
ISBN: 978-1-4398-5802-8

9 781439 858028

90000

K12707

M e t h o d s o f
s tat i s t i c a l M o d e l

e s t i M at i o n

M
e

t
h

o
d

s
 o

f
 s

t
a

t
is

t
ic

a
l

M
o

d
e

l
 e

s
t

iM
a

t
io

n

J o s e p h M . h i l b e
a n d r e w P. R o b i n s o n

H
ilbe • R

obinson

Methods of Statistical Model Estimation examines the most important and popular
methods used to estimate parameters for statistical models and provide informative
model summary statistics. Designed for R users, the book is also ideal for anyone
wanting to better understand the algorithms used for statistical model fitting.

The text presents algorithms for the estimation of a variety of regression procedures
using maximum likelihood estimation, iteratively reweighted least squares regression,
the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed
for each method. The book starts with OLS regression and generalized linear models,
building to two-parameter maximum likelihood models for both pooled and panel
models. It then covers a random effects model estimated using the EM algorithm and
concludes with a Bayesian Poisson model using Metropolis-Hastings sampling.

The book’s coverage is innovative in several ways. First, the authors use executable
computer code to present and connect the theoretical content. Therefore, code is
written for clarity of exposition rather than stability or speed of execution. Second, the
book focuses on the performance of statistical estimation and downplays algebraic
niceties. In both senses, this book is written for people who wish to fit statistical models
and understand them.

About the Authors
Joseph M. Hilbe is a Solar System Ambassador with NASA’s Jet Propulsion
Laboratory at the California Institute of Technology, an adjunct professor of statistics
at Arizona State University, and an Emeritus Professor at the University of Hawaii. An
elected fellow of the American Statistical Association and elected member (fellow) of
the International Statistical Institute, Professor Hilbe is president of the International
Astrostatistics Association. He has authored twelve statistics texts, including Logistic
Regression Models, two editions of the bestseller Negative Binomial Regression, and
two editions of Generalized Estimating Equations (with J. Hardin).

Andrew P. Robinson is Deputy Director of the Australian Centre for Excellence in
Risk Analysis and Senior Lecturer in the Department of Mathematics and Statistics
at the University of Melbourne. He has coauthored the popular Forest Analytics with
R and the best-selling Introduction to Scientific Programming and Simulation using
R. Dr. Robinson is the author of “IcebreakeR,” a well-received introduction to R that
is freely available online. With Professor Hilbe, he authored the R COUNT and MSME
packages, both available on CRAN. He has also presented at numerous workshops on
R programming to the scientific community.

Statistics

M E T H O D S O F
S TAT I S T I C A L M O D E L

E S T I M AT I O N

K12707_FM.indd 1 4/29/13 12:16 PM

K12707_FM.indd 2 4/29/13 12:16 PM

M E T H O D S O F
S TAT I S T I C A L M O D E L

E S T I M AT I O N

J o s e p h M . H i l b e
J e t P r o p u l s i o n L a b o r a t o r y

C a l i f o r n i a I n s t i t u t e o f Te c h n o l o g y, U S A
a n d

A r i z o n a S t a t e U n i v e r i s t y, U S A

A n d r e w P. R o b i n s o n
A C E R A & D e p a r t m e n t o f M a t h e m a t i c s a n d S t a t i s t i c s

T h e U n i v e r s i t y o f M e l b o u r n e , A u s t r a l i a

K12707_FM.indd 3 4/29/13 12:16 PM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130426

International Standard Book Number-13: 978-1-4398-5803-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface ix

1 Programming and R 1

1.1 Introduction . 1

1.2 R Specifics . 1

1.2.1 Objects . 3

1.2.1.1 Vectors . 3

1.2.1.2 Subsetting 7

1.2.2 Container Objects . 7

1.2.2.1 Lists . 8

1.2.2.2 Dataframes 9

1.2.3 Functions . 10

1.2.3.1 Arguments 11

1.2.3.2 Body . 13

1.2.3.3 Environments and Scope 14

1.2.4 Matrices . 16

1.2.5 Probability Families 19

1.2.6 Flow Control . 22

1.2.6.1 Conditional Execution 23

1.2.6.2 Loops . 23

1.2.7 Numerical Optimization 25

1.3 Programming . 27

1.3.1 Programming Style . 27

1.3.2 Debugging . 28

1.3.2.1 Debugging in Batch 29

1.3.3 Object-Oriented Programming 30

1.3.4 S3 Classes . 30

1.4 Making R Packages . 34

1.4.1 Building a Package . 35

1.4.2 Testing . 36

1.4.3 Installation . 36

1.5 Further Reading . 37

1.6 Exercises . 37

v

vi

2 Statistics and Likelihood-Based Estimation 39

2.1 Introduction . 39

2.2 Statistical Models . 39

2.3 Maximum Likelihood Estimation 41

2.3.1 Process . 41

2.3.2 Estimation . 45

2.3.2.1 Exponential Family 46

2.3.3 Properties . 47

2.4 Interval Estimates . 49

2.4.1 Wald Intervals . 49

2.4.2 Inverting the LRT: Profile Likelihood 50

2.4.3 Nuisance Parameters 52

2.5 Simulation for Fun and Profit 56

2.5.1 Pseudo-Random Number Generators 56

2.6 Exercises . 59

3 Ordinary Regression 61

3.1 Introduction . 61

3.2 Least-Squares Regression . 62

3.2.1 Properties . 64

3.2.2 Matrix Representation 66

3.2.3 QR Decomposition . 69

3.2.4 Example . 71

3.3 Maximum-Likelihood Regression 74

3.4 Infrastructure . 76

3.4.1 Easing Model Specification 76

3.4.2 Missing Data . 77

3.4.3 Link Function . 78

3.4.4 Initializing the Search 78

3.4.5 Making Failure Informative 79

3.4.6 Reporting Asymptotic SE and CI 79

3.4.7 The Regression Function 80

3.4.8 S3 Classes . 82

3.4.8.1 Print . 82

3.4.8.2 Fitted Values 83

3.4.8.3 Residuals . 84

3.4.8.4 Diagnostics 85

3.4.8.5 Metrics of Fit 87

3.4.8.6 Presenting a Summary 89

3.4.9 Example Redux . 91

3.4.10 Follow-up . 94

3.5 Conclusion . 94

3.6 Exercises . 94

vii

4 Generalized Linear Models 97

4.1 Introduction . 97

4.2 GLM: Families and Terms 99

4.3 The Exponential Family . 102

4.4 The IRLS Fitting Algorithm 104

4.5 Bernoulli or Binary Logistic Regression 105

4.5.1 IRLS . 111

4.6 Grouped Binomial Models 114

4.7 Constructing a GLM Function 120

4.7.1 A Summary Function 125

4.7.2 Other Link Functions 128

4.8 GLM Negative Binomial Model 129

4.9 Offsets . 133

4.10 Dispersion, Over- and Under- 136

4.11 Goodness-of-Fit and Residual Analysis 139

4.11.1 Goodness-of-Fit . 139

4.11.2 Residual Analysis . 141

4.12 Weights . 143

4.13 Conclusion . 143

4.14 Exercises . 144

5 Maximum Likelihood Estimation 145

5.1 Introduction . 145

5.2 MLE for GLM . 146

5.2.1 The Log-Likelihood 146

5.2.2 Parameter Estimation 148

5.2.3 Residuals . 149

5.2.4 Deviance . 150

5.2.5 Initial Values . 151

5.2.6 Printing the Object 151

5.2.7 GLM Function . 153

5.2.8 Fitting for a New Family 157

5.3 Two-Parameter MLE . 160

5.3.1 The Log-Likelihood 160

5.3.2 Parameter Estimation 162

5.3.3 Deviance and Deviance Residuals 163

5.3.4 Initial Values . 165

5.3.5 Printing and Summarizing the Object 165

5.3.6 GLM Function . 165

5.3.7 Building on the Model 171

5.3.8 Fitting for a New Family 173

5.4 Exercises . 176

viii

6 Panel Data 177

6.1 What Is a Panel Model? . 177
6.1.1 Fixed- or Random-Effects Models 181

6.2 Fixed-Effects Model . 181
6.2.1 Unconditional Fixed-Effects Models 181
6.2.2 Conditional Fixed-Effects Models 183
6.2.3 Coding a Conditional Fixed-Effects Negative Binomial 185

6.3 Random-Intercept Model . 188
6.3.1 Random-Effects Models 188
6.3.2 Coding a Random-Intercept Gaussian Model 191

6.4 Handling More Advanced Models 194
6.5 The EM Algorithm . 194

6.5.1 A Simple Example . 196
6.5.2 The Random-Intercept Model 197

6.6 Further Reading . 201
6.7 Exercises . 202

7 Model Estimation Using Simulation 203

7.1 Simulation: Why and When? 203
7.2 Synthetic Statistical Models 205

7.2.1 Developing Synthetic Models 205
7.2.2 Monte Carlo Estimation 209
7.2.3 Reference Distributions 216

7.3 Bayesian Parameter Estimation 219
7.3.1 Gibbs Sampling . 229

7.4 Discussion . 230
7.5 Exercises . 231

Bibliography 233

Index 239

Preface

Methods of Statistical Model Estimation has been written to develop a partic-
ular pragmatic viewpoint of statistical modelling. Our goal has been to try to
demonstrate the unity that underpins statistical parameter estimation for a
wide range of models. We have sought to represent the techniques and tenets
of statistical modelling using executable computer code. Our choice does not
preclude the use of explanatory text, equations, or occasional pseudo-code.
However, we have written computer code that is motivated by pedagogic con-
siderations first and foremost.

An example is in the development of a single function to compute deviance
residuals in Chapter 4. We defer the details to Section 4.7, but mention here
that deviance residuals are an important model diagnostic tool for generalized
linear models (GLMs). Each distribution in the exponential family has its own
deviance residual, defined by the likelihood. Many statistical books will present
tables of equations for computing each of these residuals. Rather than develop
a unique function for each distribution, we prefer to present a single function
that calls the likelihood appropriately itself. This single function replaces five
or six, and in so doing, demonstrates the unity that underpins GLM. Of course,
the code is less efficient and less stable than a direct representation of the
equations would be, but our goal is clarity rather than speed or stability.

This book also provides guidelines to enable statisticians and researchers
from across disciplines to more easily program their own statistical models
using R. R, more than any other statistical application, is driven by the con-
tributions of researchers who have developed scripts, functions, and complete
packages for the use of others in the general research community. At the time
of this writing, more than 4,000 packages have been published on the Com-
prehensive R Archive Network (CRAN) website.

Our approach in this volume is to discuss how to construct several of the
foremost types of estimation methods, which can then enable readers to more
easily apply such methods to specific models. After first discussing issues re-
lated to programming in R, developing random number generators, numerical
optimization, and briefly developing packages for publication on CRAN, we
discuss in considerable detail the logic of major estimation methods, including
ordinary least squares regression, iteratively re-weighted least squares, max-
imum likelihood estimation, the EM algorithm, and the estimation of model
parameters using simulation. In the process we provide a number of guidelines
that can be used by programmers, as well as by statisticians and researchers
in general regarding statistical modelling.

ix

x

Datasets and code related to this volume may be found in the msme

package on CRAN. We also will have R functions and scripts, as well as
data, available for download on Prof. Hilbe’s BePress Selected Works website,
http://works.bepress.com/joseph_hilbe/. The code and data, together
with errata and a PDF document named MSME_Extensions.pdf, will be in
the msme folder on the site. The extensions document will have additional code
or guidelines that we develop after the book’s publication that are relevant
to the book. These resources will also be available at the publisher’s website,
http://www.crcpress.com/product/ISBN/9781439858028.

Readers will find that some of the functions in the package have not been
exported, that is, made explicitly available when the package is loaded in
memory. They can still be called, using the protocol shown in the following
example for Sjll:

msme:::Sjll(... insert arguments here as usual! ...)

That is, prepend the library name and three colons to the function call.
We very much encourage feedback from readers, and would like to have

your comments regarding added functions, operations and discussions that
you would like to see us write about in a future edition. Our goal is to have
this book be of use to you for writing your own code for the estimation of
various types of models. Moreover, if readers have written code that they
wish to share with us and with other readers, we welcome it and can put it in
the Extensions ebook for download. We will always acknowledge the author of
any code we use or publish. Annotated, self-contained code is always preferred!

Readers are assumed to have a background in R programming, although
the level of programming experience necessary to understand the book is
rather minimal. We attempt to explain every R construct and operation;
therefore, the text should be successfully used by anyone with an interest
in programming. Of course the more background one has in using R, and
in programming in general, the easier it will be to implement the code we
developed for this volume.

Overview

Chapter 1 is the introductory chapter providing readers with the basics of R
programming, including the specifics of R objects, functions, matrices, object-
oriented programming, and creating R packages.

Chapter 2 deals with the nature of statistical models and of maximum like-
lihood estimation. We then introduce random number generators and provide
code for constructing them, as well as for writing code for simple simula-
tion activities. We also outline the rationale for using profile likelihood-based
standard errors in place of traditional model-based standard errors.

xi

Chapter 3 addresses basic ordinary least squares (OLS) regression. Code
structures are developed that will be used throughout the book. Least-squares
regression is compared to full maximum likelihood methodology. Also dis-
cussed are problems related to missing data, reporting standard errors and
confidence intervals, and to understanding S3 class modelling.

Chapter 4 relates to the theory and logic of programming generalized lin-
ear models (GLM). We spend considerable time analyzing the iteratively re-
weighted least squares (IRLS) algorithm, which has traditionally been used for
the estimation of GLMs. We first demonstrate how to code specific GLM mod-
els as stand-alone functions, then show how all of them can be incorporated
within a GLM covering algorithm. The object is to demonstrate the develop-
ment of modular programming. A near complete GLM function, called irls,
is coded and explained, with code for the three major Bernoulli and binomial
models, Poisson, negative binomial, gamma, and inverse Gaussian models in-
cluded. We also provide the function with a wide variety of post estimation
statistics and a separate summary function for displaying regression results.
Topics such as over-dispersion, offsets, goodness-of-fit, and residual analysis
are also examined.

Chapter 5 develops traditional maximum likelihood methodology showing
how to write modular code for one- and two-parameter GLMs as full maximum
likelihood models. One parameter GLMs (function ml_glm) include binomial,
Poisson, gamma, and inverse Gaussian families. Our ml_glm2 function allows
modelling of two-parameter Gaussian, gamma, and negative binomial regres-
sion models. We also develop a model that was not previously available in R,
the heterogeneous negative binomial model, or NB-H. The NB-H model al-
lows parameterization of the scale parameter as well as for standard predictor
parameters.

Chapter 6 provides the logic and code for using maximum likelihood for
the estimation of basic fixed effects and random effects models. We provide
code for a conditional fixed effects negative binomial as well as a Gaussian
random intercept model. We also provide an examination of the logic and
annotated code for a working EM algorithm.

In the final chapter, Chapter 7, we address simulation as a method for
estimating the parameters of regression procedures. We demonstrate how to
construct synthetic models, then Monte Carlo simulation and finally how to
employ Markov Chain Monte Carlo simulation for the estimation of Poisson
regression coefficients, standard errors and associated statistics. In doing so
we provide the basis of Bayesian modelling. We do not, however, wish to
discuss Bayesian methodology in detail, but only insofar as the basic method
can be used in estimating model parameters. Fully working annotated code is
provided for the estimation of a Bayesian model with non-informative priors.
The code can easily be adapted for the use of other data and models, as well
as for the incorporation of priors.

Exercise questions are provided at the end of each chapter. We encourage

xii

the readers to try answering them. We have designed them so that they are
answerable given the information provided in the chapter.

Our goal throughout has been to produce a clear and fully understandable
volume on writing code for the estimation of statistical models using the
foremost estimation techniques that have been developed by statisticians over
the last half century. We attempt to use examples that will be of interest to
researchers across disciplines.

As a general rule, we will include R code that the reader should be able
to run, conditional on the successful execution of earlier code, and signal that
code with the usual R prompts ‘<’ and ‘+’. We will also include pseudo-code
that provides some greater generality but should not be run as is. We omit
the prompts for the pseudo-code to distinguish it from the executable code.

Acknowledgments

We wish to thank Rob Calver, statistics editor at Chapman & Hall/CRC
(Taylor and Francis), for believing in this project, and for allowing us to
write the book as we saw fit. Others whom we wish to thank include, [Hilbe]
Alain Zuur, Highland Statistics, James Hardin (University of South Carolina),
Robert Muenchen (University of Tennessee), and [Robinson] Mark Burgman
(University of Melbourne), Jeff Gove (USDA FS), John Maindonald (ANU),
Gordon Smyth (WEHI), and Murray Aitkin (University of Melbourne). We
thank the R and LATEX communities, and the authors and maintainers of
Sweave, for these phenomenal resources.

Authoring books such as this one takes a great deal of writing and re-
search time. However, most of our time was taken up in coding, testing, error
checking, running models, re-coding, and so forth. This effort takes consider-
able time and patience, time that would otherwise be spent with our families.
We therefore thank our families for not complaining about the times we were
physically, as well as mentally, absent while working on this volume. Specif-
ically, JMH wishes to acknowledge the support of his wife Cheryl, daughter
Heather, sons Michael and Mitchell, grandsons Austin and Shawn, and Sirr,
a white Maltese who keeps him company throughout the day when working
on the computer. APR is grateful for the support of Grace, his son Felix, and
Henry, a black-and-tan mutt who got walked to the beach far less often than
he would like.

Joseph M. Hilbe
Florence, AZ, USA (hilbe@asu.edu)

Andrew P. Robinson
Melbourne, Australia (apro@unimelb.edu.au)

1

Programming and R

1.1 Introduction

The goal of this chapter is to introduce the reader to the programming tools
that will be used in subsequent chapters. It therefore provides a highly selective
review of R programming.

Users who have some exposure to data analysis and statistical packages
that provide graphical user interfaces may be wary about such a seemingly
bare-bones introduction to R. Many other data analysis products provide
apparently straightforward importation of data, accompanied by attractive
graphics and automated model fitting. Why is it useful to dig about in the
tissue of the language? The reason is that, in our experience as statisticians,
the provision to the analyst of data that are clean and ready to analyze is
the exception rather than the rule. Invariably some pre-analysis processing is
required. R provides a very flexible and powerful set of tools for the manipula-
tion of data. Careful use of these tools will both ease the process and improve
the transparency of preparing the data for suitable analysis. Therefore, close
examination of the data manipulation facilities of R will benefit the analyst.

The definitive reference to R is the R Language Definition, which is freely
available in PDF and HTML format on the R website, as well as being pro-
vided by default with each R installation. This work is continually updated
by the volunteers that support R. It can be accessed via the The R Language

Definition link on the front page of the html help file that is opened by the
help.start function.

1.2 R Specifics

Making a definitive description of R is a tricky proposal, because R is multi-
faceted and evolving. Therefore, we will tackle a simpler problem and describe
R just as we will be treating it in this book. R, for the purposes of this
book, is an interpreted, impure object-oriented programming language that
provides many structures and functions that ease the importation, handling,
and analysis of data, as well as reporting the outcome. Also for the purposes

1

2 Methods of Statistical Model Estimation

of this book, R is software that the user interacts with via a command-line
interface. The label R is commonly used to describe both the language and the
software application that interprets it. R is more fully documented in readily
available resources (e.g., R Development Core Team, 2012).

According to the R FAQ, the design of R has been heavily influenced by
two other languages: it is very similar in appearance to Becker, Chambers &
Wilks’ S, and its underlying implementation and semantics are derived from
Sussman’s Scheme (Hornik, 2010). R is not uncommonly described as being
“not unalike S.”

R is an interpreted, as opposed to a compiled, language. An interpreted lan-
guage is one for which the most common implementation involves translating
the code to machine-executable commands and executing those commands one
at a time. Re-running the program requires re-translation. A compiled imple-
mentation is one in which programs are written as collections of instructions,
then converted to binary objects. Such binary objects then can be run many
times without re-translation. We note in passing that R can run programs that
have been compiled from other languages, such as C and FORTRAN. Further-
more, as of R version 2.13.0, a byte compiler is available, which provides useful
although occasionally modest decreases in execution time.

As far as the user is concerned, the disadvantage of R being an interpreted
language rather than a compiled language is that it is slower in execution than
it would be if it were compiled. However, in the experience of the authors, the
execution time of R is very rarely a bottleneck in analytical exercises.

The R software provides an interpreter, or listener. The listener accepts
user input in the form of R code, then the software interprets the input,
executes the instructions, and returns the output. In practice, the user types
commands at the prompt, and R executes those commands, like this:

> 1 + 2

[1] 3

R, being somewhat like S, is somewhat object oriented (OO). Describing
R’s OO nature is complicated because of several factors: first, by the fact
that there are different kinds of object orientation, and second, that R itself
provides several implementations of OO programming. Indeed it is possible,
although may be inefficient, for the user to ignore R’s OO nature entirely.
Hence R is an impure object-oriented language (according to the definition
supplied by Craig, 2007, for example).

In this book we constrain ourselves to describing the implementation of S3
classes, which were introduced to S in version 3 (Chambers, 1992a). At the
time of writing, R also provides S4 classes (Chambers, 1998), and the user-
contributed packages R.oo (Bengtsson, 2003) and proto (Kates and Petzoldt,
2007). S3’s object orientation is class-based, as opposed to prototype based.
We will cover object-oriented programming (OOP) using R in more detail in
Section 1.3.3. In the meantime, we need to understand that R allows the user

Programming and R 3

to create and manipulate objects, and that this creation and manipulation is
central to interacting efficiently with R.

1.2.1 Objects

Everything in R is an object. Objects are created by the evaluation of R
statements. If we want to save an object for later manipulation, which we
most commonly do, then we choose an appropriate name for the object and
assign the name using the left arrow symbol <-. It is also possible to use
the equals sign =; however, in this book we prefer <-. So object creation is,
broadly, as follows.

name <- R statements

Valid object names may contain letters, digits and the two characters .

and _, and must start with a letter or . (Chambers, 2008).

1.2.1.1 Vectors

We start with a vector object, of which there are six types: real, string, logical,
integer, complex, and raw. Here we will focus on the first three types. We create
a vector of three real numeric objects, which we shall call wavelengths, as
follows:

> wavelengths <- c(325.3, 375.6, 411.1)

This code used the c function to concatenate the three numbers into a vector
object, and then assigned the vector object a name: wavelengths. This vector
object is a container for the three real numbers. We can print the object by
just entering its name at the prompt.

> wavelengths

[1] 325.3 375.6 411.1

Every object in R has a class, which controls how the object can be manip-
ulated. The class of the object can be determined (and set) using the class

function.

> class(wavelengths)

[1] "numeric"

Classes are baked into base R, so knowing what they do and what they are
for helps the user understand what R is doing. We will cover classes in greater
detail later in this chapter. For the moment, we comment that knowing the
class is very helpful.

We can create a vector of character strings in the same way:

4 Methods of Statistical Model Estimation

> sentence <- c("This", "is", "a", "character", "vector")

> class(sentence)

[1] "character"

We remark that R has some wonderful character-handling functions such
as paste, nchar, substr, grep, and gsub, but their coverage is beyond the
scope of this book.

Many operations are programmed so that if the operation is called on the
vector, then it is efficiently carried out on each of its elements. For example,

> wavelengths / 1000

[1] 0.3253 0.3756 0.4111

This is not true for all operations; some necessarily operate on the entire
vector, for example, mean,

> mean(wavelengths)

[1] 370.6667

and length.

> length(wavelengths)

[1] 3

R also provides a special class of integer-like objects called a factor. A
factor is used to represent a categorical (actually nominal, more precisely)
variable, and that is the reason that it is important for this book. The object
is displayed using a set of character strings, but is stored as an integer, with
a set of character strings that are attached to the integers. Factors differ from
character strings in that they are constrained in terms of the values that they
can take.

> a_factor <- factor(c("A","A","B","B","B","C"))

> a_factor

[1] A A B B B C

Levels: A B C

Note that when we printed the object, we were told what the levels of the
factor were. These are the only values that the object can take. Here, we try
to turn the 6th element into a Z.

> a_factor[6] <- "Z"

> a_factor

Programming and R 5

[1] A A B B B <NA>

Levels: A B C

We failed: R has made the 6th element missing (NA) instead. Note that we
accessed the individual element using square brackets. We will expand on this
topic in Section 1.2.1.2.

The levels, that is the permissible values, of a factor object can be displayed
and manipulated using the levels function. For example,

> levels(a_factor)

[1] "A" "B" "C"

Now we will turn the second element of the levels into Bee.

> levels(a_factor)[2] <- "Bee"

The consequence of this operation is that when we now print the factor, the
levels have been changed.

> a_factor

[1] A A Bee Bee Bee <NA>

Levels: A Bee C

One challenge that new R users often have with factors is that the functions
that are used to read data into R will make assumptions about whether the in-
tended class of input is factor, character string, or integer. These assumptions
are documented in the appropriate help files, but are not necessarily obvious
otherwise. This is especially tricky for some data where numbers are mixed
with text, sometimes accidentally. Manipulating factors as though they really
were numeric is often perilous. For example, they cannot be added.

> factor(1) + factor(2)

[1] NA

The final object class that we will describe is the logical class, which can
be thought of as a special kind of factor with only two levels: TRUE and FALSE.
Logical objects differ from factors in that mathematical operators can be used,
e.g.,

> TRUE + TRUE

[1] 2

It is standard that TRUE evaluates to 1 when numerical operations are applied,
and FALSE evaluates to 0. Logical objects are created, among other ways, by
evaluating logical statements, for example

6 Methods of Statistical Model Estimation

> 1:4 < 3

[1] TRUE TRUE FALSE FALSE

Logical objects can be manipulated by the usual logical operators, and &,
or |, and not !. Here we evaluate TRUE (or) TRUE.

> TRUE | TRUE

[1] TRUE

In evaluating this statement, R will evaluate each logical object and then
the logical operator. An alternative is to use && or ||, for which R will evaluate
the first expression and then only evaluate the second if it is needed. This
approach can be faster and more stable under some circumstances. However,
the latter versions are not vectorized.

The last kind, but not class, of object that we want to touch upon is
the missing value, NA. This is a placeholder that R uses to represent known
unknown data. Such data cannot be lightly ignored, and in fact R will often
retain missing values throughout operations to emphasize that the outcome
of the operation depends on the missing value(s). For example,

> missing.bits <- c(1, NA, 2)

> mean(missing.bits)

[1] NA

If we wish to compute the mean of just the non-missing elements, then we
need to provide an argument to that effect, as follows (see Section 1.2.3.1,
below).

> mean(missing.bits, na.rm = TRUE)

[1] 1.5

Note that the missing element is counted in the length, even though it is
missing.

> length(missing.bits)

[1] 3

We can assess and set the missing status using the is.NA function.

Programming and R 7

1.2.1.2 Subsetting

In the previous section we extracted elements from vectors. Subsets can easily
be extracted from many types of objects, using the square brackets operator
or the subset function. Here we demonstrate only the former. The square
brackets take, as an argument, an expression that can be evaluated to either
an integer object or a logical object. For example, using an integer, the second
item in our sentence is

> sentence[2]

[1] "is"

and the first three are

> sentence[1:3]

[1] "This" "is" "a"

Note that R has interpreted 1:3 as the sequence of integers starting at 1 and
concluding at 3. We can also exclude elements using the negative sign:

> sentence[-4]

[1] "This" "is" "a" "vector"

> sentence[-(2:4)]

[1] "This" "vector"

An example of the use of a logical expression for subsetting is

> wavelengths > 400

[1] FALSE FALSE TRUE

> wavelengths[wavelengths > 400]

[1] 411.1

These subsetting operations can be nested. Alternatively, the intermedi-
ate results can be stored as named objects for subsequent manipulation. The
choice between the two approaches comes down to readability against effi-
ciency; creating interim variables slows the execution of the code but allows
commands to be split into more easily readable code chunks.

1.2.2 Container Objects

Other object classes are containers for objects. We cover two particularly useful
container classes in the section: lists and dataframes.

8 Methods of Statistical Model Estimation

1.2.2.1 Lists

A list is an object that can contain other objects of arbitrary and varying
classes. A list is created as follows.

> my.list <- list(number = 1, text = "alphanumeric")

Elements can be manipulated or extracted from the list using the double
square bracket symbol, or the $ symbol, as follows.

> my.list[[1]]

[1] 1

> my.list$text

[1] "alphanumeric"

> my.list[[1]] <- 2

> my.list

$number

[1] 2

$text

[1] "alphanumeric"

Empty lists can be conveniently created using the vector function, as follows.

> capacious.empty.list <- vector(1000, mode = "list")

This list can then be used as a container for the outcome of a loop. Func-
tions like lapply and sapply allow for elegant, element-wise evaluation of
functions upon lists. For example, to determine the class of each element in a
list, we can use the following code:

> sapply(my.list, class)

number text

"numeric" "character"

Lists are very useful devices when programming functions, because func-
tions in R are only allowed to return one object. Hence, if we want a function
to return more than one object, then we have it return a list that contains all
the needed objects.

Programming and R 9

1.2.2.2 Dataframes

Dataframes are special kinds of lists that are designed for storing and manipu-
lating datasets as they are commonly found in statistical analysis. Dataframes
typically comprise a number of vector objects that have the same length; these
objects correspond conceptually to columns in a spreadsheet. Importantly, the
objects need not be of the same class. Under this setup, the i-th unit in each
column can be thought of as belonging to the i-th observation in the dataset.

There are numerous ways to construct dataframes within an R session.
We find the most convenient way to be the data.frame function, which takes
objects of equal length as arguments and constructs a dataframe from them.
If the arguments are named, then the names are used for the corresponding
variables. For example,

> example <- data.frame(var.a = 1:3,

+ var.b = c("a","b","c"))

> str(example)

’data.frame’: 3 obs. of 2 variables:

$ var.a: int 1 2 3

$ var.b: Factor w/ 3 levels "a","b","c": 1 2 3

If the arguments are of different lengths, then R will repeat the shorter ones to
match the dimension of the longest ones, and report a warning if the shorter
are not a factor (in the mathematical sense) of the longest.

> data.frame(var.a = 1,

+ var.b = c("a","b","c"))

var.a var.b

1 1 a

2 1 b

3 1 c

Furthermore, as is more commonly used in our experience, when data are
read into the R session using one of the read.xxx family of functions, the
created object is a dataframe.

There are also numerous ways to extract information from a dataframe, of
which we will present only two: the square bracket [operator and subset.

The square bracket operator works similarly as presented in Section 1.2.1.2,
except instead of one index it now requires two: the first for the rows, and the
second for the columns.

> example[2, 1:2]

var.a var.b

2 2 b

10 Methods of Statistical Model Estimation

A blank is taken to mean that all should be included.

> example[2,]

var.a var.b

2 2 b

Note that this operation is calling a function that takes an object and indices
as its arguments. As before, the arguments can be positive or negative integers,
or a logical object that identifies the rows to be included by TRUE.

Extracting data using the subset function proceeds similarly, with one
exception: the index must be logical; it cannot be integer.

> subset(example, subset = var.a > 1, select = "var.b")

var.b

2 b

3 c

It is worth noting that storing data in a dataframe is less efficient than
using a matrix, and manipulating dataframes is, in general, slower than ma-
nipulating matrices. However, matrices may only contain data that are all the
same class. In cases where data requirements are extreme, it may be worth
trying to use matrices instead of dataframes.

1.2.3 Functions

We write functions to enable the convenient evaluation of sets of expressions.
Functions serve many purposes, including, but not limited to, improving the
readability of code, permitted the convenient re-use of code, and simplifying
the process of handling intermediate objects.

In R, functions are objects, and can be manipulated as objects. A func-
tion comprises three elements, namely: a list of arguments, a body, and a
reference to an environment. We now briefly describe each of these using an
example. This trivial function sums its arguments, and if the second argument
is omitted, it is set to 1.

> example.ok <- function (a, b = 1) {

+ return(a + b)

+ }

> example.ok(2,2)

[1] 4

> example.ok(2)

[1] 3

Programming and R 11

We can now examine the pieces of the function by calling the following func-
tions. The formals are the arguments,

> formals(example.ok)

$a

$b

[1] 1

the body is the R code to be executed,

> body(example.ok)

{

return(a + b)

}

and the environment is the parent environment.

> environment(example.ok)

<environment: R_GlobalEnv>

We describe each of these elements in greater detail below.

1.2.3.1 Arguments

The arguments of a function are a list (actually a special kind of list, called
a pairlist, which we do not describe further) of names and, optionally, ex-
pressions that can be used as default values. So, the arguments might be
for example x, or x = 1, providing the default value 1, or indeed x = some

expression, which will be evaluated if needed as the default expression.
The function’s arguments must be valid object names, that is, they may

contain letters, digits and the two characters . and _, and must start with
either a letter or the period . (Chambers, 2008). If an expression is provided
as part of the function definition, then that expression is evaluated and used
as the default value, which is used if the argument is not named in the function
call.

> example <- function(a = 1) a

> example()

[1] 1

Note that the argument expressions are not evaluated until they are needed
— this is lazy evaluation. We can demonstrate this by passing an expression
that will result in a warning when evaluated.

12 Methods of Statistical Model Estimation

> example <- function(a, b) a

> example(a = 1)

[1] 1

> example(a = 1, b = log(-1))

[1] 1

The absence of warning shows that the expression has not been evaluated.
It is important to differentiate between writing and calling the function

when thinking about arguments. When we write a function, any arguments
that we need to use in that function must be named in the argument list. If we
omit them, then R will look outside the function to find them. More details
are provided in Section 1.2.3.3.

> example <- function(a) a + b

> example(a = 1)

Error in example(a = 1) : object ’b’ not found

Now if we define b in the environment in which the function was created, the
parent environment, then the code runs.

> b <- 1

> example(a = 1)

[1] 2

Note that R searched the parent environment for b.
An exception is that if we want to pass optional arbitrary arguments to

a function that is called within our function, then we use the ... argument.
Below, note how example requires arguments a and b, but when we call it

within our contains function we need to provide only a and the dots.

> example <- function(a, b) a + b

> contains <- function(a, ...) example(a, ...)

> contains(a = 1, b = 2)

[1] 3

Our contains function was able to handle the argument by passing it to
example, even without advance warning.

In calling a function, R will match the arguments by name, position, or
both name and position. For example,

> example(1, 2)

Programming and R 13

[1] 3

> example(1, b = 2)

[1] 3

In general we find it safest to name all the arguments that are included in the
function call. Note that R will allow partial matching of arguments, but we
have not found it useful so we do not cover it further here.

1.2.3.2 Body

The body of the function is a collection of R expressions that are to be exe-
cuted. If there is more than one expression, then the expressions are contained
within curly braces. For single expression functions the inclusion of the braces
is a matter of taste.

The most common use of functions is to return some kind of object. Rarely,
functions will do other things than return an object; these are called side

effects, and should be used thoughtfully. An example of a useful side effect is
opening a graphics device and plotting some data. An example of a risky side
effect is the alteration of global variables from within the function. Here we
create an object and then alter it from within a function.

> a <- 1

> a

[1] 1

> risky <- function(x) a <<- x

> risky(2)

> a

[1] 2

If the return function is omitted, then the last value that is computed in
the function is returned.

> example.ok <- function (a, b = 1) {

+ a + b

+ }

> example.ok(2)

[1] 3

The returned object can be any R object, and can be manipulated in situ as a
matter of programming taste. Note that we write of the returned object in the
singular. If the function is to create more than one object, then the returned
objects must be collected in a list, that is, the function must return a single
object that itself can contain multiple objects. An example follows, in which
we explicitly name the elements of the list to ease later extraction.

14 Methods of Statistical Model Estimation

> example.ok <- function (a, b = 1) {

+ return(list(a = a, b = b, sum = a + b))

+ }

> example.ok(2)

$a

[1] 2

$b

[1] 1

$sum

[1] 3

Note that the returned object is a list, so the objects that it contains can be
extracted using the usual list protocol.

> example.ok(2)$sum

[1] 3

> example.ok(2)[[3]]

[1] 3

1.2.3.3 Environments and Scope

The enclosing environment is the environment in which the function is created,
not the environment in which the function is executed. We need to know about
the environment because it tells us what objects are available to the function
when the function is executed.

R is lexically scoped. This means that the objects that are available to a
function at the time of its execution, in addition to its arguments and the
variables created by the function itself, are those that are in the environment
in which the function was created, the environment’s enclosing environment,
and so on up to the global environment. A brief example follows.

> x <- 100

> scope.fn <- function() x / 10

> scope.fn()

[1] 10

We see that even though x is declared outside the function, and is not provided
to the function via the argument list, it is still available.

We now provide a more detailed example of how scoping works in R,
in the context of this book. Here we have a function, variance.binomial,
that will be called by another function, irls. At the time of writing

Programming and R 15

variance.binomial we know that it will need to be one among a number
of variance functions, each of which will have different arguments (the specific
details of the implementation will become obvious after study of Section 1.3.4).

For example, the Poisson distribution needs only the mean mu whereas the
binomial distribution needs mu and the count m. We would like to try to rely
on scoping to get the m parameter when it is needed and ignore it when it is
not. We start with a variance function that includes mu as an argument.

> variance.binomial <- function(mu) mu * (1 - mu / m)

Then we write the calling function, here greatly simplified(!), and again ig-
noring the specific S3 details.

> irls <- function(mu) {

+ m <- 100

+ variance.binomial(mu)

+ }

But when we try to run this function, m is not available within
variance.binomial, even though it is available within irls. This is because
variance.binomial was created in the global environment, not in the envi-
ronment created by irls.

> irls(0.5)

Error in variance.binomial(mu, m) : object ’m’ not found

We can verify this observation as follows:

> environment(variance.binomial)

<environment: R_GlobalEnv>

We can solve this problem in two ways. First, we can ensure that all pos-
sible arguments of interest are identified in the definition of the function that
is to be called internally, for example as follows.

> irls <- function(mu) {

+ m <- 100

+ variance.binomial(mu, m)

+ }

> variance.binomial <- function(mu, m) mu * (1 - mu / m)

> irls(0.5)

[1] 0.4975

Second, we can move the definition of the function that is to be called to be
within the calling function, as follows.

16 Methods of Statistical Model Estimation

> irls <- function(mu) {

+ variance.binomial <- function(mu) mu * (1 - mu / m)

+ m <- 100

+ variance.binomial(mu)

+ }

> irls(0.5)

[1] 0.4975

Each solution has its drawbacks. In the first case, we have to include all
the arguments that we might want. As we shall see in Section 4.7, this is a bit
messy. For example, we have to pass arguments to the function that are simply
passed to communicate the class to the generic, or we have to explicitly copy
the class information to the object that is being passed via the arguments.
Neither solution is elegant. In the second case we have to rewrite the function
in order to expand the functionality of the code, which breaks the modularity.
We elected the first, messy, modular solution.

