

Introduction to
Mathematics of

Satisfiability

© 2009 by Taylor and Francis Group, LLC

Stochastic Relations: Foundations for Markov Transition Systems

Ernst-Erich Doberkat

Conceptual Structures in Practice

ascal Hitzler and Henrik Schärfe

Context-Aware Computing and Self-Managing Systems

altenegus Dargie

Introduction to Mathematics of Satisfiability

Victor W. Marek

PubliSHED TiTlES

SEriES EDiTor

G. Q. Zhang
Case Western Reserve University

Department of EECS
Cleveland, Ohio, U.S.A.

Studies in Informatics Series

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Studies in Informatics Series

Introduction to
Mathematics of

Satisfiability

Victor W. Marek

© 2009 by Taylor and Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor and Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4398-0167-3 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Marek, V. W. (V. Wiktor), 1943-
Introduction to mathematics of satisfiability / Victor W. Marek.

p. cm. -- (Chapman & Hall/CRC studies in informatics series)
Includes bibliographical references and index.
ISBN 978-1-4398-0167-3 (hardcover : alk. paper)
1. Propositional calculus. 2. Logic, Symbolic and mathematical. I. Title. II. Series.

QA9.3.M37 2009
511.3--dc22 2009016171

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2009 by Taylor and Francis Group, LLC

http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com
http://www.copyright.com

Contents

Preface ix

1 Sets, lattices, and Boolean algebras 1

1.1 Sets and set-theoretic notation . 1

1.2 Posets, lattices, and Boolean algebras 3

1.3 Well-orderings and ordinals . 5

1.4 The fixpoint theorem . 6

1.5 Exercises . 9

2 Introduction to propositional logic 11

2.1 Syntax of propositional logic . 11

2.2 Semantics of propositional logic 13

2.3 Autarkies . 23

2.4 Tautologies and substitutions . 28

2.5 Lindenbaum algebra . 32

2.6 Permutations . 34

2.7 Duality . 38

2.8 Semantical consequence, operationsMod and Th 39

2.9 Exercises . 42

3 Normal forms of formulas 45

3.1 Canonical negation-normal form 46

3.2 Occurrences of variables and three-valued logic 48

3.3 Canonical forms . 50

3.4 Reduced normal forms . 54

3.5 Complete normal forms . 56

3.6 Lindenbaum algebra revisited . 58

3.7 Other normal forms . 59

3.8 Exercises . 60

4 The Craig lemma 63

4.1 Craig lemma . 63

4.2 Strong Craig lemma . 66

4.3 Tying up loose ends . 69

4.4 Exercises . 71

v

© 2009 by Taylor and Francis Group, LLC

vi

5 Complete sets of functors 73

5.1 Beyond De Morgan functors . 74

5.2 Tables . 75

5.3 Field structure in Bool . 78

5.4 Incomplete sets of functors, Post classes 83

5.5 Post criterion for completeness . 85

5.6 If-then-else functor . 88

5.7 Exercises . 90

6 Compactness theorem 93

6.1 König lemma . 93

6.2 Compactness, denumerable case 95

6.3 Continuity of the operator Cn . 99

6.4 Exercises . 100

7 Clausal logic and resolution 101

7.1 Clausal logic . 102

7.2 Resolution rule . 107

7.3 Completeness results . 110

7.4 Query-answering with resolution 113

7.5 Davis-Putnam lemma . 117

7.6 Semantic resolution . 119

7.7 Autark and lean sets . 124

7.8 Exercises . 132

8 Testing satisfiability 133

8.1 Table method . 133

8.2 Hintikka sets . 135

8.3 Tableaux . 137

8.4 Davis-Putnam algorithm . 144

8.5 Boolean constraint propagation 154

8.6 The DPLL algorithm . 158

8.7 Improvements to DPLL? . 161

8.8 Reduction of the search SAT to decision SAT 162

8.9 Exercises . 163

9 Polynomial cases of SAT 165

9.1 Positive and negative formulas . 165

9.2 Horn formulas . 167

9.3 Autarkies for Horn theories . 176

9.4 Dual Horn formulas . 181

9.5 Krom formulas and 2-SAT . 185

9.6 Renameable classes of formulas 194

9.7 Affine formulas . 199

9.8 Exercises . 204

© 2009 by Taylor and Francis Group, LLC

vii

10 SAT, integer programming, and matrix algebra 205

10.1 Representing clauses by inequalities 206

10.2 Resolution and other rules of proof 207

10.3 Pigeon-hole principle and the cutting plane rule 209

10.4 Satisfiability and {−1, 1}-integer programming 214

10.5 Embedding SAT into matrix algebra 216

10.6 Exercises . 225

11 Coding runs of Turing machines, NP-completeness 227

11.1 Turing machines . 228

11.2 The language . 231

11.3 Coding the runs . 232

11.4 Correctness of our coding . 233

11.5 Reduction to 3-clauses . 237

11.6 Coding formulas as clauses and circuits 239

11.7 Decision problem for autarkies . 243

11.8 Search problem for autarkies . 245

11.9 Either-or CNFs . 247

11.10 Other cases . 249

11.11Exercises . 252

12 Computational knowledge representation with SAT – getting started 253

12.1 Encoding into SAT, DIMACS format 254

12.2 Knowledge representation over finite domains 261

12.3 Cardinality constraints, the language Lcc 267

12.4 Weight constraints . 273

12.5 Monotone constraints . 276

12.6 Exercises . 283

13 Knowledge representation and constraint satisfaction 285

13.1 Extensional and intentional relations, CWA 285

13.2 Constraint satisfaction and SAT 292

13.3 Satisfiability as constraint satisfaction 297

13.4 Polynomial cases of Boolean CSP 300

13.5 Schaefer dichotomy theorem . 305

13.6 Exercises . 317

14 Answer set programming 321

14.1 Horn logic revisited . 321

14.2 Models of programs . 322

14.3 Supported models . 323

14.4 Stable models . 326

14.5 Answer set programming and SAT 329

14.6 Knowledge representation and ASP 333

14.6.1 Three-coloring of graphs 334

© 2009 by Taylor and Francis Group, LLC

viii

14.6.2 Hamiltonian cycles in ASP 335

14.7 Complexity issues for ASP . 336

14.8 Exercises . 337

15 Conclusions 339

References 343

© 2009 by Taylor and Francis Group, LLC

Index 347

Preface

The subject of this book is satisfiability of theories consisting of propositional logic

formulas, a topic with over 80 years of history. After an initial push, the subject was

abandoned for some time by the mathematicians and analytical philosophers who

contributed to its inception. Electrical and computer engineering, and also computer

science, picked up the research of this area, starting with the work of Shannon in the

1930s. Several aspects of satisfiability are important for electronic design automa-

tion and have been pursued by computer engineers. Yet another reason to look at

satisfiability has been a remarkable result of Levin and Cook - the fact that satisfi-

ability expresses a huge class of problems of interest to computer science (we will

present this fundamental result in Chapter 11). The fundamental algorithms for sat-

isfiability testing (the simplest method, that of truth tables, was invented very early,

in the 1920s, but is obviously very inefficient) were invented in the 1960s. While

there was steady progress in understanding satisfiability, to transform it into useful

technology the area had to mature and develop new techniques. Resolution proofs

were studied in the decade of the 1970s, but it was not enough to make the area prac-

tically important (although the fans of the programming language PROLOG may be

of a different opinion). Additional breakthroughs were needed and in the mid-1990s

they occurred. The theoretical advances in satisfiability resulted in creation of a class

of software, called SAT solvers. Solvers are used to find solutions to search problems

encoded by propositional theories. Solvers found applications in a variety of areas:

electronic design automation, hardware and software verification (but please do not

conclude that all problems have been solved with SAT solvers!), combinatorial opti-

mization and other areas.

As I mentioned above, the subject has a long history, with many contributors. Thus

it is not possible to present everything that has been done (even if I knew it, which is

not the case...). I had to select the topics for this book. Various important topics have

been omitted, especially in the optimization of various normal forms (a topic taught

extensively in the computer engineering curriculum and treated extensively in their

monographs, e.g., [DM94]).

Now, about the contents of the book. Those who have patience to read the 300+

pages to follow will learn a variety of topics. In principle, the book is almost self-

contained. By this I mean that very little of mathematics that is not explained in the

book is needed to follow the material. Please do not take this as saying that there

is no mathematics in the book; just the opposite. Most information that is needed

beyond undergraduate computer science/mathematics education is provided. There

are exceptions (for instance we ask the reader to accept König theorem in Chapter

7 and Geiger theorem in Chapter 13), but aside from such few pretty exotic topics

ix

© 2009 by Taylor and Francis Group, LLC

x

almost everything is explained, often from first principles. One exception is a limited

introduction to NP-completeness (Chapter 11).

So now, to the content. As is common in such texts, the first technical chapter,

Chapter 1, prepares the reader for the material of further chapters and introduces

basic means such as the Knaster-Tarski fixpoint theorem, as well as introduces the

reader to the style of the book. The book is divided into three parts. Part One deals

with logic fundamentals: syntax of propositional logic, complete sets of functors,

normal forms, Craig lemma and compactness. Specifically, Chapter 2 introduces the

reader to propositional logic, its syntax and semantics. The point of view accepted in

this book stresses both the two-valued logic but also the three-valued logic of Kleene

(there are several three-valued logics; the one we study here is Kleene logic). In

addition to fundamentals of logic we study permutations of literals and of variables

and show how these interact with formulas and with satisfaction of formulas. We

introduce the consequence operator and its basic properties. In this chapter we study

only De Morgan functors ¬,∧,∨,⇒, and ≡.
In Chapter 3 we investigate some normal forms of propositional formulas includ-

ing negation normal form, conjunctive normal form, and disjunctive normal form.

Whenever a set of functors is complete, it induces some normal form, and we dis-

cuss some other, more exotic forms.

Craig lemma, which is an “Occam Razor” principle for propositional logic (but sur-

prisingly has applications in so-called model checking, a topic we do not discuss in

this book at all), is discussed in Chapter 4. We show the usual form of Craig lemma

(existence of an interpolant) and show that if the input is in a suitable form then

interpolant can be easily computed.

Complete sets of functors are discussed in Chapter 5. We prove the Post criterion for

completeness of sets of functors. We also look at the field structure in the set Bool
and discuss the properties of Boolean polynomials (often called Zhegalkin polyno-

mials) including representability of Boolean functions as polynomials.

We prove the compactness of propositional logic in Chapter 6. There are more gen-

eral and less general versions of compactness, but we prove the most restricted ver-

sion, for denumerable sets of formulas. In fact we show compactness for denumer-

able sets of clauses (but it implies compactness for arbitrary denumerable sets of

formulas). We use compactness to show the continuity of consequence operator (but

for denumerable sets of theories only).

In Part Two, we study clauses, their proof theory and semantics, and the algorithms

for satisfiability testing.

The clausal logic, the most important topic of this book from the point of applica-

tions, is studied in Chapter 7. We show the completeness of the proof system based

on rules of resolution and subsumption, and another based on the resolution refuta-

tion. We investigate autark sets and lean sets, proving along the way the relationships

of resolution to these sets. There are many variations of resolution refutation proof

systems. We look at one such variation: semantic resolution.

Algorithms for testing satisfiability of collections of propositional formulas are dis-

cussed in Chapter 8. We discuss four algorithms: table method, tableaux, variable

elimination resolution, and backtracking search algorithm (usually called the DPLL

© 2009 by Taylor and Francis Group, LLC

xi

algorithm). The first two apply to arbitrary finite sets of propositional formulas; the

other two require the input in clausal form. We also discuss combinational circuits

and their description by means of clauses.

It turns out that there are classes of theories with a simpler satisfiability problem.

In Chapter 9 we discuss the classes of positive theories, negative theories, Horn

theories, dual Horn theories, renameable-Horn theories, Krom theories (also known

as 2SAT), and affine theories. For each of these classes we find the polynomial-time

algorithm that tests satisfiability.

As we will see later on, many problems can be expressed as satisfiability problems

for suitably chosen theories. But in Chapter 10 we do something else; we reduce sat-

isfiability of clausal theories to classical problems of integer programming and also

in the same chapter, to linear algebra problems. The idea is that scientific knowl-

edge does not progress uniformly, and various areas of mathematics create their own

problem-solving techniques. Those can be useful and, sometimes, may simplify

solving for specific classes of problems. It should be clearly stated that both areas

into which we delve in this chapter - integer programming and linear algebra - are

huge, well-developed subjects in their own right. We selected results that appear

to us very closely related to satisfiability. Hopefully readers will look for a deeper

understanding of these areas on their own.

Part Three of the book is devoted to knowledge representation.

We code finite runs (of length bound by a polynomial in the length of the input) of

Turing machines in Chapter 11. As a corollary we find that satisfiability of clausal

theories is an NP-complete problem and then, since we can encode satisfiability of

clausal theories by satisfiability of theories consisting of clauses of size at most three

(additional variables are used), we find that the satisfiability problem for theories

consisting of three-clauses is also NP-complete. We also reduce the satisfiability

problem for arbitrary propositional theories to satisfiability of clausal theories. We

also show that with few exceptions (listed in that chapter) “mix-and-match” of for-

mulas between two classes leads to an NP-complete satisfiability problem.

Chapters 12 and 13 deal with theoretical, but also practical aspects of satisfiability.

Chapter 12 studies encodings into SAT. The idea is that given a problem (it must

be a search problem P in the class NP) the programmer translates the problem P
into a propositional theory TP so that there is a one-to-one correspondence between

satisfying valuations for TP and solutions to P . Now, the process of translating may

be tedious and the theory TP may be large. The issue is what kind of shortcuts are

available to such programmers. We discuss several such possible shortcuts. First

we discuss a variation of predicate logic where the semantics is limited to Herbrand

models. In some restricted cases formulas of predicate calculus (with semantics lim-

ited to finite models) can be used to represent problems. Yet another possibility is to

use cardinality constraints (and more generally weight constraints). We show that the

mathematics that forms a basis of the DPLL algorithm generalizes to such cases (of

cardinality constraints and more generally weight constraints). We discuss mono-

tone constraints showing that they are representable by positive formulas built out

of cardinality constraints (thus also weight constraints). Chapter 13 drills the issue

of knowledge representation. We show how constraint satisfaction systems over fi-

© 2009 by Taylor and Francis Group, LLC

xii

nite domains (and sometimes even infinite domains) can be solved by satisfiability

solvers. We also discuss the so-called closed world reasoning. Then just to make the

reader more miserable we prove the celebrated Schaefer theorem on the complexity

of Boolean constraint satisfaction problems. In Chapter 14 we outline the founda-

tions of a variation of the satisfiability called Answer Set Programming, in particular

how this formalism can be used for Knowledge Representation.

This short discussion should show the reader that we cover quite a lot of material,

but there is plenty that we do not cover. In what can be termed current satisfiability

research we do not cover the issues discussed in Section 8.7, that is improvements to

the DPLL algorithm. Those are, in our opinion, still a matter of research. We do not

discuss the representation of formulas by means of binary decision diagrams. Tradi-

tionally this topic is treated by electrical engineers, not logicians. In fact electrical

engineers know quite a lot about logical formulas (under different disguises) and it

is not our intention to compete with them.

Acknowledgments: A number of colleagues contributed one way or another to this

book. Special thanks go to Marc Denecker, Mike Dransfield, Rafi Finkel, John

Franco, Joanna Golińska–Pilarek, Andy Klapper, Oliver Kullmann, Bill Legato,

Anil Nerode, Jeff Remmel, John Schlipf, Marian Srebrny, Mateusz Srebrny, Mirek

Truszczynski, Mark Vanfleet, Sean Weaver and Sarah Weissman. The audience of

my Spring 2005 University of Kentucky course on satisfiability helped eliminate

some errors, too. Likewise, the audience of my Spring 2007 University of Kentucky

course on Boolean functions assisted me in tracing some errors. I am grateful to Marc

Denecker for stressing the importance (in a different context, but close enough) of

Kleene three-valued logic. My concern with autarkies, and more generally with par-

tial valuations, comes from looking at satisfiability from the vantage point of Kleene

three-valued logic. In particular I felt that the results on autarkies are important,

and I put a number of those (mostly due to Kullmann and also to Truszczynski) in

various places in this book. While Kullmann’s approach to autarkies is algebraical,

both Truszczynski and I were trying to put a set-theoretic spin on this area. I also

stressed Knowledge Representation aspects of Propositional Logic and its exten-

sions, presenting various constructs that are grounded in the experience of Answer

Set Programming (see Chapter 12).

Of all the people mentioned above, Jeff Remmel and Mirek Truszczynski were my

closest companions in the research of computational logic. I was blessed by their

help and patience in explaining various subtle aspects of the areas covered in this

book. Science is a social activity and collaboration often begets friendship. It cer-

tainly is the case with Jeff and Mirek.

All the colleagues mentioned above contributed to this work in a positive way. Any

errors that remain are mine alone.

As I said, the material in this book consists mainly of topics that are well-known.

Like many mathematicians, I would look at a proof of some result, did not like what

I saw, and then provide my own proof (often worse than the original). An example

© 2009 by Taylor and Francis Group, LLC

xiii

in point is my own proof of Cook’s theorem. The argument given in this book was

heavily influenced by Jeff Remmel, but may be not enough.

I am grateful to the editing team of Taylor & Francis: Michele Dimont, David

Grubbs, and Marsha Pronin for their help and encouragement. Chris Andreasen

helped with the English. Shashi Kumar was very knowledgeable about LATEXmatters.

Finally, my family, and in particular my wife Elizabeth, was supportive during the

years I worked on this book. Thanks!

For a number of years, various versions of this book were published on the Inter-

net. The current version is much changed (due to the efforts of many individuals

listed above and the reviewers). It is my intention to support the book through Web-

errata. If the reader finds typos or errors he or she is welcome to send these to

the author at marek@cs.uky.edu. Every message will be acknowledged, and

corrections will be published on the errata page. Please look at the accompanying

page http://www.cs.uky.edu/˜marek/corr.html of additions, correc-

tions, and improvements.

Cover image. In 1928, the Dutch mathematician, the great algebraist B.L. van der

Waerden, proved a remarkable theorem. Given the positive integers k, l, there is a
large enoughm so that whenever a segment of integers of length ≥ m is partitioned

in k disjoint blocks, then at least one of these blocks includes at least one arithmetic

progression of length l. Thus there is a least m with this property, and such m is

denoted in the literature byW (k, l). There is no known closed form for the function

W (·, ·), and, in fact only a small number of values ofW (k, l) are known. To see that
given number n is smaller than W (k, l), one needs a certificate, that is a partition

of [1..n] into k disjoint blocks, so that no block contains an arithmetic progression

of length l. My collaborators and I used SAT solvers and techniques for Knowledge

Representation discussed in Chapters 13 and 14 to compute certificates [DLMT04].

Subsequently, much stronger results were obtained by others, in particular by Mar-

ijn Heule and his coauthors [HHLM07]. As a side-effect of this research, Marijn

invented a technique for visualizing certificates. The front cover of this book shows

Marijn’s visualization of the certificate showing W (3, 5) > 170. The back cover

shows his visualization of our own certificate showing that W (3, 5) > 125. I find
the first visualization, with its five-fold symmetries, esthetically appealing, and hope

that the reader gets the same satisfaction looking at the cover of this book. Many

thanks, Marijn.

Lexington, KY

© 2009 by Taylor and Francis Group, LLC

http://www.cs.uky.edu
mailto:marek@cs.uky.edu

Chapter 1

Sets, lattices, and Boolean algebras

1.1 Sets and set-theoretic notation . 1
1.2 Posets, lattices, and Boolean algebras . 3
1.3 Well-orderings and ordinals . 5
1.4 The fixpoint theorem . 6
1.5 Exercises . 9

In this chapter we introduce the basics of set notation and fundamental notions that

serve as technical support for our presentation: posets, lattices, and Boolean alge-

bras. We will also state and prove the Knaster-Tarski fixpoint theorem, one of the

fundamental results very often used in computer science. One caveat: this section is

not meant to be the first contact for the reader with sets, posets, lattices and related

concepts. Rather, it serves the purpose of setting up the terminology and “common

language.”

1.1 Sets and set-theoretic notation

Sets are collections of objects. We write x ∈ X to denote that the object x belongs

to the set X . Sets themselves may be elements of other sets. Often we will deal

with subsets of some fixed set X . If this is the case, the family of all subsets of X
is denoted by P(X). We assume that P(X) exists for every set X . Sets are often

treated axiomatically, commonly using Zermelo-Fraenkel set theory (ZFC). We will

not adopt the axiomatic approach to sets. It will be enough to realize that such an

approach is possible and is developed in all of the classical texts of set theory. Given

a fixed set X , and a formula ϕ, {x ∈ X : ϕ(x)} is a subset ofX consisting of those

elements x ∈ X which possess property ϕ. Such a set exists and is uniquely defined.
Often we will not explicitly state that x belongs toX .

Generally, two sets are considered equal if they have precisely the same elements.

This means that we can describe sets in a variety of ways, but what matters is what

elements they have, not the form of their definition. We say that a set X is included

in a set Y (in symbols X ⊆ Y) if every element of X is an element of Y . Thus for

two sets X,Y

X = Y if and only if X ⊆ Y ∧ Y ⊆ X.

1

© 2009 by Taylor and Francis Group, LLC

2 Introduction to Mathematics of Satisfiability

There is a unique set without elements. It is called the empty set and is denoted by ∅.
The empty set is included in every set. There are a couple of basic operations on sets.

These include intersection, X ∩ Y , which is {x : x ∈ X ∧ x ∈ Y }; union,X ∪ Y ,

which is {x : x ∈ X ∨ x ∈ Y }; and difference,X \ Y , {x : x ∈ X ∧ x /∈ Y }. Two
sets X,Y are disjoint if X ∩ Y = ∅. When we fix a set X and consider only sets

included inX we also have the complement operation: −Y = {x : x /∈ Y }.

A family or collection of sets is a set consisting of sets. Given a collection X , we
define the union of X as {x : ∃Y ∈X (x ∈ Y)}. Similarly, the intersection ofX ,

⋂

X ,
is {x : ∀Y ∈X (x ∈ Y)}.

Given an object x, the set {x} is one that has as an element x and nothing else.

Likewise, {x, y} is an unordered pair of elements of x and y. This set contains x,
y and nothing else. There is also an ordered pair of x and y. This concept can be

defined using just the membership relation and an unordered pair. We will denote

the ordered pair of x and y by 〈x, y〉. The basic property of ordered pairs is that

〈x, y〉 = 〈z, t〉 is equivalent to x = z and y = t. The Cartesian product of sets X
and Y , X × Y , is {〈x, y〉 : x ∈ X ∧ y ∈ Y }. The operation × is not, in general,

commutative. A relation is a subset of the Cartesian product of sets. A relation

R ⊆ X × X is reflexive if for all x ∈ X , 〈x, x〉 ∈ R. A relation R ⊆ X × X is

symmetric if for all x, y inX , 〈x, y〉 ∈ R implies 〈y, x〉 ∈ R. A relationR ⊆ X×X
is transitive, if for all x, y, z in X , 〈x, y〉 ∈ R and 〈y, z〉 ∈ R imply 〈x, z〉 ∈ R.
A relation R ⊆ X × X is antisymmetric if for all x, y ∈ X , 〈x, y〉 ∈ R and

〈y, x〉 ∈ R implies x = y. A relation R ⊆ X ×X is connected if for all x, y ∈ X ,

〈x, y〉 ∈ R ∨ 〈y, x〉 ∈ R. We will often write xRy instead of 〈x, y〉 ∈ R.

With the ontology of relations defined above, we can further define various classes

of relations. Here are a few important ones. A relationR ⊆ X×X is an equivalence

relation if R is reflexive, symmetric, and transitive. Given an equivalence relation R
in X , R defines a partition ofX into its cosets, [x] = {y : yRx}. Conversely, given
a partition X of a set X into (nonempty) blocks, we can find an equivalence relation

R with cosets prescribed by X . A (partial) ordering in the set X is a relation R
such that R is reflexive, antisymmetric and transitive in X . We will use suggestive

symbols such as ≤,�, or ⊑ to denote orderings. When ≤ is an ordering of X , we

call 〈X,≤〉 a partially ordered set or poset. A linear ordering is a poset where ≤ is

connected.

A function is a relation R ⊆ X × Y such that whenever 〈x, y〉 and 〈x, z〉 belong to
R, y = z. We use letters f, g and the like to denote functions. We write f(x) = y
instead of 〈x, y〉 ∈ f . The domain of a function f is the set {x : ∃yf(x) = y}. This
set, dom(f), may be smaller thanX . In such a case we talk about a partial function.

In our presentation we will often refer to specific sets. We will use N to denote the

set of non-negative integers. We may sometimes use ω to denote the same set. We

will use Z for the set of all integers, and R for the set of all reals.

© 2009 by Taylor and Francis Group, LLC

Sets, lattices, and Boolean algebras 3

1.2 Posets, lattices, and Boolean algebras

We recall that a partially ordered set (poset, for short) is a pair 〈X,≤〉 where X is a

set, and ≤ is an ordering of X , that is ≤ is reflexive, antisymmetric, and transitive

in X . A classic example of a poset is 〈P(X),⊆〉 where ⊆ is the inclusion relation

restricted to subsets of X . Of course, the definition of a poset is very general, and

posets are abundant in all areas of mathematics and computer science. Given a poset

〈X,≤〉 and an element x ∈ X we say that x is maximal in 〈X,≤〉 if ∀y∈X(x ≤ y ⇒
x = y). Similarly we define minimal elements in the poset. The largest element

of the poset 〈X,≤〉 is an element x such that for all y ∈ X , y ≤ x. The largest

element (if one exists) is a unique maximal element. The least element of a poset is

introduced similarly.

A chain in a poset 〈X,≤〉 is a subset Y ⊆ X such that for every x, y ∈ Y , x ≤
y ∨ y ≤ x. If 〈X,≤〉 is a poset and Y ⊆ X , we say that x is an upper bound for Y
(we also say of Y) if for every element y ∈ Y , y ≤ x. An upper bound for a set Y
may or may not exist. A subset Y ⊆ Y is bounded from above (in short bounded)

if for some x ∈ X , for all y ∈ Y, y ≤ x. The least upper bound of Y is an upper

bound for Y which is ≤-smaller or equal to any other upper bound for Y . A least

upper bound, if it exists, is unique. We denote such a least upper bound of Y by
∨

Y . Analogously, we define lower bound and greatest lower bound, denoted
∧

Y .

Existence of least upper bounds is a very strong property, and is, as we are going

to see, very useful. We say that a poset 〈X,≤〉 is chain-complete if every chain in

〈X,≤〉 possesses a least upper bound.

Existence of bounds (not necessarily of least upper bounds, but bounds in general)

entails existence of maximal elements. This is the extent of the so-called Zorn’s

lemma and generalizes a very useful property of finite posets.

PROPOSITION 1.1 (Zorn lemma)

If every chain in a poset 〈X,≤〉 is bounded, then X possesses maximal el-
ements. In fact, for every x ∈ X there is a maximal element y such that
x ≤ y.

A version of Zorn’s lemma, called Hausdorff’s maximal principle, is a special case

of the situation where X is a family of sets, and ≤ is inclusion relation. It says

that any family of sets where every ⊆-chain is bounded must contain ⊆-maximal

elements.

Whenever 〈X,≤〉 is a poset, 〈X,≥〉 is also a poset and elements maximal in one are

minimal in the other and vice-versa. Thus a dual form of Zorn’s lemma (with chains

bound from below, and minimal elements) holds as well. Moreover, weakening of

assumptions (assuming existence of bounds for well-ordered chains) does not change

the conclusion. This last form will be used in one of our arguments.

A lattice is a poset where every pair of elements possesses a least upper bound and a

© 2009 by Taylor and Francis Group, LLC

4 Introduction to Mathematics of Satisfiability

greatest lower bound. Assuming we deal with a lattice, we denote the greatest lower

bound of x and y by x ∧ y and the least upper bound of x and y by x ∨ y. The

existence of bounds means that we gain an algebraic perspective on X , for we now

have an algebra, 〈X,∧,∨〉.
The set P(X) with operations of intersection (∩), and union (∪) forms a lattice.

There are many interesting lattices, and an active area of research in universal alge-

bra, called lattice theory, studies lattices.

A lattice 〈L,∧,∨〉 is complete if every subset of L possesses a least upper bound

and a greatest lower bound. The lattice 〈P(X),∩,∪〉 is always complete, but there

are many other complete lattices. In a complete lattice there is always a unique least

element (denoted⊥) and a largest element (⊤).
We defined the lattice operations from the ordering ≤ via bounds. We could go the

other way around: given a lattice 〈L,∧,∨〉 we can define an ordering≤ in L by

x ≤ y if x ∨ y = y.

With this ordering, 〈L,≤〉 becomes a poset; this poset defines (via bounds) the oper-

ations ∧ and ∨.
Lattices can be treated purely algebraically. Here is a set of postulates that a structure

〈L,∧,∨〉 must satisfy to be a lattice.

L1 x ∧ x = x x ∨ x = x
L2 x ∧ y = y ∧ x x ∨ y = y ∨ x
L3 x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z
L4 x ∧ (x ∨ y) = x x ∨ (x ∧ y) = x

If a lattice possesses a largest (⊤) and least (⊥) element, we list them in the pre-

sentation of the lattice, writing 〈L,∧,∨,⊥,⊤〉. Finite lattices always possess largest
and smallest elements. An important class of lattices consists of distributive lattices.

Those are lattices that, in addition to conditions (L1)–(L4), satisfy the following

conditions.

L5 x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A Boolean algebra is a distributive lattice 〈B,∧,∨,⊥,⊤〉 with an additional oper-

ation −, called a complement, subject to the additional conditions (B6), (B7), and

(B8), below.

B6 x ∧−x = ⊥ x ∨ −x = ⊤
B7 −(x ∧ y) = −x ∨ −y −(x ∨ y) = −x ∧ −y
B8 −(−x) = x

© 2009 by Taylor and Francis Group, LLC

Sets, lattices, and Boolean algebras 5

We do not claim that the axioms (L1)–(L5),(B6)–(B8) are independent (i.e., each

cannot be proved from the others). In fact they are not independent, but we will not

concern ourselves with this problem here.

Let us observe that for every setX the algebra 〈P(X),∩,∪,−, ∅, X〉 is a Boolean al-
gebra. In fact, 〈P(X),∩,∪,−, ∅, X〉 is a complete Boolean algebra, that is it is com-

plete as a lattice. The classic theorem of Stone states that every complete Boolean al-

gebra is isomorphic to a field of sets (i.e., a family of sets closed under intersections,

unions, and complements) but not necessarily of the form 〈P(X),∩,∪,−, ∅, X〉.

In the case of finite B one gets a stronger result. We say that an element a of B
is an atom in 〈B,∧,∨,−,⊥,⊤〉 if for all x ∈ B, x ∧ a = ⊥ or x ∧ a = a. In

other words, a cannot be split into proper smaller parts. It is easy to see that every

finite Boolean algebra is atomic, i.e., every element must be bigger than or equal to an

atom. Moreover, every finite Boolean algebra is complete. But it is almost immediate

that a complete atomic Boolean algebramust be isomorphic to 〈P(A),∩,∪,−, ∅, A〉,
where A is the set of its atoms. Thus finite Boolean algebras are always (up to

isomorphism) of the form 〈P(X),∩,∪,−, ∅, X〉. Since |P(X)| = 2n, where n =
|X |, we find that finite Boolean algebras have to have size 2n for a suitably chosen

n.

1.3 Well-orderings and ordinals

A relation R ⊆ X ×X is well-founded if every non-empty subset Y ofX possesses

a least element with respect to R. That is, there is y ∈ Y so that for all x ∈ Y , yRx.
A well-founded poset is always linearly ordered, and in fact, being well-founded is a

very strong property. It implies that there is no infinite strictly descending R-chain,
that is, there is no sequence 〈xn〉n∈N such that for all i < j, xjRxi and xj 6= xi. A
well-founded poset is often called a well-ordered set. A non-empty well-ordered set

always has the least element, and the order-induction holds for such sets. By order-

induction we mean the following property: once the least element of X possesses a

property P and we establish that from the fact that all elements preceding a given

element x have property P it follows that x itself has the property P , we can safely

claim that all elements ofX have propertyP . Well-ordered sets havemany appealing

properties and their properties are presented in every reasonable book on set theory

(books without such presentation must be considered very incomplete). Here we

will use a few facts about well-orderings (in fact already in the next section, when

we prove the fixpoint theorem). The key fact here is that one can define so-called

ordinals (also called von Neumann ordinals). These objects themselves are well-

ordered by the membership relation ∈. Moreover, for a von Neumann ordinal α,
α = {β : β is an ordinal and β ∈ α}. The ordinals are either successors (i.e.,

immediate successors of another ordinal) or limits. In the latter case a limit ordinal λ
is bigger than all smaller ordinals, but there is no largest ordinal smaller than λ. The

© 2009 by Taylor and Francis Group, LLC

6 Introduction to Mathematics of Satisfiability

least infinite limit ordinal is ω, the order type of natural numbers.

There are various types of proof by transfinite induction. One is the order induction

mentioned above. A version commonly used considers cases of successor and limit

ordinals. We will use letters like α, β, etc. for ordinals (successors or otherwise),

and λ for limit ordinals.

1.4 The fixpoint theorem

In this section we will formulate a theorem on existence of fixpoints of monotone

operators (i.e., functions) in complete lattices. This result, known as the Knaster-

Tarski theorem, is one of the fundamental tools of computer science. In fact we will

be using the Knaster-Tarski theorem quite often in this book.

Recall that we had two distinct, though equivalent, perspectives of lattices: algebraic

and order-theoretic. These approaches were equivalent and one allowed for defining

the other. Here we will be more concernedwith the order-theoretic aspects of lattices.

Let 〈L,�〉 be a complete lattice. We say that a function f : L → L is monotone if

for all x, y ∈ L
x � y ⇒ f(x) � f(y).

Often such functions are called monotone operators. A fixpoint of the function f
is any x such that f(x) = x. We will now prove the Knaster-Tarski fixpoint

theorem for monotone operators. There are at least two different ways to prove this

theorem; the argument below is the original Tarski argument. We refer the reader to

the Exercise section below, for an alternative way to prove the fixpoint theorem.

We say that an element x of the complete lattice 〈L,�〉 is a prefixpoint of a function
f : L → L if f(x) � x. Likewise, we say that an element x of the complete lattice

〈L,�〉 is a postfixpoint of a function f : L→ L if x � f(x).

LEMMA 1.1
If f : L → L is a function and 〈L,�〉 is a complete lattice then f possesses

both a prefixpoint and a postfixpoint.

Proof: Clearly, the largest element ⊤ of L is a prefixpoint, and the least element ⊥
of L a postfixpoint. 2

We will now denote byPref and by Postf the sets of prefixpoints of the operator

f and of postfixpoints of f , respectively. Lemma 1.1 says that both these sets are

nonempty.

PROPOSITION 1.2 (Knaster and Tarski fixpoint theorem)
Let f : L→ L be a monotone operator in a complete lattice 〈L,�〉. Then:

(a) f possesses a least prefixpoint l, and l is, in fact, the least fixpoint of f .

© 2009 by Taylor and Francis Group, LLC

Sets, lattices, and Boolean algebras 7

(b) f possesses a largest postfixpoint m, and m is, in fact, the largest fixpoint
of f .

Proof: (a). From Lemma 1.1 we know that Pref 6= ∅. Let l =
∧

Pref . That is,

l is the greatest lower bound of Pref . We claim that l itself is a prefixpoint of f .
To this end, let us consider any element x of Pref . Then, by definition, l � x.
Since x ∈ Pref , f(x) � x. By monotonicity of f , since l � x, f(l) � f(x). By
transitivity of �

f(l) � x.

Since x was an arbitrary element of Pref , f(l) �
∧

Pref , that is f(l) � l. Thus l
itself is a prefixpoint, and thus l is the least prefixpoint.
We now show that l is, in fact, a fixpoint. To this end let us observe that since l is a
prefixpoint, i.e., f(l) � l, f(f(l)) � f(l) thus f(l) is also a prefixpoint of f . But
then l � f(l), since l is the least prefixpoint. Thus l = f(l), as desired.
All we need to do now is to show that l is a least fixpoint. To this end, let l′ be any
fixpoint of f . Then l′ is a prefixpoint of f and so l � l′, as desired.
(b) By looking at m, the supremum of postfixpoints of f , we easily adopt the argu-

ment of (a) to the task at hand. 2

The proof of Proposition 1.2 should leave us pretty unhappy, for it gives no explicit

way to compute the least fixpoint of a monotone operator. Fortunately we can find an

explicit definition of the least fixpoint. This construction is, actually, due to Kleene.

To this end let us define the sequence 〈tα〉α∈Ord as follows:

1. t0 = ⊥

2. tβ+1 = f(tβ)

3. tλ =
∨

β<λ tβ for λ limit.

As we will see in an exercise below, the least fixpoint of f is tα where α is the least

ordinal such that tα = tα+1. Right now, we will limit our attention to a class of

monotone operators that we will encounter often below. There is a useful condition

which, if satisfied, gives us a good handle on the place where the fixpoint is reached.

Let us call a function f : L → L continuous, if for every �-increasing sequence

〈xn〉n∈N

f

(

∨

n∈N

xn

)

=
∨

n∈N

f(xn).

Intuitively (but it is only an intuition), continuity means that f(
∨

n∈N xn) has noth-
ing but objects from

∨

n∈N f(xn). Let us observe that if f is a monotone function

then for every �-increasing sequence 〈xn〉n∈N ,
∨

n∈N f(xn) � f(
∨

n∈N xn). We

now have the following fact.

PROPOSITION 1.3
If f : L → L is continuous and monotone function in a complete lattice
〈L,�〉, then f possesses a least fixpoint. This least fixpoint is the object tω

© 2009 by Taylor and Francis Group, LLC

8 Introduction to Mathematics of Satisfiability

defined above, where ω is the least infinite ordinal.

Proof: We first need to show that the sequence 〈tn〉n∈N is increasing. Clearly, t0 �
t1. Assuming that

t0 � t1 � . . . � tn � tn+1

we have tn � tn+1 and by monotonicity

f(tn) � f(tn+1),

that is, tn+1 � tn+2. But then

t0 � t1 � . . . � tn � tn+1 � tn+2.

So now we know that the sequence 〈tn〉n∈N is increasing and so by continuity

tω =
∞
∨

n=0

tn =
∞
∨

n=1

tn =
∞
∨

n=0

f(tn) = f

(

∞
∨

n=0

tn

)

= f(tω).

Thus tω is a fixpoint of f . Let x be any fixpoint of f . Then obviously t0 � x.
Assuming tn � x we have

tn+1 = f(tn) � f(x) = x.

Thus for all n, tn � x. Therefore x is an upper bound of the sequence 〈tn〉n∈N . But

then tω which is the least upper bound of 〈tn〉n∈N , must be �-smaller than or equal

to x, as desired. 2.

Let us observe that Proposition 1.3 does not say that the fixpoint is reached at ω, but
that the fixpoint is reached at latest at ω – it may be reached earlier, as will always

happen in the case when L is finite.

On the other hand, let us observe that the continuity does not tell us that the largest

fixpoint is reached in at most ω steps. In fact it is possible to construct examples

of continuous operators where more than ω steps will be needed to reach the largest

fixpoint.

Propositions 1.2 and 1.3 have been generalized in a variety of ways, in various cir-

cumstances where all the assumptions may not have been satisfied. We list a number

of generalizations; they go beyond the scope of our work here. The arguments are

variations on the proof of Proposition 1.2 or the alternative argument; see Exercises.

1. The poset 〈L,�〉 does not have to be a lattice. It is enough that it is chain-

complete, that is, that every�-chain has a least upper bound.

2. The poset does not have to be even chain-complete, if we assume continuity. In

such circumstances all we need is existence of a least upper bound for increasing

sequences of length ω.

3. Instead of fixpoints, we may be interested in prefixpoints of f , i.e., elements x
such that f(x) � x. It so happens that the argument we gave shows existence

of prefixpoints. Moreover, there is a least prefixpoint and it coincides with the

least fixpoint.

© 2009 by Taylor and Francis Group, LLC

Sets, lattices, and Boolean algebras 9

4. In the general case of complete lattices and monotone operators, the collection

of all fixpoints of f (under the ordering�) forms a complete lattice.

5. Finally, we may have more than one monotone operator and be interested in

common fixpoints. Each of cases (1)-(4) generalizes to this situation.

1.5 Exercises

1. Show that the sequence 〈tα〉α∈Ord is increasing, that is,

α ≤ β ⇒ tα � tβ .

2. Show that the sequence 〈tα〉α∈Ord must have at least one pair (α, β) such that

α 6= β and tα = tβ .

3. Show that if α < β and tα = tβ then tα = tα+1 and so tα is a fixpoint.

4. Show that the least fixpoint l of f is tα for the least ordinal α such that tα is a

fixpoint.

5. Define the sequence 〈kα〉α∈Ord as follows:

(a) k0 = ⊤

(b) kβ+1 = f(kβ)

(c) kλ =
∧

β<λ, for λ limit.

Prove the analogues of statements of problems (1)–(4) for this sequence

〈kα〉α∈Ord . Show that 〈kα〉α∈Ord converges to the largest fixpoint of f .

6. (Harder problem.) Construct an example of a complete lattice 〈L,�〉 and a

continuous monotone operator f for which the largest fixpoint is reached at

some α > ω.

7. Let f be a monotone operator in a complete lattice 〈L,�〉. Let Fix f be the set

of fixpoints of f . Prove that 〈Fix f ,�〉 is a complete lattice (although the g.l.b.
and l.u.b. in both lattices are different, in general.)

8. An operator f in a poset L is inflationary if for all x, x � f(x). Observe that,
in general, an inflationary operator does not have to be monotone. Neverthe-

less, prove that an inflationary operator in a chain-complete lattice with a least

element ⊥ must possess a fixpoint.

9. Assume f and g are two monotone operators in a complete lattice L. Show that

f and g have common fixpoints. That is, there exists an element x ∈ L such

that f(x) = x and g(x) = x. In fact there exists a least such common fixpoint.

© 2009 by Taylor and Francis Group, LLC

Chapter 2

Introduction to propositional logic

2.1 Syntax of propositional logic . 11
2.2 Semantics of propositional logic . 13
2.3 Autarkies . 23
2.4 Tautologies and substitutions . 28
2.5 Lindenbaum algebra . 32
2.6 Permutations . 34
2.7 Duality . 38
2.8 Semantical consequence, operations Mod and Th . 39
2.9 Exercises . 42

In this chapter we investigate basic properties of propositional logic. Actually, we

do not expect that this book will be the first contact of the reader with logic. How-

ever, all the concepts will be rigorously introduced and a number of propositions and

theorems proved.

2.1 Syntax of propositional logic

A propositional variable (variable for short) is a basic building block of propositional

logic. From the point of view of propositional logic a variable has no inner structure.

This, of course, is not necessarily true, as the applications of logic show. See the last

part of this book, where we discuss various aspects of Knowledge Representation.

In fact, we will see that we sometimes want variables to have some kind of structure.

The alphabet of logic (over the given set of variables Var) consists of a symbol a
for each variable a ∈ Var ; two special symbols: ⊥ and ⊤ (to describe formulas

that are always false and always true); the unary symbol ¬; and four binary symbols:

∧ (conjunction), ∨ (disjunction),⇒ (implication), and ≡ (equivalence). These are

called functors. Technically, one needs to be a bit careful (for we did not say what

can be a variable), but we will not follow these concerns. This given, the set of

formulas of propositional logic over the set of variables Var is defined as the least

set of strings FormVar satisfying the following conditions:

1. ⊥ ∈ FormVar

2. ⊤ ∈ FormVar

11

© 2009 by Taylor and Francis Group, LLC

12 Introduction to Mathematics of Satisfiability

3. If a ∈ Var , then a ∈ FormVar

4. If ϕ1, ϕ2 ∈ FormVar , then ¬ϕ1 ∈ FormVar , ϕ1 ∧ ϕ2 ∈ FormVar , ϕ1 ∨ ϕ2 ∈
FormVar , ϕ1 ⇒ ϕ2 ∈ FormVar , and ϕ1 ≡ ϕ2 ∈ FormVar .

It is easy to see that there exists such a least set of strings (for instance using the

fixpoint theorem), it is the intersection of all sets of strings satisfying the conditions

(1)–(4) above.

To eliminate ambiguity we will use brackets: (and). We will try to be as informal

as possible in dealing with our syntax, though.

The representation of formulas as strings defined above is not the only one possible.

We could use so-called Polish notation, or even reverse Polish notation. The reason

is that, in reality, formulas are just ordered labeled binary trees. The leaves of those

trees are labeled with special symbols⊤ and⊥ or with variables. The internal nodes

are labeled with functors: ¬,∧,∨,⇒, and ≡, with an obvious limitation that a node

with one child must be labeled with ¬, whereas the node with two children cannot

be labeled with ¬. Since we expect that the reader has had some rudiments of logic

before, we will not discuss more details of these trees.

The representation of formulas as trees has, however, an obvious advantage. Name-

ly, the nodes in a tree have a natural rank. Specifically, the leaves have rank 0, and
the rank of an internal node is defined as the maximum of ranks of its children,

incremented by 1. The rank of the formula ϕ is the rank of its root in the tree of ϕ.
The availability of the rank function makes it possible to prove various properties of

formulas by induction.

While every set of variables Var determines its own set of formulas FormVar , we

will see that, in reality, there is a very strong relationship between various sets

FormVar . First, let us observe that whenever Var1 ⊆ Var2, then FormVar1
⊆

FormVar2
. In other words, more variables, more formulas. The rank of formulas

does not change when moving between sets of variables. This, of course, needs a

proof, which we leave to the reader. Moreover, for every formula ϕ there is a least

set of variablesVar so that ϕ ∈ FormVar . We will denote that set byVarϕ. We may

also use the symbol Var(ϕ) for that set. Likewise, when T is a set of formulas, then

VarT (we may also write it Var(T)) is the set of all propositional variables occur-
ring in formulas of T . Finally, when Var1 ⊆ Var2 and ϕ is a formula in FormVar2

which uses only symbols from the alphabet of Var1, then ϕ ∈ FormVar1
. These

syntactic properties of formulas, as well as related semantic properties discussed

below, imply that we do not have to be exceedingly formal when discussing the for-

mulas of propositional logic.

We will write Form instead of FormVar whenever we do not need to stress a partic-

ular set of variables.

In this book we will often talk about clauses. A clause is a formula of the form

l1 ∨ . . .∨ lk, where each lj , 1 ≤ j ≤ k is a literal, i.e., a variable or negated variable.
We will see in Chapter 3 that sets of clauses express all sets of formulas. Specifically,

for each set of formulas F there is a set of clauses G such that F are semantically

equivalent. When we will limit our syntax to clauses, we will talk about clausal

logic.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 13

2.2 Semantics of propositional logic

We will now assign semantics to formulas. We first need to know what entities will

provide the semantics. In this section we will consider two types of such entities.

They will be valuations of variables and partial valuations of variables. Valuations

will correspond to two-valued (i.e., Boolean) logic. By contrast, partial valuations

are related to three-valued logic, Kleene logic, see below. We shall now discuss these

two types of logic briefly.

Our first task is to discuss two-valued logic and its semantics of valuations. In two-

valued logic truth values are 0 and 1 (although values in any Boolean algebra would

do). We consider a relational structure

Bool = 〈{0, 1},∧,∨,¬,⇒,≡, 0, 1〉.

Being naturally careless we often write Bool instead of {0, 1}, that is, we do not

distinguish between the algebra Bool and its universe {0, 1}. The important fact

here is that Bool forms a Boolean algebra (with additional operations⇒ and ≡, but
this is not crucial, for these operations are definable in terms of ¬,∧, and ∨). Let us
observe that we are using the same symbols for operations in the algebra Bool as we

use in the language of logic. It may be a source of confusion and we will have to

be a bit careful at times. The operations in the algebra Bool are given by their truth

tables (Tables 2.1 and 2.2). The arguments in these tables always range over the set

of Boolean elements, i.e., {0, 1}.

TABLE 2.1: Truth table
for negation

p ¬p
0 1
1 0

TABLE 2.2: Truth table for binary functors

p q p ∧ q p ∨ q p⇒ q p ≡ q p+ q
0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 0 0 1
1 1 1 1 1 1 0

We have not discussed until now the binary functor +, shown in the last column of

Table 2.2. We will need it in Chapter 5.

© 2009 by Taylor and Francis Group, LLC

14 Introduction to Mathematics of Satisfiability

It should be clear that the structure Bool is a Boolean algebra, i.e., it satisfies the

axioms for Boolean algebra listed in Chapter 1.

We now define a valuation as a function v defined on the set of variables Var and

with values in {0, 1}. Thus a valuation assigns a truth value from {0, 1} to each

variable x ∈ Var . We will also call valuations variable assignments.

Given a valuation v of the set of variables Var , we extend the function v so it is

defined on the entire set of formulas FormVar . Here we use the fact that every for-

mula has its rank, and we define the function ṽ by induction on the rank of formulas.

Specifically we define:

1. ṽ(⊥) = 0, ṽ(⊤) = 1

2. ṽ(p) = v(p), whenever p ∈ Var

3. ṽ(¬ϕ) = ¬ṽ(ϕ)

4. ṽ(ϕ ∧ ψ) = ṽ(ϕ) ∧ ṽ(ψ)

5. ṽ(ϕ ∨ ψ) = ṽ(ϕ) ∨ ṽ(ψ)

6. ṽ(ϕ⇒ ψ) = ṽ(ϕ)⇒ ṽ(ψ)

7. ṽ(ϕ ≡ ψ) = ṽ(ϕ) ≡ ṽ(ψ)

We need to recognize that although we use the same symbols for operations on both

sides of definitions, they have different meanings. On the left-hand side, the symbols

¬,∧,∨, etc. are linguistic symbols from the alphabet of logic. On the right-hand

side, they denote the names of operations in the structure Bool and are evaluated in

that structure.

Example 2.1
Here the set of variables Var is {p, q, r}. The valuation v is defined by: v(p) =
v(q) = 0, v(r) = 1. The formula ϕ is ¬(⊥ ∧ (¬p ∨ q)). Let us compute ṽ(ϕ). We

get, inductively: ṽ(¬p) = 1, ṽ(¬p∨ q) = 1. Then, ṽ(⊥) = 0, ṽ(⊥∧ (¬p ∨ q)) = 0,
and finally ṽ(ϕ) = 1.

Certainly we want to avoid superfluous terminology, and in particular writing ṽ each
time we evaluate a formula with respect to the valuation v. Fortunately, the following
is easy to see.

PROPOSITION 2.1
Every valuation v of variables Var uniquely extends to the function ṽ evalu-

ating all formulas in FormVar and satisfying conditions (1)–(7) above.

The proof of Proposition 2.1 uses induction on the rank of formulas. We just show

that any functionw satisfying (1)–(7) must coincide with ṽ. We leave it to the reader

as an exercise.

The side effect of Proposition 2.1 is that we can drop the tilde symbol in ṽ, and we

will do this.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 15

Traditionally, we write v |= ϕ when v(ϕ) = 1. We also say that v satisfies ϕ. We

will use both conventions; in the literature both are used. Let us observe that we can

give an inductive definition of satisfaction relation v |= ϕ, as usual by induction on

rank of formulas. Let us observe that in this definition we use negative information

about |= as well. The symbol v 6|= ϕ means that v does not satisfy ϕ.

1. v |= ⊤, v 6|= ⊥

2. v |= p if p is a variable and v(p) = 1

3. v |= ¬ϕ if v 6|= ϕ

4. v |= ϕ ∧ ψ if v |= ϕ and v |= ψ

5. v |= ϕ ∨ ψ if v |= ϕ or v |= ψ

6. v |= ϕ⇒ ψ if v 6|= ϕ or v |= ψ

7. v |= ϕ ≡ ψ if (v |= ϕ and v |= ψ) or (v 6|= ϕ and v 6|= ψ)

Let T be a set of formulas. We write v |= T if for every ϕ ∈ T , v |= ϕ. Given a

finite set of formulas T , by
∧

T we mean the formula

∧

{ϕ : ϕ ∈ T }.

For instance, when T = {ϕ1, ϕ2, ϕ3}, then
∧

T is ϕ1 ∧ ϕ2 ∧ ϕ3. We then have the

following fact (following by an easy induction on the size of T , i.e., the number of

formulas in T , from the definition of satisfaction, point (4)).

PROPOSITION 2.2
Let T be a finite set of formulas. Then for every valuation v, v |= T if and

only if v |=
∧

T .

It turns out that the value of formulaϕ under the valuation v (and thus its satisfaction)
depends only on the values assigned by v to those variables that actually occur in ϕ.
We first need a bit of notation. Let Var1 ⊆ Var2 be two sets of variables, and let v
be a valuation of the set Var2. By v |Var1

we mean a function v′ with the domain

Var1 and such that for all p ∈ Var1, v
′(p) = v(p).

Here is a simple but fundamental fact (as usual proved by induction on the rank of

formulas).

PROPOSITION 2.3 (Localization theorem)
If ϕ ∈ FormVar1

, Var1 ⊆ Var2, and v is a valuation of the set Var2, then
v |= ϕ if and only if v |Var1

|= ϕ.

Here comes the fundamental definition of the main topic of this book. A satisfiable

set of formulas is a set of formulas F such that there is a valuation v so that v |= F .
Often, the word consistent is used instead of satisfiable. We will use both terms

interchangeably.

© 2009 by Taylor and Francis Group, LLC

16 Introduction to Mathematics of Satisfiability

The satisfaction relation |= relates valuations and formulas, and also valuations and

sets of formulas. The same relation allows us to relate sets of formulas and formulas.

Here is how. Let T be a set of formulas (finite, or not). Let ϕ be a formula. We

say that T entails ϕ, in symbols: T |= ϕ, if for every valuation v of VarT ∪ Varϕ,
whenever v |= T then also v |= ϕ. Now, it should be clear that we use the symbol |=
in two distinct meanings, but it should be clear from the context which one we mean.

We now discuss joint consistency of sets of formulas. Given two sets of formulas T1

and T2, the sets of variables actually occurring in T1 and T2 may be different. It turns

out that there is a sufficient condition allowing for conclusion of the consistency

of the union of T1 ∪ T2. Let V1, V2 be sets of variables occurring in T1, and T2,

respectively. That is V1 = VarT1
, and V2 = VarT2

. Let V = V1 ∩ V2. Let T be

an arbitrary theory (i.e., set of formulas) in the language L′ ⊇ LV . We say that T is

complete for V if for every ϕ ∈ LV , T |= ϕ or T |= ¬ϕ.
We now have the following fact.

LEMMA 2.1
Let T be a satisfiable set of formulas and let us assume that T is complete

for LV . Then there is a unique valuation v of V such that for any valuation
v′ of VarT , if v′ |= T then v′ |V = v.

Proof: Let x ∈ V . Then, by completeness of T with respect to V , either T |= x or

T |= ¬x. Thus, setting

v(x) =

{

1 if T |= x

0 if T |= ¬x

we get the desired valuation of V . 2

We now get the following corollary.

COROLLARY 2.1 (Robinson theorem)
Let Ti, i = 1, 2 be two satisfiable sets of formulas. Let V = VarT1

∩ VarV2
.

Next, let us assume that each Ti, i = 1, 2 is complete with respect to V and
that the consequences of T1 in LV and of T2 in LV coincide. Then T1 ∪ T2 is
a satisfiable set of formulas.

Proof: Since Ti, i = 1, 2 are satisfiable, there are valuations v1 and v2 of VarT1
and

of VarT2
, respectively, so that vi |= Ti, i = 1, 2. But then, by Lemma 2.1 there are

unique valuationsw1 andw2 of V so that v1 extendsw1 and v2 extendsw2. Now,w1

coincides with w2 since both w1 and w2 satisfy the same complete set of formulas

in LV . But then v = v1 ∪ v2 is a valuation, and by Proposition 2.3 v |= T1 ∪ T2, as

desired. 2

We shall now look at alternative representations of valuations. Let us recall that a

literal is a variable or negated variable. We talk about the underlying variable of a

literal, when needed. Sometimes we will denote that variable by |l|. The sign of a

literal l, sgn(l), also called the polarity of literal l is 1 (positive) if l is a variable

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 17

and is 0 (negative) if l is a negated variable. A literal dual to variable x is ¬x, and
the dual of ¬x is x. The literal dual to l is often denoted l̄. We denote the set of

literals determined by the set of variablesVar by LitVar . We will drop the subscript

Var if it will be clear from the context. It should be clear that if |Var | = n, then
|Lit | = 2n.
A complete set of literals is a set S ⊆ Lit such that for every p ∈ Var exactly one of

p,¬p belongs to S. It is easy to see that there is a bijective correspondence between

valuations and complete sets of literals. Here is the mapping from valuations to

complete sets of literals. When v is a valuation, we define

Sv = {l : l ∈ Lit and v |= l}.

Then, clearly, Sv is a complete set of literals. The mapping v 7→ Sv is “onto”; given
a complete set of literals S, define vS as follows:

vS(p) =

{

1 if p ∈ S

0 if ¬p ∈ S

It is now clear (this needs a proof, but it is quite easy) that the mappings v 7→ Sv,
S 7→ vS are inverse to each other,

It follows immediately that, if |Var | = n then there are precisely 2n complete sets

of literals over set Var .
Boolean algebra Bool induces the ordering of truth values 0 and 1, namely 0 ≤ 1. We

can think about valuations as elements of the Cartesian productK =
∏

p∈Var
{0, 1}.

The elements of this Cartesian product are functions from Var to {0, 1}, thus valua-
tions.

The Cartesian productK may be ordered in a variety of ways (for instance, lexico-

graphically, antilexicographically, etc. if an ordering of the set Var is given). But

there is one (partial, i.e., not necessarily linear) ordering of K which will be useful

in our considerations. This is the product ordering. It is an ordering≤ ofK , defined

as follows:

v1 ≤ v2 if ∀p∈Var v1(p) ≤ v2(p).

(Recall that every coordinate has its own ordering≤ with 0 ≤ 1.)
We denoted the ordering of the product

∏

p∈Var
{0, 1} by the same symbol, ≤, that

we used for ordering of Bool . The context should make it easy to recognize which

of these orderings we are dealing with.

We will now identify the product ordering in the Cartesian product
∏

p∈Var
{0, 1}

with the inclusion ordering of subsets of the set of propositional variables. In this

fashion we will have yet another representation of valuations.

Given a set of variablesM , we assign to M a valuation vM defined by the charac-

teristic function ofM , i.e.,

vM (p) =

{

1 p ∈M

0 otherwise.

© 2009 by Taylor and Francis Group, LLC

18 Introduction to Mathematics of Satisfiability

(Let us observe that often, and we may also use this notation below, the function vM
is denoted by χM .)

The assignmentM 7→ vM establishes a bijective correspondence between the sub-

sets of Var and valuations of Var . This assignment transforms inclusion relation

into the relation ≤ in the product discussed above. For this reason we will be able

to think about valuations in yet another way, namely as subsets of Var . It is easy to

formally define the satisfaction relation between sets of variables and formulas. Here

it is.

1. M |= ⊤,M 6|= ⊥

2. M |= p if p is a variable and p ∈M

3. M |= ¬ϕ ifM 6|= ϕ

4. M |= ϕ ∧ ψ ifM |= ϕ andM |= ψ

5. M |= ϕ ∨ ψ ifM |= ϕ orM |= ψ

6. M |= ϕ⇒ ψ ifM 6|= ϕ orM |= ψ

7. M |= ϕ ≡ ψ if (M |= ϕ andM |= ψ) or (M 6|= ϕ andM 6|= ψ)

Summarizing developments above, let us observe that we established three, seem-

ingly different, but really equivalent ways of handling semantics for propositional

formulas. These are: valuations, complete sets of literals, and subsets of the set of

the propositional variables. We will apply these formalisms where their use can give

us an advantage in an easier representation of various properties.

Next, we discuss three-valued logic. There are various three-valued logics. The one

we consider here is the so-called Kleene logic. The formulas are the same here,

but we have three truth values, not two, and the semantics is provided by partial

valuations.

When actually computing valuations satisfying a given input formulaϕ, we will have
to deal with partial valuations. Those are functions that are defined on subsets of

the set of variables Var . We will now develop tools to deal with such entities. Like

above, our goal is to establish several representations of partial valuations (we will

have three) so we can use them whenever convenient. To this end we can think about

partial valuations as partial functions from Var to {0, 1} or as total functions, but
with values in a set consisting of three, not two, values, {0, 1, u}. Specifically, we
assign to a partial function v fromVar to {0, 1} a total function v⋆ : Var → {0, 1, u}
as follows:

v⋆(p) =

0 if v(p) = 0

1 if v(p) = 1

u if v(p) is undefined.

Then, clearly, we have a bijective correspondence between the partial valuations

(with two values) and the (total) valuations taking values in {0, 1, u}. For this reason
we will drop the superscript ⋆, identifying v⋆ with v.
There are two natural orderings in the set {0, 1, u}. The first one is called Kleene (or
knowledge) ordering,≤k. In this ordering u precedes both 0 and 1, whereas 0 and 1

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 19

are incomparable. In the ordering ≤k, u describes our ignorance, meaning that later

on we may gain the knowledge of the Boolean value of p and hence change the value
from u to either 0 or 1. In the second ordering, called Post ordering and denoted≤p,
0 ≤p u ≤p 1. In this ordering, again u means undefined, but it can either collapse to

0, or increase to 1, we just do not know which.

Complete valuations are, of course, partial valuations. What distinguishes them is

that they do not take value u at all. Now, the set of all partial valuations can be

thought of as the Cartesian product
∏

p∈Var
{0, 1, u}. Obviously

∏

p∈Var
{0, 1} ⊆

∏

p∈Var
{0, 1, u}.

We noticed that the Cartesian product
∏

p∈Var
{0, 1, u} can be ordered in a variety

of ways. The natural ordering that we will consider here comes from the ordering

≤k of {0, 1, u}. It is the product ordering of
∏

p∈Var
{0, 1, u} where the ordering of

{0, 1, u} is ≤k. That is, we define the ordering ≤k in
∏

p∈Var
{0, 1, u} (we use the

same symbol for this ordering as the Kleene ordering in {0, 1, u}, but it should not

lead to confusion) by setting

v1 ≤k v2 if ∀p∈Var v1(p) ≤k v2(p).

The following should be clear about the ordering≤k:

v1 ≤k v2 if and only if ∀p (v1(p) 6= u⇒ v1(p) = v2(p)).

In other words, in the ordering ≤k our knowledge about valuations increases. But

once we commit to a Boolean value, we have to stay with it. That is, the value of a

variable may be revised from u to some Boolean value, but never the other direction.

There is nothing that prevents us from considering the ordering ≤p in the product.

But in this ordering ≤p, 0 ≤p u, so changing the value of a valuation from 0 to u
results in a valuation that is strictly larger in ≤p. This is not allowed in ≤k.

Example 2.2
Let Var = {p, q, r, s} and v′(p) = 0, v′(q) = 1, v′(r) = v′(s) = u. Now let v′′ be
defined by v′′(p) = 0, v′′(q) = 1, v′′(r) = u and v′′(s) = 1. Then v′ ≤k v′′.

Two-valued assignments can be characterized as the maximal (in the ordering ≤k)
partial valuations. Here is a general result (again without proof) on the structure of

the product ordering≤k.

PROPOSITION 2.4

1. The poset 〈
∏

p∈Var
{0, 1, u},≤k〉 has a least element; it is the partial val-

uation constantly equal to u.

2. If |Var | > 0 then there is no largest element of 〈
∏

p∈Var
{0, 1, u},≤k〉.

3. The maximal elements of 〈
∏

p∈Var
{0, 1, u},≤k〉 are precisely two-valued,

complete valuations, i.e., elements of
∏

p∈Var
{0, 1}.

© 2009 by Taylor and Francis Group, LLC

20 Introduction to Mathematics of Satisfiability

4. The poset 〈
∏

p∈Var
{0, 1, u},≤k〉 is chain-complete, and thus the Knaster-

Tarski theorem applies to monotone functions in 〈
∏

p∈Var
{0, 1, u},≤k〉.

A corresponding theorem for Post ordering of the product will be discussed in the

Section 2.9 Exercises.

It turns out that partial valuations can be characterized in terms of sets of literals, in

a manner similar to our characterization of valuations by complete sets of literals.

Specifically, we say that a set of literals, S, is consistent if for every variable p, at
most one of p,¬p belongs to S. We then have a bijective correspondence between

consistent sets of literals and partial valuations. Namely, given a partial valuation v
let us define

Sv = {p : v(p) = 1} ∪ {¬p : v(p) = 0}.

Then clearly Sv is a consistent (but not necessarily complete) set of literals. Con-

versely, given a consistent set S of literals, let us define

vS =

1 if p ∈ S

0 if ¬p ∈ S

u if p /∈ S and ¬p /∈ S

It should be clear that we established a bijective correspondence between consistent

sets of literals and three-valued valuations of Var .
Let us observe that, in one of the basic algorithms for satisfiability testing, the DPLL

algorithm (which we will discuss in Chapter 8 as we construct a valuation in expec-

tation that it will satisfy a given input set of formulas F), we build a chain of partial
valuations, extending each other, i.e., growing along the ordering≤k. In the process,
we need to proceed “locally,” making sure that the partial valuations satisfy some

formulas from F . Two issues must be settled to make this process useful. First we

need to be able to evaluate formulas – assign to them a truth value. Second, we need

to be sure that once a value that is assigned to a formula is Boolean (i.e., 0 or 1) it
will stay this way in the future stages of construction. Let us observe that we are

perfectly happy if a formula that is currently evaluated as u changes value. But once

that value is changed to 0 or to 1, it must stay this way. So it should be clear that

we need to define some evaluation function which will assign the value to formulas.

This value will come from the set {0, 1, u}. Then if we do this right, the evaluation

function will have the following property: once this value is settled as a Boolean, it

will not change as we build bigger (in the ordering≤k) partial valuation.
To realize this idea let us introduce three-valued truth tables for our connectives in

Tables 2.3 and 2.4.

Now, having defined the three-valued truth tables it is very natural to define the

three-valued truth function for all formulas in FormVar . It is the same definition

of truth function we had in the two-valued case, except that we evaluate formulas

in the set {0, 1, u} as prescribed by our tables. Let us observe that the operations in

truth values correspond to Post ordering, not Kleene ordering (but be careful with the

implication!). In particular the logical value 1 is≤p-bigger than the undefined, which

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 21

TABLE 2.3:
Three-valued truth
table for negation

p ¬p
0 1
1 0
u u

TABLE 2.4: Three-valued truth tables for binary
operations

p q p ∧ q p ∨ q p⇒ q p ≡ q
0 0 0 0 1 1
0 u 0 u 1 u
0 1 0 1 1 0
u 0 0 u u u
u u u u u u
u 1 u 1 1 u
1 0 0 1 0 0
1 u u 1 u u
1 1 1 1 1 1

in turn is ≤p-bigger than the Boolean value 0. Let us observe that the conjunction
and disjunction are, respectively,min and max functions, whereas ¬ is an involution

mapping 0 to 1 but keeping u fixed. Let us observe that we want to extend the

algebra Bool by adding the value u. The truth values 0 and 1 must be ordered

as they were in Bool . This, together with the interpretation of Boolean values as

commitments, brings us to the tables for the three-valued logic. Thus we have the

following inductive definition of evaluation function (we write v3(ϕ) to stress the

fact that we are dealing with the three-valued logic here).

1. v3(⊥) = 0, v3(⊤) = 1

2. v3(p) = v(p) whenever p ∈ Var

3. v3(¬ϕ) = ¬v3(ϕ)

4. v3(ϕ ∧ ψ) = v3(ϕ) ∧ v3(ψ)

5. v3(ϕ ∨ ψ) = v3(ϕ) ∨ v3(ψ)

6. v3(ϕ⇒ ψ) = v3(ϕ)⇒ v3(ψ)

7. v3(ϕ ≡ ψ) = v3(ϕ) ≡ v3(ψ)

The operations on the right-hand side of the assignment operator refer to those de-

fined in the set {0, 1, u} by our tables whereas the same symbols on the left-hand

side refer to functors.

We have the following facts which will be useful in many places in this book.

© 2009 by Taylor and Francis Group, LLC

22 Introduction to Mathematics of Satisfiability

PROPOSITION 2.5 (Kleene theorem)

1. If v is a complete valuation (two-valued, that is, taking only Boolean val-
ues) then for every formula ϕ, v3(ϕ) = v(ϕ). In particular, for complete
(two-valued) valuations v, v3 takes only values 0 and 1.

2. If v and w are partial valuations, v ≤k w, and ϕ is an arbitrary formula
then v3(ϕ) ≤k w3(ϕ).

3. If v is a partial valuation, and ϕ is a formula and w is the restriction
of v to variables that belong both to Varϕ and to the domain of v, then
v3(ϕ) = w3(ϕ).

Proof: To see (1), let us observe that the tables for three-valued functors, restricted

to Boolean values coincide with the corresponding two-valued tables. Then, by in-

duction on the rank of subformulas ψ of the formula ϕ we show that only values 0
and 1 are used.

(2) Here we need to proceed by induction on the rank of formula ϕ. The base case is
obvious due to the fact how we evaluate constants and variables. Then the inductive

step is a bit tedious (there are five cases to check), but is not complicated at all.

(3) is again proved by an easy induction on the rank of formulas. 2

Let us see what Proposition 2.5 says. Namely, the first part says that for complete

valuations we do not really get anything new; the evaluation functions v(·) and v3(·)
in two-valued and in three-valued logics coincide for complete (i.e., two-valued) val-

uations v’s. But an easy example can be given of a situation where a valuation which

is partial already commits us to a Boolean value. Let us take ϕ : p ∧ q and a partial

valuation defined on a single variable p and assigning to p the Boolean value 0. In
such case v3(p ∧ q) = 0. What the second part of Proposition 2.5 says is that the

value can go only up in the ordering ≤k. It may change from u to 0 or to 1. But if
we committed ourselves to a Boolean value as in the example above, this value will

never be undone in extensions of the current partial valuation. In particular, if we

test a set of formulas F for satisfiability, we construct a partial valuation v and for

some ϕ ∈ T , we get the value v3(ϕ) = 0, then for no extension of v to a complete

valuation w we will have w(ϕ) = 1. Thus w will not satisfy F and so we must

backtrack. If, on the other hand, we already have v(ϕ) = 1, then we do not have to

check for extensions w of v if they satisfy ϕ. They definitely do.
The property (3) tells us that, like in the case of two-valued valuations, the three-

valued truth function v3(·) depends only on the variables of ϕ that occur in the do-

main of v (in the two-valued case this last condition was immaterial – a valuation

was defined on all variables).

So we now have the means to deal with partial valuations. The tool for doing this is

three-valued logic which has Boolean truth values and an additional logical value u.

Let us conclude this section by reiterating that like in the case of two-valued logic

we now have three different ways of handling partial valuations: by means of partial

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 23

functions of Var into {0, 1}, total functions of Var into {0, 1, u} and consistent sets
of literals.

2.3 Autarkies

We will now discuss partial valuations v that have a useful property with respect to

a given set of formulas F . Namely, the instantiation of variables according to such

valuations does not change satisfiability of F . Those partial valuations are known as
autarkies.

Let v be a partial valuation. Let us think about v as a partial function on Var . We

say that v touches a formula ϕ if some variable in the domain of v belongs to Varϕ,
that is, occurs in ϕ. Then, we say that v is an autarky for F if for all ϕ ∈ F such that

v touches ϕ, v3(ϕ) = 1. While autarkies are used mostly in the context of clausal

logic, that is when the formulas ϕ ∈ F are clauses (and in fact in this section we will

prove several properties of autarkies for clausal theories), it is, of course, perfectly

natural to study autarkies in a general context.

The following observation is entirely obvious.

PROPOSITION 2.6
The empty partial valuation is an autarky for any set of formulas F . More-

over, any satisfying valuation for F is an autarky for F .

In the context of clausal logic (that is, when we limit the formulas to clauses, i.e.,

disjunctions of literals, we call a literal l pure in a set of clauses F if l̄ does not occur
in any clause of F . Later on, when we have appropriate language, we will generalize
this notion to the general case.

We will discuss the conjunctive normal forms (yes, there is more than one) in Chap-

ter 3 below, and prove that clausal logic (sets of clauses) is as expressive as full

propositional logic. Right now, however, we need to discuss autarkies and this will

require looking at sets of clauses. We first need a simple characterization of those

clauses that are tautologies. We recall that a literal is a propositional variable or its

negation, that each literal has its sign, and that each literal has an underlying propo-

sitional variable. We also recall the concept of a dual literal. The following fact is

simple but useful.

PROPOSITION 2.7

1. Every nonempty clause is satisfiable

2. A clause C = l1∨. . .∨lk is a tautology (i.e., it is satisfied by all valuations)
if and only if for some i, j, 1 ≤ i < j ≤ k, lj is dual of li.

© 2009 by Taylor and Francis Group, LLC

24 Introduction to Mathematics of Satisfiability

Proof: (1) is obvious, just locate a literal in C and take any valuation making it true.

(2) If C contains a pair of dual literals li, lj then C is a tautology because every

valuation v evaluates one of li, lj as true. If C does not contain a pair of dual literals,

then here is a valuation making C false:

v(p) =

1 if p occurs in C negatively

0 if p occurs in C positively

0 if p does not occur in C at all.

It should be clear that v evaluates C as 0. 2

We will often say that a formula ϕ is nontautological if ϕ is not a tautology.

PROPOSITION 2.8
Let F be a collection of clauses, and l be a pure literal in F . Then v = {l}

is an autarky for F .

Proof: If v touches C then it must be the case that l̄ does not occur in C, so l occurs
in C and so v3(C) = 1. 2

Now, given any partial valuation v, and a set of formulas F , v determines a partition

F = F ′
v ∪F

′′
v as follows: F ′′

v is the set of those formulas in F that are touched by v,
F ′
v is the rest of the formulas in F .

PROPOSITION 2.9
If v is an autarky for F , then F is satisfiable if and only if F ′

v is satisfiable.

Proof: Since F ′
v ⊆ F , if F is satisfiable, so is F ′

v . Conversely, assume that w is a

valuation satisfying F ′
v. Define a new valuation w′ as follows:

w′(l) =

{

v(l) if v is defined on l

w(l) otherwise.

We claim that w′ satisfies F . Indeed, let ϕ ∈ F . If ϕ ∈ F ′′, that is, if ϕ is touched by

v then (w′)3(ϕ) = 1 because v3(ϕ) = 1 and v ≺k w′. As w′ is a valuation,w′ |= ϕ.
If vph ∈ F ′

w then ϕ is not touched by v then w3(ϕ) = 1 (as ϕ ∈ F ′
v). Then no

variable occurring in ϕ belongs to the domain of v. But then, on every variable x
occurring in ϕ, w(x) = w′(x). As w |= ϕ, w′ |= ϕ, as desired. 2

Later on in this section we prove a stronger property of autarkies, generalizing Propo-

sition 2.9.

Before we prove our next fact, we need a simple definition. Let v and w be two

consistent sets of literals. Define v ⊕ w to be the set of literals

v ⊕ w := v ∪ {l ∈ w : l̄ /∈ v}.

We then have the following properties of autarkies.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 25

PROPOSITION 2.10

1. If F is a set of formulas, v is a partial valuation, F ′ ⊆ F and v is an
autarky for F , then v is an autarky for F ′.

2. If v is a partial valuation, and F1, F2 are two sets of formulas, and v is
an autarky for Fi, i = 1, 2, then v is an autarky for F1 ∪ F2.

3. If v1, v2 are autarkies for F , then v1 ⊕ v2 is an autarky for F , and thus:

4. If v1, v2 are autarkies for F and the union v1 ∪ v2 is consistent, then
v1 ∪ v2 is an autarky for F .

Proof: (1) and (2) are obvious.

For (3), consider ϕ ∈ F and let us assume v1 ⊕ v2 touches ϕ. If v1 touches ϕ then

v1 |= ϕ, thus (v1 ⊕ v2)3(ϕ) = 1 because v1 ≤k v1 ⊕ v2. So now let us assume

that v1 does not touch ϕ. Then v2 touches ϕ. But since v1 does not touch ϕ, and v2
touches ϕ it must be the case that v2 restricted to those variables that do not occur

in v1 satisfies ϕ (cf. Proposition 2.5(3)). Let us call this partial valuation w. Then
w3(ϕ) = 1, and since w ≤k v1 ⊕ v2, (v1 ⊕ v2)3(ϕ) = 1, as desired.
(4) follows from (3) since, if the union v1 ∪ v2 is consistent, v1 ∪ v2 = v1 ⊕ v2. 2

Let us call an autarky v for F complete if for every variable p, either p ∈ F or

¬p ∈ F . Of course complete autarkies are just satisfying valuations. An incomplete

autarky for F is an autarky for F which is not complete. Here is a characterization

of incomplete autarkies.

PROPOSITION 2.11
Let v be a consistent set of literals. Let p be a variable, and let us assume

that neither p nor ¬p belongs to a set v. Then v is an autarky for F if and
only if v is an autarky for F ∪ {p,¬p}.

Proof: Clearly, by our choice of v, v does not touch either p or ¬p. Thus all v touch
in F ∪ {p,¬p} are formulas in F which are satisfied by v since v is an autarky for

F .
Conversely, since v is an autarky for F ∪ {p,¬p}, it is an autarky for its subset, F
(Proposition 2.10(1)). 2

One property that does not hold for autarkies is inheritance by subsets. Specifically,

if v is an autarky for F and w ⊆ v, then w does not need to be an autarky for F .
Here is an example. Let F consists of clauses p ∨ q and ¬p ∨ ¬q. Then {p,¬q} is
an autarky for F (because it satisfies F), but {p} is not an autarky for F .
Our goal now is to characterize autarkies in terms of extensions of partial valuations.

The characterizations we provide can be expressed in various terms, for instance in

terms of two-element Boolean algebra. Here we will state those results in terms of

partial valuations. We need some notation. We will think about partial valuations

both in terms of partial functions and consistent sets of literals. Let us fix a set of

clauses F . Given a partial valuation v, Varv is the domain of v. By Ov we denote

© 2009 by Taylor and Francis Group, LLC

26 Introduction to Mathematics of Satisfiability

the set of other variables in the set Var := VarF , that is, those which are not in

Varv, in other words, Var \Varv. By definition Ov ∩Varv = ∅, and Varv ∪Ov is
entire Var . Valuations of variables of F are of the form v1 ⊕ v2 where the domain

of v1 is Varv and the domain of v2 is Ov .
We now have the following characterization of autarkies.

PROPOSITION 2.12
Let F be a set of nonempty, nontautological clauses. A nonempty partial

valuation v is an autarky for F if and only if for every clause C ∈ F and for
every partial valuation w such that Dom(w) = Ov, the following are equiva-
lent:
(a) There exists a partial valuation u such that Dom(u) = Varv and w⊕ u |=
C.
(b) w ⊕ v |= C.

Proof: First, let us assume that v is an autarky for F . Let C be an arbitrary clause in

F . The implication (b)⇒(a) is obvious. For the other implication, let us assume that

for some u such that Dom(u) = Varv ,

w ⊕ u |= C.

If v touches C then we are done because v3(C) = 1 and so (v ⊕ w)3(C) = 1 and

since v ⊕ w is complete,

v ⊕ w |= C.

If v does not touch C then VarC ⊆ Ov = Dom(w). If for some u with the domain

of u equal to Varv ,
w ⊕ u |= C

then w |= C and so

v ⊕ w |= C.

Conversely, let us assume the equivalence of (a) and (b). If v does not touch C there

is nothing to prove. So let us assume that v touches C. Let us consider a valuation
w with Dom(w) = Ov which evaluates all literals l in C that have the underlying

variable inOv as 0. Since C is not tautological and so does not contain a pair of dual

literals at least one such partial valuation exists. There may be many such partial

valuations w; let us fix one. Since v touches C it cannot be the case that w evaluates

all literals in C, for w is defined on Ov and nothing else. But we could take that

literal in C that is not evaluated by w and make it 1. This means that we can define

a partial valuation u on Varv so that u3(C) = 1, and therefore

w ⊕ u |= C.

But then, since the equivalence of (a) and (b) is assumed,

v ⊕ w |= C.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 27

Now, w ⊕ v evaluates variables in Ov so that all literals in C with an underlying

variable in OC are evaluated as 0. But then some other literal l in C is evaluated as

1 and it must be the case that v(l) = 1, i.e., v3(C) = 1, as desired. 2

Proposition 2.12 allows us to obtain a useful property of autarkies.

PROPOSITION 2.13
Let F be a set of nonempty, nontautological clauses. If a nonempty partial

valuation v is an autarky for F then for every partial valuation w such that
Dom(w) = Varv, the following are equivalent:
(a) There exists a partial valuation u such that Dom(u) = Varv and w⊕ u |=
∧

F .
(b) w ⊕ v |=

∧

F .

Proof: Let us choosew as in assumptions. The implication (b)⇒(a) is again obvious,

for we can take v for u.
So let us assume that there exists a partial valuation u such that Dom(u) = Varv
and w⊕u |=

∧

F . Then, in particular, for every clause C of F there is a valuation u
with the domainVarv so that w⊕u |= C. But then by Proposition 2.12,w⊕v |= C.
But then

w ⊕ v |=
∧

F

as desired. 2

Finally, we have another property of autarkies. Recall that F ′
v is the set of clauses in

F which are not touched by v.

PROPOSITION 2.14
Let F be a set of nonempty, nontautological clauses. If a nonempty partial

valuation v is an autarky for F then for every partial valuation w such that
Dom(w) = Varv, the following are equivalent:
(a) There exists a partial valuation u such that Dom(u) = Varv and w⊕ u |=
∧

F
(b) w |=

∧

F ′
v.

Proof: Let w be a partial valuation with the domain Varv . First, let us assume that

for some partial valuation u with the domain Varv

w ⊕ u |=
∧

F.

Since v is an autarky, by Proposition 2.13,

w ⊕ v |=
∧

F.

Now, F ′
v ⊆ F and so

w ⊕ v |=
∧

F ′
v.

© 2009 by Taylor and Francis Group, LLC

28 Introduction to Mathematics of Satisfiability

But by the choice of F ′
v , all variables of F

′
v are already evaluated by w, so

w |=
∧

F ′
v.

Conversely, let us assume that w is defined on Varw and

w |=
∧

F ′
v.

Then, clearly,

w ⊕ v |=
∧

F ′
v.

Now, for clauses C in F ′′
v , that is, those touched by v, v3(C) = 1. But then

(v ⊕ w)3(C) = 1 and so

v ⊕ w |= C.

Therefore v ⊕ w |=
∧

F , and so there is u (namely v) making (a) true. 2

2.4 Tautologies and substitutions to tautologies

A tautology is a formula ϕ ∈ FormVar such that for all valuations v of Var , v |= ϕ.
The notion of tautology is closely related to that of satisfiable formula. Since for

every formula ϕ and for every valuation v, either v |= ϕ, or v |= ¬ϕ (but not both at

once) holds, we have the following fact.

PROPOSITION 2.15
A formula ϕ is satisfiable if and only if ¬ϕ is not a tautology.

Proposition 2.15 tells us that an engine capable of testing whether a formula is a

tautology can be used to test whether a formula is satisfiable (by testing ¬ϕ for

being a tautology).

In principle, to test if a formula ϕ ∈ FormVar , with |Var | = n is a tautology

requires testing if all 2n valuations satisfy ϕ. We will later see that the satisfiability

problem (i.e., the language consisting of satisfiable sets of formulas) is NP-complete.

But if we are naı̈ve, and all we know is the table method, then the order of O(n · 2n)
operations is needed for tautology testing.

In Table below we list a sample of tautologies (we will see below that there are

infinitely many tautologies, even if the language has only finitely many variables).

All these tautologies are given traditional names. For instance the first of these tau-

tologies is commonly called the “law of excluded middle.” The fourth and fifth

tautologies in Table 2.5 are called “idempotence laws.” The twelfth and thirteenth

tautologies are called “De Morgan laws.” The tenth and eleventh tautologies are

called “distributive laws.”

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 29

TABLE 2.5: A sample
of tautologies

p ∨ ¬p

¬(p ∧ ¬p)
p ⇒ p

p ⇒ (q ⇒ p)
(p ∧ p) ≡ p

(p ∨ p) ≡ p

p ∧ q ≡ q ∧ p

p ∨ q ≡ q ∨ p

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
¬(p ∧ q) ≡ (¬p ∨ ¬q)
¬(p ∨ q) ≡ (¬p ∧ ¬q)
¬¬p ≡ p

We will now show how these and other tautologies can be used to generate more

tautologies. To this end, a substitution is a function s that assigns formulas to vari-

ables. When p1, . . . , pn are variables and ψ1, . . . , ψn are formulas we write such

substitution s as
(

p1 . . . pn
ψ1 . . . ψn

)

if s(p1) = ψ1, s(p2) = ψ2, etc. The formulasψj , 1 ≤ j ≤ nmay themselves involve

variables from p1, . . . , pn but also additional variables. For instance

(

p q
¬q ∨ r ¬t

)

is a substitution s such that s(p) = ¬q ∨ r and s(q) = ¬t.
Substitutions act on formulas. We will denote the result of the action of the sub-

stitution s on a formula ϕ by ϕs. The result of the action of substitution s on the

formula ϕ is a simultaneous substitution of ψ1 for p1, ψ2 for p2 etc. For instance if

ϕ is p⇒ (q ⇒ p) and s =

(

p q
¬q ∨ r ¬t

)

then ϕs is the formula

(¬q ∨ r)⇒ (¬t⇒ (¬q ∨ r)).

It is convenient (at least for the author, that is) to think about formulas as trees while

dealing with substitutions. What happens here is that for each leaf labeled with pj
we substitute the entire tree of formula ψj (the label in that node changes from the

variable pj to the label of the root of ψj). This operation affects leaves, but not the

internal nodes of the tree for ϕ. The result of the action of substitution s on a formula

ϕ maintains the “top part” of the structure of ϕ, but allows us to make the overall

structure more complex.

Given the substitution

(

p1 . . . pn
ψ1 . . . ψn

)

and a valuation v of variables occurring in for-

mulasψ1, . . . , ψn, we can construct a new valuation v′ defined on variables p1, . . . pn

© 2009 by Taylor and Francis Group, LLC

30 Introduction to Mathematics of Satisfiability

by setting

v′(pj) = v(ψj).

Here is an example. Let us consider the substitution

(

p q
¬q ∨ r ¬t

)

. The formulas

¬q∨r and¬t have three variables: q, r, and t. Let v be a valuation given by v(q) = 1,
v(r) = 0 and v(t) = 0. Then the valuation v′ is defined on variables p and q, and
v′(p) = v(¬q ∨ r) = 0 whereas v′(q) = v(¬t) = 1.

We will now establish a property that will allow us to generate new tautologies at

will.

PROPOSITION 2.16 (Substitution lemma)

Let ϕ ∈ Form{p1,...,pn} be a formula in propositional variables p1, . . . , pn and
let 〈ψ1, . . . , ψn〉 be a sequence of propositional formulas. Let v be a valuation of
all variables occurring in ψ1, . . . , ψn. Finally, let v′ be a valuation of variables
p1, . . . , pn defined by v′(pj) = v(ψj), 1 ≤ j ≤ n. Then

v′(ϕ) = v

(

ϕ

(

p1 . . . pn
ψ1 . . . ψn

))

.

Proof: By induction of the rank of the formula ϕ. To begin induction, let us look at

the formulas⊥,⊤ and variables.

If ϕ = ⊥ then ϕ

((

p1 . . . pn
ψ1 . . . ψn

))

is also ⊥, and ⊥ is evaluated to 0 both by v and

v′, so the desired equality holds. The argument for⊤ is very similar.

If ϕ = pi for a variable pi, then ϕ

((

p1 . . . pn
ψ1 . . . ψn

))

= ψi. By the definition of v′,

v′(pi) = v(ψi). Now, we have:

v′(ϕ) = v′(pi) = v(ψi) = v

(

p

((

p1 . . . pn
ψ1 . . . ψn

)))

.

Thus v′(ϕ) = v

(

ϕ

(

p1 . . . pn
ψ1 . . . ψn

))

as desired.

In the inductive step there are five cases, corresponding to connectives ¬,∧,∨,⇒,

and≡. We shall discuss the case of⇒; the other cases are similar. So let ϕ := ϕ′ ⇒
ϕ′′. Clearly

(ϕ′ ⇒ ϕ′′)

(

p1 . . . pn
ψ1 . . . ψn

)

=

(

ϕ′

(

p1 . . . pn
ψ1 . . . ψn

))

⇒

(

ϕ′′

(

p1 . . . pn
ψ1 . . . ψn

))

.

The reason for this is obvious when we think about formulas as trees. The tree for ϕ
has a root labeled with⇒, and the left subtree (which is the tree for ϕ′) and the right

subtree (the tree for ϕ′′). The substitution works on the left subtree and on the right

subtree separately.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 31

So now the use of inductive assumption for simpler formulas ϕ′ and ϕ′′ makes mat-

ters quite simple.

v′(ϕ′ ⇒ ϕ′′) = v′(ϕ′)⇒ v′(ϕ′′)

= v

(

ϕ′

(

p1 . . . pn
ψ1 . . . ψn

))

⇒ v

(

ϕ′′

(

p1 . . . pn
ψ1 . . . ψn

))

= v

(

ϕ′

(

p1 . . . pn
ψ1 . . . ψn

)

⇒ ϕ′′

(

p1 . . . pn
ψ1 . . . ψn

))

= v

(

ϕ

(

p1 . . . pn
ψ1 . . . ψn

))

as sought. 2

Now we get a desired corollary.

COROLLARY 2.2

Let ϕ be a tautology, with variables of ϕ among p1, . . . , pn. Then for every

choice of formulas 〈ψ1, . . . , ψn〉, the formula ϕ

(

p1 . . . pn
ψ1 . . . ψn

)

is a tautology.

Proof: Let Var be the set of variables occurring in formulas ψ1, . . . , ψn. Only vari-

ables from Var occur in ϕ

(

p1 . . . pn
ψ1 . . . ψn

)

. Now let v be any valuation of variables

from Var . Let v′ be as in the substitution lemma (Proposition 2.16). Then

v′(ϕ) = v

(

ϕ

(

p1 . . . pn
ψ1 . . . ψn

))

.

But ϕ is a tautology. Therefore v′(ϕ) = 1. Thus v

(

ϕ

(

p1 . . . pn
ψ1 . . . ψn

))

= 1 and since

v was an arbitrary valuation of Var , ϕ

(

p1 . . . pn
ψ1 . . . ψn

)

is a tautology. 2

Coming back to our example we conclude that since p⇒ (q ⇒ p) is a tautology, the
formula

(¬q ∨ r)⇒ (¬t⇒ (¬q ∨ r))

is also a tautology.

Since there are infinitely many formulas, there are infinitely many substitutions.

Thus from a single tautology (for instance any tautology from our list in Table 2.5)

we can generate infinitely many tautologies.

© 2009 by Taylor and Francis Group, LLC

32 Introduction to Mathematics of Satisfiability

2.5 Lindenbaum algebra

Let Var be a set of propositional variables. There is a natural equivalence relation in

the set of all formulas FormVar induced by the notion of valuation. Namely, let us

say that two formulas ϕ1 and ϕ2 in FormVar are equivalent if for every valuation v,
v(ϕ1) = v(ϕ2). We write ϕ1 ∼ ϕ2 if ϕ1 and ϕ2 are equivalent. The following fact

should be pretty obvious.

PROPOSITION 2.17
The relation ∼ is an equivalence relation, that is, it is reflexive, symmetric,

and transitive.

It turns out that the relation ∼ is closely related to tautologies. Indeed, we have the

following fact.

PROPOSITION 2.18
Let ϕ1 and ϕ2 be formulas in FormVar . Then ϕ1 ∼ ϕ2 if and only if the

formula ϕ1 ≡ ϕ2 is a tautology.

Proof: If ϕ1 ∼ ϕ2 then for all valuations v, v(ϕ1) = v(ϕ2). But

v(ϕ1 ≡ ϕ2) =

{

1 if v(ϕ1) = v(ϕ2)

0 otherwise.

Thus if ϕ1 ∼ ϕ2 then for all v, v(ϕ1 ≡ ϕ2) = 1, i.e., ϕ1 ≡ ϕ2 is a tautology.

Converse reasoning is equally obvious. 2

Let us denote the equivalence class of a formula ϕ (w.r.t. the relation ∼) by [ϕ]. The
collection of all these equivalence classes is called Lindenbaum algebra and denoted

Form/ ∼. We shall introduce some operations in this set. Let us define:

1. ⊤ = [⊤]

2. ⊥ = [⊥]

3. ¬[ϕ] = [¬ϕ]

4. [ϕ1] ∧ [ϕ2] = [ϕ1 ∧ ϕ2]

5. [ϕ1] ∨ [ϕ2] = [ϕ1 ∨ ϕ2]

6. [ϕ1]⇒ [ϕ2] = [ϕ1 ⇒ ϕ2]

7. [ϕ1] ≡ [ϕ2] = [ϕ1 ≡ ϕ2]

Although the same symbols are used on the left-hand side and on the right-hand side,

there is a significant difference. On the left-hand side we define a constant (first two

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 33

cases) or an operation in Lindenbaum algebra. The corresponding symbols on the

right-hand side are functors of the propositional language.

It is not even clear that the definition given above is proper, that is, that the result

does not depend on the choice of representatives of the equivalence classes. But a bit

of work shows that this is, indeed, the case.

PROPOSITION 2.19

The values of operations ¬,∧,∨,⇒, and ≡ do not depend on the choice of
representatives of equivalence classes.

Proof: There are five cases to prove, but we will deal with one, leaving the remaining

four cases to the reader. Let us look at the operation ⇒ (chosen randomly by our

random number generator).

What we need to prove is that if ϕ1 ∼ ψ1 and ϕ2 ∼ ψ2 then (ϕ1 ⇒ ϕ2) ∼ (ψ1 ⇒
ψ2). To this end, let v be any valuation assigning values to all the variables occurring
in all the formulas involved. We prove that

v(ϕ1 ⇒ ϕ2) = v(ψ1 ⇒ ψ2).

Case 1: v(ϕ1 ⇒ ϕ2) = 1. Again we need to look at two subcases.

Subcase 1.1: v(ϕ1) = 1. Then v(ϕ2) = 1, v(ψ2) = 1 and so v(ψ1 ⇒ ψ2) = 1.
Thus the desired equality holds.

Subcase 1.2: v(ϕ1) = 0. Then v(ψ1) = 0, and so v(ψ1 ⇒ ψ2) = 1, as desired.
Case 2: v(ϕ1 ⇒ ϕ2) = 0. Then it must be the case that v(ϕ1) = 1 and v(ϕ2) = 0.
But then v(ψ1) = 1 and v(ψ2) = 0, i.e., v(ψ1 ⇒ ψ2) = 0, as desired. 2

Thus we proved that, indeed, ¬,∧,∨,⇒, and ≡ are operations in Lindenbaum alge-

bra.

So now we have a structure (in fact an algebra) 〈Form/ ∼,¬,∧,∨,⇒,≡,⊥,⊤〉.
We need to ask a couple of questions. The first is: “What kind of algebra is it?”, i.e.,

“Are there familiar axioms satisfied by this algebra?” Fortunately, this question has

a simple answer. We have the following fact.

PROPOSITION 2.20

The Lindenbaum algebra satisfies the axioms of Boolean algebra.

Proof: We select one of the axioms of Boolean algebra and check that it is true in the

Lindenbaum algebra. We hope the reader checks the remaining axioms of Boolean

algebra. The one we selected is the second De Morgan law:

¬(x ∨ y) = (¬x) ∧ (¬y).

Thus we need to prove that for all formulas ϕ1 and ϕ2,

¬([ϕ1] ∨ [ϕ2]) = (¬[ϕ1]) ∧ (¬[ϕ2]).

© 2009 by Taylor and Francis Group, LLC

34 Introduction to Mathematics of Satisfiability

That is:

[¬(ϕ1 ∨ ϕ2)] = ([¬ϕ1 ∧ ¬ϕ2]).

But this is equivalent to the fact that the formula

¬(ϕ1 ∨ ϕ2)) ≡ (¬ϕ1 ∧ ¬ϕ2)

is a tautology. This last fact is a substitution to second De Morgan law, thus a tautol-

ogy. 2

But Proposition 2.20 opens another collection of questions. While it is obvious that

if Var is infinite then the Lindenbaum algebra is infinite (all variables are in different

classes), we do not know yet if for finite set Var , the Lindenbaum algebra is finite (it

is), or if every finite Boolean algebra can be characterized as a Lindenbaum algebra

for a suitably chosen set of variables Var (it is not the case). These questions will

be discussed in Chapter 3 once we get appropriate tools to analyze the situation and

revisit the Lindenbaum algebra.

2.6 Satisfiability and permutations

Problems encoded by collections of formulas often exhibit symmetries. Let us look

at an example.

Example 2.3
Assume that we want to compute partitions of integers from 1 to 10 into two

nonempty blocks B1 and B2. Here is how we can encode this problem as a satisfi-

ability problem. We consider the language with 20 variables p1, . . . , p20 assuming

that the variable p(i−1)·10+j , (1 ≤ i ≤ 2, 1 ≤ j ≤ 10) denotes the fact that the num-

ber j belongs to the blockBi. Thus p1 denotes the fact that 1 belongs to the blockB1

whereas p11 denotes the fact that 1 belongs to the block B2. Likewise, p2 denotes

the fact that 2 belongs to the block B1, and p12 denotes the fact that 2 belongs to

B2 etc. Then the formula that describes our problem (i.e., formula whose satisfying

valuations are in one-to-one correspondence with partitions of {1, . . . , 10} into two

blocks) consists of 22 clauses in four groups (A)–(D) below.

(A) p1 ∨ p11, . . . , p10 ∨ p20

(B) ¬p1 ∨ ¬p11, . . . ,¬p10 ∨ ¬p20

(C) p1 ∨ . . . ∨ p10

(D) p11 ∨ . . . ∨ p20

The clauses of group (A) tell us that 1 belongs to one of two blocks, 2 belongs to one

of the blocks, etc. The clauses of group (B) say that no number in (1..10) belongs
to both blocks at once. Finally, (C) and (D) express the constraints that none of the

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 35

blocks B1 and B2 is empty. Any assignment v satisfying all (A..D) generates a

partition, namely Bi = {j : v(p(i−1)·10+j) = 1}.
The solutions to our problem exhibit a symmetry: if 〈X,Y 〉 is a solution, then 〈Y,X〉
is also a solution. When we look at the satisfying valuations for the theory T con-

sisting of groups (A)–(D), we see that whenever a valuation satisfies the theory T ,
then the valuation v′ defined by

v′(pi·10+j) = v(p(1−i)·10+j)

has v′ is also a satisfying valuation for T . In fact v′ is the valuation corresponding to
the solution 〈Y,X〉, obtained from 〈X,Y 〉 by symmetry.

There is more to symmetries. Namely, we do not have to move a variable to a vari-

able. Thinking about symmetries as renamings, we may move a variable p to a literal
¬q instead of q. In such case we rename the variable and change polarity (i.e., sign)

as well. But then it is only appropriate that ¬p is renamed into q.
To formalize this intuition we recall that l̄, for a literal l, is its opposite (also called

dual): p̄ = ¬p, ¬p = p. We will be permuting literals, but according to the above

intuition we will impose a limitation on the permutations: if a permutation π of

literals moves l to a literal m, then it also must move l̄ to m̄, that is, π(l̄) = m̄. We

will call such permutations consistent. In other words, a permutation π is consistent

if and only if for every literal l, π(l̄) = π(l).
Now let us do some counting. There are, of course, n! permutations of variables.

There are precisely 2n binary sequences of length n. We will use this information

to count consistent permutations of literals. We list here a fact concerning consistent

permutations of literals.

PROPOSITION 2.21

1. Consistent permutations of literals based on Var form a group. That is:
composition of consistent permutations is consistent, and the inverse of
a consistent permutation is consistent.

2. A consistent permutation of literals based on Var = {p1, . . . , pn} is
uniquely determined by a permutation γ of numbers {1, . . . , n} and a bi-
nary sequence 〈i1, . . . , in〉 as follows:

π(pj) =

{

pγ(j) if ij = 0

¬pγ(j) if ij = 1

π(¬pj) =

{

¬pγ(j) if ij = 0

pγ(j) if ij = 1

3. Consequently, there are precisely 2n ·n! consistent permutations of literals.

© 2009 by Taylor and Francis Group, LLC

36 Introduction to Mathematics of Satisfiability

Proof: (1) Let π1, π2 be two consistent permutations of literals. Let π3 = π1 ◦ π2.

Of course π3 is a permutation of literals. But why is it consistent? Let l be a literal.
Then

π3(l̄) = (π1 ◦ π2)(l̄) = π1(π2(l̄)) = π1(π2(l))

= π1(π2(l)) = (π1 ◦ π2)(l) = π3(l).

as desired.

We will ask the reader to prove the second part of (1), which is equally demanding,

in one of the exercises.

(2) We want to prove that a consistent permutation of literals is uniquely determined

by the choice of a permutation of variables, and the choice of polarity for each vari-

able. But let us observe that the once we knowwhere p is moved and to what polarity,

we also know where ¬p is moved. So, all we need to prove is that the choice of per-

mutation of variables and the choice of polarities uniquely determines a consistent

permutation of literals. But if the underlying permutations of variables are different

then clearly for any choice of polarities we get a different permutation of literals.

And if the same permutation of variables is used, but sequences of polarities differ,

then again resulting permutations of literals are different.

(3) This follows directly from (2). 2

It will be convenient to think about valuations of variables in terms of complete

sets of literals. We have the basic fact tying complete sets of literals and consistent

permutations.

PROPOSITION 2.22

1. If S ⊆ Lit is a complete set of literals and π is a consistent permutation
of literals, then the image of S under π, π(S) = {m : ∃l∈S(π(l) = m)}, is
a complete set of literals.

2. Moreover, for every pair of complete sets of literals, S′ and S′′, there
exists a consistent permutation π such that π(S′) = S′′. In fact, there is
n! of such permutations.

Proof: (1) Let S be a complete set of literals, and π a consistent permutation of lit-

erals. We claim π(S) is complete. Indeed, ifm ∈ π(S) then there is a unique literal
l ∈ S such that π(l) = m. Since π is a consistent permutation, π(l̄) = m̄. Now, S is

complete, so l̄ /∈ S, and since π is one-to-one, m̄ /∈ π(S), as desired.
(2) To see the second part, let us observe that, given S′ and S′′ the following permu-

tation π brings S′ to S′′.

π(pj) =

{

pj if (pj ∈ S′ and pj ∈ S′′) or (¬pj ∈ S′ and ¬pj ∈ S′′)

¬pj if (pj ∈ S′ and ¬pj ∈ S′′) or (¬pj ∈ S′ and pj ∈ S′′).

2

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 37

Since complete sets of literals are nothing but an alternative way of representing

valuations, we now have the concept of π(v), where v is a valuation of variables and
π is a consistent permutation. It can be done purely formally, without resorting to

complete sets of literals; the set-of-literals representation just makes it more natural.

Let us look at an example.

Example 2.4

Let v be a valuation of variables p, q, and r defined by v(p) = v(q) = 1 and v(r) =
0. Let π be a consistent permutation of literals determined by the values on variables

(the remaining values determined uniquely by the consistency condition): π(p) =
¬q, π(q) = r, and π(r) = ¬p. Then the valuation π(v) is the valuation with these

values assigned to variables: π(v)(p) = 1, π(v)(q) = 0, and π(v)(r) = 1. Indeed, v
is determined by the complete set of literals S = {p, q,¬r}. The image of S under

π is π(S) = {¬q, r, p} = {p,¬q, r}, which gives the assignment listed above.

