ([])  68   
  encapsulation  124 ,  129 – 130   
   end  keyword  211   
   end  statement  101 ,  102 ,  107 ,  110 ,  118   
  endless recursion  206   
  engineering applications 

 ceramic composition  301 – 303  
 detecting edges  324 – 327  
 electrical circuit analysis  303 – 304  
 encryption  150 – 153  
 forces and moments  76 – 78  
 geographic data,

visualizing  274 – 277  
 geopolitical data,

processing  239 – 244  
 graphs  433  
 liquid levels, computation of 

 115 – 117  
 music synthesizer  350 – 352  
 physical structure,

assembling  174 – 178  
 robot arm motion  220 – 224  
 soil volume, computation of  89 – 91  
 solid object measurement  131 – 132  
 sorting  402 – 404  
 spacecraft launch  54 – 57  
 spreadsheet data  195 – 197  
 synthesizer notes, shaping  377 – 378   

   enqueue()  function  408 ,  409 ,  411   
  equal to ( = = )  72 ,  92   
   error()  function  211 ,  225   
  Excel spreadsheets  188 – 190   
  exceptions  208 – 212  

 generic implementation for 
 209 – 210  

 historical approach  209  
 MATLAB implementation 

 211 – 212   
  execution errors  30   
  exponential growth (O(2N))  388   
  extrapolation  362 – 363   
   eye()  function  288 ,  304    

  F 
   fact()  function  213   
  false values  68 ,  92 ,  101 ,  102 ,  104 ,  118   
  Fast Fourier Transform (FFT) 

 342 – 346  
 implementation  344 – 345  
 overview  343 – 344  

 simple spectral analysis using 
 345 – 346   

   fclose()  function  192 ,  198   
  FFT. see Fast Fourier Transform (FFT)  
   fft()  function  345 ,  352   
   fgetl()  function  192 ,  198   
   fgets()  function  192 ,  198   
   fib()  function  217   
  Fibonacci series  216 – 217   
  .field operator  170   
   fieldnames()  function  165 ,  171 ,  172   
   figure()  function  250 ,  278   
  Figure window  49 – 50   
  files 

 binary  186  
 delimited text  187  
 opening/closing  192  
 reading/writing  188  
 text (see text files)  

   fill()  function  257 ,  278   
  filtering (operation)  231 ,  235 – 236   
   find()  function  86 ,  92   
   fix()  function  73 ,  92   
   floor()  function  73 ,  92   
  flowcharts  101   
  folding (operation)  231   
   fopen()  function  192 ,  198   
   for  loop  108 – 112 ,  118  

 breaking out of  112  
 example of  110  
 indexing implementation 

using  111 – 112  
 MATLAB implementation  109 – 110  
 structure of  109  
 template  109  
  while  loop vs.,  108   

  formal parameters  127   
  format control strings  144   
  forward difference 

approximation  374   
   fprintf()  function  110 ,  147 ,  148 , 

 154 ,  194 ,  198   
  frame, stack  205   
  frequency, sound  340 – 342   
  function name section  125   
  functional programming  38   
  function(s) 

  acosd()    211  
  all()    105 ,  118  
  alpha()   273  
  any()   105 ,  118  
  auread()   335 ,  352        
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function(s) (continued)
  axis()   250 ,  278  
  bar()   257 ,  278  
  bar3()   260  
  barh()   257 ,  278  
  barh3()   261  
  before()   233  
 black box view of  124 – 125  
  CAToString()   412  
  ceil()   73  
  char()   141 ,  143 ,  150 ,  154  
  class()   163 ,  178  
  coef()   365 – 366  
  colormap()   250 ,  278  
  contour()   273  
  cross()   78 ,  92  
  csvread()   188 ,  191 ,  195 ,  197  
  csvwrite()   188 ,  197  
  cumsum()   371 ,  372 ,  379  
  cumtrapz()   372 ,  379  
  cylinder()   125 – 127 ,  273  
  deal()   161 – 163 ,  178  
 defined  124 ,  125 – 126  
  del2()   266  
  dequeue()   408 ,  409  
 derivative of  374  
  diag()   80  
  diff()   375 ,  379  
  disp()   76 ,  147 ,  154  
  dlmread()   188 ,  190 – 191 ,  197  
  dlmwrite()   188 ,  191 ,  197  
  double()   141 ,  154  
  ellipsoid()   273  
  enqueue()   408 ,  409 ,  411  
  error()   211 ,  225  
  eye()   288 ,  304  
  fact()   213  
  fclose()   192  
  fft()   345 ,  352  
  fgetl()   192 ,  198  
  fgets()   192 ,  198  
  fib()   217  
  fieldnames()   165 ,  171 ,  172  
  figure()   250 ,  278  
  fill()   257 ,  278  
  find()   86  
  fix()   73  
  floor()   73  
  fopen()   192 ,  198  
  fprintf()   110 ,  147 ,  148 ,  154 , 