1.2.4 Matrices

A matrix is a rectangular array of items, formatted in terms of rows (i) and
columns (j). A matrix is defined by the values of i and j, which are called
the dimensions of the matrix. Therefore, a matrix with 3 rows and 4 columns
is a (3,4), or 3 × 4, dimension matrix. When the dimensions of a matrix are
identical, for example 2× 2, it is known as a square matrix.

In R, a matrix is just a vector with a special attribute called dim, which
contains the size of the matrix in row–column format. As we shall see, R
changes the way that it carries out arithmetical operations for matrices com-
pared with vectors. Because a matrix is stored as a single vector, its values
must all be stored in the same mode. For example, the values must all be
numeric, all character, or all logical.

There are numerous ways to create matrices, of which we show only a few.
We begin by creating and printing a 2× 2 matrix.

> mat1 <- matrix(1:4, nrow=2)

> mat1

[,1] [,2]

[1,] 1 3

[2,] 2 4

We can verify that it has a dimension attribute by using the attributes

function, or more simply using the dim function.

> attributes(mat1)

$dim

[1] 2 2

Programming and R 17

> dim(mat1)

[1] 2 2

We now mention attributes briefly, and direct the interested reader to
Chapter 5 of Becker et al. (1988). Attributes provide a means by which useful
information can be carried along with objects. For example, we may wish to
retain the units of some light measurements without wishing to formally de-
fine a new class of objects. We could do so by setting an attribute. In general,
the attributes of an object can be changed or read using the attr function,
as follows.

> attr(wavelengths, "units") <- "micrometres"

> attributes(wavelengths)

$units

[1] "micrometres"

As matrices are just a vector with an attribute, any functions that work
with vectors will work identically with matrices. For example, we can sum the
elements of a matrix by using the sum function.

> sum(mat1)

[1] 10

Furthermore, there are special matrix-handling functions. For example, if
we wish to sum the columns (or rows), then we use the efficient colSums (or
rowSums) function.

> colSums(mat1)

[1] 3 7

The standard arithmetic functions operate on the matrices as though they
were vectors — that is, element by element. We show some of these functions
below, along with the diag function, which provides another way to make a
useful matrix.

> (mat2 <- diag(2))

[,1] [,2]

[1,] 1 0

[2,] 0 1

> mat1 + mat2

[,1] [,2]

[1,] 2 3

[2,] 2 5

18 Methods of Statistical Model Estimation

> mat1 * mat2

[,1] [,2]

[1,] 1 0

[2,] 0 4

R also provides matrix-specific functions that cover such operations as
computing the product of two matrices. The matrix product operator is %*%.
Here we take the matrix product of mat1 with mat2.

> mat1 %*% mat2

[,1] [,2]

[1,] 1 3

[2,] 2 4

It is worth noting that the crossprod function serves the same general
purpose as %*%, and is often faster, so we will prefer to use it and its companion
tcrossprod in the rest of the book, except where programming clarity is
reduced.

> tcrossprod(mat1, mat2)

[,1] [,2]

[1,] 1 3

[2,] 2 4

Matrix inversion is available using the solve function, as follows.

> solve(mat1)

[,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

We can check that the matrix is indeed the inverse by

> mat1 %*% solve(mat1)

[,1] [,2]

[1,] 1 0

[2,] 0 1

The Moore–Penrose generalized inverse is available from the ginv function in
the MASS package.

R also provides built-in functions to perform back-solving (backsolve),
singular-value decomposition (svd), Choleski decomposition (col), and QR-
decomposition (qr), some of which we shall use in Chapter 3.

Programming and R 19

1.2.5 Probability Families

R provides a suite of functions that enable the direct use of many popular
probability families. These functions are extremely useful for statistical infer-
ence, for example when estimating parameters using maximum likelihood and
when providing interval estimates for parameters.

The template for any given probability family named family is a set of
four functions: the probability distribution function, called dfamily; the cu-
mulative mass (or density) function (CDF), called pfamily; the inverse CDF,
called qfamily; and a pseudo-random number generator, called rfamily. So,
the four functions in the case of the Poisson distribution are: dpois, ppois,
qpois, and rpois.

In each case, the functions require arguments that represent the parameters
of the distribution, as well as other arguments that are specific to the function’s
intention. For example, the dfamily and pfamily functions need the value at
which the PDF and CDF should be calculated, and rfamily function requires
the number of observations to be generated. Some families have default values
for the arguments that represent the parameters. For example, the default
arguments that represent the parameters of the distribution for the normal
family are mean = 0 and sd = 1. In contrast, the binomial family has no
default values.

Most of the in-built probability functions call highly efficient pre-compiled
C code, so the calculations proceed very quickly. The help files provide cita-
tions to the algorithms that are used, and of course, the source code can also
be examined to see how those algorithms are implemented.

Here we provide an example of use of the functions for the normal dis-
tribution family. To calculate the probability density of a random standard
normal variate at 0, where the standard normal distribution has zero mean
and unit variance, use

> dnorm(0, mean = 0, sd = 1)

[1] 0.3989423

The following is equivalent.

> dnorm(0)

[1] 0.3989423

The PDF function has an additional argument: log = FALSE. This argu-
ment flags whether to return the probability or the log of the probability, and
is very useful when using the PDF function for obtaining maximum-likelihood
estimates, for example. Typically the code that is used to return the log of
the probability is written especially for that purpose, which improves speed
and reduces rounding error. Hence, calling dfamily(x, ..., log = TRUE) is
much preferable to calling log(dfamily(x, ...)).

20 Methods of Statistical Model Estimation

To calculate the probability that a random standard normal variate will
be less than 0.5, use

> pnorm(0.5)

[1] 0.6914625

To find the value that is the upper 0.975 quantile of the normal distribution
with mean 2 and variance 4, we use

> qnorm(0.975, mean = 2, sd = 2)

[1] 5.919928

Finally, to generate 5 pseudo-random normal variates from the same distribu-
tion, we use

> rnorm(5, mean = 2, sd = 2)

[1] 2.8737530 2.2841174 0.4283859 1.6636226 1.7908804

Although R provides a wealth of in-built, efficient functions for manipulat-
ing probability families, it is possible that an analyst may need to write custom
functions for new families. Depending on the application, the functions may
either be relatively brief, without much by the way of error-checking infras-
tructure, or they could be quite complicated, with code that is optimized for
speed, stability, and numerical accuracy, and detailed checks for input legality,
etc.

Here we construct simple probability functions for the following PDF,
which we shall call Watson’s function.

f(x; θ) =
1 + θ

θ
(
1 + x

θ

)2
0 < x ≤ 1; θ > 0 (1.1)

> dwatson <- function(x, theta) {

+ (1 + theta) / theta / (1 + x / theta)^2

+ }

There is a closed-form expression for the CDF;

F (x) = (1 + θ)×
(

1−
(

1 +
x

θ

)−1
)

, (1.2)

but we prefer to use a more general solution for our simple example.
N.B.: An early draft of this chapter included an example PDF that was

defined on the entire real line; however, constructing stable, simple, and gen-
eral user functions proved to be trickier for that example than we had hoped.
Closed-form expressions are certainly preferred if they exist, because they are

Programming and R 21

easier to program in numerically stable ways, and also may well be vectoriz-
able. The exercise was also a useful lesson in just how much numerical tech-
nology has gone into the in-built functions that we tend to take for granted.

Here, we use the R function integrate to numerically integrate the func-
tion that represents the PDF, in order to create a CDF.

> pwatson <- function(q, theta) {

+ integrate(function(x) dwatson(x, theta),

+ lower = 0, upper = q)$value

+ }

As for the CDF, it is preferable to express the inverse CDF in closed form
exactly, or even to a known approximation. If that is impossible, then we can
use the uniroot function to locate the value of x at which the CDF FX(x)
is equal to the desired value. Our function cannot be vectorized, so is not
efficient to use, but it is sufficient for our purposes.

> qwatson <- function(p, theta) {

+ uniroot(function(x) pwatson(x, theta) - p,

+ lower = .Machine$double.eps, upper = 1)$root

+ }

The use of .Machine$double.eps in an argument should be explained.
R has a number of computer-specific performance-related constants that are
accessible within the .Machine list object. Here we are asking R to set the
lower limit to be the ‘smallest positive floating-point number x such that
1 + x 6= 1’ (see ?.Machine).

It is sensible to apply some checks to the function to be sure that it is a
PDF and that the transcription to R code is correct. In order to be usable
as a PDF, a function must be non-negative across the support of the random
variable, and must integrate to one.

Integrability to one should be checked for a number of values of the pa-
rameter; here we try only one of them.

> pwatson(1, theta = 1)

[1] 1

Finally, we can construct a pseudo-random number generator by provid-
ing a pseudo-random uniform (0,1) variate as the quantile argument to the
qwatson function.

Recall that qwatson was not vectorized. In that case, we have to explicitly
call it as many times as we wish pseudo-random numbers. Here we do so using
the convenient sapply function.

> rwatson <- function(n, theta) {

+ sapply(runif(n), function(x) qwatson(x, theta))

+ }

22 Methods of Statistical Model Estimation

We call the function as follows.

> rwatson(5, 1)

[1] 0.04027990 0.31159946 0.08243589 0.14475373 0.22647895

The resulting generator is slow compared with the in-built functions to
generate random numbers, e.g., below we compare the execution time of the
R function that generates normal variates with the execution time of our
function that generates Watson variates, to the detriment of the latter.

> system.time(rnorm(1000))

user system elapsed

0 0 0

> system.time(rwatson(1000,1))

user system elapsed

0.329 0.004 0.333

Despite the time difference, generating 1,000 variates took less than a second
on a modest laptop. As a final exercise, we coded the closed-form version of
the inverse-CDF to see what the time difference would be compared with our
earlier inefficient solution.

> qwatson1 <- function(p, theta) {

+ (1 / (1 - p / (1 + theta)) - 1) * theta

+ }

> rwatson1 <- function(n, theta) {

+ qwatson1(runif(n), theta)

+ }

> system.time(rwatson1(1000,1))

user system elapsed

0.001 0.000 0.000

This output shows the predictable result that using vectorized arithmetic op-
erations on closed-form expressions is considerably faster than applying a root-
finding function to a function that uses numerical integration.

1.2.6 Flow Control

So far, the code that we have constructed will be evaluated in a linear, sequen-
tial fashion — one expression after another. Often we want to exercise further
control over the execution of different bits of code. This might be wanting
to choose between expressions conditional on the outcome of a logical test,
to execute a collection of expressions a given number of times, or with mi-
nor modifications, or to execute a collection of expressions until a condition
changes. R provides powerful functions that allow each of these behaviors.

Programming and R 23

1.2.6.1 Conditional Execution

We can direct R to execute an expression conditional on the outcome of a
logical test using the if function, or to choose between two expressions using
the if and else functions.

The if function works alone in the following general pattern (this partic-
ular code will not run):

if (test) { body }

where test is an expression that evaluates to a logical object of length 1, and
body is one or more R expressions, wrapped in braces. If body comprises only
one R expression, then the braces may be omitted.

The if / else combination works as follows (this particular code will not
run):

if (test) {

true.body

} else {

false.body

}

Note that the call to else is directly after the brace that closes the expressions
to be executed if test is true. This is important because R will not know
otherwise that an else is included. So, the following snippet will emphatically
fail because of the locations of the parentheses.

if (test) { true.body }

else { false.body }

We can see that upon the closing of the brace after true.body, R has received
a complete expression.

For vectorized conditional execution, we use the ifelse function.

1.2.6.2 Loops

Sometimes we wish to execute a collection of statements a set number of times,
either as they are, or varying a portion of them in predictable ways. We use
loops for this purpose. R provides two looping functions: for and while.

We use for to repeat a collection of expressions a given number of times.
It works as follows (this particular code will not run).

for (index in sequence) { body }

Here, in is the word in(!) and index identifies an object that will take the
values in sequence during the evaluation of body. For example, the following
code prints the integers from one to two.

24 Methods of Statistical Model Estimation

> for (i in 1:2) cat(i, "\n")

1

2

It is worth noting that sequence can be any expression that evaluates to a
vector. This flexibility can lead to code that is easier to read.

> for (i in c("a","b")) cat(i, "\n")

a

b

When evaluation of the loop is complete, the value of index is retained as the
last in sequence.

> i

[1] "b"

It is important to be sure that sequence evaluates correctly. The for

function is equipped to handle NULL sequences without an error, but that
condition cannot be delivered using the colon and integers. Therefore the use
of seq is a more robust equivalent (see Chambers, 2008).

> seq(2)

[1] 1 2

> seq(NULL)

integer(0)

Sometimes the intention is to apply a collection of expressions to all of the
objects in a list. If so, it is often tempting to store the output in a vector or list
that is grown with each iteration. This temptation should be resisted. Instead,
the storage should be created before the loop is evaluated. We use a list in
the following example, although a vector would be slightly more efficient and
is all that the code requires.

> output <- vector(length = 10, mode = "list")

> for (i in 1:10) output[[i]] <- paste("Element", i)

> output[[1]]

[1] "Element 1"

Alternatively, in many simple cases the lapply function and its siblings wrap
the operations into a single, compact call.

Programming and R 25

> output <- lapply(1:10, function(i) paste("Element", i))

> output[[1]]

[1] "Element 1"

When the goal is to continually evaluate a set of expressions until a con-
dition changes, we use the while function (this particular code will not run).

while (test) { body }

It is important to ensure that the expressions in body update the object(s)
that are evaluated in test. An example of its usage that is sufficient for our
purposes follows.

> i <- 1

> while (i < 2) {

+ cat(i, "\n")

+ i <- i + 1

+ }

1

1.2.7 Numerical Optimization

Numerical optimization rests at the foundation of statistical model estimation.
Modelling algorithms are used to estimate parameters, which are expressed
as coefficients or slopes. Regression slopes are the solutions to partial deriva-
tives when set to zero. Therefore the process of estimation is simply one of
maximization, or depending on the situation, minimization. Maximum like-
lihood estimation (MLE), the foremost method used by statisticians for the
estimation of regression parameters, is a maximization procedure, just with a
very particular objective function. In this section we briefly cover numerical
optimization as it most commonly is applied to statistical model fitting.

Suppose we provide a function f(x) = 2x2 − log(3x) and we wish to de-
termine the value that maximizes or minimizes the function. We know from
elementary calculus that we need only take the derivative of the function with
respect to x, set the derivative to zero, and solve for the unknown parameter.

df

dx
= 4x− 3

3x
(1.3)

We set this equation to equal 0, so 4x2 − 1 = 0 and so x =
√

0.25 = 0.5.
In this case the function is univariate, so we can also plot the trajectory and
determine the location of the value by inspection, using a graphic device such
as is presented in Figure 1.1.

26 Methods of Statistical Model Estimation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

x

te
s
t.

fu
n

(x
)

FIGURE 1.1

Example function.

> test.fun <- function(x) 2*x^2 - log(3*x)

> curve(test.fun, from = 0, to = 3)

The study of algorithms used for maximization or minimization is generally
referred to in mathematics as numerical optimization. In this section we shall
provide a brief look at how optimization relates to statistical model estimation
as discussed in this text. The exception is estimation based on Markov Chain
Monte Carlo (MCMC) methods, which underlies much of modern Bayesian
methodology. We discuss MCMC methods and the Metropolis–Hastings sam-
pling algorithm in the final chapter.

A variety of optimization algorithms have been used for maximization
(or minimization). The most commonly known algorithms include golden-
section, fixed-point, line search, steepest ascent, Nelder–Mead, Newton, and
Newton–Raphson. Newton–Raphson is the most commonly used algorithm,
and is the basis of the algorithm most commonly used for maximum likelihood
estimation, so we focus upon it here. The interested reader can learn more from
Nocedal and Wright (2006) and Jones et al. (2009).

The Newton–Raphson algorithm is the most adapted search procedure
used for the estimation of statistical models. It is based on a manipulation of
the two-term Taylor expansion. In this form, the Taylor expansion appears as

f(x) = f(x0) + (x− x0)f ′(x0) + . . . (1.4)

We want to find the value of x for which f ′(x) = 0. So, we take the
two-term Taylor expansion of f ′(x), instead of f(x).

f ′(x) = f ′(x0) + (x− x0)f ′′(x0) + . . . (1.5)

Now, setting f ′(x) = 0 and rearranging, we get

x = x0 −
f ′(x0)

f ′′(x0)
, (1.6)

Programming and R 27

which provides us a way to convert an estimate of x, say xn, into one that
should be closer to a local optimum, say xn+1, as follows

xn+1 = xn −
f ′(xn)

f ′′(xn)
, (1.7)

We continue to discuss optimization in a more specific setting, that of maxi-
mum likelihood, in Section 2.3.2.

R has a variety of optimization procedures, but one foremost function
provides the key algorithms, namely optim, which we have already introduced.
The definition for the optim function is

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead",BFGS","CG","L-BFGS-B","SANN","Brent"),

lower = -Inf, upper = Inf,

control = list(), hessian = FALSE)

The first argument to the function is par, which is a vector of the starting
values for each of the free parameters. fn is the function to be minimized, and
the default method is Nelder–Mead (Nelder and Mead, 1965). With hessian

= TRUE designated, the Hessian is estimated, which allows estimation of stan-
dard errors. We continue this topic with a tighter focus on optimization for
generalized linear models in Section 2.3.2.

1.3 Programming

1.3.1 Programming Style

Programming style is an intersection of individual taste, the characteristics
of the language being used, the programmer’s experience with the language
(and other languages), and the problem at hand. Programming style shows
itself not only in the structure of computer code, but also the decisions that
the code forces the user to make, and the information that it provides.

For example, the lm function in R will quietly ignore missing values, with-
out especial feedback to the user. Information about missingness is reported
by the print.summary.lm function, which is called when a summary of the
fitted model is printed. Alternatives would be for the lm function to provide
a message, a warning, or an error. Each of these options, including the de-
fault, reflects a legitimate choice about an important decision, which is how
to handle missing values in linear regression. In this book, we elect to place
as much responsibility on the code user as we can. That means, for example,
that our functions will throw errors when data are missing, so the user has to
deal proactively with the problem of missing data. This choice is particularly
driven by the shock of the second author upon discovering that, after years

28 Methods of Statistical Model Estimation

of blithely assuming that the tree heights were missing completely at random
in the ufc dataset (included in the msme package), there is strong evidence
that they are not (see Chapter 4).

Throughout the construction of the code for this book, we have found it
most efficient for us to start with very simple prototypes that satisfy simple
needs. We then add complications until the code is useful, at which point, we
usually look for opportunities to unify or simplify the functions. Our guiding
principle has been to simplify the problem until the answer is obvious, and
then complicate it until the answer is useful.

The other element of style that we wish to discuss, which is another way of
saying that we wish to defend, is the structure and number of functions that
we have written in order to solve our problems. We have tried to develop the
structure and number of functions that we think best represents the unity and
elegance of the underlying statistical theory. That is, our interest is pedagogic.
For example, in Chapter 5 we need to maximize the joint log-likelihood of a
sample of data, conditional on a model, as a function of the model parameters.
We elect to write separate functions for calculating the joint log-likelihood,
then for summing it, and for maximizing it. Each function calls the others as
necessary. This approach is not efficient use of computer memory or time. Nev-
ertheless, the approach has two benefits: first, it allows us to map the objects
to the problem as we think that it is most easily understood, and second, it
does allow us to re-use the functions elsewhere without alteration. So, extend-
ing the code to enable fitting an entirely different model could be as simple as
writing two one-line functions. Furthermore, we re-use the joint log-likelihood
code for computing the deviance residuals of the fitted model. Doing so means
that the deviance residuals can be computed for a new model merely by pro-
vision of the joint log-likelihood of the model, whereas otherwise the deviance
residuals for the new model would need their own separately coded function.
Finally, the pattern somewhat follows the admirable UNIX philosophy, which,
broadly sketched, involves the development of simple functions that can be
chained together to solve complicated problems.

Perhaps the tone of this section is unnecessarily defensive. We think that
the core message should be that programming style is important, and the
programmer should take time to reflect on the higher-level structure of code
in the context of the immediate need and also future applications, ideally
before too many bytes are committed.

1.3.2 Debugging

Debugging is the vernacular name given to the process of solving computer-
related problems. Structured approaches to solving problems will be profitable
for debugging exercises. Broadly speaking, we use the following steps when
confronted by a problem.

1. Enumerate the conditions that identify the problem

Programming and R 29

2. Read widely

3. Experiment

(a) Develop a hypothesis

(b) Design an experiment to test the hypothesis

(c) Carry out the experiment and record the results

(d) Draw conclusions

4. Try to simplify the problem.

We particularly recommend (Polya, 1988) as useful reading.
The best tools for debugging in R depend on the nature of the problem.

When R throws an error or an unexpected result, we find the str function
invaluable. We could broadly estimate that more than two thirds of the de-
bugging exercises that we have undertaken for our own work or on behalf of
others have been resolved by examining the output of str and comparing it
critically with the assumptions made by the user. That is an extraordinary
hit rate.

The specific problems that str has helped us diagnose include

• mutations — the dimension of the object is wrong, suggesting that earlier
code that was used to construct or manipulate the object is incorrect;

• misclassification — the object or its parts have unexpected classes, so the
default treatment is unexpected;

• misattributions — the object lacks dimensions or other attributes that the
code expects; and

• synecdoche — the user expects the object to return a part but asks for the
whole — especially common with fitted models.

1.3.2.1 Debugging in Batch

Using str and its ilk is straightforward when one has access to the prompt,
but all too often debugging happens in functions, and all too often the error
messages are not very informative. Then we want to be able to stop processing,
and examine the state. This is what the browser and recover functions allow.
If we insert browser() in our function, then execution stops at that point,
and we are able to visit the function’s environment to examine the objects
therein. If we type

> options(error = recover)

then when an error is detected, instead of stopping and dropping to the
prompt, R will stop and offer a menu of frames for further examination. Fur-
ther information can be found in a range of sources, including Jones et al.
(2009), which provides simple worked examples of debugging.

30 Methods of Statistical Model Estimation

1.3.3 Object-Oriented Programming

Object-oriented programming (OOP) is a type of programming that is built
around several core values:

• encapsulation, which means that information can be hidden;

• inheritance, which means that code can be easily shared among objects; and

• polymorphism, which means that procedures can accept or return objects
of more than one type.

Craig (2007) offers a readable introduction.
In order to introduce OOP in the context of R, we briefly turn to a pro-

gramming conundrum: how to design a computer language that scales easily.
Consider the operation of printing an object that might be a number, or a
model, or a matrix. Each of those three different classes of objects would re-
quire different code to print. Writing a single function that prints all possible
classes would be clumsy and it would be challenging to extend in any uni-
fied way for new functionality. Therefore writing separate functions for each
different class of object is necessary. However, what should all these different
species of print functions be called? It would be tedious to have to recall a
different function name for printing every different class of object. In base R
alone, the number of different versions of print is

> length(apropos("^print."))

[1] 95

N.B.: Of course, that is just for the version of R installed on the second
author’s computer, which is

> sessionInfo()[[1]]$version.string

[1] "R version 2.15.2 (2012-10-26)"

So, we want many functions that can all be called using the same interface.
OOP can solve this problem by polymorphism. However, even then we do not
want to write endless links of if – else to handle the different scenarios.
R provides different kinds of OOP facilities to solve this problem, both in
the base language and via contributed packages. Here we cover the simplest
implementation: S3 classes.

1.3.4 S3 Classes

Simple object-oriented programming is baked into R by means of the so-called
S3 classes1. S3 classes provide a flexible and lightweight OO facility. They lack

1The name refers to the version of S in which the classes were introduced.

Programming and R 31

the protective infrastructure of more formal frameworks, such as S4 classes2,
but they are significantly easier to deploy. We consider Chambers (2008) to
repay careful study on the topic, and note that the draft ‘R Language Defi-
nition’ is also useful reading. However, the underlying C code is the definitive
resource.

Methods that are constructed for S3 classes rely on some base functions,
called generic functions, which are used like building blocks. An example of a
generic function is print.

> print

function (x, ...)

UseMethod("print")

<bytecode: 0x4319c70>

<environment: namespace:base>

When generic functions are called, they examine the class of the first ar-
gument. The function then calls a specific method that is identified as the
function name and the class name, separated by a period. If the object class
is, for example, ml_g_fit, then the print method will be print.ml_g_fit. If
no method exists for the particular class, then the default function is called
instead, specifically, print.default. Hence, S3 classes solve the function nam-
ing problem introduced above, by polymorphism. The programmer can write
a method that is specific to the class, but all the user needs to do is use the
generic function.

If an object has more than one class, as ours will, then the generic function
uses the method for the first match among the listed classes. This is how S3
classes provide a kind of inheritance. Consider the following object.

> ordinal <- ordered(c(1,2,3))

> class(ordinal)

[1] "ordered" "factor"

When we try to print the ordinal object, the generic function will use
the print method for the ordered class, if one exists (which it does not), or
then that for the factor class if one exists, or the default method. So, the
object class identifies the options in the preferred order, and here, the class of
ordered objects kind-of inherits the methods of the factor class. We now print
the ordinal object.

> ordinal

[1] 1 2 3

Levels: 1 < 2 < 3

2Ditto.

32 Methods of Statistical Model Estimation

The reason that we are being a little coy about inheritance in S3 classes is
that the inheritance is working at the object level, as opposed to the class level.
It is quite possible to create mutant objects that do not follow the assumed
phylogenetic structure, viz.

> class(ordinal) <- "ordered"

> ordinal

[1] 1 2 3

attr(,"levels")

[1] "1" "2" "3"

attr(,"class")

[1] "ordered"

Note that the object has lost the factor classification, and hence also its con-
nection to print.factor. This can happen because the objects can be and
mostly are created by means other than a formal constructor, and the object’s
class can be altered freely.

We can determine what methods have been written for a class using the
methods function, as follows.

> methods(class = "ordered")

[1] Ops.ordered Summary.ordered

[3] as.data.frame.ordered relevel.ordered*

Non-visible functions are asterisked

This output shows us that there is no print method for the ordered class. We
can also check to see what methods have been written for generic functions.
Here, for example, we determine what classes have bespoke methods for the
nobs generic function.

> methods(nobs)

[1] nobs.default* nobs.glm* nobs.lm* nobs.logLik*

[5] nobs.nls*

Non-visible functions are asterisked

We mention in passing that all of these objects are flagged as being non-
visible, meaning that they are not exported in the namespace. We can still
study them, however, using getAnywhere.

> getAnywhere(nobs.lm)

Programming and R 33

A single object matching ’nobs.lm’ was found

It was found in the following places

registered S3 method for nobs from namespace stats

namespace:stats

with value

function (object, ...)

if (!is.null(w <- object$weights)) sum(w != 0) else

NROW(object$residuals)

<bytecode: 0x4e097c0>

<environment: namespace:stats>

We close this section with an example of S3 programming. We invent a
simple object, called item, and we suppose that item should have two classes,
namely thing1 and thing2, and that thing2 should inherit some functionality
from thing1.

> item <- 1:2

> class(item) <- c("thing2","thing1")

We write a simple print method for class thing1.

> print.thing1 <- function(x, ...) {

+ cat("inherits from Thing 1.\n")

+ }

Now we write a print method for class thing2 that will also call the print
method that we wrote for thing1. In this way we can share the same piece of
code between the different classes of things. The NextMethod function, when
called without arguments, will match the method called (here, print) with
the next class in the object’s class attribute (here, thing1). So it will be as
though we called print.thing1(x). NextMethod prevents endless recursion.

> print.thing2 <- function(x, ...) {

+ cat("Thing 2 ")

+ NextMethod()

+ }

We test our code by printing the item.

> item

Thing 2 inherits from Thing 1.

Now, the key to inheritance is that we want to be able to call this code for
items of class thing2, but perhaps also thing3.

34 Methods of Statistical Model Estimation

> print.thing3 <- function(x, ...) {

+ cat("Thing 3 also ")

+ NextMethod()

+ }

The following code shows the effect.

> another.item <- 1:3

> class(another.item) <- c("thing3","thing1")

> another.item

Thing 3 also inherits from Thing 1.

1.4 Making R Packages

We now cover what is arguably the key to R’s great success as a statistical
language: the R package system. This system is both a protocol and set of
tools for sharing R functions and data. We do not intend to provide an ex-
haustive description of the system, but rather to provide enough information
that readers will feel confident in constructing their own package, and about
why it might be a good idea to do so.

A well-constructed R package is an unparalleled device for sharing code.
Ideally it contains functions, documentation, datasets, and other information.
Ideally the receiver will be able to install the R package and then run code
examples that are provided in the help files that will execute on data that
are installed from the package, and thus reproduce results that are either
important in their own right, or assist the extension of the code to cover cases
that are valuable to the user.

An R package is simply a compressed collection of files that conforms
to a reasonably general directory structure and content. It is important to
know that R packages conform to a wide range of specificity of detail, so
that although it is possible to construct sophisticated combinations of R code
and source code with various facilities, even a single function and appropriate
documentation can comprise a package.

It is also important to distinguish between packages that are constructed
for local use and packages that are intended for submission to a community
such as the Comprehensive R Archive Network (CRAN). Packages intended
for submission to CRAN are required to pass a rigorous battery of tests that
should be replicated and checked on a local machine before submission. Pack-
ages for local use are subject only to local considerations; however, most of
the provided tests for CRAN are useful regardless. This is not true of all the
tests, for example, CRAN prefers that examples run quickly, which is less of
an issue for local packages.

Programming and R 35

1.4.1 Building a Package

Building a package is a two-step process: first, creating a collection of di-
rectories and files according to a protocol, most often simply by using the
package.skeleton function within R; and second, compiling the directories
and files into a compressed binary archive using R tools in a command line
interface (CLI).

A package starts out as a collection of directories and files contained within
a single directory, which we will call the package directory. The most common
structure has a DESCRIPTION file at the top level of the package directory,
along with an R directory for the R functions, a data directory to hold any
compressed R objects, and a man directory that holds the correctly formatted
help files. That is all.

Other items, such as an INDEX file, are generated on the fly. A NAMESPACE

file is also created automatically if one is not provided.
We do not have to create these directories and files ourselves. R can do

that for us, using objects stored in memory. When we need to start making a
package we invariably use the package.skeleton function, which constructs
a basic and complete package framework using the objects in a nominated
environment, for which the default is the global environment. The framework
is complete in that all the needed files are present; however, the help files
do require editing. That is, the easiest way to start building a package is to
load the functions and the data into R, and then run the package.skeleton

function. The latter will then construct the directories files that are needed, as
described above. For example, the following call will create the infrastructure
that is needed to build a package called myPackage that contains the ob-
jects myFunction and myData, and to save that infrastructure in the current
working directory.

package.skeleton(name = "myPackage",

list(myFunction, myData),

path = ".")

Once the infrastructure is in place, building an R package requires a num-
ber of software tools. Covering all the options is beyond the scope of this book,
but we will say that the needed tools are likely installed by default if your
operating system is related to Unix, readily available as part of additional
components of the Macintosh OS X, and available online as the executable
archive Rtools.exe for the Windows family of operating systems. We will
now assume that you have obtained and installed the needed software.

Whether we have constructed the package framework by hand, or using the
package.skeleton function, we next create the package using the command-
line interface (CLI) appropriate to the operating system. Readers who are
unfamiliar with this step would benefit from background reading.

First, be sure that the files are up to date and reflect the desired contents.
Pay particular attention to the help files and the DESCRIPTION file. Open

36 Methods of Statistical Model Estimation

the CLI and navigate to the directory that holds the package framework.
We want the working directory to contain the package directory as identified
above, say, myPackage. Then at the prompt for the CLI (here, $, which is the
default prompt for the bash shell) type

$ R CMD build myPackage

R will construct the package. In order to see the options, type

$ R CMD build --help

If we want to include any other files with our package, then we add an
inst directory, whose contents are included in package archive. This can be
useful for including other scripts or raw datasets. We do this after running
package.skeleton.

1.4.2 Testing

Before we distribute the package, or submit it to CRAN, we need to
test it. The test will provide numerous checks of internal consistency
and completeness. Imagine that the package that we have constructed is
myPackage_1.0.0.tar.gz (note that the version number is determined by
the contents of the DESCRIPTION file at the time of package construction). We
run the tests by means of the following code.

$ R CMD check myPackage_1.0.0.tar.gz

We reiterate that these tests are not mandatory unless the package is destined
to be submitted to CRAN, but they are a very useful device regardless. Very
detailed output is provided on the test outcomes. We then iterate through
the process of editing the package files to correct the errors, rebuilding the
package, and applying the tests, until satisfied.

1.4.3 Installation

Finally, we can install the package into our R library using

$ R CMD install myPackage_1.0.0.tar.gz

The details of installation can be specific to your operating system, and par-
ticularly your permissions to write to various directories, so we omit further
details.

Programming and R 37

1.5 Further Reading

There are many excellent books on programming. We mention particularly
Polya (1988), Michalewicz and Fogel (2010), Venables and Ripley (2000), Pace
(2012), Jones et al. (2009), and Chambers (2008).

1.6 Exercises

1. What is the relationship of a probability distribution function and
a statistical model?

2. If matrix M is defined as

> M <- matrix(c(3,4,6,8), nrow = 1)

and matrix P is defined as

> P <- matrix(c(3,4,6,8,4,8,4,7,2,2,5,4,4,7,5,2),

+ ncol = 4)

multiply M and P to have a 1× 4 matrix, Q. What are the values
in the vector Q?

3. Using R’s PDF function, calculate the Poisson probabilities from 0
through 10 given a mean value of 4.

4. Using R’s pseudo-random number generator, generate 10 random
Poisson variates given a Poisson mean value of 4.

5. (a) What is numerical optimization?

(b) What is the distinction between a model and optimization al-
gorithm?

(c) Is there a universal optimization algorithm?

(d) What are optimality conditions?

(e) How does sensitivity analysis relate to numerical optimization?

(f) What is the difference between discrete and continuous opti-
mization?

6. Use options(error = recover) and ls to verify that m exists in
the environment in which variance.binomial is being called in
the example in Section 1.2.3.3, but not in the environment created
within the variance.binomial execution.

2

Statistics and Likelihood-Based Estimation

2.1 Introduction

In the previous chapter we provided an overview of various R programming
tools that will be needed when we start developing methods of model esti-
mation. We also introduced the foremost probability and cumulative density
functions that will be used in maximum likelihood estimation and simulation.
Statistical modelling rests upon underlying probability functions, or mixtures
of them, which are conceived to describe particular data situations. In this
chapter we shall describe the relationship of data to probability and to like-
lihood, and show how these are in turn related to fitting and interpreting
statistical models.

2.2 Statistical Models

Statistical models are used to describe a sample of data taken from a real or
theoretical population. Statistical models can be described using one or more
underlying probability distributions. The parameters of the distributions are
estimated from the data, and may provide the basis for predicting additional
data with the same distributional characteristics of the data being modeled.
Models that can be defined in terms of a probability distribution having es-
timable parameters are called parametric models. We will focus our attention
in this text on this type of model.

We note that non-parametric and semi- or partial-parametric models, as
well as exact statistical models, have been constructed to deal with data
that cannot be handled using normal parametric techniques. One set of non-
parametric models is entirely, or in part, parameterized by smoothing splines.
Statisticians generally turn to non-parametric model design when they have
difficulty linearizing a continuous explanatory predictor so that it maintains
an additive effect in an otherwise parametric model. Exact statistical models
are used for dealing with sparse and unbalanced data. However, they demand
huge amounts of computing power, and are thus limited in scope at this time.

39

40 Methods of Statistical Model Estimation

Unless we specifically indicate otherwise, we henceforth are referring to para-
metric models when discussing statistical models in general.

Statistical models assume that the population elements of the variable of
interest in the modelling task are randomly distributed according to a prob-
ability distribution, which is constrained by one or more parameters. It is
natural to assume that each unit in the sample of data follows the same
distribution as the population, so long as the sample is obtained by some un-
biased method. Further, it is commonly assumed that the units of the sample
are mutually independent — often with good reason — and that therefore the
joint probability function of the sample can be obtained by multiplying the
probability functions of each unit in the sample. Data that are clustered or
correlated in some manner violate the distributional assumption of the prob-
ability function upon which the model is based. However, statisticians have
derived a variety of adjustments so that unbiased parameter estimates may
be calculated for correlated data, e.g., panel data.

Probability distributions may be either continuous or discrete, reflecting
whether the variable of interest is continuous or discrete. When they are dis-
crete, the probability distribution is commonly referred to as a probability
mass function (PMF). When the variable being described in the model is con-
tinuous, we use the term probability density function, or PDF. In this text we
will commonly refer to the probability distribution function, or PDF, by which
we wish to refer to the PMF/PDF depending on the nature of the random
variable.

Two additional defining characteristics of PMFs should also be mentioned.
First, if we specify a random variable X as the event, place, thing, or person
that is being described by a probability mass function, we may indicate the
probability that X can take a specific value x as f(x) or fX=x. f(x) is non-
negative for all real values of x.

Second, if X is described by a PMF, then the sum of all possible values of
X is 1. That is,

∑
f(xi) = 1. When x is continuous,

∫
f(x)dx = 1. However,

for continuous distributions, the probability of the random variable taking
the value of any particular x is 0, unlike the probability for x in a discrete
distribution.

Probability functions are often defined in terms of a location and one
or more scale parameters. Many of the discrete distributions have only the
location or mean parameter. Continuous distributions generally have one or
two scale parameters in addition to the location parameter. Some discrete
distributions, e.g., the negative binomial and beta-binomial distributions, have
two parameters.

We mentioned earlier that statistical models are used to estimate the pa-
rameter(s) of the distribution to which the variable of interest belongs. This
variable is typically referred to by statisticians as the response variable or de-

pendent variable. If, for example, the response variable consists of independent
count data, it is most likely assumed to be conditionally distributed as Pois-
son, having a specific mean value, λ. If the count data are correlated, then we

Statistics and Likelihood-Based Estimation 41

might assume that the conditional distribution is negative binomial. The task
of a Poisson statistical model, for example, is to estimate the mean parameter
of Poisson distribution that characterizes the response term. Note that a mean
or location parameter of Poisson or negative binomial models is represented
by µ when being estimated as a generalized linear model (GLM). When not
estimated as a GLM, their mean parameter is typically represented by λ. Ex-
ceptions exist in the literature, and which symbol is used in fact makes little
difference as long as it is used consistently in the estimation process.

