


Time-Dependent Behaviour of Concrete
Structures

Serviceability failures of concrete structures involving excessive cracking or deflection
are relatively common, even in structures that comply with code requirements. This is
often as a result of a failure to adequately account for the time-dependent deformations
of concrete in the design of the structure. Design for serviceability is complicated by
the non-linear and inelastic behaviour of concrete at service loads. The serviceability
provisions embodied in codes of practice are relatively crude and, in some situations,
may be unreliable and often do not adequately model the in-service behaviour of
structures. In particular, they fail to realistically account for the effects of creep and
shrinkage of the concrete.

Providing detailed information, this book assists engineers to rationally predict the
time-varying deformation of concrete structures under typical in-service conditions.
It gives analytical methods to help anticipate time-dependent cracking, the gradual
change in tension stiffening with time, creep-induced deformations and the load
independent strains caused by shrinkage and temperature changes. Calculation
procedures are illustrated with many worked examples.

A vital guide for practising engineers and advanced students of structural engineering
on the design of concrete structures for serviceability, providing a penetrating insight
into the time-dependent behaviour of reinforced and prestressed concrete structures.

Raymond Ian Gilbert is Professor of Civil Engineering at the University of New South
Wales and currently holds an Australian Research Council Australian Professorial
Fellowships. He has over 35 years experience in structural design and is a specialist in
the analysis and design of reinforced and prestressed concrete structures.

Gianluca Ranzi is a Senior Lecturer of Structural Engineering at the University of
Sydney, specialising in the analysis and design of concrete and composite steel-concrete
structures.
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Preface

In the design of concrete structures, the two main design objectives are strength
and serviceability. A structure must be strong enough and sufficiently ductile to
resist, without collapsing, the overloads and environmental extremes that may be
imposed on it. It must also perform satisfactorily under the day-to-day service loads
without deforming, cracking or vibrating excessively. This book is concerned with the
serviceability of concrete structures, in particular the prediction of instantaneous and
time-dependent deformation under in-service conditions. The factors that most affect
structural behaviour at the serviceability limit states are considered in considerable
depth, including cracking of the tensile concrete, tension stiffening, and the time-
dependent deformations caused by creep and shrinkage of the concrete.

The prediction of the final deformation of a concrete structure, and the final
extent and width of cracks, are perhaps the most uncertain and least well-understood
aspect of structural design. The long-term behaviour of the structure depends
primarily on the deformational characteristics of the concrete, including its creep and
shrinkage characteristics, and these are highly variable, depending not only on the mix
proportions and types of cement and aggregates, but also on the local environment and
the load history. In most undergraduate civil and structural engineering courses, the
effects of concrete creep and shrinkage on structural behaviour are treated superficially,
with only the simplified code-oriented procedures for deflection and crack control
being presented. The same is true of most books on the design of concrete structures.
Failure to recognise and quantify the non-linear effects of cracking, creep and shrinkage
is a common cause of serviceability failure.

Creep and shrinkage of concrete and their effects on structural behaviour have been
actively researched for over 100 years. Much has been written on the subject and many
outstanding contributions have been made. However, much of the information and
many of the analytical procedures that have been developed are not, in general, known
or used by the profession. Structural designers often rely on the simplified procedures
in codes of practice to estimate service load behaviour, and this often oversimplifies
the problem and can be unreliable.

This book is an attempt to provide practising engineers and post-graduate students
with a practical and useful treatment of the serviceability analysis of concrete
structures. For this purpose, most sections included in each chapter are self-contained
so that they can be read independently from the rest of the book. The analytical
techniques are illustrated by numerous worked examples.

In Chapter 1, an introductory discussion of concrete creep and shrinkage and
their effects on the deformation of concrete structures is presented, while typical



xii Preface

material properties and a simple procedure for estimating the creep and shrinkage
characteristics of concrete are provided in Chapter 2. No attempt has been made to
provide a detailed description of the mechanisms of creep and shrinkage or the factors
affecting them. The material properties and material constitutive relationships are only
of interest insofar as they affect the methods of structural analysis.

Chapter 3 contains a qualitative discussion of structural behaviour at service loads
and the simplified methods for the control of deflection and cracking contained in
several of the major codes of practice are presented and critically reviewed, including
ACI318-08, Eurocode 2 and the Australian Standard AS3600-2009. Alternative and
more reliable procedures for deflection calculation and crack control are also provided.

Chapters 4–7 deal with the time-dependent analysis of cross-sections, exploring
various procedures for predicting the gradual change of strain and curvature with
time and the gradual redistribution of stress between the concrete and the bonded
steel reinforcement. Chapter 4 examines cross-sections loaded in axial compression.
Chapter 5 considers a wide range of uncracked reinforced, prestressed and composite
cross-sections carrying axial force and uniaxial bending. Chapter 6 deals with
uncracked cross-sections subject to combined axial force and biaxial bending. Cracked
cross-sections subjected to axial force and bending are analysed in Chapter 7.

In Chapter 8, a range of different structural applications are considered, drawing
on the cross-sectional analyses in Chapters 4–7 and the treatment of tension stiffening
and cracking in Chapter 3. The techniques described and illustrated may be extended
readily to include a wide range of additional structural applications. The procedures
are not daunting and require little more than an elementary background in mechanics
and structural analysis.

Chapter 9 illustrates how the time-dependent effects of creep and shrinkage can be
readily included in the computer analysis of structures using the stiffness and the finite-
element methods. These have been described and applied considering the common
Euler–Bernoulli beam model as a case study, but the approach is general and can be
extended to more complex models. The analytical formulations required to implement
the computer analysis of Chapter 9 are presented in Appendix A.

It is hoped that this book will provide structural engineers not only with useful
analytical tools to predict and control in-service performance, but also with a clearer
picture of the interaction between concrete and reinforcement at service loads and a
better understanding of why concrete structures behave as they do.

Raymond Ian Gilbert and Gianluca Ranzi
Sydney, 2010.
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Notation and sign convention

All symbols are defined in the text where they first appear. The more frequently used
symbols and those that appear throughout the book are listed below. It is assumed
that tension is positive and compression is negative, and positive bending about a
horizontal axis causes tension in the bottom fibres of a cross-section.

A, B, I area, first moment of area, and second moment of area,
respectively, calculated about the reference axis of the
cross-section

Ac, Bc, Ic properties A, B and I of the concrete part of the cross-section
Ae,Be,Ie properties A, B and I of the age-adjusted transformed

cross-section
Ass, Bss, Iss properties A, B and I of the structural steel part of a composite

cross-section
Act area of tensile concrete in the tension chord (Eq. 3.45)
As(i), Ap(i) areas of the ith layer of non-prestressed and prestressed steel,

respectively
Ast, Asc areas of tensile and compressive steel on a reinforced section,

respectively
b, bw flange width and web width of a T-section
b∗ width of cross-section at the level of the centroid of the tensile

reinforcement
C specific creep (also Celsius)
C(t, τ0) specific creep at time t produced by a sustained unit stress first

applied at τ0
c concrete cover to reinforcement
D0, Dj, Dk matrices of cross-sectional rigidities at τ0, τj and τk, respectively
D overall depth of a cross-section
d effective depth of the tensile reinforcement
db bar diameter
ds(i), dp(i) depths to the i-th layer of the non-prestressed and prestressed

steel, respectively
dn (=kd) depth to the neutral axis on a fully-cracked cross-section
do depth from extreme compressive fibre to the centroid of the

outermost layer of tensile reinforcement
dref depth of reference axis below the top fibre of the cross-section



Notation and sign convention xv

Ec, Es, Ep, Ess elastic moduli of concrete, non-prestressed steel, prestressed steel,
and structural steel, respectively

Ec,j elastic modulus of concrete at time τj
Ee, �Ee effective modulus of concrete (Eq. 4.3) and age-adjusted effective

modulus of concrete (Eq. 4.35), respectively
Ee,j,i effective modulus of concrete at time τj due to a stress first applied

at τi
e eccentricity; base of the natural logarithm
eAB axial deformation of member AB
eL axial shortening of a column of length, L
fcr,j, fcr,k vectors of actions at times τj and τk, respectively, accounting for

creep during previous time periods
fset,j, fset,k vectors of corrected internal actions to be used at times τj and τk,

respectively, when a new element is added to a cross-section
fp,init vector of initial prestressing forces
fsh,j, fsh,k vectors of actions at times τj and τk, respectively, accounting for

shrinkage during previous time periods
F flexibility matrix
F0, Fj, Fk matrices relating strain to internal actions on cross-section at τ0,

τj and τk, respectively
Fe,j,i creep factor at time τj for a stress applied at τi (Eq. 4.26b)
�Fe,0 age-adjusted creep factor (Eq. 4.46)
fc, ft strength of concrete in compression and in tension, respectively
f ′
c characteristic strength of concrete in compression

fcm, fcmi mean concrete cylinder strength and mean concrete in-situ
strength, respectively

fct uniaxial tensile strength of concrete
f ′
ct,f characteristic flexural tensile strength of concrete (modulus of

rupture)
fji a flexibility coefficient (the displacement at release j due to a unit

value of the ith redundant force)
fp breaking strength of the prestressing steel
fst steel stress on a cracked section corresponding to a crack width

of w∗
fy yield stress of the non-prestressed steel
G, g dead load (kN) and dead load per unit area (kPa), respectively
Icr, Iuncr second moments of area of the fully-cracked and uncracked

transformed cross-section about the centroidal axis, respectively
Ief effective second moment of area after cracking
Ig second moment of area of gross cross-section about centroidal

axis
i, j, k integers
h slab thickness
J creep function
J(t, τ0) creep function at time t for concrete first loaded at τ0 (Eq. 1.10)
Jj,i creep function at time τj due to a stress first applied at τi
K structural stiffness matrix



xvi Notation and sign convention

kd depth to neutral axis from extreme compressive fibre
kcs long-term to short-term deflection multiplication factor
ke element stiffness matrix
k1, k2, k3, k4, k5 factors describing the magnitude and rate of development of creep

and shrinkage
L, � span of a beam or length of a column
Lx, Ly orthogonal span lengths for two-way slabs
ln the natural logarithm
�ef the effective span (the lesser of the centre-to-centre distance

between the supports and the clear span plus the member depth)
M moment
Mcr cracking moment
M∗

s design in-service moment at the critical cross-section
Mu ultimate flexural strength
Mxe, Mye applied moments about the x- and y-axes, respectively
mc number of layers of concrete in a discretised cross-section
mp,ms number of layers of tendons and non-prestressed reinforcement

on a cross-section
Nc,0,Ns,0,Np,0 internal forces resisted by concrete, reinforcement and tendons at

time τ0, respectively
Nc,k,Ns,k,Np,k internal forces resisted by concrete, reinforcement and tendons at

time τk, respectively
Ncr restraining force after direct tension cracking
Ne, Me external axial force and moment applied to a cross-section
Ni,0, Mi,0 internal axial force and moment on a cross-section at time τ0
Ni,k, Mi,k internal axial force and moment on a cross-section at time τk
Nsus, Msus sustained axial force and moment applied to a cross-section
n modular ratio (Es/Ec)
ne, ne effective and age-adjusted effective modular ratios (Es/Ee, Es/�Ee),

respectively
ne,j,i effective modular ratio (Es/Ee,j,i)
P vector of nodal loads for whole structure
P axial load; also prestressing force
Pcr cracking load
Pp,init initial prestressing force prior to transfer
p vector of nodal loads for element
Q,q live load (kN) and live load per unit area (kPa), respectively
R design relaxation force in the prestressing steel
RA,0, RB,0, RI,0 cross-sectional rigidities at time τ0
RA,k, RB,k, RI,k cross-sectional rigidities at time τk
Rb basic relaxation
RP vector of reactions caused by loads on the primary structure
RR vector of redundant forces
re,k vector of external actions at time τk
ri,k vector of internal actions at time τk
S first moment of area of the steel reinforcement about the centroid

of the section
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s spacing between cracks in the tensile zone
sb maximum bar spacing
smax maximum crack spacing immediately after loading
so distance over which the stresses vary on each side of a direct

tension crack
s∗ final maximum crack spacing
T temperature; also tensile force
t time
th hypothetical thickness
U vector of nodal displacements for whole structure
u vector of nodal displacements for element
ue portion of section perimeter exposed to the atmosphere
v deflection
vcx deflection of a column strip in the x-direction
vmy deflection of a middle strip in the y-direction
vsus deflection due to sustained loading
W wind load
w crack width; also uniformly distributed load
w∗ maximum design crack width
ws uniformly distributed sustained service load
x reference axis
y transverse distance from the reference axis in the plane of the

section
yn,0 distance of neutral axis from x-axis on a cracked section at time τ0
ys,yp y-coordinates of steel reinforcement and tendons, respectively
Z section modulus
z direction of member axis
α coefficient of thermal expansion; also a parameter to account for

cracking and reinforcement on the change in deformation due to
creep (Eqs 3.32)

α1,α2,α3 coefficients associated with creep and shrinkage models (Sections
2.1.4 and 2.1.5)

β tension stiffening coefficient to account for duration of loading
� an increment or a change
�ε, �κ change in strain and curvature with time, respectively
δ lateral displacement of a slender column
δB settlement at support B
ε strain
εtop,εbtm strains at the top and bottom fibres of a cross-section, respectively
ε̇ rate of change of strain with time (dε/dt)
εcr creep strain
εcr(t,τ0) creep strain at time t due to a stress first applied at τ0
ε∗cr final creep strain at time infinity
εe instantaneous (elastic) strain
εr strain at reference axis
εr0, εrk strain at reference axis at time τ0 and at time τk, respectively
εp strain in the prestressing steel



xviii Notation and sign convention

εp,init initial strain in the prestressing steel before transfer
εp.rel,k relaxation strain in the prestressing steel at time τk
εs strain in the steel reinforcement
εsh shrinkage strain
εshd drying shrinkage strain
εshe endogenous (chemical plus thermal) shrinkage strain
ε∗sh final shrinkage strain at time infinity
εT temperature component of strain
θ slope
θM angle between moment axis and the x-axis
θNA angle between the neutral axis and the x-axis
κ curvature
κcr, κuncr curvatures on fully-cracked and uncracked cross-section,

respectively
κ0, κk curvatures at time τ0 and at time τk, respectively
κsh curvature induced by shrinkage
κx, κy curvature with respect to the x-axis and y-axis, respectively
λrR reduced relaxation in the prestressing steel accounting for creep

and shrinkage
λ1, λ2, λ3 factors affecting bond stress
με microstrain (10−6)
ρ,ρ′ tensile reinforcement ratio Ast/bd (or Ast/Ac) and compressive

reinforcement ratio, Asc/bd, respectively or; also, density
ρw,ρcw web reinforcement ratio for the tensile steel ((Ast + Apt)/bwd) and

compressive steel (Asc/bwd), respectively
� the sum of
σ stress
σc, σs concrete and steel stresses, respectively
σc,0, σs,0 initial concrete and steel stresses, respectively, at first loading, τ0
σc,k, σs,k final concrete and steel stresses, respectively, at time τk
σcs shrinkage-induced tensile stress in the concrete
σp,init initial stress in the prestressing steel prior to transfer
σ̇ rate of change of concrete stress with time, dσ /dt
σp(i), σs(i) stresses in the i-th layer of prestressed and non-prestressed steel,

respectively
σst1 tensile steel stress at a crack
σtop concrete stress at top fibre of cross-section
τ time instant; also shear stress
τ0 age at first loading
τb bond shear stress
τd age at the commencement of drying
τi i-th time instant
τk final time instant at the end of the period of the time analysis
ϕ creep coefficient
ϕ(t, τ0) creep coefficient at time t for concrete loaded at τ0
ϕbasic basic creep coefficient
ϕj,i creep coefficient at time τj due to a stress first applied at τi
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ϕ̇ rate of change of the creep coefficient with time, dϕ/dt
ϕp creep coefficient for the prestressing steel
ϕ∗ final creep coefficient at time infinity
χ ageing coefficient
χ (t, τ0) ageing coefficient at time t for concrete first loaded at τ0
χ∗ final ageing coefficient at time infinity
ψ1, ψ2 short- and long-term serviceability load factors
ζ distribution factor to account for tension stiffening (Eq. 3.24)
∞ infinity





1 Time-dependent deformation

1.1 Background

When a concrete specimen is subjected to load, its response is both immediate and time-
dependent. Under sustained load, the deformation of a specimen gradually increases
with time and eventually may be many times greater than its initial value. In order to
satisfy the design objective of serviceability in a structural design, accurate and reliable
predictions of the instantaneous and time-dependent deformation of the concrete
structure are required.

If the temperature and stress remain constant, the gradual development of strain
with time is caused by creep and shrinkage. Creep strain is produced by sustained
stress, while shrinkage strain is independent of stress. These inelastic and time-
dependent strains cause increases in deformation and curvature, losses of prestress
and redistribution of stresses and internal actions. Creep and shrinkage are often
responsible for excessive deflection at service loads. Creep frequently causes excessive
camber and/or shortening in prestressed members. In addition, restraint to shrinkage
may cause time-dependent cracking that could lead to serviceability or durability
failures.

To accurately and efficiently predict these effects, the following two basic prerequi-
sites are necessary:

(i) reliable data for the creep and shrinkage characteristics of the particular concrete
mix; and

(ii) analytical and/or numerical procedures for the inclusion of these time effects in
the analysis and design of the structure.

A number of sources are available from which to obtain information on the
properties of concrete (see Sections 2.1.2–2.1.5). However, a comparison of the data
obtained from these sources indicates significant differences. Laboratory tests may
be undertaken to determine time-dependent material properties but this is often not
a practical alternative. Designers seldom have the time or the inclination for long-
term tests and then often cannot be sure that the concrete that has been tested in the
laboratory is the same as that which will later be used in the structure. Even if testing
is undertaken, the variability in the measured deformational properties of concrete is
usually large. Coefficients of variation of 20 per cent or more can be expected. To best
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account for the variability of material properties in structural design, probabilistic
methods are required. However, existing design methods are usually deterministic
and the inexact nature of the results of such procedures must be kept in mind.

A number of analytical and numerical techniques are available for serviceability
analysis and the design of reinforced and prestressed concrete structures. These range
from simplified approaches for deflection and crack control contained in codes of
practice, such as those presented and evaluated in Chapter 3, to the more refined
methods contained in Chapters 4–9. Each level of refinement has its own set of
simplifying assumptions and each has its advantages and disadvantages. Some are
more suited to particular situations than others. Throughout the book, many worked
examples are provided and a wide range of structural applications and situations
are considered. The worked examples are also self-contained and may be read by
practitioners who are more interested in using the final equations rather than following
their detailed derivations. However, for most applications, the mathematics associated
with each analysis is quite straightforward and there are obvious advantages in
understanding the development of the procedures.

Methods of analysis that include the effects of creep and shrinkage in concrete
structures are important in the design for serviceability. But perhaps even more
importantly, such analyses can provide a clear picture of the interaction between
concrete and steel and an otherwise unavailable insight into the mechanism of
structural behaviour. A study of time effects can provide the structural designer with
a far better feel for the task and a clearer understanding of why concrete structures
behave as they do.

1.1.1 Concrete strain components

At any time t, the total concrete strain ε(t) in an uncracked, uniaxially-loaded specimen
consists of a number of components that include the instantaneous strain εe(t), creep
strain εcr(t), shrinkage strain εsh(t) and temperature strain εT (t). Although not strictly
correct, it is usual to assume that all four components are independent and may be
calculated separately and combined to obtain the total strain. When calculating the in-
service behaviour of a concrete structure at constant temperature, it is usual to express
the concrete strain at a point as the sum of the instantaneous, creep and shrinkage
components:

ε(t) = εe(t) + εcr(t) + εsh(t) (1.1)

The strain components in a drying specimen held at constant temperature and
subjected to a constant sustained compressive stress σc0 first applied at time τ0 are
illustrated in Fig. 1.1. Immediately after the concrete sets or at the end of moist curing
(t = τd in Fig. 1.1), shrinkage strains begin to develop and continue to increase at
a decreasing rate. On the application of stress, a sudden jump in the strain diagram
(instantaneous or elastic strain) is followed by an additional gradual increase in strain
due to creep.

The prediction of the time-dependent behaviour of a concrete member requires
the accurate prediction of each of these strain components at critical locations.
This requires knowledge of the stress history, in addition to accurate data for the
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Figure 1.1 Concrete strain components under sustained load.

material properties. The stress history depends on both the applied load and the
boundary conditions of the member.

It has been common practice in previous studies of the deformation of concrete
to distinguish between creep problems and relaxation problems. Creep problems are
those in which the gradual increase in strain under a sustained stress is calculated.
Relaxation problems are those in which the total strain is held constant with time and
the gradual change in stress is calculated.

Creep and relaxation problems differ only in their boundary conditions. Both
involve the estimation of the individual strain components in Eq. 1.1. Relaxation
problems have the additional constraint that the sum of the change of each strain
component within any time interval is zero, that is, �εe(t) + �εcr(t) + �εsh(t) =
0. When the total strain is held constant, the change of stress with time (relax-
ation) is simply the result of the gradual development of creep and shrinkage
and the consequent equal and opposite change in the instantaneous strain. If
creep and shrinkage increase with time, then the instantaneous strain εe(t) must
decrease.

There is little to be gained from separate studies of creep and relaxation type
problems. In fact, in reinforced concrete structures, it is uncommon to find situations
which fall neatly into the categories of either creep or relaxation problems. Concrete is
almost never free to deform without some form of restraint. Reinforcement provides
internal restraint to creep and shrinkage, while real support conditions often provide
significant external restraint. On the other hand, a member is rarely restrained so
completely that no deformation of the concrete is possible. Real problems often involve
elements of both creep and relaxation, and fall between these two extremes. For the
time analysis of concrete structures, attention should be focused squarely on the
problem of establishing suitable constitutive relationships for concrete that can be used



4 Time-dependent deformation

in the analysis of practical problems for the determination of the strain components
of Eq. 1.1 at any point in the structure.

1.1.2 Typical concrete strain magnitudes

It is important from the outset to firmly establish the significance of each of
the concrete strain components and their order of magnitude in typical in-service
situations.

Consider a point in a concrete specimen subjected to a constant, sustained
compressive stress σ c0 applied at time τ0 and equal to 40 per cent of the characteristic
compressive strength of concrete, i.e. σc0 = 0.4 f ′

c. In properly designed concrete
structures, concrete stresses rarely exceed this level under typical service loads. The
instantaneous strain that occurs immediately upon application of the stress may be
considered to be elastic at low stress levels, and therefore:

εe(t) = σc0

Ec(τ0)
(1.2)

Information on the time-varying nature of the elastic modulus for concrete, Ec(t), is
given in Section 2.1.3. However, for comparison between the order of magnitude of
each of the strain components in Eq. 1.1, the elastic modulus may be taken as constant
with time and approximately equal to 1000 f ′

c. In this case, therefore, the elastic strain
is approximated by:

εe ≈ −0.4 f ′
c

1000 f ′
c

= −0.0004 = −400με

where the negative sign indicates that the applied stress and elastic strain are
compressive.

Under normal conditions, the final creep strain at time infinity εcr(∞) (denoted here
as ε∗cr) that is produced by a constant sustained stress of this magnitude is usually
between 1.5 and 4.0 times the initial elastic strain. The higher end of this range is for
low-strength concrete loaded at early ages and at a low relative humidity. A typical
final creep strain for structural concrete subjected to constant stress of this level is
2.5 εe and, for this case,

ε∗cr ≈ 2.5 εe = −1000με

The final shrinkage strain at time infinity εsh(∞) (denoted here as ε∗sh) depends on
the concrete composition, the environment and the size and shape of the specimen.
For concrete elements in building structures, a typical value is:

ε∗sh ≈ −600με

The thermal strain produced by a change in temperature �T = T −T0 is calculated
from:

εT =
T∫

T0

αdT (1.3)
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where T0 is the initial temperature and α is the coefficient of thermal expansion
that is approximately 10 × 10−6/◦C (but actually depends on temperature and
moisture content). For a 20◦C change in temperature, the change in thermal strain
is approximately α �T = 200 με.

If the specimen under consideration is held at constant temperature, the total
concrete strain at time infinity (which may be considered as several years after
loading) is:

ε∗ = εe + ε∗cr + ε∗sh ≈ −400 − 1000 − 600 = −2000με (1.4)

Thus the magnitude of the final strain is about five times the magnitude of the
instantaneous elastic strain. It must be emphasised that the magnitudes of the creep
and shrinkage considered here are typical and not extreme values. Therefore, when
calculating the deformation of concrete structures, time effects must be included in
a rational and systematic way. Elastic analyses that ignore the effects of creep and
shrinkage may grossly underestimate final deformations and, in the design of concrete
structures for serviceability, are of little value.

1.2 Creep of concrete

1.2.1 Creep mechanisms and influencing factors

When concrete is subjected to a sustained stress, creep strain develops gradually
with time as shown in Fig. 1.1. Creep increases with time at a decreasing rate. In
the period immediately after initial loading, creep develops rapidly, but the rate
of increase slows appreciably with time. Creep is generally thought to approach a
limiting value as the time after first loading approaches infinity. About 50 per cent
of the final creep develops in the first 2–3 months and about 90 per cent after 2–3
years. After several years under load, the rate of change of creep with time is very
small.

Throughout this book, creep and shrinkage are treated as separate and independent
phenomena. In reality, this is not the case. Creep is significantly greater when
accompanied by shrinkage. In a loaded specimen that is in hygral equilibrium with
the ambient medium (i.e. no drying), the time-dependent deformation caused by stress
is known as basic creep. The additional creep that occurs in a drying specimen is
sensibly known as drying creep. Creep is usually calculated as the difference between
the total time-dependent deformation of a loaded specimen and the shrinkage of a
similar unloaded specimen. Creep is treated here as the time-dependent deformation
in excess of shrinkage.

Creep of concrete originates in the hardened cement paste that consists of a solid
cement gel containing numerous capillary pores. The cement gel is made up of colloidal
sheets of calcium silicate hydrates separated by spaces containing absorbed water.
Creep is thought to be caused by several different and complex mechanisms not yet
fully understood (Refs 1–7). Neville et al. (Ref. 4) identified the following mechanisms
for creep:

(i) sliding of the colloidal sheets in the cement gel between the layers of absorbed
water – viscous flow;
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(ii) expulsion and decomposition of the interlayer water within the cement gel –
seepage;

(iii) elastic deformation of the aggregate and the gel crystals as viscous flow and
seepage occur within the cement gel – delayed elasticity;

(iv) local fracture within the cement gel involving the breakdown (and formation) of
physical bonds – microcracking;

(v) mechanical deformation theory; and
(vi) plastic flow.

Recent research relates the creep response to the packaging density distributions of
calcium-silicate-hydrates (Ref. 7). At high stress levels, additional deformation occurs
due to the breakdown of the bond between the cement paste and aggregate particles.
Further references on creep mechanisms can be found in Refs 1 and 8.

Many factors influence the magnitude and rate of development of creep. Some
are properties of the concrete mix, while others depend on the environmental and
loading conditions. In general, the capacity of the concrete to creep decreases as
the concrete strength increases. For a particular stress level, creep in higher-strength
concrete is less than that in lower-strength concrete. An increase in either the
aggregate content or the maximum aggregate size reduces creep, as does the use
of a stiffer aggregate type. Creep also decreases as the water-to-cement ratio is
reduced.

Creep also depends on the environment. It increases as the relative humidity
decreases. Creep is also greater in thin members with large surface-area-to-volume
ratios, such as slabs. However, the dependence of creep on both the relative humidity
and the size and shape of the specimen decreases as the concrete strength increases.
Near the surface of a member, creep takes place in a drying environment and is
therefore greater than in regions remote from a drying surface. In addition to the
relative humidity, creep is dependent on the ambient temperature. A rise in temperature
increases the deformability of the cement paste and accelerates drying, and thus
increases creep. The dependence of creep on temperature is more pronounced at
elevated temperatures and is far less significant for temperature variations between
0◦C and 20◦C. However, creep in concrete at a mean temperature of 40◦C is perhaps
25 per cent higher than that at 20◦C (Ref. 9).

In addition to the environment and the characteristics of the concrete mix, creep
depends on the loading history, in particular the magnitude and duration of the stress
and the age of the concrete when the stress was first applied. The age of the concrete,
τ0, when the stress was first applied has a marked influence on the final magnitude of
creep. Concrete loaded at an early age creeps more than concrete loaded at a later age.
Concrete is therefore a time-hardening material, although even in very old concrete
the tendency to creep never entirely disappears (Ref. 10).

When the sustained concrete stress is less than about 0.5 f ′
c, creep is approximately

proportional to the stress and is known as linear creep. At higher stress levels creep
increases at a faster rate and becomes non-linear with respect to stress. This non-
linear behaviour of creep at high stress levels is thought to be related to an increase
in micro-cracking. Compressive stresses rarely exceed 0.5 f ′

c in concrete structures at
service loads, and creep may be taken as proportional to stress in most situations in
the design for serviceability. In this book, the effects of non-linear creep at high stress
levels are not examined.



Time-dependent deformation 7

1.2.2 Creep components

To best understand the physical nature of creep and to describe its characteristics,
creep strain is often subdivided into several components. In Fig. 1.2a, the creep strain
produced by the compressive stress history of Fig. 1.2b is shown. Under sustained stress
σo, creep increases at a decreasing rate. When the stress is removed at time τ1, there is
no sudden change in creep strain, but a gradual reduction occurs with time as shown.
There is of course a sudden change in the total strain at τ1 due to the elimination of
instantaneous strain. A portion of the creep strain is recoverable, while a usually larger
portion is irrecoverable or permanent.

The recoverable part of creep is often referred to as the delayed elastic strain, εcr.d(t).
This delayed elasticity is thought to be caused by the elastic aggregate acting on the
viscous cement paste after the applied stress is removed. If a concrete specimen is
unloaded after a long period under load, the magnitude of the recoverable creep is in
the order of 40–50 per cent of the elastic strain (between 10 and 20 per cent of the total
creep strain). Although the delayed elastic strain is observed only as recovery when
the load is removed, it is generally believed to be of the same magnitude under load
and to develop rapidly in the period immediately after loading. Rüsch et al. (Ref. 8)
suggest that the shape of the delayed elastic strain curve is independent of the age or
dimensions of the specimen and is unaffected by the composition of the concrete.

The majority of creep strain is irrecoverable and is often referred to as flow, εcr.f (t).
The flow component of creep is sometimes further subdivided into rapid initial flow,
εcr.fi(t), that occurs in the first 24 hours after loading, and the remaining flow that
develops gradually with time (Ref. 9). The rapid initial flow is irrecoverable and highly
dependent on the age at first loading, that is, on the degree of hydration. The younger
concrete is when first loaded, the higher εcr.fi(t). The remaining flow that occurs after
the first day under load is dependent on the relative humidity and, as discussed earlier,
may be divided into a basic flow component εcr.fb(t) and a drying flow component
εcr.fd(t). The drying flow is the additional irrecoverable creep that occurs when the
specimen is loaded in a drying environment. The basic flow εcr.fb(t) depends on the
composition of the concrete mix (aggregate type, size and quantity, concrete strength,
etc.) and the age of the concrete at the time of loading. The drying flow εcr.fd(t) depends
on the moisture content and gradient, and the size and shape of the specimen.

In structural analysis, it is unusual to subdivide the flow component of creep into all
of these sub-components. However, consideration of the recoverable and irrecoverable

Creep strain

ecr(t)

ecr.f

+ecr.d

(a) t1t0 Time

t1t0 Time

Stress

(b)

Recoverable creep, −ecr.d (t1)

Irrecoverable creep, ecr.f  (t1)

s0

Figure 1.2 Recoverable and irrecoverable creep components.
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components of creep (i.e. the delayed elastic and flow components, respectively) is
appropriate and necessary if concrete is subjected to a time-varying stress history.

1.2.3 Effects of ageing

In the previous sections, we saw that all sub-components of creep are affected to
some extent by the degree of hydration, i.e. the age of the concrete at the time of first
loading, τ . Fig. 1.3 shows the effect of age at first loading on the creep–time curves of
identical specimens first loaded at ages τ0, τ1 and τ2.

Although not proven, it is usually assumed that the creep strain εcr(t, τ ) approaches
a limiting value as time approaches infinity, i.e. εcr(∞, τ ) = ε∗cr (τ ). All else being equal:

ε∗cr(τi) > ε∗cr(τj) provided τi < τj (1.5)

This time-hardening or ageing of concrete complicates the prediction of creep strain
under time-varying stress histories.

1.2.4 The creep coefficient, ϕ(t,τ ), and the creep function, J(t, τ )

The capacity of concrete to creep is usually measured in terms of the creep coefficient,
ϕ(t,τ ). In a concrete specimen subjected to a constant sustained compressive stress,
σc(τ ), first applied at age τ , the creep coefficient at time t is the ratio of the creep strain
to the instantaneous strain and is given by:

ϕ(t,τ ) = εcr(t,τ )
εe(τ )

(1.6)

Therefore, the creep strain at time t caused by a constant sustained stress σc(τ ) first
applied at age τ is:

εcr(t,τ ) = ϕ(t,τ ) εe(τ ) = ϕ(t,τ )
σc(τ )
Ec(τ )

(1.7)

where Ec(τ ) is the elastic modulus at time τ . For concrete subjected to a constant
sustained stress, knowledge of the creep coefficient allows the rapid determination of
the creep strain at any time.
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Figure 1.3 Effect of age at first loading on creep strains.
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Since both the creep and instantaneous strain components are proportional to stress
for compressive stress levels less than about 0.5 f ′

c, the creep coefficient ϕ(t,τ ) is a pure
time function and is independent of the applied stress. The creep coefficient increases
with time at an ever-decreasing rate. As time approaches infinity, the creep coefficient
is assumed to approach a final value ϕ∗(τ ) = ε∗cr(τ )/εe(τ ) that usually falls within
the range 1.5–4.0. This final creep coefficient is a useful measure of the capacity of
concrete to creep. Since creep strain depends on the age of the concrete at the time of
first loading, so too does the creep coefficient. A family of creep coefficient versus time
curves may be drawn that are similar to the creep–time curves shown in Fig. 1.3.

Another frequently used time function is known as specific creep, C(t,τ ), and is the
proportionality factor relating stress to linear creep, i.e.:

εcr(t,τ ) = C(t,τ ) σc(τ ) or C(t,τ ) = εcr(t,τ )
σc(τ )

(1.8)

C(t,τ ) is the creep strain at time t produced by a sustained unit stress first applied at
age τ .

The relationship between the creep coefficient and specific creep can be obtained
from Eqs 1.6 and 1.8:

ϕ(t,τ ) = C(t, τ ) Ec(τ ) (1.9)

The sum of the instantaneous and creep strains at time t produced by a sustained
unit stress applied at τ is defined as the creep function, J(t,τ ), and is given by:

J (t,τ ) = 1
Ec(τ )

+ C(t,τ ) = 1
Ec(τ )

[1 +ϕ(t,τ )] (1.10)

The stress-produced strains (i.e. the instantaneous plus creep strains) caused by a
constant sustained stress σ c(τ ) first applied at age τ (also called the stress-dependent
strains) may therefore be determined from:

εe(t) + εcr(t,τ ) = J(t,τ )σc(τ ) = σc(τ )
Ec(τ )

[1 +ϕ(t,τ )] = σc(τ )
Ee(t,τ )

(1.11)

where Ee(t,τ ) is known as the effective modulus and is given by:

Ee(t,τ ) = Ec(τ )
[1 +ϕ(t,τ )] (1.12)

The variation with time of the creep strain caused by a constant sustained stress
σc(τ0) (≡σ c0) is shown in Fig. 1.4.

In the remainder of this book, the creep coefficient and the creep function are used
to mathematically define and quantify creep.

1.2.5 The principle of superposition

Because the load-dependent strains in concrete at service loads are proportional to
stress, the principle of superposition is frequently used to estimate the deformation
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Time
(a) Constant stress history (b) Creep strain versus time

Time
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sc(t0)

t0

j(t, t0) sc(t0)/Ec(t0)

t0

ecr(t, t0)

Figure 1.4 Creep strain produced by a constant sustained stress.

caused by a time-varying stress history. The principle of superposition was first applied
to concrete by McHenry (Ref. 11) who stated that the strain produced by a stress
increment applied at any time τ i is not affected by any stress applied either earlier or
later. This principle is illustrated in Fig. 1.5.

For increasing stress histories, such as that shown in Fig. 1.5c, the principle of
superposition agrees well with experimental observations. The creep curve produced
by the increasing stress history is assumed to be equal to the sum of the creep curves
produced by each stress increment acting independently. However, for decreasing
stress histories, the principle of superposition overestimates creep recovery, as shown
in Fig. 1.5d. This can easily be seen when one divides creep into delayed elastic and flow
components. The principle of superposition incorrectly assumes that at any time t 	 τ1,
the delayed elastic strain that develops between τ0 and τ1, εcr.d(τ1,τ0), is equal to the
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Figure 1.5 The principle of superposition of creep strains.
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creep strain at time t produced by σc(τ1) = σc(τ0) applied at τ1 (i.e. εcr(t,τ1)). In fact,
εcr.d(τ1,τ0) is significantly less than εcr(t,τ1). Nevertheless, for most practical purposes,
the principle of superposition provides a good approximation of the time-dependent
strains in concrete caused by a time-varying stress history.

To illustrate the principle of superposition, consider the stress history shown in
Fig. 1.6a consisting of two stress increments �σ c(τ0) and �σ c(τ1) applied at times
τ0 and τ1, respectively. In this case, two creep coefficients ϕ (t, τ0) and ϕ (t, τ1) are
required to determine the creep strain at any time t > τ1. Graphs of the two creep
coefficients versus time curves are shown in Fig. 1.6b and the corresponding creep
function versus time curves are given in Fig. 1.6c.

According to the principle of superposition, the total stress-dependent strain in
concrete at time t (elastic plus creep strains) can be written as:

εe(t) + εcr(t) = �σc(τ0)
Ec(τ0)

[1 +ϕ(t,τ0)] + �σc(τ1)
Ec(τ1)

[1 +ϕ(t,τ1)]

=
1∑

i=0

�σc(τi)
Ec(τi)

[1 +ϕ(t,τi)] (1.13)

where the argument τ has been eliminated from the elastic strain εe(t) and creep strain
εcr(t) as the stress history varies with time. This notation is more appropriate for realis-
tic time-varying stress histories and will be used throughout the remainder of the book.

Eq. 1.13 can also be written in terms of creep functions as:

εe(t) + εcr(t) = J(t,τ0)�σc(τ0) + J(t,τ1)�σc(τ1) =
1∑

i=0

J(t,τi)�σc(τi) (1.14)

The variations with time of the elastic and creep deformations are plotted in Fig. 1.7.
A useful graphic interpretation of the elastic and creep deformations is shown

in Fig. 1.8, where Figs 1.6a and 1.6c have been combined. The stress increments
of Fig. 1.6a are plotted on the horizontal axis of Fig. 1.8b and Fig. 1.6c has been
reproduced for ease of reference in Fig. 1.8a. At any time t > τ1 the area under the
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Figure 1.6 Creep coefficients and creep functions associated with two stress increments.
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Figure 1.7 Creep and elastic deformations due to two stress increments (Fig. 1.6a).

curve of Fig. 1.8b represents the actual stress-dependent deformation (sum of elastic
and creep strains) at time t as defined in Eq. 1.14.

Consider the stress history shown in Fig. 1.9a. By dividing the time under load into
n time steps, the continuously varying stress may be approximated by a series of small
stress increments applied at the end of each time step. The stress-produced strains at
time t are given by:

εe(t) + εcr(t) =
n∑

i=0

�σc(τi)
Ec(τi)

[1 +ϕ(t,τi)] =
n∑

i=0

J(t,τi)�σc(τi) (1.15)

and a different creep coefficient is required for each small stress increment, �σ (τ i).
According to the principle of superposition, the total strain in concrete at time
t subjected to the stress history shown in Fig. 1.9 is obtained by summing the
stress-produced strains and the shrinkage strain:

ε(t) = εe(t) + εcr(t) + εsh(t)

ε(t) =
n∑

i=0

J(t,τi)�σc(τi) + εsh(t) =
n∑

i=0

�σc(τi)
Ec(τi)

+
n∑

i=0

�σc(τi)ϕ(t,τi)
Ec(τi)

+ εsh(t) (1.16)

Time
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J(t2,t0) Ds (t0)
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J(t2,t0) J(t2,t1)

J(t2,t1) J(t2,t0)

(b) Elastic plus creep deformations

t0 t1 t2

Figure 1.8 Graphical representation of elastic plus creep deformation at time τ2 caused by two
previous stress increments.
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Figure 1.9 Time-varying stress history and stress-produced strains.

In the limit, considering infinitesimal stress increments dσ c(τ ), the summation included
in Eq. 1.16 can be replaced by an integral:

ε(t) =
t∫

τ0

J(t,τ )dσc(τ ) + εsh(t) =
t∫

τ0

1 +ϕ(t,τ )
Ec(τ )

dσc(τ ) + εsh(t) (1.17)

Equation 1.17 is referred to as the integral-type creep law (Ref. 12). The integral in
Eq. 1.17 for the stress-produced strains is the area under the graph of creep function
versus concrete stress in Fig. 1.9b.

The stress at a point in a concrete structure under constant load often decreases
with time as a result of creep. Consider the time-varying stress history shown in
Fig. 1.10a where the initial stress σ c(τ0) is compressive and decreases with time (i.e.
all subsequent stress increments�σ c(τ i) are tensile). Notwithstanding the inaccuracies
when the principle of superposition is applied to a decreasing stress history (mentioned
previously), the stress produced strain may still be obtained using Eqs 1.16 or 1.17,
with the integral in Eq. 1.17 represented by the hatched area under the curve in
Fig. 1.10b.

Time

Stress

i-th time interval

Creep function

Hatched area =
stress-produced strain
(when stress increments
are infinitesimally small)

(a) Gradually decreasing stress history

sc(t0)sc(tn)t = tntiti−1t2t1t0

sc(t0)

sc(t)
Dsc(ti)

J(t,tn)

J(t,t0)

Stress

(b) Stress-produced strain

Figure 1.10 Gradually decreasing stress history and stress-produced strain.
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The main disadvantage of the method of superposition, apart from its reduced
accuracy when applied to a decreasing stress history, is the large amount of creep
data required. Nevertheless, in a more general sense, the principle of superposition is
relied upon in many fields of structural engineering and the analysis for time effects in
concrete structures is no exception.

1.2.6 Tensile creep

The previous discussions have been concerned with the creep of concrete in com-
pression. However, the creep of concrete in tension is also of interest in a number of
practical situations; for example, when studying the effects of restrained or differential
shrinkage. Tensile creep also plays a significant role in the analysis of suspended
reinforced concrete slabs at service loads where stress levels are generally low and
typically much of the slab is initially uncracked.

Comparatively little attention has been devoted to the study of tensile creep (Ref. 1)
and only limited experimental results are available in the literature, e.g. Ref. 13. Some
researchers have multiplied the creep coefficients measured for compressive stresses by
factors in the range of 1 to 3 to produce equivalent coefficient describing tensile creep
(e.g. Refs 14 and 15).

It appears that the mechanisms of creep in tension are different to those in
compression. The magnitudes of both tensile and compressive creep increase when
loaded at earlier ages. However, the rate of change of tensile creep with time does
not decrease in the same manner as for compressive creep, with the development
of tensile creep being more linear (Ref. 13). Drying tends to increase tensile creep
in a similar manner to compressive creep and tensile creep is in part recoverable
upon removal of the load. Further research is needed to provide clear design
guidance. In this book, it is assumed that the magnitude and rate of development
of tensile creep are similar to that of compressive creep at the same low stress
levels.

1.2.7 The effects of creep on structural behaviour

Creep is the time-dependent strain that develops in concrete due to sustained stress.
When a loaded concrete member is unrestrained by steel reinforcement or by the
external support conditions (such as a statically determinate plain concrete member),
creep causes little more than an increase in deformations.

The internal actions caused by imposed deformations in an indeterminate structure
are proportional to stiffness. Due to creep, the internal actions caused by imposed
deformations decrease with time in all concrete structures whether they are plain
or reinforced. On the other hand, creep will not cause redistribution of load-
induced internal actions provided the creep characteristics are uniform throughout
the structure. The effect of creep in this case is similar to a gradual and uniform
change in the elastic modulus. Such a situation exists in an uncracked plain concrete
member, if it is assumed that the creep characteristics of concrete in tension are
the same as those in compression (which is a usual although not strictly correct
assumption). The same is true in an uncracked reinforced concrete structure provided
the reinforcement is symmetrical on each cross-section and uniform throughout the
structure.
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When portions of a statically indeterminate structure are made of different materials
or of concrete with a different composition or age, and hence different creep
characteristics, creep causes a redistribution of the load-induced internal actions. The
internal actions are redistributed from the regions with the higher creep rate to the
regions with the lower creep rate. In practical reinforced concrete flexural members,
the creep characteristics are rarely uniform throughout. Some regions are usually
cracked and some are not. Reinforcement quantities usually vary along the length
of the member and sections are seldom symmetrically reinforced. Nevertheless, the
redistribution caused by creep of the load-induced bending moments and shear forces
in statically indeterminate members is generally small and is quite often neglected in
design.

Creep can dramatically change the stress distribution on a reinforced concrete
section. For example, stresses caused by shrinkage or temperature changes are relieved
by creep. Creep also causes a redistribution of stresses between concrete and the bonded
reinforcement on a cross-section. For example, consider a reinforced concrete column
section subjected to a constant sustained axial compressive load. The concrete and
steel are bonded together so that at any time compatibility requires that the concrete
and steel strains are identical. As the compressive concrete creeps (contracts), the steel
is compressed and the compressive stress in the steel gradually increases. Shrinkage
causes a similar effect. Equilibrium requires that the increase in the compressive force in
the steel is balanced by an equal and opposite tensile force on the concrete. Therefore,
the compressive stress in the concrete reduces with time, while the steel stress increases
rapidly. Load is thus transferred from the concrete to the steel, with the proportion of
the external load carried by the reinforcement increasing with time. Fig. 1.11 shows
the typical variation in compressive stresses in the concrete and steel caused by creep
on the cross-section of an axially loaded reinforced concrete column subjected to a
constant sustained compressive force, P.

It is quite common, in fact, for the stress in the longitudinal reinforcement in typically
proportioned reinforced concrete columns to be close to the yield stress at service loads,
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due to the effects of creep and shrinkage (particularly for low-strength steel grades).
The use of closely spaced lateral reinforcement in the form of closed ties or helices to
prevent these highly stressed bars from buckling is therefore essential at the service
load condition and not just at the ultimate load condition.

The gradual development of creep strain on a reinforced concrete beam section
causes an increase of curvature, as shown in Fig. 1.12, and a consequent increase
in the beam deflection. For a plain concrete member, the increase in curvature is
proportional to the creep coefficient (i.e. the increase in curvature is proportional
to the uniform increase in strain at every point on the section). For an uncracked,
singly reinforced section (Fig. 1.12a), creep is restrained in the tensile zone by the
reinforcement. Depending on the quantity of steel, the increase in curvature due to
creep is proportional to a large fraction of the creep coefficient (usually between 0.6ϕ(t)
and 0.9ϕ(t)).

On a cracked, singly reinforced beam section (Fig. 1.12b), the initial curvature is
comparatively large and the cracked tensile concrete below the neutral axis can be
assumed to carry no stress and therefore does not creep. Creep in the compression zone
causes a lowering of the neutral axis and a consequent reduction in the compressive
stress level. Creep is slowed down as the compressive stress reduces, and the increase in
curvature is proportional to a small fraction of the creep coefficient (usually less than
one quarter). The relative increase in deflection caused by creep is therefore greater
in an uncracked beam than in a cracked beam, although the total deflection in the
cracked beam is significantly greater.

In prestressed concrete construction, in addition to causing increases in deflection
(and camber), both creep and shrinkage cause shortening of the concrete member that
in turn causes shortening of the prestressing tendons and a consequent reduction in
the prestressing force. This loss of prestress may adversely affect the performance of
the member at service loads and should be accounted for in its design.

Time t

Instantaneous

(a) Uncracked cross-section

Time t
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Figure 1.12 Effects of creep on the strain distribution on a singly reinforced section.
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Creep does not normally affect the strength of a structural member. The magnitude
of creep strain is usually small compared to the peak strains at the ultimate load
condition. An exception is creep-induced buckling of slender columns, arches or
domes. In a slender column, for example, creep increases the lateral deflection caused
by the initial eccentricity resulting in additional secondary moments that in turn may
eventually lead to instability. Another example where creep deformation may affect
strength is a sagging floor or roof system subjected to (water) ponding loads.

In summary, creep significantly affects structural behaviour at service loads. In
some instances, its effects are detrimental, while in others, creep is beneficial.
Creep causes losses of prestress and increases in deformations and deflections
that may impair the serviceability of the structure. Creep also adversely affects a
favourable initial stress distribution that may be introduced intentionally by an
imposed deformation (e.g. preflexed girders). On the other hand, creep reduces
undesirable stresses in concrete caused by unintentionally imposed deformations such
as support settlements, shrinkage and thermal gradients and so on. Creep relieves
concrete stress concentrations and imparts deformability to concrete. In fact, the
success of concrete as a structural material is due, in no small way, to its ability to creep.

1.3 Shrinkage of concrete

1.3.1 Types of shrinkage

Shrinkage of concrete is the time-dependent strain in an unloaded and unrestrained
specimen at constant temperature. It is important from the outset to distinguish
between plastic shrinkage, chemical shrinkage, thermal shrinkage and drying shrink-
age. Plastic shrinkage occurs in the wet concrete before setting, whereas chemical,
thermal and drying shrinkage all occur in the hardened concrete after setting. Some
high-strength concretes are prone to plastic shrinkage that occurs in the wet concrete
and may result in significant cracking during the setting process. This cracking occurs
due to capillary tension in the pore water and is best prevented by taking measures
during construction to avoid the rapid evaporation of bleed water. At this stage, the
bond between the plastic concrete and the reinforcement has not yet developed, and
the steel is ineffective in controlling such cracks.

Drying shrinkage is the reduction in volume caused principally by the loss of water
during the drying process. It increases with time at a gradually decreasing rate and takes
place in the months and years after casting. The magnitude and rate of development
of drying shrinkage depend on all the factors that affect the drying of concrete,
including the relative humidity, the mix characteristics (in particular, the type and
quantity of the binder, the water content and water-to-cement ratio, the ratio of
fine-to-coarse aggregate, and the type of aggregate), and the size and shape of the
member.

Chemical shrinkage results from various chemical reactions within the cement paste
and includes hydration shrinkage that is related to the degree of hydration of the
binder in a sealed specimen with no moisture exchange. Chemical shrinkage (often
called autogenous shrinkage) occurs rapidly in the days and weeks after casting and is
less dependent on the environment and the size of the specimen than drying shrinkage.
Thermal shrinkage is the contraction that results in the first few hours (or days) after
setting as the heat of hydration gradually dissipates. The term endogenous shrinkage
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is sometimes used to refer to that part of the shrinkage of the hardened concrete that
is not associated with drying (i.e. the sum of autogenous and thermal shrinkage).

1.3.2 Factors affecting shrinkage

The shrinkage of concrete is defined here as the time-dependent strain measured at
constant temperature in an unloaded and unrestrained specimen. The shrinkage strain,
εsh, is usually considered to be the sum of the drying shrinkage component, εshd,
(which is the reduction in volume caused principally by the loss of water during the
drying process) and the endogenous shrinkage component, εshe (which is mainly due
to chemical reactions within the cement paste, such as carbonation). Drying shrinkage
in high-strength concrete is smaller than in normal-strength concrete due to the smaller
quantities of free water after hydration. However, thermal and chemical shrinkage may
be significantly higher. Although drying and endogenous shrinkage are quite different
in nature, there is no need to distinguish between them from a structural engineering
point of view.

Shrinkage continues to increase with time at a decreasing rate, as illustrated in
Fig. 1.1. Shrinkage is assumed to approach a final value, ε∗sh, as time approaches
infinity. Drying shrinkage is affected by all of the factors that affect the drying of
concrete, in particular the water content and the water–cement ratio of the mix,
the size and shape of the member and the ambient relative humidity. All else being
equal, drying shrinkage increases when the water–cement ratio increases, the relative
humidity decreases and the ratio of the exposed surface area to volume increases.
Temperature rises accelerate drying and therefore increase shrinkage. By contrast,
endogenous shrinkage increases as the cement content increases and the water–cement
ratio decreases. In addition, endogenous shrinkage is not affected by the ambient
relative humidity.

The effect of a member’s size on drying shrinkage should be emphasised. For
a thin member, such as a slab, the drying process may be complete after several
years, but for the interior of a larger member, the drying process may continue
throughout its lifetime. For uncracked mass concrete structures, there is no sig-
nificant drying (shrinkage) except for about 300 mm from each exposed surface.
By contrast, the chemical shrinkage is less affected by the size and shape of the
specimen.

Shrinkage is also affected by the volume and type of aggregate. Aggregate provides
restraint to shrinkage of the cement paste, so that an increase in the aggregate
content reduces shrinkage. Shrinkage is also smaller when stiffer aggregates are used,
i.e. aggregates with higher elastic moduli. Thus shrinkage is considerably higher in
lightweight concrete than in normal weight concrete (by up to 50 per cent).

1.3.3 The effects of shrinkage on structural behaviour

Shrinkage is greatest at the member surfaces exposed to drying and decreases towards
the interior of the member. In Fig. 1.13a, the shrinkage strains through the thickness
of a plain concrete slab that is drying on both the top and bottom surfaces are shown.
The slab is unloaded and unrestrained. The mean shrinkage strain, εsh in Fig. 1.13a, is
the average contraction. The strain marked �εsh is the portion of the shrinkage strain
that causes the internal stresses required to restore strain compatibility (i.e. to ensure
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that plane sections remain plane). These self-equilibrating internal stresses (called
eigenstresses) occur in all concrete structures and are tensile near the drying surface
and compressive in the interior of the member. Because the shrinkage-induced internal
stresses develop gradually with time, they are relieved by creep. Nevertheless, soon
after the commencement of drying, the tensile stresses near the drying surfaces may
overcome the tensile strength of the concrete (particularly in poorly cured concrete)
and result in surface cracking.

The elastic plus creep strains caused by the internal stresses are equal and opposite
to �εsh, as shown in Fig. 1.13b. The total strain distribution, obtained by summing
the elastic, creep and shrinkage components, is linear, as shown in Fig. 1.13c, and
therefore satisfies compatibility.

If the drying conditions are the same at both the top and bottom surfaces, the total
strain is uniform over the depth of the slab and equal to the mean shrinkage strain, εsh.
It is this quantity that is usually of significance in the analysis of concrete structures. The
currently available procedures for estimating shrinkage strains (such as the procedure
outlined in Section 2.1.5) are empirical formulae for the mean shrinkage on a section
(εsh in Fig. 1.13). Procedures for making reliable estimates of the variation of shrinkage
strain through the depth of a section are at present unavailable. If drying occurs at
a different rate from the top and bottom surfaces, the total strain distribution is no
longer uniform over the depth of the section; a curvature develops on the section and
deflection of the member results.

In concrete structures, unrestrained contraction and unrestrained rotation are
unusual. Reinforcement embedded in the concrete provides restraint to shrinkage.
If the reinforcement is not symmetrically placed on a section, a shrinkage-induced
curvature develops with time. Consider the singly reinforced member shown in
Fig. 1.14a, and the small segment of length, �z. The shrinkage-induced stresses and
strains on an uncracked and on a cracked cross-section are shown in Figs 1.14b
and c, respectively. As the concrete shrinks, it compresses the steel reinforcement
that, in turn, imposes an equal and opposite tensile force, �T, on the concrete
at the level of the steel. This gradually increasing tensile force, acting at some
eccentricity to the centroid of the concrete cross-section produces elastic plus creep
strains and a resulting curvature on the section. The shrinkage-induced curvature
often leads to significant load independent deflection of the member. The magnitude of

Top

Tensile Compressive

Bottom

(a) Shinkage strain (c) Total strain caused
      by shrinkage

(b) Elastic+creep strain
      caused by internal stress

esh eshDesh

Figure 1.13 Strain components caused by shrinkage in plain concrete.
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Figure 1.14 Shrinkage-induced deformation and stresses in a singly reinforced beam.

�T (and hence the shrinkage induced curvature) depends on the quantity and position
of the reinforcement and on whether or not the cross-section has cracked.

The curvature caused by �T obviously depends on the size of the (uncracked)
concrete part of the cross-section, and hence on the extent of cracking, and this
in turn depends on the magnitude of the applied moment and the quantity of
reinforcement. Although shrinkage strain is independent of stress, it appears that
shrinkage curvature is not independent of the external load. The shrinkage induced
curvature on a previously cracked cross-section is considerably greater than on an
uncracked cross-section, as can be seen in Fig. 1.14.

In addition to the restraint provided by bonded reinforcement, the connections of a
member to other portions of the structure or to the foundation also provide restraint to
the shortening and rotation caused by shrinkage. Both of these forms of restraint create
internal stresses and deformations and, in statically indeterminate structures, internal
actions. The shrinkage-induced change in the reactions of a restrained indeterminate
member can lead to a significant redistribution of moments and shears, as well as a
build-up of tension that may lead to cracking.

If the axially loaded column section previously shown in Fig. 1.11 also commenced
shrinking at time τ (i.e. τd = τ ), the redistribution of internal stresses between the
concrete and the steel is exacerbated by the shrinkage as illustrated in Fig. 1.15.
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Figure 1.15 Variation of stresses with time due to shrinkage in a symmetrically reinforced
section subjected to axial compression.

If the member was unloaded (i.e. P = 0), shrinkage causes a gradual build up of
tension in the concrete as illustrated in Fig. 1.16.

Shrinkage is probably the most common cause of cracking in concrete structures.
Direct tension cracks caused by restrained shrinkage tend to be more parallel sided
than flexural cracks and often penetrate completely through the member. Such cracks
are difficult to control and are often difficult to anticipate. In addition to the obvious
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serviceability and durability problems that shrinkage cracking can create, full depth
shrinkage cracks in regions of small moment can cause reductions in shear strength.

In summary, shrinkage is invariably detrimental. Shrinkage causes axial shortening
and rotations that may result in significant deflection. Restraint to shrinkage induces
tension in the concrete and the resulting cracks, if not controlled, can lead to
serviceability, durability and even shear strength failures.

1.4 Time analysis – the basic problem

An elastic structural analysis that includes the time-dependent effects of creep and
shrinkage is not fundamentally different from any other structural analysis. As always,
three basic requirements must be satisfied:

(i) equilibrium of forces;
(ii) compatibility of strains; and
(iii) the material behaviour laws.

In a short-term analysis of a concrete structure, suitable stress versus strain
relationships for concrete are used to model material behaviour in both tension and
compression. If linear-elastic behaviour is assumed, Hooke’s Law may be adopted.
To include time effects in the analysis, a suitable stress versus strain versus time
relationship (i.e. a suitable constitutive relationship) must be used.

Two main complicating factors must be overcome to reliably predict time-dependent
behaviour. The first is the change in section properties brought about by time-
dependent cracking resulting from the combined effects of external load and restraint
to shrinkage and temperature changes. The second complicating factor is the interde-
pendence between creep strain and stress history. The magnitude of the creep strain
at a point in a reinforced concrete member depends on the previous stress history; but
the stress history depends to a large extent on the magnitude and rate of development
of creep (and shrinkage). Concrete is an ageing material. The older concrete is when it
is loaded, the smaller is the final creep strain. The efficient and accurate prediction of
creep due to a time-varying stress history (that is almost always the case in reinforced
concrete structures) is the key to a successful time analysis.
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2 Material properties

2.1 Concrete

2.1.1 Introductory remarks

To adequately predict deflections and crack widths in the design for serviceability,
methods of analysis that realistically account for cracking and the time-dependent
deformations caused by creep and shrinkage of the concrete are required, as are
appropriate material modelling rules. The properties and deformation characteristics
of concrete that are most often required in serviceability calculations are the tensile
strength, elastic modulus, creep coefficient and shrinkage strain.

The elastic modulus is needed in the analysis of structures to estimate the stiffness
of each member and to determine the internal actions. It is also required to estimate
the instantaneous deformations caused by internal actions and the stresses induced
by imposed deformations. The tensile strength of concrete is required to determine
the extent of cracking due to both applied load and applied deformation. The creep
coefficient associated with a particular time period and a particular loading regime is
needed to estimate the time-dependent deformation of the structure, and the magnitude
and rate of shrinkage strain is required to predict the development of load-independent
deformations with time and the onset of time-dependent cracking.

In this chapter, simple models are presented for predicting the tensile strength,
elastic modulus, creep coefficient and shrinkage strain for concretes with a compressive
strength in the range 20 MPa ≤ f ′

c ≤ 100 MPa. These models were originally developed
by Gilbert (Ref. 1) and have been incorporated into the most recent edition of the
Australian Standard for Concrete Structures, AS3600-2009 (Ref. 2). They have been
included here because the equations will be used in subsequent chapters to obtain
typical material properties. Other alternative material modelling rules are available in
the literature, for example, in Refs 3–11.

2.1.2 Compressive and tensile strength

The strength of concrete is usually specified in terms of the lower characteristic
compressive cylinder (or cube) strength at 28 days, f ′

c. This is the value of compressive
strength exceeded by 95 per cent of all standard cylinders or cubes tested at age 28 days
after curing under standard laboratory conditions. The mean compressive strength of
the sample cylinders or cubes at 28 days (fcm) is about 25 per cent higher than the
characteristic strength when f ′

c = 20 MPa, reducing to about 10 per cent higher than
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the characteristic strength when f ′
c = 100 MPa. The in-situ strength of concrete (i.e. the

strength of the concrete in the structure on site) is often taken to be about 90 per cent
of the cylinder strength (Ref. 2).

The tensile strength, fct, is defined here as the maximum stress that the concrete
can withstand when subjected to uniaxial tension. Direct uniaxial tensile tests are
difficult to perform and tensile strength is usually measured from either flexural tests
on prisms or indirect splitting tests on cylinders. In flexure, the apparent tensile stress at
the extreme tensile fibre of the critical cross-section under the peak load is calculated
assuming linear elastic behaviour and taken to be the flexural tensile strength (or
modulus of rupture), fct.f . The flexural tensile strength fct.f is significantly higher than
fct due to the strain gradient and the post-peak unloading portion of the stress–strain
curve for concrete in tension. Typically, fct is about 50–60 per cent of fct.f . The indirect
tensile strength measured from a split cylinder test is also higher than fct (usually by
about 10 per cent) due to the confining effect of the bearing plate in the standard test.

For design purposes, the lower characteristic flexural tensile strength, f ′
ct.f , and the

lower characteristic uniaxial tensile stress, f ′
ct, may be taken as:

f ′
ct.f = 0.6

√
f ′
c (2.1a)

and

f ′
ct = 0.36

√
f ′
c (2.1b)

The mean and upper characteristic values may be estimated by multiplying the lower
characteristic values by 1.4 and 1.8, respectively (Ref. 2). In serviceability calculations,
mean values of tensile strength should be used rather than characteristic values in most
situations.

2.1.3 Elastic modulus

The value of the elastic modulus, Ec, increases with time as the concrete gains strength
and stiffness. It is common practice to assume that Ec is constant with time and equal
to its value calculated at the time of first loading. For stress levels less than about
0.4fcm for normal strength concrete (f ′

c ≤ 50 MPa) and about 0.6fcm for high strength
concrete (50< f ′

c ≤ 100 MPa), and for stresses applied over a relatively short period
(say up to 5 minutes), a numerical estimate of the in-situ elastic modulus may be made
from:

For fcmi ≤ 40 MPa:

Ec = ρ1.50.043
√

fcmi (in MPa) (2.2a)

For 40 < fcmi ≤ 100 MPa:

Ec = ρ1.5 [0.024
√

fcmi + 0.12] (in MPa) (2.2b)
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where ρ is the density of the concrete in kg/m3 (not less than 2400 kg/m3 for normal
weight concrete) and fcmi is the mean in-situ compressive strength in MPa at the time
of first loading. Eq. 2.2a was originally proposed by Pauw (Ref. 12). Values for Ec
obtained using Eqs 2.2 for in-situ normal weight concrete (ρ = 2400 kg/m3) at age
28 days for different values of f ′

c are given in Table 2.1. The mean in-situ strength
compressive strength, fcmi, in Table 2.1 is taken to be 90 per cent of the standard mean
cylinder strength and for 100 MPa concrete is actually smaller than the characteristic
cylinder strength, f ′

c.

Table 2.1 The elastic modulus for in-situ concrete, Ec

f ′
c (MPa) 20 25 32 40 50 65 80 100

fcmi (MPa) 22.5 27.9 35.4 43.7 53.7 68.2 81.9 99.0
Ec (MPa) 24,000 26,700 30,100 32,750 34,800 37,400 39,650 42,200

The magnitude of Ec given by Eqs 2.2 has an accuracy of ± 20 per cent depending,
among other things, on the type and quantity of aggregate and the rate of application
of the load. In general, the faster the load is applied, the larger the value of Ec. For
stresses applied over a longer time period (say up to one day), significant increases
in deformation occur due to the rapid early development of creep. Yet in a broad
sense, loads of one day duration are usually considered to be short-term and the
effects of creep are often ignored. This may lead to significant error. If the short-
term deformation after 1 day of loading is required, it is suggested that Ec be reduced
by about 20 per cent to account for early creep (Ref. 13).

Eq. 2.2c provides an estimate of the variations of the elastic modulus with time
(Ref. 7):

Ec (t) =
(

es (1−√
28/t)

)0.5
Ec (28) (2.2c)

where the coefficient s is taken as 0.38 for Ordinary Portland Cement and 0.25 for
High Early Strength Cement) and Ec(28) is the 28-day value of the elastic modulus.
Ref. 9 adopts an exponent of 0.3 in Eq. 2.2c (instead of 0.5). Typical variations in Ec
with time t are shown in Table 2.2.

Table 2.2 Increase in elastic modulus with age of concrete t − (Ec(t)/Ec(28))

Cement type Age of concrete in days (t)

3 7 28 90 360 30,000

Ordinary Portland Cement 0.68 0.83 1.0 1.09 1.15 1.20
High Early Strength Cement 0.77 0.88 1.0 1.06 1.09 1.13

2.1.4 Creep coefficient

In Section 1.2.4, the creep coefficient at time, t, associated with a constant stress first
applied at age, τ , was defined as the ratio of the creep strain at time, t, to the (initial)
elastic strain and given the symbol, ϕ(t,τ ).
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The most accurate way of determining the final creep coefficient is by testing or
using results obtained from measurements on similar local concretes. However, testing
is often not a practical option for the structural designer. In the absence of long-term
test results, the final creep coefficient may be determined by extrapolation from short-
term test results, where creep is measured over a relatively short period (say 28 days)
in specimens subjected to constant stress. Various mathematical expressions for the
shape of the creep coefficient versus time curve are available from which long-term
values may be predicted from the short-term measurements (Ref. 13). The longer the
period of measurement, the more accurate are the long-term predictions.

If testing is not an option, numerous analytical methods are available for predicting
the creep coefficient. These predictive methods vary in complexity. Some are simple
and easy to use and provide a quick and approximate estimate of ϕ(t,τ ). Such a method
is included in the Australian Standard AS3600-2009 (Ref. 2) and an improved version
of the method is described below. Some other methods are more complicated and
attempt to account for the many parameters that affect the magnitude and rate of
development of creep. Unfortunately, an increase in complexity does not necessarily
result in an increase in accuracy, and predictions made by some of the more well-known
methods differ widely (Refs 3, 14–16).

The simple approach described here does not account for such factors as aggregate
type, cement type, cement replacement materials and more, but it does provide a ‘ball-
park’ estimate of the creep coefficient for concrete suitable for routine use in structural
design.

The creep coefficient at any time may be calculated from:

ϕ(t,τ ) = k2 k3 k4 k5ϕbasic (2.3)

The basic creep coefficient ϕbasic is given in Table 2.3, where the values have been
updated from those given in Ref. 1 and are based on more recent test data.

The factor k2 in Eq. 2.3 describes the development of creep with time. It depends on
the hypothetical thickness, th, the environment and the time after loading and is given
in Fig. 2.1. The hypothetical thickness is defined as th = 2A/ue, where A is the cross-
sectional area of the member and ue is that portion of the section perimeter exposed to
the atmosphere plus half the total perimeter of any voids contained within the section.

The factor k3 depends on the age at first loading τ (in days) and is given by:

k3 = 2.7
1 + log(τ )

(2.4)

The factor k4 accounts for the environment, with k4 = 0.7 for an arid environment,
k4 = 0.65 for an interior environment, k4 = 0.60 for a temperate environment and
k4 = 0.5 for a tropical/coastal environment.

The factor k5 is given in Eq. 2.5 and accounts for the reduced influence of both
the relative humidity and the specimen size on the creep of concrete as the concrete
strength increases (or more precisely, as the water-binder ratio decreases).

Table 2.3 The basic creep coefficient ϕbasic

f ′
c (MPa) 20 25 32 40 50 65 80 100
ϕbasic 4.5 3.8 3.0 2.4 2.0 1.7 1.5 1.3
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Figure 2.1 The factor k2 versus time (Ref. 1).

When f ′
c ≤ 50 MPa:

k5 = 1.0 (2.5a)

When 50 MPa < f ′
c ≤ 100 MPa:

k5 = (2.0 −α3) − 0.02(1.0 −α3) f ′
c (2.5b)

where α3 = 0.7/(k4α2).
A family of creep coefficient versus duration of loading curves obtained using Eq. 2.3

is shown in Fig. 2.2 for a concrete specimen located in a temperate environment, with
a hypothetical thickness th = 150 mm, concrete strength f ′

c = 40 MPa and loaded at
different ages, τ . The final creep coefficients ϕ∗ (after 30 years) predicted by the above
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method are given in Table 2.4 for concrete first loaded at 28 days, for characteristic
strengths of 25–100 MPa, for three hypothetical thicknesses (th = 100, 200 and
400 mm) and for concrete located in different environments.

The above discussion is concerned with compressive creep. In many practical
situations, creep of concrete in tension is also of interest. Tensile creep plays an
important part in delaying the onset of cracking caused by restrained shrinkage. In
design, it is usual to assume that the creep coefficients in tension and in compression
are identical. Although not strictly correct, this assumption simplifies calculations and
does not usually introduce serious inaccuracies.

It must be emphasised that creep of concrete is highly variable with significant
differences in the measured creep strains in seemingly identical specimens tested under
identical conditions (both in terms of load and environment). The creep coefficient
predicted by Eq. 2.3 should be taken as an average value with a range of ± 30 per cent.

Table 2.4 Final creep coefficients (after 30 years) ϕ∗ for concrete first loaded at 28 days

Final creep coefficient, ϕ∗

f ′
c Arid Interior Temperate inland Tropical and near-

(MPa) environment environment environment coastal environment

th(mm) th(mm) th(mm) th(mm)

100 200 400 100 200 400 100 200 400 100 200 400

25 4.37 3.53 2.96 4.06 3.28 2.75 3.75 3.03 2.53 3.12 2.52 2.11
32 3.45 2.79 2.33 3.20 2.59 2.17 2.96 2.39 2.00 2.46 1.99 1.67
40 2.76 2.23 1.87 2.56 2.07 1.73 2.37 1.91 1.60 1.97 1.59 1.33
50 2.30 1.86 1.56 2.14 1.73 1.45 1.97 1.59 1.33 1.64 1.33 1.11
65 1.76 1.49 1.31 1.66 1.41 1.24 1.56 1.33 1.17 1.37 1.18 1.04
80 1.38 1.24 1.14 1.33 1.20 1.10 1.28 1.16 1.07 1.18 1.08 1.00

100 0.99 0.99 0.97 0.99 0.99 0.97 0.99 0.99 0.97 0.99 0.99 0.97

2.1.5 Shrinkage strain

The model presented below for estimating the magnitude of shrinkage strain in normal
and high strength concrete was proposed by Gilbert (Ref. 1) and is included in the
Australian Standard AS3600-2009 (Ref. 2). Many other approaches are available in
the literature (e.g. Refs 3–11).

The model divides the total shrinkage strain, εsh, into two components: endogenous
shrinkage, εshe, and drying shrinkage, εshd, as given in Eq. 2.6. Endogenous shrinkage
is taken to be the sum of chemical (or autogenous) shrinkage and thermal shrinkage
and is assumed to develop relatively rapidly and to increase with concrete strength.
Drying shrinkage develops more slowly and decreases with concrete strength.

εsh = εshe + εshd (2.6)

At any time t (in days) after casting, the endogenous shrinkage is given by:

εshe = ε∗she(1.0 − e−0.1t) (2.7)
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where ε∗she is the final endogenous shrinkage and may be taken as:

ε∗she = (0.06 f ′
c − 1.0) × 50 × 10−6 (f ′

c in MPa) (2.8)

The basic drying shrinkage εshd.b is given by:

εshd.b = (1.0 − 0.008 f ′
c) × ε∗shd.b (2.9)

where ε∗shd.b depends on the quality of the local aggregates and may be taken as
800 × 10−6 when the aggregate quality is known to be good and 1000 × 10−6 when
aggregate quality is uncertain.

At any time after the commencement of drying (t − τd), the drying shrinkage may
be taken as:

εshd = k1k4εshd.b (2.10)

where k1 is given in Fig. 2.3.
The factor k4 depends on the environment and is equal to 0.7 for an arid

environment, 0.65 for an interior environment, 0.6 for a temperate inland environment
and 0.5 for a tropical or near-coastal environment.

As expressed in Eq. 2.6, the design shrinkage at any time is therefore the sum of the
endogenous shrinkage (Eq. 2.7) and the drying shrinkage (Eq. 2.10). The proposed
model provides good agreement with available shrinkage measurements on Australian
concretes. For specimens located in arid, temperate and tropical environments with
average quality aggregate (i.e. with ε∗shd.b = 1000 × 10−6) and with a hypothetical
thickness th = 200 mm, the shrinkage strain components predicted by the above model
at 28 days after the commencement of drying and after 30 years (i.e. at t−τd = 28 days
and t − τd = 10,950 days) are given in Table 2.5.

For each environment identified by the model, typical final design shrinkage
strains for specimens with average quality aggregate (ε∗shd.b = 1000 × 10−6) and with
hypothetical thicknesses th = 50, 100, 200 and 400 mm are given in Table 2.6.
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Table 2.5 Design shrinkage strain components (th = 200 mm and ε∗shd.b = 1000 × 10−6)

Environment f ′
c Shrinkage strain εsh(×10−6) and shrinkage strain

(MPa) components εshe(×10−6) and εshd(×10−6)

t = 28 days t = 10,950 days (30 years)

εshe εshd εsh εshe εshd εsh

Arid 25 25 225 250 25 685 710
32 45 210 255 45 635 680
40 65 190 255 70 580 650
50 95 170 265 100 510 610
65 135 135 270 145 415 560
80 180 100 280 190 310 500

100 235 55 290 250 170 420
Temperate inland 25 25 195 220 25 585 610

32 45 180 225 45 545 590
40 65 165 230 70 500 570
50 95 145 240 100 440 540
65 135 115 250 145 355 500
80 180 85 265 190 260 450

100 235 50 285 250 150 400
Tropical 25 25 160 185 25 485 510

32 45 150 195 45 455 500
40 65 140 205 70 420 490
50 95 120 215 100 370 470
65 135 100 235 145 295 440
80 180 70 250 190 220 410

100 235 40 275 255 115 370

2.2 Steel reinforcement

2.2.1 General

The strength of a reinforced or prestressed concrete element in bending, shear, torsion,
or direct tension is primarily dependent on the properties of the steel reinforcement.
However, at service loads, the steel stresses are usually in the elastic range and the
non-linear properties of the concrete most affect structural behaviour. In this book, it
is the day-to-day, in-service behaviour of concrete structures which is of most interest
and, therefore, it is the modelling of the properties of concrete that creates the most
difficulties. Nevertheless, it is also necessary to adequately model the various types of
steel reinforcement and their material properties.

Steel reinforcement is used in concrete structures to provide strength, ductility
and serviceability. With regard to serviceability, non-prestressed reinforcement can
be strategically placed to reduce both immediate and time-dependent deformations.
Adequate quantities of bonded, non-prestressed steel also provide crack control,
wherever cracks occur in the concrete, and for whatever reason (with the exception of
plastic shrinkage cracking in the wet concrete prior to setting).

Prestressing steel is the means whereby an initial compressive force is exerted on
the concrete in order to reduce or eliminate cracking. By changing the drape of the
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Table 2.6 Typical design shrinkage strains after 30 years (ε∗shd.b = 1000 × 10−6)

Environment f ′
c (MPa) Final shrinkage strain ε∗sh(×10−6)

th = 50 mm th = 100 mm th = 200 mm th = 400 mm

Arid 25 990 870 710 550
32 950 840 680 530
40 890 790 650 510
50 830 740 610 490
65 730 650 560 460
80 630 570 500 420

100 490 460 420 380

Interior 25 920 810 660 510
32 880 780 640 500
40 830 740 610 480
50 770 690 580 460
65 680 620 530 440
80 590 540 480 410

100 480 450 410 370

Temperate inland 25 850 750 610 470
32 820 720 590 460
40 780 690 570 450
50 720 650 540 440
65 640 580 500 410
80 560 520 450 390

100 460 430 400 360

Tropical or near-coastal 25 720 630 510 400
32 690 610 500 390
40 660 590 490 390
50 620 550 470 380
65 560 510 440 370
80 500 460 410 360

100 420 400 370 340

prestressing steel along the length of a member, a transverse force will be exerted on
the member that may counteract the external transverse loads and thus reduce and
help control both short-term and long-term deflection. The design for serviceability is
therefore very much associated with the determination of suitable types and quantities
of reinforcement, wherever cracking or deformation is to be controlled.

2.2.2 Conventional, non-prestressed reinforcement

The non-prestressed reinforcement commonly used in both reinforced and prestressed
concrete structures takes the form of bars, cold-drawn wires or welded wire mesh.
Types and sizes vary from country to country. In Australia, for example, reinforcing
bars are available in two grades, Grade R250N and Grade D500N (that correspond to
characteristic yield stresses fy of 250 MPa and 500 MPa, respectively). Grade R250N
bars are hot-rolled plain round bars of 6 or 10 mm diameter (designated R6 and R10
bars) and are commonly used for fitments such as ties and stirrups. Grade D500N bars
are hot-rolled deformed bars with sizes ranging from 12 to 40 mm diameter (in 4 mm
increments).
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Regularly spaced rib-shaped deformations on the surface of a deformed bar improve
the bond between the concrete and the steel and greatly improve the anchorage
potential of the bar. It is for this reason that deformed bars are used as longitudinal
reinforcement in most reinforced and partially-prestressed concrete members.

In design calculations, non-prestressed steel is usually assumed to be elastic-plastic.
Before yielding, the reinforcement is elastic, with steel stress, σ s, proportional to the
steel strain, εs, that is, σ s = Esεs, where Es is the elastic modulus of the steel. After
yielding, the stress–strain curve is usually assumed to be horizontal (perfectly plastic)
and the steel stress σ s = fy at all values of strain exceeding the yield strain εsy = fy /Es.
The yield stress, fy, is taken to be the strength of the material and strain hardening
is most often ignored. The stress-strain curve in compression is also assumed to be
linear-elastic similar to that in tension.

At service loads, the stress in the non-prestressed steel is usually less than the yield
stress and behaviour is linear-elastic. Throughout this book, the elastic modulus for
non-prestressed reinforcing steel is taken to be Es = 200 GPa.

2.2.3 Prestressing steel

2.2.3.1 Types of prestressing steel

The time-dependent shortening of the concrete caused by creep and shrinkage in a
prestressed concrete member causes a corresponding shortening of the prestressing
steel that is physically attached to the concrete either by bond or by anchorages at the
ends of the steel tendon. This shortening, together with relaxation of the steel, usually
results in a time-dependent loss of stress in the steel of between 100 and 350 MPa (i.e.
between about 7 and 25 per cent of the initial prestress). Significant additional losses of
prestress can result from other sources, such as elastic shortening of the member when
the prestress is first applied, or friction along a post-tensioned tendon, or draw-in at
an anchorage.

For an efficient and practical design, the total loss of prestress should be a relatively
small portion of the initial prestressing force. The steel used to prestress concrete must
therefore be capable of carrying a relatively high initial stress. A tensile strength fp of
between 1000 and 1900 MPa is typical for modern prestressing steels. Early attempts
to prestress concrete with low-strength steels failed because a large proportion of the
prestressing force was rapidly lost due to the time-dependent deformations of the
relatively poor quality concrete in use at that time.

There are three basic types of high-strength steel commonly used as tendons in
modern prestressed concrete construction, viz. cold-drawn stress-relieved round wire
(usually indented or crimped), stress-relieved strand and high-strength alloy steel bars.

The stress–strain curves for the various types of prestressing steel exhibit similar
characteristics. There is no well-defined yield point (as exists for some lower strength
steels). Each curve is initially linear-elastic (with elastic modulus, Ep) and with a
relatively high proportional limit. When the curves become non-linear as deformation
increases, the stress gradually increases monotonically until the steel eventually
fractures. The strain at fracture is usually about 5 per cent. High-strength steel
is therefore considerably less ductile than conventional, hot-rolled non-prestressed
reinforcing steel. For design purposes, the yield stress is the stress corresponding to
the 0.2 per cent offset strain and is often taken to be 85 per cent of the minimum
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tensile strength (i.e. 0.85fp). For cold-drawn wires, Ep may be taken as 205 ± 10 GPa
(Ref. 2).

Stress-relieved strand is perhaps the most commonly used prestressing steel. Strand
is fabricated from a number of prestressing wires, usually seven (although 19-wire
strand is also available in some countries). Seven-wire strand consists of six wires
tightly wound around a seventh, slightly larger diameter central wire. The pitch of the
six spirally-wound wires is between 12 and 16 times the nominal diameter of the strand.
After stranding, the cable is further stress-relieved. Low relaxation (or stabilised)
strand is most often used by the prestressing industry today. The mechanical properties
of the strand are slightly different from those of the wire from which it is made. This
is because the stranded wires tend to straighten slightly when subjected to tension.
For design purposes, the yield stress of stress-relieved strand may be taken to be 0.85fp
and the elastic modulus to be Ep = 200 ± 5 GPa (Ref. 2).

The high strength of alloy steel bars is obtained by introducing alloying elements in
the manufacture of the steel. The bars can be hot rolled or cold worked (stretched).
The elastic modulus for cold-worked bars is generally lower than for strand or wire.
For design purposes, Ep may be taken to be 170 ± 10 GPa for a cold-worked bar or
205 ± 10 GPa for a hot-rolled bar.

2.2.3.2 Steel relaxation

The initial stress level in the prestressing steel after the prestress is transferred to the
concrete is usually high, often in the range of 60 to 75 per cent of the tensile strength
of the material. At such high stress levels, high-strength steel creeps. At lower stress
levels, such as is typical for non-prestressed steel, the creep of steel is negligible. If a
tendon is stretched and held at a constant length (constant strain), the development
of creep strain in the steel is exhibited as a loss of elastic strain, and hence a loss
of stress. This loss of stress in a specimen subjected to constant strain is known as
relaxation. Relaxation in steel is highly dependent on the stress level and increases at
an increasing rate as the stress level increases. Relaxation in steel also increases rapidly
as temperature increases.

In recent years, low relaxation steel has normally been used in order to minimise the
losses of prestress resulting from relaxation. AS3600-2009 (Ref. 2) specifies that the
design relaxation R of a low relaxation tendon (as a percentage of the initial prestress)
be determined from:

R = k4k5k6Rb (2.11)

where k4 is a coefficient depending on the duration of the prestressing force and given
by k4 = log [5.4(t)1/6]; t is the time in days after prestressing; k5 is a coefficient that is
dependent on the stress in the tendon as a proportion of the characteristic minimum
breaking strength of the tendon, fp, and is given in Fig. 2.4; k6 depends on the average
temperature T(◦C) over the time period t and may be taken as T/20, but not less than
1.0; and Rb is the basic relaxation of the tendon after 1000 hours at 20◦C and at
0.7fp, which may be determined by testing or taken as Rb = 2% for low relaxation
wire; Rb = 2.5% for a low relaxation strand and Rb = 4% for alloy steel bars.

Typical final (30 year) values of the relaxation loss of low-relaxation wire, strand
and bars at an average temperature of 20◦C are given in Table 2.7.
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Figure 2.4 Coefficient, k5 (Ref. 2).

Creep in the prestressing steel may also be defined in terms of a creep coefficient
ϕp(t,σp,init) rather than as a relaxation loss. If the creep coefficient for the prestressing
steel ϕp(t,σp,init) is the ratio of creep strain in the steel to the initial elastic strain, then
the final creep coefficients for low relaxation wire, strand and bar are also given in
Table 2.7 and may be approximated using Eq. 2.12.

ϕp(t,σp,init) = R
1 − R

(2.12)

Note that the creep of high-strength steels is non-linear with respect to stress.
As has already been emphasised, creep (relaxation) of the prestressing steel depends

on the stress level. In a prestressed concrete member, the stress in a tendon is
gradually reduced with time as a result of creep and shrinkage in the concrete.
This gradual reduction of stress results in a reduction of creep in the steel and
hence smaller relaxation losses. To determine relaxation losses in a concrete structure
therefore, the final relaxation loss obtained from Eq. 2.11 (or Table 2.7) should be
multiplied by a reduction factor, λr, that accounts for the time-dependent shortening
of the concrete due to creep and shrinkage. The factor λr depends on the creep
and shrinkage characteristics of the concrete, the initial prestressing force, and
the stress in the concrete at the level of the steel, and can be determined by
iteration (Ref. 17). However, because relaxation losses in modern prestressed concrete

Table 2.7 Long-term relaxation losses and corresponding final creep coefficients for low
relaxation wire, strand and bar (T = 20◦C)

Type of tendon Tendon stress as a proportion of fp

0.6 0.7 0.8

Wire Relaxation loss, R(%) 1.9 2.8 4.2
Creep coefficient, ϕp(t,σp,init) 0.019 0.029 0.044

Strand Relaxation loss, R(%) 2.4 3.5 5.3
Creep coefficient, ϕp(t,σp,init) 0.025 0.036 0.056

Bar Relaxation loss, R(%) 3.7 5.6 10.3
Creep coefficient, ϕp(t,σp,init) 0.039 0.059 0.115
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structures (employing low-relaxation steels) are relatively small, it is usually sufficient
to take λr ≈ 0.8.

When elevated temperatures exist during curing (i.e. steam curing), relaxation is
increased and occurs rapidly during the curing cycle. For low relaxation steel in a
concrete member subjected to an initial period of steam curing, it is recommended that
the design relaxation be taken significantly greater than the value given by Eq. 2.11
(calculated with T = 20◦C).
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3 Design for serviceability
Deflection and crack control

3.1 Introduction

The tensile capacity of concrete is usually neglected when calculating the strength of
a reinforced concrete member, even though the concrete continues to carry tensile
stress between the cracks due to the transfer of forces from the tensile reinforcement
to the concrete through bond. This contribution of the tensile concrete is known as
tension stiffening and it affects the stiffness of the member after cracking and hence
its deflection and the width of the cracks.

Reinforced concrete members often contain relatively small quantities of tensile rein-
forcement, in some situations close to the minimum amount permitted by the relevant
building code. This is particularly so in the case of floor slabs. For such members, the
flexural rigidity of a fully cracked cross-section (EcIcr) is many times smaller than that
of an uncracked cross-section (EcIuncr) and tension stiffening contributes greatly to the
member’s stiffness after cracking. In structural design, deflection and crack control at
service load levels are usually the governing considerations and accurate modelling of
the stiffness after cracking is required.

In-service deflections depend primarily on the properties of the concrete and these
are often not known reliably at the design stage. The non-linear behaviour that
complicates serviceability calculations is due to cracking, tension stiffening, creep
and shrinkage of the concrete. Of these, shrinkage is perhaps the most problematic.
Shrinkage may cause time-dependent cracking that reduces member stiffness and
gradually reduces the beneficial effects of tension stiffening. It results in a gradual
widening of existing cracks and, in flexural members, a significant increase in
deflections with time. The problem is particularly difficult in the case of slabs that
are typically shallow, with relatively large span to depth ratios, and are therefore
deflection sensitive.

The final deflection of a slab depends very much on the extent of initial cracking
which, in turn, depends on the construction procedure (shoring and re-shoring),
the amount of early shrinkage, the temperature gradients in the first few weeks
after casting, the degree of curing and so on. Many of these parameters are, to a
large extent, outside of the control of the designer. In field measurements of the
deflection of many identical slab panels (Refs 1 and 2), large variability was reported.
Deflections of identical panels after one year differed by over 100 per cent in some
cases. These differences can be attributed to the different conditions (both in terms
of load and environment) that existed in the first few weeks after the casting of
each slab.
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Serviceability failures of concrete structures involving excessive cracking and/or
excessive deflection are relatively common. Numerous cases have been reported of
structures that complied with the local code requirements but still deflected or cracked
excessively (Refs 1–3). In many of these cases, shrinkage of the concrete was primarily
responsible or, probably more precisely, failure to adequately account for shrinkage
(and creep) in the design was primarily responsible.

The need for a more reliable deflection calculation procedure has been exacerbated
by the introduction, in recent years, of higher strength reinforcing steels. The use
of higher strength steel usually means that less steel is required for strength and,
consequently, less stiffness is available after cracking, leading to greater deflection and
wider cracks under service loads. Design for serviceability has increasingly assumed a
more prominent role in the design of both beams and slabs.

This chapter describes the behaviour of reinforced concrete elements under service
loads and outlines the simplified approaches for deflection and crack control that are
specified in modern design codes, including ACI 318-08 (Ref. 4), Eurocode 2 (Refs 5
and 6) and AS 3600-2009 (Ref. 7). The limitations of these simplified approaches are
discussed and the need for the more refined methods of analysis at the serviceability
limit states that are described in subsequent chapters is demonstrated.

3.2 Design objectives and criteria

The broad design objective for a concrete structure is that it should satisfy the needs
for which it was contrived. In doing so, the structural designer must ensure that it
is safe and serviceable, so that the chance of it failing during its design lifetime is
sufficiently small. Structural failure can take a variety of forms. The structure must
be strong enough and sufficiently ductile to resist, without collapse, the overloads
and environmental extremes that may be imposed upon it. It must also perform
satisfactorily under day-to-day service loads without deforming, cracking or vibrating
excessively. The two primary structural design objectives are therefore strength and
serviceability. Other structural design objectives are stability and durability – a
structure must be stable and resist overturning or sliding; reinforcement must not
corrode; concrete must resist abrasion and spalling, and the structure must not suffer
a significant reduction of strength or serviceability with time.

Another non-structural, but important, objective is aesthetics and, of course, an
overarching design objective is economy. Ideally, the structure should be in harmony
with, and enhance, the environment and this often requires collaboration between
the structural engineer, environmental engineer and architect. The aim is to achieve,
at minimum cost, an aesthetically pleasing and functional structure that satisfies the
required structural objectives.

In order for design calculations to proceed for a particular structure, the design
objectives must be translated into quantitative terms called design criteria. For exam-
ple, the designer needs to determine the maximum acceptable deflection for a particular
beam or slab, or the maximum crack width that can be tolerated in a concrete floor
or wall. Also required are minimum numerical values for the strength of individual
elements or connections. It is also necessary to identify and quantify all of the loads
or actions that will be applied to the structure and the probability of their occurrence.

The design criteria are specified in codes of practice and provide a suitable margin of
safety (called the safety index) against a structure becoming unfit for service in any way.
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The specific form of the design criteria depends on the philosophy and method of
design adopted by the relevant code and the manner in which the inherent variability
in both the load and the structural performance is considered. Modern design codes for
structures have generally adopted the limit states method of design, whereby a structure
must be designed to simultaneously satisfy a number of different limit states or design
requirements, including adequate strength and serviceability. Minimum performance
criteria are specified for each of these limit states and any one may become critical and
govern the design of a particular member.

If a structure ceases to fulfil its intended function in any way, it is said to enter
a limit state. Each possible mode of failure is a limit state. For each limit state,
codes of practice specify both load combinations and methods of predicting the actual
structural performance that together ensure an acceptably low probability of failure,
depending on the consequences and cost of the failure. For the strength limit states,
the consequences of failure are high and so the probability of failure must be very low.
For the serviceability limit states, such as excessive deflection or excessive cracking, the
consequences of failure are not as great and a higher probability of failure is justifiable.

Design for the serviceability limit states involves making reliable predictions of the
time-dependent deformation of the concrete structure. This is complicated by the non-
linear material behaviour of concrete, caused mainly by cracking, tension stiffening,
creep and shrinkage. This book deals primarily with the inclusion of these material
non-linearities in the analysis of concrete structures, and so it is primarily concerned
with designing for serviceability.

In order to satisfy the serviceability limit states, a concrete structure must be service-
able and perform its intended function throughout its working life. Excessive deflection
should not impair the function of the structure or be aesthetically unacceptable.
Excessive deflection should also not cause unintended load paths, such as occurs when
a deflecting slab begins to bear on a non-load-bearing partition. Cracks should not
be unsightly or wide enough to lead to durability problems and vibration should not
cause distress to the structure or discomfort to its occupants.

3.3 Design actions

In the design of concrete structures for the serviceability limit states, the internal actions
and deformations that arise from appropriate combinations of the day-to-day service
loads should be considered, including, where applicable: dead load (G); live load (Q);
wind load (W); prestress (P); earthquake load (Feq); earth pressure (Fep); liquid pressure
(Flp); and snow load (Fs). In addition, any accidental loading and loads arising during
construction should be considered where they may adversely affect the various limit
states’ requirements. Other actions that may affect the serviceability of the structure
include, creep of concrete, shrinkage of concrete and other imposed deformations,
such as may result from temperature changes and gradients, support settlements and
foundation movements.

Dead loads are generally defined as those loads imposed by both the structural
and non-structural components of a structure. Dead loads include the self-weight of
the structure and the forces imposed by all walls, floors, roofs, ceilings, permanent
partitions, service machinery and other permanent construction. Dead loads are
usually permanent, fixed in position and can be estimated reasonably accurately from
the mass of the relevant material or type of construction. For example, normal weight
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concrete weighs about 24 kN/m3. Lightweight reinforced concrete weighs between 15
and 20 kN/m3.

Live loads are the loads that are attributed to the intended use or purpose of the
structure and are generally specified by regional or national codes and specifications,
such as Refs 8–13. The specified live load depends on the expected use or occupancy
of the structure and usually includes allowances for impact and inertia loads (where
applicable) and for possible overload. Both uniformly distributed and concentrated
live loads are normally specified. The magnitude and distribution of the actual live
load is never known accurately at the design stage, and it is by no means certain that
the specified live load will not be exceeded at some stage during the life of the structure.
Live loads may or may not be present at any particular time; they are not constant and
their position can vary. Although part of the live load is transient, some portion may
be permanently applied to the structure and have effects similar to dead loads. Live
loads also arise during construction due to the stacking of building materials, the use
of particular equipment or the construction procedure (such as the loads induced by
floor-to-floor propping in multi-storey construction).

The specified wind, earthquake, snow and temperature loads depend on the
geographical location and relative importance of the structure (the mean return
period). Wind loads also depend on the surrounding terrain and the height of the
structure above the ground. These environmental loads are also usually specified by
regional or national codes and specifications, such as Refs 13–16.

The design loads to be used in serviceability calculations are the day-to-day service
loads and these may be considerably less than the specified loads. For example, the
specified live load, Q, has a built-in allowance for overload and impact. There is
a low probability that it will be exceeded. It is usually not necessary, therefore, to
ensure acceptable deflections and crack widths under the full specified loads. Use
of the actual load combinations under normal conditions of service – the expected
loads – is more appropriate.

Often, codes of practice differentiate between the specified (or characteristic) loads
and the expected loads. Depending on the type of structure, the expected loads may
be significantly less than the specified loads. If the aim of the serviceability calculation
is to produce a best estimate of the likely behaviour, then expected loads should be
considered. Often the magnitudes of the expected loads are not defined and are deemed
to be a matter of engineering judgment. In some codes, serviceability load factors
(ψ ≤ 1.0) are nominated to determine the expected load from the specified load for
both short-term (ψ1Q) and long-term loading (ψ2Q). If the aim is to satisfy a particular
serviceability limit state and the consequences of failure to do so are high, then the
specified loads may be more appropriate. Once again, the decision should be based on
engineering judgment and experience.

With regard to dead loads, the expected and specified values are the same and
therefore the specified dead load should be used in all serviceability calculations.
For live loads, the expected values should be used when a best estimate is required.
For building structures, the expected live load for short-term serviceability load
combinations is usually about 70 per cent of the specified live load for dwellings (i.e.
ψ1 = 0.7), 60 per cent for retail areas, 50 per cent for offices and parking areas and
100 per cent for storage areas. For bridges, the live load for short-term serviceability
load combinations is usually taken to be about 70 per cent of the specified live load for
spans of less than about 10 m, reducing to 50 per cent for spans greater than 100 m.
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For long-term serviceability calculations, the following percentages of the specified
live load are usually considered as permanent or sustained (with the remainder being
transitory in nature): 30 per cent for dwellings and retail stores (i.e. ψ2 = 0.3), 25 per
cent for parking areas, 20 per cent for offices, and 50–80 per cent for storage areas.

With the appropriate design actions for serviceability determined, the response of
the structure must satisfy the relevant design criteria for deflection and crack control.
These are usually also embodied in the codes of practice and are discussed in the
following sections.

3.4 Design criteria for serviceability

3.4.1 Deflection limits

The design for serviceability, particularly the control of deflections, is frequently the
primary consideration when determining the cross-sectional dimensions of beams and
floor slabs in concrete buildings. This is particularly so in the case of slabs, as they
are typically thin in relation to their spans and are therefore deflection sensitive. It is
stiffness rather than strength that usually controls the design of slabs, particularly in
the cases of flat slabs and flat plates.

Most concrete design codes, including ACI 318-08 (Ref. 4), Eurocode 2 (Ref. 6)
and the Australian Standard AS 3600-2009 (Ref. 7), specify two basic approaches
for deflection control. The first and simplest approach is deflection control by the
satisfaction of a minimum depth requirement or a maximum span-to-depth ratio
(see Section 3.5). The second approach is deflection control by the calculation
of deflection, where the deflection (or camber) is calculated using realistic models
of material and structural behaviour. This calculated deflection should not exceed
the deflection limits that are appropriate to the structure and its intended use. The
deflection limits should be selected by the designer and are often a matter of engineering
judgment.

Codes of practice give general guidance for both the selection of the maximum
deflection limits and the calculation of deflection. However, the simplified procedures
for calculating the deflections of beams and slabs in most codes are necessarily
design-oriented and simple to use, involving crude approximations of the complex
effects of cracking, tension stiffening, concrete creep, concrete shrinkage and the load
history (see Section 3.6). Generally, they have been developed and calibrated for
simply-supported reinforced concrete beams (Ref. 17) and often produce inaccurate
and non-conservative predictions when applied to lightly reinforced concrete slabs
(Ref. 18). In addition, most existing code procedures do not provide real guidance
on how to adequately model the time-dependent effects of creep and shrinkage in
deflection calculations.

There are three main types of deflection problem that may affect the serviceability
of a concrete structure:

1 where excessive deflection causes either aesthetic or functional problems;
2 where excessive deflection results in unintended load paths or damage to either

structural or non-structural elements attached to the member;
3 where dynamic effects due to insufficient stiffness cause discomfort to occupants.
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Examples of deflection problems of type 1 include visually unacceptable sagging (or
hogging) of slabs and beams and ponding of water on roofs. Type 1 problems are
generally overcome by limiting the magnitude of the final long-term deflection (here
called total deflection) to some appropriately low value. The total deflection of a beam
or slab in a building is usually the sum of the short-term and time-dependent deflections
caused by the dead load (including self-weight), the prestress (if any), the expected
in-service live load and the load-independent effects of shrinkage and temperature
change. When the total deflection exceeds about span/200 below the horizontal, it
may become visually unacceptable. Total deflection limits that are appropriate for the
particular member and its intended function must be selected by the designer. For
example, a total deflection limit of span/200 may be appropriate for the floor of a
car park, but would be totally inadequate for a gymnasium floor that is required to
remain essentially plane under service conditions and where functional problems arise
at very small total deflections. AS 3600-2009 (Ref. 7) requires that a limit on the total
deflection be selected that is appropriate to the structure and its intended use, but
that limit should not be greater than span/250 for a span supported at both ends and
span/125 for a cantilever (see Table 3.1).

Examples of type 2 problems include deflection-induced damage to ceiling or floor
finishes, cracking of masonry walls and other brittle partitions, improper functioning
of sliding windows and doors, tilting of storage racking and so on. To avoid these
problems, a limit must be placed on that part of the total deflection that occurs after
the attachment of the non-structural elements in question, that is, the incremental
deflection. This incremental deflection is the sum of the long-term deflection due to all
of the sustained loads and shrinkage, the short-term deflection due to the transitory
live load and the short-term deflection due to any dead load applied to the structure
after the attachment of the non-structural elements under consideration, together with
any temperature-induced deflection.

For roof or floor construction supporting or attached to non-structural elements
that are likely to be damaged by large deflection, ACI 318-08 (Ref. 4) limits the
incremental deflection to span/480 (and span/240 when the non-structural elements
are unlikely to be damaged by deflection). Incremental deflections of span/480 can,
in fact, cause cracking in supported masonry walls, particularly when doorways or
corners prevent arching and when no provisions are made to minimise the effect of
movement. AS 3600-2009 limits the incremental deflection for members supporting
masonry partitions or other brittle finishes to between span/500 and span/1000
depending on the provisions made to minimise the effect of movement (see Table 3.1).
Eurocode 2 (Ref. 6) recommends limits on total (incremental) deflection of span/250
(span/500).

Type 3 deflection problems include the perceptible springy vertical motion of floor
systems and other vibration-related problems. Very little quantitative information for
controlling this type of deflection problem is available in codes of practice. For a floor
that is not supporting or attached to non-structural elements likely to be damaged
by large deflection, ACI 318-08 (Ref. 4) places a limit of span/360 on the short-term
deflection due to live load (and span/180 for a flat roof). This limit provides a minimum
requirement on the stiffness of members that may, in some cases, be sufficient to avoid
type 3 problems. Such problems are potentially the most common for prestressed
concrete floors, where load balancing is often employed to produce a nearly horizontal
floor under the sustained load and the bulk of the final deflection is due to the transient
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Table 3.1 Limits for calculated deflections of beams and slabs with effective span �ef

Type of member Deflection to be
considered

Deflection limitation
for spans (Notes 2
and 3)

Deflection limitation
for cantilevers
(Note 5)

All members The total deflection �ef /250 �ef /125
Members supporting

masonry partitions
The deflection that

occurs after the
addition or
attachment of
the partitions

�ef /500 where
provision is made
to minimise the
effect of movement,
otherwise �ef /1000

�ef /250 where
provision is made
to minimise the
effect of
movement,
otherwise �ef /500

Members supporting
other brittle
finishes

The deflection that
occurs after the
addition or
attachment of
the finish

Manufacturer’s
specification but
not more than
�ef /500

Manufacturer’s
specification but
not more than
�ef /250

Members subjected
to vehicular or
pedestrian traffic

The imposed action
(live load and
dynamic impact)
deflection

�ef /800 �ef /400

Transfer members Total deflection �ef /500 where
provision is made to
minimize the effect
of deflection of the
transfer member
on the supported
structure, otherwise
�ef /1000

�ef /250

1 The effective span �ef is the lesser of the centre-to-centre distance between the supports and the clear
span plus the member depth. For a cantilever �ef is the clear projection plus half the member depth.

2 In general, deflection limits should be applied to all spanning directions. This includes, but is not
limited to, each individual member and the diagonal spans across each design panel. For flat slabs with
uniform loadings, only the column strip deflections in each direction need be checked.

3 If the location of masonry partitions or other brittle finishes is known and fixed, these deflection
limits need only be applied to the length of the member supporting them. Otherwise, the more general
requirements of Note 2 should be followed.

4 Deflection limits given may not safeguard against ponding.
5 For cantilevers, the deflection limitations given in this table apply only if the rotation at the support is

included in the calculation of deflection.
6 Consideration should be given by the designer to the cumulative effect of deflections, and this should

be taken into account when selecting a deflection limit.
7 When checking the deflections of transfer members and structures, allowance should be made in the

design of the supported members and structure for the deflection of the supporting members. This will
normally involve allowance for settling supports and may require continuous bottom reinforcement
at settling columns.

live load. Such structures are generally uncracked at service loads, the total deflection
is small and type 1 and 2 deflection problems are easily avoided.

Where a structure supports vibrating machinery (or any other significant dynamic
load) or where a structure may be subjected to ground motion caused by earthquake,
blast or adjacent road or rail traffic, vibration control becomes an important design
requirement. This is particularly so for slender structures, such as tall buildings or
long-span beams or slabs.
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Vibration is best controlled by isolating the structure from the source of vibration.
Where this is not possible, vibration may be controlled by limiting the frequency of the
fundamental mode of vibration of the structure to a value that is significantly different
from the frequency of the source of vibration. When a structure is subjected only to
pedestrian traffic, 5 Hz is often taken as the minimum frequency of the fundamental
mode of vibration of a beam or slab (Refs 19 and 20) and a method for vibration
analysis is described in Ref. 20.

In modern concrete structures, serviceability failures are relatively common. The
tendency towards higher strength materials and the use of ultimate strength design
procedures for the proportioning of structures has led to shallower, more slender
elements, and consequently, an increase in deformations at service loads. As far
back as 1967 (Ref. 21), the most common cause of damage in concrete structures
was due to excessive slab deflections. If the incidence of serviceability failure is to
decrease, design for serviceability must play a more significant part in routine structural
design and the structural designer must resort more often to analytical tools that
are more accurate than those found in most building codes. The analytical models
outlined in the remainder of this book provide designers with reliable and rational
means for predicting both the short-term and time-dependent deformations in concrete
structures.

3.4.2 Crack width limits

In routine structural design, the calculation of crack widths is often not required. Crack
control is deemed to be provided by appropriate detailing of the reinforcement and by
limiting the stress in the reinforcement crossing the crack to some appropriately low
value (see Section 3.7.1). The limiting steel stress depends on the maximum acceptable
crack width for the structure that in turn depends on the structural requirements and
the local environment. Recommended maximum crack widths are given in Table 3.2.

3.5 Maximum span-to-depth ratio – minimum thickness

In the design of a reinforced concrete beam or slab, the designer is first confronted with
the problem of selecting a suitable depth or thickness of the member. In the case of
floor slabs, a reasonable first estimate is desirable since, in many cases, the self-weight
of the slab is a large proportion of the total service load. Strength considerations
alone may result in a slab thickness that leads to excessive deflection at service loads.
The relatively low tensile reinforcement quantities commonly used in slabs (Ast/bd is
typically in the range 0.0025–0.006) are evidence of the importance of serviceability
in the selection of slab thickness.