 194 ,  198  
  getfield()   173  
  gplot()   423  
  grAdjacency()   417  
  grid off()   250 ,  278  
  grid on()   250 ,  278  
  gt()   391 ,  394  
  hist()   257 ,  278  

  hold off()   251 ,  278  
  hold on()   251 ,  279  
  ifft()   345 ,  352  
  image()   313 ,  328  
  imread()   313 ,  328  
  imshow()   313 ,  328  
  imwrite()   313 ,  328  
  input()   107 ,  108 ,  114 ,  130 , 

 145 – 146 ,  154 ,  210  
 instances  205  
 integral of  369  
  interp1()   359 ,  362 ,  379  
  interp2()   361 ,  379  
  interp3()   361 ,  379  
  int2str()   143 ,  154  
  inv()   289 ,  304  
  isa()   164 ,  179  
  is_before()   409 – 410 ,  411  
  iscell()   164 ,  179  
  ischar()   143 ,  154 ,  164 ,  179  
  isempty()   408  
  isfield()   173 ,  179  
  islogical()   164 ,  179  
  isnumeric()   164 ,  179  
  isPal()   215  
  isspace()   143 ,  154  
  isstruct()   164 ,  179  
  it()   390 ,  394  
  largest()   163  
  lasterror()   211 ,  225  
  legend()   251 ,  279  
  length()   66 ,  76 ,  79  
  lightangle()   266  
  linspace()   65 ,  92 ,  328  
  load()   198  
  loglog()   255 ,  279  
  magic()   80 ,  93  
 MATLAB implementation (see 

functions, in MATLAB) 
  max()   84 ,  110  
  mean()   73 ,  84  
  mesh()   261  
  meshc()   273  
  meshgrid()   261 ,  263 ,  273  
  meshz()   273  
  min()   84  
  nargin()   128  
  nargout()   128  
  num2str()   143 ,  154  
  ones()   65 ,  80 ,  323  
  peek()   408  
  pie()   257 ,  279  
  pie3()   261  
  plot()   250 ,  253 ,  257 ,  279  
  plot3()   257  
  plotyy()   255  
  polar()   257 ,  279  
  polyfit()   365 – 366 ,  379 ,  402 ,  403  

  polyval()   366 ,  379  
  rand()   65 ,  80  
  randn()   65  
  read()   191  
  readStruct()   197  
  reshape()   85 ,  297 ,  304  
  rmfield()   165 ,  171 ,  173  
  rot90()   328  
  round()   73  
  save()   198  
  semilogx()   255 ,  279  
  semilogy()   255 ,  279  
  setfield()   173 ,  179  
  shading()   251 ,  279  
  size()   66 ,  76 ,  79 ,  164  
  sort()   173 ,  179 ,  400  
  sound()   336 ,  353  
  sphere()   273  
  spline()   362 ,  379  
  sprintf()   144 ,  147 ,  148 ,