Above we say conditionally distributed because we mean that the data are
distributed in this way given the parameters. That is, we want to allow for the
possibility that the PDF parameters may be different for different observations
in the data, and we construct a model to allow for it. For example, if we were
to observe some data from the following distribution,

yi ∼ N (β0 + β1xi, σ2) (2.1)

then we are not saying that the sample of yi is normally distributed, but
rather that it is normally distributed conditional on the xi, β0, β1, and σ2.
Each unique observation of y has its own unique distribution, all of which are
normal, and differ only in the parameters. This is a statistical model, and we
can write this model more formally as follows:

f(Yi = yi|xi, β0, β1, σ2) = fN (yi; µ = β0 + β1xi, σ2 = σ2) (2.2)

We are saying that the probability distribution of the random variable Yi is
normal, given that the other elements are known.

As we have seen, a key feature of a statistical model is that the distribution
of the response variable, y, may be adjusted by one or more explanatory pre-
dictor variables, also called predictors, which we represent here by x. How the
predictors relate to the response will become clear when we discuss the creation
of synthetic models later in this book. The adjustment made by explanatory
model predictors will affect the estimated mean parameter, and scale param-
eter(s) if appropriate. The predictors of two-parameter models may actually
change the manner in which the adjusted response is distributed. This oc-
curs more frequently with count data where predictors may result in the ad-
justed response being modeled as negative binomial rather than as Poisson.
For single-parameter models the predictors do not affect which distribution is
used for the model.

2.3 Maximum Likelihood Estimation

2.3.1 Process

Recall that the probabilities that are derived from a PDF are described by
parameters. When we are modelling with data, we want to estimate the pa-

42 Methods of Statistical Model Estimation

rameters of the model using the data. The parameters of a probability func-
tion are usually not directly estimated in statistical modelling. Instead, the
conditioning of the PF is reversed. When the relationship of observations to
parameters are reversed for a given probability function, statisticians refer to
the function as a likelihood function. For a given probability distribution, we
may write f(y|θ) where y represents the data and θ is the distribution parame-
ter that produces y. Then the corresponding likelihood function is L(θ|y). The
functional form is identical; all that changes is the conditioning. The proba-
bility refers to the probability of data conditional on parameters, whereas the
likelihood refers to the likelihood of parameters conditional on data.

When models are estimated using maximum likelihood, the likelihood is
transformed by the natural logarithm so that the contributions from each
unit of the dataset are summed (under the assumption of conditional inde-
pendence of the observations of the population), instead of being multiplied.
This is because summing across values is numerically more stable than is mul-
tiplying across values. We will reserve L(θ|y) to refer to the log-likelihood of
the parameters conditional on the data.

For an example we consider a Poisson model. The probability distribution
for a single observation is

fY =y(y|λ) =
λye−λ

y!
(2.3)

where y is the response variable and λ is the mean or location parameter. The
data are determined by the mean parameter via the PDF. A product sign
would be placed in front of the probability function for an independent and
identically distributed (iid) sample of observations.

The Poisson distribution belongs to a more general set of models termed
the exponential family of distributions. We will provide more information
about this family in Section 2.3.2.1. The probability functions of all member
distributions can be recast in the form

f(y|θ, φ) = exp

(
yθ − b(θ)

α(φ)
+ c(y, φ)

)
(2.4)

where θ is the link, α(φ) is the scale, b(θ) is the cumulant, and c(y, φ) is the
normalization function that guarantees that the PDF sums (or integrates)
to 1. The derivative of the cumulant with respect to θ is the mean, and the
second derivative is the variance of the distribution. This relationship is very
useful in terms of modelling data.

The scale, α(φ), is set at 1 for discrete probability distributions. Since the
Poisson is a discrete distribution, we can drop the scale from the exponential
equation. Parameterized so that the contribution of each observation to the
overall PDF is given, we have

f(y; θ) =
n∏

i=1

exp (yiθi − b(θi) + c(yi, φ)) (2.5)

Statistics and Likelihood-Based Estimation 43

The Poisson distribution may be expressed in exponential family form as

f(y; θ) =

n∏

i=1

exp (yi log(µi)− µi − log(yi!)) (2.6)

The likelihood function is then the same:

L(θ; y) =

n∏

i=1

exp (yi log(µi)− µi − log(yi!)) (2.7)

As noted above, statisticians typically log both sides of the likelihood equation
to obtain the log-likelihood.

L(θ; y) =

n∑

i=1

yi log(µi)− µi − log(yi!) (2.8)

Given the defining characteristics of the terms of the exponential family
form, the Poisson link function is log(µ) and the cumulant is µ. The inverse
link function for members of the exponential family define the fitted value,
symbolized as µ.

An alternative parameterization involves the linear predictor, Xβ, which
symbolizes the sum of the products of data and coefficients,

(Xβ)i = β0 + β1x1i + β2x2i + . . . + βpxpi (2.9)

where (Xβ)i is taken to mean the i-th row of the matrix Xβ. In terms of the
linear predictor, µi = (Xβ)i. The Poisson log-likelihood, expressed in terms
of the linear predictor, is then

L(θ; y) =

n∑

i=1

yi(Xβ)i − exp(Xβ)i − log(yi!) (2.10)

The quantity log(yi!) may be computed efficiently in R using the
lfactorial function

> y <- 5

> log(factorial(y))

[1] 4.787492

> lfactorial(y)

[1] 4.787492

A quick exploration shows that lfactorial is merely a wrapper for the
lgamma function.

44 Methods of Statistical Model Estimation

> lfactorial

function (x)

lgamma(x + 1)

<bytecode: 0xdd61ac>

<environment: namespace:base>

To obtain the coefficients or slopes for each of the predictors in the model,
we take the first derivative of the log-likelihood function with respect to β, the
parameter estimates, set it to 0, and solve. The function that is the derivative
of the log-likelihood with regards to β is also called the gradient function or
score function. For the Poisson distribution we have

∂L(β|y)

∂β
=

n∑

i=i

(yi − exp(Xβ)i)xi (2.11)

Setting the above function to 0 yields what is referred to as the estimating
equation for the Poisson model. The square matrix of second derivatives of the
function with regards to each of the parameters is called the Hessian matrix.

∂2L(β|y)

∂β∂β′
= −

n∑

i=i

(exp(Xβ)i)xix
′
i (2.12)

The negative of the inverse Hessian produces the estimated variance-
covariance matrix of the parameter estimates of the model. Therefore the
square root of the diagonal terms of the negative inverse Hessian matrix are
large-sample estimates of the standard errors of the respective model coeffi-
cients.

The method of estimation described above is called maximum likelihood

estimation. Other estimation methods exist, which we discuss in this volume.
But the majority of statistics that we have displayed are relevant to other
types of estimation. For example, estimation using Iteratively Re-weighted
Least Squares (IRLS) is variety of maximum likelihood estimation. It is a
shortcut made available due to the unique features of the exponential family,
and which can be used to estimate parameters for models of that family. Since
the Poisson model is a member of the exponential family, it may be estimated
using IRLS techniques, which we describe in detail in Chapter 4. It may also
be estimated using a full iterative Newton–Raphson type of algorithm, which
can be expressed as the solution to

βj+1 = βj −H−1g (2.13)

where g is the gradient or first derivative of the log-likelihood function de-
scribed above, H is the Hessian, and βj are the coefficients.

Finally, it should be noted that the mean and variance of the Poisson
distribution are then obtained by taking the first and second derivatives of
the cumulant, respectively.

Statistics and Likelihood-Based Estimation 45

b′(θi) =
∂b

∂µi

∂µi

∂θi
= 1× µi = µi (2.14)

and

b′′(θi) =
∂2b

∂µ2
i

(
∂µi

∂θi

)2

+
∂b

∂µi

∂µ2
i

∂θ2
i

= 0× 1 + µi × 1 = µi (2.15)

Finally, we mention that the method of estimation we have discussed thus
far is based on a frequency interpretation of probability. The logic of this
method is based on the notion that a statistical model represents a random
sample of a greater population. The population may be factual or theoretical;
e.g., all future instances or events. The method of estimation is conceptually
based on the random sampling of the population an infinite number of times.
We will discuss alternative viewpoints in Chapter 7.

2.3.2 Estimation

We now demonstrate maximum likelihood estimation of the single parameter
of Watson’s distribution, using R code. Recall from the previous chapter that
the PDF is

f(x; θ) =
1 + θ

θ
(
1 + x

θ

)2
0 < x ≤ 1; θ > 0 (2.16)

This equation translates to the following log-likelihood.

L(θ; x) = log(1 + θ)− log(θ)− 2× log
(

1 +
x

θ

)
0 < x ≤ 1; θ > 0 (2.17)

In R, for a vector of data x, the function is as follows.

> jll.watson <- function(theta, x) {

+ sum(log(1 + theta) - log(theta) - 2*log(1 + x / theta))

+ }

We can maximize this function across θ a number of ways. We will use the
optim function here, and we write a wrapper function for it to simplify our
future usage. Our wrapper function is

> watson.fit <- function(x, ...) {

+ optim(0.5,

+ jll.watson,

+ x = x,

+ method = "Brent",

+ lower = 0, upper = 1,

+ control = list(fnscale= -1), ...)

+ }

46 Methods of Statistical Model Estimation

A few points should be noted. First, we have only one parameter to es-
timate, so we select the option that calls the function optimize; this is
method = "Brent". This algorithm requires bounds to be provided for the
parameter estimate. We call the wrapper as a function of some data as fol-
lows. The data are

> large.sample <- rep(1:10, 10)/20

and we fit the model using

> large.sample.fit <- watson.fit(large.sample)

We can now examine the results of the model fit. The following quanti-
ties can be reported: par is the MLE for the parameter θ, value is the log-
likelihood evaluated at the maximum, and the other three provide feedback on
the execution. Both the convergence and message objects are of particular
interest: a convergence of 0 reports that the algorithm has converged.

> large.sample.fit

$par

[1] 0.489014

$value

[1] 25.75886

$counts

function gradient

NA NA

$convergence

[1] 0

$message

NULL

We will cover how to obtain interval estimates in Section 2.4.

2.3.2.1 Exponential Family

The majority of parametric models currently employed for statistical mod-
elling are based on the exponential family of distributions. These include such
models as Gaussian, or normal, binomial, with links for logistic, probit, com-
plementary log–log, and other related models, gamma, inverse Gaussian, Pois-
son, and negative binomial. Each of these models estimates the parameters
of the underlying distribution based on the data at hand using a type of
regression procedure or algorithm.

Statistics and Likelihood-Based Estimation 47

The basic one-parameter family of exponential models is referred to as gen-

eralized linear models (GLM), but two-parameter as well as three-parameter
models exist as extensions of the continuous GLM distributions, as well as
for binomial and negative binomial models. Mixtures of these models are also
widely used, as well as truncated, censored, bivariate, and panel model vari-
eties.

At the base of the exponential family is the generic exponential family
probability function, commonly expressed as

f(y; θ, φ) = exp
yθ − b(θ)

α(φ)
+ c(y; φ) (2.18)

where y is the response variable, θ is the canonical parameter or link func-
tion, b(θ) is called the cumulant, α(φ) is called the scale parameter, which
is set to 1 in discrete and count models, and c(y, φ) is a normalization term,
used to guarantee that the probability function sums or integrates to unity.
The negative binomial scale parameter has a different relationship with the
other terms in the distribution compared to continuous distributions. We shall
describe that difference later in the book.

The exponential family distribution is unique among distributions in that
the first and second derivatives of the cumulant term, with respect to θ, yield
the mean and variance functions, respectively.

It is important to note that models of this kind enjoy a host of fit and
residual statistic capabilities, and are therefore favored by statisticians who
are able to use them for their modelling projects. That is, it is reasonably
straightforward to assess and compare the fits of GLMs to data; consequently,
they are popular tools.

2.3.3 Properties

When certain regularity conditions are met, maximum likelihood estimates are
characterized by having four properties, namely consistency, the asymptotic
normality of parameter estimates, asymptotic efficiency, and invariance. Many
times statisticians tend to ignore the regularity conditions upon which these
properties are based; they are simply assumed to hold. However, ignoring the
conditions can lead to biased and inefficient parameter estimates.

Regularity conditions include, but are not limited to

1. The elements or observations of the response variable, Y , are con-
ditionally independent and identically distributed with a density of
f(y; θ).

2. The likelihood function L(θ; y) is continuous over θ.

3. The first and second derivatives of the log-likelihood function are
capable of being defined.

4. The Fisher information matrix is continuous as a function of the
parameter. The Fisher information matrix cannot be equal to zero.

48 Methods of Statistical Model Estimation

When these regularity conditions hold, then maximum likelihood estima-
tors have the following properties.

Asymptotic consistency As the number of observations in a model goes to
infinity, the ML estimator, θ̂, converges to its true value. That is, as n→∞,
|θ − θ̂| → 0.

Asymptotic normality As the number of observations in a model goes to
infinity, the ML estimator, θ̂, becomes normally distributed, and the covari-
ance matrix becomes equal to the inverse Fisher or expected information.
Even in models with relatively few observations, parameter estimates ap-
proach normality. For this reason it is possible to use the normal z-value to
calculate confidence intervals.

Asymptotic efficiency As the number of observations in a model goes to
infinity, the ML estimator, θ̂, has the smallest variance of any other estima-
tor. An alternative way of expressing this is to state that an estimator is
asymptotically efficient if it has the minimum asymptotic variance among
competing asymptotically unbiased estimators. See Hilbe (2011).

Invariance The maximum likelihood estimator is invariant if it selects the
parameter value providing the observed data with the largest possible like-
lihood of being the case. In addition, given that an estimator is in fact the
MLE for a parameter, and that g(θ) is a monotonic transformation of θ, the

MLE of p = g(θ) is p̂ = g(θ̂).

The first two properties are usually given by mathematical statisticians as
the most important of the properties; the larger the number of observations,
the more likely it is that the true parameter is being well approximated, and
that the sampling distribution of this parameter estimate is normal.

Bias is the difference between the true and expected values of a parameter.
An estimator is unbiased when the mean of its sampling distribution is equal
to the true parameter, E(θ) = θ. There is no guarantee that any particular
MLE will be unbiased, although some are, coincidentally.

The characteristics of inference from maximum likelihood estimation that
we will use are based on large-sample asymptotics. When the model has only
a relatively few observations, these characteristics or properties may break
down, and adjustments need to be made for them. Of course, if we are able to
obtain more data and it appears that the estimator is veering from the true
parameter, or is becoming less normal, then there may be unaccounted-for
bias in the data. In such a case, MLE may not be an appropriate method of
estimation. Attempting to maximize a response term that is multi-modally
distributed will also result in biased estimates, and in some cases in the in-
ability of obtaining estimates at all.

Specification tests may be valuable for testing such possibilities, in par-
ticular Hausman specification tests evaluate whether an MLE estimator is
efficient and consistent under the hypothesis that is being tested.

Statistics and Likelihood-Based Estimation 49

All in all though, maximum likelihood is a powerful estimation method,
in particular for models with an exponential distribution base. It may still be
considered as the standard method of estimation.

2.4 Interval Estimates

Here we cover two ways of producing large-sample interval estimates: Wald
intervals and inversion of the likelihood ratio test.

2.4.1 Wald Intervals

Traditional (Wald-style) confidence intervals are calculated using the following
formula

β̂j ± zα/2se(β̂j) (2.19)

where for α = 0.05, corresponding to a 95% confidence interval, zα/2 = 1.96.
The assumption is that the sampling distribution of the coefficient estimate
is normal. This assumption may be checked by graphical diagnostics.

An asymptotic estimate of the standard errors of the parameter estimates
can be obtained from the call to optim by requesting retention of the Hessian
matrix. To do this we simply need to add hessian = TRUE to the function
call, as per the following example.

Here we create two samples, one large and one small, and fit the model
to each. The standard error estimates provide feedback about the amount of
data available in each sample. Note that these estimates are asymptotic, so
they rely on the sample being large enough that the shape of the likelihood
in the region of the optimum is appropriately quadratic.

> large.sample <- rep(1:10, 10)/20

> large.sample.fit <- watson.fit(large.sample, hessian = TRUE)

> large.sample.fit$par

[1] 0.489014

> (large.se <- sqrt(diag(solve(-large.sample.fit$hessian))))

[1] 0.1117381

The 95% Wald CI is then

> large.sample.fit$par + c(-1,1) * large.se

[1] 0.3772759 0.6007521

50 Methods of Statistical Model Estimation

We now generate a much smaller sample, and fit the model to it, in order to
observe the effect of sample size upon the certainty of the parameter estimates.

> small.sample <- rep(1:10, 1)/20

> small.sample.fit <- watson.fit(small.sample, hessian = TRUE)

> small.sample.fit$par

[1] 0.489014

> (small.se <- sqrt(diag(solve(-small.sample.fit$hessian))))

[1] 0.3533468

The 95% Wald CI is substantially wider, as follows.

> small.sample.fit$par + c(-1,1) * small.se

[1] 0.1356672 0.8423608

2.4.2 Inverting the LRT: Profile Likelihood

For models with few observations and models with unbalanced data, coeffi-
cients generally fail to approach normality in their distribution. In fact, most
coefficient estimates are not distributed normally.

Due to the fact that the normality of coefficients cannot be assumed, many
statisticians prefer to use the likelihood ratio test as a basis for assessing the
statistical significance of predictors. The likelihood ratio test is defined as

−2
(
Lreduced − Lfull

)
(2.20)

with L indicating the model log-likelihood, as before. The reduced model is
the value of the log-likelihood with the predictor of interest dropped from
the model or set to a value, usually 0 or 1, at which the contribution of
the corresponding parameter estimate is negligible. Statistical significance is
measured by the Chi2 distribution with 1 degree of freedom.

The LRT can be inverted to provide confidence intervals, which are in
this case the range of values β̃ for which the null hypothesis that β = β̃
would not be rejected. The profiled confidence intervals do not rely on the
assumption of normality of the parameter distribution; however, the use of
the Chi2 distribution with 1 degree of freedom to provide the cutoff is still
an asymptotic argument. The difference is that the Wald confidence intervals
are based on a linear approximation to the true log-likelihood, whereas the
LRT-based intervals use a quadratic approximation to the true log-likelihood
(see e.g., Pawitan, 2001, §9.4).

We now demonstrate computing likelihood ratio intervals for estimates
from Watson’s distribution. First, we write a function to simplify calling the
likelihood function for a range of values of θ.

Statistics and Likelihood-Based Estimation 51

> mll.watson <- function (x, data)

+ sapply(x, function(y) jll.watson(y, data))

Now we can evaluate the log-likelihood at the data and at this range of can-
didate parameter estimates.

> profiles <- data.frame(thetas = (1:1000)/1000)

> profiles$ll.large <- mll.watson(profiles$thetas, large.sample)

> profiles$ll.small <- mll.watson(profiles$thetas, small.sample)

Note that we don’t need to refit the model at this point. We simply want to
evaluate the log-likelihood at a large number of different potential parameter
estimates.

In order to be able to superimpose summaries of the datasets, we subtract
the maximum log-likelihood from each one. In doing so, we scale the log-
likelihoods to each have a maximum of 0.

> for (i in 2:3)

+ profiles[,i] <- profiles[,i] - max(profiles[,i])

Finally, we can plot the two profiles on a single set of axes, and see what
the interval estimates are, and also what effect the larger sample size has upon
the symmetry and width of the intervals (Figure 2.1). We added a horizontal
line at −1.92, which is the cutoff computed by halving the 0.95 quantile of
the Chi2 distribution with 1 d.f.

> par(las = 1, mar = c(4,4,2,1))

> plot(ll.small ~ thetas, data = profiles,

+ type = "l", ylim = c(-4,0),

+ ylab = "Log-Likelihood (Scaled)",

+ xlab = expression(paste("Candidate Values of ", theta)))

> lines(ll.large ~ thetas, data = profiles, lty = 2)

> abline(h = -1.92)

> abline(v = large.sample.fit$par)

We see that the estimated 95% confidence interval for the small sample is
approximately (0.16, 1.0) and for the large sample is about (0.33, 0.8). Clearly
the increase in sample size has decreased the width considerably, and has made
the interval more symmetric.

A two-parameter likelihood can be handled in the same way, producing
profile contours instead of lines. A grid of candidate values for the two pa-
rameters is established, and the log-likelihood evaluated at each point on the
grid. When there are more parameters than can be plotted, or one of the pa-
rameters is of primary import, then we need to find some way to ignore the
other parameters.

52 Methods of Statistical Model Estimation

0.0 0.2 0.4 0.6 0.8 1.0

−4

−3

−2

−1

0

Candidate Values of θ

L
o

g
−

L
ik

e
lih

o
o

d
 (

S
c
a

le
d

)

FIGURE 2.1

Profile log-likelihoods for a small sample (solid line) and a large sample
(dashed line) for θ, the parameter of Watson’s distribution. A horizontal line
is added at −1.92 and a vertical line at the MLE.

2.4.3 Nuisance Parameters

The process of developing interval estimates for parameters in models that
have multiple parameters is more complicated. The reason for this complica-
tion is that the estimates of the parameters can and often do interact with one
another. Specifically, our best guess as to an interval estimate of one param-
eter can depend on the estimate of the other parameters. Further, sometimes
the other parameters are of interest to the analyst — and sometimes they are
not of interest — they are nuisance parameters.

Obtaining Wald interval estimates is the same as above: extraction of the
Hessian matrix and the subsequent computation. Analysts will often check the
correlation matrix of estimates to be sure that the estimates are reasonably
independent, and if they are satisfied as to this point, they will then calculate
and interpret the Wald interval estimates for each parameter of interest. We
will not consider Wald intervals further in this section.

LR-intervals are another matter. It is tempting to simply evaluate the log-
likelihood at a range of candidate values for the parameter or parameters of
interest, and replace the other parameters with their unconditional MLEs.

Statistics and Likelihood-Based Estimation 53

However, doing so ignores the potential relationships that the parameters
could well have with one another. That is, we cannot ignore the potential
effects that candidate values of the parameters of interest might have upon
the estimates of the other parameters unless we are certain that the parameters
are independent. Doing so will underestimate the size of the confidence regions
and quite possibly produce misleading shapes of the confidence regions.

For example, consider the gamma distribution, with PDF as follows.

f(x) =
1

saΓ(a)
xa−1e−x/s (2.21)

We might be interested in an estimate of parameter a (the shape parameter)
but not s (the scale). We start with ML estimation as before,

> set.seed(1234)

> gamma.sample <- rgamma(1000, scale = 4, shape = 2)

> jll.gamma <- function(params, data) {

+ sum(dgamma(data,

+ scale = params[2],

+ shape = params[1],

+ log = TRUE))

+ }

> gamma.fit <- function(data, ...) {

+ optim(c(2,2),

+ jll.gamma,

+ data = data,

+ control = list(fnscale = -1), ...)

+ }

> test <- gamma.fit(gamma.sample, hessian = TRUE)

> test

$par

[1] 2.095975 3.869300

$value

[1] -2963.146

$counts

function gradient

53 NA

$convergence

[1] 0

$message

NULL

54 Methods of Statistical Model Estimation

$hessian

[,1] [,2]

[1,] -608.3007 -258.4447

[2,] -258.4447 -139.9754

Now we want to write a new version of the log-likelihood that allows us to
specify the shape parameter. In order to construct a profile, we must be able
to fix the parameter that we are interested in, and then maximize the log-
likelihood across the rest of the parameters. We can think of this as being
a conditional log-likelihood: the log-likelihood of s, the nuisance parameter,
conditional on a given value of a, the parameter of interest, for which we want
to compute the profile.

> jll.gamma.shape <- function(params, alpha, data) {

+ sum(dgamma(data, scale = params, shape = alpha, log = TRUE))

+ }

> gamma.fit.shape <- function(alpha, data, ...) {

+ optim(1,

+ jll.gamma.shape,

+ data = data,

+ alpha = alpha,

+ method = "Brent",

+ lower = 0, upper = 10,

+ control = list(fnscale = -1), ...)$value

+ }

Now we can fit the conditional log-likelihood for a range of pre-determined
values of a and obtain the MLE. Here we use the convenient sapply command.

> gamma.profile <-

+ data.frame(candidates = seq(1.9, 2.3, length.out = 100))

> gamma.profile$profile.right <-

+ sapply(gamma.profile$candidates,

+ gamma.fit.shape,

+ data = gamma.sample)

Before we plot the result, we calculate the profile with the nuisance parameter
fixed at its earlier MLE, and scale the two profiles to have maximum log-
likelihood 0:

> gamma.fit.shape.wrong <- function(alpha, data, mle) {

+ sum(dgamma(data, scale = mle, shape = alpha, log = TRUE))

+ }

> gamma.profile$profile.wrong <-

+ sapply(gamma.profile$candidates,

+ gamma.fit.shape.wrong,

+ data = gamma.sample,

Statistics and Likelihood-Based Estimation 55

+ mle = test$par[2])

> for (i in 2:3)

+ gamma.profile[,i] <- gamma.profile[,i] -

+ max(gamma.profile[,i])

Finally, Figure 2.2 is created with the following code.

> par(las = 1, mar = c(4,4,2,1))

> plot(profile.right ~ candidates, type="l",

+ data = gamma.profile, ylim = c(-2, 0),

+ ylab = "Log-Likelihood (Scaled)",

+ xlab = "Candidate Values of a")

> lines(profile.wrong ~ candidates, type="l",

+ data = gamma.profile,

+ lty = 2)

> abline(h = -1.92)

> abline(v = test$par[1])

We see that the effect of ignoring the nuisance parameter by setting it at its
conditional MLE is considerable.

1.9 2.0 2.1 2.2 2.3

−2.0

−1.5

−1.0

−0.5

0.0

Candidate Values of a

L
o
g
−

L
ik

e
lih

o
o
d
 (

S
c
a
le

d
)

FIGURE 2.2

Profile log-likelihoods refitting the model (solid line) and not refitting (dashed
line) for a, the shape parameter of the gamma distribution. A horizontal line
is added at −1.92 and a vertical line at the MLE.

56 Methods of Statistical Model Estimation

2.5 Simulation for Fun and Profit

We now introduce some tools that will be useful for exploring the properties
of MLEs.

2.5.1 Pseudo-Random Number Generators

For models that are based on the exponential family of distributions, as well
as on various other distributions, we may use the inverse transformation of a
probability function to generate random variates belonging to that distribu-
tion. Such random numbers are created using the uniform distribution, which
is runif in R. The runif function, which provides the probability distribution

f(x) =
1

b− a
; a < x ≤ b (2.22)

can be used to create random number generators from both discrete as well
as continuous probability distributions, e.g., Poisson, binomial, and gamma.

It should be made clear that when discussing random numbers and random
number generators, we nearly always are referring to pseudo-random numbers.
Computers, unless given specialist software, do not calculate truly random
numbers; rather, they compute thoroughly deterministic values based on the
computer clock. However, they do appear to be random, and for practical
purposes may be regarded as random.

The notion of a seed is central to understanding the pseudo-random values
that are produced by the runif function. A seed is given to algorithms that use
pseudo-random number generators so that identical results may be produced.
This is sometimes useful in textbooks so that readers can obtain the same
values as displayed in the text.

The seed is a series of numbers which are given to the set.seed function,
which in turn commences generating numbers based on a pre-defined series of
numbers. The value of the seed can be thought of as setting the place where
numbers are deterministically read from a master list of numbers. When a
seed value is not specifically given to runif, the algorithm sets the seed value
based on the computer clock. In either case, the numbers are constrained to
uniformly fit within the range 0 to 1.

We demonstrate the deterministic nature of calculating pseudo-random
numbers using runif to generate two 2-number vectors of pseudo-random
numbers, r1 and r2, with an initial seed number of 2468. We then use the
same seed value to generate 4 pseudo-random numbers.

> testnum <- 2

> set.seed(2468)

> r1 <- runif(testnum)

Statistics and Likelihood-Based Estimation 57

> r2 <- runif(testnum)

> c(r1, r2)

[1] 0.4625722 0.5741233 0.3747903 0.9006981

> testnum <- 4

> set.seed(2468)

> (r12 <- runif(testnum))

[1] 0.4625722 0.5741233 0.3747903 0.9006981

Note that the concatenation of r1 and r2 is identical to r12. In fact, any
time we employ that specific seed number, the values generated from using
runif will be identical.

We shall drop the pseudo- prefix from random number generators for ease
of reading. However, it is important to keep the actual operations in mind.
Using the computer clock, whose values change each 1000-th or less of a sec-
ond, we can produce what can be regarded as random numbers for nearly all
practical applications.

Note that R already has plentiful operational random number generators
for a range of probability distributions, and they are more stable and efficient
than those that we will write here. See ?set.seed for generous documentation.

We shall first construct exponential and Chi2 random number genera-
tors based on runif to demonstrate the logic of developing random number
generators. Thereafter we shall develop a Poisson random number generator.
Together these should demonstrate how generators can be produced.

We develop an exponential RNG using the inverse transform method. Ba-
sically, the inverse transform method relies on the fact that for any probability
function f , a random draw from its cumulative distribution F will always be
uniformly distributed. Hence, drawing a uniformly distributed random num-
ber, say q; q ∈ (0, 1), and computing x = F −1(q) results in a random number
x that is distributed as f .

> rndexp <- function(obs = 10000, shape = 3) {

+ xe <- -(shape)*log(runif(obs))

+ return(xe)

+ }

We use this function as follows.

> set.seed(1)

> rndexp(10, 3)

[1] 3.9783234 2.9655852 1.6713765 0.2888462 4.8031903 0.3214541

[7] 0.1707421 1.2429222 1.3903282 8.3522223

58 Methods of Statistical Model Estimation

A Chi2 (with q degrees of freedom) random-number generator can be con-
structed using the normal (Gaussian) inverse CDF by summing the squares
of q independent random normal variates. We can do this using a for loop, or
an apply function, but it is faster to generate all the needed numbers in one
call, convert them into an n × q matrix, and then use the efficient rowSums

function to sum them.

> rndchi2 <- function(obs = 10000, dof = 3) {

+ z2 <- matrix(qnorm(runif(obs*dof))^2, nrow = obs)

+ return(rowSums(z2))

+ }

We use this function as follows.

> set.seed(1)

> rndchi2(10, 2)

[1] 1.0656127 0.9686650 0.2713120 1.8552262 1.2433986 1.6191096

[7] 2.8764449 5.9542855 0.2018375 2.9545210

Random generation of a Poisson random variable is a trickier proposition
because the Poisson is discrete. Here we use an algorithm from Hilbe and
Linde-Zwirble (1995).

> rndpoi <- function(mu) {

+ g <- exp(-mu)

+ em <- -1

+ t <- 1

+ while(t > g) {

+ em <- em + 1

+ t <- t * runif(1)

+ }

+ return(floor(em + 0.5))

+ }

> set.seed(1)

> rndpoi(4)

[1] 4

Note that in order to create multiple random numbers, we might wrap this
function in a for loop. However, more efficient approaches are possible. We
now adapt the algorithm to use vectorized processing.

> rndpoi <- function(obs = 50000, mu = 4) {

+ g <- exp(-mu)

+ em <- rep(-1, obs)

Statistics and Likelihood-Based Estimation 59

+ t <- rep(1, obs)

+ while(any(t > g)) {

+ em <- em + (t > g)

+ t[t > g] <- t[t > g] * runif(sum(t > g))

+ }

+ return(floor(em + 0.5))

+ }

An example of using the above code is

> set.seed(1)

> xp <- rndpoi(10000, 4)

> str(xp)

num [1:10000] 1 6 4 5 1 3 4 6 11 1 ...

> mean(xp)

[1] 4.0028

> var(xp)

[1] 4.066999

2.6 Exercises

1. What is the difference between a probability model and a statistical
model?

2. Construct a function that will generate pseudo-random binomial
numbers in a similar manner as Poisson function discussed in the
chapter.

3. What is the difference between the observed and expected informa-
tion matrix? Which is preferred for calculating the standard errors
for non-canonical GLM models? Why?

4. Maximize the following equation with respect to x: 2x2 − 4x + 1.

5. (Challenging): Create a generic function to calculate profile likeli-
hood confidence intervals following (a) a glm logistic model, (b) a
glm Poisson model, (c) a glm negative binomial model, (d) any glm

model.

3

Ordinary Regression

3.1 Introduction

Linear regression and its generalization, the linear model, are in very com-
mon use in statistics. For example, Jennrich (1984) wrote, “I have long been
a proponent of the following unified field theory for statistics: Almost all of

statistics is linear regression, and most of what is left over is non-linear re-

gression.” This is hardly surprising when we consider that linear regression
focuses on estimating the first derivative of relationships between variables,
that is, rates of change. The most common uses to which the linear regression
model is put are

1. to enable prediction of a random variable at specific combinations
of other variables;

2. to estimate the effect of one or more variables upon a random vari-
able; and

3. to nominate a subset of variables that is most influential upon a
random variable.

Linear regression provides a statistical answer to the question of how a
target variable (usually called the response or dependent variable) is related
to one or more other variables (usually called the predictor or independent
variables). Linear regression both estimates and assesses the strength of the
statistical patterns of covariation. However, it makes no comment on the causal
strength of any pattern that it identifies.

The algebraic expression of the linear regression model for one predictor
variable and one response variable is

yi = β0 + β1 × xi + ǫi (3.1)

where yi is the value of the response variable for the i-th observation, xi and ǫi

are similarly the predictor variable and the error respectively, and β0 and β1

are the unknown intercept and slope of the relationship between the random
variables x and y.

In order to deploy the model to satisfy any of these uses noted above, we
need estimates of the unknown parameters β0 and β1, and for some of the uses

61

62 Methods of Statistical Model Estimation

we also need estimates of other quantities. Furthermore, different assumptions
must be made about the model and the data for these different uses; we detail
these assumptions below.

3.2 Least-Squares Regression

The challenge of determining estimates for the parameters, conditional on
data, can be framed as an optimization problem. For least-squares regression,
we are interested in finding the values of the parameters that minimize the
sum of the squared residuals, where the residuals are defined as the differences
between the observed values of y and the predicted values of y, called ŷ.

Exact solutions are available for least-squares linear regression, but our
ultimate goal is to develop models for which no exact solutions exist. Therefore
we treat least-squares linear regression in this manner as an introduction.

min

β0, β1

n∑

i=1

(yi − (β0 + β1xi))
2

(3.2)

For example, consider the following observations, for which least-squares
optimization is decidedly unnecessary.

> y <- c(3, 5, 7)

> x <- c(1, 2, 3)

We can write the objective function as a function in R, and use the power-
ful optim function to minimize the objective function across its first argument,
which may be of any length. So, the least-squares objective function for ob-
taining estimates of β0 and β1 can be written in R as

> least.squares <- function(p, x, y) {

+ sum((y - (p[1] + p[2] * x))^2)

+ }

where x is the predictor variable, y is the response variable, and p is the vector
of parameters.

We need to choose a starting point for the optimization routine, and we
would like to be sure that the function can be evaluated at the starting point
that we choose. So we choose some plausible values (here, β0 = 0 and β1 = 0)
and run a brief test, as follows.

> start.searching.here <- c(intercept = 0, slope = 0)

> least.squares(start.searching.here, x, y)

[1] 83

Ordinary Regression 63

We see that the function can be evaluated at that particular combination
of parameter estimates and the response and predictor variables. This test is
important as it provides direct feedback as to whether or not optim is likely
to succeed. The least-squares estimates can then be obtained by the following
call.

> optim(par = start.searching.here,

+ fn = least.squares,

+ x = x, y = y)$par

intercept slope

0.9991065 2.0003141

We see that the estimate of the intercept is close to 1 and the estimate of the
slope is close to 2. We now briefly describe the arguments that we have used
for our call to optim.

• par is a vector that presents the starting point for the search. The dimension
of the space to be searched is equal to the length of the vector. If the values
are labeled, as here, then the labels are passed through optim to the output.

• fn is the function to be minimized. The function will be minimized across
its (possibly multidimensional) first argument.

• x and y are the other arguments that we need to resolve the value of fn. Note
that these arguments were declared when the least.squares function was
created. This is a useful example of how the ... argument is used: optim

accepts arguments that do not match its formal arguments and passes them
to fn.

As is well known, the values that minimize the objective function (3.2)

also have a closed-form expression; β̂1 =
SSxy

SSxx
and β̂0 = ȳ − β̂1x̄, where SSab

refers to the sum of squares of variables a and b: SSab =
∑

(ai − ā)(bi − b̄).
Equivalently, in R, we can use

> mean(y) - cov(x,y) / var(x) * mean(x) # Beta 0

[1] 1

> cov(x,y) / var(x) # Beta 1

[1] 2

Minimizing the sums of squares, also called the L2 norm, is a popular
approach to obtaining estimates for the unknown parameters. However, other
objective functions are also used, for example, minimizing the sum of the abso-
lute values of the residuals (called the L1 norm), or minimizing the maximum
of the absolute values of the residuals (called the L∞ norm). These alternative

64 Methods of Statistical Model Estimation

functions will often lead to different estimates, and the estimates will have dif-
ferent properties. For example, parameters that are estimated by minimizing
the L1 norm are less affected by remote observations, or outliers. However, we
do not expect that the estimates from the different objective functions will be
particularly different for these data.

In R, minimizing the sum of absolute values of the residuals, which corre-
sponds to minimizing the L1 norm, can be done as follows,

> L1.obj <- function(p, x, y) {

+ sum(abs(y - (p[1] + p[2] * x)))

+ }

> optim(c(0,0), L1.obj, x=x, y=y)$par

[1] 0.9999998 2.0000000

and minimizing the maximum absolute value of the residuals, which corre-
sponds to minimizing the L∞ norm, is

> Linf.obj <- function(p, x, y) {

+ max(abs(y - (p[1] + p[2] * x)))

+ }

> optim(start.searching.here, Linf.obj, x=x, y=y)$par

intercept slope

0.9999999 2.0000000

and as we suspected, for these data, the differences are negligible. The optim

function is detailed earlier in this section.

3.2.1 Properties

The estimates that minimize the objective function (3.2) are, by definition,
least-squares estimates, regardless of any other assumptions, the origins of
the data, the validity of the model, and so on. These estimates can be used
to solve the first challenge above, which is to predict values of y conditional
on x. No further assumptions are required.

However, unless assumptions are made, the estimates lack statistical con-
tent. This point is sufficiently important to bear restating: in order for param-
eter estimates to have statistical content, certain specific assumptions must
be made, and the assumptions must be checked. We describe the assumptions
and the relevant diagnostics in this section, and provide an example of their
use and checking in Section 3.2.4. Note that we present the assumptions in a
specific sequence. The statistical properties of the estimates grow as we add
more assumptions.

Ordinary Regression 65

First assumption

If we assume that the x values are fixed and known, and that the functional
form of the model (3.1) is correct, then the least-squares estimates are unbiased
(see, e.g., Casella and Berger, 1990). We can check whether this assumption
is reasonable by examining a scatterplot of the estimated residuals against
the fitted values, perhaps augmented with a smooth line. If there is no sub-
stantial pattern to the average of the estimated residuals, then we have some
justification for the assumption.