Many codes of practice specify a minimum thickness, h, or a maximum span-to-
effective depth ratio, �/d. The implication is that deflection will be acceptable if the
beam or slab thickness is greater than the minimum value, and thus the deflection need
not be calculated.

For example, for normal weight concrete members containing steel reinforcement
with a yield stress of fy = 500 MPa and for members that are not supporting or
attached to partitions or other construction likely to be damaged by large deflection,
ACI-318-08 (Ref. 4) specifies that deflections need not be calculated if the thickness
of a beam or one-way slab is greater than the minimum thickness given in Table 3.3
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Table 3.2 Recommended maximum final design crack width, w∗

Environment Design requirement Maximum final crack
width, w* (mm)

Sheltered environment
(where crack widths
will not adversely
affect durability)

Aesthetic requirement
• where cracking could adversely

affect the appearance of the
structure
• close in buildings
• distant in buildings

• where cracking will not be
visible and aesthetics is not
important.

0.3
0.5

0.7

Environment Durability requirement
• where wide cracks could lead to

corrosion of reinforcement
0.3

Aggressive
environment

Durability requirement
• where wide cracks could lead to

corrosion of reinforcement
0.30 (when c∗ ≥ 50 mm)

0.25 (otherwise)

∗c is the concrete cover to the nearest steel reinforcement.

Table 3.3 Minimum thickness for non-prestressed beams or one-way slabs –
fy = 500 MPa (Ref. 4)

Minimum thickness, h

Simply- One end Both ends Cantilever
supported continuous continuous

Solid one-way slab �/18 �/21.5 �/25 �/9
Beam or ribbed slab �/14.5 �/16.5 �/19 �/7

� is the span measured centre to centre of supports or the clear projection of a cantilever.

or if the thickness of a two-way flat slab or flat plate is greater than the value given
in Table 3.4. This deemed-to-comply approach is attractive because of its simplicity
and, if it always led to appropriately proportioned and serviceable slabs, it would be
ideal for use in routine design. However, in some situations, the use of the minimum
thicknesses in Tables 3.3 and 3.4 leads to slabs that are far thicker than they need
to be. In other situations, some heavily loaded slabs with the minimum thicknesses
specified in Tables 3.3 and 3.4 deflect excessively. Indeed, a single value for minimum
thickness that does not account for the load level, the steel quantities and location,
the occupancy of the structure (and therefore the desired deflection limit), the load
duration, the quality of the concrete and the environment cannot possibly ensure
deflection control in every situation, unless, of course, it is grossly conservative in
many situations and therefore entirely unsuitable for use in structural design.

Based on the work of Rangan (Ref. 22) and Gilbert (Ref. 23), the Australian
Standard AS3600-2009 (Ref. 7) specifies a maximum span to effective depth ratio
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Table 3.4 Minimum thickness of two-way slabs without interior beams (flat slabs or
flat plates) – fy = 500 MPa (Ref. 4)

Minimum thickness, h

Without drop panels With drop panels

Exterior panels Interior panels Exterior panels Interior panels

Without edge With edge Without edge With edge
beams beams beams beams
�n/28 �n/31 �n/31 �n/31 �n/34 �n/34

�n is the clear span measured face to face of supports in long span direction.

for slabs given by:

�ef /d = k3k4

[
(�/�ef )1000Ec

Fd.ef

]1/3

(3.1)

where �ef is the lesser of the clear span plus slab thickness and the centre-to-centre
distance between supports; d is the effective depth from the compressive surface of the
slab to the centroid of the tensile reinforcement; � is the deflection limit selected in
design (either total or incremental deflection); Ec is the elastic modulus of the concrete
(in MPa); Fd.ef is the effective design service load (in kPa) and is equal to 3g+q1 +2q2
for total deflection and 2g + q1 + 2q2 for incremental deflection; g is the dead load
(in kPa); q1 is the expected short-term live load (in kPa); q2 is the sustained part of the
live load (in kPa); and k3 is a slab system factor given by:

• k3 = 1.0 for one-way slabs and two-way edge-supported slabs;
• k3 = 0.95 for a two-way flat slab without drop panels; and
• k3 = 1.05 for a two-way flat slab with drop panels.

The term k4 is a factor that depends on the continuity at the supports of the slab and,
for a one-way slab or two-way flat slab, k4 equals 1.4 for a simply-supported span,
l.75 for the end span of a continuous slab and 2.1 for an interior span of a continuous
slab. For a two-way edge-supported slab, k4 is given in Table 3.5.

Alternative expressions for the limiting span-to-depth ratios are specified in other
codes. For example, according to Eurocode 2 (Ref. 6), if the span-to-depth ratio
of a member does not exceed the following limiting values, deflections need not be
calculated for members where the maximum total deflection is not to exceed span/250
and where the incremental deflection is not to exceed span/500:

�
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= K

[
11 + 1.5
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f ′
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ρo
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√
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√
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]
if ρ > ρo (3.2b)
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Table 3.5 Continuity factor k4 for a rectangular slab panel supported on four sides –
(Ref. 7)

Edge condition Continuity factor, k4

Ratio of long to short span (�y/�x)

1.0 1.25 1.5 2.0

Four edges continuous 3.60 3.10 2.80 2.50
One short edge discontinuous 3.40 2.90 2.70 2.40
One long edge discontinuous 3.40 2.65 2.40 2.10
Two short edges discontinuous 3.20 2.80 2.60 2.40
Two long edges discontinuous 3.20 2.50 2.00 1.60
Two adjacent edges discontinuous 2.95 2.50 2.25 2.00
Three edges discontinuous (one long edge continuous) 2.70 2.30 2.20 1.95
Three edges discontinuous (one short edge continuous) 2.70 2.10 1.90 1.60
Four edges discontinuous 2.25 1.90 1.70 1.50

where K depends on the structural system, with K = 1.0 for simply supported beams
and one-way or two-way spanning slabs; K = 1.3 for end spans of continuous beams
and one-way or two-way slabs continuous over one long side; K = 1.5 for interior spans
of beams and one-way or two-way spanning slabs; K = 1.2 for flat slabs supported on
columns without beams (based on longer span); and K = 0.4 for a cantilever; ρo is a
reference reinforcement ratio given by ρo = 0.001

√
f ′
c; ρ is the tension reinforcement

ratio at mid-span required to resist the moment due to the design loads (at the support
for cantilevers); ρ′ is the compression reinforcement ratio at mid-span (at the support
for cantilevers); f ′

c is in MPa.
For flanged sections where the ratio of the flange width to the web width exceeds 3,

the values obtained from Eqs 3.2 should be multiplied by 0.8. For beams and slabs,
other than flat slabs, supporting partitions likely to be damaged by excessive deflection
and with spans exceeding 7 m, the values of �/d given by Eqs 3.2 should be multiplied
by 7/�ef , where �ef is the effective span in metres. For flat slabs supporting partitions
likely to be damaged by excessive deflection and where the longer span exceeds 8.5 m,
the values of �/d given by Eqs 3.2 should be multiplied by 8.5/�ef .

An iterative procedure is required to use Eqs 3.2. An initial estimate of the effective
depth d must be made in order to calculate the reinforcement ratios ρ and ρ′ required
to resist the design moment at the critical sections. These reinforcement ratios are
in turn required in the calculation of the limiting span-to-depth ratio using Eqs 3.2.
Depending on the initial estimate of d, the required reinforcement ratios may need
to be recalculated, together with a revised slab depth, to ensure deflection control.
Similarly, the use of Eq. 3.1 requires an initial estimate of slab thickness to determine
the self-weight and an iteration may be required if the initial estimate is poor. On
the other hand, the ACI 318-08 (Ref. 4) minimum thicknesses do not require any
iteration and can be used to select an initial member thickness at the beginning of
the design.

Designers should be aware that the use of either the ACI 318-08 minimum
thicknesses (Tables 3.3 and 3.4) or the AS3600-2009 (Ref. 7) maximum span-to-
depth ratio (Eq. 3.1) is inevitably conservative for most practical situations and leads



48 Design for serviceability

to beam and slab thicknesses that may be considerably larger than they need to be.
In contrast, the Eurocode 2 (Ref. 6) limiting span-to-depth ratios may result in beam
or slab thicknesses that are unacceptably small, particularly in situations where the
sustained load is a large proportion of the total load, and should not be regarded as a
guarantee that deflections will not be excessive.

Example 3.1

The thickness of the end span of a one-way slab is to be estimated for the cases
where:

1) the maximum long-term mid-span deflection is not to exceed span/250;
and

2) the incremental deflection is not to exceed span/480.

The span is � = �ef = 5.0 m; the dead load g = 2.0 kPa + self-weight; and the
live load is q = 3.0 kPa. The short-term expected live load is q1 = 2.1 kPa and
the sustained part of the live load q2 = 1.2 kPa. The specified concrete and
reinforcement strengths are f ′

c = 25 MPa and fy = 500 MPa; the clear concrete
cover to the longitudinal reinforcement is 20 mm; and the reinforcement bar
diameter is db = 12 mm.

ACI318-08

From Table 3.3, if deflections are not to be calculated, the minimum thickness
according to ACI318-08 is h = 5000/21.5 = 230 mm, irrespective of the
deflection requirements for the slab and irrespective of the loads to be applied
to the slab.

AS3600-2009

From Table 2.1, Ec = 26700 MPa. To calculate the maximum effective span-to-
depth ratio using Eq. 3.1, an estimate of self-weight of the slab is required.
Take self-weight = 0.23 × 24 = 5.5 kPa and the dead load is therefore
g = 2.0 + 5.5 = 7.5 kPa.

(i) If the maximum total deflection is � = 5000/250 = 20 mm, then the
effective design service load is Fd.ef = 3g + q1 + 2q2 = 3 × 7.5 + 2.1 + 2 ×
1.2 = 27.0 kPa and, from Eq. 3.1, the maximum span to effective depth
ratio is:

�ef /d = 1.0 × 1.75
[

(20/5000) × 1000 × 26700
27.0

]1/3

= 27.7

The minimum effective depth according to AS 3600-2009 is therefore
d = 5000/27.7 = 181 mm and the minimum slab thickness is h = d+db/2+
cover = 181 + 6 + 20 = 207 mm.
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(ii) If the incremental deflection is �= 5000/480 = 10.4 mm, then the effective
design service load is Fd.ef = 2g + q1 + 2q2 = 2 × 7.5 + 2.1 + 2 × 1.2 =
19.5 kPa and, from Eq. 3.1, the maximum span to effective depth ratio is:

�ef /d = 1.0 × 1.75
[

(10.4/5000) × 1000 × 26700
19.5

]1/3

= 24.8

The minimum effective depth according to AS 3600-2009 is therefore
d = 5000/24.8 = 201 mm and the minimum slab thickness is h = d+db/2+
cover = 201 + 6 + 20 = 227 mm.

Eurocode 2

If the design moment at mid-span is w∗�2/12, where w∗ is the factored design
load for the strength limit state, and if after several iterations the initial estimate
of d is 150 mm, the reinforcement ratio required to resist the design moment is
ρ = 0.0035 and ρ′ = 0. The reference reinforcement ratio is ρo = 0.001

√
f ′
c =

0.005 and the factor K = 1.3. From Eq. 3.2a:

�

d
= 1.3

[
11 + 1.5

√
25

0.005
0.0035

+ 3.2
√

25
(

0.005
0.0035

− 1
)3/2

]
= 34.1

The minimum effective depth according to Eurocode 2 is therefore d =
5000/34.1 = 147 mm and the minimum slab thickness is h = d +db/2+cover =
147 + 6 + 20 = 173 mm.

Clearly, in this example, the minimum slab thickness obtained using Eq. 3.2a
from Eurocode 2 is significantly smaller than the value obtained using either the
ACI 318-08 minimum thickness provisions or the maximum span to depth ratio
specified in AS 3600-2009.

3.6 Deflection control by simplified calculation

3.6.1 Calculation of deformation

If the axial strain and curvature are known at regular intervals along a member, it is
a relatively simple task to determine the deformation of that member. Consider the
statically determinate member subjected to the axial and transverse loads shown in
Fig. 3.1. The axial deformation of the member eAB (either elongation or shortening)
is obtained by integrating the axial strain at the centroid of the member, εa(z), over
the length of the member. That is:

eAB =
∫ �

0
εa(z) dz (3.3)

where z is measured along the member, as shown.
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Figure 3.1 Deformation of a statically determinate member.

Provided that deflections are small and that simple beam theory is applicable, the
slope θ and deflection v at any point z along the member are obtained by integrating
the curvature κ(z) along the member as follows:

θ =
∫
κ(z) dz (3.4)

v =
∫ ∫

κ(z) dz dz (3.5)

Eqs 3.4 and 3.5 are quite general and apply to both elastic and inelastic material
behaviour.

If the axial strain and curvature are calculated at any time after loading at a pre-
selected number of points along the member shown in Fig 3.1 and if a reasonable
variation of strain and curvature is assumed between adjacent points, it is a simple
matter of geometry to determine the deformation of the member. For convenience,
some simple equations are given below for the determination of the deformation of a
single span and of a cantilever. If the axial strain εa and the curvature κ are known at
the mid-span and at each end of the member shown in Fig 3.1 (i.e. at supports A and
B and at point C), the axial deformation eAB, the slope at each support θA and θB and
the deflection at mid-span vC are given by Eqs 3.6 and 3.7.

For a linear variation of strain and curvature:

eAB = �

4
(εaA + 2 εaC + εaB) (3.6a)

vC = �2

48
(κA + 4 κC + κB) (3.6b)

θA = �

24
(5 κA + 6 κC + κB) (3.6c)

θB = − �

24
(κA + 6 κC + 5 κB) (3.6d)
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For a parabolic variation of strain and curvature:

eAB = �

6
(εaA + 4 εaC + εaB) (3.7a)

vC = �2

96
(κA + 10 κC + κB) (3.7b)

θA = �

6
(κA + 2 κC) (3.7c)

θB = − �
6

(2κC + κB) (3.7d)

In addition to the simple span shown in Fig. 3.1, Eqs 3.6 and 3.7 also apply to any
member in a statically indeterminate frame, provided the strain and curvature at each
support and at mid-span are known.

Consider the fixed-end cantilever shown in Fig. 3.2. If the curvatures at A, B and C
are known, then the slope and deflection at the free end of the member are given by
Eqs 3.8 and 3.9.

For a linear variation of curvature:

θC = − �
4

(κA + 2κB + κC) (3.8a)

vC = − �2

24
(5κA + 6 κB + κC) (3.8b)

For a parabolic variation of curvature:

θC = − �
6

(κA + 4κB + κC) (3.9a)

vC = −�
2

6
(κA + 2κB) (3.9b)

If the curvatures at the fixed and free ends of the cantilever only are known (i.e.
at A and C), then the slope and deflection at the free end C are given by Eqs 3.10
and 3.11.

A
vC

B C

qC

�

Figure 3.2 Deformation of a fixed-end cantilever.
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For a linear variation of curvature:

θC = − �
2

(κA + κC) (3.10a)

vC = −�
2

6
(2κA + κC) (3.10b)

For a parabolic variation of curvature (typical of what occurs in a uniformly loaded
cantilever):

θC = − �
3

(κA + 2κC) (3.11a)

vC = −�
2

4
(κA + κC) (3.11b)

3.6.2 Load versus deflection response of a reinforced concrete member

The short-term or instantaneous deformation of a cracked reinforced concrete cross-
section subjected to combined bending and axial force can be readily determined using
simple modular ratio theory (Section 3.6.3). After cracking, the properties of both the
fully-cracked section and the uncracked section are often combined empirically to
model tension stiffening and to approximate the average properties of the cracked
region.

Consider the load-deflection response of a simply-supported, singly reinforced
concrete beam or one-way slab shown in Fig. 3.3. At loads less than the cracking load,
Pcr, the member is uncracked and behaves homogeneously and elastically. The slope of
the load-deflection plot (OA in Fig. 3.3) is proportional to the second moment of area
of the uncracked transformed section, Iuncr. The member first cracks at Pcr when the
extreme fibre tensile stress in the concrete at the section of maximum moment reaches
the flexural tensile strength of the concrete, fct.f . There is a sudden change in the local
stiffness at, and immediately adjacent to, this first crack. At the section containing
the crack, the flexural stiffness drops significantly, but the rest of the member remains
uncracked. As load increases, more cracks form and the average flexural stiffness of
the entire member decreases. If the tensile concrete in the cracked regions of the beam
carried no stress, the load-deflection relationship would follow the dashed line ACD.
If the average extreme fibre tensile stress in the concrete remained at fct.f after cracking,
the load-deflection relationship would follow the dashed line AE. In reality, the actual
response lies between these extremes and is shown in Fig. 3.3 as the solid line AB. The
difference between the actual response and the zero tension response is the tension
stiffening effect (that reduces the instantaneous deflection by δ� as shown).

Tension stiffening is the contribution of the intact tensile concrete between the
cracks to the post-cracking stiffness of the member. At each crack, the tensile concrete
carries no stress, but as the distance from the crack increases, the tensile stress in the
concrete increases due to the bond between the concrete and the tensile reinforcement.
As the load increases, the average tensile stress in the concrete reduces as more cracks
develop and, when the crack pattern is fully developed and the number of cracks
has stabilised, the actual response becomes approximately parallel to the no tension
response (OD in Fig. 3.3). For slabs containing small quantities of tensile reinforcement
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Figure 3.3 Typical load versus deflection relationship.

(typically in floor slabs Ast/bd < 0.005), tension stiffening may be responsible for
more than 50 per cent of the stiffness of the cracked member at service loads and δ�
remains significant up to and beyond the point where the steel yields and the ultimate
load is approached.

Figure 3.4a shows an elevation of a singly reinforced concrete flexural member
subjected to a uniform bending moment M of sufficient magnitude to establish the
primary flexural cracks. The variation of stress in the tensile reinforcement along
the member is shown in Fig. 3.4b and the variation of tensile stress in the concrete
at the steel level is shown in Fig. 3.4c. Over a gauge length containing several cracks,
the average concrete tensile stress σc.avg at typical in-service levels of applied moment
is a significant percentage of the tensile strength of the concrete.

The keys to predicting the instantaneous deflection are first to evaluate the load
required to cause first cracking or, more precisely, the moment to cause first cracking
at the critical cross-section, and secondly to model tension stiffening accurately. Both
of these tasks are not straightforward. Restraint to shrinkage provided by the bonded
reinforcement and restraint to shrinkage at the member’s ends can cause significant
tension in the concrete in the first few days after casting. Cracking may therefore occur
at loads far less than that required to produce an extreme fibre tensile stress equal to
the modulus of rupture fct.f in a member without shrinkage.

One commonly used approach for modelling tension stiffening in deflection
calculations involves determining an average effective second moment of area (Ief )
for a cracked member. For a prismatic member, the effective second moment of area
after cracking is less than the second moment of area of the uncracked transformed
section (Iuncr) and greater than the second moment of area of the fully-cracked cross-
section (Icr). Several different empirical equations are available for Ief , including
the well-known equation developed by Branson (Ref. 17) that is included in ACI
318-08. A modified and significantly more realistic version of Branson’s equation
is specified in AS3600-2009. Another model for Ief was recently proposed by
Bischoff (Ref. 24) and may be derived from the method specified in Eurocode 2 for
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Figure 3.4 Stress distributions at the steel level in a cracked reinforced concrete member.

the calculation of deflection. These approaches are presented and reviewed in the
following sub-sections.

3.6.3 Modular ratio theory

The second moment of area of a reinforced concrete cross-section is conventionally
calculated using linear elastic analysis with the following assumptions:

(i) plane sections remain plane (i.e. the strain distribution is linear);
(ii) perfect bond exists between the reinforcement and the concrete; and
(iii) the stress-strain relationships for concrete and steel are linear and elastic.

The steel reinforcement is transformed into an equivalent area of concrete by
multiplying the reinforcement area by the modular ratio n (where n = Es/Ec) and
the properties of the cross-section are determined using the principles of mechanics
of solids. After cracking, the concrete in tension is assumed to carry no stress. This
simple procedure is often called modular ratio theory and it is used to calculate the
second moment of area of the section before and after cracking. In itself, it does not
account for tension stiffening and does not include the time-dependent deformations
caused by creep and shrinkage.

Figure 3.5 shows the strains, stresses and resultant forces on a cracked, singly
reinforced, rectangular cross-section subjected to an applied moment M. With regard
to the stresses and deformations, there are two unknowns – the top fibre compressive
strain εtop and the depth to the neutral axis dn = kd. The depth to the neutral axis
may be determined by equating the resultant compressive and tensile forces (i.e. by
enforcing the requirement of equilibrium of longitudinal forces):

C = T

0.5 σtop b kd = σstAst
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Figure 3.5 Strains, stresses and forces on a cracked section in bending.

and, assuming linear-elastic stress-strain laws for the reinforcement and the compres-
sive concrete, this becomes:

0.5k = σst

σtop

Ast

bd
= εstEs

εtopEc

Ast

bd
= εst

εtop
nρ (3.12)

where ρ is the tensile reinforcement ratio, Ast/bd. Compatibility requires that the
strain diagram is linear and therefore:

εst

εtop
= (1 − k)d

kd
= 1 − k

k
(3.13)

Substituting Eq. 3.13 into Eq. 3.12 gives:

0.5k = 1 − k
k

nρ

and solving this quadratic equation for k gives:

k =
√

(nρ)2 + 2nρ− nρ (3.14)

It should be noted that k (and hence the depth to the neutral axis kd) depends only on
the modular ratio n and the reinforcement ratio ρ and is independent of the applied
moment M. The depth to the neutral axis remains constant after cracking as the
moment increases, until either the concrete compressive stress distribution becomes
curvilinear or the reinforcing steel yields.

With k determined from Eq. 3.14, the top fibre concrete stress σtop and the steel
stress σst may be found from the moment equilibrium equation:

M = C �f = T �f = ½σtop b kd2(1 − k/3) = σst Ast d(1 − k/3)

and hence

σtop = 2M
bkd2(1 − k/3)

and σst = M
Astd(1 − k/3)

(3.15)
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Clearly, the stresses in both the concrete and the steel are linear functions of the
applied moment M.

With the stress and strain distributions established, the flexural rigidity of the
cracked section (EcIcr) may be obtained from the curvature (i.e. the slope of the strain
diagram) as follows:

M
EcIcr

= εtop

kd
= σtop

Eckd
= 2M

Ecbk2d3(1 − k/3)
(3.16)

From Eq. 3.16, the second moment of area of the cracked section is:

Icr = ½ b d3k2(1 − k/3) (3.17)

For convenience, values of the neutral axis parameter k and the cracked second
moment of area Icr of singly reinforced rectangular sections are given in
Table 3.6.

Table 3.6 Neutral axis depth (kd) and second moment of area (Icr = λbd3) for singly
reinforced rectangular sections (n = Es/Ec)

ρ = Ast/bd n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

k λ k λ k λ k λ k λ k λ k λ

0.002 0.119 0.0068 0.132 0.0083 0.143 0.0098 0.154 0.0112 0.164 0.0127 0.173 0.0140 0.181 0.0154

0.0025 0.132 0.0083 0.146 0.0102 0.159 0.0119 0.170 0.0137 0.181 0.0154 0.191 0.0170 0.200 0.0187

0.003 0.143 0.0098 0.159 0.0119 0.173 0.0140 0.185 0.0161 0.196 0.0180 0.207 0.0199 0.217 0.0218

0.0035 0.154 0.0112 0.170 0.0137 0.185 0.0161 0.198 0.0183 0.210 0.0206 0.221 0.0227 0.232 0.0248

0.004 0.164 0.0127 0.181 0.0154 0.196 0.0180 0.210 0.0206 0.223 0.0230 0.235 0.0254 0.246 0.0277

0.0045 0.173 0.0140 0.191 0.0170 0.207 0.0199 0.221 0.0227 0.235 0.0254 0.247 0.0280 0.258 0.0305

0.005 0.181 0.0154 0.200 0.0187 0.217 0.0218 0.232 0.0248 0.246 0.0277 0.258 0.0305 0.270 0.0332

0.0055 0.189 0.0167 0.209 0.0202 0.226 0.0236 0.242 0.0268 0.256 0.0299 0.269 0.0329 0.281 0.0358

0.006 0.196 0.0180 0.217 0.0218 0.235 0.0254 0.251 0.0288 0.266 0.0321 0.279 0.0353 0.292 0.0384

0.0065 0.204 0.0193 0.225 0.0233 0.243 0.0271 0.260 0.0308 0.275 0.0343 0.289 0.0376 0.301 0.0408

0.007 0.210 0.0206 0.232 0.0248 0.251 0.0288 0.268 0.0327 0.283 0.0363 0.298 0.0399 0.311 0.0433

0.0075 0.217 0.0218 0.239 0.0263 0.258 0.0305 0.276 0.0345 0.292 0.0384 0.306 0.0421 0.319 0.0456

0.008 0.223 0.0230 0.246 0.0277 0.266 0.0321 0.283 0.0363 0.299 0.0404 0.314 0.0442 0.328 0.0479

0.0085 0.229 0.0242 0.252 0.0291 0.272 0.0337 0.291 0.0381 0.307 0.0423 0.322 0.0463 0.336 0.0501

0.009 0.235 0.0254 0.258 0.0305 0.279 0.0353 0.298 0.0399 0.314 0.0442 0.330 0.0483 0.344 0.0523

0.0095 0.240 0.0266 0.264 0.0319 0.285 0.0369 0.304 0.0416 0.321 0.0461 0.337 0.0503 0.351 0.0544

0.010 0.246 0.0277 0.270 0.0332 0.292 0.0384 0.311 0.0433 0.328 0.0479 0.344 0.0523 0.358 0.0565

0.011 0.256 0.0299 0.281 0.0358 0.303 0.0413 0.323 0.0465 0.341 0.0514 0.357 0.0561 0.372 0.0605

0.012 0.266 0.0321 0.292 0.0384 0.314 0.0442 0.334 0.0497 0.353 0.0548 0.369 0.0597 0.384 0.0644

0.013 0.275 0.0343 0.301 0.0408 0.325 0.0470 0.345 0.0527 0.364 0.0581 0.381 0.0633 0.396 0.0681

0.014 0.283 0.0363 0.311 0.0433 0.334 0.0497 0.355 0.0557 0.374 0.0613 0.392 0.0667 0.407 0.0717

0.015 0.292 0.0384 0.319 0.0456 0.344 0.0523 0.365 0.0585 0.384 0.0644 0.402 0.0699 0.418 0.0752

0.016 0.299 0.0404 0.328 0.0479 0.353 0.0548 0.374 0.0613 0.394 0.0674 0.412 0.0731 0.428 0.0785

0.017 0.307 0.0423 0.336 0.0501 0.361 0.0573 0.383 0.0640 0.403 0.0703 0.421 0.0762 0.437 0.0817

0.018 0.314 0.0442 0.344 0.0523 0.369 0.0597 0.392 0.0667 0.412 0.0731 0.430 0.0791 0.446 0.0848

0.019 0.321 0.0461 0.351 0.0544 0.377 0.0621 0.400 0.0692 0.420 0.0758 0.438 0.0820 0.455 0.0878

0.020 0.328 0.0479 0.358 0.0565 0.384 0.0644 0.407 0.0717 0.428 0.0785 0.446 0.0848 0.463 0.0908
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3.6.4 AS 3600-2009 and ACI 318-08

3.6.4.1 Instantaneous deflection

According to AS 3600-2009, the instantaneous or short-term deflection of a beam may
be calculated using the mean value of the elastic modulus of concrete at the time of
first loading, Ec, together with the effective second moment of area of the span Ief .
The effective second moment of area involves an empirical adjustment of the second
moment of area of a cracked member to account for tension stiffening. For a given
cross-section, Ief is calculated using Branson’s formula (Ref. 17):

Ief = Icr + (Iuncr − Icr)(Mcr/M∗
s )3 ≤ Ief ,max (3.18)

where Icr is the second moment of area of the fully-cracked section (calculated using
modular ratio theory); Iuncr is the second moment of area of the uncracked cross-
section about its centroidal axis; M∗

s is the maximum bending moment at the section,
based on the short-term serviceability design load or the construction load; Mcr is the
cracking moment given by:

Mcr = Z(f ′
ct.f −σcs + P/A) + Pe ≥ 0.0 (3.19)

where Z is the section modulus of the uncracked section, referred to the extreme
fibre at which cracking occurs; f ′

ct.f is the characteristic flexural tensile strength of

concrete specified as f ′
ct.f = 0.6

√
f ′
c; P is the effective prestressing force (if any); e is the

eccentricity of prestress measured to the centroidal axis of the section; A is the area of
the uncracked cross-section; and σcs is the maximum shrinkage-induced tensile stress
on the uncracked section at the extreme fibre at which cracking occurs. In the absence
of more refined calculation, σcs may be taken as:

σcs =
(

2.5ρw − 0.8ρcw

1 + 50ρw
Esε

∗
sh

)
(3.20)

where ρw is the web reinforcement ratio for the tensile steel (Ast + Apt)/bwd; ρcw is
the web reinforcement ratio for the compressive steel, if any (Asc/bwd); Ast is the
area on non-prestressed tensile reinforcement; Apt is the area of prestressing steel in
the tensile zone; Asc is the area of non-prestressed compressive reinforcement; Es is
the elastic modulus of the steel in MPa; and ε∗sh is the final design shrinkage strain
(after 30 years). For non-prestressed members, the maximum value of Ief at any cross-
section in Eq. 3.18 is Ief ,max = Iuncr when ρ = Ast/bd ≥ 0.005 and Ief ,max = 0.6Iuncr
when ρ < 0.005.

For a simple-supported beam or slab, the value of Ief for the member is determined
from the value of Ief at mid-span. For interior spans of continuous beams or slabs,
Ief is half of the value of Ief at mid-span plus one quarter of the value of Ief at each
support, while for end spans of continuous beams or slabs, Ief is half the mid-span
value plus half the value at the continuous support. For a cantilever, Ief is the value of
Ief at the support.

The term σcs is introduced into Eq. 3.19 to allow for the reduction in the cracking
moment that inevitably occurs because of the restraint to shrinkage provided by
the bonded tensile reinforcement. Shrinkage-induced tension often causes extensive
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time-dependent cracking, particularly in lightly loaded members. This time-dependent
cracking may occur weeks and months after the member is first loaded and must be
accounted for if a meaningful estimate of deflection is required. Eq. 3.20 is based on the
expression originally proposed by Gilbert (Ref. 26) for singly reinforced rectangular
sections, where conservative values were assumed for the elastic modulus and the creep
coefficient of concrete and about 70 per cent of the final shrinkage was considered in
the calculation of Mcr. The expression was modified to accommodate the inclusion of
compressive reinforcement (Ref. 27). The calculation of σcs for more general cross-
sections is discussed in detail in Ref. 28. Where appropriate, the additional tension
that may arise due to restraint to shrinkage provided by the supports of a beam or slab
should also be taken into account.

The allowance for shrinkage-induced tension is particularly important in the case
of lightly reinforced members (including slabs) where the tension induced by the full
service moment alone might not be enough to cause cracking. In such cases, failure
to account for shrinkage may lead to deflection calculations in which cracking is not
adequately taken into account and this may lead to gross underestimates of the actual
deflection. For heavily reinforced sections, the problem is not as significant, because
the service loads are usually well in excess of the cracking load and tension stiffening
is not as significant.

ACI 318-08 also specifies Eq. 3.18, except that the gross second moment of area,
Ig, is used rather than Iuncr and, with Mcr given by Z (0.62

√
f ′
c), it does not include

any allowance for shrinkage-induced tension or the loss of stiffness caused by cracking
due to early shrinkage.

For many slabs, cracking will occur within weeks of casting due to early drying
shrinkage and temperature changes, often well before the slab is exposed to its full
service loads. In a recent comparison of the instantaneous deflection predicted by ACI
318-08 and the measured deflections of lightly reinforced concrete slabs (Ref. 18),
ACI 318-08 significantly underestimated the instantaneous deflection after cracking
of every slab and, for the very lightly reinforced slabs (ρ < 0.003), the deflection was
grossly underestimated. In addition, ACI 318 does not model the abrupt change in
direction of the moment-deflection response at first cracking and does not predict the
correct shape of the moment-deflection plot after cracking (Ref. 18).

3.6.4.2 Time-dependent deflection

For the calculation of long-term deflection, one of two approaches is specified in AS
3600-2009. For reinforced or prestressed beams, the creep and shrinkage deflections
can be calculated separately (using the material data specified in the standard and
the principles of mechanics). Alternatively, for reinforced concrete beams and slabs,
the additional long-term deflection caused by creep and shrinkage may be crudely
approximated by multiplying the short-term or immediate deflection caused by the
sustained load by a multiplier kcs given by:

kcs = [2 − 1.2(Asc/Ast)] ≥ 0.8 (3.21)

where Asc is the area of steel in the compressive zone of the cracked section between
the neutral axis and the extreme compressive fibre and the ratio Asc/Ast is taken at
mid-span for a simple or continuous span and at the support for a cantilever.
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ACI 318-08 also specifies that unless a more comprehensive analysis is undertaken
the additional long-term deflection resulting from the creep and shrinkage of flexural
members may be determined by multiplying the immediate deflection caused by the
sustained load by a multiplier λ� given by:

λ� = ξ

(1 + 50Asc/bd)
(3.22)

where Asc/bd is taken at mid-span for a simple or continuous span and at the support
for a cantilever; and the time-dependent factor ξ depends on the duration of loads,
with ξ = 2.0 for 5 years or more; ξ = 1.4 for 1 year; ξ = 1.2 for 6 months; and ξ = 1.0
for 3 months.

The use of a deflection multiplier (kcs or λ�) to calculate time-dependent deflections
is simple and convenient and, provided the section is initially cracked under short-
term loads, it may provide a ‘ball-park’ estimate of the final deflection. However, to
calculate the shrinkage-induced deflection by multiplying the load-induced short-term
deflection by a long-term deflection multiplier is fundamentally incorrect. Shrinkage
can cause significant deflection even in unloaded members. The approach ignores many
of the factors that influence the final deflection, including the creep and shrinkage
characteristics of the concrete, the environment and the age at first loading. At best, it
must be seen as providing a very approximate estimate. At worst, it is misleading and
not worth the time involved in making the calculation. In addition, when using the
ACI 318-08 multiplier, no account is taken of the loss of stiffness caused by shrinkage-
induced cracking at any stage of the calculation procedure and, in the case of slabs,
this may be very significant.

It is, however, not too much more complicated to calculate long-term creep and
shrinkage deflections separately and this is the subject of much of the rest of this book.
A recently proposed simplified method for deflection calculation that does calculate
the creep and shrinkage deflections separately (and more accurately) is outlined in
Section 3.6.6.

Example 3.2

The final long-term deflection (vC)max at the mid-point C in the end span of
a continuous one-way slab is to be calculated using the simplified procedures
in AS 3600-2009 and ACI 318-08. The slab is 180 mm thick. The span is � =
�ef = 5.0 m, the dead load g = 2.0 kPa + self-weight = 6.4 kPa, and the live
load is q = 3.0 kPa. The short-term expected live load is q1 = 2.1 kPa and the
sustained part of the live load is q2 = 1.2 kPa. The deflection requirement is that
(vC)max ≤ �ef /250 = 20 mm.

The concrete and steel strengths are f ′
c = 25 MPa, f ′

ct.f = 0.6
√

f ′
c = 3.0 MPa

and fy = 500 MPa. The elastic moduli for concrete and steel are Ec = 26,700 MPa
and Es = 200,000 MPa, and the modular ratio is therefore n = Es/Ec = 7.5. The
final long-term shrinkage strain is taken to be ε∗sh = 0.0007 and the clear concrete
cover to the reinforcement is 20 mm.
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The bottom longitudinal reinforcement throughout the span consists of 12 mm
diameter bars at 250 mm centres (Ast = 440 mm2/m at d = 154 mm) and the top
reinforcement at the interior support consists of 12 mm bars at 200 mm centres
(Ast = 550 mm2/m at d = 154 mm), as shown in Fig. 3.6. The reinforcement
has been designed to provide adequate strength. Also shown in Fig. 3.6 is the
bending moment diagram under the maximum uniformly distributed service
load, wmax = g + q1 = 8.5 kPa.

  − 
  + 

A

A

` = 5 m D = 180 mm

wmax = 8.5 kN/m2

MB = −22.5 kNm/m

MC = +15.4 kNm/m

(a) Elevation of end span (b) Load and bending moment diagrams

C

C

N12@250 mm

N12@200 mm

B

B

Figure 3.6 Slab elevation, load and bending moment diagrams (Example 3.2).

AS3600-2009

Section at mid-span C

The maximum in-service moment at mid-span is M∗
s = 15.4 kNm/m. With Ast =

440 mm2/m and d = 154 mm, the reinforcement ratio ρ= Ast/bd = 0.00286 and
nρ = 0.0214, the centroidal axis of the uncracked transformed cross-section is
91.0 mm below the top surface and the second moment of area of the uncracked
transformed section about its centroidal axis is Iuncr = 498 × 106 mm4/m.
The depth to the neutral axis for the cracked section is calculated using
Eq. 3.14:

k =
√

(0.0214)2 + 2 × 0.0214 − 0.0214 = 0.187

and therefore dn = kd = 28.7 mm. The second moment of area of the fully-
cracked transformed section, Icr, is next obtained from Eq. 3.17 as:

Icr = ½bd3 k2(1 − k/3) = 59.6 × 106 mm4/m.

The bottom fibre section modulus of the uncracked section is Z = Iuncr/yb =
5.59×106 mm3/m. From Eq. 3.20, the shrinkage-induced tension in the bottom
fibre of the uncracked section is:

σcs =
(

2.5 × 0.00286
1 + 50 × 0.00286

× 2 × 105 × 0.0007
)

= 0.875 MPa



Design for serviceability 61

and the time-dependent cracking moment is obtained from Eq. 3.19 is:

Mcr = 5.59 × 106(3.00 − 0.875) × 10−6 = 11.9 kNm/m

From Eq. 3.18, the effective second moment of area at mid-span is:

(Ief )C = 59.6 × 106 + (498 × 106 − 59.6 × 106)(11.9/15.4)3

= 261 × 106 mm4/m

Section at continuous B

The maximum in-service moment at support B is M∗
s = −22.5 kNm/m. At this

critical section, Ast = 550 mm2/m, d = 154 mm, ρ = 0.00357 and nρ = 0.0268.
The section properties calculated as above are Iuncr = 500 × 106 mm4/m,
k = 0.206, and Icr = 72.2 × 106 mm4/m. From Eq. 3.20, σcs = 1.06 MPa
and the cracking moment is Mcr = 10.9 kNm/m. From Eq. 3.18, (Ief )B =
121 × 106 mm4/m.

For entire span

The average effective second moment of area for the entire end span is taken
as the average of the values at mid-span and at the continuous support.
That is:

Ief = 0.5 × ((Ief )C + (Ief )B) = 0.5 × (261 × 106 + 121 × 106)

= 191 × 106 mm4/m

Instantaneous deflection

Assuming a uniform average rigidity for the span of EcIef , the instantaneous
curvatures at the sections at mid-span and at the continuous support under the
full service load after the effects of all cracking have been included are:

(κi)C = M∗
s

EcIef
= 15.4 × 106

26,700 × 191 × 106 = 3.02 × 10−6 mm−1

and (κi)B = −4.41 × 10−6 mm−1

The instantaneous deflection at mid-span due to the full service load after
accounting for all load and shrinkage-induced cracking is obtained from
Eq. 3.7b as:

(vC)i.max = �2

96
(κA + 10 κC + κB)

= 50002

96
(0 + 10 × 3.02 × 10−6 − 4.41 × 10−6) = 6.7 mm
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Time-dependent deflection

In this example, the sustained load is wsus = g +q2 = 7.6 kPa. The instantaneous
deflection due to the sustained loads is therefore:

(vC)i.sus = (vC)i.max(wsus/wmax) = 6.0 mm

With no compressive reinforcement, the time-dependent deflection multiplica-
tion factor given by Eq. 3.21 is kcs = 2.0 and the time-dependent deflection at
mid-span is:

(vC)time = kcs(vC)i.sus = 2.0 × 6.0 = 12.0 mm

The final long-term deflection

The final long-term deflection at mid-span (vC)max is the sum of the instantaneous
deflection due to the maximum service load and the time-dependent deflection
due to creep and shrinkage and is given by:

(vC)max = (vC)i.max + (vC)time = 6.7 + 12.0 = 18.7 mm = span/267

Discussion

According to AS3600-2009, this slab will deflect a little less than the maximum
deflection limit of span/250 and so the slab is just serviceable. A slightly thinner
slab may be possible with the inclusion of some compressive reinforcement in
the positive moment region.
It is of interest to note that the deemed to comply maximum span-to-depth ratio
in AS 3600-2009 is more conservative requiring minimum slab thickness of
207 mm, if deflections were not to be checked by calculation (see Example 3.1).

ACI318-08

Section at mid-span C

The second moment of area of the gross cross-section is Ig = 486×106 mm4/m.
As calculated previously, with Ast = 440 mm2/m and d = 154 mm, the
second moment of area of the fully-cracked transformed section is Icr =
59.6 × 106 mm4/m. The bottom fibre section modulus of the gross section is
Z = Ig/yb = 5.4×106 mm3/m and the cracking moment is Mcr = Z(0.62

√
f ′
c) =

5.4 × 106(0.62
√

25) × 10−6 = 16.7 kNm/m. According to ACI 318-08, with
M∗

s = 15.4 kNm/m, the slab will not crack in the positive moment region at any
stage throughout its life and (Ief )C = Ig = 486×106 mm4/m – a conclusion that
experience would suggest is unsupportable.

Section at continuous support B

With M∗
s = −22.5 kNm/m, Ast = 550 mm2/m, d= 154 mm, Icr = 72.2×106

mm4/m and Mcr = 16.7 kNm/m, Eq. 3.18 gives (Ief )B = 243 × 106 mm4/m.
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For entire span

According to ACI 318-08, the average effective second moment of area for the
entire span may be taken as either the value at mid-span or the average of the
values obtained at the positive and negative moment regions. For this typical
example, taking the value at mid-span would be unconservative (and unwise),
as the effects of any cracking would be completely ignored. Assuming that Ief
is the average of the values at mid-span and at the continuous support gives
Ief = 364 × 106 mm4/m.

Instantaneous deflection

Assuming a uniform average rigidity for the span of EcIef , the instantaneous
curvatures at the section at mid-span and at the continuous support under the
full service load are (κi)C = 1.58×10−6 mm−1 and (κi)B = −2.31×10−6 mm−1.
From Eq. 3.7b, the instantaneous deflection at mid-span due to the full service
load is:

(vC)i.max = �2

96
(κA + 10 κC + κB)

= 50002

96
(0 + 10 × 1.58 × 10−6 − 2.31 × 10−6) = 3.5 mm

Time-dependent deflection

In this example, (vC)i.sus = (vC)i.max(wsus/wmax) = 3.1 mm and with no
compressive reinforcement, the time-dependent deflection multiplication factor
given by Eq. 3.22 for a load duration of more than 5 years is λ� = 2.0 and the
time-dependent deflection at mid-span is:

(vC)time = λ�(vC)i.sus = 2.0 × 3.1 = 6.2 mm

The final long-term deflection

The final long-term deflection at mid-span (vC)max is therefore:

(vC)max = (vC)i.max + (vC)time = 3.5 + 6.2 = 9.7 mm = span/515

Discussion

According to ACI 318-08, the maximum final long-term deflection of this
180 mm thick slab is less than half of that calculated by AS 3600-2009 and
a significantly thinner slab would be possible if the maximum final deflection
were to be limited to span/250. Clearly, the loss of stiffness due to shrinkage-
induced cracking is ignored by ACI 318-08. Comparison of the ACI 318-08
predictions with the observed deflections in real slabs confirms that often this
method grossly underestimates deflection.
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By contrast, the minimum thickness specified for this slab in ACI 318-08 is
230 mm (see Example 3.1) and the selection of a slab thickness that met this
requirement would be a very conservative design decision.

3.6.5 Eurocode 2

3.6.5.1 Instantaneous curvature

An alternative approach for the calculation of deflection in a cracked reinforced
concrete member is specified in Eurocode 2 (Ref. 6). This approach involves the
calculation of the curvature at particular cross-sections and then twice integrating the
curvatures along the member to obtain its deflection. The instantaneous curvature at
a section after cracking, κ, is calculated as a weighted average of the values calculated
on a fully-cracked section (κcr) and on an uncracked section (κuncr) as follows:

κ = ζκcr + (1 − ζ )κuncr (3.23)

where ζ is a distribution coefficient that accounts for the moment level and the degree
of cracking and, for members containing deformed bars, is given by:

ζ = 1 −β
(
σsr

σs

)2

(3.24a)

where β is a coefficient to account for the effects of duration of loading or repeated
loading on the average deformation and equals 1.0 for a single, short-term load and
0.5 for sustained loading or for many cycles of repeated loading; σsr is the stress in the
tensile reinforcement at the load causing first cracking that is calculated by ignoring
concrete in tension and ignoring any shrinkage-induced tension; σs is stress in the
reinforcement at the load under consideration that is calculated by ignoring concrete
in tension; κcr is the curvature at the section calculated by ignoring concrete in tension;
and κuncr is the curvature on the uncracked transformed section. If the compressive
concrete and the reinforcement are both linear and elastic, the ratio σsr/σs in Eq. 3.24a
can be replaced by Mcr/M∗

s and therefore:

ζ = 1 −β
(

Mcr

M∗
s

)2

(3.24b)

The cracking moment Mcr is the moment required to produce an extreme fibre
tensile stress equal to the mean uniaxial tensile strength of concrete, fctm. For a
reinforced concrete section in pure bending Mcr = Zfctm, where Z is the section
modulus of the uncracked section, referred to the extreme fibre at which cracking
occurs, and fctm = 0.3(f ′

c)2/3 when f ′
c ≤ 50 MPa.

The introduction of β = 0.5 in Eqs 3.24 for long-term deflection calculations is
tantamount to reducing the cracking moment by about 30 per cent and is a crude way
of accounting for shrinkage-induced tension and time-dependent cracking.
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3.6.5.2 Time-dependent curvature

For sustained loads, Eurocode 2 specifies that the total load-induced deformation
including creep may be calculated by using an effective modulus for concrete, Ee,
given by:

Ee = Ec

1 +ϕ(∞,τ )
(3.25)

where ϕ(∞,τ ) is the creep coefficient at time infinity due to a load first applied at
time τ .

The shrinkage-induced curvature κsh is obtained from the following expression:

κsh = εshne
S
I

(3.26)

where εsh is the free shrinkage strain; ne is the effective modular ratio (Es/Ee); S is the
first moment of area of the reinforcement about the centroid of the section; and I is
the second moment of area of the section. S and I and the corresponding curvatures
should be calculated for both the uncracked condition and for the fully-cracked
condition, and the final average shrinkage-induced curvature in the cracked region
is then calculated using Eq. 3.23.

Example 3.3

Using the Eurocode 2 approach, the final long-term deflection (vC)max is to be
calculated at the mid-point C in the end span of the one-way slab of Example 3.2
that is illustrated in Fig. 3.6. For convenience, details of the slab are included
here: slab thickness, D = 180 mm; span �= �ef = 5.0 m; clear cover = 20 mm;
dead load (including self-weight), g = 6.4 kPa; live load, q = 3.0 kPa; short-term
expected live load, q1 = 2.1 kPa; sustained part of the live load, q2 = 1.2 kPa;
the deflection requirement, (vC)max ≤ �ef /500 = 20 mm; and the reinforcement
details are outlined in Example 3.2. The material properties are: f ′

c = 25 MPa;
fy = 500 MPa; Ec = 26,700 MPa; Es = 200,000 MPa; n = Es/Ec = 7.5; ε∗sh =
0.0007 and the final creep coefficient is ϕ∗(τ ) = 2.5. The mean uniaxial tensile
strength of concrete is fctm = 0.3(f ′

c)2/3 = 2.57 MPa.

Instantaneous deflection – Eurocode 2

Section at mid-span C

As given in Example 3.2, the maximum in-service moment at mid-span is
M∗

s = 15.4 kNm/m. With Ast = 440 mm2/m and d = 154 mm, the second
moments of area of the uncracked transformed section and the fully-cracked
transformed section are Iuncr = 498×106 mm4/m and Icr = 59.6×106 mm4/m,
respectively. The uncracked and fully cracked curvatures are therefore κuncr =
M∗

s /EcIuncr = 1.16 × 10−6 mm−1 and κcr = M∗
s /EcIcr = 9.68 × 10−6 mm−1,

respectively.



66 Design for serviceability

The cracking moment is Mcr = Zfctm = 5.59×106×2.57×10−6 = 14.34 kNm/m
and, with β= 1.0 for short-term loading, the distribution coefficient ζ is obtained
from Eq. 3.24b:

ζ = 1 −β
(

Mcr

M∗
s

)2

= 1 − 1.0 × (14.34/15.4)2 = 0.133

The instantaneous curvature at mid-span is obtained from Eq. 3.23 as:

(κi)C = 0.133 × 9.68 × 10−6 + (1 − 0.133) × 1.16 × 10−6

= 2.29 × 10−6 mm−1

Section at continuous support B

At this critical section, M∗
s = −22.5 kNm/m, Ast = 550 mm2/m, d = 154 mm,

Iuncr = 500 × 106 mm4/m, Icr = 72.2 × 106 mm4/m and Mcr = 14.46 kNm/m.
The uncracked and fully-cracked curvatures at B are therefore κuncr = −1.68 ×
10−6 mm−1 and κcr = −11.67 × 10−6 mm−1, respectively. From Eq. 3.24b,
ζ = 1 − 1.0 × (14.46/22.5)2 = 0.587 and the instantaneous curvature at B is:

(κi)B = 0.587 × (−11.67 × 10−6) + (1 − 0.587) × (−1.68 × 10−6)

= −7.54 × 10−6 mm−1

Deflection at mid-span

The instantaneous deflection at mid-span due to the full service load is again
obtained from Eq. 3.7b as:

(vC)i.max = �2

96
(κA + 10 κC + κB)

= 50002

96
(0 + 10 × 2.29 × 10−6 − 7.54 × 10−6) = 4.0 mm

of which, the instantaneous deflection due to the sustained load is 3.6 mm
and the remaining instantaneous deflection due to the transient live load is
(vC)i.(q1−q2) = 0.4 mm.

Time-dependent deflection due to sustained loads – Eurocode 2

The effective modulus of the concrete is obtained from Eq. 3.25 as:

Ee = 26700
1 + 2.5

= 7630 MPa

and the effective modular ratio ne = Es/Ee = 26.2. With the effective modular
ratio, the revised section properties of the uncracked and cracked transformed
cross-sections at the mid-span and at the continuous support are required.



Design for serviceability 67

Section at mid-span C

With the reinforcement area transformed into an equivalent area of the softened
concrete (due to creep) using the effective modular ratio, the second moments
of area of the uncracked and fully-cracked cross-sections are Iuncr = 529 ×
106 mm4/m and Icr = 166 × 106 mm4/m, respectively. Due to the sustained
loads (wsus = g + q2 = 7.6 kPa), the moment at the section at mid-span is
(MC)sus = 13.77 kNm/m and the time-dependent curvatures allowing for creep
are κuncr = (MC)sus/EeIuncr = 3.41 × 10−6 mm−1 and κcr = (MC)sus/EeIcr =
10.8 × 10−6 mm−1. With Mcr = 14.34 kNm/m and with β = 0.5 for long-term
loading, the distribution coefficient ζ is obtained from Eq. 3.24b:

ζ = 1 −β
(

Mcr

(MC)sus

)2

= 1 − 0.5 × (14.34/13.77)2 = 0.458

The long-term load-induced curvature at mid-span (including creep) is obtained
from Eq. 3.23 as:

(κsus)C = 0.458 × 10.8 × 10−6 + (1 − 0.458) × 3.41 × 10−6

= 6.82 × 10−6 mm−1

Section at continuous support B

At this critical section, the revised second moments of area are Iuncr = 539 ×
106 mm4/m and Icr = 197×106 mm4/m. The sustained moment at B is (MB)sus =
−20.12 kNm/m and the time-dependent curvatures allowing for creep are
κuncr = (MB)sus/EeIuncr = −4.89 × 10−6 mm−1 and κcr = −13.4 × 10−6 mm−1.
From Eq. 3.24b, ζ = 1 − 0.5 × (14.46/20.12)2 = 0.742 and, the long-term
load-induced curvature at B is:

(κsus)B = 0.742 × (−13.4 × 10−6) + (1 − 0.742) × (−4.89 × 10−6)

= −11.2 × 10−6 mm−1

Deflection at mid-span

The time-dependent deflection at mid-span due to the sustained loads plus creep
is obtained from Eq. 3.7b as:

(vC)sus = �2

96
((κsus)A + 10 (κsus)C + (κsus)B)

= 50002

96
(0 + 10 × 6.82 × 10−6 − 11.2 × 10−6) = 14.8 mm

Time-dependent deflection due to shrinkage – Eurocode 2

Section at mid-span C

As for the creep analysis, the second moments of area of the uncracked and fully-
cracked cross-sections are Iuncr = 529×106 mm4/m and Icr = 166×106 mm4/m,
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respectively, and the first moment of area of the reinforcement about the
centroidal axis of the uncracked and fully-cracked cross-sections are Suncr =
26.5 × 103 mm3/m and Scr = 46.1 × 103 mm3/m, respectively. The shrinkage-
induced curvatures are obtained from Eq. 3.26:

(κsh)uncr = εshne
Suncr

Iuncr
= 0.92 × 10−6 mm−1

and

(κsh)cr = εshne
Scr

Icr
= 5.09 × 10−6mm−1

With ζ = 0.458, as for in the creep analysis, the shrinkage-induced curvature at
mid-span is obtained from Eq. 3.23 as:

(κsh)C = 0.458 × 5.09 × 10−6 + (1 − 0.458) × 0.92 × 10−6

= 2.82 × 10−6 mm−1

At the supports

At the discontinuous support A, the member is uncracked and so (κsh)A = 0.92×
10−6 mm−1. In the negative moment region, adjacent to support B, the slab
contains both top and bottom reinforcement and Suncr = −6.2 × 103 mm3/m,
Iuncr = 588×106 mm4/m, Scr =−46.9×103 mm3/m and Icr = 204×106 mm4/m.
Therefore, from Eq. 3.26: (κsh)uncr =−0.19×10−16 mm−1 and (κsh)cr =−4.22×
10−6 mm−1. With ζ = 0.742, Eq. 3.23 gives (κsh)B = −3.18 × 10−6 mm−1.

Shrinkage-induced deflection at mid-span

An estimate of the shrinkage-induced deflection is obtained by assuming a
parabolic distribution of shrinkage curvature between the end sections and
mid-span. Eq. 3.7b gives:

(vC)sh = �2

96
((κsh)A + 10 (κsh)C + (κsh)B)

= 50002

96
(0.92 + 10 × 2.82 − 3.18) × 10−6 = 6.8 mm

The final long-term deflection – Eurocode 2

The final long-term deflection at mid-span (vC)max is therefore:

(vC)max = (vC)i.q1−q2 + (vC)sus + (vC)sh

= 0.4 + 14.8 + 6.8 = 22.0 mm = span/227
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Discussion

This result is in reasonable agreement with the final deflection calculated in
Example 3.2 using AS 3600-2009, although a little more conservative. Unlike
AS 3600-2009 (and ACI 318-08), the approach provides a rational consideration
of the long-term deflection due to creep and shrinkage of the concrete. Of course,
the final deflection here is heavily dependent on input values of the creep
coefficient and the shrinkage strain of concrete – as is the case in real slabs.

The use of the mean concrete tensile strength fctm instead of the flexural
strength indirectly compensates for the tension induced by restrained shrinkage
(Ref. 24).

It is of interest to note that deemed-to-comply maximum span-to-depth ratios
in Eurocode 2 (Eqs 3.2) suggest that, if a slab thickness greater than 173 mm
was selected (see Example 3.1), then the maximum final long-term deflection
will not exceed span/250 and deflections need not be calculated. This example
suggests that this is not the case and that Eqs 3.2 cannot be relied on to guarantee
adequate serviceability.

3.6.6 Recommended simplified approach

It is well known that Branson’s Equation (Eq. 3.18) overestimates stiffness after
cracking for members containing relatively small quantities of tensile reinforcement
(Refs 18, 25 and 26). A much better model for Ief can be developed from the deflection
calculation approach in Eurocode 2 (as outlined in Section 3.6.5). Substituting
Eq. 3.24b into Eq. 3.23, the instantaneous curvature at a particular section in the
cracked region of a member may be calculated from:

κ =
[

1 −β
(

Mcr

M∗
s

)2
]
κcr +

[
β

(
Mcr

M∗
s

)2
]
κuncr (3.27)

Using the notation of Eq. 3.18, the curvatures in Eq. 3.27 are κ = M∗
s /EcIef ,

κcr = M∗
s /EcIcr and κuncr = M∗

s /EcIuncr and Eq. 3.27 can be re-expressed as:(
M∗

s

EcIef

)
=
[

1 −β
(

Mcr

M∗
s

)2
](

M∗
s

EcIcr

)
+
[
β

(
Mcr

M∗
s

)2
](

M∗
s

EcIuncr

)
(3.28)

Eq. 3.28 can be rearranged to give the following expression for Ief :

Ief = Icr

1 −β
(

1 − Icr

Iuncr

)(
Mcr

M∗
s

)2 ≤ Ief .max (3.29)

This alternative expression for Ief was first proposed by Bischoff (Ref. 25).

3.6.6.1 Instantaneous deflection

The instantaneous curvature κi due to the service moment M∗
s at a particular cross-

section is κi = M∗
s /EcIef , with Ief calculated from Eq. 3.29, where Icr is the second

moment of area of the fully-cracked section about its centroidal axis; Iuncr is the
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second moment of area of the uncracked transformed cross-section about its centroidal
axis; M∗

s is the maximum bending moment at the section, based on the short-term
serviceability design load or the construction load; Mcr is the cracking moment
given by

Mcr = Z(f ′
ct.f + P/Ag) + Pe ≥ 0.0 (3.30)

where Z is the section modulus of the uncracked section, referring to the extreme
fibre at which cracking occurs; and f ′

ct.f (= 0.6
√

f ′
c) is the characteristic flexural tensile

strength of concrete.
An upper limit Ief .max is recommended for the value of Ief calculated from Eq. 3.29,

where Ief .max = Iuncr when p = Ast/bd ≥ 0.005 and Ief .max = 0.6Iuncr when p< 0.005.
For lightly reinforced members (where ρ < 0.005), the value of Ief is very sensitive to
the calculated value of Mcr. The ratio Iuncr/Icr is large and the maximum in-service
moment M∗

s may be similar in magnitude to the cracking moment. An upper limit for
Ief of 0.6Iuncr is imposed on such members, because failure to account for cracking
due to unanticipated shrinkage restraint, temperature gradients or construction loads
can result in significant underestimates of deflection.

The term β in Eq. 3.29 is used to account for both shrinkage-induced cracking and
the reduction in tension stiffening with time. Early shrinkage in the days and weeks
after casting will cause tension in the concrete and a reduction in the cracking moment.
As time progresses and the concrete continues to shrink, the level of shrinkage-induced
tension increases in an uncracked member, further reducing the cracking moment.
If shrinkage has not occurred before first loading, the deflection immediately after
loading may be calculated with β = 1.0. However, in practice, significant shrinkage
usually occurs before first loading and β is less than 1.0. When calculating the short-
term or elastic part of the deflection, the following is recommended:

β = 0.7 at early ages (less than 28 days); and
β = 0.5 at ages greater than 6 months.

For long-term calculations, when the final deflection is to be estimated, β = 0.5 should
be used.

The instantaneous deflection is calculated by assuming a uniform average rigidity
for the span of Ec(Ief )av. For a simple-supported beam or slab, the average value
(Ief )av for the span is determined from the value of Ief at mid-span. For interior spans
of continuous beams or slabs, (Ief )av is taken to be half the mid-span value plus one
quarter of the value at each support. For end spans of continuous beams or slabs,
(Ief )av is taken to be half the mid-span value plus half the value at the continuous
support. For a cantilever, (Ief )av is the value at the support.

3.6.6.2 Time-dependent creep-induced curvature

The creep-induced curvature κcr(t) on a particular cross-section at any time t due to
a sustained service load first applied at age τ0 may be obtained from:

κcr(t) = κsus,0
ϕ(t,τ0)
α

(3.31)
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where κsus,0 is the instantaneous curvature due to the sustained service loads; ϕ(t,τ0)
is the creep coefficient at time t due to load first applied at age τ0; and α is a creep
modification factor that accounts for the effects of cracking and the braking action
of the reinforcement on creep and may be estimated from either Eqs 3.32a, b or c
(Refs 26 and 30).

For a cracked reinforced concrete section in pure bending (Ief < Iuncr), α=α1, where:

α1 =
[
0.48ρ−0.5

][ Icr

Ief

]0.33[
1 + (125ρ+ 0.1)

(
Asc

Ast

)1.2
]

(3.32a)

For an uncracked reinforced or prestressed concrete section (Ief = Iuncr), α = α2,
where:

α2 = 1.0 +
[
45ρ− 900ρ2

][
1 + Asc

Ast

]
(3.32b)

and ρ = Ast/bdo; Ast is the equivalent area of bonded reinforcement in the tensile
zone at depth do (the depth from the extreme compressive fibre to the centroid of
the outermost layer of tensile reinforcement); and Asc is the area of the bonded
reinforcement in the compressive zone between the neutral axis and the extreme
compressive fibre. The area of any bonded reinforcement in the tensile zone (including
bonded tendons) not contained in the outermost layer of tensile reinforcement (i.e.
located at a depth d1 less than do) should be included in the calculation of Ast by
multiplying that area by d1/do. For the purpose of the calculation of Ast, the tensile
zone is that zone that would be in tension due to the applied moment acting in isolation.

For a cracked, partially prestressed section or for a cracked reinforced concrete
section subjected to bending and axial compression, α may be taken as:

α = α2 + (α1 −α2)
(

dn1

dn

)2.4

(3.32c)

where dn is the depth of the intact compressive concrete on the cracked section and
dn1 is the depth of the intact compressive concrete on the cracked section ignoring the
axial compression and/or the prestressing force (i.e. the value of dn for an equivalent
cracked reinforced concrete section in pure bending containing the same quantity of
bonded reinforcement).

3.6.6.3 Time-dependent shrinkage-induced curvature

The shrinkage-induced curvature on a reinforced concrete section is approximated by:

κsh =
[

krεsh

D

]
(3.33)

where D is the overall depth of the section; εsh is the shrinkage strain; and kr depends on
the quantity and location of bonded reinforcement Ast and Asc, and may be estimated
from Eqs 3.34a–d, as appropriate (Ref. 30).
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For a cracked reinforced concrete section in pure bending (Ief < Iuncr), kr = kr1,
where:

kr1 = 1.2

(
Icr

Ief

)0.67(
1 − 0.5

Asc

Ast

)(
D
do

)
(3.34a)

For an uncracked cross-section (Ief = Iuncr), kr = kr2, where:

kr2 = (100ρ− 2500ρ2)
(

do

0.5D
− 1

)(
1 − Asc

Ast

)1.3

when ρ = Ast/bdo ≤ 0.01

(3.34b)

kr2 = (40ρ+ 0.35)
(

do

0.5D
− 1

)(
1 − Asc

Ast

)1.3

when ρ = Ast/bdo > 0.01 (3.34c)

In Eqs 3.34a, b and c, Asc is defined as the area of the bonded reinforcement on
the compressive side of the cross-section. This is a different definition to that provided
under Eq. 3.32b. While bonded steel near the compressive face of a cracked cross-
section that is at or below the neutral axis will not restrain compressive creep, it will
provide restraint to shrinkage and will affect the shrinkage-induced curvature on a
cracked section.

For a cracked, partially prestressed section or for a cracked reinforced concrete
section subjected to bending and axial compression, kr may be taken as:

kr = kr2 + (kr1 − kr2)
(

dn1

dn

)
(3.34d)

where dn and dn1 are as defined after Eq. 3.32c.
Eqs 3.32, 3.33 and 3.34 have been developed (see Ref. 30) as empirical fits

to results obtained from a parametric study of the creep- and shrinkage-induced
changes in curvature on reinforced concrete cross-sections under constant sustained
internal actions using the age-adjusted effective modulus method (AEMM) of analysis
(as outlined subsequently in Chapter 5).

Example 3.4

Using the approach recommended above (Eqs 3.29–3.34), the final long-term
deflection (vC)max is to be calculated at the mid-point C in the end span of the
one-way slab of Example 3.2 that was illustrated in Fig. 3.6. For convenience,
details of the slab are included here: h = 180 mm; �= �ef = 5.0 m; clear cover =
20 mm; dead load (including self-weight), g = 6.4 kPa; live load, q = 3.0 kPa;
short-term expected live load, q1 = 2.1 kPa; sustained live load, q2 = 1.2 kPa;
and (vC)max ≤ �ef /500 = 20 mm. The reinforcement details are outlined in
Example 3.2 and shown in Fig. 3.6a; and the bending moment diagram under
the maximum uniformly distributed service load, wmax = g + q1 = 8.5 kPa is
shown in Fig. 3.6b.



Design for serviceability 73

The material properties are f ′
c = 25 MPa; f ′

ct.f 3.0 MPa; fy = 500 MPa;
Ec = 26,700 MPa; Es = 200,000 MPa; n = Es/Ec = 7.5; ε∗sh = 0.0007 and
ϕ∗(τ ) = 2.5.

Instantaneous deflection

Section at mid-span C

The maximum in-service moment at mid-span is M∗
s = 15.4 kNm/m and with

Ast = 440 mm2/m, d = 154 mm and p = 0.00286, the second moments of area
of the uncracked transformed section and the fully-cracked transformed section
are Iuncr = 498 × 106 mm4/m and Icr = 59.6 × 106 mm4/m, respectively. The
cracking moment is Mcr = Zf ′

ct.f = 5.59×106 ×3.0×10−6 = 16.8 kNm/m and,
for the calculation of immediate deflection due to loads applied at any time after
shrinkage-induced cracking has occurred, take β = 0.5. The value of Ief for the
section at mid-span is obtained from Eq. 3.29:

Ief = 59.6 × 106

1 − 0.5

(
1 − 59.6 × 106

498 × 106

)(
16.8
15.4

)2
= 125 × 106 mm4/m

Section at continuous support B

At this critical section, M∗
s = −22.5 kNm/m, Ast = 550 mm2/m, d = 154 mm,

Iuncr = 500 × 106 mm4/m, Icr = 72.2 × 106 mm4/m, Mcr = 16.9 kNm/m and
therefore:

Ief = 72.2 × 106

1 − 0.5

(
1 − 72.2 × 106

500 × 106

)(
16.9
22.5

)2
= 95.3 × 106mm4/m

Short-term deflection at mid-span

The average value (Ief )av for the span is taken as one half the value of Ief
at mid-span plus half the value at the continuous support. That is (Ief )av =
0.5 (125+95.3)×106 = 110×106 mm4/m. The instantaneous curvature at mid-
span and at support B are (κi)C = M∗

s /Ec(Ief )av = (15.4×106)/(26,700×110×
106) = 5.24×10−6 mm−1 and (κi)B = M∗

s /Ec(Ief )av = (−22.5×106)/(26,700×
110 × 106) = −7.66 × 10−6 mm−1, respectively. The instantaneous deflection
at mid-span due to the full service load is obtained from Eq. 3.7b as:

(vC)i.max = �2

96
((κi)A + 10 (κi)C + (κi)B)

= 50002

96
(0 + 10 × 5.24 × 10−6 − 7.66 × 10−6) = 11.7 mm
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Time-dependent deflection

Creep

The sustained service load is wsus = g + q2 = 7.6 kPa = 0.894wmax, and
therefore the sustained moments at mid-span and at the continuous support
are Msus = 13.8 kNm/m and −20.1 kNm/m, respectively. The instantaneous
curvatures at mid-span and at the continuous support due to the sustained
loads (κsus,0 = Msus/EcIef .av) are therefore 4.68 × 10−6 mm−1 and −6.85 ×
10−6 mm−1, respectively. The creep modification factor α for the sections
at mid-span and at the continuous support are obtained from Eq. 3.32a as
α = α1 = [0.48×0.00286−0.5]× [59.6×106/125×106]0.33 = 7.0 and α = α1 =
[0.48 × 0.00357−0.5] × [72.2 × 106/95.3 × 106]0.33 = 7.3, respectively. For the
cross-section at the continuous support, the bottom (compressive) steel is not
located in the compressive zone of the cracked section and so Asc in Eq. 3.32a is
zero. From Eq. 3.31 the final creep-induced curvature at the mid-span C and at
the continuous support B are (κcr)C =4.68×10−6×2.5/7.0=1.67×10−6 mm−1

and (κcr)B = −6.85 × 10−6 × 2.5/7.3 = −2.35 × 10−6 mm−1, respectively.
From Eq. 3.7b, the creep-induced deflection is:

(vC)cr = �2

96
((κcr)A + 10 (κcr)C + (κcr)B)

= 50002

96
(0 + 10 × 1.67 × 10−6 − 2.35 × 10−6) = 3.7 mm

Shrinkage

For the cracked cross-section at mid-span, Eq. 3.34a gives kr = kr1 = 1.2 ×
(59.6 × 106/125 × 106)0.67 × 180/154 = 0.85 and the shrinkage-induced
curvature is given by Eq. 3.33, (κsh)C = 0.85×0.0007/180 = 3.32×10−6 mm−1.
For the cracked section at the continuous support, Asc = 440 mm2/m in Eq.
3.34a and kr = kr1 = 1.2× (72.2×106/95.3×106)0.67 × (1−0.5×440/550)×
(180/154) = 0.70 and the shrinkage-induced curvature is given by Eq. 3.33:
(κsh)B = −0.70×0.0007/180 = −2.72×10−6 mm−1. For the uncracked, singly-
reinforced section at support A, Eq. 3.34b gives kr = kr2 = (100 × 0.00286 −
2500 × 0.002862) × (154/90 − 1) = 0.19 and, from Eq. 3.33, (κsh)A = 0.19 ×
0.0007/180 = 0.74 × 10−6 mm−1.

If shrinkage-induced deflection is obtained by assuming a parabolic
distribution of shrinkage curvature between the end sections and mid-span,
Eq. 3.7b gives:

(vC)sh = �2

96
((κsh)A + 10 (κsh)C + (κsh)B)

= 50002

96
(0.74 + 10 × 3.32 − 2.72) × 10−6 = 8.1 mm
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The final long-term deflection

The final long-term deflection at mid-span (vC)max is therefore:

(vC)max = (vC)i.max + (vC)cr + (vC)sh

= 11.7 + 3.7 + 8.1 = 23.5 mm = span/213

Discussion

The final deflection calculated here is similar to that calculated in Example 3.3
using the procedure in Eurocode 2. However, this is not necessarily the case in all
situations. The procedure described in Section 3.6.6 is considered to be the most
reliable of the simplified procedures presented in this chapter and will generally
provide a conservative estimate of deflections.

3.7 Crack control

3.7.1 General

Reinforced concrete elements crack wherever the tensile stress in the concrete reaches
the tensile strength of the concrete. Tensile stress at any location in a concrete structure
may be caused by a number of factors, including applied loads, restrained shrinkage,
temperature changes, settlement of supports and so on. Cracks formed by axial tensile
forces and restrained shrinkage (direct tension cracks) often penetrate completely
through a member. Cracks caused by bending (flexural cracks) occur at the tensile
face when the extreme fibre tensile stress reaches the tensile strength of the concrete.
Flexural cracks propagate from the extreme tensile fibre through the tensile zone and
are arrested at or near the neutral axis. Flexural cracks increase in width as the distance
from the tensile reinforcement increases and taper to zero width near the neutral axis.
A linear relationship is generally assumed to exist between the crack width at the side
or soffit of a member and the distance from the bar. In general, the spacing between
flexural cracks is in the range 0.5 to 1.5 times the depth of the member.

Many variables influence the width and spacing of cracks, including the magnitude
and duration of loading, the quantity, orientation and distribution of the reinforce-
ment, the cover to the reinforcement, the slip between the reinforcement and the
concrete in the vicinity of the crack (that depends on the bond characteristics of the
reinforcement), the deformational properties of the concrete (including its creep and
shrinkage characteristics) and the size of the member. Considerable variations exist in
the crack width from crack to crack and the spacing between adjacent cracks because
of random variations in the properties of concrete.

The control of cracking in concrete structures is usually achieved by limiting
the stress in the bonded reinforcement crossing a crack to some appropriately low
value and ensuring that the bonded reinforcement is suitably distributed within the
tensile zone. The limit on the tensile steel stress imposed in design depends on the
maximum acceptable crack width. Typical values for maximum acceptable crack
widths were given in Table 3.2 in Section 3.4.2. If the maximum acceptable crack
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width is increased, the maximum permissible tensile steel stress also increases. Building
codes usually specify maximum bar spacings for the bonded reinforcement and
maximum concrete cover requirements. Some codes specify deterministic procedures
for calculating crack widths, with the intention to control cracking by limiting the
calculated crack width to some appropriately low value. However, current design
procedures to control cracking using conventional steel reinforcement are often overly
simplistic and fail to adequately account for the gradual increase in crack widths with
time due to shrinkage.

In Chapter 1, Section 1.3.3, the restraint provided to shrinkage by the bonded
reinforcement in a reinforced concrete member was discussed, with the concrete
compressing the reinforcement as it shrinks and the reinforcement imposing an equal
and opposite tensile force on the concrete at the level of the steel (as shown in
Fig. 1.14b). This internal tensile restraining force is often significant enough to cause
time-dependent cracking. In addition, the connections of a concrete member to other
parts of the structure or to the foundations also provide restraint to shrinkage. The
tensile restraining force that develops rapidly with time at the restrained ends of the
member usually leads to cracking, often within days of the commencement of drying.
In a restrained flexural member, shrinkage also causes a gradual widening of flexural
cracks and a gradual build-up of tension in the uncracked regions that may lead
to additional cracking. The influence of shrinkage on crack widths is not properly
considered in the major building codes and is therefore not adequately considered in
structural design. As a consequence, excessively wide cracks are a relatively common
problem for many reinforced concrete structures.

3.7.2 Simplified code-oriented approaches for flexural crack control

Many simplified approaches for crack control in reinforced concrete are available
in the literature. Some of the more commonly used methods are presented and
evaluated here.

3.7.2.1 Gergely and Lutz (Ref. 31)

Based on a statistical analysis of experimental data, Gergely and Lutz proposed the
following expression for the maximum crack width w (mm) at the tensile face of a
beam or slab containing deformed bars:

w = 0.011
D − kd
d − kd

σst1(c1A)0.33 × 10−3 (3.35)

where c1 is the concrete cover measured from the tensile face to the centre of the
longitudinal bar closest to that face (mm); A is the concrete area surrounding each
longitudinal bar and may be taken as the total effective area of the concrete in the
tensile zone of the cross-section having the same centroid as the tensile reinforcement
divided by the number of longitudinal bars (mm2); σst1 is the tensile steel stress at the
crack (MPa); D is the overall depth of the cross-section; d is the effective depth defined
as the distance from the compressive edge of the cross-section to the centroid of the
tensile reinforcement; and kd is the depth from the compressive edge to the neutral
axis of the cracked section.
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3.7.2.2 Frosch (Ref. 32)

The following alternative expression for the maximum crack width w (mm) at the
tensile face of a beam or slab containing deformed bars was proposed by Frosch:

w = 2
σst1

Es

D − kd
d − kd

√
c2

1 + (sb/2)2 (3.36)

where sb is the maximum bar spacing (mm); and Es is the elastic modulus of the steel
(MPa).

3.7.2.3 Eurocode 2 – 1992 (Ref. 5)

According to the 1992 version of Eurocode 2, the design crack width may be calculated
from:

w = β srm
σst1

Es

(
1 −β1β2

(
σsr

σst1

)2
)

(3.37)

where β1 = 1.0 for deformed bars and 0.5 for plain bars; β2 = 1.0 for a single, short-
term load and 0.5 for repeated or sustained loading; σsr is the stress in the tensile
reinforcement at the loading causing first cracking calculated ignoring the concrete
in tension; σst1 is the stress in the reinforcement at the loading under consideration
calculated ignoring the concrete in tension; β is the ratio of the design crack width to
the average crack width taken as β = 1.7 for load-induced cracking and, for cracking
due to restrained shrinkage, β = 1.3 when the minimum dimension of the member is
less than 300 mm and increases to β = 1.7 when the minimum dimension is 800 mm
or greater; srm is the average crack spacing given by:

srm = 50 + 0.25 k1k2db/ρeff (3.38)

in which k1 is a coefficient equal to 0.8 for deformed bars and 1.6 for plain round bars;
k2 is a coefficient that takes into account the form of the strain distribution on the
cross-section and equals 0.5 for bending and 1.0 for direct tension; db is the average
bar diameter for the tensile reinforcement; and ρeff is the effective reinforcement ratio,
Ast/Ac.eff ; Ast is the area of tensile reinforcement; and Ac.eff is the effective area of the
tensile concrete surrounding the tensile reinforcement of depth equal to 2.5 times the
distance from the tension face of the section to the centroid of the tensile reinforcement
(i.e. 2.5(D − d)), but not greater than (D − kd)/3 or D/2.

3.7.2.4 Eurocode 2 – 2004 (Ref. 6)

In the 2004 version of Eurocode 2, the crack width in a reinforced concrete member
is calculated from:

w = sr,max(εsm − εcm) (3.39)

where sr,max is the maximum crack spacing; εsm is the mean strain in the reinforcement
at the design loads, including the effects of tension stiffening and any imposed
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deformations; εcm is the mean strain in the concrete between the cracks. The difference
between the mean strain in the reinforcement and the mean strain in the concrete may
be taken as:

εsm − εcm = σst1

Es
− kt

fct,eff

Esρeff
(1 + nρeff ) ≥ 0.6

σst1

Es
(3.40)

where kt is a factor that depends on the duration of load and equals 0.6 for short-
term loading and 0.4 for long-term loading; n is the modular ratio Es/Ec; fct,eff is the
mean value of the axial tensile strength of concrete at the time cracking is expected;
ρeff (= As/Ac,eff ) and Ac,eff are defined under Eq. 3.38. For reinforced concrete sections
with bonded reinforcement fixed at reasonably close centres, the maximum final crack
width may be calculated from:

sr,max = 3.4c + 0.425 k1k2db/ρeff (3.41)

in which c is the clear cover to the longitudinal reinforcement; and k1 and k2 are
defined under Eq. 3.38.

Alternatively, cracking is deemed to be controlled by Eurocode 2 (2004) if the
quantity of tensile reinforcement in a beam or slab is greater than the minimum value
given in Eq. 3.42 and if either the bar diameter and/or the bar spacing is limited to the
maximum values given in Tables 3.7 and 3.8, respectively. The minimum area of steel
for crack control is

As,min = kcfct,eff Act/fs (3.42)

where kc depends on the stress distribution prior to cracking and equals 1.0 for pure
tension and 0.4 for pure bending; Act is the cross-sectional area of concrete in the
tensile zone, i.e. the area in tension just before the formation of the first crack; and fs is
the maximum stress permitted in the reinforcement immediately after crack formation
and is the lesser of the yield stress fy and the value given in Table 3.7.

If the area of steel in the tension zone exceeds the minimum value given by Eq. 3.42,
cracking is deemed to be controlled if either Tables 3.7 or 3.8 are satisfied. The steel
stress used in these tables is the steel stress on the cracked section due to the quasi-
permanent loads.

Table 3.7 Maximum bar diameters db for crack control (Ref. 6)

Steel stress
(MPa)

Maximum bar diameter (mm)

Crack width,
w = 0.4 mm

Crack width,
w = 0.3 mm

Crack width,
w = 0.2 mm

160 40 32 25
200 32 25 16
240 20 16 12
280 16 12 8
320 12 10 6
360 10 8 5
400 8 6 4
450 6 5 –
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Table 3.8 Maximum bar spacing for crack control (Ref. 6)

Steel stress
(MPa)

Maximum bar spacing (mm)

Crack width,
w = 0.4 mm

Crack width,
w = 0.3 mm

Crack width,
w = 0.2 mm

160 300 300 200
200 300 250 150
240 250 200 100
280 200 150 50
320 150 100 –
360 100 50 –

3.7.2.5 ACI 318-08 (Ref. 4)

For the control of flexural cracking in beams and one-way slabs in normal exposure
conditions, ACI 318-08 requires the following.

(i) The area of tensile steel provided at every cross-section should be greater than
Ast.min where:

Ast.min = 0.25
√

f ′
c

fy
bwd ≥ 1.4bwd/fy (3.43)

(ii) The flexural tensile reinforcement is well distributed within the tensile zone of the
cross-section and the spacing of the reinforcing bars closest to the tensile face is
less than that given by:

s = 380
(

280
σst1

)
− 2.5c ≤ 300

(
280
σst1

)
(3.44)

where c is the smallest distance from the surface of the reinforcement to the tensile
face (mm); σst1 is the calculated stress at the crack in the reinforcement closest to
the tensile face at the maximum service load (MPa), but it is permissible to take
σst1 = 0.67fy.

For two-way slabs, ACI 318-08 requires that the spacing of the reinforcement in
each direction in a solid slab not exceed two times the slab thickness.

Example 3.5

The maximum crack width determined using Eqs 3.35, 3.36, 3.37 and 3.39 are
here compared with the measured maximum final crack widths for 12 prismatic,
one-way, singly reinforced concrete specimens (six beams and six slabs) that were
tested by Gilbert and Nejadi (Ref. 35) under sustained service loads for periods
in excess of 400 days. The specimens were simply-supported over a span of 3.5 m
with cross-sections shown in Fig. 3.7. All specimens were cast from the same
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batch of concrete and moist cured prior to first loading at age 14 days. Details
of each test specimen are given in Table 3.9.
The time-dependent development of cracking, including the crack spacing and
crack width, was measured in each specimen throughout the test. The measured
elastic modulus and compressive strength of the concrete at the age of first
loading were Ec = 22,820 MPa and fc = 18.3 MPa, whilst the measured creep
coefficient and shrinkage strain associated with the 400-day period of sustained
loading were ϕ(t,τ ) = 1.71 and εsh = −0.000825.
Two identical specimens ‘a’ and ‘b’ were constructed for each combination of
parameters as indicated in Table 3.9, with the ‘a’ specimens loaded more heavily
than the ‘b’ specimens. The ‘a’ specimens were subjected to a constant sustained
load sufficient to cause a maximum moment at mid-span of between 40 and 50
per cent of the calculated ultimate moment and the ‘b’ specimens were subjected
to a constant sustained mid-span moment of between 25 and 40 per cent of the
calculated ultimate moment.

250 mm

400 mm

300 mm

130 mm

Ast Ast

cb cb

cs cs

sb
sb

(a) Beams (b) Slabs

Figure 3.7 Cross-sections of test specimens (Ref. 35).

Table 3.9 Details of the test specimens (Ref. 35)

Beam No. of
bars

db
(mm)

Ast
(mm2)

cb
(mm)

cs
(mm)

sb
(mm)

Slab No. of
bars

db
(mm)

Ast
(mm2)

cb
(mm)

cs
(mm)

sb
(mm)

B1-a 2 16 400 40 40 154 S1-a 2 12 226 25 40 308
B1-b 2 16 400 40 40 154 S1-b 2 12 226 25 40 308
B2-a 2 16 400 25 25 184 S2-a 3 12 339 25 40 154
B2-b 2 16 400 25 25 184 S2-b 3 12 339 25 40 154
B3-a 3 16 600 25 25 92 S3-a 4 12 452 25 40 103
B3-b 3 16 600 25 25 92 S3-b 4 12 452 25 40 103

The loads on all specimens were sufficient to cause primary cracks to develop
in the region of maximum moment at first loading. In Table 3.10, the sustained
in-service moment at mid-span, Msus, is presented, together with the stress in
the tensile steel at mid-span, σst1, due to Msus (calculated on the basis of a
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fully cracked section); the calculated ultimate flexural strength, Mu (assuming a
characteristic yield stress of the reinforcing steel of 500 MPa); the ratio Msus/Mu;
and the cracking moment, Mcr (calculated assuming a tensile strength of concrete
of 0.6

√
fc(t), where fc(t) is the measured compressive strength at the time of

loading in MPa).

Table 3.10 Moments and steel stresses in the test specimens (Ref. 35)

Beam Mcr

(kNm)
Msus

(kNm)
σst1
(MPa)

Mu

(kNm)
Msus/Mu

(%)
Slab Mcr

(kNm)
Msus

(kNm)
σst1
(MPa)

Mu

(kNm)
Msus/Mu

(%)

B1-a 14.0 24.9 227 56.2 44.3 S1-a 4.65 6.81 252 13.9 49.0
B1-b 14.0 17.0 155 56.2 30.2 S1-b 4.65 5.28 195 13.9 38.0
B2-a 13.1 24.8 226 56.2 44.1 S2-a 4.75 9.87 247 20.3 48.6
B2-b 13.1 16.8 153 56.2 29.8 S2-b 4.75 6.81 171 20.3 33.6
B3-a 13.7 34.6 214 81.5 42.4 S3-a 4.86 11.4 216 26.4 43.0
B3-b 13.7 20.8 129 81.5 25.5 S3-b 4.86 8.34 159 26.4 31.6

At first loading, a regular pattern of primary cracks developed in each test
specimen. With time, the cracks gradually increased in width and additional
cracks developed between some of the primary cracks. Thus, the average crack
spacing reduced with time. The ratio of final to initial crack spacing ranged from
0.57 to 0.85, with an average value of 0.70. Crack widths increased rapidly in
the first few weeks after loading, but the rate of increase slowed significantly after
about 2 months. For all specimens, there was little change in the maximum crack
width after about 200 days under load. Typical calculations for the maximum
crack width are provided here for Beam B2-a.

Beam B2-a:

Typical maximum crack width calculations are provided here for Beam B2-a,
with b = 250 mm, D = 333 mm, d = 300 mm, Ast = 400 mm2, Ec = 22820 MPa,
n = Es/Ec = 8.76. A cracked section analysis gives kd = 78.8 mm and Icr =
212 × 106 mm4. The applied moment at mid-span is Msus = 24.8 kN and the
stress in the tensile steel on the cracked section is:

σst1 = nMsus(d − kd)
Icr

= 8.76 × 24.8 × 106 × (300 − 78.8)
212 × 106 = 226 MPa

Gergely and Lutz:

For B2-a, c1 = 33 mm, A = (250 × 66)/2 = 8250 mm2 and from
Eq. 3.35:

w = 0.011 × 333 − 78.8
300 − 78.8

× 226 × (33 × 8250)0.33 = 0.178 mm
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Frosch:

For B2-a, the bar spacing is sb = 184 mm and from Eq. 3.36:

w = 2 × 226
200,000

× 333 − 78.8
300 − 78.8

×
√

332 + (184/2)2 = 0.254 mm

Eurocode 2 (1992):

For B2-a, the additional parameters required for the Eurocode 2 (1992) approach
are: β = 1.7; β1 = 1.0; β2 = 0.5 for sustained loading; fctm = 2.08 MPa;
σsr = (Mcr/Ms) σst1 = 96.8 MPa; k1 = 0.8; k2 = 0.5; Ac.eff = 2.5 × 33 × 250 =
20,625 mm2; ρeff = 400/20,625 = 0.0194; and srm = 50 + 0.25 × 0.8 × 0.5 ×
16/0.0194 = 132 mm. From Eq. 3.37:

w = 1.7 × 132 × 226
200,000

(
1 − 1.0 × 0.5 ×

(
96.8
226

)2
)

= 0.232 mm

Eurocode 2 (2004):

For B2-a, the additional parameters required for the Eurocode 2 (2004) approach
are: c = 25 mm; fct,eff = 2.08 MPa; and from Eq. 3.41, sr,max = 3.4×25+0.425×
0.8 × 0.5 × 16/0.0194 = 225 mm. Now σst1/Es = 0.00113 and from Eq. 3.40:
εsm − εcm = 0.00113 − 0.4 × 2.08 × (1 + 8.76 × 0.0194)/(200,000 × 0.0194) =
0.000881. From Eq. 3.39:

w = 225 × 0.000881 = 0.198 mm

Calculated versus measured maximum crack width:

For this specimen, all four calculation methods significantly underestimate the
measured maximum final crack width of 0.36 mm. The measured and calculated
maximum final crack widths for all 12 beam and slab specimens are compared
in Table 3.11. The mean of the ratios of predicted to measured crack widths
and the coefficient of variation for each calculation method are also provided
for both the beam and the slab specimens.
For the beam specimens, all four calculation methods significantly underestimate
the measured maximum crack width. The Eurocode 2 (1992) approach has
the lowest coefficient of variation. None of the calculation methods adequately
accounts for the very significant time-dependent increase in crack width due to
drying shrinkage. In fact, the crack width predicted by each of the methods is
independent of the level of drying shrinkage or the creep coefficient.
For the slab specimens, the Gergely and Lutz method (Eq. 3.35) provides
a reasonable estimate of maximum crack width for this set of test data.
Both Eurocode 2 approaches again have the lowest coefficients of variation,
but underestimate the measured test data. The expression proposed by
Frosch (Eq. 3.36) tends to overestimate the measured maximum crack width,
particularly when the bar spacing is wide (such as in specimens S1-a and S1-b).
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Table 3.11 Comparison of measured and predicted maximum final crack widths (mm)

Specimen Measured
(mm)

Gergely and Lutz
(Eq. 3.35)

Frosch
(Eq. 3.36)

Eurocode 2 1992
(Eq. 3.37)

Eurocode 2 2004
(Eq. 3.39)

Predicted
(mm)

Predicted/
Measured

Predicted
(mm)

Predicted/
Measured

Predicted
(mm)

Predicted/
Measured

Predicted
(mm)

Predicted/
Measured

B1-a 0.38 0.242 0.638 0.251 0.661 0.242 0.637 0.250 0.658
B1-b 0.18 0.165 0.919 0.171 0.952 0.143 0.796 0.146 0.811
B2-a 0.36 0.178 0.494 0.254 0.707 0.232 0.644 0.198 0.551
B2-b 0.18 0.121 0.670 0.172 0.957 0.138 0.769 0.116 0.645
B3-a 0.28 0.149 0.531 0.141 0.503 0.179 0.638 0.157 0.562
B3-b 0.13 0.089 0.688 0.085 0.651 0.097 0.747 0.082 0.634

Mean 0.657 0.739 0.705 0.644

Coefficient of variation (%) 22.8 24.5 10.4 14.5

S1-a 0.25 0.254 1.015 0.520 2.081 0.257 1.029 0.218 0.872
S1-b 0.20 0.197 0.984 0.403 2.016 0.176 0.878 0.150 0.749
S2-a 0.23 0.221 0.962 0.274 1.192 0.211 0.917 0.184 0.800
S2-b 0.18 0.153 0.848 0.189 1.051 0.132 0.735 0.113 0.629
S3-a 0.20 0.179 0.895 0.176 0.881 0.160 0.801 0.142 0.708
S3-b 0.15 0.131 0.873 0.129 0.859 0.111 0.738 0.096 0.639

Mean 0.930 1.346 0.849 0.733

Coefficient of variation (%) 7.2 41.4 13.5 12.8

3.7.3 Tension chord model for flexural cracking in reinforced concrete

A model for predicting the maximum final crack width (w∗) in reinforced concrete
flexural members based on the tension chord model of Marti et al. (Ref. 32) was
recently proposed (Ref. 34). A modified version of that model is presented here and
has been shown to provide good agreement with the measured final spacing and width
of cracks in reinforced concrete beams and slabs under sustained loads. The notation
associated with the model is shown in Fig. 3.8.

Consider a segment of a singly reinforced beam of rectangular section subjected
to an in-service bending moment, Ms, greater than the cracking moment, Mcr. The
spacing between the primary cracks is s, as shown in Fig. 3.8a. A typical cross-section
between the cracks is shown in Fig. 3.8b and a cross-section at a primary crack is
shown in Fig. 3.8c. The cracked beam is idealised as a compression chord of depth
kd and width b and a cracked tension chord consisting of the tensile reinforcement of
area Ast surrounded by an area of tensile concrete (Act) as shown in Fig. 3.8d. The
centroids of Ast and Act are assumed to coincide at a depth d below the top fibre of
the section.

For the sections containing a primary crack (Fig. 3.8c), Act = 0 and the depth of
the compressive zone, kd, and the second moment of area about the centroidal axis
(Icr) may be determined from a cracked section analysis using modular ratio theory
(Eqs 3.14 and 3.17).

Away from the crack, the area of the concrete in the tension chord of Fig. 3.8d (Act)
is assumed to carry a uniform tensile stress (σct) that develops due to the bond stress
(τb) that exists between the tensile steel and the surrounding concrete.
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Figure 3.8 Cracked reinforced concrete beam and idealised tension chord model (Ref. 34).

For the tension chord, the area of concrete between the cracks, Act, may be taken
as:

Act = 0.5(D − kd)b∗ (3.45)

where b∗ is the width of the section at the level of the centroid of the tensile steel (i.e.
at the depth d) but not greater than the number of bars in the tension zone multiplied
by 12db. At each crack, the concrete carries no tension and the tensile steel stress is
σst1 = T/Ast, where:

T = nMs(d − kd)
Icr

Ast (3.46)

As the distance z from the crack in the direction of the tension chord increases, the
stress in the steel reduces due to the bond shear stress τb between the steel and the
surrounding tensile concrete. For reinforced concrete under service loads, where σst1
is less than the yield stress fy, Marti et al. (Ref. 33) assumed a rigid-plastic bond shear
stress-slip relationship, with τb = 2.0fct at all values of slip, where fct is the direct tensile
strength of the concrete. To account for the reduction in bond stress with time due to
tensile creep and shrinkage, Gilbert (Ref. 34) took the bond stress to be τb = 2.0fct for
short-term calculations and τb = 1.0fct when the final long-term crack width was to
be determined. Experimental observations (Refs 35 and 36) indicate that τb reduces
as the stress in the reinforcement increases and, consequently, the tensile stresses in
the concrete between the cracks reduces (i.e. tension stiffening reduces with increasing
steel stress). In reality, the magnitude of τb is affected by many factors, including steel
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stress, concrete cover, bar spacing, transverse reinforcement (stirrups), lateral pressure,
compaction of the concrete, size of bar deformations, tensile creep and shrinkage.
It is recommended here that in situations where the concrete cover and the clear
spacing between the bars are greater than the bar diameter, the bond stress τb may be
taken as:

τb = λ1λ2λ3 fct (3.47)

where λ1 accounts for the load duration with λ1 = 1.0 for short-term calculations and
λ1 = 0.7 for long-term calculations; λ2 is a factor that accounts for the reduction in
bond stress as the steel stress σst1 (in MPa) increases and is given by (Ref. 36):

λ2 = 1.66̇ − 0.003̇σst1 ≥ 0.0 (3.48)

and λ3 is a factor that accounts for the very significant increase in bond stress that
has been observed in laboratory tests for small diameter bars (Ref. 35) and may be
taken as:

λ3 = 7.0 − 0.3db ≥ 2.0 (db in mm) (3.49)

An elevation of the tension chord is shown in Fig. 3.9a and the stress variations
in the concrete and steel in the tension chord are illustrated in Figs 3.9b and 3.9c,
respectively. Following the approach of Marti et al. (Ref. 33), the concrete and steel
tensile stresses in Figs 3.9b and 3.9c, where 0< z ≤ s/2, may be expressed as:

σstz = T
Ast

− 4τbz
db

(3.50a)

T

s/2 s/2 CrackCrack

(a) Elevation of tension chord between cracks

z

(b) Tensile concrete stress

(c) Tensile steel stress

tb

sc2

sst1

sst2

sst1

Figure 3.9 Tension chord – actions and stresses (Ref. 33).
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and

σcz = 4τbρtcz
db

(3.50b)

where ρtc is the reinforcement ratio of the tension chord (= Ast/Act) and db is the
reinforcing bar diameter. Mid-way between the cracks, at z = s/2, the stresses are:

σst2 = T
As

− 2τbs
db

(3.51a)

and

σc2 = 2τbρtcs
db

(3.51b)

The maximum crack spacing immediately after loading, s = smax, occurs when
σc2 = fct, and from Eq. 3.51b:

smax = fctdb

2τbρtc
(3.52)

with λ1 = 1.0 in Eq. 3.47. If the spacing between two adjacent cracks just exceeds
smax, the concrete stress mid-way between the cracks will exceed fct and another crack
will form between the two existing cracks. It follows that the minimum crack spacing
is half the maximum value, that is, smin = smax/2.

The instantaneous crack width (wi)tc in the fictitious tension chord is the difference
between the elongation of the tensile steel over the length s and the elongation of the
concrete between the cracks and is given by:

(wi)tc = s
Es

[
T

Ast
− τbs

db
(1 + nρtc)

]
(3.53)

Depending on the dimensions of the cross-section and the concrete cover, the
instantaneous crack width at the bottom concrete surface of the beam or slab, (wi)soffit,
may be different from that given by Eq. 3.53 for the tension chord and may be obtained
from:

(wi)soffit = kcover(wi)av = kcovers
Es

[
T

Ast
− τbs

db
(1 + nρtc)

]
(3.54)

where kcover is a term to account for the dependence of crack width on the clear
concrete cover c and may be taken as:

kcover =
(

D − kd
d − kd

)(
5c

(D − kd) − 2db

)0.3

(3.55)
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Under sustained load, additional cracks occur between widely spaced cracks (usually
when 0.67smax < s ≤ smax). The additional cracks are due to the combined effect of
tensile creep rupture and shrinkage. As a consequence, the number of cracks increases
and the maximum crack spacing reduces with time. The final maximum crack spacing
s∗ is only about two-thirds of that given by Eq. 3.52, but the final minimum crack
spacing remains about half of the value given by Eq. 3.52.

As previously mentioned, experimental observations indicate that τb decreases with
time, probably as a result of shrinkage-induced slip and tensile creep. Hence, the stress
in the tensile concrete between the cracks gradually reduces. Furthermore, although
creep and shrinkage will cause a small increase in the resultant tensile force T in the
real beam and a slight reduction in the internal lever arm, this effect is relatively small
and is ignored in the tension chord model presented here. The final crack width is the
elongation of the steel over the distance between the cracks minus the extension of the
concrete caused by σcz plus the shortening of the concrete between the cracks due to
shrinkage. For a final maximum crack spacing of s∗, the final maximum crack width
at the member soffit is:

(w∗)soffit = kcovers∗

Es

[
T

Ast
− τbs∗

db
(1 + neρtc) − εshEs

]
(3.56)

where εsh is the shrinkage strain in the tensile concrete (and is a negative value);
ne = Es/Ee = the effective modular ratio; Ee is the effective modulus given by Ee =
Ec/(1+ϕ(t,τ )); Ec and Es are the elastic moduli of the concrete and steel respectively;
and ϕ(t,τ ) is the creep coefficient of the concrete.

A good estimate of the final maximum crack width is given by Eq. 3.56, where s∗ is
the maximum crack spacing after all time-dependent cracking has taken place, that is,
s∗ = 0.67smax, and smax is given by Eq. 3.52. By rearranging Eq. 3.56, the steel stress
on a cracked section corresponding to a particular maximum final crack width (w∗)
is given by:

fst = w∗Es

s∗kcover
+ τbs∗

db
(1 + neρtc) + εshEs (3.57)

By substituting τb (from Eq. 3.47) and s∗ = 0.67smax into Eq. 3.57 and by selecting a
maximum desired crack width in a particular structure, w∗, the maximum permissible
tensile steel stress can be determined.

Example 3.6

The maximum final crack widths determined using Eq. 3.56 are compared
with the measured maximum final crack widths for the 12 prismatic, one-
way singly reinforced concrete specimens (six beams and six slabs) tested by
Gilbert and Nejadi (Ref. 35). The specimens were described in Example 3.5 and
their cross-sections are shown in Fig. 3.7 and details provided in Tables 3.9
and 3.10. Typical maximum crack width calculations are provided here for
Beam B2-a.
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Beam B2-a

Relevant dimensions and properties are: b = 250 mm, D = 333 mm, d = 300 mm,
Ast = 400 mm2, Ec = 22,820 MPa, n = Es/Ec = 8.76, ϕ(t,τ ) = 1.71, εsh =
−0.000825, Ee = 8420 MPa and ne = 23.8. A cracked section analysis gives
kd = 78.8 mm and Icr = 212 × 106 mm4.
From Eq. 3.45, the area of concrete in the tension chord is Act = 0.5 × (333 −
78.8) × 250 = 31,780 mm2 and the reinforcement ratio of the tension chord
ρtc = Ast/Act = 0.0126. When Ms = 24.8 kNm, the tensile force in the steel on
the cracked section is Eq. 3.46:

T = 8.76 × 24.8 × 106(300 − 78.8)
212 × 106 × 400 = 90.6 kN

and σst1 = T
Ast

= 226 MPa

For short-term calculations, λ1 = 1.0 and, from Eqs 3.48 and 3.49, λ2 =
1.66̇ − 0.003̇ × 226 = 0.91 and λ3 = 7.0 − 0.3 × 16 = 2.2. With fct =
0.6

√
f c(t) = 2.57 MPa, the instantaneous bond stress is obtained from Eq. 3.47

as τb = 1.0 × 0.91 × 2.2 × 2.57 = 5.15 MPa and the maximum crack spacing
immediately after loading is given by Eq. 3.52:

smax = 2.57 × 16
2 × 5.15 × 0.0126

= 317 mm

For the calculation of the maximum final crack width, the maximum crack
spacing s∗ is taken as 2/3 of the instantaneous value and therefore s∗ = 2/3 ×
317 = 211 mm. From Eq. 3.47, for long-term calculations, τb = 0.7 × 0.91 ×
2.2 × 2.57 = 3.60 MPa and, from Eq. 3.55, kcover = 0.967.
The maximum final (long-term) crack width at the soffit of the beam specimen
B2-a is obtained from Eq. 3.56:

(w∗)soffit = 0.967 × 211
200,000

[
90,600

400
− 3.60 × 211

16
(1 + 23.8 × 0.0126)

− (−0.000825) × 200,000
]

= 0.337 mm

The measured maximum final crack width on this specimen after 400 days under
load was 0.36 mm.
The measured and calculated maximum final crack widths for all 12 test
specimens are compared in Table 3.12. The mean of the ratios of predicted to
measured crack widths for the six beam specimens is 1.059, with a coefficient of
variation of 22.8 per cent while for the six slab specimens the mean is 0.945, with
a coefficient of variation of 17.7 per cent. The agreement between the calculated
and measured maximum final crack width for this set of test data is good.
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Table 3.12 Comparison of measured and predicted maximum final crack widths (mm)

Specimen B1-a B1-b B2-a B2-b B3-a B3-b S1-a S1-b S2-a S2-b S3-a S3-b

Measured, wmax 0.38 0.18 0.36 0.18 0.28 0.13 0.25 0.20 0.23 0.18 0.20 0.15
Predicted, (w∗)soffit 0.425 0.262 0.337 0.207 0.212 0.122 0.287 0.196 0.258 0.155 0.162 0.111
(w∗)soffit /wmax 1.119 1.457 0.935 1.149 0.758 0.936 1.148 0.981 1.123 0.863 0.812 0.742

Example 3.7

A 150 mm thick simply-supported one-way slab located inside a building is to
be considered. With appropriate regard for durability, the concrete strength is
selected to be f ′

c = 32 MPa and the cover to the tensile reinforcement is 20 mm.
The final shrinkage strain is taken to be εsh = −0.0006. Other relevant material
properties are Ec = 28,600 MPa; n = Es/Ec = 7.0; ϕ(t,τ ) = 2.5; fct = 2.04 MPa
and Es = 200 GPa. The effective modulus is therefore Ee = Ec/(1 + ϕ(t,τ )) =
8170 MPa and the effective modular ratio ne = Es/Ee = 24.5. The tensile face
of the slab is to be exposed and the maximum final crack width is to be limited
to w∗ = 0.3 mm.
After completing the design for strength and deflection control, the required
minimum area of tensile steel is 650 mm2/m. Under the full service loads, the
maximum in-service sustained moment at mid-span is 20.0 kNm/m. The bar
diameter and bar spacing must be determined so that the requirements for crack
control are also satisfied.

Case 1 – Use 10 mm bars at 120 mm centres

Ast = 655 mm2/m at d = 125 mm and, referring to Figs 3.5 and 3.8, an elastic
analysis of the cracked section gives kd=29.6 mm and Icr =50.3×106 mm4. The
maximum in-service tensile steel stress on the fully-cracked section at mid-span
is calculated using Eq. 3.46 as σst1 = T/As = 265 MPa.
The area of concrete in the tension chord is Act = 60,200 mm2 (Eq. 3.45) and
the reinforcement ratio of the tension chord is ρtc = As/Act = 0.0109. From
Eqs 3.48 and 3.49, λ2 = 0.78 and λ3 = 4.0 and from Eq. 3.47, τb = 6.39 MPa for
short-term calculations (λ1 = 1.0) and τb = 4.47 MPa for long-term calculations
(λ1 = 0.7). The maximum final crack spacing s∗ is obtained using Eq. 3.52
as s∗ = 0.67smax = 97.6 mm and Eq. 3.55 gives kcover = 1.26. The maximum
permissible steel stress required for crack control is obtained from Eq. 3.57:

fst = 0.3 × 200,000
97.6 × 1.26

+ 4.47 × 97.6
10

(1 + 24.5 × 0.0109)

+ (−0.0006 × 200,000) = 422 MPa

The actual stress at the crack σst = 265 MPa is much less than fst = 422 MPa
and, therefore, cracking is easily controlled.
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Case 2 – Use 12 mm bars at 170 mm centres

As = 665 mm2/m at d = 124 mm and, for this section, kd = 29.6 mm and
Icr = 50.1 × 106 mm4. The maximum in-service tensile steel stress on the fully-
cracked section at mid-span is σst1 = T/As = 264 MPa.
The area of concrete in the tension chord is Act = 50,980 mm2 and ρtc =
As/Act = 0.0130. Now λ2 = 0.79 and λ3 = 3.4 and τb = 5.47 MPa for short-
term calculations (λ1 = 1.0) and τb = 3.83 MPa for long-term calculations
(λ1 = 0.7). The maximum final crack spacing is s∗ = 114 mm and from Eq. 3.55,
kcover = 1.29. The maximum permissible steel stress required for crack control
is obtained from Eq. 3.57 as fst = 335 MPa – which is also significantly greater
than the actual maximum stress at the crack σst = 264 MPa.
Therefore, the final maximum crack width will be less than the maximum
permissible value of 0.3 mm.