Proposition 2.22 tells us that we can extend the action of a consistent permutation π
to valuations. We will now show how to extend the action of consistent permutations

of literals to formulas. It will be convenient to think about formulas as trees (although

it makes little difference in this case). What we do is we uniformly substitute π(p)
for every variable p in the leaves of the tree of the formula ϕ. Here is an example.

Example 2.5

Here ϕ := ¬p ∧ q. The permutation π is specified by π(p) = ¬q, π(q) = r,
π(r) = ¬p. The formula π(ϕ) is (¬¬q) ∧ r.

Here is the fundamental result tying consistent permutations of literals and valuations

to the result of action of permutations on formulas.

PROPOSITION 2.23 (Permutation lemma)

Let π be a consistent permutation of literals, let v be a valuation of variables,
and let ϕ be a formula. Then v |= ϕ if and only if π(v) |= π(ϕ).

Proof: By induction on the rank of ϕ. The case of ϕ = ⊥ or ϕ = ⊤ is obvious:

these formulas are never (resp., always) satisfied. Let ϕ be a variable, say p. Let

v(p) = 1 (the case of v(p) = 0 is similar). Thinking about v as a complete set of

literals Sv, p ∈ Sv. Then π(p) ∈ π(Sv). But π(v) is a valuation whose set-of-literals
representation is π(Sv). Thus π(v) |= π(p). The converse reasoning (π(v) |= π(p)
implying v |= p) follows from the fact that π is one-to-one.

There are five cases in the inductive step. We deal with a randomly selected one,

the rest is left to the reader as an exercise: the proofs are very similar. Let ϕ be

ψ ∧ ϑ. Then π(ϕ) = π(ψ)∧ π(ϑ) because the permutation affects the leaves but not

internal nodes. Assuming v |= ψ ∧ ϑ, v |= ψ and v |= ϑ. By inductive assumption

© 2009 by Taylor and Francis Group, LLC

38 Introduction to Mathematics of Satisfiability

π(v) |= π(ψ) and π(v) |= π(ϑ). Thus π(v) |= π(ψ) ∧ π(ϑ), i.e., π(v) |= π(ϕ).
Converse reasoning is similar. 2

Before we move on, let us see how permutations of literals deal with the third rep-

resentation of valuations; that is, one by means of sets of variables. Here is what

happens. Let π be a consistent permutation. LetM ⊆ Var . Let us define:

π(M) = {x ∈ Var : ∃y(y ∈M ∧ π(y) = x) ∨ ∃y(y /∈M ∧ π(y) = ¬x)}.

In other words, a variable x belongs to π(M) if it is the image of a variable inM or

if it is the image of a negated variable which does not belong toM . It should now be

clear that π acts as a permutation of P(Var). As in the case of Proposition 2.22, we

can transform any setM into any otherN . We formalize this in the following fact.

PROPOSITION 2.24
If M ⊆ Var and M |= ϕ, then π(M) |= π(ϕ).

We will illustrate the technique of permutations within logic by looking at so-called

symmetric formulas. We will say that a formula ϕ is symmetric if for every permu-

tation of variables π, π(ϕ) ≡ ϕ. We stress the fact that we deal with permutations

of variables, not only with a consistent permutation of literals. We will now give a

characterization of symmetric formulas in terms of models. Given a valuation v, de-
fine size(v) = |{x : x ∈ Var and v(x) = 1}|. In other words, in the representation

of valuations as sets of variables we just count the set of atoms representing v. We

limit our attention to a finite set Var because with an infinite set of variables there

cannot be any symmetric formulas except tautologies and false formulas. Given two

valuations v1, v2, we write v1 ∼ v2 if size(v1) = size(v2). Clearly, ∼ is an equiva-

lence relation, and it splits valuations according to the cardinality of the set of atoms

evaluated as 1. We now have the following fact.

PROPOSITION 2.25
A formula ϕ is symmetric if and only if for every equivalence class C of ∼,

either all valuations in C satisfy ϕ, or none of them does.

2.7 Duality

The structure Bool = 〈{0, 1},∧,∨, 0, 1〉 is isomorphic to the structure 〈{0, 1},
∨,∧, 1, 0〉. One can visualize this isomorphism as a “flip,” 0 goes to 1, and con-

versely 1 turns into 0. We can use that isomorphism to get results on the closure of

tautologies under some operations. For instance, it should be clear that if we have

a formula ϕ that involves only the functors of conjunction and disjunction (and no

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 39

constants), and we change in ϕ every conjunction to disjunction and conversely, and

the resulting formula is ψ, then ϕ is a tautology if and only if ψ is a tautology.

With the presence of constants (⊤ and ⊥) we can further extend this result, except

that now every occurrence of ⊤ must be changed to ⊥, and conversely, every ⊥ to

⊤. Again, the resulting formula is a tautology if the original formula was.

Finally, we have yet another duality result, this time in the presence of negation,

conjunction, and disjunction. This time substitute every ∨ for ∧, and ∧ for ∨, ⊥
for ⊤, and ⊤ for ⊥. Moreover, we do two more things: in the leaves (recall we are

thinking about formulas as ordered, binary, labeled trees) we substitute ¬p for p for
every variable p, and put the negation functor in front of the resulting formula. Then

the original formula is a tautology if and only if the resulting formula is a tautology.

We note in passing that all these kinds of duality are present in our list of tautologies.

2.8 Semantical consequence, operations Mod and Th

When a valuation satisfies a set of formulas S it may have to satisfy other formulas

as well. For instance, if v |= p ∧ ¬q, then v |= p and p |= ¬q. Thus we get a

natural notion of semantical consequence or entailment. Formally, given a set F of

formulas, let us define

Cn(F) = {ϕ : ∀v(v |= F ⇒ v |= ϕ)}.

Operator Cn assigns to each set of formulas the collection of their consequences.

Here are the basic properties of the operation Cn .

PROPOSITION 2.26

1. For every set of formulas F , F ⊆ Cn(F).

2. For all sets of formulas F1, F2, if F1 ⊆ F2 then Cn(F1) ⊆ Cn(F2).

3. For all sets of formulas F , Cn(Cn(F)) = Cn(F).

4. Cn(∅) consists of all tautologies.

It should be observed at this point that the operatorCn is continuous. At this moment

we have no means to prove it. We will do so in Chapter 6 as a corollary to the

compactness theorem.

A common reasoning property, used so frequently that it is easy to forget its source,

is the following property of the implication functor⇒.

© 2009 by Taylor and Francis Group, LLC

40 Introduction to Mathematics of Satisfiability

PROPOSITION 2.27 (Deduction theorem)
Let F be a set of formulas, and let ϕ, ϑ be two formulas. Then, the following
are equivalent:

1. ϕ⇒ ϑ ∈ Cn(F).

2. ϑ ∈ Cn(F ∪ {ϕ}).

Proof: Let v be an arbitrary valuation satisfying F . If v |= ϕ, then v |= ϑ, thus
v |= F ∪ {ϕ} implies v |= ϑ.
Conversely, if θ ∈ Cn(F) then either v 6|= ϕ and then v |= ϕ ⇒ ϑ, or v |= ϕ, then
v |= ϑ and again v |= ϕ⇒ ϑ. 2

There are natural mappings assigning collections of valuations to sets of formulas,

and assigning sets of formulas to collections of valuations. Let us first define the

collection of models of a set of formulas F , Mod(F).

Mod(F) = {v : v is a valuation and v |= F}.

ThusMod(F) is the set of all satisfying valuations forF . These satisfying valuations
are often called models of F , hence the notation. We can also go in the opposite

direction, assigning to a set of valuations V the set formulas that are satisfied by all

valuations v ∈ V . Thus

Th(V) = {ϕ : ∀v∈V (v |= ϕ)}.

Before we look at the connections between the operationsMod andTh , let us look at
the case when V = {v}, that is, of a single valuation. In this case the set Th({v})∩
Lit is nothing but the set-of-literals representation of v. It follows that, in this case,

Th({v}) ∩ Lit uniquely determines Th({v}).
Here is the basic relationship between the operations Mod and Th .

PROPOSITION 2.28
Let v be a valuation and V a set of valuations. Then v ∈ Mod(Th(V)) if and
only if for every finite set of variables A there is a valuation w ∈ V such that
v |A= w |A.

Proof: (⇐). We need to show that under the assumption of the right-hand side,

v |= Th(V). Let ϕ ∈ Th(V). We need to show that v |= ϕ. Let A be the set of

variables occurring in ϕ. Then there is a valuation w ∈ V such that w |A= v |A.
Since ϕ ∈ Th(V), w |= ϕ. But then, by the localization theorem (Proposition 2.3),

w |A|= ϕ. But then v |A|= ϕ and again, by the localization theorem, v |= ϕ. As ϕ
was an arbitrary formula in Th(V), we are done.
(⇒). Conversely, let us assume that the right-hand side is false. Then there is a set

of variablesA such that for every valuation w ∈ V , w |A 6= v |A. Let us consider the
following formula ϕ.

ϕ :=
∧

{p : p ∈ A and v |= p} ∪
∧

{¬p : p ∈ A and v |= ¬p}.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 41

Then clearly, v |= ϕ. On the other hand, the formula ϕ uniquely characterizes the

behavior of any valuation on A. In other words, if w |= ϕ then w |A= v |A. Now,
since no w ∈ V coincides with v on the set A, each such w ∈ V must satisfy ¬ϕ.
But then ¬ϕ ∈ Th(V), while w |= ϕ. Thus v 6|= Th(V), as desired. 2

We get a corollary completely characterizing the case of finite sets of variables.

COROLLARY 2.3

Let Var be a finite set of propositional variables. Let V be a collection of
valuations of set Var and v be a valuation of Var. Then v ∈ Mod(Th(V)) if
and only if v ∈ V .

Thus in the case of finite set of variables Var , there is a formula characterizing each

valuation (in fact one such formula was constructed in the proof of Proposition 2.28).

But this is not necessarily the case for infinite sets of variables.

What about the inverse composition, that is, Th(Mod(F))? Here the situation is

very simple; we have the equality Th(Mod(F)) = Cn(F). To check this, observe

that every formula which is a semantical consequence of F is true in every model of

F , and thus belongs to Th(Mod(F)). The other inclusion is obvious.

What about more compositions? Let us observe that Mod(F) = Mod(Cn(F)).
Indeed, since F ⊆ Cn(F), Mod(Cn(F)) ⊆ Mod(F). Conversely, if v |= F , then
v |= Cn(F) and so v ∈ Mod(Cn(F)).

Knowing that much we can easily see that

Mod(Th(Mod(F))) = Mod(Cn(F)) = Mod(F)

and

Th(Mod(Th(V))) = Th(V).

We were able to describe each valuation of a finite set of propositional variables by a

suitably chosen formula. The same happens for a set of valuations. The reader recalls

that we had several representations of valuations and one of those was by means of

subsets of the set of atoms. It will be convenient to express the representability of

the set of valuations by means of representability of collections of sets of atoms.

PROPOSITION 2.29

Let Var be a finite set of propositional variables, and letM⊆ P(Var). Then
there exists a formula ϕ such that M = Mod(ϕ).

Proof: For eachM ∈ M, let ϕM be the formula constructed above in the proof of

⇒ of Proposition 2.28. This formula ϕM has the property thatM is the only model

of ϕM . Now let us form ϕ as follows:

ϕ =
∨

M∈M

ϕM .

© 2009 by Taylor and Francis Group, LLC

42 Introduction to Mathematics of Satisfiability

We claim thatM = Mod(ϕ). Indeed, ifM ∈M then, sinceM |= ϕM ,M |= ϕ.
Conversely, if N |= ϕ, then for someM ∈ M, N |= ϕM , and so N = M for that

M , i.e., N ∈ M. 2

2.9 Exercises

1. Let Var1,Var2 be two sets of propositional variables, Var1 ⊆ Var2. Let

ϕ ∈ LVar1
. Let v be a valuation of Var2. Prove that v(ϕ) = v|Var1

(ϕ) and

in particular v |= ϕ if and only if v|Var1
|= ϕ. Show that the assumption

ϕ ∈ LVar1
is meaningful.

2. Investigate the properties of
∏

p∈Var
{0, 1, u}. In particular, show that the func-

tion constantly equal to 0 is the least element, and the function constantly equal

to 1 is the largest element in 〈
∏

p∈Var
{0, 1, u},≤p〉.

3. Prove that 〈
∏

p∈Var
{0, 1, u},≤p〉 is a complete lattice. Then, after you prove

it, comment why it is obvious. Give a procedure for computation of the least

upper bound in the lattice 〈
∏

p∈Var
{0, 1, u},≤p〉.

4. Why is the poset 〈
∏

p∈Var
{0, 1, u},≤k〉 only chain-complete, and not a com-

plete lattice (that is, if Var 6= ∅)?

5. This is a completely misleading problem. Maybe the reader does not want to

solve it at all. Prove that the poset 〈{f : f ≤p u},≤p〉 is order-isomorphic to

〈
∏

p∈Var
{0, 1},≤p〉. Here u is the function constantly equal to u.

6. (Almost obvious) Show that whenever ϕ is a formula, and v is a partial valua-

tion, and v3(ϕ) = 1, then ϕ is satisfiable.

7. Let us assume that a formula ϕ is a tautology, that is, for all (complete two-

valued) valuations v, v |= ϕ. Can we deduce that for all partial valuations

v, v3(ϕ) = 1? If not, provide a suitable counterexample, and explain what

it means. Your explanation should use the informal notion of “commitment”

discussed above.

8. Prove Proposition 2.6. It is so obvious that proofs requiring more than four

sentences are too long.

9. Let F be this set of clauses:

{p ∨ q, p ∨ ¬q, ¬p ∨ r}.

(a) Is the partial assignment {¬p,¬r} an autarky for F ?

(b) Is the partial assignment {p,¬r} an autarky for F ?

10. Prove that the operation ⊕ discussed in Section 2.3 is associative, and that the

algebra 〈PVal ,⊕, ∅〉 is a monoid. If you do not know what “monoid” is, check

Wikipedia. PVal is the set of all partial valuations.

© 2009 by Taylor and Francis Group, LLC

Introduction to propositional logic 43

11. Is the operation⊕ commutative?

12. Prove that for every set F of formulas the algebra 〈AukF ,⊕, ∅〉 is a monoid.

Here AukG is the set of all autarkies for F .

13. Select at random one of the functors from the set {¬,∧,∨,≡} and prove that it
is an operation in the Lindenbaum algebra.

14. Add a symbol f for any operation f : Booln → Bool , define the satisfaction
relation for the functor f , define the Lindenbaum algebra of the extended lan-

guage, and prove that f is an operation in this algebra.

15. Complete the argument of Proposition 2.21(2).

16. Complete the argument of Proposition 2.22(2). The author proved that there is

one consistent permutation of literals transforming a given valuation v to an-

other given valuation w. Adapt this argument to the more general case.

17. Prove the proposition from Section 2.7. At least three statements await your

proof. Comment on the relationship to the following fact: if we change the

lattice ordering of 〈L,≤〉 to ≤−1 we also get a lattice ordering. If 〈L,≤〉 is
not only a lattice, but also a Boolean algebra, we get an isomorphic Boolean

algebra.

18. Prove Proposition 2.26. There is nothing deep about it, but some effort is

needed.

© 2009 by Taylor and Francis Group, LLC

Chapter 3

Normal forms of formulas

3.1 Canonical negation-normal form . 46
3.2 Occurrences of variables and three-valued logic . 48
3.3 Canonical forms . 50
3.4 Reduced normal forms . 54
3.5 Complete normal forms . 56
3.6 Lindenbaum algebra revisited . 58
3.7 Other normal forms . 59
3.8 Exercises . 60

We will now study normal forms. Generally, by a normal form formula we mean

a formula with some limitation on its syntactic form. The reader recalls that we

introduced formulas as textual representations of some labeled trees. One, then,

can think about formulas as trees. This was very useful, because trees have rank

function, and so various arguments were easier. We can also think about formulas

as representations of tables. Many formulas may (and in fact will) represent a single

table, and we may want to use some specific representations. These representations

are limited by the syntactic formwe allow. It turns out that it makes a lot of difference

how we represent formulas. If we think about formulas as representing constraints

on valuations (namely that a valuation needs to satisfy the formula) then the specific

syntactic form we use to represent constraints may make a lot of difference. In fact,

having a specific syntactic form of a formula may make the task of testing some

properties entirely trivial. For instance, if we have a formula ϕ in disjunctive normal

form then testing its satisfiability is very easy. Likewise, testing a conjunctive normal

form for being a tautology is completely trivial. The only problemwith this approach

is that finding the disjunctive (resp. conjunctive) normal form of a formula is an

expensive task in itself. But there are often advantages. For instance, if we have a

formula ϕ in conjunctive normal form and we are testing satisfiability, then there is

an additional mechanism (called Boolean constraint propagation) that can be used

to speed up the DPLL process by cutting portions of the search tree. Moreover, in

the same case of conjunctive normal form, we have a general processing technique,

called resolution, that can be used to test satisfiability.

First, we will discuss a simpler normal form, called negation normal form. This

normal form preserves polarity and will be useful when we discuss the Craig lemma.

We will also discuss “complete forms” of disjunctive and conjunctive normal forms,

and connection between conjunctive and disjunctive normal forms. This allows us to

get a better handle on the Lindenbaum algebra of the language.

The completeness results for sets of functors always produce normal form (in fact

45

© 2009 by Taylor and Francis Group, LLC

46 Introduction to Mathematics of Satisfiability

completeness of a set of functors already gives some normal form). In this spirit we

will discuss implicational normal form, this one involving the fact that the functor

⇒ forms by itself a complete set of functors (in a weak sense, that is in the presence

of constants) and the ite-normal form, again the consequence of the fact that ite is

(weakly) complete. Finally, we notice that there exist normal forms involvingNAND

and NOR. These are of practical importance, but we will not discuss them here.

3.1 Canonical negation-normal form

In this section we will limit ourselves to formulas built of constants, negation, con-

junction and disjunction. With an additional effort we could extend the negation-

normal form to all formulas, but we will not do so.

Formulas can be complex and, in particular in the inductive definition of formulas

we did not put any restriction on the occurrences of negation in a formula. Now

we will do so. We say that a formula ϕ is in negation-normal form if all negation

symbols occur only in front of variables. For instance, the formula p ∧ (q ∨ ¬r) is
in negation normal form, while the formula p ∧ ¬(¬q ∧ r) is not in negation normal

form. It turns out that, for a given formula ϕ we can find a formula ψ in negation

normal form such that ϕ and ψ are satisfied by exactly the same valuations. This

transformation (from ϕ to ψ) is based on the following three tautologies, which in

our context work as rewriting rules that “push negation inward”:

1. (Double negation elimination) ¬¬ϕ ≡ ϕ

2. (De Morgan I) ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ

3. (De Morgan II) ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

Repeatedly scanning the formula from left to right and applying these rewrite rules

(i.e. substituting right hand side for the left hand side) we decrease the rank of sub-

formulas where the negation symbol is a top symbol, until the negation is applied

only to variables. Since all three rewriting rules preserve the satisfying valuations,

it follows that after our algorithm terminates the resulting (output) formula is equiv-

alent to the original input formula and that the output formula is in the negation

normal form. This was, really, a top-down procedure, but we can also go bottom-up.

We can think about negation-normal form as pushing negations as deeply as they can

be pushed, that is, right above propositional variables.

We define the formula cNN(ϕ) inductively as follows:

1. cNN(a) = a if a is a variable

2. cNN(¬a) = ¬a if a is a variable

3. cNN(ϕ1 ∧ ϕ2) = cNN(ϕ1) ∧ cNN(ϕ2)

4. cNN(ϕ1 ∨ ϕ2) = cNN(ϕ1) ∨ cNN(ϕ2)

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 47

5. cNN(¬ϕ) =

cNN(ψ) if ϕ = ¬ψ

cNN(¬ψ) ∨ cNN(¬ϑ) if ϕ = ψ ∧ ϑ

cNN(¬ψ) ∧ cNN(¬ϑ) if ϕ = ψ ∨ ϑ.

Now, it should be clear that we have the following important property of the canoni-

cal negation normal form.

PROPOSITION 3.1
The canonical negation normal form of ϕ, cNN(ϕ), can be computed in linear
time.

We define occurrences of variables in formulas. We do this inductively on the com-

plexity of formulas.

1. A variable a occurs in the formula a positively.

2. A variable a occurs in the formula ¬a negatively.

3. A variable a occurs in a formula ¬ϕ positively (negatively) if a occurs in the

formula ϕ negatively (positively).

4. A variable a occurs in the formula ϕ ∧ ψ positively if a occurs positively in ϕ
or a occurs positively in ψ.

5. A variable a occurs in the formula ϕ ∨ ψ negatively if a occurs negatively in ϕ
or a occurs negatively in ψ.

In particular a variable may occur both positively and negatively in a formula. For

instance, p occurs both positively and negatively in the formula p ∨ ¬(p ∨ ¬q). We

now have the following useful fact.

THEOREM 3.1
A variable p occurs positively (negatively) within a formula ϕ if and only if
p occurs positively (negatively) within the formula cNN(ϕ).

Proof: By induction on the complexity of the formula ϕ. The base cases are obvious
since in this case cNN(ϕ) = ϕ. If the top connective (the label of the root) of ϕ is

either ∨ or ∧ then the result is obvious since both ∨ and ∧ preserve both positive

and negative occurrences of variables. Consequently we only need to look at the

case when the top connective of ϕ is ¬. Let us make the following observation: a

variable p occurs positively (negatively) in the formula ϕ if and only if p occurs

negatively (positively) in the formula ¬ϕ. So let us now assume that ϕ = ¬ψ. We

need to consider three cases. First, assume that the top connective of ψ is ¬. Then
ψ = ¬ϑ. Now, if p occurs positively in ϕ then p occurs positively in ϑ and thus p
occurs positively in cNN(ϕ) = cNN(ϑ). If p occurs positively in cNN(ϕ), i.e., in
cNN(ϑ), then by inductive assumption (ϑ is simpler than ϕ) the variable p occurs

positively in ϑ, thus in ϕ, as desired. The case of negative occurrences is similar.

© 2009 by Taylor and Francis Group, LLC

48 Introduction to Mathematics of Satisfiability

The second case is when the top connective of ψ is ∧, i.e., ψ = ϑ1∧ϑ2. Now, in this
case,

cNN(¬ψ) = cNN(¬ϑ1) ∨ cNN(¬ϑ2).

Assume p occurs in ϕ positively. Then p occurs negatively in ψ. Without loss of

generality we can assume that p occurs negatively in ϑ. By the inductive assump-

tion, p occurs negatively in cNN(ϑ1). Thus p occurs positively in cNN(¬ϑ1), and
thus p occurs positively in cNN(¬ϑ1) ∨ cNN(¬ϑ2), that is in cNN(ϕ), as desired.
Conversely, assume p occurs positively in cNN(ϕ). That is, p occurs positively in

cNN(¬ϑ1)∨ cNN(¬ϑ2). Without the loss of generality we can assume that p occurs
positively in cNN(¬ϑ1). Then, by inductive assumption, p occurs positively in ¬ϑ1.

This means that p occurs negatively in ϑ1. This, in turn, implies that p occurs nega-
tively in ϑ1 ∧ ϑ2. Finally, we conclude that p occurs positively in ¬(ϑ1 ∧ ϑ2), that
is, p occurs positively in ϕ, as desired.
The case of negative occurrence of p in ϕ is similar. Likewise, the case when ψ =
ϑ1 ∨ ϑ2 is again similar. 2

Next, let us observe that the canonical negation-normal form of a formula ϕ has

length at most twice that of ϕ (and this is a pessimistic estimate). The reason for

that is that, as we transform the formula ϕ into its negation normal form, the total

number of internal nodes labeled with ∨ or with ∧ does not change (of course the

labels of nodes change, but not the total number of nodes labeled with ∨ or ∧, as
can easily be checked by induction). But then, we can lengthen the formula only by

putting ¬ in front of leaves of the original formula. Thus the length of cNN(ϕ) can
be estimated by the length of ϕ incremented by the number of leaves of the tree for

ϕ, thus twice the length of ϕ. Since every node is visited once, we established that

there is an inexpensive way to check occurrences of a variable (say p) in a formula

ϕ. All we need to do is to compute the canonical negation-normal form of ϕ, and
then to scan that normal form cNN(ϕ) for the positive and negative occurrences of

the variable p.

3.2 Occurrences of variables and three-valued logic

We will now prove an interesting property of formulas with respect to three-valued

logic. Let us assume that V ⊆ Var is a set of propositional variables. Let ϕ be

a propositional formula. The formula ϕV arises from ϕ by substitution: we sub-

stitute every positive occurrence of every variable x ∈ V by ⊥ and every nega-

tive occurrence of every variable y ∈ V by ⊤. Here is one example. Let ϕ be

(¬(x ∨ ¬z) ∧ x) ∨ y. Let V = {x}. The variable x has two occurrences in our

formula. The first one is negative, the second one is positive. When we substitute ⊤
for the first one, and ⊥ for the second one (according to our definition) we get the

formula (¬(⊤∨¬z)∧⊥)∨ y. Let us observe that the variables of V do not occur in

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 49

ϕV at all. One can interpret the operation ϕV (the elimination of variables from V)

as the “worst-case scenario”: we make positively occurring variables from V false

and negatively occurring variables from V true.

Now, we have the following important property of the three-valued evaluation func-

tion. We will use this property when we discuss autarkies for Horn formulas.

PROPOSITION 3.2

Let ϕ be a propositional formula. Let v be a nonempty partial assignment
of some or all propositional variables in ϕ. Let V ⊆ Var \ Var(v). Then
v3(ϕ) = 1 if and only if v3(ϕV)) = 1, and v3(ϕ) = 0 if and only if v3(ϕV) = 0.

Proof: We proceed by simultaneous induction on both parts of the assertion on the

complexity of the formula ϕ.
Base case: There is nothing to prove if ϕ is either ⊥ or ⊤. When ϕ = p, where p
is a propositional variable, then since v is nonempty, pV = p and both parts of the

assertion are obvious.

Inductive step: There will be three cases, each corresponding to the main connective

of the formula ϕ.
(a): ϕ = ¬ψ. Since the operation ϕ 7→ ϕV affects only the leaves but not the

internal nodes of the tree representation of ϕ, (¬ϕ)V = ¬ϕV . Let us assume that

v3(ϕ) = 1. Then v3(ψ) = 0, v3(ψV) = 0 (inductive assumption, ψ is simpler),

v3(¬ψV) = 1, v3(ϕV) = 1. It is easy to see that all implications in this chain are,

in fact, equivalences, and so the other implication also follows. If v3(ϕ) = 0, the
argument is very similar.

(b): ϕ = ψ1∧ψ2. Then ϕV = (ψ1)V ∧(ψ2)V because the operationϕ 7→ ϕV affects

leaves, and not internal nodes. Assuming v3(ϕ) = 1 we have: both v3(ψ1) = 1 and

v3(ψ2) = 1. Then by inductive assumption v3((ψ1)V) = 1 and v3((ψ2)V) = 1.
But then v3((ψ1)V ∧ (ψ2)V) = 1. Thus v3(ϕV) = 1. All the implications were

equivalences, thus the converse implication holds as well.

Next we have to consider the case when v3(ϕ) = 0. The argument is similar, except

that now we use the fact that v3(ϕ) = 0 if and only if at least one of v3(ψ1) and

v3(ψ2) is 0.
(c): ϕ = ψ1 ∨ ψ2. Then ϕV = (ψ1)V ∨ (ψ1)V because the operation ϕ 7→ ϕV
affects leaves, and not internal nodes. Now, we reason as in case (b), except that

two subcases are reversed. That is v3(ψ1 ∨ ψ2) = 1 if and only if at least one of

v3(ψ1), v3(ψ2) is 1, v3(ψ1 ∨ ψ2) = 0 if and only if both v3(ψ1), v3(ψ2) are 0. 2

© 2009 by Taylor and Francis Group, LLC

50 Introduction to Mathematics of Satisfiability

3.3 Canonical disjunctive and conjunctive normal
forms

We found that it is easy to “push negation inward” and to make sure that the nega-

tion functor applies only to variables. Now, we will see that we can push inward

disjunctions and conjunctions. But unlike the case of negation, the cost associated

with such transformation may be significant. Within this section we will assume that

formulas are always in negation normal form. In other words the procedure outlined

above in Section 3.1 allows us to make sure that the formulas under consideration

are cNN-formulas.

The following four tautologies are important for building disjunctive normal forms

and conjunctive normal forms.

1. ϕ ∧ (ψ ∨ ϑ) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ϑ)

2. (ψ ∨ ϑ) ∧ ϕ ≡ (ψ ∧ ϕ) ∨ (ϑ ∧ ϕ)

3. ϕ ∨ (ψ ∧ ϑ) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ ϑ)

4. (ψ ∧ ϑ) ∨ ϕ ≡ (ψ ∨ ϕ) ∧ (ϑ ∨ ϕ)

We will now use the formulas (1) and (2) when we want to “push conjunction in-

ward,” while (3) and (4) will be used to “push disjunction inward.” Formulas where

all conjunctions were pushed inward will be called disjunctive normal form formulas

(DNFs). Likewise, formulas where all disjunctions have been pushed inward will be

called conjunctive normal form formulas (CNFs).

Thus assume our formula ϕ is in negation normal form. We will compute a disjunc-

tive normal form of ϕ. A conjunctive normal form can be computed in an analogous

manner (except that instead of tautologies (1) and (2) we would use (3) and (4)).

Before we do this in detail, let us observe that both conjunction and disjunction are

associative, in other words:

5. ϕ ∧ (ψ ∧ ϑ) ≡ (ϕ ∧ ψ) ∧ ϑ

6. ϕ ∨ (ψ ∨ ϑ) ≡ (ϕ ∨ ψ) ∨ ϑ

This means that we do not have to be concerned with the order of brackets when the

formula consists of conjunctions only. We define a term as a formula of the form

l1 ∧ l2 ∧ . . . ∧ lk where each ljis a literal, that is, a variable or negated variable. A
formula ϕ is in disjunctive normal form (DNF) if ϕ = D1 ∨D2 ∨ . . . ∨Dm where

eachDj, 1 ≤ j ≤ m, is a term.

We define the formula cDNF(ϕ) by induction on the complexity of formulas. Recall

that we assume our formulas to be in negation-normal forms. We define:

1. cDNF(a) = a if a is a variable.

2. cDNF(¬a) = ¬a if a is a variable.

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 51

3. Assuming D1
1 ∨ D

1
2 ∨ . . . ∨ D

1
m1

= cDNF(ψ1) and D2
1 ∨ D

2
2 ∨ . . . ∨ D

2
m2

= cDNF(ψ2), define

(a) cDNF(ψ1 ∧ ψ2) =
∨

1≤i≤m1,1≤j≤m2
D1
i ∧D2

j .

(b) cDNF(ψ1 ∨ ψ2) = cDNF(ψ1) ∨ cDNF(ψ2).

Since the distribution is applied only to terms we see that starting with a formula in a

negation-normal form we end up with a formula in a negation-normal form as well.

PROPOSITION 3.3
For every formula ϕ in negation-normal form, the formula cDNF(ϕ) is in

disjunctive normal form. Moreover, ϕ ≡ cDNF(ϕ) is a tautology.

Proof: Proceeding by induction on the complexity of formulas, while assuming the

input formula is in negation-normal form, the output is also in negation-normal form.

Moreover the positive and negative occurrences of variables do not change in the

process of computation of cDNF(ϕ). Clearly, the operations utilized in (3.a) and

(3.b) produce the outputs in disjunctive normal form.

Thus all we need to do is to show that for every valuation v, v |= ϕ if and only

if v |= cDNF(ϕ). We proceed by induction. The base cases are obvious. All

we need to take care of are the top functor symbols being ∨ and the top function

symbol being ∧. The first case is obvious. Turning our attention to the case when

the top functor of ϕ is ∧, we observe that if v |= ψ1 and v |= ψ2, then for some i,
1 ≤ i ≤ m1, and some j, 1 ≤ j ≤ m2, v |= D1

i and v |= D2
j , so v |= D1

i ∧ D
2
j ,

thus v |= cDNF(ψ1 ∧ ψ2), as desired. Conversely, if v |= cDNF(ψ1 ∧ ψ2), then for
some i, j, 1 ≤ i ≤ m1, 1 ≤ j ≤ m2,

v |= D1
i ∧D

2
j .

Therefore v |= D1
i and v |= D2

j . Hence v |= cDNF(ψ1) and v |= cDNF(ψ2). By
inductive assumption, v |= ψ1 and v |= ψ2 and so v |= ψ1 ∧ ψ2 as desired. 2

One consequence of the existence of disjunctive normal form (but we could use ite

normal form instead, too) is the following fact, closely related to the fact we estab-

lished when showing completeness of the De Morgan set of functors (Proposition

5.2).

PROPOSITION 3.4
For every formula ϕ and a variable p ∈ Varϕ there exist two formulas ψi,
i = 1, 2 such that

1. p /∈ Varψi
, i = 1, 2

2. The formula ϕ ≡ ((p ∧ ψ1) ∨ (¬p ∧ ψ2)) is a tautology.

Proof: Let us consider a canonical disjunctive normal form forϕ. We can assume that

there is no contradictory conjunction in that normal form. Now, the disjunction splits

© 2009 by Taylor and Francis Group, LLC

52 Introduction to Mathematics of Satisfiability

in three parts: χ1 consisting of terms containing p, χ2 consisting of terms containing

¬p, and χ3 consisting of remaining terms. Then χ1 can be easily transformed (by

taking p out of terms of χ1) to the formula p ∧ ϑ1, p /∈ Varϑ1
. Similarly we have

χ2 equivalent to ¬p ∧ ϑ2 with p /∈ Varϑ2
. Then we form ψ1 equal to ϑ1 ∨ χ3 and

ψ2 equal to ϑ2 ∨ χ3. We leave it to the reader to check that we computed desired

formulas. 2

The substitution lemma (Proposition 2.16) implies that substitutions of equivalent

formulas for variables result in equivalent formulas. Likewise, substituting same

formulas into equivalent formulas results in equivalent formulas. We will show how

these observations are of use.

PROPOSITION 3.5 (Tarski propositional fixpoint theorem)

Let ϕ be a propositional formula, and let p ∈ Varϕ. Let ψ = ϕ
(

p
⊤

)

. Then,

for every valuation v, if v |= ϕ then v |= ϕ
(

p
ψ

)

.

Proof: Without loss of generality we can assume that ϕ ≡ ((p ∧ ψ1) ∨ (¬p ∧ ψ2))
is a tautology. We first claim that ψ ≡ ψ1 is a tautology. Indeed, let v be any

valuation. Then by the substitution lemma, v(ψ) = v′(ϕ) where v′(p) = v(⊤) = 1
and v′(x) = v(x) for all variables x different from p. But

v′(ϕ) = v′ ((p ∧ ψ1) ∨ (¬p ∧ ψ2)) = v′(ψ1)

because v′(p) = 1. Now, v(ψ1) = v′(ψ1) because ψ1 does not contain any occur-

rence of p. Thus v(ψ) = v(ψ1), as desired.

Now, since ψ ≡ ψ1 is a tautology, ϕ
(

p
ψ

)

≡ ϕ
(

p
ψ1

)

is a tautology. But ϕ
(

p
ψ1

)

is

nothing else but

(ψ1 ∧ ψ1) ∨ (¬ψ1 ∧ ψ2)

which in turn is equivalent to ψ1 ∨ (¬ψ1 ∧ ψ2).

Thus all we need to do is to show that v |= ψ1 ∨ (¬ψ1 ∧ ψ2).

Two cases are possible:

Case 1: v |= ψ1. Then, clearly v |= ψ1 ∨ (¬ψ1 ∧ ψ2).
Case 2: v |= ¬ψ1. Then, since v |= ϕ, it must be the case that v |= ¬p ∧ ψ2, in

particular v |= ψ2. But then v |= ¬ψ1∧ψ2, and so v |= ψ1∨ (¬ψ1 ∧ψ2), as desired.
2

What about the polarity of variables? A close inspection shows that application

of distributive laws preserves polarity. In particular, the CNF computed out of

cNNF(ϕ) (canonical negation-normal form of ϕ) has exactly the same occurrences

of variables. This fact will be important in our proof of the Craig lemma below.

Complexitywise, computation of cDNF(ϕ) is expensive. The reason for this is that

the size of the result of the application of transformation 3.a above is proportional to

the product of the inputs. This results in the exponential size increase.

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 53

Example 3.1
Let ϕn = (a1

1 ∨ a
1
2) ∧ (a2

1 ∨ a
2
2) ∧ . . .∧ (an1 ∨ a

n
2), where a1

1, a
1
2, . . . , a

n
1 , a

n
2 are 2n

distinct propositional variables.

Then the formula ϕn consists of n clauses, each of size 2. But the formula

cDNF(ϕn) consists of 2n terms, each of size n. Thus the exponential growth in

the computation of disjunctive normal form cannot be avoided.

The result analogous to Proposition 3.3 can be easily proved for the conjunctive

normal form. We just use the other two distributive laws. As before we can either

push the disjunction inward or define inductively conjunctive normal form formulas

as we did before.

Assuming that we are dealing with negation-normal form formulas, we assign the

canonical conjunctive-normal form (cCNF) to such formula as follows:

1. cCNF(a) = a if a is a variable

2. cCNF(¬a) = ¬a if a is a variable

3. Assuming C1
1 ∧ C

1
2 ∧ . . . ∧ C

1
m1

= cCNF(ψ1) and C2
1 ∧ C

2
2 ∧ . . . ∧ C

2
m2

= cCNF(ψ2), define

(a) cCNF(ψ1 ∨ ψ2) =
∧

1≤i≤m1,1≤j≤m2
C1
i ∨ C2

j

(b) cCNF(ψ1 ∧ ψ2) = cCNF(ψ1) ∧ cCNF(ψ2)

No wonder, we get:

PROPOSITION 3.6

For every formula ϕ in negation-normal form, the formula cCNF(ϕ) is in
conjunctive-normal form. Moreover, the formula ϕ ≡ cCNF(ϕ) is a tautology.

Given a theory (i.e., a set of formulas) T we can compute for each ϕ ∈ T its conjunc-

tive normal form cCNF(ϕ). Because satisfaction of a formula of the form
∧n
i=1 ϕi

means just the satisfaction of all ϕi, 1 ≤ i ≤ n, we can drop all conjunctions, and in
this way we compute a set of clauses. We will call that set cCNF(T). With a bit of

impreciseness (identifying cCNF(ϕ) with a set of clauses) we just have:

cCNF(T) =
⋃

ϕ∈T

cCNF(ϕ).

We then have the following fact.

PROPOSITION 3.7
The set of clauses cCNF(T) has exactly the same models as T . Consequently,
for every propositional theory T there is a set of clauses F such that Mod(F) =
Mod(T).

© 2009 by Taylor and Francis Group, LLC

54 Introduction to Mathematics of Satisfiability

It would be tempting to think that if a variable p has only positive (resp. negative)

occurrences in all formulas ϕ in a set of formulas F , then {p} is an autarky for F .
This is not the case, as witnessed by the following example: F = {(p ∧ q) ∨ r}.
Here p has only positive occurrences in the only formula ϕ of F , v = {p} touches
that formula, but v3(ϕ) = u. Nevertheless, a weaker (but still desirable) property of
such sets of formulas holds. Namely, we have the following.

PROPOSITION 3.8
Let F be a set of formulas in which a variable p has only positive (resp.

negative) occurrences. Then F is satisfiable if and only if F ∪ {p} (resp.
F ∪ {¬p}) is satisfiable. In other words, F is satisfiable if and only if it is
satisfiable by a valuation v such that v(p) = 1 (resp. v(p) = 0).

Proof: We prove it for positive occurrences of p only; the reader should have no

problem with the other case. We need to prove that if v |= F and w is defined by

w(x) =

{

v(x) if x 6= p

1 if x = p

then v |= ϕ for all ϕ ∈ F . Various arguments are possible. Here is one that uses

the canonical conjunctive normal form. Since p has only positive occurrences in ϕ,
p has only positive occurrences in cCNF(ϕ). But then p is a free literal in the set of

clauses G defined as
⋃

ϕ∈F cCNF(ϕ). But then {p} is an autarky for G and so the

result follows. 2

One consequence of Proposition 3.8 is that the concept of autarky is not preserved

by equivalence of formulas.

3.4 Reduced normal forms

If we computed a cDNF(ϕ) or cCNF(ϕ) we should check if all the conjunctions

(resp. clauses) are really needed there. We will now discuss the case of conjunctive

normal form (the case of DNF is very similar).

There are two distinct reduction rules allowing for elimination of clauses from CNF.

The first one is a simple fact that characterizes clauses that are tautologies. The

second one is a characterization of subsumption between clauses.

PROPOSITION 3.9

1. A clause C = p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬ql is a tautology if and only if
for some i, 1 ≤ i ≤ k and j, 1 ≤ j ≤ l, pi = qj.

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 55

2. Given two clauses C1 and C2, C1 |= C2 if and only if all literals occurring
in C1 occur in C2, that is, C1 subsumes C2.

Proposition 3.9 tells us that, at a cost, we can reduce the cCNF by a repeated appli-

cation of two rewrite rules: first, given a clause C, if C contains a pair of comple-

mentary literals, then C can be eliminated. Second, if a clause C1 is subsumed by a

clause C2, then C1 can be eliminated. Assuming that the formula is in conjunctive

normal form and is sorted in the sense that shorter clauses are listed earlier, this task

can be done in time proportional to the square of the size of the formula. The re-

sulting formula is reduced; there are no unnecessary clauses (tautologies), and there

are no subsumptions. There is a cost involved in such preprocessing, but it may pay,

eventually. Moreover, as before, we have the following fact.

PROPOSITION 3.10
For every formula ϕ there is a reduced conjunctive-normal form formula ψ

such that ϕ ≡ ψ is a tautology.

There are the corresponding results for disjunctive-normal form. We will state them

now.

PROPOSITION 3.11

1. A term D = p1 ∧ . . .∧ pk ∧¬q1 ∧ . . .∧¬ql is evaluated false (i.e., 0) by all
valuations if and only if for some i, 1 ≤ i ≤ k and j, 1 ≤ j ≤ l, pi = qj.

2. Given two terms D1 and D2, D1 |= D2 if and only if all literals occurring
in D2 occur in D1.

Proposition 3.11 entails a reduction procedure and the concept of a reduced DNF.

An algorithm for reduction is similar, except that in the case of second reduction, the

inclusion is reversed, and so we need to sort the formulas in the opposite order. We

still get an analogous result.

PROPOSITION 3.12
For every formula ϕ there is a reduced disjunctive normal form formula ψ

such that ϕ ≡ ψ is a tautology.

Testing of a formula in a reduced disjunctive normal form for satisfiability is entirely

trivial. As long as the reduced normal form is nonempty, the formula is satisfiable.

The reader should have a nagging suspicion that there is something similar in the

normal forms of related formulas, and that there should be some connection.

Let us see what happens if we take a formula ϕ already in (say) disjunctive normal

form, put the negation functor in front, and push the negation inward (as we did in the

© 2009 by Taylor and Francis Group, LLC

56 Introduction to Mathematics of Satisfiability

computation of canonical negation-normal form). We get a conjunctive normal form

formula. This formula is a conjunctive normal form for ¬ϕ. The procedure itself is
very efficient: every disjunction is rewritten to a conjunction and vice versa, and at

the literal level, every literal is changed to its dual literal. We certainly can perform

this computation in linear time. It is pretty obvious that we can apply exactly the

same algorithm to a conjunctive normal form of ϕ, getting a disjunctive normal form

of ¬ϕ. It takes little effort to see that the reduced DNF becomes a reduced CNF and

vice versa. Thus we get the following fact.

PROPOSITION 3.13

The procedure outlined above converts the canonical conjunctive normal form
of ϕ, cCNF(ϕ), to the canonical disjunctive normal form cDNF(¬ϕ) of ¬ϕ.
If the input DNF has been reduced, the output formula is a reduced CNF. The
same conversion procedure transforms cCNF(ϕ) into cDNF(¬ϕ).

Proposition 3.13 tells us that if we ever get a device that efficiently computes one

of the normal forms, then such device could be used, together with postprocessing

described above, to compute the other normal form.

3.5 Complete normal forms

There is even more to disjunctive and conjunctive normal forms. We will first focus

on the disjunctive normal forms, and then use the transformation of DNF of ¬ϕ into

the CNF for ϕ to get similar results for CNFs.

The limitation we impose in this section is that we assume the set Var to be finite,

Var = {p1, . . . , pn}. Yet another piece of terminology needed here is that of a

minterm. A minterm is a term which contains exactly one literal from each pair

{p,¬p}. It should be clear that a minterm is a minimal possible term, in the sense

that all the other terms that are entailed by it, are included in it. Here is an example.

Let Var = {p, q, r}. Then p ∧ ¬q ∧ ¬r is a minterm. Another minterm is p ∧ q ∧ r.

Clearly there is a bijection between minterms and valuations. Namely, a minterm is a

conjunction of a valuation, if we think about a valuation as a complete set of literals.

The following fact may remind the reader of atoms in Boolean algebra.

LEMMA 3.1

For every formula ϕ and every minterm t, either the formula (ϕ ∧ t) ≡ t is
a tautology, or ϕ ∧ t is false.

Proof: As observed above, the term t determines a valuation vt, a unique valuation
satisfying t. Then we have two cases.

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 57

Case 1: vt |= ϕ. Then vt is a unique valuation satisfying ϕ ∧ t. Since vt is a unique
valuation satisfying t, the formula (ϕ ∧ t) ≡ t is a tautology.
Case 2: vt 6|= ϕ. Then there is no valuation satisfying ϕ ∧ t, and so it is false. 2

But now, we show another disjunctive normal form of a given formula ϕ. Let us

form the set S = Mod({ϕ}), of all valuations satisfying ϕ. For each such valuation

v, let us form a minterm tv, where tv is the conjunction of literals evaluated by v as

1. Then let us form the formula dϕ :=
∨

v∈S tv. We then show the following fact.

PROPOSITION 3.14
For every formula ϕ, ϕ ≡ dϕ is a tautology. Up to the order of variables,

and the listing of minterms the representation ϕ 7→ dϕ is unique.

Proof: Formulas ϕ and dϕ are satisfied by precisely the same valuations. 2

Assuming that the set Var is finite, a minterm can be identified with a valuation.

Namely, given a minterm t let us define the function vt as follows:

vt(x) =

{

1 if x occurs in t positively

0 if x occurs in t negatively.

Since t is a minterm, vt evaluates the entire set Var . The assignment t 7→ vt is bi-
jective. In particular every valuation v is of the form vt. Let V be a set of valuations.

Since Var is finite, V is finite. Let us form the following formula ϕV :

∨

{t : vt ∈ V }.

We then have the following property.

PROPOSITION 3.15
V = Mod(ϕV). In other words, the models of ϕV are precisely the valuations
from V .

Proof: If v ∈ V then for minterm t such that v = vt, v |= t. Therefore v |= ϕV .
Since v is an arbitrary valuation in V , inclusion ⊆ follows.

Conversely, if v |= ϕV , then for some t such that vt ∈ V , v |= t. But then, by

Lemma 3.1, v = vt so v ∈ V . Thus the inclusion ⊇ follows, too. 2

The formula ϕV constructed above is a DNF formula. We can find its conjunctive-

normal form; let us call it ψV for the lack of better name. Let FV be the set of all

clauses of ψV . Then, clearly, Mod(FV) = Mod(ψV) = Mod(ϕV) = V . Conse-

quently we get the following fact.

PROPOSITION 3.16
Let Var be a finite set of propositional variables. Then for every set V of

valuations of Var there is a set of clauses SV such that V = Mod(SV).

© 2009 by Taylor and Francis Group, LLC

58 Introduction to Mathematics of Satisfiability

The formula dϕ is another DNF for ϕ. This form is very inefficient, and amounts to

just another representation of the table for ϕ, except that we list only those rows of

the table where the value is 1. On average a formula in FormVar where |Var | = n
has a representation as 2n−1 minterms, an unpleasant fact of life. It should also be

clear that if a formula ϕ is in a complete disjunctive normal form, then testing for

tautology is trivial and reduces to counting. Such a formula is a tautology if and only

if it contains precisely 2n minterms. Likewise, counting the number of satisfying

assignments of a formula ϕ is trivial if we have dϕ – we just count the number of

minterms in dϕ.

We can assign to minterm t its size by counting positive literals occurring in t. Then
here is one technique to construct a symmetric formulas (cf. Section 2.6). Let

|Var | = n. Let us select any increasing sequence 1 ≤ i1 < . . . < ik ≤ n. For

each j, 1 ≤ j ≤ k, we form ψj :=
∨

{t : t is a minterm and size(t) = j}. Then
let us form ψj1,...,jk :=

∨

1≤j≤k ψij . Then ψj1,...,jk is a symmetric formula. All

symmetric formulas are equivalent to formulas of the form ψj1,...,jk for a suitably

chosen sequence 〈j1, . . . , jk〉.
Let us observe that we can count symmetric formulas (up to equivalence); there are

as many of them as the strictly increasing sequences 〈j1, . . . , jk〉 that is 2n. There are
22n

elements of the Lindenbaum algebra, but we just found that only 2n of them are

symmetric. However we observe that symmetric formulas form a nice subclass of the

Lindenbaum algebra. They are closed under negation, conjunction, and disjunction.

There are analogous results about maxclauses, that is, non-tautological clauses of

size precisely n. Every formulaϕ is equivalent to the conjunction cϕ of such clauses.

All we need to do is to compute d¬ϕ, then transform it using the transformation

pushing the DNF of ¬ϕ to CNF of ϕ. In this manner we get the following fact.

PROPOSITION 3.17

For every formula ϕ, ϕ ≡ cϕ is a tautology. Up to the order of variables and
the listing of maxclauses the representation ϕ 7→ cϕ is unique.

3.6 Lindenbaum algebra revisited

The complete disjunctive normal form discussed in Section 3.5 allows us to char-

acterize completely the Lindenbaum algebra of propositional logic based on n vari-

ables. First, Lemma 3.1 tells us that the coset of every minterm is an atom in the

Lindenbaum algebra. There are 2n such atoms. Our unique representation result

(Proposition 3.14) was just restating a well-known result of the representation of

complete atomic Boolean algebras by the power set of the set of atoms. Moreover,

we also know how many objects altogether there are in the Lindenbaum algebra;

since there are 2n atoms, there are altogether 22n

cosets altogether. Moreover, the

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 59

number of atoms determines the algebra up to isomorphism. Altogether this gives us

the following fact.

PROPOSITION 3.18

If the set Var is finite then the corresponding Lindenbaum algebra is finite.

Our estimation of the number of atoms in the Lindenbaum algebra tells us that not

every finite Boolean algebra is isomorphic to the Lindenbaum algebra of a proposi-

tional logic. (Let us recall that different sets Var determine different Lindenbaum

algebras.) However, by the same token, every finite Boolean algebra is isomorphic

to a subalgebra of a suitably chosen Lindenbaum algebra, namely that of symmetric

formulas. Further results can be obtained in this direction, but we will not pursue

this matter here.

3.7 Other normal forms

Every functor can be represented in terms of⇒ and ⊥ (we will study completeness

of sets of functors in Chapter 5). This leads to another normal form, called the

implication-normal form. That is, for every formula ϕ there is a formula INF(ϕ)
built only of variables, constants, and the functor⇒ so that ϕ ≡ INFϕ is a tautology.

We define this formula inductively. We will assume that the formula ϕ does not

involve the functor ≡ but it is of course a minor limitation. We could impose other

limitations (e.g., require that the formula be in negation normal form), but it is not

necessary.

1. INF(a) = a if a is a variable

2. INF(¬ϕ) = (INF(ϕ)⇒ ⊥)

3. Proceeding by induction on the rank of formulas (recall that all formulas are in

negation-normal form) let us define

(a) INF(ϕ ∧ ψ) = (INF(ϕ)⇒ (INF(ψ)⇒ ⊥))⇒ ⊥

(b) INF(ϕ ∨ ψ) = (INF(ϕ)⇒ ⊥)⇒ INF(ψ)

(c) INF(ϕ⇒ ψ) = INF(ϕ)⇒ INF(ψ)

PROPOSITION 3.19

For every formula ϕ, ϕ ≡ INF(ϕ) is a tautology.

The implication-normal form has been well-known since the 1920s. Computation of

INF forms a first step of the so-called Stålmarck’s algorithm for testing formulas for

© 2009 by Taylor and Francis Group, LLC

60 Introduction to Mathematics of Satisfiability

tautology.1

Finally, let us turn our attention to the ite ternary functor. We will look at it again

in Section 5.6. In terms of De Morgan functors, ite(p, q, r) is (p ∧ q) ∨ (¬p ∧ r).
The functor ite is complete, providing constants can be used. We will now, as we did

in the case of implicational-normal form, define the ITE-normal form of formulas,

ITE(ϕ).

1. ITE(a) = a if a is a variable

2. ITE(¬ϕ) = ite(ITE(ϕ),⊥,⊤)

3. ITE(ϕ ∧ ψ) = ite(ITE(ϕ), ITE(ψ),⊥)

4. ITE(ϕ ∨ ψ) = ite(ITE(ϕ),⊤, ITE(ψ)

5. ITE(ϕ⇒ ψ) = ite(ITE(ϕ, ITE(ψ),⊤)

The following result shows that we can represent formulas in ITE-normal forms.

PROPOSITION 3.20
For every formula ϕ, ϕ ≡ ITE(ϕ) is a tautology.

The ITE-normal form is useful when we represent formulas as so-called binary de-

cision diagrams, BDDs. These expressions are representations of Boolean functions

as graphs. The specific form of BDD, reduced ordered BDD, offers a particularly

efficient representation of Boolean functions. ROBDD is based on efficient reuse

of components of Boolean functions. While a fascinating topic, BDD are mostly

beyond the scope of this book. In Exercises to Chapter 11 we discuss, however,

the construction of ROBDD and the fundamental result of the theory of ROBDDs,

Bryant theorem.

It should be quite clear that disjunctive normal form allows for a fast computation of

the ITE form. The reason for it is that once we have ϕ in a disjunctive normal form,

we can group terms containing a given variable p into a single conjunction, take p
out of it, forming a formula p∧ψ1, and do the same thing for ¬p, forming (¬p)∧ψ2.

There is the third part, ψ3, not involving p at all. Then the original formula ϕ is

equivalent to ite(p, ψ1 ∨ψ3, ψ2 ∨ψ3). This forms a basis for an entire theory useful

in electronic design automation.

3.8 Exercises

1. Find a canonical negation normal form for this formula:

¬(¬(p ∧ q) ∨ (p ∧ ¬q))

1We will not discuss the Stålmarck algorithm here since it is patented.

© 2009 by Taylor and Francis Group, LLC

Normal forms of formulas 61

2. List positive and negative occurrences of variables in the formula of Problem

(1).

3. Investigate the relationship between positive and negative occurrences of vari-

ables and the number of negations on the path from the root of the tree to the

occurrence of the variable.

4. In Section 3.1 we defined the negation-normal form for formulas based on the

functors {¬,∧,∨}. Can we do this for all formulas built from De Morgan func-

tors? How do we need to define occurrences of variables in formulas of the form

ϕ⇒ ψ and in formulas of the form ϕ ≡ ψ to preserve the validity of Theorem

3.1?

5. In the Tarski fixpoint theorem (Proposition 3.5) we eliminated a variable p, sub-
stituting for it a formula arising from substitution of variable p by ⊤. We could

substitute p with ⊥, instead. What will happen?

6. In Proposition 3.7 we established that for every theory T there is a set of clauses

F such thatMod(T) = Mod(F). First, complete the argument (which was only

outlined there). Second, the set F is not unique, even if there are no subsump-

tions and no tautological clauses. Give an appropriate example.

7. In Proposition 3.6 we established that if the set Var is finite, and of size n, then
the corresponding Lindenbaum algebra has 2n atoms and hence that algebra is

finite. Why is it so? Specifically, do a small excursion into Boolean algebra and

prove the following fact: If k ∈ N , then there is exactly one (up to isomorphism)

Boolean algebra with exactly k atoms. That algebra is finite, and has exactly 2k

elements.

© 2009 by Taylor and Francis Group, LLC

Chapter 4

The Craig lemma

4.1 Craig lemma . 63
4.2 Strong Craig lemma . 66
4.3 Tying up loose ends . 69
4.4 Exercises . 71

Our goal now is to prove the Craig lemma, a kind of “Occam Razor” principle for

logic. The idea here is that when an implication ψ ⇒ ϕ is a tautology, then this

phenomenonmeans that there is a constraint on the variables that occur both in ψ and

ϕ. This constraint, ϑ must be entailed by the constraint expressed by ψ and in itself

must entail ϕ. This limitation on the variables that are mentioned in ϑ is the reason

why we mentioned “Occam Razor.” It turns out that, actually, the requirements can

be more stringent, and we can find even better intermediate constraints (they are

called interpolants), with additional limitations on the polarity of variables involved.

4.1 Syntactic transformations and the Craig lemma

The Craig lemma, in its simplest form, states that whenever ψ ⇒ ϕ is a tautology,

then there exists an interpolant, a formula ϑ, involving only the variables occurring

both in ψ and in ϕ, such that both ψ ⇒ ϑ and ϑ⇒ ϕ are tautologies.

Our proof will be constructive (a nonconstructive proof can be provided using “con-

sistency properties”). This is not to say that our proof will not involve work. The

work involved in computing an interpolant will require (in our presentation) to com-

pute either the disjunctive normal form of ψ or the conjunctive normal form of ϕ. If
any of these is available, the amount of work is linear in the size of Varψ ∪Varϕ.

Let us observe that if ϕ itself is a tautology, or ψ is false, then the Craig lemma is

obvious. Indeed, in the first case we can select⊤ as an interpolant, and in the second

case ⊥ serves as an interpolant. Thus the only interesting case is when ϕ is not a

tautology, and ψ is not false.

In preparation for our proof of the Craig lemma we have a lemma that allows us to

simplify checking that some formulas of the form ψ ⇒ ϕ are tautologies.

63

© 2009 by Taylor and Francis Group, LLC

64 Introduction to Mathematics of Satisfiability

LEMMA 4.1
Let ψ be a DNF formula, ψ = D1∨. . .∨Dk, and let ϕ be an arbitrary formula.
Then the formula ψ ⇒ ϕ is a tautology if and only if for all i, 1 ≤ i ≤ k,
Di ⇒ ϕ is a tautology.

Proof: It is easy to check that the following formula,

((D1 ∨ . . . ∨Dk)⇒ ϕ) ≡
k
∧

j=1

(Dj ⇒ ϕ),

is a tautology.

So now, D1 ∨ . . . ∨ Dk ⇒ ϕ is a tautology if and only if
∧k
j=1(Dj ⇒ ϕ) is a

tautology. But it is easy to see that a conjunction of formulas is a tautology if and

only if all the conjuncts are tautologies. 2

Next, let us assume that a formula ψ ⇒ ϕ is a tautology. Then let us consider

the canonical disjunctive normal form D1 ∨ . . . ∨ Dk of ψ. Without the loss of

generality we can assume that ψ is D1 ∨ . . . ∨ Dk. We can also assume that no

term Di, 1 ≤ i ≤ k is false. That is, Di, 1 ≤ i ≤ k does not contain a pair of

contradictory literals. Given a term (elementary conjunction)D = l1 ∧ . . .∧ lm, and
a set of variablesX ⊆ Var , defineD |X as

∧

{l : l occurs inD and l ∈ LX}.

Thus D |X eliminates from D all literals with underlying variables not in X. Let
L be a non-contradictory set of literals, that is, one that does not contain a pair of

complementary literals. We define vL as the valuation making all literals in L true

and defined on those variables that actually appear in L (that is the representation of

L as a partial valuation). We now have the following lemma.

LEMMA 4.2
Let D be a non-contradictory conjunction of literals, and ϕ an arbitrary for-
mula. Then the implication D ⇒ ϕ is a tautology if and only if the implication
D |Var(ϕ)⇒ ϕ is a tautology.

Proof: First, assume D |Var(ϕ)⇒ ϕ is a tautology. Then it is easy to see that the

formulaD ⇒ ϕ is a tautology. The reason is thatD has more literals thanD |Var(ϕ)

and so the formulaD ⇒ D |Var(ϕ) is a tautology. Then, using transitivity of⇒ we

get the validity of our implicationD ⇒ ϕ.
Conversely, let us assume that D ⇒ ϕ is a tautology, but D |Var(ϕ)⇒ ϕ is not

a tautology. Then there must exist a valuation v such that v(D |V ar(ϕ)) = 1 but

v(ϕ) = 0. Now, all variables occurring in D |Var(ϕ)⇒ ϕ occur in ϕ. Since D ⇒ ϕ
is a tautology, it must be the case that D 6= D |Var(ϕ). Define now the following set

of literals: L = {l : l occurs inD and l /∈ L |Var(ϕ)}. Then L is non-contradictory,

and vL is well-defined. Recall that vL assigns 1 to all literals in L. We now define a

© 2009 by Taylor and Francis Group, LLC

The Craig lemma 65

new valuation w, defined on all variables occurring inD or in ϕ, as follows:

w(p) =

{

v(p) if p ∈ Var(ϕ)

vL(p) if p appears inL.

Now, let us observe that for p ∈ Var(ϕ), w(p) = v(p), thus w(ϕ) = 0. Next, let us
look atD.Without a loss of generality

D = l1 ∧ . . . ∧ lk ∧ lk+1 ∧ . . . ∧ lm

where l1, . . . , lk ∈ L |Var(ϕ), and {lk+1, . . . , ln} = L. Thus for all j, 1 ≤ j ≤
m,w(lj) = 1. The reason for this is that v(D |Var (ϕ)) = 1, and so v(lj) = 1
for 1 ≤ j ≤ k, thus w(lj) = 1. For k + 1 ≤ j ≤ m, vL(lj) = 1 and so, again,

w(lj) = 1.
Thus w(D) = 1. But w(ϕ) = 0, so v(ϕ) = 0 as w and v coincide on Varϕ. This is
a desired contradiction. 2

The argument given above entails the following fact of independent interest.

COROLLARY 4.1
If D is a term that is not false, and ϕ is a formula such that ϕ is not a

tautology, and if D ⇒ ϕ is a tautology, then D and ϕ must share at least one
variable.

COROLLARY 4.2
Let ψ = D1 ∨ . . . ∨Dk be a DNF formula, and let us assume that ψ ⇒ ϕ is

a tautology, and that none of Di, 1 ≤ i ≤ k, is false. Then the formula

D1 |Var(ϕ) ∨ . . . ∨Dk |Var(ϕ)⇒ ϕ

is a tautology.

Proof: By Lemma 4.1 the formulas Dj ⇒ ϕ, 1 ≤ j ≤ m, are all tautologies. Thus

for each j, 1 ≤ j ≤ m, the formulaDj |Var(ϕ)⇒ ϕ is a tautology. Applying Lemma

4.1 again we find that the formulaD1 |Var(ϕ) ∨ . . .∨Dk |Var(ϕ)⇒ ϕ is a tautology.

2

We now have the following fact.

LEMMA 4.3
For every formula ϕ, the formula

D1 ∨ . . . ∨Dk ⇒ D1 |Var(ϕ) ∨ . . . ∨Dk |Var(ϕ)

is a tautology.

Proof: Clearly for each j, 1 ≤ j ≤ k, Dj ⇒ Dj |Var(ϕ) is a tautology. Thus

D1 ∨ . . . ∨Dk ⇒ D1 |Var(ϕ) ∨ . . . ∨Dk |Var(ϕ) is a tautology. 2

© 2009 by Taylor and Francis Group, LLC

66 Introduction to Mathematics of Satisfiability

But now, if we combine Corollary 4.2 and Lemma 4.3 we get the desired interpola-

tion result.

PROPOSITION 4.1 (Craig lemma)
If ψ ⇒ ϕ is a tautology, then there exists a formula ϑ such that Var(ϑ) ⊆

Var(ψ) ∩ Var(ϕ) and such that both ψ ⇒ ϑ and ϑ⇒ ϕ are tautologies.

Proof: Let D1 ∨ . . . ∨ Dk be a disjunctive normal form for ψ. We can assume that

the variables ofD1 ∨ . . . ∨Dk all occur in ψ. By Lemma 4.3 the formula

D1 ∨ . . . ∨Dk ⇒ D1 |Var(ϕ) ∨ . . . ∨Dk |Var(ϕ)

is a tautology. By Corollary 4.2 the formula

D1 |Var(ϕ) ∨ . . . ∨Dk |Var(ϕ)⇒ ϕ

is a tautology. By the construction all the variables ofD1 |Var(ϕ) ∨ . . .∨Dk |Var(ϕ)

occur both in ψ and in ϕ. Thus ϑ : D1 |Var(ϕ) ∨ . . . ∨ Dk |Var(ϕ) is a desired

interpolation formula. 2

4.2 Strong Craig lemma

Clearly, the Craig interpolation lemma (Proposition 4.1) can be, at least sometimes,

improved. To see this, let us look at the following example.

Example 4.1
Assume that the formulaψ in disjunctive normal form has as one of its conjuncts the

elementary conjunction¬p∧q∧s, whereas the formulaϕ is p∨q. Then the procedure
outlined above in Lemma 4.2 will compute the interpolant ¬p∧ q, whereas it is easy
to see that the formula ϑ : q is an interpolant. In other words, at least sometimes,

the procedure outlined in Lemma 4.2 is too weak; a stronger interpolant should be

computed.

The problem encountered in Example 4.1 was that we did not take into account

the polarity of variables. We will now show a stronger version of the Craig lemma

(Proposition 4.1). First we will prove a lemma.

LEMMA 4.4
Let us assume ϕ is a formula in which a variable p occurs positively but not

negatively. Then there exist two formulas ψ1 and ψ2 without occurrences of p
at all, such that

ϕ ≡ ((p ∧ ψ1) ∨ ψ2)

© 2009 by Taylor and Francis Group, LLC

The Craig lemma 67

is a tautology.

Proof: Without the loss of generality we can assume that ϕ is in negation normal

form (because the transformation to canonical negation normal form does not alter

polarity of occurrences of variables). Now proceed by induction the complexity of

formula ϕ. The base case is when ϕ is p. Then ψ1 = ⊤, whereas ψ2 = ⊥.
Since the formula ϕ is in negation normal form, in the inductive step we need to

consider only two cases: first, when the main connective of ϕ is ∧, and second,

when the main connective of ϕ is ∨.
Case 1. The main connective of ϕ is ∧. Then ϕ : ϕ1 ∧ ϕ2. By the definition,

the variable p must occur positively in at least one of the formulas ψ1 and ψ2 but it

cannot occur negatively in either of them.

Subcase 1.1. The variable p occurs positively in both ϕ1 and ϕ2. Then there are four

formulas ψ1,1, ψ1,2, ψ2,1, and ψ2,2 such that ϕ1 ≡ (p ∧ ψ1,1) ∨ ψ1,2 is a tautology,

and ϕ2 ≡ (p ∧ ψ2,1) ∨ ψ2,2 is a tautology. But then it is easy to see that the formula

ψ1 ∨ ψ2 ≡ (p ∧ ((ψ1,1 ∧ ψ2,2) ∨ (ψ1,1 ∧ ψ2,1) ∨ (ψ1,1 ∧ ψ2,1))) ∨ (ψ1,2 ∧ ψ2,2)

is a tautology. Thus we can take

ψ1 : (ψ1,1 ∧ ψ2,2) ∨ (ψ1,1 ∧ ψ2,1) ∨ (ψ1,1 ∧ ψ2,1)

and ψ2 : ψ1,2 ∧ ψ2,2.

Subcase 1.2. The variable p does not occur in one of the formulas ϕ1 or ϕ2. In such

case we can assume without the loss of generality that p does not occur in ϕ2. By

inductive assumption we have formulasψ1 and ψ2, none of those with an occurrence

of p such that ϕ1 ≡ (p ∧ ψ1,1) ∨ ψ1,2. But then, since ϕ2 has no occurrence of p at
all, it is easy to see that

ϕ1 ∧ ϕ2 ≡ (p ∧ (ψ1,1 ∧ ϕ2)) ∨ (ψ1,2 ∧ ϕ2),

so we can take ψ1 : ψ1,1 ∧ ϕ2 and ψ2 : ψ1,2 ∧ ϕ2.

Case 2. The main connective of ϕ is ∨. Again two cases need to be considered (in

analogy with the Case 1), but the argument is even simpler this time and we leave it

to the reader. 2

We now state without a proof a lemma similar to Lemma 4.4, and proved in a similar

fashion.

LEMMA 4.5
Assume ϕ is a formula in which a variable p occurs negatively but not posi-

tively. Then there exist two formulas ψ1 and ψ2 without occurrences of p at
all, such that:

ϕ ≡ ((¬p ∧ ψ1) ∨ ψ2)

is a tautology.

© 2009 by Taylor and Francis Group, LLC

68 Introduction to Mathematics of Satisfiability

We now prove a lemma allowing for elimination from the interpolant the literals

with opposite polarities in the antecedent and the consequent of the implication. The

specific case we prove is in the special situation when the antecedent is a conjunction

of literals. Recall that we are dealing with NNF formulas. For that reason we will

now say that ¬p has an occurrence in a formula χ if the tree for ¬p is a subtree of

the tree for χ.

LEMMA 4.6
Let l1 ∧ . . . ∧ lk ⇒ ϕ be a tautology, with {l1, . . . , lk} non-contradictory set

of literals, and assume that the literal l1 does not occur in ϕ at all. Then the
formula l2 ∧ . . . ∧ lk ⇒ ϕ is a tautology.

Proof: Without the loss of generality we can assume that l = p for some variable p.
Our assumption means that either p does not occur in ϕ at all, or if it does, it occurs

in ϕ only negatively, that is, as a part of the literal ¬p.
Case 1. The variable p does not occur in ϕ at all. Define D : l1 ∧ . . . ∧ lk. Then by
Lemma 4.2 the conjunction D |Var(ϕ) of those literals in the antecedent for which

the underlying variable has an occurrence in ϕ is an interpolant. But this conjunction

does not include p. Thus we have two tautologies: l2 ∧ . . . ∧ lk ⇒ D |Var(ϕ) and

D |Var(ϕ)⇒ ϕ. But then l2 ∧ . . . ∧ lk ⇒ ϕ is a tautology, as desired.

Case 2. The variable p occurs in ϕ negatively. That is, ¬p occurs in ϕ (but p does not
occur in ϕ). By Lemma 4.5, there are two formulas, none involving any occurrence

of p, ψ1, and ψ2 such that

ϕ ≡ ((¬p ∧ ψ1) ∨ ψ2

is a tautology. But then the implication

p ∧ l2 ∧ . . . ∧ lk ⇒ ((¬p ∧ ψ1) ∨ ψ2)

is a tautology. We claim that the implication

p ∧ l2 ∧ . . . ∧ lk ⇒ ψ2

is a tautology. Indeed, let v be any valuation. If v(D) = 0 then v evaluates our

implication as 1. If v(D) = 1, then it must be the case that v(p) = 1. But then

v(¬p) = 0, and v((¬p∧ψ1)) = 0. But v(D ⇒ ϕ) = 1. Since v(D) = 1, v(ϕ) = 1.
Thus it is the case that v((¬p ∧ ψ1) ∨ ψ2) = 1. But then v(ψ2) is 1, as desired.
So now we have established that the formulaD ⇒ ψ2 is a tautology. But ψ2 does not

involve p at all. We now apply Lemma 4.2 to the implicationD ⇒ ψ2. Then we get

an interpolant D′ for the implication D ⇒ ψ2, involving only variables occurring

in ψ2, in particular one that does not involve p at all. But the formula ψ2 ⇒ ϕ
is a tautology. Therefore D′ is an interpolant for D ⇒ ϕ. Indeed, the formulas

D′ ⇒ ψ2, and ψ2 ⇒ ϕ are all tautologies. Thus D′ ⇒ ϕ is a tautology. Since

l2 ∧ . . . ∧ lk ⇒ D′, the assertion follows. 2

In order to get a stronger form of the Craig lemma, we need a stronger form of

Lemma 4.2. Here it is.

© 2009 by Taylor and Francis Group, LLC

The Craig lemma 69

LEMMA 4.7
Let D be a non-contradictory elementary conjunction, and assume that D ⇒
ϕ is a tautology. Let D′ be the conjunction of those literals in D which have
occurrences in ϕ. Then D′ ⇒ ϕ is a tautology.

Proof: By repeated application of Lemma 4.6, those literals in D for which the

underlying variable does not occur in ϕ or it does, but only with the opposite polarity,

will be eliminated. The resultingD′ is an interpolant. 2

Let us observe that the difference between Lemma 4.7 and Lemma 4.2 is that now

we look at occurrences of literals, not only variables, that is, we take the polarity into

account.

Thus the interpolant computed in Lemma 4.7 has the property that whenever a vari-

able p occurs in the interpolant D′, it must occur in both D and in ϕ with the same

polarity (otherwise it is eliminated). We call such interpolant a strong interpolant.

Now let us apply Lemma 4.3. We then get the following.

COROLLARY 4.3
Let ψ and φ be two formulas such that ψ ⇒ ϕ is a tautology. Then there

exists a formula ϑ such that

1. Both ψ ⇒ ϑ and ϑ⇒ ϕ are tautologies

2. Whenever a variable p occurs in ϑ then p must occur with the same po-
larities in ψ, ϑ, and ϕ.

4.3 Tying up loose ends

The procedure we established for the computation of an interpolant (Lemma 4.7) can

be easily used for the situation when ϕ is given in conjunctive-normal form, that is,

as a conjunction of clauses. The reason for this is simple; the formula ψ ⇒ ϕ is a

tautology if and only if the formula ¬ϕ ⇒ ¬ψ is a tautology. Now, assume ϕ is in

conjunctive normal form. Then with the work linear in the size of formulas ϕ and ψ
we can convert the implication¬ϕ⇒ ¬ψ into an implication ψ′ ⇒ ϕ′ where ψ′ is in

disjunctive normal form, ϕ′ is in negation normal form. The reason for this amount

of work is that the conversion of negation of a CNF to a DNF requires the following

simple actions: First conversion of every literal l to its dual l̄, and then simultaneous

substitution of every ∧ for ∨ and ∨ for ∧. That is, it is inexpensive to compute a

DNF of ¬ϕ, provided that ϕ is in CNF. Likewise, given a formula ϕ in DNF, a CNF

for ¬ϕ can be computed in linear time.

Next, we compute the interpolant for ψ′ ⇒ ϕ′, say χ. The formula χ will be a DNF.

Then we can easily convert ¬χ to a CNF ϑ which is an interpolant for ψ ⇒ ϕ.

© 2009 by Taylor and Francis Group, LLC

70 Introduction to Mathematics of Satisfiability

But, of course, those two transformations (first ¬ϕ 7→ ψ′ and then ¬χ 7→ ϑ) are
entirely superfluous. A momentary reflection shows that both transformations can

be combined into a single procedure that does not require computation of DNF of

¬ϕ at all. Namely, it should be clear that the composition of the two procedures

outlined above results in shortening of clauses constituting ϕ (in a way similar to

shortening elementary conjunctions constituting ψ), provided ψ is a DNF. In each of

these clauses we eliminate those literals which do not occur in the antecedent with

the same polarity or their underlying variables do not occur in ψ at all.

We could, of course, prove analogues of all the lemmas we proved for DNFs, for the

CNF ϕ (instead of DNF ψ). The starting point would be the tautology

(ψ ⇒
∧

1≤j≤k

ϕi) ≡
∧

1≤j≤k

(ψ ⇒ ϕi)

instead of the one used in Lemma 4.1. Then we could prove lemmas that, instead of

pruning conjunctions in the antecedent, would prune disjunctions in the consequent.

The second “loose end” involves the interpolant. If we look at the procedure outlined

in Lemma 4.7, then it is clear that regardless of the fact whetherψ ⇒ ϕ is a tautology

or not, the implication ψ ⇒ ϑ is a tautology. If the formula ψ ⇒ ϕ is a tautology

then, as we see in Lemma 4.7, the formula ϑ ⇒ ϕ is a tautology. Conversely, if

the formula ϑ ⇒ ϕ is a tautology, then since ψ ⇒ ϑ is a tautology, ψ ⇒ ϕ is a

tautology. Thus we have proved another useful form of the Craig lemma.

THEOREM 4.1

If ψ and ϕ are two formulas, then there is a formula ϑ such that ϑ involves
only variables occurring in both ψ and in ϕ such that the following are equiv-
alent:

1. ψ ⇒ ϕ is a tautology

2. ϑ⇒ ϕ is a tautology

Moreover, we can assume that any variable occurring in ϑ must occur in both
ψ and ϕ with the same polarities as it occurs in ϑ.

There are other questions that can be investigated. For instance, if the formula ψ is

given in the ITE format (i.e., defined using only the ite operation, and with a fixed

order of variables), can we compute a similar form of the interpolant in polynomial

time? This is certainly possible if the formula ψ is an elementary conjunction.

What happens if the formula ψ ⇒ ϕ is a tautology, but ψ and ϕ have no variables in

common? The interpolant takes a particularly simple form: it has to be either ⊥ or

⊤. If the interpolant is ⊥, then, because ψ ⇒ ⊥ is a tautology, it must be the case

that the negation of ψ is a tautology (the only case possible). If the interpolant is ⊤,
then ϕmust be a tautology (again the only case possible). Thus we get the following

corollary.

© 2009 by Taylor and Francis Group, LLC

The Craig lemma 71

COROLLARY 4.4
If ψ ⇒ ϕ is a tautology, but formulas ψ and ϕ do not share variables, then

either ¬ψ is a tautology, or ϕ is a tautology.

For the enthusiasts of Boolean algebras, and Lindenbaum algebras in particular, we

will now provide an interpretation of the Craig lemma in topological terms. Let ψ
and ϕ be two formulas and let V = Varψ ∩ Varϕ and let W = Varψ ∪ Varϕ.
Then V ⊆ W . The corresponding propositional languages are related: LV ⊆ LW .

Each of these languages has its own Lindenbaum algebra AV and AW , resp. Given

ϑ ∈ LV it has two equivalence classes: one, [ϑ]1, in AV and another [ϑ]2, in AW .

So it is natural to define

e([ϑ]1) = [ϑ]2

and see what happens. Clearly the function e is a monomorphism. This follows from

the fact that satisfaction is preserved if the set of variables grows. Next, keeping V
and W fixed, we can assign to every element of the algebra A2 its closure in A1,

namely,

ā =
∧

{b : b ∈ A1 and a ≤ b}.

Likewise we can define an interior of an element a:

a =
∨

{b : b ∈ A1 and b ≤ a}.

The operations of closure and interior are always monotone and idempotent. Here

is one corollary to the Craig lemma. Whenever [ψ ⇒ ϕ] is the unit of Lindenbaum
algebra AW , then [ψ] ≤ [ϕ]. Let us keep in mind that the closure operation here

depends on ψ and ϕ. Likewise [ψ] ≤ [ϕ]. The interpolant that was computed in our

proof of the Craig lemma was the interior of [ϕ] with respect to the algebra generated
by common variables of ψ and ϕ.
Even more appealing (this time to enthusiasts of real analysis) is the separation form

of the Craig lemma. Namely, if a, b ∈ AW and a ∧ b = ⊥ then for some c ∈ AV ,
a ≤ c and c ∧ b = ⊥.

4.4 Exercises

1. Check that the formula

(p ∨ ¬q) ∧ r ⇒ (p ∧ ¬s) ∨ (¬q ∨ s)

is a tautology. Using the technique discussed above, find an interpolant.

2. If ϑ1 and ϑ2 are two interpolants for ψ ⇒ ψ, then so is ϑ1 ∨ ϑ2.

3. If ϑ1 and ϑ2 are two interpolants for ψ ⇒ ψ, then so is ϑ1 ∧ ϑ2.

© 2009 by Taylor and Francis Group, LLC

72 Introduction to Mathematics of Satisfiability

4. Conclude that there is a strongest and a weakest interpolant for ψ ⇒ ϕ (assum-

ing the lattter formula is a tautology).

5. Look at the (trivial) example of p ∧ q ⇒ p ∨ q. Even though the strongest

and weakest interpolants do not bring anything new, there are non-trivial inter-

polants.

© 2009 by Taylor and Francis Group, LLC

Chapter 5

Complete sets of functors

5.1 Beyond De Morgan functors . 74
5.2 Tables . 75
5.3 Field structure in Bool . 78
5.4 Incomplete sets of functors, Post classes . 83
5.5 Post criterion for completeness . 85
5.6 If-then-else functor . 88
5.7 Exercises . 90

In this chapter we study the following question: Was the choice of functors of logic

(¬,∧,∨,⇒, and ≡) arbitrary, or was it somehow forced on us? Could we select

other functors? If so, how? In fact, what is a functor?

It turns out that our choice of functors is pretty arbitrary since they were introduced

in the historical development of logic rather that by some sort of devise. Later on, it

will turn out that specific algorithms are tailored to specific representations. But we

do not know what representations may be optimal for future algorithms, and so we

need to have some sort of general techniques for representation. A word of caution:

the issues of representation of formulas in various sets of functors have been studied

extensively, especially by electrical engineers. There was an entire industry making

a living out of research in this area. This included large research groups in the former

Soviet Union. It is fair to say that we will only scratch the surface here.

We will call the functors in the set {¬,∧,∨,⇒,≡} De Morgan functors.

There is a danger of overformalizing the entire subject. We will try to be as formal as

possible, but without huge inductive definitions, and complex proofs by induction.

For a moment, let us assume that we are given a set C = {c1, . . . , ck}. The elements

of C are called functors. We will assume that we have associated with each cj ∈ C its
arity ij (so we know how many arguments cj has) and also that we have associated

with each symbol cj (of arity ij) a function fj : Bool ij → Bool . If we really

wanted to be formal, then we would define a functor as a pair 〈cj , fj〉. We hope that

such level of formalization is not needed. We do not really do anything special –

we just follow the scheme we pursued when we defined the semantics of formulas

built of ¬,∧,∨,⇒, and ≡. Again, the formulas are ordered labeled trees, except

that now we require ij children of a node labeled with cj . These trees have various
textual representations (infix, prefix, etc.) We will soon deal with a prefix, not infix

representation in an example.

73

© 2009 by Taylor and Francis Group, LLC

74 Introduction to Mathematics of Satisfiability

5.1 Beyond De Morgan functors

Let us fix some set C of functors. As we look at textual (i.e., string) representa-

tions, we have the set FormC
Var of formulas based on C. Of course we will drop the

subscript Var to save on the effort.

Once we define the set FormC , we can define semantics. The semantics once more

will be given by valuations of propositional variables occurring in the formula. The

functors cj will now be interpreted by the Boolean functions fj whose availability
we required above.

To put this in the suitable perspective (but not to do too much) let us consider an

example.

Example 5.1
We will have C consisting of just one binary functor that we will call NAND. This

functor, intuitively, assigns to the pair (x, y) the value of the formula ¬(x ∧ y). But
this is intuition; formally we just have a symbol NAND, which is interpreted by the

Boolean function NAND (we even use the same symbol for both the linguistic entity

and for Boolean function). The truth table for NAND is presented in Table 5.1.

TABLE 5.1: Truth table for NAND

x y NAND(x, y)
0 0 1
0 1 1
1 0 1
1 1 0

Here is an example of a formula ϕ (now in prefix notation). This formula is built

using only NAND .

NAND(NAND(x, x),NAND(x, y)).

Let us evaluate ϕ at the valuation v such that v(x) = 0 and v(y) = 1. The result of
the evaluation is 0, i.e., v(ϕ) = 0. In other words, the valuation v does not satisfy

the formula ϕ.

Our example 5.1 should convince the reader that we are not doing anything exotic,

just lifting the techniques of logic based on De Morgan functors to the more general

case.

Now, once we have assigned semantics to the formulas built out of other sets of

functors (remember such semantics requires interpretation of functors as Boolean

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 75

functions), we can define the notions such as satisfiability, tautology, etc. Specifi-

cally, a tautology as before is an expression that is evaluated by every valuation as 1.
As before, the constants ⊥ and ⊤ are evaluated as 0 and 1, respectively, regardless
of the valuation. We just note in passing that, as usual, the satisfaction depends only

on the values assigned to variables actually occurring in a formula, and other nice

things that applied earlier to formulas apply in the present context as well.

5.2 Tables, complete sets of functors

We now formalize the notion of a table. A table T is just the listing of a function

f from Booln → Bool . But Booln (under reasonable assumptions, such as fixing

the order of propositional variables x1, . . . , xn) is nothing more than the set of all

valuations of propositional variables {x1, . . . , xn}. Therefore a table (in n variables)

has n + 1 columns, 2n rows. Each row has n + 1 entries, and its first n entries

is a valuation. Different rows have different prefixes of the first n entries, that is,

represent different valuations of variables. The last entry in the row is the value

assigned by f to the first n entries.

A table of a formula ϕ ∈ FormC is the table that assigns the value v(ϕ) to the

valuation v. We denote this table by Tϕ.

So now it is quite clear how we are going to formalize the notion of a complete set

of functors. Namely, a set C of functors is complete if for every table T , there is a
ϕ ∈ FormC such that T = Tϕ. We then say that the formula ϕ represents the table

T . Let us observe that a given table may be represented by more than one formula.

Completeness of C means that every table is represented by some formula ϕ that

includes only functors from C.

Let us come back to the example and see what table is associated with the formula

NAND(NAND(x, x),NAND(x, y)). There are two propositional variables, so the

table will have four rows. We show the table for this formula in Table 5.2.

TABLE 5.2: The table for the formula
NAND(NAND(x, x),NAND(x, y))

x y NAND(NAND(x, x),NAND(x, y))
0 0 0
0 1 0
1 0 1
1 1 1

We hope the reader does not trust us, and checks the correctness of this table herself.

© 2009 by Taylor and Francis Group, LLC

76 Introduction to Mathematics of Satisfiability

Now, it is not clear that our original set of functors {¬,∧,∨,⇒,≡} (what we called
De Morgan functors) is complete. It is, indeed, the case, but not surprisingly, it

requires a proof. First, we have the following truly obvious fact.

PROPOSITION 5.1

If C, C1 are two sets of functors, C is complete, and C ⊆ C1 then C1 is also
complete.

So now we shall prove that {¬,∧,∨} is a complete set of functors and will conclude

that {¬,∧,∨,⇒,≡} is a complete set of functors.

PROPOSITION 5.2

The set {¬,∧,∨} is a complete set of functors. Thus the set of De Morgan
functors is complete.

Proof: We proceed by induction on the number of propositional variables in a for-

mula. If that number is 0, then the formula takes constant value; it is 0, or 1. Then let
us select a variable, say x, and observe that the formula x∧¬x always takes the value

0, while x ∨ ¬x takes always the value 1. Thus we have a representation for tables

with the constant last column. Next, let us see how a table with n+1 variables looks.

It is, in fact, computed out of two tables T0 and T1 each of n propositional variables.

To form a table out of these two tables, we prepend the arguments of the first table

T0 with 0, prepend the arguments of the second one (T1) with 1, and take the union.

It should be clear that every table of n + 1 arguments can be formed in this way.

By inductive assumption, T0 = Tψ(x2,...,xn+1) and T1 = Tϑ(x2,...,xn+1), for some

formulas ψ and ϑ from Form{¬,∧,∨}. Now define this formula ϕ(x1, . . . , xn+1):

(¬x1 ∧ ψ(x2, . . . , xn+1)) ∨ (x1 ∧ ϑ(x2, . . . , xn+1)).

The formula ϕ has only functors ¬,∧,∨ since the same was true about ψ and ϑ. We

leave to the reader to check that T = Tϕ. 2

It turns out that we can find an even smaller set of functors that is complete. But we

first need another fact.

PROPOSITION 5.3

Let C1 and C2 be two sets of functors. Let us assume that C2 is a complete set
of functors, and that for every functor c ∈ C2 there is a formula ϕ ∈ FormC1

such that the table Tc is identical with the table Tϕ. Then C1 is also a complete
set of functors.

Proposition 5.3 really says that if all functors from C2 are definable in terms of func-

tors of C1, and C2 is complete, then so is C1. We leave the proof, which is a version

of the substitution lemma (except that it is more tedious), to the reader.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 77

COROLLARY 5.1
Let C1 and C2 be two sets of functors. Let us assume that C2 is a complete set
of functors, and that for every functor c ∈ C2 there is a formula ϕ ∈ FormC1

such that the formula c(x1, . . . , xn) ≡ ϕ(x1, . . . , xn) is a tautology. Then C1
is a complete set of functors.

We use Corollary 5.1 to show that {¬,∧} is a complete set of functors. Indeed, all

we need to do is to show that the functor ∨ is definable in terms of ¬ and ∧. That is,
we need to find a formula ϕ that involves ¬ and ∧ only, so that

(x ∨ y) ≡ ϕ

is a tautology. One such formula ϕ is ¬(¬x∧¬y). We leave to the reader the simple

task of checking that, indeed, the tables for x∨ y and for ¬(¬x∧¬y) have the same

last column. 2

In this, and analogous ways, we find the following facts.

PROPOSITION 5.4

(a) {¬,∧} is a complete set of functors.

(b) {¬,∨} is a complete set of functors.

(c) {⇒,⊥} is a complete set of functors.

(d) {∧,+,⊤} is a complete set of functors.1

The proof of (a) was outlined above, and the proof of (b) is quite similar.

Proof of (c). The following are tautologies (we expect the reader to check them):

First, the formula (¬x) ≡ (x⇒ ⊥) is a tautology. Second, (x ∨ y) ≡ ((x⇒ ⊥)⇒
y) is a tautology. Now Corollary 5.1 and (b) entail completeness of the set {⇒,⊥}.
Proof of (d). Again we use Corollary 5.1. We have the following tautologies: ¬x ≡
(x + ⊤), and (x ∨ y) ≡ ((x ∧ y) + x + y). This last one requires checking, which
we leave to the reader. 2

The careful inspection of the proof of Proposition 5.4 indicates that we really are

dealing with two different concepts of completeness (a weaker one, where constants

are assumed to be made available, and a stronger one, where this assumption is not

made). Let us observe that {¬,∧} is complete in the strong sense, while {⇒}, as
shown in (c), is complete in the weaker sense because {⇒,⊥} is complete.

There are two binary functors that by themselves are complete (in the stronger

sense.) One is the functor NAND discussed above. Indeed, let us look at the fol-

lowing tautologies: (x ∨ y) ≡ NAND(NAND(x, x),NAND(y, y)), and (¬x) ≡
NAND(x, x). These tautologies show that NAND alone defines both ¬ and ∨, and
so it is complete.

1The reader will recall that for reasons not clear at the time, we defined the functor + in Chapter 2.

© 2009 by Taylor and Francis Group, LLC

78 Introduction to Mathematics of Satisfiability

The other binary functor that is complete by itself is a functor called NOR with the

table shown in Table 5.3. We leave to the reader the task of finding the appropriate

witnessing tautologies.

TABLE 5.3: Truth table for NOR

x y NOR(x, y)
0 0 1
0 1 0
1 0 0
1 1 0

It is easy to find all sets of binary functors that are complete. We need to be a

bit careful, because the negation functor (which is unary) appears as two, formally

different, binary functors (one that assigns to (x, y) the value ¬x, and the other that

assigns ¬y). As we observed above, a superset of a complete set of functors is again

complete. So if we want to learn all complete sets of functors then we need to list

only inclusion-minimal complete sets. It so happens that there are 36 of suchminimal

sets, and none of these has more than 3 functors. We will return to the problem of

minimal complete sets of functors in Section 5.7 Exercises.

5.3 Field structure in Bool, Boolean polynomials

This section treats the set Bool as a field, a kind of structure considered in algebra,

and looks at some consequences. We will use slightly different notation here. The

reason is that we touch on the subject traditionally treated by algebraists, and we

will abide by their conventions here. Therefore we will write the relational structure

〈Bool ,+,∧,⊥,⊤〉 as 〈Bool ,+, ·, 0, 1〉. The multiplication operation · will be the

conjunction∧. In algebra the multiplication symbol · is often omitted in the product.

We will try not to omit it, though.

The idea is that once we check that the structure 〈Bool ,+, ·, 0, 1〉 is a field, we will
be able to use algebra in our arguments.

For the sake of completeness let us recall that a structure 〈F,+, ·, 0, 1〉 is a field if +
defines a commutative group structure in F (with 0 as the neutral element), · defines
a commutative group structure in F \ {0} with the neutral element 1, distributivity
of multiplication w.r.t. addition holds, and 0 · x = 0 for all x. If the reader is not

familiar with the concept of a group, s/he should consult any basic text on abstract

algebra.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 79

PROPOSITION 5.5

The structure 〈Bool ,+, ·, 0, 1〉 is a field.

Proof: Only the distributivity is not completely trivial. That is, we need to check

that for all x, y, and z, x · (y + z) = (x · y + x · z). This can be done by looking

at the table involving both the left- and right-hand sides. We list both truth tables

in a single Table 5.4. We see that the penultimate and last columns in that table are

identical.

TABLE 5.4: Distributivity in Bool

x y z y + z x · z x · z x · (y + z) (x · z) + (y · z)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 0

The field 〈Bool ,+, ·, 0, 1〉 is usually denoted by Z2 as it is the field of remainders of

integers modulo 2. The characteristic of the field Z2 is 2, i.e., for all x, x + x = 0.
Moreover, for all x in Z2, x · x = x.

We will now show a uniqueness of representation of Boolean formulas over Z2 as

polynomials. This is done under the additional assumptions (but this is common

in algebraic considerations), namely we will assume that variables are ordered (for

instance in the order x1 � x2 � . . . � xn). The reduction rules (x ·x = x, x ·1 = x)
imply that we can assume that monomials (products of variables) have all variables

with exponent 1, and that the constants do not occur in polynomials except as a

constant term. Moreover, since x+ 0 = x, x · 0 = 0, the only case 0 will be listed in

a polynomial is when that polynomial is 0. To make our assumptions explicit: we will

assume that monomials are reduced monomials, that is, the exponents of variables

are 1, that there is no repetition of variables in a monomial, and that the variables

occur in their order �. To give an example, x1 · x2 · x4 is a monomial according to

the rules above, but x1 · x3 · x1 · x4 is not a monomial, for we could move second x1

to the front, and then reduce the exponent.

Next we order monomials. A monomialm is a constant, and then its rank is 0, or it
is of the form

xi1 · . . . · xik ,

with k ≥ 1, and then the rank of monomialm is k.

Here is how we order monomials:

© 2009 by Taylor and Francis Group, LLC

80 Introduction to Mathematics of Satisfiability

1. m1 � m2 if the rank ofm1 is bigger than the rank ofm2.

2. Whenm1 = xi1 ·. . .·xik andm2 = xj1 ·. . .·xjk have same rank thenm1 � m2

if the sequence 〈i1. . . . ik〉 precedes the sequence 〈j1. . . . ik〉 lexicographically.

The following statement is a consequence of the fact that lexicographical ordering of

strings over a finite ordered alphabet is a linear ordering.

PROPOSITION 5.6
The relation � is a linear order of monomials.

When we have a polynomial p(x1, . . . , xn), we will list its monomials in their order-

ing �. This is a linguistic issue, not a semantic issue: we are after specific syntactic

representation of formulas.

So now, when we write a polynomial it is a list of monomials (no repetitions of

monomials), ordered according to their ordering �. Our goal is to show that this

specific representation of a formula is unique. Thus we are able to assign to any for-

mula ϕ(x1, . . . , xn) its unique representation as a polynomial (with the convention

on listing of monomials). We will call polynomials written using this convention

(reduced monomials, listed in the order �) standard polynomials (also known as

Zhegalkin polynomials). Now, observe that a standard polynomial is a formula

(over the set of functors {+,∧, 0, 1}). There is only one standard polynomial hav-

ing the occurrence of 0: it is the constant 0 itself. In Proposition 5.4(d) we proved

that the set of functors {+, ·, 1} is complete. The following fact follows from this

observation.

PROPOSITION 5.7
For every formula ϕ there is a polynomial f such that ϕ ≡ f is a tautology.

Proof: In our proof of Proposition 5.2 we represented a formula ϕ(x1, . . . , xn+1) as

(¬x1 ∧ ψ(x2, . . . , xn+1)) ∨ (x1 ∧ ϑ(x2, . . . , xn+1)).

Assuming that we have polynomials f1, f2 that represent ψ, ϑ, respectively, we get
a representation of ϕ as

((1 + x1) · f1) ∨ (x1 · f2).

Then we use the representation of disjunction x1 ∨ x2 as x1 · x2 + x1 + x2. Now we

have an expression equivalent to ϕ which involves only +, ·, and constants. We now

transform it (using familiar algebraic rules) to a polynomial. 2

So we know that every formula is equivalent to a polynomial. We will now show

that when we bring that polynomial into the standard form, the resulting polynomial,

which is a standard polynomial, is unique.

To this end, we will need a bit of terminology. A tail of standard polynomial f is any

postfix of its listing. For instance x1 + x2 is a tail of a polynomial x1 ·x2 + x1 +x2.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 81

When we have two standard polynomials f1 and f2 they have a longest common tail.

For instance, the polynomials x1 ·x2+x1+x2 and x1 ·x2 +x2 have longest common

tail x2.

Our goal now is to find, for any pair of different standard polynomials f1 and f2, a
specific assignment (a1, . . . , an) so

f1(a1, . . . , an) 6= f2(a1, . . . , an).

Here is what we do. Given standard polynomials f1 and f2 such that f1 6= f2, it is
possible that both are constants. As they are different, one of them is 0, the other 1,
and they are different at any point.

If at least one of f1 and f2 is not constant, their longest common tail cannot coincide

with both of them because then they must coincide. We will select a latest monomial

m which occurs in either f1 or in f2 but not in their longest common tail. In partic-

ular, m is a lower degree monomial that occurs in one but not in the other. Without

loss of generality, we can assume that that monomial m occurs in f1 but not in f2
(it cannot occur in both, because, being latest, it would have to be in their common

tail).

Let t be the longest common tail of f1 and f2. Let us form auxiliary polynomials

g1 = f1 + t, and g2 = f2 + t. Now we have the following obvious fact.

PROPOSITION 5.8
The longest common tail of g1 and g2 is 0.

We will now find an assignment (a1, . . . , an) so that

g1(a1, . . . , an) 6= g2(a1, . . . , an).

This, together with the obvious facts that f1 = g1 + t, and f2 = g2 + t implies that

f1(a1, . . . , an) 6= f2(a1, . . . , an).
To this end, we take the least monomial in g1. The first case is when it is a constant.
It cannot be 0, because then g1 = 0, which is not the case, as it has a monomial not

in g2. If m = 1, then it is a constant term of g1, but not of g2, because the common

tail of g1 and g2 is 0. Then g1(0, . . . , 0) = 1, while g2(0, . . . , 0) = 0 and so we

already have a desired assignment.

Now, let us assume thatm is not constant. Thenm is of the form:

xi1 · . . . · xik

with k ≥ 1. We define an assignment (a1, . . . , an) as follows:

ai =

{

1 if i ∈ {i1, . . . , ik}

0 otherwise.

We claim that all monomials in g1 except m take the value 0 under the assignment

(a1, . . . , an), and that all monomials in g2 take the value 0 under the assignment

© 2009 by Taylor and Francis Group, LLC

82 Introduction to Mathematics of Satisfiability

(a1, . . . , an). Indeed, all monomialsm′ in g1,m
′ 6= m, must have an occurrence of

a variable that is not inm. This is totally obvious if the rank ofm′ is bigger than the

rank of m (simply, m′ has more occurrences of variables) and is also immediate if

they have the same rank (for they are different). But thenm′ is evaluated as 0 under

the assignment (a1, . . . , an). On the other hand, the monomialm is evaluated as 1
by (a1, . . . , an). Thus g1(a1, . . . , an) = 1.

Now, let us look at the polynomial g2. By our choice ofm we know thatm does not

occur in g2, and that all the monomials in g2 have the rank greater or equal to that of
m. Reasoning as in the previous paragraph, we conclude that all the monomials in

g2 are evaluated as 0 under the assignment (a1, . . . , an). Thus g2(a1, . . . , an) = 0.
In other words g1(a1, . . . , an) 6= g2(a1, . . . , an).

But now, as f1 = g1 + t, and f2 = g2 + t, f1(a1, . . . , an) 6= f2(a1, . . . , an). 2

Thus we get the following fact.

PROPOSITION 5.9

Let the order of variables be fixed. Then for every formula ϕ there is a unique
standard polynomial fϕ so that ϕ ≡ fϕ is a tautology.

Proof: We showed before, in Proposition 5.7, that there is a polynomial f such that

ϕ ≡ f is a tautology. But there is only one standard polynomial f ′ so that f ≡ f ′,

and so that f ′ is the unique standard polynomial equivalent to ϕ. 2

COROLLARY 5.2

Let f be a standard polynomial in variables x1, . . . , xn. If f 6≡ 0, then for
some assignment (a1, . . . , an), f(a1, . . . , an) = 1.

Proof: Either f has the constant term 1, and then f(0, . . . , 0) = 1, or if not, it
has constant term 0 and at least one monomial of non-zero rank. But for such a

polynomial we constructed an assignment which makes it 1. 2

Corollary 5.2 implies the following (just consider polynomial f = g + 1).

COROLLARY 5.3

Let g be a standard polynomial in variables x1, . . . , xn. If g 6≡ 1, then for
some assignment (a1, . . . , an), g(a1, . . . , an) = 0.

Thus non-constant standard polynomials take both the value 0 and the value 1 at

suitably chosen arguments.

Our proof of Proposition 5.9 allows us to count standard polynomials in n variables:

there is 22n

of them. We can find the same result directly (and with this fact we can

find an alternative proof for Proposition 5.7). See Section 5.7 Exercises.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 83

5.4 Incomplete sets of functors, Post classes

Our goal (which will be realized in the next section) is to show a criterion for com-

pleteness of sets of functors. Before we do so, we need to investigate specific five

classes of functors that are incomplete. Those classes are called Post classes after

the American logician E. Post.

The argument for incompleteness of all five cases will be almost identical. The

scheme of the argument will be this: we will exhibit a property of tables P . Then we
will show that if all functors from a set of functors C have the property P then the

table of any formula built of functors in C has a table defining a functor having the

property P . The last element of the proof is that there are tables defining functors

that do not have property P .
So here are the five Post classes. To introduce the first class, we need a definition.

We say that an n-ary functor c with its table Tc is self-dual if whenever the row

(a1, . . . , an, a) ∈ Tc

then also

(1 + a1, . . . , 1 + an, 1 + a) ∈ Tc.

In other words, if we negate the inputs in c, then the result will be negated output of
c. We will call the class of all self-dual functors S.

The second class of functors is the class of monotone functors. Recall thatBooln has

its Post ordering, which is the product order of the natural order of truth values. Then

we say that an n-ary functor c ismonotone if whenever (a1, . . . , an) ≤p (b1, . . . , bn)
and (a1, . . . , an, a) ∈ Tc and (b1, . . . , bn, b) ∈ Tc, then a ≤ b. We will call the class

of monotone functors M.

The third class of functors we consider consists of linear functors. Those are functors

that are represented by linear standard polynomials, that is polynomials where all

monomials are constants, or single variable.2 We will call the class of all linear

functors L.

The fourth class of functors we consider is the class of 1-consistent functors. Those
are functors c with its table Tc containing the row (1, . . . , 1, 1). We will denote those

by F1.

The fifth class of functors we consider is the class of 0-consistent functors. Those
are functors c with its table Tc containing the row (0, . . . , 0, 0). We will denote those

by F0.