 154 ,  366  
  sscanf()   145 ,  147 ,  154  
  strcmp()   148 ,  149 ,  154  
  strcmpi()   149 ,  154  
  str2num()   145 ,  146 ,  147 ,  154  
  strtok()   147 ,  198  
  struct()   167 ,  168 ,  179  
  subplot()   251 – 252 ,  279  
  sum()   73 ,  84 ,  173  
  surf()   261 ,  262  
  surfc()   265 ,  273  
  surfz()   273  
  text()   251 ,  279  
  textscan()   193 ,  198  
  title()   251 ,  279  
  toString()   412  
  tril()   328  
  uint8/16()   141 ,  154 ,  328  
  view()   265 ,  279  
  waterfall()   273  
  wavread()   335 ,  353  
  wavwrite()   353  
  xlabel()   251 ,  279  
  xlsread()   188 ,  195 ,  198  
  xlswrite()   188 ,  190 ,  198  
  ylabel()   251 ,  279  
  zeros()   65 ,  80  
 zeros of  217 – 220  
  zlabel()   251 ,  279   

  functions, in MATLAB,  64 ,  125 – 132  
 auxiliary (local)  129  
 calling  127  
 defined  125 – 126  
 encapsulation in  129 – 130  
 and global variables  130 – 131  
 returning multiple results 

from  128 – 129  
 storing/using  127  
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 structures  166 – 168  
 template of  125    

  G 
  Gaussian Elimination  289   
  generations, of computer 

language  28 – 29   
   getfield()  function  173   
  global keyword  130 ,  225   
  Global Scope  130   
  global variables  130 – 131 ,  133   
   gplot()  function  423   
   grAdjacency()  function  417   
  graphs  414 – 422  

 A* algorithm  429 – 431  
 Breadth-First Search  425 – 426  
 building  416 – 419  
 creating  49 ,  50  
 cycles  414  
 defined  407  
 Dijkstra’s algorithm  426 – 429  
 examples  414 – 415 ,  433  
 minimum spanning trees of ( see  

minimum spanning trees (MSTs)) 
 nodes  407  
 paths on  414 ,  424 – 432  
 processing  415 – 416  
 searching  421 – 422  
 traversal  419 – 421  
 weighted  414 ,  416   

  gray scale images  311   
  greater than (>)  72 ,  92   
  greater than or equal to (> = )  72 ,  92   
   grid off()  function  250 ,  278   
   grid on()  function  250 ,  278   
   gt()  function  391 ,  394    

  H 
  hardware, computer  23 – 24  

 interaction with software  26   
  hardwiring  24   
  heap  26   
  help command  126 ,  133   
  helper functions  129   
  heterogeneous collections  160   
  high-level I/O functions  187 – 191  

 with delimited text files  190 – 191  
 with Excel spreadsheets  188 – 190  
 exploration  187 – 188   

   hist()  function  257 ,  278   
   hold off()  function  251 ,  278   
   hold on()  function  251 ,  279   
  homogeneous collections  64    

  I 
  I/O. see Input/Output (I/O)  
  identity matrix  288   
   if  statements  101 – 106 ,  118 ,  149  

 example  103  
 in logical expressions  104 – 105  
 MATLAB implementation  102 – 104  
 script with  104  
 short-circuit evaluation  105 – 106  
 template for  102   

   ifft()  function  345 ,  352   
   image()  function  313 ,  328   
  images  309 – 327  

 color mapped  312  
 color masking with  314 – 319  
 displaying  313  
 format of  312 – 313  
 gray scale  311  
 kaleidoscope, creation of  319 – 321  
 nature of  310  
 operation on  313 – 324  
 reading  313  
 resolution of  310  
 stretching/shrinking  313 – 314  
 on surface  321 – 324  
 true color  311  
 types  311 – 313  
 writing  313   

   imread()  function  313 ,  328   
   imshow()  function  313 ,  328   
   imwrite()  function  313 ,  328   
  in-line coding  213   
  inner dimensions  287   
   input()  function  107 ,  108 ,  114 ,  118 , 