Case 3 – Use 16 mm bars at 300 mm centres

As = 670 mm2/m at d = 122 mm and, for this section, kd = 29.4 mm and
Icr = 48.6 × 106 mm4. The maximum in-service tensile steel stress on the fully-
cracked section at mid-span is σst1 = T/As = 266 MPa. The area of concrete
in the tension chord is Act = 38,580 mm2 and ρtc = As/Act = 0.0174. Now
λ2 = 0.78 and λ3 = 2.2 and τb = 3.50 MPa for short-term calculations (λ1 = 1.0)
and τb = 2.45 MPa for long-term calculations (λ1 = 0.7). The maximum final
crack spacing is s∗ = 179 mm and from Eq. 3.55, kcover = 1.35. The maximum
permissible steel stress required for crack control is fst = 167 MPa (from
Eq. 3.57), which is much less than the actual steel stress due to the sustained
moment of σst = 266 MPa.
Therefore, crack control is not adequate and the maximum final crack width
will exceed 0.3 mm.

Simplified approaches – case 3

The deemed-to-comply crack control provisions of Eurocode 2 (2004) are in
reasonable agreement with the above calculations, while the ACI 318-08 (Ref. 4)
provisions are not. Considering first the Eurocode 2 provisions, for case 3 above,
the area of tensile steel provided exceeds the minimum steel area given by Eq. 3.42
and Table 3.7 suggests that, for a steel stress of σst1 = 266 MPa, if the maximum
crack width is to be limited to 0.3 mm, the maximum bar diameter for crack
control is 12 mm.
Considering the ACI 318-08 requirement for Case 3, the area of tensile
reinforcement exceeds the minimum value Ast.min given by Eq. 3.43, and with a
steel stress of σst1 = 266 MPa, the maximum bar spacing permitted by Eq. 3.44
is 315 mm. With the bar spacing of 300 mm, Case 3 satisfies the requirements
for crack control in ACI 318-08.
The maximum crack widths predicted by the Gergely and Lutz expression
(Eq. 3.35) and the two Eurocode 2 equations (Eqs 3.37 and 3.39) for case 3
are 0.284 mm, 0.304 mm and 0.244 mm, respectively. These indicate that the
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maximum final crack width will be less than (or in the case of Eurocode 2 (1992)
only just greater than) the design crack width w∗ = 0.3 mm. In a structural design
situation, all three approaches suggest that case 3 is acceptable.
By contrast, the maximum crack width given by the equation proposed by Frosch
(Eq. 3.36) is 0.528 mm, indicating that case 3 will lead to excessively wide cracks.

3.7.4 Model for direct tension cracking in restrained reinforced concrete

Consider the fully restrained member shown in Fig. 3.10a (Refs 37 and 38). As
the concrete shrinks, the restraining force N(t) gradually increases until the first
crack occurs when N(t) = Acfct(t) (usually within a week of the commencement of
shrinkage).

At first cracking, the restraining force reduces to Ncr, and the concrete stress away
from the crack is less than the tensile strength of the concrete fct. The concrete on
either side of the crack shortens elastically and the crack opens to a width w(t) that
depends on the area of reinforcement (see Fig. 3.10b). At the crack, the steel carries
the entire force Ncr and the stress in the concrete is clearly zero. In the region adjacent
to the crack, the concrete and steel stresses vary considerably and the bond stress at
the steel-concrete interface is high. At some distance so on each side of the crack, the
concrete and steel stresses are no longer influenced directly by the presence of the
crack, as shown in Figs 3.10c and 3.10d.

Referring to Fig. 3.10, numerical values of Ncr, σc1, σs1, and σs2 can be obtained
from (Ref. 37):

Ncr = nρfctAc

C1 + nρ(1 + C1)
(3.58a)

σc1 = Ncr(1 + C1)
Ac

(3.58b)

σs1 = −C1σs2 (3.58c)

σs2 = Ncr

As
(3.58d)

where n is the modular ratio (Es/Ec); ρ is the reinforcement ratio (As/Ac); fct is the
direct tensile strength of the concrete at first cracking; and

C1 = 2so

3L − 2so
(3.59)

The distance so in which stresses vary on either side of a crack depends on those factors
that affect the bond stress at the steel concrete interface and include the reinforcement
quantity, the bar diameter db and the surface characteristics of the bar. In Ref. 37
so was taken to be:

so = db

10ρ
(3.60)
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Figure 3.10 First cracking in a restrained direct tension member (Ref. 37).

This expression was used earlier by Favre et al. (Ref. 39) and others for a member
containing deformed bars or welded wire mesh. Recent experimental results (Ref. 40)
suggest that shrinkage causes a deterioration in bond at the steel-concrete interface
and a gradual increase in so with time. For calculations at first cracking (Eqs 3.58 and
3.59), so may be taken from Eq. 3.60, and for final or long-term calculations, the value
of so from Eq. 3.60 should be multiplied by 1.33 (Ref. 38) (i.e. (s∗

o = 1.33 so).
The final number of cracks and the final average crack width depend on the length

of the member, the quantity and distribution of reinforcement, the quality of bond
between the concrete and steel, the amount of shrinkage and the concrete properties. In
Fig. 3.11a, a portion of a restrained direct tension member is shown after all shrinkage
has taken place and the final crack pattern is established. The average concrete and
steel stresses caused by shrinkage are illustrated in Figs 3.11bbreak and 3.11c.

In many practical situations, the supports of a reinforced concrete member that
provide the restraint to shrinkage are not immovable, but instead are adjacent parts
of the structure that are themselves prone to shrinkage and other movements. If the
supports of the restrained member in Fig. 3.10a suffer a relative movement �u with
time (in the direction of the length L), such that the final length of the member is
(L + �u), the final restraining force N(∞) changes and this affects both the crack
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Figure 3.11 Final concrete and steel stresses after direct tension cracking (Ref. 37).

spacing and the crack width. If �u increases, N(∞) increases and so too does the
number and width of the cracks.

By enforcing the requirements of compatibility and equilibrium, expressions for the
final average crack spacing (s) and final crack width (w) in a restrained member can
be derived (Ref. 37). For a member containing m cracks and providing the reinforcing
steel has not yielded, equating the overall elongation of the steel reinforcement to �u
gives:

σ ∗
s1

Es
L + m

σ ∗
s2 −σ ∗

s1

Es

(
2
3

s∗
o + w

)
=�u (3.61)

and, as w is much less than so, rearranging gives:

σ ∗
s1 = −2 s∗

o m
3L − 2s∗

om
σ ∗

s2 + 3�u Es

3L − 2s∗
om

(3.62)

At each crack:

σ ∗
s2 = N(∞)/As (3.63)

In Region 1 in Fig. 3.11, where the distance away from each crack exceeds s∗
o (with

s∗
o taken as 1.33 times the value given by Eq. 3.60), the concrete stress history is

shown diagrammatically in Fig. 3.12. The concrete tensile stress increases gradually
with time as shrinkage progresses and approaches the direct tensile strength of the
concrete fct. When cracking occurs elsewhere in the member, the tensile stress in the
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fct

Figure 3.12 Concrete stress history in uncracked Region 1 (Ref. 37).

uncracked regions drops suddenly as shown. Although the concrete stress history is
continually changing, the average concrete stress at any time after the start of drying,
σav, is between σc1 and fct, as shown in Fig. 3.12, and may be taken as the average of
σc1 and fct (Ref. 37). The final creep strain in Region 1 may be approximated by:

ε∗c = σav

Ec
ϕ∗(τd) (3.64)

where ϕ∗(τd) is the final creep coefficient (at time infinity) and τd is the age of the
concrete when drying first commenced.

The final concrete strain in Region 1 is the sum of the elastic, creep, and shrinkage
components and may be approximated as:

ε∗1 = εe + ε∗c + ε∗sh = σav

Ec
+ σav

Ec
ϕ∗(τd) + ε∗sh (3.65)

and the magnitude of the final creep coefficient ϕ∗(τd) is usually between 2 and 4,
depending on the age at the commencement of drying and the quality of the concrete.
Eq. 3.65 may be expressed as:

ε∗1 = σav

Ee
+ ε∗sh (3.66)

where Ee is the final effective modulus for concrete (Ee = Ec

1 +φ∗(τd)
).

In Region 1, at any distance from a crack greater than so, equilibrium requires
that the sum of the force in the concrete and the force in the steel is equal to N(∞).
That is:

σ ∗
c1Ac +σ ∗

s1As = N(∞) or σ ∗
c1 = N(∞) −σ ∗

s1As

Ac
(3.67)

The compatibility requirement is that the final concrete and steel strains are identical
(ε∗s1 = ε∗1). Using Eq. 3.66, this becomes:

σ ∗
s1

Es
= σav

Ee
+ ε∗sh (3.68)
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Substituting Eqs 3.62 and 3.63 into Eq. 3.68 and rearranging gives:

N(∞) = 3AsEs�u
2s∗

om
− (3L − 2s∗

om)neAs

2s∗
om

(σav + ε∗shEe) (3.69)

With the restraining force N(∞) and the steel stress in Region 1 obtained from
Eqs 3.69 and 3.62, respectively, the final concrete stress in Region 1 is

σ ∗
c1 = N(∞) −σ ∗

s1As

Ac
(3.70)

The number of cracks m is the lowest integer value of m for which σ ∗
c1 ≤ fct, where

the direct tensile strength fct should be taken as the mean 28-day value. The final
average crack spacing is s = L/m.

The overall shortening of the concrete is an estimate of the sum of the crack widths.
The final concrete strain at any point in Region 1 of Fig. 3.11 is given by Eq. 3.66,
and in Region 2, the final concrete strain is:

ε∗2 = fnσ ∗
c1

Ee
+ ε∗sh (3.71)

where fn varies between zero at a crack and unity at so from a crack. If a parabolic
variation of stress is assumed in Region 2, the following expression for the average
crack width w is obtained by integrating the concrete strain over the length of the
member:

w = −
[
σ ∗

c1

Ee

(
s − 2

3
s∗
o

)
+ ε∗shs

]
(3.72)

The preceding analysis is valid provided the assumption of linear-elastic behaviour
in the steel is valid, that is, provided the steel has not yielded.

Example 3.8

The 140 mm thick slab of length 4 m shown in Fig. 3.13 is to be considered. The
slab is rigidly held in position at each end support and, except for shrinkage, is
unloaded. The slab is symmetrically reinforced with 12 mm diameter bars at 250
mm centres near both the top and bottom surfaces. Hence, As = 900 mm2/m and
ρ = As/Ac = 0.00643. The average final spacing between the restrained shrinkage
cracks and the average final crack width are to be determined.

D = 140 mm

L = 4 m

Figure 3.13 Slab of Example 3.8.

The material properties are:

f ′
c = 25 MPa; fct = 2.5 MPa;

Ec = 25000 MPa; n = Es/Ec = 8.0;
ϕ(t,τ ) = 3.0;

E∗
e = Ec/(1+ϕ∗(τ )) = 6250 MPa;

n∗
e = Es/E∗

e = 32; and
ε∗sh = −0.0007.
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From Eqs 3.60 and 3.59:

so = 12
10 × 0.00643

= 187 mm and

C1 = 2 × 187
3 × 4000 − 2 × 187

= 0.0321.

From Eqs 3.58a and b:

Ncr = 8 × 0.00643 × 2.5 × 140,000
0.0321 + 8 × 0.00643 × (1 + 0.0321)

= 211 kN;

σc1 = 211,000 × (1 + 0.0321)
140,000

= 1.55 MPa;

and therefore σav = σc1 + fct

2
= 2.02 MPa.

For final shrinkage calculations: s∗
o = 1.33 × 187 = 248 mm.

The tabulation below shows the final restraining force and concrete and steel
stresses for different numbers of cracks:

Number of
cracks, m

N(∞) from
Eq. 3.69

(kN)

σ ∗
s1 from

Eq. 3.62
(MPa)

σ ∗
s2 from

Eq. 3.63
(MPa)

σ ∗
c1 from

Eq. 3.70
(MPa)

3 477 −75.1 530 3.89
4 341 −75.1 379 2.92
5 259 −75.1 288 2.33
6 205 −75.1 227 1.94

After the fifth crack forms, the final concrete stress is less than the tensile strength
of concrete and the final crack spacing is therefore about s = L/m = 800 mm.
The final crack width is estimated from Eq. 3.72:

w = −
[

2.33
6250

(800 − 2
3

× 248) + (−0.0007 × 800)
]

= 0.32 mm
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4 Uncracked sections
Axial loading

4.1 Preamble

In the previous chapter, simplified methods were presented for the determination of
deflection and crack widths. While often suitable for design purposes, the simplified
methods approximate structural deformation at service loads without necessarily
providing an insight into the time-dependent behaviour of the structure. In situations
where accurate and reliable estimates of the effects of creep and shrinkage are required,
the simplified methods of Chapter 3 may not be adequate. More refined methods
are available that realistically model the time-dependent deformation of concrete
structures and also enable the calculation of the redistribution of stresses between the
concrete and the reinforcement and the redistribution of internal actions in statically
indeterminate members. Refined methods for the time analysis of cross-sections are
introduced in this chapter and illustrated using the simple example of a symmetrically
reinforced cross-section subjected to a constant sustained axial compressive load.

The time analysis of a concrete structure involves the determination of strains,
stresses, curvatures and deflections at critical points and at critical times during the life
of the structure. Often a structural designer is most interested in the final deformation
and the final internal actions at time infinity after the effects of creep and shrinkage
have taken place, i.e. the long-term behaviour.

The creep and shrinkage characteristics of concrete are highly variable and are never
known exactly. In addition, the methods for the time analysis of concrete structures
are plagued by simplifying assumptions and approximations. Accurate numerical
predictions of time-dependent behaviour are therefore not possible. However, it is
possible, and indeed necessary, to establish upper and lower limits to the final stresses
and deformations in order to determine whether or not time effects are critical in any
particular situation and, if required, to adjust the design in order to reduce undesirable
long-term deformations.

If the concrete stress σc(τ0) at a point in a structure, first applied at age τ0, remains
constant with time, each of the concrete strain components may be calculated readily
as follows:

ε (t) = εe(t) + εcr(t) + εsh(t) = σc(τ0)
Ec(τ0)

+ σc(τ0)
Ec(τ0)

ϕ(t,τ0) + εsh (t) (4.1)

Numerical values of ϕ(t,τ0) and εsh(t) may be obtained from the models discussed in
Sections 2.1.4 and 2.1.5, and the calculation of time-dependent structural behaviour
is relatively straightforward.
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If the concrete stress at a point varies with time, the determination of the creep
strain becomes more involved. In reinforced concrete structures, even under constant
sustained loads, stresses are rarely constant and Eq. 4.1 can no longer be used to
predict deformation accurately. The stress history and the effects of ageing must be
included.

In this chapter, several methods for the time analysis of cross-sections are discussed
and applied to a simple practical problem. The mathematical description of each proce-
dure is followed by a discussion of its strengths and weaknesses, and its advantages and
disadvantages. To illustrate each procedure, the analysis of a symmetrically reinforced
concrete column section under a constant axial compressive load is presented and
numerical results obtained using each procedure are compared.

4.2 The effective modulus method

4.2.1 Formulation

The simplest and oldest technique for including creep in structural analysis is Faber’s
effective modulus method (EMM) (Ref. 1). In Section 1.2.4, the instantaneous and
creep components of strain were combined and a reduced or effective modulus for
concrete, Ee(t,τ0), was defined in Eqs 1.11 and 1.12. In Section 1.2.5, the integral-
type creep law was presented in Eq. 1.17 to describe the time-dependent deformation
of a continuously varying stress history. In the EMM, Eq. 1.17 is approximated by
assuming that the stress-dependent deformations are produced only by a sustained
stress equal to the final value of the stress history, that is:

ε(t) =
t∫

τ0

1 +ϕ (t,τ )
Ec(τ )

dσc(τ ) + εsh(t) ≈ 1 +ϕ (t,τ0)
Ec(τ0)

σc(t) + εsh(t)

= σc(t)
Ee(t,τ0)

+ εsh(t) (4.2)

where Ee(t,τ0) is the effective modulus for concrete defined in Eq. 1.12 (which for
convenience is repeated here) as:

Ee(t,τ0) = Ec(τ0)
1 + ϕ(t,τ0)

(4.3)

Creep is treated as a delayed elastic strain and is taken into account simply by
reducing the elastic modulus of concrete with time. A time analysis using the effective
modulus method is nothing more than an elastic analysis in which Ee(t,τ0) is used
instead of Ec(τ0). Shrinkage may be included in this elastic time analysis in a similar
way as a sudden temperature change in the concrete would be included in a short-term
elastic analysis.

According to the EMM, the creep strain at time t (in Eq. 4.2) depends only on the
current stress in the concrete σc(t) and is therefore independent of the previous stress
history. This, of course, is not the case. The ageing of the concrete has been ignored.
For an increasing stress history, the EMM overestimates creep, while for a decreasing
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stress history, creep is underestimated. If the stress is entirely removed, the creep
strains disappear. The EMM therefore predicts complete creep recovery, which is not
correct.

Eq. 4.2 is valid only when the concrete stress is constant in time. In such cases,
the EMM gives excellent results. Good results are also obtained if the concrete is old
when first loaded and the effect of ageing is not great. Despite its shortcomings, the
EMM is the simplest of all of the methods for the time analysis of concrete structures
and its simplicity recommends it, particularly under the conditions mentioned
above. In many practical problems, the method is sufficiently accurate for design
purposes.

However, many practical situations involve rapidly changing stress histories in
young concrete. In such cases, the EMM may be unsuitable and potentially misleading,
and a more sophisticated method of analysis is required.

4.2.2 Example application (EMM)

Consider the short, axially-loaded, symmetrically reinforced column shown in Fig. 4.1.
The column is subjected to a constant, sustained axial force P as shown. Creep and
shrinkage cause a gradually decreasing stress history in the concrete similar to that
shown in Fig. 1.15.

The redistribution of internal forces due to the gradual development of creep and
shrinkage strains is to be examined and the time-dependent stresses and strains in both
the concrete and the steel are to be calculated using the EMM.

The problem is solved by enforcing the three basic requirements of any time
analysis: namely, equilibrium of forces, compatibility of strains and satisfaction of
the constitutive relationships of the concrete and the steel.

The external compressive load P is applied at time τ0 and is resisted by the internal
forces in the concrete and steel Nc(t) and Ns(t), where at any time t after loading
Nc(t) = σc(t)Ac and Ns(t) = σs(t)As.

Equilibrium requires that the sum of the internal forces at time t equals the external
load, that is:

P = Nc(t) + Ns(t) = σc(t)Ac +σs(t)As (4.4)

P P
P = constant

Ac

As

Nc(t)

Ns(t)

(a) Elevation

L

(b) Section

Figure 4.1 Axially-loaded short column.
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Compatibility requires that the total concrete strain ε(t) and the steel strain εs(t) are
identical at all times:

ε(t) = εs(t) (4.5)

The concrete constitutive relationship used in the EMM is given by Eq. 4.2 and the
steel is assumed to be linear and elastic, with modulus Es. Therefore, at any time t:

ε(t) = σc(t)
Ee(t,τ0)

+ εsh(t) (4.6a)

and

εs(t) = σs(t)
Es

(4.6b)

Re-arranging Eqs 4.6 in terms of σc(t) and σs(t) gives:

σc(t) = ε(t)Ee(t,τ0) − εsh(t)Ee(t,τ0) (4.7a)

and

σs(t) = εs(t)Es (4.7b)

Inserting these equations into the equilibrium equation (Eq. 4.4) and enforcing
compatibility (Eq. 4.5) yields:

P = Ee(t,τ0)ε(t)Ac − Ee(t,τ0)εsh(t)Ac + ε(t)EsAs (4.8)

which represents the governing equation of the problem. Solving Eq. 4.8 for the
unknown total concrete strain ε(t) gives:

ε(t) = P
AcEe(t,τ0) + AsEs

+ AcEe(t,τ0)εsh(t)
AcEe(t,τ0) + AsEs

= P
AcEe(t,τ0)(1 + neρ)

+ εsh(t)
1 + neρ

(4.9)

where ne = the effective modular ratio = Es/Ee(t,τ0) and ρ = the reinforcement ratio
= As/Ac.

By substituting Eq. 4.9 into Eq. 4.7a, the concrete stress at time t is obtained:

σc(t) = P
Ac(1 + neρ)

− Esρ εsh(t)
1 + neρ

(4.10)

The steel strain εs(t) is identical to the total concrete strain ε(t) (Eq. 4.5) and therefore
the steel stress may be obtained by substituting Eq. 4.9 into Eq. 4.7b:

σs(t) = neP
Ac(1 + neρ)

+ Es εsh(t)
1 + neρ

(4.11a)
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The steel stress may also be obtained from the equilibrium equation (Eq. 4.4):

σs(t) = P −σc(t)Ac

As
(4.11b)

The elastic component of concrete strain at time t is usually taken to be εe(t) =
σc(t)/Ec(τ0) and the creep strain is therefore εcr(t) = ε(t) − εe(t) − εsh(t).

Example 4.1

Consider the short, symmetrically reinforced column shown in Fig. 4.1. The
column is subjected to a constant sustained axial force P = −1000 kN first
applied at age τ0 = 14 days. The cross-sectional areas of the concrete and the
steel reinforcement are Ac = 90,000 mm2 and As = 1800 mm2, respectively, and
the reinforcement ratio is therefore ρ = As/Ac = 0.02. The column is located
in a temperate environment and shrinkage is assumed to commence at the age
of first loading. The mean in-situ compressive strength of concrete at the time
of first loading is taken to be fcmi(τ0) = 28 MPa and the characteristic 28-day
compressive strength is f ′

c = 40 MPa. The elastic modulus of concrete at first
loading is Ec(τ0) = 26.7 GPa and the elastic modulus of steel is Es = 200 GPa.
The creep coefficient is obtained from Eq. 2.3 and shrinkage strain is obtained
from Eq. 2.6, with final (long-term) values: ϕ∗(τ0) = 2.39 and ε∗sh =−510×10−6.
The variations of the creep coefficient and shrinkage with time are given in
the following table and shown in Fig. 4.2. For illustrative purposes it has been
assumed that shrinkage begins at the time of loading.

(t − τ0) in days 0 10 30 70 200 500 10,000

ϕ(t,τ0) 0 0.53 0.98 1.38 1.83 2.10 2.39
εsh(t − τ0) × 10−6 0 −142 −246 −325 −407 −456 −510

The redistribution of internal forces due to the gradual development of creep
and shrinkage strains is to be examined and the time-dependent changes in
stresses and strains in both the concrete and the steel are to be calculated. Sample
calculations are provided below.
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Figure 4.2 Creep coefficient and shrinkage strain versus time curves for Example 4.1.



104 Uncracked sections

At first loading τ0, (t − τ0) = 0:

ϕ(t,τ0) = 0 and εsh(t − τ0) = 0.
With Ee(t,τ0) = Ec(τ0) = 26.7 GPa; and ne = n = Es/Ec(τ0) = 7.48.

Eq. 4.9: ε(τ0) = −1000 × 103

90,000 × 26,700 × (1 + 7.48 × 0.02)
+ 0 = −361 × 10−6;

Eq. 4.5: εs(τ0) = −361 × 10−6;
Eq. 4.7a: σc(τ0) = −361 × 10−6 × 26,700 − 0 = −9.67 MPa;
Eq. 4.7b: σs(τ0) = −361 × 10−6 × 200,000 = −72.3 MPa.

The stresses in the concrete and steel could have also been calculated directly
from Eqs 4.10 and 4.11:

Eq. 4.10: σc(τ0) = −1000 × 103

90,000(1 + 7.48 × 0.02)
− 0 = −9.67 MPa;

Eq. 4.11b: σs(τ0) = −1000 × 103 + 9.67 × 90,000
1800

= −72.3 MPa.

With the creep and shrinkage components of the concrete strain both equal to
zero at first loading, the concrete strain ε(τ0) is entirely made up of the elastic or
instantaneous component of strain εe(τ0).

At (t − τ0) = 10 days:

ϕ(t,τ0) = 0.53 and εsh(t) = −142 × 10−6.
Ee(t,τ0) = Ec(τ0)/(1 + ϕ(t,τ0)) = 17.48 GPa; and ne = Es/Ee(t,τ0)
= 11.44; and

Eq. 4.9: ε(t) = −1000 × 103

90,000 × 17,480 × (1 + 11.44 × 0.02)
+ −142 × 10−6

1 + 11.44 × 0.02

= −633 × 10−6;
Eq. 4.5: εs(t) = −633 × 10−6;

Eq. 4.7a: σc(t) = −633 × 10−6 × 17,480 − (−142 × 10−6) × 17,480

= −8.58 MPa;
Eq. 4.7b: σs(t) = −633 × 10−6 × 200,000 = −126.6 MPa.

The elastic and shrinkage components of the total concrete strain are εe(t) =
σc(t)/Ec(τ0) = −321 × 10−6; the shrinkage component of strain is εsh(t) =
−142 × 10−6; and therefore the creep component of strain is εcr(t) =
ε(t) − εe(t) − εsh(t) = −170 × 10−6.
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The results of the analyses at first loading and throughout the period of
sustained loading are provided in the following table.

Time t Duration Concrete Steel Total Elastic Creep Shrinkage
(days) of load stress stress strain concrete strain strain

t − τ0 σc(t) σs(t) ε(t) strain εe(t) εcr(t) εsh(t)
(days) (MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

14 0 −9.67 −72.3 −361 −361 0 0
24 10 −8.58 −127 −633 −321 −170 −142
44 30 −7.82 −165 −824 −292 −285 −246
84 70 −7.23 −194 −969 −270 −374 −325

214 200 −6.66 −222 −1112 −249 −456 −407
514 500 −6.35 −238 −1191 −237 −497 −456

10,014 10,000 −6.02 −255 −1273 −225 −538 −510

4.3 The principle of superposition – step-by-step method (SSM)

4.3.1 Formulation

The principle of superposition and its applicability for the determination of strains in
concrete was discussed in Section 1.2.5. The creep strain produced by a stress increment
applied at any time τi is assumed to be unaffected by any other stress increment applied
either earlier or later. The superposition integral for the total concrete strain at any
time t due to a time-varying stress history (Eq. 1.17) cannot be solved in closed form
unless simplifying assumptions are made, such as the parallel creep curve assumption
illustrated subsequently in Fig. 4.10.

In the step-by-step method (SSM), a solution technique is employed using the
incremental form of the superposition equation (Eq. 1.16). The period of sustained
stress is divided into k time intervals as shown in Fig. 4.3, with the age at first loading
designated τ0 and the end of the period of sustained stress designated τk.

Consider the time-varying stress history shown in Fig. 4.4. The actual stress history
is approximated by a step-wise variation of stress, with an increment of stress �σc(τj)
applied at the end of each time interval, as shown. For this decreasing stress history,
if the initial stress σc(τ0) is compressive, the stress increments �σc(τj) applied at the
end of each time interval are tensile. The stress is assumed to remain constant during

Time, t

First
loading

Concrete
pour

t0 t1 t2 tj tk-1 tk

End of time
period

Figure 4.3 Time discretisation.
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Time

Stress

j-th time interval, Dtj

tkt0 t1 t2 tj−1 tj

sc(t0) sc(t)
Dsc(tj)

Figure 4.4 Time-varying stress history – SSM.

each time interval. The greater the number of time intervals, the more accurate is the
final prediction. Various formulations of the SSM are available in the literature (for
example, Refs 2–5), all of which give similar answers provided the time intervals are
suitably small.

For a particular time interval τk − τ0, the time discretisation should be such that an
approximately equal portion of the creep coefficient ϕ(τk,τ0) develops during each time
step. A convenient and effective time discretisation based on a geometrical progression
is given by:

τ1 = τ0 + (τk − τ0)
τk k

(4.12a)

τj = τ0 + (τk k
)1/(k−1) (

τj−1 − τ0
)

(4.12b)

where τ0 and τk define the beginning and end of the time period to be discretised; k
represents the number of time intervals; and j = 2,3, . . .,k.

The SSM is perfectly general and can be used to predict behaviour due to any stress
or strain history using any desired creep and shrinkage curves. Using the integral in
the integral-type creep law (Eq. 1.17):

ε(t) = J (t,τ0)σc(τ0) +
t∫

τ+
0

J (t,τ )dσc(τ ) + εsh(t)

and the total concrete strain at the end of the j-th time period (t = τj) may be
approximated by:

ε(τj) = J (τj,τ0)σc(τ0) +
j∑

i=1

J
(
τj,τi

)
�σc (τi) + εsh(τj) (4.13a)

where J(τj,τi) represents the creep (compliance) function calculated at time τj related to
a unit stress applied at time τi, while�σc(τi) is calculated as σc(τi)−σc(τi−1) and depicts
the stress variation that occurs between times τi−1 and τi. A better approximation is
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obtained if the average creep function associated with the time step τi and τi−1 is used
within the summation in Eq. 4.13a, that is:

ε(τj) = J (τj,τ0)σc(τ0) +
j∑

i=1

J
(
τj,τi

)+ J
(
τj,τi−1

)
2

�σc (τi) + εsh(τj) (4.13b)

Eq. 4.13a approximates the integral-type creep law by means of the so-called
rectangular rule, while Eq. 4.13b represents the trapezoidal rule. Both approximations
tend towards the same result as the number of time steps increases.

Simplifying the notation, Eqs 4.13a and 4.13b become, respectively:

εj − εsh,j = Jj,0 σc,0 +
j∑

i=1

Jj,i�σc,i (4.13c)

and

εj − εsh,j = Jj,0 σc,0 +
j∑

i=1

Jj,i + Jj,i−1

2
�σc,i (4.13d)

where εj = ε(τj); εsh,j = εsh(τj); Jj,0 = J (τj,τ0); σc,0 = σc(τ0); Jj,i = J
(
τj,τi

)
; σc,i = σc(τi)

and �σc (τi) = σc,i −σc,i−1.
Eqs 4.13a and b can be expressed in terms of creep coefficients as follows:

ε(τj) = 1 +ϕ (τj,τ0)
Ec(τ0)

σc (τ0) +
j∑

i=1

1 +ϕ (τj,τi)
Ec(τi)

�σc (τi) + εsh(τj) (4.14a)

and

ε(τj)= 1+ϕ (τj,τ0)
Ec(τ0)

σc (τ0)+
j∑

i=1

1
2

[
1+ϕ (τj,τi)

Ec(τi)
+ 1+ϕ (τj,τi−1)

Ec(τi−1)

]
�σc (τi)+εsh(τj)

(4.14b)

Simplifying the notation gives:

εj − εsh,j = 1 +ϕj,0

Ec,0
σc,0 +

j∑
i=1

1 +ϕj,i

Ec,i
�σc,i (4.14c)

and

εj − εsh,j = 1 +ϕj,0

Ec,0
σc,0 +

j∑
i=1

1
2

(
1 +ϕj,i

Ec,i
+ 1 +ϕj,i−1

Ec,i−1

)
�σc,i (4.14d)

where ϕj,0 = ϕ(τj,τ0), ϕj,i = ϕ (τj,τi), Ec,0 = Ec(τ0) and Ec,i = Ec(τi).
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As Eqs 4.14 indicate, a large amount of input data is required for the SSM. For each
time step, Ec(τi) and ϕ(τj,τi) must be specified and the previous stress history must
be stored throughout the analysis. However, the SSM is not subject to many of the
simplifying assumptions contained in other methods of analysis and generally leads to
reliable results. For most practical problems, satisfactory results are obtained using as
few as 6–10 time intervals. For illustrative purposes, Eqs 4.13a and 4.14a are used in
the following.

The axially loaded, symmetrically reinforced column shown in Fig. 4.1, and analysed
in Section 4.2.2, is re-analysed here using the SSM. Time is discretised into a pre-
selected number of time intervals. Two approaches will be considered:

(i) Approach 1 obtains the solution by calculating the change in concrete stress that
occurs at the end of each time step; and

(ii) Approach 2 expresses the governing system of equations in terms of the concrete
stress at the time considered.

Both approaches are in fact identical and differ only in the manipulation of the
governing equations.

4.3.2 Example application (SSM) – Approach 1

In Approach 1, Eq. 4.14a is used to calculate the change in stress at the end of each time
step. For the continuously varying stress history shown in Fig. 4.4, the stress increment,
�σc(τi), is assumed to be applied at the end of the i-th time interval, as shown. The
increments of instantaneous plus creep strain caused by �σc(τi) are calculated at the
end of each time interval using the appropriate elastic modulus and creep coefficient
(Ec(τi) and ϕ(τj, τi), respectively). The total strain at the end of each time interval
is obtained by superposition of the strain increments caused by stress changes in all
previous time intervals and by shrinkage.

4.3.2.1 At first loading (t = τ0)

Following the approach outlined in Section 4.2.2 for the EMM, the instantaneous
stresses and strains at τ0 immediately after the application of the axial force P, and
before any creep and shrinkage has occurred, are obtained using Eqs 4.5–4.11 and are
given by:

ε(τ0)= P
AcEc(τ0)(1+n0ρ)

; εs(τ0)=ε(τ0);σc(τ0)=ε(τ0)Ec(τ0); and σs(τ0)=εs(τ0)Es

where n0 =Es/Ec(τ0)= the modular ratio at time τ0 and ρ=As/Ac = the reinforcement
ratio.

The analysis at each subsequent time step is outlined in the following.

4.3.2.2 At the end of the j-th time step (i.e. t = τj)

The stress in the concrete at the end of the j-th time step is:

σc(τj) = σc(τj−1) +�σc(τj) (4.15)
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where σc(τj−1) is known as it has been calculated at the previous time step and
�σc(τj) is the unknown stress increment at τj. The equilibrium and compatibility
equations are:

[
σc(τj−1) +�σc(τj)

]
Ac +σs(τj)As = P (4.16)

and

ε(τj) = εs(τj) (4.17)

The stress–strain relationships for the concrete and the steel at time τj are:

ε(τj) = 1 +ϕ (τj,τ0)
Ec(τ0)

σc (τ0) +
j∑

i=1

1 +ϕ (τj,τi)
Ec(τi)

�σc (τi) + εsh(τj) (4.18a)

and

εs(τj) = σs(τj)
Es

(4.18b)

Rearranging Eqs 4.18 in terms of stresses at time τj gives:

�σc
(
τj
)= Ec(τj)ε(τj) − Ec(τj)

Ee(τj,τ0)
σc (τ0) − Ec(τj)

j−1∑
i=1

�σc (τi)
Ee(τj,τi)

− Ec(τj)εsh(τj)

(4.19a)

and

σs
(
τj
)= Esεs(τj) (4.19b)

where Ee(τj,τi) is the effective modulus of concrete at time τj associated with a stress
increment first applied at time τi and is given by:

Ee(τj,τi) = Ec(τi)
1 +ϕ (τj,τi)

(4.20)

By substituting Eqs 4.19 and 4.17 into Eq. 4.16 and simplifying, the unknown strain,
ε(τk), is readily determined as:

ε(τj) = 1
1 + njρ

⎡
⎣ P

AcEc(τj)
− σc(τj−1)

Ec(τj)
+ ne,j,0σc(τ0)

Es
+

j−1∑
i=1

ne,j,i �σc(τi)
Es

+ εsh(τj)

⎤
⎦

(4.21)
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where nj = Es/Ec(τj) = the modular ratio at time τj; ne,j,0 = Es/Ee(τj,τ0) and ne,j,i =
Es/Ee(τj,τi) are the effective modular ratios; and ρ = the reinforcement ratio = As/Ac.
The steel strain εs(τj) is found using Eq. 4.17 and is identical to the total concrete
strain ε(τj).

The concrete stress increment is obtained from Eq. 4.19a:

�σc(τj) = 1
1 + njρ

⎡
⎣ P

Ac
−σc(τj−1) − ne,j,0ρσc(τ0) −

j−1∑
i=1

ne,j,iρ�σc(τi) − εsh(τj)Esρ

⎤
⎦

(4.22)

With �σ (τj) calculated from Eq. 4.22, the concrete stress at τj is obtained from
Eq. 4.15. The steel stress σs(τj) is determined from Eq. 4.19b. Alternatively, σs(τj)
could also be calculated from the equilibrium equation (Eq. 4.16).

From the strain calculated at time instant τj (ε(τj) = εs(τj)), the axial deformation or
axial shortening of the column can be readily calculated. For the column of length, L,
shown in Fig. 4.1, the axial shortening of the column at time, τj, due to the applied
load, P, and shrinkage is designated eL(τj) and given by:

eL(τj) = Lε(τj) (4.23)

The approach is useful in the determination of time-dependent axial shortening in
the columns and walls of multi-storey buildings where differential shortening may be
an important design consideration.

Example 4.2

The symmetrically reinforced column analysed in Example 4.1 (refer Fig. 4.1) is
to be re-analysed here using the SSM. As in the previous example, the column is
subjected to an axial load P =−1000 kN first applied at age τ0 =14 days and then
held constant. The properties of the column cross-section are: Ac = 90,000 mm2;
As = 1800 mm2; ρ = As/Ac = 0.02; and Es = 200 GPa.
In this example, the six time intervals specified in the following table are
considered for illustrative purposes. A significant amount of input data is
required; specifically, a different creep coefficient and elastic modulus for
each concrete stress increment applied at the end of each time interval. The
following table contains the input data necessary to obtain the concrete
and steel stresses and strains at the end of each time interval. The concrete
properties are obtained from the material modelling procedures outlined in
Chapter 2, that is, Ec(τj) from Eqs 2.2a and 2.2c, ϕ(τj,τi) from Eq. 2.3
and εsh(τj) from Eq. 2.6. The concrete is mixed with high early strength
cement. As in Example 4.1, shrinkage is taken to begin at the time of first
loading.
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j 0 1 2 3 4 5 6

τj (days) 14 24 44 84 214 514 10,014

t − τj (days) 0 10 30 70 200 500 10,000

ϕ(τj,τ0) 0 0.53 0.98 1.38 1.83 2.10 2.39
ϕ(τj,τ1) 0 0.72 1.18 1.63 1.89 2.15
ϕ(τj,τ2) 0 0.90 1.44 1.69 1.94
ϕ(τj,τ3) 0 1.22 1.51 1.75
ϕ(τj,τ4) 0 1.26 1.54
ϕ(τj,τ5) 0 1.38

Ec(τj) (MPa) 26,700 27,900 28,900 29,700 30,500 31,000 31,700

εsh(τj) × 10−6 0 −142 −246 −325 −407 −456 −510

Note that the shrinkage strains and the creep coefficients associated with the
age at first loading, τ0, are the same as those adopted previously in Example 4.1
using the EMM. The family of creep coefficient versus the logarithm of time
curves is shown in Fig. 4.5.
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Figure 4.5 Creep coefficient versus log time curves for Example 4.2.

At first loading (τ0):

As in Example 4.1, with Ec(τ0) = Ee(τ0,τ0) = 26.7 GPa and n0 = Es/Ec(τ0) =
7.48, the instantaneous stresses and strains immediately after first loading are:

ε(τ0) = −361 × 10−6;εs(τ0) = −361 × 10−6;σc(τ0) = −9.67 MPa and

σs(τ0) = −72.3 MPa.

At time instant τ1 = 24 days (time step 1 from τ0 to τ1):

For time interval, j = 1:
Ec(τ0) = 26.7 GPa; Ec(τ1) = 27.9 GPa; n1 = Es/Ec(τ1) = 7.17;
ϕ(τ1,τ0) = 0.53; Ee(τ1,τ0) = Ec(τ0)/(1 + ϕ(τ1,τ0)) = 17.48 GPa; ne,1,0 =
Es/Ee(τ1,τ0) = 11.44; and εsh(τ1) = −142 × 10−6.
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From Eq. 4.22:

�σc(τ1) = 1
1 + 7.17 × 0.02

(
−1000 × 103

90,000
+ 9.67 + 11.44 × 0.02 × 9.67

+ 142 × 10−6 × 200,000 × 0.02

)
= 1.17 MPa

The concrete stress at τ1 is therefore

σc(τ1) = σc(τ0) +�σc(τ1) = −9.67 + 1.17 = −8.50 MPa

and from Eq. 4.16: σs(τ1) = −1000 × 103 + 8.50 × 90,000
1800

= −131 MPa

Eq. 4.18b and Eq. 4.17 give:

εs(τ1) = −131
200,000

= −653 × 10−6

ε(τ1) = −653 × 10−6

At time τ1, the elastic component of the concrete strain is εe(τ1) = σc(τ0)/Ec(τ0)+
�σ (τ1)/Ec(τ1) = −319 × 10−6; the shrinkage component of strain is εsh(τ1) =
−142 × 10−6; and therefore the creep component of strain is εcr(τ1) = ε(τ1) −
εe(τ1) − εsh(τ1) = −192 × 10−6.

At time instant τ2 = 44 days (time step 2 from τ1 to τ2):

Time interval, j= 2:

Ec(τ0) = 26.7 GPa; Ec(τ1) = 27.9 GPa; Ec(τ2) = 28.9 GPa; n2 = Es/Ec(τ2) =
6.92; ϕ(τ2,τ0) = 0.98;Ee(τ2,τ0) = Ec(τ0)/(1 + ϕ(τ2,τ0)) = 13.53 GPa;
ne,2,0 = Es/Ee(τ2,τ0) = 14.78; ϕ(τ2,τ1) = 0.72;Ee(τ2,τ1) =
Ec(τ1)/(1 + ϕ(τ2,τ1)) = 16.25 GPa; ne,2,1 = Es/Ee(τ2,τ1) = 12.31;
εsh(τ2) = −246 × 10−6.

Eq. 4.22:

�σ (τ2)= 1
1+6.92×0.02

(
−1000×103

90,000
+8.50+14.78×0.02×

×9.67−12.31×0.02×1.17+246×10−6×200,000×0.02

)

=0.83 MPa

The concrete stress at τ2 is therefore:

σc(τ2) = σc(τ1) +�σc(τ2) = −8.50 + 0.83 = −7.67 MPa
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and from Eq. 4.16, the steel stress is:

σs(τ2) = −1000 × 103 + 7.67 × 90,000
1800

= −172 MPa

The steel strain is obtained from Eq. 4.18b and the total concrete strain from
Eq. 4.17:

εs(τ2) = −172
200,000

= −860 × 10−6

and

ε (τ2) = −860 × 10−6

At time τ2, the elastic component of concrete strain is:

εe(τ2) = σc(τ0)/Ec(τ0) +�σc(τ1)/Ec(τ1) +�σc(τ2)/Ec(τ2) = −291 × 10−6;

the shrinkage component is εsh(τ2) = −246 × 10−6; and therefore the creep
component of strain is:

εcr(τ2) = ε(τ2) − εe(τ2) − εsh(τ2) = −323 × 10−6.

At subsequent time instants

Similarly, the stress and strain components at the end of each subsequent time
step are calculated and the results are tabulated below.

Instant Time τj Concrete Concrete Steel Total Elastic Creep Shrinkage
j (days) stress stress stress strain strain strain strain

increment σc(τj) σs(τj) ε(τj) εe(τj) εcr(τj) εsh(τj)
�σc (τj) (MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)
(MPa)

0 14 – −9.67 −72.3 −361 −361 0 0
1 24 1.17 −8.50 −131 −653 −319 −192 −142
2 44 0.83 −7.67 −172 −860 −291 −323 −246
3 84 0.63 −7.04 −204 −1018 −269 −424 −325
4 214 0.65 −6.39 −236 −1180 −248 −525 −407
5 514 0.34 −6.05 −253 −1264 −237 −571 −456
6 10,014 0.41 −5.64 −273 −1367 −225 −632 −510

The effect of increasing the number of time steps on the accuracy of the
predictions using the SSM is illustrated below. In the following table, the results
of further analyses are presented in which the time discretisation proposed in
Eqs 4.12 has been adopted. Either 6 or 18 time steps have been considered
between τ0 and each of the previously considered time instants (τk in the first
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column of the table below). The results provided on each line of the table have
been produced by separate time analyses using the SSM.

Time τk No of Concrete Steel Total Elastic Creep Shrinkage
(days) time stress stress strain strain strain strain

steps σc(τk) (MPa) ε(τk) εe(τk) εcr(τk) εsh(τk)
used (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

14 1 −9.67 −72.3 −361 −361 0 0
24 6 −8.54 −129 −644 −320 −182 −142

(18) (−8.55) (−128) (−641) (−320) (−179) (−142)
44 6 −7.68 −171 −857 −291 −320 −246

(18) (−7.72) (−169) (−847) (−292) (−309) (−246)
84 6 −7.02 −205 −1023 −269 −430 −325

(18) (−7.09) (−201) (−1006) (−270) (−411) (−325)
214 6 −6.36 −238 −1188 −247 −534 −407

(18) (−6.46) (−233) (−1164) (−249) (−508) (−407)
514 6 −6.00 −255 −1277 −236 −586 −456

(18) (−6.10) (−251) (−1253) (−238) (−559) (−456)
10,014 6 −5.65 −273 −1366 −225 −631 −510

(18) (−5.71) (−270) (−1349) (−226) (−613) (−510)

Based on these results, increasing the number of time steps by a factor of three
has produced changes in the final total strain and in the final concrete and steel
stresses of less than 2 per cent. Considering the uncertainty associated with the
estimates of the concrete properties, there is little to be gained, from a practical
point of view, by considering more than about 6–10 time steps in most situations.
The axial shortening of the column is calculated using Eq. 4.23. If the overall
length of the column is 4000 mm, the column shortening at first loading and
after 10,000 days are eL(τ0 = 14) = 1.44 mm and eL(τ18 = 10,014) = 5.40 mm,
respectively. The axial shortening of the column has increased with time by a
factor of almost four.

4.3.3 Example application (SSM) – Approach 2

In approach 2, the concrete constitutive relationship is manipulated so that the
concrete stress at the end of each time instant is obtained directly. If the rectangular
approximation of the integral-type creep law is used, Eq. 4.13c may be rearranged as
follows:

εj − εsh,j = Jj,0σc,0 +
j∑

i=1

Jj,i�σc,i

= Jj,0σc,0 + Jj,j
(
σc,j −σc,j−1

)+ j−1∑
i=1

Jj,i
(
σc,i −σc,i−1

)

= Jj,0σc,0 + Jj,jσc,j − Jj,jσc,j−1 +
j−1∑
i=1

Jj,iσc,i −
j−1∑
i=1

Jj,iσc,i−1
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= Jj,0σc,0 + Jj,jσc,j − Jj,jσc,j−1 +
j−1∑
i=1

Jj,iσc,i −
j−2∑
i=0

Jj,i+1σc,i

= Jj,0σc,0 + Jj,jσc,j − Jj,jσc,j−1 + Jj,j−1σc,j−1 +
j−2∑
i=1

(
Jj,i − Jj,i+1

)
σc,i − Jj,1σc,0

= Jj,0σc,0 + Jj,jσc,j +
j−1∑
i=1

(
Jj,i − Jj,i+1

)
σc,i − Jj,1σc,0

= Jj,jσc,j +
(
Jj,0 − Jj,1

)
σc,0 +

j−1∑
i=1

(
Jj,i − Jj,i+1

)
σc,i

and therefore:

εj − εsh,j = Jj,j σc,j +
j−1∑
i=0

(
Jj,i − Jj,i+1

)
σc,i (4.24)

Expressing Eq. 4.24 in terms of the stress at the end of the j-th time step, the
constitutive relationship for the concrete at any time τj becomes:

σc,j = εj − εsh,j

Jj,j
−

j−1∑
i=0

Jj,i − Jj,i+1

Jj,j
σc,i = Ec,j

(
εj − εsh,j

)+ j−1∑
i=0

Fe,j,iσc,i (4.25)

where Ec,j is the instantaneous elastic modulus of concrete at τj; Fe,j,i is the stress
modification factor; and these terms are defined as

Ec,j = 1
Jj,j

(4.26a)

and

Fe,j,i = Jj,i+1 − Jj,i

Jj,j
(4.26b)

For completeness, the corresponding expressions for Ec,j and Fe,j,i to be used in
Eq. 4.25 when adopting the trapezoidal approximation of the integral-type creep
law are:

For i = 0:

Ec,j = 1
Jj,j

(4.26c)

and

Fe,j,i = Jj,1 − Jj,0

Jj,j + Jj,j−1
(4.26d)

For i> 0:

Ec,j = 2
Jj,j + Jj,j−1

(4.26e)
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and

Fe,j,i = Jj,i+1 − Jj,i−1

Jj,j + Jj,j−1
(4.26f)

Noting that the steel and concrete strains are always identical, the equilibrium
equation at the end of the j-th time step for the axially loaded column example can be
expressed as:

P = σc,jAc +σs,jAs

= AcEc,j εj − AcEc,j εsh,j +
j−1∑
i=0

AcFe,j,iσc,i + AsEsεj (4.27)

where σs,j = σs(τj) and εj(= εs,j) is the strain in both the concrete and the steel at τj.
Solving for the concrete strain εj gives:

εj = P
AcEc,j + AsEs

+ AcEc,jεsh,j

AcEc,j + AsEs
−

j−1∑
i=0

AcFe,j,i

AcEc,j + AsEs
σc,i (4.28)

and observing that

AcEc,j

AcEc,j + AsEs
= 1

1 + EsAs

Ec,jAc

= 1
1 + njρ

Eq. 4.28 can be rewritten as:

εj = 1
1 + njρ

⎛
⎝ P

AcEc,j
+ εsh,j −

j−1∑
i=0

Fe,j,i

Ec,j
σc,i

⎞
⎠ (4.29)

It is also noted that:

Fe,j,i

Ec,j
= Jj,i+1 − Jj,i

Jj,j
Jj,j = Jj,i+1 − Jj,i = 1

Ee
(
τj,τi+1

) − 1
Ee
(
τj,τi

) = 1
Ee,j,i+1

− 1
Ee,j,i

= ne,j,i+1

Es
− ne,j,i

Es

where ne,j,i = Es/Ee,j,i and, for ease of notation, Ee,j,i = Ee(τj,τi). Eq. 4.29 can
therefore be simplified to:

εj = 1
1 + njρ

⎛
⎝ P

AcEc,j
+ εsh,j −

j−1∑
i=0

ne,j,i+1 − ne,j,i

Es
σc,i

⎞
⎠ (4.30)
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Substituting Eq. 4.30 into Eq. 4.25 gives:

σc,j = 1
1+njρ

⎛
⎝ P

Ac
+Ec,jεsh,j −Ec,j

j−1∑
i=0

ne,j,i+1−ne,j,i

Es
σc,i

⎞
⎠−Ec,jεsh,j +

j−1∑
i=0

Fe,j,iσc,i

= 1
1+njρ

(
P
Ac

−njρEc,jεsh,j −Ec,j

j−1∑
i=0

ne,j,i+1−ne,j,i

Es
σc,i

+
j−1∑
i=0

Fe,j,iσc,i +njρ

j−1∑
i=0

Fe,j,iσc,i

)

which can be simplified to:

σc,j = 1
1 + njρ

⎡
⎣ P

Ac
− Esρ εsh,j +ρ

j−1∑
i=0

(
ne,j,i+1 − ne,j,i

)
σc,i

⎤
⎦ (4.31)

With the concrete stress σc,j at time, τj, calculated from Eq. 4.31, the steel stress is
obtained from the equilibrium equation:

σs,j = P −σc,j Ac

As
(4.32)

and the steel and concrete strains are obtained from Eqs 4.18b and 4.17, respectively.

Example 4.3

The column analysed in Example 4.2 is to be re-analysed here using approach 2.
As before, P =−1000 kN; Ac = 90,000 mm2; As = 1800 mm2; ρ= As/Ac = 0.02;
Es = 200 GPa and the time varying concrete properties are:

j 0 1 2 3 4 5 6

τj (days) 14 24 44 84 214 514 10,014

t − τj (days) 0 10 30 70 200 500 10,000

ϕ(τj,τ0) 0 0.53 0.98 1.38 1.83 2.10 2.39
ϕ(τj,τ1) 0 0.72 1.18 1.63 1.89 2.15
ϕ(τj,τ2) 0 0.90 1.44 1.69 1.94
ϕ(τj,τ3) 0 1.22 1.51 1.75
ϕ(τj,τ4) 0 1.26 1.54
ϕ(τj,τ5) 0 1.38

Ec(τj) (MPa) 26,700 27,900 28,900 29,700 30,500 31,000 31,700

εsh(τj) × 10−6 0 −142 −246 −325 −407 −456 −510
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At first loading (τ0):

As in Example 4.2, with Ec,0 = Ee,0 = 26.7 GPa; and n0 = Es/Ec,0 = 7.48,
the instantaneous stresses and strains immediately after first loading are:
ε0 =−361×10−6; εs,0 =−361×10−6; σc,0 =−9.67 MPa and σs,0 =−72.3 MPa.

At time instant τ1 = 24 days (time step 1 from τ0 to τ1):

For time interval, j = 1:
Ec,0 = 26.7 GPa; Ec,1 = 27.9 GPa; n1 = Es/Ec,1 = 7.17; ϕ1,0 = 0.53; Ee,1,0 =
Ec,0/(1+ϕ1,0) = 17.48 GPa; ne,1,0 = Es/Ee,1,0 = 11.44; ne,1,1 = Es/Ee,1,1 = 7.17
and εsh,1 = −142 × 10−6.
From Eq. 4.31, the concrete stress at the end of the first time step (j = 1) is:

σc,1 = 1
1 + 7.17 × 0.02

[
−1000 × 103

90,000
− 200,000 × 0.02 × (−142 × 10−6)

+0.02 × (7.17 − 11.44) × (−9.67)

]
= −8.50 MPa.

and from Eq. 4.32: σs,1 = −1000 × 103 + 8.50 × 90,000
1800

= −131 MPa;

Eq. 4.18b and Eq. 4.17 give: εs,1 = −131
200,000

= −653 × 10−6 and ε1 =
−653 × 10−6.
As calculated in Example 4.2, the elastic, creep and shrinkage components of
the concrete strain at time τ1 are εe,1 = −319×10−6, εcr,1 = −192×10−6, and
εsh(τ1) = −142 × 10−6.

At time instant τ2 = 44 days (time step 2 from τ1 to τ2):

Time interval, j = 2:
Ec,0 = 26.7 GPa; Ec,1 = 27.9 GPa; Ec,2 = 28.9 GPa; n2 = Es/Ec,2 = 6.92; ϕ2,0 =
0.98; Ee,2,0 = Ec,0/(1 + ϕ2,0) = 13.53 GPa; ne,2,0 = Es/Ee,2,0 = 14.78; ϕ.2,1 =
0.72; Ee,2,1 = Ec,1/(1+ϕ2,1) = 16.25 GPa; ne,2,1 = Es/Ee,2,1 = 12.31; and εsh,2 =
−246 × 10−6.
From Eq. 4.31, the concrete stress at the end of the first time step (j = 1) is:

σc,2 = 1
1 + 6.92 × 0.02

[
−1000 × 103

90,000
− 200,000 × 0.02 × (−246 × 10−6)

+0.02 × [(12.31 − 14.78) × (−9.67) + (6.92 − 12.31) × (−8.50)]

]

= −7.67 MPa

and from Eq. 4.32: σs,1 = −1000 × 103 + 7.67 × 90,000
1800

= −172 MPa.
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Eqs 4.18b and 4.17 give: εs,1 = −172
200,000

= −860 × 10−6 and ε1 =
−860 × 10−6.
As in Example 2.2, the elastic, creep and shrinkage components of concrete
strain at τ2 are εe,2 = −291 × 10−6; εcr,2 = −323 × 10−6, and εsh(τ2) =
−246 × 10−6.

At subsequent time instants:

Similarly, the stress and strain components at the end of each subsequent time
step are calculated and the results are tabulated below. It can be seen that the
results obtained using the SSM with approaches 1 and 2 are identical.

Instant Time τj Concrete Steel Total Elastic Creep Shrinkage
j (days) stress stress strain strain strain strain

σc(τj) σs(τj) ε(τj) εe(τj) εcr(τj) εsh(τj)
(MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

0 14 −9.67 −72.3 −361 −361 0 0
1 24 −8.50 −131 −653 −319 −192 −142
2 44 −7.67 −172 −860 −291 −323 −246
3 84 −7.04 −204 −1018 −269 −424 −325
4 214 −6.39 −236 −1180 −248 −525 −407
5 514 −6.05 −253 −1264 −237 −571 −456
6 10,014 −5.64 −273 −1367 −225 −632 −510

4.4 The age-adjusted effective modulus method (AEMM)

4.4.1 Formulation

A simple adjustment to the effective modulus method to account for the ageing of
concrete was proposed by Trost (Ref. 6). Later the method was more rigorously
formulated and further developed by Dilger and Neville (Ref. 7) and Bazant (Ref. 8).
The method is sometimes called the Trost–Bazant Method (Ref. 9), but Bazant’s more
descriptive title, the age-adjusted effective modulus method, is preferred here.

Consider the two concrete stress histories and the corresponding creep-time curves
shown in Fig. 4.6. In stress history (a), σc(τ0) is applied at time τ0 and subsequently
held constant with time. In stress history (b), the stress σc(t) is gradually applied,
beginning at τ0 and reaching a magnitude equal to σc(τ0) at time τk. The creep strain
at any time t(>τ0) produced by the gradually applied stress σc(t) is significantly smaller
than that resulting from the stress σc(τ0) abruptly applied at τ0, as shown. This is due
to ageing. The earlier a concrete specimen is loaded, the greater the final creep strain.
A reduced creep coefficient can therefore be used to calculate creep strain if stress
is gradually applied. Let this reduced creep coefficient be χ (t,τ0)ϕ(t,τ0), where the
coefficient χ (t,τ0) is called the ageing coefficient (< 1.0).
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Stress
(a) Constant stress

(b) Gradually applied
stress

Time, t Time, t

Creep
strain

sc(t0)

t0 t0tk
tk

ecr.a(tk,t0)

ecr.b(tk,t0)

sc(t0) s0(t0)

Ec(t0) Ec(t0)
ecr.a(tk,t0) = j (tk ,t0) ;   ecr.b(tk,t0) = c(tk ,t0)j(tk ,t0)

Figure 4.6 Creep due to constant and variable stress histories.

The creep strain at time, t, due to a stress, σc(t), that has been gradually applied
over the time interval t − τ0, may be expressed as:

εcr(t) = σc(t)
Ec(τ0)

χ (t,τ0) ϕ(t,τ0) (4.33)

The magnitude of the ageing coefficient χ (t,τ0) generally falls within the range 0.4
to 1.0 depending on the rate of application of the gradually applied stress in the period
after τ0.

Consider the gradually reducing stress history shown in Fig. 4.7. An initial
compressive stress σc(τ0) applied at time τ0 is reduced with time due to the application
of a gradually increasing tensile stress increment �σc(t). The change of stress may be
due to a change of the external loads, or restraint to creep and shrinkage, or variations
of temperature, or combinations of these, and is usually unknown at the beginning of
an analysis.

Using the AEMM, the total strain at time t may be expressed as the sum of the
strains produced by σc(τ0) (instantaneous and creep), the strains produced by the

t Time

Stress

sc(t0)

sc(t) = sc(t0)+ Dsc(t)

Dsc(t)

sc(t)

t0

Figure 4.7 A gradually reducing stress history.
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gradually applied stress increment�σc(t) (instantaneous and creep), and the shrinkage
strain:

ε(t) = σc(τ0)
Ec(τ0)

[1 +ϕ(t,τ0)] + �σc(t)
Ec(τ0)

[1 +χ (t,τ0) ϕ(t,τ0)] + εsh(t)

= σc(τ0)
Ee(t,τ0)

+ �σc(t)
�Ee(t,τ0)

+ εsh(t) (4.34)

where Ee(t,τ0) is the effective modulus of Eq. 4.3 and Ee(t,τ0) is the age-adjusted
effective modulus given by:

Ee(t,τ0) = Ec(τ0)
1 +χ (t,τ0) ϕ(t,τ0)

(4.35)

With the AEMM, two analyses need to be carried out: one at first loading (time τ0)
and one at time t after the period of sustained stress. Unlike the EMM, the final strain
depends on the stress at first loading σc(τ0) and the change in stress that occurs with
time �σc(t).

The reinforced concrete column shown in Fig. 4.1 is to be analysed using the AEMM.
As for the SSM, two approaches will also be considered here:

(i) Approach 1 obtains the solution for the concrete stress at time t, σc(t), by
calculating the change in stress that occurs over the entire period of sustained
loading, �σc(t); and

(ii) Approach 2 calculated the stress at time t, σc(t), directly.

Both approaches lead to the same solution and differ only in the manipulation of
the governing equations.

4.4.2 Example application (AEMM) – Approach 1

The instantaneous analysis at time τ0 (immediately after the application of the axial
force P, and before any creep and shrinkage has occurred) is identical to that presented
earlier and the instantaneous stresses and strains are:

σc(τ0) = P
Ac(1 + n0ρ)

; σs(τ0) = P −σc(τ0)Ac

As
; ε(τ0) = σc(τ0)

Ec(τ0)
and εs(τ0) = σs(τ0)

Es

where n0 =Es/Ec(τ0)= the modular ratio at time τ0 and ρ=As/Ac = the reinforcement
ratio.

As described in Section 4.2.2, the equilibrium and compatibility requirements at
any time t are specified by Eqs 4.4 and 4.5, respectively:

P = σc(t)Ac +σs(t)As (4.4)

and

εs(t) = ε(t) (4.5)
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The constitutive relationship for concrete is described by Eq. 4.34 and, as before,
the steel is linear-elastic:

ε(t) = σc(τ0)
Ee(t,τ0)

+ �σc(t)
�Ee(t,τ0)

+ εsh(t) (4.36a)

and

εs(t) = σs(t)
Es

(4.36b)

where �σc(t) is the unknown time-dependent change of stress caused by creep and
shrinkage. If σc(τ0) is compressive, the stress increment �σc(t) is usually tensile.

Rearranging Eqs 4.36 in terms of time-varying stresses gives:

�σc(t) = �Ee(t,τ0)ε(t) −
�Ee(t,τ0)
Ee(t,τ0)

σc(τ0) −�Ee(t,τ0)εsh(t) (4.37a)

and

σs(t) = Esεs(t) (4.37b)

At any time, t, the concrete stress is given by:

σc(t) = σc(τ0) +�σc(t) (4.38)

and the governing equation of the problem is obtained by substituting Eqs 4.37, 4.38
and 4.5 into Eq. 4.4 and solving for the unknown total strain ε(t):

ε (t) = 1
1 + n̄e,0ρ

[
P

Ee(t,τ0)Ac
+σc(τ0)

(
1

Ee(t,τ0)
− 1

Ee(t,τ0)

)
+ εsh(t)

]
(4.39)

where ne,0 = Es/Ee(t,τ0), ρ = As/Ac, and n̄e,0 = Es/�Ee(t,τ0) = the age-adjusted
modular ratio.

By substituting Eq. 4.39 into Eq. 4.36a, the concrete stress increment �σc(t) can be
expressed as:

�σc(t) = 1
1 + n̄e,0ρ

[
P
Ac

−σc(τ0)(1 + ne,0ρ) − εsh(t) Es ρ

]
(4.40)

With �σc(t) calculated from Eq. 4.40, the resultant steel and concrete stresses at
time t are given by Eqs 4.37b and 4.38. Alternatively, these could be calculated from
equilibrium considerations (Eq. 4.4).

4.4.3 Determination of the ageing coefficient

Numerical values for χ (t,τ0) can be obtained from the associated creep coefficient
ϕ(t,τ0) if the stress change �σc(t) is known. Like the creep coefficient, the ageing
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coefficient χ (t,τ0) depends on the age of the concrete at first loading τ0, the duration
of load (t − τ0), the size and shape of the member, and so on.

For the gradually decreasing concrete stress history when a member is subjected to a
constant sustained load, the ageing coefficient χ (t,τ0) may be obtained by rearranging
and expanding Eq. 4.40. With shrinkage set to zero, χ (t,τ0) is given by:

χ (t,τ0) = σc(τ0)
σc(τ0) −σc(t)

− 1
ϕ (t,τ0)

1 + nρ
nρ

(4.41)

If the stress history of Fig. 4.7 is the result of pure relaxation (i.e. when the member
is restrained and the strain ε(t) remains constant with time at its initial value of
σc(τ0)/Ec(τ0)), the ageing coefficient χ (t,τ0) may be obtained by rearranging the
expanded form of Eq. 4.34:

χ (t,τ0) = σc(τ0)
σc(τ0) −σc(t)

− 1
ϕ (t,τ0)

(4.42a)

Eq. 4.42a is commonly expressed in the literature in the following form:

χ (t,τ0) = Ec (τ0)
Ec (τ0) − R (t,τ0)

− 1
ϕ (t,τ0)

(4.42b)

in which R(t,τ0) represents the relaxation function defined as the stress at time t due
to a unit strain applied at time τ0 and kept constant throughout the period τ0 to t.
Values for R(t,τ0) can be readily calculated by applying the SSM (Eq. 4.25) to the case
of a constant unit strain history beginning at τ0.

Using a step-by-step numerical analysis (Section 4.3.2) to establish the gradual
loss of concrete stress with time (�σc(t) = σc(t) − σc(τ0)), ageing coefficients χ (t,τ0)
may be readily determined for the creep coefficients ϕ(t,τ0) specified by Eq. 2.3
in Section 2.1.4. For the cross-section, concrete properties and loading details of
Examples 4.1 and 4.2, the ageing coefficients associated with the gradual concrete
stress change under a constant external load P first applied at age τ0 are calculated
using Eq. 4.41 and shown in Fig. 4.8. Also shown in Fig. 4.8 are the ageing coefficients
calculated using Eq. 4.42a associated with the more rapid change in concrete stress
caused by pure relaxation (i.e. when the total strain ε(t) is held constant with time
and the applied load P varies as a result of relaxation). Neville et al. (Ref. 9) and
others have shown that ageing coefficients calculated in this way, when used in
conjunction with the age-adjusted effective modulus method, provided close agreement
with experimental data.

Fig. 4.9 shows the variation with time of the ageing coefficients obtained from
the creep coefficients of Eq. 2.3 for a creep problem similar to that of Examples 4.1
and 4.2.

For concrete loaded in the first few weeks after casting (such as for the curves
corresponding to τ0 = 7 and 14 days in Fig. 4.9), and for load durations exceeding
about 100 days, the ageing coefficient is between 0.55 and 0.72 for normal strength
concrete with a value of 0.65 being suitable for most practical situations where final
deformations are required. Considering how uncertain are the predictions of ϕ(t,τ0)
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Figure 4.8 Ageing coefficient versus time for the concrete used in Example 4.2.

25 MPa

Eq. 4.41

Eq. 4.42

40 MPa
60 MPa

25 MPa
40 MPa

60 MPa

f ʹ
c

f ʹ
c

f ʹ
c

f ʹ
c

25 MPa

Eq. 4.41

Eq. 4.42

40 MPa
60 MPa

25 MPa
40 MPa

60 MPa

25 MPa

Eq. 4.41

Eq. 4.42

40 MPa 60 MPa

25 MPa
40 MPa

60 MPa

Eq. 4.41

Eq. 4.42

25 MPa
40 MPa 60 MPa

0.4

0.5

0.6

0.7

0.8

0.9

1

Time after loading in days (log scale)

A
ge

in
g 

co
ef

fi
ci

en
t

0.4

0.5

0.6

0.7

0.8

0.9

1

Time after loading in days (log scale)

A
ge

in
g 

co
ef

fi
ci

en
t

0.4

0.5

0.6

0.7

0.8

0.9

1

Time after loading in days (log scale)

A
ge

in
g 

co
ef

fi
ci

en
t

0.4

0.5

0.6

0.7

0.8

0.9

1

10

Time after loading in days (log scale)

A
ge

in
g 

co
ef

fi
ci

en
t

100 1000 10,000 10 100 1000 10,000

10 100 1000 10,00010 100 1000 10,000

t0 = 7 days

t0 = 28 days

t0 = 14 days

t0 = 100 days

Figure 4.9 Ageing coefficients versus time derived from ϕ(t,τ0) taken from Eq. 2.3 (with th =
150 mm and interior environment).

and the other concrete properties, the following values of the final ageing coefficient
are recommended for use in structural design:

For concrete loaded at early ages τ0 < 20 days:

χ (∞,τ0) = χ∗(τ0) = 0.65 for creep problems (constant load) (4.43a)

χ (∞,τ0) = χ∗(τ0) = 0.80 for relaxation problems (constant deformation)
(4.43b)
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For concrete loaded at later ages τ0 > 28 days:

χ (∞,τ0) = χ∗(τ0) = 0.75 for creep problems (4.43c)

χ (∞,τ0) = χ∗(τ0) = 0.85 for relaxation problems (4.43d)

The use of Eq. 4.43 simplifies the age-adjusted effective modulus method and usually
leads to good approximations of both material and structural behaviour.

The inadequacies of the effective modulus method are to a large extent overcome
by the introduction of the ageing coefficient. Bazant (Ref. 8) pointed out that the
method is theoretically exact for any problem in which strain varies proportionally
with the creep coefficient (provided, of course, the ageing coefficient has been carefully
calculated from the assumed creep coefficient). Extracting χ (t,τ0) from Fig. 4.9 is
not particularly suitable for computer application nor is it generally necessary. The
approximations of Eq. 4.43 are suitable for most applications.

Example 4.4

The symmetrically reinforced column analysed in Example 4.1 (see Fig. 4.1)
under a constant sustained axial load P is re-analysed here using the AEMM. As
before: P = −1000 kN, Ac = 90,000 mm2; As = 1800 mm2; ρ = As/Ac = 0.02
and Es = 200 GPa.
The variation of the creep coefficient and shrinkage with time were given in
Example 4.1 and, for convenience, are repeated in the following table. The ageing
coefficients are taken from Fig. 4.9 and are also given below. All other data as
given in Example 4.1.

(t − τ0) in days 0 10 30 70 200 500 10,000 (∞)

ϕ(t,τ0) 0 0.53 0.98 1.38 1.83 2.10 2.39
χ (t,τ0) – 0.60 0.64 0.67 0.70 0.70 0.69

εsh(t − τ0) × 10−6 0 −142 −246 −325 −407 −456 −510

At first loading, (t − τ0) = 0:

ϕ(t,τ0) = 0 and εsh(τ0) = 0.
As in Example 4.1: with Ec(τ0) = Ee(τ0) = 26.7 GPa; and n0 = Es/Ec(τ0) =
7.48, the instantaneous stresses and strains immediately after first loading are:
ε(τ0) = −361 × 10−6; εs(τ0) = −361 × 10−6; σc(τ0) = −9.67 MPa and σs(τ0) =
−72.3 MPa.

At (t − τ0) = 10 days:

ϕ(t,τ0) = 0.53, χ (t,τ0) = 0.60 and εsh(t) = −142 × 10−6.
Ee(t,τ0) = Ec(τ0)/(1 + ϕ(t,τ0)) = 17.48 GPa; and ne,0 = Es/Ee(t,τ0) = 11.44;
�Ee(t,τ0) = Ec(τ0)/(1 + χ (t,τ0)ϕ(t,τ0)) = 20.27 GPa; and n̄e,0 = Es/�Ee(t,τ0) =
9.87.
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Eq. 4.40: �σc(t)= 1
1+9.87×0.02

[
−1000×103

90,000
+9.67(1+11.44×0.02)

+142×10−6×200,000×0.02

]
=+1.12 MPa;

Eq. 4.38: σc(t)=−9.67+1.12=−8.55 MPa;
Eq. 4.4: σs(t)= ((−1000×103+8.55×90,000)/1800=−128.0 MPa;

Eq. 4.36b: εs(t)=−128.0/200,000=−640×10−6; and

Eq. 4.5: ε(t)=−640×10−6.

The elastic and shrinkage components of the total concrete strain are εe(t) =
σc(t)/Ec(τ0) = −320 × 10−6 and εsh(t) = −142 × 10−6; and therefore the creep
component of strain is εcr(t) = ε(t) − εe(t) − εsh(t) = −178 × 10−6.
The results of the analyses at first loading and throughout the period of sustained
loading are provided in the following table.

Time t Duration Concrete Steel Total Elastic Creep Shrinkage
(days) of load stress stress strain strain strain strain

t − τ0 σc(t) σs(t) ε(t) εe(t) εcr(t) εsh(t)
(days) (MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

14 0 −9.67 −72.3 −361 −361 0 0
24 10 −8.55 −128 −640 −320 −178 −142
44 30 −7.74 −169 −843 −289 −308 −246
84 70 −7.10 −200 −1002 −266 −411 −325

214 200 −6.48 −232 −1158 −242 −509 −407
514 500 −6.12 −249 −1247 −229 −563 −456

10,014 10,000 −5.73 −269 −1346 −214 −622 −510

By comparison, the variations of stresses and strains in this example if the
approximation of Eq. 4.43 is adopted throughout (i.e. if χ (t,τ0) is equal to
0.65 for all values of t) are provided below. For practical purposes, the two sets
of results are the same.

Time t Duration Concrete Steel Total Elastic Creep Shrinkage
(days) of load stress stress strain strain strain strain

t − τ0 σc(t) σs(t) ε(t) εe(t) εcr(t) εsh(t)
(days) (MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

14 0 −9.67 −72.3 −361 −361 0 0
24 10 −8.55 −128 −639 −320 −177 −142
44 30 −7.74 −169 −843 −289 −307 −246
84 70 −7.10 −201 −1004 −265 −413 −325

214 200 −6.45 −233 −1166 −241 −518 −407
514 500 −6.08 −252 −1258 −227 −575 −456

10,014 10,000 −5.69 −271 −1355 −213 −632 −510
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4.4.4 Example application (AEMM) – Approach 2

As discussed for the SSM, approach 2 involves expressing the constitutive relationship
in terms of the initial stress σc(τ0) and final stress σc(t). Eq. 4.36a is re-expressed as:

ε(t) = σc(τ0)
Ee(t,τ0)

+ σc(t) −σc(τ0)
�Ee(t,τ0)

+ εsh(t)

= σc(τ0)ϕ(t,τ0)[1 −χ (t,τ0)]
Ec(τ0)

+ σc(t)[1 +χ (t,τ0)ϕ(t,τ0)]
Ec(τ0)

+ εsh(t) (4.44)

and rearranging gives:

σc(t) = �Ee(t,τ0)[ε(t) − εsh(t)]+σc(τ0)�Fe,0 (4.45)

where

�Fe,0 = ϕ(t,τ0)
[χ (t,τ0) − 1]

[1 +χ (t,τ0)ϕ(t,τ0)] (4.46)

The steel stress is given by Eq. 4.37b:

σs(t) = Esεs(t)

and, from Eqs 4.4 and 4.5, the equilibrium and compatibility requirements at time t
are:

P = σc(t)Ac +σs(t)As

and

εs(t) = ε(t)

Solving for ε(t) gives:

ε(t) = 1
1 + n̄e,0ρ

[
P

Ac�Ee(t,τ0)
− σc(τ0)�Fe,0 n̄e,0

Es
+ εsh(t)

]
(4.47)

By substituting Eqs 4.45, 4.37b and 4.5 into Eq. 4.4, the concrete stress at time t
can be expressed as:

σc(t) = 1
1 + n̄e,0ρ

[
P
Ac

+σc(τ0)�Fe,0 n̄e,0ρ− εsh(t) Es ρ

]
(4.48)

where ρ = As/Ac, and n̄e,0 = Es/Ee(t,τ0) = the age-adjusted modular ratio.
The steel stress σs(t) is determined by substituting εs(t) = ε(t) into Eq. 4.37b or by

enforcing the requirements of equilibrium (Eq. 4.4).
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Example 4.5

Example 4.4 is repeated here using the AEMM approach 2. As before: Ec(τ0) =
Ee(τ0) = 26.7 GPa; σc(τ0) = −9.67 MPa; σs(τ0) = −72.3 MPa; εs(τ0) = −361 ×
10−6 and ε(τ0) = −361 × 10−6.

At (t − τ0) = 10 days:

ϕ(t,τ0) = 0.53, χ (t,τ0) = 0.60 and εsh(t) = −142 × 10−6.
�Ee(t,τ0) = Ec(τ0)/(1 + χ (t,τ0)ϕ(t,τ0)) = 20.27 GPa; and n̄e,0 = Es/�Ee(t,τ0) =
9.87.

From Eq. 4.46: �Fe,0 = 0.53
[0.60 − 1]

[1 + 0.60 × 0.53)] = −0.160

Eq. 4.48 gives:

σc(t) = 1
1 + 9.87 × 0.02

[
−1000 × 103

90,000
− 9.67 × (−0.160) × 9.87 × 0.02

+ 142 × 10−6 × 200,000 × 0.02

]
= −8.55 MPa

Eq. 4.4: σs(t) = (−1000 × 103 + 8.55 × 90,000)/1800 = −128.0 MPa;
Eq. 4.36b: εs(t) = −128.0/200,000 = −640 × 10−6; and

Eq. 4.5: ε(t) = −640 × 10−6.

The results of the analysis are identical to those obtained using approach 1.

4.5 The rate of creep method (RCM)

4.5.1 Formulation

The rate of creep method was originally proposed by Glanville (Ref. 10) and further
developed by Whitney (Ref. 11) in the early 1930s to describe the time-varying
behaviour of concrete. Dischinger (Ref. 12) first applied the method to the analysis of
concrete structures.

The RCM is based on the assumption that the rate of change of creep with time,
dϕ(t,τ0)/dt(≡ ϕ̇(t,τ )), is independent of the age at loading, τ . This means that creep
curves for concrete loaded at different times are assumed to be parallel, as shown
in Fig 4.10. This, of course, is not true. Better agreement with actual behaviour
is obtained by assuming that creep curves for concrete loaded at different times
are affine rather than parallel, that is, they are assumed to have the same shape.
However, by assuming that the rate of creep is independent of the age at loading,
only a single creep curve is required to calculate creep strains due to any stress
history.
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Figure 4.10 Parallel creep curves assumed in the rate of creep method.

Consider the parallel creep curves of Fig. 4.10. Since the ordinates EF and CD are
assumed to be equal, CD = CF – AB or:

ϕ(t,τi) = ϕ (t,τ0) −ϕ (τi,τ0) (4.49)

The creep–time curve caused by a stress applied at any age τi is thus completely
defined by a single curve ϕ(t,τ0), where τ0 is usually taken to be the age at first loading.

The creep strain at time t caused by a constant stress σc(τi) applied at τi is therefore
taken to be:

εcr(t,τi) = σc(τi)
Ec(τ0)

ϕ(t,τi) = σc(τi)
Ec(τ0)

[ϕ (t,τ0) −ϕ (τi,τ0)] (4.50)

and the change in creep strain between any two time instants t1 and t2 after the loading
at τi is:

�εcr(t,τi) = εcr(t2,τi) − εcr(t1,τi) = σc(τi)
Ec(τ0)

[ϕ (t2,τ0) −ϕ (t1,τ0) ] (4.51)

If a continuously varying stress history is divided into small time intervals δt and
the stress during each interval is considered to be constant, the change of creep strain
during any time interval is given by Eq. 4.51. In the limit, as δt approaches zero, the
rate of change of creep depends only on the current stress and the rate of change of
the creep coefficient and is given by:

d εcr(t,τ )
d t

= σc(t)
Ec(τ0)

d ϕ (t,τ0)
d t

or ε̇cr(t,τ ) = σc(t)
Ec(τ0)

ϕ̇(t,τ0) (4.52)

The rate of change of the instantaneous strain at any time depends on the rate of
change of stress:

d εe(t)
d t

= 1
Ec(τ0)

d σc(t)
d t

or ε̇e(t) = σ̇c(t)
Ec(τ0)

(4.53)

where the elastic modulus of concrete is here assumed to be constant in time.
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If it is further assumed that shrinkage develops at the same rate as creep (i.e. the
creep and shrinkage curves are affine), then:

εsh(t) = εsh(∞)
ϕ(∞,τ0)

ϕ (t,τ0) (4.54)

and the time rate of change of shrinkage is given by:

ε̇sh(t) = εsh(∞)
ϕ(∞,τ0)

ϕ̇ (t,τ0) = ε∗sh
φ∗(τ0)

ϕ̇ (t,τ0) (4.55)

The rate of change of the total concrete strain may be expressed as the sum of
the rates of change of each of the three strain components given by Eqs 4.52, 4.53
and 4.55:

ε̇ (t,τ ) = σ̇c(t)
Ec(τ0)

+ ϕ̇(t,τ0)
[
σc(t)

Ec(τ0)
+ ε∗sh
ϕ∗(τ0)

]
(4.56)

This first order differential equation is a constitutive relationship for concrete that
can be readily included in structural analysis. The solution of the resulting differential
equations is easily obtained for a variety of practical problems. Eq. 4.56 may be
rewritten with the creep coefficient ϕ (≡ ϕ (t,τ )) as the independent variable:

d ε (t,τ )
d ϕ

= 1
Ec(τ0)

d σc(t)
d ϕ

+ σc(t)
Ec(τ0)

+ ε∗sh
ϕ∗(τ0)

(4.57)

Eqs 4.56 and 4.57 were developed by Dischinger (Ref. 12) and this type of
differential constitutive relationship for concrete is often referred to as Dischinger’s
equation of state.

4.5.2 Discussion

The rate of creep method, although mathematically attractive, has several deficiencies.
The assumption of parallel creep curves causes a significant underestimation of creep
in old concrete. As time increases, ϕ̇ (t,τ0) approaches zero and, according to the
RCM, so too does the creep strain for concrete loaded at times much later than τ0.
This is not so. Old concrete does creep, albeit much less than young concrete. The
RCM therefore underestimates creep for an increasing stress history. This error may
be large if significant increases of stress occur at times τi >> τ0.

Eq. 4.52 also implies that when stress is removed, the rate of change of creep is zero,
that is, creep recovery is not predicted. Creep strains are therefore overestimated for
a decreasing stress history. However, for the many practical situations in which loads
are applied on relatively young concrete and the stress does not vary too much with
time, the RCM gives excellent results.

4.5.3 Example application (RCM)

The rate of creep analysis of the column shown in Fig. 4.1 follows the same general
steps as the elastic analysis described in Section 4.2.2. However, since the constitutive
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relationship for concrete is in differential form (Eq. 4.56), it is convenient to also
express the equilibrium and compatibility equations in this form. For clarity, the
arguments t and τ0 are omitted from the various functions in the following analysis.

Noting that the rate of change of the applied load P with time is zero, differentiating
the equilibrium equation with respect to time gives:

Ṗ = Ṅc + Ṅs = σ̇cAc + σ̇s As = 0 (4.58)

For compatibility, the rates of change of concrete and steel strains are identical,
that is:

ε̇ = ε̇s (4.59)

and the constitutive relationships for both the concrete and the steel are:

ε̇ = σ̇c

Ec
+ ϕ̇

[
σc

Ec
+ ε∗sh
ϕ∗

]
and ε̇s = σ̇s

Es
(4.60)

where ϕ̇ = ϕ̇ (t,τ0) ; ε∗sh = εsh(∞); and ϕ∗ = ϕ (∞,τ0). From Eq. 4.58:

σ̇s = − σ̇c
Ac

As
= − σ̇c

ρ
(4.61)

and substituting Eqs 4.60 and 4.61 into Eq. 4.59 gives:

− σ̇c

Esρ
= σ̇c

Ec
+ ϕ̇

[
σc

Ec
+ ε∗sh
ϕ∗

]

Multiplying by Ec and gathering like terms yields:

σ̇c

σc + S
= −nρ

1 + nρ
ϕ̇ (4.62)

where:

S = ε∗sh Ec

ϕ∗ (4.63)

Integrating both sides of Eq. 4.62 with respect to time gives:

ln(σc + S)
∣∣t
t=τ0 = − nρ

1 + nρ
ϕ
∣∣t
t=τ0 i.e. ln

σc(t) + S
σc(τ0) + S

= − nρ
1 + nρ

ϕ (t,τ0).

Solving for concrete stress gives:

σc(t) + S
σc(τ0) + S

= e
−nρ
1+nρ ϕ (t,τ0)
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and therefore:

σc(t) = (σc(τ0) + S) e
−nρ
1+nρ ϕ(t,τ0) − S (4.64)

With the concrete stress obtained from Eq. 4.64, the steel stress may be found from
Eq. 4.4 and the steel strain from Eq. 4.6b. Compatibility requires that the concrete
strain is the same as the steel strain.

Example 4.6

The symmetrically reinforced column subjected to a constant sustained axial
load P that was analysed in Example 4.1 (see Fig. 4.1) is to be re-analysed
using the RCM. As before: P = −1000 kN, Ac = 90,000 mm2; As = 1800 mm2;
ρ = As/Ac = 0.02; Ec(τ0) = 26.7 GPa; Es = 200 GPa; n = Es/Ec(τ0) = 7.48; and
ε∗sh = −510 × 10−6.

The variations of the creep coefficient with time is:

(t − τ0) in days 0 10 30 70 200 500 10,000 (∞)

ϕ(t,τ0) 0 0.53 0.98 1.38 1.83 2.10 2.39

The constants in Eq. 4.64 are:
nρ

1 + nρ
= 7.48 × 0.02

1 + 7.48 × 0.02
= 0.130;

and from Eq. 4.62: S = −510 × 10−6 × 26,700
2.39

= −5.71 MPa.

At first loading, (t − τ0) = 0:

ϕ(t,τ0) = 0;εsh(t) = 0
σc(τ0) = −9.67 MPa; σs(τ0) = −72.3 MPa; εs(τ0) = −361 × 10−6 and ε(τ0) =
−361 × 10−6.

At (t − τ0) = 10 days:

ϕ(t,τ0) = 0.53

Eq. 4.64: σc(t) = (−9.67 − 5.71)e−0.130×0.53 + 5.71 = −8.65 MPa;

Eq. 4.4: σs(t) = −1000 × 10−3 + 8.65 × 90,000
1800

= 123.3 MPa;

Eq. 4.6b: εs(t) = −123.3
200,000

= −616 × 10−6;

Eq. 4.5: ε(t) = −616 × 10−6.
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The elastic and shrinkage components of the total concrete strain are εe(t) =
σc(t)/Ec(τ0) = −323 × 10−6; from Eq. 4.54, the shrinkage component of strain
is εsh(t) = (0.53/2.39) × (−510 × 10−6) = −113 × 10−6 (since the creep and
shrinkage curves are assumed to be affine); and therefore the creep component
of strain is εcr(t) = ε(t) − εe(t) − εsh(t) = −180 × 10−6. It is noted that in this
example using RCM, because of the assumption that the creep and shrinkage
curves have the same shape, different levels of shrinkage from those specified in
the previous examples occur during each time step.

The results of the analyses at first loading and throughout the period of
sustained loading are as follows:

Time t Duration Concrete Steel Total Elastic Creep Shrinkage
(days) of load stress stress strain concrete strain strain

t − τ0 σc(t) σs(t) ε(t) strain εe(t) εcr(t) εsh(t)
(days) (MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

14 0 −9.67 −72.3 −361 −361 0 0
24 10 −8.65 −123 −616 −323 −180 −113
44 30 −7.83 −164 −820 −293 −319 −209
84 70 −7.14 −198 −992 −267 −431 −294

214 200 −6.41 −235 −1175 −240 −544 −391
514 500 −5.99 −256 −1279 −224 −607 −448

10,014 10,000 −5.56 −278 −1388 −208 −670 −510

4.6 Comparison of methods of analysis

A comparison of the numerical results calculated using each method of analysis for
the axially loaded column section considered in Examples 4.1–4.6 is provided in
Table 4.1. The prediction of time-dependent redistribution of stresses and the gradual
development of creep strain with time are compared in Figs 4.11 and 4.12, respectively.

A large redistribution of stresses is predicted by all of the methods of analysis.
In this axially loaded column, the concrete stress decreases substantially with time
and the steel stress increases dramatically. At initial loading, the concrete in the
section carried 87 per cent of the total load. After 10,000 days under load, this has
reduced to 59.3 per cent (according to the AEMM, for example). During this same
time period, the steel stress increased from 72.3 MPa to 269 MPa. This is, in fact,
typical of the redistribution of stresses that takes place with time in reinforced concrete
structures.

The concrete and steel stresses obtained using the AEMM at any time t are almost
identical with those predicted by the much more laborious SSM (calculated with 18
intervals). This is not surprising; since the ageing coefficients were determined from
the concrete stress changes calculated using the SSM. However, if one assumes that
the ageing coefficient is constant and equal to 0.65 at every value of t, as suggested by
Eq. 4.43, the AEMM predicts stresses and total strains to within 1 per cent of these
more refined values.
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Table 4.1 Comparisons of calculated stresses and strains (Examples 4.1–4.6)

Method of Duration Concrete Steel Total Elastic Creep Shrinkage
analysis of load stress stress strain strain strain strain

(days) σc(τi) σs(τi) ε(τi) εe(τi) εcr(τi) εsh(τi)
(MPa) (MPa) (×10−6) (×10−6) (×10−6) (×10−6)

Effective
modulus
method
(EMM)

0 −9.67 −72.3 −361 −361 0 0
10 −8.58 −127 −633 −321 −170 −142
30 −7.82 −165 −824 −292 −285 −246
70 −7.23 −194 −969 −270 −374 −325

200 −6.66 −222 −1112 −249 −456 −407
500 −6.35 −238 −1191 −237 −497 −456

10,000 −6.02 −255 −1273 −225 −538 −510

Age-
adjusted
effective
modulus
method
(AEMM)

0 −9.67 −72.3 −361 −361 0 0
10 −8.55 −128 −640 −320 −178 −142
30 −7.74 −169 −843 −289 −308 −246
70 −7.10 −200 −1002 −266 −411 −325

200 −6.48 −232 −1158 −242 −509 −407
500 −6.12 −249 −1247 −229 −563 −456

10,000 −5.73 −269 −1346 −214 −622 −510

Step-by-step
method
(SSM)

0 −9.67 −72.3 −361 −361 0 0
10 −8.55 −128 −641 −320 −179 −142
30 −7.72 −169 −847 −292 −309 −246
70 −7.09 −201 −1006 −270 −411 −325

200 −6.46 −233 −1164 −249 −508 −407
500 −6.10 −251 −1253 −238 −559 −456

10,000 −5.71 −270 −1349 −226 −613 −510

Rate of creep
method
(RCM)

0 −9.67 −72.3 −361 −361 0 0
10 −8.65 −123 −616 −323 −180 −113
30 −7.83 −164 −820 −293 −319 −209
70 −7.14 −198 −992 −267 −431 −294

200 −6.41 −235 −1175 −240 −544 −391
500 −5.99 −256 −1279 −224 −607 −448

10,000 −5.56 −278 −1388 −208 −670 −510

Figure 4.12 confirms that the EMM underestimates creep strains for a decreasing
stress history, predicting full creep recovery as the stress reduces. The EMM predicts the
smallest creep strain at any time t > τ and the smallest eventual stress redistribution
(see Fig. 4.11). By contrast, the RCM overestimates creep for this decreasing stress
history because it does not allow for any creep recovery. The RCM predicts the largest
creep strain and the largest stress redistribution. However, for this simple example,
good results are obtained using the RCM at all times after loading with relatively little
computational effort.

It is noted that the magnitudes of the stresses and deformations predicted by the SSM
and the AEMM lie between the magnitudes predicted by the EMM (which is known to
underestimate the effects of creep for a decreasing stress history) and the magnitudes
predicted by the RCM (which is known to overestimate the effects of creep). Although
the total strain predicted by the AEMM and the SSM are almost identical, the elastic
strain is different. The AEMM assumes that the total change of stress is applied at τ0
and so the elastic strain at any time t is taken as the concrete stress at that time divided
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Figure 4.11 Stress redistributions in axially loaded column examples.
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by the elastic modulus at τ0. In the SSM, the elastic strain caused by a change of stress
at any time t(> τ0) is calculated using the elastic modulus at that time. Therefore,
in the example considered here, with a decreasing stress history, the AEMM slightly
underestimates the elastic strain predicted by the SSM and, as a consequence, slightly
overestimates the creep strain.

The results from the SSM depend on the number of time steps considered and the
shape of the numerous creep coefficient versus time curves required for the analysis.
More accurate results are obtained as the number of time steps increases. The increased
amount of input data required and the considerable extra computational effort
associated with the SSM normally make it suitable only for computer applications.

For manual calculations, the AEMM has much to recommend it. It is usually the
most satisfactory alternative in terms of both efficiency and accuracy and can be easily
incorporated into most existing structural analysis packages.
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5 Uncracked sections
Axial force and uniaxial bending

5.1 Introductory remarks

In this chapter, time analyses are presented for a variety of uncracked cross-sections
containing at least one axis of symmetry and subjected to axial load and uniaxial
bending. The concrete is assumed to be able to carry any applied tension and is
therefore uncracked. Symmetrically reinforced and asymmetrically reinforced sections
containing any number of levels of both non-prestressed and prestressed reinforcement
are considered. Composite steel–concrete and composite concrete–concrete sections
are also examined.

The proposed methods of analysis are based on the assumptions of the Euler–
Bernoulli beam theory, in which plane sections are assumed to remain plane and
perpendicular to the beam axis before, and after, both short- and long-term deforma-
tions. This means that the strain distributions on the cross-section, both immediately
upon loading and after a prolonged period of sustained loading and shrinkage, are
assumed to be linear.

5.2 Overview of cross-sectional analysis

Cross-sectional analysis is used extensively for modelling structural response at both
service and ultimate load conditions. With this approach, the governing equilibrium
equations describing the behaviour of any cross-section are expressed in terms of two
unknowns that define the strain diagram. These unknowns can be identified by a single
value of strain measured at the level of the reference axis εr and the slope of the strain
diagram κ (which is, of course, the curvature of the cross-section).

Considering the cross-section shown in Fig. 5.1a, the section is symmetrical about
the y-axis and the orthogonal x-axis is selected as the reference axis. If the cross-section
is subjected to an axial force applied at the origin of the x- and y-axes and a bending
moment applied about the x-axis, the strain diagram is shown in Fig. 5.1b and the
strain at any depth y below the reference axis is given by:

ε = εr + yκ (5.1)

The two unknowns of the problem, εr and κ, are then determined by enforcing
horizontal and rotational equilibrium at the cross-section:

Ni = Ne (5.2a)
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Figure 5.1 Generic cross-section.

and

Mi = Me (5.2b)

where Ne and Me denote the external axial force and moment, respectively, at the
section and Ni and Mi are the internal axial force and moment, respectively, given by:

Ni =
∫

A
σ dA (5.3a)

and

Mi =
∫

A
yσ dA (5.3b)

When the two unknowns (εr and κ) are calculated from the two equilibrium
equations (Eqs 5.2) and the strain is determined using Eq. 5.1, the stresses in the
concrete and steel may be obtained from the appropriate constitutive relationships.
The internal actions are then readily determined from the stresses using Eqs 5.3.

This procedure forms the basis of both the short- and long-term analyses presented
in the remainder of this chapter.

5.3 Short-term analysis of reinforced or prestressed
concrete cross-sections

The short-term analysis of an uncracked reinforced or prestressed concrete cross-
section at service loads is usually made assuming linear-elastic behaviour of the
concrete (in compression and tension) and linear-elastic behaviour of the non-
prestressed reinforcement and the prestressing steel. The procedure can be applied
to typical cross-sections such as those shown in Fig. 5.2.

Without any loss of generality, it is assumed that the contribution of each reinforcing
bar or prestressing tendon is lumped into layers according to its location, as shown in
Fig. 5.3. The numbers of layers of non-prestressed and prestressed reinforcement are
ms and mp, respectively. In Fig. 5.3b, ms = 3 and mp = 2. In particular, the properties of
each layer of non-prestressed reinforcement are defined by its area, elastic modulus and
location with respect to the arbitrarily chosen x-axis and are labelled as As(i), Es(i) and
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Typical non-prestressed
steel reinforcement

Typical prestressed
steel reinforcement

Figure 5.2 Typical reinforced and prestressed concrete sections.

ys(i), respectively. With this notation the subscript ‘s’ stands for (non-prestressed) steel
reinforcement and i = 1, . . . ,ms. Similarly, Ap(i), Ep(i) and yp(i) represent, respectively,
the area, elastic modulus and location of the prestressing steel with respect to the x-axis
and i = 1, . . . ,mp.

The geometric properties of the concrete part of the cross-section are Ac, Bc and Ic,
which denote the area and the first and second moments of area of the concrete about
the x-axis, respectively.

For the short-term or instantaneous analysis, assumed to take place at time τ0, the
linear-elastic stress-strain relationships of the concrete and the steel are:

σc,0 = Ec,0ε0 (5.4a)

σs(i),0 = Es(i)ε0 (5.4b)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init

)
(5.4c)

in which σc,0, σs(i),0 and σp(i),0 represent the stresses in the concrete, in the i-th layer of
non-prestressed reinforcement (with i = 1, . . . ,ms) and in the i-th layer of prestressing
steel (with i = 1, . . . ,mp), respectively, immediately after first loading at time τ0, while

x

y

Ac, Bc, Ic

(a) Generic cross-section

ds(1)
ys(1) As(1)

As(2)

Ap(1)

Ap(2)

As(3)

ys(2)

yp(1)

yp(2)

ys(3)

ds(2)

dp(1)

dp(2)
ds(3)

Concrete

(b) The contribution of each reinforcement bar or
 tendon is lumped into layers located ys(i) and
 yp(i) from the reference axis (x-axis) 

Non-prestressed steel reinforcement

Prestressed steel
reinforcement

Non-prestressed steel
reinforcement 

Figure 5.3 Generic cross-section and arrangement of reinforcement.
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εp(i),init is the initial strain in the i-th layer of prestressing steel produced by the initial
tensile prestressing force Pp(i),init (i.e. the prestressing force before the prestress is
transferred to the concrete) and given by:

εp(i),init = Pp(i),init

Ap(i)Ep(i)
(5.5)

With this method, the prestressing force is included in the analysis by means of an
induced strain εp(i),init rather than as an external action (Refs 1 and 2).

For the short-term analysis at time τ0, the internal axial force and moment resisted
by the cross-section about the reference axis are denoted Ni,0 and Mi,0, respectively.
The internal axial force Ni,0 is the sum of the axial forces resisted by the component
materials forming the cross-section and is given by:

Ni,0 = Nc,0 + Ns,0 + Np,0 (5.6)

where Nc,0, Ns,0 and Np,0 represent the axial forces resisted by the concrete, the non-
prestressed reinforcement and the prestressing steel, respectively, and are calculated
from:

Nc,0 =
∫

Ac

σc,0 dA =
∫

Ac

Ec,0(εr,0 + yκ0)dA = AcEc,0εr,0 + BcEc,0κ0 (5.7a)

Ns,0 =
ms∑
i=1

(
As(i)Es(i)

)(
εr,0 + ys(i)κ0

)=
ms∑
i=1

(
As(i)Es(i)

)
εr,0 +

ms∑
i=1

(
ys(i)As(i)Es(i)

)
κ0

(5.7b)

Np,0 =
mp∑
i=1

(
Ap(i)Ep(i)

)
εr,0 +

mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
κ0 +

mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(5.7c)

where the additional subscripts ‘0’ used for the strain at the level of the reference axis
(εr,0) and the curvature (κ0) highlight that these are calculated at time τ0 after the
application of Ne,0 and Me,0 and after the transfer of prestress.

By substituting Eqs 5.7 into Eq. 5.6, the equation for Ni,0 is expressed in terms of
the actual geometry and elastic moduli of the materials forming the cross-section:

Ni,0 =
(

AcEc,0 +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i)

)
εr,0

+
(

BcEc,0 +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
κ0 +

mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)

= RA,0εr,0 + RB,0κ0 +
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(5.8)
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in which RA,0 and RB,0 represent, respectively, the axial rigidity and the stiffness
related to the first moment of area about the reference axis calculated at time τ0 and
are given by:

RA,0 = AcEc,0 +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) (5.9a)

RB,0 = BcEc,0 +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i) (5.9b)

Similarly, the equation for Mi,0 may be expressed as:

Mi,0 =
(

BcEc,0 +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
εr,0

+
(

IcEc,0 +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

)
κ0

+
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)

= RB,0 εr,0 + RI,0 κ0 +
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)
(5.10)

where RI,0 is the flexural rigidity at time τ0 given by:

RI,0 = IcEc,0 +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i) (5.11)

Substituting the expressions for Ni,0 and Mi,0 (Eqs 5.8 and 5.10) into Eqs 5.2
produces the system of equilibrium equations that may be written in compact form as:

re,0 = D0ε0 + fp,init (5.12)

where

re,0 =
[

Ne,0

Me,0

]
(5.13a)

D0 =
[
RA,0 RB,0

RB,0 RI,0

]
(5.13b)

ε0 =
[
εr,0

κ0

]
(5.13c)

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.13d)
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The vector re,0 is the vector of the external actions at first loading (at time τ0), i.e.
axial force Ne,0 and moment Me,0; the matrix D0 contains the cross-sectional material
and geometric properties calculated at τ0; the strain vector ε0 contains the unknown
independent variables describing the strain diagram at time τ0 (εr,0 and κ0); and the
vector fp,init contains the actions caused by the initial prestressing.

The vector ε0 is readily obtained by solving the equilibrium equations (Eq. 5.12)
giving:

ε0 = D−1
0

(
re,0 − fp,init

)= F0
(
re,0 − fp,init

)
(5.14)

where

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]
(5.15)

The stress distribution related to the concrete and reinforcement can then be
calculated from the constitutive equations (Eqs 5.4) re-expressed here as:

σc,0 = Ec,0ε0 = Ec,0[1 y]ε0 (5.16a)

σs(i),0 = Es(i)ε0 = Es(i)[1 ys(i)]ε0 (5.16b)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init

)= Ep(i)[1 yp(i)] ε0 + Ep(i)εp(i),init (5.16c)

where ε0 = εr,0 + yκ0 = [1 y] ε0.
Although this procedure is presented here assuming linear-elastic material proper-

ties, it is quite general and is also applicable to non-linear material behaviour, in which
case the integrals of Eqs 5.3 might have to be evaluated numerically. However, when
calculating the short-term response of uncracked reinforced and prestressed concrete
cross-sections under typical in-service loads, material behaviour is essentially linear
elastic.

In reinforced and prestressed concrete design, it is common to calculate the cross-
sectional properties by transforming the section into equivalent areas of one of the
constituent materials. For example, for the cross-section of Fig. 5.3a, the transformed
concrete cross-section for the short-term analysis is shown in Fig. 5.4, with the area
of each layer of bonded steel reinforcement and tendons (As(i) and Ap(i), respectively)
transformed into equivalent areas of concrete (ns(i),0As(i) and np(i),0Ap(i), respectively),
where ns(i),0 = Es(i)/Ec,0 is the modular ratio of the i-th layer of non-prestressed steel
and np(i),0 = Ep(i)/Ec,0 is the modular ratio of the i-th layer of prestressing steel.

For the transformed section of Fig. 5.4, the cross-sectional rigidities defined in
Eqs 5.9 and 5.11 can be re-calculated as:

RA,0 = A0Ec,0 (5.17a)

RB,0 = B0Ec,0 (5.17b)

RI,0 = I0Ec,0 (5.17c)

where A0 is the area of the transformed concrete section, and B0 and I0 are the
first and second moments of the transformed area about the reference x-axis at first
loading.
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if bonded
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y

Figure 5.4 Transformed section with bonded reinforcement transformed into equivalent areas
of concrete.

Substituting Eqs 5.17 into Eq. 5.15 enables F0 to be expressed in terms of the
properties of the transformed concrete section as:

F0 = 1

Ec,0(A0I0 − B2
0)

[
I0 −B0

−B0 A0

]
(5.18)

The two approaches proposed for the calculation of the cross-sectional rigidities,
i.e. the one based on Eqs 5.9 and 5.11 and the one relying on the properties
of the transformed section (Eqs 5.17), are equivalent. The procedure based on
the transformed section (Eqs 5.17) is often preferred for the analysis of rein-
forced and prestressed concrete sections, while for composite steel–concrete and
concrete–concrete cross-sections, the procedure based on Eqs 5.9 and 5.11 is gen-
erally more convenient. The use of both approaches is illustrated in the following
examples.

Example 5.1

For the reinforced concrete section shown in Fig. 5.5, the strain and stress
distributions are to be determined immediately after application of an axial force
Ne,0 = −30 kN and a sagging (positive) bending moment of Me,0 = 50 kNm,
applied with respect to the x-axis located 200 mm below the top fibre of the
cross-section. Both the concrete and reinforcement are assumed to be linear-
elastic with Ec,0 = 25 GPa and Es = 200 GPa. The modular ratio for the
reinforcing steel is therefore ns,0 = ns(1),0 = ns(2),0 = Es/Ec,0 = 8.
For this reinforced concrete cross-section, fp,init is a nil vector and the vector of
external actions is:

re,0 =
[

−30 × 103 N
50 × 106 Nmm

]
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Figure 5.5 Reinforced concrete cross-section for Example 5.1 (dimensions in mm).

With the steel reinforcement transformed into equivalent areas of concrete, the
relevant properties of the transformed cross-section for inclusion in the F0 matrix
(Eq. 5.18) are calculated as follows:

A0 = bD + (ns,0 − 1)[As(1) + As(2)] = 300 × 600 + (8 − 1) ×[620 + 1800]
= 196,900 mm2

B0 = bD
(

D
2

− dref

)
+ (ns,0 − 1)[As(1)ys(1) + As(2)ys(2)]

= 300 × 600 × (300 − 200) + (8 − 1) ×[620 × (−150) + 1800 × 350]
= 21,760 × 103 mm3

I0 = bD3

12
+ bD

(
D
2

− dref

)2

+ (ns,0 − 1)[As(1)y
2
s(1) + As(2)y

2
s(2)]

= 300 × 6003

12
+ 300 × 600(300 − 200)2 + (8 − 1)

×[620 × (−150)2 + 1800 × 3502] = 8841 × 106 mm4

From Eq. 5.18:

F0 = 1
25,000 × (196,900 × 8841 × 106 − (21,760 × 103)2)

×
[

8841 × 106 −21,760 × 103

−21,760 × 103 196,900

]

=
[

278.9 × 10−12 N−1 −686.5 × 10−15 N−1mm−1

−686.5 × 10−15 N−1mm−1 6.214 × 10−15 N−1mm−2

]
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The strain vector ε0 containing the unknown strain variables is determined from
Eq. 5.14:

ε0 =
[

278.9 × 10−12 −686.5 × 10−15

−686.5 × 10−15 6.214 × 10−15

]
×
{[

−30 × 103

50 × 106

]
−
[
0
0

]}

=
[

−42.7 × 10−6

0.331 × 10−6 mm−1

]

The strain at the reference axis and the curvature are therefore:

εr,0 = −42.7 × 10−6 and κ0 = 0.331 × 10−6 mm−1

and, from Eq. 5.1, the top (y = −200 mm) and bottom (y = +400 mm) fibre
strains are:

ε0(top) = εr,0 − 200 × κ0 = (−42.7 − 200 × 0.331) × 10−6 = −108.9 × 10−6;

and

ε0(btm) = εr,0 + 400 × κ0 = (−42.7 + 400 × 0.331) × 10−6 = +89.8 × 10−6.