None of the classes considered above consists of all functors. For instance, the ∧
functor is not self-dual (as is easily seen looking at the rows (0, 1, 0) and (1, 0, 0)).
Likewise ∨ is not self-dual. The functor ¬ is not monotone. The functor ∧ is not

2The need for looking at linear polynomials, thus polynomials in general, is what forced us to consider the

polynomial representation of functors here, and not in the chapter on normal forms: after all, the standard

polynomial is a normal form of a formula.

© 2009 by Taylor and Francis Group, LLC

84 Introduction to Mathematics of Satisfiability

linear, as its standard polynomial is x1 · x2 which is not a linear polynomial. The

constant function 1 is not in F0, and the constant function 0 is not in F1.

We will say that a formula ϕ is self-dual (resp. monotone, linear, F1, F0,) if its table

is self-dual (resp. monotone, linear, F1, F0).

PROPOSITION 5.10

1. If all functors in C are self-dual then the table of any formula of FormC

is self-dual.

2. If all functors in C are monotone then the table of any formula of FormC

is monotone.

3. If all functors in C are linear then the table of any formula of FormC is
linear.

4. If all functors in C are in F1 then the table of any formula of FormC is
in F1.

5. If all functors in C are in F0 then the table of any formula of FormC is
in F0.

Proof: In each case the argument is by induction on the height of the tree of the

formula ϕ. Let us see how it works in the case of (1). Let c be the label of the

root of the tree of the formula ϕ. Assuming c is a k-ary functor, our formula is

c(ϕ1, . . . , ϕk). Writing the variables of ϕ explicitly we have

ϕ(1+x1, . . . , 1+xn) = c(ϕ1(1+x1, . . . , 1+xn), . . . ϕk(1+x1, . . . , 1+xn)) =

c(1 + ϕ1(x1, . . . , xn), . . . , 1 + ϕk(x1, . . . , xn)) =

1 + c(ϕ1(x1, . . . , xn), . . . , ϕk(x1, . . . , xn)) = 1 + ϕ(x1, . . . , xn)

First equality was just writing explicitly what ϕ was. The second equality used

inductive assumption for each of formulas ϕ1, . . . , ϕk, and the last one used the fact
that the functor c is self-dual.
All the remaining arguments are equally simple, and follow the same line of argu-

ment (with respect to the corresponding classes of functors). 2

Now, we have the following corollary.

COROLLARY 5.4
Let C be a class of functors.

1. If C ⊆ S then C is incomplete.

2. If C ⊆M then C is incomplete.

3. If C ⊆ L then C is incomplete.

4. If C ⊆ F1 then C is incomplete.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 85

5. If C ⊆ F0 then C is incomplete.

Proof: (1) We found that ∨ is not self-dual, and so, a fortiori cannot be defined out

of C.
(2) We found that ¬ is not monotone, and so cannot be defined out of C.
(3) We found that ∧ is not linear, and so cannot be defined out of C.
(4) We found that the constant ⊥ is not in F1, and so, cannot be defined out of C.
(5) Similarly, we found that the constant ⊤ is not in F0, and so, a fortiori cannot be

defined out of C. 2

It follows that the set of functors {∧,∨} is not complete (as it consists of monotone

functors), and that the set {⇒} is not complete, as⇒ is in F1.

5.5 Post criterion for completeness

We will now prove a criterion characterizing complete sets of functors.

THEOREM 5.1 (Post theorem)
Let C be a set of functors. Then C is complete if and only if C is not included
in S, C is not included in M, C is not included in L, C is not included in F1,
and C is not included in F0.

Proof: The necessity of our condition follows from Corollary 5.4. Indeed, if C is

included in any of these five classes of functors then C is not complete.

So let us assume that C is not included in either of the five classes. This means that

there are five functors in C (not necessarily different) fs, fm, fl, f0, and f1 such that:
fs /∈ S, fm /∈M, fl /∈ L, f0 /∈ F0, and f1 /∈ F1.

All we need to do is to define ¬ and ∧ in terms of C. Our first goal is to define ¬
and constant functors, 0 and 1. Here is what we do. Given a functor c let us define
the functor ĉ(x) as a unary functor resulting from substituting for all variables of

c the same variable, x. What happens here is that we look at the two rows of the

table for c: the one determined by the assignment (0, . . . , 0) and the one determined

by the assignment (1, . . . , 1). The resulting table has just two rows: the first row is

(0, f(0, . . . , 0)), and the other row (1, f(1, . . . , 1)).

Let us see what are the functors f̂0(x) and f̂1(x). Let us look first at f̂0(x). We know

that f0(0, . . . , 0) = 1 (because f0 /∈ F0). On the other hand either f0(1, . . . , 1) = 0,

or f0(1, . . . , 1) = 1. In the first case the functor f̂0 is ¬, in the second f̂0 is the

constant 1. Reasoning in the same way but this time about f̂1, we see that either f̂1
is ¬, or it is the constant 0.
Putting these two facts together we find that two cases are possible.

(a) One of f0, f1 defines negation.

© 2009 by Taylor and Francis Group, LLC

86 Introduction to Mathematics of Satisfiability

(b) {f0, f1} defines both constants.

In case (a) we already have the negation functor. We will use the function fs (and
negation) to define constants. Let us recall that fs is not self-dual. This means that

for some assignment (a1, . . . , an)

fs(a1, . . . , an) = fs(1 + a1, . . . , 1 + an).

Let us fix this sequence (a1, . . . , an). Some of ai’s are 0, and others are 1. Here is
how we define a new functor h, of one variable. To facilitate notation we will write:

x+ 0 for x, and x+ 1 for ¬x. We then define new functor h as follows:

h(x) = fs(x+ a1, . . . , x+ an).

What is h(0)? It is fs(0 + a1, . . . , 0 + an). It is easy to see that it is precisely

fs(a1, . . . , an). On the other hand h(1) is fs(1 + a1, . . . , 1 + an). By the choice of
the function fs and the assignment (a1, . . . , an)we find that fs(1+a1, . . . , 1+an) =
fs(a1, . . . , an) = h(0). Thus h(0) = h(1). That is, the functor h is constant. Now,

regardless whether h is 0, or 1 we can use negation to define the other constant. Thus

in case (a) we now have both negation and constants.

In case (b) we have constants. We need to define negation. We have at our disposal

the function fm which is not monotone. That means that we have two sequences of

values (a1, . . . , an) and (b1, . . . , bn) such that

(a1, . . . , an) ≤p (b1, . . . , bn)

but fm(a1, . . . , an) = 1 and fm(b1, . . . , bn) = 0 (the only possible case contra-

dicting monotonicity). What happens here is that whenever ai = 1, bi is also 1.
We claim that we can impose a stronger constraint on the sequences (a1, . . . , an)
and (b1, . . . , bn), namely that (a1, . . . , an) ≤p (b1, . . . , bn), (a1, . . . , an) and

(b1, . . . , bn) differ in exactly one place and also that we have the properties:

fm(a1, . . . , an) = 1 and fm(b1, . . . , bn) = 0. For otherwise, whenever se-

quences (a1, . . . , an) and (b1, . . . , bn) differ in only one place (and (a1, . . . , an) ≤p
(b1, . . . , bn))

fm(a1, . . . , an) ≤p fm(b1, . . . , bn).

But n is an integer. Thereforewe can gradually increase values of a1, . . . , an increas-
ing one by one those values where ai is 0, but bi is 1. In a finite number (bounded by

n) of steps we will reach (b1, . . . , bn). But then fm(b1, . . . , bn) = 1, a contradiction.
So now we have two sequences (a1, . . . , an) and (b1, . . . , bn). They differ

on one position only (say i). For that i, ai = 0 and bi = 1. Finally,

fm(a1, . . . , an) = 1 and fm(b1, . . . , bn) = 0. Now, let us recall that we are

in case (b), that is, we have constants. We define new functor h(x) as follows.

For every variable xj , j 6= i, we substitute the constant aj (that is bj - it is the

same thing). For the variable xi we substitute x. Let us compute h(0). It is

fm(a1, . . . , ai−1, 0, ai+1, . . . , an), that is fm(a1, . . . , an), i.e., 1. On the other hand,
h(1) is fm(a1, . . . , ai−1, 1, ai+1, . . . , an), that is fm(b1, . . . , bi−1, 1, bi+1, . . . , bn),
that is fm(b1, . . . , bn), that is 0. In other word, h is the negation functor.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 87

Thus, after considering our alternative (a) and (b) we now know that we can define

both constants, and also negation. All we need to define is conjunction. We are going

to use for this purpose the nonlinear functor fl (and the constants and the negation

functor, already available).

So let fl be a nonlinear functor in our set of functors C. That functor must have at

least two variables; all functions of 0 or 1 variables are linear. Let us look at the

standard polynomial g representing fl. It must have at least one monomial of rank

at least 2. Since we can always substitute variables for variables in formulas, we can

assume that g has a monomial of the form x1 ·x2 · Now we use algebra (as taught

in high schools) to get the following representation of the standard polynomial g:

x1 ·x2 ·h1(x3, . . . , xn)+x1 ·h2(x3, . . . , xn)+x2 ·h3(x3, . . . , xn)+h4(x3, . . . , xn).

The polynomial h1(x3, . . . , xn) is a non-zero standard polynomial (in variables x3,
. . . , xn). This requires checking; we leave this fact to the reader. Therefore we can

use Corollary 5.2 and find an assignment (a3, . . . , an) so that h1(a3, . . . , an) = 1.
When we substitute the assignment (a3, . . . , an) to polynomials h2, h3, and h4, we

find that the functor fl with a3, . . . , an substituted for x3, . . . , xn is one of eight

functors: x1 · x2, or x1 · x2 + 1, or x1 · x2 + x2, or x1 · x2 + x2 + 1, or x1 · x2 + x1

, or x1 · x2 + x1 + 1, or x1 · x2 + x1 + x2 , or x1 · x2 + x1 + x2 + 1. Instead of

dealing with these eight cases separately (which certainly can be done), let us write

this standard polynomial (which we call k(x1, x2)) in its general form:

k(x1, x2) = x1 · x2 + a · x1 + b · x2 + c

with a, b, c ∈ Bool . We make a substitution to the polynomial k as follows. We

substitute x1 + b for x1, x2 + a for x2. Moreover, we add to k(x1 + b, x2 + a) a
constant term a · b+ c. This is certainly justified, because when a constant b is 0 we

really do nothing with x1, and when b = 1 we negate x1, but we already found that

the negation functor is definable from C. We reason similarly about adding a to x2,

and adding a · b + c to the polynomial k(x1 + b, x2 + a). Now let us do a bit of

algebra.

k(x1 + b, x2 + a) + a · b+ c =

(x1 + b) · (x2 + a) + a · (x1 + b) + b · (x2 + a) + c+ a · b+ c =

x1 · x2 + b · x2 + a · x1 + a · b+ a · x1 + a · b+ b · x2 + a · b+ c+ a · b+ c.

It is quite clear that each term in our polynomial, except x1 · x2, occurs an even

number of times, so we find that

k(x1 + b, x2 + a) + a · b+ c = x1 · x2.

Thus we found a definition of x1 · x2 (that is x1 ∧ x2) in C, and since ¬ is also

definable, the set of functors C is complete. 2

Theorem 5.1 gives rise to an algorithm for testing completeness of a set of functors

C. All we need to do is to test each of functors in C for self-duality, monotonicity,

© 2009 by Taylor and Francis Group, LLC

88 Introduction to Mathematics of Satisfiability

linearity, 1-consistency, and 0-consistency. If each of these tests fails on at least one

of functors in C, then C is complete.

We will now use Post Theorem 5.1 to describe Boolean functions that define all

functions. We already encountered two such functions, both binary, namely NAND

and NOR. Historically, the first such function, NOR, was discovered by Sheffer, and

so such functions are called Sheffer-like functions.

PROPOSITION 5.11
An n-ary Boolean function f is Sheffer-like if and only if f /∈ F0, f /∈ F1,

and f /∈ S.

Proof: Taking C = {f}, we see that if f is Sheffer-like, i.e., {f} is complete, then

f /∈ F0, f /∈ F1, and f /∈ S.

To show the converse implication, in view of Theorem 5.1, all we need to do is to

show that f is not monotone, and that f is not linear.

To see the non-monotonicity, let us observe that f(0, . . . , 0) = 1, and f(1, . . . , 1) =
0. This immediately implies non-monotonicity since (0, . . . , 0) ≤p (1, . . . , 1), but
f(1, . . . , 1) < f(0, . . . , 0).
To see that f is not a linear function, let us assume that f is linear. Then f is of the

form:

f(x1, . . . , xn) = xi1 + . . .+ xik + ε.

Now, f(0, . . . , 0) = 1. Therefore ε = 1. Hence, since f(1, . . . , 1) = 0, the integer
k (the number of variables in standard polynomial of f) must be odd. But f is not

self-dual. Therefore, for some choice of (a1, . . . , an) ∈ Booln,

f(a1, . . . , an) = f(ā1, . . . , ān).

This means that

ai1 + . . .+ aik + 1 = āi1 + . . .+ āik + 1.

But the last equality means that

ai1 + . . .+ aik = āi1 + . . .+ āik .

This, however, implies that k is an even integer. Thus we found a contradiction,

f /∈ L, and so {f} is complete, i.e., f is Sheffer-like, as desired. 2

5.6 If-then-else functor

So far we have looked mostly at binary functors. Here is one important ternary one.

This functor, complete in a weak sense, is the “if-then-else” functor, often denoted

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 89

TABLE 5.5: ite functor

x y z ite(x, y, z)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

as ite, or ITE . See Table 5.5. We observe that, since ite is 1-consistent, ite is not

complete by itself. We already saw, briefly, the ite functor in Section 3.7.

Intuitively ite(x, y, z) means: “if x is ⊤, then the value is y, otherwise (i.e., when
x = ⊥), the value is z.

PROPOSITION 5.12
The set of functors {ite,⊥,⊤} is complete.

Proof: Here are two tautologies: (¬x) ≡ ite(x,⊥,⊤) and (x ∧ y) ≡ ite(x, y,⊥).
Now, the assertion follows from Corollary 5.1. 2

The ternary functor ite has various appealing properties. The most important of

those is a kind of distribution property. Recall that in Section 2.4 we discussed

substitutions of formulas into other formulas. Here is an interesting property of the

operation ite.

PROPOSITION 5.13 (Shannon theorem)
Let ϕ be a propositional formula and let x be a variable. Then for all variables
y and for all formulas ψ and ϑ the equivalence

ϕ

(

x

ite(y, ψ, ϑ)

)

≡ ite(y, ϕ

(

x

ψ

)

, ϕ

(

x

ϑ

)

)

is a tautology.

Proof: By the substitution lemma (Proposition 2.16) under any valuation v, when
v(y) = 1 then the left-hand side evaluates to v(ϕ

(

x
ψ

)

), and when v(y) = 0 then the

left-hand side evaluates to v(ϕ
(

x
ϑ

)

). This is the value to which the right-hand-side

evaluates. 2

The set consisting of the functor ite is not complete as the the functor ite is 1-

consistent. For that same reason the set {ite,⊤} is also not complete, but the set

{ite,⊤,⊥} is complete. This last fact can be checked directly (see Section 5.7 Ex-

ercises), or by explicit definition of ¬ and ∨ out of {ite,⊤,⊥}.

© 2009 by Taylor and Francis Group, LLC

90 Introduction to Mathematics of Satisfiability

5.7 Exercises

1. In the proof of Proposition 5.2 we assigned to two tables of n− 1 variables one

table of n variables. Use this to show that the number tn of tables in n Boolean

variables satisfies the recursion:

tn+1 = t2n

with the initial condition t1 = 4. Use this recursion to establish another proof

of the fact that tn = 22n

.

2. Given a functor h of n Boolean variables, the functor hc has a table that to every
valuation (a1, . . . , an) assigns the value 1 + h(a1, . . . , an). That is, we flip the

last column of T . We call that functor hc a complementary functor for h. Prove
that the assignment h 7→ hc is a one-to-one and “onto” mapping of Boolean

functors of n variables.

3. Given a functor h of n Boolean variables, the functor hd has a table that to

every valuation (a1, . . . , an) assigns the value 1 + h(1 + a1, . . . , 1 + an). We

call that functor hc a dual functor for h. Prove that the assignment h 7→ hd is a
one-to-one and “onto” mapping of Boolean functors of n variables.

4. With the terminology of Problem (3), a self-dual functor is a functor h such that

h = hd. Prove that a self-dual functor is uniquely determined by its “lower-

half,” that is, the part of its table where x1 = 0. It is also determined by its

“upper-half,” that is, the part of its table where x1 = 1. Find the connection

between that “lower-half” and the “upper-half.”

5. Let sn be the number of self-dual functors of n Boolean variables. Prove that

for all n, sn+1 = tn.

6. In this problem we look at specific functions and their duals. What is the dual

to x1 ∨ x2? What is the dual to x1 ∧ x2? What is the dual to x1 ⇒ x2?

7. The functor maj, which appears in a number of places in this book, is defined

by

maj (x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3).

Compute the dual to maj, both in symbolic form, and also its table.

8. What is dual of the ternary functor ite?

9. We encountered the monotone functors of n variables. The “closed form” for

the number of such monotone functors of n Boolean variables is not known

at the time of writing of this book. Nevertheless, this number (also called the

Dedekind number, dn) can be studied. Show that dn is the number of antichains

in the set P({1, . . . , n}).

10. Is the function maj discussed above monotone?

In problems below we fix the order of variables x1, . . . , xn.

© 2009 by Taylor and Francis Group, LLC

Complete sets of functors 91

11. Find the standard polynomial of the function maj.

12. Compute the number of reduced monomials of rank k whose variables are

among x1, . . . , xn.

13. Compute the number of all non-zero reduced monomials whose variables are

among x1, . . . , xn.

14. Compute the number of standard polynomials over variables x1, . . . , xn.

15. Use the result of problem (14) to show that every formula is equivalent to exactly

one standard polynomial.

16. Show that there is precisely 2n+1 standard linear polynomials in variables

x1, . . . , xn.

17. How many Boolean functions of n variables are both in F0 and in F1?

18. How many Boolean functions of n variables are both in F0 and in S?

19. How many Boolean functions of n variables are both in F1 and in S?

20. How many Boolean functions of n variables are in F0, F1, and in S?

21. Use your solution of the problem 5, and of the problems 17–20, to compute the

number of Sheffer-like functions of n variables. Before you do this, refresh your

memory of the so-called inclusion-exclusion formula (any reasonable introduc-

tory text on combinatorics should do).

22. Given a function f : Booln → Bool , its derivative with respect to xi,
∂f
∂xi

, is

defined as:

∂f

∂xi
= f(x1, . . . , xi−1, 1, xi+1, . . . xn) + f(x1, . . . , xi−1, 0, xi+1, . . . xn)

While it may look at first glance strange, it is quite reasonable, when you look

at the polynomial representation of f . For instance, the derivative of

f(x, y, z) = x · y · z + x+ z

with respect to x is, of course, y · z + 1 (as we were taught in calculus). Check

that, indeed, y · z + 1 = f(0, y, z) + f(1, y, z).

23. Explain why the symbolic computation (as the derivative of a polynomial) and

the computation of ∂f
∂xi

coincide.

24. Find the derivative of the majority functionmaj (x, y, z) with respect to variable
z.

25. Find the derivative of ITE (x, y, z) with respect to variable z.

26. When g is a linear function, what can we find about derivatives of g?

27. Prove that
∂(f + g)

∂xi
=

∂f

∂xi
+

∂g

∂xi
.

© 2009 by Taylor and Francis Group, LLC

92 Introduction to Mathematics of Satisfiability

28. In calculus they taught us other rules for differentiation. Which of these apply

in Boolean context?

29. Prove Reed-Muller identities for Boolean functions:

(a) f(x1, . . . , xn) = xi ·
∂f
∂xi

+ f |xi=0.

(b) f(x1, . . . , xn) = x̄i ·
∂f
∂xi

+ f |xi=1.

30. Use the first Reed-Muller identity to get a different (and simpler) proof of

uniqueness of representation of Boolean functions by standard polynomials.

31. Since the use of Reed-Muller identity for the uniqueness of representation of

Boolean functions by standard polynomials is so simpler, what was the benefit

of the argument we gave above?

© 2009 by Taylor and Francis Group, LLC

Chapter 6

Compactness theorem

6.1 König lemma . 93
6.2 Compactness, denumerable case . 95
6.3 Continuity of the operator Cn . 99
6.4 Exercises . 100

This chapter of our book contains the proof of the compactness theorem for proposi-

tional logic. The special case we study is based on clausal logic (a minor limitation;

compactness of clausal logic entails compactness of full propositional logic, see be-

low). What happens here is that we restrict ourselves to the situation where the un-

derlying language has only a denumerable number of formulas (clauses in our case).

This limits the number of variables to finite or infinite denumerable. In such circum-

stances we can enumerate with integers all formulas (clauses in our case) and so we

can enumerate all clauses over a given set of variables. This limitation allows for use

of a very powerful tool, known as König lemma. In the next section we will prove

König lemma. Then, with this tool we will show how the compactness property for

denumerable CNFs is a relatively simple corollary to that result.

It should be stated that the proof of the compactness theorem we present here hides

rather than elucidates the fundamental principles related to compactness of propo-

sitional logic. In fact, one can give a general argument for compactness of propo-

sitional logic that does not depend on the cardinality of the set of clauses. Such an

argument uses, however, additional tools and goes beyond the scope of our book.

6.1 König lemma

König lemma asserts that an infinite, finitely splitting tree must possess an infinite

branch. Here are a number of definitions to make this precise.

We will assume that the reader is familiar with basic concepts such as string over

a given alphabet, concatenation, initial segment, etc. We will use the symbol ε to

denote the empty string. We will use the symbol a for the concatenation operation.

The string consisting of one symbol a will be denoted by 〈a〉.

Let A be an alphabet. A string s is an initial segment of a string t if for some string

u, t = sau. lh(s) is the length of string s. A tree is a set T of finite strings over A

93

© 2009 by Taylor and Francis Group, LLC

94 Introduction to Mathematics of Satisfiability

such that whenever t ∈ T and s is an initial segment of t then s ∈ T . The elements

of T will be referred to as nodes.

Given a tree T , the node s ∈ T is an immediate successor of a node t ∈ T if for

some a ∈ A, s = ta〈a〉. The set of immediate successors of t in T is denoted by

IT (t). The subscript T is dropped if it is clear from the context.

A tree T is finitely splitting if every string s ∈ T has only finitely many immediate

successors in T . We do not exclude the case when a string s has no successors at all.
Thus, T is finitely splitting if for all t ∈ T , I(t) is finite.
An infinite branch through T is an infinite string S ∈ Aω such that for all n, the
initial segment S |n belongs to T .

We are now ready to formulate and prove König lemma (see also [KM84]).

LEMMA 6.1 (König lemma)

If T is an infinite tree in which every node has finitely many immediate
successors, then T possesses an infinite branch.

Proof: A bit of notation is still needed. Given the node s ∈ T , the set of successors
of s, T (s), is defined as the least set Z containing all immediate successors of s
and such that whenever t ∈ Z , then all immediate successors of t belong to Z . It

is easy to see that for a given node s the set T (s) is well-defined (namely as the

intersection of all sets H which contain immediate successors of s and are closed

under immediate successors.) Of course we can also use the fixpoint theorem to

show that T (s) exists.

Now, let us call a node t potentially infinite if the set T (t) is infinite. Clearly, the root
of our tree (which is the empty string, ε), is potentially infinite, because T is infinite.

Now, the course of our argument is clear. What we show is that in a finitely splitting

tree, for a given potentially infinite node s there is always at least one immediate

successor t of s such that t is also potentially infinite.

Let us see what is the dependence between the set T (s) and the sets T (t) for t
immediate successors of s. We have:

T (s) = I(s) ∪
⋃

t∈I(s)

T (t).

What this identity says is that u is a (proper) successor of the node s in the tree T
if it is either an immediate successor of s in T or a (proper) successor in T of an

immediate successor of s. We will not prove this fact, leaving it to the reader.

Since in a finitely splitting tree the set I(s) is finite for each s, it follows that if
s is potentially infinite then at least one of its immediate successors also has to be

potentially infinite.

Now, the construction is inductive. We start with the root; it is potentially infinite.

Assume tn is already defined and potentially infinite. Select as tn+1 an immediate

successor of tn which is also potentially infinite. It is clear that the infinite string S
such that S |n= tn is well-defined and is an infinite branch through T . 2

© 2009 by Taylor and Francis Group, LLC

Compactness theorem 95

It will be convenient to use König lemma in a slightly different form. We say that a

node s is of rank n if lh(s) = n. We now have:

COROLLARY 6.1

If a tree T is finitely splitting and has nodes of arbitrarily large rank, then T
possesses an infinite branch.

It is customary to give an example showing that the assumption of finite splitting is

needed for existence of infinite branches.

Example 6.1

Let A be N , the set of natural numbers, and let T consist of the empty string, ε,
together with strings 〈n〉 for all n ∈ N . Then T is an infinite tree, but it has no

branch of any length > 1.

6.2 Compactness of propositional logic, denumerable ca-
se

Let us recall that a clause is a formula of the form

C : p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬ql,

where pis and qjs are propositional variables, k, l ≥ 0. A clausal theory is a set of

clauses. The conjunctive normal form theorem (Proposition 3.7) implies that every

theory is equivalent to a clausal theory. We will prove the compactness theorem for

clausal theories. The proof has the advantage of stripping immaterial details (that

occur when we talk about arbitrary formulas). We will then use the compactness for

clausal logic to prove compactness of full propositional logic.

First of all, we need to define what we mean by compactness. Here is what we do.

Let F be a collection of clauses. We say that F is finitely satisfiable if for every finite

subset F0 of F , F0 is satisfiable.

PROPOSITION 6.1 (Compactness of clausal logic, denumerable
case)

Let F be an infinite denumerable collection of clauses. Then F is finitely
satisfiable if and only if F is satisfiable.

Proof: Let us observe that the implication⇐ is entirely obvious. Thus all we need to

show is the implication⇒. To this end we suppose that F is denumerable, infinite,

© 2009 by Taylor and Francis Group, LLC

96 Introduction to Mathematics of Satisfiability

and finitely satisfiable. Let us observe that F cannot contain the empty clause, as

this clause (and thus all sets containing it) is unsatisfiable.

First of all we fix the ordering of the collection F into type ω,

F = 〈Cn〉n∈N .

Since F is denumerable, the set of variables Var occurring in the clauses of F is

finite or denumerable. In either case the set FormVar is infinite denumerable. To

build a tree T we need an alphabet. That alphabet consists of two parts. First, we

have clauses of F . Second, we have literals occurring in F .
The tree T will be finitely splitting. During the construction, in nodes of even rank

we will be putting strings that end with a literal. In nodes of odd rank we will be

putting strings that end with clauses from F .
We start, of course, with the empty string. Now, assume that we already know the

nodes of rank k − 1. Two cases need to be considered.

Case 1: k = 2n+ 1. That is, we defined all the nodes on the even level k− 1 = 2n.
We assume that these preceding nodes, if defined, were strings ending with Cn. Here
is what we do at level k. Assume we extend the node s. Let Cn (which is the last

symbol in s) be
ln1 ∨ . . . ∨ l

n
hn
,

then s gets hn immediate successors. Those successors are sa〈lnj 〉 for all j, 1 ≤ j ≤
hn. Clearly, in this stage of construction, every node is extended by a finite number

of immediate successors (as each Cn is a clause, thus finite).

Case 2: k = 2n + 2. We proceed here differently, and more cautiously. Let s be a
node on the level k − 1. This node is a string, ending in a literal. Take the set Fs
consisting of all objects occurring in s. Those are either clauses from F (actually,

C0, . . . , Cn) or literals (which occur in the even places of s). Thus we can treat set

Fs as a set of clauses (after all, literals are just unit clauses.) This set, Fs, may be

satisfiable or not. If this set Fs is unsatisfiable, the node s is not extended at all.

If the set Fs is satisfiable, we extend s by just one immediate successor, namely

sa〈Cn+1〉. Our construction ensures that the nodes visited at this stage have zero or
one immediate successor.

We conclude that the tree T whose construction we just outlined is finitely splitting.

Indeed, nodes at the odd level had at most one successor, while the nodes on the even

level had a finite number of successors but at least one.

Our first task is to see that the tree T has an infinite branch. Of course, we want to

use Corollary 6.1, but to this end we have to show that there are elements of arbitrary

big rank in T .
So let us consider some n ∈ N . Consider F0 = {C0, . . . , Cn}. The set F0 is a finite

subset of F . Hence it is satisfiable. Let v be a valuation satisfying F0. Recall that

Cj , 0 ≤ j ≤ n looks like this:

lj1 ∨ . . . ∨ l
j
pj
.

Therefore, for each j, 0 ≤ j ≤ n, there is hj , 1 ≤ hj ≤ pj , so that v(ljhj
) = 1. But

then the string

C0 l
0
h0
C1 l

1
h1

. . . Cn−1 l
n−1
hn−1

Cn

© 2009 by Taylor and Francis Group, LLC

Compactness theorem 97

is a node in the tree T , as can be easily checked by induction on the initial segments of

s, with the valuation v serving as a witness of satisfiability. Since n can be arbitrarily

big, we just proved the assumptions of Corollary 6.1.

So now we know that the tree T possesses an infinite branch. Let S be that infinite

branch. The set of the symbols of the alphabet on that branch (clauses or literals)

contains all clauses in F . It also contains plenty of literals. We will now show how

those literals can be used to construct a valuation w satisfying F .

The first thing we consider is the question of the complementary literals. Specifically,

we ask the following question: “Is it possible that a pair of complementary literals,

say l and l̄, occur as last terms of nodes in the branch S?” If the answer is positive,

then for some m and n with m < n and for some literal l there are two initial

segments of S, s1 and s2 as follows:

s1 : C0 l
0
h0
C1 l

1
h1

. . . Cm−1 l
m−1
hm−1

and

s2 : C0 l
0
h0
C1 l

1
h1

. . . Cn−1 l
n−1
hn−1

.

Both these strings are segments of the branch S, but lm−1
hm−1

= l and ln−1
hn−1

= l̄. But
this last string s2 extended s1. This means that there was a valuation v making all

literals of the string s2 true. But this is a contradiction, since v(l) = 1 and also

v(l̄) = 1. So, we just established that we cannot have a pair of complementary

literals occur as symbols in the branch S.

Now, it is simple to define a valuation w on all variables a ∈ Var as follows:

w(a) =

1 if a is a last element of a string of even length in branch S

0 if ¬a is a last element of a string of even length in branch S

0 if a does not appear in last element of a string of even length in S.

The last case was needed because, although a variable a may appear in a clause in

F , neither a nor ¬a has to appear as the literal which we selected at some even stage

to extend a string.

It should be clear that w is a valuation; by our discussion above there is no clash be-

tween the first and second cases. The third case was the “default,” thus we conclude

that the assignment w is well-defined.

So now, all we need to do is to check that w satisfies F . To this end let Cn ∈ F .
Then there is a string

s1 : C0 l
0
h0
C1 l

1
h1

. . . Cn−1 l
n−1
hn−1

Cn l
n
hn

in S. By construction of the tree T , lnhn
∈ Cn. By the definition of w, w(lnhn

) = 1.
Thus w |= Cn. Since n was arbitrary, we proved that w |= F , as desired. 2

There are other arguments for compactness, some of which are based on the corollary

we state below (of course the argument cannot use the proof we give, in such case).

© 2009 by Taylor and Francis Group, LLC

98 Introduction to Mathematics of Satisfiability

COROLLARY 6.2 (Lindenbaum theorem)

Let Var be a denumerable set of propositional variables. If F ⊆ FormVar is a
finitely satisfiable set of clauses then there is a maximal set of clauses G such
that F ⊆ G and G is satisfiable (thus finitely satisfiable).

Proof: Let F be finitely satisfiable. Let v |= F (such v exists by Proposition 6.1).

Treating v as a consistent set of literals, thus unit clauses, we defineG′ = Th(v). Let
G be the set of clauses in G′. We claim that G is the desired maximal satisfiable set

of clauses extending F . SurelyG contains F as v |= F . MoreoverG is satisfiable as

v |= G. Now, if C /∈ G , then v 6|= C. Therefore v |= ¬C and ¬C ∈ G′. But there

is no valuation satisfying both C and ¬C, and so G ∪ {C} is unsatisfiable. Thus if
G ⊂ H , thenH is unsatisfiable. 2

Let us call a set of clauses G complete if for every clause C = l1 ∨ . . . ∨ lk either

C ∈ G or for all j, 1 ≤ j ≤ k, l̄j ∈ G. We then get the following corollary, often

also called the Lindenbaum theorem.

COROLLARY 6.3

Let Var be a denumerable set of propositional variables. If F ⊆ FormVar is a
finitely satisfiable set of clauses then there is a complete set of clauses H such
that F ⊆ H.

Proof: Let G be a maximal satisfiable set of clauses extending F . If v1, v2 are two

valuations satisfying G then it must be the case that v1 = v2. Otherwise, for some

literal l, v1(l) = 1 whereas v2(l) = 0, i.e., v2(l̄) = 1. but then G ∪ {l},G ∪ {l̄} are
both satisfiable, and sinceG is satisfiable, at least one of these sets cannot beG. This
is a desired contradiction and so there is exactly one valuation v such that v |= G.
Now, let

H = {C : C is a clause and v |= C}.

So now we claimH is complete. Let C = l1∨ . . .∨ lk , k > 0. If C /∈ H , i.e., v /∈ C
then v |= l̄1 ∧ . . . ∧ l̄k, therefore v |= l̄j , 1 ≤ j ≤ k, i.e., l̄j ∈ H , 1 ≤ j ≤ k, as
desired. 2

Finally, we derive the compactness of full propositional logic (denumerable case

only) from the compactness of clausal propositional logic. To this end, let T be

a denumerable infinite set of propositional formulas over the set Var of variables.

Let us assume that T is finitely satisfiable, that is, every finite subset T0 ⊆ T is

satisfiable. For every ϕ ∈ T , let Fϕ be a (finite) set of clauses such that Fϕ is

equivalent to ϕ, that is, for every valuation v, v |= ϕ if and only if v |= Fϕ. Let us
form FT =

⋃

ϕ∈T Fϕ. Then, since T is denumerable, and each Fϕ is finite, FT is

denumerable infinite. We claim that FT is finitely satisfiable. Indeed, let F0 ⊆ FT
be finite. Then there is a finite set T0 ⊆ T such that F0 ⊆

⋃

ϕ∈T0
Fϕ. Since T0 is

satisfiable,
⋃

ϕ∈T0
Fϕ is satisfiable. Therefore F0 is satisfiable. But now we can use

Proposition 6.1. Since we just proved that the set of clauses FT is finitely satisfiable,

we conclude that FT is satisfiable. Let v be a valuation satisfying FT . Then for each

© 2009 by Taylor and Francis Group, LLC

Compactness theorem 99

ϕ ∈ T , v |= Fϕ. Therefore, for every ϕ ∈ T , v |= ϕ. Hence v |= T and so T is

satisfiable. The argument given above proves the following.

COROLLARY 6.4 Compactness theorem

Let Var be a set of propositional variables, and let T be a denumerable infinite
set of formulas of LVar . Then T is finitely satisfiable if and only if T is
satisfiable.

6.3 Continuity of the operator Cn

We are now in a position to prove the continuity of the consequence operatorCn. Let

us recall that in Chapter 2 we proved the basic properties of that operator, including

its monotonicity and idempotence (Proposition 2.26).

First we will prove a version of the compactness theorem that involves the operator

Cn .

PROPOSITION 6.2

Let T be a set of propositional formulas and ϕ a propositional formula. Then
ϕ ∈ Cn(T) if and only if for some finite T0 ⊆ T , ϕ ∈ Cn(T0).

Proof. Since the operator Cn is monotone (Proposition 2.26(2)), the implication⇐
holds.

So now let us assume that ϕ ∈ Cn(T). We can assume that T is infinite, otherwise

we could take T0 equal to T . So let us assume that ϕ ∈ Cn(T), but for every finite

T0 ⊆ T , ϕ /∈ Cn(T0). This means that for every finite T0 ⊆ T , T0 ∪ {¬ϕ} is
satisfiable. We show that T ∪ {¬ϕ} is satisfiable. To this end, all we need to do is to
show that for every finite subset T ′ ⊆ T ∪ {¬ϕ} is satisfiable. But

T ′ ⊆ T ′′ ∪ {¬ϕ} ⊆ T ∪ {¬ϕ}

for some finite T ′′ ⊆ T . But T ′′ ∪ {¬ϕ} is satisfiable, and so T ′ is also satisfiable.

So T ∪ {¬ϕ} is finitely satisfiable. Now, by Corollary 6.4, T ∪ {¬ϕ} is satisfiable.
Let v be a satisfying valuation for T ∪ {¬ϕ}. Then v |= ¬ϕ. But v |= T , and so

v |= ϕ, since ϕ ∈ Cn(T). This is, of course, a contradiction. 2

So now we can prove the desired continuity of the Cn operator.

PROPOSITION 6.3 (Continuity theorem)

The operator Cn is continuous. That is, for every increasing sequence of sets
of formulas 〈Tm〉m<ω, Cn(

⋃

m∈N Tm) =
⋃

m∈N Cn(Tm).

© 2009 by Taylor and Francis Group, LLC

100 Introduction to Mathematics of Satisfiability

Proof: By the monotonicity of operator Cn , the inclusion ⊇ follows. So now let us

assume that a formula ϕ belongs to Cn(
⋃

m∈N Tm). By Proposition 6.2 there is a

finite set T ⊆
⋃

m∈N Tm such that ϕ ∈ T . But since T is finite and the sequence

〈Tm〉m<ω is increasing, for some n, T ⊆ Tn. Now, by monotonicity of Cn , ϕ ∈
Cn(Tn). Thus, ϕ belongs to the right-hand side. Since ϕ was arbitrary, we are done.

2

6.4 Exercises

1. Let T be a finitely splitting tree that possesses only finitely many infinite

branches. Show that there must exist an integer n such that all nodes of level at

least n have at most one immediate successor.

2. Construct a finitely splitting tree T possessing denumerably many infinite

branches.

3. Construct a finitely splitting tree T possessing continuum many infinite bran-

ches.

4. Construct an infinite set of clauses F such that every two-element subset of F
is satisfiable, but F is not satisfiable.

5. Let n be a positive integer. Generalizing problem (4) construct a collection F
such for every F ′ ⊆ F , |F ′| ≤ n, F ′ is satisfiable, but F is not satisfiable.

6. If 〈Fn〉n∈N is any denumerable family of sets of clauses, construct an increasing

family of sets of clauses 〈Gn〉n∈N so that

Cn(
⋃

n∈N

Fn) =
⋃

n∈N

Gn.

© 2009 by Taylor and Francis Group, LLC

Chapter 7

Clausal logic and resolution

7.1 Clausal logic . 102
7.2 Resolution rule . 107
7.3 Completeness results . 110
7.4 Query-answering with resolution . 113
7.5 Davis-Putnam lemma . 117
7.6 Semantic resolution . 119
7.7 Autark and lean sets . 124
7.8 Exercises . 132

We have several goals in this chapter. First, we shall investigate clausal logic and its

satisfiability problem. As a consequence of the permutation lemma, we will see how

special clauses, called constraints, relate to satisfiability. We also investigate unsatis-

fiability and its strong version, minimal unsatisfiability. The next goal of this chapter

is to introduce the so-called resolution rule of proof, and then discuss the issue of

the completeness of the resolution. The issue that interests us is what happens when

we use the resolution rule. We will establish two basic completeness results for rea-

soning with clauses. Those are Theorems 7.2 (completeness theorem for resolution)

and 7.8 (completeness of resolution refutation). Then we will discuss the scheme

where a given CNF formula F is a knowledge base and clauses are queries. Here the

idea is that the knowledge base F answers “yes” to query C if and only if F |= C.
Of course, this is an obvious generalization of the propositional representation of

relational databases.

We will then discuss a fundamental result, called the Davis-Putnam lemma, that

allows for reduction of the number of variables in a set of clauses tested for satisfi-

ability. This fact (in a stronger form) will be the foundation of the so-called DPLL

algorithm. The reason why we prove the Davis-Putnam lemma here is that we will

apply it in a proof of the completeness of a very restricted form of resolution, called

semantic resolution with the ordering of variables. Finally, we discuss the properties

of autarkies and related concepts of autark sets and lean sets.

101

© 2009 by Taylor and Francis Group, LLC

102 Introduction to Mathematics of Satisfiability

7.1 Clausal logic, satisfiability problem and its basic
properties

In Section 3.3, Proposition 3.6, we saw that every propositional formula is equivalent

to a formula in conjunctive normal form. In effect, every formula is equivalent to a

set of clauses. Recall that a clause is a formula of the form

p1 ∨ . . . ∨ pm ∨ ¬q1 ∨ . . . ∨ ¬qn.

It follows that for every formula ϕ there is a finite set of clauses Gϕ such that for

every valuation v, v |= ϕ if and only if for all clauses C ∈ Gϕ, v |= C.
Thus, clearly, for every set of propositional formulas F there exists a set of clauses

G, such that for every valuation v, v |= F if and only if v |= G. Namely,

G =
⋃

ϕ∈F Gϕ. The importance of this obvious fact is that every propositional

theory has precisely the same models as a theory consisting of clauses. Moreover, if

the theory F is finite, then so is its clausal representative, G. This means that if we

want to represent some problem by means of a propositional theory F so that solu-

tions to the problem are in one-to-one correspondence to the satisfying valuations of

F , then we can, among many possible representations, choose F to be clausal, i.e.,

consisting of clauses. For that reason and the fact that rules for manipulating clauses

are particularly simple, we will be interested in clausal logic, that is, logic where for-

mulas are collections of clauses. From the point of view of knowledge representation

it is, as we have just seen, not a limitation.

We will be dealing with collections of clauses (mostly finite, but not always). Usually

we will use symbols such as F , G, also S, possibly with indices, to denote sets of

clauses. As before we will be using the term CNF or CNF formula; it is the same

thing, namely a finite collection of clauses.

A clause is called a constraint if it is of the form:

¬q1 ∨ . . . ∨ ¬qn.

Later on, when we discuss Horn logic, we will encounter constraints again. For the

moment, we just use them for characterizing satisfiability. We will use Permutation

lemma 2.23 to give a necessary and sufficient condition for satisfiability of a set of

clauses.

It will be convenient to say that a literal l belongs to the clause C if for some clause

D, C is D ∨ l. We write it as l ∈ C. Let us recall that we treat the clauses as sets of
literals; the order of literals in a clause is not important unless we specifically order

clauses. A small warning: we thought about valuations as sets of literals, too. This

may lead to some confusion. It is very easy when the reader is “combinatorially

minded,” because a valuation satisfies a set of clauses if it is a hit set for that set of

clauses represented as a family of sets. So maybe confusion can be minimized. Once

we think about clauses as sets of literals, the inclusion of clauses is very natural; it is

just subsumption. We will write C1 ⊆ C2 to mean that every literal l occurring in C1

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 103

occurs in C2. The empty clause is the clausal representation of ⊥ and is, of course,

unsatisfiable.

PROPOSITION 7.1
Let F be a collection of nonempty clauses. Then F is satisfiable if and only

if there exists a consistent permutation of literals π such that π(F) contains
no constraints.

Proof: First, let us observe that a clausal theory F , where all clauses are nonempty

and no clause is a constraint, is satisfiable. What is the model? The entire set Var ,
or in terms of valuations, the valuation that assigns 1 to every atom. Thus, if π(F)
contains no constraints then π(F) is satisfiable. But then Proposition 2.23 tells us

that F is satisfiable.

Conversely, let us assume that v is a valuation, v |= F . Given a literal l, recall that |l|
is a propositional variable underlying l. Let us define a mapping of πv : Lit → Lit
as follows:

πv(l) =

{

l if v(|l|) = 1

l̄ if v(|l|) = 0.

Then, if p is a propositional variable and v(p) = 1 then πv(p) = p and πv(¬p) = ¬p.
On the other hand, if v(p) = 0 then πv(p) = ¬p and πv(¬p) = p. Clearly, p is a

consistent permutation of literals. Now, we claim that πv(F) contains no constraints.
Indeed, let C ∈ F . Since v |= C, there is a literal l ∈ C such that v(l) = 1. Two
cases are possible.

Case 1: l = p for some variable p. Then, as v(p) = 1, πv(p) = p and since

πv(p) ∈ πv(C), πv(C) is not a constraint.
Case 2: l = ¬p for some variable p. Then, as v(p) = 0, πv(p) = ¬p, thus πv(¬p) =
p. But since πv(p) ∈ πv(C), πv(C) is again not a constraint.
Thus πv(F) contains no constraints. 2

A set F of clauses is unsatisfiable if there is no valuation v such that v |= F . We

have an immediate corollary to Proposition 7.1.

COROLLARY 7.1
Let F be a set of clauses. Then F is unsatisfiable if and only if for every

consistent permutation of literals π, π(F) contains at least one constraint.

Among unsatisfiable sets of clauses, a special role is played by minimally unsatisfi-

able sets of clauses. A set of clauses F is minimally unsatisfiable if F is unsatisfi-

able, but all proper subsets G of F are satisfiable. We will see later that minimally

unsatisfiable sets of clauses F have a resolution refutation (derivation of the empty

clause) that uses all clauses of F as premises (for the moment we do not know what

derivations are, but they will appear later in this chapter).

The compactness theorem implies that every minimally unsatisfiable set of clauses

(or any formulas, for that matter) is finite. We will now find an easy property char-

© 2009 by Taylor and Francis Group, LLC

104 Introduction to Mathematics of Satisfiability

acterizing minimally unsatisfiable sets of clauses.

PROPOSITION 7.2
Let F be an unsatisfiable set of clauses. Then the following are equivalent:

1. F is minimally unsatisfiable.

2. For every C ∈ F there is a consistent permutation of literals π such that
π(C) is a unique constraint in π(F).

Proof: Let us assume that F is minimally unsatisfiable and C ∈ F . Then F \
{C} is satisfiable. Then there is a permutation π such that π(F \ {C}) contains no
constraint. But π(F) must contain a constraint since F is unsatisfiable. Thus, that

unique constraint must be π(C).
Conversely, let us assume that F is unsatisfiable, C ∈ F , and let π be a permutation

such that π(C) is the unique constraint in π(F). Then π(F \ {C}) is satisfiable (for
it does not contain a constraint). ThusF \{C} is satisfiable, and since we assumed F
is unsatisfiable, andC is an arbitrary clause in F , F must be minimally unsatisfiable.

2

Our next goal is to show that minimally unsatisfiable sets of clauses have a surprising

property: they must have contain more clauses than variables. In the literature this

fact is called the “Tarsi lemma.” We will now show this fact. It will require some

information from graph theory. It is not our goal here to study graph theory; we

need to assume some knowledge. So here is what we will assume without proof, and

refer the reader to any reasonable handbook on graph theory for its proof (if s/he so

desires). First, a couple of definitions. A bipartite graph is a triple G = 〈X,Y,E〉
where X,Y are two disjoint sets of vertices, and E is the set of edges. Each edge

e in E is incident with X and with Y . That is such edge starts in X and ends in

Y . Next, we say that a set of edges E′ ⊆ E is called a matching if no edges in E′

are incident, i.e., do not share a vertex. One way of thinking about matchings is that

those are partial one-to-one functions from (subsets of) X to Y , except that values

must be chosen consistently with E. This way of treating matchings will be used

below. We will often write M , possibly with indices to denote matchings. A cover

for a bipartite graphG is a setH ⊆ X ∪Y such that every edge ofE is incident with

some vertex of H . Now, among matchings in G there are those of maximum size

(for we are dealing with finite graphs). Likewise, there are covers forG of minimum

size. Both those facts are obvious. Letm(G) be the size of maximum size matching,

and c(G) be the size of the minimum size cover. Here is an old (but still amazing)

theorem due to König.

THEOREM 7.1 (König theorem)
If G is a bipartite graph, then c(G) = m(G).

To confuse the matter even more, let us observe that there was another König lemma

we used in the proof of compactness (and that other one we proved).

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 105

We will not prove Theorem 7.1. But we will prove the rest of combinatorial facts

needed to prove a desired fact on minimally unsatisfiable CNFs. Before we do, the

reader should ask why we suddenly started to discuss issues not seemingly related to

logic. However, it is quite clear that there is one bipartite graph that can be naturally

associated with a CNF F . We take as X the set F (of clauses), and as Y the set

Var of variables. We create an edge between the clause C and variable x if x occurs

(positively or negatively) in C. The resulting graph GF is a bipartite graph and,

eventually, we will use König theorem to prove some interesting properties of that

graph, especially if F is minimally unsatisfiable. Now, convinced that the bipartite

graphs have something to do with CNFs, we return to combinatorics.

Let G = 〈X,Y,E〉 be a bipartite graph. A subset A ⊆ X is matchable into subset

B ⊆ Y if there exists a matching M in G such that A is included in the domain

of M and the range of M is included in B. Likewise, we talk about subsets B of

Y matchable into A ⊆ X . Here, we want the range of M equal to B with the

domain ofM contained in A. Since we think about matchings as partial one-to-one

functions (one-to-one is the key issue here), whenM is a matching in 〈X,Y,E〉, then
M−1 is also a matching, except (maybe we overformalize it a bit) it is a matching in

〈Y,X,E〉.
Here is a combinatorial fact we will use.

LEMMA 7.1
If G = 〈X,Y,E〉 is a bipartite graph, M is a matching in G such that |M | =
m(G), C is a cover of G such that |C| = c(G) and A = C ∩X, B = C ∩ Y ,
then M maps A into Y \B and M−1 maps B into X \A.

Proof: We define two subsets of the matchingM :

M1 = {e ∈M : e is incident with A}

and

M2 = {e ∈M : e is incident with B}.

Then, because C is a cover,M = M1 ∪M2. Next, sinceM is a matching, |M1| =
|A|, and |M2| = |B|. We have the following equalities and inequalities:

m(G) = |M | ≤ |M1|+ |M2| = |A|+ |B| = |C| = c(G) = m(G).

The first equality follows from our choice of C. Then we have an inequality which

holds because M = M1 ∪ M2. Next equality follows from our above estimates

of |M1| and |M2|. The next equality follows because X and Y (thus any of their

respective subsets) are disjoint. Then, the last equality is König theorem (Theorem

7.1). Ultimately, it follows that |M | = |M1|+ |M2|.
But for any two subsetsM1 andM2 ofM ,

|M |+ |M1 ∩M2| = |M1|+ |M2|.

© 2009 by Taylor and Francis Group, LLC

106 Introduction to Mathematics of Satisfiability

Thus, it must be the case thatM1 ∩M2 = ∅. But now, sinceM1 ∩M2 is empty, no

edge in the matchingM which originates in A ends in B, and no edge ofM ending

in B originates in A! Thus M matches A into Y \ B, and M−1 matches B into

X \A, as desired. 2

We get the following corollary which will be used to get the result on the minimally

unsatisfiable sets of clauses.

COROLLARY 7.2
If G = 〈X,Y,E〉 is a finite bipartite graph, then there is a cover C for G

such that C ∩X is matchable into Y \ (C ∩ Y) and C ∩ Y is matchable into
X \ (C ∩X).

This corollary is true for infinite bipartite graphs as well, but the infinite case is of no

interest for our considerations in this book.

Recall now that for a set of clauses F we constructed a bipartite graphGF with two

parts. One was F itself, the other was Var(F). Here is the crucial property of GF .

PROPOSITION 7.3

1. If GF possesses a matching M with the domain of M being entire F , then
F is satisfiable.

2. If F is minimally unsatisfiable, then in GF there is a matching M with
the range of M being the entire Var(F).

Proof: First we prove (1). SinceM is a matching with the domain ofM being entire

F , for each clause C of F we have a variableM(C) so that (a)M(C) occurs in C,
(b) if C1 6= C2 thenM(C1) 6= M(C2). But now we define the following valuation

v by setting:

v(x) =

{

1 if x = M(C) and x occurs in C positively

0 otherwise.

It is now clear that v |= F . For let C ∈ F . Then, by construction, v(M(C)) is 1.
Thus (1) is proved.

(2) Let us assume that F is minimally unsatisfiable. In order to prove our assertion,

we will use Lemma 7.1. Since GF is a bipartite graph there is a cover D for the

graph GF , D ⊆ F ∪ Var(F), D splitting into A = D ∩ F , B = D ∩ Var(F), A
matchable into Var(F) \ B, B matchable into F \ A. We will prove that B is the

entire Var(F). So let us assume B 6= Var(F). This means that there are variables

that are in Var(F) but not inB. But Var(F) is the set of variables of F . This means

that there are clauses that contain variables which do not belong to B. In the context

of the graphGF this means that there are edges that end in points which are not inB.

But D was a cover. Therefore such edges must start in a clause belonging to A. In

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 107

particular this means that A 6= ∅. So now, let us look at the set F \A. Since A 6= ∅,
F \A ⊂ F and since F is minimally unsatisfiable, F \A is satisfiable.

Now, let us ask this question: is it possible that a clause in F \A contains a variable

in Var(F) \B? The answer to this question is “no.” The reason is thatD is a cover;

every edge either starts in a node of A or ends in a node of B. Therefore all clauses

of F \ A have variables from B only! So, on the one hand we know that F \ A is

satisfiable, on the other we know that all variables of F \A are in B. Therefore, we

have a partial valuation v1 with the domain B so that v1 satisfies F \A.
But now we use Corollary 7.2; A is matchable into Var(F) \ B. This means that

we have a partial valuation v2, with Dom(v2) = Var(F) \ B, so that v2 satisfies

A. Now, v1 and v2 have disjoint domains. Thus v1 ∪ v2 is a valuation. But then

v1 �k v1 ∪ v2 and v2 �k v1 ∪ v2. Hence v1 ∪ v2 satisfies F \A and v1 ∪ v2 satisfies
A. Thus v1 ∪ v2 satisfies F , a contradiction. 2

COROLLARY 7.3 (Aharoni and Linial)
If F is minimally unsatisfiable then |Var(F)| ≤ |F |.

Proof: By Proposition 7.3, Var(F) is matchable into F , thus |Var(F)| ≤ |F |. 2

Thus, indeed, we proved that minimally unsatisfiable sets of clauses have more

clauses than variables.

7.2 Resolution rule, closure under resolution

First, the resolution rule itself is an execution of the following partial binary opera-

tion on clauses:

l ∨ C1 l̄ ∨ C2

C1 ∨ C2
.

In other words, if clause D1 = l ∨ C1 contains a literal l andD2 = l̄ ∨ C2 contains

its dual l̄ then Res(D1, D2) is defined, and results in eliminating l, l̄ from D1, D2,

resp., and conjoining the rest of the literals into a single clause. If there is more than

one such pair of dual literals then the resulting clause is a tautology and does not

give us any constraint on the putative valuation. For that reason, we will assume that

all clauses under consideration are non-tautological, i.e., do not contain a comple-

mentary pair of literals. Also, we will assume that when resolution is executed, the

duplicate literals are eliminated. For instance resolving p∨q∨s with p̄∨q∨ t̄ results
in q ∨ s ∨ t.
Even though the operation Res(·, ·) is partial, for every set of clauses F we can

define the closure of F under resolution. Indeed, for a CNF F , there exists a set G
of clauses that contains F and is closed under resolution. Specifically, it is easy to

see that there exists a least set of clauses G satisfying the following conditions:

© 2009 by Taylor and Francis Group, LLC

108 Introduction to Mathematics of Satisfiability

1. F ⊆ G.

2. Whenever D1 and D2 are two clauses in G and the operation Res(D1, D2) is
executable and results in a non-tautological clause, then Res(D1, D2) belongs
to G.

We can prove the above using the Knaster-Tarski fixpoint theorem (Proposition 1.2).

Indeed, let F be fixed, and let us define an operator resF (·) in the complete lattice

of subsets of the set of clauses as follows:

resF (G) = F ∪ {Res(C1, C2) : C1, C2 ∈ F ∪G

and Res(C1, C2) is defined and non-tautological}.

It is easy to see that the operator resF (·) is monotone; G ⊆ H implies resF (G) ⊆
resF (H). At this stage we know that the least fixpoint of resF exists. We will denote

this fixpoint by Res(F) and call it closure of F under resolution.

Let us look more closely at the fixpoint Res(F). We will find an alternative charac-

terization of Res(F) by means of derivations. A derivationD of a clause C from set

of clauses F is a labeled binary tree (which we will now invert, leaves will be at the

top, not at the bottom). The leaves are labeled with clauses of F . The internal nodes
are labeled with resolvents (i.e., results of resolution) of the labels of the parents.

The root is labeled with C. Denote the set of all clauses that have a derivation from
F by DerF . We then have the following result.

PROPOSITION 7.4

The sets Res(F) and DerF coincide.

Proof: It is quite clear that DerF is closed under the application of resolution rule

and contains F . In other word DerF is a fixpoint of the operation Res(·), and so

Res(F) ⊆ DerF . Conversely, by induction on the height of the binary tree serving

as derivation we prove that all clauses in DerF are in Res(F). Thus, the equality

follows. 2

The alternative characterization of the least fixpoint via derivations can be used to

show that the operator resF (·) is continuous, that is, for every ⊆-increasing family

of sets of clauses 〈Xn〉n∈N ,

resF (
⋃

n∈N

Xn) =
⋃

n∈N

resF (Xn).

Thus the fixpoint Res(F) is reached by the iteration of the operator resF (·) in at

most ω steps. Moreover, the variables in Res(C1, C2) occur either in C1 or in C2 (or

in both). Since we do not allow for repetition of literals in clauses (after all we think

about clauses as sets, not bags, of literals) the closure of a finite set of clauses under

resolution is finite.

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 109

PROPOSITION 7.5
If a valuation v satisfies clauses C1 and C2 and the operation Res(C1, C2) is
executable, then v satisfies Res(C1, C2).

Proof: If Res(C1, C2) can be executed then there are two clauses D1 and D2 and a

literal l so that C1 is D1 ∨ l, C2 is D2 ∨ l̄. If v(l) = 1, then v(l̄) = 0, thus v |= D2

and so v |= D1 ∨D2, i.e., v |= Res(C1, C2). If v(l) = 0 then v |= D1 and so again

v |= D1 ∨D2, i.e., v |= Res(C1, C2). 2

Thus we proved that the resolution rule is sound. That is, if a valuation v satisfies

all clauses of F , then it must also satisfy all clauses in DerF (an easy induction on

the height of the tree of the derivation is needed). We formulate this corollary to

Proposition 7.5 explicitly.

COROLLARY 7.4
If v is a valuation satisfying a set of clauses F then v satisfies Res(F). Thus,
if F is a satisfiable set of clauses, then so is Res(F).

Now, the question arises if Res is complete. In other words, if F semantically entails

C, is it the case that C ∈ Res(F)? The answer to this question is an obvious “no”.

Let us build a most trivial counterexample. LetF consist of just one clause consisting

of a single atom, a and letD be a∨b. Then, obviously F |= D, but the Res(F) = F
and soD /∈ Res(F).
Next, we make the following observation. Given a non-tautological clause D, there

is a unique valuation v which is defined on variables occurring in D and such that

v |= ¬D (we set all variables occurring in D to the opposite polarity to that in D).

For the purposes of this book, we call it the canonical valuationmakingD false.

Now, it turns out that we are not completely out of our luck with the completeness of

resolution. First, let us observe the following useful fact (closely related to Proposi-

tion 3.9).

LEMMA 7.2
Let us assume that C,D are non-tautological clauses.

1. If D ⊆ C then D |= C.

2. Conversely, if D |= C then D ⊆ C.

Proof: (1) is obvious.

(2) Assume D 6⊆ C. Then there is a literal l occurring in D but not in C. Conse-
quently, the literal l̄ does not occur inD becauseD is non-tautological. We consider

the canonical valuation v making C false. Then, since l /∈ C either v is not defined

on the atom |l| at all, or v(l) = 1 (this last case happens when l̄ occurs in C). In the
first case we extend the canonical valuation making C false by setting v(l) = 1 and

arbitrary values on other atoms occurring in D but not in C. In the second case just

extend v arbitrarily to all variables occurring inD. We call the constructed valuation

© 2009 by Taylor and Francis Group, LLC

110 Introduction to Mathematics of Satisfiability

v′. Then, because v′ extends v, it is the case that v(C) = 0. But in either case of our
construction, v′(l) = 1 so v′(D) = 1. But thenD 6|= C, a contradiction. 2

Let F be a CNF, i.e., a set of clauses (Generally, we use CNF, set of clauses, and

clause set interchangeably.) A clause C is a resolution consequence of F if C ∈
Res(F). A clause C is a minimal resolution consequence of F if C is an inclusion-

minimal resolution consequence of F . That is, C is a resolution consequence of F
but no proper subset of C is a resolution consequence of F .

7.3 Completeness results

In this section we will investigate the issues related to the completeness of resolution

and related topics.

THEOREM 7.2 (Quine theorem)

A non-tautological clause C is a consequence of a set of clauses F if and
only if there is a clause D such that D is a resolution consequence of F and
D ⊆ C.

Before proving Theorem 7.2 let us see its consequences. First of all, we observe the

corollary following from the fact that clauses are finite collections of literals.

COROLLARY 7.5

A non-tautological clause C is a consequence of a CNF F if and only if for
some minimal resolution consequence D of F , D ⊆ C.

Yet another consequence is:

COROLLARY 7.6 (Completeness theorem for resolution)

Let F be a CNF. Then F is satisfiable if and only if ∅ /∈ Res(F).

Proof: The implication⇒ follows from the soundness of the resolution rule.

To see ⇐, assume ∅ /∈ Res(F). Select a new propositional variable p /∈ Var(F)
and make this query: “Does F |= p”? If it is the case, then some element of Res(F)
must subsume the unit clause p. But VarRes(F) = VarF . So the only possible

clause from VarRes(F) subsuming p is empty. This is a contradiction. Therefore,

F 6|= p and so F is satisfiable. 2

By subsumption rule we mean the following rule of proof:

C

C ∨D

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 111

This rule is sometimes called weakening or absorption. The following is obvious.

PROPOSITION 7.6
The subsumption rule is sound. That is, for every valuation v, if v |= C,

then v |= C ∨D.

Proposition 7.6 says that the proof system consisting of resolution and subsumption

is sound. But now we have to ask the same question we asked above: “Is the proof

system consisting of resolution and subsumption complete?” The answer to this

question is positive. The meaning of Theorem 7.2 is precisely this. Formally, we

have the following.

PROPOSITION 7.7

The proof system consisting of resolution and subsumption rules is complete
for clausal logic. That is, given a set of clauses F and a clause C, F |=
C if and only if there exists a derivation (using resolution and subsumption
rules) that proves C. We can limit such proof to admit a single application of
subsumption rule.

Now, we are finally ready for the proof of Theorem 7.2. First, let us observe that it is

enough to prove Theorem 7.2 for finite sets F . Indeed, by the compactness theorem

(Theorem 6.1), if F |= C then for some finite F ′ ⊆ F , F ′ |= C. But then, having
proved Theorem 7.2 for finite CNFs, we know that for some finite F ′ ⊆ F , for some

resolution consequence of F ′, D, D ⊆ C. But the operator Res(·) is monotone:

more clauses, more consequences! Thus a resolution consequence D of F ′ that is

included in C is a resolution consequence of F .
Clearly, if C extends some clause D which is a resolution consequence of F then

every valuation v satisfying F also satisfies D (soundness of the resolution rule,

Proposition 7.5) and so also satisfies C (soundness of the subsumption rule, Propo-

sition 7.6). Thus we proved the implication⇒.

The implication⇐ is more subtle. Following our discussion above, it is enough to

prove that a non-tautological consequence of a finite F must contain as a subset a

resolution consequence of F .
So let us suppose that F is finite, a clause C is its consequence, but our implication

⇐ is false. Thus, formally,

(a) C ∈ Cn(F).

(b) C does not contain a subset that is in Res(F).

Now comes a delicate moment. Let us consider the set of propositional variables

occurring in F and in C. Let us call it V . Then, our assumption is that there is a

clause C′ having only variables in V such that:

(c) C′ ∈ Cn(F).

© 2009 by Taylor and Francis Group, LLC

112 Introduction to Mathematics of Satisfiability

(d) C′ does not contain a subset that is in Res(F).

Indeed, C is such clause C′.

Since there are only finitely many clauses where all variables are in V (recall that

no repetition of literals is allowed in a clause), we can select a longest (i.e., weakest)

clause C′ making (c) and (d) true. Without loss of generality, we can assume that C
is that C′ (we could select C to satisfy the conditions (a) and (b) and the additional

maximality condition upfront).

With possible renaming we can assume that the set V is {x1, . . . , xn}. The first

question we ask is this. Is it possible that all variables of V occur (positively or

negatively) in C? If this is the case, then (again without loss of generality) C looks

like this:

x1 ∨ . . . ∨ xk ∨ ¬xk+1 ∨ . . . ∨ ¬xn.

Let us look at the canonical valuation making C false. This valuation v evaluates

atoms x1, . . . , xk as false, and atoms xk+1, . . . , xn as true. Since v 6|= C, and C is a

consequence of F it must be the case that for some D ∈ F , v 6|= D, in other words,

v |= ¬D. Let us look at the clauseD. Here it is:

xi1 ∨ . . . ∨ xip ∨ ¬xj1 ∨ . . . ∨ ¬xjr .

Since all variables in V occurred in C, it must be the case that, already, v is defined
on all variables occurring inD. But v |= ¬D so we have:

(I) v(xi1) = . . . = v(xip) = 0.

(II) v(xj1) = . . . = v(xjr) = 1.

This, however, means that

{xi1 , . . . , xip} ⊆ {x1, . . . , xk}

and

{xj1 , . . . , xjr} ⊆ {xk+1, . . . , xn},

that is, D ⊆ C. Consequently some clause from F (and thus from Res(F)) sub-
sumes C. Since our assumption was that there is no such D, we just showed that C
does not involve all atoms in V .

Let xs be the first atom not occurring in C (either positively or negatively!). Since

C entails weaker clauses xs ∨ C and ¬xs ∨ C, it is the case that both xj ∨ C and

¬xj ∨ C belong to Cn(F). But by our construction, C was the longest clause E
involving only variables in V and such that E belongs to Cn(F) and E does not

contain a clause in Res(F). And certainly both clauses xs ∨ C and ¬xs ∨ C are

longer than C. Therefore, it must be the case that there are clauses D1 and D2 such

that D1, D2 belong to Res(F) and:

D1 ⊆ xs ∨ C, D2 ⊆ ¬xs ∨C.

Let us look at D1. Is it possible that D1 does not contain xs? No, because in such

case D1 ⊆ C and this was not the case since C did not contain a subset which is in

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 113

Res(F). Likewise, it must be the case that ¬xs ∈ D2. But with these facts we find

thatD1 andD2 are resolvable. In other words, since xs has no occurrence (positively
or otherwise) in C, D1 = xs ∨ E1, and E1 ⊆ C. Likewise, D2 = ¬x1 ∨ E2 and

E2 ⊆ C. But then Res(D1, D2) = E1 ∨ E2 ⊆ C. But Res(D1, D2) ∈ Res(F) so
we found that C contains a subsetD in Res(F), a contradiction. 2

We will use Theorem 7.2 to get a completeness result about the resolution rule alone.

First, let us observe that if C is a clause then ¬C is semantically equivalent to a

collection of literals (i.e., unit clauses). When we write ¬C we mean this collection

of unit clauses. Now, looking at ¬C, we observe that C =
∨

l∈¬C l̄. Indeed, l ∈ ¬C
if and only if for some literal m of C, l = m̄, that is for some m of C, m = l̄. But
then C =

∨

l∈¬C l̄.

Given a CNF F and a clause C we say that C follows from F by resolution refu-

tation if the closure under resolution of F ∪ ¬C contains an empty clause (i.e., is

inconsistent).

PROPOSITION 7.8

Let F be a CNF, and let C be a clause. Then F |= C if and only if C follows
from F by resolution refutation.

Proof: First, assume that F |= C. Then, by Theorem 7.2 there is a clause D in

Res(F) such thatD ⊆ C. So now, since the operatorRes(·) is monotone,Res(F) ⊆
Res(F ∪ ¬C)1. In particular D ∈ Res(F ∪ ¬C). But since D ⊆ C, negation of

every literal occurring inD belongs to Res(F ∪¬C). Thus, by repeated application
of the resolution rule we get the empty clause ∅ out ofD and the set of literals ¬C.
Conversely, assume that Res(F ∪ ¬C) contains the empty clause, ∅. Let v be an

arbitrary valuation satisfying F . Then it is not the case that v |=
∧

l∈¬C l. In other

words, v |= ¬
∧

l∈¬C l, that is v |=
∨

l∈¬C l̄. But then v |= C, as desired. 2

7.4 Query-answering, computing the basis of the closure
under resolution

Assume that we want to use a resolution/subsumption proof system as a tool for

answering queries. In this scheme the formula F is a database that is stored on the

system. The queries are clauses. The queryC is answered “yes” if F |= C, and “no”
otherwise.

In this scheme of things, the completeness of resolution refutation as a proof system

means that when we get a query C, we can transform C into a set of literals ¬C
(recall that the negation of a clause reduces to a set of unit clauses), and then run

1Let us recall that ¬C is a set of (unit) clauses.

© 2009 by Taylor and Francis Group, LLC

114 Introduction to Mathematics of Satisfiability

the resolution engine. If we ever compute the empty clause, ∅, we answer “yes.”

otherwise (when we saturate F with resolution and do not get ∅) we answer “no.”
This is fine (ignoring the space requirements related to the size of the closure under

resolution), but it means that we do, repeatedly, the same thing over and over again.

The issue now is if we could do something better. The idea is similar to tabling or

memoizing.

Here is the proposed alternative: Let us compute theRes(F) once and store it. Then,
once we are asked a query C, we check if any of the precomputed clauses (i.e., an

element of Res(F)) is included in C. If so, the answer is “yes.” Otherwise, by

Theorem 7.2, the answer is “no.”

Now, the issue is if we have to compute the entire Res(F) to use this scheme. Of

course, the answer is no; otherwise there would be no point in discussing it.

What we will do is to construct a much smaller subset (which we will call Min)
of Res(F), with the same completeness property: C ∈ Cn(F) if and only if some

D ∈ Min is included in C. So the query processing algorithm goes like this: First,

precompute the “basis” Min . Then, given a query C check if some element of the

basis Min is included in C. If it is the case, answer “yes,” otherwise, answer “no.”
To justify the proposed approach we first need to prove that such a simple set exists,

then we need an algorithm to construct it.

We will now define a basis of Res(F). The basis of F will be a setG of clauses with

the following properties:

1. G ⊆ Res(F).

2. Cn(F) = Cn(G).

3. G forms an antichain, i.e., for C1, C2 ∈ G, if C1 ⊆ C2 then C1 = C2.

4. Every element of Res(F) is subsumed by some element of G.

Here is the meaning of this definition. First, we want our basis to be a subset of

Res(F). Second, we want a subset that generates the entire Cn(F). Third, we want
an antichain, i.e., the set of inclusion-incompatible elements (i.e., with no subsump-

tion between the clauses). Finally, we want the property that all elements of Res(F)
are subsumed by the elements of the basis.

PROPOSITION 7.9
Let F be a set of clauses. Then there exists a unique basis G for F .

Proof: Given F , construct the resolution closure Res(F). Now, let Min be the

collection of all inclusion-minimal clauses in Res(F). We claim that Min satisfies

conditions (1)–(4) and is the unique set of clauses satisfying these conditions.

(1) is obvious by construction.

(2) Since Min ⊆ Res(F) ⊆ Cn(F), Cn(Min) ⊆ Cn(F). Conversely, if C ∈
Cn(F) then, by Theorem 7.2 some clause D ∈ Res(S) is included in C, and so an

inclusion-minimal clauseD ∈ F is included inC. ButD ∈ Min , thus, by soundness
of subsumption rule, C ∈ Cn(Min).

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 115

(3) Minimal elements in any family of sets form an antichain.

(4) AssumeD is an element ofRes(F). Then, sinceD is finite, there is an inclusion-

minimal element of Res(F), say C, such that C ⊆ D. But then, by definition,

C ∈ Min .

Now, we need to show that Min is the unique basis for F . To this end, let G be a

basis for F . Assume G 6= Min .
Case 1: G \Min 6= ∅. Choose C ∈ G \Min . Then, there is D ∈ Min such that

D ⊂ C. But G is a basis, and D ∈ Cn(F). Hence there is E ∈ G, E ⊆ D.

Consequently,E ⊂ C, a contradiction with the fact that G is an antichain.

Case 2: Min \ G 6= ∅. Select C ∈ Min \ G. Then, there is D ∈ G so that D
subsumes C. D 6= C because C /∈ Min . But D ∈ Cn(F), so there is E ∈ Min
such that E ⊆ D. But then E ⊂ C, and both C,E ∈ Min , again contradiction. 2

Given a set of clauses F we can, in the polynomial time in size of F , eliminate

subsumption in F while preserving consequence. Here is how we do this efficiently.

We sort the clauses of F according to their sizes, and within the fixed length ordering

the clauses lexicographically (with xi preceding¬xi). Then, for each clause we need
to eliminate those clauses in this ordering that it subsumes. All these clauses must

appear later in the ordering. It is clear that this procedure runs in time O(s2) where
s is the size of F . The output of this procedure will be an antichain. We can assume

that F is an antichain, that is, subsumption-free.

We could construct the unique basis Min as follows: first constructRes(F) and then
construct its basis. But we will do this differently.

(1) Start with a CNF F . Due to the discussion above, we can assume that F is

subsumption-free.

(2) Non-deterministically, select from F a pair of resolvable clauses C1 and C2

which has not been previously resolved.

(3) If Res(C1, C2) is subsumed by some other clause in F or is a tautology, do noth-

ing and select the next pair.

(4) IfD : Res(C1, C2) is not subsumed by some other clause in F , do two things:

(a) Compute R := {E ∈ F : D ⊆ E}. Eliminate from F all clauses subsumed by

D, that is F := F \R.
(b) Set F := F ∪ {D}.
(5) Do this until F does not change.

We first observe that the construction described by the above pseudocode has two

invariants. The first one is that F is an antichain (Step (1), and then we leave to the

reader checking that after each iteration of the loop (4) F is still an antichain). Here

is the second one: Let F0 be the input. Then, after each iteration, Cn(F) = Cn(F0).
To see this, assume that F1 is the content of the variable F before the execution of

the loop, and F2 is the content of F after the execution of the loop.

If F2 = F1, then the invariant is preserved. So now, assume that F2 = (F1 \ R) ∪
{C} and Cn(F1) = Cn(F). We will show that Cn(F2) = Cn(F). Indeed, since
F1 ⊆ Cn(F), F1 \ R ⊆ Cn(F). Moreover, C ∈ Cn(F) and so F2 ⊆ Cn(F).
Then, Cn(F2) ⊆ Cn(F). Conversely, R ⊆ Cn({C}) (because all clauses in R are

© 2009 by Taylor and Francis Group, LLC

116 Introduction to Mathematics of Satisfiability

subsumed by C). Therefore we have:

Cn(F1) = Cn((F1 \R) ∪R) ⊆ Cn((F1 \R) ∪ Cn({C}))

⊆ Cn((F1 \R) ∪ {C}) = Cn(F2).

Next, we need to see that the construction terminates. Here is why this happens.

Indeed, all we need to show is that once a clause has been removed from F at some

iteration, it will not be put in again. To this end, we show another invariant: at each

iteration the closure under subsumption can only increase (thus once a clause has

been subsumed after some loop it will always be subsumed). Indeed, assume that a

clauseD is subsumed by the set of clauses F1 (the value of the variable F before the

execution of the loop). Let F2 be the value of the variable F after the iteration of the

loop. If F2 = F1 there is nothing to prove. If F2 = (F1 \ R) ∪ {C}), then either

D is subsumed by a clause in F1 \ R, and so is still subsumed by a clause in F2, or

D is subsumed by a clause in R. But C subsumes every clause in R, thus if E ∈ R,
E ⊆ D, then C ⊆ E ⊆ D. Thus we proved invariance, the set of subsumed clauses

grows, and the construction halts, eventually.

But did we compute a basis? We did. The reason is that, after we terminate, the

resulting set of clauses held in the variable F satisfies the property that Cn(F) =
Cn(F0) where F0 is the input, and that for every clause C ∈ Res(F) there isD ∈ F
such that D subsumes C. Thus for each E ∈ Cn(F0) there is D ∈ F such that D
subsumes E and we are done.

Having established the virtues of preprocessing the knowledge base (finding the ba-

sis, and reducing the entailment to subsumption, i.e., inclusion), let us now play the

other side and see the virtues of not preprocessing.

To this end, we will see that there is a powerful fact that tells us that it is beneficial

to process on the case-by-case basis.

Specifically, given a CNF F , and a clause C, define

F/C = {D : D ∈ F andD can not be resolved with C}.

So, what is F/C? It consists of those clauses in F where variables occurring in C
do not occur at all, or they occur, but with the same polarity as in C.
Now, we have the following pruning lemma:

LEMMA 7.3
Let F be a CNF, and C a clause. Then, F |= C if and only if F/C |= C.

Proof: The implication⇐ is obvious.

For the other implication, assumeF/C 6|= C. Then, for some valuation v, v(F/C) =
1 but v(C) = 0. It must be the case that the valuation v evaluates all atoms occurring

in C to the sign opposite their sign in C (i.e., v must contain the canonical valuation

falsifying C). But F |= C. Thus there must be a clause D ∈ F so that v(D) = 0.
Since v(F/C) = 1 it must be the case thatD /∈ F/C. SinceD ∈ F \ (F/C) it must

be the case thatD can be resolved with C. That means that for some variable xi, xi

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 117

occurs both in C and inD, but with opposite signs. Now, we have two cases.

Case 1: xi occurs inC positively. Then, ¬xi ∈ D. Moreover, recall v(xi) = 0, Thus
v(¬xi) = 1, v(D) = 1 and we get a contradiction.

Case 2: xi occurs in C negatively. Then xi ∈ D. Then, v(xi) = 1, v(D) = 1 and

we get a contradiction. 2

We get the following corollary.

COROLLARY 7.7

Assume a CNF F is finite and C is a non-tautological clause containing
all variables occurring in F . Then, F |= C if and only if some clause in F
subsumes C.

Proof: The implication⇐ is obvious.

To see⇒, assume F |= C. Then, by Lemma 7.3, F/C |= C. Can F/C be empty?

No, because the empty set of clauses does not entail any non-tautological clause.

Thus let D ∈ F/C. Then, for every variable xi occurring in D, the polarity of xi in
C cannot be opposite. But C contains all variables occurring inD so the polarity of

those variables inD and in C is the same. ThusD ⊆ C, as desired. 2

Lemma 7.3 suggests another strategy for query answering. Namely, once we have F
and the queryC is preprocessed, eliminate from F all clauses containing the literal l̄
with l ∈ C. This clearly speeds up the matters.

Except that when we look at the resolution refutation we see that since we add all lit-

erals l̄ for l ∈ C the clauses containing such literals l̄ will be immediately eliminated

in the DPLL search which we will encounter in Chapter 8.

7.5 Reduct by a literal, the Davis-Putnam lemma

We now discuss a technique for reducing the number of variables in a set of clauses.

The key lemma below will form the basis for one of fundamental algorithms for

testing satisfiability. It will be convenient (as we did in Section 7.1) to think about a

clause C := l1 ∨ . . .∨ lk as a set of literals {l1, . . . , lk}. In this way some operations

on clauses will reduce to set operations.

By a reduct of a set F of clauses by a literal l we mean the following set of clauses

G:

{C \ {l̄} : C ∈ F ∧ l /∈ C}.

So what is the reductG? It is just the effect of assuming l to be true. Indeed, assume

that C ∈ F . If l ∈ C then once l is assumed to be true, C is satisfied. As concerns

the remaining clauses, these either do not mention the underlying variable at all, or if

they do, the resolution with a unit clause {l} can be performed, resulting in C \ {l̄}.

© 2009 by Taylor and Francis Group, LLC

118 Introduction to Mathematics of Satisfiability

Let us observe that a literal l determines, in effect, two reducts: one with respect to

l and another with respect to l̄. Given F , we will denote these reducts by Fl and Fl̄,
respectively. Here is the key property of these reducts.

LEMMA 7.4 (Davis–Putnam lemma)
Let F be a set of non-tautological clauses, and let l be a literal. Then, F is

unsatisfiable if and only if both Fl and Fl̄ are unsatisfiable.

Proof: First, assume that at least one of Fl, Fl̄ is satisfiable. Without loss of general-

ity assume Fl is satisfiable. Since F consists of non-tautological clauses, Fl has no
occurrence of l, l̄. Since Fl is satisfiable, let v |= Fl. Define now a valuation w as

follows2

w(m) =

{

v(m) m /∈ {l, l̄}

1 m = l

Then, as l, l̄ do not appear in G at all, for C ∈ F , as long as l /∈ C, w |= C. But if
l ∈ C, then w |= C by construction. This completes the proof of⇒.

Now, assume that both Fl and Fl̄ are unsatisfiable, but v is a valuation satisfying F .
Without loss of generality we can assume v(l) = 1. Let us look at Fl. If C ∈ Fl
two cases are possible. First, it is possible that C ∈ F and l, l̄ /∈ C. Then, clearly,
v |= C. The second case is that C = D \ {l̄} with l̄ ∈ D, D ∈ F . Then, v |= D.

But v(l̄) = 0 because v(l) = 1. Thus one of remaining literals inD, i.e., one in C, is
evaluated by v as 1. But then v |= C. Thus v |= Fl, a contradiction. This completes

the proof. 2

COROLLARY 7.8
Let F be a set of non-tautological clauses, and let l be a literal. Then, F is

satisfiable if and only if at least one of Fl, Fl̄ is satisfiable.

We get a little bit more of our consideration of reducts. Recall that a literal l is pure
in a set of clauses F if no clause of F contains l̄. When l is pure in F , the reduct Fl
is included in F . This implies the following fact.

PROPOSITION 7.10
Let F be a set of clauses. If l is a pure literal in F then F is satisfiable if

and only if Fl is satisfiable. Moreover, if v is a valuation satisfying Fl, then
a valuation w defined by

w(m) =

{

v(m) m /∈ {l, l̄}

1 m = l

2We define here the valuation v on the entire set of literals at once. Technically, valuations are functions

mapping Var into Bool . But since the valuations extend uniquely to the set of all literals, we can define

valuations on the entire set of literals Lit as long as we maintain the consistency condition: v(l̄) = v(l).

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 119

satisfies F .

Let us observe that Proposition 7.10 tells us what to do when we encounter a pure

literal in a set of clauses F that we test for satisfiability: turn l to true, and eliminate

clauses containing l. On a related theme, we recall that in Proposition 2.8 we proved

that whenever l is pure literal in F then {l} is an autarky for F .

In Chapter 8 we will return to the reduct and use it in algorithms for satisfiability

testing.

7.6 Semantic resolution

Can we do something to limit the tremendous growth of the closure under resolution,

Res(F), without compromising the completeness property (Corollary 7.6)?

A lot of effort has been expended to do just this. In the early period of the develop-

ment of studies of satisfiability an immense amount of work was spent on this topic,

but there are current papers dealing with this problem as well. The scheme is always

similar: take some version of resolution (say r) to limit the number of clauses that

can be derived, and show the analogue of Corollary 7.6 holds for r. In other words

make sure that there is (hopefully) much fewer clauses that can be derived, but if the

empty clause ∅ can be derived using resolution, then such restrictive closure, using r
still derives ∅. In this section we will do this for a scheme that uses two elements to

limit available resolutions. The first element will be a valuation v that allows us to

split the input formula into two parts: those clauses that are true under v and those

clauses that are false under v. We will require that the first (left) input to an applica-

tion of resolution be always true under v. Likewise, we will require that the second
input to the resolution rule be always false under the input valuation v. The second
element limiting the acceptable resolutions will be a linear ordering ≺ of variables.

The idea is to limit the resolutions by insisting that the literal used for resolution (the

one that is being eliminated) be largest in the ordering ≺ in the second (right) in-

put. By insisting that the first input be true under v and the other false, we brake the

symmetry of the resolution - we put a limitation on the inputs. This is a small lim-

itation. The second one, namely the requirement that a predefined ordering ≺ must

be consulted every time we want to resolve, is a strong limitation. This approach to

limitation of resolution is due to Slagle [Sl67].

We start with a simple observation on satisfiability to see that the first part of our

strategy makes sense. Since our goal is to have one of the inputs of the resolution

rule false under the input valuation v, let us ask how big a limitation is it. Given a set

of clauses F , split F into two classes F1 and F0 according to validity under F : F1

consists of clauses in F true under v and F0 of those false. Here is an observation.

© 2009 by Taylor and Francis Group, LLC

120 Introduction to Mathematics of Satisfiability

PROPOSITION 7.11

If F is unsatisfiable, then both F0 and F1 are nonempty.

Proof: Clearly, if F is unsatisfiable F0 must be nonempty (for otherwise v |= F .) If
F1 is empty, then consider valuation ṽ defined by ṽ(p) = 1 − v(p) for all p. Here v
is the input valuation that is used to define F0 and F1. It is easy to see that ṽ must

satisfy F . 2

We will always eliminate tautological clauses (that is, ones that contain pairs of

complementary literals). This clearly does not change satisfiability. Now, let us

look at the orderings of variables. If ≺ is a linear ordering of variables, then, in each

non-tautological clause C, ≺ orders the literals. How? Namely, if we assign to a

literal l its underlying variable |l|, then the induced ordering of literals in the clause

C is l ≺C m if |l| ≺ |m|. Since C is non-tautological≺C is well-defined.

Now, we will define the restricted resolution rule Resv,≺(·, ·). As indicated before

this rule will not act on any pair of clauses; there will be limitations. We require

that several things happen for an ordered pair of clauses 〈D,E〉 to apply the limited

resolution rule:

(a) v(D) = 1.

(b) v(E) = 0.

(c) D,E are resolved on the literal largest in the ordering≺E .

If the result of this limited form of resolution is defined, we denote it by

resv,≺(D,E). This definition clearly breaks the symmetry of resolution and lim-

its the results.

Before we move further, let us look at the left input of the restricted resolution resv,≺.
Since the right input E is supposed to be false under v, all the literals in E are

falsified by v. Thus their duals are true under v. But what about the result of the

application of resolution, Resv,≺(D,E)? Here both things may happen; it may be

either true or false under v. When the clause that is false under v is computed, we

will not be able to use it as the left input of any application of Resv,≺ (but of course

we will be able to use it as a right input).

Although we limited greatly the applicability of resolution, we still resolve, just that

we accept fewer results. Let v and ≺, and a set of clauses F be fixed. There is a

monotone operator resF,v,≺ such that the least fixpoint of resF,v,≺ is the least set of

clauses containing F and closed under the limited resolution rule Resv,≺. Just for
the completeness of our presentation here is the definition of resF,v,≺.

resF,v,≺(G) = {C : C ∈ F ∨ ∃D,E(D ∈ F ∪G∧

E ∈ F ∪G ∧ v(D) = 1 ∧ v(E) = 0 ∧ C = Resv,≺(D,E))}.

PROPOSITION 7.12

The operator resF,v,≺ is monotone. Thus it possesses a least fixpoint.

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 121

The elements of the least fixpoint of resF,v,≺ can be characterized in a proof-

theoretic way as possessing proofs (derivations) using resolution rule Resv,≺. In

Figure 7.1 we see what this derivation looks like. The input R0 belongs to F , and
must be true under v. The inputs C0, . . . , Cj−1 are derived using the limited reso-

lution rule Resv,≺. They are all false in v. The outputs R0, R1, . . . , Rj−1 are true

under v. The clauses Ri are Resv,≺(Ri−1, Ci−1), for 1 ≤ i ≤ j. We will call

Resv,≺(F) the least fixpoint of the operator resF,v,≺.

.

.

.

.

.

.
.

.
.

.

.

.

R0 C0

Rj−1

E

R1 C1

Cj−1

H

FIGURE 7.1: The derivation of a clause E using a limited resolution rule

resv,≺

We are now ready to prove the main result of this section.

PROPOSITION 7.13

Let v be a valuation, ≺ a linear ordering of variables, and let F be a set
of non-tautological clauses. Then, F is unsatisfiable if and only if Resv,≺(F)
contains the empty clause ∅.

Proof: Clearly, since Resv,≺(F) ⊆ Res(F), if Resv,≺(F) contains ∅ then so does

Res(F) and so F is unsatisfiable. By completeness theorem 7.6, if F is unsatisfiable

then Res(F) contains the empty clause. Thus all we need to show is that if Res(F)
contains the empty clause, then so does Resv,≺(F). In other words, if there is a

resolution proof of ∅ out of F , we want to find one that uses the restricted form

of the resolution, Resv,≺, only. First, let us observe that the compactness theorem

allows us to limit to the finite F . Indeed, if the set of clauses F is unsatisfiable, then

there is a finite G ⊆ F which is unsatisfiable and so, if we have the result proved for

finite sets of clauses, Res(G) contains ∅, but then Resv,≺(F) is even bigger and so

it also contains ∅. So we assume that F is finite. One advantage of this is that we can

use induction on the size of VarF .

The base case is really simple. If there is just one variable, say p, we can select

l ∈ {p,¬p} which is false under v. Say it is p. Then, since F is inconsistent and

© 2009 by Taylor and Francis Group, LLC

122 Introduction to Mathematics of Satisfiability

there is just one variable, both p and ¬p are in F and we just resolve with the unit

clause p as the second input. This is a valid resolution derivation of ∅ using the

limited resolution because p is largest in ≺{p}.

So now assume |VarF | = n + 1, and that our proposition is valid for all sets of

clauses with the variable set of size at most n. Our proof will require manipulation

of derivations such as the one presented in Figure 7.1.

There will be two cases in our proof.

Case 1: Let us assume that F contains a unit clause l such that v(l) = 0. Let G be

the reduct of F by l, that is, the following set of clauses.

G := {C \ {l̄} : C ∈ F, l /∈ C}.

Can G be satisfiable? The set F is not satisfiable. Thus G is unsatisfiable because

G = Fl and by Lemma 7.4 Fl is unsatisfiable. Moreover, the variable |l| does not
occur in G. Thus inductive assumption applies, and there is a derivation of ∅ using
just clauses ofG, and only the restricted form of the resolution Resv,≺. It looks like
the derivation in Figure 7.1, except that E is ∅.
We will now show that under the assumptions of Case 1, Resv,≺(Fl) ⊆ Resv,≺(F).
This fact is proved by induction on the height of derivation of a clause C ∈
Resv,≺(Fl. Recall that each clause C ∈ Resv,≺(Fl) has a derivation, that is, there is
a binary tree whose leaves are labeled by clauses of Fl and internal nodes are valid

applications of resv,≺ to labels of parents.

Basis: Let C ∈ Fl. If C ∈ F , then we are done. Otherwise C ∪ {l̄} belongs to F .
Since v(l) = 0, v(l̄) = 1, v |= C ∪ {l̄}. ThusC ∪ {l̄} can serve as a left input. Also,
since v(l) = 0 and l is unique in {l}, {l} can serve as right input. But then C has a

derivation.

Inductive step. Assume E = resv,≺(R,C), R,C belong to Resv,≺(Fl). By in-

ductive assumption both R and C belong to Resv,≺(F). Let D1, D2 be deriva-

tions of R,C, respectively, using F . We now combine the derivations D1, D2 and

resv,≺(R,C) into a derivation D of E from F . Clearly this derivation uses only

valid applications of resv,≺.
Once we proved the inclusion result, we apply it to our inductive assumption. Since

∅ ∈ Resv,≺(Fl), ∅ ∈ Resv,≺(F). This completes the proof of Case 1.

Case 2: Now, we will deal with the second case, where there is no such unit false

under F . This second case uses a “dirty trick.” We essentially reduce to Case 1.

There will be more proof transformations. This reduction to Case 1 implies that we

cannot “short-cut” and do the Case 2 alone (which at the first glance looks more

general than Case 1).

Let us select the≺-least variable, say p. Then we select l ∈ {p,¬p} so that v(l) = 0.
Once again, let us reduce F by a literal, in this case l̄. That is, we have the set G of

clauses as follows.

G := {C \ {l} : C ∈ F, l̄ /∈ C}.

As before, because F is unsatisfiable, G is unsatisfiable (Lemma 7.4). Since G has

fewer variables, there is a derivation of ∅ out of G using only Resv,≺. Now, let

us restore each input from F to what it was before the reduction. We have to be

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 123

careful in two ways. First, we will have to restore l not only to inputs, but also, as

we resolve, to resolvents. What is more subtle here, we need to convince ourselves

that the applications of the resolution were valid (for we allow only applications of

Resv,≺). As we restore the presence of l in clauses, let us observe that now the

arguments to resolution will have, possibly, l in them. But if such input was the

second one (that is where we care) it will look like this: it will be either Ci or Ci ∨ l.
In either case this clause is false under v. But it is not the end of our troubles. For in
the application of the rule resv,≺ we allowed the application of the resolution under

≺-largest of the literals. Fortunately, we selected l so it is in the bottom of≺ – it will

never interfere with the application of the Resv,≺ – what was largest is still largest

when we brought l back. So we restored l, we resolved as we were resolving in the

original derivation, and what do we get? Two cases are, actually, possible:

Subcase 2.1: Nothing was restored as we tried to put back l. In this case we already
have a valid derivation of ∅ from F , and we are done.
Subcase 2.2: l has been restored in at least one place. Since only l was restored (and
the clauses containing l̄ are not present in the derivation, the resulting derivation

derives l, not ∅. Thus we have a derivation (using Resv,≺) of l from F . Now, let us
shift gears and look at a new set of clauses, H := F ∪ {l}. This set H has at most

n+1 variables. This may appear to be bad news. ButH has a unit clause false under

v! Moreover H is unsatisfiable because it is bigger than F and F is unsatisfiable,

This throws us back to Case 1. We know that there is a derivation of ∅ from H , let

us call it D0. But there is an unpleasant hitch. This derivation D0 allows us to use

as inputs not only clauses from F , but also l. This is bad news, because we want

a derivation using inputs from F alone. But l itself has a derivation from F alone.

We will call that derivation of {l} from F , D1. So now our goal is to combine D0

and D1 into a single derivation D with inputs from F alone (and using only the rule

resv,≺). First, let us look at clauses Ci, 1 ≤ i ≤ j − 1, in the derivation D0. We

can now modify their derivations in F ∪ {l} so that they involve only F . We modify

the derivation D0 by substituting these derivations from F alone. So now we have

handled all “left-side” inputs. But we are not finished, yet. Specifically, we need to

handle the clause R0. Either R0 belongs to F and we do not have to do anything

(because we now have a derivation of ∅ using inputs of F alone), or R0 is l. In this

final case we reuse the derivationD1, replacing l in D0 by this derivationD1, which

is only from F (and uses only the rule Resv,≺). Thus we got our new derivation D
of ∅ from F , using only Resv,≺. This completes the proof. 2

Let us observe that if we wanted to limit resolution so that the first input is true

under v, and the second false, then the completeness result still holds. The reason

is that such form resolution computes more than Resv,≺, but less than Res . So if

F is inconsistent, then such semantic resolution without the ordering still derives ∅.
Similar argument shows that limiting the resolution to resolving on the largest literal

in a specific ordering is also complete.

© 2009 by Taylor and Francis Group, LLC

124 Introduction to Mathematics of Satisfiability

7.7 Autark sets and lean sets

We will now discuss an elegant result, due to O. Kullmann. This result provides

a surprising connection between resolution and autarkies. The connection comes

via the set of clauses touched by an autarky. Specifically, given a nonempty partial

valuation v, and a set of clauses F , we associate with v and F the set of clauses in F
which are touched by v. Formally we define

αF (v) = {C ∈ F : VarC ∩ Varv 6= ∅}.

In other words, αv(F) is the set of clauses in F that are touched by v. We then say

that F ′ ⊆ F is an autark set with a witness v if v is an autarky, and F ′ = αF (v).
An autark subset of F is one that has a witness. It follows from the fundamental

properties of autarkies that autark subsets have a desirable property: if F ′ is an

autark subset of F , then F is satisfiable if and only if F \ F ′ is satisfiable. Next,

we observe that the witness of an autark subset is not, in general, unique. One reason

is that when F is satisfiable then F itself is its own autark subset and every satisfying

valuation for F is a witness.

Let us recall the operation⊕ on partial valuations. v ⊕ v′ = v ∪ {l ∈ v′; l̄ /∈ v}. We

established that the set of autarkies is closed under the operation ⊕. Moreover, for

all v, v′, v �k v ⊕ v′. An important property of the operation⊕ is the following.

LEMMA 7.5

For all partial valuations v1, v2 and for all sets of clauses F ,

αF (v1 ⊕ v2) = αF (v1) ∪ αF (v2).

Proof: We show inclusion ⊆. First, let C be a clause, C ∈ αF (v1 ⊕ v2). Then, C
is touched by v1 ⊕ v2. If v1 touches C then C belongs to the right-hand side. So

let us assume that v1 does not touch C. Then, no variable of v1 occurs in C. But C
is touched by v1 ⊕ v2 so one of the variables of {l ∈ v2 : l̄ /∈ v1} touches C. In

particular v2 touches C and so C belongs to the right-hand side.

Conversely, let C belong to αF (v1) ∪ αF (v2). If C ∈ αF (v1) then C is touched by

v1 ⊕ v2. If C ∈ αF (v2) \ αF (v1) then for some l, |l| ∈ Varv2 \Varv1 , l ∈ C. But
then C ∈ αF (v1 ⊕ v2), as desired. 2

We then get the following fact.

COROLLARY 7.9

The collection of autark subsets of a CNF F is closed under finite unions.

Next, we have the following fact concerning autarkies.

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 125

LEMMA 7.6

Let F be a CNF. Let 〈vα〉α<β be a chain of autarkies for F so that α1 < α2

implies vα1
�k vα2

. Then, the least upper bound of the chain 〈vα〉α<β exists,
and is an autarky for F .

Proof: The least upper bound of a �k-chain of partial valuations always exists. It

is just the set theoretic union of that sequence of partial valuations (when we think

about those as consistent sets of literals it is plainly obvious). So, let v =
⋃

α<β vα
with α limit (otherwise the conclusion is trivial). We claim that v is an autarky for

F . Indeed, let v touch C ∈ F . Then, because C is finite, there is α < β such that vα
touches C. Then (vα)3(C) = 1, and thus v3(C) = 1, as vα �k v. 2

Now, the Zorn lemma immediately entails the following corollary (which is obvious

in finite case).

COROLLARY 7.10

If F is a CNF, then F possesses a maximal autarky.

Let us observe, however, that this autarky does not need to be non-empty. There are

sets of clauses (we will see one below) with no nonempty autarkies.

PROPOSITION 7.14 (Kullmann)

Let F be a set of clauses. Then, F possesses a largest autark subset.

Proof: Let v be a maximal autarky for F and let F ′ = αF (v). We claim that F ′ is

largest autark. To this end, let F ′′ be any autark subset of F , and let v′′ be its witness
autarky, that is F ′′ = αF (v′′). Let us define

v′ = v ⊕ v′′.

Now, since both v, v′′ are autarkies and the collection of autarkies is closed under

the operation ⊕, v′ is an autarky. But v is a maximal autarky and v �k v′. Thus

v = v′. That is, v = v ⊕ v′′. But then αF (v) = αF (v) ∪ αF (v′′) (Lemma 7.5), that

is F ′ = F ′ ∪ F ′′, i.e., F ′′ ⊆ F ′, as desired. 2

We will denote the largest autark subset of F by AF .

We recall that a set of clauses is minimally unsatisfiable if F is unsatisfiable but

every proper subset F ′ ⊂ F is satisfiable. Clearly, compactness theorem entails that

minimally unsatisfiable sets of formulas are finite. Better yet, we have the following

fact.

PROPOSITION 7.15

If a set of clauses G is minimally unsatisfiable, then every resolution deriva-
tion of ∅ out of G must involve all clauses of G.

© 2009 by Taylor and Francis Group, LLC

126 Introduction to Mathematics of Satisfiability

Proof: If there is a resolution derivation D of ∅ such that some clauses of G do

not occur as premises of D, then let G′ be the set of premises of D. Then, G′ is

unsatisfiable, and as G′ is a proper subset of G, G is not minimally unsatisfiable. 2

We now define PF as the union of all minimally unsatisfiable subsets of F . By

Proposition 7.15, PF consists precisely of those clauses in F which are premises in

some derivation of ∅ (different clauses may occur in different derivations). We will

call a clause C belonging to F plain (in F) if C is a premise of some derivation of ∅
from F . We will call a subset of F ′ ⊆ F lean if it consists of clauses plain in F . It
is quite obvious that PF is the largest lean subset of F .
We will now prove several lemmas and a corollary that will bring us closer to the

fundamental result on the connection of autark subsets and resolution. First we have

a fact of separate interest.

LEMMA 7.7 (Van Gelder)
If v is an autarky for F , then v is an autarky for Res(F).

Proof: By induction on the height of derivation tree of a clause. If that height is

0, then the proof is obvious. So let us assume that D is the result of application of

resolution to D1, D2, both D1, D2 ∈ Res(F) and that we resolved on variable x.
Moreover let us assume that v touchesD.

We can assume thatD1 = C1 ∨ x, x /∈ C1, and thatD2 = C2 ∨ ¬x,¬x /∈ C2.

Case 1: x ∈ Dom(v). We assume v(x) = 1 (the case of v(x) = 0 is similar).

Because of our case, v touches D2. But v(¬x) = 0 so for some literal l ∈ C2,

v(l) = 1. But then l ∈ D and so v3(D) = 1.
Case 2: x /∈ Dom(v). Since v touchesD for some literal l ∈ C1 ∨ C2, v touches l.
Without the loss of generality, l ∈ C1. Thus l ∈ D1. Thus v touches D1 and since

D1 has a shorter derivation, v evaluates D1 as 1. Thus for some literal m in D1,

v(m) = 1. But m 6= x,m 6= ¬x because x is not in the domain of v. Thusm ∈ D,

and so v3(D) = 1. 2

Next we have the following fact.

LEMMA 7.8
Let F be a collection of clauses and let v be an autarky for F . Let T be

a resolution tree whose conclusion is a clause D. If v evaluates any of the
premises of the tree T as 1, then v evaluates D as 1. That is v3(D) = 1.

Proof: We proceed by induction on the height of the tree T , ht(T). If ht(T) = 0,
that is, T is a single node labeled withD, then the assertions are obviously true.

Hence let us assume that T is the effect of composing two trees (which are deter-

mined by parents of the root of the tree T), T1 and T2. Let us assume that the

conclusion of T1 is D1 and the conclusion of T2 is D2. Let the variable on which

we made the resolution of D1 and D2 be x. Without the loss of generality we can

assume that for some clause C which is a premise of T1, v3(C) = 1. By inductive

assumption we assume that v3(D1) = 1.

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 127

Again without the loss of generality we can assume that x ∈ D1 (the case when

¬x ∈ D1 is very similar). We need to consider two cases.

Case 1: x ∈ v. Then, v touches D2 because ¬x ∈ D2. Since v is an autarky for F ,
by Lemma 7.7, v3(D2) = 1. But then

v3(D2 \ {¬x}) = 1.

But D2 \ {¬x} ⊆ D, so v3(D) = 1.
Case 2: x /∈ v. Then, since v3(D1) = 1, v3(D1\{x}) = 1, and as before v3(D) = 1.

2

We then have the following corollary.

COROLLARY 7.11
Let AF be the largest autark subset of F . Then PF ∩ AF = ∅. In particular
AF ⊆ F \ PF .