 130 ,  145 – 146 ,  154 ,  210   
  Input/Output (I/O)  24 ,  186 – 197  

 devices  23 ,  25  
 high-level 187–191 (see also high-

level I/O functions) 
 lower-level 192–195 (see also 

lower-level I/O functions) 
 and MATLAB workspace  186 – 187   

  inserting data, in collection  231 – 233  
 template for  233   

  insertion sort  389 – 391 ,  400 – 401   
  integral, of function  369   
  integration  369 – 373   
   interp1()  function  359 ,  362 ,  379   
   interp2()  function  361 ,  379   
   interp3()  function  361 ,  379   
  interpolation  358 – 363  

 cubic spline  361 – 362  
 extrapolation  362 – 363  
 linear  358 – 361   

  interpreted code  31   
   int2str()  function  143 ,  154   
   inv()  function  289 ,  291 ,  292 ,  304   
   isa()  function  164 ,  179   
   is_before()  function  409 – 410 ,  411   
   iscell()  function  164 ,  179   
   ischar()  function  143 ,  154 ,  164 ,  179   
   isempty()  function  408   
   isfield()  function  173 ,  179   
   islogical()  function  164 ,  179   
   isnumeric()  function  164 ,  179   
   isPal()  function  215   
   isspace()  function  143 ,  154   
   isstruct()  function  164 ,  179   
   it()  function  390 ,  394   
  iteration  108    

  J 
  Joint Photographic Experts Group 

(JPEG)  312 ,  319    

  K 
  kaleidoscope, creation of  319 – 321    

  L 
   largest()  function  163   
   lasterror()  function  211 ,  225   
  least squares technique  364   
  legalist approach  213   
   legend()  function  251 ,  279   
   length()  function  66 ,  76 ,  79 ,  92   
  less than (<)  72 ,  92   
  less than or equal to (< = )  72 ,  92   
  library functions 

 with arrays  83 – 84  
 with vectors  72 ,  73   

   lightangle()  function  266 ,  279   
  linear arrays  64   
  linear equations, simultaneous 

 299 – 301   
  linear interpolation  358 – 361   
  linear matrices  65   
  linear regression  363 – 365   
  linearized array  85 – 89   
  line(s) 

 intersecting  300 – 301  
 rotating  293 – 294   

  linker  30   
   linspace()  function  65 ,  92 ,  328   
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   load()  function  198   
  loader  30   
  Local Scope  130   
  logic errors  30 ,  41   
  logical expressions  104 – 105   
  logical indexing  68   
  logical operations 

 with arrays  82 – 83  
 on character strings  143  
 with vectors  70 – 72   

  logical value  68   
   loglog()  function  255 ,  279   
  loop-and-a-half iteration style 

 114 – 115   
  lower-level I/O functions  192 – 195  

 opening/closing files  192    

  M 
   magic()  function  80 ,  93   
  mapping 

 character  140  
 operation  231 ,  234 – 235   

  mass memory  25   
  MATLAB 

 advantages  36  
 components of  36  
 and data manipulation  38 – 42  
 introduction to  31 – 32 ,  35 – 36  
 and problem-solving  32 – 33  
 programming concepts  32  
 starting/stopping  38 – 39  
 user interface 42–51 (see also user 

interface)  
  matrix(-ces)  285 – 304  

 adjacency  417 ,  418 ,  424  
 arrays vs.,  78  
 examples using  301 – 304  
 identity  288  
 implementation  289 – 292  
 linear  65  
 operations on  286 – 292  
 rotating coordinates  292 – 299  
 sparse  417 ,  418   

  matrix division (/)  289 ,  291 – 292 ,  304  
 for solving simultaneous linear 

equations  299 – 301   
  matrix exponentiation (^)  289 ,  304   
  matrix multiplication (*)  69 ,  286 – 288 , 

 290 – 291 ,  304  
 for 2-D rotation  292 – 296  
 for 3-D rotation  296 – 299   

  max() function  84 ,  93 ,  110   
  mean() function  73 ,  84 ,  93   
  mechanical memory  24 – 25   

  memory, computer  24 – 26  
 layout  26   

  Mercator projection  321   
  merge sort  395 – 397 ,  401   
   mesh()  function  261 ,  279   
   meshc()  function  273 ,  280   
   meshgrid()  function  261 ,  263 , 

 273 ,  280   
   meshz()  function  273 ,  280   
   min()  function  84 ,  93   
  minimum spanning trees 