Second assumption

We further assume that the y observations have constant but unknown condi-
tional variance. Note that if the conditional variance is not constant, then the
quality of information that we have about the parameters varies depending on
the values of the predictors, and this dependence is not captured by the model.
The chance of being misled by a simple statistic is high. The assumption of
constant conditional variance can be assessed by examining a scatterplot of
the square root of the absolute value of the standardized studentized residuals
against the fitted values, ideally augmented with a smooth line. If there is no
trend to the smooth line, then it is reasonable to assume constant variance
for the residuals.

Following Hardin and Hilbe (2007) we define standardized residuals as
those that have had their variance standardized to take into account the cor-
relation between y and ŷ; specifically, the residual is multiplied by (1−hi)

−1/2

where hi is the i-th diagonal element of the hat matrix (see Section 3.2.2).
Also, we define studentized residuals as those that have been divided by an
estimate of the unknown scale factor, here estimated by σ̂. We will provide
more variations on residuals in Chapter 4.

Third assumption

If we also assume that the observations are conditionally independent, then
the least-squares estimates have the smallest variance among all unbiased lin-
ear estimates. Since the estimates were computed by minimizing the residual
variation, this outcome should not be particularly surprising. The assumption
of conditional independence is harder to check definitively. Checking this as-
sumption appropriately will usually require the use of some knowledge about
the design of the data collection. Generally the analyst will use information
about the design to guide the choice of the types of dependence to check. For
example, if groups of the observations have similar origin, clustering, then it
may be worth checking for intra-group correlation, and if the data have a time
stamp then checking for autocorrelation is an important consideration.

66 Methods of Statistical Model Estimation

Fourth condition

This point is mentioned because it is relevant here, although it resides more
naturally with Section 3.3. It is not really an assumption about the conditional
distribution of the response variable, as such. Least-squares estimates can
be expressed as sums of conditionally independent random variables, so the
estimates are subject to the Central Limit Theorem. The interested reader can
learn more from Huber (1981, Theorem 2.3, Chapter 7), Demidenko (2004,
§13.1.1), and DasGupta (2008, Theorem 5.3 and Example 5.1). Consequently,
asymptotically, the estimates are normally distributed. This observation can
be used to justify an assumption of normality for the parameter estimates,
which can in turn be used to construct interval estimates and hypothesis tests.
However, the assumption of conditionally normal errors, as in Section 3.3, is
more commonly used. We discuss this point further in Section 3.4.8.4.

Fifth assumption

Finally, we assume that the sample is representative of the population for
which we wish to make inference. This assumption is often unstated, although
it is usually checked, even if just at an intuitive level. This is the assumption
that leads us to explore summary statistics of the sample, to assess outliers,
and to focus attention on the possible effects of the sample design upon the
outcome. If the sampling process does not permit the collection of a sample
that represents the population, then inference will fail. We may interpret out-
liers or unusual patterns in the data in this light, and update our model, or
we may conclude that the observations are erroneous.

3.2.2 Matrix Representation

Representing the linear model as we have done above (3.1) is straightforward
when only a small number of variables is involved, and we are only interested
in obtaining parameter estimates. However, that representation gets messier
when we want more information from the model, or the model gets larger.
Then, carefully selected matrices provide a compact and convenient way of
representing the model and some important results about it.

Following the usual approach, we represent the response variable as an
n × 1 vector Y, the predictor variables (including the intercept) as an n × p
matrix X, the parameters as a p × 1 vector β, and the residuals as an n × 1
vector ǫ. Then the linear model is

Y = Xβ + ǫ (3.3)

Given this model formulation, it turns out that the least-squares estimates
β̂ can be obtained in closed form using matrix manipulation as follows (see,
among others, Weisberg, 2005).

β̂ = (X′X)−1X′Y (3.4)

Ordinary Regression 67

We can demonstrate this solution with our toy example:

> X <- as.matrix(cbind(1, x))

> (beta.hat <- solve(t(X) %*% X) %*% t(X) %*% y)

[,1]

1

x 2

The parentheses surrounding the second statement are shorthand for “eval-
uate this expression and print the returned object.” The estimate of the in-
tercept is 1, and of the slope is 2. We created the model matrix (also called
the design matrix) by binding a column of 1’s with the predictor variable x.
Note that R automatically repeated the value 1 as many times as was needed
to match the length of x. We then used four matrix-specific functions;

1. %*%, which performs matrix multiplication,

2. t, which returns the transpose of a matrix, and

3. solve, which we used here to provide the inverse of X′X.

There are other applications for solve; the reader should see the help file
to learn more about them. More general presentations of these solutions do
not require X to be of full rank, because β̂ can be computed without explicitly
inverting X′X. See Section 3.2.3.

Other than a compact representation of the model and the least-squares
solutions, the adoption of matrices here provides convenient representations of
other quantities from the model that may be useful. For example, the variance
of β̂ can be written

Var
(

β̂
)

= σ2 (X′X)
−1

(3.5)

This representation is a convenient and useful expression. The estimates can be
computed in R as follows. We have to compute the variance of the residuals σ2,
which requires calculation of the fitted values, here denoted y.hat, by applying
Equation (3.3).

> (y.hat <- X %*% beta.hat)

[,1]

[1,] 3

[2,] 5

[3,] 7

> (sigma.2 <- as.numeric(var(y - y.hat)))

[1] 0

> (vcov.beta.hat <- sigma.2 * solve(crossprod(X)))

68 Methods of Statistical Model Estimation

x

0 0

x 0 0

Here we have replaced the t(X) %*% X by crossprod(X), which efficiently
computes X′X when given X as its only argument.

These results are as expected — the residual variance is negligible; our
model was a perfect fit to the data. This rare opportunity should be enjoyed.
Ordinarily, such a contingency will more likely signal an error of logic or
modelling.

We can also write the variance of the predicted values and the residuals
using the convenient matrix representation. We note that, from (3.3) and (3.4),

Ŷ = X(X′X)−1X′Y (3.6)

then we take (as is traditionally done) H = X(X′X)−1X′, so Ŷ = HY and
ǫ̂ = (1−H)Y. It can then be easily shown that, under the model,

Var(Ŷ) = σ2H (3.7)

and

Var (ǫ̂) = σ2(1−H) (3.8)

H is called the Hat matrix, and we can obtain it inefficiently (see later in this
section for the preferred approach) as follows

> X.hat <- X %*% solve(t(X) %*% X) %*% t(X)

and then use it to compute the variances of the fitted values and the residuals,

> (var.y.hat <- sigma.2 * diag(X.hat))

[1] 0 0 0

> (var.e.hat <- sigma.2 * (1 - diag(X.hat)))

[1] 0 0 0

which are negligible for this model and these data, as expected.

Finally, we note that the variance of the residuals is of course only an
estimate of the variance of the errors, and is therefore subject to the same
kinds of uncertainty as are our parameter estimates. Analysts will usually use
the t-distribution as a template for describing the uncertainty of parameter
estimates to accommodate this additional uncertainty.

Ordinary Regression 69

3.2.3 QR Decomposition

The approach to determining the parameter estimates using the matrix repre-
sentation presented in Section 3.2.2 is never used in professionally developed
software. This is because the solution relies on inversion of a matrix (X′X)
that may be large and ill-conditioned, which means that the parameter esti-
mates may be difficult to obtain accurately. Direct inversion leads to slow and
possible inaccurate estimation.

At the time of writing, R uses QR decomposition to obtain representations
of the model matrix that are easier to work with and numerically more stable.
S uses QR decomposition by default, although Choleski decomposition and
singular-value decomposition are also available (Chambers, 1992b)

QR decomposition relies on the decomposition of the model matrix X

into two components, labeled Q and R. The operations that are necessary
to obtain the parameter estimates from Q and R enjoy greater numerical
stability than those required to resolve (3.4). The difference between the naive
and the decomposed approach is analogous to the difference between two
different ways of computing the sums of squares, namely that

SSxx =
∑

x2
i −

(
∑

xi)
2

n
(3.9)

is efficient because it requires only one loop across the data, but

SSxx =
∑

(xi − x̄)2 (3.10)

is numerically more stable because it sums the squares of differences, rather
than computing the difference between two (possibly large) quantities. (See
Chan et al. (1983) for a useful discussion.)

QR decomposition works as follows. When X is of full rank and size n×p,
we wish to find Q (n× p) and R (p× p) such that

1. X = QR

2. Q′Q = I

3. R is upper triangular, i.e., all the entries below the diagonal of R

are 0.

One way to find such a decomposition of X is via the Householder trans-
formation (Algorithm 5.2.1, Golub and Van Loan, 1996). Briefly, the House-
holder transformation involves a sequence of p matrix pre-multiplications upon
X, each of which targets a specific column of X. The effect of each pre-
multiplication is to make the below-diagonal elements of the corresponding
column of X into 0.

R provides a qr function that uses the DQRDC code from LINPACK
(Dongarra et al., 1979), and functions qr.R and qr.Q to extract the R and Q

matrices, respectively. We show the function and verify its operation for our
example design matrix below.

70 Methods of Statistical Model Estimation

> (xR <- qr.R(qr(X)))

x

[1,] -1.732051 -3.464102

[2,] 0.000000 -1.414214

> (xQ <- qr.Q(qr(X)))

[,1] [,2]

[1,] -0.5773503 7.071068e-01

[2,] -0.5773503 2.775558e-16

[3,] -0.5773503 -7.071068e-01

> xQ %*% xR

x

[1,] 1 1

[2,] 1 2

[3,] 1 3

The advantage of working with a QR decomposition of X is that the
estimates β̂ may now be computed by solving

Rβ̂ = Q′Y (3.11)

This equation can easily be computed by backsolving, because R has upper
triangular structure. Backsolving is an algorithm that involves finding the
unknown values for β̂ one element at a time, exploiting the upper-triangular
nature of R. Backsolving is more stable and more efficient than generic matrix
inversion. We now demonstrate backsolving using our example dataset and
model.

> Y <- matrix(c(3,5,7), nrow=3)

> xR

x

[1,] -1.732051 -3.464102

[2,] 0.000000 -1.414214

Note the structural zero in the lower left corner.

> t(xQ) %*% Y

[,1]

[1,] -8.660254

[2,] -2.828427

Ordinary Regression 71

We see that we can directly calculate the estimate of β1 as −2.82/−1.41 = 2,
and conditional on that estimate we can compute the estimate of β0 as 1,
without a potentially messy matrix inversion. Note that R also provides a
backsolve function, viz.:

> backsolve(xR, t(xQ) %*% Y)

[,1]

[1,] 1

[2,] 2

These results agree exactly with our formulation above.
We will also need to obtain the hat matrix in order to standardize the

residuals. The hat matrix is X(X′X)−1X′, but equivalently can be expressed
as QQ′, which is faster to compute and does not require inversion of X′X.
Also, for standardizing the residuals we only need the diagonal elements of
the hat matrix, so computing and storing the whole thing is unnecessary, and
may be cumbersome for large datasets. In R,

> (hat.values <- diag(crossprod(t(xQ))))

[1] 0.8333333 0.3333333 0.8333333

The algorithm used when X is not of full rank is summarized by Chambers
(1992b). This scenario is relatively common, for example, when the predictor
variables include one or more factors.

We conclude this section by noting that QR decomposition also provides
a more stable way of computing the estimated covariance matrix for the pa-
rameter estimates. Recall that from Equation (3.5), we would compute the co-
variance as σ2(X′X)−1. However, we know that X = QR and that Q′Q = I,
so the covariance can also be written as

Var
(

β̂
)

= σ2(R′R)−1 (3.12)

which is more efficient to calculate than (3.5) because R is upper-triangular
in structure, and smaller than X.

3.2.4 Example

We now use some tree measurement data to demonstrate the least-squares
parameter estimation approach. These data are taken from a forest inventory
of the University of Idaho Experimental Forest, in the Upper Flat Creek stand.
The data are measures of tree species and the tree diameter at 1.37 m from the
ground for all sampled trees, and also tree heights in a purposively selected
subsample. The sample design was a systematic grid of variable-radius plots,
but this is not relevant to our example, so we will not use the information.

The measurement data are provided as an object named ufc in the msme

72 Methods of Statistical Model Estimation

package that accompanies this book. We will construct a model that we can
use to predict the height of a tree as a function of its diameter. We will ignore
measurement error in the diameters, although it is known to exist. That is,
we will treat the diameters as being known and fixed, which is standard in
the discipline.

> library(msme)

> data(ufc)

We will also sweep out all the missing values using na.omit, with the
caveats presented in Section 3.4.2.

> ufc <- na.omit(ufc)

We will use the matrix representation to obtain our least-squares esti-
mates. Our response variable is ufc$height.m, and our predictor variable is
ufc$dbh.cm. First, we form the response vector and the model matrix.

> X <- cbind(1, ufc$dbh.cm)

> Y <- ufc$height.m

We now obtain the QR decomposition of X.

> xR <- qr.R(qr(X))

> xQ <- qr.Q(qr(X))

Finally, our least-squares parameter estimates are obtained using backsolve,
and the estimated covariance matrix is computed as per Equation (3.12).

> (beta.hat <- backsolve(xR, t(xQ) %*% Y))

[,1]

[1,] 12.6757004

[2,] 0.3125935

> y.hat <- X %*% beta.hat

> (sigma.2 <- as.numeric(var(Y - y.hat)))

[1] 24.35307

> (vcov.beta.hat <- sigma.2 * solve(crossprod(xR)))

[,1] [,2]

[1,] 0.317353252 -0.0069997721

[2,] -0.006999772 0.0001920922

The large-sample estimates of the standard errors are then

> sqrt(diag(vcov.beta.hat))

Ordinary Regression 73

[1] 0.56334115 0.01385973

At this point we have the estimators that minimize the residual vari-
ance. However, we do not know whether the estimators are unbiased, or even
whether bias means anything in this context, and we will not know whether
the covariance estimate of the parameters is meaningful, until we examine the
relevant diagnostics. For these, we need the raw residuals and the standardized
studentized residuals, which are the raw residuals divided by their estimated
standard errors. See Equation (3.8) for the estimated variance of the residuals.

> e.hat <- Y - y.hat

> e.hat.ss <- e.hat /

+ sqrt(sigma.2 * (1 - diag(crossprod(t(xQ)))))

It cannot hurt to check the result of standardization.

> var(e.hat)

[,1]

[1,] 24.35307

> var(e.hat.ss)

[,1]

[1,] 1.006163

We are now in a position to produce the two graphical diagnostics that in-
form us about the first two assumptions (Figure 3.1). We adopt Hadley Wick-
ham’s ggplot2 package for constructing our graphical diagnostics (Wickham,
2009). Here we deliberately omit plotting the default standard error regions,
as they cannot be interpreted in the intuitively appealing way as limits for
the underlying curve.

> qplot(y.hat, e.hat,

+ ylab = "Residuals", xlab = "Fitted Values") +

+ geom_abline(intercept = 0, slope = 0) +

+ geom_smooth(aes(x = y.hat, y = e.hat), se = FALSE)

> qplot(y.hat, abs(sqrt(e.hat.ss)),

+ ylab = "Standardized Studentized Residuals",

+ xlab = "Fitted Values") +

+ geom_smooth(aes(x = y.hat, y = abs(sqrt(e.hat.ss))),

+ se = FALSE)

The left panel of the figure suggests that the choice of a straight line as
the model of the relationship between height and diameter might be mistaken.
There seems to be substantial curvature, which would also have a realistic
biological interpretation — physics would suggest that tree shapes must be

74 Methods of Statistical Model Estimation

−30

−20

−10

0

10

20 30 40

Fitted Values

R
e

s
id

u
a

ls

0.0

0.5

1.0

1.5

20 30 40

Fitted Values

S
ta

n
d

a
rd

iz
e

d
 S

tu
d

e
n

ti
z
e

d
 R

e
s
id

u
a

ls

FIGURE 3.1

Diagnostic graphs for the least-squares fit of height against diameter using the
tree measurement data from ufc.

such that height and diameter cannot be linearly related. This figure also
shows the practical import of the assumptions trying to determine whether
the slope and intercept are unbiased makes little sense when the model fails
to capture important features of the relationship.

A similar conclusion may be drawn from the right panel of Figure 3.1:
the conditional variance does not seem to be constant, although it is less
worrisome in this instance as the deviation from the desired pattern is less.

Overall we would conclude that we need a more sophisticated model. Con-
struction of such a model is deferred until a later section.

3.3 Maximum-Likelihood Regression

If we are willing to make a more stringent assumption about the relation-
ship between the data and the model then we will realize further benefits for
our estimates. Previously, we assumed that the observations are conditionally
independent with identical variance and that the model form is correct. We
may also assume that the residuals are normally distributed. If we do, then
it is natural to think of maximum likelihood in this context, as we have fi-
nally brought enough assumptions to bear, and as described in Section 2.3.3,
maximum likelihood estimates have desirable statistical properties.

The model for our data is now

yi
d
= N (β0 + β1xi, σ2) (3.13)

Ordinary Regression 75

Note that there are some important changes compared with the previous
model.

First, we have written a completely specified joint PDF for the data. In
order to fit this model we will, in theory, need to obtain parameter estimates
for all the unknown parameters. Previously, in least-squares regression, we did
not need to estimate σ2 unless we were interested in obtaining estimates of the
standard errors of our parameter estimates. Here, σ2 is an integral part of the
model. It turns out in this case that point estimates of the other parameters
can be obtained without estimating σ2, because of the structure of the log
likelihood, but that is a consequence of the special nature of this particular
model. Often we will be required to find estimates for all the parameters in
the model, even the ones that we are not interested in interpreting. The latter
will be called ancillary parameters. They are sometimes referred to as nuisance
parameters, but we prefer to avoid the value judgment.

Second, we have specified the conditional distribution of the response vari-
able. The model specifies that the response variable will be conditionally nor-
mally distributed. This is a useful assumption that, if demonstrated to be
reasonable, will bring more powerful properties to our estimates. We will need
to check this additional assumption as part of the fitting process. Note that
if we fail to check such assumptions, then any claims that we make about the
model that are derived from the calculated log-likelihood are unsupported!

Recall that maximum likelihood estimation is another optimization prob-
lem, like least-squares estimation, just with a different objective function. We
now write a function that will evaluate the log-likelihood as a function of the
data and the parameters.

> jll_normal <- function(p, x, y) {

+ sum(dnorm(y, p[1] + p[2] * x, p[3], log = TRUE))

+ }

The joint log-likelihood is a function of three parameters and two random
variables. The three parameters (passed as argument p) are the intercept β0,
the slope β1, and the scale parameter σ. The two random variables are the
predictor variable x and the response variable y, respectively.

As before, we use optim to find the values of the parameters that maximize
this function, conditional on the data.

> optim(par = c(intercept = 0, slope = 0, sigma = 1),

+ fn = jll_normal,

+ control = list(fnscale = -1),

+ x = x, y = y)$par

intercept slope sigma

1.000000e+00 2.000000e+00 3.705307e-12

We find the same values for the intercept and slope of x as we did earlier for

76 Methods of Statistical Model Estimation

the OLS method of estimation. However, an estimate of the scale parameter
is also displayed, given as 3.705e-12, which here is the machine equivalent of
0.

Our use of optim has introduced a new argument that we should explain.
The control argument allows us to pass a list of arguments that can be
used to tune the optimization. The alteration that we make here is to multiply
the output of the function by −1, thus converting the minimization problem
into a maximization problem. See Section 3.2 for an explanation of the other
arguments.

3.4 Infrastructure

We now wrap the MLE engine in a function to simplify its deployment, and
we will add some fitting infrastructure.

3.4.1 Easing Model Specification

R provides a formula class that enables the straightforward communication of
certain kinds of models. Objects of this class are particularly useful for com-
municating linear predictors. We can use the formula object, in conjunction
with a dataframe that contains the fitting data, to communicate the response
variable and the linear predictor in R as follows.

ml_g <- function(formula, data) {

mf <- model.frame(formula, data)

y <- model.response(mf, "numeric")

X <- model.matrix(formula, data = data)

...

}

This small section of code provides us with powerful model-handling ca-
pabilities. The model.frame function uses the formula and data objects to
create a dataframe that contains and organizes the necessary pieces for fit-
ting the model. We extract the response variable from data by using the
model.response function.

We create the model matrix from the formula and data objects by us-
ing the model.matrix function. This approach will handle a wide range of
different model specifications, for example, models that include interactions
between predictor variables or transformations of predictor variables can all be
communicated by the formula object and will be represented in the model ma-
trix. Furthermore, model.matrix automatically creates the necessary dummy
variables to represent any factors under one of a range of different types of
contrasts.

Ordinary Regression 77

Having touched upon factors, we now need to mention how they are han-
dled. Inappropriate handling of factors in regression models leads to problems
with parameter estimation. S handles factors in linear models by using de-
vices called contrasts. The choice of contrast to use is guided by the intended
application of the model. The default contrasts in R are

> options()$contrasts

unordered ordered

"contr.treatment" "contr.poly"

Treatment contrasts, which are used for categorical factors, are formed by
setting the estimate of the first level of the factor to zero. Polynomial contrasts,
used by R for ordinal variables, are formed so that the individual coefficients
can be interpreted as values of orthogonal polynomials assuming that the
levels of the factor are equally spaced numeric values (Chambers and Hastie,
1992).

By the end, we have the response variable y and the model matrix X

ready for deployment in the optimizer. We mention in passing that formula

class objects also handle specification of non-linear models. We will tackle this
usage later. See Chambers and Hastie (1992) for further reading.

The big advantage of providing a model matrix and response variable to
the optimizer is that a single piece of code can then be used to fit a very
wide array of different and useful models. The joint log-likelihood can now be
declared as follows. We will assume that the model parameters will be the p
regression parameters followed by the standard deviation of the residuals.

> jll_normal <- function(params, X, y) {

+ p <- length(params)

+ beta <- params[-p]

+ sigma <- params[p]

+ linpred <- X %*% beta

+ sum(dnorm(y, mean = linpred, sd = sigma, log = TRUE))

+ }

This objective function can now be used for any linear predictor that we care
to declare, including factors, interactions, splines, and so on — any model
that can be decomposed into a linear model can now be fit, at least in theory,
by maximizing this objective function.

3.4.2 Missing Data

As we noted in Chapter 1, one of our programming values is to keep our code
as modular as is reasonable. There are many different reasons that observa-
tions may have missing variables, and those different reasons each motivate
different responses for the analyst. Trying to distinguish between these con-
tingencies, and write suitable code for them, creates an unreasonable amount

78 Methods of Statistical Model Estimation

of complexity for our function. We prefer to make the analyst directly respon-
sible for handling missing data, so our function will test the data that will be
used for the model and stop if missingness is detected. However, we will only
apply our test to the data that are being used for the model; hence, we only
test the response variable and the model matrix. We will include the following
line.

if (any(is.na(cbind(y, X)))) stop("Some data are missing.")

3.4.3 Link Function

The objective function that we introduced in Section 3.4.1 provides func-
tionality for a wide range of different linear models. However, it also has a
weakness: evaluation in part of the parameter space will result in nonsensical
results. The PDF for the normal distribution is undefined if the scale is nega-
tive. The performance of our optimizer will improve if we can avoid this kind
of behavior. One way to constrain the parameter estimate is by introducing
box constraints upon it, and optim permits these constraints if we use the
appropriate argument. However, it is more instructive to introduce a trans-
formation of the relevant parameter: a link function. We will replace the scale
σ with a new scale exp(σ), which is always greater than zero. All we need to
do is be sure that we interpret the parameter estimate correctly, which is as

the natural logarithm of the quantity of interest. This development results in
the following objective function.

> jll_normal <- function(params, X, y) {

+ p <- length(params)

+ beta <- params[-p]

+ sigma <- exp(params[p])

+ linpred <- X %*% beta

+ sum(dnorm(y, mean = linpred, sd = sigma, log = TRUE))

+ }

In addition to protecting part of the parameter space, link functions can
provide parameter estimates with different and sometimes useful interpreta-
tions, and models that are naturally constrained to make predictions within
certain ranges. We will be using the link function principle extensively for the
linear predictors as well as the scale in the next chapter.

3.4.4 Initializing the Search

A good starting point can make the difference between convergence at the
optimum and failure to converge, or worse, convergence at a local optimum
that is far from the global optimum. The objective function for maximum like-
lihood with normal errors is quadratic in shape, but nonetheless it is possible
for an optimizer to get lost. Here we will take advantage of the least-squares

Ordinary Regression 79

formulation of the problem. This approach will be more useful still in sub-
sequent chapters. Rather than use the purpose-written code that we wrote
earlier, we will use R’s own fitting functions. We will provide our response
variable and model matrix, and let R know that the model matrix already has
an intercept, by including -1 in the formula. Note that this code cannot be
run as-is; we report it here for discussion purposes and will include it in our
function, to follow.

ls.reg <- lm(y ~ X - 1)

beta.hat.ls <- coef(ls.reg)

sigma.hat.ls <- sd(residuals(ls.reg))

start <- c(beta.hat.ls, sigma.hat.ls)

We acknowledge that using least-squares estimates as starting points for
maximum-likelihood regression with normal errors seems absurd from one
point of view. However, it enables us to focus on the problem that motivates
the text (MLE) instead of the more quotidian issue of the selection of start
points for individual cases.

3.4.5 Making Failure Informative

Now that we are taking responsibility for the maximization of the likelihood,
it is necessary for us to interpret the output of the optimizer carefully. If the
optimizer is not confident that it has reached the optimum, then interpreting
the parameter estimates is a dangerous step. We will check the convergence
condition that is reported by optim and stop all processing if the condition is
not 0.

if (fit$convergence > 0) {

print(fit)

stop("optim failed to converge!")

}

3.4.6 Reporting Asymptotic SE and CI

The use of maximum-likelihood estimation provides estimators that have use-
ful and desirable properties, such as asymptotic normality. Hence if we have
obtained such estimates, it makes sense to report summary values such as the
standard errors and confidence intervals of the estimates.

As noted in Section 2.4.1, the asymptotic estimate of the covariance matrix
of the maximum-likelihood parameter estimates can be obtained as a function
of the inverse of the Hessian matrix, evaluated at the maximum-likelihood
estimate. The Hessian matrix can be returned directly by optim, which makes
calculation of the covariance matrix straightforward. The following code chunk
demonstrates how to ask optim to return the Hessian.

80 Methods of Statistical Model Estimation

fit <- optim(start,

...,

hessian = TRUE)

We next extract the parameter estimates from the object returned by optim.

beta.hat <- fit$par

The covariance matrix is the inverse of the negative hessian, and the standard
errors are the square roots of the diagonal members of the covariance matrix.

se.beta.hat <- sqrt(diag(solve(-fit$hessian)))

Finally we gather the various statistics into a neat coefficient table, which
we plan to use as a default reporting device. In keeping with statistical tradi-
tion, we will include the Z ratio, which is the parameter estimate divided by
the estimate of the standard error.

zTable <- data.frame(Estimate = beta.hat,

SE = se.beta.hat,

Z = beta.hat / se.beta.hat,

LCL = beta.hat - 1.96 * se.beta.hat,

UCL = beta.hat + 1.96 * se.beta.hat)

rownames(zTable) <- c(colnames(X), "Log Sigma")

We now have all the pieces that we need to create the function that will
fit a linear regression using maximum likelihood, assuming normal errors.

3.4.7 The Regression Function

Our development will proceed as follows: we will write a function that per-
forms maximum-likelihood regression to fit a linear regression model assuming
normal errors. This function will accept as arguments, among other things,
a model specification (using the formula class) and a dataset (using the
dataframe class), and will return an object that reports various elements of the
fitting procedure, including the outcome. Some of the functions used herein
will be explained in greater detail in the following text.

> ml_g <- function(formula, data) {

+

+ ### Prepare the data, relying on the formula class for

+ ### handling model specification

+ mf <- model.frame(formula, data)

+ y <- model.response(mf, "numeric")

+ X <- model.matrix(formula, data = data)

+

+ ### Check for missing data. Stop if any.

Ordinary Regression 81

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing.")

+

+ ### Declare the joint log likelihood function

+ jll_normal <- function(params, X, y) {

+ p <- length(params)

+ beta <- params[-p]

+ sigma <- exp(params[p])

+ linpred <- X %*% beta

+ sum(dnorm(y, mean = linpred, sd = sigma, log = TRUE))

+ }

+

+ ### Initialize the search

+ ls.reg <- lm(y ~ X - 1)

+ beta.hat.ls <- coef(ls.reg)

+ sigma.hat.ls <- sd(residuals(ls.reg))

+ start <- c(beta.hat.ls, sigma.hat.ls)

+

+ ### Maximize the joint log likelihood

+ fit <- optim(start,

+ jll_normal,

+ X = X,

+ y = y,

+ control = list(

+ fnscale = -1,

+ maxit = 10000),

+ hessian = TRUE

+)

+

+ ### Check for optim failure and report and stop

+ if (fit$convergence > 0) {

+ print(fit)

+ stop("optim failed to converge!")

+ }

+

+ ### Post-processing

+ beta.hat <- fit$par

+ se.beta.hat <- sqrt(diag(solve(-fit$hessian)))

+

+ ### Reporting

+ results <- list(fit = fit,

+ X = X,

+ y = y,

+ call = match.call(),

+ beta.hat = beta.hat,

+ se.beta.hat = se.beta.hat,

82 Methods of Statistical Model Estimation

+ sigma.hat = exp(beta.hat[length(beta.hat)]))

+

+ ### Prepare for S3 deployment (see next Section!)

+ class(results) <- c("ml_g_fit","lm")

+ return(results)

+ }

This function is then used as follows.

> ufc.g.reg <- ml_g(height.m ~ dbh.cm, data = ufc)

Note the lack of output from this command. The outcome is an R object that
is called ufc.g.reg. We now write functions to examine and use the object.

3.4.8 S3 Classes

The final innovation that we wish to introduce is a protocol for conveniently
handling the checking of assumptions and the reporting of our model. Now
we will write a small collection of helper functions, called methods. In order
to simplify the use of these functions, we will create them according to a
specific object-oriented template. R provides more than two implementations
of object-oriented programming; here we use the straightforward S3 classes.

Our ultimate goal is to produce a compact summary of the model and
appropriate regression diagnostics. We will write a number of small helper
methods that build up to this result. First, notice that the results object
has been assigned two classes: ml_g_fit and lm. This allows us to use methods
that have been written for lm, and replace them selectively with our own.

3.4.8.1 Print

The first requirement is to print the object. We notice that the generic print

function has a method for objects of class lm.

> print.lm

function (x, digits = max(3, getOption("digits") - 3), ...)

{

cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")

if (length(coef(x))) {

cat("Coefficients:\n")

print.default(format(coef(x), digits = digits),

print.gap = 2, quote = FALSE)

}

else cat("No coefficients\n")

cat("\n")

invisible(x)

}

<environment: namespace:stats>

Ordinary Regression 83

Our objects inherit class lm, so we can use this print function if we can
provide the infrastructure that it requires. In order to deploy this function for
objects of our class, we need those objects to inherit class lm, and according
to the structure of the print.lm method, the object should contain a call

object (note the x$call), and the class should have a coef method (note the
coef(x)). Given these three conditions, we can simply use the print method
written for the lm class. The first two conditions are fulfilled in the function
that is developed in Section 3.4.7. We will therefore start by writing a method
that returns the coefficients of the regression line. Recall that these are all but
the last of the estimates.

> coef.ml_g_fit <- function(object, ...) {

+ object$beta.hat[-length(object$beta.hat)]

+ }

Now when we call coef on our object, this function is used automatically.

> coef(ufc.g.reg)

X(Intercept) Xdbh.cm

12.6770795 0.3125628

However, that’s not all. Now, when we call the generic print function with
our fitted model as the first argument, or equivalently simply call the object
itself, we obtain the same summary of the model that is used for lm.

> ufc.g.reg

Call:

ml_g(formula = height.m ~ dbh.cm, data = ufc)

Coefficients:

X(Intercept) Xdbh.cm

12.6771 0.3126

3.4.8.2 Fitted Values

We will now develop diagnostic tools for assessing our assumptions. Assessing
assumptions should precede examining the model. Our second method uses
the first to return the fitted values for the model from the fitted model object,
calculated by the matrix multiplication of the parameter estimates β̂ and the
model matrix X.

> fitted.ml_g_fit <- function(object, ...) {

+ as.numeric(object$X %*% coef(object))

+ }

84 Methods of Statistical Model Estimation

We can quickly assess the effect of this method using str as follows. We
are looking at both the structure and content of the object; it should be
a vector of about 400 observations that look like tree heights measured in
meters! Note that this step may seem unnecessarily painstaking; however, it
is our experience that a large proportion of errors in R programming can be
detected and solved by simply scrutinizing the returned objects.

> str(fitted(ufc.g.reg))

num [1:391] 24.9 27.7 28.9 23.9 24.6 ...

This object seems to accord with our expectations. Also, note that in our call
to the function we only needed to call fitted, rather than fitted.ml_g_fit.
This is a consequence of method dispatch.

3.4.8.3 Residuals

In this model, the raw residuals are simply the difference between the predicted
values and the observations. In order to standardize the residuals, we will need
to compute the diagonal values of the hat matrix. R provides a generic function
called hatvalues that we can use as a basis for our own method. We will use
the efficient QR decomposition to obtain the hat matrix (see Section 3.2.3).

> hatvalues.ml_g_fit <- function(model) {

+ tcrossprod(qr.Q(qr(model$X)))

+ }

Again, we check that the output accords with our expectations in terms
of structure and content. Now we are looking for an n× n matrix of positive
values all less than 1.

> str(hatvalues(ufc.g.reg))

num [1:391, 1:391] 0.00261 0.00279 0.00287 0.00255 0.00259 ...

We can now report the residuals of the fitted model. Here we introduce
some small complications. There are presently two kinds of residuals that we
are interested in: the raw residuals, and the standardized studentized residuals.
We will ask the user to select between these two types using an argument.
Further, we will make sure that the user has selected one of these two types,
by using the match.arg function on the chosen argument. Finally, we will
assume that users are interested in raw residuals if they decline to make a
choice. The method proceeds as follows.

> residuals.ml_g_fit <-

+ function(object, type = c("raw","ss"), ...) {

+ type <- match.arg(type)

+ e.hat <- object$y - fitted(object)

Ordinary Regression 85

+ if (type == "ss") {

+ e.hat <- e.hat /

+ (object$sigma.hat * sqrt(1 - diag(hatvalues(object))))

+ }

+ return(e.hat)

+ }

Note that the method makes use of the two methods that we have already
written: fitted.ml_g_fit and hatvalues.ml_g_fit. However, because of
the S3 class dispatch mechanism, again we can omit the class name in the
calls to the functions. As before, we check the structure and content of the
returned object. We hope that the following call will produce a vector of about
400 numbers that look like residuals that have unit variance.

> ufc.g.res.s <- residuals(ufc.g.reg, type = "ss")

> str(ufc.g.res.s)

Named num [1:391] -0.887 1.081 0.217 -0.656 -0.417 ...

- attr(*, "names")= chr [1:391] "2" "3" "5" "8" ...

> var(ufc.g.res.s)

[1] 1.008413

The output provides us with no concerns about the operation of the method.

3.4.8.4 Diagnostics

As already noted in Section 2.3.3, maximum-likelihood estimates have useful
statistical properties. In order to justify the invocation of these properties for
our estimators, we must check that the assumptions that we need to make are
satisfied.

The assumptions that are required for maximum-likelihood estimates are
more onerous than those for least-squares regression. As with least-squares re-
gression, maximum likelihood regression with normal errors requires that the
functional form be correct, and that the errors be independent and have con-
stant variance. However, we also need to assume that the errors are normally
distributed.

In order to check whether the assumption of normality is reasonable, we
can examine a quantile–quantile plot of the standardized studentized residuals
against the normal distribution. We mention in passing that in generalized
linear models, which we will cover in the next two chapters, numerous different
types of residuals are used for different purposes (see e.g., Hardin and Hilbe,
2007). In the normally distributed case, covered here, the raw residuals y − ŷ
are the same as the Pearson and the deviance residuals, which we cover in
Chapter 4.

Even if the match between the distribution of the residuals and the normal

86 Methods of Statistical Model Estimation

distribution is not particularly good, we can take some comfort from the effect
of the Central Limit Theorem, because the estimates are least-squares esti-
mates. Note that we need to standardize the residuals before comparing them
with the normal quantiles because if the residuals are not standardized then
they do not have constant variance (see Equation 3.8), and as a consequence
should not be expected to collectively match a single normal distribution.
Studentizing is not required for this comparison.

As a general rule, the effects of the failures of assumptions to hold can be
explored using simulation. We provide some pointers and examples in Chap-
ter 7. The parametric and non-parametric bootstrap are also very useful tools;
see e.g., Davison and Hinkley (1997).

We now have sufficient infrastructure to develop a graphical diagnostic tool
that we can use to assess the quality of the fit of the model to the data. We will
now construct a function that provides useful feedback on the assumptions
that we rely upon for our statistical inference. This method will produce a
collection of four scatterplots:

1. observations (y-axis) against fitted values (x-axis) to assess the over-
all utility of the model,

2. raw residuals (y-axis) against fitted values (x-axis) to assess the lack
of fit of the mean function,

3. square roots of the absolute values of the standardized studentized
residuals (y-axis) against fitted values (x-axis) to assess the con-
stancy of the variance, and

4. quantiles of the standard normal distribution (y-axis) against the
sorted standardized studentized residuals (x-axis) to assess the as-
sumption of normally distributed errors.

As before, we are using Wickham’s ggplot2 package to provide the graph-
ics, and gridExtra to provide the layout. This choice adds somewhat to the
necessary infrastructure of the plot command; however, the payoff in ease of
control is considerable.

> plot.ml_g_fit <- function(x, ...) {

+ require(ggplot2)

+ require(gridExtra)

+ e.hat <- residuals(x)

+ e.hat.ss <- residuals(x, type="ss")

+ y.hat <- fitted(x)

+ n <- nrow(x$X)

+ pp1 <- qplot(y.hat, x$y, ### Plot 1

+ ylab = "Observations", xlab = "Fitted Values") +

+ geom_abline(intercept = 0, slope = 1) +

+ geom_smooth(aes(x = y.hat, y = x$y), se = FALSE)

+ pp2 <- qplot(y.hat, e.hat, ### Plot 2

Ordinary Regression 87

+ ylab = "Residuals", xlab = "Fitted Values") +

+ geom_abline(intercept = 0, slope = 0) +

+ geom_smooth(aes(x = y.hat, y = e.hat), se = FALSE)

+ pp3 <- qplot(y.hat, abs(sqrt(e.hat.ss)), ### Plot 3

+ ylab = "Sqrt (Abs(Stand. Res.))",

+ xlab = "Fitted Values") +

+ geom_smooth(aes(x = y.hat, y = abs(sqrt(e.hat.ss))),

+ se = FALSE)

+ pp4 <- qplot(sort(e.hat.ss), qnorm((1:n)/(n+1)), ### Plot 4

+ xlab = "Stand. Stud. Residuals",

+ ylab = "Normal Quantiles")

+ grid.arrange(pp1, pp2, pp3, pp4, ncol=2)

+ }

This function is then used as follows, to create Figure 3.2.