Proof: Let C ∈ AF . Then, for a maximal autarky v of F , v3(C) = 1. But then for

every resolution derivationT whereC serves as a premise, v evaluates the conclusion
of T as 1, so that conclusion cannot be ∅. 2

Our next fact corresponds to the familiar property that contradictory theory proves

everything. Here, in the clausal logic and using resolution, we have a similar prop-

erty.

LEMMA 7.9
Let F be a set of clauses that form a premise set of a resolution derivation
T of ∅. Let V = VarF and L = LitV . Then for every literal l ∈ L, there is a
resolution derivation tree Tl with the following properties:

1. All premises of Tl occur among the premises of T .

2. The conclusion of Tl is the unit clause {l}.

Proof: First, let us observe that T cannot possess a pure literal m. For in such case

{m} is an autarky for F , and then, since m occurs in some premise of T , m must

evaluate the conclusion of T as 1, contradicting Lemma 7.8. Now, T is a tree and

we can associate with each node of T the distance from the root. Then, given a

variable x we associate with x the number d(x) which is the minimum of distances

of nodes in which we resolve on x. Every variable that occurs in any premise of

T must be eventually eliminated by an application of resolution. Thus, for every

x ∈ V , d(x) is defined. By induction on d(x) we show that both units {x} and
{¬x} possess resolution derivations out of F . This is entirely obvious if d(x) = 0
because this means that x is the last variable on which we resolved, and the clauses

in the parents of the root had to be unit clauses {x} and {¬x}. So now assume

that the assertion is valid for variables y with d(y) < d(x). There is a node n with

the distance of n equal to d(x) where x is a variable on which we resolve. The

© 2009 by Taylor and Francis Group, LLC

128 Introduction to Mathematics of Satisfiability

parents of node n are labeled with C1 = l1 ∨ . . . ∨ lk ∨ x, C2 = m1 ∨ . . . ∨mr ∨
¬x. All literals l1, . . . , lk,m1, . . . ,mr are eventually resolved afterwards. Therefore

d(l1) < d(x), . . . , d(lk) < d(x), d(m1) < d(x), . . . , d(mr) < d(x). By inductive

assumption there are derivations T1,1 . . . , T1,k of the units {l̄i} . . . , {l̄k}. Likewise
there are derivations T2,1 . . . , T2,r of the units {m̄i} . . . , {m̄r}. Those derivations

use only premises from F . Combining derivations T1,1 . . . , T1,k with the derivation

of l1∨ . . .∨ lk ∨x we get a derivation of the unit {x}. Analogously we derive {¬x}.
2

COROLLARY 7.12

Let x ∈ VarPF
. Then, both {x}, {¬x} belong to Res(PF).

Proof: Let x ∈ VarPF
. Then, there is a resolution derivation tree T such that the

conclusion of T is ∅ and for some clauseC among premises of T , x occurs positively
or negatively inC. But all premises of T belong to PF , and now the assertion follows

from Lemma 7.9. 2

We will now describe the technique (due to Kullmann) of crossing out variables from

a clause. Given a clause C and a set of variables X , crossing out X from C results

in a clause that does not mention variables from X or literals from X̄ . Formally,

C ⋆ X = C \ (X ∪ X̄). Likewise, F ⋆ X is {C ⋆ X : C ∈ F}.
Here is a fundamental relationship of autark subsets and crossing out operation.

PROPOSITION 7.16

A subset F ′ ⊆ F is autark if and only if for X = VarF\F ′ , F ′⋆X is satisfiable.

Proof: First, let us assume that F ′ ⊆ F is an autark subset of F and let v be a

witnessing autarky. Thus F ′ consists of those clauses C in F which v touches (and

thus satisfies). We define

F ′′ = F ′ ⋆ X,

whereX = VarF\F ′ . What kind of clauses are in F ′′? We crossed out, in all clauses

of F ′, variables that occur outside of F ′. But F ′ was an autark subset of F with a

witness v. Therefore those variables in X cannot occur in the domain of v (for if

they were, the corresponding clauses must be in F ′ as v is a witness for F ′). Thus

crossing out of those variables does not affect the evaluation by v. Consequently any
extension of v to a complete valuation of variables of F ′ ⋆ X satisfies F ′ ⋆ X .

Conversely, let us assume that for X = VarF\F ′ , F ′ ⋆ X is satisfiable. Let v be a

satisfying valuation for F ′ ⋆ X . The assignment v is defined on the set of variables

VarF ′⋆X . We claim that v is a witnessing autarky to the fact that F ′ is an autark

subset of F . Thus two items need to be proved.

(a) v is an autarky for F .

(b) F ′ is the set of clauses touched by v.

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 129

Proof of (a). Let us assume that v touches C ∈ F . That is Varv ∩ VarC 6= ∅.
By definition, v is defined only on variables occurring in clauses of F ′, not outside.

This means that the clause C contains some variables that do not occur outside of

F ′. When we cross out variables of X , C results in a clause C′ ∈ F ′ ⋆ X . Then, v
satisfies C′. But then v3(C) = 1 because C′ ⊆ C.
Proof of (b). We need to show that F ′ is precisely the set of clauses touched by v.
Two inclusions need to be shown.

(i) IfC is touched by v thenC must contain a variable which occurs only in F ′. Thus

C cannot be outside of F ′.

(ii) Conversely, ifC ∈ F ′ then v satisfies the cross-outC⋆X . Thus v touchesC⋆X ,

and so v touches C as well. 2

Now, we have the following property of PF .

LEMMA 7.10

Let X = VarPF
. Then, for every clause C in F there is a resolution deriva-

tion T of C ⋆ X such that all premises of T are in PF ∪ {C}.

Proof: LetC ∈ F . Then,C can be written asC1∨C2 whereC1 consists of literals in

LitPF
, and C2 is C ⋆X . But for every literal l in C1, there is a resolution derivation

with premises in PF that derives the unit {l̄} (Lemma 7.12). We can now construct

a derivation of C2 using C and clauses from PF in the same way as we constructed

a resolution derivation in the proof of Lemma 7.9. 2

We are ready to prove the crucial fact that settles the form of the largest autark subset

of F .

PROPOSITION 7.17

The set F \ PF is an autark subset of F .

Proof: Instead of looking for a witness, we use the characterization of autark subset

given in Proposition 7.16. Let F ′ = F \ PF . All we need to prove is that for

X = VarPF
, F ′ ⋆X is satisfiable. Let us, then, assume that F ′ ⋆ X is unsatisfiable.

Then, there exists a resolution derivation of ∅ that uses as premises clauses in F ′ ⋆X .

This derivation T has in its premises clauses D1, . . . , Dm from F ′ ⋆ X , andm ≥ 1.
The clausesD1,Dm are, respectively,C1⋆X, . . . , Cm⋆X for someC1, . . . , Cm
in F ′.

But now we recall that X = VarPF
. Then, by Lemma 7.10, PF ∪ {Ci} derivesDi,

1 ≤ i ≤ m. Let Ti be a corresponding derivation ofDi. Now, combining derivations

Ti, 1 ≤ i ≤ m, and T we derive ∅ using clauses Ci, 1 ≤ i ≤ m, and PF . But then
C1 belongs to PF and to F ′. But F ′ = F \ PF , a contradiction. 2

Now, we have the following elegant corollary due to O. Kullman.

COROLLARY 7.13

Let F be a set of clauses. The largest autark subset AF of F is F \ PF .

© 2009 by Taylor and Francis Group, LLC

130 Introduction to Mathematics of Satisfiability

Proof: We just proved (Proposition 7.17) that F \ PF is autark. Since all autark

subsets of F are disjoint with PF , F \ PF is the largest autark subset of F . 2

The next corollary characterizes lean sets of clauses.

COROLLARY 7.14

Let F be a set of clauses. Then, F is lean if and only if F has no non-empty
autarkies.

Finally we get the original result of O. Kullman in its two forms.

COROLLARY 7.15

Let F be a set of clauses. Then, there is a unique decomposition F = F1 ∪
F2 where F1 is autark, and F2 is lean. In other words there is a unique
decomposition F = F1 ∪ F2 where F2 is lean, and F1 ⋆VarF2

is satisfiable.

While Corollary 7.15 is interesting it gives us no direct technique for finding au-

tarkies. We will see in Chapter 8 that the problem of existence of non-empty au-

tarkies is as difficult as the satisfiability problem itself.

We will now see that the largest autark set has an interesting relationship with maxi-

mal satisfiable subsets of sets of clauses.

Corollary 7.15 tells us that we can decompose an arbitrary set of clauses into AF ,
the largest autark subset, and PF , the largest lean subset of F . But we do not claim

that PF has no satisfiable subsets. There may be subsetsG of PF that do not contain

any set of premises of a proof of an empty clause even though each of the elements

of G belongs to one such set. We will see an example of such a situation below.

With this in mind, we say that a set G ⊆ F is maximal satisfiable if G is satisfiable,

but for every H , G ⊂ H ⊆ F , H is unsatisfiable. We write MAXSATF to denote

the family of maximal satisfiable subsets of F . Clearly, when F itself is satisfiable

then the family MAXSATF consists of F only. But in general it may have many

elements. We have the following fact showing that the largest autark subset of F
approximates all maximal satisfiable subsets of F .

PROPOSITION 7.18

If F is a set of clauses, AF its largest autark subset, and G any maximal
satisfiable subset of F , then AF ⊆ G.

Proof: We have F = AF ∪PF , AF ∩PF = ∅. LetG be a maximal satisfiable subset

of F . Let C ∈ F \G. ThenG∪ {C} is unsatisfiable. Then, there is a resolution tree
T with premises fromG∪{C} such that the conclusion of T is ∅. C must be among

premises of T for otherwise G alone derives ∅ which contradicts satisfiability of G.
Thus C ∈ PF . Since C is arbitrary, F \G ⊆ PF . Thus F \ PF ⊆ G, i.e., AF ⊆ G,
as desired. 2

© 2009 by Taylor and Francis Group, LLC

Clausal logic and resolution 131

COROLLARY 7.16
Let F be a set of clauses and AF its largest autark subset. Then, AF ⊆
⋂

MAXSATF .

In general AF 6=
⋂

MAXSATF , as shown by the following example.

Example 7.1
Let F be the set composed of four clauses (two of those are units): p,¬p, p∨r,¬p∨
¬r. Clearly, F is unsatisfiable. Moreover, F has no nonempty autarkies. Indeed, let

v be an autarky for F . Clearly, v cannot contain either p or ¬p. Now, if r belongs to
v then because v touches ¬p ∨ ¬r it must be the case that ¬p ∈ v, a contradiction.
A similar argument establishes that ¬r /∈ v. Thus v cannot be nonempty. But since

F has no nontrivial autarkies, its largest autark set is empty. On the other hand, it is

easy to see that F has two maximal satisfiable subsets, G1 = {p, p ∨ r,¬p ∨ ¬r},
and G2 = {¬p, p ∨ r,¬p ∨ ¬r}. Thus

⋂

MAXSATF = {p ∨ r,¬p ∨ ¬r} which is

a proper extension of the largest autark subset of F .

Our goal now is to show that from the point of view of computation of maximal

satisfiable subsets of F , the set AF is, in a sense, superfluous. That is, maximal

satisfiable subsets of F are in one-to-one correspondence with maximal satisfiable

subsets of F \AF , i.e., of PF . Specifically we have the following fact.

PROPOSITION 7.19
Let F be a set of clauses and AF , PF its largest autark and lean subsets.

1. If G is a maximal satisfiable subset of F then G \ AF is a maximal sat-
isfiable subset of PF

2. If G is a maximal satisfiable subset of PF then AF ∪ G is a maximal
satisfiable subset of F .

Proof: (1) Let G be a maximal satisfiable subset of F . Then, G \ AF is satisfiable.

Clearly G \ AF ⊆ PF . We show that G \ AF is a maximal satisfiable subset of

PF . Let C ∈ PF \ (G \ AF). All we need to show is that (G \ AF) ∪ {C} is
unsatisfiable. We do know that G ∪ {C} is unsatisfiable because C /∈ G and G is

maximal satisfiable subset of F . Thus there is a resolution tree T with conclusion

∅ so that the premises of T are in G ∪ {C}. Such a resolution tree must involve C
as one of its premises because G is satisfiable. Moreover, by Lemma 7.8, none of

its premises may belong to AF . This is because AF is an autark set and if any of

the premises of T belongs to AF , then for the witnessing autarky v, v evaluates the

conclusion of T as 1, a contradiction. Thus all premises of T are in (G \AF)∪ {C}
and so (G \AF) ∪ {C} is unsatisfiable. As C was an arbitrary clause in G \AF we

are done.

(2) If G is a maximal satisfiable subset of PF we claim that G ∪ AF is a maximal

satisfiable subset of F . First we show that G ∪ AF is satisfiable. Otherwise there is

© 2009 by Taylor and Francis Group, LLC

132 Introduction to Mathematics of Satisfiability

a resolution tree T with conclusion ∅ with premises in AF ∪ G. Since the premises

of T must all belong to PF , none of premises of T belongs to AF . Thus all of them
belong to G, contradicting the fact that G is satisfiable. Now, we show maximality.

Let C /∈ G ∪AF . Then, C ∈ PF . Since C /∈ G, G ∪ {C} is unsatisfiable (because
G was maximal). Thus AF ∪G ∪ {C} is unsatisfiable. 2

7.8 Exercises

1. (For enthusiasts of combinatorics) Prove Corollary 7.2 for infinite graphs.

2. Complete the argument of Proposition 7.4.

3. Prove the continuity of the operator Res, that is, for an increasing sequence

〈Fn〉n∈N ,

Res(
⋃

n∈N

Fn) =
⋃

n∈N

Res(Fn).

4. Show that the equality in (3) does not have to hold for sequences 〈Fn〉n∈N
which are not increasing.

5. Prove that the resolution is sound.

6. Clear up in your mind the issue of the sets of literals as conjunctions and sets

of literals as clauses (disjunctions). For that purpose think about hit sets. LetX
be a set, and X be a collection of subsets of X . A set Y ⊆ X is a hit set for

X if for all Z ∈ X , X ∩ Z 6= ∅. Then, it is possible to characterize satisfying

valuations as hit sets. How?

7. If a family X contains the empty set, then X has no hit set. What does this

statement tell us?

8. Given a valuation v, we define a valuation v̄ by setting v̄(p) = 1 + v(p), where
+ is the Boolean addition, for all variables p. We saw v̄ under various names

in this book already. Let C be a nonempty clause, and v an arbitrary valuation.

Prove that v |= C, or v̄ |= C.

9. Prove that if F is an unsatisfiable set of nonempty clauses then for every val-

uation v there are two clauses C1 and C2, both in F such that v |= C1, and

v 6|= C2.

10. Let F be an unsatisfiable set of nonempty clauses. Prove the following stronger

version of the previous problem. If v is any valuation then there are clauses C1

and C2 in F such that v 6|= C2 and v satisfies all literals in C1. In other words,

v satisfies no literal in C2, but all literals in C1.

11. Conclude that sets of clauses consisting of exactly one nonempty clause are

satisfiable (which is obvious, anyway).

© 2009 by Taylor and Francis Group, LLC

Chapter 8

Testing satisfiability, finding
satisfying assignment

8.1 Table method . 133
8.2 Hintikka sets . 135
8.3 Tableaux . 137
8.4 Davis-Putnam algorithm . 144
8.5 Boolean constraint propagation . 154
8.6 The DPLL algorithm . 158
8.7 Improvements to DPLL? . 161
8.8 Reduction of the search SAT to decision SAT . 162
8.9 Exercises . 163

In this chapter we investigate a number of algorithms for testing satisfiability. We

will study four: (a) table method, (b) tableaux, (c) Davis-Putnam algorithm, and (d)

Davis-Putnam-Logemann-Loveland algorithm. The first two relate to arbitrary for-

mulas. The other two deal with satisfiability of CNFs. We will also discuss possible

improvements to DPLL algorithm and, finally, reduction of search-version of sat-

isfiability problem to repeated application of decision-version of satisfiability. We

observe that there are other technologies for testing satisfiability, for instance deci-

sion trees and their variation: binary decision diagrams, but we will not study them

in this book

8.1 Table method

The table method is based on recursive evaluation of formulas given a valuation. The

term “table” relates to customary representation of the problem, as a table. To start,

recall that a valuation of the set Var satisfies a formula ϕ if and only if the partial

valuation v |Varϕ
satisfies ϕ. This means that if we want to test satisfiability of ϕ

then all we need to do is to traverse all valuations of Var(ϕ) in some order, evaluate

ϕ under all these valuations and see if we generate at least once 1 as the value. If it

is the case, ϕ is satisfiable. One implementation of this technique is the table where

rows consist of valuations v appended by value of ϕ at v, v(ϕ). Thus the table would
have 2n rows, where n = |Var(ϕ)| and n+1 columns – first n for variables, the last

one for value of ϕ.

133

© 2009 by Taylor and Francis Group, LLC

134 Introduction to Mathematics of Satisfiability

When this method is used, we use the structure of the formula to simplify the process

of computation. Recall that formula is nothing but an infix representation of a tree.

The leaves of that tree are labeled with variables; the internal nodes are labeled

with functors. There may be leaves labeled with the same variables. Fixing the

order of children of each node in the tree, and eliminating duplicate nodes, there is

a unique order of subformulas of a given formula where all subformulas precede the

formula itself. Then the values in a column are computed by looking at truth tables

of the functors and consulting columns to the left of the current column. Here is an

example.

Example 8.1
Let us consider the formula

ϕ = ¬(((p ∧ ¬r) ∨ (¬q ∧ r)).

The tree of the formula ϕ is shown in Figure 8.1. Next, let us look at the

r

∨

¬

¬ ¬

q

p

r

∧∧

FIGURE 8.1: The tree of formula ϕ

table of the formula ϕ presented in Figure 8.1. Clearly, ϕ is satisfiable and
we found several valuations satisfying ϕ, since there are several entries 1 in
the last column of Table 8.1. Table 8.1 allows us also to establish that ϕ is
not a tautology, because there are valuations that do not satisfy ϕ.

This is a general observation. At a significant cost; the table size is 2n · (n+ 1) (not
counting the columns corresponding to non-root internal nodes of the tree) we can

test satisfiability of ϕ, unsatisfiability of ϕ, satisfiability of ¬ϕ and whether ϕ is a

tautology, all at once. Indeed, if the last column contains at least one entry 1, ϕ is

satisfiable. Similarly, if the last column has at least one occurrence of 0 then ¬ϕ is

satisfiable. If the entries in the last column are all zeros then ϕ is not satisfiable, and

if all entries in the last column are ones, then ϕ is a tautology.

The issue that needs to be mentioned is the order in which the valuations of Varϕ
are listed. This is done by using some systematic way of listing valuations. Such

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 135

TABLE 8.1: The table for formula ϕ

p r q ¬r ¬q p ∧ ¬r ¬q ∧ r (p ∧ ¬r) ∨ (¬q ∧ r) ϕ
0 0 0 1 1 0 0 0 1
0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 1 1 0
0 1 1 0 0 0 0 0 1
1 0 0 1 1 1 0 1 0
1 0 1 1 0 1 0 1 0
1 1 0 0 1 0 1 1 0
1 1 1 0 0 0 0 0 1

an arrangement is called Gray code, and there are numerous such listings. We will

discuss in Section 8.9 Exercises construction of one particular Gray code.

Let us observe that to test if a formula is satisfiable using table method does not re-

quire exponential space (in fact the size of the table is superexponential). Exponential

time is what is needed, but only linear space. Indeed we can generate valuations one

by one (as a Gray code, say, or as full binary representations of integers in the range

(0..2n − 1)) and for each of these strings v test if v |= ϕ. As soon as we find such v,
we report it, and quit. Similarly, we can test if ϕ is a tautology, except that here we

leave with failure once we find v such that v 6|= ϕ.

8.2 Hintikka sets

This section prepares us for the technique in automated theorem proving called table-

aux. When in the next section we define and construct tableaux, we will need to

know that open branches of those tableaux represent satisfiable theories. For that

purpose we will see that those open branches have certain desirable properties. These

properties are abstracted into the Hintikka sets that we will discuss now.

A set H of formulas is called Hintikka set (after the Finnish-American logician J.

Hintikka), if

(H1) ⊥ /∈ H

(H2) For each variable q ∈ Var , q /∈ H or ¬q /∈ H

(H3) Whenever ¬¬ϕ ∈ H, ϕ ∈ H

(H4) Whenever ϕ1 ∨ ϕ2 ∈ H, ϕ1 ∈ H or ϕ2 ∈ H

(H5) Whenever ¬(ϕ1 ∨ ϕ2) ∈ H, ¬ϕ1 ∈ H and ¬ϕ2 ∈ H

(H6) Whenever ϕ1 ∧ ϕ2 ∈ H, ϕ1 ∈ H and ϕ2 ∈ H

(H7) Whenever ¬(ϕ1 ∧ ϕ2) ∈ H, ¬ϕ1 ∈ H or ¬ϕ2 ∈ H

© 2009 by Taylor and Francis Group, LLC

136 Introduction to Mathematics of Satisfiability

The conditions (H1) and (H2) say that there is no obvious contradiction inH. (H3)–
(H7) are closure properties, forcing simpler formulas in H whenever more complex

formulas are there.

PROPOSITION 8.1 (Hintikka Theorem)
Every Hintikka set H is satisfiable.

Proof: Given a Hintikka set H, we define MH = {p ∈ Var : p ∈ H}. Now we

define a valuation vH as follows:

vH(p) =

{

1 if p ∈MH

0 otherwise

In effect, we inspect the set H for the variables present in H and then we perform

what “deductive database” researchers call closed world assumption on that setMH,

declaring everything else in Var false. We will study closed world assumption in

Chapter 13. Before we go any further, let us observe that the condition (H2) implies

that v we defined above is, indeed, a valuation.
Now, we show the assertion by induction on the rank of formula ϕ.
Inductive Basis. Here rk(ϕ) = 1. There are three subcases. First, when ϕ = ⊥, we
have v 6|= ⊥, but ⊥ /∈ H, thus the desired property holds. The second case is when

ϕ = ⊤. But v |= ⊤ so the desired property holds, regardless of whether ⊤ belongs

to H or not. Finally, we consider the case when ϕ = p, for some variable p ∈ Var .
Let us look at the definition of v above. Whenever p ∈MH, v(p) = 1. But p ∈MH

precisely when p ∈ H. Thus if p ∈ H then v(p) = 1, i.e., v |= p, as desired.
Inductive step: We will have to consider three cases, corresponding to the top con-

nective of ϕ.
Case 1: ϕ = ¬ψ. This case requires five subcases.
Subcase 1.1: ψ is constant. We leave this case to the reader.

Subcase 1.2: ψ is p for some variable p. That is ϕ = ¬p, for p ∈ Var . Since for no
q ∈ Var , q ∈ H and ¬q ∈ H, we have p /∈ H since ¬p ∈ H. Thus v(p) = 0, v 6|= p,
i.e., v |= ¬p, as desired.
Subcase 1.3: ψ is ψ1 ∨ ψ2, that is ϕ = ¬(ψ1 ∨ ψ2). Since H is a Hintikka set, by

condition (H5), ¬ψ1 ∈ H, and ¬ψ2 ∈ H. But then, each of formulas ¬ψ1, and ¬ψ1

is of smaller rank than ¬(ψ1 ∨ψ2) (this actually needs checking, we hope the reader
does it!). Now, by inductive assumption, v |= ¬ψ1 and v |= ¬ψ2, so v 6|= ψ1 and

v 6|= ψ2, so v 6|= ψ1 ∨ ψ2, so v |= ¬(ψ1 ∨ ψ2), that is v |= ϕ.
Subcase 1.4: ψ is ψ1 ∧ ψ2, that is ϕ = ¬(ψ1 ∧ ψ2). Since H is a Hintikka set, by

condition (H7), ¬ψ1 ∈ H, or ¬ψ2 ∈ H. Without loss of generality we can assume

¬ψ1 ∈ H. Now, by inductive assumption, v |= ¬ψ1, so v 6|= ψ1, so v 6|= ψ1 ∧ψ2, so

v |= ¬(ψ1 ∧ φ2).
Subcase 1.5: ψ is ¬ϑ. Since ϕ ∈ H, and ϕ = ¬¬ϑ, ϑ ∈ H. But ϑ is of smaller

rank. thus v |= ϑ, v 6|= ¬ϑ, v 6|= ψ, thus v |= ϕ, as desired.
Case 2: ϕ = ψ ∨ ϑ. Then, as ϕ ∈ H, by condition (H4), ψ ∈ H or ϑ ∈ H. Without

loss of generality we can assume ψ ∈ H. Then, as the rank of ψ is smaller than the

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 137

rank of ϕ, by inductive assumption, v |= ψ. But then v |= ψ ∨ ϑ, i.e., v |= ϕ.
Case 3: ϕ = ψ ∧ ϑ. Then, as ϕ ∈ H, by condition (H6), ψ ∈ H and ϑ ∈ H. But
now by inductive assumption v |= ψ and v |= ϑ. But then v |= ϕ, as desired.
This completes the argument. 2

8.3 Tableaux

The technique of tableaux is based on the analysis of the tree of the formula.

Tableaux may be viewed as tests for both satisfiability and provability. Here we

focus on satisfiability. It will turn out that certain tableaux (called open finished

tableaux) witness to satisfiability. But then, if we wanted to see if ψ entails ϕ then

all we need is to test if there is a finished, open tableau for ψ ∧ ¬ϕ. Indeed, because
if such tableau exists, then ψ does not entail ϕ. Otherwise the tableau is closed, and
ψ entails ϕ.

The idea of tableaux is that as we analyze the formula, we build a tree, where the

nodes are labeled with signed formulas. Those signed formulas are of the form

T (ϕ) with the intended meaning “ϕ is true” and of the form F (ϕ) with the intended
meaning “ϕ is false.” The point here is that once we label a node of a tableau with

some formula, it forces us to expand tableau and label the subsequent nodes with

other signed formulas. Here is an obvious example. If we label some node with

a label F (¬ϕ) then a child of that node should be labeled with T (ϕ) because if

we assert that ¬ϕ is false then we must accept that ϕ is true. There are 6 tableaux

expansion rules. Two of those require prolongation of tableau with a single child;

those correspond to negation. Then there are two rules that require prolongation of

tableaux with two nodes as a child and a grandchild of a node (those correspond to

the true conjunction and false disjunction cases), and finally there are two expansion

rules that require splitting. This happens when we develop a node consisting of false

conjunction or of true disjunction.

Formally, a tableau is a labeled binary tree that obeys tableaux expansion rules.

These rules, stated in Figures 8.2, 8.3, and 8.4, tell us how the labels of descen-

dants of a node depend on the label of a node. Specifically, the expansion rule

for negation requires that whenever a node n has a label T (¬ϕ) then every branch

passing through n must have a node n′ with label F (ϕ). A similar requirement is

made on labelF (¬ϕ). Similar requirements are made for true-conjunction and false-

disjunction (see Figure 8.3). A slightly different requirement is made with rules for

false-conjunction and true-disjunction (Figure 8.4, where the tree splits). These re-

quirements can be turned into a formal inductive definition of the concept of the

tableau. We spare the reader such rigorous definition.

The point of building a tableau is that when a branchB through a tableau T is finished

(i.e., every formula on it has been expanded) and we did not establish a contradiction,

© 2009 by Taylor and Francis Group, LLC

138 Introduction to Mathematics of Satisfiability

then the set of formulas

{ϕ : T (ϕ) is a label of a node on B} ∪ {¬ϕ : F (ϕ) is a label of a node on B}

is a Hintikka set, thus it is satisfiable.

The rules operate not on the tableau in its entirety, but rather on branches of the

tableau. This means that when dealing with tableaux we must do extensive book-

keeping. We must maintain the set of open branches of the tableau, and the rules

are applied to branches. Thus when a formula labels a node n in the tableau T , the
applicable tableaux expansion rule must be applied on all open branches of T that

pass through n. One thing missing in this picture is when do we close a branch. Here

the idea is very natural: if we see that a branch has two nodes, one labeled with T (ϑ)
and another labeled with F (ϑ), then there cannot be a valuation that makes both ϑ
and ¬ϑ true, and so we need to close that branch. It will never extend to a Hintikka

set.

All the remarks above tell us that in order to test satisfiability of a formula ϕ, we
have to start a tableau, and put T (ϕ) as the label of the root. Whenever we expand

the nodes, we always get nodes labeled by simpler formulas. Therefore the process

must, eventually, halt. That is, as we expand branches we add nodes labeled with

simpler formulas and so, eventually, a branch either becomes closed (because we

have two nodes labeled with contradictory labels), or it becomes finished, because

expansion rules have been applied to all formulas on that branch. Moreover, it turns

out that when a formula is on a branch, then either that formula is a propositional

variable or there is exactly one expansion rule that applies.

We will look at three groups of expansion rules. First, we have rules for negation;

one for signed true, another for signed false.

F(ϕ) T(ϕ)

F(¬ϕ)T(¬ϕ)

FIGURE 8.2: Expansion rules for negation

Next, we show expansion rules for false-disjunction and true-conjunction. Those

will be presented in Figure 8.3.

Finally, we show expansion rules for true-disjunction and false-conjunction. Those

are depicted in Figure 8.4.

Thus, for instance, if we have an unfinished tableau T and we have an unexpanded

node n on it marked T (¬ϕ) then we do two things. First, we extend every open

(i.e., non-closed) branch passing through n with a new node which we label F (ϕ).
Second, we mark the node n as expanded. Likewise, if we have an unexpanded

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 139

F(ψ) T(ψ)

T(ψ∧ϕ)F����(ψ ��������∨ϕ)

F(ϕ) T(ϕ)

FIGURE 8.3: Expansion rules of true-conjunction and false-disjunction

F(ψ∧ϕ) T(ψ∨ϕ)

F(ψ) F(ϕ) T(ψ) T(ϕ)

FIGURE 8.4: Expansion rules of false-conjunction and true-disjunction

node n′ labeled with T (ψ ∨ ϕ), then every non-closed branch passing through n′

is extended by two, incompatible, nodes. One is labeled with T (ψ) and the other

with T (ϕ). Then the node n′ is marked as expanded. We hope the reader sees what

happens with the remaining cases. As mentioned above, each time we expand the

tableau, the labels become simpler. This means that, eventually, all nodes will be

expanded, and the tableau will become finished. Formally we get the following.

PROPOSITION 8.2
If a tableau T is started by putting in the root a signed formula l(ϕ) (where l
is T or F) and applying the tableau expansion rules on all branches, then the
tableau T will eventually be finished, and will be of depth at most 2k where k
is the depth of the tree of the formula ϕ.

Now, we will build a tableau where we start with a label T (ϕ) in the root of the

tableau. Here ϕ is the formula of our Example 8.1. This tableau is presented in

Figure 8.5. Let us observe that the right-most branch is closed.

Before we continue, let us observe that different branches of a completed tableau

may share satisfying valuations.

The following should now be clear. Given an open (i.e., non-closed) branch B
through tableau T , we define SB as the following set of formulas:

SB = {ϑ : T (ϑ) is a label of a node on B}∪ {¬ϑ : F (ϑ) is a label of a node on B}.

© 2009 by Taylor and Francis Group, LLC

140 Introduction to Mathematics of Satisfiability

T(ϕ)

F((p∧¬r)∨(¬q∧r))

F(p∧¬r)

F(¬q∧r)

F(p) F(¬r)

F(¬q) F(r) F(¬q) F(r)

T(q) T(r) T(r)

T(q)

×

FIGURE 8.5: The finished tableau for T (ϕ) showing satisfiability of ϕ

PROPOSITION 8.3
If B is an open branch in a finished tableau T , then SB is a Hintikka set.

Proof: Looking at the conditions for Hintikka sets, we see that since branch B is

open, for no variable p, p and ¬p can belong to SB . Next, let us assume that the set

SB contains the formula ¬¬ϕ. Two cases are possible. When T (¬¬ϕ) is a label of
a node on B, then F (¬ϕ) is a label of another node on B (by the first of negation

expansion rules), and then T (ϕ) is a label of yet another node on B (by the second

of negation expansion rules). In the other case, when F (¬ϕ) is the reason why ¬¬ϕ
is in SB, we just use the second negation expansion rule.

Next, if ψ ∧ ϕ belongs to SB , then it must be the case that T (ψ ∧ ϕ) is a label of

the node on B. Since B is not closed and T finished, it must be the case that both

T (ψ) and T (ϕ) are labels of nodes on B and so ψ ∈ SB and ϕ ∈ SB. Finally,

whenever ψ ∨ ϕ belongs to SB then by application of one of true-disjunction, or of

false-conjunction rule, ψ ∈ SB or ϕ ∈ SB, whenever the branch B is not closed and

T is finished. 2

Now, let us look at the way we are going to apply Proposition 8.3. Assume we are

given a set of formulas S and we want to establish that S is satisfiable. We start a

tableau TS by initially putting in the root T (
∧

{ϕ : ϕ ∈ S}). Then, after repeated
application of the true-conjunction rule, all signed formulas T (ϕ), ϕ ∈ S will be on

every open branch when TS is finished. If we find such an open branch B when TS
is finished, S ⊆ SB, so, since SB is a Hintikka set, S is satisfiable. Let us call TS a

canonical tableau for S. We then have the following.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 141

COROLLARY 8.1
If TS has an open branch, then S is satisfiable.

But is the tableaux method complete? In fact it is. Here is the argument. Assume

that v is a satisfying valuation for S. We say that a node n of T agrees with v if the
label of n is T (ϕ) and v |= ϕ or if the label of n is F (ϕ), and v |= ¬ϕ. We say that

a branch B agrees with v if the labels of all nodes on B agree with v. Here we do not
stipulate that the tableau T with the branch B is finished.

Now, let us see what happens. Whenever we have a branch B that agrees with a

valuation v, then B cannot be closed. So now assume that the branch B agrees with

a valuation v, and that there are nodes on B that are still marked as undeveloped.

Then we select the first such node. It is now clear that as we extend the branch, if we

apply one of the negation rules, or true-conjunction or false-disjunction rule, then the

resulting branch consists of nodes with labels that agree with v. So we are left with

the final case when either the false-conjunction rule or the true-disjunction rule has

been applied. But then one of the new branches Bi, i = 1, 2, just constructed, has
the property that all the nodes on Bi agree with v. Thus when TS is finished, there

will be an open branch, namely the leftmost one agreeing with v. Thus we proved
the following fact.

PROPOSITION 8.4
A set of formulas S is satisfiable if and only if the canonical finished tableau
TS has an open branch.

Finally, let us see that we can use the tableaux technique for testing entailment. This

is related to the fact that S |= ϕ is equivalent to the fact that S∪{¬ϕ} is unsatisfiable.
If we attempt to test satisfiability of S ∪ {¬ϕ}, we put initially on the tableau the

nodes labeled T (ψ) for ψ ∈ S and also T (¬ϕ). But this really amount of starting

our tableau with nodes labeled T (ψ) for ψ ∈ S and also F (ϕ) (forgetting about

T (¬ϕ), that is). When we do this, develop the tableau until it is finished then, by

Proposition 8.4, we get a closed tableau (i.e., one with all branches closed) precisely

when S |= ϕ. With a slight abuse of notation, let us call this last tableau TS∪{¬ϕ}.

Thus we get the following result.

PROPOSITION 8.5
Let S be a set of formulas and ϕ be a formula. Then S |= ϕ if and only if

the canonical finished tableau TS∪{¬ϕ} is closed.

Tableaux allow for another, quite natural proof of compactness for denumerable the-

ories in propositional logic. Here is a rough draft; we hope the reader fills in the

details. Let F be a denumerable infinite set of formulas, F = 〈ϕn〉n∈N . We build a

tableau for F as follows. In even steps 2n we put on the tableau the formula ϕn. In
the odd steps we select on each not-yet-closed branch the first undeveloped formula

and apply the appropriate tableaux expansion rule. Because all formulas are finite,

© 2009 by Taylor and Francis Group, LLC

142 Introduction to Mathematics of Satisfiability

every formula will be, eventually, developed on each non-closed branch. Then, like

in the proof of completeness for tableaux, we see that the set of formulas on a non-

closed (i.e., open) branch generates a Hintikka set. Then such set is satisfiable. So,

if F is not satisfiable there cannot be an infinite branch in our tableau and so the

tableau itself must be finite! But a finite tableau mentions only a finite number of

formulas in F , Thus some finite subset of F is unsatisfiable. Let us observe that the

tableau we outlined is not a systematic tableau, but this should not be a problem for

the reader.

We conclude this section discussing the connections between tableaux and three-

valued logic. Autarkies will also appear in this context. So let a tableau T be open

(i.e., non-closed) but finished. This means that T has at least one open branch and all

signed formulas on that branch are developed. Let B be such a finished non-closed

branch. We assign to B a partial assignment vB as follows:

vB(p) =

1 T (p) is a label of a node on B

0 F (p) is a label of a node on B

u otherwise.

Here p ranges over Var . The following fact ties the partial assignment vB and three-

valued evaluation of formulas that are labels of B.

PROPOSITION 8.6
Let S be a set of formulas, T a tableau for S, and let B be a finished open

branch of T . Let v = vB be a partial valuation determined by B and described
above. Then, whenever T (ϕ) is a label of a node of B, v3(ϕ) = 1, and whenever
F (ϕ) is a label of a node of B then v3(ϕ) = 0.

Proof: We prove our assertion by induction on complexity of the formula ϕ. The

case of atomic formulas is obvious; this is how we defined the valuation vB . So now,
let us assume that for all formulas of rank smaller than the rank of ϕ our assertion

is true. Let us assume that T (ϕ) is a label of a node on B. If ϕ is ¬ψ then, as B is

finished, F (ψ) is a label of a node on B. By inductive assumption, v3(ψ) = 0. But
then v3(ϕ) = 1, as desired. Next, let us assume that ϕ is ψ1 ∨ψ2. Then again, either

T (ψ1) is on B, or T (ψ2) is on B. By inductive assumption either v3(ψ1) = 1 or

v3(ψ2) = 1. But then v3(ϕ) = 1. If ϕ is ψ1 ∧ ψ2, then again both T (ψ1) and T (ψ2)
are labels of nodes on B, thus v3(ψ1) = 1 and v3(ψ2) = 1. Thus v3(ψ1 ∧ ψ2) = 1,
i.e., v3(ϕ) = 1, as desired.
The case of the formulas of the form F (ϕ) is similar and we leave it as an exercise

for the interested reader. 2

Once we proved Proposition 8.6, we get an alternative proof of Corollary 8.1. Indeed,

if B is open in a finished tableau T for S, then whenever T (ϕ) is a label of a node
of T , then (vB)3(ϕ) = 1. But for every ϕ ∈ S, T (ϕ) is on B. Thus vB evaluates

all formulas of S as 1. But then every completion of vB to a complete valuation of

variables in Var is a model of S. But there are such completions, so S is satisfiable.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 143

Next, we have the following property:

PROPOSITION 8.7
The partial valuation vB touches every formula ψ such that T (ψ) is a label

of a node on B or F (ψ) is a label of a node on B.

Proof: By induction on complexity of ψ. We leave the details to the reader. 2

Even though vB touches all formulas ψ such that either T (ψ) or F (ψ) is on B, it
does not assign the value 1 to all such formulas, but only to those that occur on B
with the sign T .

PROPOSITION 8.8
Let S be a set of formulas, and let T be a finished tableau for T . Let B be an
open branch in T . Then vB is an autarky for S and (vB)3(S) = 1.

Proof: The partial assignment vB touches every formula ψ such that T (ψ) is on B
or F (ψ) is on B. Whenever ϕ ∈ S, T (ϕ) is on B. But then vB touches ϕ and

(vB)3(ϕ) = 1. 2

Now, we can completely characterize autarkies that evaluate the entire set S as 1 by

means of tableaux.

In the proof of the next proposition it will be convenient to think about partial valua-

tions as consistent sets of literals. Then the �k relation is just the inclusion relation.

PROPOSITION 8.9

Let S be a set of formulas, and let T be a finished open tableau for S. Let
v be a partial valuation of Var(S). Then v3(S) = 1 if and only if for some
open branch B of T , vB �k v. Consequently autarkies for S that evaluate the
entire S as 1 are precisely consistent supersets of sets of the form vB.

Proof: First, let us assume that a partial valuation v contains a partial valuation of

the form vB for some open branch B. Then, as we have (vB)3(S) = 1, v3(F) = 1.
Thus v touches and satisfies all formulas in S. In particular v is an autarky for F .
Conversely, let us assume that v3(S) = 1. We will construct an open branch B in T
so that vB ⊆ v. To this end, we say that a branchB agreeswith a partial valuation v if
for every formulaϕ, T (ϕ) a label of a node onB implies v3(ϕ) = 1, andF (ϕ) a label
of a node on B implies v3(ϕ) = 0. Then all we need to do is to locate an open branch
B of T such that B agrees with v. This process of finding B proceeds by induction;

we build the desired branch B in stages. The point is that as we build a branch B, we
never close the partial branch we construct, and we maintain the condition that the

partial branch we constructed agrees with v. When the construction is completed,

the branch we find is open, complete, and agrees with v.
We start with the initial part of the putative branch B: a partial branch with nodes

labeled T (ϕ) for all formulas ϕ ∈ S. This partial branch through T agrees with v

© 2009 by Taylor and Francis Group, LLC

144 Introduction to Mathematics of Satisfiability

because v evaluates all formulas in S as 1. Now, let us assume that we constructed

a partial branch B′ in T , and that B′ agrees with v, and that there is a formula of the

form T (ϕ) or of the form F (ϕ) on T ′ which can be developed. There are six cases

that need to be considered, depending on the top connective of ϕ. We will discuss

three; the remaining three are similar and left to the reader to complete.

Let us assume that the formula to be developed is T (¬ψ). Then our inductive as-

sumption is that v3(¬ψ) = 1. But then it must be the case that v3(ψ) = 0. Then, as
we extend B to B′ by adding a node at the end, and labeling it with F (ψ) we find that
B′ agrees with v. The next case we consider is that of the formula T (ψ1 ∧ψ2). Here
we extend B by adding two nodes at the end: one labeled with T (ψ1), then another

labeled with T (ψ2). But then it is quite clear that the resulting branch B
′ agrees with

v. Finally let us consider the case of T (ψ1∨ψ2). Now we have choice; we can either

extend B with T (ψ1) or with T (ψ2). But we know that if v3(ψ1 ∨ ψ2) = 1 then it

must be the case that either v3(ψ1) = 1, or v3(ψ2) = 1 (both, actually, could be

true!). We select one of ψi so that v3(ψi) = 1 and extend B to B′ by adding a node

at the end and labeling it with T (ψi). The resulting branch B′ agrees with v. As

mentioned above there are three more cases to consider; those corresponding to the

situation where the node to be expanded are labeled with F (¬ψ), with F (ψ1 ∧ ψ2),
and with F (ψ1∨ψ2). We hope the reader completes the construction in each of these

cases.

Let us observe that in each of the six cases we did not close the branch. Thus when

we complete our construction the branch B is open. It is finished since all nodes

on that branch are developed. It agrees with v by construction. But now, whenever

formula T (p) (with p a variable) is on B, then v(p) = 1, and when F (p) is on branch
B then v(p) = 0. This means that vB �k v. But this is precisely what we wanted.

Since v was an arbitrary valuation such that v3(S) = 1, we are done. 2

8.4 Davis-Putnam algorithm, iterated single-literal
resolution

In this section we discuss the algorithm for testing satisfiability of CNF formulas.

This is the first of two algorithms for testing the satisfiability of CNF formulas dis-

cussed in this book. It is based on the iteration of a process in which occurrences of

a single variable (both positive and negative) are eliminated.

Thus, the input formula is assumed to be in the conjunctive normal form, in other

words, a set of clauses. Before describing the Davis-Putnam (DP) algorithm1 [DP60]

in detail we need to recall some notation. A literal l occurring in a set of clauses F is

pure for F if l̄ does not occur in clauses of F . Given a set of clauses F and a literal

l, we define F − l as the set of those clauses is F that do not contain l. We recall

1It is sometimes called VER, variable elimination resolution.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 145

that |l| is the propositional variable underlying the literal l. We denote by sgn(l) the
Boolean 0 if l is a negative literal, and 1 if l is a positive literal.

Let us recall the following fact.

PROPOSITION 8.10

If F is a set of clauses and l is pure for F , then F is satisfiable if and only
if F − l is satisfiable.

Note that all we did in our proof of Proposition 8.10 was to show that if l is a pure
literal for a set of clauses F , then {l} is an autarky for F (we observed it in Chapter

2 when we introduced autarkies).

Next, given a set of clauses F and a variable x, define the new set of clauses

Res(F, x) as follows:

Res(F, x) =

F − l if l is pure for F and |l| = x

{C1 ∨ C2 : x ∨C1 ∈ F and ¬x ∨ C2 ∈ F

and C1 ∨ C2 is not a tautology} ∪

{C ∈ F : x has no occurrence in C}.

Here is what is being done in computation of Res(F, x). The first case when l is a
pure literal is obvious. In the second case, all clauses in F containing x are resolved

against all the clauses in F that contain ¬x. The result is maintained, but two types

of clauses are eliminated. First, clauses containing either x or ¬x are eliminated.

Second, tautologies are eliminated. The clauses that do not contain either x or ¬x
are not affected, they pass from F to Res(F, x).

Let us observe that if l = x and l is pure for F , then the result is just F − l. Precisely
the same thing happens if l = ¬x and l is pure for F . We cannot claim that the size

of Res(F, x) is smaller than that of F . But Res(F, x) has at least one variable less,
since x is eliminated. Let us observe, though, that more variables may be eliminated

in the process. This will happen if, for instance, l = x is pure for F , and some

variable y occurs only in clauses containing x.

As observed above, the effect of our computation ofRes(F, x) is a set of clauses that
do not contain x. But we need to realize that the size ofRes(F, x) may increase in the

process. In fact, if |F | = n then |Res(F, x)| ≤ n2

4 and this boundmay be the optimal

one. Yet, the number of variables goes down. Therefore, if we iterate the operation

Res(·, ·) selecting variables occurring in the formula one by one, then, for a formula

F with m variables, we will eliminate all variables in at most m rounds. What are

the possible outcomes of such iterations? Actually, two outcomes are possible. One

is that we get an empty set of clauses. The other one is that we get a non-empty set of

clauses, containing just one clause: the empty clause. In the first case this ultimate

result is satisfiable, in the second case it is not satisfiable. Let us observe that the

empty clause, if it is computed in some iteration of operation Res(·, ·), stays until
the elimination of all variables.

© 2009 by Taylor and Francis Group, LLC

146 Introduction to Mathematics of Satisfiability

Next, we will prove a proposition that forms a basis for the correctness proof of the

first of two algorithms that specifically refer to satisfiability of sets of clauses. This

is the so-called Davis-Putnam algorithm DP.2

First, we need a bit of terminology. Recall that given a non-tautological clause C,
C = l1 ∨ . . . ∨ ln, n ≥ 1, there is exactly one partial assignment v such that

1. Dom(v) = VarC (i.e., v is defined on variables ofC and on no other variables).

2. v(C) = 0.

That v is defined as follows:

v(x) =

{

1 if ¬x is one of l1, . . . , ln

0 if x is one of l1, . . . , ln.

Since C is not a tautology, vC is well-defined. We denote that unique v by vC .
Another construction that we will need in the proof that follows is the reduct of a

set of clauses F by a partial valuation v. When F is a set of clauses and v a partial

valuation then the reduct of F by v, in symbols Red(F, v) is computed as follows:

1. If for some l in C, v(l) = 1, then the clause C is eliminated.

2. In clauses C surviving the test (1) we eliminate in C all literals l such that

v(l) = 0.

In particular, the variables of v do not occur in Red(F, v).

Example 8.2
Let F be the following set of clauses

{p ∨ q ∨ r̄, p̄ ∨ q ∨ s, p ∨ t}

and let v be a partial assignment defined on {q, t} with values: v(q) = 0, v(t) =
1. Then the third clause is eliminated, and first two clauses are shortened.
Thus Red(F, v) = {p ∨ r̄, p̄ ∨ s}.

Now, let F be a set of non-tautological clauses and let x be a propositional variable.

PROPOSITION 8.11

(a) F is satisfiable if and only if Res(F, x) is satisfiable. In fact:

(b) If v is a valuation satisfying F , then v satisfies Res(F, x). Conversely, if
v is a partial assignment defined precisely on VarRes(F,x) and satisfying
Res(F, x), then v can be extended to a valuation w such that w |= F .

2To confuse matters some, the next algorithm DPLL also has Davis and Putnam as the first two letters.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 147

Proof: Clearly, (b) implies (a), and so we prove (b), only. If the variable x does

not occur in F then the only difference between F and Res(F, x) is absence of

tautologies. But our assumption was that F does not contain tautologies so in this

case F = Res(F, x), and (b) holds.

So let us assume that x actually occurs in F . First we need to show that if a valuation

v satisfies F then v satisfies Res(F, x). Indeed, in Corollary 7.5 we established that

whenever a valuation v satisfies a set of clauses F , then v also satisfies Res(F). But
Res(F, x) ⊆ Res(F), thus v |= Res(F, x), as desired.

Now we go the other way around. We assume that v |= Res(F, x) and that v is

defined precisely on variables of Res(F, x). We need to extend v to a valuation w so

that w |= F .

While it is not strictly necessary, it will be convenient for pedagogical reasons to

consider two cases. One, where VarRes(F,x) = ∅ and another, where VarRes(F,x) 6=
∅. We will call these cases Case 1 and Case 2.

So let us deal with Case 1, VarRes(F,x) = ∅. There are three subcases possible. The
first one is when x is a pure literal in F . Then F − x = ∅ and we define valuation w
as follows:

w(y) =

{

1 y = x

0 y ∈ VarF \ {x}.

What happens in this case is that since Res(F, x) is satisfiable, but VarRes(F,x) = ∅,
it must be the case that Res(F, x) = ∅ and every clause in F must contain x, so w
satisfies F , as we made w(x) = 1.
The second subcase of the first case is when x̄ is a pure literal in F . Then the

valuation equal 0 on all variables of F satisfies F (by the argument similar to the

subcase 1).

The third subcase is when neither x nor x̄ is pure in F . But Res(F, x) = ∅. How
could it happen? It cannot be that some clause C in F has no x and no x̄ in it,

because such clause C automatically passes to Res(F, x) (and such clause cannot be
a tautology because there is none in F). Thus for every clause C in F there is D
such that C = D ∨ x or there is E such that C = E ∨ x̄.

It must be the case that at least one ofD, E is nonempty for otherwise the resolvent

is empty and so Res(F, x) is unsatisfiable.

But in fact bothD and E must be nonempty. Indeed, let C1 = D ∨ x, C2 = E ∨ x̄.
IfD is empty, then the resolvent is E. As C2 is not a tautology,E is not a tautology.

Thus E is a nonempty, non-tautological clause in Res(F, x), which contradicts our

assumptions. The argument for E = ∅ is similar. Thus we established that both

D, E are not empty. But D ∨ E is not in Res(F, x). This means that D ∨ E is a

tautology. This in turn implies that wheneverD ∨ x ∈ F , E ∨ x̄ ∈ F then there is a

literal l such that l occurs inD, and l̄ occurs in E.

We now proceed as follows. We select one clauseC in F of the formD∨x. We know

that such clause exists as we are in the third subcase. Then we define the following

valuation w:

© 2009 by Taylor and Francis Group, LLC

148 Introduction to Mathematics of Satisfiability

w(y) =

1 y = x

vD(y) if y occurs in D

0 if neither of the previous two cases holds.

We claim that w |= F . Clearly, if a clause C′ in F contains the literal x, then
w(C′) = 1. So let us assume that C′ contains the literal x̄ (the only possibility left).

Then there must be a literal l different from x and x̄ so that l occurs in C, l̄ occurs
in C′. But vD(l) = 0 by our construction. Therefore w(l) = 0, hence w(l̄) = 1.
Therefore, w(C′) = 1, as desired. This completes the argument for Case 1.

Once we successfully navigated through Case 1, we are ready for Case 2 (i.e.,

VarRes(F,x) 6= ∅). We will follow the same strategy, but there will be four subcases,

not three. Our assumption now is that we have a valuation v defined on variables of
Res(F, x) but on nothing else and we want to extend v to a valuation w such that

w |= F .

To this end let us consider the collection G = Red(F, v), that is, the reduct of F
by v. Let us observe that all clauses purged from F in the step (1) of the reduction

process are already satisfied by v thus by any extension of v (by Kleene theorem,

Proposition 2.5). Next, we observe that every clause in G is a subclause of a clause

of F . Further, for every clause C in F that is not already satisfied by v the reduct

of C by v belongs to Red(F, v). So, if we show that G is satisfied by a desired

extension w of v, then w satisfies entire F .

The first subcase we consider is when G = ∅. This means that all clauses of F are

already evaluated by v as 1. But we have to extend v to an assignment which is

defined on all variables of F . So, we define w as follows:

w(y) =

{

v(y) if y ∈ Dom(v)

0 if x occurs in F but not in G.

Clearly, v �k w, so w satisfies all clauses of F .
The second subcase is when x is a pure literal in G. In this case let us define two

assignments: w′ and w, w′ is defined on the domain of v and on x; w is defined on

all variables of F . We set

w′(y) =

{

v(y) if y ∈ Dom(v)

1 if y = x.

We claim thatw′ already evaluates all clauses in F as 1. Indeed, letC ∈ F . If neither
x or x̄ occurs in C then C ∈ Res(F, x), thus v evaluates C as 1, thus w′ evaluates

C as 1. If the literal x occurs in C then w′ evaluates C as 1. So the remaining

possibility is that x̄ occurs in C. Now, x is a pure literal in Red(F, v). Since x does

not belong to the domain of v it must be the case that C did not survive the test (1)

of reduction by v. Therefore one of literals of C is evaluated by v as 1, and so w′

evaluates C as 1.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 149

Now, we need to extend w′ to a valuation w defined on all variables of F . It should
be clear that an assignment w

w(y) =

{

w′(y) if y ∈ Dom(w′)

0 otherwise

satisfies F .
The third subcase, when x̄ is a pure literal ofG, is very similar to the second subcase

and we can safely leave it to the reader.

Thus we are left with the fourth case, when neither x nor x̄ is pure for G. This means

that the literal x occurs in some clause of G whereas the literal x̄ occurs in another

clause of G (since there are no tautologies in F there are no tautologies in G, so x
and x̄ do not appear in the same clause of G). We proceed in a manner similar to

the third subcase of the first case. We need to define a valuation w which satisfies

F . We have at our disposal an assignment v defined on variables of Res(F, x) (and
only of them) such that v satisfies all clauses of Res(F, x). To construct w we select

one clause containing literal x, say x ∨ C1 in G. Then we define w as follows:

w(y) =

v(y) if y ∈ Dom(v)

1 if y = x

vC1
(y) if y ∈ Dom(vC1

)

0 if none of previous conditions holds.

Our first goal is to show that the assignment w is well-defined. Since x does not

belong to the domain of v, the first two cases of our definition do not contradict each
other. The third case does not create contradiction since the clause x ∨ C1 is in the

reduct Red(F, v). Indeed, the variables occurring in C1 do not occur in the domain

of v and since x ∨ C1 is not a tautology, the variable x does not occur in C1. The

fourth “default” condition does not create problems, of course.

So now, we have to show that w evaluates all clauses in F as 1. So, let us assume

that some clause D belongs to F . If v evaluates D as 1, then by Kleene theorem,

w evaluates D as 1, as w extends v. If the literal x belongs to D, then w evaluates

D as 1, since w(x) = 1. The next possibility we have to consider is when literal x̄
does not occur in D. But then D, which does not contain x and does not contain x̄,
belongs to Res(F, x) and so v evaluatesD as 1, so w evaluatesD as 1. Thus we are
left with the case whenD contains the literal x̄ and v evaluates all literals that are in
D and are based on variables in Dom(v) as 0. That is:

D = x̄ ∨D1 ∨D2,

where D1 has no occurrence of x, and no occurrence of variables on which v is

defined, and moreover, v3(D2) = 0.
Now, let us look at the clause x∨C1. This clause, fixed at the beginning of the fourth

subcase, belonged to G, that is, the reduct of F by v. This means that this clause

x ∨ C1 was the effect of reducing a clause C,

C = x ∨ C1 ∨C2,

© 2009 by Taylor and Francis Group, LLC

150 Introduction to Mathematics of Satisfiability

where every literal of C2 was evaluated by v as 0. The two clauses x ∨C1 ∨C2 and

x̄ ∨ D1 ∨ D2 can be resolved on x. The result of resolution of these two clauses is

E = C1 ∨ C2 ∨ D1 ∨ D2. So, in principle, E should belong to Res(F, x). But it
does not belong there. The reason is that if it does, then v evaluates E as 1. But v
evaluates C2 as 0, v evaluates D2 as 0 so if v evaluates E as 0 or 1 then it assigns

to it the same value as it assigns to C1 ∨ D1. But v is not defined on any variable

occurring in C1 nor on any variable occurring in D1. Where does it left us? It must

be the case that C1 ∨ C2 ∨ D1 ∨ D2 is a tautology! But v evaluated both C2 and

D2 as 0. Thus the pair of complementary literals that made E a tautology must be

in C1 ∨ D1. This means that for the arbitrary clause D in F , D containing x̄, there
must be a literal l such that l occurs in C1 but l̄ occurs in D. Now, this l is neither x
nor x̄ (for it belongs toC1). As our assignmentw extends vC1

, w3(l) = 0. Therefore
w3(l̄) = 1, hencew evaluatesD as 1. This completes the proof of the fourth subcase

of Case 2, and of our proposition as well. 2

The key element of Proposition 8.11, to be precise of the implication ⇐ of part

(b), is that it provides a constructive way to extend every satisfying valuation v of

Res(F, x) to a satisfying valuation for F . Before we derive algorithms both for

testing satisfiability of a set of clauses and for actually finding satisfying valuation,

let us recapitulate what happened in the argument. Specifically, we start with an

assignment v that satisfies Res(F, x) and is defined on variables of Res(F, x) only.
The goal is to extend v to a satisfying valuation w for F (with w defined only on

variables of F .) To extend v to w all that is needed is to know the set of those

clauses of F that did not make it to Res(F, x). The procedure outlined in the proof

of Proposition 8.11 will be called below expand(G, v, x). Here, intuitively, G is

the set of clauses that were eliminated in passing from F to Res(F, x), x is the

variable used in elimination, and v is a satisfying assignment for Res(F, x). Thus,
the procedure expand(G, v, x) returns a partial assignment w extending v. When v
is a partial assignment defined on variables occurring in a set of clauses of the form

Res(F, x) and on no other variable, andG is F \Res(F, x) then w = expand(G, v)
satisfies F .
Let us observe that when we pass from F to Res(F, x) and compute the empty

clause ∅ then this clause will be passed to all subsequent clause sets (as the empty

clause survives the test (1)). And so, at the end when all variables are eliminated, the

resulting collection of clauses will be non-empty, and unsatisfiable. Thus any time if

an empty clause is computed we need to leave with failure.

We also need a user-provided function SelectVar that accepts as an argument a set

of clauses F with at least one variable and returns one of variables of F .
Here is a decision version of DP algorithm, which we call DPtest.

Algorithm DPtest. Input: a CNF F
Output: Decision if F is satisfiable.

if (F == ∅)
{return (‘Input formula satisfiable’)}

elseif (F contains an empty clause, ∅)

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 151

{return (‘Input formula unsatisfiable’)}
else

{x = SelectVar(F);
F = Res(F, x);
{return(DPtest(F))}

To see correctness of this algorithm, let us observe that if F is a satisfiable set of

clauses then either F is empty and our algorithm returns that F is satisfiable, or F
does not contain the empty clause (of course the implication is true, not the equiv-

alence). When F is nonempty but does not contain an empty clause, then it must

have at least one variable. Then the correctness follows by induction as the same

algorithm is called recursively on a set of clauses with one variable less. Conversely,

if our algorithm returns the string ‘input formula satisfiable’ on input F then it must

be the case that F is empty, or our algorithm found that Res(F, x) is satisfiable. In
that latter case by Proposition 8.11, F is satisfiable.

Let us observe that in the case of the algorithm DPtest all we needed to maintain

was the current content of variable F and test if it is empty and also if it contains an

empty clause. It should be clear that the size of variable F is exponential in the size

of the input formula; it is bound by 3n where n is the number of variables in F .
In the search version of the DP algorithm we need to maintain more complex data

structures. Let us assess the situation, first. In the proof of Proposition 8.11, (b),

⇐ in order to compute the extension of the partial valuation v to partial valuation w
we had to know the set of clauses that were eliminated when the set Res(F, x) was
computed. Those sets are of the form F \Res(F, x) (but both variable x and the set

F change as we progress). For that reason we need to maintain them. Then after we

compute them all (providing we did not find contradiction, i.e., the empty clause),

we change direction, and compute the consecutive partial valuations, finding at the

end a satisfying valuation for the input formula. We also need to know what variable

was used for resolution, so the sequence of these variables also has to be maintained.

Let us observe that at the end of the first phase we already know whether the input

formula is satisfiable or not. Once we know the input formula is satisfiable, the

second part computes the satisfying valuation, going backwards.

The operation that was outlined in the proof of Proposition 8.11 will be denoted by

expand(G, v, x) and will have three inputs: a partial valuation v, a variable x which

is not in the domain of v, and a set of clauses G such that x or x̄ occurs in every

clause inG. The intention is thatG is the “layer” that was eliminated as we resolved

with respect to x, but the definition (implied by the proof of Proposition 8.11) can be

given in general. Moreover, let us observe that as we prepare the input for it in Phase

I, the operation expand will work correctly on the intended input.

We will define the algorithm DPsearch as consisting of two phases. In Phase I

(which is similar to the algorithm DPtest) we precompute the data which, in Phase

II, will be used to compute the satisfying assignment for the input formula. Following

the above analysis, in Phase I we compute two arrays: one that we call layerSeq will

hold layers, the other, called varSeq , will hold variables that are used for resolving

(i.e., computing sets of the form Res(F, x)). We assume that we have user-supplied

© 2009 by Taylor and Francis Group, LLC

152 Introduction to Mathematics of Satisfiability

functions that implement the operationRes(F, x) and a heuristic function selectVar
(implemented by the user) that on a set of clausesG such that VarG 6= ∅ returns one
of variables occurring in G.
We need a procedure, which we call Forward. This procedure accepts four inputs:

a set of clauses G, an array called varSeq , an array called layerSeq , and an integer

i. It then expands both arrays gradually, by computing variables and corresponding

layers and putting them into the appropriate place in the arrays.

Algorithm Forward(G, varSeq , layerSeq , i).
if (G contains empty clause, ∅)

{ return({p, p̄}) }
elseif (G is empty)

{ return(varSeq, layerSeq)}
else {

x = selectVar(G);
varSeq [i] = x;
layerSeq [i] = G \ Res(G, x);
G = Res(G, x);
i+ +;

return(Forward(G, varSeq , layerSeq , i))}

Once we have the algorithm Forward, we iterate it on the input clausal theory F ,
integer i initialized to 0, and two empty arrays.

Algorithm DPSearchPhaseOne

Input: a CNF F with at least one variable. Output: an inconsistent set of literals, or

otherwise two arrays, of layers, and of variables.

G = F ;
varSeq = ∅;
layerSeq = ∅;
i = 0;
Forward(G, varSeq , layerSeq , i).

After running the algorithmDPsearchPhaseOne we either know that the input CNF,

F , is unsatisfiable, or we get two arrays, of layers and of variables. These arrays

(when computed) serve as an input to Phase II.

In that phase we use the procedure expand(G, v, x) to construct the satisfying as-

signment for the input formula F . The algorithm DPsearchPhaseTwo uses the

arrays computed in Phase I, but runs “backwards,” processing arrays from the last

element to the first one. For that reason we will assume that we have a polymorphic

procedure reverse that accepts an array, and returns an array with the same items, but

listed in reverse order.

Algorithm DPsearchPhaseTwo .
Input: two arrays, varSeq and layerSeq returned by the algorithm

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 153

DPsearchPhaseOne .
Output: A satisfying valuation for the input F of Phase I.

layerSeq = reverse(layerSeq);
varSeq = reverse(varSeq);
v = ∅;
j = length(layerSeq);

for (i = 0; i < j; i+ +)
{ G = layerSeq [i];
x = varSeq[i];
v = expand(G, v, x); }
return(v)

By repeated use of the argument of Proposition 8.11 the assignment returned by the

algorithm DPsearchPhaseTwo is a satisfying assignment for the input formula F .

Example 8.3
Let F be the following set of clauses.

{ C1 : p ∨ t̄,
C2 : p ∨ s,
C3 : q ∨ r ∨ s,
C4 : q̄ ∨ r ∨ s,
C5 : r̄ ∨ s̄,
C6 : u ∨ w,
C7 : s ∨ ū ∨ w̄ ∨ x }

We initially assign to G the input formula F . Let us assume that p = selectVar(G).
Then we get varSeq[0] = p. Actually, let us observe that selecting p is quite reason-
able, since 1 is pure for F and thus the next set of clauses is actually smaller. We

also see that layerSeq [0] is {C1, C2}, and G becomes {C3, C4, C5, C6, C7}.
Let us assume that u = selectVar(G). We observe that selectVar is applied to

the current content of G, not the original one. We now get varSeq [1] = u, and
layerSeq [1] equal to {C6, C7}. But now, let us see what becomes of G. When we

resolve the previous content ofG on u a new clause s∨w ∨ w̄ ∨ x, was created, but
did not make it to G because it is a tautology. Thus G becomes {C3, C4, C5}.
Next, let us assume that q = selectVar(G). We then get varSeq [2] = q,
layerSeq [2] = {C3, C4}. When we resolved C3 and C4 we create a new clause

C8 : r ∨ s (repeated literals are eliminated). Thus G becomes {C5, C8}.
Finally, let us assume that r = selectVar(G). We then get varSeq [3] = r,
layerSeq [3] = {C5, C8}. But now, G becomes empty since the resolvent of C5 and

C8 is a tautology. As we did not compute the empty clause throughout the process,

Phase I outputs the arrays varSeq and layerSeq .
We now move to Phase II. Its first step is to reverse the order of the arrays, getting:

〈r, q, u, p〉

© 2009 by Taylor and Francis Group, LLC

154 Introduction to Mathematics of Satisfiability

and

〈{C5, C8}, {C3, C4}, {C6, C7}, {C1, C2}〉.

The partial valuation h is initialized to ∅.
Now, using the function expand we get the first step: new h is h(r) = 1, h(s) = 0.
Reduction of the next layer gives us the empty reduct. We set h(q) = 1.
Next, we reduce clauses of layer layerSeq [2] by h getting two clauses, u ∨ v and

ū ∨ w̄ ∨ x (because h(s) = 0). We set h(u) = 1, h(w) = 0 and h(x) = 0.
We continue and reduce the layer layerSeq [3] by the current assignment h. The

reduced set consists of clauses p ∨ t̄, and the unit p. As p is pure, we set h(p) = 1,
h(t) = 0. Thus the second phase of the DP algorithm outputs an assignment:

(

p q r s t u w x
1 1 1 0 0 1 0 0

)

Let us observe that running of Phase II allows for a lot of leverage. Specifically,

at any stage of the construction we can “plug-in” another partial valuation (as long

as it satisfies the corresponding content of the variable F). This means that as we

are running the first phase of the DP algorithm we can break it, solving the current

content of F with some other SAT algorithm, get the valuation v, restrict it to vari-

ables of the current F and start running the second phase (remember that the second

phase is run backwards so at this point we have all layers that we will need). For

that reason, the DP algorithm can serve as both pre- and post-processing tool for the

DPLL algorithmwhich we will study in the next section. To make DP work this way,

we can, for instance, call DPLL if the size of Res(F, x) increases more than some

user-defined ratio. This observation is, actually, stated in [SP05].

8.5 Boolean constraint propagation

In this section we investigate the simplification mechanism used by the DPLL algo-

rithm (described in the next section) for testing satisfiability (and finding satisfying

assignment for a set of clauses). This technique computes the set of literals that are

entailed directly by the input set of clauses. We start with a motivating example.

Example 8.4
Our example consists of two variations on the same theme: some literals can be

computed from a set of clauses directly. The second variation is the same one as

the first one, except that in addition to a set of clauses we also have an input partial

assignment.

(a) Let F be a set of clauses:

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 155

{C1 : p̄ ∨ q̄ ∨ s̄,
C2 : r ∨ s ∨ z̄,
C3 : z̄ ∨ u,
C4 : z ∨ h ∨ l,
C5 : p,
C6 : q
C7 : r̄}

Then, because the set F contains unit clauses C5 and C6, the only way to satisfy

these clauses and also C1 is to assign to s the value 0. But once this is done, the only
way to satisfy C2 is to assign to z the value 0. The assignment to r is also forced

on us; it is 0. This, in turn, makes C3 satisfied, no matter what value we may later

assign to the variable u. Finally, for all practical reasons, the clause C4 (whose value

is not known, yet) simplifies to the clause h ∨ l.
Thus our F forces on us the following partial valuation, necessary for satisfying F :
v(p) = v(q) = 1, and v(r) = v(s) = v(z) = 0.
(b) Now, let us look at a clause set F ′ consisting of clauses C1, C2, C3, and C4,

and a partial assignment v′ specified by v′(p) = v′(q) = 1, v′(z) = 0. Then

together F ′ and v′ force on us the same partial assignment v as in part (a). That is,

any partial assignment w extending v′ and satisfying the formula F must extend v.
The argument is exactly the same as in part (a). Also, like in (a), the clause set F ′

simplifies to the clause set consisting of just one clause, h ∨ l.

Thinking algebraically, we computed in our example a fixpoint of a certain operation.

To this end let us define an operation bcpF . This operation accepts as an input a set of
literals (if it is consistent, then it is a partial valuation, but we do not limit ourselves

to this case) and outputs another set of literals (which may be inconsistent).

bcpF (S) = {l : There is a clause C : l1 ∨ . . . ∨ lj−1 ∨ l, C ∈ F ,

l̄1, . . . , l̄j−1 ∈ S.}.

We then have the following easy fact.

PROPOSITION 8.12
Given a CNF formula F , the operator bcpF (·) is a monotone operator in the
complete lattice P(Lit).

Let us note that Proposition 8.12, actually, requires a proof which we leave to the

reader.

By the Knaster-Tarski fixpoint theorem, for every clause set F , the operation bcpF
possesses a least fixpoint. That least fixpoint is denoted by BCP(F). It should also

be clear that the operator bcpF is continuous thus, even if F is infinite, the fixpoint

is reached in at most ω steps.

But we can also think in terms of logic. The other way to define BCP(F) is by

limiting the form of acceptable resolution proofs. Namely we compute the set of

© 2009 by Taylor and Francis Group, LLC

156 Introduction to Mathematics of Satisfiability

those literals which can be computed from F using resolution where one of parents

is always a unit clause. We call such limited form of resolution unit resolution.

Formally, we define

BCP′(F) = {l : {l} possesses a unit-resolution proof tree from F}.

We now prove that both definitions of BCP are equivalent.

PROPOSITION 8.13
For all sets of clauses F , BCP(F) = BCP′(F). In other words, both defini-
tions are equivalent.

Proof: For the inclusion⊆, we need to show that the least fixpoint of bcpF is included

in BCP′(F). We use induction showing that each iteration bcpnF (∅) is included in

BCP′(F). The base case is obvious. Now assume l ∈ bcpn+1(∅). Then there exists
a clause C : l1 ∨ . . . ∨ lj−1 ∨ l with l̄1, . . . , l̄j−1 ∈ bcpn(∅). But then, by inductive

assumption each of l̄1, . . . , l̄j−1 has a proof using unit resolution. We combine these

proofs as in Figure 8.6 (clause Ci in that proof is li ∨ . . .∨ lj ∨ l). This demonstrates

C

.

.

.

C1

l̄1

l̄2

Cj−1 l̄j−1

l

.

.

.

.

.

.

.

.

.

FIGURE 8.6: Derivation of a literal using unit resolution

inclusion ⊆.
Conversely, assume that l ∈ BCP′(F). Proceeding by induction on the number of

applications of unit resolution we show that l ∈ BCP(F). The base case is again

obvious. Now assuming that we deal with the resolution tree like we have in Figure

8.6, and l1, . . . , lj−1 all belong to bcpn(∅) we see that l itself belongs to bcpn+1(∅).
This shows ⊇ and completes the proof. 2

But let us keep in mind that BCP(F) may be inconsistent. Here is an example. Let

F = {p,¬p∨ q,¬p∨¬q}. Then the unit resolution derives both q and ¬q, thus also
the empty clause.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 157

Now, let us look at the effect of computingBCP(F). If we established that the value
of a literal l is 1 then every clause C that has a positive occurrence of l is automati-

cally satisfied, regardless of the future assignments of values to other literals occur-

ring in C. Therefore we can eliminate C from further considerations.3 On the other

hand, if the literal l̄ occurs in C (that is, l occurs in C negatively) then our assign-

ment of 1 to l cannot contribute to satisfaction of C. Thus l̄ can be eliminated from

such clause (again, we must be cautious in the case of future backtrack). In other

words, we can safely perform the reduct of F with respect to BCP(F). Moreover,

if BCP(F) is inconsistent, then F itself is inconsistent (the converse implication is

false, though) and we have to return a message to the effect that the input formula is

unsatisfiable. Otherwise, the reduct R of F with respect to BCP(F) is satisfiable if
and only if F is satisfiable. We will prove this property now.

PROPOSITION 8.14
Let F be a CNF formula. Then F is satisfiable if and only if BCP(F) is

consistent and the reduct of F with respect to BCP(F) is satisfiable.

Proof: If v is a valuation satisfying F then v also assigns value 1 to all literals

in BCP(F). This follows immediately from the soundness of the resolution, in

particular of unit resolution. Next, let R be the reduct of F by BCP(F). If D ∈
R, then for some literals l1, . . . , lk ∈ BCP(F), the clause C : D ∨ l̄1 ∨ . . . ∨ l̄k
belongs to F . But v(l̄1) = . . . v(l̄k) = 0 so it must be the case that v(D) = v(C).
But v(C) = 1, so v(D) = 1. Since R was an arbitrary clause in the reduct, the

implication⇒ is proved.

Conversely, let us assume that BCP(F) is consistent and the reduct R of F with

respect to BCP(F) satisfiable. Let v be a valuation satisfying R. Let us observe

that, by construction, no variable occurring (positively or negatively) in BCP(F)
occurs in R. In the process of reduction from F to R, some variables may have

been eliminated altogether; they may occur neither in BCP(F) nor inR. We need to

take care of them as well. Since BCP(F) is consistent, there is a valuation v′ which
satisfies BCP(F). We now define a new valuation w as follows.

w(p) =

v(p) if p occurs in R

v′(p) if p occurs in BCP(F)

0 otherwise.

We claim that w satisfies F . Let C be a clause in F . If C is eliminated in the first

part of the computation of the reduct R (that is, some literal l of BCP(F) belongs
to C) then w(C) = 1 because w(l) = v′(l) = 1. Otherwise, C = D ∨ l1 ∨ . . . ∨ lk
with l̄1, . . . , l̄k ∈ BCP(F), D ∈ R. But v |= D, thus for some literal l occurring in
R, v(l) = 1. But then w(l) = 1, and since l occurs in C, w(C) = 1, as desired. 2

3That is, until we backtrack, the assignment of 1 to l may be the result of a decision that will have to be

rescinded.

© 2009 by Taylor and Francis Group, LLC

158 Introduction to Mathematics of Satisfiability

In the next section we will see how the operation BCP is used in an algorithm for

computation of a satisfying assignment for an input clause set F .

8.6 The Davis-Putnam-Logemann-Loveland (DPLL)
Algorithm

Before we state and prove the correctness of the algorithm DPLL, we need a simple

proposition that provides the basis of the correctness proof.

PROPOSITION 8.15

Let F be a set of formulas and p ∈ At. Then F is satisfiable if and only if
F ∪ {p} is satisfiable or F ∪ {¬p} is satisfiable.

Proof: If v |= F , then, since v is defined on all variables in At , v |= F ∪ {p} or
v |= F ∪ {¬p}. Conversely, if v |= F ∪ {l} then v |= F . Taking l = p, or l = ¬p
we get a desired implication. 2

Proposition 8.15 and another fact that we proved in Section 8.5, Proposition 8.14,

imply the correctness of the DPLL algorithm.

Our formulation of DPLL assumes that we have a function BCP which com-

putes BCP of a given input set of clauses F . We assume that we have a function

selectLit(F) that returns a literal in LitF whenever VarF is nonempty. We will

use this function to find unassigned literal. We also assume that we have a function

reduce(F, v) which, on an input set of clauses F and a set of literals v reduces F by

v. But now, as the BCP may be inconsistent, we will assume that when this happens,

the reduct contains the empty clause ∅. This is a necessary modification of the reduct,

as it is easy to produce an example where BCP is inconsistent but the reduct of the

kind we used in our investigations of VER algorithm is consistent. For instance, a

clause set p, p̄, q ∨ ¬r produces an inconsistent BCP, but a consistent reduct. To dis-
tinguish this notion of reduct from the previous one, we will use a different notation:

reduce(F, v).

We now introduce the DPLL decision algorithm for SAT.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 159

Algorithm DPLLdec. Input: a set of clauses F .
Output: decision if F is satisfiable.

G = F ;
if (F contains the empty clause ∅)

return(‘input formula unsatisfiable’)
v = BCP(G);
if (v contains a pair of contradictory literals)

return(‘input formula unsatisfiable’)
G = reduce(G, v);
if (G = ∅)

return(‘input formula satisfiable’)
else

{ l = selectLit(G);
DPLLdec(G ∪ {l});
DPLLdec(G ∪ {l̄})};

FIGURE 8.7: Decision version of DPLL algorithm

PROPOSITION 8.16

If F is a satisfiable set of clauses then DPLLdec(F) returns ‘input formula

satisfiable.’ Otherwise it returns ‘input formula unsatisfiable.’

Proof: We proceed by induction on the number of unassigned variables n of F .
Clearly, when n is 0 the output is correct; for F = ∅ the output is input formula

satisfiable,’ whereas for F = {∅} the output is ‘input formula unsatisfiable.’

So now assume that for CNFs with at most n unassigned variables the algorithm

answers correctly. We will have to be a bit careful taking into account whether BCP

is consistent or not. Now, if n > 0, we have two possibilities. When BCP(F) 6= 0
and is consistent, then the number of variables in the reduct, and hence in G ∪ {x}
and in G ∪ {x̄}), goes down. We can use inductive assumption directly: DPLL

will output the correct message. It is possible that BCP(G) = ∅. In such case

both BCP(F ∪{x}) and BCP(F ∪{x̄}) are nonempty. In the reduction process the

number of unassigned variables goes down and we can use the inductive assumption.

Finally, it is also possible that BCP is inconsistent. In such case F is unsatisfiable,

but then we output ‘input formula unsatisfiable.’ 2

We are now ready to discuss a pseudocode for the search version of DPLL. Here we

have to be more careful as we have to maintain the partial valuation that changes as

we go up and down the search tree.

The idea is to define an algorithm DPLLsearch(F, v) that on input CNF F and a

partial assignment v searches for an extension of the assignment v to a (possibly

partial) assignment w such that:

© 2009 by Taylor and Francis Group, LLC

160 Introduction to Mathematics of Satisfiability

1. v ≤k w.

2. w evaluates all clauses of F as 1.

(The proximity of two figures with algorithms DPLLdec and DPLLsearch may push

the table showing the algorithmDPLLsearch to the next page – after all LATEX- which

is what we use - paginates the text automatically.)

AlgorithmDPLLsearch(F, v). Inputs: An array of clauses F and partial assignment

v. Output: An inconsistent set of literals (when there is no extension w of v such

that w evaluates all clauses of F as 1), or a partial assignment w that extends v and

evaluates all clauses of F as 1.

Algorithm DPLLsearch(F, v)
if (∅ ∈ F)

{return({p, p̄})}
G = Red(F, v);
if (G = ∅)
{ return(v) }
else

{ l = selectLit(G)};
if (DPLLsearch(G ∪ {l}, v) noncontradictory)

{ return (DPLLsearch(F, v ∪ {l})}
else

{ return (DPLLsearch(F, v ∪ {l̄})}

FIGURE 8.8: Pseudocode for DPLLsearch algorithm

Let us observe that the larger the assignment v, the smaller the reduct, Red(F, v).
This opens for us the possibility of proving the correctness by induction on the num-

ber of unassigned variables. Clearly at the base, where all variables are assigned

values, the algorithm DPLLsearch correctly returns v if v is a satisfying assignment,

or contradiction if it is not. Then the correctness follows by induction as in lines 12

and 14 we go down with the number of unassigned variables.

Next, let us observe that while on the first glance running the algorithm

DPLLsearch(F, v) on larger input v may seem more expensive, it is, actually, less

expensive (as the number of literals with unassigned value goes down). Hence, like

in Proposition 8.16 we find the following.

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 161

PROPOSITION 8.17
The algorithm DPLLsearch(F, v) finds an extension w of the partial assign-

ment v such that w evaluates all clauses of F as 1, if there is such assignment
w. Consequently, for the input v = ∅, the algorithm DPLLsearch(F, v) finds
a partial assignment w which evaluates all clauses of F as 1, if there is such
assignment.

We were careful in our Proposition 8.17 not to say that the algorithm outlined in

Figure 8.8 returns a satisfying assignment for F . The only (small) issue is that the

returned partial assignment may have the domain smaller than the entire set Var .
But then, of course, any completion of w to an assignment w′ defined on all Var is

a satisfying assignment for F .

8.7 Improvements to DPLL?

Let us now look at the possibilities of improving the performance of DPLL. We will

list four possibilities where the performance can be improved. All these four places

were tried with tremendous successes. In fact, it can be said that the progress in the

past couple of years is precisely due to the SAT community looking at these places.

(1) Looking at select function. A variety of heuristics for choosing a variable and its

polarity have been tried. All these proposals attempt to identify a part of the search

tree where the solution is more likely to be found. In fact, the choice of selection

function amounts to the rule for dynamic construction of the search tree.

(2) Learning. We backtrack to the last decision point each time we encounter a

contradiction, that is, we find that the last choice resulted in inconsistent BCP. But

what does it mean? It means that the sequence of choices on the branch, l1, . . . , lk,
together with F entail contradiction. Formally, it means F ∪ {l1, . . . , lk} |= ⊥. But
this is equivalent to

F |= l̄1 ∨ . . . ∨ l̄k.

That is, we just learned a clause that is a consequence of F . This does not help yet.

But by analyzing the derivation of that clause C : l̄1∨ . . .∨ l̄k we may find that some

clause subsuming C is a consequence of F . Then we can add such subsumed clause

(and possibly more clauses learned from that analysis) to F . This does not change
the set of models, or the size of the search tree (because the number of variables

does not change), but it does change the behavior of the set of clauses. We may find

(and practice confirms this) that some parts of the search tree are pruned. But of

course there is no “free lunch.” Since every backtrack results in learning a clause,

the number of clauses grows, requiring an additional memory for storing clauses. In

particular, the learned clauses have to be managed (because their number may grow

beyond the available memory). A variety of strategies for managing clauses that have

been learned has been proposed in the literature.

© 2009 by Taylor and Francis Group, LLC

162 Introduction to Mathematics of Satisfiability

(3) Closely related to learning is the issue of backjumping. During the analysis of

the contradiction (called conflict analysis) we may learn that the true reason why we

found the contradiction is one of the choices made before the last choice. If we learn

such a fact, we may prune the entire part of the search tree below such a “bad” choice,

avoiding at least one backtrack. Since the size of the search tree is exponential in the

number of variables, avoiding visiting a region of the search tree below some choice

results in tremendous savings.

(4) It should be clear that most time in running DPLL is spent on computation of

BCP. After all, we run BCP after every assignment of truth value at the decision

point. So, if we could reduce the number of visits to clauses to see if all but one literal

are already falsified by the current partial assignment, we would have a possible

significant gain. The idea is, then, to watch two literals per clause. As long as neither

of these is falsified, the clause cannot be used for contributing to the BCP and the

clause does not need to be visited. If one of these is falsified, then we need to visit

the clause and see if one of the following happens: new two watched literals can be

assigned, or if exactly one of the literals of the clause is not yet falsified (in which

case that last literal contributes to BCP), or if all literals in that clause are falsified

(forcing the backtrack).

The improvements listed above (and a few others, such as various forms of looka-

head) as well as better data structures for holding clause sets contributed to the

tremendous progress of satisfiability testing in the past number of years.

8.8 Reducing the search for satisfying valuation to test-
ing satisfiability

Our goal is to find a valuation that satisfies a given set of formulas F , if one exists.
But let us assume that we have some algorithm A that only tests if a given input

formula is satisfiable, but does not return a satisfying valuation even if one exists.

Here is how we can turn A into an algorithm to actually compute the satisfying

valuation. At the very beginning, we run A to see if a given input formula F is

satisfiable. If A returns ‘unsatisfiable,’ we also return ‘unsatisfiable.’ We initialize

the set U of unassigned variables to VarF . If A returns ‘satisfiable,’ we select a

literal, say l, with underlying variable in U and form a unit clause {l} that we add
to F . We also delete the underlying variable |l| from U . Then we run A on this

new formula. If A returns ‘satisfiable,’ we substitute for F the clause set F ∪ {{l}},
and set v(l) = 1. If A returns ‘unsatisfiable,’ we substitute for F the clause set

F ∪ {{l̄}}, and set v(l) = 0. We continue until U becomes empty. Since after the

first step the consistency of F is an invariant, and at the end of the computation F
contains a complete set of literals, the resulting v is a valuation (it happens to be a

subset of F at the end of computation) satisfying F .

We mentioned this technique because closure under resolution (or some of its com-

© 2009 by Taylor and Francis Group, LLC

Testing satisfiability 163

plete variants) is an example of such decision algorithm which does not directly

return the satisfying valuation if one exists. Trivial enhancements, such as simplifi-

cation after adding l, may improve such algorithms.

8.9 Exercises

1. Here is a formula ϕ: (p⇒ q) ∧ r ⇒ ¬p. Build table for ϕ. Is ϕ a tautology? Is

it satisfiable?

2. In this chapter we defined tableaux expansion rules for connectives ¬,∧ and ∨.
We did not formulate such rules for the other De Morgan connectives,⇒ and

≡. But this can be done. Do it.

3. Even more so, one can define tableau expansion rules for any connective

c(·, . . . , ·). We do not ask you to do this in all generality, but do this for two

connectives, the ternary connective ITE and the binary connective NAND .

4. We did not discuss the question of satisfiability for formulas represented as

DNFs. But the reason why we did not do so is that for DNF testing satisfia-

bility is truly obvious. Here is one procedure: First, we eliminate from a DNF

ϕ all inconsistent terms (i.e., terms that contain some literal and its negation).

If the formula shortens to ∅ we report unsatisfiability. Otherwise we select any
term t equal to l1 ∧ . . . ∧ lk, define a partial valuation v making all literals

l1, . . . , lk true, and extend v to w setting all the remaining variables to 0. Show
that the resulting valuation v satisfies ϕ.

5. We also did not discuss testing satisfiability for formulas defined by Boolean

polynomials.

(a) If we represent a formula ϕ as a standard polynomial and we do not get the

polynomial 0, then ϕ is satisfiable.

(b) If we represent a formula ϕ as a standard polynomial and we do not get the

polynomial 1, then ¬ϕ is satisfiable.

(c) Now, the issue is to find a satisfying assignment for ϕ. Let p(x1, . . . , xn) be
the polynomial representation of ϕ (the cost of finding such representation

may be prohibitive). Once we have a polynomial p(x1, . . . , xn), we can

represent the polynomial p as

x1 · q(x2, . . . , xn) + r(x2, . . . , xn).

Devise an inductive procedure for finding an assignment v that finds the

satisfying assignment for p if there is one.

6. Generate any reasonable clause set F (if you do not know how to do this, use

this F : {p ∨ q,¬p ∨ ¬q ∨ r,¬r ∨ s ∨ t, q ∨ r ∨ ¬s}). Choose any order of

variables, and run the DP algorithm on it.

© 2009 by Taylor and Francis Group, LLC

164 Introduction to Mathematics of Satisfiability

7. Do the same, but now use DPLL (choose some function select, for instance,

order variables lexicographically, and always select the negative literal first).

8. Derive Quine Theorem (A clause set is satisfiable if and only if its closure un-

der resolution does not contain an empty clause) from the Davis and Putnam

Theorem (Proposition 8.11). Hint: select any order of variables. Iterate Davis-

Putnam algorithm (Phase I) over the variables. Assuming the input CNF F is

unsatisfiable, what will be the result? What does it tells us about the closure of

F under resolution?

9. A Gray code of order n is a listing of all assignments on n variables, x1, . . . , xn.
Often, an additional requirement is that consecutive assignments differ in one

place only. Since there are 2n assignments it will be convenient to list them as

columns of a table, not rows. Here are the simplest Gray codes for n = 1, and
n = 2:

x1 0 1

and
x1 0 0 1 1
x2 0 1 1 0.

Here is a general construction:

(Obvious) When M is a listing of a Gray code and M ′ its reverse, then M ′ is also a

Gray code. In our case above we get:

x1 1 1 0 0
x2 0 1 1 0.

(a) LetM be a Gray code andM ′ its reverse listing. We put a row of 0’s on top
ofM and a row of 1’s on top ofM ′ and concatenate. Show that the result

is again a Gray code. For instance:

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 1 1 0 0
x3 0 1 1 0 0 1 1 0.

(b) A Gray code is cyclical if, in addition, the last column differs from the first

one in one place only. Show that the construction above results in cyclical

code.

© 2009 by Taylor and Francis Group, LLC

Chapter 9

Polynomial cases of SAT

9.1 Positive and negative formulas . 165
9.2 Horn formulas . 167
9.3 Autarkies for Horn theories . 176
9.4 Dual Horn formulas . 181
9.5 Krom formulas and 2-SAT . 185
9.6 Renameable classes of formulas . 194
9.7 Affine formulas . 199
9.8 Exercises . 204

In this chapter we discuss several classes of formulas for which the satisfiability

problem can be solved in polynomial time. They include positive formulas, nega-

tive formulas, CNF formulas consisting of Horn clauses, CNF formulas consisting

of dual Horn clauses, CNF formulas built of of 2-clauses, formulas expressed as col-

lections of linear expressions over the field Z2 (affine formulas), and DNF formulas.

The polynomial time algorithms for these classes vary in difficulty, and some of these

cases are very easy.

9.1 Positive formulas and negative formulas

We call a formulaϕ positive if it has no negative occurrences of any variables (that is,

its canonical negation normal form has no negative occurrences of any variables). It

is, then, easy to check if a formula is positive – it is enough to compute its canonical

negative normal form and scan it for presence of negation symbols). For instance,

the formula (p∧ q)∨ r is positive but the formula ¬(¬p∨¬q)∨ r is also positive. It
is easy to see that the class of positive formulas contains all variables, and is closed

under conjunctions and disjunctions. Let us observe that from the point of view of

complexity, our more relaxed definition does not create problems. We can easily

decide if a formula is positive or not.

Let us define 1Var as a valuation that assigns to every variable p the value 1. We

then have the following fact.

PROPOSITION 9.1

If ϕ is a positive formula then 1Var |= ϕ.

165

© 2009 by Taylor and Francis Group, LLC

166 Introduction to Mathematics of Satisfiability

Proof: Since ϕ is equivalent to its canonical negation-normal form, we can assume

that ϕ has no occurrence of negation symbol. Then, by an easy induction of the

complexity of ϕ, we show that 1Var |= ϕ. 2

Then we have the following obvious corollary.

COROLLARY 9.1

If S is a set of positive formulas then F is satisfiable.

We also observe the following property of valuations in their “set-of-variables” form.

PROPOSITION 9.2

If ϕ is a positive formula, M,N are two sets of variables, M ⊆ N and M |= ϕ
then N |= ϕ.

Proof: By induction on the complexity of formula ϕ (once again it is enough to

consider negation-normal form formulas). 2

On analogy with the concept of a positive formula we introduce a negative formula

as a formula without positive occurrences of variables (in other words one whose

canonical negation-normal form has no positive occurrences of variables. For in-

stance ¬(p ∧ q) is a negative formula. In fact let us observe that the negation of a

positive formula is negative, and the negation of a negative formula is positive. Like

positive formulas, negative formulas are closed under conjunctions and alternatives.

We now define 0Var as a valuation that assigns to every variable the Boolean value

0. We then have the following fact.

PROPOSITION 9.3

If ϕ is a negative formula then 0Var |= ϕ.

Corollary 9.1 has an analogue for negative formulas.

COROLLARY 9.2

If F is a set of negative formulas then F is satisfiable.

Likewise Proposition 9.2 has its analogue.

PROPOSITION 9.4

If ϕ is a negative formula, M,N are two sets of variables, M ⊇ N and
M |= ϕ then N |= ϕ.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 167

9.2 Horn formulas

Let us recall that a Horn clause is a clause l1∨ . . .∨ lk such that at most one of literals

l1, . . . , ll is positive. In other words a Horn clause is either of the form p ∨ ¬q1 ∨
. . .∨¬qm or of the form ¬q1∨ . . .∨¬qm. We further classify the clauses of the form

p ∨ ¬q1 ∨ . . . ∨ ¬qm as program clauses and clauses of the form ¬q1 ∨ . . . ∨ ¬qm
as constraints. A Horn CNF is a CNF consisting of Horn clauses. A Horn clause

consisting of program clauses is called a (Horn) logic program.

It will sometimes be useful to write the clause p∨¬q1 ∨ . . .∨¬qm as an implication

q1 ∧ . . . ∧ qm ⇒ p. Moreover, it often will be natural in the context of Horn clauses

to think about valuations as subsets of the set Var .

The fundamental property of Horn clauses is their relationship with families of sets of

variables closed under intersections. Specifically, a familyX of subsets of the set Var

is closed under intersections if for every nonempty family Y ⊆ X , the intersection
of all sets in Y ,

⋂

Y belongs to X .

We will now focus on the case of the finite set Var . We will comment on the issue

of infinite sets of variables later. Recall that for a given set of formulas F , Mod(F)
is the set of all valuations v of Var such that v satisfies F , i.e., {v : v |= F}. Under
the convention identifying sets of variables with valuations, Mod(F) can be thought
of as a family of subsets of Var . Here is the fundamental representability result for

Horn CNFs.

THEOREM 9.1 (Horn theorem)

Let Var be a finite set of variables and let S ⊆ P(Var) be a nonempty family
of sets. Then S is of the form Mod(H) for some collection H of Horn clauses
over Var if and only if S is closed under intersections.

Proof: First, let us assume that H is a collection of Horn clauses. We prove that

Mod(H) is closed under intersections. Let Y be a nonempty family of models ofH .

We think about the elements of Y as sets of variables. Let us consider M =
⋂

Y .
Let C ∈ H .

Case 1: C is a constraint, that is, C = ¬q1∨ . . .∨¬qm. Consider anyN ∈ Y . Since
N |= C, for some i, 1 ≤ i ≤ m, qi /∈ N . ButM ⊆ N , so qi /∈ M . ThusM |= C,
as desired.

Case 2: C is a program clause, C = p ∨ ¬q1 ∨ . . . ∨ ¬qm. Take any N ∈ Y . If
for some i, 1 ≤ i ≤ m, qi /∈ N , then as M ⊆ N , qi /∈ M , and M |= C. So the

remaining case is that for all N ∈ Y and for all i, 1 ≤ i ≤ m, qi ∈ N . But then,

since all sets N in Y satisfy F , it must be the case that p ∈ N . But then p ∈
⋂

Y ,
that is p ∈M . ThenM |= C. This completes the proof of the implication⇐.

Let us observe that the part⇐ of our argument does not depend on the finiteness of

the set of variables Var .

Now, we assume that a family S of subsets of a set Var is closed under intersections.

© 2009 by Taylor and Francis Group, LLC

168 Introduction to Mathematics of Satisfiability

We need to exhibit a set of Horn clauses H such that S = Mod(H). It is quite

clear what this set of clauses H should be. Namely, let F be the set of all clauses

satisfied in all sets from S (i.e., F = Th(S)) or to eliminate the use of operator Th ,
F = {C : ∀M∈SM |= C}. Then we define H = F ∩ H where H is the set of all

Horn clauses. In simple words, H is the set of all Horn clauses that are satisfied in

all sets of S.
Since H ⊆ F , every clause C ∈ H must be satisfied by all sets of S. That is, every
set in S is a model of H . So, all we have to show is the converse inclusion, that

is, that every model of H is in S. To this end we prove that if S is closed under

intersections then for everyC ∈ F there is a Horn clause C′ ⊆ C (i.e., C′ subsumes

C) such that C′ ∈ F .
Our claim indeed entails the converse inclusion. First, since Var is finite, for every

Y ⊆ P(Var), Y is of the form Mod(F) for a set of clauses F (Proposition 3.16).

Thus S is of the form Mod(F) for some F . So now, since H ⊆ F , Mod(F) ⊆
Mod(H), and once we prove the subsumption result claimed above, wheneverM |=
H , M |= F as well, thus M ∈ S. For if C ∈ F , take C′ ⊆ C, C′ ∈ H . Then

M |= C′ (because C′ ∈ H , and so M |= C because C is subsumed by C′). Since

S = Mod(F) and Mod(F) = Mod(H), we will be done.
Thus we need to prove the following: Whenever C is a clause, and C is satisfied in

all M ∈ S then there is a Horn clause C′ such that C′ ⊆ C and for all M ∈ S,
M |= C′.

Let us take C ∈ F . Since C itself is finite, there must be a clause C′ ⊆ C such that

C′ is inclusion-minimal among clauses in F . This means that C′ ∈ F but any C′′

properly contained in C′ does not belong to F . We claim that C′ is, in fact, a Horn

clause. This will be, clearly, enough.

To show that C′ is Horn, assume, by way of contradiction, that C′ is not Horn.

Then it must be the case that for some variables p1 and p2, and some clause C′′,

C′ : p1 ∨ p2 ∨ C′′. But C′ is inclusion-minimal in F . This, in turn, means that the

clauses p1 ∨C′′ and p2 ∨C′′ do not belong to F . This means that for someM1 ∈ S,
M1 6|= p1 ∨C′′, and for someM2 ∈ S,M2 6|= p2 ∨C′′. Now we have to look at C′′.

Assuming

C′′ = q1 ∨ . . . ∨ qi ∨ ¬qi+1 ∨ . . . ∨ ¬qi+j

we have

p1 /∈M1, q1, . . . , qi /∈M1, qi+1, . . . , qi+j ∈M1

and

p2 /∈M2, q1, . . . , qi /∈M2, qi+1, . . . , qi+j ∈M2.

Now we take the intersection ofM1 andM2,M1 ∩M2. Then, clearly,

p1 /∈M1 ∩M2, p2 /∈M1 ∩M2, q1, . . . , qi /∈M1 ∩M2, qi+1, . . . , qi+j ∈M1 ∩M2.

But this means thatM1 ∩M2 6|= C, contradicting the fact thatM1 ∩M2 belongs to

S. 2

Later on, in Chapter 13, when we discuss the Schaefer theorem on the dichotomy

of Boolean constraint satisfaction problems, it will be convenient to use Theorem

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 169

9.1 in a slightly different form. We will then use the closure properties of sets of

valuations (treated as Boolean functions defined on Var). To this end, we introduce

bitwise conjunction as an operation on Boolean functions. This will be an example

of a polymorphism.1 Let a : (x1, . . . , xn), and b : (y1, . . . , yn) be two Boolean

vectors of the same length n. The bitwise conjunction of a and b is a vector c of
length n such that for all i, 1 ≤ i ≤ n, ci = a1 ∧ bi. Given a set of variables

Var = {p1, . . . , pn} with the ordering of variables p1 ≤ . . . ≤ pn, valuations of the
set Var are in one-to-one correspondence with Boolean vectors of length n. Thus

we can define the bitwise conjunctions on those valuations.

It should be observed that bitwise conjunction (and its close relatives: bitwise nega-

tion and bitwise disjunction) are available in most reasonable programming lan-

guages.

We then have the following corollary:

COROLLARY 9.3

Let M be a set of valuations of Var. Then M is of the form Mod(H) for
some Horn theory H if and only if M is closed under bitwise conjunction.

Proof: We recall (Section 2.1) that valuations are characteristic functions of mod-

els. Then we observe that the following holds for arbitrary subsets X,Y of Var
(operation ∧ on the left-hand side is the bitwise conjunction):

χX ∧ χY = χX∩Y .

Thus, clearly, Mod(H) – treated as a family of sets – is closed under intersections

if and only if Mod(H) – treated as a set of valuations – is closed under bitwise

conjunctions. 2

Looking carefully at the proof of Theorem 9.1 we see that we used two facts. First,

every collection of subsets of a finite set Var was of the form Mod(F) for a suitably
chosen set of clauses F . Second, we used the fact that S was closed under the

intersection of two sets. But in fact, for finite families it entails the stronger property;

by an easy induction we show that families closed under intersections of two sets are

closed under all intersections of finite nonempty subfamilies.

Therefore, the proof of Theorem 9.1 tells us that for infinite sets Var stronger prop-

erties of formulas will be needed to deal with the two obstacles mentioned above (the

form of families of the form Mod(F), and the infinitary intersections). In particular

it is easy to exhibit families closed under finite intersections but not under infinite

intersections. One such family is the family of all cofinite (i.e., subsets X ⊆ Var
such that Var \X is finite) subsets of Var .

It should be observed that families of sets closed under intersections are fundamen-

tal both in computer science and in mathematics. In the case of mathematics, the

1The term polymorphism has a well-defined meaning in object-oriented programming. This is not the

meaning we assign it here. We have no influence on the terminology used in different communities.

© 2009 by Taylor and Francis Group, LLC

170 Introduction to Mathematics of Satisfiability

families of (say) subgroups of a group or subrings of a ring are closed under in-

tersections. The family of all closed subsets of a topological space is closed under

intersections. Theorem 9.1 tells us that, at least in the finite case we can represent

such families by means of Horn theories. In view of the results further in this section

it is a tremendous advantage.

If the formula H consists of program clauses only, the satisfiability problem for H
is particularly simple.

PROPOSITION 9.5

A CNF H consisting of program clauses is satisfiable.

Proof: Since each clause C inH contains a positive literal, 1Var |= C. 2

For a program H , since the family Mod(H) is closed under all intersections, H
possesses a least model, namely the intersection of all its models. Thus we have the

following.

PROPOSITION 9.6

Every Horn CNF consisting of program clauses possesses a least model.

We will denote the least model of a Horn formulaH , lm(H), provided it exists. For
programs P , Proposition 9.6 tells us that lm(P) exists.

In the case of Horn CNFs consisting of constraints only, the situation is also quite

simple. All the constraints are negative formulas, and so, by Proposition 9.3, such

CNF is satisfiable; it has a least model, and that model is 0Var .

What about the arbitrary Horn CNFs? Here the situation is again quite simple, but

we have to be careful: generally, a Horn formula does not have to be satisfiable.

Consider the CNF consisting of two unit clauses: p and ¬p. It clearly is a Horn

formula, and it is inconsistent.

Let us recall that if H is a Horn CNF, then H naturally splits into H1 ∪ H2 where

H1 consists of program clauses in H andH2 consists of constraints fromH .

THEOREM 9.2

Let H be a Horn CNF, and H1 ∪H2 be its decomposition into program and
constraint parts. Then H is consistent if and only if the least model of H1,
lm(H1), satisfies H2.