(MSTs)  422 – 424   
  minus, unary (2)  70   
  multiplication 

 array  69  
 matrix. see matrix multiplication (*)  

  music synthesizer  350 – 352   
  musical sounds  339 – 342  

 about  339  
 changing frequency of  340 – 342    

  N 
   NaN  keyword  362 ,  379 ,  410   
   nargin()  function  128 ,  133   
   nargout()  function  128 ,  133   
  Newton’s method  220   
  nodes, graphs  407   
  not equal to (~= )  72   
  numbers 

 conversion, to strings  143 – 145  
 conversion from strings to  145 – 147   

  numerical indexing  67 – 68   
  numerical methods  357 – 378  

 analytical operations  375  
 curve fitting 363–369 (see also 

curve fitting) 
 differentiation  374 – 375  
 example using  377 – 378  
 implementation  375 – 376  
 integration  369 – 373  
 interpolation 358–363 (see also 

interpolation)  
  numerical values  140   
   num2str()  function  143 ,  154    

  O 
  object code  30   
  object-oriented programming 

(OOP)  38   
  objects  42   
   ones()  function  65 ,  80 ,  93 ,  323   
  OOP. see object-oriented 

programming (OOP)  

  operating systems (OS)  25 – 26 ,  27   
  operation(s) 

 analytical  375  
 on arrays  82 – 89  
 character string  147 – 149  
 frequency domain  346 – 350  
 on graphs  415 – 416  
 on queues  408  
 summary of  230 – 238  
 on vectors  69 – 76   

  operators 
 dot  82  
 .field  170  
 logical  71  
 precedence  72   

  OR 
 element-wise (|)  71 ,  72  
 short-circuit (||)  71 ,  72 ,  105   

  OS. see operating systems (OS)  
  otherwise keyword  106 ,  107 ,  118    

  P 
  page buffer  25   
  palindromes, determination  215 – 216   
  parabolic dish  263 – 265   
  paradigms, programming  38   
  parameters 

 cell arrays of  163  
 formal vs. actual  127  
 value  144  
 variable numbers of  127 – 128   

  parameters section  125   
  parametric plots 

 2-D  256 – 257  
 3-D  259 – 260   

  passing by reference  127   
  passing by value  127   
  paths, on graphs  414  

 A* algorithm  429 – 431  
 Breadth-First Search  425 – 426  
 Dijkstra’s algorithm  426 – 429  
 searching  424 – 432   

   pause()  function  341   
   peek()  function  408   
  percent sign (%)  51 ,  144   
   pie()  function  257 ,  279   
   pie3()  function  261 ,  280   
  pixels  310   
  plaid surface  261   
  playback  334 – 335   
   plot()  function  250 ,  253 ,  257 ,  279   
   plot3()  function  257 ,  280   
  plots (plotting)  249 – 277  
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 2-D 252–257 (see also 2-D plots/
plotting) 

 3-D 257–261 (see also 3-D plots/
plotting) 

 data, manipulation of  274  
 enhancement tools  255  
 figures as containers for  250  
 functions for enhancement 

 250 – 251  
 manually editing  252 – 253  
 subplots  251 – 252  
 surface plots 261–274 (see also 

surface plots)  
   plotyy()  function  255   
   polar()  function  257 ,  279   
   polyfit()  function  365 – 366 ,  379 , 

 402 ,  403   
  polynomial regression  365 – 367   
   polyval()  function  366 ,  379   
  Prim’s algorithm  422 – 424   
  priority queues  409 – 411   
  problem-solving 32–33, 229–244. see 

also data collection 
 assembling solution steps for  230  
 example  239 – 244  
 inserting into collection  231 – 233  
 larger problems  238 – 239  
 plan for  230   

  procedural abstraction  37 ,  124 ,  286   
  procedural programming  38   
  program bugs  30   
  programming  229   
  programming languages  28 – 29  

 overview of  36 – 38    

  Q 
  queue(s)  408 – 414  

 implementation  408 – 409  
 nature of  408  
 operations on  408  
 overview  408  
 priority  409 – 411  
 testing  411 – 414   