The top and bottom fibre stresses in the concrete and the stresses in the two
layers of reinforcement are obtained from Eqs 5.16:

σc,0(top) = Ec,0

[
1 yc(top)

]
ε0 = 25 × 103 × [1 −200

][−42.7 × 10−6

0.331 × 10−6

]
= −2.72 MPa

σc,0(btm) = Ec,0
[
1 yc(btm)

]
ε0 = 25 × 103 × [1 400

][−42.7 × 10−6

0.331 × 10−6

]
= 2.25 MPa

σs(1),0 = Es(1)
[
1 ys(1)

]
ε0 = 200 × 103 × [1 −150

][−42.7 × 10−6

0.331 × 10−6

]
= −18.5 MPa

σs(2),0 = Es(2)
[
1 ys(2)

]
ε0 = 200 × 103 [1 350

][−42.7 × 10−6

0.331 × 10−6

]
= 14.6 MPa



146 Uncracked sections

The results are plotted in Fig. 5.6.
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(a) Cross-section (b) Strain diagram
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Figure 5.6 Strain and stress diagrams for Example 5.1.

The cross-sectional rigidities could have also been calculated using Eqs 5.9 and
5.11 without transforming the section as follows:

RA,0 = AgrossEc,0 +
ms∑
i=1

As(i)(Es(i)−Ec,0) = bDEc,0 +(As(1) + As(2)
)
(Es − Ec,0)

= 300 × 600 × 25,000 + (620 + 1800) × (200,000 − 25,000)

= 4923 × 106 N

RB,0 = Agross

(
D
2

− dref

)
Ec,0 +

ms∑
i=1

ys(i)As(i)(Es(i) − Ec,0)

= 300 × 600 ×
(

600
2

− 200
)

× 25,000 + [620 × (−150) + 1800 × 350]

× (200,000 − 25,000) = 543.9 × 109Nmm

RI,0 =
[

Igross + Agross

(
D
2

− dref

)2
]

Ec,0 +
ms∑
i=1

y2
s(i)As(i)(Es(i) − Ec,0)

=
[
300 × 6003

12
+ 300 × 600(300 − 200)2

]
× 25,000 +

[
620 × (−150)2

+1800 × 3502
]
× (200,000 − 25,000) = 221.0 × 1012 Nmm2
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and F0 can then be obtained from Eq. 5.15 as:

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]

= 1

4923 × 106 × 221.0 × 1012 − (543.9 × 109
)2

×
[

221.0 × 1012 −543.9 × 109

−543.9 × 109 4923 × 106

]

=
[

278.9 × 10−12 N−1 −686.5 × 10−15 N−1mm−1

−686.5 × 10−15 N−1mm−1 6.214 × 10−15 N−1mm−2

]

and this, of course, is identical to that calculated previously using Eq. 5.18.

Example 5.2

The instantaneous stress and strain distributions on the precast pretensioned
concrete section shown in Fig. 5.7 are to be calculated. The cross-section is
that of a Girder Type 3 from the AS5100.5 (Ref. 3) guidelines, with the area
of the gross section Agross = 317 × 103 mm2 and the second moment of area
of the gross-section about the centroidal axis Igross = 49,900 × 106 mm4. The
centroid of the gross cross-sectional area is located 602 mm below its top fibre,
i.e. dc = 602 mm. The section is subjected to a compressive axial force Ne,0 =
−100 kN and a hogging moment of Me,0 = −50 kNm applied with respect to
the reference x-axis, that is taken in this example to be 300 mm below the top
fibre of the cross-section. All materials are linear-elastic with Ec,0 = 32 GPa
and Es = Ep = 200 GPa. The modular ratios of the reinforcing steel and the
prestressing steel are therefore ns(i),0 = np(i),0 = 6.25. The prestressing forces
applied to the top and bottom tendons (Ap(1) and Ap(2), respectively) prior to
the transfer of prestress are Pp(1),init = Pp(2),init = 1000 kN.
The distances of the steel layers from the reference axis are ys(1) = −240 mm,
ys(2) = +790 mm, yp(1) = +580 mm and yp(2) = +710 mm. From Eq. 5.5, the
initial strains in the prestressing steel layers prior to the transfer of prestress to
the concrete are:

εp(1),init = εp(2),init = 1000 × 103

800 × 200 × 103 = 0.00625

The vector of external actions at first loading is

re,0 =
[

−100 × 103 N
−50 × 106 Nmm

]
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Figure 5.7 Precast prestressed concrete section for Example 5.2 (dimensions in mm).

and, from Eq. 5.13d, the vector of initial prestressing forces is:

fp,init =
2∑

i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]

=
[

800 × 200,000 × 0.00625
580 × 800 × 200,000 × 0.00625

]
+
[

800 × 200,000 × 0.00625
710 × 800 × 200,000 × 0.00625

]

=
[

2000 × 103 N
1290 × 106 Nmm

]

The relevant cross-sectional properties of the transformed section expressed in
equivalent concrete areas are:

A0 = Agross + (ns,0 − 1)[As(1) + As(2)]+ (np,0 − 1)[Ap(1) + Ap(2)]
= 317 × 103 + (6.25 − 1) ×[900 + 1800]+ (6.25 − 1) ×[800 + 800]
= 339.6 × 103 mm2

B0 = Agross(dc − dref ) + (ns,0 − 1)[As(1)ys(1) + As(2)ys(2)]
+ (np,0 − 1)[Ap(1)yp(1) + Ap(2)yp(2)] = 317 × 103 × (602 − 300)

+ (6.25 − 1) ×[900 × (−240) + 1800 × 790]+ (6.25 − 1)

×[800 × 580 + 800 × 710] = 107.5 × 106 mm3

I0 = Igross + Agross(dc − dref )2 + (ns,0 − 1)(As(1)y
2
s(1) + As(2)y

2
s(2))

+ (np,0 − 1)(Ap(1)y
2
p(1) + Ap(2)y

2
p(2)) = 49,900 × 106 + 317 × 103

× (602 − 300)2 + (6.25 − 1) ×[900 × (−240)2 + 1800 × 7902]
+ (6.25 − 1) ×[800 × 5802 + 800 × 7102] = 88,510 × 106 mm4
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From Eq. 5.18:

F0 = 1
32,000 × (339,600 × 88,510 × 106 − (107.5 × 106)2)

×
[

88,510 × 106 −107.5 × 106

−107.5 × 106 339,600

]

=
[

149.5 × 10−12 N−1 −181.5 × 10−15 N−1mm−1

−181.5 × 10−15 N−1mm−1 573.5 × 10−18 N−1mm−2

]

The strain vector ε0 containing the unknown strain variables is determined from
Eq. 5.14:

ε0 = F0
(
re,0 − fp,init

)=
[

149.5 × 10−12 −181.5 × 10−15

−181.5 × 10−15 573.5 × 10−18

]

×
{[

−100 × 103

−50 × 106

]
−
[

2000 × 103

1290 × 106

]}

=
[

−70.7 × 10−6

−0.387 × 10−6 mm−1

]

The strain at the reference axis and the curvature are therefore εr,0 = −70.7 ×
10−6 and κ0 = −0.387×10−6 mm−1 and, from Eq. 5.1, the top (y = −300 mm)
and bottom (y = +850 mm) fibre strains are:

ε0(top) =εr,0−300×κ0 = (−70.7−300×(−0.387))×10−6 =+45.5×10−6

and

ε0(btm) =εr,0+850×κ0 = (−70.7+850×(−0.387))×10−6 =−399.8×10−6

From Eq. 5.16a, the top and bottom fibre stresses in the concrete are:

σc,0(top) = Ec,0ε0(top) = 32,000 × 45.5 × 10−6 = +1.45 MPa

σc,0(btm) = Ec,0ε0(btm) = 32,000 × (−399.8) × 10−6 = −12.8 MPa

and, from Eq. 5.16b, the stresses in the two layers of non-prestressed
reinforcement are:

σs(1),0 = 200 × 103 × [1 −240
][ −70.7 × 10−6

−0.387 × 10−6

]
= 4.5 MPa

and

σs(2),0 = 200 × 103 ×
[
1 790

][ −70.7 × 10−6

−0.387 × 10−6

]
= −75.3 MPa
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The stresses in the two layers of prestressing steel are obtained from Eq. 5.16c:

σp(1),0 = Ep
[
1 yp(1)

]
ε0 + Epεp(1),init

= 200 × 103 × [1 580
][ −70.7 × 10−6

−0.387 × 10−6

]
+ 200,000 × 0.00625

= 1191 MPa

and

σp(2),0 = Ep
[
1 yp(2)

]
ε0 + Epεp(2),init

= 200 × 103 × [1 710
][ −70.7 × 10−6

−0.387 × 10−6

]
+ 200,000 × 0.00625

= 1181 MPa.

The stress and strain distributions are plotted in Fig. 5.8.

y

x

k0 = −0.387 × 10−6 mm−1

(a) Cross-section (b) Strain diagram (c) Stress diagram (MPa)

e s

+45.5 × 10−6 +1.45
4.5

1191

1181

−399.8 × 10−6 −12.8

−75.3

Figure 5.8 Strain and stress diagrams for Example 5.2.

As already outlined in Example 5.1, the cross-sectional rigidities included in F0
can also be calculated based on Eqs 5.9 and 5.11 considering the individual
contribution of each component without modifying their geometry (i.e. without
transforming the section):

RA,0 = AgrossEc,0 + (As(1) + As(2)
)(

Es − Ec,0
)+ (Ap(1) + Ap(2)

)(
Ep − Ec,0

)
= 10,866 × 106 N

RB,0 = Agross
(
dc − dref

)
Ec,0 + (As(1)ys(1) + As(2)ys(2)

)(
Es − Ec,0

)
+ (Ap(1)yp(1) + Ap(2)yp(2)

)(
Ep − Ec,0

)= 3439 × 109 Nmm

RI,0 =
[
Igross + Agross

(
dc − dref

)2]Ec,0 +
(
As(1)y

2
s(1) + As(2)y

2
s(2)

)(
Es − Ec,0

)
+
(
Ap(1)y

2
p(1) + Ap(2)y

2
p(2)

)(
Ep − Ec,0

)= 2832 × 1012 Nmm2
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Matrix F0 can then be determined as (Eq. 5.15):

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]

=
[

149.5 × 10−12 N−1 −181.5 × 10−15 N−1mm−1

−181.5 × 10−15 N−1mm−1 573.5 × 10−18 N−1mm−2

]

5.4 Long-term analysis of reinforced or prestressed concrete
cross-sections using the age-adjusted effective modulus
method (AEMM)

Cross-sectional analysis using the age-adjusted effective modulus method (see
Section 4.4) provides an effective tool for determining how stresses and strains vary
with time due to creep and shrinkage of concrete and relaxation of the prestressing steel
(if any). For this purpose, two instants in time are identified, as shown in Fig. 5.9. One
time instant is the time at first loading, i.e. t = τ0, and one represents the instant in time
at which stresses and strains need to be evaluated, i.e. t = τk. It is usually convenient
to measure time in days starting from the time when the concrete is poured.

During the time interval �tk (= τk − τ0), creep and shrinkage strains develop in the
concrete and relaxation occurs in the prestressing steel. The gradual change of strain in
the concrete with time causes changes of stress in the bonded reinforcement. In general,
as the concrete shortens due to compressive creep and shrinkage, the reinforcement
is compressed and there is a gradual increase in the compressive stress in the non-
prestressed reinforcement and a gradual loss of prestress in any bonded prestressing
tendons. To maintain equilibrium, the gradual change of force in the steel at each
bonded reinforcement level is opposed by an equal and opposite restraining force
on the concrete, as shown in Fig. 5.10. These gradually applied forces (�Tc.s(i) and
�Tc.p(i)) are usually tensile and, for a prestressed or partially-prestressed cross-section,
tend to relieve the concrete of its initial compression.

The resultants of the creep and shrinkage-induced internal restraining forces on the
concrete are an increment of axial force �N(τk) and an increment of moment about
the reference axis �M(τk) given by:

�N(τk) =
ms∑
i=1

�Tc.s(i) +
mp∑
i=1

�Tc.p(i) (5.19a)

and

�M(τk) =
ms∑
i=1

�Tc.s(i)ys(i) +
mp∑
i=1

�Tc.p(i)yp(i) (5.19b)

Equal and opposite actions −�N(τk) and −�M(τk) are applied to the bonded steel
parts of the cross-section.
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Figure 5.9 Relevant instants in time (AEMM).
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Figure 5.10 Time-dependent actions and deformations.

The strain at any depth y below the reference axis at time τk may be expressed in
terms of the strain at the reference axis εrk and the curvature κk:

εk = εr,k + yκk (5.20)

The magnitude of the change of strain that occurs with time �εk (= εk − ε0) is the
sum of each of the following components:

(a) the free shrinkage strain εsh(τk) (which is usually considered to be uniform over
the section);

(b) the unrestrained creep strain caused by the initial concrete stress σc,0 existing
at the beginning of the time period, i.e. εcr,k = ϕ(τk,τ0)σc,0/Ec,0; and

(c) the creep and elastic strain caused by �N(τk) and �M(τk) gradually applied
to the concrete cross-section throughout the time period.

For the time analysis, the steel reinforcement and prestressing tendons (if any)
are assumed to be linear-elastic (as for the short-term analysis) and the constitutive
relationship for the concrete is that given by Eq. 4.45. The stress-strain relationships
for each material at τ0 and at τk are as follows.

At τ0:

σc,0 = Ec,0ε0 (5.21a)

σs(i),0 = Es(i)ε0 (5.21b)

σp(i) = Ep(i)
(
ε0 + εp(i),init

)
(5.21c)
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At τk:

σc,k = �Ee,k
(
εk − εsh,k

)+�Fe,0σc,0 (5.22a)

σs(i),k = Es(i)εk (5.22b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)
(5.22c)

where �Fe,0 is given by Eq. 4.46, �Ee,k is the age-adjusted effective modulus at t = τk
(Eq. 4.35), and εp.rel(i),k is the tensile creep strain that has developed in the i-th
prestressing tendon at time τk (often referred to as the relaxation strain) and may
be calculated from:

εp.rel(i),k = Pp(i),init

Ap(i)Ep(i)
ϕp(τk,σp(i),init) = εp(i),init ϕp(τk,σp(i),init) (5.23a)

where ϕp(τk,σp(i),init) is the creep coefficient for the prestressing steel at time τk due to
an initial stress σp(i),init in the i-th prestressing tendon just prior to transfer (as given
in Table 2.7). Alternatively, εp.rel(i),k may be calculated from the relaxation R given in
Eq. 2.11 or included in Table 2.7 as:

εp.rel(i),k = εp(i),init R (5.23b)

The governing equations describing the long-term behaviour of a cross-section
are obtained by enforcing equilibrium at the cross-section at time τk following the
approach already presented in the previous section for the instantaneous analysis
at time τ0 (Eqs 5.4–5.18), and by extending the approach outlined for axially
loaded uncracked cross-sections in Sections 4.4.1 and 4.4.4. Restating the equilibrium
equations (Eqs 5.2) at time τk gives:

re,k = ri,k (5.24)

where

re,k =
[

Ne,k

Me,k

]
(5.25a)

and

ri,k =
[

Ni,k

Mi,k

]
(5.25b)

Ni,k and Mi,k depict the internal axial force and moment resisted by the cross-section
at time τk, while Ne,k and Me,k represent the external applied loads at this time. As in
Eq. 5.6, the axial force Ni,k is the sum of the axial forces carried by the concrete, the
reinforcement and the tendons:

Ni,k = Nc,k + Ns,k + Np,k (5.26)
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Considering the time-dependent constitutive relationship for the concrete
(Eq. 5.22a), the axial force resisted by the concrete at time τk can be expressed as:

Nc,k =
∫

Ac

σc,k dA =
∫

Ac

[�Ee,k
(
εr,k + yκk − εsh,k

)+�Fe,0σc,0
]
dA

= Ac�Ee,kεr,k + Bc�Ee,kκk − Ac�Ee,kεsh,k +�Fe,0Nc,0 (5.27)

where εr,k and κk are the strain at the level of the reference axis and the curvature at time
τk, while Nc,0 is the axial force resisted by the concrete at time τ0. For the time analysis,
Nc,0 is assumed to be known having been determined during the instantaneous analysis
from Eq. 5.7a.

Using the constitutive equations for the steel (Eqs 5.22b and c), the axial forces
carried by the reinforcing bars and the prestressing steel at time τk are calculated as:

Ns,k =
ms∑
i=1

(
As(i)Es(i)

)
εr,k +

ms∑
i=1

(
ys(i)As(i)Es(i)

)
κk (5.28a)

Np,k =
mp∑
i=1

(
Ap(i)Ep(i)

)
εr,k +

mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
κk

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),k

)]
(5.28b)

By substituting Eqs 5.27 and 5.28 into Eq. 5.26, the internal axial force is given by:

Ni,k =
(

Ac�Ee,k +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i)

)
εr,k +

(
Bc�Ee,k +

ms∑
i=1

ys(i)As(i)Es(i)

+
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
κk − Ac�Ee,kεsh,k +�Fe,0Nc,0

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),k

)]

= RA,kεr,k + RB,kκk − Ac�Ee,kεsh,k +�Fe,0Nc,0

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),k

)]
(5.29)

where the axial rigidity and the stiffness related to the first moment of area calculated
at time τk have been referred to as RA,k and RB,k, respectively, and are given by:

RA,k = Ac�Ee,k +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) (5.30a)

RB,k = Bc�Ee,k +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i) (5.30b)
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In a similar manner, the internal moment Mi,k resisted by the cross-section at time
τk can be expressed as:

Mi,k =
(

Bc�Ee,k +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
εr,k

+
(

Ic�Ee,k +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

)
κk − Bc�Ee,kεsh,k

+�Fe,0Mc,0 +
mp∑
i=1

[
yp(i)Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),k

)]

= RB,kεr,k + RI,kκk − Bc�Ee,kεsh,k +�Fe,0Mc,0

+
mp∑
i=1

[
yp(i)Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),k

)]
(5.31)

where the flexural rigidity of the cross-section calculated at time τk, referred to as RI,k
in Eq. 5.31, is given by:

RI,k = Ic�Ee,k +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i) (5.32)

and Mc,0 is the moment resisted by the concrete component at time τ0 and from the
instantaneous analysis:

Mc,0 =
∫

Ac

yσc,0 dA =
∫

Ac

yEc,0
(
εr,0 + yκ0

)
dA = BcEc,0εr,0 + IcEc,0κ0 (5.33)

After substituting Eqs 5.29 and 5.31 into Eq. 5.24, the equilibrium equations at
time τk may be written in compact form as:

re,k = Dkεk + fcr,k − fsh,k + fp,init − fp.rel,k (5.34)

where

εk =
[
εr,k

κk

]
(5.35a)

and

Dk =
[
RA,k RB,k

RB,k RI,k

]
(5.35b)

The vector fcr,k represents the creep effect produced by the stress σc,0 resisted by the
concrete at time τ0 and is given by:

fcr,k =�Fe,0

[
Nc,0

Mc,0

]
=�Fe,0Ec,0

[
Acεr,0 + Bcκ0

Bcεr,0 + Icκ0

]
(5.36)
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and�Fe,0 is given in Eq. 4.46. The vector fsh,k accounts for the uniform shrinkage strain
that develops in the concrete over the time period and is given by:

fsh,k =
[
Ac

Bc

]
�Ee,kεsh,k (5.37)

The vector fp,init in Eq. 5.34 accounts for the initial prestress and the vector fp.rel,k
accounts for the resultant actions caused by the loss of prestress in the tendon due to
relaxation. These are given by:

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.38a)

and

fp.rel,k = fp,init ϕp(τk,σp(i),init) (5.38b)

Eq. 5.34 can be solved for εk as:

εk = D−1
k

(
re,k − fcr,k + fsh,k − fp,init + fp.rel,k

)
= Fk

(
re,k − fcr,k + fsh,k − fp,init + fp.rel,k

)
(5.39)

where

Fk = 1

RA,k RI,k − R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]
(5.40)

The stress distribution at time τk can then be calculated as follows:

σc,k = �Ee,k
(
εk − εsh,k

)+�Fe,0σc,0 = �Ee,k

{[
1 y

]
εk − εsh,k

}
+�Fe,0σc,0 (5.41a)

σs,k(i) = Es(i)εk = Es(i)

[
1 ys(i)

]
εk (5.41b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)
= Ep(i)

[
1 yp(i)

]
εk + Ep(i)εp(i),init − Ep(i)εp.rel(i),k (5.41c)

where at any point y from the reference axis εk = εr,k + yκk = [
1 y

]
εk.

The cross-sectional rigidities RA,k, RB,k and RI,k, required for the solution at time
τk can also be calculated from the properties of the age-adjusted transformed section,
obtained by transforming the bonded steel areas (reinforcement and tendons) into
equivalent areas of the aged concrete at time τk, as follows:

RA,k = �Ak
�Ee,k (5.42a)

RB,k = �Bk
�Ee,k (5.42b)

RI,k = Īk
�Ee,k (5.42c)



Uncracked sections 157

where Ee,k is the age-adjusted effective modulus, �Ak is the area of the age-adjusted
transformed section, and �Bk and Īk are the first and second moments of the area of the
age-adjusted transformed section about the reference axis. For the determination of
�Ak, �Bk and Īk, the areas of the bonded steel are transformed into equivalent areas
of concrete by multiplying by the age-adjusted modular ratio n̄es(i),k(= Es(i)/Ee,k)
or n̄ep(i),k = (Ep(i)/Ee,k), as appropriate.

Based on Eqs 5.42, the expression for Fk (Eq. 5.40) can be re-written as:

Fk = 1
�Ee,k(�AkĪk −�B2

k)

[
Īk −�Bk

−�Bk
�Ak

]
(5.43)

The calculation of the time-dependent stresses and deformations using the above
procedure is illustrated in Examples 5.3 and 5.4.

Example 5.3

For the reinforced concrete section shown in Fig. 5.5, the strain and stress
distributions at τ0 immediately after the application of an axial force Ne,0 =
−30 kN and a bending moment of Me,0 = 50 kNm were calculated in
Example 5.1. If the applied loads remain constant during the time interval τ0
to τk, the strain and stress distributions at time τk are to be determined using
the age-adjusted effective modulus method. As in Example 5.1, Ec,0 = 25 GPa;
Es = 200 GPa; and ns,0 = Es/Ec,0 = 8. Take ϕ (τk,τ0) = 2.5; χ (τk,τ0) = 0.65;
εsh(τk) = −600 × 10−6 and assume the steel reinforcement is linear elastic.
From Example 5.1: At τ0: εr,0 = −42.7 × 10−6 and κ0 = 0.331 × 10−6 mm−1.
From Eqs 4.35 and 4.46:

�Ee,k = Ec,0

1 +χ (τk,τ0)ϕ(τk,τ0)
= 25,000

1 + 0.65 × 2.5
= 9524 MPa

and therefore n̄es,k = 21.0;

�Fe,0 = ϕ (τk,τ0) [χ (τk,τ0) − 1]
1 +χ (τk,τ0)ϕ (τk,τ0)

= 2.5 × (0.65 − 1.0)
1.0 + 0.65 × 2.5

= −0.333

The properties of the concrete part of the cross-section are:

Ac = bD − As(1) − As(2) = 300 × 600 − 620 − 1800 = 177,600 mm2

Bc = bD(D/2 − dref ) − As(1)ys(1) − As(2)ys(2) = 300 × 600 × (300 − 200)

− 620 × (−150) − 1800 × 350 = 17.46 × 106mm3

Ic = bD3

12
+ bD

(
D
2

− dref

)2

− As(1)y
2
s(1) − As(2)y

2
s(2) = 300 × 6003

12

+ 300 × 600 × (300 − 200)2 − 620 × (−150)2 − 1800 × 3502

= 6966 × 106 mm4
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and the properties of the age-adjusted transformed cross-section are:

�Ak = bD + (n̄es,k − 1)[As(1) + As(2)] = 300 × 600 + (21 − 1) ×[620 + 1800]
= 228,400 mm2

�Bk = bD
(

D
2

− dref

)
+ (n̄es,k − 1)[As(1)ys(1) + As(2)ys(2)] = 300 × 600

× (300 − 200) + (21 − 1) ×[620 × (−150) + 1800 × 350]
= 28.74 × 106 mm3

Īk = bD3

12
+ bD

(
D
2

− dref

)2

+ (n̄es,k − 1)[As(1)y
2
s(1) + As(2)y

2
s(2)]

= 300 × 6003

12
+ 300 × 600 × (300 − 200)2 + 20 ×[620 × (−150)2

+ 1800 × 3502] = 11,890 × 106 mm4

From Eq. 5.36:

fcr.k = −0.333 × 25,000 ×

⎡
⎢⎢⎢⎣

177,600 × (−42.7 × 10−6)+ 17.46 × 106

×0.331 × 10−6

17.46 × 106 × (−42.7 × 10−6)+ 6966 × 106

×0.331 × 10−6

⎤
⎥⎥⎥⎦

=
[
+14.9 × 103 N

−13.0 × 106 Nmm

]

and from Eq. 5.37:

fsh,k =
[

177,600 × 9524 × (−600 × 10−6)
17.46 × 106 × 9524 × (−600 × 10−6)

]
=
[
−1015 × 103 N

−99.79 × 106 Nmm

]

Eq. 5.43 gives:

Fk = 1
9524 × (228,400 × 11,890 × 106 − (28.74 × 106)2)

×
[

11,890 × 106 −28.74 × 106

−28.74 × 106 228,400

]

=
[

660.7 × 10−12 N−1 −1.597 × 10−12 N−1mm−1

−1.597 × 10−12 N−1mm−1 12.69 × 10−15 N−1mm−2

]
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The strain εk at time τk is determined using Eq. 5.39:

εk = Fk(re,k − fcr,k + fsh,k)

=
[

660.7 × 10−12 −1.597 × 10−12

−1.597 × 10−12 12.69 × 10−15

][
(−30 − 14.9 − 1015) × 103

(50 + 13.0 − 99.79) × 106

]

=
[

−641.4 × 10−6

+1.226 × 10−6 mm−1

]

That is, the strain at the reference axis and the curvature at time τk are εr,k =
−641.4×10−6 and κk = +1.226×10−6 mm−1, respectively, and from Eq. 5.1,
the top (y = −200 mm) and bottom (y = +400 mm) fibre strains are:

εk(top) = εr,k + (−200) × κk = (−641.4 − 200 × 1.226) × 10−6

= −886.5 × 10−6

and

εk(btm) =εr,k+400×κk = (−641.4+400×1.226)×10−6 =−151.1×10−6

The concrete stress distribution at time τk is calculated using Eq. 5.41a:

σc,k(top) = 9524

{[
1 −200

] [−641.4 × 10−6

+1.226 × 10−6

]
− (−600 × 10−6)

}

+ (−0.333)(−2.27) = −1.82 MPa

σc,k(btm) = 9524

{[
1 400

] [−641.4 × 10−6

+1.226 × 10−6

]
− (−600 × 10−6)

}

+ (−0.333)(2.25) = 3.52 MPa

and, from Eq. 5.42b, the stresses in the reinforcement are:

σs(1),k = Es(1)
[
1 ys(1)

]
εk = 200 × 103 [1 −150

] [−641.4 × 10−6

+1.226 × 10−6

]

= −165MPa

and

σs(2),k = Es(2)
[
1 ys(2)

]
εk = 200 × 103 [1 350

] [−641.4 × 10−6

+1.226 × 10−6

]

= −42.5 MPa
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The stress and strain distributions at τo (from Example 5.1) and at τk are shown
in Fig. 5.11.

y
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−165

−151.1

14.6 

−1.82−2.72−108.9 −886.5

e

89.8 2.25 3.52

(b) Strain (× 10−6)

Figure 5.11 Strain and stress diagrams for Example 5.3 (all units in mm, MPa).

The cross-sectional rigidities could also have been calculated based on
Eqs 5.30 and 5.32 without modifying the geometry of the section as:

RA,k = Ac�Ee,k +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) = AcEc0 + (As(1) + As(2)
)
Es

= 2175 × 106 N;

RB,k = Bc�Ee,k +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

= Bc�Ee,k + (As(1)ys(1) + As(2)ys(2)
)
Es = 273.7 × 109 Nmm; and

RI,k = Ic�Ee,k +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

= Ic�Ee,k +
(
As(1)y

2
s(1) + As(2)y

2
s(2)

)
Es = 113.2 × 1012 Nmm2.

Fk is then determined using Eq. 5.40 (and is identical to that calculated earlier
using Eq. 5.43):

Fk = 1

RA,kRI,k − R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]

= 1

2175 × 106 × 113.2 × 1012 − (273.7 × 109
)2

×
[

113.2 × 1012 −273.7 × 109

−273.7 × 109 2175 × 106

]

=
[

660.7 × 10−12 N−1 −1.597 × 10−12 N−1mm−1

−1.597 × 10−12 N−1mm−1 12.69 × 10−15 N−1mm−2

]
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Example 5.4

A time-dependent analysis of the prestressed concrete section of Example 5.2
(see Figure 5.7) is to be undertaken using the age-adjusted effective modulus
method. The strain and stress distributions at τ0 immediately after the application
of an axial force Ne,0 = −100 kN and a bending moment of Me,0 = −50 kNm
were calculated in Example 5.2. If the applied loads remain constant during the
time interval τ0 to τk, the strain and stress distributions at time τk are to be
determined.
As in Example 5.2: Ec,0 = 32 GPa; Es = Ep = 200 GPa; and therefore ns(i),0 =
np(i),0 = 6.25. Take ϕ(τk,τ0) = 2.0; χ (τk,τ0) = 0.65; εsh(τk) = −400 × 10−6

and, for the prestressing steel, ϕp(τk,τ0,σp(i),init) = 0.03. Assume the steel
reinforcement is linear elastic.
From Example 5.2 at τ0: εr,0 = −70.7 × 10−6 and κ0 = −0.387 × 10−6 mm−1.
From Eqs 4.35 and 4.46:

�Ee,k = 32,000
1 + 0.65 × 2.0

= 13,910 MPa and therefore n̄es,k = n̄ep,k = 14.37

�Fe,0 = 2.0 × (0.65 − 1.0)
1.0 + 0.65 × 2.0

= −0.304

The properties of the concrete part of the cross-section are:

Ac = Agross − As(1) − As(2) − Ap(1) − Ap(2) = 312,700 mm2

Bc = Agross(dc − dref ) −[As(1)ys(1) + As(2)ys(2)]− [Ap(1)yp(1) + Ap(2)yp(2)]
= 93.49 × 106 mm3

Ic = Igross + Agross(dc − dref )2 −[As(1)y
2
s(1) + As(2)y

2
s(2)]− [Ap(1)y2

p(1)

+ Ap(1)y2
p(1)] = 76,960 × 106 mm4

and the properties of the age-adjusted transformed section in equivalent concrete
areas are:

Ak = Agross + (n̄es,k − 1)[As(1) + As(2)]+ (n̄ep,k − 1)[Ap(1) + Ap(2)]
= 374.5 × 103 mm2

�Bk = Agross(dc − dref ) + (n̄es,k − 1)[As(1)ys(1) + As(2)ys(2)]
+ (n̄ep,k − 1)[Ap(1)yp(1) + Ap(2)yp(2)] = 125.7 × 106 mm3

Īk = Igross + Agross(dc − dref )2 + (n̄es,k − 1)(As(1)y
2
s(1) + As(2)y

2
s(2))

+ (n̄ep,k − 1)(Ap(1)y
2
p(1) + Ap(2)y

2
p(2)) = 103.5 × 109 mm4
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Eqs 5.36 and 5.37 give:

fcr.k =
[

+567.9 × 103 N
+354.6 × 106 Nmm

]

and

fsh,k =
[

−1740 × 103 N
−520 × 106 Nmm

]

and from Eq. 5.38a (and Example 5.2) and Eq. 5.38b:

fp,init =
[

2000 × 103 N

1290 × 106 Nmm

]

and

fp.rel,k =
[

2000 × 103 × 0.03

1290 × 106 × 0.03

]
=
[

60 × 103 N

38.7 × 106 Nmm

]

Using Eq. 5.43:

Fk =
[

323.8 × 10−12N−1 −393.1 × 10−15N−1mm−1

−393.1 × 10−15N−1mm−1 1.171 × 10−15N−1mm−2

]

and the strain vector εk at time τk is determined using Eq. 5.39:

εk =
[

323.8 × 10−12 −393.1 × 10−15

−393.1 × 10−15 1.171 × 10−15

]

×
[

(−100 − 567.9 − 1740 − 2000 + 60) × 103

(−50 − 354.6 − 520 − 1290 + 38.7) × 106

]

=
[

−552.5 × 10−6

−0.840 × 10−6 mm−1

]

The strain at the reference axis and the curvature at time τk are therefore
εr,k = −552.5 × 10−6 and κk = −0.840 × 10−6 mm−1, respectively. From
Eq. 5.1, the top (y = −300 mm) and bottom (y = +850 mm) fibre strains are:

εk(top) = εr,k + (−300) × κk = −300.5 × 10−6

and

εk(btm) = εr,k + 850 × κk = −1266 × 10−6
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The concrete stress distribution at time τk is calculated using Eq. 5.41a:

σc,k(top) = 13,913

{[
1 −300

] [−552.5 × 10−6

−0.840 × 10−6

]
− (−400 × 10−6)

}

+ (−0.304)(1.45) = 0.94 MPa

σc,k(btm) = 13,913

{[
1 850

] [−552.5 × 10−6

−0.840 × 10−6

]
− (−400 × 10−6)

}

+ (−0.304)(−12.8) = −8.16 MPa

and, from Eq. 5.41b, the stresses in the non-prestressed reinforcement are:

σs(1),k = Es(1)
[
1 ys(1)

]
εk = 200 × 103 [1 −240

] [−552.5 × 10−6

−0.840 × 10−6

]

= −70.2 MPa

and

σs(2),k = Es(2)
[
1 ys(2)

]
εk = 200 × 103 [1 790

] [−552.5 × 10−6

−0.840 × 10−6

]

= −243.3 MPa

From Example 5.2, the initial strains in the prestress before transfer are εp(1),init =
εp(2),init = 0.00625 and the relaxation strains are therefore εp.rel(1),k = εp.rel(2),k =
0.00625 × 0.03 = 187.5 × 10−6. The stresses in the prestressing tendons at τk
are obtained from Eq. 5.41c:

σp(1),k = 200,000 ×
[
[1 580]

[
−552.5 × 10−6

−0.840 × 10−6

]
+ 0.00625 − 0.0001875

]

= 1004 MPa

and

σp(2),k = 200,000 ×
[
[1 710]

[
−552.5 × 10−6

−0.840 × 10−6

]
+ 0.00625 − 0.0001875

]

= 982 MPa

The changes in stress in each prestressing tendon between first loading and time τk
are therefore�σp(1),k =σp(1),0−σp(1),k = 1191−1004 = 187 MPa and�σp(2),k =
σp(2),0 −σp(2),k = 1181−982 = 199 MPa and represent the time-dependent loss
of prestress in each tendon, with �σp(1),k being 15.7 per cent of the initial stress
in Ap(1) immediately after transfer and �σp(2),k being 16.8 per cent of the initial
stress in Ap(2).
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The stress and strain distributions at τ0 (from Example 5.2) and at τk are shown
in Fig. 5.12.

Time, t0
Time, tk

x

(a) Cross-section (b) Strain diagram (× 10−6) (c) Stress diagram (MPa)

−1266 −399.8 −12.8 −8.16

−300.5 45.5 0.94 + 1.45

−70.2 4.5

1191
1004

1181
982−243.3 −75.3

e s

y

kk = −0.840 × 10−6 mm−1

k0 = −0.387 × 10−6 mm−1

Figure 5.12 Strain and stress distributions for Example 5.4.

The cross-sectional rigidities calculated using Eqs 5.30 and 5.32 are:

RA,k = Ac�Ee,k + (As(1) + As(2)
)
Es + (Ap(1) + Ap(2)

)
Ep = 5210 × 106 N

RB,k = Bc�Ee,k + (As(1)ys(1) + As(2)ys(2)
)
Es

+ (Ap(1)yp(1) + Ap(2)yp(2)
)
Ep = 1748 × 109 Nmm

RI,k = Ic�Ee,k +
(
As(1)y

2
s(1) + As(2)y

2
s(2)

)
Es

+
(
Ap(1)y

2
p(1) + Ap(2)y

2
p(2)

)
Ep = 1440 × 1012 Nmm2

and the matrix Fk could have been determined conveniently using Eq. 5.41.

5.5 Long-term analysis of reinforced and prestressed cross-sections
using the step-by-step procedure

The age-adjusted effective modulus method outlined in the previous section is a
practical means to evaluate the time-dependent deformations and stresses on a
reinforced or prestressed concrete section. It involves a single time interval, with
stresses and deformations calculated at the beginning and end of the time interval,
i.e. at τ0 and τk as shown in Fig. 5.9. The level of accuracy of the results depends on
the type of stress and/or deformation history undergone by the concrete.

For a more accurate representation of concrete behaviour, a more refined method
may be required, such as the step-by-step method (see Section 4.3) or the Dirichlet
Series approximation (Ref. 4–5). The step-by-step procedure involves the time domain
being discretised into a number of instants τj (with j = 0, . . . ,k), as shown in Fig. 4.3,
with the latter instant in time τk being the one at which the structural response is sought.
Structural response is calculated at each time instant, in turn, with the solution at τj
relying on the solutions obtained at the previous time instants. To achieve this, the
concrete stresses calculated at each instant in time are stored for use in the subsequent
analyses.
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The steel reinforcement and prestressing tendons (if any) are again assumed to be
linear-elastic (as for the short-term analysis) and the constitutive relationships for the
steel at any time τj are:

σs(i),j = Es(i)εj (5.44a)

σp(i),j = Ep(i)
(
εj + εp(i),init − εp.rel(i),j

)
(5.44b)

Following the approach outlined in Section 4.3.3, the constitutive relationship for
the concrete at τj is given by Eq. 4.25 reproduced below:

σc,j = Ec,j
(
εj − εsh,j

)+ j−1∑
i=0

Fe,j,i σc,i (4.25)

and if the rectangular approximation of the integral-type creep law is adopted,
the instantaneous elastic modulus of concrete Ec,j and the term Fe,j,i are given by
Eqs 4.26a and b (reproduced below for ease of reference):

Ec,j = 1
Jj,j

(4.26a)

and

Fe,j,i = Jj,i+1 − Jj,i

Jj,j
(4.26b)

If the trapezoidal approximation is used for the numerical integration, the expres-
sions for Ec,j and Fe,j,i are given in Eqs 4.26c–f. For ease of notation, the rectangular
rule is considered in this chapter and used in the subsequent examples.

With the proposed approach, k + 1 analyses must be carried out in order to yield
the structural response at any time τk. For each time instant τj (with j = 0, . . . ,k), the
equations utilised in the cross-sectional analysis are obtained from considerations of
equilibrium:

ri,j = re,j (5.45)

where ri,j and re,j are, respectively, the internal cross-sectional stress resultants and
the external actions calculated at time τj, as follows:

ri,j =
[

Ni,j

Mi,j

]
(5.46a)

and

re,j =
[

Ne,j

Me,j

]
(5.46b)

where Ni,j and Mi,j depict the internal axial force and moment resisted by the cross-
section at time τj, while Ne,j and Me,j represent the external applied actions.
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As already presented for the AEMM, the internal actions can be calculated by
combining the contributions of the concrete, reinforcing steel and tendons. For
example, the internal axial force resisted by the cross-section at τj can be expressed as:

Ni,j = Nc,j + Ns,j + Np,j (5.47)

The axial force in the concrete can be represented based on its constitutive
relationship (Eq. 4.25) as:

Nc,j =
∫

Ac

σc,j dA =
∫

Ac

⎡
⎣Ec,j

(
εj − εsh,j

)+ j−1∑
i=0

Fe,j,i σc,i

⎤
⎦dA

= AcEc,jεr,j + BcEc,jκj − AcEc,jεsh,j +
j−1∑
i=0

Fe,j,i Nc,i (5.48)

where the axial forces Nc,i resisted by the concrete at times τi (with i = 0, . . . , j−1) are
known (i.e. they have been calculated in previous time steps) at the beginning of the
analysis at τj.

The axial forces in the reinforcement and tendons can be evaluated from the
constitutive relations (Eqs 5.44) as:

Ns,j =
ms∑
i=1

(
As(i)Es(i)

)
εr,j +

ms∑
i=1

(
ys(i)As(i)Es(i)

)
κj (5.49a)

Np,j =
mp∑
i=1

(
Ap(i)Ep(i)

)
εr,j +

mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
κj

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),j

)]
(5.49b)

Substituting Eqs 5.48 and 5.49 into Eq. 5.47 produces:

Ni,j =
(

AcEc,j +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i)

)
εr,j +

(
BcEc,j +

ms∑
i=1

ys(i)As(i)Es(i)

+
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
κj − AcEc,jεsh,j +

j−1∑
i=0

Fe,j,i Nc,i

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),j

)]

= RA,jεr,j + RB,jκj − AcEc,jεsh,j +
j−1∑
i=0

Fe,j,i Nc,i

+
mp∑
i=1

[
Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),j

)]
(5.50)
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and following the same procedure, the internal moment Mi,j at τj can be
determined as:

Mi,j =
(

BcEc,j +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

)
εr,j

+
(

IcEc,j +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

)
κj − BcEc,jεsh,j

+
j−1∑
i=0

Fe,j,i Mc,i +
mp∑
i=1

[
yp(i)Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),j

)]

= RB,jεr,j + RI,jκj − BcEc,jεsh,j +
j−1∑
i=0

Fe,j,i Mc,i

+
mp∑
i=1

[
yp(i)Ap(i)Ep(i)

(
εp(i),init − εp.rel(i),j

)]
(5.51)

The cross-sectional rigidities RA,j, RB,j and RI,j at time τj are defined as:

RA,j = AcEc,j +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) (5.52a)

RB,j = BcEc,j +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i) (5.52b)

RI,j = IcEc,j +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i) (5.52c)

In the calculation of Mi,j in Eq. 5.51, the moment Mc,i resisted by the concrete
component at time τi is calculated based on the solutions at each of the previous time
instants:

Mc,i =
∫

Ac

yσc,i dA =
∫

Ac

[
yEc,i

(
εi − εsh,i

)+ y
i−1∑
n=0

Fe,i,n σc,n

]
dA

= BcEc,iεr,i + IcEc,iκi − BcEc,iεsh,i +
i−1∑
n=0

Fe,i,n Mc,n (5.53)

Following the approach outlined previously, the equilibrium equations at time τj
can then be written as:

re,j = Djεj + fcr,j − fsh,j + fp,init − fp.rel,j (5.54)
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where

εj =
[
εr,j

κj

]
(5.55a)

Dj =
[
RA,j RB,j

RB,j RI,j

]
(5.55b)

fcr,j =
j−1∑
i=0

Fe,j,irc,i (5.55c)

fsh,j =
[
Ac

Bc

]
Ec,jεsh,j (5.55d)

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.55e)

fp.rel,j = fp,init ϕp(τj,σp(i),init) (5.55f)

To simplify the notation, the internal actions resisted by the concrete at a previous
time instant τi (calculated from Eqs 5.48 and 5.53) are collected in vector rc,i and
expressed as:

rc,i =
[

Nc,i

Mc,i

]
= Dc,iεi +

i−1∑
n=0

Fe,i,nrc,n −
[
AcEc,i

BcEc,i

]
εsh,i = Dc,iεi + fcr,i − fsh,i (5.56)

with

Dc,i =
[
Ac Bc

Bc Ic

]
Ec,i (5.57)

The strain vector εj at time τj is obtained by solving Eq. 5.54 and, as in the analyses
presented earlier:

εj = D−1
j

(
re,j − fcr,j + fsh,j − fp,init + fp.rel,j

)= Fj
(
re,j − fcr,j + fsh,j − fp,init + fp.rel,j

)
(5.58)

in which

Fj = 1

RA,j RI,j − R2
B,j

[
RI,j −RB,j

−RB,j RA,j

]
(5.59)

Finally, the stress distributions at time, τj, can be determined from the constitutive
relationships (Eqs 5.44 and 4.25):

σc,j = Ec,jεj − Ec,jεsh,j +
j−1∑
i=0

Fe,j,iσc,i = Ec,j
{[

1 y
]

εj − εsh,j
}+

j−1∑
i=0

Fe,j,iσc,i

(5.60a)
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σs(i),j = Es(i)εj = Es(i)
[
1 yp(i)

]
εj (5.60b)

σp(i),j = Ep(i)
(
εj + εp(i),init − εp.rel(i),j

)
= Ep(i)

[
1 yp(i)

]
εj + Ep(i)εp(i),init − Ep(i)εp.rel(i),j (5.60c)

where εj = εr,j + yκj = [
1 y

]
εj.

The cross-sectional rigidities at time τj, RA,j, RB,j and RI,j, can also be calculated
from the properties of the transformed cross-section as follows:

RA,j = AjEe,j (5.61a)

RB,j = BjEe,j (5.61b)

RI,j = IjEe,j (5.61c)

where Aj, Bj and Ij are the area and the first and second moments of the area,
respectively, of the transformed section about the reference axis. For the transformed
section, the area of the reinforcement and bonded tendons are usually transformed into
equivalent areas of concrete, based on Ec,j using modular ratios of ns(i),j (= Es(i)/Ec,j)
for the bonded steel reinforcement and np(i),j (= Ep(i)/Ec,j) for the bonded tendons.
The matrix F0 in Eq. 5.58 can then be calculated as:

Fj = 1

Ee,j(AjIj − B2
j )

[
Ij −Bj

−Bj Aj

]
(5.62)

In the following two examples, Examples 5.3 and 5.4 are re-analysed using the
step-by-step method.

Example 5.5

For the reinforced concrete section shown in Fig. 5.5 (and analysed previously
in Examples 5.1 and 5.3), determine the stress distribution at 30,000 days
after first loading (i.e. approx. 80 years) using the step-by-step procedure. The
external loading is applied at time τ0 = 28 days and kept constant over time
(i.e. Ne,j = −30 kN and Me,j = 50 kNm). A very coarse time discretisation
is adopted in this example to illustrate all the steps involved in the solution
process. The time period is subdivided into two intervals, τ0 to τ1 and τ1 to τ2,
where τ0 = 28 days, τ1 = 100 days and τ2 = 30,000 days. In structural design,
a finer discretisation is usually adopted to obtain more accurate results. For
convenience in this example, shrinkage is assumed to begin at the time of first
loading (i.e. at τ0). The reinforcement is assumed to be linear-elastic.
The relevant properties of the concrete are as follows: Ec,0 = 25 GPa;
Ec,1 = 28 GPa; Ec,2 = 30 GPa; ϕ (τ0,τ0) = 0; ϕ (τ1,τ0) = 1.5; ϕ (τ2,τ0) = 2.5;
ϕ (τ1,τ1) = 0; ϕ (τ2,τ1) = 2.0; εsh (τ0) = εsh,0 = 0; εsh (τ1) = εsh,1 = −300×10−6;
and εsh (τ2) = εsh,2 = −600 × 10−6.
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Usually when using the step-by-step method (SSM), it is convenient to calculate
the material properties for the concrete at the beginning of the analysis. From
Eqs 1.10 and 4.26a and b:

J (τ0,τ0) = 1
Ec,0

= 1
25,000

= 4 × 10−5 MPa−1

J (τ1,τ1) = 1
Ec,1

= 1
28,000

= 3.571 × 10−5 MPa−1

J (τ2,τ2) = 1
Ec,2

= 1
30,000

= 3.333 × 10−5 MPa−1

J (τ1,τ0) = 1 +ϕ (τ1,τ0)
Ec,0

= 1 + 1.5
25,000

= 10 × 10−5 MPa−1

J (τ2,τ0) = 1 +ϕ (τ2,τ0)
Ec,0

= 1 + 2.5
25,000

= 14 × 10−5 MPa−1

J (τ2,τ1) = 1 +ϕ (τ2,τ1)
Ec,1

= 1 + 2.0
28,000

= 10.71 × 10−5 MPa−1

Fe,1,0 = J (τ1,τ1) − J (τ1,τ0)
J (τ1,τ1)

= −1.8

Fe,2,0 = J (τ2,τ1) − J (τ2,τ0)
J (τ2,τ2)

= −0.986

Fe,2,1 = J (τ2,τ2) − J (τ2,τ1)
J (τ2,τ2)

= −2.214

Considering that the externally applied actions remain constant with time and the
problem involves no prestressing tendons (for j = 0,1 and 2):

re,j =
[ −30 × 103 N

50 × 106 Nmm

]

fp,init =
[

0 N
0 Nmm

]

fp.rel,j =
[

0 N
0 Nmm

]

Short-term analysis (τ0 = 28 days)

From Example 5.1: εr,0 = −42.7 × 10−6 and κ0 = 0.331 × 10−6 mm−1.
From Example 5.3: Ac = 177.6 × 103 mm2, Bc = 17.46 × 106 mm3 and
Ic = 6966 × 106 mm4.
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The stress resultants resisted by the concrete at τ0 are determined from Eq. 5.56:

rc,0 = Dc,0ε0 + fcr,0 − fsh,0

= 25,000 ×
[

177.6 × 103 17.46 × 106

17.46 × 106 6966 × 106

][
−42.7 × 10−6

0.331 × 10−6

]
+
[
0
0

]
−
[
0
0

]

=
[

−44.9 × 103 N
39.1 × 106 Nmm

]

Time analysis – SSM (τ1 = 100 days) – time step 1:

Considering Ec,1 for the concrete component, the cross-sectional rigidities at
time τ1 can be determined from Eqs 5.52 as:

RA,1 = 5456 × 106 N

RB,1 = 596.4 × 109 Nmm

RI,1 = 241.9 × 1012 Nmm2

from which D1 and F1 can be determined (Eqs 5.55b and 5.59) as:

D1 =
[
RA,1 RB,1

RB,1 RI,1

]
=
[

5456 × 106 N 596.4 × 109 Nmm

596.4 × 109 Nmm 241.9 × 1012 Nmm2

]

and

F1 = 1

RA,1RI,1 − R2
B,1

[
RI,1 −RB,1

−RB,1 RA,1

]

=
[

250.8 × 10−12 N−1 −618.4 × 10−15 N−1mm−1

−618.4 × 10−15 N−1mm−1 5.658 × 10−15 N−1mm−2

]

Creep effects due to the initial concrete stresses and shrinkage effects are obtained
from Eq. 5.55c and d:

fcr,1 = Fe,1,0rc,0 = −1.8 ×
[
−44.9 × 103

39.1 × 106

]
=
[

80.8 × 103 N

−70.3 × 106 Nmm

]

and

fsh,1 =
[
Ac

Bc

]
Ec,1εsh,1 =

[
177.6 × 103

17.46 × 106

]
× 28,000 ×

(
−300 × 10−6

)

=
[

−1492 × 103 N
−146.7 × 106 Nmm

]
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The strain distribution at time τ1 becomes (Eq. 5.58):

ε1 = F1
(
re,1 − fcr,1 + fsh,1

)
=
[

250.8 × 10−12 −618.4 × 10−15

−618.4 × 10−15 5.658 × 10−15

]

×
([

−30 × 103

50 × 106

]
−
[

80.8 × 103

−70.3 × 106

]
+
[

−1492 × 103

−146.7 × 106

])

=
[

−385.7 × 10−6

0.841 × 10−6 mm−1

]

Therefore, εr,1 = −385.7 × 10−6 and κ1 = 0.841 × 10−6 mm−1 and the strains
in the top and bottom fibres of the cross-sections are (Eq. 5.1):

ε1(top) = εr,1 + (−200) × κ1 = −554.0 × 10−6

and

ε1(btm) = εr,1 + 400 × κ1 = −49.0 × 10−6

The top and bottom fibre concrete stresses at time τ1 are (Eq. 5.60):

σc,1(top) = Ec,1

{[
1 y

c,(top)

]
ε1 − εsh,1

}
+ Fe,1,0σc,0(top) = −2.21 MPa

σc,1(btm) = Ec,1
{[

1 yc,(btm)
]

ε1 − εsh,1
}+ Fe,1,0σc,0(btm) = 2.98 MPa

and the stresses in the reinforcement are:

σs(1),1 = Es(1)
[
1 ys(1)

]
ε1 = −102.4 MPa

σs(2),1 = Es(2)
[
1 ys(2)

]
ε1 = −18.2 MPa

Based on these results the axial force and moment resisted by the concrete
component at time τ1 are (Eq. 5.56):

rc,1 = Dc,1ε1 + fcr,1 − fsh,1 = Ec,1

[
Ac Bc

Bc Ic

][
εr1

κ1

]
+ fcr,1 − fsh,1

= 28,000 ×
[

177.6 × 103 17.46 × 106

17.46 × 106 6966 × 106

] [
−385.7 × 10−6

0.841 × 10−6

]

+
[

80.8 × 103

−70.3 × 106

]
−
[

−1492 × 103

−146.7 × 106

]

=
[

66.3 × 103 N
51.9 × 106 Nmm

]
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Time analysis – SSM (τ2 = 30,000 days) – time step 2

The cross-sectional rigidities at time τ2 are (Eqs 5.52):

RA,2 = 5811 × 106 N;
RB,2 = 631.3 × 109 Nmm;
RI,2 = 255.8 × 1012 Nmm2.

and from Eqs 5.55b and 5.59:

D2 =
[

5811 × 106 N 631.3 × 109 Nmm

631.3 × 109 Nmm 255.8 × 1012 Nmm2

]

F2 =
[

235.1 × 10−12 N−1 −580.0 × 10−15 N−1mm−1

−580.0 × 10−15 N−1mm−1 5.339 × 10−15 N−1mm−2

]

The creep effects due to the concrete stresses in the previous time steps,
at τ0 and τ1, and the shrinkage effects are obtained from Eqs 5.55c
and d:

fcr,2 = Fe,2,0rc,0 + Fe,2,1rc,1 = −0.986 ×
[
−44.9 × 103

39.1 × 106

]

− 2.214 ×
[

66.3 × 103

51.9 × 106

]
=
[

−102.5 × 103 N
−153.5 × 106 Nmm

]

fsh,2 =
[
Ac

Bc

]
Ec,2εsh,2 =

[
177.6 × 103

17.46 × 106

]
× 30,000 ×

(
−600 × 10−6

)

=
[

−3196 × 103 N
−314.3 × 106 Nmm

]

The strain distribution at time τ2 can be calculated as (Eq. 5.58):

ε2 = F2
(
re,2 − fcr,2 + fsh,2

)=
[

−670.1 × 10−6

1.220 × 10−6 mm−1

]

With εr,2 = −670.1×10−6 and κ2 = 1.220×10−6 mm−1, the strains in the top
and bottom fibres of the cross-sections are (Eq. 5.1):

ε2(top) = εr,2 + (−200) × κ2 = −914.2 × 10−6

ε2(btm) = εr,2 + 400 × κ2 = −181.9 × 10−6
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The top and bottom fibre concrete stresses at τ2 are (Eq. 5.60):

σc,2(top) = Ec,2

{ [
1 yc,(top)

]
ε2 − εsh,2

}
+ Fe,2,0σc,0(top) + Fe,2,1σc,1(top)

= 30,000

{[
1 −200

] [−670.1 × 10−6

1.220 × 10−6

]
−
(
−600 × 10−6

)}

− 0.986 × (−2.72) − 2.214 × (−2.21) = −1.85 MPa

σc,2(btm) = Ec,2

{[
1 yc,(btm)

]
ε2 − εsh,2

}
+ Fe,2,0σc,0(btm) + Fe,2,1σc,1(btm)

= 3.72 MPa

The final stresses in the reinforcement are:

σs(1),2 = Es(1)

[
1 ys(1)

]
ε2 = −170.6 MPa

σs(2),2 = Es(2)
[
1 ys(2)

]
ε2 = −48.6 MPa

The stress and strain distributions at τ0 and at τ2 are shown in Fig. 5.13.

Time, t0
Time, t2

−108.9

89.8−181.9

σ

−2.72

−18.5
−170.6

3.722.25

14.6−48.6

(a) Cross-section (b) Strain diagram (× 10−6) (c) Stress diagram (MPa)
y

x

−914.2

k0 = 0.331 × 10−6mm−1

kk = 1.220 × 10−6mm−1

e

−1.85

Figure 5.13 Initial and final strain and stress diagrams for Example 5.5.

Example 5.6

For the prestressed cross-section shown in Fig. 5.7 and analysed in Examples
5.2 and 5.4, determine the stress distribution at 30,000 days using the step-
by-step procedure. The sustained external actions, Ne,j = −100 kN and Me,j =
−50 kNm are applied at time τ0 = 28 days and kept constant with time. As
for Example 5.5, the time domain is discretised into two time steps, from τ0 to
τ1 and from τ1 to τ2, with τ0 = 28 days, τ1 = 100 days and τ2 = 30,000 days.
The reinforcement is assumed to be linear-elastic and the relevant properties of
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the concrete are: Ec,0 = 32 GPa; Ec,1 = 36 GPa; Ec,2 = 40 GPa; ϕ (τ0,τ0) = 0;
ϕ (τ1,τ0) = 1.0; ϕ (τ2,τ0) = 2.0; ϕ (τ1,τ1) = 0; ϕ (τ2,τ1) = 1.5; εsh (τ0) = εsh,0 = 0;
εsh (τ1) = εsh,1 = −200 × 10−6; and εsh (τ2) = εsh,2 = −400 × 10−6.
The initial strains in the prestressing tendons prior to transfer is εp(1),init =
εp(2),init = 0.00625 and the creep coefficient for the prestressing steel is
ϕp(τ1,σp,init) = 0.02 and ϕp(τ2,σp,init) = 0.03.
The relevant creep functions for concrete are (Eqs 1.10 and 4.26a and b):

J (τ0,τ0) = 3.125 × 10−5 MPa−1

J (τ1,τ1) = 2.777 × 10−5 MPa−1

J (τ2,τ2) = 2.5 × 10−5 MPa−1

J (τ1,τ0) = 6.25 × 10−5 MPa−1

J (τ2,τ0) = 9.375 × 10−5 MPa−1

J (τ2,τ1) = 6.944 × 10−5 MPa−1

Fe,1,0 = −1.25

Fe,2,0 = −0.972

Fe,2,1 = −1.777

Considering that the externally applied actions remain constant with time, for
j = 0,1 and 2:

re,j =
[

−100 × 103 N
−50 × 106 Nmm

]

and

fp,init =
[

2000 × 103 N
1290 × 106 Nmm

]

Short-term analysis (τ0 = 28 days)

From Example 5.2: εr,0 = −70.7 × 10−6 and κ0 = −0.387 × 10−6 mm−1.
From Example 5.4: Ac = 312.7 × 103 mm2; Bc = 93.49 × 106 mm3;
Ic = 76,960 × 106 mm4.
From Eq. 5.56, the stress resultants resisted by the concrete at τ0 are:

rc,0 = Dc,0ε0 + fcr,0 − fsh,0 = Ec,0

[
Ac Bc

Bc Ic

][
εr,0

κ0

]
+
[
0
0

]
−
[
0
0

]

=
[

−1865 × 103 N
−1165 × 106 Nmm

]
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Time analysis – SSM (τ1 = 100 days) – time step 1

From Eqs 5.52, the cross-sectional rigidities at time τ1 are:

RA,1 = 12,120 × 106 N

RB,1 = 3813 × 109 Nmm

RI,1 = 3140 × 1012 Nmm2

and from Eq. 5.59:

F1 =
[

133.6 × 10−12 N−1mm−2 −162.2 × 10−15 N−1mm−1

−162.2 × 10−15 N−1mm−1 515.4 × 10−18 N−1

]

The effects of creep due to the concrete stresses calculated at τ0 and the effects
of shrinkage are represented as:

fcr,1 = Fe,1,0rc,0 = −1.25 ×
[
−1865 × 103

−1165 × 106

]
=
[

2332 × 103 N
1456 × 106 Nmm

]

fsh,1 =
[
Ac

Bc

]
Ec,1εsh,1 =

[
312.7 × 103

93.46 × 106

]
× 36,000 ×

(
−200 × 10−6

)

=
[

−2251 × 103 N
−673.2 × 106 Nmm

]

and the relaxation of the prestressing tendons is:

fp.rel,1 =
[

Ap(1)Ep(1)εp(1),init

yp(1)Ap(1)Ep(1)εp(1),init

]
ϕp(τ1,σp(1),init)

+
[

Ap(2)Ep(2)εp(2),init

yp(2)Ap(2)Ep(2)εp(2),init

]
ϕp(τ1,σp(2),init)

=
[

800 × 200,000 × 0.00625
580 × 800 × 200,000 × 0.00625

]
× 0.02

+
[

800 × 200,000 × 0.00625
710 × 800 × 200,000 × 0.00625

]
× 0.02

=
[

40 × 103 N
25.8 × 106 Nmm

]
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The strain distribution at time τ1 becomes:

ε1 = F1
(
re,1 − fcr,1 + fsh,1 − fp,init + fp.rel,1

)
=
[

133.6 × 10−12 −162.2 × 10−15

−162.2 × 10−15 515.4 × 10−18

]

×
([

−100 × 103

−50 × 106

]
−
[

2332 × 103

1456 × 106

]
+
[

−2251 × 103

−673.2 × 106

]

−
[

2000 × 103

1290 × 106

]
+
[

40 × 103

25.8 × 106

])
=
[

−328.8 × 10−6

−0.697 × 10−6 mm−1

]

With εr,1 = −328.8 × 10−6 and κ1 = −0.697 × 10−6 mm−1, the strains in the
top and bottom fibres of the cross-sections are (Eq. 5.1):

ε1(top) = εr,1 + (−300) × κ1 = −119.6 × 10−6

and

ε1(btm) = εr,1 + 850 × κ1 = −921.6 × 10−6.

The stresses in the top and bottom concrete fibres at time τ1 are (Eqs 5.60):

σc,1(top) = Ec,1

{[
1 yc,(top)

]
ε1 − εsh,1

}
+ Fe,1,0σc,0(top) = 1.07 MPa

σc,1(btm) = Ec,1
{[

1 yc,(btm)
]
ε1 − εsh,1

}+ Fe,1,0σc,0(btm) = −9.98 MPa

and the stress in the non-prestressed reinforcement is:

σs(1),1 = Es(1)
[
1 ys(1)

]
ε1 = 200 × 103 [1 −240

] [−328.8 × 10−6

−0.697 × 10−6

]

= −32.3 MPa

σs(2),1 = Es(2)
[
1 ys(2)

]
ε1 = 200 × 103 [1 790

] [−328.8 × 10−6

−0.697 × 10−6

]

= −176.0 MPa

The stress in the prestressing steel is:

σp(1),1 = Ep(1)
[
1 yp(1)

]
ε1 + Ep(1)

(
εp(1),init − εp.rel(1),1

)
= 200 × 103

([
1 580

] [−328.8 × 10−6

−0.697 × 10−6

])

+ 200 × 103 × 0.00625 × (1 − 0.02) = 1078 MPa

σp(2),1 = Ep(2)
[
1 yp(2)

]
ε1 + Ep(2)

(
εp(2),init − εp.rel(2),1

)= 1060 MPa



178 Uncracked sections

The axial force and moment resisted by the concrete component at time τ1 are
(Eq. 5.56):

rc,1 = Dc,1ε1 + fcr,1 − fsh,1 = Ec,1

[
Ac Bc

Bc Ic

][
εr1

κ1

]
+ fcr,1 − fsh,1

=
[

−1465 × 103 N
−909.3 × 106 Nmm

]

Time analysis – SSM (τ2 = 30,000 days) – time step 2

The cross-sectional rigidities at time τ2 are (Eqs 5.52):

RA,2 = 13,370 × 106 N

RB,2 = 4187 × 109 Nmm

RI,2 = 3448 × 1012 Nmm2

F2 =
[

120.7 × 10−12 N−1mm−2 −146.6 × 10−15 N−1 mm−1

−146.6 × 10−15 N−1mm−1 468.1 × 10−18 N−1

]

Creep effects due to the concrete stresses in previous time steps, i.e. at τ0 and τ1,
are:

fcr,2 = Fe,2,0rc,0 + Fe,2,1rc,1

= −0.972 ×
[
−1865 × 103

−1165 × 106

]
− 1.777 ×

[
−1465 × 103

−909.3 × 106

]

=
[

4418 × 103 N
2749 × 106 Nmm

]

and shrinkage effects are:

fsh,2 =
[
Ac

Bc

]
Ec,2εsh,2 =

[
312.7 × 103

93.49 × 106

]
× 40,000 ×

(
−400 × 10−6

)

=
[

−5003 × 103 N
−1496 × 106 Nmm

]

The relaxation of the prestressing tendons is:

fp.rel,2 =
[

Ap(1)Ep(1)εp(1),init

yp(1)Ap(1)Ep(1)εp(1),init

]
ϕp(τ2,σp(1),init)

+
[

Ap(2)Ep(2)εp(2),init

yp(2)Ap(2)Ep(2)εp(2),init

]
ϕp(τ2,σp(2),init) =

[
60 × 103 N

38.7 × 106 Nmm

]
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The strain distribution at time τ2 is:

ε2 = F2
(
re,2 − fcr,2 + fsh,2 − fp,init + fp.rel,2

)=
[

−570.6 × 10−6

−0.915 × 10−6 mm−1

]

With εr,2 = −570.6 × 10−6 and κ2 = −0.915 × 10−6 mm−1, the strains in the
top and bottom fibres of the cross-sections are (Eq. 5.1):

ε2(top) = εr,2 + (−300) × κ2 = −295.8 × 10−6

and

ε2(btm) = εr,2 + 850 × κ2 = −1349 × 10−6

The stresses in the top and bottom concrete fibres at time τ1 are (Eqs 5.60):

σc,2(top) = Ec,2

{[
1 yc,(top)

]
ε2 − εsh,2

}
+ Fe,2,0σc,0(top) + Fe,2,1σc,1(top)

= 40,000

{[
1 −300

] [−570.6 × 10−6

−0.915 × 10−6

]
−
(
−400 × 10−6

)}

− 0.972 × 1.45 − 1.777 × 1.07 = 0.84 MPa

σc,2(btm) = Ec,2

{[
1 yc,(btm)

]
ε2 − εsh,2

}
+ Fe,2,0σc,0(btm) + Fe,2,1σc,1(btm)

= −7.77 MPa

and the stresses in the non-prestressed reinforcement are:

σs(1),2 = Es(1)
[
1 ys(1)

]
ε2 = 200 × 103 [1 −240

] [−570.6 × 10−6

−0.915 × 10−6

]

= −70.1 MPa

σs(2),2 = Es(2)
[
1 ys(2)

]
ε2 = 200 × 103 [1 790

] [−570.6 × 10−6

−0.915 × 10−6

]

= −258.8 MPa

The final stresses in the prestressing tendons are:

σp(1),2 = Ep(1)
[
1 yp(1)

]
ε2 + Ep(1)

(
εp(1),init − εp.rel(1),2

)= 992.1 MPa

σp(2),2 = Ep(2)
[
1 yp(2)

]
ε2 + Ep(2)

(
εp(2),init − εp.rel(2),2

)= 968.3 MPa
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The stress and strain distributions at τ0 and at τ2 are shown in Fig. 5.14.

Time, t0
Time, t2

0.84 1.45

−70.1
4.5

1191

1181
992.1
968.3−75.3−258.8

−7.77−12.8−399.8−1349 

45.5−295.8

x

(a) Cross-section (b) Strain diagram (× 10−6) (c) Stress diagram (MPa)

y

e s

k0 = −0.387 × 10−6 mm−1

k2 = −0.915 × 10−6 mm−1

Figure 5.14 Initial and final strain and stress diagrams for Example 5.6.

5.6 Composite steel-concrete cross-sections

The analysis of composite steel-concrete cross-sections, such as those shown in
Fig. 5.15, is presented here. Each cross-section has a single axis of symmetry and
may be subjected to any combination of axial force and bending moment. In addition
to the rolled or fabricated steel section or profiled decking, the concrete deck may
contain layers of steel reinforcement.

Mechanical shear connections are usually used to ensure that the steel-concrete
interface is capable of carrying the imposed horizontal shear, and that the steel
and concrete portions act compositely. For most practical steel-concrete composite
sections, little slip occurs between the steel and the concrete under normal in-service
conditions, with the magnitude of any slip depending on the rigidity of the interface
connection (Refs 6–11). In the following, a perfect bond between the steel and the
concrete is assumed.

. .    .    .    .    .    .    .    .    .    .     .    .    .    .   .    .    .    . 

Steel

Concrete

Steel reinforcement

Concrete

Permanent steel formwork

. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   .        . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .   .        

Figure 5.15 Composite steel-concrete cross-sections.
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The procedures for the short- and long-term analyses of the composite sections
shown in Fig. 5.15 are similar to those presented for reinforced and prestressed concrete
sections in Sections 5.3–5.5, except that the flexural rigidity of the steel section (or its
second moment of area) must be included, as well as its cross-sectional area. At any time
instant τk, the internal axial force and moment resisted by the composite cross-section,
Ni,k and Mi,k, respectively, may be expressed as:

Ni,k = Nc,k + Ns,k + Nss,k (5.63a)

Mi,k = Mc,k + Ms,k + Mss,k (5.63b)

where Nc,k, Ns,k and Nss,k are the resultant axial forces in the concrete, the non-
prestressed reinforcement and the steel part of the cross-section, respectively, and
Mc,k, Ms,k and Mss,k are the corresponding moments about the reference axis. Since
the rolled or fabricated steel (or permanent steel decking) does not creep or shrink,
Nss,k and Mss,k may be defined at any time τk as:

Nss,k =
∫

Ass

σss,k dA =
∫

Ass

Ess(εr,k + yκk)dA = AssEssεr,k + BsEssκk (5.64a)

Mss,k =
∫

Ass

yσss,k dA =
∫

Ass

yEss(εr,k + yκk)d A = BssEssεr,k + IsEssκk (5.64b)

where Ass is the cross-sectional area of the rolled or fabricated steel section, and Bss
and Iss are the first and second moments of area of the steel section calculated with
respect to the adopted reference axis. The constitutive relationship for the rolled or
fabricated steel is assumed to be linear-elastic as follows:

σss,k = Essεk = Ess[1 y]εk (5.65)

The advantage of this representation is that it describes both the instantaneous
analysis (at τ0) and the time-dependent analysis (at τk). At k = 0, Eqs 5.63 can
be substituted into Eqs 5.2 to produce the governing equilibrium equations for a
short-term analysis (as previously presented in Eq. 5.12). Using the AEMM for
the time analysis (at τk), Eqs 5.63 can be substituted into Eq. 5.24 to obtain the
governing equations (previously presented in Eqs 5.34). The solution using the SSM
is obtained by replacing Eqs 5.47 and 5.51 with Eqs 5.63 (and with time τj used
instead of τk).

The only differences between the analyses of the composite steel-concrete cross-
section and the analyses presented in Sections 5.3–5.5 are in the calculation of the
cross-sectional rigidities, RA,k, RB,k and RI,k. The solution processes, involving the
determination of the unknown strain and stress distributions at τk, are unchanged.
For a composite steel-concrete cross-section, using the AEMM, the cross-sectional
rigidities are:

RA,k = Ac�Ee,k + AssEss +
ms∑
i=1

As(i)Es(i) (5.66a)
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RB,j = Bc�Ee,j + BssEss +
ms∑
i=1

ys(i)As(i)Es(i) (5.66b)

RI,j = Ic�Ee,j + IssEss +
ms∑
i=1

y2
s(i)As(i)Es(i) (5.66c)

where for the short-term analysis at τ0, �Ee,k = Ec,0. When using the SSM, the concrete
modulus to be used in Eq. 5.66 is the one associated with the time step under
consideration.

As already discussed for reinforced and prestressed concrete sections, it is also
common to transform the steel parts of the cross-section into equivalent areas of
concrete, to calculate the rigidities of the transformed concrete section, and to use
these in the analysis instead of the rigidities calculated using Eq. 5.66.

Example 5.7

The short-term and final long-term behaviour of the composite cross-section
shown in Fig. 5.16 is to be calculated. The cross-section is subjected to a sustained
bending moment Me = 500 kNm. The axial force Ne in this example is zero. The
time-dependent behaviour of the concrete is to be modelled using the AEMM
and the relevant material properties are:

Ec,0 = 25,000 MPa

Ess = Es(1) = 200,000 MPa

ϕ∗
0 = ϕ (∞,τ0) = 2.5

χ∗
0 = χ (∞,τ0) = 0.65

ε∗sh = εsh(∞) = −600 × 10−6

dref = 450

x

y

75
75

150

As(1) = 2700 mm2

Ass = 12,500 mm2

Iss = 750 μ 106 mm2

ys(1) = −375

Centroid of Ass located at dref

2400

600

Figure 5.16 Cross-sectional details for Example 5.7 (all dimensions in mm).
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The external actions remain constant with time and are given by (with j = 0,k)

re,j =
[

Ne,j

Me,j

]
=
[

0 N
500 × 106 Nmm

]

Short-term analysis (at time τ0)

The geometric properties of the concrete slab are:

Ac =bD−As(1) =2400×150−2700=357,300 mm2

Bc =bD(D/2−dref )−As(1)ys(1) =2400×150×(75−450)−2700×(−375)

=−134.0×106 mm3

Ic = bD3

12
+bD

(
D
2

−dref

)2

−As(1)y
2
s(1) =

2400×1503

12

+2400×150×(75−450)2−2700×(−375)2 =50,920×106 mm4

The properties of the steel beam are already provided with respect to dref :

Ass = 12,500 mm2;
Bss = 0 mm3 (as the centroid of the steel beam is located on the reference

axis); and
Iss =750×106 mm4.

The cross-sectional rigidities are calculated using Eqs 5.66:

RA,0 = AcEc,0 + AssEss +
ms∑
i=1

As(i)Es(i) = AcEc,0 + AssEss + As(1)Es(1)

= 11,970 × 106 N

RB,0 = BcEc,0 + BssEss +
ms∑
i=1

ys(i)As(i)Es(i) = BcEc,0 + BssEss + ys(1)As(1)Es(1)

= −3552 × 109 Nmm

RI,0 = IcEc,0 + IssEss +
ms∑
i=1

y2
s(i)As(i)Es(i) = IcEc,0 + IssEss + y2

s(1)As(1)Es(1)

= 1499 × 1012 Nmm2

From Eq. 5.15:

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]

=
[

2.81 × 10−10 N−1 6.66 × 10−13 N−1mm−1

6.66 × 10−13 N−1mm−1 2.24 × 10−15 N−1mm−2

]
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At time τ0, before any creep or shrinkage has occurred, Eq. 5.14 reduces to:

ε0 = F0re,0 =
[

2.81 × 10−10 6.66 × 10−13

6.66 × 10−13 2.24 × 10−15

][
0

500 × 106

]

=
[

333.3 × 10−6

1.123 × 10−6 mm−1

]

With εr,0 = 333.3 × 10−6 and κ0 = 1.123 × 10−6 mm−1, the strains at the top
and bottom fibres of the cross-sections are (Eq. 5.1):

ε0(top) = εr,0 + (−450) × κ0 = −172.2 × 10−6

and

ε0(btm) = εr,0 + 300 × κ0 = 670.4 × 10−6

The concrete stresses at the top and bottom of the slab at time τ0 are (Eq. 5.16a):

σc,0(top) = Ec,0
[
1 yc,(top)

]
ε0 = 25,000

[
1 −450

] [333.3 × 10−6

1.123 × 10−6

]

= −4.31 MPa

σc,0(btm) = Ec,0

[
1 yc,(btm)

]
ε0 = 25,000

[
1 −300

] [333.3 × 10−6

1.123 × 10−6

]

= −0.09MPa

The stress in the steel reinforcement is (Eq. 5.16b):

σs(1),0 = Es(1)
[
1 ys(1)

]
ε0 = 200 × 103 [1 −375

] [333.3 × 10−6

1.123 × 10−6

]

= −17.6 MPa

The stresses at the top and bottom fibres of the steel I-beam are (Eq. 5.65):

σss,0(top) =Ess
{[

1 yss,(top)
]
ε0
}=200×103

{[
1 −300

][333.3×10−6

1.123×10−6

]}

=−0.74MPa

σss,0(btm) =Ess

{[
1 yss,(btm)

]
ε0

}
=200×103

{[
1 +300

][333.3×10−6

1.123×10−6

]}

=134MPa
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The stress resultants resisted by the concrete at τ0 can be determined from:

rc,0 =
[

Nc,0

Mc,0

]
= Dc,0ε0 = Ec,0

[
Ac Bc

Bc Ic

][
εr,0

κ0

]
=
[−785.8 × 103 N
313.6 × 106 Nmm

]

Time analysis – AEMM (at time τk = ∞)

From Eqs 4.35 and 4.46:

�Ee,k = 25,000
1 + 0.65 × 2.5

= 9524 MPa

�Fe,0 = 2.5 × (0.65 − 1.0)
1.0 + 0.65 × 2.5

= −0.333

The cross-sectional rigidities at time τk are (Eq. 5.66):

RA,k = Ac�Ee,k + AssEss + As(1)Es(1) = 6443 × 106 N

RB,k = Bc�Ee,k + BssEss + ys(1)As(1)Es(1) = −1479 × 109 Nmm

RI,k = Ic�Ee,k + IssEss + y2
s(1)As(1)Es(1) = 710.9 × 1012 Nmm2

Fk is then obtained using Eq. 5.40:

Fk = 1

RA,kRI,k − R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]

=
[

2.96 × 10−10 N−1 6.17 × 10−13 N−1mm−1

6.17 × 10−13 N−1mm−1 2.69 × 10−15 N−1mm−2

]

The creep effects at τk due to the concrete stresses calculated at τ0 are calculated
using Eq. 5.36:

fcr,k =�Fe,0rc,0 = −0.333 ×
[
−785.8 × 103

313.6 × 106

]
=
[

261.9 × 103 N
−104.6 × 106 Nmm

]

and the shrinkage effects are given by Eq. 5.37:

fsh,k =
[
Ac

Bc

]
�Ee,kεsh,k =

[
357,300 × 9524

−134 × 106 × 9524

](
−600 × 10−6

)

=
[

−2042 × 103 N
765.6 × 106 Nmm

]



186 Uncracked sections

From Eq. 5.39, the final strain distribution at time τk is:

εk = Fk
(
re,k − fcr,k + fsh,k

)=
[

162.2 × 10−6

2.265 × 10−6 mm−1

]

With εr,k = 162.2 × 10−6 and κk = 2.265 × 10−6 mm−1, the strains in the top
and bottom fibres of the cross-sections are (Eq. 5.1):

εk(top) = εr,k + (−450) × κk = −856.9 × 10−6

εk(btm) = εr,k + 300 × κk = 841.6 × 10−6

The final concrete stresses at the top and bottom of the slab at time τk are
(Eq. 5.41a):

σc,k(top) = �Ee,k
{[

1 yc,(top)
]
εk − εsh,k

}+�Fe,0σc,0

= 9524

{[
1 −450

] [162.2 × 10−6

2.265 × 10−6

]
−
(
−600 × 10−6

)}

− 0.333 × (−4.31) = −1.01 MPa

σc,k(btm) = �Ee,k

{[
1 yc,(btm)

]
εk − εsh,k

}
+�Fe,0σc,0 = 0.82 MPa

The final stress in the steel reinforcement is (Eq. 5.41b):

σs(1),k = Es(1)
[
1 ys(1)

]
εk = 200 × 103 [1 −375

] [162.2 × 10−6

2.265 × 10−6

]

= −137.4MPa

and the final stresses at the top and bottom fibres of the steel I-beam are
(Eq. 5.65):

σss,k(top) = Ess
[
1 yss,(top)

]
εk = 200 × 103 [1 −300

] [162.2 × 10−6

2.265 × 10−6

]

= −103.4MPa

σss,k(btm) = Ess
[
1 yss,(btm)

]
εk = 200 × 103 [1 300

] [162.2 × 10−6

2.265 × 10−6

]

= 168.3 MPa
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The final stress and strain distributions are illustrated in Fig. 5.17.

Concrete
stress

−0.74

(a) Cross-section (b) Strain diagram (×10−6) (c) Stress diagram (MPa)

−172.2

x

 y 

−856.9 −1.01−4.31
−17.6

Time, t0
Time, tk

168841.6670.4 134

−103 0.82 −0.09
−137

Steel
stress

e s

k0 = 1.123 × 10−6 mm−1

kk = 2.265 × 10−6 mm−1

Figure 5.17 Stress and strain distributions due to Me = 500 kNm (Example 5.7).

As can be seen in Fig. 5.17, the effect of creep and shrinkage in the
concrete portions of a composite section in positive bending is to substantially
increase positive curvature with time. In this example, the initial curvature
has approximately doubled (from κ0 = 1.123 × 10−6 mm−1 to κk = 2.265 ×
10−6 mm−1). In addition, the concrete deck has been relieved of much of its
initial compression, with tensile stress developing in the bottom concrete fibres.
The steel I-section therefore carries significantly more of the external moment
after a period of sustained loading. Both the tensile stresses in the bottom fibres
of the steel I-section and the compressive stresses in the top fibres have increased
substantially with time.

Example 5.8

In order to examine the effects of shrinkage on the behaviour of a composite
section, the cross-section shown in Fig. 5.16 (and analysed in Example 5.7) is
here re-analysed for the case when Me = 0 and Ne = 0. As in Example 5.7,
the final shrinkage is −600×10−6. This unloaded situation is quite common in
practice, for example near the supports of a simply-supported member or at the
points of contraflexure in a continuous composite girder.
Obviously, in the short-term, the section is unloaded, with zero deformation
(εr,0 = 0 and κ0 = 0) and no external actions. As time increases, the concrete
deck shrinks while being restrained by the steel I-section and by the bonded
steel reinforcement. As for Example 5.7: �Ee,k = 9524 MPa; �Fe,0 = −0.333; Ac =
357,300 mm2; Bc = −134 × 106 mm3; Ic = 50,920 × 106 mm4; RA,k = 6443 ×
106 N; RB,k = −1479 × 109 Nmm; RI,k = 710.9 × 1012 Nmm2; and

Fk =
[

2.96 × 10−10 N−1 6.17 × 10−13 N−1mm−1

6.17 × 10−13 N−1mm−1 2.69 × 10−15 N−1mm−2

]
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With no external loads and from Eqs 5.36 and 5.37:

re,0 = re,k =
[

0 N
0 Nmm

]

fcr,k =
[
0 N
0 Nmm

]

fsh,k =
[

−2042 × 103 N
765.6 × 106 Nmm

]

The final strain distribution at time τk becomes (Eq. 5.39):

εk = Fk
(
re,k − fcr,k + fsh,k

)=
[

−133.4 × 10−6 N

+0.799 × 10−6 Nmm

]

With εr,k = −133.4 × 10−6 and κk = +0.799 × 10−6 mm−1, the final strain at
the top of the slab (y = −450 mm) and at the bottom of the steel I-section
(y = 300 mm) at time τk are:

εk(top) = εr,k + (−450) × κk = −493.2 × 10−6

εk(btm) = εr,k + 300 × κk = +106.5 × 10−6

The final concrete stresses at the top and bottom of the slab at time τk are
(Eq. 5.41a):

σc,k(top) = 9524

{[
1 −450

] [−133.4 × 10−6

0.799 × 10−6

]
− (−600 × 10−6)

}

= +1.02 MPa

σc,k(btm) = 9524

{[
1 −300

] [−133.4 × 10−6

0.799 × 10−6

]
− (−600 × 10−6)

}

= +2.16 MPa

and the final stress in the steel reinforcement is (Eq. 5.41b):

σs(1),k = 200,000 [−133.4 − 375 × 0.799]× 10−6 = −86.6 MPa

The final stresses at the top and bottom fibres of the steel I-beam are (Eq. 5.65):

σss,k(top) = 200,000 [−133.4 − 300 × 0.799]× 10−6 = −74.6 MPa

σss,k(btm) = 200,000 [−133.4 + 300 × 0.799]× 10−6 = +21.3 MPa
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The final stress and strain distributions are illustrated in Fig 5.18. The shrinkage-
induced final curvature (+0.799 × 10−6 mm−1) is almost 70 per cent of the
change in curvature with time in Example 5.7 (where �κ = κk − κ0 = 1.142 ×
10−6 mm−1). In addition, the tensile stress induced in the bottom fibre of the
concrete due to the restraint to shrinkage may be sufficient to cause cracking in
the concrete.

(a) Cross-section (b) Strain diagram (× 10−6) (c) Stress diagram (MPa)

      x 

 y 

−493.2 1.02

106.5 21.3

−74.6
2.16

−86.6

e s

Figure 5.18 Shrinkage-induced stress and strain distributions at τk for Example 5.8.

5.7 Composite concrete-concrete cross-sections

The analysis of a cross-section consisting of different reinforced or prestressed concrete
elements acting compositely together and subjected to a sustained bending moment
and axial force is presented here. A typical cross-section is shown in Fig 5.19. This
particular cross-section is made up of two concrete elements, a precast pretensioned
I-section (Element 1) and an in-situ slab deck (Element 2). Each concrete element may
have different creep and shrinkage characteristics, as well as different elastic moduli.
In the subsequent analyses, perfect bond is assumed between each concrete element,
as well as between the concrete and the bonded steel reinforcement.

dp(1)

ds(2)

ds(3)

ds(1)

As(3)

Ap(1)

Ap(2)

As(4)

As(1)

As(2)

dc(2)

dc(1)

dref

dp(2)
ds(4)

x Centroidal axis of
in-situ concrete
deck (Element 2), Ac(2)

Centroidal axis of precast
concrete girder (Element 1), Ac(1) 

y

Figure 5.19 Typical concrete-concrete composite section.
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The general procedure introduced in Sections 5.3–5.5 for reinforced and prestressed
concrete cross-sections is readily extended to include composite sections comprising
two or more concrete components. Consider a composite section formed with mc
different concrete components. For the i-th concrete component (with i = 1, . . . ,mc),
the area is Ac(i), and the first and second moments of the area about the reference axis
are Bc(i) and Ic(i), respectively.

For clarity and completeness, the short-term analysis (assuming linear-elastic
material behaviour) and the time-dependent analyses using both the AEMM and the
SSM are presented separately in the following.

5.7.1 Short-term analysis

As outlined in Section 5.3, the constitutive relationships for each material for use in
the instantaneous analysis are (Eq. 5.4):

σc(i),0 = Ec(i),0ε0 (5.67a)

σs(i),0 = Es(i)ε0 (5.67b)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init

)
(5.67c)

Similar to Eq. 5.7a, the internal actions carried by the i-th concrete element (for
inclusion in the equilibrium equations) can be expressed as:

Nc(i),0 =
∫

Ac(i)

σc(i),0 dA =
∫

Ac(i)

Ec(i),0
(
εr,0 + yκ0

)
dA

= Ac(i)Ec(i),0εr,0 + Bc(i)Ec(i),0κ0 (5.68a)

Mc(i),0 =
∫

Ac(i)

yσc(i),0 dA =
∫

Ac(i)

Ec(i),0y
(
εr,0 + yκ0

)
dA

= Bc(i)Ec(i),0εr,0 + Ic(i)Ec(i),0κ0 (5.68b)

and, as in Eq. 5.12, the governing system of equilibrium equations is:

re,0 = D0ε0 + fp,init (5.69)

Solving for the unknown strain variables gives (Eq. 5.14):

ε0 = D−1
0

(
re,0 − fp,init

)= F0
(
re,0 − fp,init

)
(5.70)

where

D0 =
[
RA,0 RB,0

RB,0 RI,0

]
(5.71a)

F0 = 1

RA,0RI,0 − R2
B0

[
RI,0 −RB,0

−RB,0 RA,0

]
(5.71b)
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ε0 =
[
εr,0

κ0

]
(5.71c)

re,0 =
[

Ne,0

Me,0

]
(5.71d)

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.71e)

The cross-sectional rigidities forming the D0 matrix in Eq. 5.71a are:

RA,0 =
mc∑
i=1

Ac(i)Ec(i),0 +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) =
mc∑
i=1

Ac(i)Ec(i),0 + RA,s + RA,p

(5.72a)

RB,0 =
mc∑
i=1

Bc(i)Ec(i),0 +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

=
mc∑
i=1

Bc(i)Ec(i),0 + RB,s + RB,p (5.72b)

RI,0 =
mc∑
i=1

Ic(i)Ec(i),0 +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

=
mc∑
i=1

Ic(i)Ec(i),0 + RI,s + RI,p (5.72c)

where for convenience the following notation is introduced for the rigidities of the
reinforcement and tendons:

RA,s =
ms∑
i=1

As(i)Es(i) (5.73a)

RB,s =
ms∑
i=1

ys(i)As(i)Es(i) (5.73b)

RI,s =
ms∑
i=1

y2
s(i)As(i)Es(i) (5.73c)

RA,p =
mp∑
i=1

Ap(i)Ep(i) (5.74a)

RB,p =
mp∑
i=1

yp(i)Ap(i)Ep(i) (5.74b)

RI,p =
mp∑
i=1

y2
p(i)As(i)Ep(i) (5.74c)
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The stress distribution is calculated from Eq. 5.16:

σc(i),0 = Ec(i),0ε0 = Ec(i),0[1 y]ε0 (5.75a)

σs(i),0 = Es(i)ε0 = Es(i)[1 ys(i)]ε0 (5.75b)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init

)= Ep(i)[1 yp(i)]ε0 + Ep(i)εp(i),init (5.75c)

where ε0 = εr,0 + yκ0 = [1 y]ε0.

5.7.2 Time analysis – AEMM

For the analysis of stresses and deformations on a composite concrete-concrete cross-
section at time τk after a period of sustained loading, the AEMM may be used, as
outlined in Section 5.4. The stress–strain relationships for each concrete element and
for each layer of reinforcement and tendons at τk are as follows (Eq. 5.22):

σc(i),k = �Ee(i),k
(
εk − εsh(i),k

)+�Fe(i),0σc(i),0 (5.76a)

σs(i),k = Es(i)εk (5.76b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)
(5.76c)

In this case the contribution of the i-th concrete component to the internal axial
force and moment can be determined as (similar to Eq. 5.27):

Nc(i),k =
∫

Ac(i)

σc(i),k dA =
∫

Ac(i)

[�Ee(i),k
(
εr,k + yκk − εsh(i),k

)+�Fe(i),0σc(i),0
]
dA

= Ac(i)�Ee(i),kεr,k + Bc(i)�Ee(i),kκk − Ac(i)�Ee(i),kεsh(i),k +�Fe(i),0Nc(i),0 (5.77a)

Mc(i),k =
∫

Ac(i)

yσc(i),k dA =
∫

Ac(i)

y
[�Ee(i),k

(
εr,k + yκk − εsh(i),k

)+�Fe(i),0σc(i),0
]
dA

= Bc(i)�Ee(i),kεr,k + Ic(i)�Ee(i),kκk − Bc(i)�Ee(i),kεsh(i),k +�Fe(i),0Mc(i),0 (5.77b)

The equilibrium equations are (Eq. 5.34):

re,k = Dkεk + fcr,k − fsh,k + fp,init − fp.rel,k (5.78)

and solving gives the strain at time τk (Eq. 5.39):

εk = D−1
k

(
re,k − fcr,k + fsh,k − fp,init + fp.rel,k

)
= Fk

(
re,k − fcr,k + fsh,k − fp,init + fp.rel,k

)
(5.79)
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where

εk =
[
εr,k

κk

]
(5.80a)

re,k =
[

Ne,k

Me,k

]
(5.80b)

Dk =
[
RA,k RB,k

RB,k RI,k

]
(5.80c)

Fk = 1

RA,k RI,k − R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]
(5.80d)

and the cross-sectional rigidities at τk are:

RA,k =
mc∑
i=1

Ac(i)�Ee(i),k +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) =
mc∑
i=1

Ac(i)�Ee(i),k + RA,s + RA,p

(5.81a)

RB,k =
mc∑
i=1

Bc(i)�Ee(i),k +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

=
mc∑
i=1

Bc(i)�Ee(i),k + RB,s + RB,p (5.81b)

RI,k =
mc∑
i=1

Ic(i)�Ee(i),k +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

=
mc∑
i=1

Ic(i)�Ee(i),k + RI,s + RI,p (5.81c)

In Eq. 5.78, the effects of creep and shrinkage of the concrete elements are included
by (see Eqs 5.36 and 5.37):

fcr,k =
mc∑
i=1

�Fe(i),0

[
Nc(i),0

Mc(i),0

]
=

mc∑
i=1

�Fe(i),0 Ec(i),0

[
Ac(i)εr,0 + Bc(i)κ0

Bc(i)εr,0 + Ic(i)κ0

]
(5.82)

fsh,k =
mc∑
i=1

[
Ac(i)

Bc(i)

]
�Ee(i),kεsh(i),k (5.83)
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The initial strain in the prestressing steel and relaxation are accounted for using
(Eq. 5.38):

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.84a)

fp.rel,k =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),initϕp(τk,σp(i),init)

yp(i)Ap(i)Ep(i)εp(i),initϕp(τk,σp(i),init)

]
(5.84b)

The stress distributions at time τk in each concrete element and in the reinforcement
and tendons are (Eq. 5.41):

σc(i),k = �Ee(i),k
(
εk − εsh(i),k

)+�Fe(i),0σc(i),0

= �Ee(i),k
{ [

1 y
]

εk − εsh(i),k
}+�Fe(i),0σc(i),0 (5.85a)

σs(i),k = Es(i)εk = Es(i)
[
1 ys(i)

]
εk (5.85b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)
= Ep(i)

[
1 yp(i)

]
εk + Ep(i)εp(i),init − Ep(i)εp.rel(i),k (5.85c)

where εk = εr,k + yκk = [
1 y

]
εk.

Example 5.9

The composite cross-section shown in Fig. 5.20 forms part of a bridge deck
and consists of an in-situ reinforced concrete deck and a precast post-tensioned
I-section (with bonded tendons). At time τ0 with both concrete elements acting
compositely, the road surface and other superimposed dead load are placed on
the bridge, thereby introducing an increment of external moment Me = 400 kNm
at the section shown. Both the immediate and final long-term changes of stress
caused by Me are to be calculated.

For the precast I-girder:
Ec(1)(τ0) = 32,000 MPa; ϕ(1)(∞,τ0) = 2.0; χ(1)(∞,τ0) = 0.65.

For the concrete deck:
Ec(2)(τ0) = 25,000 MPa; ϕ(2)(∞,τ0) = 2.5; χ(2)(∞,τ0) = 0.65.

For the steel reinforcement and tendons:
Es = Ep = 200,000 MPa.

In this example, only the increments of stress and strain caused by Me are to be
calculated. In the actual bridge girder, these must be added to the increments
of stress and strain caused by the prestress, self-weight, live load, shrinkage of
the concrete, relaxation of the prestressing steel and, if applicable, temperature
changes.
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Figure 5.20 Details of the cross-section for Example 5.9.

In the following solution, the top surface of the in-situ slab is selected as the
reference axis, as shown in Fig. 5.20, (i.e. dref = 0 mm) and its distances from the
steel layers are: ys(1) = 75 mm, ys(2) = 210 mm, ys(3) = 1240 mm, yp(1) = 1030 mm
and yp(2) = 1160 mm.
The applied loads are:

re,0 =
[

0 N
400 × 106 Nmm

]

As no prestressing forces and shrinkage effects are considered in this problem,
the vectors fp,init, fp.rel,0, fp.rel,k and fsh,k are all nil:

fp,init =
[

0 N
0 Nmm

]

fp.rel,0 = fp.rel,k =
[

0 N
0 Nmm

]

fsh,k =
[

0 N
0 Nmm

]

Short-term analysis (at time τ0)

The geometric properties of the precast girder cross-section are calculated as:

Ac(1) = Agross − As(2) − As(3) − Ap(1) − Ap(2) = 312,700 mm2

Bc(1) = Agross
(
dc(1) − dref

)−(As(2)ys(2) + As(3)ys(3)
)−(Ap(1)yp(1) + Ap(2)yp(2)

)
= 234.2 × 106 mm3

Ic(1) = Igross + Agross
(
dc(1) − dref

)2 −
(
As(2)y

2
s(2) + As(3)y2

s(3)

)
−
(
Ap(1)y2

p(1) + Ap(2)y2
p(2)

)
= 224.4 × 109 mm4
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and those of the concrete deck are:

Ac(2) = bD − As(1) = 357,300 mm2

Bc(2) = bD(D/2 − dref ) − As(1)ys(1) = 26.79 × 106 mm3

Ic(2) = bD3

12
+ bD

(
D
2

− dref

)2

− As(1)y
2
s(1) = 2684 × 106 mm4

The instantaneous cross-sectional rigidities are (Eq. 5.72):

RA,0 = Ac(1)Ec(1),0 + Ac(2)Ec(2),0 + (As(1) + As(2) + As(3)
)
Es

+ (Ap(1) + Ap(2)
)
Ep = 20,340 × 106 N

RB,0 = Bc(1)Ec(1),0 + Bc(2)Ec(2),0 + (As(1)ys(1) + As(2)ys(2) + As(3)ys(3)
)
Es

+ (Ap(1)yp(1) + Ap(2)yp(2)
)
Ep = 9039 × 109 Nmm

RI,0 = Ic(1)Ec(1),0 + Ic(2)Ec(2),0 +
(
As(1)y

2
s(1) + As(2)y

2
s(2) + As(3)y

2
s(3)

)
Es

+
(
Ap(1)y

2
p(1) + Ap(2)y

2
p(2)

)
Ep = 8198 × 1012 Nmm2

The matrix F0 can then be determined as (Eq. 5.71b):

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]

=
[

96.42 × 10−12 N−1 −106.3 × 10−15 N−1mm−1

−106.3 × 10−15 N−1mm−1 239.2 × 10−18 N−1mm−2

]

The strain vector ε0 containing the unknown strain variables is determined from
Eq. 5.70:

ε0 = F0
(
re,0 − fp,init

)=
[

96.42 × 10−12 −106.3 × 10−15

−106.3 × 10−15 239.2 × 10−18

]

×
{[

0
400 × 106

]
−
[
0
0

]}
=
[

−42.5 × 10−6

0.095 × 10−6 mm−1

]

The increment of strain at the reference axis and the increment of curvature
caused by the imposed moment Me = 400 kNm are therefore εr,0 =−42.5×10−6

and κ0 = 0.095×10−6 mm−1 and, from Eq. 5.1, the increments of top (y = 0 mm)
and bottom (y = 1300 mm) fibre strains are:

ε0(top) = εr,0 + 0 × κ0 = −42.5 × 10−6 and

ε0(btm) = εr,0 + 1300 × κ = 81.8 × 10−6



Uncracked sections 197

From Eq. 5.75a, the changes in the top and bottom fibre stresses on the precast
I-section are:

σc(1),0(top) = Ec(1),0εc(1),0(top) = 32,000 × (−42.5 + 150 × 0.095) × 10−6

= −0.90 MPa

σc(1),0(btm) = Ec(1),0εc(1),0(btm) = 32,000 × (−42.5 + 1300 × 0.095) × 10−6

= +2.62 MPa

and on the concrete deck:

σc(2),0(top) = Ec(2),0εc(2),0(top) = 25,000 × (−42.5 + 0 × 0.095) × 10−6

= −1.06 MPa

σc(2),0(btm) = Ec(2),0εc(2),0(btm) = 25,000 × (−42.5 + 150 × 0.095) × 10−6

= −0.70 MPa

The increments of stress in the non-prestressed reinforcement are obtained from
Eq. 5.75b as:

σs(1),0 = 200 × 103 × [1 75
] [−42.5 × 10−6

0.095 × 10−6

]
= −7.1 MPa

σs(2),0 = 200 × 103 × [1 210
] [−42.5 × 10−6

0.095 × 10−6

]
= −4.5 MPa

σs(3),0 = 200 × 103 [1 1240
] [−42.5 × 10−6

0.095 × 10−6

]
= 15.2 MPa

and in the prestressing steel (Eq. 5.75c)

σp(1),0 = Ep
[
1 yp(1)

]
ε0 = 200 × 103 × [1 1030

][−42.5 × 10−6

0.095 × 10−6

]

= 11.2 MPa

σp(2),0 = Ep
[
1 yp(2)

]
ε0 = 200 × 103 × [1 1160

][−42.5 × 10−6

0.095 × 10−6

]

= 13.7 MPa

Long-term analysis (at time τk = ∞)

For the long-term analysis at time τk the age-adjusted material properties for the
two concrete elements are obtained from Eqs 4.35 and 4.46:

�Ee(1),k = Ec(1),0

1 +χ(1) (τk,τ0)ϕ(1) (τk,τ0)
= 32,000

1 + 0.65 × 2.0
= 13,910 MPa
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�Ee(2),k = Ec(2),0

1 +χ(2) (τk,τ0)ϕ(2) (τk,τ0)
= 25,000

1 + 0.65 × 2.5
= 9523 MPa

�Fe(1),0 = ϕ(1) (τk,τ0)
[
χ(1) (τk,τ0) − 1

]
1 +χ(1) (τk,τ0)ϕ(1) (τk,τ0)

= 2.0 × (0.65 − 1)
1 + 0.65 × 2.0

= −0.304

�Fe(2),0 = ϕ(2) (τk,τ0)
[
χ(2) (τk,τ0) − 1

]
1 +χ(2) (τk,τ0)ϕ(2) (τk,τ0)

= 2.5 × (0.65 − 1)
1 + 0.65 × 2.5

= −0.333

Creep effects are accounted for using Eq. 5.82:

fcr,k =�Fe(1),0 Ec(1),0

[
Ac(1)εr,0 + Bc(1)κ0

Bc(1)εr,0 + Ic(1)κ0

]
+�Fe(2),0 Ec(2),0

[
Ac(2)εr,0 + Bc(2)κ0

Bc(2)εr,0 + Ic(2)κ0

]

=
[

16.5 × 103 N
−104.8 × 106 Nmm

]

The cross-sectional rigidities at time τk are calculated from Eq. 5.81:

RA,k = Ac(1)�Ee(1),k + Ac(2)�Ee(2),k + (As(1) + As(2) + As(3)
)
Es

+ (Ap(1) + Ap(2)
)
Ep = 9153 × 106 N

RB,k = Bc(1)�Ee(1),k + Bc(2)�Ee(2),k + (As(1)ys(1) + As(2)ys(2) + As(3)ys(3)
)
Es

+ (Ap(1)yp(1) + Ap(2)yp(2)
)
Ep = 4389 × 109 Nmm

RI,k = Ic(1)�Ee(1),k + Ic(2)�Ee(2),k +
(
As(1)y

2
s(1) + As(2)y

2
s(2) + As(3)y

2
s(3)

)
Es

+
(
Ap(1)y

2
p(1) + Ap(2)y

2
p(2)

)
Ep = 4097 × 1012 Nmm2

Matrix Fk is then determined as (Eq. 5.80d):

Fk =
[

224.6 × 10−12 N−1 −240.5 × 10−15 N−1mm−1

−240.5 × 10−15 N−1mm−1 501.7 × 10−18 N−1mm−2

]

The strain vector εk at time τk caused by the sustained moment Me is obtained
from Eq. 5.79:

εk = Fk
(
re,k − fcr,k

)=
[

−125.1 × 10−6 N
0.257 × 10−6 Nmm

]

The final increments of strains at the top and bottom fibres of the cross-section
are (Eq. 5.1):

εk(top) = εr,k + 0 × κk = −125.1 × 10−6

εk(btm) = εr,k + 1300 × κk = 209.2 × 10−6
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The increments of stress at time τk in the top and bottom fibres of the precast
I-section are determined using Eq. 5.85a:

σc(1),k(top) = �Ee(1),k
(
εc(1),k(top) − εsh(1),k

)+�Fe(1),0σc(1),0(top)

= 13,913 × (−125.1 + 150 × 0.257) × 10−6 − 0.304 × (−0.90)

= −0.93 MPa

and

σc(1),k(btm) = �Ee(1),k
(
εc(1),k(btm) − εsh(1),k

)+�Fe(1),0σc(1),0(btm) = 2.11 MPa

Similarly, for the concrete deck:

σc(2),k(top) = �Ee(2),k
(
εc(2),k(top) − εsh(2),k

)+�Fe(2),0σc(2),0(top)

= 9523 × (−125.1 + 0 × 0.257) × 10−6 − 0.333 × (−1.06)

= −0.84 MPa

σc(2),k(btm) = �Ee(2),k
(
εc(2),k(btm) − εsh(2),k

)+�Fe(2),0σc(2),0(btm) = −0.59 MPa

The final increments of stress in the non-prestressed reinforcement are obtained
from Eq. 5.85b:

σs(1),k = 200 × 103 × [1 75
] [−125.1 × 10−6

0.257 × 10−6

]
= −21.2 MPa

σs(2),k = 200 × 103 × [1 210
] [−125.1 × 10−6

0.257 × 10−6

]
= −14.2 MPa

σs(3),k = 200 × 103 [1 1240
] [−125.1 × 10−6

0.257 × 10−6

]
= +38.8 MPa

and for the prestressing steel, Eq. 5.85c gives:

σp(1),k = Ep
[
1 yp(1)

]
εk + Epεpinit(1)

= 200 × 103 × [1 1030
] [−125.1 × 10−6

0.257 × 10−6

]
+ 0 = 27.9 MPa

and

σp(2),k = Ep
[
1 yp(2)

]
εk + Epεpinit(2)

= 200 × 103 × [1 1160
] [−125.1 × 10−6

0.257 × 10−6

]
+ 0 = 34.6 MPa
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The stress and strain distributions at times τ0 and at τk are shown in Fig. 5.21.

(a) Cross-section (b) Strain diagram (× 10−6) (c) Stress diagram (MPa)

Time, t0
Time, tk

−42.5−125.1

209.281.8 2.62 2.11 

15.2 38.8
34.6

27.9
13.7 
11.2 

−14.2
−4.5 

−21.2

−0.70
−0.90 −0.93 

−0.59

x

 y 

−1.06 −0.84 
−7.1

se

Figure 5.21 Strain and stress distributions for Example 5.9.

5.7.3 Time analysis – SSM

The SSM outlined in Section 5.5 is extended in the following to analyse a composite
cross-section with mc different concrete elements. Similar to Eqs 4.25 and 5.44, the
constitutive relationships for the different materials at time τj are:

σc(i),j = Ec(i),j
(
εj − εsh(i),j − εc(i),set−1

)+ j−1∑
n=0

Fe(i),j,n σc(i),n (5.86a)

σs(i),j = Es(i)
(
εj − εs(i),set−1

)
(5.86b)

σp(i),j = Ep(i)
(
εj + εp(i),init − εp.rel(i),j − εp(i),set−1

)
(5.86c)

where the additional strain terms εc(i),set−1, εs(i),set−1, εp(i),set−1 have been included to
account for variations in the cross-section when different parts of the cross-section are
cast at different times, such as occurs, for example, in sequential casting. The term
set refers to the time step at which a particular concrete element sets and begins to
contribute to the structural stiffness. The inclusion of the strains εc(i),set−1, εs(i),set−1,
εp(i),set−1 in Eq. 5.86 ensures that all new components are initially unloaded. Similar
treatment can be given to the grouting of post-tensioning ducts at some time after the
transfer of prestress, as illustrated subsequently in Example 5.10.