> plot(ufc.g.reg)

We already know that we think that this model is a poor choice; we learned
that from the diagnostics of the least-squares regression in Figure 3.1. We will
try to improve upon the model shortly.

Other diagnostics may also be useful depending on the context of the prob-
lem, for example, the analyst may wish to plot leverage against studentized
residuals, Cook’s distances, etc. See ?influence for more information. Fur-
thermore, the user may wish to check for suspected autocorrelation, if the data
have a time component or a hierarchical structure. For these cases, generally
we would advocate also fitting a model that accommodates the correlation
(e.g., a panel model, see Chapter 6) and comparing the two either using a
statistical test or, better, a summary statistic that captures the purpose of
model fitting.

3.4.8.5 Metrics of Fit

We now consider functions that we can use to report aspects of the fitted
model. For example, we may be interested in reporting the log likelihood of the
fitted model, evaluated at the maximum likelihood parameter estimates. There
is a generic function to do so: logLik. The value that we wish to report is the
value of the optimized function, which is the value object of the fit object of
the ml_g_fit object(!). The structure of the following method borrows heavily
from the logLik.lm method, which we examined in the process of writing the
book, using the getAnywhere function.

> logLik.ml_g_fit <- function(object, ...) {

+ val <- objectfitvalue

+ attr(val, "nall") <- nrow(object$X)

+ attr(val, "nobs") <- nrow(object$X)

+ attr(val, "df") <- length(objectfitpar)

88 Methods of Statistical Model Estimation

0

10

20

30

40

50

20 30 40

Fitted Values

O
b

s
e

rv
a

ti
o

n
s

−30

−20

−10

0

10

20 30 40

Fitted Values

R
e

s
id

u
a

ls

0.0

0.5

1.0

1.5

20 30 40

Fitted Values

S
q
rt

 (
A

b
s
(

S
ta

n
d
.

R
e
s
.)

)

−3

−2

−1

0

1

2

3

−5.0 −2.5 0.0 2.5

Stand. Stud. Residuals

N
o
rm

a
l
Q

u
a
n
ti
le

s

FIGURE 3.2

Four diagnostic graphs for the maximum-likelihood normal linear regression
of height against diameter using the tree measurement data from ufc.

+ class(val) <- "logLik"

+ val

+ }

The (maximized) log-likelihood for our model and data is then:

> logLik(ufc.g.reg)

’log Lik.’ -1178.469 (df=3)

Notice that by mimicking the structure of the logLik methods, specifically
by adding relevant attributes and the appropriate class to the returned object,
we were able to take advantage of the existing print.logLik method.

Ordinary Regression 89

We can now take advantage of the S3 class infrastructure. We may be
interested in computing Akaike’s Information Criterion (Akaike, 1973) for
our model. We could certainly write our own function for this objective, but
having carefully planned the structure of logLik.ml_g_fit, we can also take
advantage of the existing AIC generic function, which simply relies on being
able to call logLik upon the objects that are passed to it.

> AIC(ufc.g.reg)

[1] 2362.938

This rather trivial example demonstrates the utility of careful planning when
programming in an object-oriented environment.

3.4.8.6 Presenting a Summary

Our final method will provide something similar to the printed output that we
created in Section 3.4.6, and an object that returns some summary statistics
for the model fit. Again, we can take example of an existing function by
providing the infrastructure that is required for print.summary.lm, which we
examined during the writing of this book using the very useful getAnywhere

function.

> summary.ml_g_fit <- function(object, dig = 3, ...) {

+ zTable <- with(object,

+ data.frame(Estimate = beta.hat,

+ SE = se.beta.hat,

+ Z = beta.hat / se.beta.hat,

+ LCL = beta.hat - 1.96 * se.beta.hat,

+ UCL = beta.hat + 1.96 * se.beta.hat))

+ rownames(zTable) <- c(colnames(object$X), "Log Sigma")

+ p <- length(objectfitpar)

+ n <- nrow(object$X)

+ df <- c(p, n, p)

+ summ <- list(call = object$call,

+ coefficients = zTable,

+ df = df,

+ residuals = residuals(object),

+ aliased = rep(FALSE, p),

+ sigma = object$sigma.hat)

+ class(summ) <- c("summary.ml_g_fit", "summary.lm")

+ return(summ)

+ }

Now our fitted model can be summarized in the following useful way.

90 Methods of Statistical Model Estimation

> summary(ufc.g.reg)

Call:

ml_g(formula = height.m ~ dbh.cm, data = ufc)

Residuals:

Min 1Q Median 3Q Max

-33.525 -2.863 0.132 2.851 13.320

Coefficients:

Estimate SE Z LCL UCL

(Intercept) 12.67708 0.56271 22.52853 11.57416 13.780

dbh.cm 0.31256 0.01384 22.57707 0.28543 0.340

Log Sigma 1.59521 0.03577 44.60167 1.52511 1.665

Residual standard error: 4.929 on 391 degrees of freedom

We can check the collection of functions that we have written for the
ml_g_fit class using the methods function, as follows.

> methods(class = "ml_g_fit")

[1] coef.ml_g_fit fitted.ml_g_fit hatvalues.ml_g_fit

[4] logLik.ml_g_fit plot.ml_g_fit residuals.ml_g_fit

[7] summary.ml_g_fit

Note firstly that we have not made any central register of the methods. R
is simply picking them up based on the structure of the function names. Also
note that the print function does not appear in this list. This is because it is
inherited from the lm class.

The preceding development does not show the structural simplicity of the
collection of functions that we have created. Briefly, plot requires fitted and
residuals. The residuals function requires fitted and hatvalues. Finally,
fitted requires coef.

We have brushed over one point about the use of inheritance in S3 classes.
There are many more methods for objects of class lm than we have touched
upon here:

> length(methods(class = "lm"))

[1] 38

and R will now assume that any of these methods can be used for our objects,
because our objects inherit from class lm. However, calling these functions on
our objects might raise undecipherable errors, or worse, nonsensical results
that look plausible. To complete the class definition we should write simple
functions for each of these that either works as intended or delivers a polite
rejection.

Ordinary Regression 91

3.4.9 Example Redux

The example fit has been scattered throughout the preceding sections. We
can compare the parameter estimates with those obtained by using the lm

function. We would hope that the parameter estimates would be close, and
we would expect that the standard errors would be higher for the lm output
for the parameters in the linear predictor.

> print(coef(summary(lm(height.m ~ dbh.cm, ufc))), digits = 3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.676 0.5641 22.5 2.76e-72

dbh.cm 0.313 0.0139 22.5 1.64e-72

The parameter estimates all compare well with the output from the previous
section.

Just to extend the example, and demonstrate the flexibility of the simple
tools that we have constructed, we will now use them to fit a cubic spline
model of height against diameter. First, we call the splines package to provide
access to the relevant splines function, the enticingly named bs.

> library(splines)

Then we use the bs function, which constructs a set of linear predictors that
corresponds to a cubic b-spline, in the model specification.

> ufc.g.spline <- ml_g(height.m ~ bs(dbh.cm), data = ufc)

Before we interpret the model fit or parameter estimates we should check
the regression diagnostics. As before, this is a simple matter thanks to our use
of S3 classes (Figure 3.3).

> plot(ufc.g.spline)

The regression diagnostics compare very favorably with those provided in
Figure 3.2. We can verify the improvement of the cubic spline model over the
straight line model by comparing the log-likelihoods of the two models.

> logLik(ufc.g.reg)

’log Lik.’ -1178.469 (df=3)

> logLik(ufc.g.spline)

’log Lik.’ -1155.333 (df=5)

As a final step, we will write a function that performs an asymptotic like-
lihood ratio test using the reported log likelihoods of two models.

92 Methods of Statistical Model Estimation

0

10

20

30

40

50

10 20 30 40

Fitted Values

O
b

s
e

rv
a

ti
o

n
s

−30

−20

−10

0

10

10 20 30 40

Fitted Values

R
e

s
id

u
a

ls

0.5

1.0

1.5

10 20 30 40

Fitted Values

S
q
rt

 (
A

b
s
(

S
ta

n
d
.

R
e
s
.)

)

−3

−2

−1

0

1

2

3

−5.0 −2.5 0.0 2.5

Stand. Stud. Residuals

N
o
rm

a
l
Q

u
a
n
ti
le

s

FIGURE 3.3

Four diagnostic graphs for the maximum-likelihood normal cubic spline re-
gression of height against diameter using the tree measurement data from
ufc.

> alrt <- function(x1, x2, ...) {

+ jll1 <- logLik(x1)

+ jll2 <- logLik(x2)

+ df1 <- attr(jll1, "df")

+ df2 <- attr(jll2, "df")

+ jll.diff <- abs(c(jll1) - c(jll2))

+ df.diff <- abs(df1 - df2)

+ p.value <- 1 - pchisq(2 * jll.diff, df = df.diff)

+ results <- list(out.tab = data.frame(model = c(1,2),

+ jll = c(jll1, jll2),

Ordinary Regression 93

+ df = c(df1, df2)),

+ jll.diff = jll.diff,

+ df.diff = df.diff,

+ p = p.value)

+ cat("\nLL of model 1: ", jll1, " df: ", df1,

+ "\nLL of model 2: ", jll2, " df: ", df2,

+ "\nDifference: ", jll.diff, " df: ", df.diff,

+ "\np-value against H_0: no difference between models ",

+ p.value, "\n")

+ return(invisible(results))

+ }

The code does not test whether the models are nested or whether the
response variables are identical; the user is responsible for its sensible deploy-
ment.

Note that we have used the invisible function inside return. Recall that
if the returned value of a function is not assigned to a name, then it is printed
by default. Sometimes we prefer to control the format of output from within
the function, but also to allow the user to be able to choose a name for the
returned object and use it in other ways. The role of invisible is to prevent
the object from being printed if it is not assigned to a name. Then, the function
takes care of the printing of output, and the returned object is not printed.

We can now easily compare the fits of the two models using the asymptotic
likelihood ratio test as follows.

> alrt(ufc.g.reg, ufc.g.spline)

LL of model 1: -1178.469 df: 3

LL of model 2: -1155.333 df: 5

Difference: 23.13595 df: 2

p-value against H_0: no difference between models 8.957479e-11

Here we see strong evidence of the improvement of fit. We could now ask
whether simply adding a quadratic term would be sufficient improvement.

> ufc.g.quad <- ml_g(height.m ~ dbh.cm + I(dbh.cm^2),

+ data = ufc)

> alrt(ufc.g.quad, ufc.g.spline)

LL of model 1: -1164.706 df: 4

LL of model 2: -1155.333 df: 5

Difference: 9.373229 df: 1

p-value against H_0: no difference between models 1.493004e-05

The likelihood ratio test suggests that the spline model provides a substan-
tially better fit to the data than does the quadratic model.

94 Methods of Statistical Model Estimation

3.4.10 Follow-up

Having fitted a suitable model, and studiously checked the graphical diagnos-
tics, we are now positioned to use the model. We remind the reader of the
three uses to which linear models are commonly put:

1. to enable prediction of a random variable at specific combinations
of other variables;

2. to estimate the effect of one or more variables upon a random vari-
able; and

3. to nominate a subset of variables that is most influential upon a
random variable.

We have written methods that allow the resolution of each of these goals,
in one way or another: predict, coef, and alrt, respectively. The first two of
these functions require the same assumptions as for least-squares regression;
the third requires that the errors be normally distributed, or the invocation of
the Central Limit Theorem. We do not propose that these functions improve
on the provided functions of R in any way, but we develop them to provide
the reader insight into the linear model, and to programming in R.

3.5 Conclusion

In this chapter, we have blended the statistical ideas presented in Chapter 2
and the computing principles laid out in Chapter 1. We have introduced the
approaches and code needed to fit linear models using least-squares and maxi-
mum likelihood regression. In our next chapter we will continue the maximum
likelihood trajectory, allowing for conditional distributions from the exponen-
tial family: generalized linear models.

Many references are available for further reading about the theory and ap-
plications of least-squares linear regression. We particularly mention Draper
and Smith (1998), Harrell (2001), Weisberg (2005), and especially Wood
(2006).

3.6 Exercises

1. Given the definitions of matrices y and X below, where X is di-
vided into two variables, [,1] and [,2], model y on X using matrices,
determining the coefficients for the intercept and both X variables.

Ordinary Regression 95

> y <- matrix(c(10,9,7,4,8,12,11,7,3,5,3,12,9,10), ncol=1)

> X <- matrix(c(1,4,6,0,5,4,1,4,7,1,2,2,1,4,

+ 6,0,7,5,1,5,1,1,2,5,0,3,4,4),ncol=2)

2. Residuals:

(a) What is the value of squaring the standardized deviance resid-
uals from binary logistic models?

(b) Why are deviance residuals preferred to Pearson residuals when
assessing the fit of GLM models?

(c) How may hat matrix diagonal statistics for a model be calcu-
lated using the standard error of the fitted value, µ?

(d) Write a function for likelihood residual that is used with bi-
nomial models. You may have to do some research to find the
definition; e.g., web search or Hilbe (2009).

4

Generalized Linear Models

4.1 Introduction

We have thus far discussed some basic types of statistical model estimation,
providing code at the end of Chapter 3 to estimate the parameters of tradi-
tional linear regression models. These models required the assumption that
the observed data were conditionally normal; that is, conditional on the model.
The response variable followed the normal distribution. We now extend the
linear model to include estimation of parameters of a collection of models that
allow a range of conditional distributions — for example, binomial, Poisson,
and gamma. These models are referred to as generalized linear models, or
GLM. The linear model, being based on the normal probability distribution
function (PDF) is a member of the GLM family. However, the normal model
is nearly always estimated using the methods described in the last chapter,
and we shall not cover it in this chapter.

We provide a rather thorough evaluation of GLM theory, families, and
code due to the central role that GLMs now have in contemporary statistics.
GLMs in various forms underlie ordered and unordered categorical response
models, fixed, random and mixed effects models, hierarchical models, and a
wide range of mixture models. More recently GLMs have begun to play an
important role in understanding GLM-based Bayesian analysis. It is therefore
wise to spend time on the fundamentals.

GLMs are all derived from the one-parameter exponential family of distri-
butions. GLMs include discrete and continuous distributions, and can be mod-
eled using standard maximum likelihood methods. In fact, most GLM models
were estimated using maximum likelihood before a formal GLM methodol-
ogy was developed. Moreover, with the exception of the normal model, GLM
models that were based on continuous distributions were typically estimated
as two-parameter models, specifically with parameters corresponding to loca-
tion and scale. However, the formal GLM method does not directly estimate
the scale parameter, but rather focuses on estimating the mean or location
parameter. As we shall observe, though, depending on the needs of the re-
searcher, relatively little modelling power is lost as a result. Note that the
Gaussian or normal model also has a scale parameter, σ2, which has until
recently only rarely been estimated using maximum likelihood. We address
two-parameter GLM models in the following chapter.

97

98 Methods of Statistical Model Estimation

Generalized linear modelling as a methodology was developed in 1972 by
John Nelder and Robert Wedderburn while working at the Rothamsted Exper-
imental Station in the UK. Two years later, with a select group of statisticians
associated with the Royal Statistical Society, Nelder and Wedderburn devel-
oped the Generalized Linear Interactive Models (G.L.I.M.) software applica-
tion, which remained as the foremost GLM modelling tool for two decades.
Peter McCullagh, of the University of Chicago, and Nelder authored the semi-
nal text on the subject in 1983, with a second edition in 1989 (McCullagh and
Nelder, 1989). Numerous books have subsequently been published on GLMs,
as well as texts that extend GLM methodology to the modelling of longitudi-
nal and clustered data, to GLM models incorporating smooth functions, and
more recently to the implementation of the Bayesian analysis of GLM models.
We believe that a solid case can be made that the essential GLM framework
underlies much of the statistical developments of the final quarter of the 20th
century.

A central feature of traditional GLM methodology is the iteratively re-
weighted least squares (IRLS) algorithm, which both linearizes the relation-
ship between the model linear predictor and the fitted value, and provides a
simple yet robust way to estimate model parameters. For this set of models,
using the IRLS fitting algorithm simplifies the estimation process. See Hilbe
(2011) for a history and derivation of IRLS methodology. IRLS is a simpli-
fication of the maximum likelihood algorithm that we discussed in the last
chapter.

Prior to the development of GLM and GLM software, models currently
estimated under the GLM framework were generally estimated using some
variety of Newton–Raphson maximum likelihood estimation. We addressed
this type of estimation in the last chapter, and will discuss it in considerable
detail in Chapter 5 with respect to nonlinear models in general. For now it is
important to keep in mind that IRLS yields maximum likelihood estimates,
but is a simplified algorithm that allows easier and usually faster estimation
of parameters.

In this chapter we shall provide an overview of the IRLS method of es-
timation, and will develop IRLS software in R that estimates parameters,
standard errors, confidence intervals, and other ancillary statistics that are
traditionally provided in GLM model output. We shall initially focus on the
estimation of a single model, and then expand to provide a modular algorithm
that incorporates all of the traditional GLM families, except the normal or
Gaussian. The resultant function we develop, called irls, will appear some-
what similar to R’s glm function; however, we shall structure the binomial
response and parameterize the negative binomial heterogeneity parameter in
a different manner to that of glm. They shall be framed in a manner similar
to that employed in Stata’s glm command, SAS’s Genmod procedure, SPSS’s
Genlin procedure, and in the other GLM facilities residing in current com-
mercial statistical software. There is a very good reason to do this, as shall be
discussed later in the chapter.

Generalized Linear Models 99

4.2 GLM: Families and Terms

Generalized linear modelling is a method by which the standard linear re-
gression model is extended to allow estimation of a certain set of traditional
non-linear models. In particular, regression models based on the exponential
family of distributions can be formulated as members of the family of gener-
alized linear models if they meet the following criteria:

1. The response term, y, is conditionally distributed according to a
member of the single parameter exponential family of probability
distributions.

2. A monotonic and differentiable link function exists that linearizes
the relationship between the linear predictor, η, or Xβ, and the
model fit, µ. This link function is typically symbolized as g(µ).

3. An inverse link function, g−1(η), exists that defines the model fit
term.

4. Except for the Gaussian family, the variance, V(µ), is a function
of the mean, which is the estimated model fit, µ. In the case of
Gaussian-based models, the variance is fixed at 1.

5. GLMs are traditionally estimated using an Iteratively Re-weighted
Least Squares algorithm, or IRLS, with a convergence criterion
based on the change in either the deviance or log-likelihood func-
tion.

GLM families, and their associated variance functions, are traditionally
based on the probability distributions given in Table 4.1.

TABLE 4.1

GLM distributions and variance functions.

PDF Family Variance

Continuous Gaussian 1
Gamma µ2

Inverse Gaussian µ3

Discrete Bernoulli µ(1 – µ) = µ – µ2

Binomial µ(1 – µ/m) = µ(m – µ)/m
Poisson µ
Geometric µ + µ2 = µ(1 + µ)
Negative Binomial µ + αµ2= µ(1 + αµ)

Note that the Bernoulli distribution is the basis of binary logistic regres-
sion, and the binomial distribution — with m as the binomial denominator

100 Methods of Statistical Model Estimation

— is the foundation of grouped logistic regression. When m = 1 for all obser-
vations in a model, the grouped logistic model is the same as the traditional
binary response logistic regression. Authors of GLM software typically merge
the Bernoulli family or model into the binomial. The default denominator
is 1, which provides for a binary logistic model, but users may also declare
alternative values for m, which generates a grouped or proportional model.

Note also that the geometric family is a subset of the negative binomial,
with the heterogeneity parameter, which is commonly referred to as alpha (α),
equal to 1. The Poisson may also be considered as a subset of the negative
binomial, with α = 0. This subject is considered in detail in Hilbe (2011). It is
also interesting to observe that the Bernoulli and geometric variance functions
only differ by a sign between the mean and mean-squared terms. The Bernoulli
variance is rarely displayed as shown to the right in Table 4.1.

Table 4.2 displays the standard GLM families and their associated de-
viance and log-likelihood functions. When used for GLM estimation, both the
deviance and log-likelihood are typically parameterized in terms of µ. When
GLM models are estimated separately using a full maximum likelihood al-
gorithm, the log-likelihood is always employed in place of the deviance. It is
parameterized in terms of Xβ. Most GLM algorithms use the deviance as the
basis of convergence and for goodness-of-fit tests, with the log-likelihood being
calculated after convergence. In any case, the deviance is defined in terms of
the log-likelihood, L, as

D = 2

n∑

i=1

{L (yi; yi)− L(µi; yi)} (4.1)

with the first term of the function indicating that every instance of the model
fit, µ, is given the value of the response, y, and the second term of the func-
tion indicating the model log-likelihood function. Regardless of its definition,
though, the deviance is generally an easier function to program and use in the
GLM algorithm than its log-likelihood counterpart, and for that reason has
retained its popularity.

The three continuous distributions provided here – namely Gaussian or
normal, gamma, and inverse Gamma – are often estimated as two-parameter
models, with the primary parameter being the model fit, µ, and the secondary
parameter being the scale. GLM fits do not provide an estimate of the scale
parameter directly, although for well-fitted models the scale may generally
be approximated by the Pearson dispersion statistic. Note that the deviance
functions that are used as objective functions for parameter estimation do
not include the scale. Log-likelihoods are at times used in the IRLS algorithm
in place of the deviance for discrete member models, but for the Gaussian,
Inverse Gaussian, and gamma algorithms, the deviance is used to avoid the
need of estimating a scale parameter. We shall henceforth refer only to the
deviance in our discussion since it is the traditional basis of convergence. Be
aware, however, that some implementations employ the log-likelihood.

Generalized Linear Models 101

TABLE 4.2

GLM deviance and log-likelihood functions for members of the exponential
family(µ; Xβ). x+ indicates max(x, 1).

Gaussian
∑

(y − µ)2

LL(glm) −0.5
∑{(y − µ)2 + log(2π)}

LL(µ)
∑{(y × µ− µ2/2)/σ2 − y2/2σ2 − 0.5× log(2πσ2)}

LL(Xβ)
∑{[y × (Xβ)− (Xβ)2/2]/σ2 − y2/2σ2 − 0.5× log(2πσ2)}

Bernoulli 2
∑{y × log(1/µ) + (1− y)× log(1/(1− µ))}

[2
∑{y × log(y/µ) + (1− y)× log((1− y)/(1− µ)}]

LL(µ)
∑{y × log(µ/(1− µ)) + log(1− µ)}

LL(Xβ)
∑{y × (Xβ)− log(1 + exp(Xβ))}

Binomial 2
∑{y × log(1/µ) + (m− y)× log(1/(m− µ))}

[2
∑{y × log(y+/µ) + (m− y)× log((m− y)+/(m− µ)}]

LL(µ)
∑{y × log(µ/m) + (m− y)× log(1− µ/m) + log Γ(m + 1)−
log Γ(y + 1) + log Γ(m− y + 1)}

LL(Xβ)
∑{y×log(exp(Xβ)/(1+exp(Xβ)))−(m−y)×log(exp(Xβ)+
1) + log Γ(m + 1)− logΓ(y + 1) + log Γ(m− y + 1)}

Poisson 2
∑{y × log(y/µ)− (y − µ)}

LL(µ)
∑{y × log(µ)− µ− log Γ(y + 1)}

LL(Xβ)
∑{y × (Xβ)− exp(Xβ)− log Γ(y + 1)}

NB2 2
∑{y × log(y/µ)− (y + 1/α)× log((1 + αy)/(1 + αµ))}

LL(µ)
∑{y × log((αµ)/(1 + αµ))− (1/α)× log(1 + αµ) + log Γ(y +
1/α)− log Γ(y + 1)− log Γ(1/α)}

LL(Xβ)
∑{y × log(α × exp(xβ)/(1 + α × exp(xβ))) − log(1 + α ×
exp(xβ))/α + log Γ(y + 1/α)− log Γ(y + 1)− log Γ(1/α)}

NBC
∑{y × (xβ) + (1/α) × log(1 − exp(xβ)) + log Γ(y + 1/α) −
log Γ(y + 1)− log Γ(1/α)}

Gamma 2
∑{(y − µ)/µ− log(y/µ)}

LL(glm) 2
∑{log(1/µ)− (y/µ)}

LL(µ)
∑{((y/µ) + log(µ))/ − φ + log(y) × (1 − φ)/φ − log(φ)/φ −
log Γ(1/φ)}

LL(Xβ)
∑{(y×(Xβ)− log(Xβ))/−φ+log(y)×(1−φ)/φ− log(φ)/φ−
log Γ(1/φ)}

Inv Gaus
∑{(y − µ)2/(y × µ2)}

LL(glm) −1/2
∑{(y − µ)2/(yµ2) + 3× log(y) + log(2π)}

LL(µ)
∑{[(y/(2µ2))− 1/µ]/− σ2 + 1/(−2yσ2)− 0.5× log(2πy3σ2)}

LL(Xβ)
∑{y/(2Xβ)−sqrt(Xβ)/−σ2+1/(−2yσ2)−0.5×log(2πy3σ2)}

102 Methods of Statistical Model Estimation

4.3 The Exponential Family

The PDF of the exponential family of distributions is typically expressed by
Equation 4.2.

f(y; θ, φ) = exp

{
yiθi − b (θi)

αi (φ)
+ c (yi; φ)

}
(4.2)

where

θi is the canonical parameter or link function,

b(θi) is the cumulant,

α(φ) is the scale parameter, set to one in discrete and count models, and

C (yi; φ) is the normalization term, guaranteeing that the probability function
sums to unity.

The link and cumulant are the two foremost terms of interest of the expo-
nential family. The link function, as mentioned before, is intended to linearize
the relationship between the linear predictor, Xβ, and the model fit, µ. The
Greek letter η is the traditional GLM symbol for the inverse link. In the case
of the normal, or Gaussian, distribution, µ = Xβ. Since the two terms are
identical in this case, this particular link function is referred to as the identity

link. The standard formulations of the GLM link, inverse link, and derivative
of the link with respect to µ are displayed in Table 4.3 below.

TABLE 4.3

GLM link and inverse link functions.

Name Link Inverse Link d(link)/dµ

Cloglog log(− log(m− µ)) m− exp(−e−η) ((µ−m)× log(1− µ/m))−1

Identity µ η 1
Inverse 1/µ 1/η µ−2

Logit log(µ/(m− µ)) m/(1 + e−η) m/(µ(m− µ))
Probit Φ−1(µ/m) mΦ(η) (m ∗ dnorm(qnorm(µ/m)))−1

Log log(µ) eη 1/µ
NB-C − log(1/(αµ) + 1) 1/(α(e−η)− 1)) 1/(µ + αµ2)
Sq. inv. 1/µ2 1/1/

√
η −2µ−3

NB: the fitted value of the binary logistic model is π, which is the prob-
ability that the response, y, is 1. For the binary logistic model, the mean,
µ = π. However, when the logistic model has a binomial denominator (m)
that is greater than 1, µ = mπ. The variance function is then mπ(1 − π), or
µ(1− µ/m). Note that µ(1− µ/m) = µ(m− µ)/m.

Generalized Linear Models 103

The first derivative of the cumulant with respect to θ is the distributional
mean; the second derivative is the variance. For example, the cumulant of
the Bernoulli distribution is given as − log(1− µ). The first derivative of this
term, with respect to θ, which for the Bernoulli distribution is log(µ/(1−µ)),
is simply µ. µ, then, is the mean of the Bernoulli distribution. The second
derivative is µ(1− µ), the variance function. That is,

b′(θi) = mean

b′′(θi) = variance

The canonical link function is derived directly from the PDF of a given
GLM family. However, several well-known GLM models are often used with
other link functions, called non-canonical link functions, e.g., the binomial
distribution is often fit using the probit link or the complementary log–log
link, and the negative binomial and gamma models are often fit using the log
link. It is not clear that there is any statistical benefit in the canonization
of a particular link function for each family. Different link functions lead to
different interpretations of parameter estimates and also to different functional
patterns, and should be selected based on the problem at hand, rather than
on the basis of mathematical elegance. Theoretically, a GLM family can have
an infinite number of different link functions. In fact, a general power link is
included with many commercial GLM packages, thus providing a continuous
range of power links. Generally, feasible values range from −3 to +3, but for
some families/links, feasible values are within a more narrow range of power
values. Commonly used powers are displayed in Table 4.4. Several are identical
to the canonical link for the given family. The utility of power links rests with
the fact that any intermediate value of a power can be used for a model. For
example, based on comparative deviance, AIC and BIC statistics, it may be
the case that a gamma model with a power link value of −1.225 is the best-
fitted model. However, interpreting the model that is fitted with such a value
may be quite another matter altogether.

TABLE 4.4

Some familiar members of the power link family.

Power Name Model Canonical Link

3 cube none
2 square none
1 identity Gaussian
0 log Poisson
0.5 square root none
–1 inverse gamma
–2 inverse quadratic inverse Gaussian
–3 inverse cubic none

104 Methods of Statistical Model Estimation

One of the attractive features of GLMs is that it is easy to convert between
a wide variety of models. One may change families by exchanging the deviance
and associated weight functions. If the links also differ, then the link and
inverse link may be exchanged as well. A canonical Poisson model can be
made into a log-gamma model by changing only the deviance and weight
functions. All else in the IRLS estimating algorithm remains the same.

When modelling within a family, e.g., the Bernoulli, one needs only change
the link, inverse link, and weight in the IRLS estimating algorithm to change
from a logistic to a probit model. That is, a binary probit regression differs
from the logistic due only to the differing link and weight functions. The same
is the case for a complementary log-log model. We will later capitalize on this
convenience.

4.4 The IRLS Fitting Algorithm

The Iteratively Re-Weighted Least Squares (IRLS) algorithm may take several
forms. Employing the traditional symbols for the link function, g(µ), the
inverse link, g−1(η), which defines µ, and W as the weight, the IRLS algorithm
may be expressed by the following schema (subscripts not displayed):

1. Initialize the expected response, µ, and the link function, g(µ). η is
initialized as equal to g(µ).

2. Compute the weights as

W −1 = V g′(µ)2 = V

(
dη

dµ

)2

(4.3)

where g′(µ) is the derivative of the link function and V is the vari-
ance, defined as the second derivative of the cumulant, b′′(θ). For
canonical links the derivative of the link is the inverse of the vari-
ance, resulting in W = V.

3. Compute a working response, which is a one-term Taylor lineariza-
tion of the log-likelihood function, with a standard form of

z = η + (y − µ) g′ (µ) (4.4)

4. Regress z on predictors X1 . . . X n with weights, W, to obtain up-
dates on the vector of parameter estimates, β.

βr = (X ′WX)
−1

X ′Wz (4.5)

5. Compute η, or Xβ, the linear predictor, based on the regression
estimates.

Generalized Linear Models 105

6. Compute µ, or E(y), as g−1(η).

7. Compute the deviance function.

8. Iterate until the change in deviance between two iterations is below
a specified level of tolerance.

Again, there are many possible modifications to the above scheme. How-
ever, most traditional GLM software implementations use methods similar to
the above.

The GLM IRLS algorithm for the general case is presented in Table 4.5.
The algorithm can be used for any member of the GLM family. Again, the
substitution of specific functions into the general form for link, g(µ), inverse
link, g−1(η) , weight, W, and deviance or log-likelihood functions create differ-
ent GLM models. All other aspects of the algorithm remain the same, hence
allowing the user to easily change models.

Typically, with parameter estimates being of equal significance, the pre-
ferred model is the one with the lowest deviance as well as the lowest AIC or
BIC statistic. AIC is the acronym for Akaike Information Criterion (Akaike,
1973), and BIC the acronym for Bayesian Information Criterion, both of
which are based on the log-likelihood. The first form of BIC is due to the
work of Schwarz (1978), who employed the log-likelihood in its equation. One
form of BIC is based on the deviance (Raftery, 1986) and was commonly used
in GLM software until developers began to provide the log-likelihood statistic
in model output. Fit statistics for GLM models are described later in this
chapter. Since nearly all of the post-estimation fit statistics use the model
log-likelihood function, it is always important to calculate its value, which is
typically accomplished following model convergence.

4.5 Bernoulli or Binary Logistic Regression

We can develop a schematic IRLS logistic regression algorithm given the values
from the preceding tables. The terms in Table 4.6 define a binary logistic GLM
algorithm. The weight is identical to the variance function for the family, and is
inversely proportional to the derivative of the link with respect to µ. Since the
logit link is canonical or natural to the binomial distribution, and therefore
to the Bernoulli as well, the weight function for a logistic model is identical
to its variance. This identity is the case for all canonically linked models.

The traditional form of the Bernoulli deviance is displayed in brackets in
Table 4.2. Naive computation of the traditional expression of the binomial
deviance function results in an error when y = 0. This is because the deviance
requires the computing of 0× log(0), which computers cannot handle without
specific programming, because log(0) = −∞. Using l’Hôpital’s rule,

106 Methods of Statistical Model Estimation

TABLE 4.5

Standard GLM IRLS estimating algorithm; p is the number of model predic-
tors including the constant and n is the number of observations in the dataset.
The algorithm allows for an offset.

dev← 0
∆Dev← 2× tolerance
µ← mean(y)) # initialize
η ← g(µ) # initialize link
while (abs(∆Dev) > tolerance){ # start loop; define convergence

w ← 1/(V × g′2) # weight
z ← η + (y − µ)g′− offset # working response
β = (X ′wX)−1X ′wz # weighted regression
η ← Xβ + offset # linear predictor
µ← g−1(η) # fitted value
Dev0 ← Dev # copy deviance to Dev0
Dev ← Deviance function
∆Dev ← Dev – Dev0 # difference betw. new and old values
}

TABLE 4.6

Functions required for using IRLS to fit a binary logistic GLM.

Link log(µ/(1− µ))
Inverse link 1/(1+exp(-η))
Weight 1/(µ× (1− µ))× (1/(µ× (1− µ)))2 = µ× (1− µ)
Deviance 2Σ(y × log(1/µ) + (1− y)× log(1/(1− µ)))

lim
x→0+

x× log(x) = 0 (4.6)

We have therefore restructured the general binomial deviance function to be

2
∑

(y × log(1/µ) + (1− y)× log(1/(1− µ))) (4.7)

Programmers will also sometimes partition the Bernoulli, or more general
binomial deviance function, into separate expressions for the deviance for y =
0 and y > 0.

A simple working R script for a binary logistic regression using data from
the 1912 Titanic ship disaster is shown below. Instead of convergence being
based on the difference in deviance values between two iterations, we simply
iterate four times. Most decently fitted logistic models usually need only three
to five iterations before finding the appropriate parameter estimates. Note that
the algorithm is specific to the titanic data. The data comprises a count

Generalized Linear Models 107

response of the number of passengers who survived the accident, survived,
and three predictors with the following format:

age: 1 = adult; 0 = youth
sex: 1 = male; 0 = female
class: 1 = first; 2 = second; 3 = third

We shall use only a single binary predictor, age, for this script

> library(msme)

> data(titanic)

> y <- titanic$survived

> x <- titanic$age

> mu <- rep(mean(y), nrow(titanic)) # initialize mu

> eta <- log(mu/(1-mu)) # initialize eta

> for (i in 1:4) { # loop for 4 iterations

+ w <- mu*(1-mu) # weight = variance

+ z <- eta + (y - mu)/(mu*(1-mu)) # working response

+ mod <- lm(z ~ x, weights = w) # weighted regression

+ eta <- mod$fit # linear predictor

+ mu <- 1/(1+exp(-eta)) # fitted value

+ cat(i, coef(mod), "\n") # display iteration log

+ }

1 0.117651 -0.6658327

2 0.09178935 -0.6403553

3 0.09180755 -0.6403735

4 0.09180755 -0.6403735

The cat function results in the iterated output. The parameter estimates can
then be found directly from the fitted linear model. The model coefficients
may be abstracted from the above model, which we named mod, by issuing
the following code. Recall that the variable x is identical to age in the titanic

data.

> coef(summary(mod))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09180755 0.1919130 0.4783811 0.632458588

x -0.64037350 0.2010116 -3.1857538 0.001477722

and 95% confidence intervals may be calculated as:

> confint(mod)

2.5 % 97.5 %

(Intercept) -0.2846818 0.4682969

x -1.0347123 -0.2460347

108 Methods of Statistical Model Estimation

We now compare our results those of R’s glm function, which produces the
following output.

> glm.test <- glm(survived ~ age,

+ family = binomial,

+ data = titanic)

> coef(summary(glm.test))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.09180755 0.1917671 0.478745 0.632120053

age -0.64037350 0.2008588 -3.188177 0.001431727

The coefficients of mod and glm.test are the same, but the standard errors
differ slightly. It is important to know why this is the case. The standard errors
from our model fit are computed from the last-fitted lm object, called mod.
Because it is a linear model, the standard errors are scaled by the estimated
standard deviation of the residuals, as we see from the code below.

> getAnywhere(vcov.lm)

A single object matching ’vcov.lm’ was found

It was found in the following places

registered S3 method for vcov from namespace stats

namespace:stats

with value

function (object, ...)

{

so <- summary.lm(object)

so$sigma^2 * so$cov.unscaled

}

<bytecode: 0x18da684>

<environment: namespace:stats>

In order to obtain standard error estimates from an unscaled covariance
matrix, we will need to use the following code.

> (se <- sqrt(diag(summary(mod)$cov.unscaled)))

(Intercept) x

0.1917671 0.2008588

These results are the same as reported by glm. We now make a brief detour
to explore this difference in greater detail.

The vcov.glm function in R reports the model standard errors that are
adjusted by the square root of the Pearson dispersion statistic, conditional on
the model. For example, if the model is binomial, then the dispersion is 1, by

Generalized Linear Models 109

definition. If the model is quasi-binomial, which allows for non-unity disper-
sion, then the reported dispersion is computed from the model and the data.
The use of this dispersion to inflate or deflate the estimated standard errors is
called scaling. The Pearson dispersion is the ratio of the model Pearson Chi2
to the model degrees of freedom, which is defined as the number of observa-
tions in the model less the number of predictors, including the intercept. The
code for determining the dispersion is given later.

Standard errors are commonly scaled when there is evidence of over- or
under-dispersion in the data, such as might be caused by an inappropriate
variance function or unmodeled correlation. Correlation can arise from a va-
riety of sources, e.g., when the observations have hierarchical structure, or
when an important term is missing from the model. In any case, when the
vcov function is used to determine standard errors, they are scaled, using the
dispersion that is dictated by the model.