  quick sort  393 – 395 ,  401    

  R 
  radix sort  397 – 398 ,  401   
  RAM. see Random-Access Memory 

(RAM)  
   rand()  function  65 ,  80 ,  93   
   randn()  function  65 ,  80 ,  93   
  Random-Access Memory (RAM)  25   
   read()  function  191   
  Read-Only Memory (ROM)  25   

   readStruct()  function  197   
  recording, sound  334 – 335   
  recursion  203 – 224  

 activation stack  204 – 205  
 defined  205 – 206  
 endless  206  
 examples  215 – 220  
 implementation  206 – 208   

   reshape()  function  85 ,  297 ,  304   
  resolution 

 of images  310  
 of recorded data  335   

   <return info section> ,  125   
  RGB (red, green, and blue)  310   
   rmfield()  function  165 ,  171 ,  173   
  ROM. see Read-Only Memory (ROM)  
   rot90()  function  328   
  rotations 

 2-D  293 – 296  
 3-D  296 – 299   

   round()  function  73 ,  93   
  runtime errors  30    

  S 
   save()  function  198   
  scalar vectors  69   
  scale, playing a musical  340 – 341   
  scripts  51 – 57  

 creating  51 – 52  
 debugging  54  
 example using  54 – 57  
 punctuating  53  
 running  53   

  searching (operation)  231 ,  237 – 238   

  semicolon (;)  46 ,  80   

   semilogx()  function  255 ,  279   

   semilogy()  function  255 ,  279   

   setfield()  function  173 ,  179   

   shading()  function  251 ,  279   

  short-circuit AND ( && )  71 ,  72 ,  105   

  short-circuit evaluation  105 – 106   

  short-circuit OR (||)  71 ,  72 ,  105   

  shortening, of vector  68 – 69   

  shrinking images  313 – 314   

  Simpson’s rule  369 ,  371   

  simultaneous linear equations, 
solving  299 – 301   

   size()  function  66 ,  76 ,  79 ,  93 ,  164   

  slicing 
 of arrays  85  
 of character strings  142  

 of sounds  336 – 338  
 of vectors  74 – 76   

  software, computer  26 – 28  
 categories of  26  
 interaction with hardware  26  
 tools (see software tools)  

  software tools  27 – 28   

  solid-state memory  24 – 25   

   sort()  function  173 ,  179 ,  400   

  sorting  231 ,  238 ,  385 – 404  
 algorithm for  389 – 398  
 applications  400 – 401  
 bubble  391 – 393 ,  401  
 example using  402 – 404  
 insertion  389 – 391 ,  400 – 401  
 and measuring algorithm 

cost  386 – 389  
 merge  395 – 397 ,  401  
 quick  393 – 395 ,  401  
 radix  397 – 398 ,  401   

   sound()  function  336 ,  337 , 
 341 ,  353   

  sound(s)  333 – 352  
 example using  350 – 352  
 Fast Fourier Transform 343–346 

(see also Fast Fourier Transform 
(FFT)) 

 frequency domain 
operations  346 – 350  

 intensity  334  
 musical  339 – 342  
 physics of  334  
 recording/playback  334 – 335  
 slicing/concatenating  336 – 338   

  source code  30   

  spacecraft launch, example  54 – 57   

  sparse matrix  417 ,  418   

  sphere, construction of  267 – 268   

   sphere()  function  273 ,  280   

   spline()  function  362 ,  379   

  spreadsheets  188 – 190   

   sprintf()  function  144 ,  147 ,  148 , 
 154 ,  366   

  square array  79   

   sscanf()  function  145 ,  147 ,  154   

  stack  26 ,  204 – 205   

   strcmp()  function  148 ,  149 ,  154   

   strcmpi()  function  149 ,  154   

  stretching images  313 – 314   

  strings 
 cell arrays conversion to  412  
 character 139–153 (see also 

character strings)  
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  strings ( continued ) 
 conversion from numbers 

to  143 – 145   
   str2num()  function  145 ,  146 ,  147 ,  154   
  strong typing  42   
   strtok()  function  147 ,  198   
   struct()  function  167 ,  168 ,  179   
  structure arrays  168 – 174  

 constructing  168 – 170  
 elements, acessing  170 – 172  
 inserting data into  232  
 manipulation  172 – 174   

  structure(s)  164 – 168  
 constructing/accessing  165 – 166  
 functions  166 – 168  
 manipulation  172 – 174   

   subplot()  function  251 – 252 ,  279   
   sum()  function  73 ,  84 ,  93 ,  173 ,  364   
   surf()  function  261 ,  262 ,  280 ,  321   
  surface, images on  321 – 324   
  surface plots  261 – 274  