In the formulation adopted here (and illustrated in Example 5.10), two steps are
considered in the solution whenever a new concrete element is added to the cross-
section. The first step involves the calculation of the cross-sectional response just before
the element sets, at τset−1, and the second step involves the calculation of the response
just after the element starts to contribute to the structural stiffness, at τset. Obviously,
for situations not related to sequential casting, i.e. where all concrete elements are in
place from the beginning of the analysis, the terms εc(i),set−1, εs(i),set−1 and εp(i),set−1
in Eq. 5.86 are all set to zero.
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Similarly to Eq. 5.48, the axial force and moment resisted by the i-th concrete
element are:

Nc(i),j =
∫

Ac(i)

σc(i),j dA =
∫

Ac(i)

⎡
⎣Ec(i),j

(
εj − εsh(i),j − εc(i),set−1

)+ j−1∑
n=0

Fe(i),j,n σc(i),n

⎤
⎦dA

= Ac(i)Ec(i),j
(
εr,j − εr,set−1

)+ Bc(i)Ec(i),j
(
κj − κset−1

)− Ac(i)Ec(i),jεsh(i),j

+
j−1∑
n=0

Fe(i),j,n Nc(i),n (5.87a)

Mc(i),j =
∫

Ac(i)

yσc(i),j dA =
∫

Ac(i)

y

⎡
⎣Ec(i),j

(
εj − εsh(i),j − εc(i),set−1

)+ j−1∑
n=0

Fe(i),j,n σc(i),n

⎤
⎦dA

= Bc(i)Ec(i),j
(
εr,j − εr,set−1

)+ Ic(i)Ec(i),j
(
κj − κset−1

)− Bc(i)Ec(i),jεsh(i),j

+
j−1∑
n=0

Fe(i),j,n Mc(i),n (5.87b)

in which εr,set−1 and κset−1 define the strain diagram immediately before the i-th
concrete element sets at τset−1.

As for the earlier analyses (Eq. 5.54), the governing equilibrium equations are:

re,j = Djεj + fcr,j − fsh,j + fp,init − fp.rel,j − fset,j (5.88)

and solving for the unknown strain distribution at τj gives:

εj = D−1
j

(
re,j − fcr,j + fsh,j − fp,init + fp.rel,j + fset,j

)
= Fj

(
re,j − fcr,j + fsh,j − fp,init + fp.rel,j + fset,j

)
(5.89)

where (as before):

εj =
[
εr,j

κj

]
(5.90a)

Dj =
[
RA,j RB,j

RB,j RI,j

]
(5.90b)

re,j =
[

Ne,j

Me,j

]
(5.90c)

Fj = 1

RA,j RI,j − R2
B,j

[
RI,j −RB,j

−RB,j RA,j

]
(5.90d)

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(5.90e)
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fp.rel,j =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),initϕp(τj,σp(i),init)

yp(i)Ap(i)Ep(i)εp(i),initϕp(τj,σp(i),init)

]
(5.90f)

fcr,j =
mc∑
i=1

j−1∑
n=0

Fe(i),j,nrc(i),n (5.90g)

fsh,j =
mc∑
i=1

[
Ac(i)

Bc(i)

]
Ec(i),jεsh(i),j (5.90h)

while fset.j is defined as:

fset,j =
mc∑
i=1

fc(i).set,j +
ms∑
i=1

fs(i).set,j +
mp∑
i=1

fp(i).set,j (5.90i)

and

fc(i).set,j =
[

Ac(i)Ec(i),jεr,set−1 + Bc(i)Ec(i),jκset−1

Bc(i)Ec(i),jεr,set−1 + Ic(i)Ec(i),jκset−1

]
(5.90j)

fs(i).set,j =
[

As(i)Es(i)εr,set−1 + Bs(i)Es(i)κset−1

Bs(i)Es(i)εr,set−1 + Is(i)Es(i)κset−1

]
(5.90k)

fp(i).set,j =
[

Ap(i)Ep(i)εr,set−1 + Bp(i)Ep(i)κset−1

Bp(i)Ep(i)εr,set−1 + Ip(i)Ep(i)κset−1

]
(5.90l)

The i-th component of the cross-section is included in the calculation of fset,j only
when the instant in time τj is greater than or equal to τset of the i-th component.

The axial force and moment resisted by the concrete at any time τi (required in
Eq. 5.90g) is determined as:

rc(i),n =
[

Nc(i),n

Mc(i),n

]
= Dc(i),n (εn − εset−1) +

n−1∑
l=0

Fe(i),n,lrc(i),l −
[

Ac(i)

Bc(i)

]
Ec(i),nεsh(i),n

(5.91)

where εset−1 is the vector containing εr,set−1 and κset−1 and:

Dc(i),n =
[

Ac(i) Bc(i)

Bc(i) Ic(i)

]
Ec(i),n (5.92)

The term Dc(i),n in Eq. 5.91 includes the properties of the i-th concrete element
introduced at τset while εset−1 defines the strain diagram at time τset−1, i.e. immediately
prior to the setting of the concrete in the i-th element.
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The cross-sectional rigidities to be used at τj are:

RA,j =
mc∑
i=1

Ac(i)Ec(i),j +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) =
mc∑
i=1

Ac(i)Ec(i),j + RA,s + RA,p

(5.93a)

RB,j =
mc∑
i=1

Bc(i)Ec(i),j +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i)

=
mc∑
i=1

Bc(i)Ec(i),j + RB,s + RB,p (5.93b)

RI,j =
mc∑
i=1

Ic(i)Ec(i),j +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i)

=
mc∑
i=1

Ic(i)Ec(i),j + RI,s + RI,p (5.93c)

and finally, the stress distributions at τj can be determined from

σc(i),j = Ec(i),j
(
εj − εsh(i),j − εc(i),set−1

)+ j−1∑
n=0

Fe(i),j,nσc(i),n

= Ec(i),j
{[

1 y
] (

εj − εset−1
)− εsh(i),j

}+
j−1∑
n=0

Fe(i),j,nσc(i),n (5.94a)

σs(i),j = Es(i)
(
εj − εs(i),set−1

)= Es(i)
[
1 ys(i)

](
εj − εset−1

)
(5.94b)

σp(i),j = Ep(i)
(
εj + εp(i),init − εp.rel(i),j − εp(i),set−1

)
= Ep(i)

[
1 yp(i)

](
εj − εset−1

)+ Ep(i)εp(i),init − Ep(i)εp.rel(i),j (5.94c)

where εj = εr,j + yκj = [
1 y

]
εj.

Example 5.10

The bridge girder with cross-section shown in Fig. 5.20 is subjected to the
following load history. The I-section is cast and moist cured for 7 days. At
age 7 days, the member is post-tensioned with an initial prestressing force of
2000 kN (Pp,init = 1000 kN in each tendon). The diameter of each prestressing
duct is 60 mm. The moment at the cross-section due to the self-weight of the
girder is M7 = 550 kNm and is first applied to the cross-section during the post-
tensioning operation at age 7 days. Shrinkage of the concrete in the I-girder also
begins to develop at this time. At age 40 days, the slab deck is cast and cured
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and the moment caused by the weight of the wet concrete, M40 = 620 kNm, is
first applied to the precast I-section. The post-tensioning ducts are also grouted
at this time (i.e. at age 40 days).
Composite action gradually begins to develop as soon as the concrete in the
deck sets and the grout within the ducts hardens. Full composite action may
not be achieved for several days. However, it is here assumed that the deck and
the I-section act compositely and that the prestressing tendons are bonded to
the concrete at all times after age 40 days. Shrinkage of the deck is assumed
to also begin at age 40 days. At τ = 60 days, the road surface is placed and
other superimposed dead loads are applied to the bridge, thereby introducing
an additional moment of M60 = 400 kNm. Thereafter, the loads are assumed to
remain constant in time.
The stress and strain distributions on the cross-section are to be calculated at the
following times:

(i) immediately after the application of the prestress at age 7 days;
(ii) before and after the slab deck is cast at age 40 days;
(iii) after the deck and I-section act compositely at age 40 days;
(iv) before and after the road surface is placed at age 60 days;
(v) at age 30,000 days (i.e. about 80 years) assuming the applied actions acting

at age 60 days remain constant thereafter.

Based on this loading history the following steps 0 to 6 are considered in the
worked example:

Step Age Description of event
(in days)

0 7 Prestressing force applied to the section. Application of
M7 = 550 kNm (short-term analysis).

1 40 − Time step introduced to determine the effects of creep,
shrinkage and relaxation in the I-girder from age 7 days
to age 40 days under the action introduced at 7 days and
held constant thereafter (time analysis).

2 40 + The deck is poured introducing an additional moment
of M40 = 620 kNm to be resisted by the I-section alone
(short-term analysis)

3 40 ++ Change in cross-section due to grouting of ducts and deck
acting compositely with the I-section (from this point
in time).

4 60 − Time step introduced to evaluate the time-dependent
behaviour of the composite section under constant
actions between ages 40 and 60 days (time analysis).

5 60 + Road surface added causing an additional moment of
M60 = 400 kNm to be applied to the composite section
(short-term analysis).

6 30,000 Time step introduced to evaluate the final long-term
behaviour assuming loads remain constant after age
60 days.
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The material properties are:

For all reinforcing steel and tendons:

Es = Ep = 200 GPa

ϕp(7,σp,init) = 0

ϕp(40,σp,init) = 0.015

ϕp(60,σp,init) = 0.02

ϕp(30,000,σp,init) = 0.03

For the precast I-section (Concrete element 1):

Ec(1),0 = 25 GPa

Ec(1),1 = Ec(1),2 = Ec(1),3 = 32 GPa

Ec(1),4 = Ec(1),5 = 34 GPa

Ec(1),6 = 38 GPa

ϕ(1) (7,7) = 0

ϕ(1) (40,7) = 0.8

ϕ(1) (60,7) = 1.0

ϕ(1) (30,000,7) = 2.5

ϕ(1) (40,40) = 0

ϕ(1) (60,40) = 0.8

ϕ(1) (30,000,40) = 1.8

ϕ(1) (60,60) = 0

ϕ(1) (30,000,60) = 1.6

εsh(1) (7) = 0

εsh(1) (40) = −100 × 10−6

εsh(1) (60) = −150 × 10−6

εsh(1) (30,000) = −400 × 10−6

For the concrete deck (Concrete element 2):

Ec(2),3 = 18 GPa

Ec(2),4 = Ec(2),5 = 25 GPa

Ec(2),6 = 30 GPa
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ϕ(2) (40,40) = 0

ϕ(2) (60,40) = 2.0

ϕ(2) (30,000,40) = 3.5

ϕ(2) (60,60) = 0

ϕ(2) (30,000,60) = 2.8

εsh(2) (40) = 0

εsh(2) (60) = −200 × 10−6

εsh(1) (30,000) = −600 × 10−6

As for Example 5.9, the top fibre of the concrete deck is selected as the reference
axis, i.e. dref = 0 mm, and the distances of the steel and prestressing layers
from the reference axis are ys(1) = 75 mm, ys(2) = 210 mm, ys(3) = 1240 mm,
yp(1) = 1030 mm and yp(2) = 1160 mm.

The external loads applied at each step are:

re,0 = re,1 =
[

0 N
550 × 106 Nmm

]

re,2 = re,3 = re,4 =
[

0 N
1170 × 106 Nmm

]

re,5 = re,6 =
[

0 N
1570 × 106 Nmm

]

The concrete material coefficients to be used in the various analyses are as
follows:

For the precast I-section (Element 1):

Jc(1)(7,7) = 4 × 10−5 MPa−1

Jc(1)(40,7) = 7.2 × 10−5 MPa−1

Jc(1)(60,7) = 8 × 10−5 MPa−1

Jc(1)(30,000,7) = 14 × 10−5 MPa−1

Jc(1)(40,40) = 3.125 × 10−5 MPa−1

Jc(1)(60,40) = 5.625 × 10−5 MPa−1

Jc(1)(30,000,40) = 8.75 × 10−5 MPa−1

Jc(1)(60,60) = 2.941 × 10−5 MPa−1

Jc(1)(30,000,60) = 7.647 × 10−5 MPa−1
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Jc(1)(30,000,30,000) = 2.631 × 10−5 MPa−1

Fe(1),1,0 = Fe(1),2,0 = Fe(1),3,0 = −1.304

Fe(1),4,0 = Fe(1),5,0 = −0.807

Fe(1),6,0 = −1.995

Fe(1),4,3 = Fe(1),5,3 = −0.912

Fe(1),6,3 = −0.419

Fe(1),6,5 = −1.906

Fe(1),i,j = 0 if τi = τj

εsh(1) (7) = 0

εsh(1) (40) = εsh(1),1 = εsh(1),2 = εsh(1),3 = −100 × 10−6

εsh(1) (60) = εsh(1),4 = εsh(1),5 = −150 × 10−6

εsh(1) (30,000) = εsh(1),6 = −400 × 10−6

For the concrete deck (Element 2):

Jc(2)(40,40) = 5.555 × 10−5 MPa−1

Jc(2)(60,40) = 16.66 × 10−5 MPa−1

Jc(2)(30,000,40) = 25 × 10−5 MPa−1

Jc(2)(60,60) = 4.0 × 10−5 MPa−1

Jc(2)(30,000,60) = 15.2 × 10−5 MPa−1

Jc(2)(30,000,30,000) = 3.333 × 10−5 MPa−1

Fe(2),4,3 = Fe(2),5,3 = −3.166

Fe(2),6,3 = −2.94

Fe(2),6,5 = −3.56

Fe(2),i,j = 0 if τi = τj

εsh(2) (40) = εsh(2),1 = εsh(2),2 = εsh(2),3 = 0

εsh(2) (60) = εsh(2),4 = εsh(2),5 = −200 × 10−6

εsh(2) (30,000) = εsh(2),6 = −600 × 10−6

The initial prestress is included in the analysis using:

fp,init =
[

2000 × 103 N
2190 × 106 Nmm

]
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The concrete area of the I-section contributing to the cross-sectional rigidity
changes when the prestressing ducts are grouted. For clarity, the concrete
properties of the I-section before grouting are referred to as Ac(1a), Bc(1a) and
Ic(1a), and after grouting as Ac(1b), Bc(1b) and Ic(1b).
The procedures required to analyse the I-section in the first three steps (before
the concrete deck is cast) are identical to those illustrated in Examples 5.2 and
5.6 and, for this reason, only the results of the analyses for Steps 1, 2 and 3 are
presented here.

Step 0: Short-term analysis at age τ = 7 days

Concrete properties: Ac(1a) = 308.6 × 103 mm2; Bc(1a) = 229.7 × 106 mm3; and
Ic(1a) = 219.5 × 109 mm4.

Cross-sectional rigidities: RA,0 = 8256 × 106 N; RB,0 = 6228 × 109 Nmm; and
RI,0 = 6050 × 1012 Nmm2.

The matrix F0:

F0 =
[

542.2 × 10−12 N−1 −558.2 × 10−15 N−1mm−1

−558.2 × 10−15 N−1mm−1 739.9 × 10−18 N−1mm−2

]

Strain at reference axis and curvature:
εr,0 = −169.0 × 10−6 and κ0 = −0.097 × 10−6 mm−1.
Strains in the top and bottom fibres of the I-section:
ε0(top) = −183.6 × 10−6 and ε0(btm) = −295.2 × 10−6.
Concrete stresses: σc(1),0(top) = −4.60 MPa and σc(1),0(btm) = −7.38 MPa.
Reinforcement stresses: σs(2),0 = −37.9 MPa and σs(3),0 = −57.9 MPa.
Stresses in tendons: σp(1),0 = 1250 MPa and σp(2),0 = 1250 MPa.
The concrete stress resultants at τ0 = 7 days are:

rc(1),0 =
[

−1862 × 103 N

−1504 × 106 Nmm

]
.

Step 1: Time analysis – SSM at age τ1 = 40 days

Creep and shrinkage of the concrete as well as relaxation of the prestressing steel
in the I-section are accounted for with:

fcr,1 =
[

2427 × 103 N

1961 × 106 Nmm

]

fsh,1 =
[

−987.7 × 103 N

−735.3 × 106 Nmm

]

fp.rel,1 =
[

30 × 103 N

32.85 × 106 Nmm

]
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Cross-sectional rigidities: RA,1 = 10416×106 N; RB,1 = 7837×109 Nmm; and
RI,1 = 7587 × 1012 Nmm2.

The matrix F1 =
[

430.7 × 10−12 N−1 −444.8 × 10−15 N−1mm−1

−444.8 × 10−15 N−1mm−1 591.3 × 10−18 N−1mm−2

]
.

Strain at reference axis and curvature:
εr,1 = −405.1 × 10−6 and κ1 = −0.148 × 10−6 mm−1.
Strains in the top and bottom fibres of the I-section:
ε1(top) = −427.4 × 10−6 and ε1(btm) = −598.5 × 10−6.
Concrete stresses: σc(1),1(top) = −4.49 MPa and σc(1),0(btm) = −6.33 MPa.
Reinforcement stresses: σs(2),1 = −87.3 MPa and σs(3),1 = −117.9 MPa.
Stresses in tendons: σp(1),1 = 1231 MPa and σp(2),1 = 1231 MPa.
The concrete stress resultants at τ1 = 40 days are:

rc(1),1 =
[

−1679 × 103 N

−1327 × 106 Nmm

]
.

Step 2: Short-term analysis at age τ = 40 days

This step is identical to the previous one with the exception that the applied
external load has increased due to the pour of the concrete deck.
Strain at reference axis and curvature:
εr,2 = −680.9 × 10−6 and κ2 = 0.217 × 10−6 mm−1.
Strains in the top and bottom fibres of the I-section:
ε2(top) = −648.2 × 10−6 and ε2(btm) = −397.7 × 10−6.
Concrete stresses: σc(1),2(top) = −11.56 MPa and σc(1),2(btm) = 0.09 MPa.
Reinforcement stresses: σs(2),2 = −127.0 MPa and σs(3),2 = −82.1 MPa.
Stresses in tendons: σp(1),2 = 1231 MPa and σp(2),2 = 1231 MPa.
The concrete stress resultants at τ = 40 days after the wet concrete is poured are:

rc(1),2 =
[

−1708 × 103 N

−779.8 × 106 Nmm

]
.

Step 3: Grouting of tendons and commencement of composite action at
age τ1 = 40 days

During this step, the cross-sectional properties change due to the grouting of the
tendons and due to the deck beginning to act compositely with the I-section.
This change in cross-section will be captured in fset,j to ensure that the added
components are unloaded at the time of setting.
The cross-sectional properties of both I-section (element 1) and the concrete deck
(element 2) are:

Ac(1b) = 312.7 × 103 mm2

Bc(1b) = 234.2 × 106 mm3

Ic(1b) = 224.4 × 109 mm4
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Ac(2) = 357.3 × 103 mm2

Bc(2) = 26.79 × 106 mm3

Ic(2) = 2685 × 106 mm4

The cross-sectional rigidities are:

RA,3 = 17,840 × 106 N

RB,3 = 8852 × 109 Nmm; and

RI,3 = 8179 × 1012 Nmm2

Matrix F3 is now:

F3 =
[

121.1 × 10−12 N−1 −131.0 × 10−15 N−1mm−1

−131.0 × 10−15 N−1 264.1 × 10−18 N−1mm−1

]

The time-dependent effects of creep and shrinkage of the concrete and the
relaxation response, that is, fcr,3, fsh,3 and fp.rel,3, are identical to those of the
previous two steps as they all correspond to age 40 days.
The vectors defining the unloaded condition for the grout, prestressing and
concrete deck at the time of setting are determined below.
For prestressing cables and grout:

Agrout = Aduct(1) + Aduct(2) − Apre(1) − Apre(2) = 2827 + 2827 − 800 − 800

= 4054 mm2

Bgrout = Bduct(1) + Bduct(2) − Bpre(1) − Bpre(2) = (2827 − 800) × 1030

+ (2827 − 800) × 1160 = 4439.1 × 103 mm3

Igrout = Iduct(1) + Iduct(2) − Ipre(1) − Ipre(2) = (2827 − 800) × 10302

+ (2827 − 800) × 11602 = 4877.9 × 106 mm4

fc(1).set,3 =
[

AgroutEc(1),3εr,2 + BgroutEc(1),3κ2

BgroutEc(1),3εr,2 + IgroutEc(1),3κ2

]

=

⎡
⎢⎢⎢⎢⎣

4054 × 32,000 × (−680.9 × 10−6)+ 4439.1 × 103

×32,000 × (0.217 × 10−6)
4439.1 × 103 × 32,000 × (−680.9 × 10−6)+ 4877.9 × 106

×32,000 × (0.217 × 10−6)

⎤
⎥⎥⎥⎥⎦

=
[

−57.4 × 103 N
−62.7 × 106 Nmm

]
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fp(1).set,3 =
[

Ap(1)Ep(1)εr,2 + Bp(1)Ep(1)κ2

Bp(1)Ep(1)εr,2 + Ip(1)Ep(1)κ2

]

=

⎡
⎢⎢⎢⎢⎣

800 × 200 × 103 × (−680.9 × 10−6)+ 800 × 1030
×200 × 103 × (0.217 × 10−6)

800 × 1030 × 200 × 103 × (−680.9 × 10−6)+ 800 × 10302

×200 × 103 × (0.217 × 10−6)

⎤
⎥⎥⎥⎥⎦

=
[

−73.0 × 103 N

−75.2 × 106 Nmm

]

fp(2).set,3 =
[

Ap(2)Ep(2)εr,2 + Bp(2)Ep(2)κ2

Bp(2)Ep(2)εr,2 + Ip(2)Ep(2)κ2

]

=

⎡
⎢⎢⎢⎢⎣

800 × 200 × 103 × (−680.9 × 10−6)+ 800 × 1160
×200 × 103 × (0.217 × 10−6)

800 × 1160 × 200 × 103 × (−680.9 × 10−6)+ 800 × 11602

×200 × 103 × (0.217 × 10−6)

⎤
⎥⎥⎥⎥⎦

=
[

−68.5 × 103 N

−79.5 × 106 Nmm

]

For the concrete deck:

fc(2),set,3 =
[

Ac(2)Ec(2),3εr,2 + Bc(2)Ec(2),3κ2

Bc(2)Ec(2),3εr,2 + Ic(2)Ec(2),3κ2

]

=

⎡
⎢⎢⎢⎢⎣

357,300 × 18,000 × (−680.9 × 10−6)+ 26.79 × 106

×18,000 × (0.217 × 10−6)
26.79 × 106 × 18,000 × (−680.9 × 10−6)+ 2685 × 106

×18,000 × (0.217 × 10−6)

⎤
⎥⎥⎥⎥⎦

=
[

−4274 × 103 N
−317.9 × 106 Nmm

]

fs(1).set,3 =
[

As(1)Es(1)εr,2 + Bs(1)Es(1)κ2

Bs(1)Es(1)εr,2 + Is(1)Es(1)κ2

]

=

⎡
⎢⎢⎢⎢⎣

2700 × 200 × 103 × (−680.9 × 10−6)+ 202.5 × 103

×200 × 103 × (0.217 × 10−6)
202.5 × 103 × 200 × 103 × (−680.9 × 10−6)+ 15.19 × 106

×200 × 103 × (0.217 × 10−6)

⎤
⎥⎥⎥⎥⎦

=
[

−358.8 × 103 N
−26.9 × 106 Nmm

]
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Combining the above contributions related to concrete setting:

fset,3 = fc(1).set,3 + fp(1).set,3 + fp(2).set,3 + fc(2).set,3 + fs(1).set,3

=
[

−4832 × 103 N
−562.2 × 106 Nmm

]

The strain distribution at time τ3 can then be determined as:

ε3 = F3
(
re,3 − fcr,3 + fsh,3 − fp,init + fp.rel,3 + fset,3

)
=
[

121.1 × 10−12 −131.0 × 10−15

−131.0 × 10−15 264.1 × 10−18

]
×
([

0
1170 × 106

]

−
[

2427 × 103

1961 × 106

]
+
[
−987.7 × 103

−735.3 × 106

]
−
[

2000 × 103

2190 × 106

]
+
[

30 × 103

32.85 × 106

]

+
[

−4832 × 103

−562.2 × 106

])
=
[

−680.9 × 10−6

0.217 × 10−6 mm−1

]

As expected there is no change in deformation between steps 3 and 4 as the
new cross-sectional components are kept unloaded. The strain diagram for the
precast I-section at step 3 is identical to the one already calculated for step 2:

ε3(top) = ε2(top) = −648.2 × 10−6

ε3(btm) = ε2(btm) = −397.7 × 10−6

Stresses at step 3 are also identical to those obtained at Step 2 as shown below:

For the precast I-section:

σc(1),3(top) = Ec(1),3

{[
1 yc(1),(top)

]
ε3 − εsh(1),3

}
+ Fe(1),3,0σc(1),0(top)

= 32,000

{[
1 150

] [−680.9 × 10−6

0.217 × 10−6

]
−
(
−100 × 10−6

)}

− 1.304 × (−4.60) = −11.56 MPa

σc(1),3(btm) = Ec(1),3

{[
1 yc(1),(btm)

]
ε3 − εsh(1),3

}
+ Fe(1),3,0σc(1),0(btm)

= 0.09 MPa

For the concrete deck:

σc(2),3(top) = Ec(2),3

{[
1 yc(2),(top)

]
ε3 − εsh(2),3

}
− Ec(2),3

[
1 yc(2),(top)

]
ε2

= 18,000

{[
1 0

] [−680.9 × 10−6

0.217 × 10−6

]
− 0

}

− 18,000

{[
1 0

] [−680.9 × 10−6

0.217 × 10−6

]}
= 0.0 MPa
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σc(2),3(btm) = Ec(2),3

{[
1 yc(2),(btm)

]
ε3 − εsh(2),3

}
− Ec(2),3

[
1 yc(2),(btm)

]
ε2

= 0.0 MPa

For the non-prestressed reinforcement:

σs(1),3 = 200 × 103 × [1 75
]([−680.9 × 10−6

0.217 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

= 0.0 MPa

σs(2),3 = 200 × 103 × [1 210
][−680.9 × 10−6

0.217 × 10−6

]

= −127.0 MPa

σs(3),3 = 200 × 103 [1 1240
][−680.9 × 10−6

0.217 × 10−6

]

= −82.1 MPa

For the prestressing steel:

σp(1),3 = Ep(1)

[
1 yp(1)

]
(ε3 − ε2) + Ep(1) (εp(1),init − εp.rel(1),3) = 1231 MPa

σp(2),3 = Ep(2)

[
1 yp(2)

]
(ε3 − ε2) + Ep(2) (εp(2),init − εp.rel(2),3) = 1231 MPa

The concrete stress resultants at step 3, τ = 40 days after the wet concrete has
set, are:

rc(1),3 = Dc(1),3ε3 + fcr(1),3 − fsh(1),3 − fset(1),3 =
[

−1708 × 103 N

−779.8 × 106 Nmm

]

rc(2),3 = Dc(2),3ε3 + fcr(2),3 − fsh(2),3 − fset(2),3 =
[

0 N

0 Nmm

]

Step 4: Time analysis SSM at age 60 days

In step 4, the stresses and strains due to the previous loading history are evaluated
at 60 days.
The following cross-sectional properties are calculated for step 4:

RA,4 = 20,960 × 106 N;
RB,4 = 9508 × 109 Nmm;
RI,4 = 8647 × 1012 Nmm2.
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The matrix F4 is:

F4 =
[

95.15 × 10−12 N−1 −104.6 × 10−15 N−1mm−1

−104.6 × 10−15 N−1 mm−1 230.7 × 10−18 N−1 mm−2

]

The effects of creep and shrinkage in this time period are:

fcr,4 = Fe(1),4,0rc(1),0 + Fe(1),4,3rc(1),3

= −0.807 ×
[
−1862 × 103

−1504 × 106

]
− 0.912 ×

[
−1708 × 103

−779.8 × 106

]

=
[

3061 × 103 N

1925 × 106 Nmm

]

fsh,4 =
[
Ac(1)

Bc(1)

]
Ec(1),4εsh(1),4 +

[
Ac(2)

Bc(2)

]
Ec(2),4εsh(2),4

=
[

312,700
234.2 × 106

]
× 34,000 ×

(
−150 × 10−6

)
+
[

357,300
26.79 × 106

]

× 25,000 ×
(
−200 × 10−6

)

=
[
−1595 × 103

−1195 × 106

]
+
[

−1786 × 103

−133.9 × 106

]
=
[

−3381 × 103 N
−1328 × 106 Nmm

]

Note that the grout is assumed to be shrinking at the same rate as the concrete
used for the precast I-section.
The effects of relaxation of the steel tendon are calculated from Eq. 5.90f:

fp.rel,4 =
[

Ap(1)Ep(1)εp(1),initϕp(60,σp(1),init)

yp(1)Ap(1)Ep(1)εp(1),initϕp(60,σp(1),init)

]

+
[

Ap(2)Ep(2)εp(2),initϕp(60,σp(2),init)

yp(2)Ap(2)Ep(2)εp(2),initϕp(60,σp(2),init)

]
=
[

40 × 103 N

43.8 × 106 Nmm

]

The terms defining fset,4 are calculated based on the corresponding values already
obtained at time τ3 and adjusted for the change in elastic moduli that has taken
place:

fc(1).set,4 = fc(1).set,3
Ec(1),4

Ec(1),3
=
[
−57.4×103

−62.7×106

]
34,000
32,000

=
[

−61.0×103 N

−66.6×106 Nmm

]

fp(1).set,4 = fp(1).set,3 =
[

−73.0×103 N

−75.2×106 Nmm

]
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fp(2).set,4 = fp(2).set,3 =
[

−68.5 × 103 N

−79.5 × 106 Nmm

]

fc(2).set,4 = fc(2).set,3
Ec(2),4

Ec(2),3
=
[

−4274 × 103

−317.9 × 106

]
25,000
18,000

=
[

−5936 × 103 N

−441.5 × 106 Nmm

]

fs(1).set,4 = fs(1).set,3 =
[

−358.8 × 103 N

−26.9 × 106 Nmm

]

fset,4 = fc(1).set,4 + fp(1).set,4 + fp(2).set,4 + fc(2).set,4 + fs(1).set,4

=
[

−6498 × 103 N

−689.8 × 106 Nmm

]

The strain distribution at time τ4 becomes:

ε4 = F4
(
re,4 − fcr,4 + fsh,4 − fp,init + fp.rel,4 + fset,4

)
=
[

95.15 × 10−12 −104.6 × 10−15

−104.6 × 10−15 230.7 × 10−18

]
×
([

0
1170 × 106

]

−
[

3061 × 103

1925 × 106

]
+
[
−3381 × 103

−1328 × 106

]
−
[

2000 × 103

2190 × 106

]
+
[

40 × 103

43.8 × 106

]

+
[

−6498 × 103

−689.8 × 106

])
=
[

−903.0 × 10−6

0.424 × 10−6 mm−1

]

At age 60 days, εr,4 = −903.0×10−6 and κ4 = 0.424×10−6 mm−1 with strains
in the top and bottom of the I-section equal to:

ε4(top) = εr,4 + 150 × κ4 = −839.4 × 10−6

and

ε4(btm) = εr,4 + 1300 × κ4 = −351.9 × 10−6

Stresses at the end of step 4 are calculated below:

For the precast I-section:

σc(1),4(top) = Ec(1),4

{[
1 yc(1),(top)

]
ε4 − εsh(1),4

}
+ Fe(1),4,0σc(1),0(top)

+ Fe(1),4,3σc(1),3(top)

= 34,000

{[
1 150

] [−903.0 × 10−6

0.424 × 10−6

]
−
(
−150 × 10−6

)}

− 0.807 × (−4.60) − 0.912 × (−11.56) = −9.19 MPa
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and

σc(1),4(btm) = Ec(1),4

{[
1 yc(1),(btm)

]
ε4 − εsh(1),4

}
+ Fe(1),4,0σc(1),0(btm)

+ Fe(1),4,3σc(1),3(btm) = −0.99 MPa

For the concrete deck:

σc(2),4(top) = Ec(2),4

{[
1 yc(2),(top)

]
(ε4 − ε2) + Fe(2),4,3σc(1),3(top) − εsh(2),4

}

= 25,000

{[
1 0

]([−903.0 × 10−6

0.424 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])
+ 0

−
(
−200 × 10−6

)}
= −0.55 MPa

σc(2),4(btm) = Ec(2),4

{[
1 yc(2),(btm)

]
(ε4 − ε2) + Fe(2),4,3σc(1),3(btm) − εsh(2),4

}

= 25,000

{[
1 150

] ([−903.0 × 10−6

0.424 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])
+0

−
(
−200 × 10−6

)}
= 0.22 MPa

For the non-prestressed reinforcement:

σs(1),4 = 200 × 103 × [1 75
]([−903.0 × 10−6

0.424 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

= −41.3 MPa

σs(2),4 = 200 × 103 × [1 210
][−903.0 × 10−6

0.424 × 10−6

]
= −162.8 MPa

σs(3),4 = 200 × 103 [1 1240
][−903.0 × 10−6

0.424 × 10−6

]
= −75.5 MPa

For the prestressing steel:

σp(1),4 = Ep(1)
[
1 yp(1)

]
(ε4 − ε2) + Ep(1)

(
εp(1),init − εp.rel(1),4

)
= 200 × 103 × [1 1030

]([−903.0 × 10−6

0.424 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

+ 200,000 × 0.00625 × (1 − 0.02) = 1223 MPa
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σp(2),4 = Ep(2)
[
1 yp(2)

]
(ε4 − ε2) + Ep(2)

(
εp(2),init − εp.rel(2),4

)
= 200 × 103 × [1 1160

]([−903.0 × 10−6

0.424 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

+ 200,000 × 0.00625 × (1 − 0.02) = 1228 MPa

The concrete stress resultants at step 4 at τ = 60 days are:

rc(1),4 = Dc(1),4ε4 + fcr(1),4 − fsh(1),4 − fc(1).set,4

= 34,000 ×
[

312,700 234.2 × 106

234.2 × 106 224.4 × 109

] [
−903.0 × 10−6

0.424 × 10−6

]

+
[

3061 × 103

1925 × 106

]
−
[
−1595 × 103

−1195 × 106

]
−
[
−61.0 × 103

−66.6 × 106

]

=
[

−1507 × 103 N

−769.1 × 106 Nmm

]

rc(2),4 = Dc(2),3ε4 + fcr(2),4 − fsh(2),4 − fc(2).set,4

= 25,000 ×
[

357,300 26.79 × 106

26.79 × 106 2685 × 106

] [
−903.0 × 10−6

0.424 × 10−6

]
+
[
0
0

]

−
[

−1786 × 103

−133.9 × 106

]
−
[

−5936 × 103

−441.5 × 106

]
=
[

−59.7 × 103 N

−0.999 × 106 Nmm

]

Step 5: Time analysis SSM at age 60 days

The cross-sectional properties, the creep and shrinkage of the concrete and
relaxation of the prestressing tendons are identical to the previous step. The only
change for step 5 is an additional external moment applied to the composite
section. Based on the results calculated for step 4, the strain variables can
be calculated by modifying vector re,5 to account for the change in external
moment as:

ε5 = F5
(
re,5 − fcr,5 + fsh,5 − fp,init + fp.rel,5 + fset,5

)
=
[

95.15 × 10−12 −104.6 × 10−15

−104.6 × 10−15 230.7 × 10−18

]
×
([

0

1570 × 106

]

−
[

3061 × 103

1925 × 106

]
+
[
−3381 × 103

−1328 × 106

]
−
[

2000 × 103

2190 × 106

]
+
[

40 × 103

43.8 × 106

]

+
[

−6498 × 103

−689.8 × 106

])
=
[

−944.9 × 10−6

0.516 × 10−6 mm−1

]
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At age 60 days, after the application of the road deck and other imposed dead
loads, εr,5 = −944.9 × 10−6 and κ5 = 0.516 × 10−6 mm−1 with strains in the
top and bottom of the I-section equal to:

ε5(top) = εr,5 + 150 × κ5 = −867.4 × 10−6

and

ε5(btm) = εr,5 + 1300 × κ5 = −273.8 × 10−6

Stresses at the end of step 5 are calculated below:

For the precast I-section:

σc(1),5(top) = Ec(1),5

{[
1 yc(1),(top)

]
ε5 − εsh(1),5

}
+ Fe(1),5,0σc(1),0(top)

+ Fe(1),5,3σc(1),3(top)

= 34,000

{[
1 150

] [−944.9 × 10−6

0.516 × 10−6

]
−
(
−150 × 10−6

)}

− 0.807 × (−4.60) − 0.912 × (−11.56) = −10.14 MPa

and

σc(1),5(btm) = Ec(1),5

{[
1 yc(1),(btm)

]
ε5 − εsh(1),5

}
+ Fe(1),5,0σc(1),0(btm)

+ Fe(1),5,3σc(1),3(btm) = 1.66 MPa

For the concrete deck:

σc(2),5(top) = Ec(2),5

{[
1 yc(2),(top)

]
(ε5 − ε2) + Fe(2),5,3σc(1),3(top) − εsh(2),5

}

= 25,000

{[
1 0

] ([−944.9 × 10−6

0.516 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])
+ 0

−
(
−200 × 10−6

)}
= −1.60 MPa

and

σc(2),5(btm) = Ec(2),5

{[
1 yc(2),(btm)

]
(ε5 − ε2) + Fe(2),5,3σc(1),3(btm) − εsh(2),5

}
= −0.48 MPa

For the non-prestressed reinforcement:

σs(1),5 = 200 × 103 × [1 75
]([−944.9 × 10−6

0.516 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

= −48.3 MPa
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σs(2),5 = 200 × 103 × [1 210
][−944.9 × 10−6

0.516 × 10−6

]
= −167.3 MPa

σs(3),5 = 200 × 103 [1 1240
][−944.9 × 10−6

0.516 × 10−6

]
= −60.9 MPa

For the prestressing steel:

σp(1),5 = Ep(1)
[
1 yp(1)

]
(ε5 − ε2) + Ep(1)

(
εp(1),init − εp.rel(1),5

)
= 200 × 103 × [1 1030

]([−944.9 × 10−6

0.516 × 10−6

]
−
[
−680.9 × 10−6

0.217 × 10−6

])

+ 200,000 × 0.00625 × (1 − 0.02) = 1234 MPa

σp(2),5 = Ep(2)
[
1 yp(2)

]
(ε5 − ε2) + Ep(2)

(
εp(2),init − εp.rel(2),5

)= 1241 MPa

The concrete stress resultants at step 5 at τ = 60 days are:

rc(1),5 = Dc(1),5ε5 + fcr(1),5 − fsh(1),5 − fc(1).set,5

= 34,000 ×
[

312,700 234.2 × 106

234.2 × 106 224.4 × 109

] [−944.9 × 10−6

0.516 × 10−6

]

+
[

3061 × 103

1925 × 106

]
−
[−1595 × 103

−1195 × 106

]
−
[−61.0 × 103

−66.6 × 106

]

=
[ −1217 × 103 N

−398.3 × 106 Nmm

]

rc(2),5 = Dc(2),5ε5 + fcr(2),5 − fsh(2),5 − fc(2).set,5

= 25,000 ×
[

357,300 26.79 × 106

26.79 × 106 2685 × 106

][−944.9 × 10−6

0.516 × 10−6

]
+
[

0

0

]

−
[−1786 × 103

−133.9 × 106

]
−
[−5936 × 103

−441.5 × 106

]
=
[ −371.7 × 103 N

−22.8 × 106 Nmm

]

Step 6: Time analysis – SSM at age 30,000 days

The cross-sectional rigidities for step 6 are:

RA,6 = 24,000 × 106 N;
RB,6 = 10,580 × 109 Nmm;
RI,6 = 9558 × 1012 Nmm2.
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The matrix F6 is:

F6 =
[

81.35 × 10−12 N−1 −90.03 × 10−15 N−1mm−1

−90.03 × 10−15 N−1mm−1 204.2 × 10−18 N−1mm−2

]

The effects of creep and shrinkage in this time period are:

fcr,6 = Fe(1),6,0rc(1),0 + Fe(1),6,3rc(1),3 + Fe(1),6,5rc(1),5 + Fe(2),6,5rc(2),5

= −1.995 ×
[−1862 × 103

−1504 × 106

]
− 0.419 ×

[−1708 × 103

−779.8 × 106

]

− 1.906 ×
[−1217 × 103

−398.3 × 106

]
− 3.56 ×

[−371.7 × 103

−22.8 × 106

]

=
[

8074 × 103 N

4167 × 106 Nmm

]

fsh,6 =
[
Ac(1)

Bc(1)

]
Ec(1),6εsh(1),6 +

[
Ac(2)

Bc(2)

]
Ec(2),6εsh(2),6

=
[

312,700

234.2 × 106

]
× 38,000 ×

(
−400 × 10−6

)
+
[

357,300
26.79 × 106

]

× 30,000 ×
(
−600 × 10−6

)

=
[

−11,180 × 103 N

−4042 × 106 Nmm

]

Relaxation of the steel tendon is accounted for using:

fp.rel,6 =
2∑

i=1

[
Ap(i)Ep(i)εp(i),initϕp(30,000,σp(i),init)

yp(i)Ap(i)Ep(i)εp(i),initϕp(30,000,σp(i),init)

]

=
([

800 × 200,000
1030 × 800 × 200,000

]
+
[

800 × 200,000

1160 × 800 × 200,000

])

× 0.00625 × 0.030 =
[

60.0 × 103 N

65.7 × 106 Nmm

]

The terms defining fset,6 are calculated using the same procedure adopted
at time τ4:

fc(1).set,6 = fc(1).set,3
Ec(1),6

Ec(1),3
=
[
−57.4 × 103

−62.7 × 106

]
38,000
32,000

=
[

−68.1 × 103 N

−74.5 × 106 Nmm

]
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fp(1).set,6 = fp(1).set,3 =
[

−73.0 × 103 N

−75.2 × 106 Nmm

]

fp(2).set,6 = fp(2).set,3 =
[

−68.5 × 103 N

−79.5 × 106 Nmm

]

fc(2).set,6 = fc(2).set,3
Ec(2),6

Ec(2),3
=
[

−4274 × 103

−317.9 × 106

]
30,000
18,000

=
[

−7123 × 103 N

−529.8 × 106 Nmm

]

fs(1).set,6 = fs(1).set,3 =
[

−358.8 × 103 N

−26.9 × 106 Nmm

]

fset,6 = fc(1).set,6 + fp(1).set,6 + fp(2).set,6 + fc(2).set,6 + fs(1).set,6

=
[

−7692 × 103 N

−785.9 × 106 Nmm

]

The strain distribution at time τ6 becomes:

ε6 = F6
(
re,6 − fcr,6 + fsh,6 − fp,init + fp.rel,6 + fset,6

)
=
[

81.35 × 10−12 −90.03 × 10−15

−90.03 × 10−15 204.2 × 10−18

]
×
([

0

1570 × 106

]

−
[

8074 × 103

4167 × 106

]
+
[
−11,180 × 103

−4042 × 106

]
−
[

2000 × 103

2190 × 106

]
+
[

60.0 × 103

65.7 × 106

]

+
[

−7692 × 103

−785.9 × 106

])
=
[

−1490 × 10−6

0.650 × 10−6 mm−1

]

At age 30,000 days, εr,6 = −1490 × 10−6 and κ6 = 0.650 × 10−6 mm−1 with
strains in the top and bottom of the I-section equal to ε6(top) = −1393 × 10−6

and ε6(btm) = −644.8 × 10−6.
The strains in the top and bottom of the concrete deck are calculated as follows
(measured from the time of setting):

ε6,(top) = [
1 0

]
(ε6 − ε2) = −809.5 × 10−6

ε6,(btm) = [
1 150

]
(ε6 − ε2) = −744.6 × 10−6

Final stresses at time 30,000 days are calculated below:

For the precast I-section: σc(1),6(top) = −4.40 MPa; σc(1),6(btm) = 2.21 MPa
For the concrete deck: σc(2),6(top) = −0.59 MPa; σc(2),6(btm) = −2.63 MPa
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For the non-prestressed reinforcement:
σs(1),6 = −155.4 MPa; σs(2),6 = −270.8 MPa; σs(3),6 = −136.8 MPa
For the prestressing steel: σp(1),6 = 1140 MPa; σp(2),6 = 1151 MPa.

The strains and stresses at times τ0 and τ6 are plotted in Fig. 5.22.

(a) Cross-section  (b) Step 0:  At 7 days  

(c) Step 1: Age 40 days before slab deck is cast
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Figure 5.22 Strain and stress distributions for Example 5.10.
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6 Uncracked sections
Axial force and biaxial bending

6.1 Introduction

Methods of analysis to evaluate the short- and long-term response of concrete cross-
sections subjected to axial force and biaxial bending are presented in this chapter.
These methods are particularly useful for the analysis of reinforced, prestressed or
composite steel-concrete columns in building structures. The concrete is assumed to
remain uncracked and be able to carry any applied tension. The proposed formulation
relies on the Euler–Bernoulli beam assumptions which require plane sections to remain
plane and perpendicular to the member axis before and after deformation.

As for the case of axial loading and uniaxial bending (Chapter 5), the governing
system of equations describing the structural response is expressed as a function of
the unknown variables required to define the strain diagram. For the case of biaxial
bending, the strain diagram is defined in terms of three variables, specifically the
strain measured at the origin of the adopted orthogonal co-ordinate system εr and
the curvatures calculated with respect to the two orthogonal x- and y-axes, κx and κy,
respectively (as illustrated in Fig. 6.1). The external actions applied to the cross-section
may include an axial force applied at the origin Ne and bending moments Mxe and
Mye applied with respect to the x- and y-axes, respectively. As shown in Fig. 6.1b, the
flexural action is equivalent to an external moment Me applied at an angle θM. The
strain at an arbitrary point on the cross-section can be calculated from:

ε = εr + yκx − xκy (6.1)

The negative sign placed before the third term in Eq. 6.1 is a consequence of
the sign convention adopted for the applied moments (as illustrated in Fig. 6.1b).

The three variables defining the strain diagrams, i.e. εr, κx and κy, are determined
by enforcing horizontal and rotational equilibrium on the cross-section:

Ne = Ni (6.2a)

Mxe = Mxi (6.2b)

Mye = Myi (6.2c)
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Figure 6.1 Typical section, strain distribution and sign convention for applied moments.

where Ni, Mxi and Myi are the internal actions resisted by the cross-section, i.e. axial
force and moments with respect to the x- and y-axes, respectively, and are defined as:

Ni =
∫
A

σ dA (6.3a)

Mxi =
∫
A

yσ dA (6.3b)

Myi = −
∫
A

xσ dA (6.3c)

The negative sign included in the expression for Myi has been introduced to match the
sign convention adopted for the external moment Mye (see Fig. 6.1b).

It is useful to evaluate the angle of inclination θM of the applied moment Me measured
from the x-axis (adopting clockwise rotations to be positive) using:

tanθM = Mye

Mxe
(6.4)

The values of the three unknowns (εr, κx and κy) are obtained by enforcing
equilibrium (Eq. 6.2), with the strain over the section expressed by Eq. 6.1 (i.e. strain
compatibility) and using the appropriate constitutive relationships in the calculation
of the internal stresses and actions.

For ease of notation, the derivations presented in the following are applicable to
generic reinforced and prestressed concrete cross-sections, while other types of cross-
sections could be easily considered, for example, the composite sections considered in
Chapter 5. The reinforced or prestressed concrete cross-section is assumed to contain
ms reinforcing bars and mp prestressing tendons. Each steel reinforcing bar is identified
by its area, elastic modulus and location with respect to both x- and y-axes, As(i), Es(i),
xs(i) and ys(i), respectively. The corresponding properties for the prestressing tendons
are Ap(i), Ep(i), xp(i) and yp(i), respectively.
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The required geometric properties of the concrete part of the cross-section are its
area Ac, its first moments of area with respect to both x- and y-axes Bxc and Byc,
respectively, the corresponding second moments of area Ixc and Iyc, and the product
moment of area Ixyc.

Due to the similarities between the derivations proposed in this chapter and those
already described in Chapter 5, reference to the latter chapter will be carried out
extensively in the following to avoid unnecessary repetition. As in Chapter 5, the
proposed procedure is quite general and can be applied with both linear and non-
linear material models, even though in the latter case the integrals of Eq. 6.3 might
need to be evaluated numerically.

6.2 Short-term analysis

The short-term analysis of a reinforced or prestressed concrete cross-section subjected
to axial force and biaxial bending is similar to that already described for uniaxial
bending in Chapter 5, with the only addition being that moment equilibrium is enforced
with respect to both the x- and y-axes. Based on linear-elastic material properties
(Eq. 5.4), the axial equilibrium equation (Eq. 6.2a) can be expressed similarly to
Eq. 5.6:

Ne,0 = Ni,0 = Nc,0 + Ns,0 + Np,0 (6.5)

As in Chapter 5, the subscript ‘0’ indicates that all variables are calculated at time τ0
before any creep and shrinkage has taken place. In the case of axial force and biaxial
bending, Nc,0, Ns,0 and Np,0 may be expressed in terms of the strain distribution of
Eq. 6.1 as:

Nc,0 =
∫
Ac

σc,0 dA =
∫
Ac

Ec,0
(
εr,0 + yκx,0 − xκy,0

)
dA

= AcEc,0εr,0 + BxcEc,0κx,0 − BycEc,0κy,0 (6.6a)

Ns,0 =
ms∑
i=1

(
As(i)Es(i)

)(
εr,0 + ys(i)κx,0 − xs(i)κy,0

)
= RA,sεr,0 + RBx,sκx,0 − RBy,sκy,0 (6.6b)

Np,0 =
mp∑
i=1

(
Ap(i)Ep(i)

)(
εr,0 + yp(i)κx,0 − xp(i)κy,0 + εp(i),init

)

= RA,pεr,0 + RBx,pκx,0 − RBy,pκy,0 +
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(6.6c)

where RA,s and RA,p represent the axial rigidity of the non-prestressed steel and
prestressing tendons, respectively, and RBx,s and RBy,s (RBx,p and RBy,p) are the first
moments of the rigidity of the steel reinforcement (prestressing tendons) with respect
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to the x- and y-axes, respectively, and are given by:

RA,s =
ms∑
i=1

(
As(i)Es(i)

)
(6.7a)

RBx,s =
ms∑
i=1

(
ys(i)As(i)Es(i)

)
(6.7b)

RBy,s =
ms∑
i=1

(
xs(i)As(i)Es(i)

)
(6.7c)

RA,p =
mp∑
i=1

(
Ap(i)Ep(i)

)
(6.7d)

RBx,p =
mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
(6.7e)

RBy,p =
mp∑
i=1

(
xp(i)Ap(i)Ep(i)

)
(6.7f)

In a similar way, moment equilibrium with respect to the x-axis is enforced using
Eq. 6.2b as:

Mxe,0 = Mxi,0 = Mxc,0 + Mxs,0 + Mxp,0 (6.8)

in which the internal actions are calculated using:

Mxc,0 =
∫
Ac

yσc,0 dA =BxcEc,0εr,0 + IxcEc,0κx,0 − IxycEc,0κy,0 (6.9a)

Mxs,0 =
ms∑
i=1

(
ys(i)As(i)Es(i)

)(
εr,0 + ys(i)κx,0 − xs(i)κy,0

)
= RBx,sεr,0 + RIx,sκx,0 − RIxy,sκy,0 (6.9b)

Mxp,0 =
mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)(
εr,0 + yp(i)κx,0 − xp(i)κy,0 + εp(i),init

)

= RBx,pεr,0 + RIx,pκx,0 − RIxy,pκy,0 +
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)
(6.9c)

and RIx,s and RIy,s (RIx,p and RIy,p) are the rigidities associated with the second
moments of area of the steel reinforcement (prestressing tendons) with respect to the
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x- and y-axes, respectively, and are given by:

RIx,s =
ms∑
i=1

(
y2

s(i)As(i)Es(i)

)
(6.10a)

RIxy,s =
ms∑
i=1

(
xs(i)ys(i)As(i)Es(i)

)
(6.10b)

RIx,p =
mp∑
i=1

(
y2

p(i)Ap(i)Ep(i)

)
(6.10c)

RIxy,p =
mp∑
i=1

(
xp(i)yp(i)Ap(i)Ep(i)

)
(6.10d)

Finally, considering flexural equilibrium with respect to the y-axis (Eq. 6.2c) gives:

Mye,0 = Myi,0 = Myc,0 + Mys,0 + Myp,0 (6.11)

where:

Myc,0 = −
∫
Ac

xσc,0 dA =− BycEc,0εr,0 − IxycEc,0κx,0 + IycEc,0κy,0 (6.12a)

Mys,0 = −
ms∑
i=1

(
xs(i)As(i)Es(i)

)(
εr,0 + ys(i)κx,0 − xs(i)κy,0

)
= −RBy,sεr,0 − RIxy,sκx,0 + RIy,sκy,0 (6.12b)

Myp,0 = −
mp∑
i=1

(
xp(i)Ap(i)Ep(i)

)(
εr,0 + yp(i)κx,0 − xp(i)κy,0 + εp(i),init

)

= −RBy,pεr,0 − RIxy,pκx,0 + RIy,pκy,0 −
mp∑
i=1

(
xp(i)Ap(i)Ep(i)εp(i),init

)
(6.12c)

and

RIy,s =
ms∑
i=1

(
x2

s(i)As(i)Es(i)

)
(6.13a)

RIy,p =
mp∑
i=1

(
x2

p(i)Ap(i)Ep(i)

)
(6.13b)

Eqs 6.5, 6.8 and 6.11 can be therefore re-written as:

Ne,0 = RA,0εr,0 + RBx,0κx,0 − RBy,0κy,0 +
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(6.14a)
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Mxe,0 = RBx,0εr,0 + RIx,0κx,0 − RIxy,0κy,0 +
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)
(6.14b)

Mye,0 = −RBy,0εr,0 − RIxy,0κx,0 + RIy,0κy,0 −
mp∑
i=1

(
xp(i)Ap(i)Ep(i)εp(i),init

)
(6.14c)

where the cross-sectional rigidities are given by:

RA,0 = AcEc,0 + RA,s + RA,p (6.15a)

RIxy,0 = IxycEc,0 + RIxy,s + RIxy,p (6.15b)

RBx,0 = BxcEc,0 + RBx,s + RBx,p (6.15c)

RBy,0 = BycEc,0 + RBy,s + RBy,p (6.15d)

RIx,0 = IxcEc,0 + RIx,s + RIx,p (6.15e)

RIy,0 = IycEc,0 + RIy,s + RIy,p (6.15f)

This governing system of equations (Eqs 6.14) can be expressed in compact form as:

re,0 = D0ε0 + fp,init (6.16)

and using notation similar to that adopted in Chapter 5:

re,0 =
⎡
⎣ Ne,0

Mxe,0
Mye,0

⎤
⎦ (6.17a)

D0 =
⎡
⎣ RA,0 RBx,0 −RBy,0

RBx,0 RIx,0 −RIxy,0
−RBy,0 −RIxy,0 RIy,0

⎤
⎦ (6.17b)

ε0 =
⎡
⎣ εr,0
κx,0
κy,0

⎤
⎦ (6.17c)

fp,init =
mp∑
i=1

⎡
⎣ Ap(i)Ep(i)

yp(i)Ap(i)Ep(i)
−xp(i)Ap(i)Ep(i)

⎤
⎦εp(i),init (6.17d)

The unknown strain vector ε0 is obtained by solving Eq. 6.16 and is given by:

ε0 = D−1
0

(
re,0 − fp,init

)= F0
(
re,0 − fp,init

)
(6.18)

in which

F0 = 1
R0

⎡
⎢⎣

RIx,0RIy,0 −R2
Ixy,0 RBy,0RIxy,0 −RBx,0RIy,0 RBy,0RIx,0 −RBx,0RIxy,0

RBy,0RIxy,0 −RBx,0RIy,0 RA,0RIy,0 −R2
By,0 RA,0RIxy,0 −RBx,0RBy,0

RBy,0RIx,0 −RBx,0RIxy,0 RA,0RIxy,0 −RBx,0RBy,0 RA,0RIx,0 −R2
Bx,0

⎤
⎥⎦

(6.19a)
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and

R0 = RA,0

(
RIx,0RIy,0 − R2

Ixy,0

)
− R2

Bx,0RIy,0 + 2RBx,0RBy,0RIxy,0 − R2
By,0RIx,0

(6.19b)

The strain at any point (x, y) is obtained by substituting Eq. 6.18 into Eq. 6.1:

ε0 = εr,0 + yκx,0 − xκy,0 = [
1 y −x

]
ε0 (6.20)

and the stress at any point can then be determined from the calculated strain (Eq. 6.20)
using the appropriate constitutive relationship (Eqs 5.4).

By setting Eq. 6.20 equal to zero, the equation of the line (in the x-y plane) defining
the neutral axis may be expressed as

y = κy,0

κx,0
x − εr,0

κx,0
(6.21)

Equation 6.21 is not defined when κx,0 = 0, in which case the problem degenerates
to one of axial force and uniaxial bending about the y-axis and can be solved using
the methods of Chapter 5.

The slope of the neutral axis at time τ0 may be obtained by differentiating Eq. 6.21
and (adopting clockwise rotations to be positive similarly to θM,0) is expressed as a
function of the applied moments and flexural rigidities:

tanθNA,0 = κy,0

κx,0
(6.22)

The neutral axis (Eq. 6.21) intersects the y-axis at:

y(x = 0) = − εr,0

κx,0
(6.23)

If the cross-section is doubly-symmetric (as is often the case in practice), the
expression for F0 can be simplified by placing the origin of the coordinate system
at the centroid of the cross-section and specifying the orthogonal axes to be parallel
to the axes of symmetry (leading to RIxy,0 = RBx,0 = RBy,0 = 0). Therefore:

F0 = 1
RA,0RIx,0RIy,0

⎡
⎣ RIx,0RIy,0 0 0

0 RA,0RIy,0 0
0 0 RA,0RIx,0

⎤
⎦ (6.24)

Without prestressing (usually the case for columns), using Eq. 6.24 in Eq. 6.18, the
expression for the strain at a point ε0 simplifies to:

ε0 = εr,0 + yκx,0 − xκy,0 = Ne,0

RA,0
+ y

Mxe,0

RIx,0
− x

Mye,0

RIy,0
(6.25)
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In this particular case (i.e. no prestressing), the equation of the line (in the x-y plane)
defining the neutral axis may be expressed in terms of external loads as:

y = RIx,0

RIy,0

Mye,0

Mxe,0
x − RIx,0

RA,0

Ne,0

Mxe,0
(6.26)

with corresponding slope and intersect with the y-axis calculated using:

tanθNA,0 = RIx,0

RIy,0

Mye,0

Mxe,0
= RIx,0

RIy,0
tanθM,0 (6.27a)

and

y(x = 0) = −RIx,0

RA,0

Ne,0

Mxe,0
(6.27b)

Evidently, the angle of the applied moment Me,0 (i.e. θM,0) and of the neutral axis
(i.e. θNA,0) coincide only when the flexural rigidities calculated with respect to both
the x- and y-axes are identical, i.e. when RIx,0 = RIy,0 (Eq. 6.27a). In all other cases,
these two angles differ from each other (Fig. 6.2). Moreover, the angle of the neutral
axis θNA,0 may vary with time, as will be seen subsequently.

The cross-sectional rigidities could have also been calculated from the transformed
section, where the areas of the reinforcing bars and bonded prestressing tendons (As(i)
and Ap(i), respectively) are transformed into equivalent areas of concrete (ns(i),0As(i)
and np(i),0Ap(i), respectively), where ns(i),0 = Es(i)/Ec,0 is the modular ratio of the i-th
steel bar and np(i),0 = Ep(i)/Ec,0 is the modular ratio of the i-th tendon. In this case, the
cross-sectional rigidities are given by:

RA,0 = A0Ec,0 (6.28a)

RBx,0 = Bx,0Ec,0 (6.28b)

RBy,0 = By,0Ec,0 (6.28c)

RIx,0 = Ix,0Ec,0 (6.28d)

RIy,0 = Iy,0Ec,0 (6.28e)

RIxy,0 = Ixy,0Ec,0 (6.28f)

(a) Orientation of Me (b) Orientation of the neutral axis

Neutral axis

x

y

Mye,0

Mxe,0

Me,0

x

y

qM,0 qNA,0

k0

er,0

e

Figure 6.2 Orientations of applied moments and neutral axis.
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where A0 is the area of the transformed concrete section; Bx,0 and Ix,0 are the
transformed first and second moments of area calculated with respect to the x-axis,
respectively; By,0 and Iy,0 represent the corresponding moments of area with respect
to the y-axis; and Ixy,0 is the product moment of area. Using Eqs 6.28, the matrix F0,
previously introduced in Eq. 6.19a, can be expressed as:

F0 = 1
S0Ec,0

⎡
⎢⎣

Ix,0Iy,0−I2
xy,0 By,0Ixy,0−Bx,0Iy,0 By,0Ix,0−Bx,0Ixy,0

By,0Ixy,0−Bx,0Iy,0 A0Iy,0−B2
y,0 A0Ixy,0−Bx,0By,0

By,0Ix,0−Bx,0Ixy,0 A0Ixy,0−Bx,0By,0 A0Ix,0−B2
x,0

⎤
⎥⎦

(6.29a)

and

S0 = A0

(
Ix,0Iy,0 − I2

xy,0

)
− B2

x,0Iy,0 + 2Bx,0By,0Ixy,0 − B2
y,0Ix,0 (6.29b)

Considering the particular case of a doubly-symmetric section with the origin at
the centroid of the section and orthogonal axes parallel to the axes of symmetry (for
which RIxy,0 = RBx,0 = RBy,0 = 0), F0 simplifies to:

F0 = 1
A0Ix,0Iy,0Ec,0

⎡
⎣ Ix,0Iy,0 0 0

0 A0Iy,0 0
0 0 A0Ix,0

⎤
⎦ (6.30)

Without prestressing effects, the strain at any point (x, y) can be calculated using:

ε0 = εr,0 + yκx,0 − xκy,0 = Ne,0

A0Ec,0
+ y

Mxe,0

Ix,0Ec,0
− x

Mye,0

Iy,0Ec,0
(6.31)

By setting ε0 = 0 in Eq. 6.31, the equation of the neutral axis, its slope and its
intersection with the y-axis are obtained as functions of the transformed second
moments of area and are given by:

y = Ix,0

Iy,0

Mye,0

Mxe,0
x − Ix,0

A0

Ne,0

Mxe,0
(6.32a)

tanθNA,0 = Ix,0

Iy,0
tanθM,0 (6.32b)

y(x = 0) = − Ix,0

A0

Ne,0

Mxe,0
(6.32c)

As discussed in Chapter 5, the calculation of the cross-sectional rigidities based on
the transformed section using Eqs 6.28 is equivalent to calculation using Eqs 6.15.
Either approach can be used depending on the preference of the structural designer.
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Example 6.1

The doubly-symmetric reinforced concrete cross-section shown in Fig. 6.3 is
subjected to biaxial bending, with Mxe = 5 kNm and Mye = 10 kNm. In this
example, the axial force is zero (i.e. Ne,0 = 0 kN). The stress and strain
distributions are to be determined at time τ0, assuming the origin of the
coordinate system is located at the centroid of the cross-section and the x- and
y-axes are parallel to the axes of symmetry (i.e. dx.ref = b/2 and dy.ref = D/2
measured from the left and top of the section, respectively, as shown in Fig. 6.3).
Both concrete and reinforcement are assumed to be linear-elastic with Ec,0 =
32 GPa and Es = 200 GPa. The modular ratio for the reinforcing steel is therefore
ns,0 = ns(j),0 = Es/Ec,0 = 6.25 (with j = 1, . . .,4).

y

As(1) = 450 mm2

As(2) = 450 mm2

As(3) = 450 mm2

x
90

9090

90

150

150

As(4) = 450 mm2

D = 300

b = 300

dy.ref = 150

dx.ref = 150

Figure 6.3 Reinforced concrete cross-section for Example 6.1 (dimensions in mm).

Based on the adopted reference system the coordinates of each of the four steel
reinforcing bars are:

xs(1) = −90 mm
ys(1) = −90 mm
xs(2) = 90 mm
ys(2) = −90 mm
xs(3) = 90 mm
ys(3) = 90 mm
xs(4) = −90 mm
ys(4) = 90 mm

For this reinforced concrete section, the vectors re,0 and fp,init are

re,0 =
⎡
⎣ 0N

5 × 106 Nmm
10 × 106 Nmm

⎤
⎦ and fp,init =

⎡
⎣ 0N

0Nmm
0Nmm

⎤
⎦
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Based on the transformed section, the relevant cross-sectional properties are

calculated as:

A0 =bD+(ns,0−1)[As(1)+As(2)+As(3)+As(4)]
=300×300+(6.25−1)×(4×450)=99,450 mm2;

Ix,0 = bD3

12
+bD

(
D
2

−dy.ref

)2

+(ns,0−1)
[
As(1)y

2
s(1)+As(2)y

2
s(2)+As(3)y

2
s(3)

+As(4)y
2
s(4)

]
= 300×3003

12
+3002(150−150)2

+5.25×[2×450×(−90)2+2×450×902]=751.5×106 mm4.

From the double symmetry and the adopted coordinate system:

Iy,0 = Ix,0 = 751.5 × 106 mm4 and Bx,0 = By,0 = Ixy,0 = 0.

From Eq. 6.30:

F0 = 1
A0Ix,0Iy,0Ec,0

⎡
⎢⎣ Ix,0Iy,0 0 0

0 A0Iy,0 0
0 0 A0Ix,0

⎤
⎥⎦

= 1

99,450×(751.5×106)2×32,000

×

⎡
⎢⎢⎣
(
751.5×106

)2
0 0

0 99,450×751.5×106 0
0 0 99,450×751.5×106

⎤
⎥⎥⎦

=
⎡
⎢⎣ 3.142×10−10N−1 0 0

0 4.158×10−14N−1mm−2 0
0 0 4.158×10−14N−1mm−2

⎤
⎥⎦

The strain ε0 is then determined based on Eq. 6.18:

ε0 = F0
(
re,0 − fp,init

)=
⎡
⎣ 3.142 × 10−10 0 0

0 4.158 × 10−14 0
0 0 4.158 × 10−14

⎤
⎦

×
⎧⎨
⎩
⎡
⎣ 0

5 × 106

10 × 106

⎤
⎦−

⎡
⎣0

0
0

⎤
⎦
⎫⎬
⎭

=
⎡
⎣ 0

0.208 × 10−6 mm−1

0.416 × 10−6 mm−1

⎤
⎦
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The strain at the origin and the curvatures with respect to the x- and y-axes,
respectively, are:

εr,0 = 0
κx,0 = 0.208 × 10−6 mm−1

κy,0 = 0.416 × 10−6 mm−1

and, from Eq. 6.1, the strains at the corners of the cross-section become:

ε0(x = −b/2,y = −D/2) = (0 − 150 × 0.208 − (−150) × 0.416) × 10−6

= 31.2 × 10−6

ε0(x = b/2,y = −D/2) = (0 − 150 × 0.208 − 150 × 0.416) × 10−6

= −93.6 × 10−6

ε0(x = b/2,y = D/2) = (0 + 150 × 0.208 − 150 × 0.416) × 10−6

= −31.2 × 10−6

ε0(x = −b/2,y = D/2) = (0 + 150 × 0.208 − (−150) × 0.416) × 10−6

= 93.6 × 10−6

The stresses in the concrete at the four corners of the cross-section are obtained
from Eq. 5.16a:

σc,0(top-left) = Ec,0ε0(top-left) = 32 × 103 × 31.2 × 10−6 = 1.00 MPa
σc,0(top-right) = −2.99 MPa
σc,0(btm-right) = −1.00 MPa
σc,0(btm-left) = 2.99 MPa

Similarly, the stress in each reinforcement bar is calculated using Eq. 5.16b:

σs(1),0 = Es
[
1 ys(1) −xs(1)

]
ε0

= 200 × 103 × [1 − 90 − (−90)] ×
⎡
⎣ 0

0.208 × 10−6

0.416 × 10−6

⎤
⎦

= 3.7 MPa;
σs(2),0 = −11.2 MPa
σs(3),0 = −3.7 MPa
σs(4),0 = 11.2 MPa

The slopes of both applied moment Me and of the neutral axis are calculated as
(Eqs 6.4 and 6.32b):

tanθM,0 = Mye,0

Mxe,0
= 10 × 106

5 × 106 = 2.0 from which θM,0 = 63.43◦ and

tanθNA,0 = Ix,0

Iy,0
tanθM,0 = 751.5 × 106

751.5 × 106 × 2.0 = 2.0

and therefore θNA,0 = 63.43◦.

As expected, θM,0 = θNA,0 because Ix,0 = Iy,0.
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The strain and stress distributions are plotted in Fig. 6.4.
The cross-sectional rigidities could have also been calculated based on Eqs
6.15:

RA,0 = 3182 × 106 N
RIx,0 = RIy,0 = 24.05 × 1012 Nmm2

RBx,0 = RBy,0 = RIxy,0 = 0

In this case, F0 is obtained from Eq. 6.24 and is identical to that calculated
above.

y

x

−2.99

93.6 × 10−6

−93.6 × 10−6

Neutral axis

2.99

3.7

−11.2

−3.7

63.43°

11.2

e

s

Figure 6.4 Initial strain and stress diagrams at time τ0 for Example 6.1 (all units in
mm, MPa).

Example 6.2

The strain and stress distributions on the reinforced concrete cross-section shown
in Fig. 6.5 are to be determined at time τ0 when the applied actions, Ne =
−500 kN (compression), Mxe = 25 kNm and Mye = 25 kNm, are first applied.
The origin of the coordinate system is taken at the centroid of the section and the
x- and y-axes are assumed to be parallel to the axes of symmetry (i.e. dx.ref = b/2
and dy.ref = D/2 measured from the left and top of the section, respectively).
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The material behaviour is linear-elastic with Ec,0 = 32 GPa and Es = 200 GPa.
The modular ratio for all reinforcement is therefore ns,0 = Es/Ec,0 = 6.25.

y

x

dx.ref = 150

dy.ref = 200
150

As(j) = 450 mm2

for j = 1,…,6

b = 300

D = 400

150

90

150
200

As(1)

As(3)

As(5) As(6)

As(4)

As(2)

90

Figure 6.5 Reinforced concrete cross-section for Example 6.2 (dimensions in mm).

Based on the adopted reference system, the coordinates of the steel reinforcement
are:

xs(1) = −90 mm
ys(1) = −150 mm
xs(2) = 90 mm
ys(2) = −150 mm
xs(3) = −90 mm
ys(3) = 0 mm
xs(4) = 90 mm
ys(4) = 0 mm
xs(5) = −90 mm
ys(5) = 150 mm
xs(6) = 90 mm
ys(6) = 150 mm

The vectors of external loads and prestressing are:

re,0 =
⎡
⎣ −500 × 103 N

25 × 106 Nmm
25 × 106 Nmm

⎤
⎦ and fp,init =

⎡
⎣ 0N

0Nmm
0Nmm

⎤
⎦

The properties of the transformed cross-section are:

A0 = bD + (ns,0 − 1)
6∑

i=1
As(i) = 134.1 × 103 mm2
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Ix,0 = bD3

12
+ bD

(
D
2

− dy.ref

)2

+ (ns,0 − 1)
6∑

i=1
As(i)y2

s(i) = 1812 × 106 mm4

Iy,0 = Db3

12
+ bD

(
b
2

− dx.ref

)2

+ (ns,0 − 1)
6∑

i=1
As(i)x2

s(i) = 1014 × 106 mm4

For this cross-section and for these coordinate axes: Bx,0 = By,0 = Ixy,0 = 0.
From Eq. 6.30:

F0 =
⎡
⎢⎣ 2.329×10−10N−1 0 0

0 1.724×10−14N−1mm−2 0
0 0 3.080×10−14N−1mm−2

⎤
⎥⎦

and ε0 is calculated using Eq. 6.18:

ε0 = F0
(
re,0 − fp,init

)=
⎡
⎣ −116.4 × 10−6

0.431 × 10−6 mm−1

0.770 × 10−6 mm−1

⎤
⎦

The strain at the origin and the curvatures with respect to the x- and y-axes,
respectively, are:

εr,0 = −116.4 × 10−6

κx,0 = 0.431 × 10−6 mm−1

κy,0 = 0.770 × 10−6 mm−1.

The strains at the four corners of the cross-section are (Eq. 6.1):

ε0(top-left)(x = −b/2,y = −D/2) = −87.2 × 10−6

ε0(top-right)(x = b/2,y = −D/2) = −318.1 × 10−6

ε0(btm-right)(x = b/2,y = D/2) = −145.7 × 10−6

ε0(btm-left)(x = −b/2,y = D/2) = 85.2 × 10−6

and the concrete and steel stress distributions are calculated using Eq. 5.16:

σc,0(top-left) = Ec,0ε0(top-left) = −2.79 MPa
σc,0(top-right) = −10.18 MPa
σc,0(btm-right) = −4.66 MPa
σc,0(btm-left) = 2.73 MPa
σs(1),0 = Es

[
1 ys(1) −xs(1)

]
ε0

= 200 × 103 × [1 − 150 − (−90)] ×
⎡
⎣−116.4 × 10−6

0.431 × 10−6

0.770 × 10−6

⎤
⎦

= −22.4 MPa;

σs(2),0 = −50.1 MPa
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σs(3),0 = −9.4 MPa
σs(4),0 = −37.1 MPa
σs(5),0 = 3.50 MPa
σs(6),0 = −24.2 MPa

The slopes of both applied moment Me,0 and of the neutral axis are (Eqs 6.4
and 6.32b):

tanθM,0 = Mye,0

Mxe,0
= 25 × 106

25 × 106 = 1.0 and therefore θM,0 = 45◦ and

tanθNA,0 = Ix,0

Iy,0
tanθM = 1812 × 106

1014 × 106 × 1 = 1.79

and therefore θNA,0 = 60.76◦.

The calculated stresses and strains are shown in Fig. 6.6.

s

85.2 × 10−6

−318.1 × 10−6

Neutral
axis

2.73
3.5

−9.4
−22.4

−24.2
−37.1

−50.1

−10.18

y

x

60.76°

45°

Me,0

e

Figure 6.6 Initial strain and stress diagrams at time τ0 for Example 6.2 (all units in mm,
MPa).
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In this case θM,0 = θNA,0 (since Ix,0 = Iy,0), and the neutral axis passes through
the y-axis at (Eq. 6.32c):

y = − Ix,0

A0

Ne,0

Mxe,0
= − 1812 × 106

134.1 × 103

−500 × 103

25 × 106 = 270.2 mm

The cross-sectional rigidities could have also been calculated based on
Eqs 6.15:

RA,0 = 4293 × 106 N
RIx,0 = 58 × 1012 Nmm2

RIy,0 = 32.47 × 1012 Nmm2

RBx,0 = RBy,0 = RIxy,0 = 0

In this case, F0 is obtained from Eq. 6.24 and is identical to that calculated
above.

Example 6.3

For the reinforced concrete cross-section shown in Fig. 6.7, the strain and
stress distributions are to be calculated at time τ0. The section is subjected to:
Ne = −800 kN (compression), Mxe = 50 kNm and Mye = 25 kNm. The origin

 y 

x

dx.ref = 215.6

dy.ref = 215.6

As(j) = 450 mm2

for j = 1, .. ,8

b = 480

60180

D = 480

60 180
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As(6)

60

60

180

60

120

1 2

 3 4

 5 6 
b1 = 300

b2 = 180

D2 = 180

D1 = 300

Figure 6.7 Reinforced concrete cross-section for Example 6.3 (dimensions in mm).
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of the coordinate system is taken at the centroid of the section (calculated based
on instantaneous material properties) located at dx.ref = dy.ref = 215.6 mm,
as shown in Fig. 6.7. The material behaviour is linear-elastic with Ec,0 = 32 GPa
and Es = 200 GPa. The modular ratio for all reinforcement is therefore ns,0 =
Es/Ec,0 = 6.25.
Based on the adopted reference system, the coordinates of the steel reinforcement
are:

xs(1) = −155.6 mm; ys(1) = −155.6 mm
xs(2) = 24.4 mm; ys(2) = −155.6 mm
xs(3) = 204.4 mm; ys(3) = −155.6 mm
xs(4) = −155.6 mm; ys(4) = 24.4 mm
xs(5) = 24.4 mm; ys(5) = 24.4 mm
xs(6) = 204.4 mm; ys(6) = 24.4 mm
xs(7) = −155.6 mm; ys(7) = 204.4 mm
xs(8) = 24.4 mm; ys(8) = 204.4 mm

and the coordinates of the corners of the concrete section (numbered 1–6 in
Fig. 6.7) are:

x(1) = −215.6 mm; y(1) = −215.6 mm
x(2) = 264.4 mm; y(2) = −215.6 mm
x(3) = 264.4 mm; y(3) = 84.4 mm
xs(4) = 84.4 mm; ys(4) = 84.4 mm
xs(5) = 84.4 mm; ys(5) = 264.4 mm
xs(6) = −215.6 mm; ys(6) = 264.4 mm

The vectors of external loads and prestressing are:

re,0 =
⎡
⎣ −800 × 103 N

50 × 106 Nmm
25 × 106 Nmm

⎤
⎦ and fp,init =

⎡
⎣ 0N

0Nmm
0Nmm

⎤
⎦

The properties of the transformed cross-section are:

A0 = bD − b2D2 + (ns,0 − 1)
8∑

i=1
As(i) = 216.9 × 103 mm2

Bx,0 = bD1

(
D1

2
− dy.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)

+ (ns,0 − 1)
8∑

i=1
As(i)ys(i) = 0 mm3

By,0 = bD1

(
b
2

− dx.ref

)
+ b1D2

(
b1

2
− dx.ref

)
+ (ns,0 − 1)

8∑
i=1

As(i)xs(i)

= 0 mm3

Ix,0 = bD3
1

12
+ bD1

(
D1

2
− dy.ref

)2

+ b1D3
2

12
+ b1D2

(
D1 + D2

2
− dy.ref

)2

+

(ns,0 − 1)
8∑

i=1
As(i)y2

s(i) = 3861 × 106 mm4
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Iy,0 = D1b3

12
+ bD1

(
b
2

− dx.ref

)2

+ D2b3
1

12
+ b1D2

(
b1

2
− dx.ref

)2

+ (ns,0 − 1)
8∑

i=1
As(i)x2

s(i) = 3861 × 106 mm4;

Ixy,0 = bD1

(
D1

2
− dy.ref

)(
b
2

− dx.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)

×
(

b1

2
− dx.ref

)
+ (ns,0 − 1)

8∑
i=1

As(i)xs(i)ys(i) = −934.3 × 106 mm4.

The fact that Bx,0 = By,0 = 0 could have also been concluded by noting that the
origin of the coordinate system coincides with the centroid of the cross-section.
Considering the first moments of area about both axes are nil (i.e. Bx,0 =
By,0 = 0), Eq. 6.29a simplifies to:

F0 = 1

A0

(
Ix,0Iy,0 − I2

xy,0

)
Ec,0

⎡
⎣ Ix,0Iy,0 − I2

xy,0 0 0
0 A0Iy,0 A0Ixy,0
0 A0Ixy,0 A0Ix,0

⎤
⎦

=
⎡
⎣ 1.441 × 10−10 0 0

0 8.597 × 10−15 −2.080 × 10−15

0 −2.080 × 10−15 8.597 × 10−15

⎤
⎦

and ε0 is calculated using Eq. 6.18:

ε0 = F0
(
re,0 − fp,init

)=
⎡
⎣ −115.3 × 10−6

0.378 × 10−6 mm−1

0.111 × 10−6 mm−1

⎤
⎦

The strain at the origin and the curvatures with respect to the x- and y-axes,
respectively, are:

εr,0 = −115.3 × 10−6

κx,0 = 0.378 × 10−6 mm−1

κy,0 = 0.111 × 10−6 mm−1

The strains at the corners of the cross-section are obtained from Eq. 6.1:

ε0(corner 1) = −172.8 × 10−6

ε0(corner 2) = −226.0 × 10−6

ε0(corner 3) = −112.6 × 10−6

ε0(corner 4) = −92.7 × 10−6

ε0(corner 5) = −24.6 × 10−6

ε0(corner 6) = 8.55 × 10−6
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and the corresponding concrete stresses are obtained using Eq. 5.16a:

σc,0(corner 1) = Ec,0ε0(corner 1) = −5.53 MPa
σc,0(corner 2) = −7.23 MPa
σc,0(corner 3) = −3.60 MPa
σc,0(corner 4) = −2.97 MPa
σc,0(corner 5) = −0.79 MPa
σc,0(corner 6) = 0.27 MPa

The strains in the steel reinforcing bars are:

εs(1),0 = −156.8 × 10−6

εs(2),0 = −176.8 × 10−6

εs(3),0 = −196.7 × 10−6

εs(4),0 = −88.8 × 10−6

εs(5),0 = −108.7 × 10−6

εs(6),0 = −128.7 × 10−6

εs(7),0 = −20.8 × 10−6

εs(8),0 = −40.7 × 10−6

and from Eq. 5.16b, the steel stresses are:

σs(1),0 = −31.4 MPa
σs(2),0 = −35.4 MPa
σs(3),0 = −39.3 MPa
σs(4),0 = −17.8 MPa
σs(5),0 = −21.7 MPa
σs(6),0 = −25.7 MPa
σs(7),0 = −4.15 MPa
σs(8),0 = −8.14 MPa

The slope of the applied moment Me,0 is calculated based on Eq. 6.4:

tanθM,0 = Mye,0

Mxe,0
= 25 × 106

50 × 106 = 0.5 and therefore θM,0 = 26.56◦

while the slope of the neutral axis is obtained using Eq. 6.22:

tanθNA,0 = κy,0

κx,0
= 0.111 × 10−6

0.378 × 10−6 = 0.293 and therefore θNA,0 = 16.31◦.

The intersection of the neutral axis with the y-axis is calculated from Eq. 6.23:

y(x = 0) = − εr,0

κx,0
= −−115.3 × 10−6

0.378 × 10−6 = +304.8 mm.
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The calculated stresses and strains are shown in Fig. 6.8.

y
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−226.0 × 10−6
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−39.3

−7.23

e

s

Figure 6.8 Initial strain and stress diagrams at time τ0 for Example 6.3 (all units in
mm, MPa).

6.3 Long-term analysis using the age-adjusted effective
modulus method (AEMM)

The time analysis based on the AEMM to determine stresses and strains on a cross-
section at time τk after a period of sustained loading was presented in Chapters 4 and 5
and only the steps relevant to the case of biaxial bending will be presented here. The
constitutive relationships adopted for the concrete and steel are those already defined
for the AEMM in Eqs 5.22.

With the instantaneous stress and strain distributions determined at time τ0 using
the analysis of the previous section, the strain diagram at time τk is defined by
the strain at the origin and the curvatures about the orthogonal reference axes,
i.e. εr,k, κx,k and κy,k. These are obtained by solving the equilibrium equations
defined by:

re,k = ri,k (6.33)

where

re,k = [
Ne,k Mxe,k Mye,k

]T (6.34a)
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and

ri,k = [
Ni,k Mxi,k Myi,k

]T (6.34b)

Based on the material constitutive relationships (Eqs 5.22), the axial force resisted
by each component of the cross-section at τk can be determined from:

Nc,k =
∫
Ac

σc,k dA =
∫
Ac

[�Ee,k
(
εr,k + yκx,k − xκy,k − εsh,k

)+�Fe,0σc,0
]
dA

= Ac�Ee,kεr,k + Bxc�Ee,kκx,k − Byc�Ee,kκy,k − Ac�Ee,kεsh,k +�Fe,0Nc,0 (6.35a)

Ns,k = RA,sεr,k + RBx,sκx,k − RBy,sκy,k (6.35b)

Np,k = RA,pεr,k + RBx,pκx,k − RBy,pκy,k +
mp∑
i=1

Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),k

)
(6.35c)

These expressions can be summed to give the axial force resisted by the whole
section Ni,k:

Ni,k = RA,kεr,k + RBx,kκx,k − RBy,kκy,k − Ac�Ee,kεsh,k +�Fe,0Nc,0

+
mp∑
i=1

Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),k

)
(6.36a)

and, in a similar manner, the internal moments about the x- and y-axes can be
determined from:

Mxi,k = RBx,kεr,k + RIx,kκx,k − RIxy,kκy,k − Bxc�Ee,kεsh,k +�Fe,0Mxc,0

+
mp∑
i=1

yp(i)Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),k

)
(6.36b)

Myi,k = −RBy,kεr,k − RIxy,kκx,k + RIy,kκy,k + Byc�Ee,kεsh,k +�Fe,0Myc,0

−
mp∑
i=1

xp(i)Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),k

)
(6.36c)

where the time-dependent cross-sectional rigidities at time τk are determined from
expressions similar to those at time τ0 (Eqs 6.15) except that the age-adjusted effective
modulus of the concrete �Ee,k is used instead of the elastic modulus Ec,0. That is:

RA,k = Ac�Ee,k + RA,s + RA,p (6.37a)

RIxy,k = Ixyc�Ee,k + RIxy,s + RIxy,p (6.37b)

RBx,k = Bxc�Ee,k + RBx,s + RBx,p (6.37c)
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RBy,k = Byc�Ee,k + RBy,s + RBy,p (6.37d)

RIx,k = Ixc�Ee,k + RIx,s + RIx,p (6.37e)

RIy,k = Iyc�Ee,k + RIy,s + RIy,p (6.37f)

Substituting Eqs 6.36 into Eq. 6.33 produces the equilibrium equations describing
the structural response at τk:

re,k = Dkεk + fcr,k − fsh,k + fp,init − fp.rel,k (6.38)

where

εk =
⎡
⎣ εr,k
κx,k
κy,k

⎤
⎦ (6.39a)

Dk =
⎡
⎣ RA,k RBx,k −RBy,k

RBx,k RIx,k −RIxy,k
−RBy,k −RIxy,k RIy,k

⎤
⎦ (6.39b)

fcr,k =�Fe,0

⎡
⎣ Nc,0

Mxc,0
Myc,0

⎤
⎦=�Fe,0Ec,0

⎡
⎢⎣

Acεr,0 + Bxcκx,0 − Bycκy,0

Bxcεr,0 + Ixcκx,0 − Ixycκy,0

−Bycεr,0 − Ixycκx,0 + Iycκy,0

⎤
⎥⎦ (6.39c)

fsh,k =
⎡
⎢⎣

Ac

Bxc

−Byc

⎤
⎥⎦�Ee,kεsh,k (6.39d)

The variables describing the strain diagram at τ0, i.e. εr,0, κx,0 and κy,0, are assumed
to be known from the instantaneous analysis.

The initial prestressing is included in fp,init (already defined for the instantaneous
analysis in Eq. 6.17d) and the steel relaxation is considered by means of fp.rel,k
calculated as:

fp.rel,k =
mp∑
i=1

⎡
⎢⎣

Ap(i)Ep(i)

yp(i)Ap(i)Ep(i)

−xp(i)Ap(i)Ep(i)

⎤
⎥⎦εp(i),initϕp(τk,σp(i),init) (6.40)

Solving Eq. 6.38, the strain diagram at time τk is given by:

εk = Fk
(
re,k − fcr,k + fsh,k − fp,init + fp.rel,k

)
(6.41)

where

Fk = 1
Rk

⎡
⎢⎣

RIx,kRIy,k −R2
Ixy,k RBy,kRIxy,k −RBx,kRIy,k RBy,kRIx,k −RBx,kRIxy,k

RBy,kRIxy,k −RBx,kRIy,k RA,kRIy,k −R2
By,k RA,kRIxy,k −RBx,kRBy,k

RBy,kRIx,k −RBx,kRIxy,k RA,kRIxy,k −RBx,kRBy,k RA,kRIx,k −R2
Bx,k

⎤
⎥⎦

(6.42a)



Uncracked sections 247

and

Rk = RA,k

(
RIx,kRIy,k − R2

Ixy,k

)
− R2

Bx,kRIy,k + 2RBx,kRBy,kRIxy,k − R2
By,kRIx,k

(6.42b)

The stress distribution at time τk can then be calculated using equations similar to
Eqs 5.41 as follows:

σc,k = �Ee,k
(
εk − εsh,k

)+�Fe,0σc,0 = �Ee,k
{ [

1 y −x
]

εk − εsh,k
}+�Fe,0σc,0

(6.43a)

σs,k(i) = Es(i)εk = Es(i)
[
1 ys(i) − xs(i)

]
εk (6.43b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)= Ep(i)
[
1 yp(i) − xp(i)

]
εk

+ Ep(i)εp(i),init − Ep(i)εp.rel(i),k (6.43c)

where at any point (x, y) on the cross-section εk = εr,k +yκx,k −xκy,k = [
1 y −x

]
εk.

Similar to Eq. 6.21, the position of the neutral axis at time τk is given by:

y = κy,k

κx,k
x − εr,k

κx,k
(6.44)

while its slope and its intersect with the y-axis may be calculated using:

tanθNA,k = κy,k

κx,k
(6.45a)

y(x = 0) = − εr,k

κx,k
(6.45b)

The expression for Fk can be significantly simplified for doubly symmetric cross-
sections when the origin is located at the centroid of the section and the orthogonal
axes are parallel to the axes of symmetry. In this case, RIxy,k = RBx,k = RBy,k = 0 and
Fk is given by:

Fk = 1
RA,kRIx,kRIy,k

⎡
⎢⎣

RIx,kRIy,k 0 0
0 RA,kRIy,k 0
0 0 RA,kRIx,k

⎤
⎥⎦ (6.46)

As discussed previously for the instantaneous analysis, the cross-sectional rigidities
included in Fk can be calculated based on the properties of the age-adjusted
transformed cross-section. For this purpose, modular ratios of n̄s(i),k = Es(i)/�Ee,k and
n̄p(i),k = Ep(i)/�Ee,k are to be used for the i-th steel bar and the i-th tendon, respectively.
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Example 6.4

For the reinforced concrete section and coordinate system of Example 6.2
(Fig. 6.5), if the external actions (i.e. Ne = −500 kN, Mxe = 25 kNm,
Mye = 25 kNm) are sustained over a period of time (τ0 to τk), the long-
term effects caused by creep and shrinkage are to be determined. As for
Example 6.2, Ec,0 = 32 GPa, Es = 200 GPa, and ns,0 = Es/Ec,0 = 6.25. The
creep coefficient, the ageing coefficient and the shrinkage strain associated with
the time period under consideration are ϕ(τk,τ0) = 2.0; χ (τk,τ0) = 0.65 and
εsh(τk) = −400 × 10−6.
From Example 6.2 at τ0: εr,0 = −116.4 × 10−6; κx0 = 0.431 × 10−6 mm−1;
κy0 = 0.770 × 10−6 mm−1.
From Eqs 4.35 and 4.46:

�Ee,k = Ec,0

1 +χ (τk,τ0)ϕ(τk,τ0)
= 32,000

1 + 0.65 × 2.0
= 13,910 MPa

and therefore n̄s,k = 14.38

�Fe,0 = ϕ (τk,τ0) [χ (τk,τ0) − 1]
1 +χ (τk,τ0)ϕ (τk,τ0)

= 2.0 × (0.65 − 1.0)
1.0 + 0.65 × 2.0

= −0.304

For this reinforced concrete section, the vectors re,k, fp,init and fp.rel,k in Eq. 6.41
are:

re,k =
⎡
⎢⎣

−500 × 103 N

25 × 106 Nmm

25 × 106 Nmm

⎤
⎥⎦

fp,init =
⎡
⎢⎣

0N

0Nmm

0Nmm

⎤
⎥⎦

fp.rel,k =
⎡
⎢⎣

0N

0Nmm

0Nmm

⎤
⎥⎦

The properties of the age-adjusted transformed cross-section based on �Ee,k are:

Āk = bD + (n̄s,k − 1)
6∑

i=1
As(i) = 156.1 × 103 mm2

Īx,k = bD3

12
+ bD

(
D
2

− dy.ref

)2

+ (n̄s,k − 1)
6∑

i=1
As(i)y2

s(i) = 2141 × 106 mm4

Īy,k = Db3

12
+ bD

(
b
2

− dx.ref

)2

+ (n̄s,k − 1)
6∑

i=1
As(i)x2

s(i) = 1192 × 106 mm4

B̄x,k = B̄y,k = Īxy,k = 0
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The geometric properties of the concrete are required for the calculation of fcr,k
and fsh,k and are obtained as follows:

Ac = bD −
6∑

i=1
As(i) = 117.3 × 103 mm2

Ixc = bD3

12
+ bD

(
D
2

− dy.ref

)2

−
6∑

i=1
As(i)y2

s(i) = 1559 × 106 mm4

Iyc = Db3

12
+ bD

(
b
2

− dx.ref

)2

−
6∑

i=1
As(i)x2

s(i) = 878.1 × 106 mm4

Bxc = Byc = Ixyc = 0

From Eqs 6.39c and d:

fcr,k =�Fe,0Ec,0

⎡
⎣ Acεr,0 + Bxcκx,0 − Bycκy,0

Bxcεr,0 + Ixcκx,0 − Ixycκy,0
−Bycεr,0 − Ixycκx,0 + Iycκy,0

⎤
⎦=

⎡
⎣ 133.0 × 103 N

−6.55 × 106 Nmm
−6.58 × 106 Nmm

⎤
⎦

fsh,k =
⎡
⎣117.3 × 103

0
0

⎤
⎦× 13,910 ×

(
−400 × 10−6

)
=
⎡
⎣−652.8 × 103 N

0Nmm
0Nmm

⎤
⎦

Based on properties of the age-adjusted transformed cross-section, Fk is
calculated using Eq. 6.46 as:

Fk =
⎡
⎢⎣ 4.604×10−10N−1 0 0

0 3.356×10−14N−1mm−2 0
0 0 6.027×10−14N−1mm−2

⎤
⎥⎦

The strain εk at time τk is obtained using Eq. 6.41:

εk = Fk(re,k − fcr,k + fsh,k) =
⎡
⎣ −592.0 × 10−6

1.058 × 10−6 mm−1

1.903 × 10−6 mm−1

⎤
⎦

The strain at the origin and the curvatures with respect to the x- and y-axes,
respectively, are:

εr,k = −592.0 × 10−6

κx,k = 1.058 × 10−6 mm−1

κy,k = 1.903 × 10−6 mm−1

The strains at the corners of the cross-section are (Eq. 6.1):

εk(top-left)(x = −b/2,y = −D/2) = −518.2 × 10−6

εk(top-right)(x = b/2,y = −D/2) = −1089 × 10−6

εk(btm-right)(x = b/2,y = D/2) = −665.8 × 10−6

εk(btm-left)(x = −b/2,y = D/2) = −94.7 × 10−6
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The stresses in the concrete and in the steel reinforcement are calculated using
Eqs 5.16:

σc,k(top-left) = �Ee,k
{[

1 yc,(top-left) −xc,(top-left)
]
εk − εsh,k

} + �Fe,0σc,0(top-left)

= 13,910×
⎧⎨
⎩[1 −200 −(−150)

]⎡⎣−592.0 × 10−6

1.058 × 10−6

1.903 × 10−6

⎤
⎦− (−400 × 10−6)

⎫⎬
⎭

+ (−0.304)(−2.79) = −0.79 MPa

σc,k(top-right) = −6.49 MPa
σc,k(btm-right) = −2.28 MPa
σc,k(btm-left) = 3.42 MPa
σs(1),k = Es

[
1 ys(1) −xs(1)

]
εk

= 200 × 103 × [1 −150 −(−90)
] ×

⎡
⎣−592.0 × 10−6

1.058 × 10−6

1.903 × 10−6

⎤
⎦

= −115.9 MPa;
σs(2),k = −184.4 MPa
σs(3),k = −84.1 MPa
σs(4),k = −152.7 MPa
σs(5),k = −52.4 MPa
σs(6),k = −120.8 MPa

Stresses and strains calculated at time τk are shown in Fig. 6.9.
Significant transfer of axial compressive load took place from the concrete to the
steel with time, with the maximum compressive stress in the concrete reducing
from −10.18 MPa at τ0 to −6.49 MPa at τk and the compressive stress in the most
heavily stressed reinforcing bar increasing from −50.1 MPa to −184.4 MPa. It
is also noted that the tensile stress in the concrete in the bottom left corner of
the cross-section has increased from 2.73 MPa to 3.42 MPa, indicating that
cracking may well occur during a period of sustained loading (primarily due to
shrinkage).
The slopes of the applied moment Me,k and the neutral axis are (Eqs 6.4
and 6.45a):

tanθM,k = tanθM,0 = 1.0 and therefore θM,k = 45◦ and

tanθNA,k = κy,k

κx,k
= 1.903 × 10−6

1.058 × 10−6 = 1.80 and therefore θNA,k = 60.91◦.

The neutral axis passes through the y-axis at (Eq. 6.45b):

y = − εr,k

κx,k
= −−592.0 × 10−6

1.058 × 10−6 = 559.2 mm

This indicates a translation of the neutral axis with a slight rotation from the
results previously obtained at time τ0. In fact, the slope of the neutral axis varies
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−94.7 × 10−6

3.42

y

x

60.91° 

−184.4

Me,k

45°

−152.7

−120.9

−115.9

−84.1
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e
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Figure 6.9 Final strain and stress diagrams at time τk (Example 6.4) (all units in
mm, MPa).

from θNA,0 = 60.76◦ to θNA,k = 60.91◦ while the intersection with the y-axis
moves from y = 270.2 mm at τ0 to y = 559.2 mm at τk. The translation of the
neutral axis is mostly due to the effects of shrinkage. If the example was repeated
with shrinkage set to zero, the intersection with the y-axis would change only
slightly from y = 270.2 mm at τ0 to y = 275.3 mm at τk.

Example 6.5

The long-term strains and stresses on the cross-section of Fig. 6.7 are to
be determined using the AEMM assuming that the external loads applied in
Example 6.3 (i.e. Ne = −800 kN, Mxe = 50 kNm, Mye = 25 kNm) are to be
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sustained between times τ0 and τk. The instantaneous material properties are
the same as in Example 6.3: Ec,0 = 32 GPa, Es = 200 GPa, and ns,0 = Es/Ec,0 =
6.25. The creep coefficient, ageing coefficient and shrinkage strain associated
with the time period τ0 to τk are: ϕ(τk,τ0) = 2.0; χ (τk,τ0) = 0.65 and εsh(τk) =
− 400 × 10−6.
From Example 6.3 at τ0:
εr,0 = −115.3 × 10−6; κx0 = 0.378 × 10−6 mm−1; κy0 = 0.111 × 10−6 mm−1.
From Eqs 4.35 and 4.46:

�Ee,k = Ec,0

1 +χ (τk,τ0)ϕ(τk,τ0)
= 32,000

1 + 0.65 × 2.0
= 13,910 MPa

and therefore n̄s,k = 14.38

�Fe,0 = ϕ (τk,τ0) [χ (τk,τ0) − 1]
1 +χ (τk,τ0)ϕ (τk,τ0)

= 2.0 × (0.65 − 1.0)
1.0 + 0.65 × 2.0

= −0.304

and for this reinforced concrete section, the vectors re,k, fp,init and fp.rel,k in
Eq. 6.41 are:

re,k =
⎡
⎣ −800 × 103 N

50 × 106 Nmm
25 × 106 Nmm

⎤
⎦

fp,init =
⎡
⎣ 0N

0Nmm
0Nmm

⎤
⎦

fp.rel,k =
⎡
⎣ 0N

0Nmm
0Nmm

⎤
⎦

The properties of the age-adjusted transformed cross-section based on �Ee,k are:

Āk = bD − b2D2 + (n̄s,k − 1)
8∑

i=1
As(i) = 246.2 × 103 mm2

B̄x,k = bD1

(
D1

2
− dy.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)

+ (n̄s,k − 1)
8∑

i=1
As(i)ys(i) = 62.69 × 103 mm3

B̄y,k = bD1

(
b
2

− dx.ref

)
+ b1D2

(
b1

2
− dx.ref

)
+ (n̄s,k − 1)

8∑
i=1

As(i)xs(i)

= 62.69 × 103 mm3

Īx,k = bD3
1

12
+ bD1

(
D1

2
− dy.ref

)2

+ b1D3
2

12
+ b1D2

(
D1 + D2

2
− dy.ref

)2

+ (n̄s,k − 1)
8∑

i=1
As(i)y2

s(i) = 4439 × 106 mm4
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Īy,k = D1b3

12
+ bD1

(
b
2

− dx.ref

)2

+ D2b3
1

12
+ b1D2

(
b1

2
− dx.ref

)2

+ (n̄s,k − 1)
8∑

i=1
As(i)x2

s(i) = 4439 × 106 mm4

Īxy,k = bD1

(
D1

2
− dy.ref

)(
b
2

− dx.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)

×
(

b1

2
− dx.ref

)
+ (n̄s,k − 1)

8∑
i=1

As(i)xs(i)ys(i) = −1067 × 106 mm4

The geometric properties of the concrete are required to evaluate fcr,k
and fsh,k:

Ac = bD − b2D2 −
8∑

i=1
As(i) = 194.4 × 103 mm2

Bxc = bD1

(
D1

2
− dy.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)
−

8∑
i=1

As(i)ys(i)

= −35.64 × 103 mm3

Byc = bD1

(
b
2

− dx.ref

)
+ b1D2

(
b1

2
− dx.ref

)
−

8∑
i=1

As(i)xs(i)

= −35.64 × 103 mm3

Ixc = bD3
1

12
+ bD1

(
D1

2
− dy.ref

)2

+ b1D3
2

12
+ b1D2

(
D1 + D2

2
− dy.ref

)2

−
8∑

i=1
As(i)y2

s(i) = 3417 × 106 mm4

Iyc = D1b3

12
+ bD1

(
b
2

− dx.ref

)2

+ D2b3
1

12
+ b1D2

(
b1

2
− dx.ref

)2

−
8∑

i=1
As(i)x2

s(i) = 3417 × 106 mm4

Ixyc = bD1

(
D1

2
− dy.ref

)(
b
2

− dx.ref

)
+ b1D2

(
D1 + D2

2
− dy.ref

)

×
(

b1

2
− dx.ref

)
−

8∑
i=1

As(i)xs(i)ys(i) = −831.9 × 106 mm4

From Eqs 6.39c and d:

fcr,k =�Fe,0Ec,0

⎡
⎢⎣

Acεr,0 + Bxcκx,0 − Bycκy,0

Bxcεr,0 + Ixcκx,0 − Ixycκy,0

−Bycεr,0 − Ixycκx,0 + Iycκy,0

⎤
⎥⎦=

⎡
⎢⎣

218.3 × 103 N
−13.52 × 106 Nmm
−6.705 × 106 Nmm

⎤
⎥⎦
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fsh,k =
⎡
⎣ Ac

Bxc
−Byc

⎤
⎦�Ee,kεsh,k =

⎡
⎣ 194.4 × 103

−35.64 × 103

35.64 × 103

⎤
⎦× 13,910 ×

(
−400 × 10−6

)

=
⎡
⎣ −1082 × 103 N

0.198 × 106 Nmm
−0.198 × 106 Nmm

⎤
⎦

Based on properties of the age-adjusted transformed cross-section, Fk is
calculated using Eq. 6.42a, except that the age-adjusted modulus �Ee,k is used
instead of Ec,0:

Fk =
⎡
⎢⎣

2.920×10−10 −5.429×10−15 5.429×10−15

−5.429×10−15 1.719×10−14 −4.133×10−15

5.429×10−15 −4.133×10−15 1.719×10−14

⎤
⎥⎦

The strain εk at time τk is obtained using Eq. 6.41:

εk = Fk(re,k − fcr,k + fsh,k) =
⎡
⎣ −613.4 × 10−6

0.976 × 10−6 mm−1

0.267 × 10−6 mm−1

⎤
⎦

The strain at the origin and the curvatures with respect to the x- and y-axes,
respectively, are:

εr,k = −613.4 × 10−6

κx,k = 0.976 × 10−6 mm−1

κy,k = 0.267 × 10−6 mm−1

The strains at the corners of the cross-section are obtained from Eq. 6.1:

εk(corner 1) = −766.4 × 10−6

εk(corner 2) = −894.4 × 10−6

εk(corner 3) = −601.6 × 10−6

εk(corner 4) = −553.5 × 10−6

εk(corner 5) = −377.8 × 10−6

εk(corner 6) = −297.8 × 10−6

and the corresponding concrete stresses are obtained using Eq. 6.43a:

σc,k(corner 1) = �Ee,k
{[

1 ycorner 1 −xcorner 1
]

εk − εsh,k
}+�Fe,0σc,0(corner 1)

= −3.41 MPa
σc,k(corner 2) = −4.68 MPa
σc,k(corner 3) = −1.71 MPa



Uncracked sections 255

σc,k(corner 4) = −1.23 MPa
σc,k(corner 5) = 0.55 MPa
σc,k(corner 6) = 1.34 MPa

The strains in the steel reinforcing bars are:

εs(1),k = −723.8 × 10−6

εs(2),k = −771.9 × 10−6

εs(3),k = −819.9 × 10−6

εs(4),k = −548.1 × 10−6

εs(5),k = −596.1 × 10−6

εs(6),k = −644.1 × 10−6

εs(7),k = −372.4 × 10−6

εs(8),k = −420.4 × 10−6

and from Eq. 6.43b, the steel stresses are:

σs(1),k = −144.8 MPa
σs(2),k = −154.4 MPa
σs(3),k = −164.0 MPa
σs(4),k = −109.6 MPa
σs(5),k = −119.2 MPa
σs(6),k = −128.8 MPa
σs(7),k = −74.5 MPa
σs(8),k = −84.1 MPa

The slope of the applied moment Me,k is calculated based on Eq. 6.4 at
time τk:

tanθM,k = Mye,k

Mxe,k
= 25 × 106

50 × 106 = 0.5 and therefore θM,k = 26.56◦

The equation of the line of the neutral axis at time τk (in the x-y plane) is from
Eq. 6.44:

y = κy,k

κx,k
x − εr,k

κx,k
= 0.267 × 10−6

0.976 × 10−6 x − −613.4 × 10−6

0.976 × 10−6 = 0.273x + 628.3

and with tanθNA,k = 0.273, the inclination of the neutral axis is θNA,k = 15.28◦
and it passes through the y-axis at y = 628.3 mm. Without shrinkage, the
intersection with the y-axis occurs at y(x = 0) = 307.9 mm (close to the value of
304.8 mm calculated at time τ0).



256 Uncracked sections

The final stresses and strains on the cross-section are shown in Fig. 6.10.

y

x

15.28°

26.56°

  1.34 

Me,k

−297.8 × 10−6

−894.4 × 10−6

e

s

−74.5

−84.1

−109.6

−119.2

−128.8

−144.8

−154.4

−164.0
−4.68

Figure 6.10 Final strain and stress diagrams at time τk for Example 6.5 (all units in
mm, MPa).

6.4 Long-term analysis using the step-by-step method

The use of the SSM is particularly useful for the long-term analysis of reinforced
concrete columns as it enables complex loading histories to be considered, such as those
that occur during different construction stages. It also permits improved accuracy with
finer time discretisation. In the following, only the steps peculiar to combined axial
force and biaxial moments are presented as the use of the SSM has been extensively
discussed in Chapters 4 and 5.