If non-unity dispersion seems possible, then the glm function should be
used with the quasibinomial family. This is simply the binomial (logit) model
with standard errors multiplied by the square root of the Pearson dispersion
statistic as estimated from the model and data. Following our discussion of
scaling below, we address its further implications in Section 4.10.

> glm.qb <- glm(survived ~ age,

+ family = quasibinomial,

+ data = titanic)

> summary(glm.qb)$dispersion

[1] 1.001522

> coef(summary(glm.qb))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09180755 0.1919130 0.478381 0.632458602

age -0.64037350 0.2010116 -3.185754 0.001477722

We display (truncated) Stata statistical software output of the same model
using scaled standard errors. Compare the standard errors with the above
quasibinomial model.

. glm survived age, fam(bin) scale(x2) nolog nohead

| OIM

survived | Coef. Std. Err. z ...

-------------+-------------------------------------

age | -.6403735 .2010116 -3.19 ...

_cons | .0918075 .191913 0.48 ...

(Standard errors scaled using square root of Pearson X2-based disp.)

110 Methods of Statistical Model Estimation

Finally, we turn to the estimated confidence intervals. The confidence in-
tervals from our bespoke fitted model are based on the scaled standard errors,
so are not reliable in this instance.

> confint(mod)

2.5 % 97.5 %

(Intercept) -0.2846818 0.4682969

x -1.0347123 -0.2460347

We compare these with the confidence intervals produced by confint.glm.
Note that the confidence intervals produced by confint.glm are not Wald
confidence intervals. That is, they are not calculated as β̂ ± 1.96× ŝβ .

> confint(glm.test)

2.5 % 97.5 %

(Intercept) -0.2840767 0.4698629

age -1.0360643 -0.2467708

Notice the message directly under the confint(glm.text) function:
"Waiting for profiling to be done...". This refers to the fact that R
is performing a profile likelihood of the coefficients over a range of coefficient
values. The likelihood ratio test is used as the basis of the profiling. Tradi-
tional model-based 95% Wald confidence intervals may be obtained using the
confint.default function, although these intervals are known to have poorer
qualities, so profile-based intervals are preferred (see e.g., Pawitan, 2001).

> confint.default(glm.test)

2.5 % 97.5 %

(Intercept) -0.2840491 0.4676642

age -1.0340495 -0.2466975

These values may again be compared to using Stata. The results are identi-
cal to the standard errors and confidence intervals we calculated for the Stata
scaled model and for the standard logistic model displayed below,

. glm survive age, fam(bin) nolog nohead

| OIM

survived | Coef. Std. Err. [95% Conf. Interval]

-------------+----------------------- ... -----------------------

age | -.6403735 .2008588 ... -1.03405 -.2466975

_cons | .0918075 .1917671 ... -.2840491 .4676642

Generalized Linear Models 111

Let us return to the mod results and create 95% confidence intervals by
hand using the adjustment we made to have model-based rather than scaled
standard errors. Given the rounding effect by using 1.96 for a alpha = 0.05,
the results are identical to glm using the confint.default function and to
the Stata results.

> mod$coef - 1.96*se

(Intercept) x

-0.284056 -1.034057

> mod$coef + 1.96*se

(Intercept) x

0.4676711 -0.2466902

4.5.1 IRLS

A more sophisticated R function for GLM logistic regression is given next.
Initialization code is used to define the model, the response, y, and the matrix
of model predictors, X, as done in Chapter 3 for maximum likelihood linear
regression. This same initialization code shall be used for all of our maximum
likelihood functions. Recall that it allows factoring of categorical variables,
interactions, and even splines (refer to Section 3.4.9). This block of code is a
powerful tool for fitting a wide range of linear models.

> irls_logit <- function(formula, data, tol = 0.000001) {# arguments

+

+ ## Set up the model components

+ mf <- model.frame(formula, data) # define model frame

+ y <- model.response(mf, "numeric") # set model response

+ X <- model.matrix(formula, data = data) # predictors in X

+

+ ## Check for missing values; stop if any.

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing.")

+

+ ## Initialize mu, eta, the deviance, etc.

+ mu <- rep(mean(y), length(y))

+ eta <- log(mu/(1-mu))

+ dev <- 2 * sum(y*log(1/mu) +

+ (1 - y) * log(1/(1-mu)))

+ deltad <- 1

+ i <- 1

+

+ ## Loop through the IRLS algorithm

+ while (abs(deltad) > tol) { # IRLS loop begin

+ w <- mu * (1-mu) # weight

+ z <- eta + (y - mu)/w # working response

112 Methods of Statistical Model Estimation

+ mod <- lm(z ~ X-1, weights = w) # weighted regression

+ eta <- mod$fit # linear predictor

+ mu <- 1/(1+exp(-eta)) # fitted value

+ dev.old <- dev

+ dev <- 2 * sum(y * log(1/mu) +

+ (1 - y) * log(1/(1 - mu))) # deviance

+ deltad <- dev - dev.old # change

+ cat(i, coef(mod), deltad, "\n") # iteration log

+ i <- i + 1 # iterate

+ }

+

+ ## Build some post-estimation statistics

+ df.residual <- summary(mod)$df[2]

+ pearson.chi2 <- sum((y - mu)^2 / (mu * (1 - mu))) / df.residual

+ se.beta.hat <- sqrt(diag(summary(mod)$cov.unscaled))

+

+ ## Return a compact result

+ result <- list(coefficients = coef(mod),

+ se.beta.hat = se.beta.hat)

+ return(result)

+ }

Note that the operations that are essential to a regression routine can-
not be performed if any observation in the data matrix has a missing value.
As before, we have made the user responsible for checking and perhaps cor-
recting missing values, or deleting them from the data matrix. If we had
wanted R to delete rows in which any missing value exists, we would add
data <- na.omit(data) before we set up the model components.

The generic version of a logistic regression function given above uses the
change in the deviance function as the basis of convergence. The standard
criterion used with commercial software is 10−6 or 0.000001. Convergence is
achieved when the absolute difference of two consecutive iterations of deviance
function is less than 10−6, which is one-millionth of unity. The two values of
the deviance must therefore be nearly identical in order for convergence to
be declared. Note that the residual degrees of freedom are created after the
while loop, followed by calculating the Pearson Chi2 dispersion statistic. The
square root of the dispersion is then used to modify sqrt(diag(vcov(mod))).

We now use this function to fit a logit model to the medpar data.

> library(msme)

> data(medpar)

The medpar data is modeled using the irls_logit function as

> i.logit <- irls_logit(died ~ hmo + white,

+ data = medpar)

1 -0.9129327 -0.01225269 0.2902311 -2.258749

2 -0.9261486 -0.01224646 0.3033496 -0.004542199

3 -0.9261862 -0.01224648 0.3033872 -3.655578e-08

Generalized Linear Models 113

The iteration log defined by i.logit reports the sequential convergence
of the intercept, hmo, white, and the difference in deviance functions between
two iterations. With the default tolerance set at 0.000001, or 10−6, we note
that convergence was achieved at iteration 4. Printing the name given to the
model, i.logit, displays the vector of coefficients and of standard errors.

> i.logit

$coefficients

X(Intercept) Xhmo Xwhite

-0.92618620 -0.01224648 0.30338724

$se.beta.hat

X(Intercept) Xhmo Xwhite

0.1973889 0.1489250 0.2051781

95% Wald confidence intervals may easily be computed using the code:

> with(i.logit, coefficients - 1.96 * se.beta.hat)

X(Intercept) Xhmo Xwhite

-1.3130684 -0.3041395 -0.0987619

> with(i.logit, coefficients + 1.96 * se.beta.hat)

X(Intercept) Xhmo Xwhite

-0.5393040 0.2796466 0.7055364

The z-values and the corresponding p-values can be obtained by

> (Z <- with(i.logit, coefficients / se.beta.hat))

X(Intercept) Xhmo Xwhite

-4.69219056 -0.08223254 1.47865289

> (pvalues <- 2*pnorm(abs(Z), lower.tail = FALSE))

X(Intercept) Xhmo Xwhite

2.702952e-06 9.344618e-01 1.392331e-01

A comparison of coefficients with glm can be obtained by

> glm.logit <- glm(died ~ hmo + white,

+ family = binomial,

+ data = medpar)

> coef(summary(glm.logit))

114 Methods of Statistical Model Estimation

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92618620 0.1973903 -4.69215560 2.703414e-06

hmo -0.01224648 0.1489251 -0.08223252 9.344618e-01

white 0.30338724 0.2051795 1.47864270 1.392358e-01

As before, values of the confidence intervals will differ slightly between
glm and our stand-alone logistic model. Our code produces Wald confidence
intervals. Recalling our earlier discussion, we may obtain Wald confidence
intervals from glm objects by using the confint.default function

> confint.default(glm.logit)

2.5 % 97.5 %

(Intercept) -1.31306417 -0.5393082

hmo -0.30413424 0.2796413

white -0.09875728 0.7055318

These confidence intervals are the same as produced using the irls_logit

function. We reproduce them below with a different format.

> estim <-coef(summary(glm.logit))

> beta <- estim[,1]

> se <- estim[,2]

> confint.model <- (cbind(beta,

+ beta - se*qnorm(.975),

+ beta + se*qnorm(.975)))

> colnames(confint.model) <- c("Beta", "low_CI", "Hi_CI")

> confint.model

Beta low_CI Hi_CI

(Intercept) -0.92618620 -1.31306417 -0.5393082

hmo -0.01224648 -0.30413424 0.2796413

white 0.30338724 -0.09875728 0.7055318

The results are identical to those of confint.default.

4.6 Grouped Binomial Models

One of the nice features of the GLM algorithm is that it provides for the
estimation of binomial or grouped logistic regression, as well as the binomial
parameterizations of the non-canonical links. Recall that we have already been
working with binomial models — models with a binomial denominator of 1.
Programming and using binomial or grouped models requires the incorpora-
tion of a binomial denominator into the model. The denominator is the number

Generalized Linear Models 115

of observations in the model sharing the same covariate pattern. The numera-
tor is the number of successes (1’s) for a given covariate pattern. Suppose we
have observation data appearing as per Table 4.7.

TABLE 4.7

Observation-level binomial data.

Obs. y x1 x2 cp#

1: 1 0 0 1 (0,0)
2: 1 1 0 2 (1,0)
3: 0 0 1 3 (0,1)
4: 1 0 1 3
5: 1 1 1 4 (1,1)
6: 0 1 1 4
7: 0 0 0 1
8: 1 0 1 3
9: 1 1 0 2
10: 0 1 0 2
11: 0 0 1 3
12: 1 0 0 1
13: 0 1 1 4
14: 1 0 0 1

Each value of cp# represents a distinct covariate pattern, the value profile
of the model predictors. A grouped dataset can be formed from the above by
combining covariate patterns, but re-defining y as the number of 1’s for each
covariate pattern, and m the number of observations having the same covariate
pattern. The grouped or proportional dataset is provided in Table 4.8.

TABLE 4.8

Grouped binomial data.

Obs. y m x1 x2

1: 3 4 0 0
2: 2 3 1 0
3: 2 4 0 1
4: 1 3 1 1

Note that the sum of y values in the observation data equals the sum
of y values in the grouped data. Likewise, the sum of m values equals the
number of observations in the observation data. The data presented in both
tables are identical; it is simply formatted in different ways. The grouped or
binomial model is appropriate for data structured as Table 4.8. Data in tables
can normally be converted to the grouped data format for analysis.

116 Methods of Statistical Model Estimation

The irls_logit function we created to estimate the parameters of a bi-
nary logistic model can be amended to incorporate both an offset and a de-
nominator greater than 1. The default value of offset is 0. Offsets are either
added or subtracted to lines in the algorithm. By initializing the value as 0, if
offsets are not used, then no change is made to the algorithm. The binomial
denominator m, on the other hand, is assigned a default value of 1 since it
serves as a multiplier to other terms in the model.

The formulae for the link, inverse link, weight, and deviance functions for
binomial or grouped logistic GLM models are located in Tables 4.2 and 4.3.
The deviance that is displayed in square brackets is the equation normally
observed in texts on the subject. As noted earlier, we use a different version
that does not require calculation of log(0).

Recall from Equation 4.3 that the GLM weight is

w−1 = V

(
dg (µ)

dµ

)2

where V is the GLM family variance function and g(µ) = g is the model link
function. This equation can be simplified in appearance as

w−1 = V g′2 (4.8)

For canonical links, g′ = 1/V , so the terms cancel, leaving

w = g′ = 1/V (4.9)

Therefore, for the grouped binomial logit model, the values for the various
components are provided in Table 4.9.

TABLE 4.9

Components of the grouped binomial logistic regression using IRLS.

Deviance 2
∑

y × log(1/µ) + (m− y)× log(1/(m− µ))
Link function log(µ/(m− µ))
Inverse link m/(1 + exp(−η))
Logit weight µ× (m− µ)/m
Logit working response z = η + (y − µ)/(µ(1− µ/m))

We next provide a stand-alone function for the estimation of both binary
and grouped logistic models. If m is not provided a value, then the algorithm
assumes that y is binary (0/1) and that the model is a binary logistic regres-
sion. If m is given a value, or assigned a variable, the algorithm assumes that
a grouped logistic model is to be estimated. In all cases, the user must make
certain that y is always equal to or less than m; i.e., y ≤ m. Finally, referring
to Table 4.1, µ×(1−µ/m) = µ×(m−µ)/m. Both formulations are commonly
used by programmers. Note also that we use the grouped binomial variance
function, mu * (1 - mu/m), in the calculation of the Pearson Chi2 statistic.

Generalized Linear Models 117

> irls_glogit <- function(formula, data,

+ tol = 0.000001, offset = 0, m = 1) {

+

+ ## Set up the model components

+ mf <- model.frame(formula, data)

+ y <- model.response(mf, "numeric")

+ X <- model.matrix(formula, data = data)

+

+ ## Check for missing values; stop if any.

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing.")

+

+ ## Check for nonsensical values; stop if any.

+ if (any(y < 0 | y > m)) stop("Some data are absurd.")

+

+ ## Initialize mu, eta, the deviance, etc.

+ mu <- rep(mean(y), length(y))

+ eta <- log(mu/(m - mu))

+ dev <- 2 * sum(y * log(pmax(y,1)/mu) +

+ (m - y)* log(pmax(y,1)/(m - mu)))

+ deltad <- 1

+ i <- 1

+

+ ## Loop through the IRLS algorithm

+ while (abs(deltad) > tol) {

+ w <- mu*(m-mu)/m

+ z <- eta + (y-mu)/w - offset

+ mod <- lm(z ~ X-1, weights=w)

+ eta <- mod$fit + offset

+ mu <- m/(1+exp(-eta))

+ dev.old <- dev

+ dev <- 2 * sum(y*log(pmax(y,1)/mu) +

+ (m - y)* log(pmax(y,1)/(m - mu)))

+ deltad <- dev - dev.old

+ i <- i + 1

+ }

+

+ ## Build some post-estimation statistics

+ df.residual <- summary(mod)$df[2]

+ pearson.chi2 <- sum((y - mu)^2 /

+ (mu * (1 - mu/m))) / df.residual

+

+ ## Return a brief result

+ return(list(coef = coef(mod),

+ se = sqrt(diag(summary(mod)$cov.unscaled)),

118 Methods of Statistical Model Estimation

+ pearson.chi2 = pearson.chi2))

+ }

The pmax(y,1) function gives the parallel maxima of the vectors named
in its arguments.

> pmax(c(0, 1, 1), c(1, -1, 0))

[1] 1 1 1

For an example of a grouped logistic model we shall use the noted doll

dataset displayed in Table 4.10 which was developed by Doll and Hill in 1966
(Doll and Hill, 1966). The data are a record of physician smoking habits and
the probability of death by myocardial infarction. The physicians were divided
into five age divisions, with deaths as the response, person years (pyears) as
the binomial denominator, and both smoking behavior (smoke) and age group
(a1 -a5) as predictors. Here we will interpret age as an ordinal variable. The
data can be located in doll, which is in the msme package.

TABLE 4.10

Doll data.

Person years Coronary deaths
Age Non-Smokers Smokers Non-Smokers Smokers

35-44 18790 52407 2 32
45-54 10673 43248 12 104
55-64 5710 28612 28 206
65-74 2585 12663 28 186
75-84 1462 5317 31 102

> library(msme)

> data(doll)

> i.glog <- irls_glogit(deaths ~ smokes + ordered(age),

+ data = doll,

+ m = doll$pyears)

> i.glog

$coef

X(Intercept) Xsmokes Xordered(age).L

-5.68086278 0.35780978 2.94655871

Xordered(age).Q Xordered(age).C Xordered(age)^4

-0.71565635 -0.01185071 0.01474086

$se

Generalized Linear Models 119

X(Intercept) Xsmokes Xordered(age).L

0.10271860 0.10781097 0.12723208

Xordered(age).Q Xordered(age).C Xordered(age)^4

0.11322768 0.09519349 0.07616658

$pearson.chi2

[1] 2.78052

Notice the substantial dispersion value. This clearly indicates either con-
siderable correlation in the data, which violates the model assumption of the
independence of observations, or under-fitting. Scaling is a commonly used
method for adjusting standard errors in light of excessive correlation in the
model data.

The parameter estimates for the model need some explanation. Because
we declared age to be an ordinal variable, it has been reparameterized into a
four-degree orthogonal polynomial, which requires the same number of degrees
of freedom, but provides quite a different interpretation. Instead of estimating
a mean for the first level and a set of four differences, which is the usual
parameterization for (five-level) factors, this model guides the choice of a
suitable polynomial by fitting increasing orthogonal powers: a constant, a
linear model, quadratic, cubic, etc. Here, the z-values are

> with(i.glog, coef / se)

X(Intercept) Xsmokes Xordered(age).L

-55.3051024 3.3188624 23.1589294

Xordered(age).Q Xordered(age).C Xordered(age)^4

-6.3205072 -0.1244908 0.1935345

which suggest that a quadratic model would be adequate for our purposes.
We check our results using R’s glm function as follows.

> glm.glog <- glm(cbind(deaths, pyears - deaths) ~

+ smokes + ordered(age),

+ data = doll,

+ family = binomial)

> coef(summary(glm.glog))

Estimate Std. Error z value

(Intercept) -5.68086278 0.10271854 -55.3051331

smokes 0.35780978 0.10781093 3.3188636

ordered(age).L 2.94655871 0.12723192 23.1589577

ordered(age).Q -0.71565635 0.11322755 -6.3205142

ordered(age).C -0.01185071 0.09519343 -0.1244909

ordered(age)^4 0.01474086 0.07616657 0.1935345

Pr(>|z|)

(Intercept) 0.000000e+00

120 Methods of Statistical Model Estimation

smokes 9.038456e-04

ordered(age).L 1.180987e-118

ordered(age).Q 2.606944e-10

ordered(age).C 9.009266e-01

ordered(age)^4 8.465404e-01

The coefficients and standard errors produced by glm and irls_glogit

are the same.
In previous sections we demonstrated how to construct stand-alone GLM-

type IRLS functions for the binary logistic and grouped logistic models. Next
we put the various stand-alone GLM functions into a single algorithm.

4.7 Constructing a GLM Function

We now shall combine the above stand-alone GLM functions that we con-
structed in the previous sections, together with other GLM families, into a sin-
gle function called irls. irls will allow the use of a summary(<modelname>)

function after estimation, displaying a table of parameter estimates and
associated standard errors, z-statistics, p-values, and 95% confidence in-
tervals. Moreover, the irls function will provide users with a number of
post-estimation statistics which can be used to assess fit, create graphs, or
used to calculate other statistics. The user will also be able to access the
call used to estimate model parameters and associated statistics by typing
modelname$call, and may display the family used to model the data by typ-
ing modelname$family.

The key to constructing a multifunction function is modularity. That is,
we gather equations defining the link, inverse link, and variance functions of
the various GLM models into one module, the deviances and log-likelihoods
in another module, and so forth. The name of these modules is defined and
then applied in the function.

First, the irls function defines various generic functions that will be used
within the GLM IRLS algorithm:

> jllm <- function(y, mu, m, a) UseMethod("jllm")

> linkFn <- function(mu, m, a) UseMethod("linkFn")

> lPrime <- function(mu, m, a) UseMethod("lPrime")

> unlink <- function(y, eta, m, a) UseMethod("unlink")

> variance <- function(mu, m, a) UseMethod("variance")

The lPrime function is the first derivative of the link function with respect
to its first argument. The ’m’ in jllm signifies the mean parameterization.

We next define a collection of methods that will be used by the function for
logit-linked binomial regression. The deviance is defined as the sum of squared

Generalized Linear Models 121

deviance residuals. Software developers typically code the deviance and de-
viance residuals separately, using formulae like those presented in Table 4.2.
Here we code the deviance residuals directly from the joint log-likelihood. The
residuals are then squared and summed to produce the deviance statistic. This
approach to coding does not produce speedy or robust execution. However,
it does cleanly demonstrate the unity in the statistical ideas that underpin
GLM. The deviance residuals are defined as

> devianceResids <- function(y, mu, m, a)

+ sign(y - mu) * sqrt(2 * abs(jllm(y, mu, m, a) -

+ jllm(y, y, m, a)))

and the deviance follows naturally,

> devIRLS <- function(object, ...)

+ sum(devianceResids(object, ...)^2)

We choose these peculiar names to distinguish these two functions from the
more general ones that will be provided in the next chapter.

Note also that we have tried to anticipate all the possible parameters
that we are likely to wish to pass to the devianceResiduals function. We
are presently writing the irls function to cope with grouped and ungrouped
logistic regression, so we need to include m, the group size. However, we will
later wish to model the negative binomial distribution, which has a scale
parameter a. To prevent us from having to redefine a more complete function
later, we define it now.

An alternative would be to define these functions within the body of the
irls function, which we will define shortly. Doing so would reduce the mod-
ularity of the code, so we elect to define all the needed arguments up front.

The parameter estimates for models of the exponential family are initial-
ized using the following code.

> initialize <- function(y, m) {

+ ret.y <- rep(mean(y), length(y))

+ class(ret.y) <- class(y)

+ ret.y

+ }

Next we define the formulae for the variance and log-likelihood for the
binomial family. Residuals are addressed further in Section 4.11.2.

> variance.binomial <- function(mu, m, a) mu * (1 - mu/m)

As noted in Section 1.2.3.3, we provide all the parameters that we are likely
to need, as well as those that are needed now.

The joint log-likelihood is most efficiently provided by using R’s internal
function as discussed in Section 1.2.5.

122 Methods of Statistical Model Estimation

> jllm.binomial <- function(y, mu, m, a)

+ dbinom(x = y, size = m, prob = mu / m, log = TRUE)

The next defined module relates to the link function. For each family,
three functions are provided for the link, derivative of the link, and inverse
link functions. For the binomial-logit link, the functions are

> linkFn.logit <- function(mu, m, a) log(mu / (m - mu))

> lPrime.logit <- function(mu, m, a) m / (mu * (m - mu))

> unlink.logit <- function(y, eta, m, a) m / (1 + exp(-eta))

Note that the variance(mu) function, the derivative of the link,
lPrime(mu), the inverse link, unlink(eta), and deviance, deviance(y,mu),
functions have been pre-defined earlier in the algorithm. Also note that, as
noted in Section 1.2.3.3, we have chosen a very specific strategy to commu-
nicate the family and the choice of link function to the algorithm: we use S3
classes (see Chapters 1 and 3). That is, we assign the family and the link
function to the data as classes, and this information is carried through the
algorithm automatically, and used by R to select the appropriate collection of
functions. This is a hack that pivots on the flexible implementation of inheri-
tance in S3 classes. Consequently, in the case of the unlink function, the sole
purpose of including y among the arguments is to provide class information.

Hence, here all we do is call variance(mu), for example, and because mu has
a specific class that is defined by irls to be the family name, R will know
exactly which variance function to use. An alternative would have been to use
multiple if statements, but the present approach provides cleaner code that
is easier to read and maintain.

Next, the irls function is defined, and options specified together with
their default values

> irls <- function(formula, data, family, link,

+ tol = 1e-6,

+ offset = 0,

+ m = 1,

+ a = 1,

+ verbose = 0) {

+

+ ### Prepare the model components as previously

+ mf <- model.frame(formula, data)

+ y <- model.response(mf, "numeric")

+ X <- model.matrix(formula, data = data)

+

+ ### Check for missing values

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing.")

+

+ ### Arrange the class information

Generalized Linear Models 123

+ class(y) <- c(family, link, "expFamily")

+

+ ### Establish a start point

+ mu <- initialize(y, m)

+ eta <- linkFn(mu, m, a)

+ dev <- devIRLS(y, mu, m, a)

+ deltad <- 1

+ i <- 0

+

+ ### IRLS loop (as before)

+ while (abs(deltad) > tol) {

+ w <- 1 / (variance(mu, m, a) * lPrime(mu, m, a)^2)

+ z <- eta + (y - mu) * lPrime(mu, m, a) - offset

+ mod <- lm(z ~ X - 1, weights = w)

+ eta <- mod$fit + offset

+ mu <- unlink(y, eta, m, a)

+ dev.old <- dev

+ dev <- devIRLS(y, mu, m, a)

+ deltad <- dev - dev.old

+ i <- i + 1

+ if(verbose > 0) cat(i, coef(mod), deltad, "\n")

+ }

+

+ ### Post-estimation statistics

+ df.residual <- summary(mod)$df[2]

+ pearson.chi2 <- sum((y - mu)^2 /

+ variance(mu, m, a)) / df.residual

+ ll <- sum(jllm(y, mu, m, a))

+ se.beta.hat <- sqrt(diag(summary(mod)$cov.unscaled))

+

+ ### Return a rich object --- allows use of print.glm

+ result <-

+ list(coefficients = coef(mod),

+ se.beta.hat = se.beta.hat,

+ model = mod,

+ call = match.call(),

+ nobs = length(y),

+ eta = eta,

+ mu = mu,

+ df.residual = df.residual,

+ df.null = length(y) - 1,

+ deviance = dev,

+ null.deviance = NA,

+ p.dispersion = pearson.chi2,

+ pearson = pearson.chi2 * df.residual,

124 Methods of Statistical Model Estimation

+ loglik = ll,

+ family = list(family = family),

+ X = X,

+ i = i,

+ residuals = devianceResids(y, mu, m, a),

+ aic = -2 * ll + 2 * summary(mod)$df[1])

+ class(result) <- c("msme","glm")

+ return(result)

+ }

An optional iteration log is provided that displays the iteration number, i,
the values of the model coefficients, coef(mod), and the value of the difference
in deviances for each iteration until convergence. mod is the name we assigned
to the fitted weighted linear regression within the IRLS loop, which provides
appropriate parameter estimates and standard errors.

Following convergence and the estimation of parameter estimates and fit-
ted values, the irls algorithm calculates summary statistics based on the final
values of mu and eta. These include the residual degrees of freedom, the Pear-
son chi2 statistic, and log-likelihood. Thereafter, a result list is provided spec-
ifying which statistics are to be made available to the user as post-estimation
statistics.

It is important to return a value for the null deviance, even though we do
not compute it, because doing so enables us to use the print.glm function,
which is very convenient. For irls we prefer to omit the computation of the
null deviance, simply because adding the needed code would lengthen the
function too much for our purposes. We show how it may be easily obtained
shortly.

The results are given a specific class, as we showed in Chapter 3, in order
that specially-written functions will be used when we print or plot the output
object. All statistics defined in the result list are returned for the use of
those who are modelling the data.

Other statistics may also be defined from the returned statistics. irls

creates several such statistics prior to defining a final module that displays
the output given to the screen with the summary function.

We now demonstrate the new function using the medpar data and a model
that we fitted earlier.

> irls.logit <- irls(died ~ hmo + white,

+ family = "binomial", link = "logit",

+ data = medpar)

> irls.logit

Call: irls(formula = died ~ hmo + white, data = medpar,

family = "binomial", link = "logit")

Coefficients:

Generalized Linear Models 125

X(Intercept) Xhmo Xwhite

-0.92619 -0.01225 0.30339

Degrees of Freedom: 1494 Total (i.e., Null); 1492 Residual

Null Deviance: NA

Residual Deviance: 1921 AIC: 1927

The reader can verify that these estimates are consistent with those ob-
tained earlier. As mentioned above, our function does not compute the null
deviance. The reader may calculate it by explicitly fitting an intercept-only
model.

> with(irls(died ~ 1,

+ family = "binomial", link = "logit",

+ data = medpar), c(deviance, df.residual))

[1] 1922.865 1494.000

4.7.1 A Summary Function

We now have a function that will compute and report a logistic regression,
given suitable inputs. We will write a summary method to complete our little
collection. In early drafts of this project we did try to adopt the summary.glm

method, which also required examining the print.summary.glm method, but
we decided that satisfying the existing function looked like too much work1,
and that writing our own summary function would be more efficient.

> summary.msme <- function(object, ...) {

+

+ ### Create a coefficient table

+ z <- with(object, coefficients / se.beta.hat)

+ zTable <-

+ with(object,

+ data.frame(Estimate = coefficients,

+ SE = se.beta.hat,

+ Z = z,

+ p = 2 * pnorm(-abs(z)),

+ LCL = coefficients - 1.96*se.beta.hat,

+ UCL = coefficients + 1.96*se.beta.hat))

+ rownames(zTable) <- colnames(object$X)

+

+ ### Prepare part of the coefficient table for printing

+ z.print <- zTable

+ z.print$p <- formatC(z.print$p, digits = 3, format="g")

1We invite the reader to consider it as an exercise, at no additional cost.

126 Methods of Statistical Model Estimation

+

+ ### Build a list of output objects

+ summ <- list(call = object$call,

+ coefficients = zTable,

+ deviance = object$deviance,

+ null.deviance = object$null.deviance,

+ df.residual = object$df.residual,

+ df.null = object$df.null)

+

+ ### Write out a set of results

+ cat("\nCall:\n")

+ print(object$call)

+ cat("\nDeviance Residuals:\n")

+ print(summary(as.numeric(object$residuals)))

+ cat("\nCoefficients:\n")

+ print(z.print, digits = 3, ...)

+ cat("\nNull deviance:", summ$null.deviance,

+ " on ", summ$df.null, "d.f.")

+ cat("\nResidual deviance:", summ$deviance,

+ " on ", summ$df.residual, "d.f.")

+ cat("\nAIC: ", object$aic)

+ cat("\n\nNumber of optimizer iterations: ",

+ object$i, "\n\n")

+

+ ### Return the list but do not print it.

+ return(invisible(summ))

+ }

We can now compare the results of our summary function with the outcome
of calling summary upon R’s glm-classed object.

> summary(irls.logit)

Call:

irls(formula = died ~ hmo + white, data = medpar,

family = "binomial", link = "logit")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.9268 -0.9268 -0.9222 -0.1002 1.4510 1.5930

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) -0.9262 0.197 -4.6922 2.7e-06 -1.3131 -0.539

hmo -0.0122 0.149 -0.0822 0.934 -0.3041 0.280

white 0.3034 0.205 1.4787 0.139 -0.0988 0.706

Generalized Linear Models 127

Null deviance: NA on 1494 d.f.

Residual deviance: 1920.602 on 1492 d.f.

AIC: 1926.602

Number of optimizer iterations: 3

> summary(glm.logit)

Call:

glm(formula = died ~ hmo + white, family = binomial,

data = medpar)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.9268 -0.9268 -0.9222 1.4507 1.5929

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.92619 0.19739 -4.692 2.7e-06 ***

hmo -0.01225 0.14893 -0.082 0.934

white 0.30339 0.20518 1.479 0.139

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1922.9 on 1494 degrees of freedom

Residual deviance: 1920.6 on 1492 degrees of freedom

AIC: 1926.6

Number of Fisher Scoring iterations: 4

The outputs of the summary functions for the results are very similar.

Thus far we have developed IRLS algorithms and functions that estimate
binary and grouped logistic regression. A simple operation allows us to con-
vert them to probit and complementary log-log (cloglog) models. It must be
recalled, though, that probit and cloglog are non-canonical models. Their link
functions are not derived from the binomial PDF. To fit a binary logistic
model using a probit or cloglog link, the link, inverse link, and the weight
functions must be amended. Recall that for canonical models the terms of the
weight function cancel, leaving the inverse of the variance. But this is not the
case for non-canonical weights. Since we constructed the irls functions in
their unsimplified form, we merely need to provide new functions, as follows.
Everything else about the algorithm remains the same.

128 Methods of Statistical Model Estimation

4.7.2 Other Link Functions

We shall amend the irls function to allow fitting a probit model. Only the
link, inverse link, and weight must be changed. Table 4.11 presents the other
link functions, and the code for them follows immediately after.

TABLE 4.11

Probit/cloglog link functions, inverse links, and derivatives of links.

probit cloglog

Link function Φ−1(µ) log(− log(1− µ))
Inverse link Φ(η) 1− exp(− exp(−η))
Derivative of link 1/(dnorm(qnorm(µ)) 1/((µ− 1)× log(1− µ))

> linkFn.probit <- function(mu, m, a) qnorm(mu / m)

> lPrime.probit <- function(mu, m, a)

+ 1 / (m * dnorm(qnorm(mu/m)))

> unlink.probit <- function(y, eta, m, a) m * pnorm(eta)

> i.probit <- irls(died ~ hmo + white,

+ family = "binomial", link = "probit",

+ data = medpar)

> summary(i.probit)

Call:

irls(formula = died ~ hmo + white, data = medpar,

family = "binomial", link = "probit")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.9268 -0.9268 -0.9223 -0.1002 1.4510 1.5930

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) -0.5719 0.1184 -4.83 1.37e-06 -0.8040 -0.340

hmo -0.0073 0.0913 -0.08 0.936 -0.1862 0.172

white 0.1842 0.1233 1.49 0.135 -0.0575 0.426

Null deviance: NA on 1494 d.f.

Residual deviance: 1920.602 on 1492 d.f.

AIC: 1926.602

Number of optimizer iterations: 3

Generalized Linear Models 129

The reader can verify that these results closely approximate the values pro-
duced by glm, as presented below.

> coef(summary(i.glm <- glm(died ~ hmo + white,

+ family = binomial(probit),

+ data = medpar)))

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.571875132 0.11841182 -4.82954440 1.368458e-06

hmo -0.007304429 0.09127856 -0.08002349 9.362186e-01

white 0.184209525 0.12330153 1.49397600 1.351819e-01

The same amendment to the grouped logistic function can be made so that
one may estimate grouped probit and cloglog models.

4.8 GLM Negative Binomial Model

The negative binomial is a GLM only if the value of heterogeneity parameter,
α, is fixed. In our model, it must be entered into the IRLS estimating algorithm
as a constant. It is the only member that is fitted by standard GLM software
that has a heterogeneity parameter. It is therefore instructive to see how it
can be fitted using the GLM algorithm.

The traditional negative binomial — the model used to accommodate over-
dispersed Poisson models — is in fact a non-canonical parameterization of
the negative binomial distribution. In order to deal appropriately with over-
dispersed Poisson count data, the link used for the negative binomial needs
to be the same as that of the Poisson model, namely, the log link. A bound-
ary likelihood ratio test (Hilbe, 2011) may be used to evaluate if α, or 1/θ,
significantly differs from 0.

The canonical negative binomial link is called the negative binomial link:
− log(1/(αµ) + 1); it can effectively be used to model count data, but not
specifically for modelling over-dispersed Poisson counts. Referred to as NB-C,
the canonical negative binomial is a member of the GLM family, and can be
estimated by several of the foremost GLM applications. It is not, however, part
of R’s glm function, or of the glm.nb function from MASS. glm.nb provides
for a maximum likelihood estimation of θ, the inverse of the heterogeneity
parameter α. The COUNT package, available on CRAN, has maximum likeli-
hood functions for estimating NB-C (ml.nbc.r), as well as NB-2 (ml.nb2.r)
and NB-1 (ml.nb1.r), with the respective heterogeneity parameters provided
to have a direct relationship to the excess correlation in the data.

R’s glm and glm.nb functions parameterize the negative binomial het-
erogeneity parameter, θ, as inversely related to µ, unlike other commercial
software applications. glm negative binomial coefficients and standard errors

130 Methods of Statistical Model Estimation

may differ a little from other applications, and from how we construct the
function, but it is glm’s heterogeneity parameter that may cause confusion.
For our irls function, if α is close to 0, the model is Poisson. For numerical
reasons it cannot exactly equal 0. Increasing values of α indicate increasing
correlation, or over-dispersion, in the data. To the contrary, glm’s and glm.nb’s
θ indicates a model as Poisson if it approaches infinity. Small values of θ indi-
cate large amounts of over-dispersion in the data. Considerable care must be
taken when comparing the results of negative binomial estimation using glm

and glm.nb with that based on other software.
Note also that the glm function negative binomial heterogeneity parameter,

α, is not estimated; it is entered into the IRLS estimating algorithm as a
constant. How does one select the appropriate value for α? The answer for
these tools is that the researcher must determine by trial-and-error which
value of α results in a model having the Pearson dispersion as close to 1.0 as
possible. We recommend using the ml.nb2 function, located in the COUNT

package, to determine the maximum likelihood estimate for α, and then use
that value for irls. One may also use the glm.nb function in the MASS

package, which estimates θ using a full maximum likelihood procedure. Recall
that GLMs are one-parameter models; the method does not itself estimate α
as a second parameter.

For a comprehensive presentation of the varieties of negative binomial
models, and of count models in general; see Hilbe (2011). Table 4.15 provides
a stand-alone GLM negative binomial, with a direct relationship of µ and α.
Note that the standard errors are produced on the basis of the expected infor-
mation matrix, which differ slightly from standard errors produced using the
observed information matrix. This difference holds only for non-canonically
linked models, and is minimal unless there are only a relatively few obser-
vations in the model. For this model the parameter estimate standard errors
differ beginning with the one-hundred thousandths place.

Now we need three functions that will enable the use of a new link function,
that is the link, the inverse link, and the first derivative of the link; and two
for the new family, the variance and the joint log-likelihood, again best defined
using R’s internal functions.

> linkFn.log <- function(mu, m, a) log(mu)

> lPrime.log <- function(mu, m, a) 1/mu

> unlink.log <- function(y, eta, m, a) exp(eta)

> variance.negBinomial <- function(mu, m, a) mu + a*mu^2

> jllm.negBinomial <- function(y, mu, m, a) {

+ dnbinom(y, mu = mu, size = 1 / a, log = TRUE)

+ }

We will cover explicit estimation of the scale parameter in the next chapter.
In the meantime, the maximum likelihood estimate of alpha can be determined
using the glm.nb function, which produces full maximum likelihood estimates
of the parameter estimates, including alpha.