Proof: Clearly, if lm(H1) |= H2 then lm(H1) |= H and so H is consistent. Con-

versely, assume M models H . Then M |= H1, and so lm(H1) ⊆ M . But H2

consists of negative formulas only and so it is inherited “downwards” (Proposition

9.4). Thus lm(H1) |= H , as desired. 2

We then get a corollary which is a fundamental property of Horn theories.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 171

COROLLARY 9.4

If a Horn theory T is satisfiable, then H possesses a least model.

Proof: Let H = H1 ∪ H2 be a decomposition of H into program clauses and con-

straints. LetM0 be the least model of H1. We claim thatM0 is a least model of H .

Indeed, if M is a model of H then M is a model of H1 and so M0 ⊆ M . On the

other hand, by Theorem 9.2,M0 is a model ofH1, thus of entireH . 2

Since a consistent Horn theory possesses a least model, we get a useful fact about

the derivation of propositional variables in Horn theories.

PROPOSITION 9.7

Let p be a propositional variable, and H be a consistent Horn theory. Then
H |= p if and only if p ∈ lm(H).

Proof: Clearly, if H |= p, then p belongs to any set M such that M |= H , in

particular p ∈ lm(H).
Conversely, if H 6|= p then there exists a modelM of H such thatM 6|= p. That is,
p /∈M . But then, as lm(H) ⊆M , p /∈ lm(H). 2

Combining Proposition 9.7 with the Dowling-Gallier algorithm below we get the

following fact.

COROLLARY 9.5

Let p be a propositional variable, and H be a Horn theory. Then we can test
if H |= p in linear time.

In view of Theorem 9.2 an algorithm to test satisfiability of a Horn theory could be

devised. Namely, we first compute the partition of H into program and constraint

parts, H1 and H2. Then we compute lm(H1). Then we test if lm(H1) |= H2. In

this scheme of things, we need to see how complex is it to compute lm(H1), since
the second task is quite simple.

It turns out that the problem of computing the least model of a programH1 is quite

inexpensive. We will see that, actually, computation of that least model reduces to

computation of the least fixpoint of a certain monotone operator determined by H1.

Then we shall see how we can compute that least fixpoint in linear time in the size

of the program.

Given a Horn program H , we shall write the clauses C : p ∨ ¬q1 ∨ . . . ∨ ¬qk of

H as q1 ∧ . . . ∧ qk ⇒ p. This form accentuates the dependence of the variable p
(called the head of the clause C and often denoted head(C)) on the set of variables

{q1, . . . , qk} (called the body of C and denoted body(C)).

We now assign to a program H an operator TH in the complete lattice P(Var), as
follows.

TH(M) = {head(C) : C ∈ H, and body(C) ⊆M}

© 2009 by Taylor and Francis Group, LLC

172 Introduction to Mathematics of Satisfiability

Here is what happens. Let us say that a setM matches a Horn clauseC if body(C) ⊆
M . If we think of a program H as a “machine” producing an output on input M ,

then the output is produced by matchingM with the bodies of clauses C inH . If the

matching occurs, the head of C is part of the output. Thus on an inputM the output

is a set of variables – namely of heads of clauses matched byM . Here is the simple

fact that has tremendous consequences.

PROPOSITION 9.8
The operator TH is monotone and continuous.

Proof: Let us assume thatM1 andM2 are two subsets of Var , and thatM1 ⊆ M2.

Then, clearly, each clause C ∈ H matched by M1 is matched by M2. But then

the set of heads of clauses matched byM1 is included in the set of heads of clauses

matched byM2, that is TH(M1) ⊆ TH(M2).
For the continuity, let us observe that whenever body(C) ⊆

⋃

n∈N Xn, and

〈Xn〉n∈N is an increasing family of subsets of Var then, because body(C) is finite,
while N is infinite, there must be m ∈ N such that body(C) ⊆

⋃

n<mXn. This

implies that TH(
⋃

n∈N Xn) ⊆
⋃

n∈N TH(Xn), and so TH is a continuous operator.

2

By Proposition 9.8 and the Knaster-Tarski theorem, the operator TH possesses a least

fixpoint. Then we need to ask what is it. There is a natural candidate for this, and so

we have the following result.

PROPOSITION 9.9 (van Emden and Kowalski theorem)
Let H be a Horn program. Then the least model of H coincides with the least
fixpoint of the operator TH.

Proof: Since the operator TH is monotone and continuous, the least fixpoint of TH
is
⋃

n∈N T
n
H(∅). Let us call this set NH .

First, let us show that the least model ofH , lm(H) is included in NH . To this end it

suffices to show thatNH satisfiesH . But indeed, if C ∈ H ,C = p∨¬q1∨. . .∨¬qk ,
then either some of qj , 1 ≤ j ≤ k does not belong to NH and so NH satisfies C, or
all qj , 1 ≤ j ≤ k, do belong to NH . In this latter case, p ∈ TH(NH). But NH is a

fixpoint of TH , thus p ∈ NH , and so NH satisfies C.
The converse inclusion (NH ⊆ lm(H)) requires induction. By Proposition 1.3 the

set NH is
⋃

n∈N T
n
H(∅). By induction on n we show that T nH(∅) ⊆ lm(H). This

is certainly true for m = 0, as T 0
H(∅) = ∅. Assuming T nH(∅) ⊆ lm(H), we see

that every clause of H that is matched by T nH(∅) is matched by lm(H). But lm(H)
satisfies H . Then it is easy to see that for each clause C such that lm(H) matches

C, the head of C must belong to lm(H). Thus T n+1
H (∅) ⊆ lm(H).

Now we have established that for all n ∈ N , T nH(∅) ⊆ lm(H). Therefore

⋃

n∈N

T nH(∅) ⊆ lm(H),

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 173

i.e., NH ⊆ lm(H), as desired. 2

In the case of the finite set Var of variables, all monotone operators in P(Var) are
of the form TH for a suitably chosen Horn programH .

PROPOSITION 9.10
Let Var be a finite set of variables. Then for every monotone operator O :
P(Var)→ P(Var), there is a Horn CNF H such that TH = O.

Proof: Here is the construction of the desired H . Since Var is finite, so is every

subsetM ⊆ Var . Now, for a givenM ⊆ Var ,M = {q1, . . . , qk}, define

HM = {q1 ∧ . . . ∧ qk ⇒ p : p ∈ O(M)}.

Then define H =
⋃

M⊆Var
HM . Clearly, H is a Horn CNF, by construction. We

will now show that for allM ⊆ Var , TH(M) = O(M).
The inclusion ⊇ is obvious. Indeed, if p ∈ O(M), M = {q1, . . . , qk}, then the

clause q1 ∧ . . . ∧ qk ⇒ p belongs toH and so p belongs to TH(M).
The converse implication uses the monotonicity of the operator O. Let us assume

p ∈ TH(M). Then, for some clause C : s1 ∧ . . . ∧ sr ⇒ p,M matches C. That is,

{s1, . . . , sr} ⊆ {q1, . . . , qk}.

Since C ∈ TH , by the construction of the formula H , it must be the case that p ∈
O({s1, . . . , sr}). But then, by monotonicity of O, p ∈ Q({q1, . . . , qk}), i.e., p ∈
O(M), as desired. 2

Let us observe that, since the operator TH is monotone, by the Knaster-Tarski fix-

point theorem TH has a largest fixpoint as well. This largest fixpoint can be com-

puted by iteration of TH starting with the entire set of variables, Var . When Var is

finite, this largest fixpoint will be reached in finitely many steps. But if H is infinite

then, unlike in the case of the least fixpoint, the number of steps needed to reach that

fixpoint may be larger than ω.
The representation of the least model lm(H) of a Horn program H as the least fix-

point of the operator TH immediately entails a polynomial-time algorithm for com-

putation of lm(H). Here is how this can be done. We start with the empty set. Then,

in each round of the algorithm we scan the program H for those unused clauses

which are matched by the currently computed set of variables. Those clauses are

marked as used, and their heads are added to the currently computed set of variables.

If the currently computed set of variables does not increase in a round, we halt and

output the currently computed set of variables, as the least model ofH .

Since in each round the size of the set of unused clauses decreases, while the size of

the set of currently computed variables increases, it is clear that we will halt after the

number of rounds bounded by the minimum of the number of clauses in the program

H and the number of variables occurring in the programH , thus, clearly, by the size

of the programH . Within each round, the work performed by our algorithm is bound

by the size of the program. Therefore this algorithm computes the least model of a

© 2009 by Taylor and Francis Group, LLC

174 Introduction to Mathematics of Satisfiability

program H in at most |H |2 steps. But it turns out that we can do better. This is the

essence of the Dowling-Gallier algorithm [DG84] for computation of the least model

of programH .

The idea of the Dowling-Gallier algorithm is to introduce the counter for the body

of each clause. Each variable is pointing to each clause in whose body it occurs.

Each clause points to the variable that constitutes its head. We will assume that the

variables occur in the body of each clause at most once. Then, as a variable q is added
to the set of currently computed variables, the counters of the clauses that have that

variable q in the body are decremented by one. When the counter associated with a

clause C is decremented to 0, the body of the clause C is entirely included in the set

of currently computed variables. Then the head p of the clause C is added to the set

of currently computed variables (if it is not already computed!), and we continue to

decrement counters, this time of clauses containing p. But now, in this computation,

we see that each variable will be processed at most once, and in fact the variables

that do not end up in the least model will not be visited at all. The effect of this is

that we will compute the least model ofH in time bound by a constant times the size

ofH .

We certainly can assign a counter to a constraint as well. We will decrement that

counter by 1 each time a variable occurring in a constraint is included in the least

model. But now our limitation is that we cannot get such counter equal 0. If this

happens, the constraint in question is not satisfied and we fail. Let us look at an

example.

Example 9.1
LetH consist of the following four clauses:

C1 : p.
C2 : ¬p ∨ q.
C3 : ¬p ∨ ¬q ∨ r.
C4 : ¬p ∨ ¬r.

The counters associated with these clauses initially hold, respectively: 0, 1, 2, and 2.
In the first round we derive variable p. The remaining counters hold 0, 1, and 1. In
the second round we derive q. Now the counters associated with C2 and C3 contain

0 and 1. In the next round we derive r. The counter associated with C4 goes down

to 0 and we fail.

But now let us alter the clause C4 to C′
4 : ¬p ∨ ¬s. At the end of the computation

we have the counter associated with C4; down to 1, but not to 0. Thus the CNF

H ′ : {C1, C2, C3, C
′
4} is consistent.

Let us observe that the collection of Horn clauses is closed under resolution. That is,

if two Horn clauses are resolvable, then the resolvent is also a Horn clause. But an

interesting twist on resolution in Horn case is that a limited form of resolution can be

used for computation. A unit resolution is a restriction of the resolution proof rule

to the situation where at least one of the inputs is a unit clause. The unit resolution

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 175

proof of a clause C is a resolution proof of C where all the applications of resolution

are unit resolutions. As before we can represent unit resolution proofs as trees. In

those proofs, each application of resolution must have at least one input being a unit

clause (i.e., a literal). Here is an appealing property of Horn programs.

LEMMA 9.1

Let H be a Horn program and p be a propositional variable. Then the variable
p belongs to the least model lm(H) if and only if there is a unit resolution proof
of p from H. Moreover, in that proof, every unit input is a variable.

Proof: First, assume that we have a unit resolution proof of p fromH . ThenH |= p,
and so p ∈ lm(P).

Conversely, for each variable p ∈ lm(P) we shall construct a unit resolution proof

D for p. We will use the fixpoint characterization of lm(H) proved in Proposition

9.9. Namely, the model lm(H) is the union
⋃

n∈N T
n
h (∅). Thus, by induction on n

we will prove that for each n ∈ N , for each p ∈ T nH(∅), p possesses a unit resolution
proof. The base case is obvious since T 0

H(∅) = ∅. Now, assuming that the desired

property is true for all q ∈ T nH(∅), consider p ∈ T n+1
H (∅). Then there is a clause

C : p ∨ ¬q1 ∨ . . . ∨ ¬qk

in H such that q1, . . . , qk all belong to T nH(∅). By inductive assumption, each qi,
1 ≤ i ≤ k possesses a unit resolution proofDj . We now combine these proofs, as in

Figure 9.1. The resulting derivation is a unit derivation of p. 2

Let us define Res1(H) as the closure of H under the unit resolution rule of proof.

Clearly Res1(H) ⊆ Res(H), in particular the unit resolution is sound.

We will now use Lemma 9.1 to get a completeness result for Horn clauses and unit

resolution. Let us observe that since Horn programs are always consistent, the res-

olution proofs, and in particular unit resolution proofs cannot produce the empty

clause ∅. The situation changes when constraints are permitted.

PROPOSITION 9.11

Let H be a Horn CNF. Then H is inconsistent if and only if ∅ ∈ Res1(H).
In other words unit resolution is all that is needed to establish inconsistency
of Horn CNFs.

Proof: If ∅ ∈ Res1(H), then, in particular ∅ ∈ Res(H) and soH is inconsistent.

Conversely, assume that H is inconsistent. Then, by Theorem 9.2, the least model

lm(H1) of program partH1 ofH does not satisfy some constraintC : ¬q1∨. . .∨¬qk
of H2. This means that all qj , 1 ≤ j ≤ k, belong to lm(H1). By Lemma 9.1 all

these variables qj possess a unit resolution proofDj fromH1, thus fromH . We will

now combine these proofs and the clause C to a derivation of a contradiction. This

combination is shown in Figure 9.2. 2

© 2009 by Taylor and Francis Group, LLC

176 Introduction to Mathematics of Satisfiability

p ∨ ¬ q1

q1

. . . ∨ ¬ qk qk

p ∨ ¬ . . . ∨ ¬

Dk

qk−1qk−1

Dk−1

. . .

p ∨ ¬ q1q1

p

D1

FIGURE 9.1: Combining unit derivations

9.3 Autarkies for Horn theories

We will study nonempty autarkies for Horn theories, that is, collections of Horn

clauses. Recall that a Horn clause is a clause with at most one positive literal. Such

clause C is a program clause if C contains exactly one positive literal and is a con-

straint if it contains no positive literals. Thus a Horn theory H splits into the union

H1 ∪H2 of the set of its program clauses and the set of its constraints.

First we discuss general results for autarkies of Horn theories. When v is a partial

valuation that is, a consistent set of literals, then v splits into its positive part vP
and negative part vN , according to the polarity (i.e., sign) of literals. vP contains

positive literals from v and vN negative literals from v. Then it is natural to say that

v is positive if v = vP , and v is negative if v = vN .

We start with a useful property of autarkies for Horn theories.

PROPOSITION 9.12
Let H be a Horn theory, and v a partial valuation containing at least one

negative literal. If v is an autarky for H, then vN is an autarky for H as well.

Proof: Let us assume that v is an autarky for H . Assume that vN touches a clause

C ∈ H .

Case 1: If C is a constraint, then vN touchesC on a negative literal, and so vN being

negative itself must contain that literal. Thus (vN)3(C) = 1.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 177

Dk

Dk−1

...
D1

qkC := ¬q1∨ ... ∨¬qk

qk−1 qk−1¬ q1 ... ∨¬

∅

¬ q1 q1

FIGURE 9.2: Getting contradiction using unit derivations and unsatisfied

constraint

Case 2: Now, let C be a program clause and vN touches C. If one of the literals of
v occurs in C we are done. So now assume that

C : p ∨ ¬q1 ∨ . . . ∨ ¬qm

and that ¬p ∈ vN (that is vN happens to touch C on p). Now, since vN ⊆ v, v also
touches C. Then v3(C) = 1 because v is an autarky for H , and so one of literals

p,¬q1, . . . , qm must belong to v. But it is not p because we assumed ¬p ∈ v, and v
is consistent. Therefore for some i, 1 ≤ i ≤ m, ¬qi ∈ v, and so that ¬qi belongs to
vN . But then (vN)3(C) = 1, as desired. 2

Now we find that Horn theories have a surprising property.

PROPOSITION 9.13 (Truszczynski)
Let H be a Horn theory. If H possesses an autarky, then H possesses a

positive autarky, or H possesses a negative autarky.

Proof: Let us assume that H possesses an autarky, but not a positive autarky. Let v
be an autarky for H . Then v, being nonempty, contains at least one negative literal.

But then vN is an autarky forH , and, of course, vN is negative. 2

Now, let us observe that not all Horn theories possess autarkies, for instance a theory

consisting of two unit clauses: p and ¬p is inconsistent and also has no nonempty

autarky. Then there are clausal theories (of course non-Horn) that have no positive

and no negative autarkies (but possess autarkies). One such theory is {p∨q,¬p∨¬q}.
It has two autarkies (which happen to be satisfying valuations) {p,¬q} and {q,¬p}.

© 2009 by Taylor and Francis Group, LLC

178 Introduction to Mathematics of Satisfiability

Now we get the following corollary.

COROLLARY 9.6
Let H be a Horn theory possessing autarkies. Then every inclusion-minimal

autarky for H is positive or negative.

Proof: If v is a positive autarky forH then every⊆-smaller autarky forH is positive.

Similarly for negative autarkies. But if v is an autarky forH containing both positive

and negative literals, then by Proposition 9.13, the assignment v cannot be inclusion-
minimal autarky forH . 2

Unfortunately, neither of the results above tells us how to test if a Horn theory pos-

sesses an autarky. We will investigate this problem now. To this end we discuss

positive and negative autarkies of arbitrary clausal theories.

Hence our next step concerns properties of positive autarkies for arbitrary clausal

theories. Subsequently, we will use this result and a related one to study autarkies

for Horn theories. Let us recall the formulas ϕV where ϕ is a formula, and V is a set

of variables. ϕV was the effect of substituting the positive occurrences of variables

from V in F by ⊥ and negative occurrences of variables from V by ⊤.
Since we are dealing with clauses, let us get a better feel of the form of clause CV .
Let C be the clause

p1 ∨ . . . ∨ pk ∨ pk+1 ∨ . . . ∨ pk+r ∨ ¬q1 ∨ . . . ∨ ¬ql ∨ ¬ql+1 ∨ . . . ∨ ¬ql+s,

where p1, . . . , pk, q1, . . . , ql /∈ V and pk+1 . . . , pk+r, ql+1, . . . , ql+s ∈ V . When we

compute CV we get:

CV : p1 ∨ . . . ∨ pk ∨ ⊥ ∨ . . . ∨ ⊥ ∨ ¬q1 ∨ . . . ∨ ¬ql ∨ ¬⊤ ∨ . . . ∨ ¬⊤.

Surely all the ⊥ and ¬⊤ can be eliminated from CV without changing semantics.

Thus CV amounts to simply eliminating from C all literals l where |l| belongs to V .

PROPOSITION 9.14
Let F be a set of clauses, CF its set of constraints, and let V = Var(CF). If
v is a set of positive literals disjoint from V , then v is an autarky for F if and
only if v is an autarky for FV .

Proof: First, let us assume that v is an autarky for F . Then since v consists of

positive literals only, it cannot satisfy any constraint. Therefore it must be the case

that Var(v) ∩ V = ∅. So let us assume that v touches some clause C ∈ FV . Then
C = DV for some D ∈ F . Since v touches C, v touches D. Since v is an autarky

for F , v3(D) = 1. But then by Proposition 3.2 v3(DV) = 1, thus v3(C) = 1, as
desired.

Conversely, let us assume that v is an autarky for FV . Let C ∈ F . We know that C
looks like the following:

p1 ∨ . . . ∨ pk ∨ pk+1 ∨ . . . ∨ pk+r ∨ ¬q1 ∨ . . . ∨ ¬ql ∨ ¬ql+1 ∨ . . . ∨ ¬ql+s,

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 179

where p1, . . . , pk, q1, . . . , ql /∈ V and pk+1 . . . , pk+r, ql+1, . . . , ql+s ∈ V . Let D =
CV , i.e.,

D : p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬ql.

Since v touchesC one of propositional variables p1, . . . , pk+r, q1, . . . ql+s belongs to
v (because v is positive). But this variable cannot be pk+1, . . . , pk+r , ql+1, . . . , ql+s
because these latter variables belong to V . Thus one of p1, . . . , pk, q1, . . . , ql occurs
in v. That is, v touches D. But v is an autarky for FV . Thus v3(D) = 1. But all
literals of D occur in C, and so v3(C) = 1. Since C is an arbitrary clause in F
touched by v, v is an autarky for F . 2

We now introduce the notion of a dual-constraint. A dual-constraint is a clause of

the form p1 ∨ . . . ∨ pk where p1, . . . , pk are variables. Let DF be the set of dual

constraints of F . Here is a fact similar to Proposition 9.14.

PROPOSITION 9.15
Let F be a set of clauses, DF its set of dual-constraints, and let V = Var(DF).
If v is a set of negative literals disjoint from V , then v is an autarky for F if
and only if v is an autarky for FV .

One proof of Proposition 9.15 follows the line of the proof of Proposition 9.14. Am-

ateurs of algebra will follow an alternative line. They will apply the permutation π
of literals such that for all l, π(l) = l̄. This permutation moves positive partial val-

uations to negative partial valuations, constraints to dual constraints and vice-versa.

Then, after applying π to F we can use directly Proposition 9.14, and then apply π
again. Small technical details (like showing that π(CV) = π(C)V) can be easily

filled by the reader.

Propositions 9.14 and 9.15 imply the following corollary.

COROLLARY 9.7
It is possible to establish if an arbitrary set of clauses F possesses a positive

autarky, or a negative autarky in linear time in the size of F , |F |.

Our final goal is to compute autarkies of Horn theories. Let us look for a moment for

the case of positive autarkies, and limit ourselves to the case of Horn theories. Let us

start with a finite set of Horn clausesH and let us define two sequences 〈Hi〉 and 〈Vi〉
inductively as follows. H0 = H , V0 = Var(CH). Hi+1 = HVi

, Vi+1 = Var(CHi
).

Here is what happens. We run the following loop: we compute the set of variables

occurring in constraints of the current theory. Then we reduce the current theory by

the computed set of variables, get a new theory, and continue.

What are possible final outcomes? Either the current theory becomes empty, or it is

not empty but the set of its constraints becomes empty and there is nothing to reduce

by. Let us look at each of these possibilities.

Outcome 1: The current theory becomes empty. Then this current theory has no

autarkies, in particular positive autarkies. Chaining back, we report that the original

© 2009 by Taylor and Francis Group, LLC

180 Introduction to Mathematics of Satisfiability

Horn theoryH had no positive autarkies.

Outcome 2: The current theory is not empty, but it has no constraints. Then it means

that the last theory Hk in our sequence is a Horn program. Now, a Horn program

definitely possesses a positive autarky, namely the collectionM of those variables p
so that p occurs positively in some clause of Hk is a positive autarky for Hk. But

by repeated application of Proposition 9.14 all His have exactly the same positive

autarkies! Thus we return the setM as an autarky forH .

Let us call the algorithm outlined above A+. Our previous discussion results in the

following.

PROPOSITION 9.16

The algorithm A+ is correct. If a Horn theory H possesses a positive autarky,
then the algorithm A+ returns one such autarky. If H does not possess a
positive autarky, then this will be established by the algorithm A+. Moreover,
the number of runs of the loop in the run of A+ is bound by |Var(H)| and the
algorithm A+ runs in linear time in the size of H.

We are now ready to discuss the computation of negative autarkies for Horn theories.

We proceed as above, in the case of positive autarkies, but now we use Proposition

9.15. Recall that in that proposition we have established that if v is a set of negative
literals, and the set of variables V occurring in dual constraints of F is disjoint from

the variables occurring in v then v is an autarky for F if and only if v is an autarky

for FV . There are several things that we need to take into account in this case when

we deal with a Horn CNF,H . First, let us observe that sinceH is Horn, the reduction

HV is again Horn. Second, we observe that since H is Horn, the dual constraints

are necessarily positive units (for these are the only dual-constraints that are Horn

clauses). But now, we observe that if we proceed as before and accumulate the

bigger and bigger collection of positive units by which we reduce (notice that after

we reduce by some units we may create more units, etc.) we compute precisely the

least fixpoint of the operator TP where P is the program part of H! We can either

reduce by means of positive units and then iterate this operation, or simply compute

the fixpoint of TP and then reduce by it. Because the fixpoint of TP is computed,

it follows that the resulting reduct has the property that each of its clauses (if any

still exists after reduction) possesses at least one negative literal. Two outcomes are

possible:

Outcome 1: The reduct by this fixpointM becomes empty. Then the resulting theory

has no nonempty negative autarkies, and so the original theory H has no nonempty

autarky.

Outcome 2: The reduct is not empty. Then the set of all negative autarkies of that

reduct H ′ has precisely the same negative autarkies as H . It is also clear that H ′

possesses at least one negative autarky: it is the set of all negative literals occurring

in H ′. We call the simple algorithm we described (computing the least fixpoint of

TP , where P is the program part of H , eliminating that set of variables from H ,

reporting ‘no negative autarkies’ if that reduction is empty, or the set of all negative

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 181

literals in the reduction, otherwise) A−. We then have the following.

PROPOSITION 9.17

The algorithm A− is correct. If a Horn theory H possesses a negative autarky,
then the algorithm A− returns one such autarky. If H does not possess a
negative autarky, then this will be established by the algorithm A−. Moreover,
the algorithm A− runs in linear time in the size of H.

What is the effect of Propositions 9.16 and 9.17? Since a Horn theory that possesses

an autarky must possess a positive autarky or a negative autarky (Proposition 9.13),

if both our algorithms A+ and A− fail to find one, it must be the case that H has no

autarkies at all.

We thus have the following corollary.

COROLLARY 9.8 (Truszczynski)

It is possible to establish if a Horn theory H possesses an autarky in linear
time in the size of H.

9.4 Dual Horn formulas

A dual Horn clause is a clause C : l1 ∨ . . . ∨ lk where at most one of literals lj ,
1 ≤ j ≤ k is a negative literal. So, for instance, the clause p ∨ q ∨ ¬r is a dual

Horn clause, while ¬p ∨ ¬q is not a dual Horn clause. A dual Horn CNF is a CNF

consisting of dual Horn clauses.

Let us introduce the following permutation Inv of the set of literals.

Inv(l) =

{

¬p if l = p

p if l = ¬p.

In other words, inv (l) = l̄. It should be clear that the permutation Inv is its own

inverse; Inv−1 = Inv .

The permutation Inv , as any permutation, extends its action to clauses. That is, when

C = l1 ∨ . . . ∨ lk, we set Inv(C) = Inv(l1) ∨ . . . ∨ Inv(lk). The following is an

easy observation that relates Horn and dual Horn CNFs.

PROPOSITION 9.18

Let F be a CNF formula. Then F is a dual Horn if and only if Inv(F) is
Horn. Likewise, F is Horn if and only if Inv(F) is dual Horn.

© 2009 by Taylor and Francis Group, LLC

182 Introduction to Mathematics of Satisfiability

If instead of looking at valuations we look at sets of variables, we see that under the

identification of valuations and sets, Inv(M) = Var \M . Then, Proposition 2.23,

implies the following.

PROPOSITION 9.19
Let M be a set of variables, and let F be a CNF formula. Then M |= F if

and only if Var \M |= Inv(F).

The permutation Inv , when thought about in terms of sets (instead of valuations)

reverses inclusion. Since Inv is one-to-one operation on sets (different sets have

different complements), we can extend the action of Inv to the next type (from sets,

to families of sets). That is, we can make Inv act on sets of sets of variables by

letting

Inv(X) = {Inv(X) : X ∈ X}.

The following property of families of sets is an obvious consequence of De Morgan

laws for sets.

PROPOSITION 9.20
Let X be a family of subsets of the set of variables Var. Then X is closed

under unions if and only if Inv(X) is closed under intersections. Likewise, X
is closed under intersections if and only if Inv(X) is closed under unions.

Proposition 9.20 allows us to find the following counterpart of Theorem 9.1.

THEOREM 9.3
Let Var be a finite set of variables and let S ⊆ P(Var) be a nonempty family
of sets. Then S is of the form Mod(dH) for some collection dH of dual Horn
clauses over Var if and only if S is closed under unions.

As in Section 9.2 we can think in terms of valuations instead in terms of sets. There,

we introduced the operation of bitwise conjunction. Here we consider the operation

of bitwise disjunction.

Let a : (x1, . . . , xn), and b : (y1, . . . , yn) be two boolean vectors of the same length

n. The bitwise disjunction of a and b is a vector c of length n such that for all i,
1 ≤ i ≤ n, ci = a1 ∨ bi. As before, given a set of variables Var = {p1, . . . , pn}
with the ordering of variables p1 ≤ . . . ≤ pn, valuations of the set Var are in one-to-

one correspondencewith Boolean vectors of length n. Thus, on analogy with bitwise
conjunctions, we can define the bitwise disjunctions on those valuations.

We then have the following corollary.

COROLLARY 9.9
Let S be a family of valuations of a finite set Var. Then S is of the form

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 183

Mod(dH) for a set of dual Horn clauses dH if and only if S is closed under
bitwise disjunction.

It should be clear that all the results of Section 9.2 will have counterparts for the

case of dual Horn CNFs. Moreover, the proofs can always be found by first applying

permutation Inv , then doing some work on the Horn side, then coming back by

means of another application of Inv . This technique will always work as long as

the argument on the Horn side is semantic in nature. For instance, let us define a

dual Horn program clause as one that has exactly one negative literal, and a dual

Horn program as a CNF consisting of dual Horn program clauses. Then based on

Propositions 9.5 and 9.6 and on the fact that inclusion is reversed by Inv we get the

following.

PROPOSITION 9.21

1. A CNF dH consisting of dual Horn program clauses is satisfiable.

2. Every dual Horn CNF consisting of dual program clauses possesses a
largest model.

The technique of monotone operators can, equally, be applied to dual Horn programs.

Let dH be a dual Horn program. We have two options. The first is to apply permu-

tation Inv, getting a Horn program H . The program H determines its operator OH .

The least fixpoint of that operator generates, via application of inversion (i.e., com-

plement), the largest model of dH. The second possibility is to define the operator

associated with dH directly. Here is how we do this:

OdH (M) = Var \ {q : ∃C∈dH C = p1 ∨ . . . pk ∨ ¬q & p1, . . . , pk /∈M}.

This operator OdH is monotone and continuous in the lattice P(Var) but with the

ordering relation reversed. The ‘least’ fixpoint of OdH is inclusion-largest among

the models of dH. Perhaps a bit surprisingly, the operator OdH is also monotone in

the lattice 〈P(Var),⊆〉, but not, in general, continuous.

We also observe that further results of Section 9.2 also generalize, as long as we

are careful and see which lattice is actually being used. In the case of Lemma 9.1

concerned with unit resolution the reformulation requires some care.

LEMMA 9.2
Let dH be a dual Horn program and p be a variable. Then the variable p is

false in the largest model of pH if and only if there is a unit resolution proof
of ¬p from H. Moreover, in that proof, every unit input is a negated variable.

On the other hand, Proposition 9.11 lifts to the present context (dual Horn CNFs)

verbatim.

© 2009 by Taylor and Francis Group, LLC

184 Introduction to Mathematics of Satisfiability

PROPOSITION 9.22

Let dH be a dual Horn CNF. Then H is inconsistent if and only if ∅ ∈
Res1(H). In other words unit resolution is all that is needed to establish
inconsistency of dual Horn CNFs.

The algorithmic aspects of computing the largest model of a dual Horn program,

and of testing consistency of dual Horn CNFs are very similar to the case of Horn

programs. The reason is that the operation Inv is inexpensive both for valuations and

for formulas. In either case the cost is linear in the size of the formula. The net effect

is that the Dowling-Gallier algorithm can be applied (either directly with minimal

modifications, or by going through the transformation Inv , executing the Dowling-

Gallier algorithm and coming back, by another application of Inv). In either case

the complexity of the corresponding algorithms does not increase.

Finally, let us look at the issue of autarkies for the dual Horn CNFs. Here, everything

about computation of autarkies lifts from the Horn case verbatim. The reason is that

the permutation Inv transforms Horn theories to dual Horn theories and vice versa.

Permutation Inv preserves autarkies; Inv(v) is an autarky for Inv(F) is and only if

v is an autarky for F . Moreover, if v is a set of positive literals then Inv(v) is a set
of negative literals, and vice versa.

Taking all this into account, we collect the properties demonstrated in our consid-

erations on autarkies for Horn theories and get a complete picture for dual Horn

theories. Let us recall that for a set of literals v, vP is its positive part, while vN is

its negative part.

PROPOSITION 9.23

Let dH be a dual Horn CNF, v a set of literals containing at least one positive
literal.

1. If v is an autarky for dH, then vP is an autarky for dH.

2. If dH possesses an autarky, then dH possesses a positive autarky or dH
possesses a negative autarky.

3. All inclusion-minimal autarkies for dH are positive or negative.

The algorithms A+ and A− work for us now exactly as they did in the case of Horn

theories. Then, obviously, Corollary 9.8 lifts verbatim to the dual Horn case. We

thus have the following corollary.

COROLLARY 9.10

It is possible to establish if a dual Horn theory dH possesses an autarky in
linear time in the size of dH.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 185

9.5 Krom formulas and 2-SAT

When a clause has at most two literals, that is empty, a unit clause l or of the form
l1 ∨ l2, we call it a Krom clause, or 2-clause. A Krom CNF (often called in liter-

ature 2CNF) is a collection of Krom clauses. Here is a property of Krom clauses

that makes it distinct. The set of Krom clauses is closed under the application of

resolution rule of proof. Indeed, if C1 : l1 ∨ l2 and C2 : l̄1 ∨ l3 are resolvable Krom

clauses then the resolvent is l2 ∨ l3, again a Krom clause.

When |Var | = n, there is
(

2n
2

)

+ 2 · n + 1 Krom clauses, thus 4 · n2 + 1 Krom

clauses altogether. This bound on the number of Krom clauses shows that the DP

algorithm will never take more than O(n2) space (recall that we have to store not

only the resolvents, but also the sets of clauses containing a given variable). This,

in turn, shows that there is a polynomial d(n) so that the number of steps executed

in the first phase of the DP algorithm is bound by d(n). The second phase is even

simpler. Thus we get the following fact.

PROPOSITION 9.24
The DP algorithm solves the satisfiability problem for collections of Krom

clauses in polynomial time.

It is quite clear that the space requirements are still quite high, of order O(n3). The
space requirements, in general, for DPLL are simpler (of the order O(m), where
m = |F |, with F the input formula, thus in Krom case O(n2)). But we will see that
the DPLL algorithm behaves much simpler on Krom inputs.

Let us recall that DPLL does different things at initialization and at the splitting. At

the initialization we compute the BCP of input formula. This collection of literals,

if inconsistent, forces unconditional failure, not the backtrack. Specifically, let us

recall the following fact previously stated (and proven) as Proposition 8.14.

LEMMA 9.3
Let F be a CNF and let v be BCF(v). Then F is consistent if and only if v

is consistent, and the set of clauses reduct(F, v) is consistent. Moreover, the
set of literals BCP(reduct(F, v)) is empty.

Now we have a fact that shows an advantage of Krom clauses.

LEMMA 9.4
Let K be a Krom CNF, and let l be a literal such that l, l̄ /∈ BCP(K). Let
v = BCP(K ∪ {l}), and let K1 = reduct(K, v). Then:

1. K1 ⊆ K.

2. If v is consistent then: K is consistent if and only if K1 is consistent.

© 2009 by Taylor and Francis Group, LLC

186 Introduction to Mathematics of Satisfiability

3. If v is consistent then a satisfying valuation for K can be computed from
v and a satisfying valuation for K1 in linear time.

Proof: (1) Let us observe that in the reduction process, once we shorten a Krom

clause, the shortened clause becomes a unit. Therefore all clauses are, actually,

subsumed by BCP(K ∪ {l}) or not touched by it at all. Thus the reduct, K1, is

a subset ofK .

(2) If v is consistent then, sinceK1 ⊆ K , every valuation satisfyingK also satisfies

K1. The other direction is simple: Given a valuation w satisfyingK1 and the partial

valuation BCP(K ∪ {l}), we can combine them as follows:

u(p) =

{

v(p) if v(p) defined

w(p) otherwise.

The resulting valuation u satisfies K .

(3) Follows from the construction in (2). 2

A careful inspection of Lemma 9.4 shows that, in fact, we are dealing with an autarky

(cf. Section 2.3). Specifically, we have the following fact.

PROPOSITION 9.25
Let K be a set of Krom formulas. For every set of literals v, if BCP(K ∪ v)

is consistent, then it is an autarky for K.

Proof: Let w = BCP(K ∪ v). Let l ∈ w. If {l̄} is a clause of K then w is

inconsistent. IfC ∈ K , l ∈ C thenw3(C) = 1. So let us assume (the last possibility)

that l̄ ∈ C, but C is not a unit. Then C = l̄ ∨m with l ∈ w. But thenm ∈ w, thus
w3(C) = 1, as desired. 2

Let us observe that Lemma 9.4 does not lift to 3-clauses. Here is the example. Let F
consist of clauses: ¬p ∨ q ∨ r,¬p ∨ ¬q ∨ r,¬p ∨ q ∨ ¬r,¬p ∨ ¬q ∨ ¬r.
Then F is satisfiable (set p = 0), adding p to F results in a consistent BCP (namely

p), but the resulting reduct is inconsistent.
Here is a consequence of Lemma 9.4, namely that once we run BCP on K ∪ {l}
and find the resulting set of literals v consistent, there is no need ever to visit K ∪
{l̄}. Either the reduct of K by v is inconsistent and then K is unsatisfiable, or that

reduct is satisfiable, and then K is satisfiable. Thus, backtracking disappears from

the picture!

This does notmean that we will only visit one literal in a decision node: ifBCP(K∪
{l}) is inconsistent, we will have to go to that other branch.

To handle this situation we will now introduce a new variable visited with Boolean

values. If we are at the first case of computing BCP at a decision point, then we

set up this variable to 0. If BCP(K ∪ {l}) is inconsistent and we have to move to

BCP(K ∪ {l̄}) then this variable visited is changed to 1, to indicate that we cannot

backtrack.

We now present the “Krom” version of the DPLL algorithm.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 187

At the beginning we preprocess, by computing BCP. If we get a contradictory set of

literals we leave with failure. Otherwise we have a partial valuation v and reduceK
by v.

Now we proceed recursively. We have an initial partial valuation v, andK1. IfK1 is

empty, we return any valuation extending v (v was a partial valuation; it did not have
to evaluate all variables).

If K1 is nonempty, we select a literal l occurring in K1 and set the variable visited

to 0. If BCP(K ∪ {l}) is consistent (it is definitely nonempty!), we merge v with

BCP(K1∪{l}), getting the new v, reduceK1 by v getting the newK1, and continue.

If, howeverBCP(K1∪{l}) is inconsistent, we change the variable visited to 1. Now
we run BCP on K1 ∪ {l̄}. If the resulting w is inconsistent, we leave with failure.

Otherwise, we merge v with w getting the new v, reduce K1 by w getting the new

K1, and continue.

It should be clear from our discussion that the algorithm above correctly tests sat-

isfiability of Krom theories (i.e., sets of Krom clauses) K and if such theory K is

satisfiable returns a satisfying valuation forK .

We will now look at some graph-theoretic issues associated with KromCNFs and use

some results from the graph theory to get a better algorithm for testing satisfiability

of Krom formulas.

Before we study the graph-theoretic issues we need a simple lemma relating satisfi-

ability of Krom formulas and BCP.

LEMMA 9.5

Let K be a Krom formula. Then K is satisfiable if and only if, for every
variable p, at least one of BCP(K ∪ {p}), BCP(K ∪ {¬p}) is consistent.

Proof: We prove our assertion by induction on the number n of variables inK . When

n is 1 there are four clauses overVar = {p1}. We can disregard the tautology p1∨p̄1.

There are 8 subsets of the remaining three clauses. Five of these are inconsistent

and have inconsistent BCP . In the remaining three cases the assertion holds. This

establishes the base of induction.

Now let us look at the inductive step. If a clause set K is satisfiable and v is a

satisfying assignment forK then, without loss of generality, we can assume v(p1) =
1. Then v satisfies BCP(K ∪ {p}) and so this latter set of literals is consistent.

Conversely, let us assume that for every variable p ∈ Var , at least one of BCP(K ∪
{p}), BCP(K ∪ {p̄}) is consistent. We assume that BCP(K ∪ {p1}) is consistent.
Let K1 = Red(K,BCP(K, {p1}). Then K1 ⊆ K (Lemma 9.4). If K1 is empty,

then every clause of K is subsumed by BCP(K, {p1}) and since BCP(K, {p1}) is
consistent,K is satisfiable. Otherwise, for every variable q ofK1,

BCP(K1 ∪ {q}) ⊆ BCP(K ∪ {q})

and

BCP(K1 ∪ {q̄}) ⊆ BCP(K ∪ {q̄})

© 2009 by Taylor and Francis Group, LLC

188 Introduction to Mathematics of Satisfiability

Since at least one of the right-hand sides is consistent, at least one of the left-hand

sides is consistent. But K1 has at least one variable less. By inductive assumption,

there is an assignment w of variables of K1 such that w satisfies K1. We extend w
to a valuation w′ setting

w′(x) =

w(x) if x ∈ VarK1

1 if x ∈ BCP(K ∪ {p1}

0 if x̄ ∈ BCP(K ∪ {p1}

Then, clearly, w′ satisfiesK1 and also w
′ satisfies BCP(K ∪{p1}. But every clause

in K \ K1 is subsumed by a literal from BCP(K ∪ {p1}. Thus w
′ satisfies K , as

desired. 2

Let us recall that in the initialization phase of DPLL, if we do not catch the incon-

sistency outright, we get as an output a consistent set of literals (which we called v),
and a Krom formula K1. This last formula K1 has the property that all clauses in

K1 have exactly two literals.

We will now assign to the Krom CNF, consisting of clauses with exactly two literals,

a graph GK as follows. The vertices of GK are all literals of the set of variables

occurring in K . Thus not only the literals actually occurring in K are nodes of GK ,

but their duals as well. Now, for edges, whenever a clause l ∨m belongs to K we

define two edges of GK : one from l̄ tom and another from m̄ to l.
The intuition is that the clause l ∨m means, procedurally, two implications: l̄ ⇒ m
and m̄⇒ l. Each of this implications can be used for chaining in the computation of

BCP.

Now, in the directed graph GK we will write l1 7→ l2 if there is a directed path

starting at l1 and ending in l2, or if l1 = l2. We write l1 ∼ l2 if l1 7→ l2 and l2 7→ l1.
The relation ∼ is an equivalence relation. Its cosets are called strong connected

components of GK . The following property of the graph GK is easily proved by

induction on the length of paths: if l 7→ m then also m̄ 7→ l̄.
Before we go any further, let us observe that if l ∼ m, then BCP(K ∪ {l}) =
BCP(K ∪ {m}).
Here is the basic connection of GK and satisfiability.

PROPOSITION 9.26
Let K be a Krom CNF consisting of clauses with exactly two literals. Then
K is satisfiable if and only if no strong connected component of GK contains
a pair of contradictory literals.

Proof: Let us assume that K is satisfiable, but GK has a connected component con-

taining p and ¬p. Then BCP(K ∪{p}) = BCP(K ∪{¬p}). But then any valuation
satisfyingK must satisfy both p and ¬p, a contradiction.
Conversely, let us assume that no strongly connected component of GK contains a

pair of contradictory literals. We want to show thatK is satisfiable. Let us assume it

is not satisfiable. Then, by Lemma 9.5, it must be the case that for some variable p,

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 189

both BCP(K ∪ {p}) and BCP(K ∪ {¬p}) are contradictory. In particular, in graph
GK , for some r, p 7→ r and p 7→ r̄, and also p̄ 7→ s and p̄ 7→ s̄. But then, it is the
case that r 7→ p̄, and s 7→ p. Now the contradiction is imminent:

p 7→ r 7→ p̄ 7→ s 7→ p.

Thus the composition of these four paths creates a cycle with p and ¬p on it, a

contradiction. 2

Now it is very easy to test satisfiability of Krom CNFs in linear time. All we need

to do is to be able to compute strong connected components and test those for the

absence of a pair of complementary literals, but it is quite clear that this can be done

in linear time in the size of the graph, thus ofK .

The satisfiability test outlined above does not produce a satisfying valuation directly.

We will now show how such computation can be found in linear time. That is, given

an input Krom CNF (a set of 2-clauses), K , we will compute a satisfying valuation

forK ifK is satisfiable. We will use the graphGK defined above. The construction

bears a lot of similarity to the second phase of the DP algorithm.

So, let GK be the graph assigned to K above. We can certainly compute GK in

linear time, and also compute and test strongly connected components of GK for

consistency in linear time. So, let us assume that we found that no strongly connected

component of GK is inconsistent. We proceed as follows. We form the quotient

graph ofGK whose nodes are strongly connected components ofGK . Let us call this

graphHK . The edges ofHK are formed as follows: a strongly connected component

c points to the strongly connected component c′ if c is different from c′ and for some

edge (x, y) ofGF , x belongs to c, and y belongs to c′. Then the graphHK is acyclic

and so we can topologically sort HK . Let the resulting list of strongly connected

components be 〈c1, . . . , cn〉. This list has the property that whenever (l,m) is an

edge ofGK and l,m are in different strongly connected components ofGK then the

strongly connected component of l occurs in the list earlier than the component of

m.

Our goals now are the following:

1. We need to read off the list 〈c1, . . . , cn〉 a valuation v of variables ofK .

2. Then we need to show that v satisfies K .

As mentioned above, our construction is quite similar to the second phase of the DP

algorithm. We construct the desired valuation going backwards, dealing first with

the last of the element of the list, cn, then the previous one, cn−1, etc. We construct

the desired valuation v by induction. To start, since no connected component of

GK contains a pair of dual literals, the component cn, treated as a set of literals, is

consistent. Thus it is a partial valuation, which we call vn. Now assume that we

constructed a partial valuation vn−r and that

vn �k vn−1 �k . . . � vn−r.

© 2009 by Taylor and Francis Group, LLC

190 Introduction to Mathematics of Satisfiability

Here is how we construct vn−r−1. It is an extension of vn−r by these literals in

cn−r−1 which are not contradicted by vn−r. Formally

vn−r−1 = vn−r ∪ {l ∈ cn−r−1 : l̄ /∈ vn−r}.

That is, in the terminology of Chapter 2, vn−r−1 = vn−r ⊕ cn−r−1 . In particular,

vn−r �k vn−r−1. At the end of the construction we have

vn �k vn−1 �k . . . �k v1.

Now we define as v the assignment v1. By construction all variables ofK are evalu-

ated by v.
So, all we need to do is to check that the valuation v satisfies K . Let C : l ∨m be

a clause in K . That is, the graph GK has both edges (l̄, m) and (m̄, l). We want

to show that v satisfies C. To this end, let us consider the last strongly connected

component containing any of l̄, m̄, l, orm. If this last strongly connected component

contains l̄ then as there is an edge from l̄ to m, m must be in the same, or, later,

strongly connected component. But under our assumption it means that m is in the

last component containing any of l̄, m̄, l or m. The reasoning in the case of m̄ is

similar. Therefore that last component must contain either l orm (or both). But then

no later strongly connected component contains l̄ or m̄ so either l orm (or both) are

evaluated by v as 1, Thus v |= C, as desired.
We will now show a characterization of families of models of Krom CNFs analogous

to one we found in Section 9.2. There, in Theorem 9.1, we proved that a family X
of subsets of Var is of the form Th(H) for a CNF H consisting of Horn clauses if

and only if X was closed under intersections. Here we will prove a similar result,

but related to closure under a different operation. It will be natural to use this time

2-valued interpretations rather than sets, but, as usual, it is mainly a matter of taste.

The ternary operation maj assigns to three arguments p, q, and r the value taken by

at least two of them. Next, we look at the “polymorphic” version of maj.

To define an operation on interpretations that takes an interpretation as its value, we

need to define the value at every propositional variable. We define a ternary operation

maj on interpretations by the following condition

maj (v1, v2, v3)(p) =

{

1 if |{i : vi(p) = 1}| ≥ 2

0 otherwise.

Here is what happens: either at least two of v1, v2, v3 take value 1 on p, and then

the result of maj also takes value 1 on p or at least two of v1, v2, v3 take value 0 on

p, and then the result of maj also takes value 0 on p. Thus maj (v1, v2, v3) “goes

with majority” on every variable p. This means that for every literal l we have the
following equivalence:

maj (v1, v2, v3) |= l if and only if |{i : i ∈ {1, 2, 3} ∧ vi |= l}| ≥ 2.

Now we are able to formulate the desired characterization of families of valuations

definable by Krom (2SAT) CNFs. This characterization is due to Schaefer, and later,

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 191

in Chapter 13, when we prove the Schaefer characterization theorem for Boolean

constraint satisfaction problems (Theorem 13.2), we will need it.

PROPOSITION 9.27
Let Var be a finite set of propositional variables. Let F be a set of valuations
of Var. Then there exists a set of Krom clauses S such that F = Mod(S) if
and only if F is closed under the operation maj .

Proof: We need to prove two implications. First, given a family F definable by a

set of Krom clauses, we need to prove that F is closed under maj . Then, we will

have to prove that given a family F closed under maj we can exhibit a family S of

2-clauses (Krom clauses) such that F = Mod(S).
So, let us assume that F is of the form Mod(S) where S consists of 2-clauses. The

case of a unit clause is obvious. So let us assume that a clause l1 ∨ l2 belongs to

S, and that v1, v2, v3 belong to F . All we need to show is that maj (v1, v2, v3) also
satisfies l1 ∨ l2. Because if we show this, then as l1 ∨ l2 is an arbitrary clause in

S, maj (v1, v2, v3) also satisfies S and so belongs to F . So let l1 ∨ l2 be satisfied

by each of v1, v2, v3. Then it cannot be the case that |{i : vi |= l1}| ≤ 1 and

|{i : vi |= l2}| ≤ 1 because then we have

3 = |{i : vi |= l1 ∨ l2}| =

|{i : vi |= l1} ∪ {i : vi |= l2}| ≤ |{i : vi |= l1}|+ |{i : vi |= l2}| ≤ 2,

which is a contradiction. Thus for some j ∈ {1, 2}

|{i : vi |= lj}| ≥ 2.

But then maj (v1, v2, v3) |= lj , and so maj (v1, v2, v3) |= l1 ∨ l2. Thus the implica-

tion⇒ is proved.

Now, let F be a family of valuations such that F is closed under maj . We need to

find S consisting of Krom clauses and such that F = Mod(S). It is quite clear what
S should be, namely,

S = {C : |C| ≤ 2 and for all v ∈ F , v |= C}.

Clearly, all valuations inF belong toMod(S). All we need to show is that valuations

in Mod(S) belong to F . To this end, let v ∈ Mod(S). We show that if all valuations

w ∈ F satisfy some clauseD, then it is also the case that v |= D. We prove this fact

by induction on the length of the clauseD. This is certainly true for all clausesD of

length at most 2. This is how we defined S, and v belongs to Mod(S). So let us fix a
valuation v in Mod(S). Let us assume thatD is of length k + 1 with k ≥ 2 and that

for clauses D′ of length at most k our assertion holds. We show that our assertion is

true forD as well. For otherwise we have

D = l1 ∨ . . . ∨ lk ∨ lk+1,

© 2009 by Taylor and Francis Group, LLC

192 Introduction to Mathematics of Satisfiability

which is true at all valuations w that are in F but D is not true at v. Could our

clause D be subsumed by a shorter clauseD′ that is true in all valuations in F? No,

because such shorter clause D′ being true in all valuations of F would be true, by

inductive assumption, in v. But then D, being weaker, would be satisfied by v as

well. So all clauses strictly stronger than C must be falsified by some valuation in

F . In particular there are valuations v1, v2, and v3 such that

v1 6|=l1 ∨ . . . ∨ lk,

v2 6|=l1 ∨ l3 ∨ . . . ∨ lk ∨ lk+1, and

v3 6|=l2 ∨ . . . ∨ lk+1.

But this means that

v1 |=¬l1 ∧ . . . ∧ ¬lk,

v2 |=¬l1 ∧ ¬l3 ∧ . . . ∧ ¬lk ∧ ¬lk+1,

v3 |=¬l2 ∧ . . . ∧ ¬lk+1.

But now, let w = maj (v1, v2, v3). Then, clearly,

w |= ¬l1 ∧ ¬l2 . . . ∧ ¬lk ∧ ¬lk+1.

This means that w 6|= C. But this contradicts that F is closed under maj , as all
valuations in F satisfy C.
So now we know that v satisfies all clauses satisfied by all valuations from F . Now,
Proposition 3.16 tells us that there is a set of clauses S such that F = Mod(S).
Then, every clause C from S is satisfied by all valuations from F . Therefore every
such clause C is satisfied by v. But this means that v ∈ Mod(S), that is, v ∈ F , as
desired. 2

One may complain that our construction is non-effective, we did not actually com-

pute S in polynomial time. But in fact we could do so. We need to be a bit careful

about the parameters because the size of the family F may be exponential in the

size of Var . So let k be the number of valuations in F and let n be the number of

variables. There are at most O(n2) clauses over the set of variables of size n. There
is only O(n2) of such clauses satisfied by any valuation v. We can find the intersec-

tion of all the sets of 2-clauses satisfied by all these valuations in O(n2k) steps, in
particular in O(m2) wherem is the total size of the family F .
We formalize our discussion above into a proposition.

PROPOSITION 9.28
Let S be a set of all satisfying valuations for some Krom theory K. Then we
can find one such K in polynomial time in the size of S.

We will now use Proposition 9.27 to obtain an alternative characterization of the set

of valuations of the form Mod(T) where T is a set of 2-clauses (i.e., Krom clauses).

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 193

The binary Boolean operation + was defined (actually more than once) above.

Specifically, + is the complement of equivalence. The operation + is a group oper-

ation in Bool .
Similarly, as we did before in our considerations of the sets of models of Horn for-

mulas, and sets of models of dual Horn formulas, we can treat + as a polymorphism

on the set of functions from Var to Bool (i.e., valuations). Thus we define a binary
operation + on valuations. Let fi, i = 1, 2 be valuations (i.e., the Boolean functions

defined on Var). We define f1 + f2 by the equation

(f1 + f2)(p) = f1(p) + f2(p)

for all p ∈ Var . We also remark that + is a group operation in the set of valuations.

This fact, actually, requires a proof, which we leave to the reader.

Now, let F be a set of valuations, and let v ∈ F . Then we say that X ⊆ Var is a

change set for v and F if v + χX belongs to F . The intuitive meaning of a change

set for v and F is this: we “flip” the values of v on the set X (and leave the values

unchanged outside ofX). The resulting valuation should still be in F .

PROPOSITION 9.29
Let F be a set of valuations of Var. Then F is Mod(F) for some set of

2-clauses F if and only if for all v ∈ F , for all X1, X2 which are change sets
for v and F , the intersection X1 ∩X2 is also a change set for v and F .

Proof: First, let us observe that for any pair of valuations v1, v2 there is a setX such

that v1 + χX = v2. Namely, the set

X = {p : v1(p) 6= v2(p)}

is such a set. Actually, such a set X is unique.

Next, we have the following key identity which is of independent interest. Let v be

a valuation, and let X1, X2 be subsets of Var . Then:

maj (v, (v + χX1
), (v + χX2

)) = v + χX1∩X2
.

To see that this identity (that postulates the equality of two valuations, that on the left-

hand side, and that on the right-hand side) holds, we need to see that both functions

take the same value on the entire Var . Let p ∈ Var . Four cases are possible. First,
let p ∈ X1 ∩X2. Then:

v(p) 6= (v + χX1
)(p) = (v + χX2

)(p).

Thus

maj (v, (v + χX1
), (v + χX2

))(p) = 1 + v(p).

But p ∈ X1 ∩ X2 and so v + χX1∩X2
(p) = 1 + v(p) and so the desired equality

holds.

The second case is when p ∈ (Var \ (X1 ∪X2)). In this case

v(p) = (v + χX1
)(p) = (v + χX2

)(p).

© 2009 by Taylor and Francis Group, LLC

194 Introduction to Mathematics of Satisfiability

Thus

maj (v, (v + χX1
), (v + χX2

))(p) = v(p).

But also v(p) = v + χX1∩X2
(p), and so the desired equality holds.

The third case is when p ∈ X1 \X2

v(p) = (v + χX2
)(p) 6= (v + χX1

)(p).

Thus

maj (v, (v + χX1
), (v + χX2

))(p) = v(p).

But p /∈ X1 ∩ X2 and so v(p) = (v + χX1∩X2
)(p), and thus the desired equality

holds.

The fourth case, p ∈ X2 \X1, is very similar to the third one, and we leave it to the

reader to prove.

With the identity above proven, we are now ready to prove our proposition. First, let

us assume that F is Mod(F) where F is a set of 2-clauses. Then, by Proposition

9.27, the familyF is closed under the polymorphismmaj . Let v ∈ F and letX1, X2

be two change sets for v and F . Let v′ = v + χX1
, and v′′ = v + χX2

. Then both

v′, v′′ belong to F since X1, X2 are change sets for v and F . Thus maj (v, v′, v′′)
belongs to F . But then maj (v, (v + χX1

), (v + χX2
)) belongs to F and by the

identity proven above, v + χX1∩X2
belongs to F , i.e.,X1 ∩X2 is a change set for v

and F .
Conversely, let us assume that for all v ∈ F , for all change sets X1, X2 for v and

F , X1 ∩ X2 is also a change set for v and F . Let us select arbitrary valuations

w,w′, and w′′ in F . Then, as we observed before, there are sets X1 and X2 such

that w′ = w+χX1
, and w′′ = w+χX2

. ThenX1, X2 are change sets for w and F .
But thenX1 ∩X2 is a change set for w and F . But our identity says that

w + χX1∩X2
= maj (w, (w + χX1

), (w + χX2
)),

and so maj (w, (w + χX1
), (w + χX2

)) ∈ F , that is maj (w,w′, w′′) ∈ F . Since
w,w′, w′′ were arbitrary valuations in F , F is closed under the polymorphismmaj ,
that is, F is of the form Mod(F) for a set of 2-clauses F , as desired. 2

9.6 SAT as a tool for manipulation of formulas,
renameable variants of classes of clauses

It turns out that formulas can be used to manipulate formulas, or to be precise, to

compute manipulations. The idea is to assign to formulas some other formulas which

express the task of transforming the input formulas. It may sound strange at first

glance, but as we will see, we can sometimes use satisfiability to compute operations

on formulas.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 195

In Section 9.2 we found that it is quite inexpensive to test satisfiability of a set of

clauses H , provided that H was a set of Horn clauses. Not only were we able to

easily test ifH was satisfiable, but we also had an inexpensive algorithm to compute

a least model of H if H was satisfiable. In fact, we have a candidate for a valuation

v satisfying H . If v does not satisfy H (a matter easy to check), H is unsatisfiable.

Now suppose that someone gave us a CNF F and a consistent permutation of literals

π such that π(F) happens to be a Horn CNF. Here is how we then test satisfiability

of F and if F is satisfiable, compute a satisfying valuation for F . First we form an

auxiliary formula H = {π(C) : C ∈ F}. Next, since H is Horn, we test if H is

satisfiable. Since satisfiability of F is equivalent to satisfiability of π(F), that is,
H , therefore if we find that H is unsatisfiable, we report that F is unsatisfiable. If

H is satisfiable, and v |= H , then we compute π−1(v) and return it as a satisfying

valuation for F .
The only problem with this approach is that unless someone gave us π we do not

know (at least for now) if such π exists at all. It is our goal now to show that, actu-

ally, it is quite inexpensive to test if such permutation exists, and if so, find it. First

we need a bit of terminology. A consistent permutation π of literals is called a per-

mutation of variables if π does not change signs of literals: variables are moved to

variables and negative literals to negative literals. Then we call a consistent permu-

tation π of literals a shift permutation if π does not change underlying variables, that

is, for every variable p, π(p) = p, or π(p) = ¬p.
We first have the following fact.

PROPOSITION 9.30

1. If π is a consistent permutation of literals, then π uniquely decomposes
into a product (composition) π1◦π2 where π1 is a permutation of variables,
and π2 is a shift permutation

2. Permutations of variables and shift permutations commute.

Proof: (a) Consistent permutations of literals satisfy the condition π(l̄) = π(l). Thus
π(p) determines π(¬p) and the underlying variable of π(p) and of π(¬p) is the same.

Let us strip π(p) of its polarity; we obtain a permutation π1 of variables. Now for

π2, let us define

π2(p) =

{

p if p = π1(q) and π(q) = p

¬p if p = π1(q) and π(q) = ¬p.

Then π2 is a shift permutation and π = π1 ◦ π2 because all the π2 does is to restore

the correct (with respect to π) polarity of the value of π1(p). We leave the proof of

the uniqueness of decomposition to the reader.

(b) It should be clear that it does not matter if we first move the variable to the proper

underlying variable and then change the sign (if needed) or conversely. 2

© 2009 by Taylor and Francis Group, LLC

196 Introduction to Mathematics of Satisfiability

The next step of our considerations is to observe that the permutations of variables

(as opposed to general consistent permutations of literals) preserve the property of

“being Horn.” That is, the image of a Horn CNF under a permutation of variables is

again a Horn CNF.

PROPOSITION 9.31

Let π be a permutation of variables. Then a CNF is Horn if and only if π(F)
is Horn.

Proof: Since π is a permutation of variables it preserves signs, and so the number of

positive and negative literals in a clause does not change. 2

But now Proposition 9.31 has a consequence.

PROPOSITION 9.32

Let F be a CNF. Then there exists a consistent permutation π such that π(F)
is Horn if and only if there exists a shift σ such that σ(F) is Horn.

Proof: The implication⇐ is obvious. Now assume that for some consistent permu-

tation of literals π, π(F) is Horn. Let us decompose the permutation π into π1 ◦ π2,

where π1 is a permutation of variables, and π2 is a shift. We claim that π2(F) is

Horn. Indeed, π(F) = π1 ◦ π2(F) = π1(π2(F)). Thus π2(F) is Horn, by Proposi-
tion 9.31. 2

Proposition 9.32 tells us that if we want to test if a given input formula can be moved

by some renaming to a Horn formula, all we need to do is to check if some shift

does the job. Let us now introduce a suitable terminology. Let K be a class of

formulas. We say that a formula ψ is renameable-K if for some consistent permu-

tation of literals π, π(ψ) belongs to K. With this terminology we are investigating

renameable-Horn formulas. We also found, that in case of renameable-Horn, all we

need are shift permutations. Now, let us look at an example to see what conditions

on such shift permutation can be derived from a given clause.

Example 9.2

Let C be the clause:

p ∨ q ∨ r ∨ ¬s ∨ ¬t ∨ ¬u.

Here are the constraints on a putative shift π. First, after the shift, at most one of p, q,
and r may remain positive. Second, we may shift one (but no more) of literals s, t,
or u but if we do so, then all of p, q, and r must be shifted. Further refining these

requirements we see that: (1) At least one variable of each pair from {p, q, r} must

be shifted. (2) From each pair out of {s, t, u} at most one may be shifted. (3) If any

of {r, s, t} has been shifted, then each of p, q, and r must be shifted. Let us move

to a new set of variables. This new set has a variable shift(x) for each x ∈ Var .
The intuitive meaning of the variable shift(x) is ‘x needs to be shifted.’ Using the

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 197

fact that the implication l⇒ m is just a 2-clause: l̄∨m we formalize the constraints

listed above as a collection of 2-clauses:

1. shift(p) ∨ shift(q), shift(p) ∨ shift(r), shift(q) ∨ shift(r)

2. ¬shift(s) ∨ ¬shift(t), ¬shift(s) ∨ ¬shift(u), ¬shift(t) ∨ ¬shift (u)

3. ¬shift(s) ∨ shift(p), ¬shift(s) ∨ shift(q), ¬shift (s) ∨ shift(r), ¬shift(t) ∨
shift(p), ¬shift(t) ∨ shift(q), ¬shift(t) ∨ shift(r), ¬shift(u) ∨ shift(p),
¬shift(u) ∨ shift(q), ¬shift(u) ∨ shift(r).

Let us call the CNF composed of these 15 clauses SC . How can we recover a shift

π out of a valuation satisfying SC? Here it is: whenever v(shift(x)) = 1, assign
π(x) = ¬x. Otherwise, π(x) = x. For instance the valuation v such that shift(p) =
1, shift(q) = 1, shift(r) = 1, shift(s) = 1, shift(t) = 0, shift(u) = 0 generates a

shift πv such that

π(p ∨ q ∨ r ∨ ¬s ∨ ¬t ∨ ¬u) = ¬p ∨ ¬q ∨ ¬r ∨ s ∨ ¬t ∨ ¬u.

Let us generalize the construction from Example 9.2. Given a clause

C : p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬ql,

define a collection of 2-clauses consisting of three groups:

Group 1. shift(pi) ∨ shift(pj), 1 ≤ i < j ≤ k.

Group 2. ¬shift(qi) ∨ ¬shift(qj), 1 ≤ i < j ≤ l.

Group 3. ¬shift(qi) ∨ shift(pj), 1 ≤ i ≤ l, 1 ≤ j ≤ k.

What is important here is that the size of S(C) is bound by the square of the size of
C.
Now, let us define SF =

⋃

C∈F SC . Here is a fact that justifies our construction.

PROPOSITION 9.33 (Lewis theorem)
There is a bijection between valuations satisfying the Krom CNF SF and shift
permutations of literals transforming F to a Horn CNF.

Proof: First, let us assume that v is a valuation satisfying SF . We define a permuta-

tion πv by setting:

πv(x) =

{

x if v(shift(x)) = 0

¬x if v(shift(x)) = 1.

Then, clearly, πv is a shift permutation. Moreover, πv changes polarity of x precisely
if v(shift (x)) = 1. But now it is quite clear that the clause π(C) must be Horn, for

every C ∈ F .

© 2009 by Taylor and Francis Group, LLC

198 Introduction to Mathematics of Satisfiability

Conversely, if π is a shift permutation moving F to a Horn clause, then let us define

vπ by

v(shift(x)) =

{

1 if π(x) = ¬x

0 otherwise.

Now, clearly, v |= SC for each C ∈ F and so v |= SC . It is also clear that the

correspondence between vs and πs is a bijection. 2

Now, the size of SF is bound by the polynomial in the number of variables in F , and
SF is a Krom CNF. This implies the following fact.

PROPOSITION 9.34

The problem of testing if a formula F is renameable Horn can be done in
polynomial time in the size of F . If it is, we can compute a shift permuta-
tion turning formula F into a Horn formula in linear time in the number of
variables of F out of a valuation satisfying SF .

It is easy to construct an example of a non-renameable Horn CNF. Here is one:

{p ∨ q ∨ ¬r ∨ ¬s,¬p ∨ ¬q ∨ r ∨ s}.

If the reader has started to suspect that a slightly different Krom CNF can be used

to test if F is renameable dual Horn, she is right. Let us call the collection of Krom

clauses generated to describe the shift into dual Horn CNF, TF (we did not compute

TF , we hope the reader does). The procedure and discussion above allow us to obtain

the following fact.

PROPOSITION 9.35

The problem of testing if a formula F is renameable dual Horn can be done
in polynomial time in size of F . If actually F is renameable dual Horn, we
can compute a shift permutation turning formula F into a dual Horn formula
in a linear time in the number of variables of F out of a valuation satisfying
TF .

Generally, if a collection of formulas K is invariant with respect to permutation of

variables, then the issue of testing renameability of a given F to a formula in K
reduces to shifts.

Here is one such class. Let us call a clause C an “either-or” clause (in short EO)

if all literals in C are positive, or if all literals in C are negative. An EO CNF is

one consisting of EO clauses (we may have some purely positive and some purely

negative). In Chapter 11 we will see that the problem of testing if an EO CNF

formula is satisfiable is NP-complete.

It turns out that the technique of shifts discussed above allows us to test if a formula

F is renameable-EO. Just for the fun of it, we suggest that the reader devises an

example of non-renameable-EO CNF.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 199

9.7 Affine formulas

We consider yet another case when the decision problem is “easy.” This is the case

of affine formulas. Recall that we discussed a binary operation in Bool which we

denoted by +. Recall that the relational structure 〈Bool ,+,∧, 0, 1〉 is an algebraic

structure called a field. In fact the readers with a bit of experience with abstract alge-

bra will recognize that this is the familiar field Z2. We used this fact (and additional

properties of field operations in Z2) when we studied the polynomial representation

(Zhegalkin polynomials) of Boolean functions in Chapter 2. Here we will not use

the full power of the fact that we deal with a field, but it will turn out that procedure,

called Gaussian elimination allows us to test collections of formulas involving only

the functor + and the negations of such formulas for satisfiability.

It will be convenient to think about such formulas in algebraic terms, namely as

linear equations. Specifically, a valuation v satisfies a formula xi1 + . . .+ xik if and

only if the field Z2 satisfies the equation

v(xi1) + . . .+ v(xik) = 1,

whereas v satisfies the formula ¬(xi1 + . . .+ xik) if and only if

v(xi1) + . . .+ v(xik) = 0.

But now, a set of affine formulas is equivalent to the set of the corresponding linear

equations over Z2. A technique called Gaussian elimination is used to solve such

systems of equations. The idea is to use row reduction to make sure that a given

variable occurs in just one equation. This is based on tautologies: (p+ p) ≡ ⊥, and
(p+ q) ∧ (p+ r)⇒ ((q + r) ≡ ⊥)).
Exotic as it may seem, all that happens here is that we enforce the fact that the

characteristic of the field Z2 is 2. Thus x + x = 0, and the linear combination rule

holds (see also Chapter 10.) The difference here is that we are dealing with a field

of characteristic 2, and so if two equations share a variable, they will not share it

after addition. The point here is that addition of equations is a reversible operation.

Adding two equations and getting a third one does not change the set of satisfying

valuations (i.e., solutions), and in fact, if we eliminate one of the original equations,

we can get it back.

With the appropriate renaming, every set of linear equations over Z2 can be taken

into diagonal form (we are not in the business of teaching algebra here, but it should

be clear what happens in the current context). Two outcomes are possible. The first is

that we get an inconsistent set of equations that is one that includes an equation 0 = 1
(in the context of logic we derive after a series of rewritings the formula⊥ ≡ ⊤). Or
we do not get an inconsistent set of equations, but rather a set of equations presented

in Table 9.1. Trivial equations (0 = 0 and 1 = 1) are eliminated. Now, all we need

to do is to select any way we want the values of variables xn+1, . . . , xn+m and we

get the solution for all variables. If an expression fj does not contain variables at all,

© 2009 by Taylor and Francis Group, LLC

200 Introduction to Mathematics of Satisfiability

TABLE 9.1: Reduced set of equations, consistent
case

x1 + . . . = f1(xn+1, . . . , xn+m)
x2 + . . . = f2(xn+1, . . . , xn+m)

. . . = fj(xn+1, . . . , xn+m)

. . . +xn = fn(xn+1, . . . , xn+m)

it is ⊥, or ⊤. In such case the variable xj is completely constrained, regardless of

the values of variables xn+1, xn+k.

The algorithm for solving the sets of affine formulas (that is, systems of linear equa-

tions over Z2) are implemented either as the so-called Gauss algorithm, or as the

Gauss-Jordan2 algorithm.

We will now show a characterization of sets S of Boolean vectors such that S =
Th(F) for some set of affine formulas F . To this end, we will tailor the usual

definitions of vector space and affine sets to our current situation. We say that a set

of vectors S ⊆ {0, 1}n is a vector space if it is closed under the sums of two vectors.

Here the sum of vectors ~x and ~y, ~x + ~y is a vector ~z such that for all i, 1 ≤ i ≤ n,
~z(i) = ~x(i) + ~y(i). The well-known fact from linear algebra is that a vector space

(remember, we are in Boolean case!) is of the form S = {~x : M · ~x = ~0}. Now,
a set of vectors S is called affine if there is a vector ~y and a matrix M such that

S = {~x : M~x = ~y}.
We will consider sets S of vectors closed under sums of three vectors. This is a

property weaker than closure under sums of two vectors. Nevertheless we have the

following fact.

LEMMA 9.6

Let S be a set of Boolean vectors, S ⊆ {0, 1}n. Let us assume that ~0 ∈ S.
Then S is closed under sums of two vectors if and only if S is closed under
sums of three vectors.

Proof: If S is closed under sums of two vectors then, obviously, S is closed under

sums of three vectors. Now, if S is closed under sums of three vectors, but we can

take one of those ~0, then we can see that S is closed under sums of two vectors as

well. 2

We now characterize affine sets of vectors in a manner analogous to Theorems 9.1

and 9.3, and Proposition 9.27.

PROPOSITION 9.36

Let S be a set of Boolean vectors, S ⊆ {0, 1}n. Then S is affine if and only

2Not the topologist Camille Jordan of the Jordan curve theorem fame, but the engineer Wilhelm Jordan.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 201

if S is closed under sums of three vectors.

Proof: First, let us assume that S is affine. Let us fix the vector ~y and the matrixM
so that S = {~x : M~x = ~y}. Now, if ~x1, ~x2, ~x3 ∈ S then we have:

~y = ~y + ~y + ~y = (M · ~x1) + (M · ~x2) + (M · ~x3) = M · (~x1 + ~x2 + ~x3),

thus ~x1 + ~x2 + ~x3 belongs to S.
Conversely, let us assume that S is closed under sums of three vectors. We have two

cases to consider.

Case 1: ~0 ∈ S. Then, since S is closed under sums of three vectors, S is closed

under sums of two vectors (Lemma 9.6). But then S is a linear space, there is a

matrixM such that S = {~x : M · ~x = ~0}, and all we need to do is to set ~y = ~0.
Case 2: ~0 /∈ S. Let us fix a vector x0 ∈ S. We now define

S′ = {~x+ ~x0 : x ∈ S}.

We claim that S′ is closed under sums of three vectors. Indeed, let ~x1 +~x0, ~x2 +~x0,

and ~x3 + ~x0 all be in S′. Then by commutativity and the fact that ~x0 + ~x0 = ~0 we

get

(~x1 + ~x0) + (~x2 + ~x0) + (~x3 + ~x0) = (~x1 + ~x2 + ~x3) + ~x0.

But ~x1 + ~x2 + ~x3 ∈ S so (~x1 + ~x2 + ~x3) + ~x0 ∈ S
′.

But now, there is a matrix M such that S′ = {~x : M · ~x = ~0}, and let us define

~y = M · ~x0. We claim that

S = {~x : M · ~x = ~y}.

For inclusion ⊆, let us observe that if ~x ∈ s, then ~z = ~x+ ~x0 ∈ S′, so

~0 = M · ~z = (M · ~x) + (M · ~x0) = M · (~x+ ~y).

For inclusion⊇, let us assume thatM ·~x = ~y. SinceM ·~x0 = ~y, we getM ·(~x+~x0) =
~0. But then ~x+ ~x0 ∈ S′, and so ~x ∈ S. 2

Thus testing if a set of vectors S is affine can be done in polynomial time in the size

of S (just checking if all sums of three vectors from S are in S.)
We can also find an explicit form of a theory F consisting of affine formulas such

that S = Th(F) using Gaussian elimination. The technique we present comes from

studies of error-correcting codes.

Let us assume that we have already established that a table T describes an affine set

of vectors, {~r1, . . . , ~rk}, each vector ri, 1 ≤ i ≤ k of length n. In algebraic notation

our task is to find a matrixM and a vector~b such that

T = {~r : A · ~r = ~b}.

We are a bit imprecise; on the one hand we talk about T as a table (where the order

of rows is fixed) and on the other as a set of vectors. In fact, the order in which we

© 2009 by Taylor and Francis Group, LLC

202 Introduction to Mathematics of Satisfiability

list the rows of T does not matter. The issue here is if we can find such matrixA and

a vector ~b in polynomial time in the total size of the problem (i.e., in the size of T).
Let us observe that the size of T is k · n.
First, let us observe that the problem easily reduces to the case when the rows of

T form a linear space. Indeed, an affine set T is a linear space if and only if the

zero-vector~0 belongs to T . So after we test if T is affine we first check if ~0 belongs

to T . If it is, T is a linear space. If not, then the set

T ′ = {~r + ~r1 : ~r ∈ T }

is a linear space. So we find a matrix A such that

T ′ = {~s : A · ~s = ~0}.

Then we set~b = A · ~r1. Then, if ~r ∈ T then ~r + ~r1 ∈ T ′ so

A · (~r + ~r1) = ~0 = A · ~r +A · ~r1 = A · ~r +~b.

Thus A · ~r = ~b, as desired. Conversely, if A · ~s = ~b then by setting ~t = ~s + ~r1 we

check that A · ~t = ~b+~b = ~0. Thus ~t ∈ T ′ and since ~s = ~t+ ~r1, ~s ∈ T .
So now we have reduced our problem to one in which we can assume that T is a

linear space. Using Gaussian elimination with respect to rows of the matrix T we

find a maximal set of independent vectors in T . When we find m such vectors, T
has precisely 2m vectors (because with |Z2| = 2 every m-dimensional subspace of

{0, 1}n has 2m vectors). So now, possibly with renaming the variables, we can find

a matrix B so that we can write T as

(I B) ,

where I is an m × m identity matrix (1 on the main diagonal, 0 outside main di-

agonal), and B is an m × (n − m) matrix. We then produce a new matrix A by

setting
(

B
J

)

.

Here J is an (n − m) × (n − m) identity matrix. This matrix A is known in the

theory of error-correcting codes as a parity-check matrix and it generates the space

orthogonal to the space T . This actually requires a proof (which we only indicate

because after all it is part of a different domain: error-correcting codes). First we

need to prove that rows of (Im B) are orthogonal to columns of
(

B
In−m

)

. There are

all sorts of proof for this. One such proof uses induction on the number of 1s in
matrix B. Then, using dimension reasoning we observe that the dimension of the

space spanned by
(

B
In−m

)

is n−m and so T consists precisely of vectors orthogonal

to the matrix
(

B
In−m

)

. But this means that T consists of the solutions of the system of

equations described by A ·~r = ~0. This, together with the reduction described above,
completes the argument of the correctness of our construction.

© 2009 by Taylor and Francis Group, LLC

Polynomial cases of SAT 203

The described procedure is polynomial because Gaussian elimination can be done in

polynomial time. We summarize our discussion above in a proposition which will

be used when we discuss the Schaefer theorem.

PROPOSITION 9.37
Let S be a set of all satisfying valuations for some affine theory A. Then we
can find one such A in polynomial time in the size of S.

We will illustrate the procedure described above with an example.

Example 9.3
Let T be the following table:

0 0 1
0 1 0
1 0 0
1 1 1

.

The table T is affine, but not a linear space. Selecting the first row we get out of T
the space:

0 0 0
0 1 1
1 0 1
1 1 0

.

Using row elimination we find the basis

(

0 1 1
1 0 1

)

.

Transposing the first and second column we get

(

1 0 1
0 1 1

)

.

The matrix B is
(

1
1

)

.

The number n−m is 1. Then the matrix A is

1
1
1

 .

Thus T ′ is

{~r : A · ~r = ~0}.

© 2009 by Taylor and Francis Group, LLC

204 Introduction to Mathematics of Satisfiability

Consequently T ′ is determined by a single equation,

x1 + x2 + x3 = 0.

This equation characterizes T ′, not T . But all we need to do now is to computeA·~r1,
that is, A · (0, 0, 1). This value is 1 and so:

T = {(x1, x2, x3) : x1 + x2 + x3 = 1}.

9.8 Exercises

1. We noted that every consistent Horn theory H possesses a least model. Us-

ing the Dowling-Gallier algorithm we can find this model, lm(H), in linear

time. Now, use this algorithm to test (in quadratic time) ifH possesses a unique

model.

2. IfH consists of program clauses, the problem of multiple models is completely

trivial. Why?

3. Of course the previous two problems can be lifted to the dual Horn case. Do it.

4. Write the truth table for the ternary Boolean function maj .

5. Let us assume that a class of theories T has the property that there is an algo-

rithm that tests satisfiability of theories in T in polynomial time. Use this algo-

rithm to test if theories in T have multiple models (also in polynomial time).

6. Use problem (5) to check if a Krom theory possesses multiple models.

7. Use problem (5) to check if an affine theory possesses multiple models.

8. We are given two Horn theories,H1 andH2. Design an algorithm to test if H1,

H2 have the same models.

9. Design a similar technique for Krom theories.

10. We observed that testing if a formula is renameable Horn can be decided in

polynomial time. It is known that testing if a formula is renameable to a program

is, actually, an NP-complete problem. This is unpleasant news. However, testing

if a Krom formula can be renamed into a program can be done in polynomial

time. Design an appropriate algorithm.

11. Of course, the same can be done for dual Horn programs. Use the technique

used in this chapter to do so.

12. Write the truth table for the ternary Boolean function sum3 .

© 2009 by Taylor and Francis Group, LLC

Chapter 10

Embedding SAT into integer
programming and into matrix
algebra

10.1 Representing clauses by inequalities . 206
10.2 Resolution and other rules of proof . 207
10.3 Pigeon-hole principle and the cutting plane rule . 209
10.4 Satisfiability and {−1, 1}-integer programming . 214
10.5 Embedding SAT into matrix algebra . 216
10.6 Exercises . 225

In this chapter we look at the effects of changing representations of clauses and of

sets of clauses. We will explore (but this is, literally, “the tip of the iceberg”) the

results of representing clauses and sets of clauses in two formalisms: linear pro-

gramming (but really in integer programming) and matrix algebra. In the first of

these areas, we represent each clause as an inequality. As the result, the sets of

clauses are represented by systems of inequalities. The basic idea here is to identify

Boolean values 0 and 1 with integers 0 and 1 (nothing strange in itself; something

similar happens in some programming languages). This representation is faithful in

the following sense: the solutions to the resulting sets of inequalities, as long as they

are in the desired form, taking only values 0 and 1, can be “pulled back,” result-

ing in satisfying valuations for the original CNF. In fact, we will see that there is

more than one representation of clausal logic in the integer programming. The sec-

ond representation, closer in spirit to Kleene three-valued logic, requires solutions

taking only values −1 and 1. The simple act of conversion brings, however, advan-

tages: techniques applicable in integer programming can be used to locate satisfying

valuations.

Yet another translation that we will explore assigns to CNFs matrices over some or-

dered ring (in reality integers are sufficient). This is the subject of Section 10.5.

Translation of CNFs into matrices allows us to reduce the search for satisfying valu-

ations and autarkies to suitably formulated algebraic questions.

205

© 2009 by Taylor and Francis Group, LLC

206 Introduction to Mathematics of Satisfiability

10.1 Representing clauses by inequalities

Assume that we have a clause, say

C := l1 ∨ . . . ∨ lk.

Let us interpret the atom p as an integer variable but ranging over the set {0, 1}. In
other words, we interpret Boolean 0 and 1 as integers 0 and 1. Now, let us substitute
for each negative literal p̄ inC the algebraic expression 1−p, substitute the operation
symbol+ for each occurrence of∨ inC, and append at the end the inequality symbol

≥ 1. The effect of this syntactic transformation is the following integer inequality:

l1 + . . .+ lk ≥ 1. (10.1)

We will denote by IC the result of this transformation of the clause C, and for a CNF
(i.e., a set of clauses) F , we write IF for {IC : C ∈ F}. We also call the inequality

(10.1) a pseudo-Boolean (or pseudo-Boolean inequality) [ARSM07].

Continuing our identification of Boolean 0 and 1 with integer 0 and 1, we can lift

the notion of a valuation to the integer context. Specifically, a valuation v is now a

function from Var to integers with the restriction that the range of v is included in

{0, 1}. As was the case in logic, the valuation v uniquely extends its action to all

polynomials. In particular, v(p̄) = 1 − v(p), for all variables p. We now have the

following simple observation.

PROPOSITION 10.1

1. Let C be a clause and let v be a valuation. Then v |= C if and only if v
is a solution to IC . Consequently:

2. Let F be a CNF and let v be a valuation. Then v |= F if and only if v is
a solution to IF .

Proof: (1) Let v be a valuation, v |= C. Then for some i, 1 ≤ i ≤ k, v(li) = 1. Also,

for all j, 1 ≤ j ≤ k, v(lj) ≥ 0. Therefore
∑k
i=1 v(li) ≥ 1, and so v is a solution to

the inequality IC .

Conversely, let v be a solution to the inequality IC , i.e.,
∑k

i=1 v(li) ≥ 1. Since all
values of v are either 0 or 1, at least one v(li) must be 1. But then v |= C, as desired.
(2) follows directly from (1). 2

The effect of Proposition 10.1 is that the system of integer inequalities faithfully

represents SAT as long as we limit ourselves to the solutions in {0, 1}.

Let us look at an example.

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 207

Example 10.1
Let F consist of the clauses: p ∨ q ∨ ¬r, p ∨ ¬q, and q ∨ r. We translate F to

inequalities: p+ q + (1− r) ≥ 1, p+ (1− q) ≥ 1, and q + r ≥ 1. But now we can

apply rules of elementary algebra and get the following system of inequalities:

p+ q − r ≥ 0
p− q ≥ 0
q + r ≥ 1.

There are many solutions to this system of inequalities. Of these, for instance the

assignment v specified by p = 1, q = 0, r = 1 is a solution taking only values 0 and

1, and so we have a satisfying assignment for the CNF F .

Now, integer programming, and its special case 0-1 integer programming, where we

care only about solutions that take the values 0 and 1, is a domain with a long history.

Surely, they found something we did not find in SAT.

10.2 Resolution and other rules of proof

The most natural rule of proof in integer programming is the linear combination

rule (LCR). Let r, s be non-negative integers (actually, non-negative reals work as

well). The instance of LCR determined by two inequalities in the premise, and two

non-negative integers r and s is:

a1x1 + . . .+ anxn ≥ a b1x1 + . . .+ bnxn ≥ b

(ra1 + sb1)x1 + . . .+ (ran + sbn)xn ≥ ra+ sb

We were taught in elementary school that the linear combination rule is sound. That

is, whenever (c1, . . . , cn) is a sequence of numbers satisfying both premises, then

(c1, . . . , cn) satisfies the conclusion as well.
Surprisingly, the linear combination rule generalizes resolution. To this end, let us

observe that l + l̄ = 1 regardless what the literal l is. Next, let p ∨ C1 and ¬p ∨ C2

be two clauses which are resolved on variable p. The clause p ∨ C1 translates (with

slight abuse of notation) to p+C1 ≥ 1, while ¬p∨C2 translates to (1−p)+C2 ≥ 1.
Then with r = s = 1 we get

p+ C1 + (1 − p) + C2 ≥ 2.

This expression rewrites to C1 + C2 ≥ 1, as desired.
If we substitute ā = 1−a then the inequality is no longer the sum of literals, it is the

weighted sum of variables, and the right-hand side no longer has to be 1. There is
a delicate issue of repeated occurrences of variables in clauses, and also of tautolo-

gies. We will deal with these issues in the Section 11.6 Exercises. Clauses without

© 2009 by Taylor and Francis Group, LLC

208 Introduction to Mathematics of Satisfiability

repeated occurrences of variables translate to inequalities where all coefficients on

the left-hand side are either 1 or −1. When we resolve, there is a possibility of get-

ting a coefficient 2 (or −2) of a variable. We will see soon, however, that this case

can be eliminated.

If the left-hand side of our inequality admits only coefficients 1 and −1, then

we can transform that left-hand side to an expression which is a sum of literals.

With such transformation it is very easy to see when such inequality is valid, sat-

isfiable, or unsatisfiable in the 0 − 1 world. The reason is that if an inequality

I = f(p1, . . . , pk) ≥ r (with a linear polynomial f) has t negative literals on the

left-hand side, then adding t to both sides we can transform it to an inequality of the

form

l1 + . . .+ lk ≥ s.

But such inequality is satisfiable (in the 0 − 1 world) if s ≤ k, a tautology if s ≤ 0
and unsatisfiable if s > k.

Example 10.2

1. The inequality −p1 − p2 − p3 ≥ −4 is a tautology. Indeed it is equivalent to

p̄1 + p̄2 + p̄3 ≥ −1 which is always true.

2. The inequality −p1 − p2 − p3 ≥ 1 is antitautology (always false). Indeed it is

equivalent to p̄1 + p̄2 + p̄3 ≥ 4 which is always false.

3. The inequality −p1 + p2 ≥ 1 is, of course, satisfiable.

We observed that it seems that the combination rule is different from resolution if a

literal appears in both C1 and C2. But as we will see we can handle this as well,

for there is a sound rule for deriving additional inequalities, a rule that simplifies the

coefficients. This rule is called the cutting plane rule and it is valid for all integer

inequalities, not only when we care about 0–1 solutions. Here it is: when r is a

positive integer then:

a1x1 + . . .+ anxn ≥ b

⌈a1

r ⌉x1 + . . .+ ⌈an

r ⌉xn ≥ ⌈
b
r ⌉
.

(Recall that ⌈·⌉ is the familiar ceiling function which assigns to the real number x
the least integer bigger than or equal to x.)

PROPOSITION 10.2
The cutting plane rule is sound.

Proof: Clearly, for a positive integer r, ⌈ar ⌉ · r ≥
a
r · r = a. Therefore if a1x1 +

. . .+ anxn ≥ b then

⌈
a1

r
⌉rx1 + . . .+ ⌈

an
r
⌉rxn ≥ a1x1 + . . .+ anxn ≥ b

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 209

Thus

⌈
a1

r
⌉x1 + . . .+ ⌈

an
r
⌉xn ≥

b

r
.

But the left-hand side is an integer, thus we get

⌈
a1

r
⌉x1 + . . .+ ⌈

an
r
⌉xn ≥ ⌈

b

r
⌉.

Now, with this additional rule we can get resolution in the integer programming

setting. After we combine the inequalities, either we get a tautology (when there is a

pair of complementary literals after resolving), or a contradiction (if we have a pair

of contradictory literals), or an inequality with all coefficients equal to 1 (remember,

we combine literals), or we have a final case which we analyze now. This is the case

when we combine two clauses, where C1 ∩C2 6= ∅. Then, after the combination we

get an inequality where coefficient(s) of some literal is equal to 2 (there may be more

than one). But now, we apply the cutting plane rule to this inequality with r = 2.
What we get is the inequality corresponding to the resolvent.

10.3 Proving the pigeon-hole principle using the cutting
plane rule

To illustrate the possible uses of techniques originating in the integer programming

community, we will use both the change of the representation (to the inequalities

instead of clauses) and the linear combination and cutting plane rules to get a “short”

proof of the Dirichlet pigeon hole principle. By short we mean an argument that will

use a number of applications of these rules bound by a polynomial in the parameter

determining the problem.

There are various forms of the Dirichlet principle. One says that if you have m
pigeons and n holes andm > n > 0 then there is no assignment of pigeons to holes

so that each pigeon gets her own hole. But it can also be interpreted as follows: any

assignment of m pigeons to n holes with m > n has to have at least two different

pigeons in some hole. This principle, surprisingly, is nothing else but the induction

principle. The derivation is sort of circular, using the least element in every non-

empty set of integers. This fact goes beyond the scope of this book.

It is known that the CNF formulaPHn, expressing the fact that there is no assignment

of n + 1 pigeons to n holes so that no two pigeons share a hole, is provable using

resolution without subsumption. Specifically, in a moment we will produce a CNF

PHn such that PHn possesses this property. It will be clear that this formula is

unsatisfiable. One shows that the closure of PHn under resolution generates the

empty clause, ∅. But the argument using the resolution rule alone must have O(cn)
steps (n is a variable here). This is a classical result by Haken [Ha85]. But we will

see (because it is so much easier) that we can do this in a polynomial number of steps

if we have at our disposal the cutting plane rule.

© 2009 by Taylor and Francis Group, LLC

210 Introduction to Mathematics of Satisfiability

We will introduce the SAT representation of PHn (n + 1 pigeons, n holes). Our

language has an atom p(i, j) for each i, 1 ≤ i ≤ n+ 1, and each j, 1 ≤ j ≤ n. The
CNF PHn consists of two groups of clauses:

1. For each i, 1 ≤ i ≤ n+ 1, a clause

p(i, 1) ∨ . . . ∨ p(i, n)

(each pigeon has its hole).

2. For each pair j1, j2 such that j1 6= j2, 1 ≤ j1 ≤ n+ 1, 1 ≤ j2 ≤ n+ 1 and for

each k, 1 ≤ k ≤ n, a clause

¬p(j1, k) ∨ ¬p(j2, k)

(no two different pigeons are in the same hole).

When we encode our collection of clauses as integer inequalities we get (with the

range of parameters as above)

n
∑

j=1

p(i, j) ≥ 1 (10.2)

and

p(j1, k) + p(j2, k) ≥ 1 (10.3)

whenever 1 ≤ j1 < j2 ≤ n+ 1.
Let us observe that altogether, given n, we have only n+ 1 clauses each of length n
in (10.2), and n · (n+ 1) · n clauses in (10.3). Altogether there is O(n3) clauses and
the size of the entire formula is also O(n3).
By a structural rule we mean a rule

L+ l+ l̄ ≥ j

L ≥ j − 1
,

where L is an algebraic expression.

PROPOSITION 10.3
There is a polynomial-length proof of contradiction out of PHn in the proof
system consisting of linear combination rules, cutting plane rules, and struc-
tural rules.

Proof: We will get a contradiction from the set of inequalities (10.2) and (10.3). As

the first step, we will prove, by induction on j that for every k, 1 ≤ k ≤ n,

j
∑

i=1

p(i, k) ≥ j − 1. (10.4)

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 211

(It is a curious formula. What it says is that if you try to pack into the kth hole first

j pigeons then at least j − 1 will not be there).

Proof of the inequality (10.4). The case of j = 1 is obvious, and the case of

j = 2 is one of our input inequalities. Now, assume that for each k, 1 ≤ k ≤ n,
∑j

i=1 p(i, k) ≥ j − 1. We can multiply both sides by j − 1 (this is nothing but

adding j − 1 copies of our inductive assumption, and so it is allowed with our rules

of proof). We then have:

(j − 1)(

j
∑

i=1

p(i, k)) ≥ (j − 1)2. (10.5)

We will now add to this inequality j inequalities

p(1, k)+ p(j + 1, k) ≥ 1 (10.6)

. . .+ . . . ≥ 1 (10.7)

p(j, k)+ p(j + 1, k) ≥ 1 (10.8)

What happens when we sum up these inequalities? The summands within the in-

equality (10.5) have now not j − 1 but j occurrences. Each of them; so this amounts

to incrementing the factor j − 1 outside by 1, that is, to j. But this is not all. Let us
observe that in the subsequent k inequalities the second term was identical and was

p(j + 1, k). Therefore adding all our inequalities produces the left-hand side:

j ·

j+1
∑

i=1

p(i, k).

What about the right-hand side? It is (j− 1)2 + j, that is j2− j+ 1. In other words,
we got the inequality

j(

j+1
∑

i=1

p(i, k)) ≥ j2 − j + 1. (10.9)

Let us apply to this inequality the cutting plane rule with r = j. We then get the

following inequality:
j+1
∑

i=1

p(i, k) ≥ ⌈
j2 − j + 1

j
⌉. (10.10)

Inequality (10.10) is rewritten to:

j+1
∑

i=1

p(i, k) ≥ ⌈j − 1 +
1

j
⌉. (10.11)

But now the right-hand side of the inequality (10.11) is, clearly, j. Indeed, j is the
least integer bigger than j − 1 + 1

j . Therefore the proof of the inductive step, and

thus of the statement, is completed.

© 2009 by Taylor and Francis Group, LLC

212 Introduction to Mathematics of Satisfiability

So now we look at the case of j = n + 1, and get for every k, 1 ≤ k ≤ n the

inequality
n+1
∑

i=1

p(i, k) ≥ n. (10.12)

Let us sum up all the inequalities from our input of the form (10.2). We are summing

n + 1 of these inequalities and so get a double sum on the left-hand side and n + 1
on the right-hand side:

∑

1≤i≤n+1

1≤j≤n

p(i, j) ≥ n+ 1. (10.13)

Let us sum up all the inequalities of the form (10.12). There were n of them, the

right-hand side in each was n, so we get the following inequality:

∑

1≤i≤n+1

1≤j≤n

p(i, j) ≥ n2. (10.14)

Now, let us sum up the inequalities (10.13) and (10.14). Let us look at the left-hand

side first. We get, after obvious change of the order of summation,

∑

1≤i≤n+1

1≤j≤n

(p(i, j) + p(i, j)). (10.15)

Since the inner sum p(i, j)+ p(i, j) is always 1, the left-hand side rewrites to n(n+
1). But the right-hand side is n2 + n + 1, that is n(n + 1) + 1. This is a desired

contradiction.

But it is not the end of our argument; we need to see how many rule applications

the entire process required. There was an inductive process. Each of these inductive

processes required summation of 2k inequalities, then one application of the cutting

plane rule. We realize that summing up inequalities is an application of the linear

combination rule. Altogether, clearly, O(n2) proof steps were needed at this point.

Then, we summed up two sets of inequalities (one had n + 1 inequalities, the other

one n). Then we used the structural rule (l+ l̄ = 1)O(n2) times. Therefore we used

O(n2) steps. This completes the argument. 2

We discussed the inequalities of the form l1 + . . . + lk ≥ 1. What about the dual

inequalities l1 + . . .+ lk ≤ 1? Clearly, since at most one of li, 1 ≤ i ≤ k can be true,
at least k − 1 of dual literals l̄i must be true. That is the inequality l̄1 + . . . + l̄k ≥
k − 1 can be derived. This is not the negation of the original inequality (which is

l1 + . . . + lk ≤ 0, that is l1 = 0, l2 = 0, etc.). It is a dual inequality. This also

tells us that language of inequalities allows for expressing succinctly various other

properties of sets of propositional variables.

Let us look again at the inequalities (where we look for 0–1 solutions)

a1l1 + . . .+ anln ≥ a

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 213

with positive coefficients. Such inequalities can have all sorts of interpretations. For

instance, we may think about weight function wt on the set of literals and then this

inequality requires that

wt(l1)l1 + . . .+ wt(ln)ln ≥ a.

We end this section by asking can we somehow handle Boolean constraint propa-

gation for the inequalities? In order to deal with this question, we first generalize

the inequalities to cardinality atoms. Those will be expressions of the form rXs
where X is a set of literals and 0 ≤ r ≤ s ≤ |X | are two integers. The meaning

of such cardinality atom is: “Out of literals of X at least r but no more than s are
true.” This is a generalization of inequalities discussed above, except that we require

that all coefficients be equal to 1. The inequality l1 + l2 + . . . + lm ≥ r is written
rX where X = {l1, . . . , lm}. Likewise l1 + l2 + . . . + lm ≤ s is written Xs. The
expression rXs denotes the conjunction of these two inequalities. We will look in a

later chapter at other, more complex inequalities.

What would be the analogue of unit resolution for such inequalities? Let l ∈ X . The

rule looks like this:

rXs l̄

r(X \ {l})s
.

Moreover, we have the following rules

rX

l
,

when |X | = r, and l ∈ X . Let us observe that the expression rX with r = |X | is a
generalization of the unit clause. It asserts that all literals (thus units) in X are true.

When l ∈ X , then we have another propagation rule (which reduces to elimination

of literal in the clausal case):

rXs l

(r − 1)(X \ {l})(s− 1)
.

But we can go even further. Assume that we treat the expressions rXs as a new kind

of propositional variables (i.e., atoms). Then we can form clauses from such atoms.

Let us observe that not only such atoms generalize ordinary atoms via a ≡ 1{a}1,
but also negative atoms: ¬a ≡ 0{a}0. All sorts of normal forms can be shown easily

for formulas formed of cardinality atoms. One such normal form is this:

r1X1s1 ∧ . . . ∧ rmXmsm ⇒ t1Y1u1 ∨ . . . ∨ tsYsus.

This normal form generalizes the usual clausal form. The point here is that one can

use the syntactic properties of cardinality atoms for speeding up processing. Again,

we will look at such clauses in a later chapter.

© 2009 by Taylor and Francis Group, LLC

214 Introduction to Mathematics of Satisfiability

10.4 Satisfiability and {−1, 1}-integer programming

It is natural to ask if the faithful embedding of clauses into integer programming

described above is unique, in the sense that there are no others. Actually, there

are other embeddings of clausal logic into integer programming. For the sake of

demonstrating that there is much to be discovered here, we will look at one such

embedding (there are surely other embeddings as well!).

Given a valuation v, we assign to it a new valuation, but not into {0, 1} but rather
into {−1, 1}, as follows. Namely, for a valuation v we assign to it a function wv :
Var → {−1, 1} as follows.

wv(p) =

{

1 if v(p) = 1,

−1 if v(p) = 0.

Clearly, the assignment v 7→ wv is a bijection between the set of valuations of Var
into {0, 1} and the set of valuations of Var into {−1, 1}.
Next, given a clause

C := p1 ∨ . . . ∨ pm ∨ ¬q1 ∨ . . . ∨ ¬qn

let us assign to C an integer inequality

iC := p1 + . . .+ pm − q1 − . . .− qn ≥ 2− (m+ n).

Again, this is a bijection between clauses and very special integer inequalities in-

volving all variables where all coefficients of those variables are equal to −1, 0, or
1 (except that the terms with coefficient 0 are not listed for obvious reasons). Next,

given a CNF F , we can assign to it a system of inequalities iF = {iC : C ∈ F}.
First, we need to formally say what it means that an assignment w : Var → {−1, 1}
is a solution to an inequality (yes, we know that this is taught in elementary school).

To this end, we first formally define w(p1 + . . . + pm − q1 − . . . − qn). We define

inductively: w(p1 + . . . + pm) =
∑m

j=1 w(pj), and then: w(−qj) = −w(qj), and
w(p1 + . . .+pm−q1 . . .−qn−1−qn) = w(p1 + . . .+pm−q1 . . .−qn−1)−w(qn).
Then, w is a solution to the inequality p1 + . . . + pm − q1 . . . − qn ≥ r if

w(p1 + . . .+ pm − q1 . . .− qn) ≥ r. After this ocean of formalism we are ready to

formulate and prove a result on the embedding of clausal logic into {−1, 1}-integer
programming.

PROPOSITION 10.4

1. For every valuation v and for every clause C, v |= C if and only if wv is
a solution to iC and therefore,

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 215

2. For every valuation v and a CNF F , v |= F if and only if wv is a solution
of iF .

Proof: By induction on the summ+ n.
Base case, subcasem = 1, n = 0. Then the clause C is the unit clause p1, and iC is

the inequality p ≥ 1. But as wv takes the values in {−1, 1}, the inequality p ≥ 1 is

in fact an equality, p = 1. Thus satisfaction of C by v, and satisfaction of iC by wv
are equivalent in our case.

Base case, subcasem = 0, n = 1. Then the clause C is unit ¬q1, and iC is −q ≥ 1,
i.e., q ≤ −1. But again, q ≤ −1 is equivalent to q = −1, and the equivalence holds.
Induction step. First, let us consider the case when n = 0. Then C is p1 ∨ . . .∨ pm,

and iC is p1 + . . .+ pm ≥ 2−m. First, let us suppose that v |= C. Then for some

j, v(pj) = 1. We can assume j = m, and we proceed as follows:

wv(p1 + . . .+ pm−1 + pm) = wv(p1 + . . .+ pm−1) + wv(pm) =

wv(p1 + . . .+ pm−1) + 1.

By inductive assumption wv(p1 + . . .+ pm−1) ≥ 2− (m− 1). Adding one to both
sides and taking into account the above equations, we get

wv(p1 + . . .+ pm−1 + pm) ≥ 2− (m− 1) + 1 = 2−m.