When using the SSM the time domain is discretised into a number of instants τj, with
j = 1, . . .,k and with τk being the instant at which the long-term response is sought.
The constitutive relationships for the concrete and the steel reinforcement and tendons
are defined in Eqs 4.25 and 5.44.

The solution process is similar to that already outlined for both the instantaneous
analysis and time analysis using the AEMM. At any time instant τj, the problem is
expressed in terms of the three variables that define the strain diagram (εr,j, κx,j and
κy,j) and these are determined based on equilibrium considerations written as:

re,j = ri,j (6.47)
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where re,j and ri,j represent the external and internal actions, and similarly to Eq. 5.46,
may be expressed by:

re,j = [
Ne,j Mxe,j Mye,j

]T (6.48a)

and

ri,j = [
Ni,j Mxi,j Myi,j

]T (6.48b)

The internal actions ri,j are expressed in terms of the strain measured at the origin
of the reference system (εr,j), and the curvatures calculated with respect to the x- and
y-axes (κx,j and κy,j). Using the constitutive relationships specified in Eqs 4.25 and
5.44, the contribution to the internal axial force carried by the concrete, the steel
reinforcement and the tendons at time τj may be written as:

Nc,j =
∫
Ac

σc,j dA =
∫
Ac

⎡
⎣Ec,j

(
εr,j + yκx,j − xκy,j − εsh,j

)+ j−1∑
i=0

Fe,j,iσc,i

⎤
⎦dA

= AcEc,jεr,j + BxcEc,jκx,j − BycEc,jκy,j − AcEc,jεsh,j +
j−1∑
i=0

Fe,j,iNc,i (6.49a)

Ns,j = RA,sεr,j + RBx,sκx,j − RBy,sκy,j (6.49b)

Np,j = RA,pεr,j + RBx,pκx,j − RBy,pκy,j +
mp∑
i=1

Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),j

)
(6.49c)

where the cross-sectional rigidities have been introduced previously in Eqs 6.7, 6.10
and 6.13. The expression for Ni,j (included in ri,j) can be obtained by summing
Eqs 6.49:

Ni,j = RA,jεr,j + RBx,jκx,j − RBy,jκy,j − AcEc,jεsh,j +
j−1∑
i=0

Fe,j,iNc,i

+
mp∑
i=1

Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),j

)
(6.50a)

Similarly, the expressions for the internal moments are given by:

Mxi,j = RBx,jεr,j + RIx,jκx,j − RIxy,jκy,j − BxcEc,jεsh,j +
j−1∑
i=0

Fe,j,iMxc,i

+
mp∑
i=1

yp(i)Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),j

)
(6.50b)
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Myi,j = −RBy,jεr,j − RIxy,jκx,j + RIy,jκy,j + BycEc,jεsh,j +
j−1∑
i=0

Fe,j,iMyc,i

−
mp∑
i=1

xp(i)Ap(i)Ep(i)
(
εp(i),init − εp.rel(i),j

)
(6.50c)

where the cross-sectional rigidities are determined using Eqs 6.15 (proposed for the
instantaneous analysis) except that the concrete elastic modulus at time τj, Ec,j, is used
instead of the instantaneous value at time τ0, Ec,0.

The equilibrium equations of Eqs 6.47 can be expressed in compact form at time
τj as:

re,j = Djεj + fcr,j − fsh,j + fp,init − fp.rel,j (6.51)

where:

εj =
⎡
⎣ εr,j
κx,j
κy,j

⎤
⎦ (6.52a)

Dj =
⎡
⎣ RA,j RBx,j −RBy,j

RBx,j RIx,j −RIxy,j
−RBy,j −RIxy,j RIy,j

⎤
⎦ (6.52b)

fcr,j =
j−1∑
i=0

Fe,j,irc,i (6.52c)

fsh,j =
⎡
⎣ Ac

Bxc
−Byc

⎤
⎦Ec,jεsh,j (6.52d)

fp,init =
mp∑
i=1

⎡
⎢⎣

Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

−xp(i)Ap(i)Ep(i)εp(i),init

⎤
⎥⎦ (6.52e)

fp.rel,j =
mp∑
i=1

⎡
⎢⎣

Ap(i)Ep(i)εp(i),initϕp(τj,σp(i),init)
yp(i)Ap(i)Ep(i)εp(i),initϕp(τj,σp(i),init)

−xp(i)Ap(i)Ep(i)εp(i),initϕp(τj,σp(i),init)

⎤
⎥⎦ (6.52f)

where rc,i included in the calculation of fcr,j depicts the internal actions resisted by the
concrete part of the cross-section at time τi (for which i< j) and is calculated based on:

rc,i =
⎡
⎣ Nc,i

Mxc,i
Myc,i

⎤
⎦= Dc,iεi +

i−1∑
n=0

Fe,i,nrc,n −
⎡
⎣ Ac

Bxc
−Byc

⎤
⎦Ec,iεsh,i = Dc,iεi + fcr,i − fsh,i

(6.53)
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in which

Dc,i =
⎡
⎢⎣

Ac Bxc −Byc

Bxc Ixc −Ixyc

−Byc −Ixyc Iyc

⎤
⎥⎦Ec,i (6.54)

The strain diagram at time τj can then be determined based on:

εj = Fj
(
re,j − fcr,j + fsh,j − fp,init + fp.rel,j

)
(6.55)

in which Fj is identical to F0 (defined in Eqs 6.19), except that concrete elastic modulus
Ec,j replaces Ec,0.

The stress distribution at time τk can then be calculated substituting the expression
for the strain εk = εr,k + yκx,k − xκy,k = [

1 y −x
]

εk into Eqs 5.60.
The simplifications proposed for doubly-symmetric columns previously introduced

for the instantaneous analysis and for the time analysis using the AEMM, can also be
applied at time τj when using the SSM.

As in the previous analyses, the cross-sectional rigidities included in Fj could
be calculated based on the transformed concrete cross-section obtained using the
appropriate modular ratios ns(i),j = Es(i)/Ec,j and np(i),j = Ep(i)/Ec,j for the i-th steel
bar and the i-th tendon, respectively.



7 Cracked sections

7.1 Introductory remarks

In the cross-sectional analyses of Chapters 4, 5 and 6, it was assumed that concrete
can carry imposed stresses, both compressive and tensile. However, in reality concrete
is not able to carry large tensile stress. If the tensile stress at a point reaches the tensile
strength of concrete (Eq. 2.1), cracking occurs. Cracking is irreversible. On a cracked
cross-section, tensile stress of any magnitude cannot be carried normal to the crack
surface at any time after cracking and tensile forces can only be carried across a crack
by steel reinforcement. Therefore, on a cracked cross-section, internal actions can be
carried only by the steel reinforcement (and tendons) and the uncracked parts of the
concrete section.

In members subjected only to axial tension, caused either by external loads or by
restraint to shrinkage or temperature change, full-depth cracks occur when the tensile
stress is exceeded (i.e. at each crack location, the entire cross-section is cracked).
When the axial tension is caused by restraint to shrinkage, cracking causes a loss
of stiffness and a consequent decrease in the internal tension. The crack width and the
magnitude of the restraining force, as well as the spacing between the cracks, depend
on the amount of bonded reinforcement. Between the cracks in a member subjected
to axial tension, the concrete continues to carry tensile stress and hence continues
to contribute to the member stiffness. This is the tension stiffening effect and was
discussed in Section 3.6.2.

When cracking occurs in flexural members and the tensile strength of the concrete on
the tensile surface of the member is reached, primary cracks develop at regular spacing
on the tensile side of the member, as shown in Fig. 3.4a. A sudden loss of stiffness occurs
at first cracking and the short-term moment–curvature relationship becomes non-
linear. The primary cracks penetrate spontaneously to a height ho (see Fig. 3.4a) which
depends on the quantity of steel and the magnitude of any axial force or prestress. For
reinforced concrete members in pure bending with no axial force, the height of the
primary cracks ho immediately after cracking is usually relatively high (0.6 to 0.9
times the depth of the member) and remains approximately constant under increasing
bending moments until either the steel reinforcement yields or the concrete stress–strain
relationship in the compressive region becomes non-linear. For prestressed members
and members subjected to bending plus axial compression, ho may be relatively small
initially and gradually increases as the applied moment increases, even when material
behaviour is linear-elastic.
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The stress in the tensile reinforcement and the stress in the concrete at the steel level
for the cracked member of Fig. 3.4a are illustrated in Figs 3.4b and c, respectively.
Immediately after first cracking, the intact concrete between adjacent primary cracks
carries considerable tensile force, mainly in the direction of the reinforcement, due to
the bond between the steel and the concrete. The average tensile stress in the concrete
is a significant percentage of the tensile strength of concrete. The steel stress is a
maximum at a crack, where the steel carries the entire tensile force, and drops to
a minimum between the cracks, as shown (Fig. 3.4b). The bending stiffness of the
member is considerably greater than that based on a fully-cracked section, where
concrete in tension is assumed to carry zero stress. This tension stiffening effect may
be significant in the service-load performance of beams and even more so for lightly
reinforced slabs.

The Euler–Bernoulli assumption that plane sections remain plane is not strictly true
for a cross-section in the cracked region of a beam. However, if strains are measured
over a gauge length containing several primary cracks, the average strain diagram is
linear over the depth of the member.

As the load increases above the cracking moment Mcr, and after the primary
cracks have developed, secondary cracks (or cover-controlled cracks) form around the
reinforcement between the primary cracks, the average concrete tensile stress drops
and the tension stiffening effect gradually reduces. A typical moment versus average
curvature relationship for a reinforced concrete cross-section in pure bending is shown
in Fig. 7.1a as the solid line OAB in which Ms represents the applied service moment.
Also shown as the dashed line OC of slope (EI)cr is the moment–curvature relationship
for a fully-cracked cross-section. As moment increases after first cracking, the flexural
rigidity gradually reduces from that of the uncracked section (EI)uncr at first cracking
and approaches that of the fully-cracked section, (EI)cr, as the moment becomes large,
as shown.

If an uncracked singly reinforced member such as that shown in Fig. 1.14a begins
to shrink prior to loading, as is commonly the case, shrinkage warping occurs and
a shrinkage-induced curvature κsh.uncr develops on the uncracked cross-section when
the applied moment is still zero (i.e. Ms = 0) as shown in Fig. 7.1b as point O′. The
curvature κsh.uncr and the tensile stress caused by shrinkage in the extreme fibre of
the uncracked cross-section σcs were illustrated in Fig. 1.14b. Because of the initial
tensile stress σcs in the concrete, the moment required to cause first cracking Mcr.sh0
will be less than Mcr (as indicated in Fig. 7.1) and the moment-curvature relationship
is now represented by curve O′A′B′ in Fig. 7.1b. The initial curvature due to early
shrinkage on a fully-cracked cross-section (κsh.cr) where the concrete is assumed to
carry no tension is significantly larger that that of the uncracked member (κsh.uncr), as
illustrated in Fig. 1.14. Therefore, early shrinkage before loading causes the dashed
line representing the fully-cracked response to move further to the right, shown as line
O′′C′ in Fig. 7.1b.

For a prestressed concrete member, or a reinforced concrete member in combined
bending and compression, the effect of tension stiffening is less pronounced because
the loss of stiffness of the cracked section is less dramatic. As the applied moment
increases, the depth of the primary cracks increases gradually (in contrast to the sudden
crack propagation in a reinforced member in pure bending) and the depth of the
concrete compressive zone is significantly greater than would be the case if no axial
force was present. A typical short-term moment-average curvature relationship for a
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Figure 7.1 Moment-average curvature relationship for a reinforced concrete cross-section at
first loading, τ0.

prestressed concrete cross-section containing bonded tensile reinforcement is shown
in Fig. 7.2, together with the moment–curvature relationship for the cross-section
containing a crack. The internal moment caused by the resultant prestressing force
about the centroidal axis of the uncracked section is designated Pe.

As can be seen by comparing the curves in Figs 7.1a and 7.2, the presence of the
axial prestress significantly changes the shape of curve after cracking. The prestressing
force (or axial compression) increases the post-cracking stiffness and greatly improves
the in-service behaviour of a concrete member after the onset of flexural cracking.

In Section 3.6.3, modular ratio theory was presented for the determination of
the stresses and deformations of a singly-reinforced rectangular cross-section in pure
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Figure 7.2 Short-term moment-average curvature relationship for a prestressed concrete
cross-section.

bending at a primary crack location. The properties of the fully-cracked cross-section,
including the depth to the neutral axis kd (Eq. 3.14) and the second moment of area of
the cracked section about its centroidal axis Icr (Eq. 3.17) were also derived. For a more
general cross-section, the properties of the cracked section may be determined from a
transformed section analysis in which the tensile concrete is ignored. Such an analysis
is presented in Section 7.2. Cracking also influences the time-dependent behaviour
of reinforced and prestressed concrete members. In Section 1.2.7, the effects of creep
on a fully-cracked cross-section were compared with the corresponding effects on an
uncracked cross-section (see Fig. 1.12), while the stresses and deformations caused
by shrinkage on a cracked section were discussed in Section 1.3.3 and illustrated in
Fig. 1.14b.

For a cross-section subjected to constant sustained moment over the time period τ0
to t, if no shrinkage has occurred prior to loading, the instantaneous moment versus
curvature response of the cross-section is shown as curve OAB in Fig. 7.3a (identical to
curve OAB in Fig. 7.1a). The instantaneous fully-cracked section response (calculated
ignoring the tensile concrete) is shown as dashed line OC in Fig. 7.3a. If the cross-
section does not shrink with time (i.e. εsh remains at zero), creep causes an increase in
curvature with time at all moment levels and the time-dependent M−κ response shifts
to curve OA′B′ in Fig. 7.3a. The creep-induced increase in curvature with time may
be expressed as �κcr(t) = κiϕ(t,τ0)/α, where κi is the instantaneous curvature, ϕ(t,τ0)
is the creep coefficient and α is a factor that depends on the amount of cracking and
the reinforcement quantity and location. Approximate expressions for α were given in
Eqs 3.32 and, for typical reinforcement ratios for beams and slabs, α is in the range 1.0–
1.3 prior to cracking and in the range 4–6 when cracking is extensive. With regard to
the response of a fully-cracked cross-section (calculated ignoring the tensile concrete),
creep causes a softening of the response shown as dashed line OC′ in Fig. 7.3a, with
the slope of the line decreasing by the factor 1/(1+ϕ(t,τ0)/α), where α is in the range
4–6 depending on the reinforcement ratio.



264 Cracked sections

C B′ C′B

E′D′ED

O

M1

Mcr
A′

A

Curvature, k

Moment

Instantaneous member
response

Instantaneous response of fully-
cracked section

Member response after
creep at time t

Fully-cracked response after
creep at time t

(a)  Effects of creep (zero shrinkage)

ki ki + Δk cr(t)

C B′ C′B

E′D′ED

O O′ O″

M1

Mcr

Mcr.sh
A′

A

Moment
Instantaneous member

response

Member response after creep and
 shrinkage at time t

Fully-cracked response after creep
and shrinkage at time t

(b)  Effects of creep and shrinkage

ki ki + Δkcr(t) + Δksh(t)

Curvature, k

Figure 7.3 Moment-average curvature relationship for a reinforced concrete cross-section under
sustained loads at time t.

When shrinkage before and after first loading is included, the curvature increases
even further with time and the time-dependent response of the cross-section is shown
as curve O′A′B′ in Fig. 7.3b. At M = 0, the curvature increases due to shrinkage of
the uncracked cross-section and the point O moves horizontally to O′. Due to the
restraint to shrinkage provided by the bonded reinforcement, tensile stress is induced
with time and this has the effect of lowering the cracking moment from Mcr to Mcr.sh,
as shown in Fig. 7.3b. For any cross-section subjected to a sustained moment in the
range Mcr.sh<M ≤ Mcr, cracking will occur with time and the increase in curvature will
be exacerbated by the loss of stiffness caused by time-dependent cracking. In practice,
critical sections of many lightly reinforced slabs are loaded in this range.
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The response of the cracked section (ignoring the tensile concrete) after creep and
shrinkage is shown as line O′′C′ in Fig. 7.3b. The shrinkage-induced curvature of the
fully-cracked cross-section when M = 0 is greater than that of the uncracked cross-
section and the cracked section response is shifted horizontally from point O to point O′′,
as shown. The slope of the cracked section response in Fig. 7.3b is softened by creep and
the slope of the line O′′C′ in Fig. 7.3b is the same as the slope of line OC′ in Fig. 7.3a.

At a typical in-service moment M1, the instantaneous curvature due to tension
stiffening κ ts.0 is DE in Fig. 7.3b and the time-dependent tension stiffening curvature
after the period of sustained loadings κ ts(t) is D′E′ in Fig. 7.3b. Tension stiffening
reduces under sustained loading, primarily due to time-dependent cracking, shrinkage-
induced degradation of bond at the concrete-reinforcement interface and tensile creep
between the cracks in the tensile concrete. It is generally believed that tension stiffening
reduces rapidly after first loading and reduces to about half its instantaneous value with
time (Refs 1–4).

When a fully-cracked cross-section is subjected to a period of sustained loading,
creep causes a change in position of the neutral axis. In general, the depth to the neutral
axis increases with time and, hence, so too does the area of concrete in compression.
To account accurately for this gradual change of the properties of the cross-section,
an iterative numerical solution procedure is required, in which the time period is
divided into small increments and the cross-sectional properties at the end of each
time increment are modified. While such a procedure is routinely implemented in finite-
element models of cracked reinforced concrete, often using a layered cross-section, it
is not suitable for manual solution.

The time analysis of a cracked cross-section using the age-adjusted effective modulus
method is presented in Section 7.3. In this analysis, the dimensions of the fully-cracked
cross-section are assumed to remain constant throughout the time analysis, i.e. the
depth of the concrete in compression and the extent of cracking are assumed to
remain constant with time. This assumption is in fact necessary, if the short-term and
time-dependent stress and strain increments are to be calculated separately and added
together to obtain final stresses and deformations, i.e. if the principle of superposition
is to be applied to fully-cracked sections in the same way as it has been applied to
uncracked cross-sections. The assumption also greatly simplifies the analysis and usu-
ally results in relatively little error in the estimation of time-dependent deformations.

7.2 Short-term analysis

In this section, the short-term responses of fully-cracked reinforced and partially-
prestressed concrete cross-sections subjected to combined bending and axial force
are considered. The time-dependent effects of creep and shrinkage are considered in
Section 7.3.

As for the analyses of uncracked cross-sections in Chapters 4, 5 and 6, the analysis
presented here is based on the following assumptions:

• Plane sections remain plane and, as a consequence, the strain distribution is linear
over the depth of the section.

• Perfect bond exists between the steel and the concrete, i.e. steel and concrete strains
are assumed to be compatible. This is usually a reasonable assumption at service
loads in members containing deformed steel reinforcing bars and strands.
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• Tensile stress in the concrete is ignored, and therefore the tensile concrete does
not contribute to the cross-sectional properties.

• Material behaviour is linear-elastic. This includes concrete in compression, and
both the non-prestressed and prestressed reinforcement.

The two cases of axial force with uniaxial bending and axial force with biaxial bending
are dealt with separately in the following sections.

7.2.1 Axial force and uniaxial bending

In the short-term analysis of the section at first loading (at time τ0), it is assumed that
the axial force and bending moment about the x-axis, Ne,0 and Me,0, respectively,
produce tension of sufficient magnitude to cause cracking in the bottom fibres of the
cross-section and compression at the top of the section.

Consider the cracked partially-prestressed concrete cross-section shown in Fig. 7.4.
The section is symmetric about the y-axis and, for convenience, the orthogonal x-axis
is selected as the reference axis. Also shown in Fig. 7.4 are the initial stress and strain
distributions when the section is subjected to combined bending and axial force (Me.0
and Ne.0) sufficient to cause cracking in the bottom fibres.

The numbers of layers of non-prestressed and prestressed reinforcement for the
cross-section in Fig. 7.4 are ms = 3 and mp = 2, respectively. As for the analysis of
uncracked cross-sections in Section 5.3, the properties of each layer of non-prestressed
reinforcement are defined by its area, elastic modulus and location with respect to the
arbitrarily chosen x-axis, i.e. As(i), Es(i) and ys(i)(= ds(i) −dref ), respectively. Similarly,
Ap(i), Ep(i) and yp(i)(= dp(i) − dref ) represent the area, elastic modulus and location of
the prestressing steel with respect to the x-axis, respectively.

The strain at any depth y below the reference x-axis at time τ0 is given by:

ε0 = εr,0 + yκ0 (7.1)

The stresses in the concrete and in the bonded reinforcement are:

σc,0 = Ec,0ε0 = Ec,0(εr,0 + yκ0) for y ≤ yn,0 (7.2a)

σc,0 = 0 for y> yn,0 (7.2b)

x

y

ds(1) dref
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Figure 7.4 Fully-cracked reinforced concrete cross-section.
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σs(i),0 = Es(i)ε0 = Es(i)(εr,0 + ys(i)κ0) (7.3)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init

)= Ep(i)
(
εr,0 + yp(i)κ0 + εp(i),init

)
(7.4)

where yn,0 is the distance from the reference axis to neutral axis, as shown in Fig. 7.4a,
and εp(i),init is the strain in the i-th layer of prestressing steel immediately before
the transfer of prestress to the concrete as expressed in Eq. 5.5 (reproduced and
renumbered here for convenience):

εp(i),init = Pp(i),init

Ap(i)Ep(i)
(7.5)

The internal axial force Ni,0 on the cracked cross-section is the sum of the axial
forces resisted by the various materials forming the cross-section and is given by:

Ni,0 = Nc,0 + Ns,0 + Np,0 (7.6)

where Nc,0, Ns,0 and Np,0 represent the axial forces resisted by the concrete, the non-
prestressed reinforcement and the prestressing steel, respectively, and are calculated using:

Nc,0 =
∫
Ac

σc,0 dA=
∫
Ac

Ec,0(εr,0+yκ0) dA=AcEc,0εr,0+BcEc,0κ0 (7.7a)

Ns,0 =
ms∑
i=1

(
As(i)Es(i)

)(
εr,0+ys(i)κ0

)= ms∑
i=1

(
As(i)Es(i)

)
εr,0+

ms∑
i=1

(
ys(i)As(i)Es(i)

)
κ0

(7.7b)

Np,0 =
mp∑
i=1

(
Ap(i)Ep(i)

)
εr,0+

mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
κ0+

mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(7.7c)

where Ac and Bc are the area and the first moment of area about the x-axis of
the compressive concrete above the neutral axis (i.e. the properties of the intact
compressive concrete). Adopting the following notation:

RA,s =
ms∑
i=1

(
As(i)Es(i)

);RB,s =
ms∑
i=1

(
ys(i)As(i)Es(i)

);RI,s =
ms∑
i=1

(
y2

s(i)As(i)Es(i)

)

RA,p =
mp∑
i=1

(
Ap(i)Ep(i)

);RB,p =
mp∑
i=1

(
yp(i)Ap(i)Ep(i)

);RI,p =
mp∑
i=1

(
y2

p(i)Ap(i)Ep(i)

)
(7.8)

Eqs 7.7 become

Nc,0 =
∫
Ac

σc,0dA =
∫
Ac

Ec,0(εr,0 + yκ0)dA (7.9a)

Ns,0 = RA.sεr,0 + RB.sκ0 (7.9b)
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Np,0 = RA,pεr,0 + RB,pκ0 +
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(7.9c)

Remembering that for equilibrium Ne,0 = Ni,0 and that substituting Eqs 7.9 into
Eq. 7.6 the expression for Ni,0 can be re-written in terms of the actual geometry and
the elastic moduli of the materials forming the cross-section:

Ni,0 =
∫
Ac

Ec,0(εr,0 + yκ0)dA + (RA,s + RA,p)εr,0 + (RB,s + RB,p)κ0

+
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)= Ne,0 (7.10)

Eq. 7.10 can be re-expressed as:

Ne,0 −
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)=
∫
Ac

Ec,0(εr,0 + yκ0)dA + (RA,s + RA,p)εr,0

+ (RB,s + RB,p)κ0 (7.11)

Similarly, the following expression based on moment equilibrium can be derived as:

Me,0 −
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)=
∫
Ac

Ec,0(εr,0 + yκ0)ydA + (RB,s + RB,p)εr,0

+ (RI,s + RI,p)κ0 (7.12)

For a reinforced concrete section comprising rectangular components (e.g. rectan-
gular flanges and webs) loaded in pure bending (i.e. Ne,0 = Ni,0 = 0) and with no
prestress, Eq. 7.10 becomes a quadratic equation that can be solved to obtain the
location of the neutral axis yn,0.

If the cross-section is prestressed or the axial load Ne,0 is not equal to zero, dividing
Eq. 7.12 by Eq. 7.11 gives:

Me,0 −
mp∑
i=1

(yp(i)Ap(i)Ep(i)εp(i),inst)

Ne,0 −
mp∑
i=1

(Ap(i)Ep(i)εp(i),inst)

=

y=yn,0∫
y=−dref

Ec,0(εr,0 + yκ0)ydA + (RB,s + RB,p)εr,0 + (RI,s + RI,p)κ0

y=yn,0∫
y=−dref

Ec,0(εr,0 + yκ0)dA + (RA,s + RA,p)εr,0 + (RB,s + RB,p)κ0
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Dividing top and bottom of the right hand side by κ0 and recognising that at the axis
of zero strain y = yn,0 = −εr,0/κ0, the above expression becomes:

Me,0 −
mp∑
i=1

(yp(i)Ap(i)Ep(i)εp(i),inst)

Ne,0 −
mp∑
i=1

(Ap(i)Ep(i)εp(i),inst)

=

y=yn,0∫
y=−dref

Ec,0(−yn,0 + y)ydA − (RB,s + RB,p)yn,0 + (RI,s + RI,p)

y=yn,0∫
y=−dref

Ec,0(−yn,0 + y)dA − (RA,s + RA,p)yn,0 + (RB,s + RB,p)

(7.13)

and Eq. 7.13 may be solved for yn,0 relatively quickly using a simple trial and error
search.

When yn,0 is determined, and the depth of the intact compressive concrete above the
cracked tensile zone is known, the properties of the compressive concrete (Ac, Bc and
Ic) with respect to the reference axis may be readily calculated. Using the same notation
as in the short-term analysis of the uncracked section of Section 5.3 (Eqs 5.8–5.11),
the expressions for Ni,0 and Mi,0 (Eqs 7.10 and 7.12) can be rewritten as:

Ni,0 = RA,0εr,0 + RB,0κ0 +
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)
(7.14a)

Mi,0 = RB,0εr,0 + RI,0κ0 +
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)
(7.14b)

and RA,0, RB,0 and RI,0 are the axial rigidity and the stiffness related to the first and
second moments of area of the cracked section about the reference axis, respectively,
calculated at time τ0 and are given by:

RA,0 = AcEc,0 +
ms∑
i=1

As(i)Es(i) +
mp∑
i=1

Ap(i)Ep(i) = AcEc,0 + RA,s + RA,p (7.15a)

RB,0 = BcEc,0 +
ms∑
i=1

ys(i)As(i)Es(i) +
mp∑
i=1

yp(i)Ap(i)Ep(i) = BcEc,0 + RB,s + RB,p

(7.15b)

RI,0 = IcEc,0 +
ms∑
i=1

y2
s(i)As(i)Es(i) +

mp∑
i=1

y2
p(i)Ap(i)Ep(i) = IcEc,0 + RI,s + RI,p (7.15c)

The system of equilibrium equations governing the problem (Eq. 5.12) is rewritten
here as:

re,0 = D0ε0 + fp,init (7.16)



270 Cracked sections

and solving gives the vector of unknown strains:

ε0 = D−1
0

(
re,0 − fp,init

)= F0
(
re,0 − fp,init

)
(7.17)

As defined previously:

re,0 =
[

Ne,0

Me,0

]
(7.18a)

D0 =
[

RA,0 RB,0

RB,0 RI,0

]
(7.18b)

ε0 =
[
εr,0

κ0

]
(7.18c)

fp,init =
mp∑
i=1

[
Ap(i)Ep(i)εp(i),init

yp(i)Ap(i)Ep(i)εp(i),init

]
(7.18d)

F0 = 1

RA,0RI,0 − R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]
(7.18e)

The stress distribution in the concrete and reinforcement can then be calculated from
Eqs 7.2 to 7.4.

As an alternative approach, the solution may also be conveniently obtained using the
cross-sectional properties of the transformed section. For example, for the cross-section
of Fig. 7.4, the transformed cross-section in equivalent areas of concrete for the short-
term analysis is shown in Fig. 7.5. The cross-sectional rigidities of the transformed
section defined in Eqs 7.15 can be re-calculated as:

RA,0 = A0Ec,0 (7.19a)

RB,0 = B0Ec,0 (7.19b)

RI,0 = I0Ec,0 (7.19c)

if bonded

(ns(1),0 −1)As(1)

(ns(2),0 −1)As(2)

np(1),0 Ap(1)

np(2),0 Ap(2)

ns(3),0 As(3)

yn,0

x

y

Figure 7.5 Transformed cracked section with bonded reinforcement (transformed into
equivalent areas of concrete).
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where A0 is the area of the transformed cracked concrete section, and B0 and I0 are
the first and second moments of the transformed area about the reference x-axis at
first loading. Substituting Eqs 7.19 into Eq. 7.18e, the matrix F0 becomes:

F0 = 1

Ec,0(A0I0 − B2
0)

[
I0 −B0

−B0 A0

]
(7.20)

Example 7.1

Assuming that the concrete can carry no tension, the position of the neutral axis
and the stress and strain distributions immediately after first loading are to be
calculated on the reinforced concrete cross-section shown in Fig. 7.6 for each of
the following load cases:

(1) Ne,0 = 0 and Me,0 = 300 kNm;

(2) Ne,0 = −1000 kN and Me,0 = 300 kNm.

Both the concrete and the reinforcement are assumed to be linear-elastic with
Ec,0 = 25 GPa and Es = 200 GPa. The modular ratio for the reinforcing steel is
therefore ns,0 = 8.

322

1000

100

530

70

400

x
Me,0

Ne,0

As = 4000 mm2

y

Figure 7.6 Reinforced concrete cross-section for Example 7.1

Load case 1: Ne,0 = 0 and Me,0 = Mi,0 = 300 kNm

Initially, it is assumed that the neutral axis is located in the 400 mm wide web
of the cross-section.
From Eq. 7.8:

RA,s = AsEs = 4000 × 200,000 = 800 × 106 N

RB,s = ysAsEs = (630 − 322) × 4000 × 200,000 = 246.4 × 109 Nmm

RI,s = y2
s AsEs = (630 − 322)2 × 4000 × 200,000 = 75.89 × 1012 Nmm2
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With Ne,0 = Ni,0 = 0, Eq. 7.10 becomes:

Ne,0 =
∫
Ac

Ec,0(εr,0 + yκ0)dA + RA,sεr,0 + RB,sκ0 = 0

Dividing by κ0 and remembering that yr,0 = −εr,0/κ0 gives:

∫
Ac

Ec,0(−yn,0 + y)dA − RA,syn,0 + RB,s = 0

which can be used to obtain a parabolic expressions in yn,0:

y=−222∫
y=−322

25,000(−yn,0 + y) × 1000 dy +
y=yn,0∫

y=−222

25,000(−yn,0 + y) × 400 dy

− 800 × 106yn,0 + 246.4 × 109 = 0∣∣∣25 × 106(−yn,0y + 0.5y2)
∣∣∣−222

−322
+
∣∣∣10 × 106(−yn,0y + 0.5y2)

∣∣∣yn,0

−222

− 800 × 106yn,0 + 246.4 × 109 = 0

5550yn,0 + 616,100 − 8050yn,0 − 1,296,000 − 10y2
n,0 + 5y2

n,0

− 2220yn,0 − 246,400 − 800yn,0 + 246,400 = 0

y2
n,0 + 1104yn,0 + 136,000 = 0

Solving this quadratic equation gives yn,0 = −141.3 mm. Therefore the depth
of the neutral axis below the top surface is dn = dref + yn,0 = 322 − 141.3 =
180.7 mm and this confirms the earlier assumption that the neutral axis is located
in the 400 mm wide web of the section.
The properties of the compressive concrete (Ac, Bc and Ic) with respect to the
reference axis are:

Ac = 1000 × 100 + 400 × 80.7 = 132,300 mm2;
Bc = 1000 × 100 × (50 − 322) + 400 × 80.7 × (140.35 − 322)

= −33.06 × 106 mm3;

Ic = 1000 × 1003

12
+ 1000 × 100 × (50 − 322)2 + 400 × 80.73

12

+ 400 × 80.7 × (140.35 − 322)2 = 8564 × 106 mm4.

The cross-sectional rigidities RA,0, RB,0 and RI,0 are obtained from Eqs 7.15:

RA,0 = AcEc,0 + RA,s = 132,300 × 25,000 + 800 × 106 = 4107 × 106 N;
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RB,0=BcEc,0+RB,s=−33.06×106×25,000+246.4×109=−580.2×109 Nmm;
RI,0 =IcEc,0+RI,s =8564×106×25,000+75.89×1012 =290.0×1012 Nmm2.

From Eq. 7.18e:

F0 = 1

RA,0RI,0−R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]
=
[

339.4×10−12 679.1×10−15

679.1×10−15 4.807×10−15

]

and the strain vector is obtained from Eq. 7.17:

ε0 =F0 re,0 =
[

339.4×10−12 679.1×10−15

679.1×10−15 4.807×10−15

][
0

300×106

]

=
[

203.7×10−6

1.442×10−6 mm−1

]

From Eq. 7.1, the top (y = −322 mm) and bottom (y = +378 mm) fibre
strains are:

ε0(top) = εr,0 − 322 × κ0 = (203.7 − 322 × 1.442) × 10−6 = −260.6 × 10−6

ε0(btm) = εr,0 + 378 × κ0 = (203.7 + 378 × 1.442) × 10−6 = +748.8 × 10−6

The top fibre stress in the concrete and the stress in the reinforcement are
(Eqs 7.2a and 7.3):

σc,0(top) =Ec,0ε0(top) =25,000×(−260.6×10−6)=−6.52 MPa

σs,0=Es(εr,0+ysκ0)=200×103×(203.7+308×1.442)×10−6=+129.6 MPa

The results are plotted in Fig. 7.7a.

Load case 2: Ne,0 = −1000 kN and Me,0 = 300 kN.m

As for load case 1, RA,s = 800×106 N, RB,s = 246.4×109 Nmm, RI,s = 75.89×
1012 Nmm2, and it is clear that for this load case the depth of the neutral axis
is greater than that for load case 1, i.e. yn,0 > −141.3 mm. In this reinforced
concrete section, Eq. 7.13 reduces to:

Me,0

Ne,0
=

y=−222∫
y=−322

25,000×1000×(−yn,0 +y)y dy+
y=−yn,0∫
y=−222

25,000×400×(−yn,0 +y)y dy−246.4×109yn,0 +75.89×1012

y=−222∫
y=−322

25,000×1000×(−yn,0 +y) dy+
y=yn,0∫

y=−222
25,000×400×(−yn,0 +y) dy−800×106yn,0 +246.4×109

=
∣∣25×106(−0.5yn,0y2 +0.3̇y3)

∣∣−222
−322 +∣∣10×106(−0.5yn,0y2 +0.3̇y3)

∣∣yn,0
−222 −246.4×109yn,0 +75.89×1012∣∣25×106(−yn,0y+0.5y2)

∣∣−222
−322 +∣∣10×106(−yn,0y+0.5y2)

∣∣yn,0
−222 −800×106yr,0 +246.4×109

= −1.66̇y3
n,0 +680.0×103yn,0 +299.4×106

−5y2
n,0 −5520yn,0 −680.0×103

=−300 mm
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Solving this cubic equation (either directly or by trial) gives yn,0 = 85.5 mm.
Therefore, the depth of the neutral axis below the top surface is dn = dref +yn,0 =
407.5 mm.
The properties of the compressive concrete (Ac, Bc and Ic) with respect to the
reference axis are:

Ac = 1000 × 100 + 400 × 307.5 = 223,000 mm2

Bc = 1000 × 100 × (50 − 322) + 400 × 307.5 × (253.8 − 322)

= −35.59 × 106 mm3

Ic = 1000 × 1003

12
+ 1000 × 100 × (50 − 322)2 + 400 × 307.53

12

+ 400 × 307.5 × (253.8 − 322)2 = 9024 × 106 mm4

The cross-sectional rigidities RA,0, RB,0 and RI,0 are obtained from Eqs 7.15:

RA,0 = AcEc,0 + RA,s = 223,000 × 25,000 + 800 × 106 = 6375 × 106 N

RB,0 = BcEc,0 + RB,s = −35.59 × 106 × 25,000 + 246.4 × 109

= −643.5 × 109 Nmm

RI,0 = IcEc,0 + RI,s = 9024 × 106 × 25,000 + 75.89 × 1012

= 301.5 × 1012 Nmm2

From Eq. 7.18e:

F0 = 1

RA,0RI,0−R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]
=
[

199.9×10−12 426.7×10−15

426.7×10−15 4.228×10−15

]

and the strain vector is obtained from Eq. 7.17:

ε0 = F0re,0 =
[

199.9 × 10−12 426.7 × 10−15

426.7 × 10−15 4.228 × 10−15

][−1000 × 103

300 × 106

]

=
[ −71.9 × 10−6

0.842 × 10−6 mm−1

]

From Eq. 7.1, the top (y = −322 mm) and bottom (y = +378 mm) fibre
strains are:

ε0(top) =εr,0−322×κ0 = (−71.9−322×0.842)×10−6 =−343.0×10−6

ε0(btm) =εr,0+378×κ0 = (−71.9+378×0.842)×10−6 =+246.4×10−6
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Figure 7.7 Initial stress and strain distributions in Example 7.1.

The top fibre stress in the concrete and the stress in the reinforcement are
(Eqs 7.2a and 7.3):

σc,0(top) = Ec,0ε0(top) = 25,000 × (−343.0 × 10−6) = −8.57 MPa

σs,0 = Es(εr,0 + ysκ0) = 200 × 103 × (−71.9 + 308 × 0.842) × 10−6

= +37.5 MPa

The results are plotted in Fig. 7.7b.

Example 7.2

The depth of the concrete compression zone dn and the short-term stress and
strain distributions are to be calculated on the partially-prestressed concrete
beam cross-section shown in Fig. 7.8a, when Me,0 = 400 kNm (and Ne,0 = 0).
The section contains two layers of non-prestressed reinforcement as shown
(each with Es = 2 × 105 MPa) and one layer of bonded prestressing steel
(Ep = 2 × 105 MPa). The prestressing force before transfer is Pp,init = 900 kN
(i.e. σp,init = 1200 MPa). The tensile strength of the concrete is f ′

ct.f = 3.5 MPa
and the elastic modulus is Ec,0 = 30,000 MPa.
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From Eq. 7.8:

RA,s = (As(1)+As(2))Es = (500+1000)×200,000=300×106 N

RB,s = (ys(1)As(1)+ys(2)As(2))Es = (−250×500+400×1000)×200,000

=55.0×109 Nmm

RI,s = (y2
s(1)As(1)+y2

s(2)As(2))Es = ((−250)2×500+4002×1000)×200,000

=38.25×1012 Nmm2

RA,p =ApEp =750×200,000=150×106 N

RB,p =ypApEp =275×750×200,000=41.25×109 Nmm

RI,p =y2
pApEp = (275)2×750×200,000=11.34×1012 Nmm2

The strain in the prestressing steel caused by Pp,init before transfer is given by
Eq. 7.5:

εp(i),init = 900 × 103

750 × 2 × 105 = 6000 × 10−6

and the vector of actions due to initial prestress is given by Eq. 7.18d:

fp,init =
[

750 × 200,000 × 0.006
275 × 750 × 200,000 × 0.006

]
=
[

900 × 103 N
247.5 × 106 Nmm

]

If it is initially assumed that the section is uncracked, an analysis using the
procedure outlined in Section 5.3 indicates that the tensile strength of the
concrete has been exceeded in the bottom fibres of the cross-section. With
the reference axis selected at dref = 300 mm below the top of the section, the depth
of the neutral axis below the reference axis yn,0 is determined from Eq. 7.13.
The left hand side of Eq. 7.13 is first calculated:

Me,0−
mp∑
i=1

(yp(i)Ap(i)Ep(i)εp(i),inst)

Ne,0−
mp∑
i=1

(Ap(i)Ep(i)εp(i),inst)

= 400×106−247.5×106

0−900×103 =−169.4̇ mm

and therefore:

−169.4 =

y=yn,0∫
y=−300

30,000 × 200 × (−yn,0 + y)y dy − (55.0 + 41.25) × 109yn,0 + (38.25 + 11.34) × 1012

y=yn,0∫
y=−300

30,000 × 200 × (−yn,0 + y)dy − (300 + 150) × 106yn,0 + (55.0 + 41.25) × 109

−169.4 =
∣∣6.0 × 106(−0.5yn,0y2 + 0.3̇y3)

∣∣yn,0
−300 − 96.25 × 109yn,0 + 49.59 × 1012∣∣6.0 × 106(−yn,0y + 0.5y2)
∣∣yn,0
−300 − 450 × 106yn,0 + 96.25 × 109

−169.4 = −y3
n,0 + 173,750yn,0 + 103.6 × 106

−3y2
n,0 − 2250yn,0 − 173,750
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Solving gives yn,0 = 208.1 mm. Therefore the depth of the neutral axis below
the top surface is dn = dref + yn,0 = 508.1 mm.
The properties of the compressive concrete (Ac, Bc and Ic) with respect to the
reference axis are:

Ac =508.1×200−500=101,100 mm2

Bc =508.1×200×(254.05−300)−500×(50−300)=−4.55×106 mm3

Ic = 200×508.13

12
+200×508.1×(254.05−300)2−500×(50−300)2

=2370×109 mm4

The cross-sectional rigidities RA,0, RB,0 and RI,0 are obtained from Eqs 7.15:

RA,0 = AcEc,0 + RA,s + RA,p = 101,120 × 30,000 + 300 × 106

+ 150 × 106 = 3484 × 106 N

RB,0 = BcEc,0 + RB,s + RB,p = −4.55 × 106 × 30,000 + 55.0 × 109

+ 41.25 × 109 = −40.24 × 109 Nmm

RI,0 = IcEc,0 + RI,s + RI,p = 2370 × 106 × 30,000 + 38.25 × 1012

+ 11.34 × 1012 = 120.7 × 1012 Nmm2

From Eq. 7.18e:

F0 = 1

RA,0RI,0−R2
B,0

[
RI,0 −RB,0

−RB,0 RA,0

]
=
[

288.1×10−12 96.06×10−15

96.06×10−15 8.317×10−15

]

and the strain vector is obtained from Eq. 7.17:

ε0 = F0
(
re,0 − fp,init

)=
[

288.1 × 10−12 96.06 × 10−15

96.06 × 10−15 8.317 × 10−15

]
×

×
[

0 − 900 × 103

400 × 106 − 247.5 × 106

]
=
[ −244.6 × 10−6

1.182 × 10−6 mm−1

]

From Eq. 7.1, the top (y = −300 mm) and bottom (y = +450 mm) fibre
strains are:

ε0(top) = εr,0 − 300 × κ0 = (−244.6 − 300 × 1.182) × 10−6

= −599.1 × 10−6

ε0(btm) = εr,0 + 450 × κ0 = (−244.6 + 450 × 1.182) × 10−6

= +287.3 × 10−6
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The distribution of strains is shown in Fig. 7.8b.

(a) Section (c) Stress (MPa)
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700

575

50
200 As(1) = 500 mm2

As(2) = 1000 mm2

Ap = 750 mm2

dref = 300 Me,0 =
400 kN.m

Pp,init = 900 kN

287

45.6

1216

508.1

−108.1

−18.0−599

x

Neutral axis

(b) Strain (× 10−6)

Figure 7.8 Cross-sectional details and stress and strain distributions for Example 7.2
(all dimensions in mm).

The top fibre stress in the concrete and the stress in the non-prestressed
reinforcement are (Eqs 7.2a and 7.3):

σc,0(top) = Ec,0ε0(top) = 30,000 × (−599.1 × 10−6) = −18.0 MPa

σs(1),0 = Es(εr,0 + ys(1)κ0) = 200 × 103 × (−244.6 − 250 × 1.182) × 10−6

= −108.1 MPa

σs(2),0 = Es(εr,0 + ys(2)κ0) = 200 × 103 × (−244.6 + 400 × 1.182) × 10−6

= +45.6 MPa

and the stress in the prestressing steel is given by:

σp,0 = Ep
(
εr,0 + ypκ0 + εp,init

)
= 200 × 103 × (−244.6 + 275 × 1.182 + 6000) × 10−6 = 1216 MPa

The stresses are plotted in Fig. 7.8c.

7.2.2 Axial force and biaxial bending

The short-term analysis of an uncracked cross-section subjected to axial force and
biaxial bending was presented in Section 6.2. The procedure is readily extended to
cracked sections where the extent of cracking is evaluated based on a trial and error
procedure depicted in Fig. 7.9 and described below.

In the first iteration, all concrete is initially assumed to be uncracked (Fig. 7.9a)
and the analysis is identical to that described in Section 6.2. If the maximum tensile
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 3
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Figure 7.9 Iterative procedure for cracked sections under axial force and biaxial bending.

stress in the concrete exceeds the tensile strength of the concrete, cracking is deemed
to have occurred. In this case, the area of concrete in tension identified after the first
iteration is assumed to be cracked and to no longer contribute to the stiffness of
the cross-section. This occurs, for example, in the bottom left hand corner of the
cross-section shown in Fig. 7.9a, where the triangular part of the concrete section
on the tensile side of the neutral axis is identified to have cracked. For the second
iteration, the solution procedure remains unchanged except that the contribution of
the concrete to the cross-sectional rigidities changes, with the cracked area of concrete
identified in the first iteration (shown as the unshaded region in Fig. 7.9b) now
not included in the calculation of the concrete section properties (Ac, Bxc, Byc, Ixc,
Iyc, Ixyc). After the second iteration, the revised neutral axis location is determined
and a new area of cracked concrete is calculated. This procedure is continued in
successive iterations (Fig. 7.9c) until the differences in the calculated cross-sectional
rigidities between successive iterations are negligible. From a numerical viewpoint,
convergence is usually assumed to have occurred when the variations of the values of
the variables defining the strain diagram (i.e. εr, κx and κy) in consecutive iterations
are negligible.

7.3 Time-dependent analysis (AEMM)

In the analyses presented here, the fully-cracked cross-sectional area (i.e. the size of
the uncracked concrete compressive zone) is assumed to remain constant with time.
This assumption is not correct since creep causes a gradual change of the position
of the neutral axis under sustained loads. However, as discussed in Section 7.1, the
assumption greatly simplifies the analysis and will usually result in relatively little error
in the calculated deformations.

7.3.1 Axial force and uniaxial bending

With the depth of the concrete compression zone dn assumed to remain constant with
time, the time analysis of a fully-cracked cross-section using the AEMM is essentially
the same as that outlined in Section 5.4.
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Figure 7.10 Fully-cracked cross-section – time analysis (AEMM).

The fully-cracked cross-section shown in Fig. 7.10a is subjected to a sustained
external bending moment Me,0 and axial force Ne,0. Both the short-term and
time-dependent strain distributions are shown in Fig. 7.10b.

For the time analysis, the steel reinforcement and prestressing tendons (if any)
are assumed to be linear-elastic (as for the short-term analysis) and the constitutive
relationship for the concrete at τk is that given by Eq. 4.45. Therefore:

σc,k = �Ee,k
(
εk − εsh,k

)+�Fe,0σc,0 for y ≤ yn,0 and σc,k = 0 for y> yn,0 (7.21a)

σs(i),k = Es(i)εk (7.21b)

σp(i),k = Ep(i)
(
εk + εp(i),init − εp.rel(i),k

)
(7.21c)

where �Ee,k, �Fe,0 and εp.rel(i),k are as defined previously (and given in Eqs 4.35, 4.46
and 5.23a).

At time τk, the internal axial force Ni,k and moment Mi,k on the cross-section
are given in Eqs 5.29 and 5.31 and the axial rigidity and the stiffness related to the
first and second moments of area (RA,k, RB,k, and RI,k, respectively) are given by
Eqs 5.30 and 5.32. The equilibrium equations are expressed in Eq. 5.34 and solving
using Eq. 5.39 gives the strain vector at time τk. The stresses in the concrete, steel
reinforcement and tendons at time τk are then calculated from Eqs 5.41a, b and c,
respectively.

Example 7.3

The change of stress and strain with time on the cracked cross-section
of Example 7.1 (Fig. 7.6) is to be calculated using AEMM. Each of the
loading cases considered in Example 7.1 is to be examined here. The relevant
material properties for the time period in question are: Ec,0 = 25 GPa; Es =
200 GPa; ϕ(τk,τ0) = 3.0;χ (τk,τ0) = 0.65; εsh(τk) = −500 × 10−6 and the steel
reinforcement is assumed to be linear elastic. To illustrate the effects of creep,
the case when εsh(τk) = 0 is also to be considered for load case 1.
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Load case 1a: Ne,k = 0; Me,k = Mi,k = 300 kNm and εsh(τk) = −500 × 10−6

From load case 1 in Example 7.1, dn = 180.7 mm; εr,0 = 203.7 × 10−6; κ0 =
1.442 × 10−6 mm−1; and the shape of the cracked cross-section and the initial
stress and strain distributions are illustrated in Fig. 7.7a.
From Eqs 4.35 and 4.46:

�Ee,k = Ec,0

1 +χ (τk,τ0)ϕ(τk,τ0)
= 25,000

1 + 0.65 × 3.0
= 8475 MPa

�Fe,0 = ϕ (τk,τ0) [χ (τk,τ0) − 1]
1 +χ (τk,τ0)ϕ (τk,τ0)

= 3.0 × (0.65 − 1.0)
1.0 + 0.65 × 3.0

= −0.356

and as calculated in Example 7.1, the properties of the concrete part of
the cross-section with respect to the reference axis are Ac = 132,300 mm2,
Bc = −33.06 × 106 mm3 and Ic = 8564 × 106 mm4 and the rigidities of the
steel reinforcement are RA,s = 800 × 106 N, RB,s = 246.4 × 109 Nmm and
RI,s = 75.89 × 1012 Nmm2.
The axial force and moment resisted by the concrete part of the cross-section at
time τ0 are:

Nc,0 = AcEc,0εr,0 + BcEc,0κ0 = −518.3 × 103 N

Mc,0 = BcEc,0εr,0 + IcEc,0κ0 = +140.4 × 106 Nmm

The cross-sectional rigidities RA,k, RB,k and RI,k are obtained from Eqs 5.30
and 5.32:

RA,k = Ac�Ee,k + RA,s = 132,300 × 8475 + 800 × 106 = 1921 × 106 N

RB,k = Bc�Ee,k + RB,s = −33.06 × 106 × 8475 + 246.4 × 109

= −33.78 × 109 Nmm

RI,k = Ic�Ee,k + RI,s = 8564 × 106 × 8475 + 75.89 × 1012

= 148.5 × 1012 Nmm2

From Eq. 5.40:

Fk = 1

RA,kRI,k−R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]
=
[

522.7×10−12 118.9×10−15

118.9×10−15 6.761×10−15

]

and from Eqs 5.36 and 5.37:

fcr,k =�Fe,0

[
Nc,0

Mc,0

]
= −0.356 ×

[−518.1 × 103

+145.4 × 106

]
=
[+184.5 × 103

−49.96 × 106

]
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fsh,k =
[

Ac

Bc

]
�Ee,kεsh,k =

[
132,300

−33.06 × 106

]
× 8475 × (−500 × 10−6)

=
[−560.6 × 103

+140.1 × 106

]

For this reinforced concrete cross-section, the strain vector is obtained from
Eq. 5.39:

εk = Fk
(
re,k − fcr,k + fsh,k

)
=
[

522.7 × 10−12 118.9 × 10−15

118.9 × 10−15 6.761 × 10−15

][
(0 − 184.5 − 560.6) × 103

(300 + 49.96 + 140.1) × 106

]

=
[ −331.0 × 10−6

3.225 × 10−6 mm−1

]

From Eq. 5.20, the top (y = −322 mm) and bottom (y = +378 mm) fibre
strains are:

εk(top) =εr,k−322×κk = (−331.0−322×3.225)×10−6 =−1370×10−6

εk(btm) =εr,k+378×κk = (−331.0+378×3.225)×10−6 =+888×10−6

The concrete stresses at time τk at the top fibre (y = −322 mm) and at the
bottom of the compressive concrete, at yn,0 = −141.3 mm, are obtained from
Eq. 7.21a:
At top of section:

σc,k = 8475 × (−1370 + 500) × 10−6 − 0.356 ×−6.52

= −5.05 MPa

At yn,0 = −141.3 mm:

σc,k = 8475 × (−331.0 − 141.3 × 3.225 + 500) × 10−6

− 0.356 × 0 = −2.43 MPa

The stress in the reinforcement is:

σs,k = Es(εr,k + ysκk) = 200 × 103 × (−331.0 + 308 × 3.225) × 10−6

= +132.5 MPa

The results are plotted in Fig. 7.11a.

Load case 1b: Ne,k = 0; Me,k = 300 kNm and εsh(τk) = 0

The only difference from load case 1a, is that the shrinkage vector is now nil,
that is, fsh,k = 0, and from Eq. 5.39, the strain vector is now:

εk = Fk
(
re,k − fcr,k + fsh,k

)
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εk =
[

522.7 × 10−12 118.9 × 10−15

118.9 × 10−15 6.761 × 10−15

][
(0 − 184.5 + 0) × 103

(300 + 49.96 + 0) × 106

]

=
[ −54.8 × 10−6

2.344 × 10−6 mm−1

]

The top and bottom fibre strains are:

εk(top) = εr,k − 322 × κk = (−58.8 − 322 × 2.344) × 10−6 = −810 × 10−6

εk(btm) = εr,k + 378 × κk = (−58.8 + 378 × 2.344) × 10−6 = +831 × 10−6

The concrete stresses at time τk at the top fibre and at the bottom of the
compressive concrete, at yn,0 = −141.3 mm, are obtained from Eq. 7.21a:
At top of section:

σc,k = 8475 × (−810) × 10−6 − 0.356 ×−6.52

= −4.54 MPa

At yn,0 = −141.3 mm:

σc,k = 8475 × (−58.8 − 141.3 × 2.344) × 10−6

− 0.356 × 0 = −3.27 MPa

The stress in the reinforcement is:

σs,k = Es(εr,k + ysκk) = 200 × 103 × (−58.8 + 308 × 2.344) × 10−6

= +133.5 MPa

The results are plotted in Fig. 7.11b.
The effects of shrinkage acting alone are obtained by subtracting the strains and
stresses calculated for load case 1b from those for load case 1a and the results
are plotted in Fig. 7.11c.

Load case 2: Ne,0 = −1000 kN, Me,0 = 300 kNm and εsh(τk) = −500 × 10−6

From load case 2 in Example 7.1, dn = 407.5 mm; εr,0 = −71.9 × 10−6; κ0 =
0.842×10−6 mm−1 and the initial stress and strain distributions are illustrated
in Fig. 7.7b.
As for load case 1:�Ee,k =8475 MPa and�Fe,0 =−0.356. As calculated in Example
7.1, the properties of the concrete part of the cross-section with respect to the
reference axis are Ac = 223,000 mm2, Bc = −35.59×106 mm3 and Ic = 9024×
106 mm4 and the rigidities of the steel reinforcement are RA,s = 800 × 106 N,
RB,s = 246.4 × 109 Nmm and RI,s = 75.89 × 1012 Nmm2.
The axial force and moment resisted by the concrete part of the cross-section at
time τ0 are:

Nc,0 = AcEc,0εr,0 + BcEc,0κ0 = −1150 × 103 N

Mc,0 = BcEc,0εr,0 + IcEc,0κ0 = +253.9 × 106 Nmm
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The cross-sectional rigidities RA,k, RB,k and RI,k are obtained from Eqs 5.30
and 5.32:

RA,k = Ac�Ee,k + RA,s = 223,000 × 8475 + 800 × 106 = 2690 × 106 N

RB,k = Bc�Ee,k + RB,s = −35.59 × 106 × 8475 + 246.4 × 109

= −55.23 × 109 Nmm

RI,k = Ic�Ee,k + RI,s = 9024 × 106 × 8475 + 75.89 × 1012

= 152.4 × 1012 Nmm2

From Eq. 5.40:

Fk = 1

RA,kRI,k − R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]
=
[

374.5 × 10−12 135.7 × 10−15

135.7 × 10−15 6.611 × 10−15

]

and from Eqs 5.36 and 5.37:

fcr,k =�Fe,0

[
Nc,0
Mc,0

]
= −0.356 ×

[ −1150 × 103

+253.9 × 106

]
=
[+409.3 × 103

−90.36 × 106

]

fsh,k =
[

Ac
Bc

]
�Ee,kεsh,k =

[
223,000

−35.59 × 106

]
× 8475 ×−500 × 10−6

=
[−945.0 × 103

+150.8 × 106

]

The strain vector is obtained from Eq. 5.39:

εk = Fk
(
re,k − fcr,k + fsh,k

)
=
[

374.5 × 10−12 135.7 × 10−15

135.7 × 10−15 6.611 × 10−15

][
(−1000 − 409.3 − 945.0) × 103

(300 + 90.36 + 150.8) × 106

]

=
[ −808.3 × 10−6

3.258 × 10−6 mm−1

]

The top (y = −322 mm) and bottom (y = +378 mm) fibre strains are therefore:

εk(top) =εr,k−322×κk = (−808.3−322×3.258)×10−6 =−1857×10−6

εk(btm) =εr,k+378×κk = (−808.3+378×3.258)×10−6 =+423×10−6

The concrete stresses at time τk at the top fibre (y=−322 mm) and at the bottom
of the compressive concrete, at yn,0 = +85.5 mm, are obtained from Eq. 7.21a:
At top of section:

σc,k = 8475 × (−1857 + 500) × 10−6 − 0.356 ×−8.57

= −8.45 MPa
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At yn,0 = +80.5 mm:

σc,k = 8475 × (−808.3 + 85.5 × 3.258 + 500) × 10−6

− 0.356 × 0 = −0.39 MPa

The stress in the reinforcement is:

σs,k = Es(εr,k + ysκk) = 200 × 103 × (−808.3 + 308 × 3.258) × 10−6

= +39.0 MPa

The results are plotted in Fig. 7.11d.
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Figure 7.11 Stress and strain distributions for Example 7.3.

Example 7.4

The change of stress and strain with time on the cracked partially-prestressed
cross-section of Example 7.2 (Fig. 7.8) is to be calculated using AEMM. The
actions on the section are assumed to be constant throughout the time period
under consideration (i.e. τ0 to τk) and equal to Ne,k = 0; Me,k = 400 kN.m. The
relevant material properties: Ec,0 = 30 GPa; Es = Ep = 200 GPa; ϕ(τk,τ0) = 2.5;
χ (τk, τ0) = 0.65; εsh(τk) = −400 × 10−6; ϕ(τk, σp(i),init) = 0.02 and the steel
reinforcement is assumed to be linear elastic.
From Example 7.2: dn = 508.1 mm, εr,0 = −244.6 × 10−6, κ0 = 1.182 ×
10−6 mm−1, Ac = 101,100 mm2, Bc = −4.55×106 mm3, Ic = 2370×106 mm4
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and the rigidities of the steel reinforcement and tendons are RA,s = 300×106 N,
RB,s = 55.0 × 109 Nmm, RI,s = 38.25 × 1012 Nmm2, RA,p = 150 × 106 N,
RB,p = 41.25 × 109 Nmm and RI,p = 11.34 × 1012 Nmm2.
From Eqs 4.35 and 4.46:

�Ee,k = 30,000
1 + 0.65 × 2.5

= 11,430 MPa

and

�Fe,0 = 2.5 × (0.65 − 1.0)
1.0 + 0.65 × 2.5

= −0.333

The axial force and moment resisted by the concrete part of the cross-section at
time τ0 are:

Nc,0 = AcEc,0εr,0 + BcEc,0κ0 = −903.2 × 103 N

Mc,0 = BcEc,0εr,0 + IcEc,0κ0 = +117.4 × 106 N.mm

The cross-sectional rigidities RA,k, RB,k and RI,k are:

RA,k = Ac�Ee,k + RA,s + RA,p = 101,100 × 11,430 + 300 × 106

+ 150 × 106 = 1606 × 106 N

RB,k = Bc�Ee,k + RB,s + RB,p = −4.55 × 106 × 11,430 + 55.0 × 109

+ 41.25 × 109 = 44.24 × 109 Nmm

RI,k = Ic�Ee,k + RI,s + RI,p = 2370 × 106 × 11,430 + 38.25 × 1012

+ 11.34 × 1012 = 76.68 × 1012 Nmm2

and from Eq. 5.40:

Fk = 1

RA,kRI,k−R2
B,k

[
RI,k −RB,k

−RB,k RA,k

]
=
[

632.7×10−12 −365.1×10−15

−365.1×10−15 13.25×10−15

]

From Eqs 5.36 to 5.38:

fcr,k =�Fe,0

[
Nc,0
Mc,0

]
= −0.333̇ ×

[−903.2 × 103

+117.4 × 106

]
=
[+301.1 × 103

−39.13 × 106

]

fsh,k =
[

Ac

Bc

]
�Ee,kεsh,k =

[
101,100

−4.55 × 106

]
× 11,430 ×−400 × 10−6

=
[

−462.2 × 103

+20.80 × 106

]
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fp,init =
mp∑
i=1

[
Ap(i)Ep(i)

yp(i)Ap(i)Ep(i)

]
εp(i),init =

[
900 × 103

247.5 × 106

]
(from Example 7.2)

fp.rel,k = fp.initϕp(τk,σp(i),init) =
[

18 × 103

4.95 × 106

]

The strain vector is obtained from Eq. 5.39:

εk =Fk
(
re,k−fcr,k+fsh,k−fp,init +fp.rel,k

)
εk =

[
632.7×10−12 −365.1×10−15

−365.1×10−15 13.25×10−15

]
×

[
(0−301.1−462.2−900+18)×103

(400+39.13+20.80−247.5+4.95)×106

]
=
[ −1120×10−6

3.481×10−6 mm−1

]

The top (y = −300 mm) and bottom (y = +450 mm) fibre strains are:

εk(top) = εr,k − 300 × κk = (−1120 − 300 × 3.481) × 10−6

= −2165 × 10−6

εk(btm) = εr,k + 450 × κk = (−1120 + 450 × 3.481) × 10−6

= +446.2 × 10−6

The concrete stresses at time τk at the top fibre (y = −300 mm) and at the bottom
of the compressive concrete, at yn,0 = 208.1 mm, are obtained from Eq. 7.21a:
At top of section:

σc,k = 11,430 × (−2165 + 400) × 10−6 − 0.333 ×−18.0

= −14.2 MPa

At yn,0 = +208.1 mm:

σc,k = 11,430 × (−1120 + 208.1 × 3.481 + 400) × 10−6

− 0.333̇ × 0 = +0.05 MPa

The stress in the non-prestressed reinforcement are (Eq. 7.21b):

σs(1),0 = Es(εr,0 + ys(1)κ0) = 200 × 103 × (−1120 − 250 × 3.481) × 10−6

= −398 MPa

σs(2),0 = Es(εr,0 + ys(2)κ0) = 200 × 103 × (−1120 + 400 × 3.481) × 10−6

= +54.4 MPa

and the stress in the prestressing steel is given by (Eq. 7.21c):

σp,0 = Ep
(
εr,0 + ypκ0 + εp.init + εp.rel,k

)= 200 × 103

× (−1120 + 275 × 3.481 + 6000 − 120) × 10−6 = +1143 MPa
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The results are plotted in Fig. 7.12.
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Figure 7.12 Initial and time-dependent strain and stress distributions for Example 7.4
(all dimensions in mm).

7.3.2 Axial force and biaxial bending

The procedure required for the time analysis of a cracked section in biaxial bending
using the AEMM is identical to that for an uncracked section as presented in Section 6.3
and, for this reason, is not repeated here. The only difference is that the concrete
cross-sectional properties are determined based on the shape of the cracked section
identified in the instantaneous analysis. As already discussed, when modelling the time-
dependent behaviour of a cracked section using the AEMM, it is convenient to assume
that the area of uncracked concrete does not vary with time. For most purposes, this
assumption is quite reasonable and does not result in significant error. More refined
computer-based methods of analysis can be used to trace the time-varying position of
the neutral axis and the gradual change in shape of the cracked area of the cross-section.
Such methods are discussed in the following section.

7.4 Short- and long-term analysis using the step-by-step method

In some situations, time analysis of a cracked section using the AEMM may not be
appropriate. For example, where the section is subjected to a complex load history,
it may be necessary to use a more refined analysis. A refined method for the time
analysis of a cracked section is described below for the cases of axial force combined
with uniaxial and biaxial bending. To avoid unnecessary repetitions reference is made
to the derivations presented in previous chapters.

7.4.1 Axial force and uniaxial bending

7.4.1.1 Instantaneous analysis

To trace the change of position of the neutral axis and the change in shape of the
cracked portion of the cross-section with time, it is convenient to subdivide the concrete
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Figure 7.13 Layered cross-section subjected to axial force and uniaxial bending.

into layers as shown in Fig. 7.13. With this approach, the internal actions, i.e. axial
force and moment, are calculated by summing the contributions of each of the layers.

Assuming that the cross-section is subdivided into mc concrete layers, and initially
assuming that all concrete layers are uncracked, the contribution of the concrete
component to the internal axial force Ni,0 previously introduced in Eq. 7.6 can be
obtained as follows:

Nc,0 =
mc∑
i=1

Ac(i)σc,0 =
mc∑
i=1

Ac(i)Ec(i),0(εr,0 + y(i)κ0)

=
mc∑
i=1

(
Ac(i)Ec(i),0

)
εr,0 +

mc∑
i=1

(
Bc(i)Ec(i),0

)
κ0 (7.22)

where Ac(i) and Bc(i) are the area and the first moment of area of the i-th concrete layer
about the x-axis; y(i) is the distance between the centroid of the i-th concrete layer and the
reference axis (Fig. 7.13). This approach assumes that a constant stress is resisted by each
layer calculated based on the strain measured at its centroid. Although not used here, a
linearly varying stress across the thickness of each layer (t(i)) can easily be implemented.

Similarly, the contribution of the concrete to the internal moment Mi,0 is given by:

Mc,0 =
mc∑
i=1

y(i)Ac(i)σc,0 =
mc∑
i=1

Ac(i)Ec(i),0(y(i)εr,0 + y2
(i)κ0)

=
mc∑
i=1

(
Bc(i)Ec(i),0

)
εr,0 +

mc∑
i=1

(
Ic(i)Ec(i),0

)
κ0 (7.23)

where Ic(i) is the second moment of area of the i-th concrete layer about the x-axis.
The concrete rigidities for the cross-section are:

RA,c =
mc∑
i=1

(
Ac(i)Ec(i),0

);RB,c =
mc∑
i=1

(
yc(i)Ac(i)Ec(i),0

);RI,c =
mc∑
i=1

(
y2

c(i)Ac(i)Ec(i),0

)
(7.24a,b,c)
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and the axial force and moment carried by the concrete are re-written as:

Nc,0 = RA.cεr,0 + RB.cκ0 (7.25a)

Mc,0 = RB.cεr,0 + RI.cκ0 (7.25b)

In the determination of the properties of each concrete layer (Ac(i), Bc(i) and Ic(i)), the
concrete displaced by the presence of any reinforcement or tendons in a layer is often
ignored, but it is usually straightforward to include the actual concrete area rather
than the gross area of the concrete layer.

The number of layers (mc) to be specified at the beginning of the analysis should
be sufficient to produce accurate results. A simple approach to determine mc is to
compare the values for the cross-sectional flexural rigidity RI,0 calculated considering
the uncracked cross-section with and without layers. The number of layers is acceptable
when the difference between these two values is less than 1 per cent.

The governing equilibrium equations for a typical cross-section are therefore:

Ni,0 = (RA,c + RA,s + RA,p)εr,0 + (RB,c + RB,s + RB,p)κ0

+
mp∑
i=1

(
Ap(i)Ep(i)εp(i),init

)= Ne,0 (7.26a)

Mi,0 = (RB,c + RB,s + RB,p)εr,0 + (RI,c + RI,s + RI,p)κ0

+
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)= Me,0 (7.26b)

where the concrete rigidities are given by Eq. 7.24 and the rigidities of the reinforcement
and the tendons are defined in Eqs 7.8. This system of two equations can be used to
solve for the two unknowns εr,0 and κ0.

To determine the extent of cracking, the solution process is iterative. For the first
iteration all concrete layers are assumed to be uncracked, that is, each concrete
layer contributes to the cross-sectional stiffness. The cross-section is analysed and
the concrete stress at the centroid of each layer is determined. For the second iteration,
concrete layers subjected to tension in the first iteration in excess of the tensile strength
of concrete are assumed to have cracked and are subsequently neglected, i.e. the value
Ec(i),0 in a cracked layer is set to zero. At the end of each subsequent iteration the
stresses are checked in the uncracked layers to identify whether any additional layers
have cracked. The short-term analysis is terminated when no additional cracking is
detected. More refined material models could be implemented, including the effects of
tension-stiffening, tension-softening or other material nonlinearities, and more efficient
solving strategies could be used.

7.4.1.2 Time analysis

The step-by-step method (SSM) of analysis is adopted. The time discretisation asso-
ciated with the method was discussed in Section 4.3.1 and the analysis of uncracked
cross-sections was presented in Section 5.5, with the constitutive relationships for the
concrete, reinforcement and tendons given in Eqs 4.25 and 5.44.
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The steps required for the long-term analysis of a cracked section are similar to those
required for an uncracked section. The only difference in this case is that the concrete
in a cracked layer is assumed to carry no tension.

For the layered section of Fig. 7.13, the axial force and moment carried by the
concrete to be included in the expression for the internal actions (Eqs 5.50 and 5.51)
and the equilibrium equations (Eq. 5.54) can be calculated from:

Nc,j =
mc∑
i=1

Ac(i)σc(i),j =
mc∑
i=1

⎛
⎝Ac(i)Ec(i),j

(
ε(i),j − εsh,j

)+ j−1∑
n=0

Fe,j,nσc(i),nAc(i)

⎞
⎠

=
mc∑
i=1

⎛
⎝Ac(i)Ec(i),jεr,j + Bc(i)Ec(i),jκj − Ac(i)Ec(i),jεsh,j +

j−1∑
n=0

Fe,j,nσc(i),nAc(i)

⎞
⎠

(7.27a)

Mc,j =
mc∑
i=1

y(i)Ac(i)σc(i),j =
mc∑
i=1

⎛
⎝y(i)Ac(i)Ec(i),j

(
ε(i)j − εsh,j

)+ j−1∑
i=0

Fe,j,nσc(i),ny(i)Ac(i)

⎞
⎠

=
mc∑
i=1

⎛
⎝Bc(i)Ec(i),jεr,j + Ic(i)Ec(i),jκj − Bc(i)Ec(i),jεsh,j +

j−1∑
n=0

Fe,j,nσc(i),nBc(i)

⎞
⎠

(7.27b)

where the stress history of each layer is recorded separately and the contribution of all
cracked layers is zero.

As for the instantaneous analysis, an iterative procedure is adopted at each time step.
During any iteration, if cracking is detected in a previously uncracked concrete layer
(i.e. if the stress at the centroid of the layer exceeds the tensile strength of concrete),
the contribution to the cross-sectional rigidities of the concrete in that layer is set to
zero and the previous stress history for that layer is subsequently ignored. If the stress
in a previously cracked layer becomes compressive, the crack is deemed to have closed
and the concrete in the layer begins to contribute to the cross-sectional stiffness and,
for the purposes of subsequent creep calculations, the stress history for the layer is
stored from this point in time. The iterative procedure continues until the changes in
the calculated strain diagram (i.e. the changes in εr,j and κj) from one iteration to the
next are sufficiently small.

7.4.2 Axial force and biaxial bending

The geometric discretisation required for the analysis of a cross-section subjected to
combined axial force and biaxial bending is shown in Fig. 7.14. The cross-section is
subdivided both horizontally and vertically into smaller rectangular areas (similar to
the layers introduced in the previous section for the case of uniaxial bending). In each
rectangular concrete area, the stress is assumed to be constant and is calculated from
the strain measured at its centroid. A linearly varying stress distribution could also be
considered based on strain values calculated at each corner of the subdivision.
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Figure 7.14 Geometric discretisation of cross-section - axial force and biaxial bending.

As suggested previously, the fineness of the subdivision to be used for the analysis
can be determined by comparing the values of the uncracked flexural rigidities RIx,k,
RIy,k and RIxy,k calculated with and without the subdivisions. When the differences
are less than 1 per cent, the degree of discretisation is acceptable.

The solution process for cracked sections in biaxial bending is identical to that
described in Section 7.4.1. In the first iteration of the instantaneous analysis, all
concrete is assumed to be uncracked. The cracked areas of concrete are identified
and ignored in the next and subsequent iterations. This iterative procedure is applied
at each time step, where the effects of creep from the previously stored stress history
in each subdivision and the effects of shrinkage are determined. Further changes in
the extent of cracking are identified at the end of each iteration, as are locations
where the cracks may have closed in previously cracked regions. In this way, the time-
dependent changes in deformation and stresses are calculated, without the simplifying
assumptions inherent in the AEMM, where a single time step is considered and the
extent of cracking on the cross-section is assumed not to change with time.
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8 Members and structures

8.1 Introductory remarks

The cross-sectional analyses developed in Chapters 4–7 form the basis for the predic-
tion of the in-service deformation of concrete members and structures. Techniques for
making such predictions are presented in this chapter.

From the point of view of serviceability, it is important that the deflection and
shortening of structural members remain acceptably small under normal in-service
conditions. It is also important that crack widths are such that they do not detract
from the appearance or durability of the structure. In Chapter 3, some guidance was
given for the design of concrete structures for serviceability. The load combinations
and design criteria for the serviceability limit states that are specified in some of the
more well-known codes of practice were discussed. In this chapter, procedures for the
prediction of structural behaviour at service loads for a variety of structural forms are
discussed and illustrated. In most cases, reference is made to the relevant cross-sectional
analyses described and illustrated in Chapters 4–7.

Throughout this chapter the age-adjusted effective modulus method (AEMM) has
been adopted for the analysis of the individual cross-sections, however, the member
analyses could be carried out just as easily using any of the other methods of analysis
introduced in Chapter 4 [such as the effective modulus method (EEM), step-by-step
method (SSM) or rate of creep method (RCM)]. In Section 8.5, the effects of time-
dependent displacements on the behaviour of slender reinforced concrete columns at
the strength limit state are also considered.

Often the accurate prediction of structural behaviour at service loads is difficult,
particularly for many-fold indeterminate structures, but useful approximations are
available to simplify many of the calculations. In the analyses presented here,
approximations and simplifying assumptions are introduced from time to time to
reduce the computational effort. In design, a thorough understanding of the nature and
implications of these assumptions is essential if a realistic and practical interpretation
of the final results is to be made. As with all aspects of structural analysis and design,
sound engineering judgment is an essential ingredient.

8.2 Deflection of statically determinate beams

8.2.1 Deflection and axial shortening of uncracked beams

In Section 3.6.1, the calculation of the deflection and axial shortening of a member by
integration of the deformations over the length of the member was discussed. If the
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curvature and axial strain at the centroid of the section are known at each end of a
span (i.e. at cross-sections A and B in Fig. 3.1) and at mid-span (cross-section C in
Fig. 3.1) and if the distributions of axial strain and curvature along the member are
parabolic, the axial deformation and mid-span deflection of the member are given by
Eqs 3.7a and b, given here and renumbered for convenience:

eAB = �

6
(εaA + 4εaC + εaB) (8.1a)

vC = �2

96
(κA + 10κC + κB) (8.1b)

Example 8.1

The axial shortening and mid-span deflection of a simply-supported, uncracked,
post-tensioned concrete beam spanning 12.0 m are to be calculated, immediately
after first loading and after a period of sustained loading at time τk. An
elevation of the beam is shown in Fig. 8.1, together with details of the
cross-section at mid-span. The non-prestressed reinforcement is uniform along
the span.
The beam is post-tensioned by a single cable of parabolic profile, with the depth
of the tendon below the top surface of the beam (dp) equal to 450 mm at each
support and 780 mm at mid-span. The duct diameter is 70 mm. The initial
tensile force in the tendon prior to transfer (at time τ0) is assumed to be constant
along the length of the member and equal to Pp,init = 1300 kN. That is, σp,init =
Pp,init/Ap = 1300 MPa at every cross-section.
The prestressing duct is grouted soon after the transfer of prestress and
immediately after the application of the sustained load, so that the prestressing
tendon is unbonded for the short-term analysis but fully bonded to the concrete
throughout the period of the time analysis.
Two load cases are considered. In load case 1, the beam is subjected only to its
self-weight (i.e. ws = 6.1 kN/m) plus prestress from first loading to time τk. In
load case 2, the beam carries a constant sustained uniformly distributed load of
ws = 40 kN/m plus prestress from first loading to time τk. The relevant material
properties for the time period under consideration are:

Ec(τ0) = 30,000 MPa
Es = Ep = 2 × 105 MPa
ϕ(τk,τ0) = 1.8
χ (τk,τo) = 0.65
εsh(τk − τo) = −400 × 10−6

and ϕp(τk,σp,init) = 0.02

Taking the centroidal axis of the gross cross-section as the reference axis
(i.e. dref = 450 mm), the initial and final strains at the reference axis and the initial
and final curvatures are first calculated at mid-span and at each support using the
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Figure 8.1 Details of beam in Example 8.1 (all dimensions in mm).

cross-section analyses outlined in Sections 5.3 and 5.4. The axial deformation
and deflection are then calculated using Eqs 8.1. For the short-term analyses, the
duct is empty and the prestressing steel does not contribute to the properties of
the transformed section. For the long-term analysis the duct is grouted and the
prestressing steel forms part of the transformed cross-section.

Load case 1

Cross-section at mid-span

The applied moment at mid-span caused by the sustained load ws = 6.1 kN/m is:

Ms = 6.1 × 122

8
= 109.8 kNm

and from a cross-sectional analysis of Section 5.3, the strain at the reference axis
and the curvature immediately after first loading are εr,0 = −158 × 10−6 and
κ0 = −0.411×10−6 mm−1. The strain at the reference axis and the curvature at
mid-span at time τk are calculated using the analysis of Section 5.4 and are equal
to εr,k = −662×10−6 and κk = −0.641×10−6 mm−1. In the time analysis, the
grout was initially assumed to be unloaded.

Cross-section at the supports

Similar calculations for the section at each support, where Ms = 0 and dp =
450 mm, give εr,0 = −160 × 10−6; κ0 = 0.017 × 10−6 mm−1; εr,k = −690 ×
10−6; and κk = 0.163 × 10−6 mm−1.
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Axial shortening and deflection

Using Eq. 8.1a, the axial shortening of the member is:

At first loading:

ei = 12,000
6

(−160 − 4 × 158 − 160) × 10−6 = −1.90 mm

At time τk:

e = 12,000
6

(−690 − 4 × 662 − 690) × 10−6 = −8.06 mm

The initial and final mid-span deflections are found using Eq. 8.1b and are:

At first loading:

vci = 12,0002

96
[0.017 + 10 × (−0.411) + 0.017] × 10−6

= −6.11 mm (i.e. upward camber)

At time τk :vc = 12,0002

96
[0.163+10×(−0.641)+0.163]×10−6 =−9.13 mm

Load case 2

The applied moment at mid-span caused by the sustained load ws = 40.0 kN/m
is Ms = 40 × 122/8 = 720 kNm and the strain at the reference axis and the
curvature immediately after first loading and after the period of sustained loading
are εr,0 = −162 × 10−6; κ0 = +0.392 × 10−6 mm−1; εr,k = −727 × 10−6; and
κk = +1.116 × 10−6 mm−1.
The strain and curvature at each support are the same as those calculated for load
case 1, since at each support the applied moment Ms in both cases is zero. That
is εr,0 = −160×10−6; κ0 = 0.017 ×10−6 mm−1; εr,k = −690×10−6; and κk =
0.163 × 10−6 mm−1.

Axial shortening and deflection

The axial shortening and deflection of the member are obtained from Eqs 8.1a
and b:

At first loading:

ei = 12,000
6

(−160 − 4 × 162 − 160) × 10−6 = −1.94 mm

vci = 12,0002

96
(0.017 + 10 × 0.392 + 0.017) × 10−6 = 5.93 mm

At time τk:

e = 12,000
6

(−690 − 4 × 727 − 690) × 10−6 = −8.58 mm

vc = 12,0002

96
(0.163 + 10 × 1.116 + 0.163) × 10−6 = 17.23 mm
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The stress and strain distributions on the cross-section at mid-span are shown
in Fig. 8.2 for both load cases.

Section Stress (MPa)

(a) Load case 1
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Figure 8.2 Stress and strain on cross-section at mid-span for Example 8.1.

8.2.2 Control of deflection using non-prestressed reinforcement

The change in curvature on a cross-section depends on the quantity and location of
the bonded reinforcement. Consider the beam analysed in Example 8.1 and shown in
Fig. 8.1. By increasing the area of top steel, As(1), on the cross-section at mid-span, the
rate of change of positive curvature with time would decrease. Increased amounts of
top steel are particularly effective in reducing the time-dependent increase in positive
curvature when the applied load is sufficiently high to induce significant compressive
stresses in the top fibres, such as for load case 2 in Example 8.1. An increase in top
steel would therefore reduce the final downward deflection of the beam in Example 8.1
(load case 2). However, when the initial curvature is negative, as for load case 1, an
increased amount of top steel would cause an increase in the negative curvature with
time and an increase in the upward deflection.

By increasing the area of bottom steel, As(2), on the cross-section at mid-span, the
rate of change of positive curvature with time would increase. Increased amounts
of bottom steel are particularly effective in reducing the time-dependent increase in
negative curvature when the applied load on a prestressed member is small and the
compressive stresses in the bottom fibres are relatively high, such as for load case 1
in Example 8.1. An increase in bottom steel would therefore reduce the final upward
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deflection of the beam for load case 1. However, when the initial curvature is positive,
as for load case 2, an increased amount of bottom steel would cause an increase in the
positive curvature with time and an increase in the downward deflection.

Tables 8.1 and 8.2 show the results of several time analyses of the beam shown in
Fig. 8.1 subjected to different levels of applied loading. The areas of top and bottom
non-prestressed reinforcement are varied to assess the effects of steel quantity and
position on the final deflection. The prestressing steel details, including the cable drape
and prestressing force, the cross-sectional dimensions and the material properties are
as given in Example 8.1. Three different values of the sustained load are considered,
namely ws = 6.1, 23.8 and 40 kN/m.

When ws = 6.1 kN/m (corresponding to the self-weight of the beam only), the
initial concrete stress distribution at mid-span is approximately triangular with high
compressive stress at the bottom of the cross-section, decreasing to zero stress near the
top of the cross-section (as determined in Example 8.1 and illustrated in Fig. 8.2a). The
load level ws = 23.8 kN/m corresponds to the balanced load stage where the external
load is balanced by the upward uniformly distributed load exerted on the beam by the
parabolic prestressing tendon. At this balanced load stage, the initial stress distribution
is uniform over the depth of each section and the initial curvature on each section is
very small. When the applied load ws = 40 kN/m, the initial stress distribution at mid-
span is again approximately triangular with high compressive stress at the top of the
section decreasing to zero near the bottom of the section (as shown in Fig. 8.2b). The
moment at mid-span is therefore close to the decompression moment.

From the results in Table 8.1, the effect of increasing the quantity of non-prestressed
bottom reinforcement, As(2), is to increase the restraint to creep and shrinkage
deformation in the bottom of the section and thereby increase the change in positive
or sagging curvature with time. The increase is most pronounced when the initial
concrete compressive stress at the level of the steel is high, i.e. when the sustained
applied moment is low and the section is initially subjected to a negative or hogging
curvature. Increasing the quantity of bottom reinforcement therefore increases the
change in downward deflection with time.

When the beam is subjected only to its self-weight (ws = 6.1 kN/m), increasing As(2)

from zero to 4800 mm2(p = As(2)/bd = 1.25%) changes the time-dependent deflection
from −8.55 mm (upwards) to +3.77 mm (downwards). Evidently, the inclusion of
additional bottom reinforcement is an excellent way of reducing or eliminating the
time-dependent upward deflection or camber that often causes serviceability problems
in prestressed concrete construction when the sustained load is relatively light. When
the beam is initially subjected to the balanced load (ws = 23.8 kN/m), increasing
As(2) from zero to 4800 mm2 changes the time-dependent deflection from +2.90 mm
(downwards) to +11.36 mm (downwards). When the sustained load is sufficient to
decompress the bottom fibres at mid-span (ws = 40.0 kN/m), increasing As(2) from zero
to 4800 mm2 changes the time-dependent deflection from +13.38 mm (downward)
to +18.32 mm (downwards). The inclusion of tensile non-prestressed reinforcement
in the bottom of a prestressed beam may increase the downward deflection with time
and may in fact cause undesirable deflection in some situations.

From the results in Table 8.2, the inclusion of non-prestressed reinforcement in the
compressive zone, As(1), increases the restraint to creep and shrinkage deformation
in the top of the section and thereby increases the change in negative or hogging
curvature with time (or reduces the change in positive curvature with time). The effect
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is most pronounced when the initial concrete compressive stress at the level of the
top steel is high, i.e. when the sustained applied moment is high and the section is
initially subjected to a positive or sagging curvature. Increasing the quantity of top
reinforcement therefore decreases the change in downward deflection with time.

When the beam is subjected only to self-weight (ws = 6.1 kN/m), increasing
As(1) from zero to 4800 mm2(p′ = As(1)/bd = 1.25%) changes the time-dependent
deflection from −0.68 mm (upwards) to −7.08 mm (upwards). The inclusion of top
reinforcement therefore increases the upward camber in a prestressed concrete member
with time. When the beam is initially subjected to the balanced load (ws = 23.8 kN/m),
increasing As(1) from zero to 4800 mm2 changes the time-dependent deflection from
+8.27 mm (downward) to −1.46 mm (upwards). When the sustained load is sufficient
to decompress the bottom fibres at mid-span (ws = 40.0 kN/m), increasing As(1)

from zero to 4800 mm2 reduces the time-dependent deflection from +16.5 mm
(downward) to +2.67 mm (downwards). The inclusion of non-prestressed compressive
reinforcement in the top of a reinforced or prestressed beam substantially reduces the
long-term downward deflection.

The significant reduction with time of the resultant compressive force carried by
the concrete should also be noted. In Tables 8.1 and 8.2, the time-dependent changes
in the bonded steel stress on the cross-section at mid-span are reported. This gradual
build up of compression in the steel at each level of bonded reinforcement is balanced
by an equal and opposite tensile force acting on the concrete at that level of magnitude
As(i)�σs(i) or Ap�σp. In Table 8.2, for example, when ws = 23.8 kN/m and when
As(1) = As(2) = 2400 mm2, the concrete on the section at mid-span is subjected to three
gradually increasing tensile forces (i.e. As(1)�σs(1) = 259 kN, As(2)�σs(2) = 216 kN and
Ap�σp =149 kN). Initially the concrete was subjected to a net compressive prestressing
force of 1300 kN, but this reduces by 624 kN with time. About 48 per cent of the
initial compression in the concrete is shed into the bonded reinforcement with time.
The loss of prestress in the tendon is only 149 kN (11.5 per cent).

Clearly, a reliable picture of the time-dependent behaviour of a partially prestressed
concrete beam cannot be obtained unless the restraint provided to creep and shrinkage
by the non-prestressed reinforcement is adequately accounted for. It is also evident
that the presence of non-prestressed reinforcement significantly reduces the cracking
moment with time and may in fact relieve the concrete of much of its initial prestress.
This increases the possibility of time-dependent cracking and the effect should be
included in design considerations. Although, the restraint provided by the bonded
reinforcement, generally lowers the cracking moment, a judicious placement of non-
prestressed reinforcement is an effective means of controlling deflection and can even
be used to eliminate the time-dependent change in deflection in situations where such
changes in deflection are undesirable.

8.2.3 Deflection and axial shortening of cracked beams

In Chapter 3, code-oriented methods for the prediction of deflection in reinforced
and prestressed concrete members were presented. Where more reliable predictions of
deformation are needed, more refined methods of analysis may be required such as
those for uncracked cross-sections, outlined in Chapters 5 and 6, and for cracked cross-
sections, discussed in Chapter 7. These methods of analysis may be used to predict the
deflection of cracked members.
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Clearly, for a cracked member, deflection will be underestimated if the analysis
assumes every cross-section is uncracked. On the other hand, deflection will be
overestimated, sometimes grossly overestimated, if every cross-section is assumed to
be fully cracked. Tension stiffening, or the contribution of the tensile concrete to
the member stiffness, ensures that the actual deflection of a cracked member lies
somewhere between these two extremes, i.e. between the deflection in the uncracked
condition and in the fully-cracked condition. According to Eurocode 2 (Ref. 1),
to account for tension stiffening, the average curvature at a particular cracked
cross-section may be taken from Eq. 3.23 (reproduced here as Eq. 8.2):

κavge = ζκcr + (1 − ζ )κuncr (8.2)

where ζ is the distribution coefficient presented earlier as Eq. 3.24b.
The most rigorous method for determining deflection using the cross-sectional

analyses presented in Chapters 4–7 is to calculate the cracked and uncracked curvatures
at frequent cross-sections along the member and then to calculate the average curvature
at each section using Eq. 8.2. For this purpose the distribution coefficient ζ may be
taken as:

ζ = 1 −
(

Mcr.t

M∗
s

)2

(8.3)

where Mcr.t is the cracking moment at the time under consideration and M∗
s is the

maximum in-service moment that has been imposed on the member at, or before, the
time instant at which deflection is being determined. With the curvature diagram thus
determined, the deflection can be obtained by numerical integration. If the curvatures
at the critical cross-sections are calculated using Eq. 8.2, the mid-span deflection at
the time under consideration may be conveniently obtained using Eq. 8.1b.

Example 8.2

The initial and long-term deflections at mid-span of a 10.4 m span simply-
supported reinforced concrete T-beam are to be calculated. The beam carries
a constant sustained uniformly distributed service load of 22.2 kN/m (which
includes self-weight) first applied at age τ0. Details of the cross-section and the
relevant material properties are shown in Fig. 8.3. The reinforcement is uniform
throughout and shrinkage is assumed to commence at τ0. The cross-section is
the same as that shown in Fig. 7.6 and analysed in Examples 7.1 and 7.3. The
flexural tensile strength of the concrete is taken to be f ′

ct.f = 0.6
√

f ′
c = 3.0 MPa,

so wherever the extreme fibre stress exceeds f ′
ct.f , cracking is deemed to have

occurred.
The bending moment diagram for the simply-supported span is illustrated in
Fig 8.4a. From a short-term analysis of the uncracked cross-section, the stress
in the bottom concrete fibres reaches f ′

ct.f = 3.0 MPa when the applied moment
is 149.3 kNm, i.e. at points D and D’ in Fig. 8.4a, 1.514 m from each support.
It is evident that, within 1.514 m from each support, the member is initially
uncracked, whilst further into the span cracking occurs.
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Ec = 25,000 MPa

Es = 200,000 MPa

f ′
c = 25 MPa

1000

100

530

70

322

400

x

As = 4000 mm2

y
f(tk ,t0) = 3.0

c(tk ,t0) = 0.65

esh(tk  − t0) = −500 × 10−6

Figure 8.3 Cross-sectional details and material properties for Example 8.2 (dimensions
in mm).

Using the cross-sectional analyses of Sections 5.3 (short-term) and 5.4 (time-
dependent) for the uncracked portions of the span and Sections 7.2 (short-term)
and 7.3 (time-dependent) for each fully-cracked cross-section, the initial and
final curvatures at any cross-section along the member may be calculated. It
is noted that shrinkage causes an increase in the bottom fibre tensile stress in
the concrete on the uncracked cross-sections, effectively reducing the cracking
moment from 149.3 kNm to 56.4 kNm with time. The extent of cracking
therefore increases with time until eventually only 0.514 m at each end of the
span remains uncracked. In Fig. 8.4b, the portion of the curvature diagram at
time τk between points E and D on the span is approximated as a straight line.

10.4 m

1.514 m

0.514 m

56.4

149.3

300

A
B

E D C D′

(a) Bending moment (kNm)

0.318 × 10−6

0.521 × 10−6

0.885 × 10−6

2.053 × 10−6

1.442 × 10−6

3.237 × 10−6

0.718 × 10−6

(b) Curvature (mm−1)

1.514 m

At t0

At tk

Figure 8.4 Bending moment and curvature diagrams of Example 8.2.
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Plots of the initial and final curvatures are made in Fig 8.4b and a summary
of the calculated curvatures at various points along the beam is made in
Table 8.3.

Table 8.3 Initial and final curvatures in beam of Example 8.2

At time τ0 At time τk

Distance from
support, z (mm)

Moment
(kNm)

Curvature
(mm−1)

Moment
(kNm)

Curvature
(mm−1)

0 0 0 0 0.521 × 10−6

0.514 56.4 0.120 × 10−6 56.4 0.885 × 10−6

1.514 − 149.3 0.318 × 10−6 149.3 2.053 × 10−6

1.514 + 149.3 0.718 × 10−6 149.3 2.053 × 10−6

3.075 250.0 1.202 × 10−6 250.0 2.841 × 10−6

5.2 300.0 1.442 × 10−6 300.0 3.237 × 10−6

The initial mid-span deflection of the cracked member at first loading τ0 and the
final deflection at time τk calculated by numerically integrating these curvature
diagrams are:

(vc)cr.0 = 15.98 mm and (vc)cr.k = 38.14 mm.

A close approximation of these more accurate (but considerably more tedious)
calculations may be obtained using Eq. 8.1b (viz., (vc)cr.0 = 16.25 mm and
(vc)cr.k = 37.64 mm). If cracking was ignored and the curvature diagrams were
calculated based on the uncracked section properties, the mid-span deflection at
times τ0 and τk would be (vc)uncr.0. = 7.19 mm and (vc)uncr.k = 28.03 mm.
At time τ0 and τk, Eq. 8.3 gives:

ζ0 = 1 −
(

149.3
300

)2

= 0.752 and ζk = 1 −
(

56.4
300

)2

= 0.965

and using the following expressions (similar to Eq. 8.2), the final mid-span
deflections of the cracked member accounting for tension stiffening at first
loading and at time τk are:

vc.0 = ζ (vc)cr.0 + (1 − ζ )(vc)uncr.0

= 0.752 × 15.98 + (1 − 0.752) × 7.19 = 13.8 mm

vc.k = ζ (vc)cr.k + (1 − ζ )(vc)uncr.k

= 0.965 × 38.14 + (1 − 0.965)×28.03=37.8 mm

For most practical purposes, knowledge of the curvature at each end of a member
and at mid-span at any particular time after first loading is generally sufficient to make
a reliable estimate of the deflection of a cracked reinforced concrete member.



Members and structures 305

8.3 Statically indeterminate beams and slabs

8.3.1 Discussion

In each cross-sectional analyses presented in Chapters 4–7, the internal actions were
known and the changes in strain and curvature on a particular cross-section were
assumed to occur without restraint from either the supports or adjacent parts of
the structure. While this assumption is perfectly reasonable for statically determinate
members, it may be unreasonable for continuous members.

Consider a plain concrete continuous beam subjected to a uniformly distributed load
that is small enough to avoid cracking. If the concrete is assumed to be homogeneous,
with the same creep characteristics throughout, the effect of creep is simply to reduce
the effective modulus and to increase the strains and displacements with time. There is
no change in the reactions at the supports and consequently no change in the internal
actions on any cross-section. However, if the creep characteristics are not uniform
throughout, creep will induce reactions at the supports and cause a change in the
distribution of internal actions.

In practical concrete structures, the creep characteristics are rarely uniform.
Different parts of a structure may have different ages and therefore different
creep coefficients. If part of a structure has cracked, its response to creep is
different from that of the uncracked parts of the structure. In addition, the quantity
of reinforcement may vary from region to region and therefore the amount of
internal restraint to creep will vary accordingly. Therefore, in statically indeterminate
concrete structures, creep may lead to a considerable redistribution of internal actions
with time.

Shrinkage also may cause significant changes in the distribution of internal actions
with time in indeterminate members. If a member is not free to shorten, shrinkage
produces internal tension. Shrinkage-induced curvature on each cross-section due to
the restraint provided by asymmetrically placed steel reinforcement can introduce
significant reactions at the supports and hence significant changes in the internal actions
on each cross-section.

Consider the uncracked, propped cantilevers shown in Fig. 8.5. The member in
Fig. 8.5a(i) contains a preponderance of reinforcement in the bottom fibres and
shrinkage causes a positive curvature in the singly reinforced region. If the weight of the
beam and any applied loads are ignored and if the support at B is removed, shrinkage
would cause the member to gradually deflect upwards, as indicated. With the support at
B, in fact, resisting upward movement, a downward reaction�RB.k gradually develops
with time, as shown. The initial reaction at B caused by the load on the beam RB.0
is therefore reduced by �RB.k and this leads to an increase in the negative moment
at support A and a decrease in the positive moment at mid-span. Shrinkage therefore
causes the time-dependent redistribution of moments shown in Fig. 8.5b(i). Note that
the shrinkage-induced reactions at the built-in support at A (namely, a vertical reaction
�RA.k, equal and opposite to �RB.k, and a moment �MA.k =�RB.kL) are not shown
in Fig. 8.5.

For the member shown in Fig. 8.5a(ii), with a preponderance of steel in the top,
shrinkage causes an upward reaction �RB.k to develop with time at support B. As a
consequence, the positive span moments increase with time and the negative moment
at support A decreases, as shown in Fig. 8.5b(ii).
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StraightStraight

As

As

As

As
ΔRB.k DRB.k

RB.0

RB.0 + DRB.k

RB.0

RB.0 + DRB.k

(a) Unrestrained shrinkage deformation and shrinkage–induced reaction at support B

A AB B

(i) (ii) LL

(b) Redistribution of bending moments caused by shrinkage

A AB B

(i) (ii)

First loading, t0
Time tk after shrinkage

First loading, t0
Time tk after shrinkage

Applied loadApplied load

+ve ksh −ve ksh

Figure 8.5 Effects of shrinkage in a one-fold indeterminate beam.

Of course, the shrinkage-induced actions occur gradually and are therefore relieved
by creep. If shrinkage were not accompanied by creep, the time-dependent redistribu-
tion of internal actions would be significantly greater than it actually is.

8.3.2 Determination of redundants

A detailed discussion of the various techniques commonly employed for the analysis of
statically indeterminate structures is not attempted here. There are numerous excellent
texts on structural analysis, including Refs 2 and 3. In this section, a brief revision of
the force method of structural analysis is made and the way in which the method can
be used for the time-analysis of indeterminate structures is described and illustrated
by example. In the following, the structure is initially assumed to be homogeneous.

In the force method, a n-fold indeterminate structure is converted into a statically
determinate primary structure by the selection of n internal actions (or external
reactions) as redundants and making the corresponding releases. Let the vector of
redundant forces be RR.

The vector of external loads P applied to the primary structure produces reactions
RP at the supports and the external loads (or the load-independent environmental
effects such as temperature change or shrinkage) cause displacements of the primary
structure at each release uP. These displacements are incompatible with the support
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conditions of the indeterminate structure and must be eliminated by the unknown
redundant forces.

If the primary structure is subjected to a unit virtual force at the position of the
i-th redundant, i.e. R̃Ri = 1, the resulting displacements at each of the n releases are
called flexibility coefficients and are denoted fi1, fi2, … fin. If flexibility coefficients
are determined for unit values of each redundant, an n×n flexibility matrix F may be
established, where the term fij is the displacement of the primary structure at release
j due to a unit value of the ith redundant.

The reactions at the supports of the primary structure caused by unit values of the
redundants are also calculated and may be assembled into an m by n matrix RPR where
m is the number of reactions in the primary structure.

The redundant forces are obtained by solving the following set of simultaneous
equations which is generated when compatibility is enforced at each release:

F RR = −uP (8.4)

where, if necessary, support movements could also be included on the right hand side
of the equation. The reactions of the statically indeterminate structure are obtained by
adding the reactions caused by the redundants (RPR RR) to the reactions calculated
earlier for the released structure RP. That is:

R = RP + RPR RR (8.5)

For a structure with uniform creep characteristics throughout that is subjected
to constant sustained loads, the deformation at time τk will be (1 + ϕ) times the
deformation at first loading τ0, where ϕ (= ϕ(τk, τ0)) is the creep coefficient at time,
τk, due to a stress first applied at τ0. If the presence of the reinforcement is ignored and
if cracking is also ignored, the displacements u at time τk are (1+ϕ) times their value
at τ0 and each term of the flexibility matrix F is also increased by the factor (1 + ϕ).
In addition, the reactions R of the statically indeterminate structure do not change
and therefore there is no change in the internal actions with time.

As has been previously pointed out, this not the case, however, in most concrete
structures where the reinforcement layout varies throughout the structure and the
extent of cracking also varies. The propped cantilevers shown in Fig. 8.5a are a typical
case. The reinforcement is not uniform throughout and, in all probability, parts of the
beams are cracked and parts are not. The creep characteristics are therefore far from
uniform. In such structures, some creep-induced change in the reactions (and in the
internal actions) with time can be expected. In Section 8.3.1, the change in reactions
of the members shown in Fig. 8.5a caused by shrinkage warping was also discussed.

To calculate the time-dependent change in reactions and internal actions during any
time interval (τk – τ0), it is first necessary to calculate the change in the displacements
of the primary structure at each release, �uP. The displacements caused by both creep
and shrinkage are included here, plus any other displacement that may occur during
the time interval, perhaps due to support settlement, additional external loads, losses
of prestress, and so on.

The AEMM may be used to include time-dependent deformations and an age-
adjusted flexibility matrix F can also be determined. Changes in the redundants with
time are developed gradually between τ0 and τk and the creep plus elastic displacements
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caused by these gradually applied redundants forces may be calculated using the
age-adjusted modulus for concrete Ee (defined in Eq. 4.35) instead of Ec. The age-
adjusted flexibility matrix F is therefore formed in exactly the same way as F, except
that the displacement (elastic + creep) at each release due to the gradually applied unit
force at the position of the ith redundant is calculated using Ee.

The time-dependent change in the redundants is obtained by solving the compati-
bility equations:

F�RR = −�uP (8.6)

and the change in the reactions of the statically indeterminate structure are:

�R =�RP + RPR�RR (8.7)

where �RP is the change in reactions of the primary structure due to any changes of
the external loads during the time interval under consideration.

For the analysis of a statically indeterminate reinforced or prestressed concrete
beam or frame, the procedures outlined in Chapters 4–7 may be used to calculate
the deformation (strain and curvature, εr.k and κk) on any cross-section of the
determinate primary frame at any time. When deformations have been determined at
several sections, the time-dependent changes in displacement�u may be calculated by
numerical integration or by virtual work. In this way, the effect of the reinforcement
and the influence of cracking, as well as the effects of creep and shrinkage, can be
included directly in the time analysis of an indeterminate member.

Example 8.3

The final shrinkage-induced internal actions at time τk in the unloaded and
uncracked propped cantilever shown in Fig 8.6 are to be determined. The
structure is, of course, one-fold indeterminate, that is, n = 1.

Ec = 25,000 MPa; ϕ = 2.5;χ = 0.65;
ε∗sh = −600 × 10−6; and Ee = Ec

1+χϕ = 9,524 MPa.

As

As = 1860 mm2
  As =
1860 mm2

Elevation

A B

70003000
Region 1Region 2Region 2Region 1

300 300

550

50 50

500

50

Sections

Figure 8.6 Dimensions and properties of the beam in Example 8.3 (all dimensions in mm).

Using the procedures outlined in Section 5.4, the age-adjusted effective
modulus is used to determine the final shrinkage-induced curvature on an
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otherwise unloaded and unrestrained cross-section in Region 2: (κsh)2 = 0.663×
10−6 mm−1. The shrinkage-induced curvature in Region 1 is zero, because each
cross-section is symmetrically reinforced (and uncracked).
The vertical reaction at support B is selected as the redundant, i.e. RR = VB.
The primary structure is therefore a cantilever fixed at support A. The change
in the vertical displacement of the primary structure at support B (�uB), due to
the shrinkage-induced curvature distribution shown in Fig. 8.7a, is calculated
using the second moment area method as:

�uB = 0.663 × 10−6 × 70002

2
= 16.24 mm

70003000
Region 2Region 1

A B

0.663 × 10−6 mm−1

A B

DuB

(b) Deflected shape(a) Shrinkage curvature

Figure 8.7 Shrinkage-induced curvature and deflected shape of primary structure in
Example 8.3.

The vertical displacement at B due to a gradually applied unit force at B is f11
and is obtained from the curvature diagram shown in Fig. 8.8c, calculated by
analysing the uncracked section in the various regions of the cantilever:

f11 = 0.1301 × 10−6 × 10,0002

3
+ (0.1299 − 0.0911) × 10−6 × 70002

3
= 4.97 mm/kN

(a) Unit load at B

(b) Moment, M (kNm)

(c) Curvature (10−6mm−1)

(d) Deflected shape

1 kN
       10 m 

+10

A

B

+0.1299

+0.0911

+0.1301

f11

Figure 8.8 Virtual moment and curvature diagram in Example 8.3.
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The redundant VB is calculated from Eq. 8.6 as:

f̄11VB = −�uB from which VB = −16.24
4.97

= −3.27 kN (i.e. ↓)

The shrinkage-induced internal actions and external reactions are shown in
Fig. 8.9.

(a) Reactions

32.7 kNm
−32.7 kNm

3.27 kN3.27 kN
−3.27 kN

BA

(b) BMD (c) SFD

Figure 8.9 Shrinkage-induced reactions, bending moment and shear force diagrams for
Example 8.3.

Example 8.4

The reactions of the one-fold indeterminate propped cantilever of Fig. 8.6 are to
be determined at times τ0 and τk. A uniformly distributed load ws = 8 kN/m first
applied at τ0 is assumed to remain constant with time. The material properties
are as for Example 8.3 and the flexural tensile strength of concrete is taken to
be f ′

ct.f = 3.0 MPa.