Generalized Linear Models 131

> library(MASS)

> ml.nb <- glm.nb(los ~ hmo + white,

+ data = medpar)

> summary(ml.nb)

Call:

glm.nb(formula = los ~ hmo + white, data = medpar,

init.theta = 2.063546582, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0870 -0.8490 -0.2657 0.3774 5.5163

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.48102 0.06715 36.947 < 2e-16 ***

hmo -0.14051 0.05463 -2.572 0.01011 *

white -0.18971 0.07020 -2.702 0.00689 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial(2.0635) family

taken to be 1)

Null deviance: 1585.7 on 1494 degrees of freedom

Residual deviance: 1570.7 on 1492 degrees of freedom

AIC: 9706.1

Number of Fisher Scoring iterations: 1

Theta: 2.0635

Std. Err.: 0.0893

2 x log-likelihood: -9698.0790

The standard errors from glm.nb are unscaled. alpha is the inverse of theta,
which is displayed and saved in the glm.nb function output.

> 1 / ml.nb$theta

[1] 0.4846026

We may now use the value of alpha in our irls function.

> irls.nb <- irls(los ~ hmo + white, a = 0.4846026,

132 Methods of Statistical Model Estimation

+ family = "negBinomial", link = "log",

+ data = medpar)

> nb.summ <- summary(irls.nb)

Call:

irls(formula = los ~ hmo + white, data = medpar,

family = "negBinomial", link = "log", a = 0.4846026)

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0870 -0.8490 -0.2657 -0.2385 0.3774 5.5160

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.481 0.0672 36.95 8.23e-299 2.349 2.6126

hmo -0.141 0.0546 -2.57 0.0101 -0.248 -0.0334

white -0.190 0.0702 -2.70 0.00689 -0.327 -0.0521

Null deviance: NA on 1494 d.f.

Residual deviance: 1570.678 on 1492 d.f.

AIC: 9704.079

Number of optimizer iterations: 4

These estimates match those produced by R’s glm.nb. In order to obtain
similar results using glm function, the user must invert the value of the het-
erogeneity parameter alpha that we assigned to the model irls function, or
we may obtain it directly from the glm.nb function results above.

> ml.nb$theta

[1] 2.063547

The function command and resultant parameter estimates are given as:

> glm.nb <- glm(los ~ hmo + white,

+ data = medpar,

+ family = negative.binomial(2.063547))

> summary(glm.nb)

Call:

glm(formula = los ~ hmo + white,

family = negative.binomial(2.063547), data = medpar)

Deviance Residuals:

Min 1Q Median 3Q Max

Generalized Linear Models 133

-2.0870 -0.8490 -0.2657 0.3774 5.5163

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.48102 0.07738 32.064 <2e-16 ***

hmo -0.14051 0.06295 -2.232 0.0257 *

white -0.18971 0.08089 -2.345 0.0191 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for Negative Binomial(2.0635) family

taken to be 1.327754)

Null deviance: 1585.7 on 1494 degrees of freedom

Residual deviance: 1570.7 on 1492 degrees of freedom

AIC: 9704.1

Number of Fisher Scoring iterations: 4

It is important to note that for this model, R has estimated the dispersion
and scaled the standard error estimates accordingly. Note that

> sqrt(summary(glm.nb)$dispersion)

[1] 1.152282

is the (multiplicative) difference between the standard errors of irls.nb and
glm.nb. Here, we scale the values from irls.nb using the dispersion estimate
supplied by the latter.

> nb.summ$coefficients[,"SE"] * sqrt(irls.nb$p.dispersion)

[1] 0.07737680 0.06294517 0.08089112

The match with the standard errors reported in the output directly above
seems good.

4.9 Offsets

Note that we added an offset to allow fitting rate-parameterized models. A
rate parameterization allows for the counts to be apportioned across time
intervals or periods as well as for different areas. Most Poisson and negative
binomial count models used in research employ offsets to adjust for counts

134 Methods of Statistical Model Estimation

being taken over different periods or areas. The basic model assumes that
counts are recorded over areas or time periods of unity.

An offset is added to the linear predictor, and is itself not parameterized.
That is, no coefficient is estimated; it is assumed that the offset has a slope
of 1. In the GLM algorithm, care must be taken not to include the offset
into the weighted regression, so at each iteration it is subtracted from the
working response. The working response, traditionally given the symbol z,
is the response term entered into the weighted lm function, which provides
GLM estimates and whose variance-covariance matrix is used for determining
the coefficient standard errors. The offset is then added to the linear predic-
tor, which immediately follows the regression. This relationship is clear from
viewing the irls code in Section 4.7.

We shall use first use the heart data shown below to model the rate pa-
rameterized negative binomial. The data consists of senior Canadian patients
who have either a Coronary Artery Bypass Graft surgery (CABG) or Percu-
taneous Transluminal Coronary Angioplasty (PTCA) heart procedure. The
response is death within 48 hours of hospital admission. Predictors are:

anterior, 1: anterior site damage heart attack; 0: other site damage;
hcabg, 1: previous CABG procedure; 0= previous PTCA procedure;
killip, 1: normal heart; 2: angina; 3: minor heart blockage; 4: heart attack
or myocardial infarction;
cases, the number of patients with the same covariate pattern. The offset
will be log(cases).

> library(msme)

> data(heart)

We examine the data to start with.

> heart

death cases anterior hcabg killip

1 48 1864 0 0 1

2 15 412 0 0 2

3 10 83 0 0 3

4 5 19 0 0 4

5 7 70 0 1 1

6 4 18 0 1 2

7 2 3 0 1 3

8 7 10 0 1 4

9 50 1374 1 0 1

10 39 443 1 0 2

11 9 139 1 0 3

12 10 28 1 0 4

13 5 27 1 1 1

14 3 16 1 1 2

15 2 6 1 1 3

Generalized Linear Models 135

The offset must be entered in log form to accord with the log link being
used for the negative binomial family. We provide alpha with a value of 0.0001
since the true value is close to 0; that is, it is a Poisson model. However, we
shall model it as a negative binomial.

> heart.nb <- irls(death ~ anterior + hcabg + factor(killip),

+ a = 0.0001,

+ offset = log(heart$cases),

+ family = "negBinomial", link = "log",

+ data = heart)

> summary(heart.nb)

Call:

irls(formula = death ~ anterior + hcabg + factor(killip),

data = heart, family = "negBinomial", link = "log",

offset = log(heart$cases), a = 1e-04)

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.46500 -0.37420 0.08714 0.06542 0.45710 1.59100

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) -3.663 0.122 -29.97 2.2e-197 -3.902 -3.423

anterior 0.380 0.140 2.71 0.00672 0.105 0.655

hcabg 1.327 0.205 6.46 1.02e-10 0.925 1.729

factor(killip)2 0.670 0.161 4.17 3.07e-05 0.355 0.985

factor(killip)3 0.997 0.232 4.30 1.67e-05 0.543 1.451

factor(killip)4 2.172 0.241 9.01 1.99e-19 1.700 2.645

Null deviance: NA on 14 d.f.

Residual deviance: 10.41831 on 9 d.f.

AIC: 82.39765

Number of optimizer iterations: 6

We can check our use of the offset against a comparable model fit from R, as
follows.

> h.glm <- glm(death ~ anterior + hcabg + factor(killip),

+ family = negative.binomial(10000),

+ offset = log(cases),

+ data = heart)

> coef(summary(h.glm))

Estimate Std. Error t value Pr(>|t|)

136 Methods of Statistical Model Estimation

(Intercept) -3.6626879 0.1359945 -26.932624 6.493108e-10

anterior 0.3802929 0.1561427 2.435547 3.763856e-02

hcabg 1.3269729 0.2284759 5.807934 2.569091e-04

factor(killip)2 0.6700463 0.1789052 3.745259 4.588111e-03

factor(killip)3 0.9971516 0.2577766 3.868279 3.798737e-03

factor(killip)4 2.1723303 0.2682073 8.099446 2.005173e-05

As before, R has scaled the standard error estimates using its estimate of the
dispersion, so we should compare after scaling the standard error estimates
from heart.nb using

> sqrt(heart.nb$p.dispersion)

[1] 1.112884

for example, as follows.

> with(heart.nb, se.beta.hat * sqrt(p.dispersion))

X(Intercept) Xanterior Xhcabg

0.1359932 0.1561414 0.2284741

Xfactor(killip)2 Xfactor(killip)3 Xfactor(killip)4

0.1789034 0.2577774 0.2682046

The comparison with the output directly above seems reasonable.

4.10 Dispersion, Over- and Under-

A point should be made about grouped binomial, Poisson, and negative bino-
mial models. When used with real data situations, these models are oftentimes
over-dispersed. Essentially this means that there is more variation in the data
than allowed by the distributional assumptions of the model. In particular,
the Poisson model is most usually over-dispersed, which is indicated when
the conditional variance exceeds the conditional mean. Theoretically the two
statistics should be identical.

For binomial models, over-dispersion is indicated when the dispersion
statistics based on deviance or Pearson’s Chi2 are greater than unity. For
count models, over-dispersion is indicated only when the Pearson-based dis-
persion is greater than unity. The Pearson dispersion statistic can be obtained
following estimation using the irls function by:

> irls.nb$p.dispersion

[1] 1.327739

Generalized Linear Models 137

This reported model is substantially over-dispersed.
Typically statisticians will scale the standard errors using the Pearson

Chi2 dispersion statistic. R provides scaled standard errors in a few differ-
ent ways. First, scaled standard errors can be obtained for the binomial and
Poisson families by using the quasi- equivalent family. The quasibinomial

algorithm sets the standard errors to the values that would be the estimates
if the model had a Pearson dispersion of 1, i.e., if there were no excessive
correlation in the data. The quasipoisson family plays a similar role for the
Poisson family. glm.nb ignores negative binomial over-dispersion altogether,
whereas glm with the negative binomial family will estimate the dispersion
and scale the standard errors. Alternatively, researchers also employ a robust
or sandwich variance estimator to the standard errors, or bootstrap them.

The Pearson and deviance dispersion statistics are obtained by dividing the
Pearson Chi2 statistic or residual deviance, respectively, by the model residual
degrees of freedom. Both the residual deviance and residual degrees of freedom
are displayed in glm summary function output. The Pearson Chi2 statistic
must be calculated separately using the code shown later in this section. It is
important to keep in mind that over-dispersion in grouped binomial models
can be diagnosed using either dispersion statistic, but the deviance dispersion
is biased with respect to count models, and should not be used to evaluate
possible model over-dispersion (Hilbe, 2011). We discuss this fact in more
detail later in the book. That portion of glm output that can be used for
assessing the fit of glm.glog to the doll data appears as

> anova(glm.glog)

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(deaths, pyears - deaths)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 9 939.71

smokes 1 29.20 8 910.51

ordered(age) 4 898.41 4 12.10

We can compute the deviance dispersion via

> 12.10 / 4

[1] 3.025

The Pearson dispersion can be computed from the corresponding Chi2 statis-
tic, as follows.

138 Methods of Statistical Model Estimation

> sum(residuals(glm.glog, type="pearson")^2) /

+ glm.glog$df.residual

[1] 2.78052

Note that the deviance and Pearson Chi2 dispersion statistics are quite
different. When this occurs with grouped binomial models it indicates that
the model may not fit well. In this case, over-dispersion is indicated using
either dispersion statistic.

Simulation studies have demonstrated that the Pearson dispersion is the
appropriate statistic to use for assessing possibly count model extra-dispersion
(Cameron and Trivedi, 1998; Hilbe, 2009, 2011). A true Poisson model is
equi-dispersed, with a Pearson dispersion value of approximately 1. Disper-
sion values over 1 indicate over-dispersion; values under 1 indicate under-
dispersion. The negative binomial is typically used to model over-dispersed
Poisson data. Under-dispersed Poisson data may be handled by scaling, by
use of a hurdle model, by generalized Poisson or by using a generalized nega-
tive binomial model. The Pearson dispersion statistic is not displayed in the
summary function output following the glm function Poisson model, but it is
for the quasipoisson model, which is a Poisson model with standard errors
multiplied (scaled) by the Pearson dispersion statistic. To check for Poisson
over-dispersion, we advise checking summary function results following the
use of the quasipoisson model. Negative binomial over-dispersion may be
assessed by calculating the Pearson dispersion statistic for negative binomial
models, which differs from the Poisson model by replacing the Poisson with
the negative binomial variance function. Recall that the negative binomial
variance is defined as µ + αµ2, where α is the negative binomial scale param-
eter when the distribution is parameterized to have a direct relationship with
both the fitted value and the amount of correlation or dispersion in the data.
A negative binomial model with α = 0 is Poisson. Greater values of α indicate
greater amounts of over-dispersion in the data.

Readers may use a simple function called P__disp to calculate the Pearson
Chi2 and Pearson dispersion statistics following the use of glm or glm.nb

functions. It is in both the COUNT and msme packages on CRAN.

> P__disp <- function(x) {

+ pr <- sum(residuals(x, type="pearson")^2)

+ dispersion <- pr / x$df.residual

+ return(c(pearson.chi2 = pr, dispersion = dispersion))

+ }

The function can be used directly following estimation of a glm or glm.nb

model by typing the name of the model as the sole argument of the function;
for example,

> P__disp(glm.glog)

Generalized Linear Models 139

pearson.chi2 dispersion

11.12208 2.78052

4.11 Goodness-of-Fit and Residual Analysis

4.11.1 Goodness-of-Fit

We have touched on assessing the goodness-of-fit in the last section when
discussing dispersion. Checking the binomial, Poisson, or negative binomial
dispersion statistic, δ, is a first step in assessing whether the model in fact is
over-dispersed. There is no clear-cut criterion, however, that specifies a model
to be over-dispersed if δ has a given value. The importance of δ differs for a
model with few observations compared with a model having a large number
of observations, and/or between models having a sizable difference in the
number of predictors. For example, a Poisson model having more than 50,000
observations and ten predictors is likely over-dispersed with a δ of 1.1, whereas
δ = 1.1 for a model having 30 observations and 2 predictors is not. A boundary
likelihood ratio test (see Hilbe, 2011, §7.4.1) can be used to determine if the
value of α is significantly greater than 0, i.e., that it is negative binomial rather
than Poisson. The p-value of the test is normally based on a Chi2 distribution.
However, for this test specifically, the p-value is one-half the probability that a
Chi2 value, with one degree of freedom, is greater than the obtained likelihood
ratio (LR) statistic. The LR statistic with respect to the boundary likelihood
ratio test for Poisson and negative binomial models is given as

LR = −2(LP − LNB) (4.10)

The likelihood ratio test is also commonly used to compare nested models
whose parameters are estimated using maximum likelihood. The test assumes
the independence of observations. It is therefore not appropriate for panel
models or any model exhibiting a clustering effect. In any case, the boundary
likelihood ratio test evaluates if there is a significant amount of Poisson over-
dispersion.

As an example, we now use irls to estimate Poisson (modelP) and NB2
(modelNB) models for the same data. First we need to extend the irls function
to allow for the Poisson model. We write the following two functions.

> jllm.poisson <- function(y, mu, m, a) {

+ dpois(x = y, lambda = mu, log = TRUE)

+ }

> variance.poisson <- function(mu, m, a) mu

We can now easily fit the Poisson model to the heart data.

140 Methods of Statistical Model Estimation

> heart.p <- irls(death ~ anterior + hcabg + factor(killip),

+ offset = log(heart$cases),

+ family = "poisson", link = "log",

+ data = heart)

The boundary likelihood ratio statistic and p-value may be calculated as:

> LR <- -2*(heart.p$loglik - heart.nb$loglik)

> pchisq(LR, 1, lower.tail = FALSE)/2

[1] 0.5

Over-dispersion tends to result in predictor p-values based on z or Wald
statistics appearing as significant when in fact they are not. In the presence
of over-dispersion, estimates of standard errors are deflated, resulting in in-
flated z statistics, which produce lower p-values. p-values lower than 0.05 are
traditionally considered to be significant. Therefore, care must be taken to
accommodate any over-dispersion in the data.

Under-dispersion may also occur in binomial and count models. Scaling
may adjust for under-dispersion as well. Binary response models cannot them-
selves be extra-dispersed; i.e., either under- or over-dispersed. However, a bi-
nary model may be implicitly over-dispersed if, when converted to a binomial
format, it exhibits over-dispersion (see, Hilbe, 2009).

Care must be taken to determine if evident over-dispersion, e.g., as judged
by the value of δ, is in fact only apparent and not real over-dispersion. If
δ > 1 for a given model, then it may be that adding a specific predictor or
predictors to the model results in a re-modelling of the data to have δ ∼ 1.
In this case the over-dispersion was not real, but only apparent. Likewise,
if deleting extreme outliers in the data, or creating one or more interaction
terms, or amending the scale of one or more of the predictors, or changing the
link function for the model results in δ being close to 1, the original model was
only apparently over-dispersed. It is vital to test for apparent over-dispersion
prior to declaring a model over-dispersed and taking corrective action.

Traditionally the deviance statistic was regarded as a comparative indi-
cator of better fit. Of two nested models, the one with the lowest deviance
statistic was regarded as the better fitted model. The AIC (Akaike Informa-
tion Criterion) and BIC (Bayesian Information Criterion) statistics are now
the most favored comparative fit statistics. AIC and BIC statistics can be
used to compare the fit to data across non-nested as well as nested models.

Models having a lower AIC or BIC statistic are preferred to those having
higher values. A table evaluating the degree of difference in AIC statistics and
the corresponding degree of confidence one has in selecting that model over
another is given by Hilbe (2011). The form of AIC used most frequently in R
software is

AIC = −2(L− k) (4.11)

Generalized Linear Models 141

with L indicating the value of the model log-likelihood and k specifying the
number of predictors in the model, including the intercept.

It should be noted that a variety of alternative AIC-type statistics have
been devised, all employing adjustment by both the number of predictors and
of observations in the model.

The most commonly used form of BIC statistic appears to be Schwarz
Criterion or the Schwarz BIC, which is the original formulation of the statistic
(Schwarz, 1978). It appears as

BIC = −2L + k × log(n) (4.12)

4.11.2 Residual Analysis

The foremost value in the analysis of residuals rests in the ability of the
viewer to see patterns, emphases, outliers, and so forth that may not easily be
discerned from statistics alone. We may know the mean and variance of a given
distribution of counts, but not realize from those figures any abnormalities that
may be present in the data. The counts may be clustered in one or more areas
of the distribution – a fact that we could not know, or at least easily know,
other than by viewing it.

Statisticians have developed a number of residuals, nearly all of which are
extensions of the basic raw or response residual, which is defined as a value
of the response or dependent variable less the expected or predicted mean, µ.
This relationship, for a single observation, has been given various expressions;
e.g., y − E(y), y − ŷ, or y − µ̂. We have employed the latter form, and will
continue it here.

Residual analysis is used by analysts to (1) detect outliers, or groups of
outliers, in the data, and to (2) check the distributional assumptions of the
model. If the shape of the residuals varies considerably from what would be
expected given a well-fitted model, we can in general conclude that the model
poorly fits the data. In this case, we may need to amend the link function, the
variance, or perhaps even the basic type of model itself.

Within the context of GLM modelling, there are five levels or types of
residual, each type being in general a more detailed adjustment to the ba-
sic response residual. A second level of residuals is called modified residuals.
These include Pearson and deviance residuals, which are modified to provide
a reasonable estimate of the conditional variance of the response variable, y.

The Pearson residual is defined as

RP =
y − µ̂√

V (µ̂)
(4.13)

which is nothing more than the raw residual standardized by a gross estimate
of the standard deviation of y. Note that the sum of squared Pearson residuals
is the model Pearson Chi2 statistic. Therefore, the Pearson residual can be

142 Methods of Statistical Model Estimation

thought of as a per-observation contribution to the Pearson Chi2 statistic.
Unfortunately the residual can be markedly skewed in non-linear models.

The deviance residual is

RD = sgn (y − µ̂)
√

deviance (4.14)

Like the Pearson residual, the model deviance statistic is defined as the sum
of squared deviance residuals. Deviance residuals measure each observation’s
contribution to the model deviance. Note should be given that we constructed
the deviance statistic in the irls function by summing the squared deviance
statistics. By so doing the algorithm creates both the deviance and deviance
residuals in a single line. We did the same for the Pearson Chi2 statistic.

Standardizing the Pearson or deviance residuals normalizes them to a stan-
dard deviation of 1.0, and creates a third level of residual. The deviance resid-
ual appears to normalize the residual better than the Pearson residual, and
statisticians have as a consequence developed a number of tests based on it.
It is now the preferred statistic for residual analysis.

Standardization is achieved by dividing the residual by
√

1− h, where h is
the hat matrix diagonal statistic. The standardized deviance appears as

RSD =
RD√
(1− h)

(4.15)

h is a measure of the influence of an observation to the model, and is often
also referred to as the leverage.

h = V (µ̂)× S2
p (4.16)

Sp is the standard error of the prediction, or var(µ̂). Rs glm and irls

functions both abstract the hat statistic from the model matrix, X, with irls

abstracting it as a QR decomposition of X. var(µ̂) may be obtained this way
by abstracting X(X’WX)−1 X’ from h. Conversely, h may be created by adding
the two W1/2matrices to the extremes of var(µ̂).

Standardized Pearson and deviance residuals are sometimes scaled to fur-
ther assist in better effecting normality by including a dispersion statistic
within the denominator radical of the standardized residual. This residual
statistic is called a studentized residual, and is one of several complex residu-
als constructed using additional statistics. The studentized deviance residual
appears as:

RStud =
RD√

φ (1− h)
(4.17)

Generalized Linear Models 143

4.12 Weights

For full maximum likelihood and IRLS functions, e.g., glm, the user may
employ frequency or prior weights into the model by use of the weights ar-
gument. Frequency weights are used when there are multiple instances of the
same pattern of predictor values. Grouped logistic regression may also be es-
timated using a frequency weight approach. Prior weights may be used with
any of the glm and standard MLE models, although they are rarely used with
Poisson and negative binomial models.

Sampling weights are employed using the same format as for prior weights.
However, sampling weights are expressed as fractions or decimals. The soft-
ware recognizes the non-integer nature of the values given in using the weights
argument, and calculates sampling weights in place of frequency or prior
weights. A sampling weight is normally used in survey studies to adjust for
sampling from unequal sub-populations. The weight is lower for smaller sub-
populations, and higher for larger ones. The weight itself is calculated as the
inverse of the probability of being in the selected sample. It therefore will be
a decimal, unless the probability is zero or one, which is unlikely. Caveats
have been raised about the use of sampling weights except for prediction, see
Gelman and Hill (2007) and Aitkin et al. (2010) for a discussion.

4.13 Conclusion

GLM models rest at the foundation of a variety of more enhanced modelling
techniques, including random, fixed, and mixed effects models, hierarchical
models, generalized estimating equations (GEE), Bayesian modelling, gener-
alized additive models, and so forth. GEE employs the GLM algorithm for
estimating parameters, but adjusts the standard errors of the model at each
iteration using a correlation matrix supplied by either the software or the user.
GEE models are also estimated using IRLS methodology. Random effects and
most other panel models need to use more complex estimation methods for
their solutions, which we discuss further in Chapter 6.

GLM and GEE models provide for a wide range of modelling capabilities.
GLMs can be used to estimate most single parameter models. The modular
approach we discussed in this chapter is an efficient way to handle algorithms
with multiple groups of related functions. However, it should be kept in mind
that the irls function we developed has limitations, particularly when the
data is ill-formed or considerably unbalanced. R is sometimes fickle in how
it handles these types of data situations. Our purpose in designing irls is
not to supplant R’s glm function, but rather to show the logic of constructing
IRLS-based functions.

144 Methods of Statistical Model Estimation

4.14 Exercises

1. The model that we fitted to the doll data had substantial over-
dispersion. What might cause that? What potential remedies are
there? Try them.

2. Use the heart data to show that the results from irls agree with
the earlier irls_logit (see Section 4.6).

3. Write a stand-alone irls-type Poisson model with canonical log
link. Offer the capability of having offsets in your model. Verify
your results, both with and without offsets, using both R’s glm

function and the irls function from the text.

4. Extend the irls function to encompass the Poisson family. Verify
your results, both with and without offset, using R’s glm function.

5. Display the generic equation for the exponential family of distribu-
tions, giving θ as the location parameter, φ as the scale, and c()
as the normalization function. Indicate how each term in the PDF
relates to the IRLS algorithm that is used to estimate models that
are members of the family of generalized linear models.

6. Extra-dispersion:

(a) How can extra-dispersion be identified in a grouped binomial
model, as well as in Poisson and negative binomial models?

(b) What is the difference between the negative binomial theta pa-
rameter used with R’s glm and glm.nb functions and the neg-
ative binomial alpha parameter used for the negative binomial
functions in this text? What are the advantages in using the
alpha parameterization?

(c) Can negative binomial models adjust for Poisson under-
dispersion? Why or why not? Can they be adjusted for negative
binomial under-dispersion? Why or why not?

7. APR’s habitual approach to modelling the ufc dataset has been to
assume that the tree heights are missing completely at random. Fit
a model to assess the evidence against this assumption.

5

Maximum Likelihood Estimation

5.1 Introduction

In Chapter 3 we presented an overview of how to construct a maximum like-
lihood function for linear regression. A fairly complete model was presented,
with code to demonstrate how to maximize the log-likelihood, determine resid-
uals, display a summary function, and allow for post-estimation statistics. The
IRLS algorithm, which provides maximum likelihood estimates for a limited
set of models, was discussed in Chapter 4. We constructed several different
types of functions for estimating standard GLM models, and then developed
a modular umbrella irls function for estimation of binomial, Poisson, nega-
tive binomial, gamma, and inverse Gaussian models. All models discussed in
Chapter 4 have only a single parameter to be estimated.

We now shall expand our previous discussion of maximum likelihood esti-
mation (MLE) to demonstrate how the criterion may be used to estimate a
much larger range of both GLM and non-GLM models. Examples of non-GLM
models that use MLE for the solution of parameter estimates and associated
standard errors include non-linear models, two-parameter models, categorical
response models, models with a mixture of distributions, GLM-based models
with an likelihood function amended to handle distributional violations, e.g.,
zero-inflated Poisson, models in which the data are correlated, and survival
models. The two foremost keys determining if a model can be straightfor-
wardly estimated using MLE are (1) the independence of model observations,
and (2) if there is a closed-form solution to the estimating equation of the
model. The first of these two criteria is often violated, as we shall discuss in
Chapter 6.

MLE, as the name indicates, maximizes the log-likelihood, equivalently it
involves determining the values of the parameters for which the derivative of
the model likelihood (equivalently, the model log-likelihood) is zero.

∂L

∂β

∣∣∣∣
β=β̂

= 0 (5.1)

Estimates of the model parameters are the solutions of this estimating
equation. The second derivative of the log-likelihood with respect to β is the
Hessian matrix from which model standard errors are calculated.

145

146 Methods of Statistical Model Estimation

5.2 MLE for GLM

We now develop the code that can be used to fit generalized linear models
using maximum likelihood. The order of development of the functions is rea-
sonably arbitrary. We start with logistic regression, and the code starts with
the sample. Our goal here is to develop an algorithm that is more general than
the IRLS algorithm developed in the previous chapter. We start, however, with
a simple example.

5.2.1 The Log-Likelihood

Our goal is to find the values of parameters that maximize the joint log-
likelihood of the sample of data. There are many different equally good ways
that the code to perform this task could be written. Our goal is clarity of
exposition, and then flexibility, rather than code efficiency or stability, and we
code accordingly. This means that we write more functions than seem to be
needed for the problem at hand. However, this detail will reap benefits later
on. As in previous chapters, we will use S3 classes.

The joint log-likelihoods of a set of observations y conditional on its fitted
values ŷ for logistic regression can be written as

> jll.bernoulli <- function(y, y.hat, ...) {

+ dbinom(x = y, size = 1, prob = y.hat, log = TRUE)

+ }

we know that this probably will not be the only log-likelihood that we define,
so we will also define a generic function called jll.

> jll <- function(y, y.hat, ...) UseMethod("jll")

Now, as in previous chapters, when R evaluates this function it will start
by identifying the class of the first argument. R will then use the method that
corresponds to the first match that it can find in the vector of class names.
We will need to ensure that it finds "bernoulli".

Our jll function will report a vector of logged probabilities. In order to
use this quite general function we will need another function that sums the
result, given the following inputs: the predictor variables coded as a model
matrix X, the response variable as a vector y, and some candidate parameter
estimates b.hat.

> Sjll <- function(b.hat, X, y, offset = 0, ...) {

+ y.hat <- predict(y, b.hat, X, offset)

+ sum(jll(y, y.hat, ...))

+ }

Maximum Likelihood Estimation 147

N.B.: The astute reader will wonder why we have separated the functions for
the calculation of the joint log-likelihood and its summation. We elected to
separate these functions because doing so allows us to re-use the jll function
when the time comes to compute the deviance residuals.

The Sjll function still needs to compute the fitted values as a function of
the observations and the predictor variables.

> predict.expFamily <- function(object, b.hat, X, offset = 0) {

+ lin.pred <- as.matrix(X) %*% b.hat + offset

+ y.hat <- unlink(object, lin.pred)

+ return(y.hat)

+ }

Note that we carry the y argument in order to tell R which unlink method
to use. An alternative would be to copy the class information to one of the
other arguments. We can use the same idea for the unlink function as was
defined in Chapter 4 for the irls function. We do not need to code the link
function or its derivative. We name the new unlink function logit1 in order
to distinguish it from the logit function written earlier; this version can only
be used for Bernoulli regression.

> unlink <- function(y, eta, ...) UseMethod("unlink")

> unlink.logit1 <- function(y, eta, ...) 1 / (1 + exp(-eta))

Now we have all the paraphernalia in place that we will use to compute
the log-likelihood of the parameter estimates conditional on the model and
the data. It is useful to test the functions with simple cases. For example, we
can use the following invented data and parameter estimates.

> y <- c(1,0,0,1,1,1,0,1)

> X <- as.matrix(cbind(1, 1:8))

> beta.hat <- c(0,1)

In order to take full advantage of the S3 classes that we constructed earlier in
the chapter, we need to specify the family, the link function, and be sure that
the correct predict function is used. We pass all this information by means of
the class of the response variable.

> class(y) <- c("bernoulli","logit1","expFamily")

We can now evaluate the summed joint log-likelihood at the parameter
estimates.

> Sjll(beta.hat, X, y)

[1] -12.51736

148 Methods of Statistical Model Estimation

The output provides us with two bits of good news: first, our functions
seem to work sensibly, and second, the log-likelihood can be evaluated at the
parameter estimates that we chose. This means that we can use them as a start
point for our future optimization efforts. Our next challenge is to maximize
that function, or more precisely, to find the values of the parameter estimates
for which the output of the function is maximized.

5.2.2 Parameter Estimation

We next write a wrapper that will find the values of parameters that maxi-
mize a function, conditional on predictor variables. We will use the following
function to maximize the joint log-likelihood. It is very similar to the approach
that we took in Chapter 3. We are writing a separate function rather than
just performing the optimization within the main function because as we shall
soon see, we will want to perform the optimization twice; once for the specified
model and once for the null model.

> maximize <- function(start, f, X, y, offset = 0, ...) {

+ optim(par = start,

+ fn = f,

+ X = X,

+ y = y,

+ offset = offset,

+ method = "BFGS",

+ control = list(

+ fnscale = -1,

+ reltol = 1e-16,

+ maxit = 10000),

+ hessian = TRUE,

+ ...

+)

+ }

We now have functions that can be used to obtain logistic regression MLEs
from data. We might as well use the previous guess as a start point; we now
know that the likelihood can be evaluated here. We obtain the parameter
estimates as

> test <- maximize(beta.hat, Sjll, X, y)

> test$par

[1] -0.1721367 0.1552640

We can compare these estimates with output from R’s glm function, but we
will defer that comparison until a little later in the chapter. For the moment
it is comforting that we obtain parameter estimates at all. Of course, we could

Maximum Likelihood Estimation 149

use irls for this particular problem, but we are building a model-fitting tool
that will fit more general models than IRLS can easily handle1.

Our next challenge is to obtain other quantities from the fitted model that
can be used to assess the model, both in terms of how well our assumptions
are met and in comparison with other models. We start by examining the
residuals.

5.2.3 Residuals

Numerous different types of residuals have been defined for use in GLMs, for
example, Hardin and Hilbe (2007) list nine different kinds, many of which
could also be modified, standardized, studentized, or adjusted. Our goal is
not to be encyclopedic, so we will focus on just the deviance residuals.

The deviance residual for an observation evaluated at the fitted value of µ̂
is defined generally as the contribution to the deviance of the observation.

d̂i =
√

2l(y, y)− 2l(µ̂, y) (5.2)

The deviance residual then takes on the sign of the difference between y and
µ̂, so that it is negative if the fitted value is larger than the observed.

For example, in the binomial case, the formula for the i-th deviance residual
given observation yi, predicted value µ̂i, and count mi, can be derived as:

d̂i =

√
2yi ln

(
yi

µ̂i

)
+ 2 (mi − yi) ln

(
mi − yi

mi − µ̂i

)
(5.3)

noting that

yi × ln(yi)
∣∣
yi=0

= 0 (5.4)

It is common for books about GLM to provide these derived equations
for each member of the exponential family. The use of these equations allows
efficient computation of the residuals, but at the same time it detracts from
the underlying unity of the technique by splintering the exponential family
into a suite of seeming special cases. Hence we provide only one function to
compute the deviance residuals, and it uses the joint log-likelihood.

In words, the magnitude of the deviance residual for an observation is the
square root of twice the difference between the joint log-likelihood evaluated
at the datum and evaluated at the fitted value. Here, “evaluated at the datum”
means that the predicted value is y and the observation is y. In code, if y = 1,
and ŷ = 0.5 then we would write something like:

> sqrt(2 * dbinom(x = 1, size = 1, prob = 1, log = TRUE) -

+ dbinom(x = 1, size = 1, prob = 0.5, log = TRUE))

1The reader may wish to compare the execution times of these two algorithms, using

system.time.

150 Methods of Statistical Model Estimation

[1] 0.8325546

For our code, we now take advantage of our earlier structure. We need
to calculate the predicted values using the parameter estimates, the de-
sign matrix, and the unlink function, which we can do using the same
predict.expFamily function as before.

> devianceResiduals <- function(y, b.hat, X, offset = 0, ...) {

+ y.hat <- predict(y, b.hat, X, offset)

+ sign(y - y.hat) *

+ sqrt(2 * (jll(y, y, ...)) - jll(y, y.hat, ...))

+ }

The utility of this function is that it can be used to produce the deviance
residuals and, as we shall see, the deviance, for models that represent any
member of the exponential family, or indeed for any model family for which
deviance residuals are considered informative. We merely need to write an
appropriate jll function.

5.2.4 Deviance

Now we can report the deviance of the model simply as the sum of the squares
of the residuals defined in the previous section. For example, the deviance of
the model that we fitted earlier is calculated by

> sum(devianceResiduals(y, test$par, X)^2)

[1] 5.177151

We can also find the null deviance in a quite general way: compute the
sum of the squares of the deviance residuals, fitted at the null model. In this
case, it would be

> fit.null <- maximize(0.5, Sjll, 1, y)

> sum(devianceResiduals(y, fit.null$par, 1)^2)

[1] 5.292506

We can check whether we are getting these deviance values right by com-
paring them with output from R’s own glm function. Our version of X already
has the intercept, so we should omit it here.

> glm(y ~ X[,-1], family=binomial)

Call: glm(formula = y ~ X[, -1], family = binomial)

Coefficients:

Maximum Likelihood Estimation 151

(Intercept) X[, -1]

-0.1721 0.1553

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 10.59

Residual Deviance: 10.35 AIC: 14.35

This output shows us that our residual and null deviance values agree with
those provided by R, and also provides a check on the parameter estimates
computed in the previous section. We are confident that, so far, our code is
reasonable. To further simplify the process of using the function, we will add
an option to automate the selection of starting points for the optimizer.

5.2.5 Initial Values

As in previous chapters, we need to find initial values for the optimizer. It is
easy enough if we know that we will always be working with the raw data, but
becomes complicated when we use different link functions. In order to provide
a general solution, we will write an S3 generic function and a default version
of it that simply grabs the coefficients from an ordinary least-squares fit of
the predictors to the response, minus the offset.

> kickStart <- function(y, X, offset)

+ UseMethod("kickStart")

> kickStart.default <- function(y, X, offset = 0) {

+ coef(lm(I(y - offset) ~ X - 1))

+ }

Our experimentation suggests that this function will suffice for a binary re-
sponse variable. Later versions will, for example, grab the coefficients from an
ordinary least-squares fit of the predictor variables to the log of the response
minus the offset.

5.2.6 Printing the Object

We will want to be able to report the output of the model in some convenient
way. We could write our own print function, but since we are writing a GLM
model, it makes sense to use as much of the existing R infrastructure as we can.
One strategy is to declare the class of the returned object as being both msme

and glm, the former so that we can write special functions for it as needed,
and the latter so that we can take advantage of any existing glm functions for
convenience. This strategy uses the inheritance quality of S3 classes.

However, this alone will not be sufficient, because the print.glm function
will assume that certain pieces of information will be available. In order to be
able to use this function, we must either (i) examine a glm object, identify all
of its components, and make sure that our object has the same components,

152 Methods of Statistical Model Estimation

or, preferably, (ii) examine the print.glm function, and be sure that all of
the components that it expects to find are provided. The latter is easier for
now.

> print.glm

function (x, digits = max(3, getOption("digits") - 3), ...)

{

cat("\nCall: ", paste(deparse(x$call), sep = "\n",

collapse = "\n"), "\n\n", sep = "")

if (length(coef(x))) {

cat("Coefficients")

if (is.character(co <- x$contrasts))

cat(" [contrasts: ", apply(cbind(names(co), co),

1L, paste, collapse = "="), "]")

cat(":\n")

print.default(format(x$coefficients, digits = digits),

print.gap = 2, quote = FALSE)

}

else cat("No coefficients\n\n")

cat("\nDegrees of Freedom:", x$df.null,

"Total (i.e. Null); ", x$df.residual, "Residual\n")

if (nzchar(mess <- naprint(x$na.action)))

cat(" (", mess, ")\n", sep = "")

cat("Null Deviance:\t ",

format(signif(x$null.deviance, digits)),

"\nResidual Deviance:", format(signif(x$deviance,

digits)), "\tAIC:", format(signif(x$aic, digits)), "\n")

invisible(x)

}

<bytecode: 0x104ed9ea0>

<environment: namespace:stats>

Given an object x of class glm, this function assumes that it will be able to
locate the named components call, coefficients, df.null, df.residual,
null.deviance, deviance, and aic. If we also provide contrasts and
na.action then it will also report those. The print.glm function also as-
sumes that coef(x) will return the coefficients. We should check what that
means by examining the function. Some experimentation leads to the follow-
ing:

> getAnywhere(coef.default)

A single object matching ’coef.default’ was found

It was found in the following places

registered S3 method for coef from namespace stats

Maximum Likelihood Estimation 153

namespace:stats

with value

function (object, ...)

object$coefficients

<bytecode: 0x234f694>

<environment: namespace:stats>

which suggests that we just need to be sure that our object includes
coefficients. We will use the outcome of this exercise to guide the design
of the object that our new glm function will return.