Next, we have to show that if wv is a solution to p1 + . . . + pm ≥ 2 − m then

v |= p1 ∨ . . . ∨ pm. Indeed, if v 6|= p1 ∨ . . . ∨ pm, then v(p1) = . . . = v(pm) = 0,
wv(p1) = . . . = wv(pm) = −1, and so wv(p1 + . . .+ pm) = −m < 2 −m. Thus

for at least one of pj , 1 ≤ j ≤ m, wv(pj) = 1, and so v(pj) = 1, thus v |= C.
Next, consider the subcase when n > 0. Then C is p1 ∨ . . . ∨ pm ∨ ¬q1 ∨ . . . ∨
¬qn−1 ∨ ¬qn. Let D be p1 ∨ . . . ∨ pm ∨ ¬q1 ∨ . . . ∨ ¬qn−1. First, let us assume

v |= D. Then by inductive assumption,

wv(p1 + . . .+ pm−1 + pm − q1 − . . .− qn−1) ≥ 2− (m+ n− 1).

Therefore

wv(p1 + . . .+ pm−1 + pm − q1 − . . .− qn−1 − qn) ≥ 2− (m+ n− 1)−wv(qn).

But this last term −wv(qn) is definitely bigger or equal to −1. Thus we get

wv(p1+. . .+pn−1+pn−q1−. . .−qn−1−qn) ≥ 2−(m+n−1)−1 = 2−(m+n),

as desired.

Second, let us assume v 6|= D (but v |= C). Then it must be the case that: v(p1) =
. . . = v(pm) = 0, v(q1) = . . . = v(qn−1) = 1, and v(qn) = 0. The last equality
follows from the fact that under the assumption v 6|= D, the only way to satisfy C is

with qn set to 0. Then

wv(p1+. . .+pm−1+pm−q1−. . .−qn−1−qn) = (m+(n−1))·(−1)+1 = 2−(m+n).

© 2009 by Taylor and Francis Group, LLC

216 Introduction to Mathematics of Satisfiability

To complete our argument we now have to prove that if wv satisfies the inequality

p1 + . . .+ pm−1 + pm − q1 − . . .− qn−1 − qn ≥ 2− (m+ n),

then v |= C.
If wv(qn) = −1, then v(qn) = 0, and v |= C. So let us assume wv(qn) = 1. Then
as

wv(p1 + . . .+ pm−1 + pm − q1 − . . .− qn−1 − qn) ≥ 2− (m+ n),

we have

wv(p1 + . . .+ pm−1 + pm − q1 − . . .− qn−1) ≥ 2− (m+ n) + wv(qn)

= 2− (m+ n) + 1 = 2− (m+ (n− 1)).

But by the inductive assumption this means that v |= D, and since D subsumes C
we are done. 2

It is also clear that our Proposition 10.4 implies a faithful representation of inequal-

ities p1 + . . . + pm + (1 − q1) + . . . (1 − qn) ≥ 1 (with 0–1 solutions) by means

of inequalities p1 + . . . + pm − q1 − . . . − qn ≥ 2 ≥ 2 − (n + m) (with {−1, 1}
solutions.

10.5 Embedding SAT into matrix algebra

When we discussed the minimal unsatisfiability (Section 7.1) and proved that for a

minimally unsatisfiable set of clausesF , |Var(F)| ≤ |F |, we introduced certain data
structure, namely a bipartite graph that was associated with F , where one part con-
sisted of F , the other of Var(F) and an edge connected a clause C with a variable

p if p occurred in C (regardless of whether it was a positive or negative occurrence).

A closer look at such a graph reveals some problems. Namely, the graph GF con-

sidered in Section 7.1 does not uniquely determine F . Here is an example: the CNF

F consisting of clauses {p ∨ q,¬p ∨ q,¬q} determines precisely the same graph as

the CNF F ′ consisting of clauses {p ∨ q,¬p ∨ q, q}. From our perspective it is not

acceptable: the formula F is unsatisfiable, but the formula F ′ is satisfiable. Hence,

to represent formulas faithfully we need an additional element. We modify the graph

GF by introducing weights of edges. When p occurs in C positively, we assign to

that edge the weight 1; if it occurs negatively, we assign the weight −1.
Such representation is faithful; we can recompute F from such a weighted bipartite

graph GF . It is also clear that this representation is much more in the spirit of the

second representation of satisfiability in integer programming (Section 10.4). One

way of thinking about the weighted bipartite graph representing a set of clauses F
is that it is a full bipartite graph with edges weighted with a weight taking values

−1, 1, 0. It is just that we do not list edges weighted 0. If we think in those terms,

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 217

then we are again somewhere close to Kleene’s three-valued logic, with 1 represented
by 1, 0 represented by −1, and u represented by 0. But now, if we have a weighted
complete bipartite graphG = 〈X,Y,E,wt(·)〉 with one partX = {a1, . . . , am} and
the other part Y = {b1, . . . , bn}, with all possible edges in E and with a real-valued

weight function wt , then we can assign to the graphG an (n×m)-real matrixM by

setting its entries as follows:

Mi,j = wt(e(i, j)),

where e(i, j) is the edge connecting the vertex ai with the vertex bj . For a weighted
bipartite graph which is not necessarily complete, we can extend this to the following

definition:

Mi,j =

{

wt(e(i, j)) if there is an edge incident with ai and bj,

0 otherwise.

When we compose these two representations (first, sets of clauses represented by a

weighted bipartite graph, then a weighted bipartite graph represented by a matrix)

we get a matrix representation of a CNF F . Assuming F = {C1, . . . , Cm} and
Var(F) = {p1, . . . , pn} the matrixM(F) is defined by the following conditions:

M(F)i,j =

1 if pj occurs in Ci positively,

−1 if pj occurs in Ci negatively,

0 if pj does not occur in Ci.

The assignment F 7→ M(F) is one to one (assuming a fixed ordering of clauses

and fixed ordering of variables), as long as F contains no tautological clauses. The

reason is that when F contains tautologies,M(F) is not well-defined.
There are several operations on matrices that preserve satisfiability. First, any permu-

tation of rows inM(F) is just another listing of the same F . Next, a permutation of

columns corresponds to a permutation of variables. Furthermore, permutation with

a possible complement (change of sign of the entire column) corresponds to consis-

tent permutation of literals and does not change satisfiability. All these facts can be

formally expressed, and we will look at them in Section 10.6 Exercises.

Now, in addition to the above, there are two operations on matrices worth mention-

ing. The first one is the elimination of duplicate rows. This does not change satisfia-

bility. All that happens is that a duplicate clause is eliminated. Another is related to

duplicate columns. If two columns corresponding to variables pk and pl are dupli-
cates of each other, then it is quite easy to see that the partial assignment {pk,¬pl}
forms an autarky for F . In such case we can simplify matrixM(F) without chang-
ing the satisfiability status: namely, we eliminate all rows that have a non-zero entry

in the kth column as well as both columns. The resulting matrix represents a formula

G which is satisfiable if and only if F is satisfiable. A similar situation occurs when

a column corresponding to pi is equal to a column corresponding to pj multiplied by

−1. In such case {pi, pj} is an autarky, and we can proceed as in the previous sim-

plification. These simplification procedures justify our introduction of a new syntax.

It will turn out that there are more benefits.

© 2009 by Taylor and Francis Group, LLC

218 Introduction to Mathematics of Satisfiability

Not every matrix with −1, 1, 0 entries is a matrix of a formula. But we are close

enough. At least when a matrixM represents a CNF then (up to limitations discussed

above, that is, order of rows and renamings), it represents a unique formula.

Now, unlike the previous two interpretations we are going to interpret satisfiability

by linear algebraic means. The matrices need to be over any ordered ring, but for

simplicity we will discuss matrices over real numbers. Integers or rationals would

do equally well.

First, we will assign to every real matrix M its sign pattern. This is a matrix M ′

defined as follows:

M ′
i,j =

1 ifMi,j > 0,

−1 ifMi,j < 0,

0 ifMi,j = 0.

Now, let us fix F , and thus the parameters m (the size of F) and n (the size of

Var(F)) and the orders of clauses and variables (thus fixing the meaning of rows

and columns). The sign patterns of n × n matrices induces a relation. The relation

∼ is defined by the formula:

M ∼ N ifM ′ = N ′.

PROPOSITION 10.5
The relation ∼ is an equivalence relation.

The matricesM that interest us are those for whichM ∼ M(F). We need to have

in mind that some matricesM are not∼-equivalent to anyM(F) for a CNF formula

F . But if they are, the formula F for whichM ∼ M(F) (remember that we fixed

the orders of parameters) is unique.

Next, let us look at matrices with a single row, that is, vectors with real values. If

we takeM ′ for such a single-row matrix we get a vector composed of −1s, 1s, and
0s. We now have two different interpretations to such vector. The first one is a CNF

consisting of a single clause. But there is another interpretation as well. It is an

interpretation where the vector ~x is interpreted as a set of literals, namely, the set of

literals {pj : ~x(j) = 1} ∪ {¬pj : ~x(j) = −1}. This set of literals can be thought

of (as we often do) as a partial interpretation of Var(F). This is the meaning we

assign to those vectors. Here is one example: let 〈p, q, r〉 be a list of 3 propositional

variables, and let ~x be the vector (−3, 2, 0). The vector ~x determines the partial

assignment (−1, 1, 0) which corresponds to the following consistent set of literals:

{¬p, q}.
This duality of interpretations (either by a single-row matrix or by a vector) corre-

sponds to the analogous phenomenon in logic: a collection of literals v can either be
interpreted by its disjunction (and then we talk about a clause) or by its conjunction

(and then we talk about partial valuation.)

Now, if a matrixM is ∼-equivalent to the matrixM(F) for a propositional formula

F we say thatM has the same sign pattern asM(F) and abusing the language, the

same sign pattern as F . Testing ifM has the same sign pattern as F is easy and can

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 219

be done in polynomial time. Likewise, testing ifM has a sign pattern of a formula

(i.e., that M ′ has no duplicate rows) can be done in polynomial time in the size of

M . Let us look at an example.

Example 10.3
The matrixM

(

2 2 −1
3 5 −2

)

has the sign matrixM ′
(

1 1 −1
1 1 −1

)

which has duplicate rows. Such matricesM are not considered here. On the other

hand the matrixM
(

2 2 −1
−3 0 −2

)

has the sign matrixM ′
(

1 1 −1
−1 0 −1

)

,

which represents the CNF F = {p ∨ q ∨ ¬r,¬p ∨ ¬r}.

Now, we define the following set of vectors associated with a CNF F :

HF = {~x ∈ Rn : ∃M (M ∼M(F) and M~x > ~0)}.

So HF consists of n-dimensional vectors of real values (any ordered ring would do,

though) such that the dot product of some matrix M with the same sign pattern as

the sign pattern of F results in a vector with all positive entries.

First, let us observe the following property of the set HF .

PROPOSITION 10.6
The set HF is a cone in Rn; that is, HF is closed under vector sum and the
product by positive reals.

Proof: Let us observe that the set of matrices ∼-equivalent toM(F) is closed under
sums and it is also closed with respect to multiplication by positive reals. This,

clearly, implies the assertion. 2

But now, we can compute out of HF the set of partial valuations generated out of

elements ofHF . Let us formalize it.1 So formally (we know that, in effect, we repeat

1We juggle with two different formalisms to handle three-valued interpretations, one using values 1, 0,

and u, the other using 1,−1, and 0. It is horrible, but those are used in two different communities and we

will not force them to use other people’s formalism.

© 2009 by Taylor and Francis Group, LLC

220 Introduction to Mathematics of Satisfiability

the definition given above, but we still need it formally!) we have:

v~x(i) =

1 if xi > 0,

0 if xi < 0,

u if xi = 0.

(~x here is an n-dimensional vector, and xi is the i
th coordinate of ~x.)

Now, we define:

PF = {v~x : ~x ∈ HF }.

So what is PF ? It is the set of partial assignments (so there will be a connection to

Kleene three-valued logic) which can be read off vectors that left-multiplied by some

matrix M , M sign-equivalent to F , resulting in a vector with all positive entries.

Now, we have the following fact.

PROPOSITION 10.7
Let F be a CNF. Then

PF = {v : v is a partial valuation of Var and v3(F) = 1}.

Proof: Let m = |F | and n = |Var(F)|. We first prove the inclusion ⊆. Let us

assume that a partial valuation v belongs to the set PF . Then there exists a matrix

M ,M ∼ M(F), and a real vector ~x such that v~x = v andM~x > ~0. Now,M~x > ~0
means that for every rowMi ofM , the dot product ofMi and ~x is positive. Formally,

Mi · ~x > ~0,

that is,
∑n
j=1Mi,j · xj is positive. Let us fix i and look at

∑n
j=1Mi,j · xj . It must

be the case that for at least one j,Mi,j · xj > 0. But this means that bothMi,j and

xj are non-zero, and that they are of the same sign. In other words either Mi,j is

positive and xj is positive or Mi,j is negative and xj is negative. Now, recall that
M ∼M(F). Therefore, looking at the clauseCi and the partial valuation v~x we find
that one of two cases must happen: either pj occurs in Ci positively and v~x(pj) = 1,
or pj occurs in Ci negatively and v~x(pj) = 0. In either case, (v~x)3(Ci) = 1. Since i
was an arbitrary index of the row (i.e., Ci was an arbitrary clause in F) the inclusion
⊆ is proved.

Conversely, let us assume that v is a partial valuation evaluating F as 1. We can

compute out of v a real vector ~x such that v~x = v. There are many such vectors. We

will consider the following one:

~x(i) =

1 if v(pi) = 1,

−1 if v(pi) = 0,

0 if v(pi) = u.

Now, we need to find a matrix M such that M ∼ M(F) and M~x > ~0. There are
many such matrices. We show one. The matrixM(F) may be no good, because the

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 221

interaction of entries of the ith row with ~x may result in a negative result. So we

need to modifyM(F) as follows. First, since v3(F) = 1, for every clause Ci there
is a literal lj(i), 1 ≤ j(i) ≤ n with lj(i) occurring in Ci such that v(lj(i)) = 1. This
means that lj(i) occurs in Ci and it is evaluated by v as 1. So here is how we define

a desired matrixM .

Mi,j =

{

M(F)i,j if j 6= j(i),

n ·M(F)i,j if j = j(i).

Thus in the row i we modifyM(F) in a single place j(i) by multiplying the value

by the length of the vector ~x. The first observation is that each row of the matrix

M is non-zero. Indeed, lj(i) occurs in Cj , thus the entryM(F)i,j is non-zero, thus
Mi,j(i) is non-zero.

Now, let us look at the dot product ofM and ~x,M~x. This product can be expressed
as a sum of two terms:

(

n
∑

j=1,j 6=j(i)

Mi,j · xj) + (Mi,j(i) · xi,j(i)).

The ith row ofM differs from the ith row ofM(F) in just one place, j(i). Therefore
all the termsMi,j in the first part of our sum are 1,−1, or 0. Likewise all the terms

xj in the first part of our sum are 1,−1, or 0. The effect is that we can estimate the

first term of our sum:

|
n
∑

j=1,j 6=j(i)

Mi,j · xj | ≤ n− 1.

But the second term in our sum is Mi,j(i) · xj(i) which is, by construction of M ,

n ·M(F)i,j(i) · xj(i). ButM(F)i,j(i) · xj(i) = 1. Thus

Mi,j(i) · xj(i) = n.

Therefore we can estimate the sum
∑n
i=1Mi,j ·xj ; it is certainly bigger than or equal

to 1. Thus we conclude
n
∑

i=1

Mi,j · xj ≥ 1 > 0.

As i was arbitrary, we conclude that the inclusion ⊇ is also true, and our assertion is

proved. 2

Before we get a corollary expressing the satisfiability in linear algebraic terms, let

us look at an example showing that moving to matrices with the same sign pattern is

really necessary.

Example 10.4
Let F be the following set of clauses: {p ∨ q, p ∨ ¬q,¬p ∨ ¬q}. The matrixM(F)
is:

1 1
1 −1
−1 −1

 .

© 2009 by Taylor and Francis Group, LLC

222 Introduction to Mathematics of Satisfiability

The inequalityM(F)~x > ~0 has no solution for it requires both x1 + x2 > 0 (first

row) and −x1 − x2 > 0 (third row). But here is a matrix M with the same sign

pattern:

1 1
1 −1
−1 −5

 .

This matrix imposes different constraints on the vector ~x. Those are three inequali-
ties: x1 + x2 > 0, x1 − x2 > 0, and −x1 − 5x2 > 0. This system of inequalities

has solutions, for instance x1 = 1, x2 = −.5 is a solution, generating satisfying

valuation {p,¬q}. If we execute the construction of the second part of Proposition

10.7 we get the following matrixM1:

2 1
2 −1
−1 −2

 .

The matrixM1 has the property thatM1~x > ~0 has a solution and one such solution

is x1 = 1, x2 = −1.

But now we get the following corollary.

COROLLARY 10.1
A set of clauses F is satisfiable if and only if for some matrix M with the

same sign pattern as F there is a vector ~x such that M~x > ~0.

It may be esthetically appealing (for some readers) that the characterization of satis-

fiability given in Corollary 10.1 does not refer to logic at all.

Interesting as it is, Corollary 10.1 refers to an infinite family of matrices. One won-

ders if we can bound somehow the number of matrices that would have to be checked.

The second part of the proof of Proposition 10.7 entails such bound (pretty crude,

though). The point here is that it is quite clear that if there is a satisfying valuation

then one of the matrices M constructed in the second half of that proof must have

a solution for the system of inequalities M~x > ~0. So here are conditions on these

matricesM . For all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n:

1. M ∼M(F).

2. For each i, the i th row ofM differs from the i th row ofM(F) in at most one

place.

3. In the place j where these rows differ we must have the equality:

Mi,j = n ·M(F)i,j .

Clearly there is only finitely many (to be precise no more than mn) such matrices

M . Thus we get the following corollary.

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 223

COROLLARY 10.2
For each set of clauses F , |F | = m, |Var(F)| = n there is a setM of matrices
such that

1. |M| ≤ mn.

2. F is satisfiable if and only if for some M ∈ M, the inequality M~x > ~0
possesses a solution.

Next, we look at Kleene extension theorem (Proposition 2.5(2)). That result implies

that whenever v3(F) = 1 and v �k w, then also w3(F) = 1. Now, let us look at the
analogous relation for real vectors. Here it is. We write

~x1 �k ~x2

if whenever ~x1(i) 6= 0, then ~x1(i) = ~x2(i). That is, in transition from ~x1 to ~x2

we can change values but only if that value is 0. For instance (1, 0, 0.5,−3) �
(1, 2, 0.5,−3) because we changed the value 0 at the second position to the value 2.
Unlike in Kleene logic, relation �k is not a partial ordering, but it is a preordering.

Specifically, it is easy to see that if ~x1 �k ~x2 then v~x1
� v~x2

. Now, we get the

following corollary.

COROLLARY 10.3
The set HF is closed under the preordering �k. That is, if ~x1 ∈ HF and
~x1 �k ~x2, then ~x2 ∈ HF .

What about autarkies? (It looks like we are fixated by them, we look for them under

every rug). Those possess a similar characterization due to Kullmann in terms of

linear algebra over ordered rings.

PROPOSITION 10.8
Let F be a CNF formula and let v be a partial valuation. Then v is an autarky
for F if and only if for some real matrix M with the same sign pattern as F
there exists a vector ~x such that:

1. M~x ≥ ~0, and

2. v~x = v.

Proof: Our argument will be similar to that of Proposition 10.7. First, let us assume

that v is an autarky for F . Our goal is to construct a matrixM such thatM ∼M(F)
and a vector ~x such thatM~x ≥ ~0 and v~x = v. We will construct a desired matrixM
by altering entries of matrixM(F). But this time we will only alter those rows that

correspond to clauses touched by v. So let us suppose that v touches a clauseCi ∈ F .
Then as v is an autarky for F , v3(Ci) = 1. Therefore there is j(i), 1 ≤ j(i) ≤ n,
such that eitherM(F)i,j(i) = 1 and pj(i) ∈ v orM(F)i,j(i) = −1 and ¬pj(i) ∈ v.

© 2009 by Taylor and Francis Group, LLC

224 Introduction to Mathematics of Satisfiability

Let us fix such j(i) for each row number i such that v touchesCi, and define a matrix

M as follows:

Mi,j =

M(F)i,j if v does not touch Ci,

M(F)i,j if v touches Ci but j 6= j(i),

n ·Mi,j if j = j(i).

Then, let us define the vector ~x as follows:

~x(j) =

1 if pj ∈ v,

−1 if ¬pj ∈ v,

0 otherwise.

Clearly, by construction, M ∼ M(F) and v~x = v. All we need to show is that

M~x ≥ ~0.
If v does not touchCi then the dot product of the i

th row ofM ,Mi, by ~x is 0 because

non-zero entries of that row will be zeroed by 0 entries of ~x. Indeed, in every place

whereMi,j is non-zero, ~x(j) is 0, as v = v~x and v does not touch Ci.
So let us assume that v touchesCi. But v is an autarky for F . Therefore v3(Ci) = 1.
Therefore, by construction, like in the proof of Proposition 10.7, we can estimate the

dot product ofMi · ~x and we find that it is, actually, strictly greater than 0.
Conversely, let us assume that for some matrixM such thatM ∼ M(F) there is a
vector ~x, with v~x = v and M~x ≥ ~0. We want to show that v is an autarky for F .
Let Ci be an arbitrary clause in F . If v does not touch Ci then there is nothing to

prove. So let us assume that v touches Ci. Then there is some j, 1 ≤ j ≤ n such

thatMi,j 6= 0 and ~x(j) 6= 0. Let us fix such j. Two cases are possible.

Case 1: Mi,j and ~x(j) have the same sign. If this is the case then, asM ∼ M(F)
and v~x = v, it must be the case that either pj occurs in Ci positively and pj ∈ v, or
pj occurs in Ci negatively and ¬pj ∈ v. In either case v3(Ci) = 1.
Case 2: Mi,j and ~x(j) have opposite signs. Then, since

∑n
j=1Mi,j · ~x(j) ≥ 0 and

the term Mi,j · ~x(j) has negative value, there must be another index j′ such that

Mi,j′ · ~x(j′) is positive. But then Mi,j′ and ~x(j
′) have the same sign and we are

back to Case 1. Thus again v3(Ci) = 1.
Since i was arbitrary, we are done, and the proof is now complete. 2

There is a corollary to the proof of Proposition 10.8. Let ~ei be the vector having on

the ith coordinate 1, and on the remaining coordinates 0. We then have the following.

COROLLARY 10.4

Let F be a CNF and let v be a partial valuation. Let us fix the orders of
clauses in F and of variables. Let Ci be a clause in F . Then v is an autarky
for F and v evaluates Ci as 1 if and only if for some matrix M , M ∼M(F),
and for some vector ~x such that v = v~x, M~x ≥ ~ei.

© 2009 by Taylor and Francis Group, LLC

SAT, integer programming, and matrix algebra 225

10.6 Exercises

1. Write a CNF with at least 5 clauses, each with at least 3 literals. Represent

your CNF faithfully in (a) {0, 1}-integer programming, (b) in {−1, 1}-integer
programming. Conclude that you need to know which of these formalisms you

use, as the representations are inequalities, and an inequality has a different

meaning depending upon which formalism you use.

2. We were a bit cavalier about structural rules; we had only one structural rule

(eliminating l + l̄). But in fact, if we really want to be truly formal we need

more structural rules, for instance, rules that allow us to move literals within

expressions. Formulate such rule(s).

3. Show the validity of rules for manipulating cardinality constraints. We will

discuss these rules in the chapter on knowledge representation, but there is no

harm in doing it right now.

4. Show that the representation of clause sets by means of weighted bipartite

graphs is, indeed, faithful. That is, different representations of a given CNF

as a full, weighted bipartite graph are isomorphic.

5. Show that our discussion of the relationship of matrix operations and permuta-

tions of literals (right after we introduced the sign matrix) is valid.

6. Show that when columns of a sign matrixM(F), representing two variables pi,
pj , are identical, then {pi,¬pj} is an autarky for F .

7. Show that when the column of the sign matrixM(F), representing the variable
pi, takes the opposite value to those of pj (i.e., for all k, Mj,k = −Mi,k) then

{pi, pj} is an autarky for F .

© 2009 by Taylor and Francis Group, LLC

Chapter 11

Coding runs of Turing machines,
NP-completeness and related topics

11.1 Turing machines . 228
11.2 The language . 231
11.3 Coding the runs . 232
11.4 Correctness of our coding . 233
11.5 Reduction to 3-clauses . 237
11.6 Coding formulas as clauses and circuits . 239
11.7 Decision problem for autarkies . 243
11.8 Search problem for autarkies . 245
11.9 Either-or CNFs . 247
11.10 Other cases . 249
11.11Exercises . 252

This chapter is the first of four that are devoted to issues in knowledge representation.

While knowledge representation is an area with practical applications, in this chapter

we start with a construction that is theoretical, but carries an important promise.

Specifically, in this chapter we encode the problem of Turing machines reaching

the final state as a satisfiability problem. To prove that SAT is NP-complete, we

will reduce to SAT any language decided by a nondeterministic Turing machine in

polynomial time. We need to be very careful so that the reader does not get the

impression that SAT solves the halting problem. What we show is that if we set the

bound on the length of the run of the machine then the problem of reaching the final

state within such bound can be represented as a SAT problem. In fact, we will find

a polynomial f(·) such that the size of the SAT problem solving this limited halting

problem is bound by f(|M | + |I| + k), where |M | is the size of the machine, |I|
is the size of the input, and k is the bound on the number of steps allowed until we

reach the final state.

One consequence of this coding (and proof of correctness of coding) is that every

problem in the class NP polynomially reduces to SAT. Thus the message of this

chapter is that, at least in principle, SAT can serve as a universal tool for encoding

search problems in the class NP.

Next, we also show that we can polynomially reduce satisfiability to satisfiability of

sets of 3-clauses. We then show how circuits (and hence arbitrary formulas) can be

coded into sets of clauses. We also show that the existence problem for autarkies is

NP-complete.

Finally, we show that “mix-and-match” of (most of) polynomial cases (studied in

227

© 2009 by Taylor and Francis Group, LLC

228 Introduction to Mathematics of Satisfiability

Chapter 9) results in NP-completeness. Specifically, we show that of 21 possible

cases (we refer to Chapter 9 for the definition of 7 “easy” cases) of pairs of “easy”

theories, 19 cases lead to classes of CNFs for which the satisfiability problem is

NP-complete, whereas two have polynomial complexity.

We refer the reader to the book by M. Sipser [Sip06], Chapter 7, especially Section

7.3, for relevant definitions.

11.1 Nondeterministic Turing machines

A nondeterministic Turing machine is an abstraction of a computing device.

A Turing machine, formally, consists of three components. First, a finite set of states,

S. We will assume that among the elements of S there are two distinguished states:

i, the initial state, and f , the final state. Second, the machine M has an alphabet

Σ. In addition to Σ that is used in describing the input data and transformations on

the data that the machine executes, there will be an additional symbol B, a blank

symbol, not in Σ. Before we describe the third component of the machine, the set

of instructions, let us mention that every machine M has a fixed three-element set

of directions. Those are: r that is used to denote that machine (to be precise: its

read-write head) moves to the right, l, used to denote that the machine moves to the

left, and λ, used to denote that the machine stays put (we do not know yet what it

means that the machine moves; this will be described shortly). The third part of the

machine is the nondeterministic transition function δ. The function δ assigns to every
pair 〈s, d〉 where s is a state and d is a datum element (i.e., an element of Σ ∪ {B}),
a set of triples of the form 〈s′, d′, a〉 where s′ ∈ S, d′ ∈ Σ ∪ {B}, and a ∈ {l, r, λ}.
The set δ(s, d) may be empty. It should be clear that since S and Σ are finite, each

set δ(s, d) is finite. There are various ways to think about δ, for instance, as a 5-ary
relation included in S × (Σ ∪ {B}) × S × (Σ ∪ {B}) × {l, r, λ}. Now, we define
the machine M as a quintuple 〈S,Σ, δ, i, f〉. By |M |, the size of M , we mean the

number |S|+ |Σ|+ |δ|. With our conventions, |M | is finite.

A Turing machineM operates on a one-side infinite tape. The tape is divided into

cells, enumerated by consecutive non-negative integers. To visualize the operation of

the machine, we think aboutM having a read-write head (very much like older tape

devices that stored the data). The cells of the tape contain a symbol of the alphabet

Σ or the blank symbol B. The fact that the tape is infinite creates a problem when

we want to describe runs of the machine by finite propositional theories.

The machine M operates on the tape in a synchronic mode. At any given time

moment the read-write head observes a single cell of the tape. We will assume that

at the moment 0 the tape observes the cell with index 0. At any moment of time t the
machine will be in a specific state s from the set S. So now, let us assume that at the

time t the machineM is in the state s and observes a cell n containing the datum (i.e.,

an alphabet symbol, or a blank) d. Here is what happens now. The machine selects

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 229

an element 〈s′, d′, a〉 belonging to δ(s, d). This is an instruction to be executed. It

is executed as follows: the machine changes its state to s′. It overwrites the datum
d in the currently observed cell by d′. Finally, the read-write head may move. The

possible move is determined by the third element of the instruction, a. If a = l the
read-write head moves one place left, it now observes the cell n − 1. If a = r, the
read-write head moves one place to the right, it now observes the cell n+ 1. Finally,
if a = λ, the read-write head does not move. The content of no other cell is affected

by actions at time t. There are two caveats. First, it may so happen that the set δ(s, d)
is empty. Second, we are at cell with index 0 but the selected instruction tells us to

move to the left. In both cases the machine hangs.

In principle the execution may last forever – we can get into an infinite loop, for in-

stance. So now we will introduce an additional limitation. Specifically, we assumed

initially that once the machine reached the final state f it halts. Instead we will make

a slightly different assumption, namely, that when the machine reaches final state f ,
then it does not halt but instead it stays in the state f , rewrites the content of the

cell with its content (i.e., does not change it), and stays put. This just means that

δ(f, d) = {〈f, d, λ〉}. for all d ∈ Σ ∪ {B}. This assumption allows us to make sure

that accepting computations (i.e., ones that reach f) are of the same length.

Let us formalize the notion of the execution or run of the machineM on an input σ.
First, let us look at the tape. At time 0 the first |σ| cells of the tape are filled with

consecutive elements of σ. The remaining cells contain blanks. So now assume that

we have a tape T , that the read-write head observes the cell n, and that the instruction
to be executed is 〈s′, d′, a〉. Then the new tape T ′ (result of one-step execution)

differs from T in at most one place, n, namely, T ′(n) = d′. The remaining cells

in T ′ stay the same. So now, we are ready to define one state of the tape and the

machine. It is 〈T, s, n, y〉 where

1. T is a tape (intuitively, the current tape).

2. s is a state (intuitively the current state of the machine).

3. n is a cell number (intuitively the cell currently observed by the read-write head

of the machine).

4. y is an instruction 〈s′, d′, a〉 ∈ δ(s, T [n]) (intuitively the instruction to be exe-

cuted).

The next state of the machine and tape is the tape T ′, the state s′, the index n′, and

an instruction y′ selected nondeterministically from δ(s′, T [n′]) where n′ = n− 1 if

a = l, n′ = n+ 1 if a = r and n′ = n if a = λ.

Now, let A = 〈T, s, n, y〉 and let A′ be the next state of tape and machine. We call

the pair 〈A,A′〉 a one-step transition.
With this definition it is easy to define an execution (run) of the machineM on input

σ. It is a sequenceR = 〈A0, A1, . . . , Ai, . . .〉i<r subject to the following constraints.
A0 is the state of machine and tape with the tape T0 with σ in first |σ| cells, blanks af-
terwards, s = i, n = 0 and y is any instruction in δ(i, 0). The recursive requirement

is that for all j < r − 1, 〈Aj , Aj+1〉 is a one-step transition.

© 2009 by Taylor and Francis Group, LLC

230 Introduction to Mathematics of Satisfiability

To sum up, a run is just a description (pretty redundant!) of what happens to the tape

and to the machine. The index r is the length of the run.

As we defined it, the run is always an infinite object, because the tape is an infinite

object. But we will see that when dealing with runs of finite length we can safely

skip this limitation. The reason is that since the read-write head moves only one

place along the tape, the run of length r can affect only the first r − 1 cells of the

tape.

So now, we are interested in finite runs. If the run takes r time units, the read-write

head, which moves at most one cell per unit, cannot go beyond the r − 1th cell, that

is, no cell beyond the r−1th cell will ever be observed and thus never changed. This
means all cells of the tape will have the unchanged content starting with the rth cell.

So now, let us make yet another limiting assumption. Let us fix a polynomial h with

positive integer coefficients, with the degree of h at least 1. With this requirement

on polynomial h, for all n ∈ N , n ≤ h(n). Now, for an input σ of length n we will

consider the runs of length h(n).

Given the tape T , let T [r] be the initial segment of the tape T consisting of r cells.
Next, when A = 〈T, s, n, y〉 let A[r] be 〈T [r], s, n, y〉. Then in any run of length

r the initial segment T [r] uniquely determines T (just extend T [r] by the cells of

T0 with indices r, r + 1, . . .). But now, both T [r] and A[r] are finite objects. So

the next step is to trim down a run R. Namely, if R = 〈A0, . . . , Ar−1〉 define
R[r] = 〈A0[r], A1[r], . . . , Ar−1[r]〉. Then again A[r] is finite. But we clearly have

the following fact.

PROPOSITION 11.1

If R is a run of length r then R[r] uniquely determines R.

Of course,R uniquely determinesR[r] as well. But this means that an infinite object

R is uniquely determined by a finite object R[r].

The accepting computation for σ is a runR of length r such that at the end of the run
R the machine is in the state f . Here is the question we ask: “Is there an accepting

computation for σ of length h(|σ|)?” Our question, although pertaining to an infinite

object (the witnessing run is infinite – the tapes in it are all infinite sequences) reduces

to a question on existence of finite objects (Proposition 11.1). We will show that we

can answer this question with a SAT solver. Moreover, we will show that the CNF to

be submitted to the SAT solver will not be “too” big.

This may look pretty awful, but it is quite simple. What it says is that if we were given

a SAT solver with enough resources, then for each Turing machineM , and runtime

polynomial h(n), we could compute a propositional formula Fσ,h,M and then check

using our SAT solver if Fσ,h,M is satisfiable. From the satisfying valuation we can

then easily recover an accepting computation forM . The key property here is that the

size of Fσ,h,M is tractable (polynomial) in the size of the input, runtime polynomial,

and of the machine itself (i.e., in h(n) + |M |). This is where we will be careful; we
will need to count the number of clauses and assure ourselves that we can compute

the number of clauses in Fσ,p,M as a polynomial in the parameters.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 231

11.2 The language

As should be clear, we will need to have a language with enough propositional vari-

ables so we can write appropriate clauses describing operation of the machine. As

we did in other places in this book, we will write variables with parameters in them.

It looks like we are doing something funny; after all, propositional variables are sup-

posed to not have structure. But our parameters within the propositional variables

are just subscripts, we just write them in a more intuitive way, that is all.

We will use parameters 0, . . . , h(n) for the indices of the cells. What is important

here is that there is h(n) + 1, thus a finite number, of them. We will also have

parameters s for each state s ∈ S, again a finite number. We will have constants for

the symbols of the alphabet (data that can appear in cells). Let us observe that the

number of symbols of the alphabet is bounded by the size of the set of instructions

(and in particular by the size of the machine M .) The reason for this is that if the

symbol d belongs to the alphabet, but does not actually occur in instructions or on

tape, it does nothing for us and can be eliminated.

Let us stress (we did this before, but this is the key) the following trivial fact. Once

we decide on the available time (h(n)), we will not be able to affect more than h(n)
cells.

Now, we will be able to list all the predicates. Here is what we will use.

1. The predicate data(P,Q, T). The propositional variable data(p, q, t)will mean

“at time t, the cell p contains the symbol q.”

2. position(P, T). The propositional variable position(p, t) will mean “at time t
the read-write head sees the contents of the cell p.”

3. state(S, T). The propositional variable state(s, t) will mean “at time t the
read-write head is in the state s.”

4. instr(S,Q, S1, Q1, D, T). The propositional variable instr(s, q, s1, q1, d, t)
will mean “at the time t instruction 〈s1, q1, d〉 belonging to δ(s, q) has been

selected for execution.”

We are going to use the propositional language, so we need to ground our predicates.

Here is what will be used to ground it. First, the time moments: 0, . . . , h(n) − 1.
Then the cell numbers: 0, . . . , h(n). Then the symbols of alphabet and the blank

symbol: Σ ∪ {B}. We assume that every symbol of the alphabet appears, actually,

in the machine M . Finally, the constants for states from the finite set S. As in the

case of the alphabet, we will assume that only states in M belong to S. The two

limitations (on Σ and on S), bound the sizes of these sets by |M |.

So now we have grounded our predicates and gotten our propositional variables. We

are ready to specify the encoding of the machine as it runs for the h(n) steps.

© 2009 by Taylor and Francis Group, LLC

232 Introduction to Mathematics of Satisfiability

11.3 The propositional formula Fσ,h,M

We will now construct the formula Fσ,h,M . This formula will be the conjunction of

several clauses. Those clauses will be divided into several groups according to their

purpose. Moreover, instead of writing p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬ql we will write
more intuitively q1 ∧ . . . ∧ ql ⇒ p1 ∨ . . . ∨ pk. This is, of course, just “syntactic

sugar.” When there is no positive atom in the clause, the head of the implication is

empty. So, if we write a formula p∧ q ⇒ we really mean p̄∨ q̄. Formulas of this sort

will occur in the group (3), and also in the group (5.4.4).

(1. Initial conditions) First, we need (unit) clauses to specify the starting point. Re-

call that i is the initial state.

(1.1)data(p, q, 0), for q = σ(p), 0 ≤ p ≤ n − 1 (recall that σ is the data, stored

in the first n cells of the tape.)

(1.2)data(p,B, 0), for n ≤ p ≤ h(n).

(1.3) state(i, 0).

(1.4)position(0, 0).

(2. Final condition) We require ending in final state f .

(2.1) state(f, h(n)).

(3. General consistency conditions) The goal of these conditions is to force unique-

ness of the execution at any given time. We need three conditions: First, the

uniqueness of the position of the read-write head. Second, the uniqueness of the

content of each cell at every given time, and finally the uniqueness of instruction

selected for execution at every given time.

(3.1) state(s1, t) ∧ state(s2, t)⇒
for each pair of different states s1, s2 and for every time moment t, 0 ≤ t ≤
h(n).

(3.2)position(p1, t) ∧ position(p2, t)⇒
for each pair of different cell numbers p1, p2, 0 ≤ p1 ≤ h(n), 0 ≤ p2 ≤ h(n)
and for every time moment t, 0 ≤ t ≤ h(n)− 1.

(3.3) instr(s1, q1, s2, q2, d1, t) ∧ instr(s3, q3, s4, q4, d2, t)⇒
for each choice of different tuples 〈s1, q1, s2, q2, d1〉, and 〈s3, q3, s4, q4, d2〉
with the obvious conditions on what si, qj , and dk are.

(4. Selection process for instructions) Once the read-write head is in the state s at

time t and points to the position p which holds a datum q, then we have to select

one of the instructions for 〈s, q〉 to be executed. Only instructions in δ(s, q) can
be selected.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 233

(4.1)

state(s, t) ∧ position(p, t) ∧ data(p, q, t)⇒
∨

〈s1,q1,d〉∈δ(s,q)

instr(s, q, s1, q1, d, t)

(5. Executing instructions) We have to describe faithfully what the machine will do.

It has to overwrite the datum q with datum q1 in the observed cell, but no other

cell is touched at this time. It has to change its state. Finally, it has to move the

read-write head in the direction specified by the d, unless the read-write head is at
the position 0 but the instruction requires that it move to the left. We will have to

provide clauses that enforce these conditions.

(5.1)position(p, t) ∧ instr(s, q, s1, q1, d, t)⇒ data(p, q1, t+ 1)
for each cell number p, states s, s1, symbols q, q1, and time moment t, with
the obvious constraints

(5.2)data(p, q, t)⇒ position(p, t) ∨ data(p, q, t+ 1).
This is the frame axiom. It says that the cells other than the one read by the

read-write head at the moment t, are not affected at that time.

(5.3) state(s, t) ∧ instr(s, q, s1, q1, d, t)⇒ state(s1, t+ 1)
(with constraints as in (5.1).)

(5.4)We need to describe how the read-write head moves if it can, and how we fail

if the head needs to move left of position 0. Four more clauses.

(5.4.1) position(p, t) ∧ instr(s, q, s1, q1, r, t)⇒ position(p+ 1, t+ 1)
with obvious constraints on the position, time and state parameters.

(5.4.2) position(p, t) ∧ instr(s, q, s1, q1, λ, t)⇒ position(p, t+ 1)
with obvious constraints on the position, time and state parameters.

(5.4.3) position(p, t) ∧ instr(s, q, s1, q1, l, t)⇒ position(p− 1, t+ 1)
Here the constraint is slightly stronger. p must be non-zero for us to

include such clause.

(5.4.4) position(0, t) ∧ instr(s, q, s1, q1, l, t)⇒
That is, we fail if the read-write head reads the contents of the cell 0, but
the selected instruction forces us to move left.

So now, we have a propositional formula Fσ,h,M . It consists of clauses of groups

(1.1)–(5.4.4).

11.4 Correctness of our coding

Now that we have described the coding of a Turing machineM with the initial data

σ of size n, and the runtime function h, we have several tasks to do. The first one is

© 2009 by Taylor and Francis Group, LLC

234 Introduction to Mathematics of Satisfiability

to assign to every accepting computation a valuation v that satisfies Fσ,h,M . Second,

the other way around, assign to a valuation satisfying Fσ,h,M an accepting compu-

tation ofM (running in time h(n)). Third, we have to see that we are dealing with

bijection between valuations and accepting computations. Fourth, we need to find a

polynomial g which bounds the size of Fσ,g,M in n+ |M |. While pretty tedious, all

these tasks are easy.

First, we will see that we can assign to an accepting computation Z a valuation

v satisfying Fσ,h,M . We need to assign values to propositional variables. Those

variables have been defined in Section 11.2.

Let us recall that the computation contains the complete information about the run.

We know the initial state of the machine, where the read-write head points at any

given time, its state at any given time, and the instruction selected at any given time.

Now, let us assume that Z is an accepting computation. Here is the valuation v that
we assign to Z . We have four types of variables (corresponding to four predicates

we specified in Section 11.2).

The predicate data;

v(data(p, q, t)) =

{

1 q is the content of p at moment t,

0 otherwise.

The predicate state;

v(state(s, t)) =

1 s is the state of the read-write head at the

moment t,

0 otherwise.

The predicate position;

v(position(p, t)) =

1 p is the position of the read-write head at the

moment t,

0 otherwise.

The predicate instr;

v(instr(s, q, s1, q1, d, t)) =

1 〈s1, q1, d〉 is executed on 〈s, q〉 at the

moment t,

0 otherwise.

So now, all we need to do is to check that the valuation v we defined above satisfies
Fσ,h,M . It is quite clear that it does.

Now, what about the other direction? All we need to do is to extract out of a valuation

v an accepting computation Zv for M . The input is correctly described by (1.1)–

(1.4). The final condition (unit) clause states that if what we get is a computation,

then it is accepting by (2.1). Constraints of the group (3) tell us that we will never

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 235

have the head in two different states at once, or pointing to two different cells at once,

or having two different instructions for execution. Now what we need is that there is

at least one cell that the read-write head points to at any given time, that it is in some

state at any given time and that there is an instruction to execute at any given time

t < h(n) − 1. This actually requires a proof by simultaneous induction, using (4.1)

and the clauses (5.1)–(5.3). The clauses (5.4) enforce the correct movements of the

read-write head. Thus we hope we have convinced the reader that every valuation v
determines an accepting computation ofM on an input of size n and of length h(n).

The third task is to see that we deal with a bijection between the accepting compu-

tations and the satisfying valuations. Here is what we do. We just check that going

from v to Z to vZ results in the same v, and similarly, that going from Z to v to Zv
results in the same Z .

The final step is estimating the size of Fσ,h,M depending on n, h, andM . For this

purpose, we will show that the size of clauses of each group can be bound by a

polynomial in n, h, and |M |. We need to visit each group separately, then sum up

the results. Certainly, the size of clauses of groups (1) and (2) is bound by h(n) + 3.
Then, there is at most (h(n))2 · |S| ≤ (h(n) + |M |3) of clauses in (3.1), each of

length 2. Similar estimation gives us at most (h(n))3 clauses in (3.2) each of length

2. It is worse in (3.3), but we get the bound |M |4 · (h(n))5 · 3, again each clause

is of size 2. The clauses (4.1) require a bit more effort. Counting the parameters

in the premise of the implication we get the bound of |S|2 · ((h(n))2 clauses. But

these clauses have non-constant length. Fortunately, the length of each such clause is

bound by |M |+ 3. Then we have to look up clauses of type (5). But it is quite clear
that, reasoning as above, we get a polynomial bound (in n, h(n), and |M |) on the

size of all of these groups. The final observation is that if we substitute a polynomial

into a polynomial, we get another polynomial. So if the function g is a polynomial

and we substitute it into another polynomial, the resulting function is a polynomial.

Summing up the above we get the following fact.

PROPOSITION 11.2

There is a polynomial g(x) such that |Fσ,h,M | ≤ g(h(n) + |M |).

So, what did we do? We established a polynomial time reduction of the problem

of existence of accepting computations for the triples consisting of 〈σ, h,M〉 to the

satisfiability problem so that the machineM possesses an accepting computation in

time h(n) on an input σ of length n if and only if the formula Fσ,h,M is satisfiable.

But we know from [Sip06] that the problem of testing if a triple consisting of Turing

machineM has an accepting computation on an input σ, of length h(n) (here h is a

polynomial) is NP-complete. To show NP-completeness, we need to show that there

is a Turing machine that halts precisely on satisfiable instances of SAT. A moment

reflection shows that it is quite simple (although there will be small details that still

need some care). Here is what we do. First, we need to develop some scheme for

describing clause sets. We will have an alphabet consisting of 0 and 1 and a couple

of other symbols that will serve as clause separators and also to handle polarity of

© 2009 by Taylor and Francis Group, LLC

236 Introduction to Mathematics of Satisfiability

variables. We develop a coding scheme where the variable pn is represented as a

string of n 1’s. We will use additional alphabet symbols When s represents variable
pn the string as will represent the literal ¬pn. We need to represent clauses. We use

a letter b to separate literals within the clause. We use c to be the clause separator.

Here is for example the representation of the clause ¬p1 ∨ p3:

a1b111c.

We will use the letter d to denote the end of the clause set. So, if our clause set C
consists of p̄1 ∨ p3, p2 ∨ p̄3 we have the following string:

a1b111c11ba111cd.

Let us observe that we need this or similar coding scheme because we can not rep-

resent potentially infinite number of variables directly (the alphabet of the machine

must be finite!). We also observe that the size of the representation of C is linear in
the size of C.
Now, the transition relation for the desired machine will consist of two parts. First,

the part that generates (nondeterministically) an assignment. This is very simple;

at the beginning we find the number k of variables in C and delimit the segment of

length k after the data (i.e. after the representation ofC. It is a bit tedious but we

can certainly do this. Next, we generate the assignment of variables. We place that

assignment in the part of tape that we delineated, that is right after the part of tape

that contains the description of the clause set. Once we generated the assignment we

need to test if that assignment satisfies all clauses of the input clause set C. Here is
the crucial point. If, for some clause C we find that the clause C is not satisfied, the

machine hangs. That is we put the machine in a state where there is no instruction to

execute. In the alternative situation, when the machine tested that all the clauses of

the input are satisfied (i.e. all the clauses are satisfied by the assignment generated

by the first part of execution, and there is nothing more to test), then the machine

reaches the final state and halts. Clearly, there is an accepting computation of the

machine we just described if and only if C is satisfiable. Indeed, if C is not satisfiable
then no matter which candidate assignment is generated machine will not reach the

final state for there will be an unsatisfied clause and so the machine will hang. But

if C is satisfiable with witnessing satisfying assignment v, then the computation that

creates v as a candidate assignment and proceed testing satisfaction of all clauses in

C will be accepting.
This slightly informal (but not that much informal) discussion justifies the following

fact.

PROPOSITION 11.3 (Cook-Levin theorem)
The problem of testing if a formula F is satisfiable is an NP-complete problem.

If we think a bit about what we did, we actually established a stronger version of this

property; not only testing, but also finding satisfying valuation is an NP-complete

problem, except that it is for search problems and not decision problems.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 237

So, here is how the results of our considerations can be interpreted. There is a large

class of search problems, called NP-search problems. A classic catalogue of such

problems can be found in [GJ79]. Then, the results of this section show that if

we have an ideal SAT solver and enough resources, we can solve every NP-search

problem on such SAT solvers, and nothing else.

11.5 Reduction to 3-clauses

We will now reduce satisfiability of arbitrary sets of clauses to satisfiability of sets

of 3-clauses. Before we start, let us observe that we can safely assume that our

clause set contains no unit clauses. First, let us recall that the set BCP(F) consists
of the “low-hanging fruit,” that is, literals that can be computed from F using unit-

resolution. Just for the record, let us observe that one can computeBCP(F) in linear
time in the size of F . Next, let us observe that, by Proposition 8.14, which says that

F is satisfiable if and only if BCP(F) is consistent and the reduct of F by BCP(F)
is satisfiable, we can even assume that BCP(F) is empty.

We first show how to transform the satisfiability problem for a mix of 2- and 3-

clauses to satisfiability of sets of 3-clauses. Let us assume that we deal with a set F
of clauses that is a mix of clauses of length 2 and clauses of length 3, but we want

to deal (for whatever theoretical reason there could be) only with sets consisting of

clauses of length 3. Can we transform F into a set of 3-clauses F ′ so that F is

satisfiable if and only if F ′ is satisfiable? We can, and here is a construction. Let us

get 3 new variables which we call pF , qF , and rF . Let us split F into F = F2 ∪ F3

according to the length of clauses. Now let us form F ′ as follows.

F ′ = {l1 ∨ l2 ∨ ¬pF : l1 ∨ l2 ∈ F2} ∪ F3 ∪

{pF ∨ qF ∨ rF , pF ∨ ¬qF ∨ rF , pF ∨ qF ∨ ¬rF , pF ∨ ¬qF ∨ ¬rF }

PROPOSITION 11.4
F is satisfiable if and only if F ′ is satisfiable.

Proof. If v satisfies F define a valuation w as follows.

w(x) =

v(x) if x /∈ {pF , qF , rF }

1 x = pF

0 if x ∈ {qF , rF }.

Then it is easy to check that w |= F ′. So F ′ is satisfiable.

Conversely, assumew |= F ′. We claim w |= F . LetC ∈ F . IfC ∈ F3 thenw |= C.
If C ∈ F2 then w |= C ∨ ¬pF . But w satisfies the last four clauses. But then it must

be the case that w |= pF (this requires checking, we leave this to the reader). But

then w |= l1 ∨ l2, as desired. 2

© 2009 by Taylor and Francis Group, LLC

238 Introduction to Mathematics of Satisfiability

An obvious observation is that very few new atoms (actually 3) were needed and the

transformation was done in linear time.

Next, let us look at sets of arbitrary clauses, possibly longer than 3. Let F be a finite

set of clauses, Let us fix an ordering of propositional variables occurring in F . We

can then think about clauses from F as lists of literals (satisfaction is, obviously,

preserved when reordering the literals within clauses). Here is what we will do.

Given a clauseC ∈ F there are two possible cases: the length ofC is at most 3. Then

(for a moment) we do nothing. If the length of C is bigger than 3 we get n− 3 new

propositional variables that we will call pC,1, . . . , pC,n−3. By “new” we mean that

for each clause C the atoms pC,i will not be used anywhere else but in redoingC. To
simplify notation we will write F as F≤3 ∪ F>3, splitting F according to the length

of the clauses. The clauses from F≤3 will not be affected. But for clauses C ∈ F>3

we will now make a construction. Let us assume that C := l1 ∨ l2 ∨ . . .∨ ln−1 ∨ ln.
We will form a set of formulas GC (but very soon we will get rid of the non-clausal

form) inductively: pC,1 ≡ l1 ∨ l2, pC,2 ≡ pC,1 ∨ l3, etc. pC,n−3 ≡ pC,n−4 ∨ ln−2.

Lastly we add the clause pC,n−3 ∨ ln−1 ∨ ln. The next thing is to get rid of these

equivalences. Here is how we do this. Given a formula

m1 ≡ (m2 ∨m3),

where m1,m2, and m3 are literals, we assign to it three clauses: m̄1 ∨ m2 ∨ m3,

m̄2 ∨m1, and m̄3 ∨m1. It is easier to see what it is about if we think in terms of

implications; the first clause ism1 ⇒ m2 ∨m3, the second clause ism2 ⇒ m1, the

third one ism3 ⇒ m1. This transformation into clauses preserves semantics. Every

valuation satisfying the equivalence satisfies the three clauses and the converse also

holds. So now, let us execute the transformations serially: add new variables, write

equivalences and a clause (at the end there was an extra clause!), and transform into

a set of clauses. Let us call, for a given clause C ∈ F>3, this set of clauses SC . Now,
let us form SF as

SF = F≤3 ∪
⋃

C∈F>3

SC .

In other words, we just did the transformation for every clause longer than 3, and

then took union of all these sets, and threw in F≤3.

It should be obvious that this is a polynomial reduction: there is a polynomial g such
that |SF | ≤ g(|F |) for every set of clauses F . The reason for this is that the number

of 3-clauses we construct is bound by 3 ·m + 1 for each clause C of length m and

so we certainly bound the size of the whole SF by 4 · n2 where n is the size of F (a

very inefficient bound, but we do not care here much).

Now for the serious part. We have the following fact.

PROPOSITION 11.5
The formula F is satisfiable if and only if the formula SF is satisfiable. In

fact, every valuation v of VarF uniquely extends to a valuation v′ of VarSF

satisfying SF . Conversely, if w satisfies SF , then w |varF
satisfies F .

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 239

Proof: It will be more convenient to think in terms of equivalences introduced in the

theoriesGC rather than clauses (the effect of the last transformation outlined above).

What happens here is that we have a chain of unique values: the values v(l1) and

v(l2) force the value v
′(pC,1), etc. Reasoning by induction (details left to the reader),

the values of v′(pC,j) are all determined by the values of v on literals l1, . . . , lj+1,

1 ≤ j ≤ n−3. Then, again by induction, we show that v′(pC,j) = v(l1∨ . . .∨ lj+1).
But then v′(pn−3 ∨ ln−1 ∨ ln) is the same as v(l1 ∨ . . .∨ ln). In other words we just
waved our hands through the following: given a valuation v, we uniquely extended v
to a valuation v′ satisfying SF . The equivalences were satisfied because we extended
v to v′ to make sure they are satisfied, and the remaining 3-clauses were also satisfied,

as we have seen. This completes the argument for the implication⇒.

As concerns the implication⇐, we show by induction, this time going “backward,”

from pC,n−3 to pC,1 that

w(pC,j ∨ lj+2 ∨ . . . ∨ ln) = 1.

At the end we get

w(pC,1 ∨ l3 ∨ . . . ∨ ln) = 1.

Now we give it the final push. Since w(pC,1 ≡ (l1 ∨ l2)) = 1,

w(l1 ∨ . . . ∨ ln) = 1.

But now, all the variables of l1∨ . . .∨ ln are in VarF , so w |varF
(l1∨ . . .∨ ln) = 1,

and since we were dealing with an arbitrary clause in F , we are done. 2

Thus we polynomially reduced the satisfiability problem for arbitrary sets of clauses

to the satisfiability problem for sets of clauses consisting of 2- and 3-clauses only

(and by Proposition 11.4 to sets of 3-clauses). This implies the following fact.

PROPOSITION 11.6
The satisfiability problem for sets of 3-clauses is NP-complete, both for deci-
sion version and search version of the problem.

11.6 Direct coding of satisfaction of formulas as CNFs
with additional variables; combinational circuits

We will now show direct encoding for arbitrary formulas as CNFs. Surprisingly, we

will be able to encode a given input formula ϕ as a CNF Gϕ so that the size of Gϕ
will be polynomial in the size of ϕ. The price we will need to pay is the introduction
of additional variables. The argument given below may serve as an alternative to the

construction of the previous section.

© 2009 by Taylor and Francis Group, LLC

240 Introduction to Mathematics of Satisfiability

Given a finite set of propositional formulas F , its conjunction ϕ =
∧

F has the

property that for every valuation v, v |= F if and only if v |= ϕ. Moreover, |ϕ| ≤
2|F |. For that reason we will encode single formulas ϕ as CNFs. Let us recall that

the size of formula ϕ, |ϕ|, is the size of its tree.
Of course, there is a CNF formula ψ such that ψ ≡ ϕ is a tautology. It is any of its

conjunctive normal forms. But we have seen in Example 3.1 that this may lead to

the exponential growth of the CNF. We will now construct a formula ψ which is a

CNF, has size linear in the size of ϕ, and is satisfiable if and only if ϕ is satisfiable.

The only difference with the normal forms of Chapter 3 is that additional variables

not present in ϕ will be present in ψ.
We first need to modify slightly the tree representation of formulas as introduced in

Section 2.1. There, we labeled leaves with constants or variables, and internal nodes

with functors. Now we modify those labels as follows. The label of every node has

two components: the functor label, and the variable label. For the leaves we just set

up the functor labels equal to nil and the variable label is their original label. For

internal nodes the functor nodes are their original labels, and their variable labels are

new variables: one new variable for each internal node. For convenience we will

label the root of our tree with the variable label qroot . We will denote the tree of the

formula ϕ by Tϕ.
Here is an example. Let ϕ be the formula (¬p ∧ q) ∨ r. Its tree has three leaves,

labeled with 〈nil, p〉, 〈nil, q〉, and 〈nil, r〉. It has three internal nodes: n1 with the

label 〈¬, qn1
〉 (and unique child p), n2 with the label 〈∧, qn2

〉 (and two children

labeled, respectively, n1 and q), and the node root, labeled with 〈∨, qroot 〉, again
with two children: n2 and r.
Next, we talk about subformulas. A node n in the tree Tϕ determines a subformula:

it is the formula represented by descendants of n. In our case the formula ϕ has

6 subformulas; three determined by leaves and three determined by nodes n1, n2,

and root. Those last three are: ¬p, ¬p ∧ q, and ϕ itself. We will denote by ϕn the

subformula of ϕ determined by n.
Now, by induction of the height of a node n, we will define the set Gn of clauses.

Induction base: For nodes n labeled with variables or constants we define Gn : ∅.
Inductive step:

(a) When n has a single child m (and thus the functor label of n is the negation

symbol ¬) we set Gn equal to

{qn ∨ qm,¬qn ∨ ¬qm}.

(b) When the functor label of n is ∧ and n has two childrenm1 andm2 we set Gn
equal to:

{¬qn ∨ qm1
,¬qn ∨ qm2

,¬qm1
∨ ¬qm2

∨ qn}.

(c) When the functor label of n is ∨ and n has two childrenm1 andm2 we set Gn
equal to:

{¬qm1
∨ qn,¬qm2

∨ qn,¬qn ∨ qm1
∨ qm2

}.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 241

(d) When the functor label of n is⇒ and n has two childrenm1 andm2 we set Gn
equal to:

{qm1
∨ qn,¬qm2

∨ qn,¬qn ∨ ¬qm1
∨ qm2

}.

(e) When the functor label of n is ≡ and n has two childrenm1 andm2 we set Gn
equal to:

{qm1
∨ qm2

∨ qn,¬qm1
∨¬qm2

∨ qn,¬qm1
∨ qm2

∨¬qn, qm1
∨¬qm2

∨¬qn}.

We limited ourselves to four binary functors: ∧,∨,⇒, and ≡. Altogether there are
16 binary functors, and we could give an analogous definition for each of these 16

functors.

Now we set Sϕ =
⋃

{Gn : n is a node in Tϕ}. In our example, Gn1
= {qn1

∨
p,¬qn1

∨ ¬p}. We leave to the reader computation of the remaining Gn. It should
be clear, though, that the size of Sϕ is bound by c|ϕ| for a constant c.

We will now exclude one trivial example, namely, when ϕ : ⊥. With this exclusion

we have the following observation.

PROPOSITION 11.7

The set of clauses Sϕ is satisfiable.

Proof: Let us consider any partial valuation v that assigns values to all variables of

Varϕ. Then let us extend the partial valuation v to a valuation wv by setting

wv(x) =

{

v(x) if x ∈ Varϕ,

v(ϕn) if n is an internal node of Tϕ.

Now, we check that the clauses of Sϕ are satisfied by wv . Since we constructed Sn
inductively, we check that for each n, wv satisfies Sn. We will do this in just one

case of the internal node with functor label ¬ and leave the rest to the reader.

In this case, n had one childm and Sn consisted of two clauses qn ∨ qm and ¬qn ∨
¬qm. Two cases are possible.

Case 1: v(ϕm) = 0. Then v(ϕn) = 1. Thus vw(qm) = 0 and vw(qn) = 1. Clearly
vw satisfies both clauses in Sn.
Case 2: v(ϕm) = 1. Then v(ϕn) = 0. Thus vw(qm) = 1 and vw(qn) = 0. Again
vw satisfies both clauses in Sn. 2

Now, we have the following fact that relates the satisfaction of the formula ϕ with

the satisfaction of the set of clauses Gϕ. We recall the exclusion of a trivial case of

ϕ : ⊥.

© 2009 by Taylor and Francis Group, LLC

242 Introduction to Mathematics of Satisfiability

PROPOSITION 11.8

1. Every valuation v defined on Varϕ (but on no other variable) uniquely
extends to a valuation w of VarGϕ

such that w |= Gϕ.

2. A valuation v of Varϕ satisfies ϕ if and only if its unique extension w to
VarGϕ

satisfying Gϕ has the property that w |= qroot .

3. Thus, a formula ϕ is satisfiable if and only if the CNF Gϕ ∪ {qroot} is
satisfiable.

Proof: We check uniqueness of extension of v to a satisfying valuation w for Gϕ
by induction of the rank of a node. Then, it follows that this unique extension w
is nothing else but vw constructed in the proof of Proposition 11.7. But we know

that the value wv(qroot) coincides with that of v(ϕ). Thus w |= qroot if and only if

v(ϕ) = 1. This takes care of (1) and (2). (3) follows from (2). 2

Our representation of the formula ϕ by the set of clauses Gϕ is closely related to

so-called combinational circuits or circuits, for short. By a circuit we mean a finite

directed acyclic graph where each node is a source, or has just one predecessor,

or two predecessors. A node may have many immediate successors. Each node is

labeled with a pair. The first element of that pair is the type of the functor, in the

parlance of circuits called the gate, and it is a unary or binary Boolean operation.

The second part of the label is the name of that node. The obvious limitation is that

the number of inputs must be the arity of the first part of the label. We assume that

different nodes have different names.

Since the graph of such circuit is acyclic, there must be sources of that graph, called

inputs, and sinks of the graph, called outputs. Since in an acyclic graph we can

assign to each node a rank very much the same way as we did to nodes in trees (after

all a tree representation of a formula is a circuit, except that it has just one output,

and each node has only one immediate successor). Now, an assignment of Boolean

values to the input nodes of a circuit C uniquely determines the assignment of values

to all internal nodes of C and in particular to output nodes of C. We call an input-

output pair the pair consisting of the assignment of Boolean values to the inputs, and

the values of outputs on these inputs.

By a construction very similar to one used to assign the CNF Gϕ to a formula ϕ
we can assign to a circuit C a CNF GC . We just compute Gn for each node n and

take the union of the resulting sets. Let us observe that GC is always satisfiable; it is

enough to set the values to the inputs and assign the values to the internal nodes as

required by the gates labeling internal nodes. The basic result here is the following.

PROPOSITION 11.9
Satisfying valuations for GC are in a bijective correspondence with the input-
output pairs for C.

Finally, let us observe that we limited our considerations to circuits with unary and

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 243

binary gates. But, of course, we can easily generalize to gates with more inputs.

Conjunctions or disjunctions of more than two inputs, and especially ite gates may

be of use in the designs of circuits.

11.7 Decision problem for autarkies

We will now apply the Cook-Levin theorem (Proposition 11.3) to show that the

problem of existence of non-empty autarkies (the case of empty autarkies is triv-

ial because every CNF has an empty autarky) is NP-complete. There are, literally,

thousands of NP-complete problems. All of them polynomially reduce to SAT, and

SAT polynomially reduce to them. The reason why we present this reduction is that

having non-empty autarkies is such a desirable property (as we have seen in Section

2.3). So the results of this section may appear negative (autarkies are useful, but it is

difficult to find them, except in special cases).

First, we see the following obvious fact.

PROPOSITION 11.10
Let F be a CNF and let v be a consistent set of literals. Then the question if
v is an autarky for F can be decided in polynomial time (in the size of F and
v).

Thus the problem (language) HA, consisting of those CNFs that have a non-empty

autarky is in the class NP. Our goal now is to show that, in fact, HA is NP-complete.

The argument below, due to M. Truszczyński, is a direct polynomial reduction of

SAT to HA.

PROPOSITION 11.11 (Kullmann theorem)
HA is an NP-complete problem.

Proof: We will show a polynomial reduction of the satisfiability problem to HA. To

this end let F be a CNF theory and let pi, 1 ≤ i ≤ n, be all propositional variables
in F . We introduce n new variables qi, 1 ≤ i ≤ n, and define a CNF theory GF to

consist of three groups of clauses:

1. All clauses in F .

2. Clauses pi ∨ qi and ¬pi ∨ ¬qi, where 1 ≤ i ≤ n.

3. Clauses ¬pi∨ps(i)∨qs(i), pi∨ps(i)∨qs(i), ¬qi∨ps(i)∨qs(i), and qi∨ps(i)∨qs(i),
where 1 ≤ i ≤ n, and the function s is defined by

s(i) =

{

i+ 1 if i+ 1 ≤ n

1 otherwise.

© 2009 by Taylor and Francis Group, LLC

244 Introduction to Mathematics of Satisfiability

Clearly, the size of GF is linear in the size of F .

We will show that F is in SAT (i.e., is satisfiable) if and only if GF is in HA (i.e.,

has a non-empty autarky). In this fashion we establish a promised polynomial time

reduction of SAT to HA.

(⇒) Let v be a set of literals such that for every i, 1 ≤ i ≤ n, exactly one of pi and
¬pi belongs to v. Moreover, let us assume that v satisfies F . Since F is in SAT, such

a set of literals exists – it is just another presentation of a satisfying valuation for F .
We define v′ as follows:

v′ = v ∪ {¬qi : pi ∈ v} ∪ {qi : ¬pi ∈ v}.

We will show that v′ is an autarky forGF .

First, we note that v′ is a complete and consistent set of literals. Therefore, we simply

have to show that v′ satisfies all the clauses inGF . Clearly, v (and so also v
′) satisfies

all the clauses in F . By the definition of v′, it is also easy to see that all clauses of

type (2), that is, the clauses pi ∨ qi and ¬pi ∨ ¬qi, where 1 ≤ i ≤ n, are satisfied
by v′ as well. Since all clauses of type (3) are subsumed by clauses of type (2), the

former ones are also satisfied by v′. It follows that v′ is an autarky forGF .

(⇐) Let us assume that v′ is a non-empty autarky for GF . By definition, v′ is
consistent and v′ contains at least one literal. Without loss of generality, we can

assume that it is one of p1, q1,¬p1, or ¬q1. The proof in each case will be the same.

Let us assume that p1 ∈ v′. Since the clause

¬p1 ∨ p2 ∨ q2

is touched by v′, v′ must satisfy p2 ∨ q2. If p2 ∈ v′ then also ¬q2 ∈ v′ (by clauses of
type (2) in GF). Likewise, if q2 ∈ v

′ then ¬p2 belongs to v′. Continuing a similar

argument we find that p3 ∨ q3 must be satisfied by v′, thus v′ contains both p3 and

¬q3 or v′ contains ¬p3 and q3. By an easy induction we find that, in fact, v
′ must be

a complete set of literals. In particular v′ touches all clauses of GF , thus all clauses
of F . But then v′ is a satisfying valuation for F , and so v = v′ ∩ Lit{p1,...,pn} is a

satisfying valuation for F , as desired. 2

Now, it follows that LEAN, the problem (language) consisting of those finite sets

of clauses that are lean (see Chapter 7) is co-NP-complete. Indeed, let us recall

Corollary 7.14; a set of clauses F is lean if and only if it has no non-empty autarkies,

equivalently, that the largest autark set is empty. In effect, F is in LEAN if and

only if it is does not belong to HA. Thus LEAN is the complement of HA, and

since the latter is NP-complete, the former is co-NP-complete. Formally we have the

following.

COROLLARY 11.1

LEAN is a co-NP-complete problem.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 245

11.8 Search problem for autarkies

We will now see that the search problem for autarkies (find a non-empty autarky if

there is one) can be solved using any algorithm that decides existence of non-empty

autarkies. First, we will need a number of additional properties of autarkies. We

stated fundamental properties of autarkies in Section 2.3, Proposition 2.10. Here we

give additional, less fundamental properties of autarkies. We use these properties in

our algorithm.

Recall that, given a collection of clauses F , Fl is a collection of clauses computed as

follows: we eliminate from F all clauses containing l, and in remaining clauses we

eliminate l̄ (if it occurs there, otherwise the clause is unchanged).

PROPOSITION 11.12
Let F be a CNF, and v a consistent set of literals.

1. If l is a literal and l, l̄ /∈ v, then v is an autarky for F if and only if v is
an autarky for F ∪ {l, l̄}.

2. If v is an autarky for F and l, l̄ /∈ v then

(a) v is an autarky for Fl
(b) v is an autarky for Fl̄
(c) v is an autarky for Fl ∪ Fl̄.

3. If for every literal l ∈ Lit, F ∪ {l, l̄} has no non-empty autarkies then all
non-empty autarkies for F (if any) must be complete sets of literals.

4. Let p be a variable. A consistent set of literals v such that v does not
contain p nor ¬p is an autarky for F if and only if v is an autarky for
the CNF theory Fp ∪ F¬p.

Proof: (1) is obvious.

(2) It is enough to prove the first of three facts. The second is proved very similarly

to the first one, and the third one follows from Proposition 2.10 (2). Let C ∈ Fl.
Then either C ∈ F , or C ∪ {l̄} ∈ F . If v touches C then in the first case v3(C) = 1
because v is an autarky for F . In the second case, v3(C ∪ {l̄}) = 1. But since v 6|= l̄
(after all, l̄ /∈ v), it must be the case that v3(C) = 1, as desired.
(3) Let us assume that for every literal l ∈ LitVarF

, F ∪ {l, l̄} has no non-empty

autarkies. If F has no non-empty autarkies then our conclusion is true. Otherwise,

let v be a non-empty autarky for F . If v is not complete, then for some variable p,
p,¬p /∈ v. But then by (1), v is a non-empty autarky for F ∪{p,¬p}, a contradiction.
(4) First, let us see what clauses belong to Fp ∪ F¬p. Let us recall that we consider

only nontautological clauses. Therefore it cannot be the case that both p and ¬p
occur in some clause of F . Next, if both p, ¬p do not occur in a clause C of F then

C belongs to Fp thus to Fp ∪ F¬p. If C ∈ F and p ∈ C, then C \ {p} belongs

© 2009 by Taylor and Francis Group, LLC

246 Introduction to Mathematics of Satisfiability

to F¬p, thus to Fp ∪ F¬p. Likewise, if C ∈ F and ¬p occurs in C then C \ {¬p}
belongs to Fp, thus to Fp ∪ F¬p. So now we know that Fp ∪ F¬p arises from F by

eliminating any occurrence of p (positive or negative) in every clause of F that has

such occurrence.

Now we are finally able to prove (4). The implication⇒ has been proved in (2)(c).

Conversely, let us assume that v is an autarky for Fp ∪F¬p, p,¬p /∈ v. Let C belong

to F , v touches C. If p,¬p /∈ C then C ∈ Fp ∪ F¬p and since v is an autarky for

Fp ∪ F¬p, v satisfies C. Otherwise, let us assume that p ∈ C (the case of ¬p ∈ C is

similar). Then C \ {p} belongs to Fp ∪ F¬p and since v touches C and p,¬p /∈ v,
v touches C \ {p}. But v is an autarky for Fp ∪ F¬p and so v satisfies C \ {p}. But
then v satisfies C, as desired. 2

Next, we have a useful fact on autarkies and satisfying valuations.

LEMMA 11.1

Let us assume that all non-empty autarkies for a CNF F are complete. Then
for any literal l, autarkies for F ∪ {l} are precisely those autarkies for F that
contain l.

Proof: If v is an autarky for F and l ∈ v, then clearly v is an autarky for F ∪ {l},
because v is an autarky for both F and for {l} (Proposition 2.10 (2)).
Conversely, assume that v is an autarky for F ∪ {l}. Then v is an autarky for F
(Proposition 2.10 (1)). By our assumption, v is complete. But l̄ /∈ v because in such

case v3(l) = 0. However, our assumption was that v is an autarky for F ∪ {l}, and
since v touches l and v is consistent, v3(l) = 1, a contradiction. 2

We will now describe how we can compute a non-empty autarky once we have an

algorithm HA that decides existence of such autarkies.

Proceeding by induction, if F is empty we return the string ‘the input formula has

no non-empty autarkies’ and halt. Also if the algorithm HA returns ‘no’ we return

the string ‘the input formula has no non-empty autarkies’ and halt.

Now, for every variable p we run the algorithm HA on the input F ∪ {p,¬p}. There
are two cases to consider.

Case 1: The algorithm HA returns ‘no’ on each input F ∪ {p,¬p}. Then we know

that F has only complete autarkies (if any). We can assume that HA returned ‘yes’

on the input F (otherwise we would already exit with failure). So now, assuming

that the input formula F has variables, we select one such variable p. We run the

algorithm HA on a new input F ∪ {p}. If HA returns the value ‘yes,’ we add p to

the list of literals in the putative autarky and recursively call our algorithm (always

choosing a new variable for decision) until an autarky is found. If the algorithm HA

returns ‘no’ on input F ∪{p} it must be the case that F ∪{¬p} has autarkies. Those
are all complete, we put ¬p into the putative autarky, and we can select another

variable and continue until there are no more variables to decide.

Case 2. The algorithm HA returns ‘yes’ on some input F ∪ {p,¬p}. Then it must

be the case that F possesses an autarky, but that autarky v has the property that

p,¬p /∈ v. We compute Fp ∪ F¬p. This new CNF possesses an autarky (Proposition

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 247

11.12 (2)). This autarky is an autarky for F . Now we call recursively our algorithm

on the input Fp ∪ F¬p, by Proposition 11.12(4). This latter set of clauses has less

variables (p does not occur in Fp ∪ F¬p and so recursively, our algorithm correctly

computes an autarky for Fp ∪ F¬p, which is then an autarky for F . 2

Thus we found that like in the case of satisfiability, having an algorithm for deciding

existence of autarkies allows us to compute autarkies. Moreover, we see that we

make a number of calls to HA that is bound by a quadratic polynomial in the number

of variables in F .

11.9 Either-or CNFs, first two “easy cases” of SAT
together

The results we have seen in various sections of Chapter 9 may have raised the hope

that, at least sometimes, a “divide-and-conquer” strategy for testing satisfiability

could work. Here is one such putative strategy. Let us assume that a formula F
is a conjunction of two formulas, F1 ∧ F2. Let us assume that each Fi, i = 1, 2,
is “easy.” A good way of thinking is that, for instance, F1 is a collection of Horn

clauses, and F2 consists of affine formulas (i.e., linear equations). We certainly can

solve F1 easily, and we can also solve F2 easily. If any of those is unsatisfiable –

we are done, F is unsatisfiable. But if each Fi is satisfiable then the idea would be

to somehow match a valuation satisfying F1 with a valuation satisfying F2. Each

of these valuations is just a complete set of literals. If these sets of literals are con-

sistent, then their union is a complete set of literals (in principle the underlying sets

of variables could be different!) and so the union, if consistent (or equivalently: a

valuation extending both), is a satisfying valuation for F .

Unfortunately, this strategy fails, in a quite spectacular way. It turns out that, essen-

tially (i.e., with exception of trivial cases), “mix-and-match” of easy cases results in

an NP-complete case. Thus the ‘grand strategy’ proposed above cannot work. What

we will see is that we will be able to transform a given CNF formula F into an-

other formula F ′ which can be decomposed into a union F1 ∪ F2 so that F1 and F2

separately will be easy to solve. The transformations will always be in polynomial

time.

The reader will recall that we considered seven “easy” cases. The classes we con-

sidered – positive, negative, Horn, dual Horn, renameable-Horn, Krom, and affine

formulas were all “easy.” Thus there are
(

7
2

)

= 21 cases to consider. It looks like

theorems with 21 cases are sort of absurd (unless we are algebraists and we deal

with finite groups, that is). We will limit our attention to cases where F is a CNF, or

consists of clauses and affine formulas (linear equations).

We first observe that in the case ofF1 consisting of positive clauses and F2 consisting

of dual Horn clauses (and its dual: negative clauses and Horn clauses), the problem

remains easy because the union is still dual Horn (or Horn, in the other case). This

© 2009 by Taylor and Francis Group, LLC

248 Introduction to Mathematics of Satisfiability

leaves us with the remaining 19 cases. It turns out that we need a few lemmas that

allow us to take care of all cases that need to be handled. The first, prototypical,

case is that of the situation when F1 consists of positive clauses, while F2 consists

of negative clauses. But it turns out that the construction involves, in reality, also the

case of Horn clauses, dual Horn clauses, and affine formulas.

Let F be a CNF formula. Recall that in Section 9.6 we introduced a notion of “either-

or” (EO) CNFs. Those were CNFs that consisted of clauses that were either positive

or negative (both could be present in an EO formula).

LEMMA 11.2
For every clause C : p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬qm there is a CNF GC (in

the language with possibly additional propositional variables) such that

1. GC is an EO-formula.

2. There is a bijection between the valuations of propositional variables in
VarC satisfying C and valuations of propositional variables occurring in
GC satisfying GC .

Proof: We introduce m new propositional variables x1, . . . , xm and form GC con-

sisting of three groups of clauses. The first group has just one clause, the other two

groups,m each. All these latter clauses will be Krom clauses.

(a) p1 ∨ . . . ∨ pk ∨ x1 ∨ . . . ∨ xm.

(b) q1 ∨ xi, 1 ≤ i ≤ m.

(c) ¬q1 ∨ ¬xi, 1 ≤ i ≤ m.

Effectively, the clauses (b) and (c) force that logical value of xi is opposite to that of
qi. Thus, for any valuation v′ satisfying clauses (b) and (c), and defined on all the

variables involved below:

v′(p1 ∨ . . . ∨ pk ∨ x1 ∨ . . . ∨ xm) = v′(p1 ∨ . . . ∨ pk ∨ ¬q1 ∨ . . . ∨ ¬qm).

Now, let us assume v |= C. We define v′ as follows:

v′(h) =

{

v(h) h /∈ {x1, . . . , xm}

¬v(qi) h = xi, 1 ≤ i ≤ m.

Now, v′ is an extension of v and v′ is uniquely determined by v. It is also clear that

v′ |= GC , by construction. The uniqueness of v
′ is obvious (remember that we limit

ourselves to variables occurring in GC).
The converse implication is obvious. 2

Now, given a CNF F , let us form F ′ =
⋃

C∈F GF . We then have two facts. First,

there is a polynomial p such that for all CNF F , |F ′| ≤ p(|F |). Second, a valuation
v of VarF satisfies F if and only if F is a restriction of valuation of VarF ′ that sat-

isfies F ′. Thus we exhibited a polynomial reduction of satisfiability to satisfiability

restricted to EO. Therefore we have the following corollary.

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 249

COROLLARY 11.2
The satisfiability problem restricted to the class EO of CNFs is NP-complete.

Let us look a bit more closely at the formula constructed in Lemma 11.2. Not only is

it an EO formula but it is composed of Krom clauses in both (b) and (c). It can also

be viewed as composed of positive clauses in (a) and (b) and of Horn clauses (c). We

can also treat clauses (b) and (c) jointly and write them asm affine formulas (linear

equations): qi + xi = 1, 1 ≤ i ≤ m. All these different representations lead to

variations of Lemma 11.2, which are just “layers of sugar.” Even more, in the proof

of Lemma 11.2 we could tweak the clauses (a), (b), and (c), transforming F to GC
in which the clause (a) is negative, not positive (just having k new atoms y1, . . . , yk,
and getting the corresponding forms of (b) and (c)).

11.10 Other cases

With all these tweakings and restatements we get two facts which will take care of

18 cases (but one will still stand)!

PROPOSITION 11.13
There is a polynomial p such that for every CNF F there is a formula F ′

satisfying the following conditions:

1. size(F ′) ≤ p(size(F)).

2. F ′ = F1 ∪ F2.

3. F1 consists of positive clauses.

4. Either of the following holds:

(a) F2 consists of negative clauses; or

(b) F2 consists of Krom clauses; or

(c) F2 consists of affine formulas (linear equations).

5. There is a bijection between valuations of propositional variables of VarF
satisfying F and valuations of VarF ′ satisfying F ′.

Then we have a similar fact.

PROPOSITION 11.14
There is a polynomial p such that for every CNF F there is a formula F ′

satisfying the following conditions:

1. size(F ′) ≤ p(size(F)).

© 2009 by Taylor and Francis Group, LLC

250 Introduction to Mathematics of Satisfiability

2. F ′ = F1 ∪ F2.

3. F1 consists of negative clauses and

4. Either of the following holds:

(a) F2 consists of positive clauses, or

(b) F2 consists of Krom clauses, or

(c) F2 consists of affine formulas (linear equations).

5. There is a bijection between valuations of propositional variables of VarF
satisfying F and valuations of VarF ′ satisfying F ′.

Propositions 11.13 and 11.14 are sufficient to handle 18 cases out of 19. But one

case, “mix-and-match” of Krom clauses and affine formulas, requires a different

argument. We will discuss it separately. Right now, we want to show that all 18

cases mentioned above lead to NP-complete problems. Of course, the reader does

not expect us to show 18 arguments. To satisfy her curiosity we will handle two

cases, in expectation that the remaining 16 can be done by the reader.

LetK consist of unions of negative CNFs and renameable-HornCNFs. But it is clear

that all positive CNF are renameable-Horn (the permutation Inv is the witness to this

fact.). Therefore if F is a union of positive F1 and negative F2 (thus an EO CNF)

then F is a union of renameable-Horn CNF and negative CNF. As the satisfiability

problem for the EO is NP-complete, the satisfiability problem forK is NP-complete.

We randomly select another class out of 18. Now let K′ consist of CNFs F so that

F = F1∪F2 where F1 is Krom and F2 is negative. We use Proposition 11.14. There

we claimed existence of F ′ consisting of negative clauses and of Krom clauses to

which satisfiability of F reduces. Thus again satisfiability for EO CNFs reduces to

satisfiability of CNFs in K′, and we are done.

We will now show how a 3-clause can be reduced to one linear equation and two

Krom clauses.

LEMMA 11.3
Let C : l1 ∨ l2 ∨ l3 be a 3-clause. Let us form a set FC consisting of these

formulas: FC = {l1 + y+ z, l2 ∨ y, l3 ∨ z}. Then every valuation v of variables
underlying l1, l2, l3 and satisfying C extends to a valuation v′ satisfying FC
and conversely, if v′ |= FC then v′ |VarC

|= C.

Proof: First, let us assume v |= C.
Case 1. v(l1) = 1. Then let us set v′(y) = v′(z) = 1.
Case 2. v(l1) = 0. There are 3 subcases.
Case 2.1. v(l2) = 0, v(l3) = 1. Then let us set v′(y) = 1, v′(z) = 0.
Case 2.2. v(l2) = 1, v(l3) = 0. Then let us set v′(y) = 0, v′(z) = 1.
Case 2.3. v(l2) = 1, v(l3) = 1. We set v′(y) = 1, v′(z) = 0. In each of these cases,
it is easy to see that the valuation v′ defined above satisfies the set of formulas FC .

© 2009 by Taylor and Francis Group, LLC

Coding runs of Turing machines, NP-completeness 251

Next, suppose for v′ defined above that v′ |= FC . Again we reason by cases.
Case 1. v′(l1) = 1 then v′ |VarC

(l1) = 1 and we are done.

Case 2. v′(l1) = 0. Then it must be the case that v′(y + z) = 1 because we reduced

the equation l1 + y + z = 1. Hence one of v′(y) and v′(z) must be 1 and the other

0. Without loss of generality, we assume v′(y) = 0. Then it must be the case that

v′(l2) = 1, and so v′(C) = 1, thus v′ |= C. But then v |= C, as desired. 2

Let us observe that no longer (as for instance in Lemma 11.2) is there a bijection be-

tween valuations satisfying C and FC . Nevertheless, we can always choose different
variables y and z for each 3-clause C. This is a linear increase of both the number

of variables and of the number of formulas. In this way we have the following fact.

PROPOSITION 11.15

There exists a polynomial p such that for every 3-CNF, F , there is a set of
Krom formulas F1 and set of linear equations F2 such that size(F1 ∪ F2) ≤
p(size(F)) and such that F is satisfiable if and only if F1 ∪ F2 is satisfiable.
In fact, a valuation v satisfies F if and only if v extends to a valuation v′

such that v′ |= F1 ∪ F2.

Proposition 11.15 settles the last case: the ‘mix-and-match’ of Krom clauses and

affine formulas results in an NP-complete satisfiability problem.

The suspicious reader should worry a bit about some cases, though. We stated that

mix-and-match of positive and dual Horn formulas was still polynomial But, after

all, for instance, positive clauses are renameable-Horn and we still say that mix-

and-match is NP-complete! The reason for it is that the collection of renameable-

Horn CNFs is not closed under unions, so when we take a union of positive clauses

and renameable-Horn, the result may be non-renameable-Horn! An example to this

effect is easy to devise (in fact it already has been presented earlier).

Now, let us sum up the effects of our arguments in the final part of this chapter as a

single proposition.

PROPOSITION 11.16

Let us consider the following classes of formulas F1 − F7: F1 : positive for-
mulas, F2 : negative formulas, F3 : Horn CNFs, F4: dual Horn CNFs, F5:
renameable-Horn CNFs, F6: Krom CNFs, and F7: affine formulas. Then
with the exception of (i = 1 and j = 4), and (i = 2 and j = 3), for every
pair (i, j) 1 ≤ i < j ≤ 7 the satisfiability problem for theories included in the
union Fi and Fj is NP-complete.

© 2009 by Taylor and Francis Group, LLC

252 Introduction to Mathematics of Satisfiability

11.11 Exercises

1. An ordered decision tree for a formula ϕ(x1, . . . , xn) is a binary tree where ev-
ery internal node is labeled with a propositional variable, the leaves are labeled

with constants 0 and 1 and on every path from the root the order of labels is the

same: x1 ≺ x2 ≺ . . . ≺ xn. Every node has two children: high corresponding

to the value of the label xi being 1, and low corresponding to the value of the

label xi being 0. Clearly, for every formula ϕ and listing of variables of that

formula we can construct such tree. Do this for ϕ being x ∨ ¬(y ∨ z), with the

order of variables z ≺ y ≺ x.

2. When the nodes of the ordered decision trees are considered states, and 0 and

1 are symbols of the alphabet, we can treat that tree as a finite automaton. See

Sipser [Sip06], p. 31ff. What are the accepting states of this automaton?

3. Continuing the previous problem, we can identify all leaves labeled 0 into one

final node, and all leaves labeled 1 into the other final node. Then we no longer

deal with a tree, but with an acyclic directed graph. Think about this graph in

the context of the previous problem. We still deal with a finite automaton, but

now there is just one accepting node. Which one?

4. Isomorphic subgraphs of the graph discussed in the previous problem can be

identified. Consider ϕ: x ∨ y ∨ ¬z. Draw the graph of the diagram as in the

previous problem and find isomorphic subgraphs.

5. We may also find ourselves in the situation that once we identify isomorphic

subgraphs some tests are redundant. The reason is that both decision x = 0 and

x = 1 may result in getting to isomorphic subgraphs which, in the meanwhile,

were identified. How would you simplify the graph of ϕ in such situations?

By the way, in the parlance of decision diagrams, we just go to the low and high

child.

6. Prove Bryant’s theorem: application of the three rules (identification of leaves,

identification of nodes with isomorphic subgraphs, and elimination of redundant

tests until no other reduction possible) results in a unique diagram. This diagram

is called reduced ordered binary decision diagram (ROBDD) for ϕ.

7. While ROBDD looks like a finite automaton, representation of such diagram as

an automaton is not completely obvious, although certainly possible. Devise a

representation of ROBDD as an automaton. The size of the representation will

likely be bigger than the size of the diagram.

8. Of 21 possible combinations of “mix-and-match” the author discussed only 6,

leaving the remaining 15 for you. Of course, Propositions 11.13 and 11.14 con-

tain (at least the author claims so) all that is needed to settle these remaining 15

cases. Choose randomly three mix-and-match cases not handled by the author

and prove NP-completeness.

© 2009 by Taylor and Francis Group, LLC

Chapter 12

Computational knowledge
representation with SAT –
getting started

12.1 Encoding into SAT, DIMACS format . 254
12.2 Knowledge representation over finite domains . 261
12.3 Cardinality constraints, the language Lcc . 267
12.4 Weight constraints . 273
12.5 Monotone constraints . 276
12.6 Exercises . 283

In this chapter we will discuss the issues associated with the use of SAT (i.e., satisfia-

bility) for actual computation. The idea is to use the propositional logic (and its close

relative, predicate logic) as knowledge representation language. We will assume that

we have a piece of software, called solver, which does the following: it accepts CNFs

(say, F) and returns a string ‘Input theory unsatisfiable’ or a satisfying valuation for

F . We will assume that solver is correct and complete. That is, if there is a satisfying

valuation v for F , it returns one. If there is none, it returns the string ‘Input theory

unsatisfiable.’ This is an idealized situation for a variety of reasons. First, F itself

may be too big to be handled by the program solver. Second, since our resources are

finite, it may be that the program solver will need more time for processing F than

we have (after all, we all sooner or later expire, and DPLL searches the entire tree of

partial valuations of Var which is exponential in the size of Var). Third, solver, and
this is a minor, but very real, issue, like every humanly written program, may have

bugs. But we will assume that we live in an ideal world. Arbitrary large finite CNFs

are accepted, the solver returns the solution (if one exists) immediately, and solver is

a correct implementation of DPLL or any other complete algorithm for SAT.

We will also discuss the use of predicate logic for knowledge representation. The

logic we will study is predicate calculus over finite domains, that is, the universes

of structures will be finite. There will be no function symbols (equivalently we may

have functions, but they need to be explicitly represented by tables of values). The

semantics is limited to Herbrand models as introduced in Section 12.2. In such an

approach formulas of predicate calculus are just shorthand for propositional formu-

las (i.e., quantifiers are shorthand for conjunctions and disjunctions ranging over the

universe of the model). While grounded in the studies of logicians of the past, this

approach treats formulas of predicate calculus as propositional schemata [ET01].

253

© 2009 by Taylor and Francis Group, LLC

254 Introduction to Mathematics of Satisfiability

Next, we extend the language of propositional logic by means of cardinality atoms

(also known as cardinality constraints). This is a generalization of propositional vari-

ables in the spirit of integer inequalities with integer coefficients. We study several

generalizations. First, cardinality atoms, correspond to inequalities with coefficients

from {−1, 0, 1} and solutions in {0, 1}. Second, we relax the requirement to arbi-

trary integer coefficients, but still restricting the solutions to values in {0, 1}. Then
we discuss abstract versions of these constraints, called monotone, anti-monotone,

and convex constraints and characterize those in terms of cardinality constraints.

12.1 Encodings of search problems into SAT, and
DIMACS format

If we are going to use solver or any other SAT-solving software to compute satisfying

valuations, we need to agree how are we going to represent the input, i.e., the CNFs

which will be solved. There must be a format for describing the CNFs, and the SAT

community devised such a format. This format is commonly called the DIMACS

format after the Center for Discrete Mathematics and Computer Science, currently

at Rutgers University. In this format, the propositional variables are represented as

positive integers. Integer 0 is used as the end-of-clause symbol. This, in particular,

allows for multi-line clauses. The negation symbol in this formalism is the familiar

‘minus’ sign: −.
To make things easier on the solver, the first line of the encoding has the format

p cnf V C.

Here p is a reserved symbol (the beginning of the CNF), cnf is again a reserved word,

expressing the fact that the rest of the data is to be interpreted as the set of clauses. V
is an integer, the number of propositional variables occurring in the data so encoded.

Finally, C is the number of clauses in the formula.

No programming can be done without the comments. For that reason, the lines

starting with a reserved letter c are treated as comment lines. It should be observed

that the choice of the header, and in particular the string cnf, was also fortunate. If

a different class of formulas is used (we will see at least one example in subsequent

sections) a different reserved string could be used.

We illustrate the concept of coding CNFs with the following example.

Example 12.1
We will express the CNF {p ∨ q,¬p ∨ q,¬p ∨ ¬q} in DIMACS format. We encode

the variables p and q with the integers 1 and 2, respectively. The input formula now

looks as follows:

c This is an encoding for a sample CNF

p cnf 2 3

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 255

1 2 0

−1 2 0

−1 −2 0

Of course, the parser will disregard lines starting with c. Let us look at line (2). We

see that the data start there. There are two variables and three clauses. Then the

clauses follow in subsequent lines. Let us observe that as long as we know that 1
denotes p and 2 denotes q (we could use a table for that purpose) the DIMACS file

determines the CNF.

We will now encode in DIMACS format a more complex problem (there will be 64
propositional variables), but still quite simple. The problem we want to solve is to

find a “completed grid” for a “mini sudoku,” a simpler version of a currently popular

numerical puzzle. This is a first step in designing such puzzles.

Example 12.2
Our goal is to fill a 4 × 4 grid with numbers 1, 2, 3, and 4 so that every row, every

column, and every quadrant has occurrences of those numbers exactly once. Math-

ematically speaking, we are looking for a Latin square with additional constraints.

Here is the intuition. We will have propositional variables which will have the fol-

lowing meaning: “cell with coordinates (i, j) contains the number k.” There are 16
cells, and each, potentially, contains a number in the range (1..4). Thus we will need
64 variables pi,j,k. The idea is that pi,j,k expresses the fact that the cell ci,j contains
k. These statements are either true or false. Once we have a grid, it obviously tells

us which statements are true, and which are false. For instance, the grid

1 1 2 3
2 1 3 4
2 1 3 4
1 3 4 2

is a 4 × 4 grid. Here, for instance, c1,3 = 2. Thus in this grid p1,3,2 is true. The

reader will notice, though, that this particular grid does not satisfy our constraints.

One reason is that it is not a Latin square.

Now, we will enumerate the propositional variables expressing the statements ci,j =
k. There are 64 of those statements and we will use variables p1, . . . , p64 to enumer-

ate them. Here is how we do this. We assign to the statement ci,j = k the variable

pl where
l = ((i− 1) + (j − 1) · 4 + (k − 1) · 16) + 1.

Clearly, what we do is to use a quaternary number system. We shift (i, j, k) one

digit back, assign to it the number for which it is a quaternary expansion, and finally

shift it forward by 1. The reason is that first we have digits (1..4) but the digits in the
quaternary expansion are (0..3), and we also need the number 0 for the end-of-clause.
So, for instance, the statement “the cell with the index (2, 3) holds the number 2,”

© 2009 by Taylor and Francis Group, LLC

256 Introduction to Mathematics of Satisfiability

i.e., c2,3 = 2 is the Boolean variable p26 because (2−1)+(3−1) ·4+(2−1) ·16+1
is 26. It is a simple exercise in arithmetic to see that all values from the range (1..64)
are taken.

Now to clauses. There will be many of those clauses, and we will have to wave our

hands through the parts of computation. Needless to say, nobody would write them

by hand; a simple script would do, though.

So here are our constraints. There will be four groups:

Group 1: For each row i with i in (1..4) and each value k, k in (1..4), there is a

column j in (1..4) so that the cell ci,j contains k. Let us fix i and k, say i = 2 and

k = 3. Then our constraint is that:

c2,1 = 3 ∨ c2,2 = 3 ∨ c2,3 = 3 ∨ c2,4 = 3.

But now, the statement c2,1 = 3 is the propositional variable p34 (please check!).

Likewise, the statement c2,2 = 3 is p38, then c2,3 = 3 is p42 and c2,4 = 3 is p46.

Thus our constraint becomes:

p34 ∨ p38 ∨ p42 ∨ p46.

In DIMACS format we have this clause:

34 38 42 46 0.

There will be 16 clauses of this sort (4 rows, 4 values).

Group 2: For each column j with j in (1..4) and each value k, k in (1..4) there is
an index i in (1..4) so that the cell ci,j contains k. Let us fix j and k, say j = 1 and

k = 4. Then our constraint is that:

c1,1 = 4 ∨ c2,1 = 4 ∨ c3,1 = 4 ∨ c4,1 = 4.

This is the disjunction (check the calculations, please!):

p49 ∨ p50 ∨ p51 ∨ p52.

In DIMACS format we have this clause:

49 50 51 52 0.

There will be 16 clauses of this sort (4 columns, 4 values).

Group 3: Each quadrant contains each of the numbers (1..4). You will recall that

we did not define what quadrant is. The first quadrant consists of cells c1,1, c1,2, c2,1,
and c2,2. The second quadrant consists of cells c1,3, c1,4, c2,3, and c2,4. We leave to

the reader to identify the remaining quadrants. So, for each quadrant, and for each

value k, the quadrant must contain that value k. For instance, the third quadrant must

contain the value 1. This is the following constraint:

c3,1 = 1 ∨ c3,2 = 1 ∨ c4,1 = 1 ∨ c4,2 = 1.

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 257

When we compute the indices of the propositional variables occurring in the formula

above, we get:

p3 ∨ p7 ∨ p4 ∨ p8.

In DIMACS format we have this clause:

3 4 7 8 0.

There will be altogether 16 clauses (4 quadrants, 4 values).

Group 4: Our final group of constraints ensures that no cell contains two different

values. What it means is that for each cell ci,j and for each pair k1, k2 of different

values in (1..4) the statement ci,j = k1 ∧ ci,j = k2 is false. That is, the clause

¬(ci,j = k1) ∨ ¬(ci,j = k2)

is true. We can assume k1 < k2. Then there are exactly 6 such choices of k1 and k2.

Let us look at one example of such clause. Let us select i = 2, j = 3, k1 = 1, and
k2 = 4. This determines the clause:

¬(c2,3 = 1) ∨ ¬(c2,3 = 4).

Moving to the propositional variables encoding the constraints we get the clause:

¬p10 ∨ ¬p58.

In DIMACS format:

−10 − 58 0.

Altogether there are 16 × 6 of those constraints (16 cells, 6 clauses per each cell),

i.e., 96 clauses of group (4).

An inquisitive reader should ask what constraint guarantees that each cell will, actu-

ally, hold a value. The reason for this is that (for instance) each row has four cells.

There are four values. Since no cell holds two values (constraint (4)), it must be the

case that each cell must contain a value. This is the familiar principle that holds for

finite sets (but not for infinite sets): If two finite sets X and Y have the same size

then any injection ofX into Y is automatically a bijection.

Now, let us count our clauses. There are 16 clauses in each of groups (1) through

(3). Then there are 96 clauses of group (4). Altogether we have 144 clauses. We are

not claiming that our encoding is optimal. Anyway, the first line of the resulting file

expressing our problem in DIMACS format will be:

p cnf 64 144.

It will be followed for 144 clauses, each ending in 0. We assume this file is called

44grid.dim (any reasonable naming convention would do).

What happens now? We call our program solver on the input 44grid.dim. The solver

returns a satisfying valuation v. There are many such valuations, we got back one.

© 2009 by Taylor and Francis Group, LLC

258 Introduction to Mathematics of Satisfiability

It evaluates all 64 variables (p1..p64). We display only those variables that were

returned as true.

{p3, p5, p12, p14, p18, p24, p25, p31, p36, p38, p43, p45, p49, p55, p58, p64}.

The remaining 48 variables were returned as false.

Now, what does it mean that (say) the variable p55 is true? We need to see what p55

meant. To this end let us expand the number 55 and get:

55 = 2 + 4 + 48 + 1 = (3− 2) + (2 − 1) · 4 + (4 − 1) · 16 + 1.

Now we can read off this representation that p55 represents the following constraint

on the grid: c3,2 = 4. This means that the cell with coordinates (3, 2) (third row,

second column) holds number 4. Similarly, for the variable p18 we compute:

18 = (2− 1) + (1− 1) · 4 + (2− 1) · 16 + 1,

that is, c2,1 = 2 (assuming we did not make a mistake). Proceeding similarly with

the remaining 14 variables, we find the grid:

4 1 2 3
2 3 4 1
1 4 3 2
3 2 1 4

which, indeed, satisfies our constraints.

At first glance, our problem of finding the grid satisfying various constraints did

not involve logic at all. But by the choice of a suitable knowledge representation

scheme we reduced our problem to a satisfiability problem. How did the process

work? The first observation is that it would be convenient to have a one-to-one cor-

respondence between solutions to the problem and the satisfying valuations for the

encoding. We could relax this requirement a bit: every solution should be encoded

by a satisfying assignment, and every satisfying assignment should encode some so-

lution. Otherwise, either some solutions may be missed or the solver may return a

valuation which does not decode to a solution. There are two tacit assumptions here.

The first of these two is that we have an encoding function that computes a CNF out

of the problem. The second assumption is that we are able to decode out of satisfying

valuation the solutions to the original problem.

To sum up, in the scheme we used, there are three distinct phases:

1. Encoding

2. Solving

3. Decoding

This is a general scheme for using the SAT solver as a constraint solver. We will see

below that the first point, Encoding, creates an opportunity for the simplification of

the process. In the spirit of this book, with everything treated, if possible, in a formal

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 259

ba

dc

e

FIGURE 12.1: GraphG

fashion, we describe this entire scheme as follows. A search problem, Π ([GJ79]),

consists of instances. Every instance I ∈ Π has an associated set of solutions,

SolI (it may be empty). We require existence of two feasible (i.e., computable in

polynomial time) functions e and d. The function e is defined onΠ and assigns to I ∈
Π its encoding FI,Π. We assume that FI,Π is a CNF (although, in general, natural

encodings are not necessarily CNFs). The decoding function d has two arguments:

an instance and a valuation. We assume that whenever I is an instance and if a

valuation v satisfies e(I), that is, FI,Π, then d(I, v) is a solution for the instance

I , i.e., d(I, v) ∈ SolI . In other words, d(I, v) decodes a satisfying assignment

(provided one is returned) into a solution. If there is no satisfying assignment for

FI,Π then d returns a string ‘no solutions.’

Let us look at what happens in our mini sudoku grid Example 12.2. Our search

problem has just one instance. We encoded this single instance as a SAT problem (a

CNF to be solved), and then solved it with solver, and decoded one of (there were

many) the solutions to our instance.

To sum up, we require that we have two feasible maps:

1. e : Π→ Form (usually the values will be CNFs), and

2. d : Π×Val
1−1
−→
onto

Sol ,

where Sol =
⋃

I∈Π SolI . The additional requirement is that the decoding function

actually decodes solutions. That is, d(e(I), v) ∈ SolI if v |= e(I), and d(e(I)) is
the string ‘no solution’ if there are no solutions for the instance I .
But before we study the subtleties of this scheme (in subsequent sections), let us look

at another example of coding, solving, and decoding.

Example 12.3

We will now use our solver solver to color a graph. Our graph G has 5 vertices, 8
edges, and is presented in Figure 12.1.

© 2009 by Taylor and Francis Group, LLC

260 Introduction to Mathematics of Satisfiability

Our problem is to find the coloring of vertices of the graphG with three colors, red,

blue, and green, so that every pair of vertices connected with an edge has different

colors. Such coloring is called valid 3-coloring, or simply 3-coloring of G. We will

need only 15 propositional variables. Variables p1, p2, p3 will encode the fact that

the vertex a is colored, respectively, with red, blue, and green. Similarly, p4, p5, p6

will denote that the vertex b is colored with the colors, respectively, red, blue, and

green, etc. Once we know the intended meaning of the propositional variables, we

are ready to write clauses expressing constraints of the problem.