1. Calculation of the reactions at time τ0 immediately after the
application of ws

(a) Ignoring the effects of cracking

As in the previous example, the vertical reaction at support B is selected as the
redundant, i.e. RR = VB. The 8 kN/m uniformly distributed load produces the
following reactions at support A of the primary beam: MA = −400 kNm and
VA = 80 kN, therefore:

RP =
[

MA

VA

]
=
[−400

80

]

If the flexural rigidity EI (= M/κ) is constant throughout the entire span,
the vertical displacement at the end of the cantilever at B due to a uniform
load ws is:

uB = −wsL4

8EI
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and the vertical displacement at B due to a unit vertical (upward) force at B (f11)
and the corresponding reactions of the primary structure are:

f11 = L3

3EI

and

RPR =
[

MA = L
VA = −1

]

From Eq. 8.4:

VB × L3

3EI
= wL4

8EI

and therefore

VB = 3wL
8

= 30 kN(↑)

The other reactions of the statically indeterminate frame are obtained from
Eq. 8.5:

R =
⎡
⎢⎣

MA

VA

VB

⎤
⎥⎦=

⎡
⎢⎣

−400
+80

0

⎤
⎥⎦+

⎡
⎢⎣

10
−1
1

⎤
⎥⎦× 30 =

⎡
⎢⎣

−100 kN.m
+50 kN
+30 kN

⎤
⎥⎦

If the effects of cracking are ignored, the bending moment diagram of the
indeterminate member immediately after first loading is shown in Fig. 8.10.

MA = −100.0

50.0 56.25

5 m

3.75 m

A BC

−

+

Figure 8.10 Initial bending moment diagram (ignoring cracking) in kNm for
Example 8.4.

If the effects of cracking are also ignored in the calculation of deflection (which,
of course may grossly underestimate the actual deflection), the initial curvature
on the doubly-reinforced section at support A and on the singly-reinforced
section at the mid-span C are calculated using the analysis outlined in Section 5.3
as κA,0 = −0.569×10−6 mm−1 and κC,0 = +0.325×10−6 mm−1, respectively.
The short-term deflection at mid-span vC may be determined using Eq. 8.1b:

vC = 10,0002

96
[−0.569 + 10 × 0.325 + 0] × 10−6 = 2.79 mm
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(b) Including the effects of cracking

From a short-term cross-sectional analysis of the singly reinforced section in the
positive moment region (Region 2), the cracking moment is 65.3 kNm. This is
greater than the maximum positive moment in Fig. 8.10 and, therefore, the mid-
span region is not cracked initially. For the doubly reinforced section at support
A (in Region 1), the cracking moment is 70.3 kNm. Therefore, the beam is
cracked in the negative moment region near support A.
The previous analysis must now be modified to include the effects of cracking
at A. Tension stiffening is not considered here, but could be easily taken into
account using the averaging procedure discussed in Section 8.2.3.
If the bending moment diagram in Fig. 8.10 is taken as an initial approximation,
the extent of cracking is small, with the cracked region extending just 0.625 m
from support A. The curvatures at sections in the various regions of the beam
are calculated from short-term cross-sectional analyses (Section 5.3 for the
uncracked cross-sections and Section 7.2 for the cracked cross-sections) and
the instantaneous flexural rigidities (EI = M/κ) are:

In Region 1: Cracked (EI)cr.1 = 70.67 × 1012 Nmm2

Uncracked (EI)uncr.1 = 175.7 × 1012 Nmm2

In Region 2: Uncracked (EI)uncr.2 = 154.0 × 1012 Nmm2

As previously calculated:

RP =
[

MA

VA

]
=
[−400

+80

]

and the vertical displacement at the end of the primary beam (at B) due to
ws = 8 kN/m is found, by moment-area methods or by virtual work, from
the curvature diagram shown in Fig. 8.11a and equals uB = −78.5 mm. The
displacement at B of the cracked member due to a unit vertical force at B is
found from the curvature diagram in Fig. 8.11b and equals f11 = 2.51 mm/kN.
From Eq. 8.4:

VB = −uB

f11
= 78.5

2.51
= 31.3 kN(↑)

and the reactions of the statically indeterminate beam are obtained from Eq. 8.5:

{R} =
⎡
⎢⎣

MA

VA

VB

⎤
⎥⎦=

⎡
⎢⎣

−400
80
0

⎤
⎥⎦+

⎡
⎢⎣

10
−1
1

⎤
⎥⎦× 31.3 =

⎡
⎢⎣

−87 kN.m
48.7 kN
31.3 kN

⎤
⎥⎦

The bending moment and curvature diagrams after cracking are illustrated in
Fig. 8.12. The short-term deflection at mid-span may be obtained by virtual
work from the curvature diagram in Fig. 8.12 and is vc = 3.17 mm.
For this beam, cracking at, and near, the support at A causes a reduction in
the negative moment at A, an increase in the positive span moments and a
14 per cent increase in mid-span deflection. After initial cracking, moment
is shed to the stiffer uncracked parts of the structure. If the load w was increased,
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w = 8 kN/m

10 m
BB

B

AA

A

BA

1 kN

0.625 m
3 m 7 m

Moment (kNm)Moment (kNm)

Curvature (M/EI) (mm−1) Curvature (M/EI) (mm−1)

−400

−5.66 × 10−6
−4.975 × 10−6

−2.001 × 10−6

−1.273 × 10−6 +0.0398 × 10−6

+0.0455 × 10−6

+0.0534 × 10−6

+0.1327 × 10−6

0.1415 × 10−6

−1.116 × 10−6

−351.6

−196

+10

(a) Moment and curvature caused by w (b) Moment and curvature caused by a
      unit load at B

Figure 8.11 Moment and curvature diagrams for cracked primary beam of Example 8.4.

61.1

C BA C BA
−

           +      

−58.5

22.8

56.3

7.0 m

5 m
3.908 m

2.375 m0.625 m

MA = −87.5 −1.238 × 10−6

−0.828 × 10−6

−0.333 × 10−6

0.130 × 10−6

0.148 × 10−6

0.366 × 10−6 0.397 × 10−6

−

          +      

(a) Bending moment diagram (kNm) (b) Curvature diagram (mm−1)

Figure 8.12 Moment and curvature diagrams after cracking in Example 8.4.

cracking would also occur in the positive moment region. With the member more
uniformly cracked and the stiffness more uniform in the peak moment regions,
the bending moments would redistribute back towards the distribution shown
in Fig. 8.10, but the deflection would increase significantly due to the reduction
in the flexural rigidity for Region 2 from (EI)uncr.2 to (EI)cr.2.

2. Calculation of the reactions at time τk after creep and
shrinkage

Let the change in reaction at support B be the unknown redundant at time τk, i.e.
RR =�VB.k. The primary structure (cantilevered beam) is shown in Fig. 8.13a,
together with the external loads and the known reactions immediately after first
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loading (at τ0). Using the procedures outlined in Sections 5.4 and 7.3 for the
time analysis of the uncracked and fully-cracked cross-sections, respectively, the
curvature diagram at τk after creep and shrinkage is calculated and illustrated in
Fig. 8.13b and the curvature diagram due to creep (with shrinkage set to zero)
is shown in Fig. 8.13c. The creep and shrinkage characteristics of the concrete
are those of Example 8.3 and given in Fig. 8.6. Although not strictly correct, the
extent of cracking is assumed to remain unchanged with time.
Of course, at first loading, the deflection of the primary beam at B is zero. But as
the primary beam creeps and shrinks under the constant sustained loads shown
in Fig. 8.13a, the deflection at B becomes non-zero. By numerical integration
of the curvature diagrams at time τk (in Fig. 8.13b and c), the deflection of
the primary cantilever at B is �uB = 20.5 mm (upwards) when both creep and
shrinkage are considered and �uB = 8.49 mm for creep only.

3.908 m

−2.153 × 10−6

−1.640 × 10−6

−0.761 × 10−6

−1.548 × 10−6

−1.029 × 10−6

−0.761 × 10−6

0.297 × 10−6

0.429 × 10−6

1.136 × 10−6

0.297 × 10−6

1.086 × 10−6 +0.663 × 10−6

1.796 × 10−6

3.908 m8 kN/m

10 m

VA = 48.7 kN

VB = 31.3 kN

MA = −87.4 kNm

(a)  Loads on primary beam (b)  Curvature of primary beam (mm−1)
– creep and shrinkage

(c)  Curvature of primary beam (mm−1) – creep only

Figure 8.13 Load and curvature diagrams of released structure in Example 8.4.

The vertical displacement at the end of the cantilever (at B) at time τk due
to a gradually applied unit force at B is f11 and may be calculated by first
analysing the various cross-sections to determine the long-term curvature. The
final curvature diagram associated with a unit virtual force at B is shown in
Fig. 8.14.

0.1220 × 10−6
0.0911 × 10−6

0.1299 × 10−6

0.1660 × 10−6
0.1771 × 10−6

0.625 m 7.0 m2.375 m

+10.0

+1

f11BA

Loads Moments Curvature(mm−1)

Figure 8.14 Moment and curvature at time τk due to gradually applied unit virtual
load at B in Example 8.4.
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The deflection at B due to a unit virtual force at B (f11) is readily obtained from
the curvature diagram using moment-area methods or numerical integration:

f11 = 0.1299 × 7.02

3
+ 0.0911 × 2.375 × 8.188 + (0.1220 − 0.0911)

× 2.375
2

× 8.583 + 0.1660 × 0.625 × 9.688 + (0.1771 − 0.1660)

× 0.625
2

× 9.792 = 5.25 mm/kN

From Eq. 8.6, the change in the reaction at B with time is:

�VB =−�uB

f̄11
=−20.5

5.25
=−3.90 kN(i.e.↓)− for both creep and shrinkage

�VB =−8.49
5.25

=−1.62 kN(i.e.↓)− for creep only

In Fig. 8.15, the reactions at time τk and the corresponding internal actions are
compared with the values immediately after first loading. Note that although the

8 kN/m

10 m

MA = −87.4 kNm MA = −126.0 kNm

MA = −103.5 kNm

−103.5 kNm

+ 54.9 kNm

−126.0 kNm

+ 46.9 kNm

VA = 52.6 kN

VA = 50.3 kN VB = 29.7 kN

VB = 27.4 kN

−87.4 kNm

VA = 48.7 kN
VB = 31.3 kN

Initial reactions (at t0)

Initial bending moments (at t0) Final bending moments (at tk)

Final bending moments (at tk)

Final reactions (at tk)

Final reactions (at tk)

+ 61.1 kNm

(a) Initial actions (at t0)

8 kN/m

10 m

(b) Final actions (at tk) – creep + shrinkage

(b) Final actions (at tk) – creep only

8 kN/m

10 m

Figure 8.15 Initial and final reactions and moments in Example 8.4.
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initial cracking at A caused a reduction in the peak negative moment at the fixed
support, the effect of creep and shrinkage is to substantially increase the moment
at support A and reduce the positive moment at mid-span. In this example, creep
causes the magnitude of the moment at A to increase by about 18 per cent (from
87.4 to 103.5 kNm) and shrinkage causes a further increase of 26 per cent
(from 103.5 to 126.0 kNm). In the positive moment region, shrinkage-induced
tension in the concrete may cause time-dependent cracking and this will reduce
the stiffness of the positive moment region resulting in a further increase in
the negative support moment and a decrease in the positive span moments. The
increase in negative moments will increase the extent of cracking near the support
and this, in turn, will cause a slight redistribution of moments from the negative
to the positive moment region.

8.3.3 Effects of deformation or settlement at the supports

If a statically indeterminate member is subjected to a sudden movement of the supports,
changes in the magnitudes of the reactions and internal actions occur. If the imposed
deformation at the supports is kept constant, the reactions and internal actions
gradually change with time due to relaxation.

If the support deformations occur gradually, the changes in reactions and internal
actions also occur gradually. The simultaneous development of creep causes a
relaxation of the internal forces as the support movements are taking place. Therefore,
the reactions induced in an indeterminate member by a gradual deformation at one
or more supports tend to increase from zero (at the commencement of movement) to
a maximum value as the maximum deformation is approached, and then reduce as
creep continues after the support deformation has ceased.

Consider the propped cantilever beam AB subjected to a sudden support settlement
δB(τ0) at time τ0, as shown in Fig. 8.16. The time-dependent reactions introduced at
the supports are also shown.

Immediately after the support settlement at time τ0, the vertical reaction at B can be
determined using the force method. For a beam with uniform cross-section throughout:

RB(τ0) = 3Ec I δB(τ0)
L3 (8.8)

where I is the second moment of area of the transformed section about its centroidal
axis. The change in the reaction at support B that occurs with time over the time
period τk− τ0 is:

�RB = RB(τk) − RB(τ0) (8.9)

MA(t)

RA(t)
RB(t)

dB(t0)

L

  A                                                              B BA

Figure 8.16 Time-dependent reactions caused by a support settlement.
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and may be determined using the procedure outlined in Section 8.3.2 (and Eqs 8.6
and 8.7).

If the support settlement δB(t) is gradually applied, the reaction RB(t) increases
gradually with time. If the settlement occurs at the same rate as the creep of
the concrete, the reaction at B in a member of uniform cross-section may be
approximated by:

RB(t) = 3Ee Ī δB(t)
L3 (8.10)

where I is the second moment of area of the age-adjusted transformed cross-section
about its centroidal axis. After the support settlement reaches its maximum value at
some time τ1, the subsequent change in the reaction with time (at t > τ1), �RB =
RB(t) − RB(τ1), may be calculated using Eq. 8.6.

Example 8.5

The initial and final internal actions in the unloaded and uncracked member
shown in Fig. 8.17 are to be determined, if the support at B suffers a vertical
displacement of 20 mm, as shown.

MA(t)

RB(t)
RA(t)

20 mm

10 m

A B 50

500

50

300

As = 1860 mm2

As = 1860 mm2

Elevation Cross-section

Figure 8.17 Details of beam subjected to support settlement in Example 8.5.

(a) If the support settlement occurs suddenly at 28 days

Maternal and cross-sectional properties are Ec(τ0) = 25,000 MPa;I = 7028 ×
106 mm4;ϕ(∞,τ0) = 2.8;χ (∞,τ0) = 0.65.
The reaction at B at age τ0, immediately after the support displacement, is found
using Eq. 8.8:

RB(τ0) = 3 × 25,000 × 7028 × 106 × 20
10,0003 = 10.54 kN ↓

and the internal bending moment varies from zero at B to −105.4 kNm at A. The
initial curvature varies from zero at B to κA.0 = MA/EcI = −0.60×10−6 mm−1

at A as shown in Fig. 8.18b. It is assumed here that the member remains
uncracked throughout. The final curvature at end A, caused by the sustained
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moment of −105.4 kNm, is calculated using the cross-sectional analysis of
Section 5.4 and equals κA.k = −1.434 × 10−6 mm−1, as shown in Fig 8.18b.
The creep-induced change of curvature at end A is therefore κA.k − κA.0 =
−0.834 × 10−6 mm−1. If the displaced beam is released at B, the creep induced
curvature causes a gradual displacement at end B given by:

�uB = 0.834 × 10−6 × 10,0002

3
= 27.8 mm ↓

For this member, the age-adjusted effective modulus is Ee = 8865 MPa and the
second moment of area of the age-adjusted transformed cross-section about its
centroidal axis is I = 10,410 × 106 mm4.

The vertical displacement caused by a gradually applied unit load (1 kN)
at B is:

f11 = L3

3EeI
= 10,0003

3 × 8865 × 10,410 × 106 = 3.61 × 10−3 mm/N

and the change in the reaction at B with time is:

�RB = �uB

f 11

= 27.8
3.61 × 10−3 = 7701 N = 7.70 kN ↑

The final reaction at B is therefore:

RB(τk) = RB(τ0) +�RB = 10.54 − 7.70 = 2.84 kN(↓)

and the moment at A relaxes from −105.4 kNm at τ0 to a final value of
−28.4 kNm.

MA(t) = 105.4 kNm

RB(t0) = 10.54 kN RB(t0) =10.54 kN

20 mm

10 m

BA

(a) Initial reactions due to 20 mm
support settlement

−0.834

−0.600

(b) Initial and final curvature of
      released structure (×10−6 mm−1)

Creep induced
initial

(c) Final deformation of released
structure

20 mm
DuB

Figure 8.18 Actions and deformations of released primary beam in Example 8.5.
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(b) If support settlement of 20 mm occurs gradually between
τ0 = 28 days and τ1 = 180 days

It is here assumed that the rate of settlement is similar to the rate of creep and
the following material properties are assumed:

For concrete loaded at 28 days: Ec(28) = 25,000 MPa; ϕ(180,28) = 1.5;
ϕ(∞,28) = 2.8;χ (180,28) = χ (∞,28) = 0.65

For concrete loaded at 180 days: Ec(180) = 30,000 MPa; ϕ(∞,180) = 1.0;
χ (∞,180) = 0.65.

The age-adjusted effective modulus at age 180 days due to a stress first applied at
28 days is Ee = 12,660 MPa and the second moment of area of the corresponding
age-adjusted transformed cross-section is I = 8841 × 106 mm4. The reaction at
B at τ1 = 180 days, when δB reaches 20 mm, is calculated using Eq. 8.10:

RB(180) = 3 × 12,660 × 8841 × 106 × 20
10,0003 = 6720 N = 6.72 kN(↓)

and the corresponding moment at the fixed support A is −67.2 kNm. If
the displacement at B remains constant at 20 mm after τ1 = 180 days, the
reactions and internal actions will gradually decrease, in the same manner as in
case (a).
The change in reaction at B that occurs after τ1,�RB, is selected as the redundant.
The creep-induced curvature �κA that develops at A in the primary beam due
to a sustained moment of −67.2 kNm (after t = 180 days) is calculated using
the cross-sectional analysis presented in Section 5.4. With ϕ(∞,180) = 1.0 and
χ (∞,180) = 0.65, �κA is equal to −0.223 × 10−6 mm−1. The resulting time-
dependent change in deflection of the primary beam at B is:

�uB = −0.223 × 10−6 × 10,0002

3
= −7.43 mm (i.e. ↓)

The appropriate properties of the age-adjusted transformed section are
Ee = 18,180 MPa and I = 7725 × 106 mm4. Due to a gradually applied unit
load at B:

f11 = 10,0003

3 × 18,180 × 7725 × 106 = 2.37 × 10−3 mm/N

The change in the reaction at B, which occurs after τ1 = 180 days, is therefore:

�RB = − −7.43
2.37 × 10−3 = 3140 N = 3.14 kN(↑)

and the final reaction at B is therefore RB(∞) = 6.72 − 3.14 = 3.58 kN (↓).
The corresponding bending moment at the fixed end of the member MA(∞) =
−35.8 kNm.
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Plots of MA versus time for both the sudden support settlement and the gradual
support settlement are shown in Fig. 8.19.

(a) Sudden support settlement

(b) Gradual support settlement
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Figure 8.19 Time variation of moment due to sudden and gradual support settlement in
Example 8.5.

8.3.4 Further effects of creep in prestressed construction

Although creep in continuous members causes a dramatic reduction of the internal
actions caused by imposed deformation (as shown in curve (a) of Fig. 8.19), the
effects of creep on the redistribution of internal actions in continuous members
subjected to imposed loads is less pronounced, but still significant (as demonstrated
in Example 8.4). In general, internal actions are redistributed from the regions with a
higher creep rate to the regions with the lower creep rate. In Example 8.4, with the rate
of change of curvature due to creep in the singly-reinforced mid-span Region 2 greater
than the rate of change of curvature in the doubly-reinforced Region 1, creep causes
a decrease in the positive span moments with time and an increase in the negative
moments at the continuous support (see Fig. 8.15).

The internal actions caused by prestress are also affected by creep of concrete. They
are obviously affected by the losses of prestress caused by creep and these losses can
vary from near zero, when the member is cracked at the level of the tendon, to as
much as 20 per cent or more, when the member is heavily prestressed at an early
age and the concrete compressive stress at the level of the bonded tendon is high.
The hyperstatic reactions induced by prestress in indeterminate structures are in fact
imposed loads applied to the structure at the supports and the resulting secondary
moments are affected by creep.

If the structural system changes after the application of some of the prestress, creep
may cause a change in the hyperstatic reactions. As an example, consider the two-span
beam shown in Fig. 8.20. The beam is fabricated by erecting two simply-supported
prismatic precast concrete girders (of constant cross-section) over the two spans of
length L. Each girder contains a single layer of straight pretensioned strands at a
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In-situ joint

Pretensioning tendon
CBA

L L

e

Precast, pretensioned girder

Figure 8.20 Providing continuity at a continuous support.

constant eccentricity e below the centroidal axis of the cross-section. The structure
is then rendered continuous by casting an in-situ joint over the interior support. Any
time-dependent defomations in the members will be restrained by the imposed fixity
at the interior support and hyperstatic reactions will develop with time, together with
the associated secondary moments and shears.

Before the in-situ joint in Fig. 8.20 is cast, the two-precast girders are simply
supported, with zero deflection but some non-zero slope at the interior support
at B. Immediately after the joint is fabricated and continuity is established, the
internal primary moment imposed by the prestress on each cross-section is Pe
about the centroidal axis, but the initial secondary moment at B (and elsewhere)
is zero. With time, creep will cause a gradual change in the curvature on each
cross-section.

If the support at B was released so that a vertical displacement at B was possible,
the member ABC would gradually deflect upwards at B due to the creep-induced
hogging curvature associated with the primary moment Pe on each cross-section. If
it is assumed that the creep characteristics are uniform and the prestressing force is
constant throughout, the time-dependent curvature caused by creep on each cross-
section can be determined using the procedure presented in Section 5.4. For lightly
reinforced cross-sections, the creep-induced curvature (κk)cr may be taken as a product
of the instantaneous curvature and the creep coefficient (Eq. 8.11a) and the upward
displacement at B is given by Eq. 8.11b:

(κk)cr = Pe
EcI

ϕ(τk,τ0) (8.11a)

�uB(τk) = (κk)crL2

2
(8.11b)

where I is the second moment of area of the transformed section about its cen-
troidal axis.

In Eq. 8.11a, it is assumed that the restraint offered to creep by the bonded
reinforcement is insignificant. If the amount of bonded reinforcement is significant, a
more accurate approximation may be made by dividing the creep coefficient in Eqs 8.11
by the parameter α defined in Section 3.6.6 and, for uncracked cross-sections, specified
in Eq. 3.32b.
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The deflection at B caused by a unit value of the vertical redundant reaction
force gradually applied at the release at B may be calculated using the procedures
of Section 8.3.2. An approximation for the time-dependent flexibility coefficient
associated with the release at B is given by:

f̄11 = L3[1 +χ (τk,τ0)ϕ(τk,τ0)]
6EcI

= L3

6�EeI
(8.12)

The redundant force at B that gradually develops with time RB(τk) is obtained
from Eq. 8.6:

RB(τk) = −�uB(τk)

f̄11
≈ −3Pe

L
ϕ(τk,τ0)

1 +χ (τk,τ0)ϕ(τk,τ0)

= RB
ϕ(τk,τ0)

1 +χ (τk,τ0)ϕ(τk,τ0)
(8.13)

where RB is the hyperstatic reaction that would have developed at B if the structure
was initially continuous and later prestressed with a straight tendon of constant
eccentricity e.

In general, if R is any hyperstatic reaction or the restrained internal action that would
occur at a point due to prestress in a continuous member and R(t) is the corresponding
creep-induced value if the member is made continuous after the application of
prestress, then:

RB(t) ≈ ϕ(τk,τ0)
1 +χ (τk,τ0)ϕ(τk,τ0)

R (8.14)

If the creep characteristics of the concrete are uniform throughout the structure,
then Eq. 8.14 may be applied to systems with any number of redundants.

Providing continuity at the interior supports of a series of simple precast beams, not
only restrains the time-dependent deformation caused by prestress, but also restrains
the deformation caused by external loads. For all the external loads applied after
the continuity is established, the effects can be calculated by moment distribution or
an equivalent method of structural analysis. Under the loads applied to the simply-
supported beams prior to casting the joints (such as the self-weight of the precast
beams), the moments at each interior support are initially zero. However, after
the joint has been cast, the creep-induced deformations resulting from these self-
weight moments are restrained and moments develop with time at the supports.
For the two-span beam shown in Fig. 8.20, the initial moment at the support
B due to self-weight is zero. However, if the beam had initially been continuous
over the interior support, the moment at B would have been MB = wswL2/8. The
moment that develops with time due to creep at support B due to creep and
self-weight is:

MB(t) ≈ ϕ(τk,τ0)
1 +χ (τk,τ0)ϕ(τk,τ0)

MB
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Example 8.6

Consider two simply-supported pretensioned concrete planks, erected over two
adjacent spans as shown in Fig. 8.20. An in-situ reinforced concrete joint is
cast at the interior support, to provide continuity. Each plank is 1000 mm wide
by 150 mm thick and pretensioned with straight strands at a constant depth
of 110 mm below the top fibre, with Ap = 400 mm and Pp,init = 500 kN. A
typical cross-section is shown in Fig. 8.21. The span of each plank is L = 6 m.
If it is assumed that the continuity is provided immediately after the transfer of
prestress, the reactions that develop with time due to creep are to be determined.
For convenience, and to better illustrate the effects of creep in this situation,
shrinkage is not considered and the self-weight of the planks is also ignored.
The material properties are: Ec = 30,000 MPa; fct = 3.0 MPa; ϕ(τk, τ0) = 2.0;
χ (τk, τ0) = 0.65; εsh = 0; and Ee = 13,040 MPa.

150 110

1000

Ap = 400 mm2

Pp,init = 500 kN

Figure 8.21 Cross-section of planks in Example 8.6 (all dimensions in mm).

Immediately after transfer, and before any creep has taken place, the curvature on
each cross-section caused by the eccentric prestress may be calculated using the
procedure outlined in Section 5.3 giving κ0 = −2.02×10−6 mm−1. The top and
bottom fibre concrete stresses are σtop,0 = 1.30 MPa and σtop,0 = −7.81 MPa,
so that cracking has not occurred.
In the absence of any restraint at the supports, the curvature on each cross-
section would change with time due to creep from κ0 to κk =−5.81×10−6 mm−1

(calculated using the procedure outlined in Section 5.4). If the support at B in
Fig. 8.20 was removed, the deflection at B (�uB(τk)) that would occur with
time due to the change in curvature caused by creep ((κk)cr = κk−κ0 = −3.79 ×
10−6 mm−1) can be calculated from Eq. 8.1b for the 12 m long planks and is
also given by Eq. 8.11b:

�uB(τk) = −3.79 × 10−6 × 60002

2
= −68.2 mm (i.e. upward)

The deflection at B caused by a unit value of the vertical redundant reaction
force gradually applied at the release at B is calculated using the procedures of
Section 8.3.2 and for this example is given by Eq. 8.12. With the second moment
of area of the age-adjusted transformed cross-section I = 288.3 × 106 mm4,
Eq. 8.12 gives:

f̄11 = L3

6�EeĪ
= 60003

6 × 13,040 × 288.3 × 106 = 9.58 × 10−3
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and the redundant force at B that gradually develops with time, RB(τk) is
therefore:

RB(τk) = −�uB(τk)

f̄11
= − −68.2

0.00958
= 7124 N

The reaction that would have developed at B due to prestress immediately after
transfer if the member had initially been continuous is RB = 8621 kN and the
approximation of Eq. 8.14 gives:

RB(τB) ≈ 2.0
1 + 0.65 × 2.0

× 8621 = 7497 N

In this example, Eq. 8.14 gives a value for RB(τk) that is within 6 per cent of
the value determined above and provides a quick and reasonable estimate of
the effects of creep. The secondary moment at B that develops with time due
to prestress is 21.4 kNm and this is 83 per cent of the secondary moment that
would have developed if the two planks had been continuous at transfer.

8.4 Two-way slab systems

8.4.1 Discussion

The design of suspended concrete slab systems is complicated by the difficulties
involved in estimating the service load behaviour. It is relatively easy to find a load path
and reinforce a slab to satisfy the requirements of adequate strength. Slabs are usually
very ductile, highly indeterminate members that are capable of considerable moment
redistribution as the ultimate load is approached. The distribution of moments in a
statically indeterminate slab at failure is very much dependent on the reinforcement
pattern and, therefore, on the load path assumed in design. However, in the design for
serviceability, the distribution of moments and the prediction of deflection at service
loads are far more uncertain. The distribution of moments varies with time and depends
on the extent of cracking, the post-cracking stiffness of the various parts of the slab,
the level of creep and shrinkage and the restraint provided at the supports.

As outlined in the preceding pages, the initial and time-dependent deformations and
the extent of cracking in concrete structures depend primarily on the non-linear and
inelastic properties of concrete and, as such, are difficult to predict with confidence.
The problem is exacerbated in the case of slabs which are typically thin in relation to
their spans and are therefore more deflection sensitive. It is stiffness rather than strength
that controls the design of most reinforced and prestressed concrete slab systems.

The first step in the design of a two-way slab panel is the initial selection of the slab
thickness. A reasonable first estimate is desirable since, in many cases, the slab self-
weight is a large portion of the total service load. The initial estimate is often based on
personal experience or on recommended maximum span-to-depth ratios or minimum
thickness requirements, such as those presented in Section 3.5. While providing a useful
starting point in design, such a selection does not necessarily ensure serviceability.
Deflections at all critical stages in the history of the slab must be calculated and
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the magnitudes limited to acceptable design values. Failure to adequately predict
deflections has frequently resulted in serviceability problems (Ref. 4).

The procedures discussed so far in this chapter have been concerned with the
prediction of the in-service behaviour of line members, such as beams, one-way
slabs and frames. For the calculation of two-way slab deflections, several additional
problems need to be overcome. The three-dimensional nature of the slab, the less well
defined influence of cracking and tension stiffening and the development of biaxial
creep and shrinkage strains must all be modelled adequately.

In addition, the final deflection of a slab depends very much on the extent of initial
cracking which, in turn, depends on the construction procedure (the shoring and
reshoring sequence), the amount of early shrinkage, the temperature gradients in the
first few weeks after casting, the degree of curing and so on. Many of these parameters
are, to a large extent, outside the control of the designer. In field measurements of the
deflection of many identical slab panels (Refs 5 and 6), a large variability was reported.
Deflections of identical panels after one year differed by over 100 per cent in some
cases. These differences can be attributed to the different conditions that existed in
the first few weeks after casting of each slab, including differences in both the applied
load and the environmental conditions. In more recent laboratory tests on large-scale
flat slabs, a change in deflection at least as large as that caused by the full design live
load was observed after exposing the top surface of a dry slab to rainwater (Ref. 7).

Nevertheless, various approximate methods are available that may be used to predict
ball-park estimates of the deflection of two-way slabs, making use of the cross-sectional
analyses presented in Chapters 4–7. By varying the amount of early cracking, for
example by varying the tensile strength of concrete, upper and lower bounds on
deflection can be obtained. Some approximate procedures for deflection calculation
are reviewed in the following sections.

8.4.2 Slab deflection models

In view of the complexities and uncertainties involved in estimating the service load
behaviour of two-way slab systems, great accuracy in the calculation of deflection is
neither possible nor warranted. Nevertheless, numerous approximate techniques are
available for the prediction of moments and deformations in concrete slab systems.
These range from relatively simple procedures to sophisticated research models.

The small deflection theory of elastic plates can be used to predict slab deflections.
Deflection coefficients for elastic slabs with ideal boundary conditions and subjected
to full panel loading have been presented by Timoshenko and Woinowsky-Krieger
(Ref. 8). Many more simple models involve the analysis of orthogonal slab strips. The
deflection of the slab panel is approximated by the sum of the deflection components
of one or more slab strips (see Refs 9–15).

The finite-element method is perhaps the most powerful and potentially the most
accurate tool for the analysis of concrete slabs. The basic method is well established
and has been described in many text books. Since the early 1970s, many investigators
have developed non-linear finite-element models to study the short-term service load
behaviour of reinforced concrete slabs. A number of researchers extended their models
to handle the time-dependent effects of creep and shrinkage (e.g. Refs 16–18). Today
numerous commercial finite element software packages are available to undertake
non-linear analysis of slabs at service loads. The treatment of time effects in these
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computer packages ranges from rational and reliable to crude and unreliable. Users of
any commercial program should be aware of the assumptions made in the modelling
of material non-linearity, particularly relating to cracking, creep and shrinkage, and
make a rational assessment of the reliability of the output.

However, finite element modelling of two-way slab systems, even with the most
reliable of software, is time consuming and generally unsuitable for routine use in
structural design. However, it is a useful research tool to examine the effects of various
parameters on slab behaviour and to generate the parametric data necessary for the
development of more simple, design-oriented procedures for the estimation of slab
deflections. Such parametric studies have been reported elsewhere (Ref. 17) and have
led to the development of simple, design-oriented methods for the deflection control
of slabs (Ref. 15). The finite-element model described in Ref. 17 has been used for the
calibration of slab stiffness factors in the following section.

8.4.3 Two-way edge-supported slabs

This section deals with the prediction of the deflection of two-way rectangular slab
panels that are continuously supported on all four edges by beams or walls and
that carry a uniformly distributed load. The slab panel may be either continuous or
discontinuous on each edge. A simple and useful estimate of deflection may be made
using the so-called crossing beam analogy. This involves the consideration of a pair of
orthogonal slab strips of unit width spanning through the centre of the panel as shown
in Fig. 8.22.

Each slab strip carries only part of the transverse load w on the slab. By equating
the mid-span deflection of each slab strip and assuming that the entire transverse load
is carried by bending in the two orthogonal directions, the fraction of load carried in
the short-span direction γ ∗ is easily determined. If each strip is initially assumed to be
uncracked:

γ ∗ = L4
y

λL4
x + L4

y
(8.15)

where λ depends on the support conditions of the panel and is given by:

λ= 1.0 for 4 edges continuous discontinuous
λ= 1.0 for 2 adjacent edges discontinuous
λ= 2.0 for 1 long edge discontinuous
λ= 0.5 for 1 short edge discontinuous
λ= 2.5 for 2 long + 1 short edge discontinuous
λ= 0.4 for 2 short + 1 long edge discontinuous
λ= 5.0 for 2 long edges discontinuous
λ= 0.2 for 2 short edges discontinuous.

The deflection of the slab may be estimated conservatively by calculating the initial
and time-dependent deflection of the shorter span slab strip subjected to a uniformly
distributed load, γ ∗w. However, this ignores the torsional stiffness of the slab and
violates compatibility at all but the slab centre. As a consequence, the predicted
deflection may be significantly greater than the actual deflection. Using the non-linear
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Ly = long span
Lx = short span

1 m

Equivalent slab stripPanel is continuously
supported along all edges

Figure 8.22 Orthogonal slab strips in an edge-supported slab.

finite-element model described in Ref. 17, a slab stiffness factor has been calibrated
which may be used to adjust the stiffness of the shorter span beam, so that the deflection
of the slab panel is predicted more accurately. In Table 8.4, this slab stiffness factor is
combined with the value of γ ∗ (as given by Eq. 8.15). The deflection of the panel may
be estimated by analysing a unit wide one-way slab strip in the short span direction
with the same boundary conditions as the relevant slab edges and carrying uniformly
distributed load of γ ∗w. For each possible boundary condition, γ ∗ depends on the
aspect ratio Ly/Lx and may be interpolated from Table 8.4.

If the slab edges are supported by beams, the average deflection of the supporting
beams along the long edges must be calculated and added to the slab strip deflection
to obtain the total deflection at the centre of the panel.

Table 8.4 Values of γ ∗ for two-way edge-supported slabs

Value of γ ∗

Ly/Lx

1.0 1.25 1.5 2.0 5.0

4 edges continuous 0.48 0.70 0.84 0.94 1.00
1 short edge discontinuous 0.60 0.78 0.91 0.97 1.00
1 long edge discontinuous 0.31 0.50 0.69 0.87 1.00
2 short edges discontinuous 0.74 0.87 0.95 0.99 1.00
2 long edges discontinuous 0.15 0.28 0.41 0.65 0.97
2 adjacent edges discontinuous 0.45 0.66 0.79 0.93 1.00
2 short + 1 long edge discontinuous 0.55 0.71 0.81 0.94 1.00
2 long + 1 short edge discontinuous 0.22 0.36 0.50 0.72 1.00
4 edges discontinuous 0.36 0.50 0.60 0.80 1.00

Example 8.7

The maximum final deflection at the mid-span of a 6 by 8 m exterior
panel of a beam and slab floor system is to be calculated. The slab panel is
150 mm thick and forms part of the floor of a retail store. The panel edges are
continuously supported by stiff beams. The design moments in the slab have been
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determined from moment coefficients specified in the local building code and
the reinforcement has been calculated to satisfy the design objective of adequate
strength. Top and bottom reinforcement plans are shown in Fig. 8.23, together
with the relevant material properties. All reinforcement bars are Australian Class
N (normal ductility) 12 mm diameter deformed bars spaced at centres shown
in millimetres. Bars in the short-span direction are placed closest to the bottom
of the slab and closest to the top, as shown, with the effective depth d = 150 −
20 − 6 = 124 mm.

e*
sh = −0.0006 ;  fy = 500 MPa ;  Es = 200,000 MPa ;  ft = 2.0 MPa ;

f c
′ = 25 MPa ;  Ec = 25,000 MPa ;  f* = 2.8 ;  c* = 0.8 ;

Minimum concrete cover = 20 mm 

8 m 8 m

6 m

N12@180 (1st) N12@300 (4th)

N12@130 (4th)

N12@170 (3rd)N12@170 (3rd)

N12@230 (2nd)

Stiff beams

DADA

CBCB

(a) Bottom reinforcement plan (b) Top reinforcement plan

Figure 8.23 Details of 150 mm thick slab panel of Example 8.7.

The slab carries a superimposed dead load of gsup = 1.5 kPa, in addition to its
own self-weight gsw, and the specified live load q is 5.0 kPa. For a retail store, the
service load factors are taken as (refer to Section 3.3) ψ1 = 0.6 (for short-term
loads) and ψ2 = 0.3 (for long-term loads).
If reinforced concrete is taken to weigh 24 kN/m3, then the sustained load is:

wsus = gsw + gsup +ψ2q = 24 × 0.15 + 1.5 + 0.3 × 5.0 = 6.6 kPa

and the variable load is:

wvar = (ψ1 −ψ2)q = (0.6 − 0.3) × 5.0 = 1.5 kPa

The slab panel is discontinuous on one long edge only, with an aspect ratio of
Ly/Lx = 1.33, and from Table 8.4 γ ∗ = 0.56.
A 1 m wide slab strip spanning in the short-span direction through the slab centre
is to be analysed. The slab strip is considered to be continuous at one end and
simply-supported at the other, as shown in Fig. 8.24a. The analysis of such a
member was presented in Example 8.4. Assume the bending moment produced
by the maximum short-term load on the strip (i.e. γ ∗(wsus +wvar) = 4.54 kN/m)
is as shown in Fig. 8.24b.
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N12@130
= 846 mm2/m

N12@300
= 367 mm2/m

N12@180
= 611 mm2/m

150 mm

6 m
A-D

A-D

B-C B-C

MBC = −20.0 kNm/m

Mmid-span = 10.43 kNm/m
Mmax = 11.65 kNm/m

g*w = 4.54 kN/m

(b) Bending moment diagram(a) Elevation

Figure 8.24 Elevation of slab strip and moment diagram in Example 8.7.

From a short-term cross-sectional analysis using the approach outlined in
Section 5.3, the cracking moments for this 150 mm thick slab at mid-span at
first loading (with zero shrinkage) and at the interior support are +9.89 and
−10.09 kNm/m. It is evident that both the positive and negative moment regions
of the slab will crack under the full service load.
The initial and time-dependent curvatures at each support and at mid-span
caused by the sustained load γ ∗wsus = 3.70 kN/m and the short-term curvatures
caused by the variable load γ ∗wvar = 0.84 kN/m are calculated using the
cross-sectional analyses of Sections 5.3 and 5.4 for the uncracked sections and
Sections 7.2 and 7.3 for the cracked sections and are summarised in Table 8.5.
From the uncracked analyses, the moments required to produce an extreme fibre
tensile stress in the concrete of fct = 2.5 MPa at first loading τ0 and at τk are
readily determined and given in Table 8.5.
Tension stiffening is accounted for using the distribution factor ζ given in Eq. 8.3
and the average curvature κavge at each critical section due to each loading is
calculated using Eq. 8.2 and is also given in Table 8.5.

Table 8.5 Uncracked, cracked and average curvature at critical sections in Example 8.7.

At continuous support At mid-span At discontinuous support

At first
loading, τ0

Final at
τk

At first
loading, τ0

Final at
τk

At first
loading, τ0

Final at
τk

Cracking moment,
Mcr (kNm/m)

−10.09 −4.64 9.89 5.99 – –

Max. moment, M∗
s

(kNm/m)
−20.0 −20.0 11.65 11.65 0 0

Distribution factor,
ζ (Eq. 8.3)

0.746 0.946 0.279 0.736 0 0

Due to γ ∗wvar:
κuncr (mm−1) −0.50 × 10−6 −0.50 × 10−6 0.27 × 10−6 0.27 × 10−6 0 0

κcr (mm−1) −2.18 × 10−6 −2.18 × 10−6 1.48 × 10−6 1.48 × 10−6 0 0

κavge (mm−1) −1.75 × 10−6 −2.09 × 10−6 0.61 × 10−6 1.16 × 10−6 0 0

Due to γ ∗wsus

+ shrinkage:
κuncr (mm−1) −2.21 × 10−6 −9.20 × 10−6 1.17 × 10−6 6.52 × 10−6 0 0.77 × 10−6

κcr (mm−1) −9.60 × 10−6 −20.0 × 10−6 5.33 × 10−6 14.8 × 10−6 0 –

κavge (mm−1) −7.42 × 10−6 −19.4 × 10−6 2.33 × 10−6 12.6 ×−6 0 0.77 × 10−6
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The short-term deflection at mid-span due to the variable loading at time τk is
obtained from Eq. 8.1b:

(vc)var = 60002

96
(−2.09 + 10 × 1.16 + 0) × 10−6 = 3.6 mm

and the long-term deflection due to the sustained load and shrinkage is

(vc)sus = 60002

96
(−19.4 + 10 × 12.6 − 0.77) × 10−6 = 39.6 mm

The maximum total panel deflection is therefore

(vc)max = (vc)var + (vc)=sus43.2 mm.

With a maximum deflection of span/130, this slab is unserviceable for most
applications and a thicker slab would almost certainly be required for this floor
system.

8.4.4 Flat slabs

In this section, a simple method is presented for predicting the deflection at the mid-
panel of a uniformly loaded two-way column-supported flat slab. The basic procedure
is known as the wide beam method (or equivalent frame method) and was formalised
by Nilson and Walters (Ref. 19). It is assumed here that the design bending moments
in each direction are known and that the quantity and layout of the reinforcement in
each region of the slab are also known: that is, the slab has been designed for strength
and an estimate of deflection is now required.

The basis of the method is illustrated in Fig. 8.25. For the deflection calculation, the
deformation of a slab panel in one direction at a time is considered. The contributions
in each direction are then added to obtain the total deflection.

In Fig. 8.25a, the slab is considered to act as a wide, shallow beam of width equal
to the panel dimension Ly and span equal to Lx and carrying the entire load in the
x-direction. This wide beam is assumed to rest on unyielding supports. Because of
variations in moment and flexural rigidity across the width of the slab, all unit strips
in the x-direction will not deform identically. Moments, and hence curvatures, in the
regions near the column lines (the column strip) are greater than in the middle strips.
The deflection on the column line is therefore greater than that at the panel centre.
This is particularly so, when, as is usually the case, the column strips are cracked and
the middle strips are uncracked.

The slab is next considered to act as a wide shallow beam carrying the entire load in
the y-direction as shown in Fig 8.25b. Once again, the effect of variation of moment
and flexural rigidity across the panel is shown.

The mid-panel deflection is taken to be the sum of the average mid-span deflection
of the column strips in one direction (usually taken as the long-span direction) and the
mid-span deflection of the middle strip in the other direction (Fig. 8.25c). That is:

vmax =
(

vcx1 + vcx2

2

)
+ vmy (8.16)
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(c) Two-way bending

Figure 8.25 Deflection components of a flat slab (Ref. 19).

The method is fully compatible with the equivalent frame method of moment
analysis (Ref. 20). The definition of column and middle strips, the longitudinal moment
distribution, lateral moment distribution coefficients and other details are the same as
for the moment analysis, so that in design most of the information required for the
estimation of deflection has been previously calculated.

With the moment diagrams for the column and middle strips known, it is a simple
matter to determine the curvatures at the supports and at the mid-span of each strip,
using the cross-sectional analyses of Chapters 5 and 7. The initial and time-dependent
strip deflections can be calculated using Eq. 8.1b. For flat slabs, the span in Eq. 8.1b
may be taken to be the centre to centre distance between columns or the clear span
(face to face of columns) plus the slab depth, whichever is smaller.

Example 8.8

The maximum total deflection at the mid-point of a square interior panel of the
flat plate shown in Fig. 8.26 is to be calculated. The slab is 200 mm thick and
supports a sustained service load of wsus = 6.3 kPa (which includes self-weight)
and a variable live load of wvar = 3.0 kPa.
The column and middle strips in each direction are 3575 mm wide. The tensile
reinforcement quantities in the x-direction column strip and y-direction middle
strip are given in Table 8.6. The steel in the x-direction is placed first and
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fct = 3.0 MPa;  fy = 500 MPa;

Figure 8.26 Slab details and material properties for Example 8.8.

last (i.e. closest to the top and bottom surfaces of the slab) and the steel in the
y-direction is placed in the second and third layers. If 20 mm cover and 16 mm
diameter bars are assumed, the effective depths in each direction are:

dx = 200 − 20 − 8 = 172 mm

dy = dx − 16 = 156 mm

Also shown in Table 8.6 are the peak positive and negative in-service bending
moments caused by wsus+wvar in each strip. These were calculated in accordance
with the direct design method of slab design (see Ref. 20).

Table 8.6 Steel quantities and in-service moments for Example 8.8

Column strip (x-direction) Middle strip (y-direction)

Negative
moment region

Positive
moment region

Negative
moment region

Positive
moment region

Ast(mm2) 5420 2280 1950 1650
Msus+var (kNm) −196 85 −66 56

Column strip deflection (x-direction)

At the support

The maximum in-service moment in the column strip at the support (due to
wsus + wvar) is −196 kNm and, from the cross-section analysis of Section 5.3,
the cracking moment at first loading is −80.0 kNm and after all shrinkage is
−32.8 kNm. The critical cross-section at the support will obviously be cracked.
The final time-dependent curvature at the support caused by the moment due
to the sustained load (Msus = −132.8 kNm) plus shrinkage and the short-term
curvature caused by the moment due to the variable load (Mvar = −63.2 kNm)
are calculated using the cross-sectional analyses of Sections 5.3 and 5.4 for the
uncracked section and Sections 7.2 and 7.3 for the cracked section and are
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summarised below. For the inclusion of tension stiffening in the final deflection
calculations, the distribution factor ζ at time τk is obtained from Eq. 8.3:

ζ = 1 −
(−32.8

−196

)2

= 0.972

and the average curvatures at the supports of the column strip are obtained from
Eq. 8.2.

Instantaneous curvature due to Mvar:

κuncr =−0.98×10−6 mm−1;κcr =−3.19×10−6 mm−1; and therefore

κavge =−3.13×10−6 mm−1

Final long-term curvature due to Msus+ shrinkage:

κuncr =−7.85×10−6 mm−1;κcr =−14.23×10−6 mm−1; and therefore

κavge =−14.05×10−6 mm−1.

At mid-span

The maximum in-service moment in the column strip at mid-span (due to wsus +
wvar) is 85 kNm and, from Section 5.3, the cracking moment at first loading
is 75.1 kNm and after all shrinkage is 56.0 kNm. The critical cross-section at
mid-span will crack. The final time-dependent curvature at mid-span caused
by the moment due to the sustained load (Msus = 57.6 kNm) plus shrinkage
and the short-term curvature caused by the moment due to the variable load
(Mvar = 27.4 kNm) are next determined using the cross-sectional analyses of
Sections 5.3 and 5.4 for the uncracked section and Sections 7.2 and 7.3 for the
cracked section. The distribution factor ζ at time τk is obtained from Eq. 8.3:

ζ = 1 −
(

56.0
85

)2

= 0.566

and the average curvatures at mid-span of the column strip are obtained from
Eq. 8.2:

Instantaneous curvature due to Mvar:

κuncr =0.44×10−6 mm−1;κcr =2.79×10−6 mm−1; and therefore

κavge =1.77×10−6 mm−1

Final long-term curvature due to Msus+ shrinkage:

κuncr =3.81×10−6 mm−1;κcr =11.71×10−6 mm−1; and therefore

κavge =8.28×10−6 mm−1.
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Deflection

The short-term deflection at mid-span of the column strip due to the variable
loading is:

(vcx)var = 69502

96
(−3.13 + 10 × 1.77 +−3.13) × 10−6 = 5.8 mm

and the long-term deflection due to the sustained load and shrinkage is:

(vcx)sus = 69502

96
(−14.05 + 10 × 8.28 − 14.05) × 10−6 = 27.5 mm

The maximum total panel deflection at mid-span of the columns strip is therefore:

(vcx)max = (vcx)var + (vcx)sus = 33.3 mm

Middle strip deflection (y-direction)

The cracking moment for the middle strip at the support after all shrinkage
has taken place is −58.4 kNm and at mid-span is 60.4 kNm, so the strip may
suffer minor cracking at the support line (where from Table 8.6 the maximum
in-service moment Msus+var = −66 kNm) but will be uncracked at mid-span
(where Msus+var = 56 kNm).

At the support

At time τk:

ζ = 1 −
(−58.4

−66

)2

= 0.217

Due to Mvar:
κuncr = −0.35 × 10−6 mm−1; κcr = −3.05 × 10−6 mm−1;
and therefore κavge = −0.94 × 10−6 mm−1

Final long-term curvature due to Msus+ shrinkage:
κuncr = −3.01 × 10−6 mm−1; κcr = −12.77 × 10−6 mm−1;
and therefore κavge = −5.13 × 10−6 mm−1.

At mid-span

Due to Mvar: κavge = κuncr = 0.30 × 10−6 mm−1

Due to Msus+ shrinkage: κavge = κuncr = 2.58 × 10−6 mm−1.

Deflection

The short-term deflection at mid-span of the middle strip due to the variable
loading is:

(vmy)var = 69502

96
(−0.94 + 10 × 0.30 − 0.94) × 10−6 = 0.6 mm
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and the long-term deflection due to the sustained load and shrinkage is:

(vmy)sus = 69502

96
(−5.13 + 10 × 2.58 − 5.13) × 10−6 = 7.8 mm

The maximum total panel deflection at mid-span of the middle strip in the y-
direction is:

(vmy)max = (vmy)var + (vmy)sus = 8.4 mm

Panel deflection

Finally, the maximum deflection at the mid-point of the panel is obtained from
Eq. 8.16:

vmax =
(

33.3 + 33.3
2

)
+ 8.4 = 41.7 mm

8.5 Slender reinforced concrete columns

8.5.1 Discussion

In most structural members, creep and shrinkage of concrete cause increases of
deformation and redistribution of stresses, but do not affect strength. In some
situations, however, the deformations caused by creep and shrinkage can lead to an
increase in the loads on the structure and, therefore, a reduction in strength. A slender
column under sustained, eccentric compression is such an example. Other examples
include shallow concrete arches and domes.

Consider the slender pin-ended column shown in Fig. 8.27. The column is subjected
to a compressive force P applied at an initial eccentricity e0. When P is first applied
at time τ0, the column shortens and deflects laterally by an amount δ0. The bending
moment at each end of the column is Pe0, but at the column mid-length, the moment
is P(e0 + δ0). Therefore, the lateral deflection of the member causes an increase in the
internal actions.

For long columns, the secondary moment Pδ0 may be many times greater than the
initial primary moment Pe0 and the load-carrying capacity is much less than that of a
short column with the same cross-section. For very long columns, an instability failure
may occur under relatively small compressive loads, i.e. buckling may occur before
the strength of the cross-section at mid-length is reached.

For reinforced concrete columns under sustained loads, the member suffers addi-
tional lateral deflection due to creep. This time-dependent deformation leads to
additional bending in the member, which in turn causes the column to deflect still
further. During a period of sustained loading, an additional deflection �δ(t) will
develop at the mid-length of the column. The gradual increase in the secondary moment
with time P(δ0 +�δ(t)) reduces the factor of safety and, for long columns, creep
buckling may occur.
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Figure 8.27 Displacements and moments in a slender pin-ended column.

In order to design slender reinforced concrete columns for the strength limit state,
an accurate assessment of the creep deformation is necessary to ensure an adequate
factor of safety. In the following section, an iterative computer-based procedure for
the analysis of slender reinforced concrete columns is presented.

8.5.2 An iterative method of analysis

To account for the geometric non-linearity associated with the secondary actions
in a slender column (Pδ0 + P�δ(t)), as well as the material non-linearity associated
with cracking, creep and shrinkage, an iterative solution procedure that uses the
AEMM to include the time effects is described here. The analyses of cross-sections
in the uncracked parts of the column are undertaken using the method described in
Sections 5.3 and 6.2 (for short-term analysis) and Sections 5.4 and 6.3 (for long-term
analysis), while for cross-sections in the cracked parts of the column, the analyses are
undertaken in accordance with Section 7.2 (for short-term behaviour) and Section 7.3
(for time-dependent behaviour).

Consider again the pin-ended column shown in Fig. 8.27. The iterative solution
procedure involves the following steps:

(i) The member is subjected initially to the axial load P and the primary moment Pe0
on every cross-section. The initial strain distributions and curvatures are calculated
at the cross-sections at each end of the member (i.e. at A and B) and at the mid-
length (C).

(ii) The lateral deflection of the member at the mid-length of the column, δ0, is
determined from the initial curvatures calculated in step (i). If a parabolic variation
of curvature along the member is assumed, δ0 may be calculated using Eq. 8.1b.

(iii) The additional increment of moment caused by δ0 at the mid-length of the columns
(Pδ0) is added to the primary moment and the cross-section at C is re-analysed.
The curvature at C is now larger than that calculated in step (i), and so too is the
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lateral deflection δ1 at the mid-length of the column (re-calculated using Eq. 8.1b).
The revised secondary moment (Pδ1) is added to the primary moment at C and
the cross-section is again reanalysed. The procedure continues until the lateral
displacement at C converges to δi after the ith iteration.

The short-term response of the slender column is thus determined. The lateral
deflection at C immediately after loading (δi) is known, as is the stress and strain
distributions on the cross-sections at A, B and C.

If the member is very slender, convergence may not occur in step (iii) and a buckling
instability may result. The secondary moment Pδ calculated during the iterative cycle,
may cause cracking on a previously uncracked cross-section and therefore result in
considerable loss of stiffness and an increase in the lateral displacement and secondary
moment. The number of iterations required for convergence therefore depends on
the slenderness of the member, the initial eccentricity and the tensile strength of the
concrete. In step (iii), convergence may be deemed to occur when the additional lateral
displacement calculated at mid-length during the ith iteration (δi – δi−1) is less than
0.001 of the lateral displacement δ0 caused by the primary moments and calculated in
step (ii).

With the behaviour immediately after loading at τ0 determined in step (iii), the time
analysis commences:

(iv) The time-dependent changes in strain and curvature at A, B and C are calculated
using the previously specified time analyses. Initially, the internal actions at C
(P and P(e0 + δi)) are assumed to remain constant with time. The change in the
lateral displacement at C (�δ0) caused by the change in curvature with time at
each cross-section is calculated using Eq. 8.1b. This increase in displacement
with time causes an additional increment of secondary moment P�δ0 to be
applied gradually to the cross-section at C. This time-dependent secondary
moment, in turn, produces additional lateral displacements and additional incre-
ments of secondary moment. An iterative procedure is again followed until
the time-dependent lateral displacement converges to �δ(t) (or until instability
occurs).

To model behaviour using the AEMM, the time-dependent increments of secondary
moment, which in fact occur gradually, are applied to the age-adjusted transformed
cross-section at mid-span. For initially cracked cross-sections, the depth to the neutral
axis is assumed to remain constant with time. As was discussed in Section 7.3, this
assumption, although not correct, is a reasonable compromise between accuracy
and economy of solution. A more refined analysis could be implemented to trace
the development of time-dependent cracking using the SSM based on the iterative
procedure outlined in Section 7.4.

Example 8.9

A pin-ended column with the cross-section shown in Fig. 8.28 is subjected to
a constant sustained axial compressive load P = 500 kN acting at a constant
eccentricity of e0 = 65 mm. The behaviour of the column is to be determined,
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both at first loading τ0 and at time infinity, for each of the following three column
lengths: (i) L = 6000 mm; (ii) L = 7500 mm; and L = 9000 mm.
Material properties are: Ec = 25,000 MPa; Es = 200,000 MPa; f ′

c = 25 MPa;
ft = 2.5 MPa; φ∗(τ0) = 2.5; fct = 2.5 MPa; φ∗(τ0) = 2.5; χ∗(τ0) = 0.65; and
ε∗sh = 0.

60

180

60

65

300

P = 500 kN

y

x

As = 900 mm2

As = 900 mm2

Figure 8.28 Column section for Example 8.9 (all dimensions in mm).

Case (i): L = 6000 mm

The initial stresses and strains on each cross-section due to the axial force
P = 500 kN and the moment Pe0 = 32.5 kNm are calculated using the cross-
sectional analysis described in Section 5.3. In this case, the primary moment and
axial force at each end and at mid-length are the same. On each cross-section, the
compressive strain at the reference x-axis and curvature are εr,0 = −195×10−6

and κ0 = 1.673 × 10−6 mm−1 and the extreme fibre concrete stresses are
σtop = −11.15 MPa and σbot = +1.40 MPa. Since the tensile strength of the
concrete is not exceeded, the member is uncracked.
The lateral displacement at the column mid-length caused by the primary
moment is obtained from Eq. 8.1b:

δo = 60002

96
(1.673 + 10 × 1.673 + 1.673) = 7.53 mm

and the increment of secondary moment at the column mid-length
Pδ0 = 3.76 kNm. This secondary moment is added to the primary moment and
the cross-section at mid-length is re-analysed. The revised curvature at mid-
length is (κi)1 = 1.841×10−6 mm−1 and the revised displacement at mid-length
is calculated using Eq. 8.1b is δ1 = 8.16 mm. The corresponding secondary
moment is Pδ1 = 4.08 kNm. The revised secondary moment is added to the
primary moment and the section at C is again re-analysed. The procedure
continues for two more iterations until the lateral deflection converges to
δi = 8.33 mm.
The stress and strain distributions at mid-length are εr,0 = −195 × 10−6;
κ0 = 1.887 × 10−6 mm−1; σtop = −11.95 MPa; and σbot = +2.20 MPa. The
section at mid-length therefore remains uncracked.
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For the time analysis, the cross-sections at each end and at the mid-length of
the column are analysed using the procedure outlined in Section 5.4. Initially,
the internal actions are assumed to remain constant. The change in the lateral
displacement at mid-length caused by the change in curvature on each cross-
section with time is �δ0 = 14.23 mm. The secondary moment P�δ0 is applied
to the age-adjusted transformed cross-section at mid-length, thus producing
an additional increment of displacement and secondary moment. Convergence
occurs after five iterations. The time-dependent change in displacement at the
column mid-length is �δi = 17.73 mm. The column therefore suffers a total
mid-length lateral deflection of δi +�δi = 26.06 mm.
The initial and final strain distributions and concrete stresses on the cross-
sections at each end and at the mid-length of the column are illustrated in
Fig. 8.29. It is noted that the final bottom fibre tensile stress exceeds the tensile
stress of the concrete indicating that cracking in the mid-length region of the
column is likely to occur with time.

−7.86−11.15−446−1216

−9.62−11.95−478

2.982.242888
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1.40.914456
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Strain (× 10−6)

Concrete stress (MPa)

Concrete stress (MPa)

(a) At each end of the column

Initial
Final

(b) At the mid-length of the column

Figure 8.29 Stresses and strains for case (i) of Example 8.9.

Case (ii): L = 7500 mm

The stress and strain distributions at each end of the column are the same as
those calculated in case (i). However, the increased column length results in
larger lateral displacements and increased secondary moments. The secondary
moments in this case are large enough to cause cracking at the mid-length of
the column at initial loading. The initial and final lateral displacements at the
column mid-length in case (ii) are δi = 16.43 mm and δi +�δ = 69.71 mm and
the corresponding strains and stresses on the cross-section at mid-length are
shown in Fig. 8.30a.
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Case (iii): L = 9000 mm

In this case, the initial column deflection at mid-length is δi = 30.03 mm and
the initial states of stress and strain on the cross-section at the mid-point of
the column are shown in Fig. 8.30b. As time progresses, additional secondary
moments caused by creep become so large that convergence does not occur and
the member buckles. For such a slender member, creep deformations result in a
reduction of strength with time.
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Creep buckling occurs with time!
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Figure 8.30 Stresses and strains at the column mid-length for Example 8.9.

8.6 Temperature effects

8.6.1 Introduction

A uniform or linearly varying temperature distribution through the depth of a statically
determinate homogeneous member causes the member to deform, but no stress is
produced on any cross-section. In practice, however, temperature rarely varies linearly
through the depth of a member and members are usually unable to accommodate the
deformation caused by temperature change without some restraining forces developing
at the supports. Because plane sections tend to remain plane, a non-linear temperature
gradient produces internal, self-equilibrating eigenstresses, as illustrated in Fig. 8.31.
The free expansion (or contraction) of each concrete fibre is restrained by the adjacent
fibres resulting in the internal stress distribution shown. A similar distribution of self-
equilibrating internal stress is produced by non-linear shrinkage and was discussed in
Section 1.3.3 and illustrated in Fig. 1.13.

Usually design engineers are concerned with temperature changes applied over a
short time period. If the temperature gradient is sustained for a period of time, the
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Figure 8.31 Effects of non-linear temperature distribution on cross-sectional response.

internal stresses induced by temperature are relieved, to some extent, by creep. If
necessary, a time analysis using the AEMM can be used to determine the variation of
cross-sectional behaviour with time.

In a statically indeterminate member, the displacement at the member’s ends caused
by the axial deformation and curvature induced by temperature may not be free to
occur. Reactions develop at the supports and internal actions are induced at each
cross-section of the member. The stresses resulting from these secondary actions can
be large and must be calculated and added to the stresses illustrated in Fig. 8.31, if
the total stresses on a cross-section of a statically indeterminate member are required.
The determination of these continuity stresses is discussed in Section 8.6.4.

8.6.2 Temperature distributions

Temperature variations caused by solar radiation in bridge decks, for example, can
produce stress levels that are of similar magnitude to those produced by the gravity
loads, even if the structure is statically determinate. In the design of such structures,
an analysis to determine the effects of temperature often plays an important part.

Design codes provide guidance on temperature gradients that should be considered
for particular structural applications. For example, typical temperature profiles to be
used in the design of composite concrete-concrete bridges are shown in Fig. 8.32 and
are based on the Australian specifications (Refs 21 and 22).

8.6.3 Temperature analysis of cross-sections

In this section, the short-term analysis of a cross-section subjected to an arbitrary non-
linear temperature variation at time τ0 is presented. The overall method of analysis is
similar to that presented in Sections 5.3–5.7, except that a thermal-induced strain is
included in the constitutive relationship of each constituent material. For a reinforced
or prestressed concrete cross-section with mc concrete components, ms layers of
non-prestressed reinforcement and mp layers of prestressing tendons, the constitutive
relationships are:

σc(i),0 = Ec(i),0
(
ε0 − εc(i),T

)
(8.17a)
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Figure 8.32 Temperature gradients for concrete box girders (Refs 21–22).

σs(i),0 = Es(i)
(
ε0 − εs(i),T

)
(8.17b)

σp(i),0 = Ep(i)
(
ε0 + εp(i),init − εp(i),T

)
(8.17c)

where εc(i),T , εs(i),T and εp(i),T are the thermal-induced strains in the concrete, non-
prestressed reinforcement and prestressing tendons, respectively, and are determined
from:

εc(i),T = αc(i),TT (y) (8.18a)

εs(i),T = αs(i),TT (y) (8.18b)

εp(i),T = αp(i),TT (y) (8.18c)

in which T(y) is the temperature distribution on the cross-section as a function of
distance y from the reference axis, and αc(i),T , αs(i),T and αp(i),T are the coefficients
of thermal expansion for the concrete, non-prestressed reinforcement and prestressing
tendons, respectively.

The contributions to the internal axial force on the cross-section of the constituent
materials at time τ0 after the temperature change are:

Nc,0 =
mc∑
i=1

∫
Ac(i)

σc(i),0 dA=
mc∑
i=1

Ac(i)Ec(i),0εr,0+
mc∑
i=1

Bc(i)Ec(i),0κ0

−
mc∑
i=1

∫
Ac(i)

Ec(i),0εc(i),T dA (8.19a)
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Ns,0 =
ms∑
i=1

(
As(i)Es(i)

)
εr,0+

ms∑
i=1

(
ys(i)As(i)Es(i)

)
κ0−

ms∑
i=1

(
As(i)Es(i)εs(i),T

)
(8.19b)

Np,0 =
mp∑
i=1

(
Ap(i)Ep(i)

)
εr,0+

mp∑
i=1

(
yp(i)Ap(i)Ep(i)

)
κ0+

mp∑
i=1

(
Ap(j)Ep(i)εp(i),init

)

−
mp∑
i=1

(
Ap(i)Ep(i)εp(i),T

)
(8.19c)

Combining these contributions, the internal axial force and bending moment resisted
by the whole cross-section are:

Ni,0 =Nc,0+Ns,0+Np,0 =RA,0εr,0+RB,0κ0+
mp∑
j=1

(
Ap(j)Ep(j)εp(j),init

)−NT,0

(8.20a)

Mi,0 =Mc,0+Ms,0+Mp,0 =RB,0εr,0+RI,0κ0+
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),init

)−MT,0

(8.20b)

where the cross-sectional rigidities at time τ0, i.e. RA,0, RB,0 and RI,0, have already been
defined in Eqs 5.72, and NT,0 and MT,0 are the equivalent actions required to produce
the same deformation as the temperature change if each material was unrestrained and
are given by:

NT,0 =
mc∑
i=1

∫
Ac(i)

Ec(i),0εc(i),T dA +
ms∑
i=1

(
As(i)Es(i)εs(i),T

)+ mp∑
i=1

(
Ap(i)Ep(i)εp(i),T

)
(8.21a)

MT,0 =
mc∑
i=1

∫
Ac(i)

yEc(i),0εc(i),T dA +
ms∑
i=1

(
ys(i)As(i)Es(i)εs(i),T

)

+
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),T

)
(8.21b)

Substituting Ni,0 and Mi,0 (Eqs 8.20) into Eqs 5.2, the equilibrium equations may
be expressed as:

re,0 = D0ε0 + fp,init − fT (8.22)

and solving Eq. 8.22 gives the unknown strain variables ε0:

ε0 = D−1
0

(
re,0 − fp,init + fT

)= F0
(
re,0 − fp,init + fT

)
(8.23)
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where ε0, re,0, D0, F0 and fp,init are all defined in Eqs 5.71 and fT is given by:

fT =
[

NT,0

MT,0

]
(8.24)

Evaluation of the integral expressing the thermal response of the concrete can be
carried out numerically or in closed form when the temperature variation is specified
with a known function.

Example 8.10

The stress and strain distributions on the section shown in Fig. 8.33a caused
by the temperature gradient shown in Fig. 8.33b are to be calculated. The
cross-section is of a statically determinate beam and the rise in temperature is
applied over a short time period. Because temperature rises are associated with
expansion, they are here taken to be positive.
The coefficient of thermal expansion for both concrete and steel is αc = αs =
10 × 10−6/oC and the prestressing steel is bonded to the surrounding concrete.
Take Ec = 30,000 MPa and Es = Ep = 200,000 MPa.
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Figure 8.33 Section details and temperature gradient for Example 8.9.

The free temperature strain εT = αT(y) is shown in Fig. 8.33c and the equivalent
actions NT,0 in each material are:

NTc,0 =
mc∑
i=1

∫
Ac(i)

Ec(i),0εc(i),T dA = [400 × 200 × (200 − 20)
2

+ 400 × 200 × 20

+ 200 × 300 × 20
2

+ 400 × 200 × 50
2

− 400 × 110

− 1240 × 25]× 10−6 × 30,000 = 339.8 kN
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NTs,0 =
ms∑
i=1

(
As(i)Es(i)εs(i),T

)= [400 × 110 + 1240 × 25]× 10−6 × 200,000

= 15.0 kN

NTp,0 =
mp∑
i=1

(
Ap(i)Ep(i)εp(i),T

)= [2000 × 200,000 × 0] = 0

and the moments of these forces about the centroidal axis of the section are:

MTc,0 =
mc∑
i=1

∫
Ac(i)

yEc(i),0εc(i),T dA = [400 × 200 × (200 − 20)
2

× (−433.3̇)

+ 400 × 200 × 20 × (−400) + 200 × 300 × 20
2

× (−200)

+ 400 × 200 × 50
2

× 433.3 − 400 × 110 × (−400)

− 1240 × 25 × 400]× 10−6 × 30,000 = −90.25 kNm

MTs,0 =
ms∑
i=1

(
ys(i)As(i)Es(i)εs(i),T

)= [400 × 110 × (−400)

+ 1240 × 25 × 400]× 10−6 × 200,000 = −1.04 kNm

NTp,0 =
mp∑
i=1

(
yp(i)Ap(i)Ep(i)εp(i),T

)= [300 × 2000 × 200,000 × 0] = 0

From Eqs 8.21:

NT,0 = NTc,0 + NTs,0 + NTp,0 = 354.8 kN

MT,0 = MTc,0 + MTs,0 + MTp,0 = −90.25 − 1.04 = −91.29 kNm

The rigidities of this cross-section are obtained from Eqs 5.72 as
RA,0 = 9.02 × 109 N, RB,0 = 15.91 × 1010 Nmm, RI,0 = 9.67 × 104 Nmm2,
and with the F0 matrix for this cross-section calculated using Eq. 5.71b, the
strain matrix for the otherwise unloaded cross-section is determined using
Eq. 8.23:

ε0 = F0fT =
[

1.112 × 10−10 −1.829 × 10−14

−1.829 × 10−14 1.037 × 10−15

][
354.8 × 103

−91.29 × 106

]

=
[

41.1 × 10−6

−0.1012 × 10−6 mm−1

]
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The top (y = −500 mm) and bottom (y = +500 mm) fibre strains are:

ε0,top = 41.1 × 10−6 + (−500) × (−0.1012 × 10−6) = 91.7 × 10−6

ε0,bot = 41.1 × 10−6 + 500 × (−0.1012 × 10−6) = −9.5 × 10−6

The temperature-induced changes of stress in the concrete are determined from
Eq. 8.17a as follows:

At y = −500 mm:
�σ c,0 = 30,000[41.1 + (−500) × (−0.1012) − 200]× 10−6 = −3.25 MPa

At y = −300 mm:
�σc,0 = 30,000[41.1 + (−300) × (−0.1012) − 20]× 10−6 = 1.54 MPa

At y = 0 mm:
�σc,0 = 30,000[41.1 + (0) × (−0.1012) − 0]× 10−6 = 1.23 MPa

At y = +300 mm:
�σc,0 = 30,000[41.4 + (300) × (−0.1012) − 0]× 10−6 = 0.32 MPa

At y = +500 mm:
�σc,0 = 30,000[41.4 + (500) × (−0.1012) − 50]× 10−6 = −1.79 MPa

From Eqs 8.17b and c:

�σs(1) = 200,000[41.4 + (−400) × (−0.1012) − 110]× 10−6 = −5.68 MPa

�σs(2) = 200,000[41.4 + (400) × (−0.1012) − 25]× 10−6 = −4.88 MPa

�σp = 200,000[41.4 + (300) × (−0.1012) − 0]× 10−6 = −2.15 MPa

The temperature-induced strains and eigenstresses on the concrete section are
shown in Fig. 8.34.

−3.25

−1.7950−9.5

200

1.54

1.23

0.32

91.7

20

Strain (×10−6) Concrete stress (MPa)

Free temperature strain, eT

Actual strain, e0

+

−

−

Figure 8.34 Temperature-induced stress and strain in Example 8.10.
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8.6.4 Temperature effects in members and structures

The temperature-induced strains on individual cross-sections cause axial deformation
and rotation of members and structures. In statically indeterminate members, the
displacement caused by temperature changes may not be free to occur, and restraining
forces may develop at the supports. The stresses and deformations caused by
these restraining forces must be calculated and added to the temperature-induced
eigenstresses in order to obtain the total effect of temperature. The redundant forces
caused by restraint to temperature can be determined using exactly the same procedure
as outlined in Section 8.3.2.

Example 8.11

A beam with cross-section shown in Fig. 8.33a is subjected to the temperature
gradient of Fig. 8.33b applied over its entire length in an eight-hour period. If the
beam was statically determinate, the temperature-induced stresses and strains on
the cross-section were calculated in Example 8.10 and illustrated in Fig. 8.34.
From Example 8.10, the temperature-induced strain at the reference axis (at the
mid-depth of the cross-section) and the curvature on each cross-section of the
beam are: εr,0 = 41.1 × 10−6 and κ0 = −0.1012 × 10−6 mm−1.

(a) The beam is uncracked throughout and simply supported
over a span of 14 m

The displacement of the beam (idealised in Fig. 8.35a) is to be determined. The
axial deformation of the member is:

eAB = εr,0 L = 41.1 × 10−6 × 14,000 = 0.58 mm (elongation)

and the deflection at mid-span is calculated using Eq. 8.1b:

vC = 14,0002

96

[
12 × (−0.1012) × 10−6

]
= −2.48 mm

θA vC eAB

L = 14,000 mm

  A                                                    C                                                     B BCA

(a) Simply-supported beam

(b) Redundant reactions if end A is fixed

MA

VBVA

Figure 8.35 Temperature-induced deformations and reactions in Example 8.11.
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From Eq. 3.7b, the slope at each end of the beam is:

θA = θB = 14,000
6

[
3 × (−0.1012 × 10−6)

]
= −0.708 × 10−3 rad

(b) The support at A is fixed, so that θA is prevented

If the rotation at A cannot occur, the temperature gradient will induce the
reactions shown in Fig. 8.35b at the supports. For this analysis, the moment
at A is taken to be the redundant, RR = MA, and the deformation of the primary
structure at the release is:

uA = θA = −0.708 × 10−3

Due to a unit moment applied at A, the rotation at A is f11 and the reactions at
the supports of the primary beam are RPR, where:

f11 = L
3Ec I

and RPR =
{

VA = −1
/

L

VB = +1
/

L

}

For this beam, Ec = 30,000 MPa and the second moment of are of the
transformed cross-section about its centroidal axis is equal to I = 31,040
×106 mm4. Therefore:

f̄11 = 14,000
3 × 30,000 × 31,040 × 10−6 = 5.01 × 10−12

From Eq. 8.5, the redundant moment at A is:

RR = MA = −−0.708 × 10−3

5.01 × 10−12 = 141.3 kNm

and the other reactions of the statically indeterminate beam are determined from
statics:

VB = MA

L
= 141.3 × 106

14,000
= 10.09 kN and VA = −VB = −10.09 kN

The temperature-induced eigenstresses at the support A were calculated in
Example 8.10 and are reproduced in Fig. 8.36a. In Fig. 8.36b, the continuity
stresses in the concrete caused by the redundant moment MA are also shown. The
resultant temperature-induced stresses are obtained by summing the eigenstresses
and the continuity stresses and are illustrated in Fig. 8.36c.
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(a) Eigenstresses (c) Resultant stresses(b) Continuity stresses

Figure 8.36 Temperature-induced concrete stresses at fixed support at A in Example 8.11.

8.7 Concluding remarks

The techniques described and illustrated in this chapter may be extended readily to
include a wide range of additional structural applications. The procedures are not
daunting and require little more than an elementary background in mechanics and
structural analysis.

An analysis for the effects of creep and shrinkage on the behaviour of concrete
structures allows the structural design engineer to better predict and control in-
service performance. But perhaps of greater importance, it provides a clear picture
of the interaction between concrete and reinforcement at service loads and a better
understanding of why concrete structures behave as they do.
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9 Stiffness method and finite-element
modelling

9.1 Introduction

The analysis of members and frames is commonly carried out in design offices
using commercial software based on either the stiffness method or the finite-element
approach. This chapter outlines how these methods can be used for the long-term
analyses of concrete structures, accounting for the effects of creep and shrinkage. The
solution procedures required for the methods are well established (Refs 1–3) and only
a brief overview of them is provided here. Throughout the chapter frequent reference is
made to Appendix A, where the detailed derivations required to establish the proposed
approaches are outlined. Worked examples are also presented to better illustrate the
methods.

9.2 Overview of the stiffness method

The stiffness method of analysis, also referred to as the displacement method, is a
matrix method for the analysis of complex structural systems using computers. A beam
or frame is discretised into a number of line elements, referred to as stiffness elements,
connected at their ends by nodes. A typical two-dimensional six degree of freedom
(6 DOF) frame element of length L is illustrated in Fig. 9.1, where the three possible
displacement components at each end node and the three corresponding nodal actions
are shown. The overall structural response is evaluated by combining the contribution
of each single element in resisting the applied loads or deformations. This approach
relies on the fact that, for each element, it is possible to establish a stiffness relationship
between nodal actions and nodal displacements, i.e.:

p = keu (9.1)

where p and u are the nodal actions and displacements of an element, and ke is the
element stiffness matrix. For any particular element, this relationship is expressed
in its particular coordinate system (usually referred to as the local or member
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coordinate system). For example, for the 6 DOF frame element of Fig. 9.1, the stiffness
matrix is derived in Appendix A as Eq. A.51 and is reproduced here as:

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RA

L
0 −RB

L
−RA

L
0

RB

L

0
12
α1L3

6
α1L2 0 − 12

α1L3

6
α1L2

−RB

L
6

α1L2

4
α1L

+ R2
B

RAL
RB

L
− 6
α1L2

2
α1L

− R2
B

RAL

−RA

L
0

RB

L
RA

L
0 −RB

L

0 − 12
α1L3 − 6

α1L2 0
12
α1L3 − 6

α1L2

RB

L
6

α1L2

2
α1L

− R2
B

RAL
−RB

L
− 6
α1L2

4
α1L

+ R2
B

RAL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.2a)

and the nodal actions and displacements shown in Fig. 9.1 are:

p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL

SL

ML

NR

SR

MR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.2b)

u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL

vL

θL

uR

vR

θR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.2c)

The rigidities RA, RB and RI have been introduced in Chapters 5 and 7 for different
types of cross-sections, and the coefficients α0 and α1 are calculated from the rigidities
using Eqs A.50a and b. The subscripts ‘L’ and ‘R’ on the nodal loads and displacements
denote the left (at z = 0) and right (at z = L) member ends, respectively, when looking
at the element with the z-axis horizontal and pointing towards the right.

In the proposed formulation, the coordinate system is illustrated in Fig. 9.2 for a
typical reinforced concrete member. To remain consistent with the coordinate systems
adopted in previous chapters, rotations are assumed to be positive when clockwise
and transverse displacements are positive when in the direction of the y-axis.

In a real structure, members may have different orientations (with different local
coordinate systems). It is therefore convenient to introduce a global coordinate system
to be used for the whole structure. The load and displacement vectors for a particular
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(a) Nodal displacements

uL

vL

vR

ML

MR NR

SR

NL

SL

uR

z
L

z
L

(b) Nodal actions

qL

qR

Figure 9.1 Freedoms of the 6 DOF frame element.

x
y

z

L

Figure 9.2 Coordinate system adopted for the member analysis.

element (defined in local coordinates in Eqs 9.2b and c, respectively) can be expressed
in global coordinates by carrying out the following transformations:

u = TUe (9.3a)

Pe = TTp (9.3b)

where Pe represents the load vector in global coordinates, Ue is the vector of nodal
displacements in global coordinates, and the transformation matrix T is given by:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c s 0 0 0 0

−s c 0 0 0 0

0 0 1 0 0 0

0 0 0 c s 0

0 0 0 −s c 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.4)

where c and s are, respectively, the cosine and the sine of the angle between the global
and local coordinate systems (measured clockwise from the global system).
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Substituting Eqs 9.3 into Eq. 9.1 gives the stiffness relationship of a particular
element expressed in global coordinates:

Pe = KeUe (9.5)

where Ke is the stiffness matrix of the element in global coordinates given by:

Ke = TTkeT (9.6)

The stiffness relationship for the whole structure is then obtained by assembling the
contribution of each element and can be expressed as:

P = KU (9.7)

where K is the structural stiffness matrix, while P and U are, respectively, the vectors
of nodal actions and displacements for the whole structure expressed in the global
coordinate system.

Equation 9.7 is readily solved for the unknown displacements and reactions. For
illustrative purposes, Eq. 9.7 can be re-written in terms of the known and unknown
displacements (UK and UU) and known and unknown actions (PK and PU) as follows:[

PK

PU

]
=
[

K11 K12

K21 K22

][
UU

UK

]
(9.8)

The unknown displacements and actions are determined as follows:

UU = K−1
11 (PK − K12UK) (9.9a)

PU = K21UU + K22UK (9.9b)

9.3 Member loads

Distributed member loads can be considered in the analysis by introducing particular
sets of nodal actions that produce equivalent effects to the original distributed loads
and, for this reason, are usually referred to as equivalent nodal loads. These correspond
to the opposite of the reactions that would occur at the end of a loaded stiffness element
if its ends were assumed to be fixed. Different sets of equivalent nodal loads have been
derived in Appendix A. For example, in the case of uniform longitudinal and transverse
distributed loads (referred to as n and p, respectively, in Fig. 9.3), the end reactions of a
fixed ended member pF.m are given in Eq. A.52 (reproduced here for ease of reference):

pF.m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L/2

α3

Lα3/2

−L/2

α3

Lα3/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n (9.10)
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p

nML

NL NR

SR

MR
SL

Figure 9.3 Free body diagram of a frame element highlighting uniformly distributed vertical
and horizontal member loads n and p.

The subscript ‘m’ indicates that the reactions relate to member loads, while the
subscript ‘F’ indicates that these actions have been determined assuming both ends
of the element are fully fixed. The term α3 is the ratio of the cross-sectional rigidities
RB and RA and is defined in Eq. A.50d.

The equivalent nodal loads for inclusion in the stiffness analysis are the opposite
of these reactions (i.e. −pF.m). The unknown displacements and reactions of the
structure are obtained from Eqs 9.9 after the nodal loads from all elements are
assembled.

The actions on each element (depicted in Fig. 9.1b) can be calculated by adding the
forces and moments caused by the calculated displacements (= ku) to the fixed-end
reactions specified in Eq. 9.10 as:

p = ku + pF.m (9.11)

Based on the Euler–Bernoulli beam assumptions, the displacements at any point
along the length of an element are given by:

v = α1p
z4

24
+ �C1

z3

6
+ �C2

z2

2
+ �C3z + �C4 (9.12a)

u = α2p
z3

6
+ (α3�C1 +α4n

) z2

2
+ �C5z + �C6 (9.12b)

where these equations are derived in Appendix A as Eqs A.53. The terms α1,
α2, α3 and α4 are calculated from the cross-sectional rigidities and are given in
Eqs A.50b–e.

The constants of integration �C1 to �C6 are obtained by specifying the appropriate
boundary conditions and are expressed in terms of the nodal (element) displacements
and applied member loads in Eqs A.54.

The expressions describing the variation of the axial strain (measured at the level of
the x-axis) and curvature along the member length can be obtained by differentiating
Eqs 9.12:

u′ = α2p
z2

2
+ (α3�C1 +α4n

)
z + �C5 (9.13a)

v′′ = α1p
z2

2
+ �C1z + �C2 (9.13b)
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For example, these expressions can be used to evaluate the internal axial force and
moment resisted by the concrete (Eqs A.56 and A.58) which will become useful in the
following sections dealing with time effects:

Nc = AcEcu′ − BcEcv′′ = ac0 + ac1z + ac2z2 (9.14a)

Mc = BcEcu′ − IcEcv′′ = bc0 + bc1z + bc2z2 (9.14b)

The concrete cross-sectional properties have been defined in Chapter 5, while the use
of the parabolic polynomial to describe the variation of both Nc and Mc is justified
in Appendix A for the derivation of Eqs A.56 and A.58. The coefficients of the
polynomials (ac0, ac1, ac2, bc0, bc1, bc2) are given in Appendix A (Eqs A.57 and A.59).

In the following example, a simple beam subdivided into two elements is considered
for illustrative purposes only. Clearly, the method is more applicable for more complex
structures.

Example 9.1

The instantaneous mid-span deflection of the simply-supported beam shown in
Fig. 9.4 is to be determined using the stiffness method. The beam is subjected to
the uniformly distributed transverse load and the axial point load shown. The
set of external actions reproduces the loading condition of Example 5.1 at mid-
span of the member. The analysis is carried out using two stiffness elements of
equal length numbered 1 and 2, respectively, as shown in Fig. 9.4. The geometry
and material properties of the cross-section are as specified in Example 5.1
(including the use of the x-axis located at 200 mm below the top fibre of the
cross-section). The member actions for both elements are to be calculated, as are
all the coefficients necessary to define the expressions for the strain and for the
internal actions resisted by the concrete along each element.

1 2

C

B

A

4 kN/m

5 m 5 m

30 kN

Figure 9.4 Loading, support conditions and discretisation for Example 9.1.

All units utilised in the solutions are in mm and N. For clarity, units are not
displayed next to the terms in large matrices in the following solution.
An additional subscript ‘(1)’ or ‘(2)’ is used to specify whether a variable is
calculated for elements 1 or 2, respectively. Where variables are identical for both
elements, the subscript might be omitted for ease of notation. This is usually the
case for the cross-sectional rigidities and material properties that are identical
for both elements.
The freedoms for the problem are numbered in Fig. 9.5, where the lower
numbers are used for the unrestrained freedoms. This numbering strategy is
particularly useful for hand calculation as it leads to the partitioning introduced
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in Eqs 9.8. Also for this particular example, with the numbering proposed in
Fig. 9.5, global and local coordinates coincide and there is no need to include
transformations between the two coordinate systems in the solution, such as
those described in Eqs 9.3 and 9.6.

1 2 CB

1
2

3 4
5

9 6
7

8

A

Figure 9.5 Freedom numbering for Example 9.1.

Considering that freedoms 7, 8 and 9 are restrained by the pinned and roller
supports, their displacements are known, while the displacements along the
remaining freedoms are unknown. Therefore:

UK =
[
U7 U8 U9

]T = [
0 0 0

]T and UU = [
U1 U2 U3 U4 U5 U6

]T
The unknown reactions are collected in PU :

PU = [
P7 P8 P9

]T
From Example 5.1, the instantaneous cross-section rigidities are:

RA = 4923 × 106 N

RB = 543.9 × 109 Nmm

RI = 221.0 × 1012 Nmm2

and from Eqs A.50:

α0 = R1RA − R2
B = 792.3 × 1021 N2mm2

α1 = RA

α0
= 6.214 × 10−15 N−1mm−2

α2 = RB

α0
= 686.5 × 10−15 N−1mm−1

α3 = RB

RA
= 110.5 mm

α4 = − 1
RA

= −203.1 × 10−12 N−1
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The stiffness matrices for elements 1 and 2 are identical (as both possess the
same geometric and cross-sectional properties) and are given by Eq. 9.2a:

k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

984.7 × 103 0 −108.8 × 106 −984.7 × 103 0 108.8 × 106

15.45 × 103 38.62 × 106 0 −15.45 × 103 38.62 × 106

140.7 × 109 108.8 × 106 −38.62 × 106 52.35 × 109

984.7 × 103 0 −108.8 × 106

sym 15.45 × 103 −38.62 × 106

140.7 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The fixed end forces on each element due to the transverse load p = 4 N/mm are
obtained from Eq. 9.10:

pF.m(1) = pF.m(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L
2

−L2

12

0

−L
2

L2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 N

−10 × 103 N

−8.3 × 106 Nmm

0 N

−10 × 103 N

8.3 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assembling the contribution of the two elements into the stiffness matrix of
the structure enables the determination of the various sub-matrices of K given
in Eq. 9.8:

K11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

140.7 × 109 108.8 × 106 −38.62 × 106 52.35 × 109 0 0

1.969 × 106 0 −217.6 × 106 −984.7 × 103 108.8 × 106

30.89 × 103 0 0 38.62 × 106

281.5 × 109 108.8 × 106 52.35 × 109

sym 984.7 × 103 −108.8 × 106

140.7 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−108.8 × 106 38.62 × 106 0

−984.7 × 103 0 0

0 −15.45 × 103 −15.45 × 103

108.8 × 106 38.62 × 106 −38.62 × 106

0 0 0

0 0 −38.62 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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K22 =
⎡
⎢⎣984.7 × 103 0 0

15.45 × 103 0

sym 15.45 × 103

⎤
⎥⎦

K21 = KT
12

Assembling the load vector for the whole structure (including the axial load of
−30 kN applied at freedom 5) produces:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8.3 × 106 Nmm

0 N

20 × 103 N

0 Nmm

−30 × 103 N

−8.3 × 106 Nmm

P7

P8 + 10 × 103 N

P9 + 10 × 103 N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Unknown displacements UU and reactions PU are then calculated using
Eqs 9.9:

UU = K−1
11 (PK − K12UK) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.138 × 10−3

−156.2 × 10−3 mm

3.494 mm

0

−312.5 × 10−3 mm

−1.138 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PU =
⎡
⎢⎣P7

P8

P9

⎤
⎥⎦=

⎡
⎢⎣ 30 × 106 N

−20 × 106 N

−20 × 106 N

⎤
⎥⎦

The mid-span deflection is the displacement related to freedom 3) and is equal
to 3.49 mm.

Post-processing

The solution is post-processed below to determine the variables defining the
strain diagram and the internal actions along each element.
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Element 1

The nodal displacements undergone by the end nodes of element 1 are collected
in vector u(1):

u(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL(1)

vL(1)

v′
L(1)

uR(1)

vR(1)

v′
R(1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 mm

0 mm

1.138 × 10−3

−156.2 × 10−3 mm

3.494 mm

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The member actions are obtained from Eq. 9.11:

p(1) = ku(1) + pF.m(1)

= [
30 × 103 N −20 × 103 N 0Nmm −30 × 103 N 0N −50 × 106 Nmm

]T
The relevant constants of integration are then obtained from Eqs A.54:

�C1(1) = −124.3 × 10−12 mm−2

�C2(1) = −20.59 × 10−9 mm−1

�C3(1) = 1.138 × 10−3

�C4(1) = 0 mm

�C5(1) = −8.368 × 10−6

�C6(1) = 0 mm

These can be substituted in Eqs 9.13 to determine the strain distribution
along member 1. For example, the axial strain measured at the level of the
reference axis εr(1) (= u′

(1)) and the curvature κ(1) (= −v′′
(1)) at mid-span of the

beam can be obtained by substituting z = 5000 mm in Eqs 9.13:

εr(1) = u′
(1)(z = 5000) = −42.7 × 10−6 and κ(1) = −v′′

(1) (z = 5000)

= 0.331 × 10−6 mm−1

which, as expected, corresponds to the same solution obtained in Example 5.1.
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The coefficients defining the expressions for the concrete internal axial force and
moment are determined from Eqs A.57 and A.59:

ac0(1) = −28.16 × 103 N

ac1(1) = −6.701 Nmm−1

ac2(1) = 670.2 × 10−6 Nmm−2

bc0(1) = −66.96 × 103 Nmm

bc1(1) = 15.65 × 103 N

bc2(1) = −1.564 Nmm−1

Element 2

Similar to element 1, the terms describing the response of element 2 are
calculated as:

u(2) =
[
uL(2) vL(2) v′

L(2) uR(2) vR(2) v′
R(2)

]
=
[
156.2 × 10−3 3.494 0 − 312.5 × 10−3 0 − 1.138 × 10−3

]
p(2) = ku(2) + pF.m(2)

= [
30 × 103 N 0N 50 × 106 Nmm −30 × 103 N −20 × 103 N 0Nmm

]T
�C1(2) = 0 mm−2

�C2(2) = −331.3 × 10−9 mm−1

�C3(2) = 0

�C4(2) = 3.494 mm

�C5(2) = −42.69 × 10−6

�C6(2) = −156.2 × 10−3 mm

The mid-span values of the strain variables (already calculated with element 1)
could also have been determined with element 2 using the expressions of Eqs 9.13
at z = 0 mm.

9.4 Time analysis using AEMM

When using the AEMM, deformations and stresses are calculated at two instants,
immediately after loading at τ0 and after the effects of creep and shrinkage have taken
place at τk. The instantaneous analysis at τ0 was presented in the previous section. The
time analysis at time τk is outlined in the following.

Creep and shrinkage effects are included in the stiffness analysis using equivalent
nodal actions. As already discussed for the member loads, the set of equivalent nodal
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actions to be used in the stiffness method correspond to the opposite of the reactions
obtained when the supports of the element under consideration are assumed to be fixed
at both ends. The reactions produced by creep and shrinkage effects and by member
loads are derived in Appendix A (Eqs A.66) and are reproduced below.

pF.cr,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�Fe,0

(
ac2,0L2

3
+ ac1,0L

2
+ ac0,0

)

�Fe,0
(
α3,kac1,0 + Lα3,kac2,0 − bc1,0 − bc2,0L

)
−�Fe,0

(
−ac1,0 + ac2,0L

2
α3,kL − bc0,0 + bc2,0

L2

6

)

�Fe,0

(
ac2,0L2

3
+ ac1,0L

2
+ ac0,0

)

−�Fe,0
(
α3,kac1,0 + Lα3,kac2,0 − bc1,0 − bc2,0L

)
−�Fe,0

(
−ac1,0 + ac2,0L

2
α3,kL + bc0,0 + bc1,0L + bc2,0

5L2

6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.15a)

pF.sh.k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ee,kAcεsh,k

0

−�Ee,kBcεsh,k

−�Ee,kAcεsh,k

0
�Ee,kBcεsh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.15b)

pF.m,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L/2

α3,k

Lα3,k/2

−L/2

−α3,k

Lα3,k/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n (9.15c)

where the constants α0,k, α1,k, α2,k, α3,k and α4,k are obtained from the cross-sectional
rigidies at time τk using Eqs A.50a–e, respectively. The subscripts ‘m’, ‘cr’ and ‘sh’
used in pF.m,k, pF.cr,k and pF.sh,k indicate that the fixed end reactions relate to either
member loads, creep effects or shrinkage effects, respectively. The calculation at time
τk of the cross-sectional rigidities RA,k, RB,k and RI,k required for input into Eqs A.50
has already been outlined in Chapter 5 for different types of cross-sections. The time-
dependent behaviour of concrete is represented by �Ee,k and �Fe,0 (given in Eqs 4.35 and
4.46), while εsh,k denotes the shrinkage strain. The coefficients acj,0 and bcj,0 (with
j = 0 to 2) that are necessary to define the expressions of the concrete internal actions
are specified in Eqs A.57 and A.59.
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The time analysis can then be carried out by assembling the opposite of the vectors
pF.m,k, pF.cr,k and pF.sh,k for each element into the loading vector of the structure,
Pk, while using the cross-sectional properties calculated at τk in the determination of
the stiffness coefficients of Kk. When the unknown displacements and reactions are
evaluated based on Eqs 9.9, the end actions of each element (i.e. member actions) can
be obtained by combining the results of the stiffness analysis with those related to
member loads, creep and shrinkage as follows:

pk = kkuk + pF.m,k + pF.cr,k + pF.sh,k (9.16)

The axial displacement uk and deflection vk can be calculated along the member
axis using Eqs A.63 (repeated here for convenience):

uk = (
α2,kp +β2,k

) z3

6
+ (α3,k

�C1,k +α4,kn +β3,k
) z2

2
+ �C5,kz + �C6,k (9.17a)

vk = (
α1,kp +β1,k

) z4

24
+ �C1,k

z3

6
+ �C2,k

z2

2
+ �C3,kz + �C4,k (9.17b)

where the constants αj,k (with j = 0 to 4) and βj,k (with j = 1 to 3) are given in
Eqs A.50 and A.64, respectively and the constants of integration �C1,k to �C6,k are
given in Eqs A.67.

The strain diagram at any point along an element can be obtained by differentiating
Eqs 9.17 to give:

u′
k = (

α2,kp +β2,k
) z2

2
+ (α3,k

�C1,k +α4,kn +β3,k
)
z + �C5,k (9.18a)

vk = (
α1,kp +β1,k

) z2

2
+ �C1,kz + �C2,k (9.18b)

from which the stresses may be evaluated following the procedures illustrated in
Chapter 5.

Example 9.2

The deflection at time τk and the variables defining the strain diagram (εr,k and
κk) at mid-span of the simply-supported beam analysed in Example 9.1 are to
be determined, as well as the actions resisted by the two elements. The applied
loads are assumed to remain constant with time. The cross-sectional and material
properties of the beam are those of the reinforced concrete section considered in
Example 5.3. The analysis is to be carried out using the stiffness method assuming
the same two elements and freedom numbering as adopted in Example 9.1.
All units are in mm and N, unless noted otherwise. From Example 5.3:

�Ee,k = 9524 MPa

�Fe,0 = −0.333

ϕ(τk,τ0) = 2.5
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χ (τk,τ0) = 0.65

εsh(τk) = −600 × 10−6

Ac = 177.6 × 103 mm2

Bc = 17.46 × 106 mm3

Ic = 6966 × 106 mm4

RA,k = 2175 × 106 N

RB,k = 273.7 × 109 Nmm

RI,k = 113.2 × 1012 Nmm2

and from Example 5.1:

RA,0 = 4923 × 106 N

RB,0 = 543.9 × 109 Nmm

RI,0 = 221.0 × 1012 Nmm2

As for Example 9.1:

UU,k = [
U1,k U2,k U3,k U4,k U5,k U6,k

]T
UK,k = [

U7,k U8,k U9,k
]T = [

0 0 0
]T

PU,k = [
P7,k P8,k P9,k

]T
From Eqs A.50:

α0,k = 171.4 × 1021 N2mm2

α1,k = 12.69 × 10−15 N−1mm−2

α2,k = 1597 × 10−15 N−1mm−1

α3,k = 125.8 mm

α4,k = −459.7 × 10−12 N−1

The stiffness matrix for both elements 1 and 2 are identical and calculated at
time τk as (Eq. 9.2a):

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

435.0 × 103 0 −54.74 × 106 −435.0 × 103 0 −54.74 × 106

7.563 × 103 18.91 × 106 0 −7.563 × 103 18.91 × 106

69.92 × 109 54.74 × 106 −18.91 × 106 24.62 × 109

435.0 × 103 0 −54.74 × 106

sym 7.563 × 103 −18.91 × 106

69.92 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The set of reactions required to account for the member load p = 4 N/mm and
for shrinkage are (Eqs 9.15b and c):

pF.m,k(1) = pF.m,k(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 N

−10 × 103 N

−8.3 × 106 Nmm

0 N

−10 × 103 N

8.3 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pF.sh,k(1) = pF.sh,k(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ash,k

0

−bsh,k

−ash,k

0

bsh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ee,kAcεsh,k

0

−�Ee,kBcεsh,k

−�Ee,kAcεsh,k

0
�Ee,kBcεsh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1014 × 106 N

0 N

99.78 × 106 Nmm

1014 × 106 N

0 N

−99.78 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The vectors pF.cr,k(1) and pF.cr,k(2) need to be evaluated for the two elements
separately.
From Example 9.1:

ac0(1),0 = −28.16 × 103 N

ac1(1),0 = −6.701 Nmm−1

ac2(1),0 = 670.2 × 10−6 Nmm−2

bc0(1),0 = −66.96 × 103 Nmm

bc1(1),0 = 15.65 × 103 N

bc2(1),0 = −1.564 Nmm−1

ac0(2),0 = −44.91 × 103 N

ac1(2),0 = 2.788 × 10−12 Nmm−1

ac2(2),0 = 670.2 × 10−6 Nmm−2

bc0(2),0 = 39.05 × 106 Nmm

bc1(2),0 = −6.509 × 10−12 N

bc2(2),0 = −1.564 Nmm−1
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From Eq. 9.15a:

pF.cr(1),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13.11 × 103 N
2.748 × 103 N

−1.799 × 106 Nmm
13.11 × 103 N

−2.748 × 103 N
15.54 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and pF.cr(2),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13.11 × 103 N
−2.748 × 103 N

−15.54 × 106 Nmm
13.11 × 103 N
2.748 × 103 N

1.799 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

After assembly, the sub-matrices of Kk and the loading vector Pk of the whole
structure at τk are:

K11,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

69.92 × 109 54.74 × 106 −18.91 × 106 24.63 × 109 0 0

870.1 × 103 0 −109.5 × 106 −435.0 × 103 54.74 × 106

15.13 × 103 0 0 18.91 × 106

139.8 × 109 54.74 × 106 24.63 × 109

sym 435.0 × 103 −54.74 × 106

69.92 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

K12,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−54.74 × 106 18.91 × 106 0

−435.0 × 103 0 0

0 −7.56 × 103 −7.56 × 103

54.74 × 106 18.91 × 106 −18.91 × 106

0 0 0

0 0 −18.91 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K22,k =

⎡
⎢⎢⎣

435.0 × 103 0 0

7.563 × 103 0

sym 7.563 × 103

⎤
⎥⎥⎦

K21,k = KT
12,k

Pk = [89.66 × 106 0 25.50 × 103 0 −1057 × 103 89.66 × 106

(P7 + 1027 × 103) (P8 + 7.252 × 103) (P7 + 7.252 × 103)]T

From Eqs 9.9, unknown displacements UU,k and reactions PU,k are obtained:

UU,k = K−1
11,k

(
PK,k − K12,kUK,k

)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.781 × 10−3

−3.033 mm

13.65 mm

0

−6.066 mm

−4.780 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
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PU,k =
⎡
⎢⎣P7,k

P8,k

P9,k

⎤
⎥⎦=

⎡
⎢⎣ 30 × 106 N

−20 × 106 N

−20 × 106 N

⎤
⎥⎦

The mid-span deflection at τk (associated with freedom 3) is 13.65 mm which
has increased from its initial value of 3.49 mm.

Post-processing

The solution is post-processed below to determine the variables defining the
strain diagram and the internal actions along each element.

Element 1

The nodal displacements and the member actions associated with the end nodes
of element 1 are:

u(1),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL(1),k

vL(1),k

v′
L(1),k

uR(1),k

vR(1),k

v′
R(1),k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 mm

0 mm

4.781 × 10−3

−3.033 mm

13.65 mm

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(1),k = kku(1),k + pF.m(1),k + pF.cr(1),k + pF.sh(1),k

= [
30 × 103 −20 × 103 0 −30 × 103 0 −50 × 106

]T
As expected, the member actions are identical to the instantaneous values as the
structure is statically determinate.
From Eqs A.67:

�C1(1),k = −323.6 × 10−12 mm−2

�C2(1),k = −416.7 × 10−9 mm−1

�C3(1),k = 4.780 × 10−3

�C4(1),k = 0 mm

�C5(1),k = −539.6 × 10−6

�C6(1),k = 0 mm

The axial strain measured at the level of the reference axis and the curvature at
mid-span are determined by substituting the calculated constants of integration
into Eqs 9.18 with z = 5000 mm: i.e. εr(1),k = u′

(1),k = −641.4×10−6 and κ(1),k =
−v′′

(1),k = 1.225 × 10−6 mm−1. As expected, these results are identical to those
calculated in Example 5.3.
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Element 2

The nodal displacements and the member actions associated with the end nodes
of element 1 are:

u(2),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL(2),k

vL(2),k

v′
L(2),k

uR(2),k

vR(2),k

v′
R(2),k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.033 mm

13.65 mm

0

−6.066 mm

0

−4.780 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p(2),k = kku(1),k + pF.m(1),k + pF.cr(1),k + pF.sh(1),k

= [
30 × 103 0 50 × 106 −30 × 103 −20 × 103 0

]T

9.5 Time analysis using SSM

When using the SSM, the time domain is discretised into a number of time instants τi
(with i = 1, . . . ,k) as shown in Fig. 4.3. As for the AEMM discussed in the previous
section, the time-dependent behaviour of the concrete is included in the analysis using
equivalent nodal actions that correspond to the opposite of the reactions obtained
when the ends of the element are fixed and the member is loaded and subject to
creep and shrinkage. These reactions are determined at a particular instant in time,
here referred to as τk, and are expressed as the vectors pF.m,k, pF.cr,k and pF.sh,k in
Eqs A.91.

Most of the notation used in the expressions for pF.m,k, pF.cr,k and pF.sh,k has already
been defined in the previous section. The procedure for the SSM and the various
constants and coefficients are derived in the Section A.5.3 and presented in Eqs A.71–
A.91.

The loading vector Pk is assembled, including the contributions of pF.m,k, pF.cr,k and
pF.sh,k for every element, and the stiffness coefficients for Kk are calculated based on
the cross-sectional rigidities determined at time τk.

The solution at time τk is obtained using Eqs 9.9. Post-processing to obtain stresses
and strains on particular cross-sections is as described previously. The element end
actions are evaluated from Eq. 9.16 and the axial displacement and deflection at any
distance z along the element are expressed by Eqs A.77. The variables describing the
strain diagram at time τk (εr,k = u′

k and κk = −v′′
k) are obtained from Eqs A.80.

Example 9.3

The simply-supported beam analysed in Example 9.2 is to be re-analysed using
the stiffness method and using the SSM to handle the time effects. The time
domain is discretised into three time instants: τ0 = 28 days, τ1 = 100 days
and τ2 = 30,000 days. The deflection and the axial strain at the level of the
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reference axis and curvature at mid-span are to be calculated at each of these
time instants. In addition, the member actions at each time step are determined
for both elements. As in Examples 9.1 and 9.2, two elements are considered with
freedom numbering as shown in Fig. 9.5.
The cross-section of the beam at mid-span was previously analysed using the
SSM in Example 5.5, where:

Ec,0 = 25 GPa

Ec,1 = 28 GPa

Ec,2 = 30 GPa

Fe,1,0 = −1.8

Fe,2,0 = −0.986

Fe,2,1 = −2.214

εsh (τ0) = εsh,0 = 0

εsh (τ1) = εsh,1 = −300 × 10−6

εsh (τ2) = εsh,2 = −600 × 10−6

Ac = 177.6 × 103 mm2

Bc = 17.46 × 106 mm3

Ic = 6966 × 106 mm4

Similarly to Example 9.1, the sets of known and unknown displacements and
unknown actions for the three time steps τj (with j = 1,2,3) are:

UU,j = [
U1,j U2,j U3,j U4,j U5,j U6,j

]T
UK,j =

[
U7,j U8,j U9,j

]T = [
0 0 0

]T
PU,j = [

P7,j P8,j P9,j
]T

From Examples 5.1 and 5.5:

RA,0 = 4923 × 106 N

RB,0 = 543.9 × 109 Nmm

RI,0 = 221.0 × 1012 Nmm2

RA,1 = 5456 × 106 N

RB,1 = 596.4 × 109 Nmm

RI,1 = 241.9 × 1012 Nmm2

RA,2 = 5811 × 106 N

RB,2 = 631.3 × 109 Nmm

RI,2 = 255.8 × 1012 Nmm2
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From Eqs A.50:

α0,1 = 792.3 × 1021 N2mm2

α1,1 = 6.214 × 10−15 N−1mm−2

α2,1 = 686.6 × 10−15 N−1mm−1

α3,1 = 110.5 mm

α4,1 = −203.1 × 10−12 N−1

α0,2 = 964.4 × 1021 N2mm2

α1,2 = 5.658 × 10−15 N−1mm−2

α2,2 = 618.4 × 10−15 N−1mm−1

α3,2 = 109.3 mm

α4,2 = −193.3 × 10−12 N−1

Short-term analysis (τ0 = 28 days)

The solution at time τ0 is identical to that presented in Example 9.1.