 3-D parametric surfaces  266 – 268  
 bodies of rotation 268–273 (see 

also bodies of rotation) 
 compound surfaces, assembly 

of  274  
 cube  261 – 263  
 functions to create  261  
 manipulation of  265 – 266  
 parabolic dish  263 – 265   

   surfc()  function  265 ,  273 ,  280   
   surfz()  function  273   
  switch statement  106 – 108 ,  118  

 MATLAB implementation  107 – 108  
 template for  106   

  synthesizer notes, shaping  377 – 378    

  T 
  technology, advancement in  20   
  text files  51  

 delimited  187 ,  190 – 191  
 reading  192 – 194  
 writing  194 – 195   

   text()  function  251 ,  279   
   textscan()  function  193 ,  198   
   title()  function  251 ,  279   
  token  141   
   toString()  function  412   
  trapezoidal rule  369 ,  370 – 371   

  traversing (operation)  231 ,  233 – 234  
 graphs  419 – 421   

   tril()  function  328   
  true color images  311   
  true values  68 ,  100 ,  102 ,  104 ,  118   
  try keyword  210 ,  211 ,  212 ,  225   
  tune, playing  341 – 342   
  type, data  42   
  typographical errors  31 ,  41    

  U 
   uint8/16()  function  141 ,  154 ,  311 , 

 328   
  unary minus (2)  70   
  unary not (�)  72 ,  105 ,  118   
  underscore character (_)  40   
  untyped languages  40   
  user interface  42 – 51  

 Command History window 
 44 – 45  

 Command window  43 – 44 ,  110 , 
 125 ,  130 ,  140  

 Current Directory window  48 –
 49 ,  52 – 53 ,  125  

 Editor window  50 – 51 ,  54  
 Figure window  49 – 50  
 Variable Editor window  49  
 Workspace window  45 – 48 ,  66   

  utilities, operating systems  27    

  V 
  value parameters  144   
  value(s)  42  

 assigning, to variables  39 – 40  
 boolean/logical  68  
 parameters  144   

  Variable Editor window  49   
  variable scoping  130   
  variable(s) 

 assigning values to  39 – 40  
 global  130 – 131  
 names  39 – 40   

  vector(s)  64 – 78  
 arithmetic operations with  69 – 70  
 concatenation of  73  
 creating  65 – 66  
 elements  65  
 extracting/sorting  400  
 indexing of  66 – 68  
 inserting data into  231  

 library functions with  72 ,  73  
 logical operations with  70 – 72  
 operating on  69 – 76  
 scalar  69  
 shortening  68 – 69  
 size of  66  
 slicing  74 – 76   

  vectors of indices  74   
   view()  function  265 ,  279   
  virtual memory  25   
  von Neumann architecture  22 – 23    

  W 
   waterfall()  function  273 ,  280   
   .wav  files  335 ,  336   
   wavread()  function  335 ,  353   
   wavwrite()  function  353   
  weak typing  42   
  weighted graph  414 ,  416   
   while  loop  112 – 115 ,  118  

 breaking  115  
 example  113  
 loop-and-a-half iteration 

style  114 – 115  
  for  loop vs.,  108  
 MATLAB implementation  113  
 structure of  112  
 template for  112 – 113   

   who  command  48   
   whos  command  48   
  workspace, saving  186 – 187   
  Workspace window  45 – 48 ,  66   
  wrapper function  203 ,  213 – 215  

 template for  214    

  X 
   xlabel()  function  251 ,  279   
   xlsread()  function  188 ,  195 ,  198   
   xlswrite()  function  188 ,  190 ,  198    

  Y 
   ylabel()  function  251 ,  279    

  Z 
   zeros()  function  65 ,  80   
   zlabel()  function  251 ,  279      
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