Group 1: We write a constraint requiring that each vertex possesses a color. There

will be five clauses; there are five vertices. Here is one such clause which expresses

the constraint that the vertex b possesses a color:

p4 ∨ p5 ∨ p6.

The corresponding clause in DIMACS format will be:

4 5 6 0.

Group 2: We express the constraint that no vertex has two colors. Thus, for each

vertex x and each pair of different colors c1 and c2 (three such pairs) we need to

assert that that it is not true that x both has the color c1 and the color c2. Let us do
this for the vertex c. There will be three such clauses; we list all of them:

¬p7 ∨ ¬p8, ¬p7 ∨ ¬p9, ¬p8 ∨ ¬p9.

This means that various clauses will be add to the DIMACS format file, for instance:

−7 − 8 0.

Altogether we will produce 15 clauses in this group.

Group 3: Here we need to take care of the constraint that the endpoints of each edge

have different colors. We have eight edges here. For each such edge we need to put

three clauses that assert that the colors of endpoints are different. Here is one such

example. In our graph vertices b and c are connected by an edge. Therefore we need
three constraints. We list one of those; we hope the reader writes the remaining two.

It is not the case that both b and c are red.
These three constraints are expressed by clauses (now we list all three):

¬p4 ∨ ¬p7, ¬p5 ∨ ¬p8, ¬p6 ∨ ¬p9.

In DIMACS format the first one of these is:

−4 − 7 0.

Altogether (8 edges, 3 colors) we will write 24 clauses in group (3).

Summing up the numbers, we see that in our encoding (there are different encodings,

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 261

too!) there are 44 clauses. Thus the first line of our file mycolor.dim containing the

clauses describing the constraints of the problem will be:

c cnf 15 44.

What will we do now? We submit the resulting file to the solver. Not surprisingly

the solver will return no satisfying valuation (in fact our graph G has no valid 3-
coloring). Since there is a one-to-one correspondence between the valid 3-colorings
ofG and satisfying valuations for our encoding we conclude that there is no solution

for the 3-coloring problem for our graph.

12.2 Knowledge representation with predicate logic over
finite domains, and reduction to SAT

We will now study predicate logic as a knowledge representation formalism. Pred-

icate logic is an extension of propositional logic. But in addition to connectives

¬,∧,∨, and others we discussed in Chapter 2, there are two constructs that are very

useful in modeling. Those are object variables and quantifiers. Those who need

information about syntax and semantics of predicate logic will find it in [NS93] or

the classic [Sh67]. Before we start talking about the minutiae of the representation

with predicate logic, let us realize that there are several fundamental obstacles to the

use of predicate logic in knowledge representation. The first of those is the issue of

infinite models. If we admit infinite models then, certainly, we will not be able to list

them. We can (sometimes) query them (this is the basis of PROLOG programming

language), but listing them is impossible. The second fundamental problem is the

Church undecidability theorem; the set of tautologies of predicate logic admitting

non-unary predicates is not computable. Because of the completeness theorem for

predicate calculus, if we allow for all possible models then there cannot be a deci-

sion procedure for sentences true in all those models. The third one is the Gödel

incompleteness theorem; every consistent axiomatizable theory containing enough

of arithmetic is incomplete. Thus there is no computable axiomatization of all sen-

tences true in the standard model of arithmetic. Since one still needs to reason in

predicate logic, techniques of automated theorem proving are used. These are sound

but not complete.

Hence, if we want to use the language of predicate logic, we need to introduce lim-

itations. Here are the limitations we will impose both on syntax and on semantics

of predicate logic. First, we will limit ourselves to finite theories. Second, we will

not allow function symbols. Third, we will allow only models with finite universes.

Without limiting our approach we will assume that the only relational structures that

we will consider are structures where the universe is composed of all constant terms

occurring in the theory. Those are so-called Herbrand models. In our case, since

© 2009 by Taylor and Francis Group, LLC

262 Introduction to Mathematics of Satisfiability

there are no function symbols, the universe of the Herbrand models consists of the

constants of the language.

Let Lσ be a language of predicate logic based on the signature σ. We will omit the

subscript σ. This signature has predicate symbols P1, . . . , Pk and constant symbols

a1, . . . , am. The set C consists of constants of L. The arity of Pj is denoted lj . Let
T be a set of formulas of L. We will assume that all constants of L occur in formulas

of T . The Herbrand universeHL consists of the constant terms of L. Since there are
no function symbols,HL = C.
A Herbrand relational structure (Herbrand structure, for short) for L is a structure

M = 〈HL, r1, . . . rk, a1, . . . , am〉.

Here rj , 1 ≤ j ≤ k are relations (of arity lj) on set C. They are interpretations of

predicate symbols P1, . . . , Pk. This means that rj is lj-ary relation.
Thus Herbrand structures (in our case) have the universe consisting of constants,

nothing else. Since we consider finite theories T , this universe is finite.
In addition to the Herbrand universe, we have the Herbrand base. The Herbrand

base of the language L consists of atomic sentences of L, that is, expressions of the
form

Pj(d1, . . . , dlj),

where Pj is a predicate symbol and di’s are (not necessarily different) elements of

C. Here is an example. Let us assume our language L has two predicate sym-

bols: P (binary) and Q (unary) and three constants: a, b, and c. Then the Her-

brand base HL of L consists of 12 objects. Nine of those are generated from P :
P (a, a), P (a, b), P (a, c), P (b, a), etc., and three generated fromQ: Q(a), Q(b), and
Q(c).

PROPOSITION 12.1
There is a bijective correspondence between Herbrand structures for L and

the subsets of the Herbrand base HL of L.

Proof: Here is the desired correspondence. WhenM is:

〈HL, r1, . . . rk, a1, . . . , am〉,

SM is:
k
⋃

j=1

{Pj(d1, . . . , dlj) : 〈d1, . . . , dlj 〉 ∈ rj}.

We need to show that the correspondenceM 7→ SM is one to one, and “onto.”

First, we show that the mapping is one to one. If two Herbrand structures for L,
M1 andM2 are different, then, since the universes are the same, there must be a

predicate symbol Pj , 1 ≤ j ≤ k such that its interpretations inM1, rj,1 and in

M2, rj,2 are different. But then there is a tuple 〈d1, . . . , dlj 〉 such that 〈d1, . . . , dlj 〉
belongs to rj,1 \ rj,2 or 〈d1, . . . , dlj 〉 belongs to rj,2 \ rj,1. But then Pj(d1, . . . , dlj)

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 263

belongs to SM1
\ SM2

or Pj(d1, . . . , dlj) belongs to SM2
\ SM1

.

Next, we need to show that the mapping is “onto.” Given S consisting of atomic

sentences of L, let us define, for each j, 1 ≤ j ≤ k,

rj = {〈d1, . . . dlj 〉 : Pj(d1, . . . dlj) ∈ S}.

Then, settingM = 〈C, r1, . . . , rk, a1, . . . , am〉, we see that SM = S. 2

Let us identify the Herbrand base with a set of propositional variables. This is what

we really did in our Example 12.2. If we do this, subsets of the Herbrand base HL

are nothing more than the valuations of HL. We can, then, investigate propositional

satisfaction of those valuations. Recall that there is a one-to-one correspondence be-

tween subsets ofHL and valuations ofHL. In Chapter 2 we gave a formal definition

of satisfaction of propositional formulas by subsets of the set of variables.

There is nothing deep in Proposition 12.1, but it turns out that there is a strong con-

nection between the satisfaction in Herbrand structureM and the propositional sat-

isfaction by set SM.

PROPOSITION 12.2
Let L be a language of predicate logic with a finite number of relational sym-
bols, a finite number of constant symbols, and no function symbols. For every
sentence Φ of the language L, there is a propositional formula FΦ such that
for every Herbrand structureM for L,

M |= Φ if and only if SM |= FΦ.

Proof: Before we prove our proposition let us observe that the symbol |= is used in

different meanings on both sides of the equivalence. On the left-hand side we talk

about satisfaction for predicate logic structures, on the right-hand side we talk about

propositional satisfaction.

We will construct the sentence FΦ by induction on the complexity of sentence Φ.

First, let the sentence Φ be atomic. There are two cases to consider: first, when Φ is

of the form Pj(d1, . . . , dlj), and the second, when Φ is the equality c = d where c
and d are constants.
(1) When Φ is of the form Pj(d1, . . . , dlj), then M |= Φ if and only if

〈d1, . . . , dlj 〉 ∈ rj , which is equivalent to Pj(d1, . . . , dlj) ∈ SM, which is equiva-

lent to SM |= Pj(d1, . . . , dlj). Thus we define FΦ = Φ.

(2) When Φ is c = d, then there are two possibilities: either c is identical to d or not.
In the first case we define FΦ as ⊤, otherwise we set FΦ equal to ⊥. Now,M |= Φ
precisely when c is identical to d, i.e., precisely if SM |= FΦ.

Now, the definition of satisfaction both in predicate and propositional case is such

that the inductive step for the propositional connectives¬,∧,∨,⇒, and≡ is obvious.

Specifically, we set: F¬Φ is: ¬FΦ, FΦ1∨Φ2
is FΦ1

∨ FΦ2
, etc.

So, all we need to do is to define F∀xψ(x) and F∃xψ(x), and prove the property pos-

tulated in the assertion.

When Φ is ∀xψ(x), then we form sentences ψ(c) for each constant c of L. There

© 2009 by Taylor and Francis Group, LLC

264 Introduction to Mathematics of Satisfiability

are only finitely many such sentences because there are finitely many constants. By

inductive assumption (sentence ψ(c) is simpler), we have propositional formulas

Fψ(c). We now define:

F∀xψ(x) =
∧

c∈C

Fψ(c).

We now need to prove that:

M |= ∀xψ(x) if and only if SM |=
∧

c∈C

Fψ(c).

But according to the definition of satisfaction, M |= ∀xψ(x) if and only if for

every constant c,M |= ψ(c). By inductive assumptionM |= ψ(c) if and only if

SM |= Fψ(c). But C is finite, so we can form
∧

Fψ(c). Clearly, then, SM |=
∧

Fψ(c).

The converse reasoning is similar.

When Φ is ∃ψ(x), we set:

F∃xψ(x) =
∨

c∈C

Fψ(c).

The argument is analogous. 2

So now let us define a theory T in predicate calculus to be Herbrand-consistent, if it

possesses a Herbrand model. We then have the following corollary.

COROLLARY 12.1
Let L be a language of predicate calculus without function symbols, and with

a finite number of predicate and constant symbols. Let T be a set of sentences
of L. Then T is Herbrand-consistent if and only if the propositional theory
{FΦ : Φ ∈ T } is satisfiable. In fact, there is a one-to-one correspondence
between the Herbrand models of T and the propositional assignments of the
Herbrand base evaluating {FΦ : Φ ∈ T } as 1.

Now, it should be quite clear what Corollary 12.1 says. As long as we have in mind

a Herbrand model of a finite theory with no function symbols, all we need to do is to

test the propositional theory {FΦ : Φ ∈ T } for satisfiability. We can read off such

satisfying valuations from Herbrand models of T , that is, desired structures.
But the propositional theory {FΦ : Φ ∈ T } does not need to be clausal. We will see

below under what conditions on Φ, and more generally T , we can read off directly

clausal theory out of T . But in the general case we can always reduce (possibly using
additional propositional variables) any propositional theory F to a clausal theory

GF so that there is a bijective correspondence between valuations satisfying F and

valuations satisfying GF (Proposition 11.8(2)). So, to use solver to find if a theory

T (let us have in mind the restrictions on the language) has a Herbrand model (and

if so to find one), we proceed in two steps. First we translate T to a finite collection

of propositional formulas {FΦ : Φ ∈ T }. If the resulting theory is clausal, we use

solver directly. If the resulting theory is not clausal, we transform it to the clausal

theory as described in Chapter 11. Assuming the resulting clausal theory is satisfiable

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 265

we can read off the Herbrandmodel of input theory T either in one step (if there were

no additional variables) or in two steps (first eliminating the additional variables and

then computing the model).

Example 12.4 (Example 12.2 revisited)

We now code the problem of finding the 4×4 grid in predicate logic. There will be,

as before, four conditions. One of those (on quadrants) will require four formulas to

code. Others will be much simpler. Here is the desired theory T .

1. (every value taken in each row) ∀i,k∃jp(i, j, k)

2. (every value taken in each column) ∀j,k∃ip(i, j, k)

3. (every value taken in each quadrant, four clauses)

(a) (every value taken in the first quadrant)

∀k(p(1, 1, k) ∨ p(1, 2, k) ∨ p(2, 1, k) ∨ p(2, 2, k)

(b) (every value taken in the second quadrant)

∀k(p(1, 3, k) ∨ p(1, 4, k) ∨ p(2, 3, k) ∨ p(2, 4, k)

(c) (every value taken in the third quadrant)

∀k(p(3, 1, k) ∨ p(3, 2, k) ∨ p(4, 1, k) ∨ p(4, 2, k)

(d) (every value taken in the fourth quadrant)

∀k(p(3, 3, k) ∨ p(3, 4, k) ∨ p(4, 3, k) ∨ p(4, 4, k)

4. (single value in each cell) ∀i,j,k1,k2(p(i, j, k1) ∧ p(i, j, k2)⇒ k1 = k2)

Herbrand models of this theory describe the desired grids.

The reader will notice that there are two discrepancies between our encoding of

Examples 12.2 and 12.4. The first difference comes from the fact that the universal

quantifier will be transformed into conjunction. Altogether we get 7 formulas after

we translate from predicate calculus, not 128. The second difference is with the

formula (4). In Example 12.2 we translated this constraint directly in clausal form.

Not so now: it will be conjunction of implications. We will now address both issues

raised by this translation.

To address the first one (conjunction of formulas, when translating universally quan-

tified formula) we observe that for every valuation v and for every set {ϕj : j ∈ J}
of propositional formulas

v |=
∧

j∈J

ϕj if and only if for all j ∈ J , v |= ϕj .

This means that we can transform conjunctions of formulas into sets of formulas and

do not change the status of satisfiability. This is precisely why in Example 12.2 we

expressed constraints (1)− (3) of Example 12.4 by 16 clauses, each. Then, referring

to the issue with the translation of the fourth constraint, let us look at the formulas

we get. In principle there should be 44 (i.e., 256) propositional formulas generated

© 2009 by Taylor and Francis Group, LLC

266 Introduction to Mathematics of Satisfiability

from the formula (4). First, let us look at the formulas where k1 and k2 are equal.

Each such formula is translated (recall the way we treated translation of equality!)

as

p(i, j, k1) ∧ p(i, j, k2)⇒ ⊤.

This formula, regardless of constants i, j, k1, k2 (but with k1 = k2), is a tautology.

Thus it can be safely eliminated. There are 4×16 (4 common values of k1 and k2, 16
values of the pair (i, j)) of such true constraints. This leaves us with 192 remaining

formulas. But it is easy to observe that half of those, in effect, will be repeated, due

to the commutativity of conjunction and symmetry of equality relation. This leaves

us still with 96 constraints. Those constraints look like this:

p(i, j, k1) ∧ p(i, j, k2)⇒ ⊥.

But these last formulas are equivalent to the formulas

¬p(i, j, k1) ∨ ¬p(i, j, k2),

which we computed in intuitive manner. Thus, in effect, an intelligent transformation

software (one that accepts predicate logic theories as inputs, and produces proposi-

tional theories as outputs) should be able to compute propositional theory such as

in Example 12.2 from predicate theories such as in Example 12.4. Such software

is called a grounder. There are several issues associated with grounders. First, the

groundermust produce the output in the format understood by solver. Second, once

the grounder produces the input formula (for simplicity let us assume in DIMACS

format), the meaning of variables is lost. Thus the groundermust make aware to the

solver the meaning of propositional variables. It is worth mentioning that grounders

have been implemented.1 To sum up, as of today we are not aware of full grounders

(those that would force us to use a two-step process described above), but grounders

accepting important classes of formulas exist.

Our discussion of translation of predicate logic to propositional logic makes clear that

if the input formula has the universal quantifier as a top connective, then the transla-

tion convenient from the point of view of the solver is not the one that translates the

input to a single propositional formula, but rather to a set of formulas (a formula for

each constant). This is what we did in Example 12.2. If the input formula starts with

a string of universal quantifiers, then we can repeat the elimination. In effect what

we use is the following principle. Let Φ = ∀x1
∀x2

. . .∀xn
ψ(x1, . . . , xn). Then for

every Herbrand structureM

M |= Φ if and only if
∧

c1∈C,...,cn∈C SM |= Fψ(c1, . . . , cn).

It is then quite natural to introduce the notion of clause-like formulas of predicate

logic. Those are of the form ∀x1
∀x2

. . . ∀xn
ψ(x1, . . . , xn) where ψ(x1, . . . , xn) is a

disjunction of literals.

1In a non-SAT context, Niemelä and collaborators (the lparse software, a component of smodels ASP

solver package) implemented a grounder. Then, the grounder psgrnd was implemented by Truszczyński

and collaborators [EIMT06]. Truszczyński’s grounder handles only a proper subset of predicate logic.

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 267

The grounder translates clause-like formulas directly to sets of clauses, and those

can serve as an input to the solver. We will see below that there is a larger class of

formulas which can be translated easily to the sets of ground clauses.

12.3 Cardinality constraints and the language Lcc

We observed in Section 10.1 that the clause l1∨ . . .∨ lk, where l1, . . . , lk are literals,
can be understood under a suitable interpretation as a pseudo-Boolean inequality

(also known as a pseudo-Boolean constraint):

l1 + . . .+ lk ≥ 1.

The limitations were: first, the negated variables ¬xj were written as integer terms

1 − xj . Second, the integer solution had to be “pseudo-Boolean,” that is, taking

the values 0 and 1 only. Of course, collections of clauses corresponded to pseudo-

Boolean systems of inequalities.

So, in this section we will generalize this interpretation by allowing the right-hand

side to be bigger than 1. Then we will generalize it even further, allowing the coeffi-
cients to be integers other than −1 and 1.
We will identify a clause l1∨. . .∨lk with the integer inequality l1+. . .+lk ≥ 1, with
the convention that ¬x is 1− x. The meaning of both forms is the same: at least one

of the literals of the clause is true, i.e., takes the value 1. With this interpretation it is

very natural to generalize; we just vary the right-hand side. Instead of asserting that

at least one of the literals among l1, . . . , lk is true, we assert that at least m of them

are true. Thus, formally, in the integer-inequalities world, we have an inequality

l1 + . . .+ lk ≥ m.

On the other side, in logic, we have a new kind of expression (a generalized proposi-

tional variable)m{l1, . . . , lk} asserting that from the literals l1, . . . , lk at leastm are

true. We call such an expression a cardinality constraint.

Clearly it is possible to eliminate expressionsm{l1, . . . , lk}. But the cost is signif-
icant. It is easy to write a DNF ψ consisting of

(

k
m

)

elementary conjunctions each

of lengthm such thatm{l1, . . . , lk} is equivalent to ψ. It is also quite easy to elimi-

nate such an expression using additional variables in linear time. We will not do this

now; we leave the task to the reader (the second task requires some ingenuity, but

not much).

First, let us observe that as long as we care about pseudo-Boolean solutions, every

inequality of the form

a1x1 + . . .+ akxk ≥ r

with all the coefficients ais in the set {−1, 1} is a cardinality constraint. To see this,
consider the number h

h = |{j : aj = −1}|

© 2009 by Taylor and Francis Group, LLC

268 Introduction to Mathematics of Satisfiability

and rewrite the inequality as above into the form

h+ a1x1 + . . .+ akxk ≥ r + h.

Then the number h on the left-hand side is split into h 1s which are added to those

xis for which ai = −1. Now we get the form of our inequality,

l1 + . . .+ lk ≥ r + h,

where each li is xi (if ai = 1), or 1− xi (if ai = −1).
Let us look at the example. Our inequality is

x1 − x2 − x3 − x4 ≥ −1.

Adding 3 to both sides we get:

x1 + (1− x2) + (1− x3) + (1− x4) ≥ 3− 1,

that is, the cardinality constraint

2{x1,¬x2,¬x3,¬x4}.

So now, we will officially admit into our language two new kinds of expressions:

m{l1, . . . , lk} and {l1, . . . , lk}n. Here is the semantics of these expressions. We

define:

v |= m{l1, . . . , lk} if |{lj : v |= lj}| ≥ m.

Here m is the lower bound of our cardinality constraint. We will call such con-

straints lower-bound cardinality constraints. But once we do this, it is only natural

to introduce another kind of cardinality constraint: {l1, . . . , lk}n with the semantics:

v |= {l1, . . . , lk}n if |{lj : v |= lj}| ≤ n.

We will call those upper-bound cardinality constraints. It is quite clear what this

new cardinality constraint {l1, . . . , lk}n is. This is just a pseudo-Boolean inequality:

l1 + . . .+ lk ≤ n.

As before, every pseudo-Boolean inequality

a1x1 + . . .+ akxk ≤ r

with all the coefficients ais in the set {−1, 1} is a cardinality constraint of this sec-

ond kind. We observe that the propositional variables themselves are cardinality

constraints: the cardinality constraint 1{x} has precisely the same semantics as the

propositional variable x.
At this moment, the reader will ask if we really need two kinds of cardinality con-

straints. Indeed, after all, the constraint {l1, . . . , lk}n means “at most n of literals

in {l1, . . . , lk} are true.” But this latter expression is, clearly, equivalent to “at least

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 269

k−n of literals in {l̄1, . . . , l̄k} are true,” i.e., (k−n){l̄1, . . . , l̄k}. The answer to this
objection is similar to the answer we offer to the question “Is the implication functor

needed?” After all we can eliminate implication using negation and disjunction. We

just say that we do not need implication, but it is convenient in knowledge represen-

tation. The situation is analogous here: we do not need the upper-bound cardinality

constraints, but they are convenient as we will see in Proposition 12.3.

Now, let Lcc
Var

be the language such that the atomic expressions are of the form

m{l1, . . . , lk} and {l1, . . . , lk}n. Due to the fact that x is equivalent to 1{x}, we can
assume that all we have as atomic expressions are m{l1, . . . , lk} and {l1, . . . , lk}n.
Thus the language Lcc

Var
contains L; its formulas are just convenient expressions al-

lowing us to write formulas of LVar more compactly. We will not write the subscript

Var, of course.

The connectives (functors) of Lcc are the usual connectives of L. The semantics is

provided by means of valuations of the set Var . The conditions on satisfaction rela-

tion are the two conditions listed above (for the cardinality constraintsm{l1, . . . , lk}
and {l1, . . . , lk}n), and the standard inductive conditions (as specified in Chapter 2)

for more complex formulas.

By identifying a valuation v with a set M of variables on which v takes value 1,
we get a definition of satisfaction for a set M of variables. We will later see that

cardinality constraints (of special kinds) offer a natural way to define families of

sets. Right now, let us look at the example of satisfaction of a formula of Lcc by a set
of variables. For instance, the set {p} satisfies the cardinality constraint 2{p, q,¬r}.
Why? Because two literals satisfied by our set {p, q,¬r}, namely p and ¬r, are
satisfied by {p}.
We also need to be a bit careful. There is nothing that precludes the presence of both

x and ¬x in the set {l1, . . . , lk}. It should be clear that if this happens, we can erase
both x and ¬x and decrement the bound (either the lower or the upper) by 1. This
does not change the semantics.

The language Lcc admits both conjunctive and disjunctive normal forms. In particu-

lar we can talk about cardinality clauses i.e. clauses where the atoms are cardinality

constraints. It turns out that the language Lcc has a stronger property: we can elim-

inate negation from the language. In the statement of proposition below we will

assume that the length of lower and upper bounds in cardinality constraints counts

as 1. With these assumptions we have the following fact.

PROPOSITION 12.3
For every formula ϕ of Lcc

Var
there is a formula ψ in Lcc

Var
such that:

1. The length of ψ is at most twice the length of ϕ.

2. ψ is semantically equivalent to ϕ.

3. ψ has no occurrence of negation symbol.

Proof: Let us observe that ¬(m{l1, . . . , lk}) is equivalent to {l1, . . . , lk}(m−1), and
¬{l1, . . . , lk}n is equivalent to (n + 1){l1, . . . , lk}. Since L

cc satisfies DeMorgan

© 2009 by Taylor and Francis Group, LLC

270 Introduction to Mathematics of Satisfiability

laws, every formula ϕ of Lcc is equivalent to a formula ϑ of Lcc where negation

occurs only in front of cardinality constraints. Moreover, the length of ϑ is at most

twice that of ϕ. Then, we can eliminate negation in front of cardinality atoms of ϑ
as indicated above. 2

Let us observe that the fact that ¬p is equivalent to {p}0 implies by itself a weaker

form of Proposition 12.3; we can find a formula with no negation symbol just from

the CNF for L, but the size of this formula will be exponential in that of ϕ.
Next, we focus on the issue of the existence of DPLL-like algorithms for testing

satisfiability of sets of clauses of Lcc. In an abstract setting there are two ingredients
that allow for designing such an algorithm. The first of those is the availability of

some form of the Kleene theorem on preservation of Boolean values when we extend

partial valuations. Second, we need some form of BCP. It turns out that both are

available for Lcc.
To establish the first component, the necessary version of the Kleene theorem on ex-

tensions (Proposition 2.5, point (2)), let us define the three-valued evaluation func-

tion for partial valuations and cardinality constraints as follows:

(v)3(m{l1, . . . , lk}) =

1 if |{j : (v)3(lj) = 1}| ≥ m

0 if |{j : (v)3(lj) 6= 0}| ≤ m− 1

u otherwise

and

(v)3({l1, . . . , lk}n) =

1 if |{j : (v)3(lj) = 0}| ≥ k − n

0 if |{j : (v)3(lj) = 1}| ≥ n+ 1

u otherwise.

What is the intuition? We commit tom{l1, . . . , lk} if the current partial valuation v
carries enough information to make sure that however we extend v in the future to

a valuation w, w will always evaluate m{l1, . . . , lk} as 1. Likewise, we commit to

negation ofm{l1, . . . , lk} if we already know that regardless of how we extend v in
the future we will not be able to make it 1. Intuitions of the upper bound cardinality
constraints are similar.

We observe that if v is a complete valuation and (v)3(m{l1, . . . , lk}) = 1 then v |=
m{l1, . . . , lk}, and likewise, if (v)3({l1, . . . , lk}n) = 1 then v |= ({l1, . . . , lk}n.
Here is the Kleene theorem for the language Lcc.

PROPOSITION 12.4
Let v1, v2 be two partial valuations of the set Var, and let ϕ be a formula of
Lcc

Var
. If v1 �k v2 then (v1)3(ϕ) �k (v2)3(ϕ).

Proof: Let us recall that v′ �k v′′ means that:

1. Dom(v′) ⊆ Dom(v′′) and

2. v′′|Dom(v′) = v′.

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 271

It should be clear that the only expressions that need to be considered are those of

the form m{l1, . . . , lk} and {l1, . . . , lk}n. The rest of the argument goes exactly as

in the proof of Theorem 2.5, part (2).

So, let us consider the expressionE = m{l1, . . . , lk}. If v′ �k v′′ and (v′)3(E) = 1,
then v′ evaluates at least m of literals l1, . . . , lk as 1. But by the Kleene theorem

(Proposition 2.5, part (2)) v′′ also evaluates each of those literals (evaluated by v′

as 1) as 1. Therefore (v′′)3(E) = 1. If (v′)3(E) = 0, then the number of literals

evaluated by v′ as non-zero (1 or u) is at most m − 1. But then the same happens

with respect to v′′, so (v′′)3(E) = 0. Finally, if (v′)3(E) = u, then regardless of the
value of (v′′)3(E), (v′)3(E) �k (v′′)3(E).

Now, let us consider the case of the expression E = {l1, . . . , lk}n. The argument is

similar. If (v′)3(E) = 1, then already at least k − n of literals of {l1, . . . , lk} are
evaluated as 0 by v′. Then the same happens in the case of v′′ and so (v′′)3(E) = 1.
If (v′)3(E) = 0 then already n + 1 of literals of {l1, . . . , lk} are evaluated as 1 by

v′. Then the same happens for v′′. The case of (v′)3(E) = u is obvious.

As mentioned above, the rest of the argument follows exactly as in the case of the

original Kleene theorem. 2

COROLLARY 12.2

Let ϕ be a formula of Lcc
Var

, let v be a partial valuation of Var, and let w
be a valuation of Var so that v �k w. If (v)3(ϕ) = 1, then w |= ϕ and if
(v)3(ϕ) = 0, then w |= ¬ϕ.

The reader may get the impression that we could define other constraints and the

Kleene theorem would still hold regardless of their semantics. This is not the case in

general (although in this chapter we will see another class of constraints, extending

that of the cardinality constraints, where the Kleene theorem holds). The example

is that of parity constraints, constraints that hold if the number of literals from a

given set and evaluated as 1 is (say) even. Here, we may have a situation where one

partial valuation evaluates an even number of literals from {l1, . . . , lk} as 1, but its
extension fails to do so.

Proposition 12.4 and Corollary 12.2 form a basis for the correctness of the back-

tracking search algorithm for searching for a valuation that satisfies formulas of Lcc.
Indeed, let us assume we perform a backtracking search for a satisfying valuation

for a theory T . If at some point we established that a formula ϕ ∈ T is evaluated

(in three-valued logic) by a partial valuation v as 1 then all partial valuations in the

subtree of extensions of v will definitely also evaluate ϕ as 1, and so we will not

need to test those extensions for satisfaction of ϕ. If, on the other hand, v already

evaluates ϕ as 0, then all extensions of v evaluate ϕ as 0, and so we can safely back-
track, for there is no satisfying valuation below v. This is not the case, of course, for
parity constraints. Until we find ourselves at a point where all variables in the set

{l1, . . . , lk} have assigned logical values, we cannot be sure if such a constraint is

satisfied.

Next, we look at the other ingredient of DPLL, the Boolean constraint propagation

© 2009 by Taylor and Francis Group, LLC

272 Introduction to Mathematics of Satisfiability

(BCP). It turns out that there are two types of BCP present in the case of cardinality

constraints.

The first one is the familiar BCP-like technique: if in a clause E, all but one car-

dinality constraints (recall that clauses have no negated cardinality constraints) are

already assigned the value 0 (that is, are false), then the last one must be assigned the

value 1.
The second BCP-like mechanism for cardinality constraints consists of two forms.

The first one is a positive BCP and does the following: if m{l1, . . . , lk} is a car-

dinality constraint (either from the original input theory, or derived) and precisely

k−m literals in {l1, . . . , lk} are already evaluated as 0 then the remaining literals in

{l1, . . . , lk} must all be assigned the value 1. Then, there is a negative form of BCP,

when dealing with the constraints of the form {l1, . . . , lk}n. Namely, if k − n of

literals in {l1, . . . , lk} have been assigned the value 1, then all the remaining literals

must be assigned the value 0. Moreover, it should be observed that cardinality con-

straints admit two simplification rules that generalize the unit resolution rule. The

first one is:
m{l1, . . . , lk} l1
(m− 1){l2, . . . , lk}

.

This rule simplifies the constraint m{l1, . . . , lk} as follows: if we need to make m
out of literals in {l1, . . . , lk} true, but we already made one of them true, then we

need to make (m − 1) of the remaining ones true. The second principle directly

generalizes modus ponens:

m{l1, . . . , lk} l̄1
m{l2, . . . , lk}

.

This second rule says that if we want to make m of literals out of {l1, . . . , lk} true,
but one of literals l1, . . . , lk is already made false, then out of the remaining ones we

still have to makem literals true.

There are two analogous rules for the upper-bound cardinality constraints, as well.

Here they are:
{l1, . . . , lk}n l1
{l2, . . . , lk}(n− 1)

,

and
{l1, . . . , lk}n l̄1
{l2, . . . , lk}n

.

The simplification rules provided above indicate the presence of several strategies

for DPLL-like algorithms for satisfiability of Lcc formulas.

One may think, at first glance, that cardinality constraints are exotic. But it is not

the case. In fact every student of mathematics sees in her studies expressions that

may look like this: ∃!xϕ(x). Those may be written in this, or some other fash-

ion, but they express the property that there is exactly one x such that ϕ(x). But

a moment’s reflection indicates that this is, in fact, a cardinality constraint. In-

deed, if all available constants are a1, . . . , ak, then ∃!xϕ(x) is just the conjunction

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 273

1{ϕ(a1), . . . , ϕ(ak)} ∧ {ϕ(a1), . . . , ϕ(ak)}1. It is natural to write such a conjunc-

tion as 1{ϕ(a1), . . . , ϕ(ak)}1.
We will show that the use of cardinality constraints allows us to write constraints

more concisely. To this end we come back to our mini sudoku grid Example 12.2.

Our goal is to describe the constraints of that example using cardinality constraints.

Example 12.5
Here is howwe express the constraint that the cell (i, j) contains exactly one number

from the range (1..4):
1{pi,j,1, pi,j,2, pi,j,3, pi,j,4}1.

We have 16 such constraints (one for each cell).

Then we need to impose a constraint that ith row contains number k (in exactly one

place):

1{pi,1,k, pi,2,k, pi,3,k, pi,4,k}1.

Again, we have 16 such constraints (one for each row i and value k).
Then we need to impose a constraint that jth column contains number k:

1{p1,j,k, p2,j,k, p3,j,k, p4,j,k}1.

We have 16 such constraints (one for each column j and value k).
Then all we need to do is to take care of quadrant constraints. There are four quad-

rants and four values. There will be 16 quadrant constraints altogether. We list only

one of these, leaving the rest of them to the reader. We will impose the constraint

that the number 3 appears in exactly one place in the fourth quadrant:

1{p3,3,3, p3,4,3, p4,3,3, p4,4,3}1.

Then, all we need to do is to make sure that the solver is capable of handling car-

dinality constraints, and then, using the coding scheme of Example 12.2, transform

our constraints into the form acceptable to solver. Actually, East and Truszczyński

aspps handles cardinality constraints (and variables) so the whole idea is not vacu-

ous. There exist versions of DIMACS format for cardinality constraints, and surely

there will be more of such formats in the future.

12.4 Weight constraints, the language Lwtc

We will now generalize the cardinality constraints to a wider class of constraints,

called weight constraints. Like in the case of cardinality constraints there will be

lower-boundweight constraints and upper-boundweight constraints. It turns out that

most properties of cardinality constraints can be easily lifted to the case of weight

constraints.

© 2009 by Taylor and Francis Group, LLC

274 Introduction to Mathematics of Satisfiability

A lower-bound weight constraint is an expression of the form

a1x1 + . . .+ akxk ≥ m,

where a1, . . . ak,m are integers. An upper-bound weight constraint is an expression

of the form

a1x1 + . . .+ akxk ≤ n,

where a1, . . . ak, n are integers. We will be interested in pseudo-Boolean solutions

to such inequalities; that is, we accept only those solutions that take values 0 and 1.
First, like in the case of cardinality constraints, and in a very similar fashion, we

move from variables to literals and in this process we make all coefficients a1, . . . , ak
positive. Indeed, let us look at an example which is pretty general. Let our constraint

be

−x1 − 2x2 + 3x3 ≥ 0.

We add to both sides 3 (because 3 is the sum of absolute values of negative coeffi-

cients in our inequality) and after simple transformation we get:

(1− x1) + 2(1− x2) + 3x3 ≥ 3.

So now, we can assume that the coefficients are positive; however, we combine not

variables, but literals (with ¬x, i.e., x̄ interpreted as 1 − x). To make this technique

general, let us define

h =
∑

{|aj| : aj < 0}.

As in the example above, we add h to both sides of the inequality and get a new

inequality

b1l1 + . . . bklk ≥ m
′.

Here

li =

{

xi if ai > 0

1− xi if ai < 0.

But now all the coefficients bj , 1 ≤ j ≤ k are positive. The numberm′ does not have

to be positive, but the restriction requiring solutions to be pseudo-Boolean eliminates

such inequalities for they are always true.

The lower-bound weight constraints, after the transformation described above, are

uniquely determined by three parameters: first, the set of literals {l1, . . . , lk}; sec-
ond, the weight function that assigns to each li its weight ai (in our setting only

weight functions taking positive integer values are admitted), and finally the lower

boundm. We write such constraint E as:

m{l1 : a1, . . . , lk : ak}.

Now it is easy to see how the weight constraints generalize the cardinality con-

straints. Namely, cardinality constraints are weight constraints with the weight iden-

tically equal to 1. Since cardinality constraints generalize propositional variables, the

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 275

same happens for weight constraints; the propositional variable x is the lower-bound

weight constraint 1{x : 1}.
Similarly to lower-bound weight constraints we can introduce upper-bound weight

constraints. Now, treating weight constraints as a new kind of variable we get a

language Lwtc
Var

, by closing weight constraints (lower-bound and upper bound) under

propositional connectives: ¬,∧,∨, etc. We will omit the subscript Var if it is clear

from the context.

First, we need to define semantics for the language Lwtc. As before the semantics

is provided by valuations of the set Var into {0, 1}. All we need to do is to define

when a valuation v satisfies lower-bound and upper-bound weight constraints. Here

is how we define that.

v |= m{l1 : a1, . . . , lk : ak} if
∑

{ai : v(li) = 1} ≥ m.

Similarly for upper-bound weight constraints we set:

v |= {l1 : a1, . . . , lk : ak}n if
∑

{ai : v(li) = 1} ≤ n.

This definition of satisfaction is coherent with our interpretation of variables in Lwtc

propositional variable x:

v |= x if and only if v |= 1{x : 1}.

The properties of cardinality constraints and of the languageLcc can be mostly lifted

to the context of Lwtc verbatim. For instance, it is quite clear that the negation-

elimination theorem (Proposition 12.3) holds in the context of Lwtc.
To see that we can design a DPLL-like algorithm for finding satisfying valuations for

sets of clauses of Lwtc, we need to check that the Kleene theorem holds for theories

in Lwtc. To do so, we need to define the three-valued evaluation function (v)3 for

Lwtc such that:

1. For complete valuations such a function coincides with the satisfaction by valu-

ations.

2. The evaluation function is monotone in Kleene ordering.

Here is such an evaluation function satisfying both conditions.

(v)3(m{l1 : a1, . . . , lk : ak}) =

1 if
∑

{aj : (v)3(lj) = 1} ≥ m

0 if
∑

{aj : (v)3(lj) 6= 0} ≤ m− 1

u otherwise.

For upper-bound weight constraints we define:

(v)3({l1 : a1, . . . , lk : ak}n) =

1 if
∑

{aj : (v)3(lj) 6= 0} ≤ n

0 if
∑

{aj : (v)3(lj) = 1} ≥ n+ 1

u otherwise.

© 2009 by Taylor and Francis Group, LLC

276 Introduction to Mathematics of Satisfiability

A simple proof of the preservation (Kleene) theorem can be given for both properties

(1) and (2). We formulate it formally as follows.

PROPOSITION 12.5
If v′, v′′ are partial valuations of Var, v′ �k v′′, and ϕ ∈ Lwtc

Var
then

(v′)3(ϕ) �k (v′′)3(ϕ).

In particular, if (v′)3(ϕ) = 1 then (v′′)3(ϕ) = 1, and if (v′)3(ϕ) = 0 then
(v′′)3(ϕ) = 0.

Both techniques for simplifications of cardinality constraints lift to the context of

weight constraints. There is a slight difference in the simplification rules, and now

we list their versions for weight constraints.

m{l1 : a1, . . . , lk : ak} l1
(m− a1){l2 : a2, . . . , lk : ak}

and
m{l1 : a1, . . . , lk : ak} l̄1
m{l2 : a2, . . . , lk : ak}

.

The rules for upper-bound cardinality constraints generalize in a similar fashion.

Let us observe that the solver smodels [SNS02] admits (in a slightly different context,

namely of ASP (see Chapter 14) weight constraints.

12.5 Monotone and antimonotone constraints, charac-
terization by means of cardinality constraints

The reader will observe that in Section 12.3 we changed the terminology; instead of

talking about propositional variables we started to talk about constraints. In Section

12.3 we defined a new language, Lcc. But the atomic expressions of that language

were not propositional variables (even though propositional variables could be ex-

pressed as cardinality constraints, i.e., atomic expressions of Lcc), but the expres-

sions mX and Xn where X was a set of literals. We called those atomic building

blocks cardinality constraints. Why did we called them constraints, and what is a

constraint? The point of view we adopt for this section is that a constraint is any set

of complete valuations. This concept certainly generalizes propositional variables

(because we can identify the propositional variable x with the set of valuations that

satisfy x) and more generally, a formula. Indeed we proved, in Chapter 3, Proposi-

tion 3.15, that as long as the set of variables is finite, every set of valuations is of the

form Mod(ϕ) for some propositional formula ϕ. Thus every constraint is (or at least
can be identified with) a formula. But we can choose different formulas to represent

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 277

a constraint, and it makes a difference in performance if, for instance, our solver han-

dles only certain types of formulas. To sum up, every constraint has a representation

as a formula, but there are different representations and we can certainly investigate

how can we represent constraints efficiently.

It will be convenient in this section to look at representations of valuations as subsets

of Var . Thus sets of valuations will be identified with the families of subsets ofVar ,
i.e., subsets of P(Var).
With the perspective on constraints discussed above, let us look at some examples.

The constraint determined by the formula x ∧ ¬y is the collection {M ⊆ Var : x ∈
M ∧ y /∈ M}. The cardinality constraint 2{x,¬y,¬z} is the set of those subsets of
Var that contain x but do not contain at least one of y, z or do not contain any of

x, y, z (but please check!).
So now, we will classify constraints. A constraint C ismonotone if wheneverM ∈ C,
and M ⊆ N ⊆ Var , then also N ∈ C. Likewise, we define constraint C to be

antimonotone if whenever M ∈ C, and N ⊆ M , then N ∈ C. Finally, we call a

constraint C convex ([LT06]) if wheneverM1,M2 belong to C, andM1 ⊆ N ⊆ M2

then N ∈ C. We will see that both monotone and antimonotone constraints are

convex.

Recall that a formula ϕ of the propositional language L is positive if its negation-

normal form does not contain negation or ⊥.
For instance, the formula (x ∨ y) ∧ (x ∨ z) is positive, but also the formula ¬z ⇒ x
is positive (even though it contains negation).

We then have the following observation.

PROPOSITION 12.6
The collection of monotone constraints is closed under unions and under

intersections.

Proposition 12.6 implies the following fact.

PROPOSITION 12.7
If ϕ is a positive formula, then Mod(ϕ) is a monotone constraint.

Proof: By induction on the complexity of the formula NNF (ϕ). Our assertion is

certainly true if ϕ = x, for a propositional variable x or if ϕ = ⊤. This is the

induction basis. The inductive step follows from Proposition 12.6. 2

Next, we say that a formula ϕ is negative if ϕ = ¬ψ where ψ is positive. We then

immediately have the following.

PROPOSITION 12.8
If ϕ is a negative formula, then Mod(ϕ) is an antimonotone constraint.

All monotone constraints are represented by positive formulas. Here is how this can

© 2009 by Taylor and Francis Group, LLC

278 Introduction to Mathematics of Satisfiability

be done (the representation can be enormous). Let C be a monotone constraint. Since

Var is finite, there is only a finite number of inclusion-minimal sets in C, and every

set in C contains an inclusion-minimal set in C. Let 〈M1, . . . ,Mp〉 be a listing of

all inclusion-minimal sets in C. Let us consider the following formula ϕC (which is,

clearly, positive):
∨p
i=1

∧

Mi. We then have the following.

PROPOSITION 12.9

If C is a monotone constraint, then C = Mod(ϕC).

Using the distributivity laws of propositional logic we can transformϕC (in principle,

the size may be cosmic) to its CNF form. The resulting formula will consist of

positive clauses because distributivity laws do not introduce negation.

But what is the formula ϕC for a monotone constraint C? It is in fact, a disjunction

of certain lower-bound cardinality constraints. Indeed, let us look at an example.

Let C be defined by the positive formula x ∧ (y ∨ z). Then there are two equivalent

formulas from Lcc that represent C. One of those is 1{x} ∧ 1{y, z}. The other one
is 2{x, y} ∨ 2{x, z}.
Generalizing from this example, we introduce two concepts: positive lower-bound

cardinality constraint, and positive upper-bound cardinality constraint.2 A pos-

itive lower-bound cardinality constraint is a cardinality constraint of the form

m{x1, . . . , xk} where all x1, . . . , xk are propositional variables. Likewise pos-

itive upper-bound cardinality constraint is a cardinality constraint of the form

{x1, . . . , xk}n, where all x1, . . . , xk are propositional variables.

PROPOSITION 12.10

Let C be a subset of P(Var). The following are equivalent:

1. C is a monotone constraint

2. There exist positive lower-bound cardinality constraints E1, . . . , Ep such
that

C = Mod(E1 ∨ . . . ∨ Ep).

Proof: To see (1) ⇒ (2), we select the inclusion-minimal subsets X1, . . . , Xp in C,
we compute the numbers ri = |Xi|, i = 1, . . . , p and then set Ei = riXi. It is then

easy to see that

C = Mod(E1 ∨ . . . ∨ Ep).

For the implication (2) ⇒ (1), let us observe that each positive lower-bound car-

dinality constraint is a monotone constraint, so their disjunction is also a monotone

constraint. 2

2We are certainly aware of the fact that concepts requiring a term consisting of more than three words are,

usually, meaningless.

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 279

We will now generalize the second form of representation of monotone constraints

via conjunction of positive lower-bound cardinality constraints. The proof we give

below has an advantage of actually showing what these cardinality constraints are

(in our example we got them from the distributivity laws, without any indication

what those constraints are. The following result is due to Z. Lonc. The benefit

of the proof is that we actually construct the cardinality constraints representing a

monotone constraint. First, we need to define the notion of a hitset for a family of

sets. Given a family F of subsets of Var , a hitset for F (also known as a transversal

for F) is any set X ⊆ Var such that for all Y ∈ F , X ∩ Y 6= ∅. Given a family F ,
the set of all hitsets for F is, obviously, a monotone constraint. The reason is that if

X has a nonempty intersection with all sets in F , then every bigger set Y also has a

nonempty intersection with all sets in F .

PROPOSITION 12.11
Let C be a subset of P(Var). The following are equivalent:

1. C is a monotone constraint

2. There exist positive lower-bound cardinality constraints E′
1, . . . , E

′
r such

that
C = Mod(E′

1 ∧ . . . ∧ E
′
r).

Proof: The implication (2) ⇒ (1) is similar to the one in our proof of Proposition

12.10 because the collection of monotone constraints is closed under intersections.

For the implication (1) ⇒ (2), let us assume the C is a monotone constraint. Let

D = P(Var) \ C. Then, because C is a monotone constraint, D is an antimonotone

constraint. Moreover C ∩ D = ∅. Since Var is finite, there are only finitely many

sets in D, and in particular finitely many inclusion-maximal sets in D. Let B be the

collection of all inclusion-maximal sets inD, and letA be the family of complements

of sets in B. That is:
A = {Var \X : X ∈ B}.

We list the sets in B, 〈Y1, . . . , Yp〉, and all the elements of A, 〈X1, . . . , Xp〉.
We claim that C is precisely the set of hitsets for the family A.
Proof of the claim: Recall that Xi = Var \ Yi,
(a) If M ∈ C, and Xi ∈ A, then if M ∩ X = ∅, then M ⊆ Yi. But Yi ∈ D by

construction. SinceM ⊆ Yi,M ∈ D. But C and D are disjoint, a contradiction.

(b) Conversely, let N be a hitset for A. If N /∈ C, then N ∈ D. But then for some

i, 1 ≤ i ≤ p, N ⊂ Yi. But then N ∩Xi = ∅, which contradicts the fact that N is a

hitset forA. 2Claim
Claim proven, let us prove the implication (1) ⇒ (2). Recall that A =
〈X1, . . . , Xp〉. The fact that a setM is a hitset for A means thatM has a nonempty

intersection with each Xi, that is, satisfies the cardinality constraint 1Xi, for each i,
1 ≤ i ≤ p. Let us consider the formula of Lcc

ϕ = 1X1 ∧ . . . ∧ 1Xp.

© 2009 by Taylor and Francis Group, LLC

280 Introduction to Mathematics of Satisfiability

Clearly, M |= ϕ if and only if M is a hitset for A. By our claim, M |= ϕ if and

only ifM ∈ C. Thus we constructed the desired conjunction of positive lower-bound
cardinality constraints that defines C. 2

Putting together the previous two results we get the following.

PROPOSITION 12.12
Let C be a constraint in the set Var. The following are equivalent:

1. C is a monotone constraint.

2. There exist positive lower-bound cardinality constraints E1, . . . , Ep such
that

C = Mod(E1 ∨ . . . ∨ Ep).

3. There exist positive lower-bound cardinality constraints E′
1, . . . , E

′
r such

that
C = Mod(E′

1 ∧ . . . ∧ E
′
r).

Let us observe that the property of cardinality constraints described in Proposition

12.12 does not hold for propositional variables. Specifically, the constraint C =
Mod(x∨ y) cannot be expressed as the Mod(ϕ) where ϕ is a conjunction of literals.

(This actually requires a proof!)

For the antimonotone constraints we will prove a property analogous to one de-

scribed in Proposition 12.11. But this time, instead of positive lower-bound car-

dinality constraints we will have positive upper-bound cardinality constraints. We

can give direct proof, following the proof of Proposition 12.11. The argument is

pretty much the same, but the crucial claim that we proved inside of the proof of

Proposition 12.11 does not concerns hitsets, but rather so-called antitransversals.

An antitransversal for a family A is a setM such that for all X ∈ A,M 6⊆ X . Here

is a claim that is used in the direct argument characterizing antimonotone constraints

as conjunctions of positive upper-bound cardinality constraints. We leave the proof

to the reader; the argument is very similar to one made in the proof of the claim in

the proof of Proposition 12.11.

LEMMA 12.1
A family C of subsets of Var is an antimonotone constraint if and only if for
some family A, C is the family of all antitransversals of A.

With Lemma 12.1, we proceed as follows. We first find the family A for which the

desired C is the family of antitransversals. This is the familyA of complements of the

minimal sets in the positive constraint that is the complement of C. Let 〈X1, . . . , Xp〉
be the listing of A, ki = |Xi|, 1 ≤ i ≤ p. Then the fact thatM is an antitransversal

for A is equivalent to

¬(X1 ⊆M) ∧ . . . ∧ ¬(Xp ⊆M).

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 281

This, in turn, is equivalent to

M |= ¬(k1X1) ∧ . . . ∧ ¬(kpXp).

But now,

M |= ¬(kiXi) if and only ifM |= Xi(ki − 1).

Thus,M is an antitransversal for A if and only if

M |= X1(k1 − 1) ∧ . . . ∧Xp(kp − 1).

In this fashion we get the following result.

PROPOSITION 12.13
Let C be a constraint in the set Var. The following are equivalent:

1. C is an antimonotone constraint.

2. There exist positive upper-bound cardinality constraints E1, . . . , Ep such
that

C = Mod(E1 ∨ . . . ∨ Ep).

3. There exist positive upper-bound cardinality constraints E′
1, . . . , E

′
r such

that

C = Mod(E′
1 ∧ . . . ∧ E

′
r).

We observe that there is another technique for proving Proposition 12.13. This is

based on the properties of the permutations of literals. First of all, the permutation

lemma (Proposition 2.23) lifts to the language of cardinality constraintsLcc verbatim
(this requires a proof which is not too difficult). Then we consider the permutation

π : x 7→ x̄ for all variables x (no renaming, changing sign of every variable). This

permutation, when lifted to subsets ofVar (one needs to be a bit careful at this point)

maps every set of variables to its complement, and so it maps the Boolean algebra

〈P(Var),⊆〉 to the Boolean algebra 〈P(Var),⊇〉. With the mapping π, the cardi-
nality constraint m{x1, . . . , xk} becomes the constraint m{¬x1, . . . ,¬xk}, that is
(this is a crucial observation!), the constraint {x1, . . . , xk}(k −m). So this is what

really happens here. The positive lower-bound cardinality constraint is transformed

by our permutation π to a positive upper-bound cardinality constraint (and the bound

changes). Let us observe that all these considerations based on permutations require

additional groundwork that may be of independent interest and may be useful in

other contexts.

Now, let us discuss convex constraints. Given a constraint C, we can assign to C
two constraints, one monotone, another antimonotone, as follows. We define C =
{M : ∃Y ∈CM ⊆ Y }, and C = {M : ∃Y ∈CY ⊆ M}. It is easy to see that C
is an antimonotone constraint, while C is a monotone constraint. We then have the

following fact.

© 2009 by Taylor and Francis Group, LLC

282 Introduction to Mathematics of Satisfiability

PROPOSITION 12.14
If C is a convex constraint then C = C ∩ C. In other words, the sets in C

are precisely those that belong to the antimonotone constraint C and to the
monotone constraint C.

Proof: Clearly, ifM ∈ C thenM ∈ C andM ∈ C. Thus C ⊆ C ∩ C.
Conversely, ifM ∈ C ∩ C, then there areM ′ ∈ C andM ′′ ∈ C such that

M ′′ ⊆M ⊆M ′.

But C is convex, soM ∈ C. 2

Next, we have the following lemma.

LEMMA 12.2

1. Every monotone constraint is convex and every antimonotone constraint
is convex.

2. The intersection of two convex constraints is convex, and so intersection
of a monotone constraint and of an antimonotone constraint is convex.

But now, Propositions 12.11 and 12.13 imply the following property.

PROPOSITION 12.15
Let C be a constraint over a finite set of propositional variables Var. The

following are equivalent:

1. C is a convex constraint.

2. There is a collection of positive cardinality constraints (some may be lower
bound and some upper bound) {E1, . . . , Ep} such that

C = Mod(E1 ∧ . . . ∧ Ep).

Proof: First, let us assume that C is convex. Then C = C ∩ C. But for the monotone

constraint C, there is a set of positive lower-bound constraints E′
1, . . . , E

′
r so that

C = Mod(E′
1 ∧ . . . ∧ E

′
r), and for the antimonotone constraint C there is a set of

positive upper-bound constraintsE′′
1 , . . . , E

′′
s so that C = Mod(E′′

1 ∧. . .∧E
′′
s). Thus

C = Mod(E′
1 ∧ . . . ∧ E

′
r ∧ E

′′
1 ∧ . . . ∧ E

′′
s).

Conversely, given a set {E1, . . . , Ep}, of positive cardinality constraints, we can

separate constraints in {E1, . . . , Ep} into {E′
1, . . . , E

′
r} consisting of lower-bound

constraints and {E′′
1 , . . . , E

′′
s } consisting of upper-bound constraints. We then get

C1 = Mod(E′
1∧ . . .∧E

′
r) which is monotone and C2 = Mod(E′′

1 ∧ . . .∧E
′′
s) which

is antimonotone. Since C = C1 ∩ C2, the desired implication follows from Lemma

12.2. 2

© 2009 by Taylor and Francis Group, LLC

Computational knowledge representation with SAT – getting started 283

12.6 Exercises

1. Assume we want to represent as a SAT problem not the 4× 4 sudoku grids, but

the standard 9 × 9 sudoku grids. How could this be done? Also, how many

propositional variables would you need?

2. Write a script (in Perl, Python, or some other language) that produces encoding

of sudoku. What will you do to make sure that every run returns a different

solution?

3. Continuing the sudoku theme. Now that your favorite SAT solver returned a

sudoku solution, design a script that will compute out of this solution a sudoku

problem. The idea is that when you add to the theory designed in problem (1) the

solution obtained in (2), the resulting theory has just one satisfying assignment.

Remove atoms of the solution one by one until you get more than one satisfying

assignment (of course you return the last partial assignment that maintains the

invariant).

4. Write to Professor Raphael Finkel (raphael@cs.uky.edu) if you find

Problem (3) cryptic.

5. The SEND-MORE-MONEY puzzle is to assign to letters {D,E,M,N,O,R,
S, Y } digits in (0..9) so that different letters are assigned different digits, and

S E N D
+ M O R E
M 0 N E Y

No 0s at the beginning of a number. Describe this problem as a SAT problem

(using a similar technique to one we used for sudoku-like puzzles). Specifically

create variables of the form xX,i where X ∈ {D,E,M,N,O,R, S, Y }, i ∈
(0..9) and write suitable clauses.

6. Devise a technique for elimination of cardinality constraints. Specifically, given

a finite set of formulas F in the language of cardinality constraints C, extend
your language by additional propositional variables (which will interpret cardi-

nality constraints occurring inF and possibly additional cardinality constraints).

The following should hold for your transformationTr(F): an assignment v sat-
isfies the set of formulas F if and only if for some interpretation w of new

variables the assignment v ∪ w satisfies Tr(F). Moreover, the size of Tr(F)
should be bounded by a linear polynomial in the size of F . Four simplification

rules of Section 12.3 and the technique used in the proof of reducing SAT to

3-SAT could be used.

7. Design a DIMACS-like representation for clauses built of cardinality con-

straints.

8. Continuing the previous problem, do the same thing for weight constraints.

© 2009 by Taylor and Francis Group, LLC

mailto:raphael@cs.uky.edu

284 Introduction to Mathematics of Satisfiability

9. Generalize the argument for the Kleene theorem for cardinality constraints

(Proposition 12.4) to the case of weight constraints.

10. Prove that union of two monotone constraints is monotone, and intersection of

two monotone constraints is monotone.

11. Give an example of two convex constraints such that their union is not convex.

12. What about the difference of two convex constraints?

© 2009 by Taylor and Francis Group, LLC

Chapter 13

Computational knowledge
representation with SAT –
handling constraint satisfaction

13.1 Extensional and intentional relations, CWA . 285
13.2 Constraint satisfaction and SAT . 292
13.3 Satisfiability as constraint satisfaction . 297
13.4 Polynomial cases of Boolean CSP . 300
13.5 Schaefer dichotomy theorem . 305
13.6 Exercises . 317

In this chapter we show a generic use of SAT as a vehicle for solving constraint sat-

isfaction problems over finite domains. First, we discuss extensional and intentional

relations. Roughly, extensional relations are those that are stored (they are our data).

Intentional relations are those relations that we search for (and the solver computes).

The difference between the two is expressed by so-called closed world assumption

(CWA). After illustrating what this is all about (and showing how CWA is related to

the existence of the least model) we discuss constraint satisfaction problems (CSP).

We show how the propositional logic (and the version of predicate logic considered

above) can be used to reformulate and solve CSPs. Then we show that, in fact,

the search for satisfying valuations is a form of CSP. We also discuss the Schaefer

theorem on classification of Boolean constraint satisfaction problems.

13.1 Extensional and intentional relations, closed
world assumption

The motivation for this section comes from the following example. Let us assume

that we have a very simple graphG, with three vertices, {a, b, c}, and just two edges,
(a, b) and (a, c). Now, our goal is to select one of those two edges. We will use for

this our solver. We represent the edges of our graph by means of a predicate edge,

asserting two propositional variables: edge(a, b) and another edge(a, c) true. Now,
we consider a new predicate symbol sel and we write a theory in predicate logic (but

no function symbols). Here is the theory:

285

© 2009 by Taylor and Francis Group, LLC

286 Introduction to Mathematics of Satisfiability

1. ∃x,ysel(x, y).

2. ∀x,y(sel (x, y)⇒ edge(x, y)).

3. ∀x,x1,y,y1(sel(x, y) ∧ sel(x1, y1)⇒ (x = x1) ∧ (y = y1)).

The meaning of these formulas is clear: (1) tells us that something is selected. When

we translate (1) into a propositional formula, we get one disjunction of length 9.

The formula (2) requires that whatever we select will be an edge. This formula

generates nine implications. Finally, the formula (3) requires that just one edge has

been selected. We leave to the reader to check that after grounding there will be 81
ground instances of formulas for type (3). We also leave to the reader transformation

of our formulas to the conjunctive normal form (a bit, but really only a bit, of work

is required). The theory S consists of formulas (1)–(3). But the theory S does not

take into account our data on the graphG. So we need to add to our grounding of the
theory the data D on our graph, namely the unit clauses edge(a, b) and edge(a, c).
It appears this is all we need to do. Let us call the resulting theory T .
We then submit the CNF T to the solver. Many satisfying valuations will be gen-

erated. One of those will be the valuation evaluating the following five variables as

true, the rest as false:

sel(b, c), edge(b, c), edge(a, b), edge(a, c), edge(c, c).

This is strange, and certainly not what we expected. We selected an edge that is not

in the graph at all! Moreover, we added two edges to the graph (the edge from b to
c and a loop on c). What is the reason? What happens is that the theory T does not

prevent us from adding new edges. Once we do this, we could select a new edge.

On the other hand, our theory prevents us from selecting two different edges, so only

one edge is the content of the predicate sel.

So we need to do something to prevent this phenomenon (making true phantom,

i.e., unintended variables) happen. This technique is called closed world assumption

(CWA). The reader will recall that we mentioned CWA before.

Let R be a k-ary relation on the set C, and let p be a k-ary predicate letter used

to interpret R. The diagram of R, diag(R) is the following set of (propositional)

literals:

{p(a1, . . . , ak) : (a1, . . . , ak) ∈ R} ∪ {¬p(a1, . . . , ak) : (a1, . . . , ak) /∈ R}.

Let us see what happens if, instead of adding to the theory S the units D describing

edges of G, we add to S the diagram of edge. Let us call this resulting theory T ′.

This diagram consists of nine, not two literals, namely, two positive units consid-

ered above, and seven negative literals. We list two of these seven: ¬edge(b, c) and
¬edge(c, c). Now, because we added these seven additional literals, every satisfying
valuation will not include variables describing “phantom” edges such as the ones that

appeared in the valuation exhibited above. Thus, the abnormal edges disappear, and

we can see that T ′ has the desired property, that is, it possesses only two satisfying

valuations. One evaluates as true variables

sel(a, b), edge(a, b), edge(a, c),

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 287

and another evaluates as true

sel(a, c), edge(a, b), edge(a, c).

Let us observe that CWA is used by humans every day. For instance, if I call my

travel agent and ask about a direct flight from Lexington, KY to San Jose, CA, he

will tell me there is none. How does he know? He looks at the table of the flights

originating from Lexington. He does not see one going directly to San Jose. He

performs the closed world assumption, and deduces that there is none. In other

words, he derives the literal ¬connect(LEX ,SJC) but from the diag(connect) and
not from the set of tuples containing the positive information about relation connect.

We will now make this a bit more general. This approach comes from the following

observation: the diagram of R consists of the positive part (just facts about R) and
negative part. This latter part consists of negations of those facts which cannot be

derived from the positive part. Now, let T be an arbitrary propositional theory. We

define

CWA(T) = T ∪ {¬p : p ∈ Var ∧ T 6|= p}.

In our example (when T was the positive part of the diagram of a relation)CWA(T)
was consistent. But this is not always the case. Let T be {p∨ q}. Clearly T 6|= p and
likewise T 6|= q. We get

CWA(T) = {p ∨ q,¬p,¬q}.

We observe that this latter theory is inconsistent.

Motivated by this example we say that a theory T is CWA-consistent, if the theory

CWA(T) is consistent. The question arises which theories are CWA-consistent.

Here is a characterization. It generalizes quite a simple argument for the case of

finite theories. But we will give a full argument without a finiteness assumption.

We will have to use the Zorn lemma. The reader who does not like such arguments

will recall that for finite posets the Zorn lemma is obvious. So if she does not like

arguments using transfinite induction she will have to limit herself to a finite case. We

will prove that CWA-consistency characterizes precisely those propositional theories

that possess a least model. We first have a lemma which is best formulated in terms

of sets of variables rather than valuations.

LEMMA 13.1
If a propositional theory T is satisfiable, then T possesses a minimal model.

In fact, for every model M of T , there is a minimal model N of T such that
N ⊆M .

Proof: Let us observe that in the case of finite theories T the lemma is obvious. But

in the general case, we need quite strong means in the argument, namely the Zorn

lemma. Anyway, all we need to show is that given a set of variablesM the family

MM,T = {N : N ∈ Mod(T) ∧ N ⊆ M} is closed under intersections of well-

ordered, descending chains. So let us look at such an inclusion-descending chain

© 2009 by Taylor and Francis Group, LLC

288 Introduction to Mathematics of Satisfiability

〈Nξ〉ξ<β . If β is a successor, i.e., β = γ+1, then our chain has its last element. That

element, as the sequence 〈Nξ〉ξ<β is descending, is Nγ , which belongs toMM,T .

If β is a limit ordinal, then for each formula ϕ ∈ T , there is α < β such that for all

p ∈ Var , p ∈
⋂

ξ<β Nξ if and only if p ∈ Nα. But then

⋂

ξ<β

Nξ |= ϕ if and only if Nα |= ϕ

by Proposition 2.3. SinceNα |= T , and in particularNα |= ϕ,
⋂

ξ<β Nξ |= ϕ. Since
ϕ was an arbitrary formula in T , we are done. 2

We will now prove the characterization of CWA-consistent theories.

PROPOSITION 13.1
Let T be a propositional theory. Then T is CWA-consistent if and only if T

possesses a least model.

Proof. First, let us assume that T possesses a least modelM0. We claim thatM0 is

a model of CWA(T). All we need to show in this part of our proposition is that for

an arbitrary propositional variable p whenever T 6|= p, thenM0 |= ¬p. But if T 6|= p
then there is a model N of T such that N |= ¬p, that is, p /∈ N . But M0 is a least

model of T , thusM0 ⊆ N . But then p /∈M0, i.e.,M0 |= ¬p, as desired.
So now, let us assume that T is satisfiable, but has no least model. We claim that T
possesses two different minimal models. First, by Lemma 13.1, T possesses at least

one minimal model, say M0. Since M0 is not a least model, there is a model M1

of T such thatM0 6⊆ M1 andM1 6= M0. But it cannot be the case thatM1 ⊆ M0

because M0 is minimal and M0 6= M1. Now, again using Lemma 13.1, let us

consider a minimal modelM2 of T included in M1. We claim that M2 is different

from M0. Indeed, M2 cannot be included in M0 because in such case, as M0 is

minimal,M0 = M2 and soM0 ⊆M1 contradicting the choice ofM1. And it is also

impossible thatM0 is included inM2, because in such case M0 is included inM1,

again a contradiction.

Thus, assuming that T has no least model, it has at least two distinct minimal models,

N0 and N1. Now, for each p /∈ N0, T 6|= p because N0 |= ¬p. Likewise, for each
p /∈ N1, T 6|= p because N1 |= ¬p. But we claim that

T ∪ {¬p : p /∈ N0} ∪ {¬p : p /∈ N1}

is unsatisfiable. Indeed, if M |= {¬p : p /∈ N0} ∪ {¬p : p /∈ N1}, then M ⊆
N0 ∩N1. But thenM cannot be a model of T because bothN0 andN1 are different

minimal models of T , so their intersection does not contain a model of T . But

(T ∪ {¬p : p /∈ N0} ∪ {¬p : p /∈ N1}) ⊆ CWA(T)

so CWA(T) is unsatisfiable. 2

In Section 9.2 we proved that every consistent Horn theory possesses a least model

(Corollary 9.4). Thus we get the following fact, due to R. Reiter.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 289

COROLLARY 13.1 (Reiter Theorem)
If H is a consistent Horn theory, then H is CWA-consistent.

Every consistent Horn theoryH can be viewed as a specification of the least model of

its program part,H1. This least model is computed as a least fixpoint of a monotone

operator. Thus we can view consistent Horn theories as specifications of inductively

defined sets. This direction has been pursued by recursion theorists and a large body

of knowledge is available on this topic.

Going back to closing some relations under CWA, we have seen that we do this if

we need to make sure that unexpected tuples do not show in the solutions. When

we need to make sure that those relations are fixed, we have two options: either to

define (and explicitly introduce into the theory) the diagram of such relationR, or to
declare such relation to be extensional and expect that the grounder will make sure

that the diagram of those relations is computed and added. We will illustrate this

second approach with the following example.

Example 13.1
Our goal now is to solve a simple logical puzzle of the sort used to teach logic to

lawyers. We will assume that we have at our disposal a grounder that understands

the declarations of the form

ext(rel symb),

where rel symb is a relational symbol. This declaration tells the grounder that the

relation rel symb is declared extensional, that is, that only those propositional vari-

ables of the form rel symb(a1, . . . , ak) are true that are explicitly included in the

theory. In other words, the CWA is supposed to be applied to the relations declared

extensional. The grounder must compute their diagram (in fact its negative part)

and add it to the input theory. This is what we did manually in our edge-selection

example. Relations that are not extensional are intentional.

So here is the promised puzzle. While planning to attend the Beaux Arts Ball, three

ladies, Ann, Barb, and Cindy (abbreviated a, b, c, resp.), painted their hair red, green,
and blue (abbreviated r, g, b, resp.), so that every lady has hair of a different color,

and each of themwears a dress: sari, Chanel costume, and kimono (abbreviated s, cc,
and k). Each lady wears a single dress, and each dress is worn.

Here is what we are told: First, Ann wears the kimono. Next, Barb has a green hair,

but she does not wear the sari. Finally, the lady with blue hair does not wear the

kimono. Our goal is to establish the color of hair and the dress of each lady.1

Here is how we formalize it. We will be using six extensional predicates. First,

three of those are binary and we give them the names name hair, name dress, and

hair dress. There will be three more predicates, all unary: dom1, dom2, and dom3.

1Certainly not a very complex puzzle!

© 2009 by Taylor and Francis Group, LLC

290 Introduction to Mathematics of Satisfiability

TABLE 13.1: Listing for binary extensional relations
of the puzzle

name color name dress color dress
a r a k r s
a b b s r k
a g b k r cc
b g c s g s
c r c k g cc
c b c cc g k
c g b g

b cc

TABLE 13.2: Listing for unary extensional

relations of the puzzle

dom1 dom2 dom3
a g s
b r cc
c b k

We list first three relations in Table 13.1. The tables of our relations express the

possible values our relations can take. For instance, we know that Barb has green

hair. Thus the values (b, r), and (b, b) are absent in the relation name color since we

know that every lady has a unique color of hair. Next, we define unary predicates

(describing the domains of binary predicates. Those are shown in Table 13.2.

We now declare all six of relations listed in Tables 13.1 and 13.2 extensional. This

has the effect of adding (fortunately, we do not have to do this by hand, grounder

will do this for us) all sorts of negative literals. For instance, we will have a negative

literal ¬name color (b, r). Now, we will have an intentional ternary predicate sel.

Here are four groups of clauses involving both extensional and intentional predicates.

Group 1 – Existence of values.

∀x∃y,z sel(x, y, z).
∀y∃x,z sel(x, y, z).
∀z∃x,y sel(x, y, z).

Group 2 – Uniqueness.

∀x,y1,y2,z1,z2(sel (x, y1, z1) ∧ sel(x, y2, z2)⇒ y1 = y2 ∧ z1 = z2).
∀y,x1,x2,z1,z2(sel (x1, y, z1) ∧ sel(x2, y, z2)⇒ x1 = x2 ∧ z1 = z2).
∀z,x1,x2,y1,y2(sel(x1, y1, z) ∧ sel(x2, y2, z)⇒ x1 = x2 ∧ y1 = y2).

Group 3 – Fixed domains of predicates.

∀x,y,z(sel (x, y, z)⇒ dom1(x) ∧ dom2(y) ∧ dom3(z)).

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 291

TABLE 13.3: Solution to the name-color-dress puzzle

Name Color Dress

Ann Red Kimono
Barb Green Chanel
Cindy Blue Sari

Group 4 – Correct choices.

∀x,y,z(sel (x, y, z)⇒ name hair (x, y)).
∀x,y,z(sel (x, y, z)⇒ name dress(x, z)).
∀x,y,z(sel (x, y, z)⇒ hair dress(y, z)).

Here is what those formulas do for us. First, Group 1. It tells us that each value of

each attribute (name, hair color, dress) is actually used. Thus Ann has to have some

dress, and the sari will be owned by a person with some hair color. Then, Group 2.

This tells us that each person has a unique hair color and a dress, that a dress has a

unique owner, etc. Next, Group 3. All it does for us is to make sure that when we

select a color of hair, we will not get back a dress, or name. Similar conditions are

enforced for names and dresses. Finally, Group 4. This is the most interesting of all;

let us see what did we do by providing extensional relations name hair, name dress

and hair dress. We specified the local constraints. Now, we require that the tuples

conform to all these local constraints, globally. For instance, we required Barb to

have green hair. Thus we enforced a local constraint: the tuples (b, r) and (b, b) were
absent from our constraint. By means of extensionality of the relation name hair, we

enforced the presence of negative literals ¬name hair (b, r) and ¬name hair (b, b).
This is howwe made sure that the local properties of the relation name hair are made

global. Let us observe that there is no local constraint on the color of Cindy’s hair.

This constraint was discovered during the search process.

Once we listed our theory T (groups of formulas (1)–(4)), and the relations de-

scribing the constraints of our problem (there were six such relations: name hair,

name dress and hair dress and three unary relations describing the domains of at-

tributes), we submit T to the grounder (yes, the formulas are not CNFs, but this is

easy to fix, and also we must declare the six relations extensional, to avoid spurious

solutions). The grounder produces a propositional CNF ground(T) which is then

submitted to the solver. The solver will return a (unique) model of our grounded

theory ground(T). This model will consist of positive literals in extensions of rela-

tions name hair, name dress, and hair dress and three domains, and just three atoms:

sel(a, r, k), sel(b, g, cc), and sel(c, b, s). The solution is presented in Table 13.3.

Of course, many other logic puzzles (especially of the sort published in puzzle jour-

nals and using so-called hatch-grids) can be solved by a technique very similar to the

one discussed in our Example 13.1.

Group 3 (consisting of a single axiom which generates three clauses) amounts to

strong typing of object variables that occur within the predicate sel. That is, the type

© 2009 by Taylor and Francis Group, LLC

292 Introduction to Mathematics of Satisfiability

of the first variable is the user-defined type dom1, the type of the second variable is
dom2, etc. The mechanism for enforcing strong types of object variables has been,

actually, implemented in the solver aspps [ET01] (along with the grounder psgrnd

which allows for separation of data and the program, and in this process recognizes

extensional relations). Generally, one can define a type system suitable for problem-

solving with SAT, but the only types that can be so defined must be finite.

13.2 Constraint satisfaction problems and satisfiability

In this section we investigate the relationship between constraint satisfaction prob-

lems and satisfiability. We will show how the constraint satisfaction problems can

be coded as satisfiability problems. Later we will also show how satisfiability can be

treated as constraint satisfaction. Our exposition of constraint satisfaction will have

a database-theoretic flavor. The technique of extensional relations will play a major

role in our presentation.

Like in databases, we will deal with relations which will be subsets of Cartesian

products of domains. Formally, a constraint satisfaction problem P ([Apt03]) con-

sists of:

1. A finite number of variables, X = {x1, . . . , xk}2. A fixed listing of X ,

〈x1, . . . , xk〉 is called a scheme of P .

2. A finite number of sets, indexed with elements ofX ,Dx1
, . . . , Dxk

. Those sets

are called domains of variables (resp. x1, . . . , xk). Domains of variables do

not have to be different – the situation is similar to that in databases; different

attributes can have the same or related domains.

3. A finite number of relations R1, . . . , Rl. Each relation Rj , 1 ≤ j ≤ l, is
assigned its local scheme Rj 7→ {xj,1, . . . , xj,ij} so that

Rj ⊆ Dxj,1
× . . .×Dxj,ij

,

for 1 ≤ j ≤ l.

We define the notion of a solution to a problem P . A solution to the problem P is a

sequence 〈a1, . . . , ak〉 such that

(a) For each j, 1 ≤ j ≤ k, aj ∈ Dj

(b) For each j, 1 ≤ j ≤ l, 〈aj,1, . . . , aj,rj
〉 ∈ Rj .

This is a very general framework, and it has several natural interpretations. Here is

one that uses databases. The problem of existence of a solution to the constraint satis-

faction problem P is precisely the question if the natural join of relationsR1, . . . , Rl

2The same construct occurs in database theory; there the variables are called attribute names.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 293

is non-empty. There is a corresponding search problem. In this version not only do

we want to find if the problem P possesses a solution, but we also want to find one

(if a solution exists). It may look like all we need to do is to compute the join and

then see if the result is non-empty. Unfortunately, the amount of work needed to do

so may be prohibitive. We will see, however, that a satisfiability solver may be of

use.

Let us look at an example of a constraint satisfaction problem.

Example 13.2

The scheme of our problem has four variables: x, y, z, and t. We have four domains,

each consisting of integers (but not all), with the domains Dx = Dz = {n : n ∈
N ∧ n is odd} and the domains Dy = Dt = {n : n ∈ N ∧ n is even}. Then

we have two relations: R1 with a scheme {x, y, z}, R1 ⊆ Dx × Dy × Dz , R1 =
{(x, y, z) : x + y = z}, and R2 with a scheme {x, y, t}, R2 ⊆ Dx × Dy × Dt,

R2 = {(x, y, t) : x · y = t}. We specified a constraint satisfaction problem P .
What about solutions? Our problem P possesses solutions, in fact, infinitely many

solutions. One solution is (1, 2, 3, 2). Another is (5, 4, 9, 20). Indeed, in this latter

case, 5 + 4 = 9, and 5 · 4 = 20.

In Example 13.2 the domains were infinite. We cannot handle infinite domains in

the context of SAT (but look below for special cases). So, for a moment we will

assume that all domains are finite. Let P be a constraint satisfaction problem where

all domains Di, 1 ≤ i ≤ k, are finite. We will now construct a CNF formula FP

such that there is a bijective correspondence between the solutions to P and satis-

fying valuations for FP . Assuming that m is a bound on the arity of relations in P
our encoding will be polynomial of degreem in the size of P . Before we do this, it

should be clearly stated that the CSP community developed a large number of tech-

niques for solving CSPs. Those techniques, usually, amount to transforming CSPs to

simpler CSPs, for instance, by eliminating some values from the domains. We will

use one of these simplification rules below. Some of those techniques translate to

simplifications similar to BCP.

So we will translate a CSP problem to SAT. There are various possible translations;

we will present one. What we do amounts to associating with a CSP problem P
a Herbrand structure, then adding to it a number of intentional predicates so that

the Herbrand models of the resulting theory will be in a one-to-one correspondence

with solutions to the original CSP. We will not compute the entire join of relations

constituting P ; all we want is one tuple in the join.
First, we need to specify the language. There will be extensional predicates and then

intentional predicates. The set of constants will consist of the union of the domains,
⋃k
i=1Di. There will be k + l extensional predicates (recall that k is the number of

variables, and l is the number of relations). Of these, first k will be used to describe

domains of variables, Di, 1 ≤ i ≤ k, and then l predicates will be used to describe

relations Rj , 1 ≤ j ≤ l. The first k predicates will be unary. For lack of better

notation we will call them dom i, 1 ≤ i ≤ k. For the remaining l relations we will

© 2009 by Taylor and Francis Group, LLC

294 Introduction to Mathematics of Satisfiability

have predicates of various arities. Assuming Rj is rj -ary relation, pj will be the rj-
ary predicate symbol. Then we will have additional k unary predicates sel i. These
will be intentional predicates. The propositional formula FP will be the result of

grounding a formula of predicate calculus,GP . The formulaGP will consist of four

groups (i.e., is a conjunction of formulas that we will list in four groups) and of a

number of literals. This latter part describes extensional relations.

Group 1: ∃xseli(x), for each i, 1 ≤ i ≤ k.
Group 2: ∀x(sel i(x)⇒ dom i(x)), for all i, 1 ≤ i ≤ k.
Group 3: ∀x∀y(sel i(x) ∧ sel i(y)⇒ x = y), for all i, 1 ≤ i ≤ k.
Group 4: ∀yj,1

. . . ∀yj,rj
(sel j,1(yj,1) ∧ . . . ∧ sel j,rj

(yj,rj
)⇒ pj(yj,1, . . . , yj,rj

)).

The theoryGP consists of:

(a) Formulas of groups (1)–(4).

(b) Diagrams of unary relations dom i, 1 ≤ i ≤ k.
(c) Diagrams of relations Rj , 1 ≤ j ≤ l.

Intuitively, formulas of groups (1) and (2) tell us that for each variable xi some

element of the domainDi will be selected. This we do for each variable. Formulas of

group (3) tell us that only one such element will be selected from the domain of each

variable xi (i.e.,Di) by means of the predicate sel i. The reader should have in mind

that the intuition is that we assign values to variables, not domains. Finally, formulas

of group (4) enforce the constraints that the projections (according to schemes of

relations) of the selected sequence 〈y1, . . . , yk〉 belong to Rj , 1 ≤ j ≤ l. Then, in
(b) and (c) we enforce that the domainsDi and relations Rj are extensional so as to

avoid spurious solutions.

Now, we are ready to see what FP is; it is the grounding of GP .

Let us look again at Example 13.2, but now let us limit our domains as follows.

D′
x = D′

z = {1, 3, 5}, D′
y = D′

t = {0, 2, 4, 6}. The relations (constraints) are the
restrictions of the original relations to the corresponding domains. Now, (1, 2, 3, 2)
is a solution, but (3, 4, 7, 12) is not, because (for instance) 7 does not belong toD′

z .

Before we prove the promised bijection result, let us observe that the grounder can

significantly simplify the groundings of the formulas of groups (1)–(4). For instance,

in (2), whenever x /∈ Di, our ground theory will contain ¬dom i(x). Therefore,

by contraposition, we derive ¬sel i(x). In the dual case, when x ∈ Di, the for-

mula dom i(x) is in FP , so the formula sel i(x) ⇒ dom i(x) will be satisfied by

any valuation making FP true, and so can be safely eliminated. The net effect is

that the formulas in (1) can be reduced (without changing semantics) to a formula

∃x(sel i(x) ∧ dom i(x)) which generates a shorter disjunction. We also observe that

the equality relation is also extensional and thus it immediately reduces in grounding

the formulas of group (3) to clauses of length 2. Finally, in the formulas of group

(4) we can bind (like we did in the case of formulas of group (1)) quantifiers to cor-

responding domains. We now state and prove the fundamental result on the use of

SAT solvers for finite domains constraint satisfaction.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 295

PROPOSITION 13.2
Let P = 〈X,Dx1

, . . . , Dxk
, R1, . . . , Rl〉 be a constraint satisfaction problem

with all domains finite.

1. If ~y = (y1, . . . , yk) is a solution for P then the set of propositional vari-
ables M~y consisting of

(a) dom i(x), for x ∈ Dxi
, 1 ≤ i ≤ k

(b) pj(yj,1, . . . , yj,rk
), for (yj,1, . . . , yj,rj

) ∈ Rj, 1 ≤ j ≤ l

(c) sel i(yi), 1 ≤ i ≤ k

satisfies the propositional formula FP .

2. Conversely, if M is a model of FP then

(a) For all i, 1 ≤ i ≤ k, Di = {x : dom i(x) ∈M}

(b) For all j, 1 ≤ j ≤ l, Rj = {(yj,1, . . . , yj,rj
) : pj(yj,1, . . . , yj,rj

) ∈M}

(c) For each i, 1 ≤ i ≤ k there is a unique x such that sel i(x) ∈M

(d) If yi is the unique x such that sel i(y) ∈ M , 1 ≤ i ≤ k, then the
sequence ~y = (y1, . . . , yk) is a solution to P.

3. The mapping M~y 7→ ~y is one to one, and hence a bijection.

Proof: (1) By construction,M~y satisfies the sets of formulas diag(Di), 1 ≤ i ≤ k,
and diag(Rj), 1 ≤ j ≤ l. This implies that the ground formulas that we added

to groups (1)–(4) are satisfied by M~y. Moreover, since ~y is a sequence, for each i,
1 ≤ i ≤ k, there is only one propositional variable of the form sel i(x) inM~y . Since

~y is a solution, that x must belong to Di. These facts imply that the groundings

of formulas in groups (1), (2), and (3) are satisfied by M~y . Finally, because ~y is a

solution the groundings of formulas of group (4) are also satisfied.

(2) SinceM is a model of FP , and FP contains diagrams of all Di, 1 ≤ i ≤ k, and
Rj , 1 ≤ j ≤ l, (a) and (b) are true. The condition (c) follows from the presence of

groundings of formulas of groups (1) and (3), and the condition (d) from the presence

of groundings of formulas of groups (2) and (4).

(3) IfM1,M2 are two different models of FP , then they cannot differ on variables of

the form dom i(x), 1 ≤ i ≤ k, or on variables of the form pj(a, . . . , b), 1 ≤ j ≤ l,
because both M1, M2 satisfy diagrams of unary relations Di, 1 ≤ i ≤ k and also

diagrams of relations Rj , 1 ≤ j ≤ l. Thus if M1 6= M2 then there must be i,
1 ≤ i ≤ k so thatM1,M2 differ on a variable of the form sel i(x) for some x (in fact

some x ∈ Di). But then the corresponding sequences are different. 2

There is nothing deep in Proposition 13.2. It just tells us that the construction we

proposed is correct.

Now, let us discuss possible strengthening of Proposition 13.2. First, the question

arises if we could do something with infinite domains. We need a definition. Given a

constraint satisfaction problem P = 〈X,D1, . . . , Dk, R1, . . . , Rl〉, the variable x in

the scheme of P , and a set Y ⊆ Dx, the restriction of P to Y , P|x,Y is the constraint

satisfaction problem with the same scheme, but with two changes:

© 2009 by Taylor and Francis Group, LLC

296 Introduction to Mathematics of Satisfiability

1. The domain of the variable x is now Y (no other domains change).

2. Whenever x is in the scheme of relation Rj , x = aj,m, then instead of Rj we
have

R′
j = Rj ∩ (Dj,1 × . . .×Dj,m−1 × Y ×Dj,m+1 × . . .×Dj,rj

).

We had to be careful in our definition because different variables may have same

domains, and when we restrict, we restrict on one domain, namely that of the variable

x. Next, we define, for a relation R with the name x = xj,m in its scheme, πx(R)
is the set of those elements of Dxj

m
which actually occur in tuples of Rj on them

th

position. We then have the following fact which we will leave without the proof.

LEMMA 13.2

If P is a constraint satisfaction problem, Rj is one of its relations, x = xjm is
one of the variables in the scheme of Rj, and Y = πx(Rj), then the constraint
satisfaction problems P and P|x,Y have exactly the same solutions.

Lemma 13.2 tells us that elimination of unused values from the domain does not

change the set of solutions. But this is a great news, for it tells us that if a relationRj
is finite then we can limit its domains, one after the other and limit all these domains

to finite sets! Moreover, if every variable xi has the property that some relation Rj
with xi in its scheme has a finite projection on the xi coordinate then we can find

a finite-domain CSP P ′ so that P and P ′ have the same solutions! But the latter

problem can, in principle, be solved by a SAT solver. To formalize it, we call a CSP

P locally finite if every variable xi has the property that some relation Rj with xi
in the scheme of Rj has a finite projection on the xi coordinate. We then have the

following property.

PROPOSITION 13.3

If a CSP is locally finite then there is a finite CSP P ′ so that P and P ′ have
the same solutions.

We get the following corollary.

COROLLARY 13.2

If P is a locally finite constraint satisfaction problem then there is a finite
CNF FP such that there is a bijection between solutions to P and satisfying
valuations of FP .

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 297

TABLE 13.4: Relation Rϕ for the
formula ϕ := (x ∧ y) ∨ ¬z

0 0 0
0 1 0
1 0 0
1 1 0
1 1 1

13.3 Satisfiability as constraint satisfaction

In Section 13.2 we saw that the finite-domain constraint satisfaction problems (and

even some CSP problems with infinite domains) can be encoded as propositional

theories so that there is a bijective correspondence between the solutions to a finite-

domain CSP P and the satisfying valuations for the propositional encoding, the the-

ory GP . In the process we introduced an intermediate encoding in the predicate

calculus language. This last encoding, called FP in Section 13.2, represented solu-

tions to P as Herbrand models of FP .

In this section we look at the representation of propositional satisfiability as con-

straint satisfaction. The departure point is that if ϕ is a propositional formula in

variables xi1 , . . . , xik , then we can represent the truth table for ϕ as a certain k-ary
relation. Here is how. Let us recall that the truth table Tϕ is a table with 2k rows

and k + 1 columns. The first k columns of Tϕ represent all valuations. The last

column lists the values of ϕ under these valuations. Now, let us prune from Tϕ those

rows where ϕ takes the value 0. That is, we leave only those rows where the last

column takes the value 1. Then there is no reason to have that last column at all –

it is constant 1 – so we can prune it too. We call the resulting table Rϕ. Hence Rϕ
has precisely k columns and at most 2k rows. Let us look at an example. Let ϕ be

the formula (x ∧ y) ∨ ¬z. The truth table for ϕ has 8 rows, 4 columns. But the table

Rϕ (shown in Table 13.4) has 5 rows and 3 columns. It should now be clear that the

table Rϕ lists as its rows all valuations that satisfy ϕ.

Now, given a finite theory T , we define a constraint satisfaction problem CT as fol-

lows (the assumption that T is finite is immaterial, except that our constraint satis-

faction problems had a finite number of tables, so we limit ourselves to finite T to

avoid the problems with the definition). The variable names (i.e., the scheme) of CT
are the propositional variables of T , i.e., it is VarT . For each propositional variable

x, the domain Dx is the two-element set Bool (that is, {0, 1}). The relations of CT
are Rϕ with ϕ ranging over T . The scheme of each Rϕ is Varϕ. Then we have the

following fact, which is pretty obvious.

PROPOSITION 13.4

Satisfying valuations for T are precisely the solutions for CT .

© 2009 by Taylor and Francis Group, LLC

298 Introduction to Mathematics of Satisfiability

Proof: Let the propositional variables of T be 〈x1, . . . , xk〉. Let us list in every

relation Rϕ the variables in the order inherited from 〈x1, . . . , xk〉 (this may require

permuting columns in Rϕ, but does not affect the fact that Rϕ lists all valuations

satisfying ϕ). The solutions of CT are assignments to variables x1, . . . , xk, that is,
the valuations of VarT . Now, if 〈a1, . . . , ak〉 is a solution to CT , then let v be a

valuation defined by v(xi) = ai, 1 ≤ i ≤ k. Since 〈a1, . . . , ak〉 is a solution for

CT , for each ϕ ∈ T , with variables 〈xi1 , . . . , xir 〉, 〈ai1 , air 〉 is a row in Rϕ so

v|{xi1
,...,xir}

|= ϕ and so v |= ϕ. Thus v |= T .
Conversely, if v |= T then for every ϕ ∈ T , v |= ϕ. Assuming the variables of ϕ
are 〈xi1 , xir 〉, v|{xi1

,...,xir}
|= ϕ (Localization Lemma, Proposition 2.3). Thus

〈ai1 , air 〉 is a row in Rϕ, that is, 〈a1, . . . , ak〉 is a solution to CT . 2

We will now use Proposition 13.4 to prove an NP-completeness result.

PROPOSITION 13.5

Existence of a solution for constraint satisfaction problems is an NP-complete
problem.

Proof: LetC be the language consisting of those constraint satisfaction problems that

possess a solution. We need to show C is NP-complete. First, we need to see that C
is in the class NP. To this end we need to be able to check that the given assignment

is a solution to a CSP problem. So, let P = 〈X,Dx1
, . . . , Dxk

, R1, . . . , Rl〉 be a

constraint satisfaction problem and let 〈a1, . . . , ak〉 be a solution to P . We need to

estimate the cost of checking that 〈a1, . . . , ak〉 is a solution. But two things need

to be tested. First, that for all i, 1 ≤ i ≤ k, ai ∈ Dxi
and second, that for all j,

1 ≤ j ≤ l, 〈aj1, . . . , a
j
ij
〉 ∈ Rj . Both tasks can be done in linear time in the size of

P .

For completeness, we need to reduce some known NP-complete problem to C. The
known NP-complete problem that we reduce to C is the problem of satisfiability

of sets of 3-clauses. We proved in Proposition 11.6 that the language consisting of

sets of 3-clauses is NP-complete. Let F be a set of 3-clauses. The corresponding

CSP problem PF has variables that are propositional variables of F , all domains are

Bool , relations are RC for C ∈ F , and the schemes of relations consist of variables

occurring in those clauses.

Each relation RC has exactly seven rows (because a 3-clause is evaluated as false

by exactly one row in its table). Therefore, we find that the size of the problem PF
is bound by 7 · |F | where |F | is the size of F . By Proposition 13.4 any algorithm

solving PF produces satisfying valuations for F . 2

Proposition 13.4 tells us that, in principle, if we have a software program P that

solves finite-domain constraint satisfaction problems then, given a finite proposi-

tional theory T , we can solve the satisfiability problem for T by using P . All we

have to do is to compute, for each ϕ ∈ T the table Rϕ, construct (using these tables)
the problem CT and then use CT as an input to P . But we should not put too much

hope in this approach. The reason for this is that the size of the representation may

grow exponentially in the size of T . Let us look at an example. Let T consist of a

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 299

single clause C = l1∨ . . .∨ lm, where l1, . . . , lm are literals in variables x1, . . . , xm,

respectively. Then the problem CT has just one table RC , but this table has 2m − 1
rows. The only row missing in RC is 〈l̄1, . . . , l̄m〉. Generally, when the formulas of

T have at most k variables, the size of the tables in CT is at most 2k. For instance,
if all formulas in T have at most three variables, the tables of CT have at most eight

rows. Let us note that our observation on the size of the tables for clauses can be

reversed; if a relation Rϕ has exactly 2k − 1 rows, then ϕ is equivalent to a clause

l̄1∨ . . .∨ l̄k where 〈l1, . . . , lk〉 is the only row missing in Rϕ. But every relation with
binary domains (i.e., with Bool as the domain of all variables) is missing a certain

number of rows (in the extreme case it may be missing none, or all rows). The fol-

lowing proposition restates, in effect, the existence and uniqueness of the complete

disjunctive normal form theorem (Proposition 3.17). We write R for Booln \R.

PROPOSITION 13.6
Let R be a relation, R ⊆ Booln. Then R = Rϕ where ϕ =

∧

〈l1,...,ln〉∈R l̄1 ∨

. . . ∨ ln.

Proof: Let us first observe that the following equality holds for all formulas ϕ and ψ
that have the same propositional variables:

Rϕ∧ψ = Rϕ ∩Rψ.

This is just a restatement of one of the clauses of the definition of satisfaction relation.

Iterating this equality for conjunctions of more formulas we get

RV

〈l1,...,ln〉∈R l̄1∨...∨ln
=

⋂

〈l1,...,ln〉∈R

Rl̄1∨...∨l̄n =
⋂

〈l1,...,lm〉/∈R

Rl̄1∨...∨l̄n

=
⋂

〈l1,...,ln〉/∈R

(Booln \ {〈l1, . . . , ln〉}).

Thus our assertion reduces to

R =
⋂

〈l1,...,ln〉/∈R

(Booln \ {〈l1, . . . , ln〉}).

But this is quite simple. If 〈h1, . . . , hn〉 ∈ R, then for all 〈l1, . . . , ln〉 ∈ R̄, we have
〈h1, . . . , hn〉 6= 〈l1, . . . , ln〉. Thus whenever 〈h1, . . . , hn〉 ∈ R, 〈h1, . . . , hn〉 ∈
Booln \ {〈l1, . . . , ln〉} for 〈l1, . . . , ln〉 ∈ R̄. Therefore for 〈h1, . . . , hn〉 ∈ R,
〈h1, . . . , hn〉 ∈

⋂

〈l1,...,ln〉/∈R(Booln \ {〈l1, . . . , ln〉}).

For converse inclusion, if 〈h1, . . . , hn〉 ∈ R, 〈h1, . . . , hn〉 ∈
⋂

〈l1,...,ln〉/∈R(Booln \

{〈l1, . . . , ln〉}), then for each 〈l1, . . . , ln〉 ∈ R̄, 〈h1, . . . , hn〉 6= 〈l1, . . . , ln〉. Thus
〈h1, . . . , hn〉 ∈ R. 2

We also observe that the solutions of the constraint satisfaction problem P where

P = 〈X,D1, . . . , Dm, R1, . . . , Rn, R ∩ S〉 are the same as those of P ′ where

© 2009 by Taylor and Francis Group, LLC

300 Introduction to Mathematics of Satisfiability

P ′ = 〈X,D1, . . . , Dm, R1, . . . , Rn, R, S〉 because when tables have the same

scheme then their join coincides with their intersection. Therefore Proposition 13.6

has the following consequence (which amounts to transforming a constraint satisfac-

tion problem to yet another satisfiability problem; this is totally obvious in the case

of binary domains, but can be used for yet another encoding of CSP as SAT in the

general case, too).

PROPOSITION 13.7

For every finite-domain constraint satisfaction problem P (and in particular
for every constraint satisfaction problem with domains Bool) there is a finite-
domain constraint satisfaction problem P ′ such that P and P ′ have precisely
the same solutions, and every table in P ′ has exactly one row missing.

Proposition 13.7 is a normal form result, and does not contribute directly to tech-

niques of solving CSP or SAT.

13.4 Polynomial cases of Boolean
constraint satisfaction

Propositions 13.4 and 13.7 tell us that, in effect, logic provides the syntax for con-

straint satisfaction problems with binary (Boolean) domains. Those are usually

called Boolean CSPs. To some extent, the clausal representation and relational rep-

resentation are two extremes. Clauses provide a concise representation of tables

with one missing row. In general, we need a large number of clauses to represent

a CSP. At the other end, tabular (i.e., relational) representation may be also very

large. Somewhat in the middle is the representation of Boolean CSPs by means of

formulas of propositional logic (we know, by Proposition 13.6, that every Boolean

table possesses such representation, but one table may have many equivalent repre-

sentations). We have techniques for processing representation by means of formulas,

for instance, the tableaux method, studied in Section 8.3. Other techniques are also

available.

When the tables are given explicitly, there are six classes of Boolean constraint satis-

faction problems which allow for feasible processing. Those are the so-called Schae-

fer classes. We will discuss them now.

LetF be a class of formulas. A relationR ⊆ Booln is calledF -relation if there exist
formulas ϕ1, . . . , ϕn all in F such thatR = Rϕ1∧...∧ϕn

. Given the truth table of the

formula ϕ, its positive part consists of the listing of valuations that satisfy ϕ. Thus
the F -relations are positive parts of truth tables of formulas that are conjunctions of

formulas from F . So, for instance, every relation R is an F -relation where F is a

set of clauses. Let us look at another example, the table shown in the Table 13.5.

This table is a Krom-relation, i.e., definable by a formula which is a conjunction of

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 301

TABLE 13.5: Relation Rϕ for the formula
ϕ := (x ∨ y) ∧ (x̄ ∨ z) ∧ (ȳ ∨ z)

0 1 1
1 0 1
1 1 1

2-clauses.

Below, we investigate six classes of relations. We call them Schaefer classes of

Boolean relations.

1. 1-satisfiable, that is, satisfiable by means of a valuation that is constant, with the

value 1 at every variable

2. 0-satisfiable, that is, satisfiable by means of a valuation that is constant, with the

value 0 at every variable

3. Krom relations, i.e., positive parts of truth tables of 2-clauses

4. affine relations, i.e., positive parts of truth tables of affine equations

5. Horn relations, i.e., positive parts of truth tables of Horn formulas

6. dual Horn relations, i.e., positive parts of truth tables of dual Horn formulas.

Before we prove the next result, so-called “easy part of Schaefer theorem” [Sch78],

we will focus on the Horn constraint satisfaction problems. Let us assume that

all the domains of variables are Bool (so we do not need to list them.) Now, let

P = 〈Var , R1, . . . , Rm〉 be a Boolean constraint satisfaction problem where all the

relationsRi, 1 ≤ i ≤ m are Horn, that is, for eachRi, 1 ≤ i ≤ m, there is a formula

Hi, which is a conjunction of Horn clauses such that Ri is the positive part of the

truth table forHi. In other words, the rows of Ri are precisely valuations satisfying
Hi. We can think aboutRi as a collection of subsets ofXi whereXi is the scheme of

Ri. Then that family is closed under intersections of non-empty families (Theorem

9.1).

We have the following lemma.

LEMMA 13.3

Let P = 〈R1, . . . , Rm〉 be a Horn CSP. If v1, v2 are solutions to P, then so
is their bitwise conjunction, v1 ∧ v2.

Proof: Let Ri be any of the relations of P and let Xi be its scheme. For any as-

signment v : Var → Bool and Y ⊆ Var , v|Y is the restriction of v to Y . Then,

clearly,

(v1 ∧ v2)|Xi
= v1|Xi

∧ v2|Xi
.

Now, v1|Xi
∧v2|Xi

belongs toRi asRi is closed under bitwise ∧. AsRi is arbitrary,
v1 ∧ v2 is a solution to P . 2

© 2009 by Taylor and Francis Group, LLC

302 Introduction to Mathematics of Satisfiability

TABLE 13.6: Algorithm computing a solution to Horn CSP P , if one
exists

Algorithm HornCSP
Input: a Horn Boolean constraint satisfaction problem P = 〈R1, . . . , Rm〉. The

scheme of P is X , the schemes of Ri are Xi, 1 ≤ i ≤ m. Mi is the family of

subsets ofXi representingRi, that is, Ri lists as rows characteristic functions of sets
inMi.
M := ∅
T := The set of those Ri, 1 ≤ i ≤ m, thatM ∩Xi /∈Mi

while (T 6= ∅)
{

select (one constraint Rj from T);
if (there exists U ∈ Mj such thatM ∩Xj ⊆ U)
then
{
S := the least V ∈ Mj such thatM ∩Xj ⊆ V ;

M := M ∪ S
T := the set of Ri so thatM ∩Xi /∈Mi;

}
else
{

return(‘No solution exists’)
}

return (M)

As we are dealing with finite sets, we have the following corollary which we state in

a set-form.

COROLLARY 13.3

Let P = 〈R1, . . . , Rm〉 be a Horn CSP. Then the collection M of solutions
to P is closed under non-empty intersections.

We get a following corollary.

COROLLARY 13.4

If a Horn Boolean CSP possesses a solution, then it possesses a least solution.

We will now give an algorithm to compute a solution of a Horn Boolean CSP, and

then will prove its correctness. It will be convenient to represent a table R by a set

of subsets of propositional variables. Because we think in terms of sets, set-theoretic

notation will be used.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 303

PROPOSITION 13.8
The algorithm HornCSP returns a solution to a Horn CSP P if and only if

such solution exists.

Proof. First, let us assume that the contents of the variable M has been returned.

This will occur when the contents of the variable T is empty, i.e., if M satisfies all

constraints R1, . . . , Rm. Thus, ifM is returned, it is a solution.

Now, we need to show that if a solution exists then one will be returned. First, let us

observe that the set of unsatisfied constraints (relations Ri which are not satisfied)

does not change monotonically as we iterate the while loop. In particular T may

incorporate constraints that previously were satisfied but because M changed, no

longer are satisfied. However, the variableM grows at every step. The reason is that

in each iteration of the loop the set S \M 6= ∅ and soM , becomingM ∪S, is strictly
bigger. This means that our algorithm will terminate after at most r iterations of the
while loop, where r is the size ofX .

Let us assume that a solution to P exists. Then, by Corollary 13.4, there exists a

least solution for P . Let us call that solution M0. We claim that for each iteration

of the while loop, the contents of the variableM is included in M0. We prove our

claim by induction on the number of iterations of the loop. The claim is certainly true

initially, since then the content of M is the empty set (this is how M is initialized,

see Table 13.6). Let us assume that before some iteration i the current content ofM
is included inM0. We need to show that the same happens after the ith iteration as

well. If all the constraints are satisfied by M then M is returned, and our claim is

true. So, letRj be any constraint not satisfied byM . Then, by inductive assumption,

sinceM ⊆M0,M ∩Xj ⊆M0 ∩Xj . ButM0 is a solution. ThereforeM0 ∩Xj is a

solution toRj (i.e., the characteristic function ofM0∩Xj is a row inRj). Therefore
there exists a solution to Rj that containsM ∩ Xj and the least such solution S is

included in M0 ∩ Xj . So the set S considered within the while loop is included in

M0 and hence the new value ofM is also included inM0.