Time analysis – SSM (τ1 = 100 days)

The stiffness matrix for elements 1 and 2 is determined using Eq. 9.2a with the
rigidities calculated at time τ1:

k1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1091 × 103 0 −119.3 × 106 −1091 × 103 0 119.3 × 106

16.97 × 103 42.42 × 106 0 −16.97 × 103 42.42 × 106

154.4 × 109 119.3 × 106 −42.42 × 106 57.66 × 109

1091 × 103 0 −119.3 × 106

sym 16.97 × 103 −42.42 × 106

154.4 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since, the external loads are constant in time, the sets of reactions required
to account for the member load p = 4 N/mm (i.e. pF,m(1),1 and pF,m(2),1) are
identical to those determined in Example 9.1 at τ0. Shrinkage is accounted for
using Eq. A.91b with

pF.sh(1),1 = pF.sh(2),1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ec,1Acεsh,1

0

−Ec,1Bcεsh,1

−Ec,1Acεsh,1

0

Ec,1Bcεsh,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1491 × 106

0

146.7 × 106

1491 × 106

0

−146.7 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Stiffness method and finite-element modelling 371

From Example 9.1, for element 1:

ac0(1),0 = −28.16 × 103 Nmm2

ac1(1),0 = −6.701 Nmm−1

ac2(1),0 = 670.2 × 10−6 Nmm−2

bc0(1),0 = −66.96 × 103 Nmm

bc1(1),0 = 15.65 × 103 N

bc2(1),0 = −1.564 Nmm−1

and for element 2:

ac0(2),0 = −44.91 × 103 Nmm2

ac1(2),0 = 2.788 × 10−12 Nmm−1

ac2(2),0 = 670.2 × 10−6 Nmm−2

bc0(2),0 = 39.05 × 106 Nmm

bc1(2),0 = −6.509 × 10−12 N

bc2(2),0 = −1.564 Nmm−1

From Eq. A.91, the creep effects are included in pF,cr(1),1 and pF,cr(2),1:

pF.cr(1),1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−70.8 × 103

14.74 × 103

−9.968 × 106

70.8 × 103

−14.74 × 103

83.67 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and pF.cr(2),1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−70.8 × 103

−14.74 × 103

−83.67 × 106

70.8 × 103

14.74 × 103

9.968 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

After assembly, the sub-matrices of K1 and the load vector P1 of the whole
structure at τ1 are:

K11,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

154.4 × 109 119.3 × 106 −42.42 × 106 57.66 × 109 0 0

2182 × 103 0 −238.5 × 106 −1091 × 103 119.3 × 106

119.3 × 103 0 0 42.42 × 106

308.9 × 109 119.3 × 106 57.66 × 109

sym 1091 × 103 −119.3 × 106

154.4 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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K12,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−119.3 × 106 42.42 × 106 0

−1091 × 103 0 0

0 −16.97 × 103 −16.97 × 103

119.3 × 106 42.42 × 106 −42.42 × 106

0 0 0

0 0 −42.42 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K22,1 =
⎡
⎢⎣1091 × 103 0 0

16.97 × 103 0

sym 16.97 × 103

⎤
⎥⎦

K21,1 = KT
12,1

P1 =[− 128.4 × 106 0 49.48 × 103 0 −1592 × 103 128.4 × 106

(P7 + 1562 × 103) (P8 − 4.742 × 103) (P7 − 4.742 × 103)
]T

Solving for the unknown displacements and reactions using Eqs 9.9 gives:

UU,1 = K−1
11,1

(
PK,1 − K12,1UK,1

)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.042 × 10−3

−1.792

9.063

0

−3.583

−3.042 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PU,1 =
⎡
⎢⎣P7,1

P8,1

P9,1

⎤
⎥⎦=

⎡
⎢⎣ 30 × 106

−20 × 106

−20 × 106

⎤
⎥⎦

Post-processing

The solution is post-processed below to determine the variables defining the
strain diagram and the internal actions along each element.

Element 1

The nodal displacements and the member actions associated with the end nodes
of element 1 are:

u(1),1 = [
0 0 3.042 × 10−3 −1.792 9.063 0

]T
p(1),1 = k1u(1),1 + pF.m(1),1 + pF.cr(1),1 + pF.sh(1),1

= [
30 × 103 −20 × 103 0 −30 × 103 0 −50 × 106

]T
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Using Eqs A.90:

β1(1),1 = 33.36 × 10−15 mm

β2(1),1 = 4.088 × 10−12 mm2

β3(1),1 = −2.211 × 10−9 mm−1

From Eqs A.79:

�C1(1),1 = −280 × 10−12 mm−2

�C2(1),1 = −141.7 × 10−9 mm−1

�C3(1),1 = 3.042 × 10−3

�C4(1),1 = 0 mm

�C5(1),1 = −303.7 × 10−6

�C6(1),1 = 0 mm

The axial strain and curvature are calculated at mid-span by substituting z =
5000 mm into Eqs A.68 giving εr(1),1 = u′

(1),1 = −385.7 × 10−6 and κ(1),1 =
−v′′

(1),1 = 0.841×10−6 mm−1, which are the same as the results of Example 5.5
at τ1.
From Eqs A.82 and A.84:

ac0(1),1 = 101.7 × 103 Nmm2

ac1(1),1 = −14.19 Nmm−1

ac2(1),1 = 1419 × 10−6 Nmm−2

bc0(1),1 = 25.97 × 106 Nmm

bc1(1),1 = 10.39 × 103 N

bc2(1),1 = −1.039 Nmm−1

Element 2

u(2),1 =
[
−1.792 9.063 0 −3.583 0 −3.042 × 10−3

]T

p(2),1 = [
30 × 103 0 50 × 106 −30 × 103 −20 × 103 0

]T
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Time analysis – SSM (τ2 = 30,000 days)

Following the procedure outlined for the time analysis at τ1, the stiffness matrix
for elements 1 and 2 is based on the rigidities at τ2:

k2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1162 × 103 0 −126.3 × 106 −1162 × 103 0 126.3 × 106

17.97 × 103 44.95 × 106 0 −17.98 × 103 44.95 × 106

163.5 × 109 126.3 × 106 −44.95 × 106 61.19 × 109

1162 × 103 0 −126.3 × 106

sym 19.97 × 103 −44.95 × 106

163.5 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The equivalent nodal loads to account for shrinkage and creep in each element
are:

pF.sh(1),2 = pF.sh(2),2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ec,2Acεsh,2

0

−Ec,2Bcεsh,2

−Ec,2Acεsh,2

0

Ec,2Bcεsh,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3196 × 106

0

314.3 × 106

3196 × 106

0

−314.3 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pF.cr(1),2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

134.2 × 103

21.29 × 103

−68.29 × 106

−134.2 × 103

−21.29 × 103

174.7 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

pF.cr(2),2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

134.2 × 103

−21.29 × 103

−174.7 × 106

−134.2 × 103

21.29 × 103

68.3 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Assembling of the stiffness matrix K2 and load vector P2 for the whole structure:

K11,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

162.5 × 109 126.3 × 106 −44.95 × 106 61.19 × 109 0 0

2324 × 103 0 −252.5 × 106 −1162 × 103 126.3 × 106

35.96 × 103 0 0 44.95 × 106

327.1 × 109 126.3 × 106 61.19 × 109

sym 1162 × 103 −126.3 × 106

163.5 × 109

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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K12,2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−126.3 × 106 44.95 × 106 0

−1162 × 103 0 0

0 −17.98 × 103 −17.98 × 103

126.3 × 106 44.95 × 106 −44.95 × 106

0 0 0

0 0 −44.95 × 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K22,2 =

⎡
⎢⎢⎣

1162 × 103 0 0

17.98 × 103 0

sym 17.98 × 103

⎤
⎥⎥⎦

K21,2 = KT
12,2

P2 = [− 237.7 × 106 0 62.57 × 103 0 −3092 × 103 237.7 × 106

(P7 + 3062 × 103) (P8 − 11.29 × 103) (P7 − 11.29 × 103)
]T

Solving for the unknown displacements and reactions using Eqs 9.9 gives:

UU,2 = K−1
11,2

(
PK,2 − K12,2UK,2

)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.71 × 10−3

−3.172

13.51

0

−6.344

−4.71 × 10−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

PU,2 =
⎡
⎢⎣P7,2

P8,2

P9,2

⎤
⎥⎦=

⎡
⎢⎢⎣

30 × 106

−20 × 106

−20 × 106

⎤
⎥⎥⎦

Post-processing:

Element 1

The nodal displacements and the member actions associated with the end nodes
of element 1 are:

u(1),2 = [
0 0 4.71 × 10−3 −3.172 13.51 0

]T
p(1),2 = [

30 × 103 −20 × 103 0 −30 × 103 0 −50 × 106
]T
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and with:

β1(1),2 = 45.46 × 10−15 mm

β2(1),2 = 6.247 × 10−12 mm2

β3(1),2 = −6.542 × 10−9 mm−1

�C1(1),2 = −334.1 × 10−12 mm−2

�C2(1),2 = −385.1 × 10−9 mm−1

�C3(1),2 = 4.71 × 10−3

�C4(1),2 = 0 mm

�C5(1),2 = −563.0 × 10−6

�C6(1),2 = 0 mm

The axial strain and curvature calculated at mid-span (i.e. at z = 5000 mm) at
τ2 are:

εr(1),2 = u′
(1),2 = −385.7 × 10−6 and κ(1),2 = −v′′

(1),2 = 0.841 × 10−6 mm−1

Element 2

u(2),2 = [−3.172 13.51 0 −6.344 0 −4.71 × 10−3
]T

p(2),2 = [
30 × 103 0 50 × 106 −30 × 103 −20 × 103 0

]T

9.6 Time analysis using the finite-element method

The finite-element method is a well-established method of analysis extensively used in
all disciplines of engineering and its use is well reported in the literature (Ref. 2). Only
the main aspects related to this method are outlined here, with particular attention
placed on how time effects can be included in the analysis.

For illustrative purposes, a displacement-based line element similar to the one
described for the stiffness method is considered in the following. Its detailed formu-
lation is outlined in Appendix A. The proposed approach for the inclusion of time
effects in finite-element analysis can be extended to any other type of finite element,
i.e. displacement-based, force-based or mixed elements.

For ease of notation, subscripts defining particular time instants are included only
when the instant considered is not clear from the context.

The weak form of the problem used to derive the proposed line finite element is
obtained by means of the principle of virtual work as outlined in Section A.3. Restating
Eq. A.18:∫

L
ri · A ê dz =

∫
L

q · ê dz (9.19)



Stiffness method and finite-element modelling 377

in which q contains the external distributed loads n and p (Fig. 9.3) and the vector
e contains the independent variables defining the displacement field for the Euler–
Bernoulli beam model consisting of the axial displacement measured at the level of the
reference axis u and the deflection v. That is:

q =
[

n
p

]
(9.20a)

e =
[

u
v

]
(9.20b)

The variables defining the strain diagram, i.e. εr and κ, are obtained by differentiating
e as follows (Eq. A.16):

ε =
[
εr

κ

]
=
[

u′

−v′′

]
= Ae (9.21)

where the differential operator A is expressed (with ∂ ≡ d(·)
dz

) by:

A =
[
∂ 0

0 −∂2

]
(9.22)

and the expression for the axial strain at a point in the member ε is:

ε = εr + yκ = u′ − yv′′ = [
1 y

]
ε (9.23)

The internal resultants collected in ri (i.e. the internal axial force and moment) have
been defined in Chapter 5 for different types of cross-sections and may be expressed
as (Eqs A.11):

ri = Dε+ fcr − fsh (9.24)

where the terms related to creep and shrinkage vanish when performing an instan-
taneous analysis. The vectors and matrices in Eq. 9.24 are expanded in Eqs A.13
(and were used in Chapters 5 and 7). The vectors fcr and fsh depicting the creep and
shrinkage response have been expressed in terms of their components fcrN , fcrM, fshN ,
and fshM to simplify the notation and, for the AEMM, are given by Eqs A.14 and, for
the SSM, are given in Eqs A.15.

The proposed finite-element formulation relies on the approximation of the
independent variables defining the kinematic response, i.e. u and v previously collected
in e (Eq. 9.20b), as follows:

e ≈ Nede (9.25)

where de are the nodal displacements of the finite element under consideration and Ne
contains the shape functions that describe the variations of these displacements along
the element length.
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Similarly to the stiffness relationship of Eq. 9.1, the governing system of equations
describing the behaviour of a line element can be expressed in terms of nodal
displacements de and actions pe:

pe = kede (9.26)

where ke is the finite element stiffness matrix (given in Eq. A.25a and reproduced here
as Eq. 9.27) and pe is the load vector accounting for the contributions of pe.m, pe.cr,
and pe.sh (given in Eqs A.25b and A.26):

ke =
∫

L
(ANe)T D ε dz =

∫
L

(ANe)T D (ANe) dz (9.27)

The derivation for a particular finite element is carried out here for the 7 DOF
element depicted in Fig. 9.6. In this case the axial and vertical displacements
are approximated by parabolic and cubic polynomials, respectively. The nodal
displacements and shape functions expressing this approximation are outlined in
Eqs A.27–A.30 and the stiffness matrix and load vector related to member loads n
and p are given in Eqs A.31 and A.32 (reproduced below):

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7RA

3L
−4RB

L2

−3RB

L
−8RA

3L
RA

3L
4RB

L2

−RB

L

−4RB

L2

12RI

L3

6RI

L2

8RB

L2

−4RB

L2

−12RI

L3

6RI

L2

−3RB

L
6RI

L2

4RI

L
4RB

L
−RB

L
−6RI

L2

2RI

L

−8RA

3L
8RB

L2

4RB

L
16RA

3L
−8RA

3L
−8RB

L2

4RB

L

RA

3L
−4RB

L2

−RB

L
−8RA

3L
7RA

3L
4RB

L2

−3RB

L

4RB

L2

−12RI

L3

−6RI

L2

−8RB

L2

4RB

L2

12RI

L3

−6RI

L2

−RB

L
6RI

L2

2RI

L
4RB

L
−3RB

L
−6RI

L2

4RI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.28)

pe.m =
[

L
6

n
L
2

p
L2

12
p

2L
3

n
L
6

n
L
2

p −L2

12
p

]T

(9.29)

z

uL
uR

vR

uM

vL
L

qL

qR

Figure 9.6 Nodal displacements of the 7 DOF finite element.
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For illustrative purposes and to better outline all the steps involved in the solution
process, the integrals in the expressions for ke (Eq. 9.27) and pe.m (Eq. A.26a)
have been solved analytically throughout this chapter and in Appendix A. However,
numerical integration could be easily implemented if preferred. Even if not carried
out in the following, static condensation could be used to handle the internal freedom
(Ref. 2).

The stiffness relationship of Eq. 9.26 is expressed in the local coordinates of the
member (assuming the z-axis coincides with the member axis). This relationship must
be transformed and expressed in global coordinates (i.e. coordinate system applicable
to the whole structure) following the procedure previously outlined for the stiffness
method in Eqs 9.3–9.6. The transformation matrix T for the 7 DOF finite element is:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c s 0 0 0 0 0

−s c 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 c s 0

0 0 0 0 −s c 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.30)

The assembly procedure required to yield the stiffness relationship applicable to the
whole structure is similar to the one utilised for the stiffness method. This produces
relationships similar to those already presented in Eqs 9.7 and 9.8. The unknown
displacements and reactions can be solved using Eqs 9.9.

When the analysis is completed, the solution is post-processed and, for each
element, the different variables describing its structural response are determined. For
example, the variables defining the strain diagram can be obtained by substituting the
approximated displacements (Eq. 9.25) into Eq. 9.21 (Eqs A.34):

u′ = − 3
L

uL + 4
L

uM − 1
L

uR +
(

4
L2 uL − 8

L2 uM + 4
L2 uR

)
z (9.31a)

v′′ = − 6
L2 vL − 4

L
θL + 6

L2 vR − 2
L
θR +

(
12
L3 vL + 6

L2 θL − 12
L3 vR + 6

L2 θR

)
z (9.31b)

where all nodal displacements are defined in Fig. 9.6.
Considering the post-processing of the instantaneous analysis, the stress resultants

resisted by the concrete component can be expressed as (Eqs A.35a and d):

Nc,0 = AcEc,0u′
0 − BcEc,0v′′

0 = ac0,0 + ac1,0z (9.32a)

Mc,0 = BcEc,0u′
0 − IcEc,0v′′

0 = bc0,0 + bc1,0z (9.32b)

where the adopted subscript ‘0’ has been introduced to highlight that these expressions
are only applicable at time τ0. The coefficients ac0,0, ac1,0, bc0,0 and bc1,0 are given in
Eqs A.35.
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As previously mentioned, for the calculation of the terms in ke and pe.m (Eqs 9.28
and 9.29) numerical integration could be used. For example, the axial force and
moment resisted by the concrete at τ0 could be calculated by numerical integration
of the expressions presented in Eqs A.33. For clarity, an approach similar to the one
already presented for the stiffness method has been adopted in which the variables
are represented using polynomials that, in this case, are linear for both Nc,0 and
Mc,0 (Eqs 9.32). Obviously, numerical integration could be easily implemented if
preferred in the proposed solution process. The use of the linear polynomial has been
determined by considering the degree of the polynomials adopted to approximate the
displacements u and v in Eqs A.27–A.29. Based on these the variations of both u and v
defining the strain diagram (Eq. 9.31) are linear functions of z and, as a consequence,
so to are the expressions for Nc,0 and Mc,0 in Eqs 9.32.

9.6.1 Load vector to account for time effects using the AEMM

The calculation of the loading vector describing creep effects, i.e. pe.cr introduced in
Eq. A.26b, requires the knowledge of the axial force fcrN and moment fcrM included
in fcr which, when considering the AEMM, is defined in Eqs A.14a and c. Both fcrN
and fcrM are found by multiplying the axial force and moment resisted by the concrete
at time τ0 by the material coefficient �Fe,0:

fcrN =�Fe,0Nc,0 =�Fe,0
(
ac0,0 + ac1,0z

)
(9.33a)

fcrM =�Fe,0Mc,0 =�Fe,0
(
bc0,0 + bc1,0z

)
(9.33b)

Equations 9.33 highlight that it is necessary to record the stress state of the concrete
obtained from the instantaneous analysis before initiating the time analysis. When
using numerical integration for the calculation of the stress resultants in the concrete,
the values of the concrete axial force and moment at particular locations at time
τ0 along each member are stored. These locations are usually those required by the
numerical integration of Eqs A.25 and A.27. Another option, used in the following
(and in Appendix A), is to identify polynomials capable of describing the variations
of the concrete axial force and moment along each element and to store the relevant
coefficients. This has already been carried out in Eqs 9.32.

The loading vector describing shrinkage effects pe.sh is expressed as Eq. A.26c. If it
assumed that the shrinkage of a member does not vary along its length, the axial force
fshN and moment fshM required to define fsh in Eq. A.26c are given by:

fshN =
∫

Ac

�Ee,kεsh,kdA = �Ee,kAcεsh,k (9.34a)

fshM =
∫

Ac

y�Ee,kεsh,kdA = �Ee,kBcεsh,k (9.34b)

Based on the expressions for fcrN and fcrM (Eqs 9.33) and fshN and fshM (Eqs 9.34)
and the definitions of pe.cr and pe.sh (Eqs A.26b and c), it is possible to determine the
load vectors which account for creep and shrinkage. These are derived in Appendix A
and given in Eqs A.36 and A.37.
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9.6.2 Load vector to account for time effects using the SSM

Assuming the time-dependent behaviour of the concrete to be modelled by means of
the SSM the expressions for fcrN and fcrM to be included in fcr are (Eqs A.15):

fcrN =
k−1∑
i=0

∫
Ac

Fe,k,iσc,i dA =
k−1∑
i=0

Fe,k,iNc,i (9.35a)

fcrM =
k−1∑
i=0

∫
Ac

yFe,k,iσc,i dA =
k−1∑
i=0

Fe,k,iMc,i (9.35b)

where the variation of the concrete stress resultants has also been described by a linear
polynomial. For any time τi, the axial force and moment resisted by the concrete is
calculated using the linear polynomials as given in Eqs A.41.

Substituting the polynomial describing the variations of Nc,i and Mc,i expressed in
Eqs A.41 into Eqs 9.35 gives:

fcrN,k =
k−1∑
i=0

Fe,k,iNc,i =
k−1∑
i=0

Fe,k,i
(
ac0,i + ac1,iz

)
(9.36a)

fcrM,k =
k−1∑
i=0

Fe,k,iMc,i =
k−1∑
i=0

Fe,k,i
(
bc0,i + bc1,iz

)
(9.36b)

and the load vector accounting for creep is given as Eq. A.42.
Similar to the inclusion of shrinkage effects in the AEMM, shrinkage is here included

using:

fshN =
∫

Ac

Ec,kεsh,k dA = Ec,kAcεsh,k (9.37a)

fshM =
∫

Ac

yEc,kεsh,k dA = Ec,kBcεsh,k (9.37b)

9.6.3 Remarks on the consistency requirements for finite elements

The proposed 7 DOF finite element represents the simplest element that fulfils the
consistency requirements approximating the displacements by means of polynomials
and thereby avoids potential locking problems which may arise when the member
local z-axis does not pass through the centroid of the member cross-section (Refs 5
and 7). The ability to select a reference system with the origin not necessarily coincident
with the centroid of the section is fundamental when dealing with time effects as the
location of the actual centroid of a reinforced cross-section usually varies with time
due to creep of the concrete.

From a practical viewpoint, the consistency requirement is satisfied when the
independent displacements (or their derivatives) present in the expressions of the
strains of the model possess the same order (i.e. u′ and v′′ have the same order).
Adopting a cubic function for the deflection v produces a linear contribution to the
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strain (i.e. due to v′′). In order to produce the same (linear) contribution to the
strain from u′, it is necessary to have a parabolic function approximating the axial
displacement u. For example, a linear function for u would not be able to achieve this
as its first derivative (i.e. u′) is constant. Other approaches could be used to address
this problem, such as reduced integration.

To better illustrate this behaviour, the results obtained using the 7 DOF finite element
(Fig. 9.6) are compared to those calculated using a 6 DOF element (Fig. 9.7). The
6 DOF element approximates u and v by means of linear and cubic polynomials,
respectively. As previously discussed, this latter element does not satisfy the consistency
requirements due to the orders of its polynomials.

The stiffness matrix of the 6 DOF finite element is:

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RA

L
0 −RB

L
−RA

L
0

RB

L

0
12RI

L3

6RI

L2 0 −12RI

L3

6RI

L2

−RB

L
6RI

L2

4RI

L
RB

L
−6RI

L2

2RI

L

−RA

L
0

RB

L
RA

L
0 −RB

L

0 −12RI

L3 −6RI

L2 0
12RI

L3 −6RI

L2

RB

L
6RI

L2

2RI

L
−RB

L
−6RI

L2

4RI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.38)

For the case of an uncracked, simply supported, prismatic, concrete beam of rect-
angular section and subjected to a point load applied at mid-span, the instantaneous
mid-span deflections calculated using the 6 and 7 DOF finite elements are shown
in Fig. 9.8. These results have been obtained by considering two elements to clearly
emphasise the implications of the different sets of polynomials. The instantaneous mid-
span deflection has been plotted for different levels of the reference axis dref (measured
from the top of the section) expressed as a function of the depth D. With this notation
the reference axis is located at the level of the centroid when dref /D = 0.5, in which
case both elements produce the same mid-span deflection (noted as vmax in Fig. 9.8).

Based on Fig. 9.8, it is apparent that when using the 6 DOF element with the origin of
the reference system not coinciding with the cross-sectional centroid, a stiffer response
than expected is obtained. A discussion on consistency requirements for different line
elements is presented in Ref. 8.

zvL vR

uRuL

L

qL

qR

Figure 9.7 Nodal displacements of the 6 DOF finite element.
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Figure 9.8 Comparisons between the results obtained using the 6 and 7 DOF finite elements.

Example 9.4

The short- and long-term values for the moment reaction at the fixed support
and the vertical reactions at the roller support of the propped cantilever shown
in Fig. 9.9 are to be determined. The member is subjected to a point load applied
at mid-span as shown. The time-dependent behaviour of the concrete is to be
modelled using the AEMM and the cross-sectional and material properties are
the same as in Example 5.3. For ease of notation, the beam is modelled using
two of the 7 DOF line elements depicted in Fig. 9.6.

1 2

C

B

A

10 kN

10 m 10 m

Figure 9.9 Loading, support conditions and discretisation for Example 9.4.

The numbering of the freedoms adopted in the proposed solution is outlined
in Fig. 9.10. The numbering system has been selected to produce the partitioning
introduced in Eqs 9.8 and also to avoid the need for transformations from local
to global coordinates (as the local and global coordinate axes coincide for each
element).

1 2
CB

1
3

5
8 610 11

9
A

7 2 4

Figure 9.10 Freedom numbering for Example 9.4.
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From Examples 5.1 and 5.3:

RA,0 = 4923 × 106 N

RB,0 = 543.9 × 109 Nmm

RI,0 = 221.0 × 1012 Nmm2

RA,k = 2175 × 106 N

RB,k = 273.7 × 109 Nmm

RI,k = 113.2 × 1012 Nmm2

Ec,0 = 25,000 MPa
�Ee,k = 9524 MPa
�Fe,0 = −0.333

ϕ(τk,τ0) = 2.5

χ (τk,τ0) = 0.65

εsh(τk) = −600 × 10−6

Ac = 177.6 × 103 mm2

Bc = 17.46 × 106 mm3

Ic = 6966 × 106 mm4

Instantaneous analysis (at time τ0)

Based on Fig. 9.10, freedoms 1–7 are unrestrained, while no displacement is
permitted for each of freedoms 8–11. Therefore:

UU,0 = [
U1,0 U2,0 U3,0 U4,0 U5,0 U6,0 U7,0

]T
UK,0 = [

U8,0 U9,0 U10,0 U11,0
]T = [

0 0 0 0
]T

PU,0 = [
P8,0 P9,0 P10,0 P11,0

]T
The finite-element stiffness matrix ke,0 is identical for both elements 1 and 2
and is calculated at time τ0 substituting RA,0, RB,0 and RI,0 into Eq. 9.28 and
specifying an element length L equal to 10 × 103 mm.
The stiffness matrix of the whole structure is then assembled following similar
steps to those carried out in previous examples. The unknown displacements
and reactions are calculated using Eqs 9.9:

UU,0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.021 mm
4.531 mm

194.2 × 10−6

−0.059 mm
−0.085 mm

−776.7 × 10−6

0.070 mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and PU,0 =

⎡
⎢⎢⎢⎣

P8,0

P9,0

P10,0

P11,0

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

−3125 N
0 N

−6875 N
−37.5 × 106 Nmm

⎤
⎥⎥⎥⎦
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The moment reaction at the fixed support (related to freedom 11) and the vertical
reaction at the roller support (related to freedom 8) are equal to −37.5 kNm
and −3125 N, respectively.

Post-processing

The solution is now post-processed to determine the coefficients describing the
variation of the concrete stress resultants required subsequently to account for
creep effects. The nodal displacements for elements 1 and 2 at time τ0 are
collected in vectors u(1),0 and u(2),0:

u(1),0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL(1),0

vL(1),0

v′
L(1),0

uM(1),0

uR(1),0

vR(1),0

v′
R(1),0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 mm

0 mm

0

0.070 mm

0.021 mm

4.531 mm

194.2 × 10−6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and u(2),0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL(2),0

vL(2),0

v′
L(2),0

uM(2),0

uR(2),0

vR(2),0

v′
L(2),0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.021 mm

4.531 mm

194.2 × 10−6

−0.059 mm

−0.085 mm

0 mm

−776.7 × 10−6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and from Eqs A.35:

ac0(1),0 = 12.56 × 103 Nmm2

ac1(1),0 = −2.304 Nmm−1

bc0(1),0 = −29.34 × 106 Nmm

bc1(1),0 = 5.379 × 103 N

ac0(2),0 = −10.47 × 103 Nmm2

ac1(2),0 = 1.047 Nmm−1

bc0(2),0 = 24.45 × 106 Nmm

bc1(2),0 = −2.45 × 103 N

Long-term analysis (at time τk)

The unknown and known displacements at time τk and the unknown reactions
are:

UU,k = [
U1,k U2,k U3,k U4,k U5,k U6,k U7,k

]T
UK,k = [

U8,k U9,k U10,k U11,k
]T = [

0 0 0 0
]T

PU,k = [
P8,k P9,k P10,k P11,k

]T



386 Stiffness method and finite-element modelling

The finite-element stiffness matrix ke,k for elements 1 and 2 is obtained from
Eq. 9.28 using the cross-sectional properties RA,k, RB,k and RI,k.
The load vectors accounting for shrinkage effects for both elements 1 and 2 are
calculated at time τk using Eq. A.37:

pe.sh(1),k = pe.sh(2),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1015 × 103 N

0 N

−99.79 × 106 Nmm

0 N

−1015 × 103 N

0 N

99.79 × 106 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The vectors describing the creep effects for elements 1 and 2 are calculated
from Eq. A.36 using the coefficient acj(i),0 and bcj(i),0 stored at the end of the
instantaneous analysis:

pe.cr(1),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2909 N

1793 N

9779 × 103 Nmm

−5119 N

2211 N

−1793 N

8150 × 103 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and pe.cr(2),k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2909 N

−815.0 N

−8150 × 103 Nmm

2327 N

581.7 N

815.0 N

0 Nmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The unknown displacements and reaction are then obtained using Eqs 9.9
following assembly of the global stiffness matrix and load vector (as was
previously carried out at time τ0):

UU,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.544 mm

19.22 mm

948.3 × 10−6

−7.219 mm

−9.814 mm

−3.793 × 10−3

−2.051 mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and PU,k =

⎡
⎢⎢⎢⎢⎣

P8,k

P9,k

P10,k

P11,k

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

−1033 N

0 N

−8967 N

−79.35 × 106 Nmm

⎤
⎥⎥⎥⎥⎦

The moment reaction at the fixed support (related to freedom 11) and the vertical
reaction at the roller support (related to freedom 8) are equal to −79.35 kNm
and −1033 N, respectively.
For this lightly loaded member, the preponderance of reinforcement in the
bottom fibres has caused the redistribution of internal actions illustrated in
Fig. 8.5b(i).
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9.7 Analysis of cracked members

A realistic analysis of concrete structures needs to account for the effects of cracking
of the concrete. This is certainly important for calculations carried out at service
conditions where significant errors in the evaluation of deformations and stresses will
arise if the effects of cracking are not included.

In Chapter 7, cracking of the concrete is included in the cross-sectional analysis in
one of two ways. In the first more approximate approach, the extent of cracking is
determined from the instantaneous analysis assuming the concrete can carry no tension
and, for the time analysis, the extent of cracking and the depth of the intact concrete on
the cross-section are assumed to remain unchanged. The second approach to the time
analysis of a cracked cross-section is a more refined method of analysis that traces the
crack development with time by accounting for the change in the depth of the concrete
compressive zone as time progresses. This latter approach is particularly suitable for
the analysis and design of structural members where deflection or crack control at the
serviceability limit states are the governing design considerations.

In the following, the application of these two approaches using the stiffness method
and the finite-element approach is discussed. More advanced non-linear software for
modelling cracking in concrete structures is available, but the two proposed methods
provide a practical balance between the complexity adopted in the analysis and the
variability of the concrete properties required for input into the analysis.

9.7.1 Approach 1

Cracking occurs when the stresses in the concrete produced by applied loads or
deformations reach the tensile strength of the concrete. In the case of statically
indeterminate members, the internal actions at a particular cross-section depend on
the extent of cracking and this is usually unknown at the beginning of the analysis.
A simple and practical method for including cracking in the analysis of a structure
involves an iterative procedure that is illustrated here by considering the propped
cantilever shown in Fig. 9.11.

The first iteration involves the analysis of the structure using either the stiffness
or finite-element methods assuming the whole structure to be uncracked (Fig. 9.11b)
following the procedures presented in the previous sections. Based on these results,
the extent of cracking to be used in the second iteration is determined. In the propped
cantilever of Fig. 9.11c, cracking occurs in that part of the beam adjacent to the fixed
support where the applied moment is greater than the cracking moment Mcr (where
Mcr was introduced in Chapter 3 and is the moment required to produce an extreme
fibre tensile stress in the concrete equal to its tensile strength). The cross-sectional
properties of the cracked region are next obtained following the procedure presented
in Chapter 7 and the member is then re-analysed using the revised cross-sectional
rigidities.

At the end of the second iteration, the lengths of the cracked and uncracked segments
are adjusted based on the revised bending moment diagram, as shown in Fig. 9.11d,
and the updated stiffnesses are adopted for the third iteration. The adjustments of
the cracked and uncracked lengths continue until two subsequent iterations produce
negligible differences.

The implementation of the convergence criteria can be carried out in different ways
depending on the modelling technique adopted. For example, the beam shown in
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(a) Support and loading arrangements.

(b) Iteration 1: Uncracked length and
      bending moment diagram.

(c) Iteration 2: Cracked and uncracked
      segments and bending moment
      diagram

Uncracked

UncrackedCracked

UncrackedCracked UncrackedCracked

(d) Iteration 3: Cracked and uncracked
      segments and bending moment
      diagram.  

Mcr

Mcr
M

Mcr

Mcr
M

Mcr

Mcr
M

Figure 9.11 First iterations of the analysis of a propped cantilever using approach 1.

Fig. 9.11 could be modelled using different stiffness (or finite) elements for each
cracked and uncracked region. The lengths of the cracked and uncracked segments
would change from iteration to iteration. Convergence is achieved when the required
adjustments of lengths for each segment is negligible. This approach can be applied
only for simple members, such as the one shown in Fig. 9.11, as its use becomes
prohibitive for large systems.

In the case of more complex structures, it is preferable to discretise the whole
structure using a predefined element mesh and to assign to each element either cracked
or uncracked properties based on the calculated internal actions. In this case, the
first iteration is also carried out assuming all elements are uncracked. After the
instantaneous solution at time τ0 is completed, the time analysis is carried out assuming
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the extent of the cracked and uncracked regions does not change with time. For
this purpose, the use of the AEMM to determine the time-dependent behaviour is
recommended. In this way, only one additional analysis is required with no further
iterations. Clearly, the method does not account for time-dependent cracking, as no
attempt is made to discretise the time domain. This method is suitable for modelling
structures when only linear-elastic analysis software is available.

9.7.2 Approach 2

The main advantage of this second approach relies on its ability to follow the
occurrence and development of cracking throughout the structure. This is particularly
useful for structural elements recognised to be critical at service conditions. In the more
refined, second approach, the structure is discretised into a predetermined layout of
elements, with the number and size of elements selected depending on the degree of
accuracy required.

The extent of initial cracking in the structure is then determined by performing a
non-linear analysis at time τ0. This is usually based on well-known non-linear solution
strategies such as the secant or Newthon–Raphson methods. Both can be implemented
with the stiffness and finite element methods, even if the latter is naturally more suitable
for these types of analysis. In fact, when using the finite element approach to analyse
a concrete structure, the non-linear response of the concrete is accounted for in the
numerical integration of the stiffness coefficients and of the load vectors. Considering
the line element shown in Fig. 9.6, these approximations are applied to the integrals of
Eqs A.25 and A.26 following procedures well established for the finite element method
(Refs 2 and 4). In this process, the section is subdivided into smaller areas in order
to better depict the non-linear response, such as the layered cross-sections already
discussed in Section 7.4. With the stiffness method, the appropriate cross-sectional
rigidities are calculated at one or more locations along the member length following
the approach presented in Chapter 7.

When the instantaneous analysis is completed, the time analysis is carried out
by discretising the time domain into a number of steps and modelling the concrete
behaviour using the SSM. With this approach, the time-dependent behaviour of the
concrete is carefully monitored at the integration points along each element.

The main non-linearity addressed in this analysis originates from the fact that the
concrete is assumed not to be able to carry tensile stresses greater than its tensile
strength. If at any time instant the concrete stress at any calculation point exceeds
the tensile strength, the previously stored stress history at this point is set to zero, the
contribution to element stiffness is adjusted and the structure is reanalysed. The process
continues until no new cracking is identified at any point in the structure. Of course, if
a cracked point is later subjected to compressive stresses during subsequent time steps,
the point again becomes active and contributes to the element stiffness. Obviously,
tension-stiffening could also be included in the analysis, even if its time-dependent
behaviour is still the focus of current research (Ref. 6).
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Appendix A Analytical formulations
Euler–Bernoulli beam model

A.1 Introduction

The Euler–Bernoulli beam model is widely used for the analysis of structures. Designers
use it on a daily basis in the form of either closed form solutions, such as those provided
for the estimate of elastic deflections, or line (frame) elements for the prediction of
deformations and internal actions using commercial structural analysis software. The
analytical formulation at the basis of the Euler–Bernoulli beam model is described in
the following sections for generic concrete members (such as those shown in Fig. A.1),
where a perfect bond is assumed between the concrete and the reinforcement.

The weak form of the model (global balance condition) is presented to provide a
basis for the finite element formulation briefly introduced in Chapter 9. The strong
form (local balance condition) is then obtained by integrating this by parts. This has
been used to derive the stiffness matrix and equivalent nodal actions required for the
stiffness method described in Chapter 9.

The proposed formulations are derived for a typical instant in time and, because of
this, could be applicable to both short- and long-term analyses. For ease of notation,
additional subscripts are included in this appendix to identify the time step under

x
y

z

L

z

L

x
y

(a) Reinforced concrete beam

(b) Prestressed concrete beam

Figure A.1 Typical concrete members and cross-sections.
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consideration only when it may not be clear from the context. A similar approach
is used when defining the time dependency of variables. For example, the deflection
along the member length that is a function of both member coordinate z and time t
will be referred to as v(z) (or simply v) instead of v(t, z).

A.2 Kinematic model

In the undeformed state, the beam is assumed to be prismatic with the ortho-normal
reference axis system {O;x,y,z} as shown in Fig. A.1. The kinematic behaviour is
illustrated in Fig. A.2b for a generic point P on the z-axis, highlighting both its
axial displacement at the level of the reference axis u(z) and its deflection v(z).
The formulation is derived for a beam segment of length L and the cross-section
is assumed to be symmetric about the y-axis. Under these assumptions, no torsional
and out-of-plane flexural effects are considered. The level of the reference x-axis is
arbitrary.

Considering a point Q located away from the member axis, its final displacement
can be expressed in terms of u(z) and v(z) as well as the rotation θ (z). In particular,
the vertical and horizontal displacements, referred to as dy(y,z) and dz(y,z), can be
expressed as:

dy (y,z) = v (z) − y + ycosθ (z) (A.1a)

dz (y,z) = u (z) − y sinθ (z) (A.1b)

and, for clarity, the kinematic response of the point Q is illustrated in Fig. A.2c.
The expressions of Eqs A.1 describe all possible displacements that the points of the

beam can undergo. This set of displacements is usually referred to as the displacement
field of the model. For structural engineering applications, it is usually sufficient and

zP

P′ P′

Q′

u(z)

v(z)

y

q(z)
q(z)

(b)

dz(y, z)

dy(y, z)

Q

y

z

yQ

P

yQsin(q(z))

yQcos(q(z))

(c)

z

L

P

ySection
(a)

Elevation

Figure A.2 Displacement field.
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convenient to remain within the framework of small displacements. In this way, the
cosine and sine of the angle θ (z) in Eqs A.1 can be approximated by: cosθ (z) ≈ 1 and
sin θ (z) ≈ θ (z).

Consistent with the assumptions of the Euler-Bernoulli beam model, plane sections
are assumed to remain plane and perpendicular to the beam axis before and after
deformations. This condition implies that:

θ (z) = v′ (z) (A.2)

where the prime represents differentiation with respect to z.
Based on these simplifications the displacement field of Eqs A.1 can be re-written as:

dy (y,z) = v (z) (A.3a)

dz (y,z) = u (z) − y θ (z) = u (z) − yv′ (z) (A.3b)

Equations A.3 show how the kinematic response of a point in the beam can be
determined when the displacements u(z) and v(z) are known. For ease of notation,
u(z), v(z) and θ (z) will be referred to as u, v and θ , respectively, in the following.

Based on the adopted displacement field, the only non zero strain is:

εz = u′ − yv′′ (A.4)

where εz is the axial strain of the member. The expression for the curvature
κ(= −v′′) can be obtained by differentiating the deflection v twice with respect to
the coordinate z, and the negative sign in front of v′′ is required in flexural members to
produce a positive curvature in sagging moment regions (i.e. where compressive and
tensile strains occur in the top and bottom fibres of the section in a horizontal beam,
respectively, in accordance with the sign convention adopted in this book).

A.3 Weak formulation (global balance condition)

The weak form of the structural formulation for the frame element is obtained using
the principle of virtual work considering a beam segment of length L with the free
body diagram shown in Fig. A.3. In particular, p(z) and n(z) represent the vertical and
horizontal distributed member loads which, for ease of notation, will be referred to as p
and n in the following. The nodal actions at each end of the member represent external
loads or reactions depending on the boundary conditions of the beam segment and
have been referred to as S, N and M with the subscripts L and R specifying whether
they relate to the left (at z = 0) or right (at z = L) ends of the member, respectively, as
shown in Fig. A.3.

The derivation is carried out by equating the work of internal stresses to the
work of external actions for each virtual admissible variation of the displace-
ments and corresponding strains (which, by definition, represent all variations of
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z
L

p(z)

n(z)

MRML

NR

SR

NL

SL

Figure A.3 Member loads and nodal actions.

possible displacements satisfying the kinematic boundary conditions of the problem)
as follows:∫

L

∫
A
σzε̂z dA dz=

∫
L

(
pv̂+nû

)
dz+SLv̂L+NLûL+MLθ̂L+SRv̂R+NRûR+MRθ̂R

(A.5)

where the variables with the hat ‘ˆ’ represent virtual variations of displacements or
strains. Substituting the expression for the axial strain εz of Eq. A.4 into Eq. A.5, the
weak form of the derivation can be re-written as:∫

L

∫
A
σz
(
û′ − yv̂′′) dA dz =

∫
L

(
pv̂ + nû

)
dz + SLv̂L + NLûL + MLθ̂L

+ SRv̂R + NRûR + MRθ̂R (A.6)

Recalling the definitions of internal axial force N and moment M (about the x-axis)
introduced in Chapter 5 and reproduced here for ease of reference:

Ni =
∫

A
σz dA and Mi =

∫
A

yσz dA (A.7a,b)

the integral at the cross-section (i.e. in dA) present on the left-hand side of Eq. A.6 can
be replaced by these internal actions as:

∫
L

(
Niû′ − Miv̂′′)dz =

∫
L

(
pv̂ + nû

)
dz + SLv̂L + NLûL + MLθ̂L

+ SRv̂R + NRûR + MRθ̂R (A.8)

This relationship can be further rearranged to isolate the terms related to Ni and Mi
as follows:

∫
L

[
Ni

Mi

]
·
[

û′

−v̂′′
]

dz =
∫

L

[
n
p

]
·
[

û

v̂

]
dz +

⎡
⎢⎣ SL

NL

ML

⎤
⎥⎦ ·
⎡
⎢⎣v̂L

ûL

θ̂L

⎤
⎥⎦+

⎡
⎢⎣ SR

NR

MR

⎤
⎥⎦ ·
⎡
⎢⎣v̂R

ûR

θ̂R

⎤
⎥⎦ (A.9)
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It is possible to ignore the nodal actions included on the right-hand side of Eq. A.9
as these can be easily included in the frame analysis during the assembly of the load
vector. Based on this, Eq. A.9 can be simplified to:

∫
L

[
Ni

Mi

]
·
[

û′

−v̂′′

]
dz =

∫
L

[
n

p

]
·
[

û

v̂

]
dz (A.10)

In this form, the constitutive models for the materials are not explicitly specified
as they are included in the definitions of the internal actions Ni and Mi. To remain
consistent with the notation adopted in the rest of the book, the expressions already
introduced in Chapter 5 (reproduced here for ease of reference) are adopted in the
following to define the internal actions as a function of the material properties:

ri = Dε+ fcr − fsh (A.11)

which can be written highlighting the terms included in the matrix and vectors as:

[
Ni

Mi

]
=
[

RA RB

RB RI

][
εr

κ

]
+
[

fcrN

fcrM

]
−
[

fshN

fshM

]
(A.12)

and the cross-sectional rigidities RA, RB and RI are defined in Chapter 5 for different
types of cross-sections. In particular, ri collects the internal axial force Ni and internal
moment Mi, D specifies the geometric and material properties of the cross-section,
ε includes the strain calculated at the level of the reference axis εr and the curvature
κ which can be expressed in terms of the horizontal and vertical displacements (i.e.
u and v) as shown below, while fcr and fsh account for creep and shrinkage effects,
respectively:

ri =
[

Ni

Mi

]
=
[ ∫

A σz dA∫
A yσz dA

]
; D =

[
RA RB

RB RI

]
; ε =

[
εr

κ

]
=
[

u′

−v′′

]
(A.13a,b,c)

fcr =
[

fcrN

fcrM

]
and fsh =

[
fshN

fshM

]
(A.13d,e)

This representation of fcr and fsh is particularly useful as it enables the proposed
derivation to be applicable when using either the age-adjusted effective modulus
method (AEMM) or the step-by-step method (SSM). When using the AEMM the
components of fcr and fsh are determined as:

fcrN =
∫

Ac

�Fe,0 σc,0 dA =�Fe,0 Nc,0 and fshN = �Ee,k Ac εsh,k (A.14a,b)

fcrM =
∫

Ac

�Fe,0 yσc,0 dA =�Fe,0 Mc,0 and fshM = �Ee,k Bc εsh,k (A.14c,d)
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where �Ee,k and �Fe,0 are defined in Eqs 4.35 and 4.46. When using the SSM, these
components at time τk become:

fcrN =
k−1∑
i=0

∫
Ac

Fe,k,i σc,i dA =
k−1∑
i=0

Fe,k,i Nc,i and fshN = Ec,k Ac εsh,k (A.15a,b)

fcrM =
k−1∑
i=0

∫
Ac

Fe,k,i yσc,i dA =
k−1∑
i=0

Fe,k,i Mc,i and fshM = Ec,k Bc εsh,k (A.15c,d)

where σc,i is the stress in the concrete at time τi, while Nc,i and Mc,i represent the axial
force and moment, respectively, resisted by the concrete component at time τi.

The vector ε can also be re-written in terms of the independent displacements u and
v as:

ε =
[
εr

κ

]
=
[

u′

−v′′

]
=
[
∂ 0

0 −∂2

][
u

v

]
= Ae (A.16)

where A is a differential operator and the symbol ∂ defines the derivative with respect
to the member coordinate z and the displacements u and v are collected in vector e as:

e =
[

u

v

]
(A.17)

At this point it is useful to re-write Eq. A.10 in terms of vectors ri and ε (= A e):

∫
L

ri · A ê dz =
∫

L
q · ê dz (A.18)

where the member loads n and p have been collected in the vector q as:

q =
[

n

p

]
(A.19a,b)

Substituting the constitutive properties defined in Eq. A.11 into Eq. A.18 produces
the general expression for the weak form accounting for time effects:

∫
L

(
Dε+ fcr − fsh

) · A ê dz =
∫

L
q · ê dz (A.20)

A.4 Finite element formulation

The formulation proposed in the following is applicable to displacement-based finite
elements. If necessary, the approach can be extended to other elements, i.e. force-
based or mixed elements. The basis of the finite element formulation relies on the
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approximation of the independent displacements u and v, previously collected in the
vector e. This approximation can be expressed as:

e ∼= Nede (A.21)

in which Ne is the matrix that specifies the adopted shape functions and de is the vector
of the nodal displacements of the finite element. Substituting the approximation of
Eq. A.21 into Eq. A.20 produces the weak form of the problem expressed in terms of
nodal displacements:

∫
L

(
Dε+ fcr − fsh

) · ANe d̂e dz =
∫

L
q · Ne d̂e dz (A.22)

This relationship can be re-arranged to isolate the virtual nodal displacements d̂e on
one side of the dot product:

∫
L

(ANe)T
(
Dε+ fcr − fsh

)
dz · d̂e =

∫
L

NT
e q dz · d̂e (A.23)

from which the stiffness relationship of the finite element can be obtained:

kede = pe (A.24)

where ke is the finite element stiffness matrix and pe represents the loading vector
related to both member loads and time effects. In particular, these are defined as:

ke =
∫

L
(ANe)T D ε dz =

∫
L

(ANe)T D (ANe) dz (A.25a)

pe = pe.m − pe.cr + pe.sh (A.25b)

where the loading vector pe has been separated into pe.m, pe.cr, and pe.sh relating to
member loads (n and p), creep effects and shrinkage effects, respectively, and given by:

pe.m =
∫

L
NT

e q dz; pe.cr =
∫

L
(ANe)T fcr dz; and pe.sh =

∫
L

(ANe)T fsh dz

(A.26a–c)

Conventional finite element procedures are then utilized to assemble the vectors and
matrices for the whole structure and to perform the structural analysis (Refs 1 and 2).
The derivations are outlined in the following by means of worked examples.

A.4.1 Age-adjusted effective modulus method

Expressions for the stiffness matrix and loading vectors related to member loads, creep
effects and shrinkage effects for the 7 DOF finite element shown in Fig. 9.6 are derived
here. For this element, the axial (u) and transverse displacements (v) are approximated
using parabolic and cubic functions, respectively. The time-dependent behaviour of the
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concrete is modelled using the AEMM specified in Eq. 4.45 (Approach 2 in Section
4.4.4).

The parabolic and cubic approximation for the axial and vertical displacements of
the 7 dof element are:

u = Nu1uL + Nu2uM + Nu3uR and v = Nv1vL + Nv2θL + Nv3vR + Nv4θR

(A.27a,b)

where:

Nu1 = 1 − 3z
L

+ 2z2

L2 ; Nu2 = 4z
L

− 4z2

L2 ; Nu3 = − z
L

+ 2z2

L2 (A.28a–c)

Nv1 = 1 − 3z2

L2 + 2z3

L3 ; Nv2 = z − 2z2

L
+ z3

L2 ; (A.29a,b)

Nv3 = 3z2

L2 − 2z3

L3 ; Nv4 = −z2

L
+ z3

L2 (A.29c,d)

It is usually convenient to represent these approximations by means of the matrix
of shape functions Ne and a vector de collecting the nodal displacements:

[
u

v

]
=
[

Nu1 0 0 Nu2 Nu3 0 0

0 Nv1 Nv2 0 0 Nv3 Nv4

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uL

vL

θL

uM

uR

vR

θR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Nede (A.30)

The stiffness matrix of the 7 DOF finite element can be calculated based on Eq.
A.25a. This requires the calculation of A Ne which, recalling the definition of the
differential operator A specified in Eq. A.16, is obtained as:

ANe =
⎡
⎣N′

u1 0 0 N′
u2 N′

u3 0 0

0 −N′′
v1 −N′′

v2 0 0 −N′′
v3 −N′′

v4

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

− 3
L

+ 4z
L2 0 0

4
L

− 8z
L2 − 1

L
+ 4z

L2 0 0

0
6

L2 − 12z
L3

4
L

− 6z
L2 0 0 − 6

L2 + 12z
L3

2
L

− 6z
L2

⎤
⎥⎥⎥⎥⎦
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Substituting the expression obtained for A Ne into Eq. A.25a and carrying out the
integration along the member length produces the element stiffness matrix:

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7RA

3L
−4RB

L2

−3RB

L
−8RA

3L
RA

3L
4RB

L2

−RB

L

−4RB

L2

12RI

L3

6RI

L2

8RB

L2

−4RB

L2

−12RI

L3

6RI

L2

−3RB

L
6RI

L2

4RI

L
4RB

L
−RB

L
−6RI

L2

2RI

L

−8RA

3L
8RB

L2

4RB

L
16RA

3L
−8RA

3L
−8RB

L2

4RB

L

RA

3L
−4RB

L2

−RB

L
−8RA

3L
7RA

3L
4RB

L2

−3RB

L

4RB

L2

−12RI

L3

−6RI

L2

−8RB

L2

4RB

L2

12RI

L3

−6RI

L2

−RB

L
6RI

L2

2RI

L
4RB

L
−3RB

L
−6RI

L2

4RI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.31)

Recalling the expression previously obtained for A Ne, the loading vectors are then
calculated based on Eqs A.26. In particular, the one related to the member loads n and
p can be derived as:

pe.m =
∫

L
NT

e q dz =
∫

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nu1 0

0 Nv1

0 Nv2

Nu2 0

Nu3 0

0 Nv3

0 Nv4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
n

p

]
dz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L
6

n

L
2

p

L2

12
p

2L
3

n

L
6

n

L
2

p

−L2

12
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.32)

As highlighted in Eq. A.26b, the calculation of the loading vector describing creep
effects pe.cr requires the knowledge of the axial force and moment for the calculation
of fcrN and fcrM included in fcr. These depend to the loading history of the concrete as
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both fcrN and fcrM are determined by multiplying the axial force and moment resisted
by the concrete at one or more instants in time by particular material coefficients.
The definition of these coefficients varies depending on the constitutive relationship
for concrete and, for the AEMM, it is given in Eqs A.14. The analysis at a particular
instant in time can be carried out only if the instantaneous analysis has been completed
and the concrete stress resultants recorded. The actual recording of these actions
can be carried out by storing the values of the concrete axial force and moment at
particular locations along each member. These locations are usually those required
by the numerical integration of Eq. A.26b. Another option is to identify polynomials
capable of describing the variation of the concrete axial force and moment along each
element and to store the relevant coefficients. This option is preferred here as it enables
closed form solutions to be obtained.

The orders of the polynomial describing fcrN and fcrM (Eqs A.14) depend on the
orders of the expressions for the axial force and moment resisted by the concrete at
time τ0, Nc.0 and Mc.0. Recalling that:

Nc,0 =
∫

Ac

σc,0 dA =
∫

Ac

Ec,0
(
u′

0 − yv′′
0
)

dA = AcEc,0u′
0 − BcEc,0v′′

0 (A.33a)

Mc,0 =
∫

Ac

yσc,0 dA =
∫

Ac

yEc,0
(
u′

0 − yv′′
0
)

dA = BcEc,0u′
0 − IcEc,0v′′

0 (A.33b)

and considering that, in the 7 DOF finite element (Fig. 9.6), u and v are approximated
by a parabolic and a cubic polynomial, respectively, the actual functions describing
Nc,0 and Mc,0 determined using Eqs A.33 become linear and can be expressed as:

Nc.0 = ac0,0 + ac1,0z and Mc.0 = bc0,0 + bc1,0z

where the coefficients ac0,0, ac1,0, bc0,0, and bc1,0 are determined from Eqs A.33.
Considering Eqs A.27–A.30, the expressions for u′

0 and v′′
0 can be written in terms of

the nodal displacements of the finite element as:

u′
0 =N′

u1uL,0+N′
u2uM,0+N′

u3uR,0

=
(

− 3
L

+ 4z
L2

)
uL,0+

(
4
L

− 8z
L2

)
uM,0+

(
− 1

L
+ 4z

L2

)
uR,0

=− 3
L

uL,0+ 4
L

uM,0− 1
L

uR,0+
(

4
L2 uL,0− 8

L2 uM,0+ 4
L2 uR,0

)
z (A.34a)

v′′
0 =N′′

v1vL,0+N′′
v2θL,0+N′′

v3vR,0+N′′
v4θR,0

=
(

− 6
L2 + 12z

L3

)
vL,0+

(
− 4

L
+ 6z

L2

)
θL,0+

(
6

L2 − 12z
L3

)
vR,0+

(
− 2

L
+ 6z

L2

)
θR,0

=− 6
L2 vL,0− 4

L
θL,0+ 6

L2 vR,0− 2
L
θR,0+

(
12
L3 vL,0+ 6

L2 θL,0− 12
L3 vR,0+ 6

L2 θR,0

)
z

(A.34b)

The ‘0’ subscript in the nodal freedoms in Eqs A34 is to specify that these are calculated
at time τ0.
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The expression for the concrete axial force Nc,0 can then be obtained by substituting
Eqs A.34 into Eq. A.33a:

Nc,0 = AcEc,0u′
0 − BcEc,0v′′

0

= AcEc,0

[
− 3

L
uL,0 + 4

L
uM,0 − 1

L
uR,0 +

(
4

L2 uL,0 − 8
L2 uM,0 + 4

L2 uR,0

)
z
]

− BcEc,0

[
− 6

L2 vL,0 − 4
L
θL,0 + 6

L2 vR,0 − 2
L
θR,0

+
(

12
L3 vL,0 + 6

L2 θL,0 − 12
L3 vR,0 + 6

L2 θR,0

)
z
]

= ac0,0 + ac1,0z (A.35a)

where:

ac0,0 = AcEc,0

(
− 3

L
uL,0 + 4

L
uM,0 − 1

L
uR,0

)

− BcEc,0

(
− 6

L2 vL,0 − 4
L
θL,0 + 6

L2 vR,0 − 2
L
θR,0

)
(A.35b)

ac1,0 = AcEc,0

(
4

L2 uL,0 − 8
L2 uM,0 + 4

L2 uR,0

)

− BcEc,0

(
12
L3 vL,0 + 6

L2 θL,0 − 12
L3 vR,0 + 6

L2 θR,0

)
(A.35c)

Similarly, substituting Eqs A.34 into Eq. A.33b leads to the expression for Mc,0:

Mc,0 = BcEc,0u′
0 − IcEc,0v′′

0

= BcEc,0

[
− 3

L
uL,0 + 4

L
uM,0 − 1

L
uR,0 +

(
4

L2 uL,0 − 8
L2 uM,0 + 4

L2 uR,0

)
z
]

− IcEc,0

[
− 6

L2 vL,0 − 4
L
θL,0 + 6

L2 vR,0 − 2
L
θR,0

+
(

12
L3 vL,0 + 6

L2 θL,0 − 12
L3 vR,0 + 6

L2 θR,0

)
z
]

= bc0,0 + bc1,0z (A.35d)
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where:

bc0,0 = BcEc,0

(
− 3

L
uL,0 + 4

L
uM,0 − 1

L
uR,0

)

− IcEc,0

(
− 6

L2 vL,0 − 4
L
θL,0 + 6

L2 vR,0 − 2
L
θR,0

)
(A.35e)

bc1,0 = BcEc,0

(
4

L2 uL,0 − 8
L2 uM,0 + 4

L2 uR,0

)

− IcEc,0

(
12
L3 vL,0 + 6

L2 θL,0 − 12
L3 vR,0 + 6

L2 θR,0

)
(A.35f)

At this point, it is possible to derive the expressions for fcrN and fcrM substituting
Eqs A.35 into Eqs A.14a and c:

fcrN =�Fe,0Nc,0 =�Fe,0
(
ac0,0 + ac1,0z

)
fcrM =�Fe,0Mc,0 =�Fe,0

(
bc0,0 + bc1,0z

)
and pe.cr can then be obtained as follows:

pe.cr =
∫

L
(ANe)T fcr dz

=
∫

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
L

+ 4z
L2 0

0
6

L2 − 12z
L3

0
4
L

− 6z
L2

4
L

− 8z
L2 0

− 1
L

+ 4z
L2 0

0 − 6
L2 + 12z

L3

0
2
L

− 6z
L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[�Fe,0
(
ac0,0 + ac1,0z

)
�Fe,0

(
bc0,0 + bc1,0z

)
]

dz =�Fe,0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ac0,0 − L
6

ac1,0

−bc1,0

bc0,0

−2
3

Lac1,0

5
6

Lac1,0 + ac0,0

bc1,0

−bc1,0L − bc0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.36)

The loading vector describing shrinkage effects pe.sh can be determined based on
Eq. A.26c. If shrinkage does not vary along a member, fshN and fshM required to
define fsh in Eq. A.26c are constant and for the AEMM are given by:

fshN =
∫

Ac

�Ee,k εsh,k dA = �Ee,kAcεsh,k and fshM =
∫

Ac

y�Ee,k εsh,k dA = �Ee,k Bc εsh,k

The assumption of uniform shrinkage is usually acceptable for most practical
applications.
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The shrinkage loading vector pe.sh can then be calculated as:

pe.sh =
∫

L
(ANe)T fsh dz

×
∫

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
L

+ 4z

L2
0

0
6

L2
− 12z

L3

0
4
L

− 6z

L2

4
L

− 8z

L2
0

− 1
L

+ 4z

L2
0

0 − 6

L2
+ 12z

L3

0
2
L

− 6z

L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣�Ee,k Ac εsh,k

�Ee,k Bc εsh,k

⎤
⎦dz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�Ee,k Ac εsh,k

0
�Ee,k Bc εsh,k

L

0

�Ee,k Ac εsh,k

0

−
�Ee,k Bc εsh,k

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.37)

A.4.2 Step-by-step method

The 7 DOF finite element of the previous section is reconsidered here with the time-
dependent behaviour of the concrete described using the SSM.

The change in the representation of the concrete time-dependent behaviour only
affects the calculation of the loading vectors accounting for creep and shrinkage effects.
In fact, the stiffness matrix and the vectors depicting member loads and shrinkage are
always defined using the cross-sectional properties relevant to the time step under
consideration. In particular, with the SSM the concrete contributions are determined
using Ec,k introduced in Eqs 4.25 and 4.26.

Similarly to the AEMM, the loading vector describing creep effects pe.cr can be
determined once the values of fcrN and fcrM included in fcr are determined. The
expressions of these terms calculated using the SSM are defined in Eqs A.15a and c.

Also in this case, polynomials are utilized to represent the variation of the concrete
axial force and moment along the element length measured at different time steps.
For this purpose, the coefficients included in these polynomials need to be recorded at
each instant in time. Another possible approach would rely on the use of a numerical
integration for the calculation of fcrN,k and fcrM,k. In this case, the concrete axial force
and moment obtained at particular locations along each element (and required for the
numerical integration) need to be stored.

As the orders of the functions representing the concrete axial force and moment do
not vary with time, the polynomials already identified for the AEMM in the previous
example to describe the concrete instantaneous response are now adopted for each
time instant. The concrete axial force and moment at time τi may be expressed as:

Nc.i = ac0,i + ac1,iz and Mc.i = bc0,i + bc1,iz (A.38a,b)

and the coefficients ac0,i, ac1,i, bc0,i, and bc1,i are determined as outlined in the
following.
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Considering the constitutive relationship for concrete introduced in Eq. 4.25
(reproduced here for ease of reference):

σc,i = Ec,i (εi − εsh) +
k−1∑
n=0

Fe,k,n σc,n

the definitions of both axial force and moment resisted by the concrete component at
any time τi can be expressed as:

Nc,i =
∫

Ac

σc,i dA =
∫

Ac

[
Ec,i

(
u′

i − yv′′
i

)− Ec,iεsh,i +
i−1∑
n=0

Fe,i,n σc,n

]
dA

= AcEc,iu′
i − BcEc,iv′′

i − AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n Nc,n (A.39a)

Mc,i =
∫

Ac

yσc,i dA =
∫

Ac

y

[
Ec,i

(
u′

i − yv′′
i

)− Ec,iεsh,i +
i−1∑
n=0

Fe,i,n σc,n

]
dA

= BcEc,iu′
i − IcEc,iv′′

i − BcEc,iεsh,i +
i−1∑
n=0

Fe,i,n Mc,n (A.39b)

Considering Eqs A.27–A.30, the expressions for u′
i and v′′

i required in Eqs A.39 are
determined in terms of nodal displacements as:

u′
i = − 3

L
uL,i + 4

L
uM,i − 1

L
uR,i +

(
4

L2 uL,i − 8
L2 uM,i + 4

L2 uR,i

)
z (A.40a)

v′′
i = − 6

L2 vL,i − 4
L
θL,i + 6

L2 vR,i − 2
L
θR,i +

(
12
L3 vL,i + 6

L2 θL,i −
12
L3 vR,i + 6

L2 θR,i

)
z

(A.40b)

Substituting Eqs A.40 into Eq. A.39a produces the expression for Nc,i in terms of
nodal displacements, shrinkage and previous loading history:

Nc,i = AcEc,iu′
i − BcEc,iv′′

i − AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n Nc,n

= AcEc,i

[
− 3

L
uL,i + 4

L
uM,i − 1

L
uR,i +

(
4

L2 uL,i − 8
L2 uM,i + 4

L2 uR,i

)
z
]

− BcEc,i

[
− 6

L2 vL,i − 4
L
θL,i + 6

L2 vR,i − 2
L
θR,i

+
(

12
L3 vL,i + 6

L2 θL,i −
12
L3 vR,i + 6

L2 θR,i

)
z
]

− AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n
(
ac0,n + ac1,n z

)
= ac0,i + ac1,i z (A.41a)
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where:

ac0,i = AcEc,i

(
− 3

L
uL,i + 4

L
uM,i − 1

L
uR,i

)

− BcEc,i

(
− 6

L2 vL,i − 4
L
θL,i + 6

L2 vR,i − 2
L
θR,i

)

− AcEc,i εsh,i +
i−1∑
n=0

Fe,i,n ac0,n

ac1,i = AcEc,i

(
4

L2 uL,i − 8
L2 uM,i + 4

L2 uR,i

)

− BcEc,i

(
12
L3 vL,i + 6

L2 θL,i −
12
L3 vR,i + 6

L2 θR,i

)
+

i−1∑
n=0

Fe,i,n ac1,n

Similarly, for Mc,i:

Mc,i = BcEc,i u′
i − IcEc,i v′′

i − BcEc,i εsh,i +
i−1∑
n=0

Fe,i,n Mc,n = bc0,i + bc1,i z (A.41b)

where:

bc0,i = BcEc,i

(
− 3

L
uL,i + 4

L
uM,i − 1

L
uR,i

)

− IcEc,i

(
− 6

L2 vL,i − 4
L
θL,i + 6

L2 vR,i − 2
L
θR,i

)
− BcEc,iεsh,i +

i−1∑
n=0

Fe,i,n bc0,n

bc1,i = BcEc,i

(
4

L2 uL,i − 8
L2 uM,i + 4

L2 uR,i

)

− IcEc,i

(
12
L3 vL,i + 6

L2 θL,i −
12
L3 vR,i + 6

L2 θR,i

)
+

i−1∑
n=0

Fe,i,n bc1,n

The expressions for fcrN,k and fcrM,k can then be re-written as:

fcrN,k =
k−1∑
i=0

Fe,k,iNc,i =
k−1∑
i=0

Fe,k,i
(
ac0,i + ac1,iz

)

fcrM,k =
k−1∑
i=0

Fe,k,iMc,i =
k−1∑
i=0

Fe,k,i
(
bc0,i + bc1,iz

)
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and the loading vector related to creep effects pe.cr is obtained from:

pe.cr =
∫

L
(ANe)T fcr dz

=
∫

L

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3
L

+ 4z
L2 0

0
6

L2 − 12z
L3

0
4
L

− 6z
L2

4
L

− 8z
L2 0

− 1
L

+ 4z
L2 0

0 − 6
L2 + 12z

L3

0
2
L

− 6z
L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

k−1∑
i=0

Fe,k,i
(
ac0,i + ac1,iz

)
k−1∑
i=0

Fe,k,i
(
bc0,i + bc1,iz

)

⎤
⎥⎥⎥⎥⎥⎦dz =

k−1∑
i=0

Fe,k,i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ac0,i − L
6

ac1,i

−bc1,i

bc0,i

−2
3

Lac1,i

5
6

Lac1,i + ac0,i

bc1,i

−bc1,iL − bc0,i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.42)

The loading vector related to shrinkage effects pe.sh is obtained from Eq. A.37,
except that Ec,k replaces �Ee,k.

A.5 Strong formulation (local balance condition)

The strong form of the problem, consisting of the governing system of differential
equations and corresponding boundary conditions, is obtained by integrating by parts
the weak form presented in Eq. A.8, as follows:

[
Niû

]L
0 −

∫
L

N′
i û dz − [Miv̂′]L

0 + [M′
i v̂
]L

0 −
∫

L
M′′

i v̂dz

=
∫

L

(
pv̂ + nû

)
dz + SLv̂L + NLûL + MLθ̂L + SRv̂R + NRûR + MRθ̂R (A.43)

Enforcing horizontal and vertical equilibrium, the system of differential equations
obtained from Eq. A.43 can then be expressed as:

N′
i + n = 0 and M′′

i + p = 0 (A.44a,b)

From Eq. A.43, the corresponding boundary conditions to be applied at the left and
right ends of the beam segment (i.e. at z = 0 and L) are:

(NiL + NL) ûL = 0; (NiR − NR) ûR = 0 (A.45a,b)(
M′

iL + SL
)

v̂L = 0; (
M′

iR − SR
)

v̂R = 0 (A.45c,d)

(MiL − ML) θ̂L = 0; (MiR + MR) θ̂R = 0 (A.45e,f)
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The differential equations and their boundary conditions can also be defined in terms
of the independent displacements u and v by recalling the expressions for Ni and Mi
of Eq. A.12:

Ni = RAu′ − RBv′′ + fcrN − fshN (A.46a)

Mi = RBu′ − RIv′′ + fcrM − fshM (A.46b)

where the rigidities RA, RB and RI are defined in Chapter 5 for different types of
cross-sections.

Substituting Eqs A.46 into Eqs A.44 and A.45 the differential equations can be
re-written as:

RAu′′ − RBv′′ ′ + f ′
crN − f ′

shN + n = 0 (A.47a)

RBu′′′ − RIv′′ ′′ + f ′′
crM − f ′′

shM + p = 0 (A.47b)

and the boundary conditions at the left (L) and right (R) ends of the member become:

(
RA u′

L − RB v′′
L + fcrNL − fshNL + NL

)
ûL = 0 (A.48a)(

RA u′
R − RB v′′

R + fcrNR − fshNR − NR
)

ûR = 0 (A.48b)(
RB u′′

L − RI v′′
L

′ + f ′
crML − f ′

shML + SL
)

v̂L = 0 (A.48c)(
RB u′′

R − RI v′′
R

′ + f ′
crMR − f ′

shMR − SR
)

v̂R = 0 (A.48d)(
RB u′

L − RI v′′
L + fcrML − fshML − ML

)
θ̂L = 0 (A.48e)(

RB u′
R − RI v′′

R + fcrMR − fshMR + MR
)
θ̂R = 0 (A.48f)

The system of differential equations (Eqs A.47) is solved in the following, initially
for the instantaneous material properties (i.e. no time effects) and then for the time
analysis using the AEMM and the SSM.

A.5.1 Instantaneous analysis

Ignoring creep and shrinkage effects (i.e. fcrN = 0, fcrM = 0, fshN = 0 and fshM = 0), the
general expressions for u and v which satisfy Eqs A.47 can be written as:

v = α1p
z4

24
+ C1

z3

6
+ C2

z2

2
+ C3z + C4 (A.49a)

u = α2p
z3

6
+ (α3C1 +α4n)

z2

2
+ C5z + C6 (A.49b)

while the following coefficients are been introduced to simplify the notation:

α0 = R1RA − R2
B; α1 = RA

α0
; α2 = RB

α0
; α3 = RB

RA
; and α4 = −1

RA

(A.50a–e)
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The constants of integration Cj (with j = 1, . . . ,6) can be determined based on the
boundary conditions (Eqs A.48). In the following these analytical solutions have been
used to derive the stiffness matrix and loading vector to be used in the stiffness method
outlined in Chapter 9.

A.5.1.1 Stiffness matrix

Consider the unloaded fixed ended beam shown in Fig. A.4a. The beam is modelled
using a single 6 DOF stiffness element similar to that shown in Fig. 9.1 (i.e. three
freedoms at each end node). The freedom numbering for the beam is shown in
Fig. A.4b. The direct stiffness method is used here to derive the coefficients of the
stiffness matrix.

The direct stiffness method is a procedure which enables the determination of the
stiffness coefficients by enforcing a unit displacement along one freedom while all
other freedoms are restrained. The actual stiffness coefficients are then equal to the
reactions of the fixed-ended beam required to keep the displaced configuration. For
example, enforcing a unit displacement along freedom 3 (i.e. rotation at the left support
in Fig. A.4b), the reactions of the fixed-ended beam correspond to the coefficients
included in the third column of the stiffness matrix. This approach is useful only
when there is an analytical or numerical solution available to calculate the sought
end reactions shown in Fig. A.4c. In the following, this will be carried out using the
analytical solutions presented in Eqs A.49 combined with the boundary conditions of
Eqs A.48.

In order to calculate the coefficients of the first column of the stiffness matrix, a unit
displacement is enforced along freedom 1 (Fig. A.4b), which corresponds to the axial
displacement of the left node. For clarity, this deformation is shown in Fig. A.5.

Considering that both member ends are fully restrained by the fixed support
conditions, the constants of integration included in the general solutions for u and
v presented in Eqs A.49 can be determined by enforcing the following kinematic
conditions:

6

4

5

13

2z
L

(a) Support conditions (b) Numbering of the freedoms

z
L

ML MR

NR

SR

NL

SL

(c) Freebody diagram

Figure A.4 Unloaded, fixed-ended beam.
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0 0

0

00

1

Figure A.5 A unit displacement enforced along freedom 1.

u (z = 0) = 1; u (z = L) = 0; v (z = 0) = 0; v (z = L) = 0; θ (z = 0) = 0;
and θ (z = L) = 0.

The calculated constants of integration can then be written as:

C1 = 0; C2 = 0; C3 = 0; C4 = 0; C5 = − 1
L

; and C6 = 1.

Adopting the static boundary conditions of Eqs A.48, the reactions of the fixed-
ended beam can be determined by solving the following equations for the unknown
nodal actions (which represent the desired reactions):

RAu′
L − RBv′′

L + NL = 0; RAu′
R − RBv′′

R − NR = 0

RBu′′
L − RIv′′

L
′ + SL = 0; RBu′′

R − RIv′′
R

′ − SR = 0

RBu′
L − RIv′′

L − ML = 0; RBu′
R − RIv′′

R + MR = 0

where the expressions related to creep and shrinkage have been omitted as not relevant
to the calculations of the stiffness coefficients.

The reactions required to maintain this deformed configuration (Fig. A.5) can be
collected in the following vector:

p1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL

SL

ML

NR

SR

MR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RA/L

0

RB/L

−RA/L

0

−RB/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which defines the first column of the stiffness matrix (identified by the subscript ‘1’).
Considering a unit displacement along freedom 2 (Fig. A.6), the boundary conditions

necessary to determine the constants of integration are:

u (z = 0) = 0; u (z = L) = 0; v (z = 0) = 1; v (z = L) = 0; θ (z = 0) = 0;
and θ (z = L) = 0.

and these produce the following expressions:

C1 = 12
L3 ; C2 = − 6

L2 ; C3 = 0; C4 = 1; C5 = − 6
L2

RB

RA
; and C6 = 0.
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0
0

0

0
0

1

Figure A.6 A unit displacement enforced along freedom 2.

Based on these constants of integration, the analytical solution for this displaced
configuration is described by a cubic function for the deflection v and a parabolic one
for the axial displacement u, therefore providing consistent contributions to the strain
field from both v and u.

The reactions, which form the second column of the stiffness matrix, are determined
using the static boundary conditions of Eqs A.48 as:

p2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL

SL

ML

NR

SR

MR

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

12
L3

RIRA − R2
B

RA

− 6
L2

RIRA − R2
B

RA

0

−12
L3

RIRA − R2
B

RA

− 6
L2

RIRA − R2
B

RA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

12/α1L3

−6/α1L2

0

−12/α1L3

−6/α1L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Considering the remaining freedoms one at the time, the coefficients of the whole
stiffness matrix are determined:

ke =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

RA

L
0 −RB

L
−RA

L
0

RB

L

0
12
α1L3

6
α1L2 0 − 12

α1L3

6
α1L2

−RB

L
6

α1L2

4
α1L

+ R2
B

RAL
RB

L
− 6
α1L2

2
α1L

− R2
B

RAL

−RA

L
0

RB

L
RA

L
0 −RB

L

0 − 12
α1L3 − 6

α1L2 0
12
α1L3 − 6

α1L2

RB

L
6

α1L2

2
α1L

− R2
B

RAL
−RB

L
− 6
α1L2

4
α1L

+ R2
B

RAL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.51)
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A.5.1.2 Equivalent nodal actions for member loads

Consider the fixed-ended beam of the previous section subjected to constant member
loads n and p (Fig. A.7). Eqs A.49 are used here to determine the equivalent nodal loads
required to be used in the stiffness method of analysis. Note that this set of actions
corresponds to the opposite of the reactions of the fixed ended beam illustrated in
Fig. A.7.

As both member ends are fully restrained, the kinematic boundary conditions are:

u (z = 0) = 0; u (z = L) = 0; v (z = 0) = 0; v (z = L) = 0; θ (z = 0) = 0;
and θ (z = L) = 0

and the expressions for the constants of integration are:

C1 = −L
2
α1p; C2 = L2

12
α1p; C3 = 0; C4 = 0;

C5 = 3α1α3 − 2α2

12
L2p − L

2
α4n; and C6 = 0.

The reactions are obtained by solving the static boundary conditions of Eqs A.48
(ignoring time effects):

RAu′
L − RBv′′

L + NL = 0; RBu′′
L − RIv′′

L
′ + SL = 0; RBu′

L − RIv′′
L − ML = 0

RAu′
R − RBv′′

R − NR = 0; RBu′′
R − RIv′′

R
′ − SR = 0; RBu′

R − RIv′′
R + MR = 0

and are given by:

pF.m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL.m

SL.m

ML.m

NR.m

SR.m

MR.m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L/2

α3

Lα3/2

−L/2

α3

Lα3/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n (A.52)

where pF.m represents the reactions of the fixed-ended beam subjected to constant
longitudinal and transverse distributed loads, i.e. n and p. The equivalent nodal loads
are equal and opposite to the reactions of pF.m.

z
L

n

p

(a) Loading and support conditions

z
L

n

p

ML MR

NR

SR

NL

SL

(b) Free body diagram

Figure A.7 Fixed-ended beam subjected to constant member loads.
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A.5.1.3 Post-processing of the instantaneous solution

From the instantaneous analysis, the axial force and moment resisted by the concrete
at time τ0 are obtained from Eq. A.33. The deflection v0 and axial deformation u0 at
any point z along a member are:

v0 = α1,0 p
z4

24
+ �C1,0

z3

6
+ �C2,0

z2

2
+ �C3,0z + �C4,0 (A.53a)

u0 = α2,0 p
z3

6
+ (α3,0�C1,0 +α4,0n

) z2

2
+ �C5,0 z + �C6,0 (A.53b)

where the constants αi,0 (i = 0 to 4) are given in Eqs A.50 using the cross-sectional
rigidities at time τ0. Using the nodal displacements at each end of the member, the
constants of integration are given by:

�C1,0 = −α1,0L
2

p + 6
L2

(
θR,0 + θL,0

)− 12
L3

(
vR,0 − vL,0

)
(A.54a)

�C2,0 = α1,0L2

12
p − 2

L

(
θR,0 + 2θL,0

)+ 6
L2

(
vR,0 − vL,0

)
(A.54b)

�C3,0 = θL,0; �C4,0 = vL,0 (A.54c,d)

�C5,0 = 3α1,0α3,0 − 2α2,0

12
L2p − α4,0L

2
n − 3α3,0

L

(
θR,0 + θL,0

)
− 6α3,0

L2

(
vL,0 − vR,0

)+ uR,0 − uL,0

L
(A.54e)

�C6,0 = uL,0 (A.54f)

The expressions for u′
0 and v′′

0 can then be obtained by differentiating Eqs A.53:

u′
0 = α2,0 p

z2

2
+ (α3,0�C1,0 +α4,0n

)
z + �C5,0 (A.55a)

v′′
0 = α1,0 p

z2

2
+ �C1,0z + �C2,0 (A.55b)

The internal actions resisted by the concrete component can then be re-written as:

Nc,0 = AcEc,0 u′
0 − BcEc,0 v′′

0

= AcEc,0

[
α2,0 p

z2

2
+ (α3,0�C1,0 +α4,0n

)
z + �C5,0

]

− BcEc,0

(
α1,0 p

z2

2
+ �C1,0 z + �C2,0

)

= ac0,0 + ac1,0 z + ac2,0 z2 (A.56)
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where:

ac0,0 =AcEc,0�C5,0−BcEc,0�C2,0, ac1,0 =AcEc,0α3,0�C1,0+AcEc,0α4,0n−BcEc,0�C1,0

(A.57a,b)

ac2,0 = AcEc,0α2,0 p−BcEc,0α1,0 p
2

(A.57c)

and

Mc,0 = BcEc,0u′
0 − IcEc,0v′′

0

= BcEc,0

[
α2,0p

z2

2
+ (α3,0�C1,0 +α4,0n

)
z + �C5,0

]

− IcEc,0

(
α1,0p

z2

2
+ �C1,0z + �C2,0

)

= bc0,0 + bc1,0z + bc2,0z2 (A.58)

where:

bc0,0 =BcEc,0�C5,0−IcEc,0�C2,0; bc1,0 =BcEcα3,0�C1,0+BcEc,0α4,0n−IcEc,0�C1,0

(A.59a,b)

bc2,0 = BcEc,0α2,0p−IcEc,0α1,0p
2

(A.59c)

A.5.2 Age-adjusted effective modulus method (AEMM)

The differential equations and boundary conditions to be used for the time analysis
require the knowledge of the functions fcrN and fcrM in Eqs A.47 and A.48. Expressions
for these terms to be used with the AEMM can be obtained substituting Eqs A.56 and
A.58 into Eqs A.14:

fcrN =�Fe,0Nc,0 =�Fe,0

(
ac0,0 + ac1,0 z + ac2,0 z2

)
(A.60a)

fcrM =�Fe,0Mc,0 =�Fe,0

(
bc0,0 + bc1,0 z + bc2,0 z2

)
(A.60b)

and their first and second derivatives, included in the system of differential equations,
become:

f ′
crN =�Fe,0

(
ac1,0 + 2ac2,0z

) ; f ′
crM =�Fe,0

(
bc1,0 + 2bc2,0z

)
(A.61a,b)

f ′′
crN = 2ac2,0�Fe,0; f ′′

crM = 2bc2,0�Fe,0 (A.61c,d)

Shrinkage effects are included using the same approach adopted for the finite element
formulation in Section A4.1 where both fshN and fshM (related to shrinkage) are
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assumed to remain constant along the member length and when used with the AEMM
are:

fshN =
∫

Ac

�Ee,kεsh,k dA = �Ee,kAcεsh,k and fshM =
∫

Ac

y�Ee,kεsh,kdA = �Ee,kBcεsh,k

(A.62a,b)

It is now possible to solve the differential equations (Eqs A.47) as a function of the
axial displacement and deflection at time τk by substituting Eqs A.60 and A.62 into
Eqs A.47:

uk = (
α2,kp +β2,k

) z3

6
+ (α3,kC1,k +α4,kn +β3,k

) z2

2
+ C5,kz + C6,k (A.63a)

vk = (
α1,kp +β1,k

) z4

24
+ C1,k

z3

6
+ C2,k

z2

2
+ C3,kz + C4,k (A.63b)

where the constants αi,k (i = 0 to 4) are given in Eqs A.50 using the cross-sectional
rigidities at time τk and the constants βi,k (i = 1 to 3) are given by:

β1,k = 2RA bc2,0�Fe,0 − 2RB ac2,0�Fe,0

α0,k
(A.64a)

β2,k = RB

RA
β1,k − 2ac2,0�Fe,0

RA
and β3,k = −ac1,0�Fe,0

RA
(A.64b,c)

The equivalent nodal loads required to account for member loads, creep and
shrinkage are determined in the following worked example.

A.5.2.1 Equivalent nodal actions at time τk

Consider the fixed-ended beam of the previous sections (shown in Fig. A.7) subjected to
constant member loads n and p, as well as creep and shrinkage effects. The equivalent
nodal loads required in the stiffness method to simulate member loads, creep and
shrinkage effects are here determined separately using the general solution in Eqs A.63.

From the boundary conditions for the fixed ended beam (i.e. uL,k = uR,k = vL,k =
vR,k = θL,k = θR,k = 0), the following expressions for the constants of integration are
determined:

C1,k = −α1,kp +β1,k

2
L; C2,k = α1,kp +β1,k

12
L2; C3,k = 0; C4,k = 0

(A.65a–d)

C5,k = 3α1,kα3,k − 2α2,k

12
L2p − α4,k

2
n + α3,kL2

4
β1,k − L2

6
β2,k − L

2
β3,k; C6,k = 0.

(A.65e,f)
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and the support reactions are then obtained solving (Eqs A.48):

RAu′
L,k−RBv′′

L,k+fcrNL−fshNL+NL =0; RAu′
R,k−RBv′′

R,k+fcrNR−fshNR−NR =0;
RBu′′

L,k−RIv′′′
L,k+f ′

crML−f ′
shML+SL =0; RBu′′

R,k−RIv′′′
R,k+f ′

crMR−f ′
shMR−SR =0;

RBu′
L,k−RIv′′

L,k+fcrML−fshML−ML =0; RBu′
R,k−RIv′′

R,k+fcrMR−fshMR+MR =0.

The results have been summarized below for each loading condition considered
separately. The three sets of reactions pF.m, pF.sh and pF.cr are the opposite of the
equivalent nodal loads required in the stiffness method to handle these loading
conditions:

pF.m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL.m

SL.m

ML.m

NR.m

SR.m

MR.m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L/2

α3,k

Lα3,k/2

−L/2

−α3,k

Lα3,k/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n; pF.sh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ee,kAcεsh,k

0

−�Ee,kBcεsh,k

−�Ee,kAcεsh,k

0
�Ee,kBcεsh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.66a,b)

pF.cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�Fe,0

(
ac2,0L2

3
+ ac1,0L

2
+ ac0,0

)

�Fe,0
(
α3,kac1,0 + Lα3,kac2,0 − bc1,0 − bc2,0L

)
−�Fe,0

(
−ac1,0 + ac2,0L

2
α3,kL − bc0,0 + bc2,0

L2

6

)

�Fe,0

(
ac2,0L2

3
+ ac1,0L

2
+ ac0,0

)

−�Fe,0
(
α3,kac1,0 + Lα3,kac2,0 − bc1,0 − bc2,0L

)
−�Fe,0

(
−ac1,0 + ac2,0L

2
α3,kL + bc0,0 + bc1,0L + bc2,0

5L2

6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.66c)

A.5.2.2 Post-processing of the solution at time τk

The expressions for uk and vk to be used in the post-processing are given in Eqs A.63.
Considering that both creep and shrinkage have been included in the analysis using
equivalent nodal actions it is necessary to solve the governing system of differential
equations at time τk (Eqs A.47) using the nodal displacements at that time as boundary
conditions. The relevant constants of integration (for Eqs A.63) can be obtained using
Eqs A.48 as:

�C1,k =−α1,kp+β1,k

2
L+ 6

L2

(
θR,k+θL,k

)− 12
L3

(
vR,k−vL,k

); �C3,k =θR,k
(A.67a,b)
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�C2,k = α1,kp+β1,k

12
L2− 2

L

(
θR,k+2θL,k

)+ 6
L2

(
vR,k−vL,k

); �C4,k =vL,k; �C6,k =uL,k.

(A.67c–e)

�C5,k = 3α1,kα3,k−2α2,k

12
L2p− α4,k

2
n+ α3,kL2

4
β1,k− L2

6
β2,k− L

2
β3,k

− 3α3,k

L

(
θR,k+θL,k

)− 6α3,k

L2

(
vL,k−vR,k

)+ uR,k−uL,k

L
(A.67f)

Based on these, the expressions for u′
k and v′′

k which define the strain diagram at τk
can be written as:

u′
k = (

α2,kp +β2,k
) z2

2
+ (α3,k

�C1,k +α4,kn +β3,k
)
z + �C5,k (A.68a)

v′′
k = (

α1,kp +β1,k
) z2

2
+ �C1,kz + �C2,k (A.68b)

For completeness, the expressions for the internal actions resisted by the concrete
at τk can be determined as follows:

Nc.k = Ac�Ee,ku′
k − Bc�Ee,kv′′

k − Ac�Ee,kεsh,k +�Fe,0Nc,0

= Ac�Ee,k

[(
α2,kp +β2,k

) z2

2
+ (α3,k

�C1,k +α4,kn +β3,k
)
z + �C5,k

]

− Bc�Ee,k

[(
α1,kp +β1,k

) z2

2
+ �C1,kz + �C2,k

]

− Ac�Ee,kεsh,k +�Fe,0

(
ac0,0 + ac1,0z + ac2,0z2

)
= ac0,k + ac1,kz + ac2,kz2 (A.69a)

Mc.k = Bc�Ee,ku′
k − Ic�Ee,kv′′

k − Bc�Ee,kεsh,k +�Fe,0Mc,0

= Bc�Ee,k

[(
α2,kp +β2,k

) z2

2
+ (α3,k

�C1,k +α4,kn +β3,k
)
z + �C5,k

]

− Ic�Ee,k

[(
α1,kp +β1,k

) z2

2
+ �C1,kz + �C2,k

]

− Bc�Ee,kεsh,k +�Fe,0

(
bc0,0 + bc1,0z + bc2,0z2

)
= bc0,k + bc1,kz + bc2,kz2 (A.69b)

where:

ac0,k = Ac�Ee,k
�C5,k − Bc�Ee,k

�C2,k − Ac�Ee,kεsh,k +�Fe,0ac0,0 (A.70a)

ac1,k = Ac�Ee,k
(
α3,k

�C1,k +α4,kn +β3,k
)− Bc�Ee,k

�C1,k +�Fe,0ac1,0 (A.70b)
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ac2,k = Ac�Ee,k
α2,kp +β2,k

2
− Bc�Ee,k

α1,kp +β1,k

2
+�Fe,0ac2,0 (A.70c)

bc0,k = Bc�Ee,k
�C5,k − Ic�Ee,k

�C2,k − Bc�Ee,kεsh,k +�Fe,0bc0,0 (A.70d)

bc1,k = Bc�Ee,k
(
α3,k

�C1,k +α4,kn +β3,k
)− Ic�Ee,k

�C1,k +�Fe,0bc1,0 (A.70e)

bc2,k = Bc�Ee,k
α2,k p +β2,k

2
− Ic�Ee,k

α1,k p +β1,k

2
+�Fe,0bc2,0 (A.70f)

A.5.3 Step-by-step method (SSM)

The time-dependent response of a beam segment calculated using the SSM is obtained
by solving the system of differential (Eqs A.47) and corresponding boundary conditions
(Eqs A.48) at time τk using the following expressions for fcrN,k and fcrM,k (Eqs A.15):

fcrN,k =
k−1∑
i=0

∫
Ac

Fe,k,i σc,i dA =
k−1∑
i=0

Fe,k,i Nc,i (A.71a)

fcrM,k =
k−1∑
i=0

∫
Ac

yFe,k,i σc,i dA =
k−1∑
i=0

Fe,k,i Mc,i (A.71b)

where the coefficient Fe,k,i are defined in Eq. 4.25, while the internal actions resisted
by the concrete at times τi (Nc,i and Mc,i) are given in Eqs A.39.

It is assumed that the internal actions (i.e. Nc,n and Mc,n) resisted by the concrete
in previous time steps τn (with n = 0, . . . , i −1) are known and available. Based on the
fact that the format of the polynomials or functions describing the concrete internal
actions do not vary with time, it is possible to derive the basic expressions for Nc,n and
Mc,n from the results of the instantaneous analysis. This was already carried out when
considering the AEMM leading to the use of parabolic expressions for both Nc,n and
Mc,n (Eqs A.56 and A.58) assuming both member loads n and p to remain constant.
These can be written for the generic time step τn required in Eqs A.39 as:

Nc,n = ac0,n + ac1,n z + ac2,n z2 (A.72a)

Mc,n = bc0,n + bc1,n z + bc2,n z2 (A.72b)

where the coefficients ac0,n and bc0,n are assumed to be known for n< i. The coefficients
describing the internal actions at time τi are obtained in the following by substituting
u′

i and v′′
i determined at time τi into Eqs A.39. For this purpose, the expressions for

u′
i and v′′

i are obtained by solving the system of differential equations of Eqs A.47
enforcing the kinematic boundary conditions consistent with the nodal displacements
calculated from the stiffness method at time τi.
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The functions fcrN,i and fcrM,i are obtained substituting Nc,n and Mc,n into Eqs A.71:

fcrN,i =
i−1∑
n=0

∫
Ac

Fe,i,nσc,n dA =
i−1∑
n=0

Fe,i,nNc,n =
i−1∑
n=0

Fe,i,n

(
ac0,n + ac1,nz + ac2,nz2

)
(A.73a)

fcrM,i =
i−1∑
n=0

∫
Ac

yFe,i,nσc,n dA =
i−1∑
n=0

Fe,i,nMc,n =
i−1∑
n=0

Fe,i,n

(
bc0,n + bc1,nz + bc2,nz2

)
(A.73b)

and their first and second derivatives become:

f ′
crN,i =

i−1∑
n=0

Fe,i,n
(
ac1,n + 2ac2,n z

); f ′
crM,i =

i−1∑
n=0

Fe,i,n
(
bc1,n + 2bc2,n z

)
(A.74a)

f ′′
crN,i =

i−1∑
n=0

2ac2,n Fe,i,n; f ′′
crM,i =

i−1∑
n=0

2bc2,n Fe,i,n (A.74b)

Under the assumptions of constant shrinkage exhibited along the member length,
the expressions for fshN,i and fshM,i are:

fshN,i =
∫

Ac

Ec,iεsh,i dA = Ec,i Ac εsh,i and fshM,i =
∫

Ac

yEc,i εsh,i dA = Ec,iBcεsh,i

(A.75a,b)

Substituting Eqs A.73 to A.75 into Eqs A.47 the system of differential equations can
be written at time τi as:

RAu′′
i − RBv′′

i
′ +

i−1∑
n=0

Fe,i,n
(
ac1,n + 2ac2,n z

)+ n = 0 (A.76a)

RBu′′
i

′ − RIv′′
i

′′ +
i−1∑
n=0

Fe,i,n
(
bc1,n + 2bc2,n z

)+ p = 0 (A.76b)

This can be solved for ui and vi giving:

ui = (
α2,ip +β2,i

) z3

6
+ (α3,i�C1,i +α4,in +β3,i

) z2

2
+ �C5,iz + �C6,i (A.77a)

vi = (
α1,ip +β1,i

) z4

24
+ �C1,i

z3

6
+ �C2,i

z2

2
+ �C3,iz + �C4,i (A.77b)
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where the constants αj,i (j = 0 to 4) are given in Eqs A.50 using the cross-sectional
rigidities at time τi and the constants βj,i (j = 1 to 3) are given by:

β1,i =
2RA

i−1∑
n=0

bc2,nFe,i,n − 2RB

i−1∑
n=0

ac2,nFe,i,n

α0,i
(A.78a)

β2,i = RB

RA
β1,i −

2
i−1∑
n=0

ac2,nFe,i,n

RA
and β3,i = −

i−1∑
n=0

ac1,nFe,i,n

RA
(A.78b,c)

The constants of integration required to define the displacements along the member
lengths based on the solution at time τi (i.e. ui and vi) are obtained by enforcing the
boundary conditions at that time and are given by:

�C1,i =−α1,ip+β1,i

2
L+ 6

L2

(
θR,i +θL,i

)− 12
L3

(
vR,i −vL,i

); �C3,i =θL,i (A.79a,b)

�C2,i = α1,i p+β1,i

12
L2− 2

L

(
θR,i +2θL,i

)+ 6
L2

(
vR,i −vL,i

); �C4,i =vL,i; �C6,i =uL,i

(A.79c–e)

�C5,i = 3α1,i α3,i −2α2,i

12
L2p− α4,i

2
n+ α3,iL2

4
β1,i − L2

6
β2,i − L

2
β3,i

− 3α3,i

L

(
v′

R,i +v′
L,i

)− 6α3,i

L2

(
vL,i −vR,i

)+ uR,i −uL,i

L
(A.79f)

For the time instant τi the strain diagram can be defined by substituting the
constants of integration of Eqs A.79 into Eqs A.77 and differentiating:

u′
i = (

α2,ip +β2,i
) z2

2
+ (α3,i�C1,i +α4,in +β3,i

)
z + �C5,i (A.80a)

v′′
i = (

α1,ip +β1,i
) z2

2
+ �C1,iz + �C2,i (A.80b)

Substituting Eqs A.80 with the calculated constants of integrations (Eqs A.79) into
Eqs A.39 gives:

Nc.i = AcEc,iu′
i − BcEc,iv′′

i − AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n Nc,n

= AcEc,i

[(
α2,ip +β2,i

) z2

2
+ (α3,i�C1,i +α4,in +β3,i

)
z + �C5,i

]

− BcEc,i

[(
α1,ip +β1,i

) z2

2
+ �C1,iz + �C2,i

]
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− AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n

(
ac0,n + ac1,nz + ac2,nz2

)

= ac0,i + ac1,iz + ac2,iz2 (A.81)

where:

ac0,i = AcEc,i�C5,i − BcEc,i�C2,i − AcEc,iεsh,i +
i−1∑
n=0

Fe,i,n ac0,n (A.82a)

ac1,i = AcEc,i
(
α3,i�C1,i +α4,in +β3,i

)− BcEc,i�C1,i +
i−1∑
n=0

Fe,i,n ac1,n (A.82b)

ac2,i = AcEc,i
α2,ip +β2,i

2
− BcEc,i

α1,ip +β1,i

2
+

i−1∑
n=0

Fe,i,n ac2,n (A.82c)

Similarly, for Mc,i:

Mc,i = BcEc,i u′
i − IcEc,i v′′

i − BcEc,i εsh,i +
i−1∑
n=0

Fe,i,n Mc,n

= BcEc,i

[(
α2,i p +β2,i

) z2

2
+ (α3,i�C1,i +α4,in +β3,i

)
z + �C5,i

]

− IcEc,i

[(
α1,ip +β1,i

) z2

2
+ �C1,iz + �C2,i

]

− BcEc,iεsh,i +
i−1∑
n=0

Fe,i,n

(
bc0,n + bc1,n z + bc2,n z2

)

= bc0,i + bc1,i z + bc2,i z2 (A.83)

where:

bc0,i = BcEc,i�C5,i − IcEc,i�C2,i − BcEc,iεsh,i +
i−1∑
n=0

Fe,i,n bc0,n (A.84a)

bc1,i = BcEc,i
(
α3,i�C1,i +α4,in +β3,i

)− IcEc,i�C1,i +
i−1∑
n=0

Fe,i,n bc1,n (A.84b)

bc2,i = BcEc,i
α2,i p +β2,i

2
− IcEc,i

α1,i p +β1,i

2
+

i−1∑
n=0

Fe,i,n bc2,n (A.84c)

It is now possible to address the solution of the problem at time τk which will be used
in the following example to determine the equivalent nodal actions to be used with
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the SSM. This is now possible as the loading history of the concrete can be calculated
and recorded for each previous time step τi (i< k) based on Eqs A.81 and A.83. Also,
these can be used to define the expressions for fcrN.k and fcrM.k (Eqs A.14) required
in the solution based on the creep effects due to stress increments at all previous time
instants:

fcrN,k =
k−1∑
i=0

Fe,k,iNc,i =
k−1∑
i=0

Fe,k,i

(
ac0,i + ac1,i z + ac2,i z2

)
(A.85a)

fcrM,k =
k−1∑
i=0

Fe,k,iMc,i =
k−1∑
i=0

Fe,k,i

(
bc0,i + bc1,i z + bc2,i z2

)
(A.85b)

with corresponding derivatives:

f ′
crN,k =

k−1∑
i=0

Fe,k,i
(
ac1,i + 2ac2,iz

)
and f ′

crM =
k−1∑
i=0

Fe,k,i
(
bc1,i + 2bc2,iz

)
(A.86a,b)

f ′′
crN =

k−1∑
i=0

2ac2,iFe,k,i and f ′′
crM =

k−1∑
i=0

2bc2,i Fe,k,i (A.86c,d)

Using the notation adopted for the SSM, the shrinkage effects are:

fshN,k =
∫

Ac

Ec,kεsh,kdA=Ec,kAcεsh,k and fshM,k =
∫

Ac

yEc,kεsh,kdA=Ec,kBcεsh,k

(A.87a,b)

Substituting Eqs A.85 and A.87 into Eqs A.47 produces the governing system of
differential equations:

RAu′′
k − RBv′′

k
′ +

k−1∑
i=0

Fe,k,i
(
ac1,i + 2ac2,iz

)+ n = 0 (A.88a)

RBu′′
k

′ − RIv′′
k

′′ +
k−1∑
i=0

Fe,k,i
(
bc1,i + 2bc2,iz

)+ p = 0 (A.88b)

whose general solution can be expressed as:

uk = (
α2,kp +β2,k

) z3

6
+ (α3,kC1,k +α4,kn +β3,k

) z2

2
+ C5,kz + C6,k (A.89a)

vk = (
α1,kp +β1,k

) z4

24
+ C1,k

z3

6
+ C2,k

z2

2
+ C3,kz + C4,k (A.89b)
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where the constants αj,k (j = 0 to 4) are given in Eqs A.50 using the cross-sectional
rigidities at time τk and the constants βj,i (j = 1 to 3) are given by:

β1,k =
2RA

k−1∑
i=0

bc2,iFe,k,i − 2RB

k−1∑
i=0

ac2,iFe,k,i

α0,k
; β2,k = RB

RA
β1,k −

2
k−1∑
i=0

ac2,iFe,k,i

RA

(A.90a,b)

β3,k = −

k−1∑
i=0

ac1,iFe,k,i

RA
(A.90c)

A.5.3.1 Equivalent nodal actions at time τk

Based on the fixed-ended beam of the previous section (Fig. A.7), the expressions for
the equivalent nodal loads required to account for member loads n and p, creep effects
and shrinkage effects in the stiffness method are here determined using the SSM. The
constants of integration to define the expressions for the axial displacement uk and
deflection vk at time τk are identical to those obtained for the AEMM (and given in
Eqs A.65) as the material properties are included in the coefficients αj,k and βj,k.

The end reactions at the fixed supports are then obtained applying the static
boundary conditions of Eqs A.48:

RAu′
L,k − RBv′′

L,k + fcrNL,k − fshNL,k + NL = 0

RAu′
R,k − RBv′′

R,k + fcrNR,k − fshNR,k − NR = 0

RBu′′
L,k − RIv′′′

L,k + f ′
crML,k − f ′

shML,k + SL = 0

RBu′′
R,k − RIv′′′

R,k + f ′
crMR,k − f ′

shMR,k − SR = 0

RBu′
L,k − RIv′′

L,k + fcrML,k − fshML,k − ML = 0

RBu′
R,k − RIv′′

R,k + fcrMR,k − fshMR,k + MR = 0

The vectors pF.m, pF.sh and pF.cr can be defined as:

pF.m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NL.m

SL.m

ML.m

NR.m

SR.m

MR.m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−L/2

−L2/12

0

−L/2

L2/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

p +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L/2

α3,k

Lα3,k/2

−L/2

−α3,k

Lα3,k/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

n; pF.sh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ec,kAcεsh,k

0

−Ec,kBcεsh,k

−Ec,kAcεsh,k

0

Ec,kBcεsh,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.91a,b)
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pF.cr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
k−1∑
i=0

Fe,k,i

(
ac2,iL2

3
+ ac1,iL

2
+ ac0,i

)

k−1∑
i=0

Fe,k,i
(
α3,kac1,i + Lα3,kac2,i − bc1,i − bc2,iL

)

−
k−1∑
i=0

Fe,k,i

(
−ac1,i + ac2,iL

2
α3,kL − bc0,i + bc2,i

L2

6

)

k−1∑
i=0

Fe,k,i

(
ac2,iL2

3
+ ac1,iL

2
+ ac0,i

)

−
k−1∑
i=0

Fe,k,i
(
α3,kac1,i + Lα3,kac2,i − bc1,i − bc2,iL

)

−
k−1∑
i=0

Fe,k,i

(
−ac1,i + ac2,iL

2
α3,kL + bc0,i + bc1,iL + bc2,i

5L2

6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.91c)

As expected these loading vectors are very similar to those already calculated using
the AEMM. For example, Eqs A.91 are identical to Eqs A.66 with the only difference
relying on the way the instantaneous concrete modulus is determined with the AEMM
and SSM. The equivalent nodal actions for use in the stiffness method are equal and
opposite to pF.m, pF.cr and pF.sh.

A.5.3.2 Post-processing of the solution at time τi

In the case of the SSM the expressions for the axial displacement ui and deflection vi
required for the post-processing of the solution at any time instant have already been
derived in Eqs A.77. For a time τi, the constants of integration defining ui and vi are
obtained using Eqs A.79. The expressions for u′

i and v′′
i defining the strain diagram at

τi are given in Eqs A.80. For completeness, the internal actions resisted by the concrete
component can be determined using Eqs A.81 and A.83.
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uncracked members 376–83

Flat slabs 330–5
Flexibility coefficients 307
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expected loads 40; load combinations for
serviceability 40; specified (or
characteristic) loads 40
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Moment–curvature relationships 262–4
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Non-linear strain distributions 19, 341
Non-linear temperature distributions 341–2
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Post-processing solutions: instantaneous

412–13; time analysis 413–23
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Prestressing steel 33–6
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Redundant forces 305–16
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17; chemical shrinkage 17 drying
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moment–curvature relationship 264;
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Solar radiation 341
Span-to-depth ratio 44–9
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Stiffness matrix 352, 410
Stiffness method 351–4
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Strain magnitudes 4–5
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Support settlement 316–20

Temperature effects: coefficients of
thermal expansion 342; continuity
stresses 349; cross-sectional analysis
341–4; eigenstresses 340; on magnitude
of creep 6; non-linear distribution
341–2; redundant forces 347;
self-equilibrating, 340

Tensile creep 14
Tensile strength of concrete 24–5
Tension chord model 83–91
Tension stiffening 37, 41, 52–4, 57, 70,

77, 84
Thermal effects see Temperature effects
Time analyses: basic concepts 22; of cracked

cross-sections 279–80, 290–1; finite
element method 376–83, 387–90; of
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method 361–3, 368; of uncracked
cross-sections: axial loading 105–10,
114–17, 119–22, 127, 128–30; biaxial
bending 244–7, 256–9; composite
concrete-concrete sections 192–4;
composite steel-concrete sections 180–2;
reinforced and prestressed sections in
uniaxial bending 151–7, 164–9

Time discretisation 105–6
Transformed section 143, 270
Trost-Bazant Method 119
Two-way slabs: deflection components 331;

deflection models 325–6; deflection
problems 324; edge-supported slabs
326–7; finite element models 325–6; flat
slabs 330–1; maximum span-to-depth ratio
46–7; wide beam method 330

Vibration control 44

Wide beam method 330
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