Let us finally look at the iteration whereM does not grow. There must be such an

iteration because the size ofM is bound by the size ofM0. Then the only possibility

is that all the constraints R1, . . . , Rm are satisfied. ThusM is a solution. SinceM
is included inM0,M = M0 and it is what will be returned. This completes half of

our argument; if a solution exists, it will be found and in fact the least solution will

be returned.

If there is no solution, we will find ourselves in the situation whereM will not grow,

but there will be unsatisfied constraint. Then our algorithm will return the string ‘No

solution exists,’ as it should. 2

We need to check the feasibility of the algorithm HornCSP. We established that

there can be at most r iterations of the main loop, where r = |X |. Clearly r ≤ |P|.
So let us see what happens within the main loop. There are several tasks that need to

be performed. First, we need to establish the current content of the variable T , that is,
the set of currently unsatisfied constraints. This, clearly, can be done in polynomial

time in the size of P . Then, if we established that T is non-empty, we choose one

unsatisfied constraint Ri and need to check if there is a way to satisfy Ri by means

© 2009 by Taylor and Francis Group, LLC

304 Introduction to Mathematics of Satisfiability

of some superset ofM ∩Xi. This requires testing ifM ∩Xi is included in some set

coded by a row ofRi. If this is the case, we need to find a smallest such set. All these

tasks require polynomial number of operations. Finally, if a setU has been found, we

need to add its elements to the currentM . Certainly, this can be done in polynomial

time. We conclude that HornCSP runs in polynomial time. As mentioned above a

version of this argument can be used to establish that the dual Horn CSPs can also

be solved in polynomial time.

We can now prove the promised “easier part” of Schaefer theorem.

PROPOSITION 13.9

If F is one of classes (1)–(6) above and a Boolean CSP problem P consists
of relations that are all F-relations, then the problem P can be solved in
polynomial time.

Proof: The result is entirely obvious if all relations of P are 1-satisfiable; for the val-

uation taking the value 1 on all variables is then a solution. The case of 0-satisfiable

tables is similar.

Here is how we proceed in the case of Krom relations. Given a table Ri of F , we
can find a set of 2-clauses, Ki such that Ri is the positive part of the truth table for

Ri in polynomial time (Proposition 9.28). Indeed, the positive part of the truth ta-

ble is, as noted above, nothing else but table representation of the set of satisfying

valuations. So now we compute in polynomial time sets Ki of 2-clauses such that

Ri is the positive part of the truth table for the formula
∧

Ki. Now, let us consider

the set of 2-clauses K , where K =
⋃

iKi. Then by considering the fact that there

was a single polynomial f(·) such that the size of Ki, |Ki|, is f(|Ri|) we find that

there is a single polynomial g(·) such that |K| is bound by g(|R1|+ . . .+ |Rm|), in
particular g(|F|). Now, we can use a SAT solver algorithm to solveK; the satisfying

valuations for K are precisely solutions to the problem F (Proposition 13.4). Thus

we can test if F has a solution in polynomial time.

A very similar approach is used for the affine case. Here, instead of Proposition 9.28,

we use Proposition 9.37. For each table Ri we identify an affine theory Ai so that

rows ofRi are solutions to the system of linear equationsAi. Then we setA =
⋃

Ai.
Clearly, solutions to the affine problem P are satisfying valuations for A which we

can find (if any exists) using Gaussian elimination (see Section 9.7). Moreover, the

size of A is polynomial in the size of P .
Now, we have to handle the remaining two cases: Horn and dual Horn. In Propo-

sition 13.8 we proved that the algorithm HornCSP solves the Horn case correctly.

Then, in the discussion following Proposition 13.8 we showed that the algorithm

HornCSP runs in polynomial time. This takes care of the Horn case. The other,

dual Horn, is very similar, except that when in the Horn case we use the fact that the

families of models of Horn theories are closed under intersections (here we represent

valuations by sets of propositional variables), the dual Horn case is characterized by

families closed under unions. 2

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 305

13.5 Schaefer dichotomy theorem for Boolean constraint
satisfaction

In Proposition 13.9 we proved that if F is included in one of six Schaefer classes,

then the constraint satisfaction problem CSP(F) is polynomial. That is, there is an

algorithm running in polynomial time solving every instance of CSP(F). Now, our
goal is to prove a remarkable dichotomy theorem due to T. Schaefer, namely that

if F is not included in any single one of Schaefer classes then the corresponding

constraint satisfaction problem is NP-complete.

There are various proofs of the Schaefer Theorem, including a direct one. But the

one we will give here, based on the argument of H. Chen [Ch09] (but grounded in

work of others, see below), will be based on universal algebra techniques. Of course,

this is not a book on universal algebra, and the argument we give below will be (al-

most) self-contained. But the point of view will have the algebraic flavor. The ‘grand

plan’ of the argument uses a number of facts interesting on their own merit. We will

look more deeply into the structure theory of Boolean functions. The first major step

is to look at a kind of definability associated with the constraint satisfaction. This

definability is, actually, a simplified version of SQL database query language (with

much restricted WHERE clauses). The class of relations definable out of a class Γ
of Boolean relations, called primitively-positively definable (pp-definable, for short),

turns out to be closely related to the polymorphisms of Boolean relations.3 We in-

troduce two related classes of objects. One, on the side of Boolean functions: given

a collection Γ of relations, we consider the class of all functions that are polymor-

phisms of Γ. This class is denoted Pol(Γ). On the side of Boolean relations, given a
collection F of Boolean functions, we look at all relations for which a collection F
of functions are polymorphisms. This class of relations is denoted by Inv(F).

Denoting by 〈Γ〉 the collection of pp-definable relations definable from Γ we cite

without proof the following classical result due to D. Geiger, namely that 〈Γ〉 =
Inv(Pol (Γ)).4 On the side of collections of Boolean functions we look at clones,

families of functions containing projections and closed under compositions, identi-

fication of variables, permutations of variables and adding dummy variables. The

reason why we do so is that the collection Pol(Γ) is a clone. Then we come to the

main point of the argument, a property of clones due to I. Rosenberg. The basic poly-

morphisms corresponding to classes of Horn, dual Horn, affine, and Krom classes of

relations appear in that characterization. The argument we will show digs deeply

into the very nature of Boolean functions. Once that characterization is obtained, the

argument becomes easy, although still not trivial.

3Again, these are not polymorphisms as considered in object-oriented programming.
4This is the result in universal algebra, and the only point in the proof of the Schaefer theorem which is

not proved here.

© 2009 by Taylor and Francis Group, LLC

306 Introduction to Mathematics of Satisfiability

To realize the program outlined above, we need to be a bit formal. Let Γ be a col-

lection of Boolean relations. A constraint over Γ is a table R from Γ together with

an assignment of propositional variables to its columns. There is a delicate aspect to

such constraint. Namely, we can assign to two (or more) columns the same variable.

This means that we select out of the rows ofR only those rows where the correspond-

ing columns hold equal values. The reader familiar with SQL will note that this type

of a constraint is just a query which is a selection (according to some equality con-

dition). We will write R(xi1 , . . . , xik) for such constraint I . Let Var be the set of

propositional variables extending the set of those actually appearing as the names of

columns. Then a valuation v : Var → Bool satisfies I if 〈v(xi1), . . . , v(xik)〉 ∈ R.
Now, given such constraint language (that is, a collection of relations) Γ, an instance
of Γ is a finite set of constraints over Γ. Then CSP(Γ) is the following decision

problem: Given an instance S of Γ is there an assignment v that satisfies all the

constraints in S?
We will now introduce the notion of primitive-positive definability out of a set of re-

lations Γ. Here is what we do. By xi = xj wemean a table with two columns labeled

xi and xj , respectively, and two rows: (0, 0) and (1, 1). Such equality constraint is

satisfied by a valuation v if v(xi) = v(xk). Now, a relation S is primitively-positively

definable from a set of tables Γ if S is a set of tuples satisfying the formula

∃xi1
,...,xij

F,

where F is a conjunction of constraints over Γ and of equality constraints.

For instance, if we have in Γ two relations R1 and R2 with, respectively, three and

two arguments, then relation S with the definition

S(x1, x2) ≡ ∃x3,x4
(R(x1, x2, x3) ∧R2(x2, x4))

is primitively-positively definable from Γ.
Let us observe that with this definition the problem of identical names for differ-

ent columns disappears. For instance, relation (of two variables) R1(x1, x2, x1) is
primitively-positively definable by

∃x3
(R1(x1, x2, x3) ∧ x1 = x3).

We will call such elimination of repeated variable names disambiguation.

We define 〈Γ〉 as the collection of all relations (tables) primitively-positively (pp-)

definable out of Γ.
A couple of simple observations which we will ask the reader to prove in the Section

13.6 Exercises, follow. For instance, whenever Γ contains at least one non-empty

relation then 〈Γ〉 is infinite. Also the operator 〈·〉 is a monotone idempotent operator.

We now have the following fact due to P. Jeavons.

PROPOSITION 13.10
Let Γ, Γ′ be two finite sets of Boolean relations such that Γ′ ⊆ 〈Γ〉 then

CSP(Γ′) polynomially reduces to CSP(Γ).

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 307

Proof: Given an instance S′ of CSP(Γ′) we need to find an instance S of CSP(Γ)
such that

1. S is (uniformly) computed out of S′, and

2. S′ has a solution if and only if S has a solution.

To this end, for each constraint R′
j in Γ′ we fix a representation

R′
j(x1, . . . , xnj

) ≡ ∃xnj+1,...,xnj+sj
Cj(x1, . . . , xnj+sj

).

Without the loss of generality we can choose existentially quantified variables in the

definitions so that each such variable occurs in only one definition. Moreover, using

disambiguation we can assume that each term in each conjunction Cj has different
column names. We use equality constraints to enforce the equalities among column

names. So now, the instance S′ is nothing more than an existentially quantified

conjunction of terms such that each of these terms itself is an existentially quantified

conjunction of relations from Γ and equality constraints. Let us call the matrix of

that formula C′. Thus we deal with a formula ∃~xC
′. With the disambiguation effort

described above, the prenex normal form of this formula has the form

∃~x,~x′C′′(~x, ~x′, ~x′′).

The variables ~x are existentially quantified variables of the instance S′. The variables
~x′ come from the conjuncts of the formulaC′. Finally, variables ~x′′ are the variables
of S′ that are not quantified. So now, let us drop the quantifiers of the prenex of the

formula ∃~x,~x′C′′(~x, ~x′, ~x′′). Then, dealing with the quantifier-free formula resulting

from dropping the quantifier, let us drop all conjunctions. Let us pause to see what

is the result of this transformation. We get an instance S of CSP(Γ). It should be

clear that this new instance has a solution if and only if S′ has a solution. The size
of S is polynomial (in fact linear) in the size of S′. There is still a minor problem:

S contains equality constraints. But we can eliminate these constraints as follows:

equality constraints generate an equivalence relation in the variables of Var , namely

the least equivalence relation generated by these equalities. In each coset we select

one variable and substitute it in all occurrences of variables in that coset. This does

not change satisfiability, it does not increase size of the problem, and it eliminates

equality constraints. In this way, we get an instance of S with the desired properties.

2

We then get the following corollary.

COROLLARY 13.5
Let Γ be a finite collection of Boolean relations. Then CSP(Γ) is solvable in

polynomial time if and only if for all finite Γ′ ⊆ 〈Γ〉, CSP(Γ′) is solvable in
polynomial time.

Proof: The implication⇒ follows immediately from Proposition 13.10. The impli-

cation⇐ follows from the fact that Γ ⊆ 〈Γ〉. 2

© 2009 by Taylor and Francis Group, LLC

308 Introduction to Mathematics of Satisfiability

We will now discuss polymorphisms. In our studies of models of Horn theories in

Chapter 9 we discussed “bitwise conjunction.” This was an operation in Booln. Like
ordinary Boolean conjunction it was a binary operation. But it computed the result

coordinatewise. In our characterization of other classes of theories we encountered

other polymorphisms: there was the “bitwise disjunction,” “bitwise majority,” “bit-

wise sum-of-three,” and also bitwise constant functions. Now, we introduce poly-

morphisms in full generality.

Let f : Boolm → Bool be an m-ary operation. We are lifting the operation f to

Boolk as follows. Let us takem tuples in Boolk,

(t11, . . . t1k), . . . , (tm1, . . . , tmk).

We visualize this collection as a matrix

t11 . . . t1k
. . .

tm1 . . . tmk

 .

Each column of this matrix is a Boolean vector of length m. We can execute the

operation f on this vector. Since we execute f exactly k times (once for each col-

umn), we get as a result a vector of length k. This is the result of applying f on

rows (t11, . . . t1k), . . . , (tm1, . . . , tmk). We call this resulting vector of length k the

bitwise execution of f (on rows r1, . . . , rm). Now, we say that anm-ary operation f
is a polymorphism for a Boolean relation R if for any choice ofm rows r1, . . . , rm,

of table R the result of bitwise execution of f on these rows is again a row in R. Let
us look at a couple of examples (in Chapter 9 we had some examples already, but by

now they must be forgotten).

Example 13.3

1. The operation ∧ is a polymorphism for

0 1 0 0 1
1 0 1 0 1
0 0 0 0 1

 .

2. The 7 row table

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(which is, of course, Mod(p ∨ q ∨ r)) has ∨ as a polymorphism but ∧ is not its

polymorphism, nor is the constant function 0 its polymorphism (but the constant

function 1 is its polymorphism).

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 309

Let us recall that in Chapter 9 we proved six facts: that the constant function 1 is a

polymorphism of a Boolean relation R if and only if R contains a row of 1s, that the
constant function 0 is a polymorphism ofR if and only ifR contains a row of 0s, that
the conjunction function is a polymorphism ofR if and only ifR is the set of models

of a Horn theory, that the disjunction function is a polymorphism of R if and only if

R is the set of models of a dual Horn theory, that the ternary sum operation (sum3)

is a polymorphism of R if and only if R is the set of models of an affine theory, and

that the ternary operation maj is a polymorphism of R if and only if R is the set of

models of a theory consisting of 2-clauses.

With these examples in mind it is natural (as the researchers in universal algebra do)

to introduce two concepts. First, given a collection Γ of Boolean tables, we define

Pol(Γ) = {f : ∀R∈Γf is a polymorphism of R}.

Next, we say that R is invariant under f if f is a polymorphism of R. Then we

define, for a collection F of Boolean functions,

Inv(F) = {R : ∀f∈FR is invariant under f}.

Given a set of Boolean functions F , [F] is the least clone containing F as a subset.

Clearly, [F] is the intersection of all clones containing F .
Here is a fundamental result due to D. Geiger which is, actually, more general. We

state it version in Boolean case; it is valid without its limitation.

THEOREM 13.1 (Geiger theorem)

1. For every finite set Γ of Boolean relations

〈Γ〉 = Inv(Pol (Γ)).

2. For every family of Boolean functions F

[F] = Pol (Inv(F)).

The proof of the Geiger theorem, while can be done using SAT, belongs to universal

algebra, not to our interests. We will ask the reader to prove an easier half of it in one

of exercises. Let us also observe that Theorem 13.1 can be proved in generality (we

do not have to limit it to the Boolean case) but in this book it is all we need. There is

plenty to learn about relationships between Boolean tables and Boolean operations.

There are thick tomes covering that theory and, more generally, theory of clones

over algebras and relations over these algebras (for instance, [La06]) and we refer

the reader to these books.

© 2009 by Taylor and Francis Group, LLC

310 Introduction to Mathematics of Satisfiability

We now use Theorem 13.1 to get a useful corollary, which ties polymorphisms with

the constraint satisfaction.

COROLLARY 13.6
Let Γ, Γ′ be finite collections of Boolean relations. If Pol(Γ) ⊆ Pol (Γ′) then

Γ′ ⊆ 〈Γ〉 and therefore CSP(Γ′) polynomially reduces to CSP(Γ).

Proof: If Pol(Γ) ⊆ Pol(Γ′) then every relation invariant under Pol (Γ′) is invariant
under Pol (Γ). Thus we have

Γ′ ⊆ 〈Γ′〉 = Inv(Pol (Γ′)) ⊆ Inv(Pol (Γ)) = 〈Γ〉.

Therefore Γ′ ⊆ 〈Γ〉 and the conclusion follows from Proposition 13.10. 2

The connection of clones to constraint satisfaction is given by the following obser-

vation.

PROPOSITION 13.11
For every family Γ of Boolean relations, Pol(Γ) is a clone. Conversely, every
clone is the family of polymorphisms for a suitably chosen set of tables.

Proof: It is easy to verify the first part. The second part follows from Geiger theorem

[F] = F . Namely, given a cloneF , F is the family of all polymorphisms for Inv(F).
2

Let us recall that our goal in this section is to prove the Schaefer dichotomy theorem.

Here is what we do now. First, we will formulate it (only half of it was formulated

above.)

THEOREM 13.2
Let Γ be a collection of Boolean tables. If Γ is included in one of the Schaefer
classes, then CSP(Γ) is solvable in polynomial time. Otherwise, it is NP-
complete.

We already proved the “easy half” of Theorem 13.2 in Proposition 13.9. Now, we

will need to prove the “hard part.”

In view of the connections between collections of Boolean relations and collections

of Boolean functions, the Schaefer theorem can be expressed as a fact about poly-

morphisms. We do this now.

THEOREM 13.3 (Schaefer Theorem)
Let Γ be a collection of Boolean tables. If one of conditions (1)–(6) be-

low holds, then CSP(Γ) is solvable in polynomial time. Otherwise, it is NP-
complete.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 311

1. Constant function 1 is a polymorphism of all R ∈ Γ.

2. Constant function 0 is a polymorphism of all R ∈ Γ.

3. Binary function ∧ is a polymorphism of all R ∈ Γ.

4. Binary function ∨ is a polymorphism of all R ∈ Γ.

5. Ternary function maj is a polymorphism of all R ∈ Γ.

6. Ternary function sum3 is a polymorphism of all R ∈ Γ.

The proof of Theorem 13.3 will occupy us until the end of this chapter. Of course,

we only prove the NP-completeness result. The rest was done in Proposition 13.9.

We need a couple of definitions, all pertaining to Boolean functions. A function

f : Booln → Bool is essentially unary if there is a coordinate i, 1 ≤ i ≤ n, and a

unary function g such that f(x1, . . . , xn) = g(xi), that is, f depends on at most one

variable, xi. Let us observe that the coordinate i is not necessarily unique. There

are important essentially unary functions called projections. A projection is a func-

tion πmj (x1, . . . , xm) identically equal to xi. Of course, projections are essentially
unary functions. Recall that a clone is a collection of Boolean functions that contains

all projections and is closed under composition (i.e., substitutions), permutations of

variables, identifications of variables, and adding dummy variables. We stated above

that for any collection Γ of Boolean relations the set Pol (Γ) is a clone (we will ask
the reader to prove it as an exercise).

Given a function f : Booln → Bool , a unary function f̂ is defined by f̂(x) =

f(x, . . . , x). Let us observe that f̂ draws the information from two constant inputs

to f , and that it is always one of four possible functions: constant 1, constant 0, x,
and x̄. Next, we say that a Boolean function f is idempotent if f̂ is the identity

function. Finally, we say that a Boolean function f acts as a permutation if f̂ is

non-constant (that is, it is an identity or it is the negation).

We will use the following main technical result, due to I. Rosenberg, in our proof of

the Schaefer theorem.

THEOREM 13.4 (Rosenberg Theorem)
Let C be a clone. Then either C contains only essentially unary functions, or
C contains at least one of functions ∧,∨,maj , or sum3.

Proof: Let us observe that if we had enough of information about Post lattice (the

lattice of clones) we could just look at the lattice and see that Theorem 13.4 is true.

But we did not study Post lattice (although it is present in many places of this book),

and so we prove the assertion directly. Besides, the proof is esthetically appealing.

Let C be a clone, and let f be a non-essentially unary function, f ∈ C. Thus, the

function f is an n-ary function, n > 0. There will be several cases to investigate.

Case 1: f̂ is constant, f̂(x) ≡ 0. Since f is not essentially unary there must be

a Boolean vector (a1, . . . , an) such that f(a1, . . . , an) 6= 0. The reason is that

otherwise, if f is constantly 0 then every variable of f is witness to the fact that f is

© 2009 by Taylor and Francis Group, LLC

312 Introduction to Mathematics of Satisfiability

essentially unary. So, we have a vector (a1, . . . , an) such that f(a1, . . . , an) = 1. At
least one of ais must be 0 and at least one of them must be 1 (because otherwise our

assumption that f̂ is identically 0 is violated). So now, let us define a binary function

g by setting
g(x1, x0) = f(xa1

, . . . , xan
).

The function g belongs to the clone C, because all we do is substitute projections π2
0

and π2
1 into the function f . Now, let us look at g more closely. We find that

g(0, 0) = f(0, . . . , 0) = 0.

Indeed, what do we do? We substitute in f variables xa1
for x1, then xa2

for x2, etc.,

and then we put for each occurrence of x0 and for each occurrence of x1 the value 0.
Thus we substitute the value 0 in every variable of f , and this gives us the value 0.
In a very similar manner we find that g(1, 1) is also 0 (remember f(1, . . . , 1) = 0).
Next let us look at g(1, 0). Here we first substitute xai

for xi and then we substitute
1 for x1, and 0 for x0. What do we get? f(a1, . . . , an). The latter value is 1, thus
g(1, 0) = 1.
Now, there are two subcases:

Subcase 1.1: g(0, 1) = 1. Then, clearly, g is the Boolean addition (+ function). But

then sum3(x, y, z) ≡ g(x, g(y, z)). The latter function is in C, because C is closed
under substitution.

Subcase 1.2: g(0, 1) = 0. Then, clearly, g is one of the conjunction functions

(because its table has three zeros, and a single one). Which one? It is easy to see that

g(x, y) ≡ x ∧ ¬y. But then

g(x, g(x, y)) = x ∧ (¬(x ∧ ¬y)) = x ∧ (¬x ∨ y) = x ∧ y.

Consequently, in this subcase ∧ belongs to the clone C.
Case 2: f̂ is constant, f̂(x) ≡ 1. The argument is similar to Case 1, except that in

the first subcase we find that g(x, y) is actually x + y + 1. It is obvious to see that

sum3 can be defined from this function. There is also a second subcase, where we

find that ∨ belongs to the clone C.
Case 3: f̂ is not constant. We first show that our clone C contains an idempotent,

not essentially unary function. Indeed, if f̂ is not constant, then either f̂ is identity,

or it is negation. In the first case, when f̂ is identity, f itself is an idempotent, non-

essentially unary function in C.
Thus we are left with the case when f̂ is the negation (complement). Here is what

we do. We define an auxiliary function g setting

g(x1, . . . , xn) = f̂(f(x1, . . . , xn)).

Thus

g(x1, . . . , xn) = f(x1, . . . , xn).

Since C is a clone, and both f and f̂ are in C, g ∈ C. But now:

ĝ(x) = g(x, . . . , x) = f̂(f(x, . . . , x)) = ˆ̂x = ¬¬x = x.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 313

TABLE 13.7: Cases for
m = 3

g(x, x, y) g(x, y, x) g(y, x, x)
x x x
x x y
x y x
x y y
y x x
y x y
y y x
y y y

Moreover, g is not essentially unary because, clearly,

g(x1, . . . , xn) = ¬f(x1, . . . , xn),

thus

f(x1, . . . , xn) = ¬g(x1, . . . , xn),

and if g(x1, . . . , xn) = h(xi) then f(x1, . . . , xn) = ¬h(xi) so f would be essen-

tially unary contradicting the choice of f .
So what do we know at this point? We do know that C contains a function that is,

non-essentially unary and idempotent. Let us choose such function g. What is the

aritym of such function g? Certainly it is not 1.
Subcase 3.1m = 2.
Could it be that g(0, 1) 6= g(1, 0)? If this was the case then as g is idempotent,

g(0, 0) = 0, and g(1, 1) = 1. So, when g(0, 1) = 0, then g(1, 0) = 1. But then, as is
easily seen, g is the projection on the first coordinate. In the case when g(0, 1) = 1,
and g(1, 0) = 0, g is the projection on the second coordinate. Thus in either case g
is essentially unary contradicting the choice of g.
So it must be the case that g(0, 1) = g(1, 0). There are two subcases possible. When

g(0, 1) = g(1, 0) = 0, then the function g is ∧ (just check the table of g). And if

g(0, 1) = g(1, 0) = 1 then g is ∨. Thus we proved that in the case whenm = 2 the

clone C must contain either ∧ or ∨.
Subcase 3.2: m = 3.
Since the minimal arity function that is, idempotent and not essentially unary is 3
it follows that any identification of two variables in g must create a function that

is essentially unary (let us observe that identification of variables preserves idem-

potence). There are three ways in which we can identify two variables in a three-

argument function. With appropriate renaming we have g(x, x, y), g(x, y, x), and
g(y, x, x). As we are in the case whenm = 3, it must be the case that each of these

three functions is essentially unary. There are eight possible cases. We list them in

Table 13.7.

We are sure that the reader would not survive if we computed here what g is for all

eight cases (but we did, and the reader who does not trust us can get the calculations

© 2009 by Taylor and Francis Group, LLC

314 Introduction to Mathematics of Satisfiability

by mail). We will do the detailed calculation for the first, second, and fourth rows.

The remaining ones will be explicated but not calculated explicitly.

First row. We will show that in this case the function g is maj . We use the fact that

Bool has just two elements (kind of obvious, right?).

g(0, 0, 0) = g(x, x, y)
(

x y
0 0

)

= x
(

x
0

)

= 0

g(0, 0, 1) = g(x, x, y)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(0, 1, 0) = g(x, y, x)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(0, 1, 1) = g(y, x, x)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 0, 0) = g(y, x, x)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(1, 0, 1) = g(x, y, x)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 1, 0) = g(x, x, y)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 1, 1) = g(x, x, y)
(

x y
1 1

)

= x
(

x
1

)

= 1
Now, if only the reader recalls the table for the ternary majority function maj , she
will see that g is, indeed, maj .
Second row. Here we will see that the result of the identification is the projection on

the first coordinate, contradicting the choice of g.
g(0, 0, 0) = g(x, x, y)

(

x y
0 0

)

= x
(

x
0

)

= 0

g(0, 0, 1) = g(x, x, y)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(0, 1, 0) = g(x, y, x)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(0, 1, 1) = g(y, x, x)
(

x y
1 0

)

= y
(

y
0

)

= 0

g(1, 0, 0) = g(y, x, x)
(

x y
0 1

)

= x
(

y
1

)

= 1

g(1, 0, 1) = g(x, y, x)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 1, 0) = g(x, x, y)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 1, 1) = g(x, x, x)
(

x y
1 1

)

= x
(

x
1

)

= 1
Fourth row. Here we encounter a small complication. The function g itself is not

any of the desired functions, but once we have that g we can compute (via suitably

chosen substitution) the function maj .
g(0, 0, 0) = g(x, x, y)

(

x y
0 0

)

= x
(

x
0

)

= 0

g(0, 0, 1) = g(x, x, y)
(

x y
0 1

)

= x
(

x
0

)

= 0

g(0, 1, 0) = g(x, y, x)
(

x y
0 1

)

= y
(

y
1

)

= 1

g(0, 1, 1) = g(y, x, x)
(

x y
1 0

)

= y
(

y
0

)

= 0

g(1, 0, 0) = g(y, x, x)
(

x y
0 1

)

= y
(

y
1

)

= 1

g(1, 0, 1) = g(x, y, x)
(

x y
1 0

)

= y
(

y
0

)

= 0

g(1, 1, 0) = g(x, x, y)
(

x y
1 0

)

= x
(

x
1

)

= 1

g(1, 1, 1) = g(x, x, y)
(

x y
1 1

)

= x
(

x
1

)

= 1
The function g computed above is not maj (just look at the third row of the com-

putation). But miraculously the function h(x, y, z) ≡ g(x, y, g(x, y, z)) is, actually,
maj (x, y, z). Since C is a clone and g ∈ C, maj ∈ C.
We will now tell the reader what happens in the cases of the third, fifth, sixth, sev-

enth, and eighth rows. In the third rowwe found that g is the projection on the second
coordinate (which contradicts the choice of g and so this case does not happen). The
fifth row is the projection on the third coordinate and so it does not happen. The

case of the sixth row is similar to the case of the fourth row, the function g defines

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 315

function maj . In the case of the seventh row, the function g has the property that

g(g(x, y, z), y, z) is the function sum3. In the case of the eighth row, we find that g
is simply sum3.

Subcase 3.3: m > 3.
This proof being quite long, it would be beneficial to see where we are. We have

this parameterm, the least arity of idempotent non-essentially unary function in the

clone C. When m = 2 or m = 3 we found that C must contain one of ∧, ∨, maj ,
or sum3. Now, we will show that m cannot be bigger than three. So let us assume

m ≥ 4. Our assumption now is that a function g of arity bigger than or equal to

4 has a least possible arity among idempotent and non-essentially unary functions

in C. We have a couple of cases. The first case is when after the identification of

xi and xj the result is projection to xj . Then we have: f(x1, x1, x3, x4, . . .) = x1

and f(x1, x2, x3, x3, . . .) = x3. Then f(0, 0, 1, 1, . . .) = 0 and simultaneously

f(0, 0, 1, 1, . . .) = 1 (we use here the fact that m ≥ 4). This is an obvious con-

tradiction. This leaves us with the case when identification of variables results in a

projection, except that it is a projection to another variable. With appropriate renam-

ing we can assume that

g(x1, x1, x3, x4, . . .) ≡ x4.

We claim that g(x1, x2, x1, x4, . . .) is also x4. For there is xj such that

g(x1, x2, x1, x4, . . .) ≡ xj .

Thus in particular g(x1, x1, x1, x4, . . .) ≡ xj . But g(x1, x1, x1, x4, . . .) ≡ x4 (as it

is the result of “dummy” substitution into g of x1 for x3). But then xj ≡ x4 and

so j = 4. By the same argument g(x1, x2, x2, x4, . . .) is also x4. But |Bool | =
2. Therefore for any valuation v at least one of the equalities v(x1) = v(x2),
or v(x1) = v(x3), or v(x2) = v(x3) holds. This means that if we have a

Boolean vector (a1, a2, a3, a4, . . .) then it belongs to the domain of one of the func-

tions arising from identifications g(x1, x1, x3, x4, . . .), or g(x1, x2, x1, x4, . . .), or
g(x1, x2, x2, x4, . . .). But each of these functions on its domain coincided with x4!

Thus for every Boolean vector (a1, a2, a3, a4, . . .), g(a1, a2, a3, a4, . . .) = a4, that

is, g is the projection to the fourth coordinate. Thusm ≥ 4 is, after all, impossible,

and the proof is now complete. 2

We are closing on the proof of the Schaefer theorem, but we need the final push.

Essentially, we need to see what happens when a clone is not included in any of the

six clones of Schaefer. That is, we need to investigate what happens when none of

six functions: constant 0, constant 1, ∧, ∨, sum3, maj is in the clone Pol(Γ). By
Rosenberg theorem, not having functions ∧,∨,maj , or sum3 in the clone Pol(Γ)
implies that the clone Pol (Γ) contains only unary functions. But since the clone

Pol (Γ) does not contain constant functions, all it can contain are essentially unary

functions. Those are projections and negations of projections, thus functions that act

like permutations.

PROPOSITION 13.12
If Γ is a finite set of Boolean relations such that Pol(Γ) contains only unary

© 2009 by Taylor and Francis Group, LLC

316 Introduction to Mathematics of Satisfiability

functions that act as permutations then for every finite set of Boolean rela-
tions Γ′, CSP(Γ′) polynomially reduces to CSP(Γ). In particular, the problem
CSP(Γ) is NP-complete.

Proof: If Pol (Γ) contains only projections then as projections are in every clone,

Pol (Γ′) ⊆ Pol (Γ). Then we can use Corollary 13.5 directly. But there is another

case, namely that Γ has another polymorphism, namely negation. We still need to

reduce CSP(Γ′) to CSP(Γ). The trouble is that negation does not have to be a

polymorphism of Γ′. But the reader will recall how in Chapter 5 we made “mirror

copies” of tables. We will do something similar here. Given a relation R′ in Γ′, we

build a relation R′′ that has one column more by setting

R′′ = ({0} ×R′) ∪ ({1} × {(ā1, . . . , ān) : (a1, . . . , an) ∈ R
′}).

We then set Γ′′ = {R′′ : R′ ∈ Γ′}. All relations in Γ′′ are guaranteed to have

negation (i.e., ¬) as a polymorphism. It is really easy to see. Yet another property is

that polymorphisms of Γ′ are polymorphisms of Γ′′ as well. The reason is that the

polymorphisms ofΓ′ are essentially unary acting as permutations (that is, projections

or complemented projections) and these are, as is easy to see, polymorphisms of Γ′′.

But now it is guaranteed that all polymorphisms of Γ are polymorphisms of Γ′′. This,

by Proposition 13.10, implies that CSP(Γ′′) polynomially reduces to CSP(Γ). So
all we need to do is to polynomially reduce CSP(Γ′) to CSP(Γ′′). But this is easy.
Let S′ be an instance of CSP(Γ′). We select a new variable (say x0), and for each

constraintR′(xi1 , . . . , xik) of S′, we compute a new constraintR′′(x0, xi1 , . . . , xik)
by “mirroring,” defined above. Now, the instance S′′ of CSP(Γ′′) consists of these
new constraints. It is obvious that the size of S′′ is linear in the size of S′ (a bit

more than two times size of S′). Now, if v is a solution to S′, then v ∪ {(x0, 0)} is a
solution to S′′.
Conversely, let w be a solution of S′′. Two cases are possible:
Case 1: w(x0) = 0. Then the assignment v = w \ {(x0, 0)} is a solution to S′.
Case 2: w(x0) = 1. Then the values of assignment w on variables different from x0

must come from the “mirror part” of R′′, {1}× {(ā1, . . . , ān) : (a1, . . . , an) ∈ R′}.
But then the assignment v, defined by

v(xi) = ¬w(xi),

is a solution to S′. Thus any algorithm for solvingCSP(Γ′′) provides a way to solve
CSP(Γ′) with only polynomial increase in the amount of work. ThereforeCSP(Γ′)
reduces polynomially to CSP(Γ′′) which, in turn, polynomially reduces to CSP(Γ).
But we established that there are constraint languages Γ ’ for which CSP(Γ′) is NP-
complete, for instance the language consisting of eight tables for 3-clauses was such

language. Thus CSP(Γ) is NP-complete, as desired. This completes the argument.

2.

To sum up (we have repeated the argument already!), what does it mean when a clone

C contains only unary functions that act as permutations? Again, let us stress that in

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 317

view of Rosenberg theorem (Theorem 13.4) this means precisely that the clone C is
not included in Pol (Γ) for any of 6 Schaefer clones. Thus we get the following.

COROLLARY 13.7 (Schaefer theorem, “hard part”)

If Γ is a set of Boolean relations that is not included in any of 6 Schaefer
clones, then CSP(Γ) is an NP-complete problem.

In the Exercises below we will have several interesting corollaries to Schaefer the-

orem. Here we only observe that it is amazing that there is a relationship between

universal algebra constructions and the existence of algorithms solving constraint

satisfaction problems. We note in passing that the fact that the domains of our CSPs

were all two element was of critical importance in many places in the argument. In

fact, Schaefer dichotomy has been lifted to three-element domains, but to date it is

not known for larger finite domains.

13.6 Exercises

1. Instead of representing SEND-MORE-MONEY puzzle as a SAT problem, rep-

resent it as a Constraint Satisfaction problem over finite domains.

2. We could represent sudoku-solution problem (i.e., find all sudoku solutions) as a

CSP with 81 variables each ranging over the domain (1..9). But such an attempt

would be a disaster. Why?

3. Γ3SAT is a collection of four Boolean relations: Bool3 \ {(0, 0, 0)}, Bool3 \
{(0, 0, 1)}, Bool3 \ {(0, 1, 1)}, and Bool3 \ {(1, 1, 1)}. The tables in this col-

lection allow for expressing 3SAT as a constraint satisfaction problem. Find a

pp-definition of the table

0 0 1
0 1 0
1 0 0

using relations in Γ3SAT .

4. Establish that the previous problem is trivial because every ternary Boolean re-

lation is pp-definable from Γ3SAT .

5. Find a pp-definition of the inequality relation, i.e.,

(

0 1
1 0

)

using relations in Γ3SAT .

© 2009 by Taylor and Francis Group, LLC

318 Introduction to Mathematics of Satisfiability

6. Show that all functions are polymorphisms of the table:
(

0 0
1 1

)

What is the reason, and how does it relate to disambiguation?

7. When Boolean tables R1 and R2 have the same number of columns then the

relation R1 ∩R2 is pp-definable from {R1, R2}.

8. Show that each of the Schaefer classes of relations is closed under pp-

definability. For instance, when all relations in Γ are Horn, then any relation

pp-definable in Γ is also Horn.

9. Using the above fact show that pp-definable relations are not closed under

unions. Specifically, construct two relations R1, R2 such that R1 and R2 have

the same number of columns, and R1 ∪R2 is not pp-definable from {R1, R2}.

10. Continuing the previous exercise, prove that, in general, the collection of rela-

tions pp-definable from Γ is not closed under complement.

11. On the other hand, there are classes Γ such that 〈Γ〉 is closed under complement.

Construct one.

12. Prove that when Γ is a set of tables then Pol (Γ) is non-empty.

13. Prove that when F is a set of Boolean functions then Inv(F) is non-empty.

14. Let us strengthen the concept of definability to bring it a bit more in line with

SQL database language, namely, we allow conjuncts of the form xi = ε with
ε ∈ Bool . Show that four Schaefer classes, namely those of Horn, dual Horn,

affine, and 2SAT, are closed under this concept of definability, but the remaining

two classes (1-consistent and 0-consistent) are not closed under this concept of

definability.

15. Prove the “easier half” of the first Geiger theorem, that is, 〈Γ〉 ⊆ Inv(Pol(Γ)).

16. Prove that for every set F of operations there is a least clone that contains F .

17. Prove the old but difficult theorem of E. Post: Every Boolean clone C has a finite
basis, that is, there is a finite set of operations F such that C is the least clone

containing F .

18. Prove that Boolean clones form a lattice under inclusion.

19. Let R1in3 be the Boolean table

0 0 1
0 1 0
1 0 0

 .

Prove that CSP({R1in3 }) is NP-complete. Use the Schaefer theorem.

20. Introduce the table R2in3 and prove the same fact.

21. The table RNAE (not-all-equal) is Bool2 \ {(0, 0, 0), (1, 1, 1)}. Prove that like
in the two above problemsCSP({RNAE}) is NP-complete.

© 2009 by Taylor and Francis Group, LLC

Knowledge representation and constraint satisfaction 319

22. Compute explicitly the remaining five cases for m = 3 in the Rosenberg theo-

rem. If you do not want to make the complete effort, do case eight.

© 2009 by Taylor and Francis Group, LLC

Chapter 14

Answer set programming, an
extension of Horn logic

14.1 Horn logic revisited . 321
14.2 Models of programs . 322
14.3 Supported models . 323
14.4 Stable models . 326
14.5 Answer set programming and SAT . 329
14.6 Knowledge representation and ASP . 333
14.7 Complexity issues for ASP . 336
14.8 Exercises . 337

In this chapter we introduce the reader to a formalism closely related to propositional

satisfiability, namely answer set programming (ASP for short). ASP is an extension

of Horn logic, i.e., logic based on an extension of the logic admitting only Horn

clauses. The extension uses a nonstandard negation not. This negation is sometimes

called negation-by-failure. As in other cases (viz. our discussion of relationship of

SAT and integer programming) we will touch only “the tip of the iceberg.” This area

is well developed, and it has a number of monographs, for instance, [MT93, Ba03].

14.1 Extending Horn logic by nonstandard negation in
the bodies of clauses

Let us recall that Horn clauses were clauses of the form p ∨ ¬q1 ∨ . . . ∨ ¬qk and of

the form ¬q1 ∨ . . .∨¬qk. The clauses of the first kind were called program clauses,

the second kind – constraints. We could treat the program clauses as implications:

q1 ∧ . . .∧ qk ⇒ p. Traditionally, such clauses, when written by ASP researchers, are

written like this:

p← q1, . . . , qk.

Among many possible interpretations of such a clause is the following: “Given that

q1, . . . , qk all hold, p must hold, too.”

There is a procedural aspect to such interpretation; once q1, . . . qk are all computed,

we derive (conclude, compute) p.

321

© 2009 by Taylor and Francis Group, LLC

322 Introduction to Mathematics of Satisfiability

Now, let us to allow on the right-hand side of the symbol← terms of the form not r,
where r is a propositional variable. In other words, we now allow program clauses

of the form:

p← q1, . . . , qk,not r1, . . . ,not rm. (14.1)

One intuition could be that if q1, . . . , qk were computed and r1, . . . , rm were not,

then we accept p as computed. But it is pretty obvious that such interpretation raises

issues. What if one of the rjs was not computed originally, but later on was com-

puted? Surely there is something wrong with the accepted computation of p. It is our
goal in this chapter to find a reasonable interpretation of “were not computed” which

will make possible the extension of Horn clauses to clauses of the form (14.1). We

will call clauses of the form (14.1) normal program clauses. A normal program is a

set of normal clauses. Given a normal clause C of the form (14.1) we call p the head
of C (and denote it by head(C),) and the formula q1 ∧ . . . ∧ qk ∧ ¬r1 ∧ . . . ∧ ¬rm
the body of C and denoted by body(C).
Our goal below is two-fold. First, we need to introduce a meaningful semantics for

normal programs. Second, we need to see what could be done with programs con-

sisting of clauses of the form (14.1). Thus the first problem is the issue in semantics.

The other problem is the issue in knowledge representation. We need to get to the

right semantics of programs in stages for we will see that there is more than one

possibility of defining semantics of such programs.

14.2 Models of programs

The simplest semantics we give to programs is one where we interpret not p as ¬p.
Here is what we do. We say (as we did before) that a set of atomsM satisfies p if

p ∈ M , and that M satisfies not p if p /∈ M . Then we say that M |= body(C) if
q1, . . . , qk ∈ M , and r1, . . . , rm /∈ M (here C is the clause like in (14.1).). Then

we say that M is a model of the program P if for all clauses C ∈ P , whenever
M |= body(C) thenM |= head(C). Let us look at an example.

Example 14.1
Let P be the following program:

p← q,not r
p← s
q ← not t.

Clearly, M1 = {q, r} is a model of P . Indeed, since M does not satisfy the
bodies of the first two clauses, we just do not care whether the heads are in
M or not. For the third clause, M |= ¬t, and M |= q.
Let us observe that M2 = {q} is not a model of P (first clause fails) and
M3 = {r} is also not a model of P (look at the third clause).

© 2009 by Taylor and Francis Group, LLC

Answer set programming 323

Now, let Q be the following program:

p← q,not r.
r ← not p.
q ← .

Here both {p, q} and {q, r} are models of Q, but {p, q, r} is also a model of
Q.

A minimal model of a program P is a modelM of P such that no proper subset of

M is a model of P . In our Example 14.1, {q, r} was a minimal model of P , while
{p, q, r} was not a minimal model of Q.

Now, let P be a normal program. Given a normal program clause C ∈ P ,

p← q1, . . . , qk,not r1, . . . ,not rm.

We assign to C the clause p ∨ r1 ∨ . . . ∨ rm ∨ ¬q1 ∨ . . .¬qk . We call that

clause propositional interpretation of C and denote that clause by pl(C). We de-

fine pl(P) = {pl(C) : C ∈ P}. We then have the following simple fact.

PROPOSITION 14.1
Let P be a normal logic program and M a set of propositional variables.

Then:

1. M is a model of P if and only if M |= pl(P).

2. M is a minimal model of P if and only if M |= pl (P) and no strictly
smaller set N is a model of pl(P).

It should be clear that every program possesses a model (because cl(P) contains

no constraints, and so by Proposition 7.1 it is satisfiable). Likewise, Lemma 13.1

implies the second part of Proposition 14.1, that is, every normal program possesses

a minimal model.

14.3 Supported models, completion of the program

.

When we look at the least model of a Horn program P (we denoted that model

lm(P)) it is easy to see that the presence of an atom in that model is always justified

by the clauses of the program. The reason is that the program P determines the

operator TP . That operator TP , which is monotone, is then iterated (this is what we

called the Kleene construction of the least fixpoint) and the sequence of iterations

converges to the least fixpoint. What is important here is that the model is obtained

© 2009 by Taylor and Francis Group, LLC

324 Introduction to Mathematics of Satisfiability

as the fixpoint. So here we will extend the definition of TP to the case when P is

no longer Horn. The price to be paid is that the operator thus obtained is no longer

monotone, and so existence of a fixpoint is not guaranteed. But if there are fixpoints,

then such fixpoints are models with reasonable properties.

Here is how we define the operator TP now. Let M be a set of propositional vari-

ables. We define

TP (M) = {head(C) : C ∈ P andM |= body(C)}.

When P is the Horn program, this definition coincides with the one we gave above.

But in the general case we get a different behavior of TP .

Example 14.2
Let P be the program

p← not q
q ← not p

Then TP (∅) = {p, q}, TP ({p}) = {p}, TP ({q}) = {q}) and TP ({p, q}) = ∅.
Thus, in particular, TP is not monotone, but both {p} and {q} are its fixpoints.
Now, let P ′ be the program consisting of a single clause

p← not p

Then TP ′(∅) = {p} and TP ′({p}) = ∅. Thus the operator TP ′ possesses no
fixpoints.

Loosely motivated by the fixpoint considerations discussed above, we define, for

each propositional variable p, the completion formula with respect to program P ,
compP (p), by

p ≡
∨

{body(C) : C ∈ P and head(C) = p}.

Next, we define compP = {compP (p) : p ∈ Var}. Let us observe that, in principle,
some formulas in compP may be infinitary. This will happen if for some variable p
the program P contains infinitely many clauses with head p. When P is a finite nor-

mal programwe will not have this problem as all formulas compP (p) and the theory
compP will be finite. For that reason we will limit our attention to the case of finite

normal programs, although with enough effort the theory of infinitary propositional

formulas can be developed, and most of our theory put through.

Let us observe that under the finiteness assumption made above, compP is a propo-

sitional theory. Moreover, transformation of compP to clausal form can be done in

linear time.

PROPOSITION 14.2
Let M be a set of propositional variables, and P a finite normal program. If
M |= compP then M is a model of P .

© 2009 by Taylor and Francis Group, LLC

Answer set programming 325

Proof: We need to prove thatM is a model of pl(P). So, let us assume that for some

clauseC of P ,M |= body(C). Let p = head(C) and let ψp be the right-hand side of
the formula compP (p). Then, asM |= body(C),M |= ψp. But asM |= compP (p),
M |= p, that is,M |= head(C), as desired. 2

But now, we can prove a result connecting the operator TP with the formula compP .

PROPOSITION 14.3 (Apt and van Emden theorem)

Let M be a set of propositional variables, and P a finite normal program.
Then M is a model of compP if and only if M is a fixpoint of the operator
TP .

Proof: First, let us assume thatM |= compP . We need to show two inclusions.

We first showM ⊆ TP (M). Let p ∈M . ThenM |= ψp (see above for the definition
of ψp). Therefore, for some clause C ∈ P such that head(C) = p,M |= body(C).
Thus, by definition, p ∈ TP (M). As p is an arbitrary variable, inclusion ⊆ follows.

Next, we show TP (M) ⊆ M . Let p ∈ TP (M). Then for some clause C with head

p,M |= body(C). ThusM |= ψp and sinceM |= compP (p),M |= p, i.e., p ∈M ,

as desired.

Second, let us assume thatM = TP (M) and p be an arbitrary propositional variable.
We need to show thatM |= compP (p). Again two cases require our attention.
When p ∈ M , i.e., p ∈ TP (M), then for some program clause C with head p,
M |= body(C). But thenM |= ψp, and both sides of the equivalence compP (p) are
true inM , and soM |= compP (p).
When p /∈M , i.e., p /∈ TP (M), then for all program clauses C in P , head(C) = p,
it must be the case that M 6|= body(C). But then M 6|= ψP , and both sides of

compP (p) are false inM . Thus the equivalence compP (p) is true inM , as desired.

2

The results proved above justify the following definition: we call a set of variables

a supported model of a normal program P if M = TP (M). We observed that not

every program possesses supported models but that testing whether a program pos-

sesses a supported model may be easily reduced to SAT. Moreover, since supported

models were models of a propositional theory, once a program possesses a supported

model, it also possesses a model that is, supported and minimal. Let us observe that

the least model of a Horn program, being a fixpoint of TP , is supported. We state the

properties of the least model of a Horn program formally.

PROPOSITION 14.4

The least model lm(P) of a Horn program P is minimal (in fact, the only
minimal model of P) and supported.

© 2009 by Taylor and Francis Group, LLC

326 Introduction to Mathematics of Satisfiability

14.4 Stable models of normal programs

We saw in Section 14.3 that the least model of a Horn program is supported and

minimal. Let us observe that the nice aspect of the least modelM of a Horn program

is that, as a least fixpoint of a monotonic operator, it is computed in layers. In other

words, we can assign to every propositional variable p inM its level, the least integer

i such that p belongs to (TP)i(∅).
But what does it mean? This means that we accept p as belonging toM on the basis

of the membership of other variables with strictly lower levels. Therefore, there is

never a circular dependence of p on itself in such computation. This is, of course, an

intuitive observation only.

It is natural to express the property of dependence of the presence of a variable in

the model in terms of a certain graph, called the call-graph GP , associated with

program P . In this graph, the vertex labeled with p points to all vertices labeled

with qi whenever a clause p ← q1, . . . , qk belongs to P . It is now clear that we

accept sinks in this graph unconditionally, and when for some clause C as above, all

qi, 1 ≤ i ≤ k are accepted, then p is accepted. Once we admit negation not in

the bodies of clauses, the perspective changes slightly. We can consider a variety of

graphs associated with the program. One of these graphs, where a vertex points only

to the vertices labeled with variables occurring positively in the body, is called the

positive call-graph. We will denote it by GP , too.
Once we admit negation in the bodies of clauses there is no simple way to exclude

multiple intended models (in the Horn case we had just one intended model, the least

one). Let us look at an example.

Example 14.3
Let P be a program:

p← not q
q ← not p

Then, clearly, there are just two supported models of P , {p} and {q}. There
is no way to say which one is “better” (unless we have a preference relation
on the set of variables).

Example 14.3 tells us that there is no way to avoid multiple intended models. There-

fore, we need to choose the properties of the least model of the Horn program that

we want to preserve. There are several: the least model, supportedness, existence

of levels. We cannot have all of them; we need to drop something. The definition

below, due to Gelfond and Lifschitz, provides a way to define models which are min-

imal, supported, and have levels. Not every program will have such models (as there

are programs that do not even possess supported models) but when they do, these

models have a nice and natural behavior.

© 2009 by Taylor and Francis Group, LLC

Answer set programming 327

Before we define this class of models, stable models, we need a bit of terminology.

Specifically, we need to split the body of a normal program clause into positive and

negative parts. So, let

C : p← q1, . . . , qk,not r1, . . . ,not rm

be a program clause. The formula q1 ∧ . . . ∧ qk will be called the positive part of

the body, posBody(C). We will abuse notation and write posBody in clauses as a

sequence of variables, and not as a conjunction. The negative part of the body will

be the set of variables {r1, . . . , rm}. We will denote it by negBody . While those

objects are, in principle, of different type, it will be convenient to have them in this

form.

Now, let C be a normal program clause, and letM be a set of propositional variables.

We define

CM =

{

nil ifM ∩ negBody(C) 6= ∅

head(C)← posBody(C), otherwise.

So what do we do in the computation of CM? When M directly contradicts one

of the negative literals in the body of C, we eliminate C altogether. Otherwise, we

eliminate in C all negative literals, We now define PM = {CM : M ∈ P}. This
program PM is called the Gelfond-Lifschitz reduct of P by M , and is denoted by

GLP (M). Let us observe that the program PM is always a Horn program, and so

it possesses its least model lm(PM). This model depends on M . Let us denote it

by NM . When P is fixed, the assignment M 7→ NM is an operator in P(Var).
This operator is called Gelfond-Lifschitz operator associated with P . Before we

introduce stable models of programs, we will prove two useful properties of the

Gelfond-Lifschitz operator.

PROPOSITION 14.5

The operator GLP (·) is antimonotone. That is, for all M1 ⊆ M2,
GLP (M2) ⊆ GLP (M1).

Proof: If M1 ⊆ M2 then PM2 ⊆ PM1 because we prune more with M2, and thus

leave less. For word-processing reasons let us denote PM1 by Q, and PM2 by R.
Then R ⊆ Q, and clearly, for all N , TR(N) ⊆ TQ(N). Therefore, by a simple

induction, for every non-negative integer i:

(TR)i(N) ⊆ (TQ)i(N).

But then this holds forN = ∅ and so the least fixpoint of the operator TR is included

in the least fixpoint of the operator TQ, as desired. 2

To some extent, Proposition 14.5 is bad news. The reason is that antimonotone

operators do not have to possess fixpoints. In fact, we have this situation for GLP
for some P .

© 2009 by Taylor and Francis Group, LLC

328 Introduction to Mathematics of Satisfiability

Example 14.4
Let P be the program:

p← q
q ← not p

The operator GLP has no fixpoints. Four cases have to be considered: M1 = ∅,
M2 = {p}, M3 = {q}, and M4 = {p, q}. We hope the reader will compute all
four of these cases and see that there are no fixpoints.

We also need the following lemma.

LEMMA 14.1
Let P be a normal program, and let N be a model of P . Then GLP (N) ⊆ N .

Proof: We first show that for every N ′ ⊆ N , TPN (N ′) ⊆ N . Indeed, let p ←
q1, . . . , qk be a clause in PN , and q1, . . . , qk ∈ N ′. Then for some r1, . . . , rm, all

out of N , the clause p ← q1, . . . , qk,not r1, . . . ,not rm belongs to P . Since all qi,
1 ≤ i ≤ k belong to N and none of rj , 1 ≤ j ≤ m belongs to N , N |= body(C)
and since N |= C, p ∈ N , as desired.

But now, by an easy induction on iwe show that (TPN)i(∅) ⊆ N for all non-negative

integers i, and so GLP (N) ⊆ N . 2

Now, let us define a set M of variables stable for a program P if GLP (M) = M .

Sets stable for P are commonly called stable models for P or answer sets for P . To
justify the first of these namings we prove a fundamental theorem on sets stable for

programs.

THEOREM 14.1 (Gelfond and Lifschitz theorem)
Let P be a normal program, and let M be stable for P . Then:

1. M is a model of P .

2. M is a supported model of P .

3. M is a minimal model of P .

4. M has levels.

Proof. We show (1). Let C ∈ P , C : p ← q1, . . . , qk,not r1, . . . ,not rm. IfM ∩
{r1, . . . , rm} 6= ∅, thenM 6|= body(C) and thusM |= C. IfM ∩{r1, . . . , rm} = ∅,
but for some i, 1 ≤ i ≤ k, qi /∈ M , then againM 6|= body(C) and thusM |= C.
Finally, if M ∩ {r1, . . . , rm} = ∅, and for all i, 1 ≤ i ≤ k, qi ∈ M , then p ←
q1, . . . , qm belongs to PM and sinceM is a model of PM , p ∈M , as desired.

We show (2). Let p ∈ M . We need to find support for p, that is, we need to find a

clause C with head p such thatM |= body(C).
ButM = lm(PM). As the modelM is a supported model of PM , there is a clause

D = p ← q1, . . . , qk in PM with q1, . . . , qk all inM . But this clause D is EM for

© 2009 by Taylor and Francis Group, LLC

Answer set programming 329

some E ∈ P . Now we found the desired C; it is E. It is easy to see that its body is

satisfied byM . As head(C) = p we are done.
We show (3). Let us assumeM is stable for P , N |= P , N ⊆M . Then we have:

GLP (N) ⊆ N ⊆M = GLP (M) ⊆ GLP (N).

Indeed, the first inclusion follows from Lemma 14.1 as N is a model of P . The

second inclusion is our assumption. The equality following it is another assumption:

M is stable for P . Finally, the last inclusion follows from antimonotonicity of the

operator GLP . Thus we “squeezed”N andM into equality, as desired.

To see (4) we observe that the levels of lm(PM) are levels forM . 2

14.5 Answer set programming and SAT

We will now discuss the possible use of the SAT solver as a back-end engine for

ASP computation. We know at this point that if all we care about are supported

models, then a SAT solver can be easily used for testing if a finite propositional

normal program has such models. But could something be done for stable models

computation? In this section we will actually do this; we will show how a SAT solver

could be used for such purpose.

The problem we face is that on the one hand stable model computation is similar to

least model computation, but on the other hand there are all these negative literals in

the body which somehow have to be taken care of. To handle the problem of negative

literals, we introduce the concept of guarded unit resolution derivation. We will es-

sentially simulate as much as possible the unit resolution derivations (see Figure 9.1

for a graphic presentation of unit resolution). We first introduce a slightly different

(but it is just a “syntactic sugar”) representation of normal program clauses. Instead

of p← q1, . . . , qk,not r1, . . . ,not rm we will write our clause as

p← q1, . . . , qk : {r1, . . . , rm}.

When k = 0, we drop← and write p : {r1, . . . , rm}. This notation highlights the

fact that positive and negative literals in normal program clauses play a different role

(under stable semantics). Namely, we want to compute q1, . . . , qk while keeping

r1, . . . , rm out of the putative stable model. Now we introduce guarded unit resolu-

tion rule as follows. Both of the input are guarded clauses, but one of the inputs is a

guarded variable (unit). Here is the guarded unit resolution rule:

p← q1, . . . qk : {r1, . . . , rm} qj : {s1, . . . , sn}

p← q1, . . . qj−1, qj+1, . . . , qk : {r1, . . . , rm, s1, . . . , sn}
.

What happens here is that we eliminate one literal in the body of the first argument.

But there is a cost involved: we grow the guard. The goal in the guarded resolution

© 2009 by Taylor and Francis Group, LLC

330 Introduction to Mathematics of Satisfiability

derivations is the same as in the derivation of variables using unit resolution. The

difference is that we do not derive variables alone; we derive a variable and its guard.

That guard is a collection of variables. The intuition is that the guard is telling us

what variables must be outside of the model if we want to use the derivation to

compute an element in the model. When we discharge all the positive variables in

the body we take the symbol← as well. We get a guarded variable.

Example 14.5
Let our program P be:

p← not q
q ← r,not p
r←

The first clause has guard {q}. The second clause has guard {p}. The third
clause also has a guard – it is empty. We save on word processing and do not
write empty guards. Now, here is a derivation of the guarded unit (variable)
q : {p} from our program.

q : {p}

r ← r : {p}q

FIGURE 14.1: The derivation of a guarded unit

Now we have to relate guards, derivations, and the Gelfond-Lifschitz operator. First,

we need a bit of terminology. A derivation of a guarded variable p : {r1, . . . , rm}
is admitted by a set of variables M if {r1, . . . , rm} ∩M = ∅. Then, we say that

a variable p is guarded-derivable from P if for some set {r1, . . . , rm} the guarded
variable p : {r1, . . . , rm} is derived from P . The guarded resolution tree is the

witness of the derivability, but all that matters is the guard of p. The reason is that

the guards only grow, and so the guard in the root is the inclusion-largest guard in

the tree. Here is a characterization of GLP (M) in proof-theoretic terms.

PROPOSITION 14.6
The set GLP (M) consists precisely of those variables p such that there is a

© 2009 by Taylor and Francis Group, LLC

Answer set programming 331

guarded derivation of the guarded unit p : {r1, . . . , rm} that is admitted by M .

Proof: Two inclusions need to be proved: first that GLP (M) is included in the set

of variables that have guarded derivation admitted byM , and the converse inclusion.

Both are proved by induction: the first on the level of variables inNM , the other one

by induction on the height of the derivation tree. 2

Proposition 14.6 shows that, in reality, the Gelfond-Lifschitz operator is a proof-

theoretic construct. Here is one nice consequence.

COROLLARY 14.1
Let P be a propositional normal logic program, and let M be a set of propo-

sitional variables. Then M is a stable model for P if and only if

1. For every p ∈M there is a guarded derivation of p admitted by M and

2. For every p /∈M there is no guarded derivation of p admitted by M .

The proof-theoretic characterization of stable semantics given in Corollary 14.1 leads

to a useful result with practical consequences.

PROPOSITION 14.7 (Fages theorem)
Let P be a finite normal propositional program such that the positive call-

graph GP of P is acyclic. Then every supported model of P is a stable model
of P .

Proof: Let P be a program as in the assumptions and let M be a supported model

of P . In particular, M is a model of P (Proposition 14.2) and hence by Lemma

14.1, GLP (M) ⊆ M . Therefore, all we need to prove is thatM ⊆ GLP (M). This
means, in view of Proposition 14.6, that we need to exhibit, for every p ∈ M , a

guarded derivation of p : Z such thatM ∩ Z = ∅.
Our assumption is that the graph GP is acyclic. Therefore, we can topologically

sort it. This results in the ordering � of variables occurring positively in the bodies

of clauses of P . Let us look at that ordering, and let us inspect the elements of M
as they appear in the order � restricted to variables occurring positively in P . We

actually inspect the elements ofM from the last to the first.

Let p be the last element of M in the order �. Since M is a supported model of

P , there is a clause C : p ← q1, . . . , qk,not r1, . . . ,not rm such that body(C) is
satisfied byM . In particular, all qis must belong toM . But then qis must occur later

in the ordering≺ since in the call-graph for P ,GP , p points to them. As p is the last,
k must be 0. Thus that clause with head p that supports the presence of p inM must

have only negative literals in the body. It is, then, C : p← not r1, . . . ,not rm. But

then, clearly p : {r1, . . . , rm} is a guarded unit admitted byM .

Now we execute the inductive step. Say we have a variable p and let us assume

that for every variable q which belongs to M and is later in the ordering �, q has

a guard Z such that q : Z is a guarded unit that is, admitted by M . As p ∈ M

© 2009 by Taylor and Francis Group, LLC

332 Introduction to Mathematics of Satisfiability

andM is supported, there is a clause C : p ← q1, . . . , qk,not r1, . . . ,not rm such

that body(C) is satisfied byM . In particular, all qjs are inM and so there are Zjs,
1 ≤ j ≤ k so that qj : Zj is a guarded variable admitted byM . Now we proceed as

we did in combining unit resolution in our discussion of the least model of the Horn

programs (Chapter 9). The only issue is that we have to combine the guards too. But,

fortunately, all Zjs are disjoint fromM and also {r1, . . . , rm} is disjoint fromM .

Therefore, setting Z as

Z1 ∪ . . . ∪ Zk ∪ {r1, . . . , rm},

we see thatM ∩Z = ∅. Therefore, the guarded unit p : Z is admitted byM , and the

(guarded) resolution tree described above and with p : Z in the root is the desired

derivation admitted byM and so p belongs to GLP (M). As p is an arbitrary element

ofM , we are done. 2

It is easy to test if the graph GP of a program P is acyclic. All we need to do is

to try to topologically sort GP . We trust the reader has taken an undergraduate data

structures course.

The net effect of the Fages theorem (Proposition 14.7) is that if we find that the graph

GP is acyclic, then in order to find stable models of P all we have to do is to compute

completion, transform it to a CNF, and submit it to the SAT solver. If a satisfying

assignment is returned, we have a stable model. If the resulting CNF is unsatisfiable,

we conclude that there are no stable models.

But, unfortunately, the graph GP may possess cycles (in fact, in interesting cases

this will happen). What options we have in such situation? At least two possibilities

occur (both are used in ASP solvers).

1. We could use SAT solver as a “candidate generator.”

2. We could extend the completion of program P so to eliminate those supported

models which are not stable.

Idea (1) is quite simple. We modify the SAT solver (not that difficult) so it returns

one by one all satisfying assignments for the completion of P . As those satisfying
assignments are returned, we test each of them for stability. If there is a stable model

of P it will, eventually, be returned among the supported models of P and then we

will easily establish the fact that it is stable. This idea is in the spirit of so-called

satisfiability modulo theories, SMT, a currently intensely studied paradigm for use

of SAT.

Idea (2) explores a different possibility: we can generate additional formulas and

add them to the pl (P). If suitably chosen, such additional formulas would prune the

candidates for stable models, leaving only those that really are stable.

We will explore now a technique, due to Lin and Zhao[LZ04], that realizes the pos-

sibility (2). To this end, let L be a subset of variables that occur in heads of clauses

of P . We call such set a loop if L is strongly connected in GP , that is, for any two

vertices p and q in L there is a cycleH consisting of elements of L such that both p
and q are inH .

© 2009 by Taylor and Francis Group, LLC

Answer set programming 333

Now, recall that for a normal program clause P the posBody(C) was the conjunction
of all variables occurring positively in the body of C. With a slight abuse of notation

we can also think of posBody(C) as a set of propositional variables. Given a loop L
we define P−(L) as the set of those clausesC in P that have the following property:

posBody(C) ∩ L = ∅. Now, let Φ−
L be the following disjunction:

∨

C∈P−(L)

body(C).

Let us observe that we take disjunction of entire bodies, not just their positive parts.

We now define the loop-formula LZP (L) associated with the loop L:

(
∨

p∈L

p)⇒ Φ−
L .

Given a normal propositional program P , let LZ (P) be the theory consisting of

LZP (L) for all loops L of P . We then have the following characterization of sta-

ble models which we will not prove; instead we will discuss it in the Section 14.8

Exercises.

PROPOSITION 14.8 (Lin and Zhao theorem)
Let P be a finite propositional program. Then a set of variables M is a stable
model of P if and only if M is a supported model of P and M |= LZ (P).

Proposition 14.8 provides a way to realize (2). First we compute all loop formulas

for P , add them to the completion of P , transform to the CNF, and drop the result

into the SAT solver. If the solver returns a satisfying assignment, that assignment is

a stable model of P .
But there can be plenty of loops, in fact, exponentially many in the size of the pro-

gram. What can we do then? We can use Proposition 14.8 as guidance for the

technique (1) discussed above. The point is that we could add some loop formulas to

the completion of P , not all of them at once. When we submit the resulting theory

to the SAT solver we prune some non-stable models of the completion.

14.6 Knowledge representation and ASP

In this section we discuss some applications of ASP to knowledge representation.

All we can do is to show the rudiments; a serious book on this topic is [Ba03].

We will show two examples of the use of ASP in knowledge representation, both

pretty theoretical. One is a description of three-coloring of graphs, the other is a

description of Hamiltonian cycles using ASP. The common feature of these solutions

is the separation of problem from data. We will have the description of instances

© 2009 by Taylor and Francis Group, LLC

334 Introduction to Mathematics of Satisfiability

(graphs in our case), but the description of the solution is uniform. We use variables

in our program clauses. This presupposes availability of a grounder that compiles

a program with variables into a propositional program. We will assume that the

grounder recognizes at least some system predicates. In our case only the inequality

predicate 6= is used, but the existing systems allow for other predicates such as the

ternary predicateX+Y = Z (true when the variables are assigned numerical values

x, y, z, resp., and x+ y = z) or comparison predicates.

14.6.1 Three-coloring of graphs in ASP

Here we represent finite graphs by means of sets of propositional variables. Specif-

ically, for a graph G = (V,E), we assign to G an extensional database, ExtG.
It consists of variables vtx(a) for every a ∈ V , and variables edge(a, b) for all

(a, b) ∈ E. The predicates vtx(·) and edge(·, ·) will never occur in the heads of

clauses that we will write in our intentional database. This automatically implies

that we will make a closed world assumption on these predicates, as in stable seman-

tics we can only compute variables when they occur in the heads of clauses. This is

what makes ASP attractive in knowledge representation; taking care of closed world

assumption (when needed) is very easy (unlike in SAT, where we either have to add

the full diagram of a relation, or implement a CWA-aware grounder).

In addition to the two predicates discussed above, we have an additional one, to

describe our three colors: red, blue, and green, abbreviated r, b, and g. The predicate
clr (·) will be true on these three constants only.

To write a program that colors the graph we will need three clauses only. One of

these is a constraint, that the had of the clause is empty. This is a small problem only,

Using a simple trick we can make sure that heads are nonempty. Specifically, given

a clause C :← B we select a new variable x /∈ Var and replaceC by x← B,not x.
We assume that the solver will do this for us. So here is the program (with variables)

3Col :

color (X,Y)← vtx(X), clr(Y),not othercolor (X,Y)
othercolor (X,Y)← color (X,Z), Y 6= Z
← color (X,Y), color (Z, Y), edge(X,Z), vtx(X), vtx(Z), clr(Y)

The union of these two programs (graph description and three-coloring description),

when grounded, has the following property.

PROPOSITION 14.9

There is a one-to-one and “onto” correspondence between the stable models
of the grounding of the program ExtG ∪ 3Col and three-colorings of the graph
G.

Thus if we have a grounder (several are available, one is is a part of the package

lparse, c.f. [SNS02]) and an ASP solver then we can use them to solve a 3-coloring

© 2009 by Taylor and Francis Group, LLC

Answer set programming 335

problem for graphs. Also, the reader should realize that the 3-coloring is incidental

here; we can write four-coloring program by adding one additional color, say yellow.

14.6.2 Hamiltonian cycles in ASP

We will now show how the problem of finding the Hamiltonian cycle can be repre-

sented in ASP.

This is, again, a graph problem. We will represent finite graphs exactly as we did

in Section 14.6.1. To model a Hamiltonian cycle in the graph G we will need four

additional predicates: one of those, in(·, ·), will be the interpretation of the Hamil-

tonian cycle. The other, out(·, ·), will be interpreted by edges which are not on the

cycle. The third one, which is unary and denoted as reached(·), will be interpreted
by vertices that are on the cycle. Finally, the last one, initialvtx (·), simulates a con-

stant, one vertex which is the beginning and the end of the cycle. So, our extensional

database (graph description) is as in our description of 3-coloring. As before, we

denote it as ExtG. The problem description (independent of any specific graph) con-

sists of eight clauses (with variables). We denote this program by Ham . Here it

is:

initialvtx (a1)
in(X,Y)← edge(X,Y),not out(X,Y)
out(X,Y)← edge(X,Y),not in(X,Y)
← in(X,Y), in(Z, Y), X 6= Z
← in(X,Y), in(X,Z), Y 6= Z
reached(X)← in(X,Y), reached(Y)
reached(X)← in(X,Y), initialvtx (Y)
← vtx(X),not reached(X)

The first clause defines the beginning (and the end) of the putative cycle. The second

and third clauses choose the edges that are going to be on the cycle. The fourth and

fifth clauses enforce the condition that the interpretation of the predicate in will be a

cycle. This task is shared, actually, by the sixth and seventh clauses. They compute

the vertices that are on the putative cycle. The last clause makes sure that all vertices

are on the cycle (observe the fact that the initial vertex must also be reached!).

As above we have the following fact.

PROPOSITION 14.10

There is a one-to-one and “onto” correspondence between the stable models
of the grounding of the program ExtG ∪ Ham and the Hamiltonian cycles of
the graph G.

Thus, given a graph G, an ASP solver, and a grounder, we can submit the graph

description of G, Ext(G), and the eight clauses of the program Ham and, given

enough resources, the solver will return a Hamiltonian cycle in G if there is one.

© 2009 by Taylor and Francis Group, LLC

336 Introduction to Mathematics of Satisfiability

We conclude this section by mentioning that the separation of the instance and of the

program solving the problem for all instances is not accidental. In fact ASP allows

us to follow such an approach for all search problems in the class NP.

14.7 Complexity issues for ASP

The satisfiability problem for ASP is the language SM consisting of finite proposi-

tional programs that possess a stable model. To see the complexity of the problem

SM let us first observe that the three tasks involved in checking if a given set of

variables M is a stable model of a program P are all polynomial; computation of

the reduct PM can be done in linear time (each program clause is scanned once and

then tested if it should generate a clause in PM). Then the computation of the least

model of the reduct is done in linear time in the size of P using the Dowling-Gallier

algorithm. Finally, we need to check if M coincides with NM , again an easy task.

Therefore, the language SM is in the class NP.

Next, we will show a polynomial time reduction of SAT to SM . Here is how we do

this. Let T be a finite clausal theory. We assume that T does not contain tautologies.

For each variable p we choose two new atoms which we denote as in(p) and out(p).
We also choose one new additional propositional variable x. We will now construct

a program PT . The program PT consists of two parts. The first of these depends

only on the set of variables of T , not T itself. We will call it the generator program,

G. The second part, which we call the checker program,QT , depends on T . In fact,
the idea of the generator program is very similar to one behind the Turing machine

for testing satisfiability.

The generator program consists of 2n program clauses (here n is the number of

variables in VarT). They are:

in(pj)← not out(pj)
out(pj)← not in(pj)

We add such a pair of program clauses for each pj , 1 ≤ j ≤ n.
Then for each clause D : q1 ∨ . . . ∨ qk ∨ ¬r1 ∨ . . . ∨ ¬rm of T we add a program

clause CD:

x← out(q1), . . . , out(qk), in(r1), . . . , in(rm),not x

(the same x is used in all these clauses). Then we form the checker part of our

program QT as {CD : D ∈ T }. Finally, we set PT = G ∪ QT . Clearly the

computation of PT can be done in linear time in the size of T . We now have the

following fact.

PROPOSITION 14.11
The program PT possesses stable models if and only if T is satisfiable. In

© 2009 by Taylor and Francis Group, LLC

Answer set programming 337

fact, the assignment M 7→ NM where

NM = {p : in(p) ∈M} ∪ {¬q : out(q) ∈M},

establishes one-to-one and “onto” correspondence between stable models of PT
and satisfying assignments for T .

Corollary 14.2 follows immediately.

COROLLARY 14.2
The problem SM is an NP-complete problem.

14.8 Exercises

1. Prove that supported models of a program P can contain only variables that

occur in heads of clauses of P . Conclude that the same property holds for stable

models of P .

2. Find all supported models and all stable models for the program P .

p← q, r
q ← p
r ← not s

3. The operator GLP is antimonotone. Therefore, if we iterate it twice, that is, if

we executeM 7→ GLP (GLP (M)) we get a monotone operator. Prove it.

4. So now we know that GL2
P is a monotone operator. By the Knaster-Tarski

fixpoint theorem it possesses the least and largest fixpointsM1 andM2. Prove

that GLP (M1) = M2 and GLP (M2) = M1.

5. Prove that every fixpointN of GLP satisfies the inclusions

M1 ⊆ N ⊆M2.

6. Use Gelfond and Lifschitz theorem to show that the stable models of a logic

program form an antichain. That is, wheneverM1,M2 are stable models of a

logic program P andM1 ⊆M2 thenM1 = M2.

7. Let us modify the Gelfond-Lifschitz reduct by pruning more. This construction

is due to Truszczyński. Namely, we eliminate all clauses with bodies not sat-

isfied by M (clearly, the Gelfond-Lifschitz reduct prunes less). Then as in the

second part of the reduct procedure we drop the negative part. We get a smaller

Horn program. Let us call it PM−. Now, we get a modified operator; we assign

© 2009 by Taylor and Francis Group, LLC

338 Introduction to Mathematics of Satisfiability

toM the least model of PM−. Prove that the fixpoints of this operator and the

fixpoints of the Gelfond-Lifschitz operator coincide.

8. Prove the Dung theorem: For every program P there is a program P ′ such that

bodies of clauses of P ′ have no positive literals, and stable models of P ′ and of

P coincide.

9. The “easy” part of the Lin and Zhao theorem is the part that says that stable

models of P are supported models of P that also satisfy LZ (P). Prove that

easy part.

10. The “hard ” part of Lin and Zhao Theorem is the other implication. Prove it.

11. Prove the validity of the reduction of SAT to SM given in Proposition 14.11.

© 2009 by Taylor and Francis Group, LLC

Chapter 15

Conclusions

Logic has been a domain of human intellectual activity for thousands of years. Every

major civilization needed to create tools for humans to reason. The need for precision

of argumentation, for legal reasoning, and for creating the order in the world that

surrounds humans forced codification of the principles of reasoning.

Surprisingly, the natural “consumer” of precise thinking, namely mathematicians,

did not pay much attention to the formalization of rules of reasoning. Even today

mathematicians are often biased against those who want to overformalize the way

mathematics is produced. There is something in such an attitude. After all, mathe-

maticians practiced their craft for as long a time as logic has been around, or even

longer. The arguments of Euclid are as valid today as they were over two thousand

years ago. Many constructions, say in number theory, in geometry, and in calculus,

are grounded in the experience of mathematicians who lived long ago. Moreover,

modulo the use of concepts and techniques developed recently, many results of recent

past and present could be easily explained to the mathematicians of past centuries.

So, the issue of correctness of the reasoning is not the first priority for a working

mathematician.

The raise of ineffective mathematics of late nineteenth century, especially the ab-

stract concepts of sets, and specifically of abstract functions (earlier mathematicians

did not accept ineffective constructions of functions), forced mathematicians and

philosophers to look at the principles of defining and manipulation of such objects.

The emergence of paradoxes such as the Russell paradox (the issue of existence of

the set consisting of sets that do not belong to themselves), of Cantor paradox (the

set of all sets), and others forced the development of formal methods dealing with the

issues such as the logic used by mathematicians, the question of semantics of formal

languages of logic, and other related issues such as definability, axiomatizability, and

other concepts.

While the mathematicians and philosophers struggled with the nature of mathemati-

cal reasoning, the new issues of the effectiveness of reasoning and the decidability of

fragments of mathematics became more urgent. One can only say that a premonition

of the advent of computers as we know them resulted in works by Hilbert, Gödel,

Turing, Church, Kleene, Mostowski, and Post that proposed some variants of the

computability theory that persist even today.

But it was the invention of digital computers during World War II that changed ev-

erything. Perhaps not immediately, but soon after the introduction of computers, it

339

© 2009 by Taylor and Francis Group, LLC

340 Introduction to Mathematics of Satisfiability

became clear that they could deal with some reasoning problems. Suddenly, com-

puters could solve problems that humanity could deal with “in principle” but not

“in practice.” Of course, one needs to program computers, but once computers with

stored programs were built, a new perspective opened.

Most of the material covered in this book relates to the techniques developed after it

became clear that humanity has, in computers, a collection of tools that change the

rules completely. The question of effectiveness of constructions, of algorithms that

really could be implemented, became urgent.

One can think about computers as tools for dealing with problems that can be suit-

ably formalized, but on another level, a computer is just an electronic device. The

underlying combinational and sequential circuits need to be verified and tested. The

software that runs on the computers also needs to be verified and tested. It did not

take long for computer scientists to realize that computers themselves can be used to

test the designs of both hardware and software. This self-reference of computers is,

on reflection, amazing. Computer science deals with this problem by considering a

universal Turing machine. But we cannot realize a physical implementation of such

universal device, we can only approximate it with the real hardware and software

with their limitations resulting from the fact that everything we deal with must be

finite.

Of course, as we build stronger computers, with bigger CPUs, much larger designs

have to be tested and verified. Clearly, sometimes the laws of physics will start to

intervene. In the meanwhile we certainly can enjoy the availability of computers in

their many roles: of computing devices, of controlling devices, and of communica-

tion devices.

The many roles of computers resulted in an explosion of formalisms which often are

called logic. Many of these systems provide the community with a language that can

be used to describe a task at hand (say communication of processes, or description of

communication protocols, or execution of programs). Very abstract languages such

as modal logics devised by philosophers to describe intentional concepts such as

certainty or possibility suddenly became practical, allowing us to describe properties

of abstract machines. Even more, the need to verify properties of such machines

resulted in model checking algorithms (a topic entirely absent in this book), that

allows for testing models of various kinds of automata (a gross simplification) for

various properties.

Very often the reasoning tasks of these new logics are reduced to reasoning tasks of

classical propositional logics. What it means is that various reasoning tasks of those

logics are reduced to other reasoning tasks for classical logic provers or solvers. In

effect, programs performing reasoning tasks in classical propositional logic serve as

back-end systems for these new logical systems. Model checking is one example of

such a situation.

The quest for artificial intelligence and in particular for formalization of common-

sense reasoning resulted in great progress in logic. We touched on this (but only the

“tip of the iceberg”) in Chapter 14.

The majority of topics covered in this book (but not all) has been invented since the

advent of computers (i.e., in the 1950s or later). The roots of the theory presented

© 2009 by Taylor and Francis Group, LLC

Conclusions 341

in this book were created by the great logicians of the past, especially Boole, De

Morgan, Frege of the nineteenth century and Russell, Hilbert, Tarski, Bernays and

others in the early twentieth century. But as we said, the premonition of computers,

visible already in the work of Gödel, Turing, and others, was the true impetus for the

parts of logic treated here. The fundamental tools used here, such as the Knaster-

Tarski fixpoint theorem, were also developed at the same time. But their real power

became apparent only after they were applied in computer science. Similarly, the

work of Post on Boolean functions (we presented several aspects, but not the deeper

aspect of his work on the so-called Post lattice) had to wait for its most important

applications until computers became ubiquitous.

We believe that anyone who wants to study seriously the foundations of algorithms

that are used in reasoning systems (solvers, provers) needs most of the material cov-

ered in this book. We do not claim that this book prepares the reader to do the

research in the area of computational logic (or more precisely of applications of

computational propositional logic). But we are sure that anyone researching compu-

tational logics will have to deal with issues at least partly similar to those presented

and studied in this book.

© 2009 by Taylor and Francis Group, LLC

References

[ARSM07] F. Aloul, A. Ramani, K. Sakallah, and I. Markov. Solution and opti-

mization of systems of pseudo-Boolean constraints, IEEE Transactions

on Computers, 56, pp. 1415–1424, 2007.

[Apt03] K.R. Apt. Principles of Constraint Programming, Cambridge Univer-

sity Press, 2003.

[Ba03] C. Baral. Knowledge Representation, Reasoning and Declarative Prob-

lem Solving, Cambridge University Press, 2003.

[Ch09] H. Chen. A Rendevous of Logic, Complexity and Algebra. To appear in

ACM Computing Surveys.

[Co71] S.A. Cook. The complexity of theorem proving procedures, Proceed-

ings of the 3rd ACM Symposium on Theory of Computing, pp. 151–158,

1971.

[CCT87] W. Cook, C. Coullard, and G. Turan. On the complexity of cutting-plane

proofs, Discrete Applied Mathematics, 18 pp. 25–38, 1987.

[Cr57] W. Craig. Linear Reasoning, A new form of Herbrand-Gentzen theorem,

Journal of Symbolic Logic, 22, pp. 250–268, 1957.

[CKS01] N. Cregignou, S. Khanna, and M. Sudan. Complexity Classifications of

Boolean Constraint Satisfaction Problems, SIAM Press, 2001.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification the-

ory, Journal of the ACM, 7, pp. 201–215, 1960.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for the-

orem proving, Communications of the ACM, 5, pp.394–397, 1962.

[DM94] G. De Micheli. Synthesis and Optimization of Digital Circuits,

McGraw-Hill, 1994.

[De89] R. Dechter. Enhancement schemes for constraint processing: backjump-

ing, learning and cutset disposition, Artificial Intelligence, 41, pp. 273–

312, 1989/1990.

[DGP04] H.E. Dixon, M.L. Ginsberg, and A.J. Barkes. Generalizing Boolean sat-

isfiability I: background and survey of existing work, Journal of Artifi-

cial Intelligence Research, 21, 193–243, 2004.

343

© 2009 by Taylor and Francis Group, LLC

344 References

[DG84] W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing sat-

isfiability of propositional Horn formulae, Journal of Logic Program-

ming, 1, pp. 267–284, 1984.

[DLMT04] D.M. Dransfield, L. Liu, V.W. Marek, and M. Truszczynski. Satisfia-

bility and computing van der Waerden numbers, Electronic Journal of

Combinatorics, 11:#R41, 2004.

[ET01] D. East and M. Truszczyński. Propositional satisfiability in answer-set

programming, KI 2001, Springer Lecture Notes in Computer Science

2174, pp. 138–153, Springer-Verlag, 2001.

[ET04] D. East and M. Truszczyński. Predicate-calculus based logics for mod-

eling and solving search problems. ACM Transactions on Computa-

tional Logic, 7, pp. 38–83, 2006.

[EIMT06] D. East, M. Iakhiaev, A. Mikitiuk, and M. Truszczyński. Tools for mod-

eling and solving search problems, AI Communications, 19, pp. 301–

312, 2006.

[Fit90] M. Fitting. First-Order Logic and Automated Theorem Proving,

Springer-Verlag, 1990.

[Fr95] J.W. Freeman. Improvements to Propositional Satisfiability Search Al-

gorithms, Ph.D. dissertation, University of Pennsylvania, 1995.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability; a Guide

to the Theory of NP-Completeness, W.H. Freeman, 1979.

[Ha85] A. Haken. Intractability of resolution, Theoretical Computer Science,

39, pp. 297–308, 1985.

[HHLM07] P.R. Hervig, M.J.H. Heule, P.M. van Lambalgen, and H. van Maaren. A

new method to construct lower bounds for van der Waerden numbers,

Electronic Journal of Combinatorics 14:#R6, 2007.

[Ho00] J. Hooker. Logic-Based Methods for Optimization, Wiley, 2000.

[Kr67] M. Krom, The decision problem for segregated formulas in first-order

logic,Mathematica Scandinavica, 21, pp. 233-240, 1967.

[KM84] K. Kuratowski and A. Mostowski. Set Theory, North-Holland, 1984.

[La06] D. Lau. Function Algebras on Finite Sets, Springer-Verlag, 2006.

[LT06] L. Liu and M. Truszczyński. Properties and applications of monotone

and convex constraints. Journal of Artificial Intelligence Research, 27,

pp. 299–334, 2006.

[LZ04] L. Liu and M. Truszczyński. Properties and

© 2009 by Taylor and Francis Group, LLC

References 345

[LM05] F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic program

by SAT solvers. Artificial Intelligence 157, pp. 115–137, 2004. struc-

tures for backtrack search SAT solvers, Annals of Mathematics and Ar-

tificial Intelligence, 43, pp. 137–152, 2005.

[Mak87] J.A. Makowsky. Why Horn formulas matter in computer science: ini-

tial structures and generic examples, Journal for Computer and System

Sciences, 34, pp. 266–292, 1987.

[MT93] V.W. Marek and M. Truszczyński. Nonmonotonic Logic – Context-

Dependent Reasoning, Springer-Verlag, 1993.

[MS95] J.P. Marques-Silva. Search algorithms for satisfiability problems in

combinatorial switching circuits, Ph.D. dissertation, University of

Michigan, 1995.

[MS99] J. Marques-Silva, K. Sakallah. GRASP: A search algorithm for proposi-

tional satisfiability, IEEE Transactions on Computers, 48, pp. 506–521,

1999.

[NS93] A. Nerode and R.A. Shore. Logic for Applications, Springer-Verlag,

1993.

[Qu52] W.V. Quine. The problem of simplifying truth functions, American

Mathematical Monthly, 59, pp. 521–531, 1952.

[Ro65] J.A. Robinson. A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12, pp. 23–41, 1965.

[Sch78] T.J. Schaefer. The complexity of satisfiability problems, Proceedings of

the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–

226, 1978.

[Sh67] J.R. Shoenfield. Mathematical Logic, A.K. Peters/Association of Sym-

bolic Logic (reprint), 2001.

[SNS02] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing

the stable model semantics, Artificial Intelligence, 138, pp. 181–234,

2002.

[Sip06] M. Sipser. Introduction to the Theory of Computation, Second Edition,

Thomson, 2006.

[Sl67] J.R. Slagle. Automated theorem proving with renameable and semantic

resolution, Journal of the ACM, 14, pp. 687–697, 1967.

[Sm95] R. Smullyan. First-Order Logic, Dover, 1995.

[SP05] S. Subbarayan and D.K. Pradhan. NiVER - non increasing variable

elimination resolution for preprocessing SAT instances, in: SAT-2004,

Springer Lecture Notes in Computer Science 3542, pp. 276–291, 2005.

© 2009 by Taylor and Francis Group, LLC

346 References

[Ta55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications, Pa-

cific Journal of Mathematics, 5, pp. 285–309, 1955.

[WB96] H.P. Williams and S.C. Brailsford. Computational logic and integer pro-

gramming, in: J.E. Beasley (ed.), Advances in Linear and Integer Pro-

gramming, pp. 249–281, Clarendon Press, 1996.

[ZS00] H. Zhang and M.E. Stickel. Implementing the Davis-Putnam Method,

in: SAT-2000, I. Gent, H. van Maaren, and T. Walsh (eds.), pp. 309–

226, IOS Press, 2002.

[ZM+01] L. Zhang, C.F. Madigan, M.H. Moskewicz, and S. Malik. Efficient con-

flict driven learning in a Boolean satisfiability solver, Proceedings of

IEEE ICCAD, pp. 279–285, 2001.

© 2009 by Taylor and Francis Group, LLC

Index

2CNF, 185

Algorithm A+, 180
AlgorithmA_, 181
Algorithm DPLLdec, 159
Algorithm DPLLsearch, 160
Algorithm DPsearch, 151
Algorithm DPtest, 150
Algorithm Dptest, 150
Antimonotone constraints, 276
Autarkset, 124
Autarky, 23

existence, 243
for Horn theories, 176
for Krom theories, 186

Basis for a set of clauses, 114
BCP, 155
Bitwise conjunction, 169
Bitwise disjunction, 182
Bitwise execution of a function, 308
Body of a program clause, 171
Body of the program clause, 322
Boolean Algebra, 4

complete, 5
Boolean Consiraint Propagation, 155

for Lcc, 270
Boolean function

essentially unary, 311
idempotent, 311
projection, 311

Boolean polynomials, 79
Branch

open, 139

Call-graph
positive, 326

Canonical tableau, 140

Canonical valuation, 109
Cardinality clauses, 269
Cardinality constraint, 267

lower-bound, 268
upper-bound, 268

Change set, 193
Clausal logic, 101
Clause, 12,23, 102

constraint, 102
Horn, 167
Krom, 185

Clone, 311
Closed-world Assumption, 286
Closure under resolution, 108
Compactness of Propositional Logic,

95
Complete set of clauses, 98
Complete set of functors, 75
Complete set of literals, 17
Completion formula, 324
Consistent set of formulas, 15
Consistent set of literals, 20
Constraint, 306
Constraint satisfaction problems, 292

solutions, 292
Continuity of Cn operator, 99
Convex constraints, 281
Cook-Levin Theorem, 236
Craig lemma, 66

strong form, 69
Crossing out variables, 128
CSP, 285

"easy cases", 300
complexity, 298
Horn case, 300
locally finite, 296

Cutting-plane rule, 208

347

348

CWA-consistent theory, 287

Davis-Putnam Algorithm, 144
Davis-Putnam lemma, 118
Davis-Putnam reduct, 117
De Morgan functors, 73
Deduction Theorem, 40
Diagram of a relation, 287
DIMACS format, 254
Disambiguation of variables, 306
Dowling-Gallier Algorithm, 174
Dual-constraint, 179
Duality, 38

Entailment, 16, 39

Fages theorem, 331
Family of sets closed under intersec

tions, 167
Finitely satisfiable set of formulas, 98
Finitely satisfiable theory, 95
Fixpoint, 6
Formula, 11

affine, 199
nontautological, 24
positive, 165
symmetric, 38

Formulas
equivalent, 32
signed, 137

Function, 2
idempotent, 311

Functor, 11,73
0-consistent, 83
1-consistent, 83
linear, 83
monotone, 83
self-dual, 83
Sheffer-like, 88

Geiger theorem, 309
Gelfond-Lifschitz operator, 327
Gelfond-Lifschitz reduct, 327
Graph coloring as SAT, 259

Head of a program clause, 171, 322

Index

Herbrand base, 262
Herbrand structure, 262
Herbrand-consistent theory, 264
Hintikkaset, 135
Hintikka Theorem, 136
Hit set, 132,279
Horn Theorem, 167
HornCSP algorithm, 302

Idempotent function, 311
Instance of a constraint, 306
Inlerpolanl, 63

strong, 69
Interpolation lemma, 66

Konig lemma, 94
Konig Theorem, 105
Kleene logic, 18
Kleene ordering, 19
Kleene theorem, 22
Kleene Theorem for Lcc, 271
Kleene Theorem for Lwtc, 276
Kleene three-valued logic, 18
Knaster-Tarski Theorem, 6
Krom clause, 185
Kullmann theorem, 243

Language Lcc, 269
Lattice, 4

Axioms, 4
complete, 4
distributive, 4
monotone operator, 6
ordering, 4

Lean set, 124
Least fixpoint theorem, 6
Least model of Horn formula, 170
Level of the variable, 326
Lewis Theorem, 197
Lindenbaum Algebra, 32
Lindcnbaum theorem, 98
Linear-combination rule, 207
Literal, 12

dual, 35
pure, 118

Index

Localization Theorem, 15
Loop,332

Maximal satisfiable subset of a clause
set, 130

Minimal resolution consequence, 110
Minimally unsatisfiable set ofclauses,

103
Minterm, 56
Model of a formula F, 40
Model of a program, 322

minimal, 323
stable, 327
supported, 325

Monomial, 79
Monotone constraints, 276
Monotone operator, 6

Negation, nonstandard, 321
Normal Form, 45
Normal form, 45

canonical, 53
complete, 56
conjunctive, 50
disjunctive, 50
negation, 46
reduced, 54

Occurrence of a variable, 47
Operation bcpF, 155
Operation Mod, 39
Operation 7%, 39
Operation BCP, 155
Operator

fixpoint, 6
Operator TH , 172
Ordinal number, 5

limit, 6
successor, 6

Partial assignments, 18
Partial valuation, 18
Partial valuations, 18
Permutation

consistent, 35

349

of literals, 35
Permutation of literals

shift, 195
Permutation of variables, 195
Plain clause in a set ofclauses, 126
Polarity of a literal, 17
Polymorphism, 308
Polynomials, 80
Poset, 2

Bounds, 3
Chain in a poset, 3
chain-complete, 9
classification of elements, 3
well-founded, 5

Post classes, 83
Post criterion for completeness, 85
Post Theorem, 85
Postlixpoint of an operator, 6
Power set of X, 1
pp-definability, 306
Predicate Logic, 253
Prefixpoint of an operator, 6
Primitive-positive definability, 306
Program clause, 167
Program clauses

normal, 322
Propositional interpretation of a pro

gram, 323
Propositional Schemata, 254
Propositional variable, 11
Pseudo-Boolean constraint, 267
Pseudo-Boolean inequality, 206,267
Pure literal, 23, 118

Quine Theorem, 110

Rank of a formula, 12
reduct, 146
Reduct by a valuation, 146
Relation

equivalence, 2
ordering, 2

Relation ~, 32
Relation, cxtcnsional, 289
Relation, intentional, 289

350 Index

Relations
classification, 2

Renameable-A' formula, 196
Resolution

completeness, 110
semantic, 119
soundness, 109
Unit, 174
unit, 156

Resolution consequence, 110
Resolution derivation of a clause, 108
Resolution refutation, 113
Resolution rule of proof, 107
Resolvent, 108
Robinson Theorem, 16
Rosenberg Theorem, 311
Rule

structural, 210

Satisfaction, 15
Satisfiable set of formulas, 15
Schacfcr Theorem, 310

"easy part", 304
Semantical Consequence, 39
Shift permutation, 195
Sign pattern of a matrix, 218
Solutions of constraint satisfaction

problems, 292
Solver, 253
Stable models, 327
Standard polynomials, 80
Substitution Lemma, 30
Subsumption rule, 111
Supported model, 325

Table, 13,75
of a formula, 75

Table meihod for tesiing satisfiability
and validity, 134

Tableau, 137,139
branch, 139
canonical, 140
finished, 139

Tableau rules, 138
Tail of a polynomial, 81

Tarski propositional fixpoint theorem,
52

Tautology, 23,28
Theory

finitely satisfiable, 95
Three-valued truth function, 20
Touching, 23
Transversal, 279
Tree, 94
Truth tables, 13
Turing machine, 228

coding runs, 232
run, 229

Unit resolution, 156
Unsatisfiable set of clauses, 103

Valuation, 13, 14
partial, 13, 18

Variable
assignment, 14
guarded, 330

VER, 144

Weight constraints, 273
lower-bound, 273
upper-bound, 273

Zhegalkin polynomials, 80
Zorn lemma, 3

Mathematics

INTRODUCTION TO

MATHEMATICS OF

SATISFIABILITY

Although this area has a history of over 80 years, it was not until the creation of efficient

SAT solvers in the mid-1990s that it became practically important, finding applications

in electronic design automation, hardware and software verification, combinatorial

optimization, and more. Exploring the theoretical and practical aspects of satisfiability,

Introduction to Mathematics of Satisfiability focuses on the satisfiability of theories

consisting of propositional logic formulas. It describes how SAT solvers and techniques are

applied to problems in mathematics and computer science as well as important applications

in computer engineering.

The book first deals with logic fundamentals, including the syntax of propositional logic.

complete sets of functors, normal forms, the Craig lemma, and compactness. It then

examines clauses, their proof theory and semantics, and basic complexity issues of

propositional logic. The final chapters on knowledge representation cover finite runs of

Turing machines and encodings into SAT. One of the pioneers of answer set programming,

the author shows how constraint satisfaction systems can be worked out by satisfiability

solvers and how answer set programming can be used for knowledge representation.

Features
• Focuses on both theoretical and practical aspects of satisfiability

• Discusses the important topic of clausal logic

• Reduces the satisfiability of clausal theories to classical problems of integer

programming and linear algebra

• Offers shortcuts to programming with SAT, such as a variation of predicate logic

without function symbols, cardinality constraints, and monotone constraints

• Outlines the foundations of answer set programming and how it can be used for

knowledge representation

• Explains most mathematics of SAT from first principles

• Provides additions, corrections, and improvements to the book on the author's

website

CRC Press
Taylor & Francis Croup
an informa business
w w w . c r c p r e s s . c o m

6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
270 Madison Avenue
New York, NY 10016
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

http://www.crcpress.com

	Cover Page
	Title: INTRODUCTION TO MATHEMATICS OF SATISFIABILITY
	ISBN 978-1439801673
	Contents
	Preface
	Chapter 1: Sets, lattices, and Boolean algebras
	1.1 Sets and set-theoretic notation
	1.2 Posets, lattices, and Boolean algebras
	1.3 Well-orderings and ordinals
	1.4 The fixpoint theorem
	1.5 Exercises

	Chapter 2: Introduction to propositional logic
	2.1 Syntax of propositional logic
	2.2 Semantics of propositional logic
	2.3 Autarkies
	2.4 Tautologies and substitutions to tautologies
	2.5 Lindenbaum algebra
	2.6 Satisfiability and permutations
	2.7 Duality
	2.8 Semantical consequence, operations Mod and Th
	2.9 Exercises

	Chapter 3: Normal forms of formulas
	3.1 Canonical negation-normal form
	3.2 Occurrences of variables and three-valued logic
	3.3 Canonical disjunctive and conjunctive normal forms
	3.4 Reduced normal forms
	3.5 Complete normal forms
	3.6 Lindenbaum algebra revisited
	3.7 Other normal forms
	3.8 Exercises

	Chapter 4: The Craig lemma
	4.1 Syntactic transformations and the Craig lemma
	4.2 Strong Craig lemma
	4.3 Tying up loose ends
	4.4 Exercises

	Chapter 5: Complete sets of functors
	5.1 Beyond De Morgan functors
	5.2 Tables, complete sets of functors
	5.3 Field structure in Bool, Boolean polynomials
	5.4 Incomplete sets of functors, Post classes
	5.5 Post criterion for completeness
	5.6 If-then-else functor
	5.7 Exercises

	Chapter 6: Compactness theorem
	6.1 König lemma
	6.2 Compactness of propositional logic, denumerable case
	6.3 Continuity of the operator Cn
	6.4 Exercises

	Chapter 7: Clausal logic and resolution
	7.1 Clausal logic, satisfiability problem and its basic properties
	7.2 Resolution rule, closure under resolution
	7.3 Completeness results
	7.4 Query-answering, computing the basis of the closure under resolution
	7.5 Reduct by a literal, the Davis-Putnam lemma
	7.6 Semantic resolution
	7.7 Autark sets and lean sets
	7.8 Exercises

	Chapter 8: Testing satisfiability, finding satisfying assignment
	8.1 Table method
	8.2 Hintikka sets
	8.3 Tableaux
	8.4 Davis-Putnam algorithm, iterated single-literal resolution
	8.5 Boolean constraint propagation
	8.6 The Davis-Putnam-Logemann-Loveland (DPLL) Algorithm
	8.7 Improvements to DPLL?
	8.8 Reducing the search for satisfying valuation to testing satisfiability
	8.9 Exercises

	Chapter 9: Polynomial cases of SAT
	9.1 Positive formulas and negative formulas
	9.2 Horn formulas
	9.3 Autarkies for Horn theories
	9.4 Dual Horn formulas
	9.5 Krom formulas and 2-SAT
	9.6 SAT as a tool for manipulation of formulas, renameable variants of classes of clauses
	9.7 Affine formulas
	9.8 Exercises

	Chapter 10: Embedding SAT into integer programming and into matrix algebra
	10.1 Representing clauses by inequalities
	10.2 Resolution and other rules of proof
	10.3 Proving the pigeon-hole principle using the cutting plane rule
	10.4 Satisfiability and {–1,1}-integer programming
	10.5 Embedding SAT into matrix algebra
	10.6 Exercises

	Chapter 11: Coding runs of Turing machines, NP-completeness and related topics
	11.1 Nondeterministic Turing machines
	11.2 The language
	11.3 The propositional formula Fsigma,h,M
	11.4 Correctness of our coding
	11.5 Reduction to 3-clauses
	11.6 Direct coding of satisfaction of formulas as CNFs with additional variables; combinational circuits
	11.7 Decision problem for autarkies
	11.8 Search problem for autarkies
	11.9 Either-or CNFs, first two “easy cases” of SAT together
	11.10 Other cases
	11.11 Exercises

	Chapter 12: Computational knowledge representation with SAT – getting started
	12.1 Encodings of search problems into SAT, and DIMACS format
	12.2 Knowledge representation with predicate logic over finite domains, and reduction to SAT
	12.3 Cardinality constraints and the language Lcc
	12.4 Weight constraints, the language Lwtc
	12.5 Monotone and antimonotone constraints, characterization by means of cardinality constraints
	12.6 Exercises

	Chapter 13: Computational knowledge representation with SAT – handling constraint satisfaction
	13.1 Extensional and intentional relations, closed world assumption
	13.2 Constraint satisfaction problems and satisfiability
	13.3 Satisfiability as constraint satisfaction
	13.4 Polynomial cases of Boolean constraint satisfaction
	13.5 Schaefer dichotomy theorem for Boolean constraint satisfaction
	13.6 Exercises

	Chapter 14: Answer set programming, an extension of Horn logic
	14.1 Extending Horn logic by nonstandard negation in the bodies of clauses
	14.2 Models of programs
	14.3 Supported models, completion of the program
	14.4 Stable models of normal programs
	14.5 Answer set programming and SAT
	14.6 Knowledge representation and ASP
	14.6.1 Three-coloring of graphs in ASP
	14.6.2 Hamiltonian cycles in ASP

	14.7 Complexity issues for ASP
	14.8 Exercises

	Chapter 15: Conclusions
	References
	Index
	Back Page