5.2.7 GLM Function

We now link these various steps together in a single function, much as we did
with linear regression in Chapter 3 and iteratively re-weighted least squares
in Chapter 4. The function follows the main themes of: handle the input, pre-
pare the model infrastructure, check for missing data, choose starting values,
estimate the parameters, check for validity, compute relevant statistics, and
report.

> ml_glm <- function(formula,

+ data,

+ family,

+ link,

+ offset = 0,

+ start = NULL,

+ verbose = FALSE,

+ ...) {

+

+ ### Handle the input

+ mf <- model.frame(formula, data)

+ y <- model.response(mf, "numeric")

+

+ ### Prepare model infrastructure

+ class(y) <- c(family, link, "expFamily")

+ X <- model.matrix(formula, data = data)

+

+ ### Check for missing data. Stop if any.

+ if (any(is.na(cbind(y, X)))) stop("Some data missing!")

+

+ ### Initialize the search, if needed

+ if (is.null(start)) start <- kickStart(y, X, offset)

+

+ ### Maximize the joint log-likelihood

+ fit <- maximize(start, Sjll, X, y, offset, ...)

154 Methods of Statistical Model Estimation

+

+ ### Check for optim failure and report and stop

+ if (verbose | fit$convergence > 0) print(fit)

+

+ ### Extract and compute quantities of interest

+ beta.hat <- fit$par

+ se.beta.hat <- sqrt(diag(solve(-fit$hessian)))

+ residuals <- devianceResiduals(y, beta.hat, X, offset, ...)

+

+ ### Fit null model and determine null deviance

+ fit.null <- maximize(mean(y), Sjll, 1, y, offset, ...)

+ null.deviance <-

+ sum(devianceResiduals(y, fit.null$par, 1, offset, ...)^2)

+

+ ### Report the results, with the needs of print.glm in mind

+ results <- list(fit = fit,

+ X = X,

+ y = y,

+ call = match.call(),

+ obs = length(y),

+ df.null = length(y) - 1,

+ df.residual = length(y) - length(beta.hat),

+ deviance = sum(residuals^2),

+ null.deviance = null.deviance,

+ residuals = residuals,

+ coefficients = beta.hat,

+ se.beta.hat = se.beta.hat,

+ aic = - 2 * fit$val + 2 * length(beta.hat),

+ i = fit$counts[1])

+

+ ### Use (new) msme class and glm class

+ class(results) <- c("msme","glm")

+ return(results)

+ }

An example of the use of the function follows. First, attach the msme package
and obtain the medpar data.

> library(msme)

> data(medpar)

Then fit a simple model using the formula interface.

> mort.glm <- ml_glm(died ~ hmo + white,

+ data = medpar,

+ family = "bernoulli",

+ link = "logit1")

Maximum Likelihood Estimation 155

Now we can print the model in the same neat arrangement that has already
been designed for the S3 class of glm objects, as follows.

> mort.glm

Call: ml_glm(formula = died ~ hmo + white, data = medpar,

family = "bernoulli", link = "logit1")

Coefficients:

X(Intercept) Xhmo Xwhite

-0.92619 -0.01225 0.30339

Degrees of Freedom: 1494 Total (i.e. Null); 1492 Residual

Null Deviance: 1923

Residual Deviance: 1921 AIC: 1927

Had we not arranged to use the existing print.glm function, then the result
would have been to print the list of objects, piece by piece. That output would
still be informative, but not nearly as useful.

Components of the object are also available to examine. For example, if we
would like to know more about the status of the conclusion of the optimization
routine, then we type the following.

> mort.glm$fit

$par

X(Intercept) Xhmo Xwhite

-0.92618625 -0.01224651 0.30338726

$value

[1] -960.301

$counts

function gradient

51 14

$convergence

[1] 0

$message

NULL

$hessian

X(Intercept) Xhmo Xwhite

X(Intercept) -336.47134 -53.81772 -310.67613

Xhmo -53.81772 -53.81772 -51.39212

Xwhite -310.67613 -51.39212 -310.67613

156 Methods of Statistical Model Estimation

The last piece of infrastructure that we need is a function that provides
useful statistics computed from the fitted model. For example, we would like
to print a coefficient table. We wrote a custom summary.irls method for
this purpose in the previous chapter. Happily, the function also works with
objects developed in this chapter, as called below, so long as it (summary.msme,
Section 4.7.1) and the following residuals function are both loaded. Loading
the book’s package is the easiest approach.

> residuals.msme <- function(object,

+ type = c("deviance","standard"),

+ ...) {

+ type <- match.arg(type)

+ if (type == "standard") {

+ object$residuals / sqrt(1 - diag(hatvalues(object)))

+ } else {

+ object$residuals

+ }

+ }

Moreover, we also wanted to add confidence intervals to the default sum-
mary output, unlike print.summary.glm, which displays the coefficients, stan-
dard errors, z, and p-values, but not the confidence intervals, which must
be called for separately using the confint or, for Wald confidence intervals,
confint.default.

> summary(mort.glm)

Call:

ml_glm(formula = died ~ hmo + white, data = medpar,

family = "bernoulli", link = "logit1")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.9268 -0.9268 -0.9222 -0.1002 1.4510 1.5930

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) -0.92619 0.1974 -4.69215 2.703e-06 -1.31307 -0.5393

hmo -0.01225 0.1489 -0.08223 0.9345 -0.30414 0.2796

white 0.30339 0.2052 1.47864 0.1392 -0.09876 0.7055

Null deviance: 1922.865 on 1494 d.f.

Residual deviance: 1920.602 on 1492 d.f.

AIC: 1926.602

Number of iterations: 51

Maximum Likelihood Estimation 157

All the fundamental pieces are now in place to fit logistic regression models.
We could write a large collection of functions to add further functionality,
for example, functions to extract information such as the Pearson Chi2 for
assessing dispersion, functions to perform model comparison, and the like, but
our goal is not to replace the existing, excellent R functionality, but rather to
use it as a framework for demonstrating statistical models.

5.2.8 Fitting for a New Family

Having invested all the effort into getting a reasonable infrastructure, it is now
straightforward to extend our model to fit other kinds of GLM. For example,
the Poisson distribution is a member of the exponential family. In order to
use our function to perform Poisson regression, we only need a few pieces: the
Poisson joint log-likelihood, an unlink function that corresponds to the log
link, and a new function to prescribe the starting point for the parameters
when the log link function will be used. Examples of such functions follow.

First, we write a joint log-likelihood for the Poisson distribution, for ex-
ample,

> jll.poisson <- function(y, y.hat, ...) {

+ dpois(y, lambda = y.hat, log = TRUE)

+ }

The unlink function for the log link is simply exp. Note that again we pass
y as the first argument so that the appropriate method will be selected from
the class of y.

> unlink.log <- function(y, eta, m=1, a=1) exp(eta)

Finally we need a method to select the start point when the predictors will
be filtered through a log link function. A simple solution is to get parameter
estimates from a linear regression of the log of y against the predictors.

> kickStart.log <- function(y, X, offset = 0) {

+ coef(lm(I((log(y + 0.1) - offset) ~ X - 1)))

+ }

Having declared these three functions, we can now use our ml_glm function
to fit a Poisson regression model, as follows.

> ml.poi <- ml_glm(los ~ hmo + white,

+ family = "poisson",

+ link = "log",

+ data = medpar)

The summary output, below, compares well with the output from R’s glm

function.

158 Methods of Statistical Model Estimation

> summary(ml.poi)

Call:

ml_glm(formula = los ~ hmo + white, data = medpar,

family = "poisson", link = "log")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4.1200 -1.7490 -0.6213 -0.3073 0.9434 18.9500

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.4823 0.02589 95.890 0 2.4315 2.53299

hmo -0.1416 0.02373 -5.966 2.431e-09 -0.1881 -0.09507

white -0.1909 0.02728 -6.998 2.6e-12 -0.2444 -0.13742

Null deviance: 8901.134 on 1494 d.f.

Residual deviance: 8812.942 on 1492 d.f.

AIC: 14534.09

Number of iterations: 58

> summary(glm(los ~ hmo + white,

+ family = poisson,

+ data = medpar))

Call:

glm(formula = los ~ hmo + white, family = poisson,

data = medpar)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.1197 -1.7487 -0.6213 0.9434 18.9477

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.48225 0.02589 95.890 < 2e-16 ***

hmo -0.14158 0.02373 -5.966 2.43e-09 ***

white -0.19089 0.02728 -6.998 2.60e-12 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8901.1 on 1494 degrees of freedom

Maximum Likelihood Estimation 159

Residual deviance: 8812.9 on 1492 degrees of freedom

AIC: 14534

Number of Fisher Scoring iterations: 5

This exercise demonstrates a number of important elements: the elegance
and unity of GLM, the utility of S3 classes, and the importance of planning
ahead in software design. For example, we defined the residual deviance in
terms of the deviance residuals, and defined the deviance residuals using the
joint log-likelihood, which also appeared in the objective function. Therefore
our switch of PDF from Bernoulli to Poisson changed all the relevant portions
of the model. Had we used efficient, stable code to compute the deviance or
the residuals then we would have to completely rewrite it for the new model.

For further illustration, we now use maximum likelihood to fit a zero-
truncated Poisson model (ZTP). We start by writing a function for the joint
log-likelihood. The PDF for the ZTP is constructed as the PDF for the Poisson
distribution scaled by the probability that a random Poisson number is not
zero.

f(x; θ|x > 0) =
θxe−θ

x!

1

1− e−θ
(5.5)

We can write this in R as follows:

> jll.ztp <- function(y, y.hat, ...)

+ dpois(y, lambda = y.hat, log = TRUE) - log(1 - exp(-y.hat))

We can now fit the ZTP model using the same function as we did before.

> ml.ztp <- ml_glm(los ~ hmo + white,

+ family = "ztp",

+ link = "log",

+ data = medpar)

The summary output, below, compares favorably with results from other soft-
ware (not shown here).

> summary(ml.ztp)

Call:

ml_glm(formula = los ~ hmo + white, data = medpar,

family = "ztp", link = "log")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

-2.8990 -1.9170 -1.0170 -0.3807 0.9496 13.2700 944

160 Methods of Statistical Model Estimation

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.482 0.0259 95.89 0 2.432 2.5330

hmo -0.142 0.0237 -5.97 2.41e-09 -0.188 -0.0952

white -0.191 0.0273 -7.00 2.57e-12 -0.244 -0.1375

Null deviance: NaN on 1494 d.f.

Residual deviance: NaN on 1492 d.f.

AIC: 14533.89

Number of optimizer iterations: 53

5.3 Two-Parameter MLE

We now extend the set of models into two-parameter members of the expo-
nential family. We will start with the negative binomial distribution with log
link for the mean and the scale parameters. That is, we will construct the
following model and its multivariate extensions.

yi ∼ NB(exp(β0 + β1x1i), exp(δ0 + δ1x2i)) (5.6)

Much of the work that was done in the previous section can be re-used,
but not all of it. Some functions will need to be extended, and some will need
to be replaced. Here we will see further examples of the limitations of S3
classes2, which will force us to develop rather clumsy functions to handle the
breadth of models that we wish to use. As before, we start by defining the
log-likelihood that we will try to maximize.

5.3.1 The Log-Likelihood

The two-parameter likelihoods that we shall deal with in this section differ
from the previous likelihoods only in that they have an extra parameter, the
scale of the density. This means that we will need to develop new functions
that will accommodate the estimation of the parameters that are associated
with the scale. We start with a method for the negative binomial joint log-
likelihood, as follows.

> jll2.negBinomial <- function(y, y.hat, scale, ...) {

+ dnbinom(y,

+ mu = y.hat,

+ size = 1 / scale,

2Or, more accurately, the limitations of the authors’ ability to use S3 classes.

Maximum Likelihood Estimation 161

+ log = TRUE)

+ }

Note that by setting size = 1 / scale, we have reparameterized the neg-
ative binomial as suggested by Cameron and Trivedi (1998, p. 71–73), Winkel-
mann (2008, p. 134–135), and Hilbe (2011, p. 9–10) so that the variance is
directly proportional to the mean, instead of inversely proportional.

We will also need a new generic function, similar to that we used earlier.
We provide it again here for clarity.

> jll2 <- function(y, y.hat, scale, ...) UseMethod("jll2")

Our joint log-likelihood must be summed, and the parameters of the model
must be passed to it in some organized way. The summation is straightforward,
as before, but the handling of the predictor variables requires some planning.
Ultimately we would like to be able to fit models for which both parameters
are functions of some predictor variables. Hence, we will want to specify two
design matrices: X1 and X2. For convenience, we may prefer to use one matrix
that has a specific structure: the first p columns correspond to the mean
parameter and the balance of the columns to the scale parameter. We will use
this approach.

Therefore the sum of the log-likelihoods can be arranged as follows.

> Sjll2 <- function(b.hat, X, y, p, offset = 0, ...) {

+ y.hat <- predict(y, b.hat[1:p], X[,1:p], offset)

+ scale.hat <- predict_s(y, b.hat[-(1:p)], X[,-(1:p)])

+ sum(jll2(y, y.hat, scale.hat, ...))

+ }

In this function we split the design matrix into two portions: the first p

columns, and the rest. Using the predict.expFamily function, we multiply
the former with the first p parameter estimates, and apply the unlink func-
tion that we elected for the mean — here it will be the exp function (see
Section 5.2.8). Then using the predict_s function, we multiply the remain-
ing columns by the remaining parameters and apply the unlink function that
was nominated for the scale. Here it will also be the exp function (see below).

The predict_s function will convert the scale’s parameter estimates and
design matrix into a linear predictor, and then apply an unlink function, if
any is nominated.

> predict_s <- function(y, b.hat, X) {

+ lin.pred <- as.matrix(X) %*% b.hat

+ scale <- unlink_s(y, lin.pred)

+ return(scale)

+ }

162 Methods of Statistical Model Estimation

It would be elegant to be able to use a new predict method, but all the class
information is carried by y, and the predict method is dedicated to the mean
function. It cannot be used for both.

Finally, we need to write an unlink function that we can use to handle the
fitting and reporting of the model for the scale parameter. Here we will assume
that a log link is used, for the moment. As before, we write the method for
the class of interest and also a generic method.

> unlink_s.log_s <- function(y, eta) exp(eta)

> unlink_s <- function(y, eta) UseMethod("unlink_s")

We now have sufficient functions to compute the log-likelihood, evaluated
at given parameter estimates, and conditional on the model and the data. For
example, we can use the following invented data and parameter estimates.

> y <- c(1,0,0,1,1,3,0,9)

> X <- as.matrix(cbind(1, 1:8, 1, 1:8))

> beta.hat <- c(0,1,0,1)

As before, we need to pass the class information that the S3 system will use
via y.

> class(y) <- c("negBinomial","log","log_s","expFamily")

Now we can try to evaluate the summed joint log-likelihood at the nomi-
nated parameter values.

> Sjll2(beta.hat, X, y, 2)

[1] -29.30543

We note that the function seems to work, and that it can be evaluated
at the parameter values. We will next think about finding the values of the
parameter estimates that maximize the joint log-likelihood.

5.3.2 Parameter Estimation

The maximize function that we will re-use needs to pass the argument p,
which is the number of columns of X that are relevant to the mean parameter.
We take advantage of the dots argument which passes arguments to internal
functions. During earlier drafts we tried to pass p as an attribute of the ma-
trix X but were sadly unsuccessful, as the matrix shed the attribute during
processing.

As before, it is prudent to test our code along the way.

> test <- maximize(beta.hat, Sjll2, X, y, p = 2)

> test$par

[1] -2.3543758 0.5223218 -3.5761943 -20.0290300

Whether these estimates are reasonable remains to be seen.

Maximum Likelihood Estimation 163

5.3.3 Deviance and Deviance Residuals

The deviance residuals are constructed in the same way as before: using the
definition of the deviance, and determining the contribution of each observa-
tion to that deviance, multiplied by an appropriate sign.

However, the calculation raises a different challenge. Recall that the defi-
nition of the deviance is twice the difference between the joint log-likelihood
evaluated at the data and evaluated at the fitted value. The open question is:
what should happen to the scale parameter during this operation? It cannot
be set to the observation. This is the ancillary/nuisance parameter conun-
drum. The consensus seems to be that the scale should be kept fixed at its
MLE for the purposes of determining the deviance of the model. The use of
two prediction functions, one for the fitted values and one for the scale, should
be familiar by now.

A further complication is that the deviance, and therefore the deviance
residuals, have to be scaled by a function of the dispersion. Whilst we were
working with the binomial and poisson models, we could ignore this issue
because the dispersion for those two models is assumed to be 1. This is also
true for the negative binomial distribution; however, for distributions that we
will be fitting later in the chapter, the dispersion will vary.

> getDispersion <- function(y, scale) UseMethod("getDispersion")

> getDispersion.negBinomial <- function(y, scale) 1

> devianceResiduals2 <- function(y, b.hat, X, p, offset = 0) {

+ y.hat <- predict(y, b.hat[1:p], X[,1:p], offset)

+ scale <- predict_s(y, b.hat[-(1:p)], X[,-(1:p)])

+ sign(y - y.hat) *

+ sqrt(2 * getDispersion(y, scale) *

+ (jll2(y, y, scale) -

+ jll2(y, y.hat, scale)))

+ }

We can now evaluate the deviance residuals for any two-parameter dis-
tribution for which we can provide a suitable joint log-likelihood and an ap-
propriate dispersion — just so long as we are convinced that the deviance
residuals have some useful interpretation.

Finally, we can again evaluate the deviance as the sum of the squares of
the deviance residuals. For our current model, that would be

> sum(devianceResiduals2(y, test$par, X, 2)^2)

[1] 12.30863

We now make a quick comparison with the glm.nb function from the MASS

package (Venables and Ripley, 2010). Here is the output for the negative
binomial model that has only a single parameter for the scale.

164 Methods of Statistical Model Estimation

> library(MASS)

> glm.nb(y ~ X[,2])

Call: glm.nb(formula = y ~ X[, 2], init.theta = 3.008721266,

link = log)

Coefficients:

(Intercept) X[, 2]

-1.9810 0.4582

Degrees of Freedom: 7 Total (i.e. Null); 6 Residual

Null Deviance: 16.68

Residual Deviance: 8.415 AIC: 30.51

From our code, we get

> test <- maximize(beta.hat[1:3], Sjll2, X[,1:3], y, p = 2)

> test$par

[1] -1.9810214 0.4582397 -1.1015178

In comparing the scale parameter estimates, recall that those from our code
should be transformed in the following way: they should be exponentiated
(as we were using a log-link) and they should be inverted (as we had re-
parameterized the negative binomial distribution). We correct as follows, and
the result matches the value init.theta reported by glm.nb.

> exp(-test$par[3])

[1] 3.008729

The comparison of the parameter estimates seems very satisfactory, as does
the comparison of the deviance.

> sum(devianceResiduals2(y, test$par, X[,1:3], 2)^2)

[1] 8.415389

Computing the null deviance proceeds along the same lines as before, but
here again we have to make some decision about what to do with the scale
parameter in computing the null deviance. As before, the standard seems to
be to use the MLE of the scale conditional on the fitted model. Hence, the null
deviance of the model would be calculated from the fitted values evaluated at
the null fit, but the scale values evaluated at the model fit.

We can now move with some confidence to develop more of the modelling
infrastructure. The worst challenges are behind us, but some challenges re-
main. We now need to find initial values for the scale parameter estimates as
well.

Maximum Likelihood Estimation 165

5.3.4 Initial Values

The automatic determination of initial values for the optimizer for all possible
models that could be fit takes us beyond the scope of our code. Hence it is
probable that the reader will be able to discover datasets and models for
which our code does not work. Our goal is to demonstrate, rather than to
be comprehensive. We can take advantage of our earlier code that determines
start points for the parameters associated with the fitted value, and use a
simplification for the start points of the scale parameters.

if (is.null(start)) {

start <- c(kickStart(y, X1, offset),

1,

rep(0, ncol(X) - p - 1))

names(start) <- c(colnames(X1), colnames(X2))

}

Note that we name the start values using the column names of the two design
matrices. These names will be carried through the analysis and facilitate easy
reporting.

For the current example we will need to use the kickStart method that
finds initial parameter estimate for the linear predictor when the log link will
be used.

5.3.5 Printing and Summarizing the Object

We retain this brief sub-section in order to make explicit the point that we can
entirely re-use the code written for printing or summarizing the fitted object
in the one-parameter case, just so long as we endure that the fitted object
contains the appropriate components. That is, we do not have to rewrite any
of these functions because the earlier versions are perfectly suitable.

5.3.6 GLM Function

We now link these various steps together in a single function. The function
follows the main themes of: handle the input, prepare the model infrastructure,
check for missing data, choose starting values, estimate the parameters, check
for validity, compute relevant statistics, and report.

> ml_glm2 <- function(formula1,

+ formula2 = ~1, data,

+ family,

+ mean.link,

+ scale.link,

+ offset = 0,

+ start = NULL,

166 Methods of Statistical Model Estimation

+ verbose = FALSE) {

+

+ ### Handle the input

+ mf <- model.frame(formula1, data)

+ y <- model.response(mf, "numeric")

+

+ ### Prepare model infrastructure

+ class(y) <- c(family, mean.link, scale.link, "expFamily")

+ X1 <- model.matrix(formula1, data = data)

+ X2 <- model.matrix(formula2, data = data)

+ colnames(X2) <- paste(colnames(X2), "_s", sep="")

+ p <- ncol(X1)

+ X <- cbind(X1, X2)

+

+ ### Check for missing data. Stop if any.

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing!")

+

+ ### Initialize the search

+ if (is.null(start)) {

+ start <- c(kickStart(y, X1, offset),

+ 1, # Shameless hack

+ rep(0, ncol(X) - p - 1))

+ names(start) <- c(colnames(X1), colnames(X2))

+ }

+

+ ### Maximize the joint log likelihood

+ fit <- maximize(start, Sjll2, X, y, offset, p = p)

+

+ ### Check for optim failure and report and stop

+ if (verbose | fit$convergence > 0) print(fit)

+

+ ### Extract and compute quantities of interest

+ beta.hat <- fit$par

+ se.beta.hat <- sqrt(diag(solve(-fit$hessian)))

+ residuals <- devianceResiduals2(y, beta.hat, X, p, offset)

+

+ #### Deviance residuals for null

+ fit.null <- maximize(c(mean(y), 1),

+ Sjll2,

+ X[,c(1,p+1)], y, offset, p = 1)

+ null.deviance <-

+ sum(devianceResiduals2(y,

+ c(fit.null$par[1], fit$par[p+1]),

+ X[, c(1,p+1)],

+ 1,

Maximum Likelihood Estimation 167

+ offset)^2)

+

+ ### Report the results, with the needs of print.glm in mind

+ results <- list(fit = fit,

+ loglike = fit$val,

+ X = X,

+ y = y,

+ p = p,

+ call = match.call(),

+ obs = length(y),

+ df.null = length(y) - 2,

+ df.residual = length(y) - length(beta.hat),

+ deviance = sum(residuals^2),

+ null.deviance = null.deviance,

+ residuals = residuals,

+ coefficients = beta.hat,

+ se.beta.hat = se.beta.hat,

+ aic = - 2 * fit$val + 2 * length(beta.hat),

+ offset = offset,

+ i = fit$counts[1])

+ class(results) <- c("msme","glm")

+ return(results)

+ }

The model is run as follows.

> test.3.g <- ml_glm2(los ~ hmo + white,

+ formula2 = ~1,

+ data = medpar,

+ family = "negBinomial",

+ mean.link = "log",

+ scale.link = "log_s")

A print of the model can be obtained by

> test.3.g

Call: ml_glm2(formula1 = los ~ hmo + white, formula2 = ~1,

data = medpar, family = "negBinomial",

mean.link = "log", scale.link = "log_s")

Coefficients:

(Intercept) hmo white (Intercept)_s

2.4810 -0.1405 -0.1897 -0.7244

Degrees of Freedom: 1493 Total (i.e. Null); 1491 Residual

168 Methods of Statistical Model Estimation

Null Deviance: 1586

Residual Deviance: 1571 AIC: 9706

and a summary by

> summary(test.3.g, dig = 2)

Call:

ml_glm2(formula1 = los ~ hmo + white, formula2 = ~1,

data = medpar, family = "negBinomial",

mean.link = "log", scale.link = "log_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0870 -0.8490 -0.2657 -0.2385 0.3774 5.5160

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.48 0.067 37.0 3.7e-299 2.35 2.613

hmo -0.14 0.055 -2.6 0.01 -0.25 -0.033

white -0.19 0.070 -2.7 0.0069 -0.33 -0.052

(Intercept)_s -0.72 0.043 -16.7 6.7e-63 -0.81 -0.640

Null deviance: 1585.658 on 1493 d.f.

Residual deviance: 1570.678 on 1491 d.f.

AIC: 9706.079

Number of iterations: 80

Note that the formatting of the above table of coefficients was displayed
for the purposes of fitting easily on the page. The actual results have coeffi-
cients and confidence intervals presented to four decimal places, standard error
to five, z at three and p at six. More decimal places may be obtained using
the post-estimation coefficients option. The negative binomial scale parame-
ter estimate is displayed in log form, −0.7244. Exponentiating the estimate
results in the scale parameter having the inverse of its standard form, namely
1/2.0635 = 0.4846. Recall that we chose a different parameterization than
that used by glm.nb. Exponentiating the coefficients results in their parame-
terization as incidence rate ratios.

> test.3.g$coefficients

(Intercept) hmo white (Intercept)_s

2.4810189 -0.1405090 -0.1897072 -0.7244261

> exp(-0.7244261)

Maximum Likelihood Estimation 169

[1] 0.4846026

We may generate predicted or fitted model values, and summarize, them
with a single line of code:

> str(with(test.3.g,

+ predict(y, coefficients[1:p], X[,1:p])))

num [1:1495, 1] 9.89 8.59 8.59 9.89 9.89 ...

- attr(*, "dimnames")=List of 2

..$: chr [1:1495] "1" "2" "3" "4" ...

..$: NULL

We have also provided a number of post-estimation statistics in the results
section of the code, including deviance residuals, coefficients and standard
errors, residual degree of freedom, and so forth. For example, the model log-
likelihood may be displayed as

> test.3.g$loglike

[1] -4849.039

We suggest observing how the saved values were created and saved. You
may add others that were required for the types of study with which you
are involved. Using saved values from the function you develop is easier than
having to re-create them each time.

We can compare the output with a comparable model fitted using the
glm.nb function from MASS. The degrees of freedom differ because our model
counts the estimated scale as a parameter.

> summary(glm.nb(los ~ hmo + white, data = medpar))

Call:

glm.nb(formula = los ~ hmo + white, data = medpar,

init.theta = 2.063546582, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0870 -0.8490 -0.2657 0.3774 5.5163

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.48102 0.06715 36.947 < 2e-16 ***

hmo -0.14051 0.05463 -2.572 0.01011 *

white -0.18971 0.07020 -2.702 0.00689 **

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

170 Methods of Statistical Model Estimation

(Dispersion parameter for Negative Binomial(2.0635) family

taken to be 1)

Null deviance: 1585.7 on 1494 degrees of freedom

Residual deviance: 1570.7 on 1492 degrees of freedom

AIC: 9706.1

Number of Fisher Scoring iterations: 1

Theta: 2.0635

Std. Err.: 0.0893

2 x log-likelihood: -9698.0790

The comparison seems quite satisfactory. We may quickly access the
standard-form value of the model scale parameter. With the value of the scale
parameter given in glm.nb as theta, or

> coef(test.3.g)[4]

(Intercept)_s

-0.7244261

we may invert and exponentiate it to standard form with a single line,

> exp(-coef(test.3.g)[4])

(Intercept)_s

2.063547

The standard errors of the model coefficients may be reported as

> test.3.g$se.beta.hat[1:3]

(Intercept) hmo white

0.06711191 0.05465329 0.07022468

but the standard errors of the IRR must be calculated using the delta method,

SEIRR = sβ̂ × exp β̂ (5.7)

Refer to Hilbe (2011, p. 23) for details. They may be calculated using the
statistics saved in the ml_glm2 object.

> with(test.3.g, se.beta.hat * exp(coefficients))[2:3]

Maximum Likelihood Estimation 171

hmo white

0.04748911 0.05808995

We reiterate that we do not consider our function suitable for production
work. Even though it may fit a broader range of models than glm.nb, because
of the scale parameterization, it is not as robust. When the data are extreme,
or when using offsets, and an offset has the same value as the response, the
function may have difficulty converging. Moreover, we have not allowed for the
users to employ prior weights when modelling, although giving this capability
to the function is not difficult. Use the function with these caveats in mind,
or better, enhance the function.

5.3.7 Building on the Model

The model can be extended to mimic the output of other software, for example
Stata, by the addition and use of more unlink functions for the scale. Note
that in this case, for convenience, we have conflated two issues that could also
be considered distinctly: the scale upon which the scale parameter is fit (e.g.,
raw, log, inverse), and the scale upon which it is reported. These scales need
not be the same, but we felt that distinguishing them would add needlessly
to the complication, and therefore the code, of the book without contributing
much to the information. Three most commonly used unlink functions are:

> unlink_s.log_s <- function(y, eta) exp(eta)

> unlink_s.identity_s <- function(y, eta) eta

> unlink_s.inverse_s <- function(y, eta) 1 / eta

ml_glm2 allows the user to parameterize the scale parameter. When ap-
plied to the negative binomial scale, or heterogeneity parameter, the model is
known as a heterogeneous negative binomial, or NB-H (Hilbe, 2011; Greene,
2012). R does not otherwise have this model, or function, in its scope to our
knowledge, although it may be accommodated in one of the many community-
written packages. For an example, we may parameterize both model predictors
hmo and white by assigning them to formula2. Parameterizing the scale allows
the user to help determine which predictors most influence any over-dispersion
(or under-dispersion) in the data.

> test.3a.g <- ml_glm2(los ~ hmo + white,

+ formula2 = ~ white + hmo,

+ data = medpar,

+ family = "negBinomial",

+ mean.link = "log",

+ scale.link = "log_s")

> summary(test.3a.g, dig = 2)

Call:

ml_glm2(formula1 = los ~ hmo + white, formula2 = ~white + hmo,

172 Methods of Statistical Model Estimation

data = medpar, family = "negBinomial", mean.link = "log",

scale.link = "log_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0800 -0.9203 -0.2630 -0.2383 0.3729 5.4510

Coefficients (all in linear predictor):

Estimate SE Z p LCL UCL

(Intercept) 2.4788 0.0691 35.885 5.18e-282 2.343 2.61414

hmo -0.1403 0.0511 -2.746 0.00602 -0.240 -0.04018

white -0.1873 0.0720 -2.599 0.00934 -0.328 -0.04607

(Intercept)_s -0.6345 0.1397 -4.542 5.56e-06 -0.908 -0.36072

white_s -0.0634 0.1471 -0.431 0.667 -0.352 0.22490

hmo_s -0.2432 0.1279 -1.902 0.0572 -0.494 0.00746

Null deviance: 1477.833 on 1493 d.f.

Residual deviance: 1572.623 on 1489 d.f.

AIC: 9706.119

Number of optimizer iterations: 83

> test.3a.g <- ml_glm2(los ~ hmo + white,

+ formula2 = ~ white + hmo,

+ data = medpar,

+ family = "negBinomial",

+ mean.link = "log",

+ scale.link = "log_s")

> summary(test.3a.g, dig = 2)

Call:

ml_glm2(formula1 = los ~ hmo + white, formula2 = ~white + hmo,

data = medpar, family = "negBinomial", mean.link = "log",

scale.link = "log_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0800 -0.9203 -0.2630 -0.2383 0.3729 5.4510

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.479 0.069 35.89 5.2e-282 2.34 2.6141

hmo -0.140 0.051 -2.75 0.006 -0.24 -0.0402

white -0.187 0.072 -2.60 0.0093 -0.33 -0.0461

(Intercept)_s -0.635 0.140 -4.54 5.6e-06 -0.91 -0.3607

Maximum Likelihood Estimation 173

white_s -0.063 0.147 -0.43 0.67 -0.35 0.2249

hmo_s -0.243 0.128 -1.90 0.057 -0.49 0.0075

Null deviance: 1477.833 on 1493 d.f.

Residual deviance: 1572.623 on 1489 d.f.

AIC: 9706.119

Number of iterations: 67

Exponentiation of the coefficients of the fully scaled NB-H model above
may be calculated as

> exp(coef(test.3a.g)[2:3])

hmo white

0.869086 0.829208

As previously mentioned, these are known as incidence rate ratios (IRR).
We can compare the fits of the two models using their AIC values. Here

we do not see strong evidence that the parameterized scale makes much of a
difference to the fit, as the AIC values are very close, and that of the more
complex model is higher.

> test.3.g$aic

[1] 9706.079

> test.3a.g$aic

[1] 9706.119

5.3.8 Fitting for a New Family

We are now in a position in which we can extend the coverage of our model
with ease. For example, we may wish to use the function to fit a normal
regression model that mimics heteroskedasticity. We would do so by writing
the joint log-likelihood function and the dispersion function for the normal
distribution, as follows.

> jll2.normal <- function(y, y.hat, scale, ...) {

+ dnorm(y,

+ mean = y.hat,

+ sd = scale, log = TRUE)

+ }

> getDispersion.normal <- function(y, scale) scale^2

> unlink.identity <- function(y, eta) eta

Now we can use the same function to fit a familiar model.

174 Methods of Statistical Model Estimation

> data(ufc)

> ufc <- na.omit(ufc)

> test.1.g <- ml_glm2(height.m ~ dbh.cm,

+ formula2 = ~1,

+ data = ufc,

+ family = "normal",

+ mean.link = "identity",

+ scale.link = "log_s")

> summary(test.1.g)

Call:

ml_glm2(formula1 = height.m ~ dbh.cm, formula2 = ~1, data = ufc,

family = "normal", mean.link = "identity",

scale.link = "log_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-33.530 -2.862 0.132 0.000 2.851 13.320

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 12.6757 0.56262 22.53 2.121e-112 11.5730 13.7784

dbh.cm 0.3126 0.01384 22.58 6.372e-113 0.2855 0.3397

(Intercept)_s 1.5950 0.03576 44.60 0 1.5250 1.6651

Null deviance: 21885.77 on 389 d.f.

Residual deviance: 9497.697 on 388 d.f.

AIC: 2362.938

Number of iterations: 47

The output from R’s lm function follows.

> test.1.lm <- lm(height.m ~ dbh.cm, data = ufc)

> summary(test.1.lm)

Call:

lm(formula = height.m ~ dbh.cm, data = ufc)

Residuals:

Min 1Q Median 3Q Max

-33.526 -2.862 0.132 2.851 13.321

Maximum Likelihood Estimation 175

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 12.67570 0.56406 22.47 <2e-16 ***

dbh.cm 0.31259 0.01388 22.52 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 4.941 on 389 degrees of freedom

Multiple R-squared: 0.566, Adjusted R-squared: 0.5649

F-statistic: 507.4 on 1 and 389 DF, p-value: < 2.2e-16

A quick comparison of the scale parameter provides:

> exp(test.1.g$coefficients[3])

(Intercept)_s

4.928569

> summary(test.1.lm)$sigma

[1] 4.941222

which is reasonable (recall that the ML estimate is downwardly biased).
We can now extend the model as follows. For example, we can make the

variance a function of the diameter.

> test.2.g <- ml_glm2(height.m ~ dbh.cm,

+ formula2 = ~ dbh.cm,

+ data = ufc,

+ family = "normal",

+ mean.link = "identity",

+ scale.link = "log_s")

Then, using the alrt function developed earlier (Section 3.4.9), we can com-
pare the fits of the two candidate models, given the following function to
extract the likelihoods.

> logLik.msme <- function(object, ...) {

+ val <- objectfitvalue

+ attr(val, "nall") <- nrow(object$X)

+ attr(val, "nobs") <- nrow(object$X)

+ attr(val, "df") <- length(objectfitpar)

+ class(val) <- "logLik"

+ val

+ }

> alrt(test.1.g, test.2.g)

176 Methods of Statistical Model Estimation

LL of model 1: -1178.469 df: 3

LL of model 2: -989.2109 df: 4

Difference: 189.258 df: 1

p-value against H_0: no difference between models 0

This output suggests that the variation of the heights could change as a
function of the tree diameter, which is a biologically reasonable conclusion.
These models can be fit more robustly using the gls function of the nlme

package.
The nbinomial function in the msme package provides an alternative and

enhancement to glm.nb, with the same model summary output as glm.nb,
but also the addition of Pearson residuals, the Pearson Chi2 statistic, and
the dispersion statistic. The dispersion parameter is included in the predictor
list with standard errors and confidence intervals. We provide the traditional
direct parameterization of the dispersion parameter in the default output,
and the optional inverse parameterization used in glm.nb. nbinomial also
allows parameterization of the dispersion parameter. This procedure is called
heterogeneous negative binomial regression in the literature (see, e.g., Hilbe,
2011). Read the nbinomial help file for further information.

5.4 Exercises

1. List the major distributional criteria for maximum likelihood esti-
mation. What are the consequences when each criterion is violated?

2. Rewrite the ml_glm function so that it returns the log-likelihood as
loglike. Also write an extractor function.

3. Write a function to extract the Pearson residuals and Pearson Chi2
statistic.

4. Write the needed functions for using ml_glm for exponential regres-
sion. This includes functions for the mean, variance, link, inverse
link, derivative of the link, deviance, and log-likelihood.

5. Write the needed functions for using ml_glm for grouped binomial
regression. A caveat: be certain to take the binomial denominator,
m, into consideration, which is the number of trials for a given
pattern of covariates. This will need to be passed to the appropriate
functions.

6. Write the needed functions for using ml_glm2 for gamma regression.

7. Write the needed methods to allow you to call AIC on a fitted msme

model. Do this in two ways, with one using AIC.default.

8. Extend the two-parameter ML function to accommodate three-
parameter families.

6

Panel Data

6.1 What Is a Panel Model?

The term panel model refers to a general set of models aimed at understanding
longitudinal, clustered, and nested data. Essentially, though, the term relates
to how data are collected. Panel models are collected on observations that
are clustered or belong to groups, or on observations over a given period of
time. The majority of models that are aimed to estimate the parameters of
longitudinal or clustered data are panel models.

Unlike the models we have thus far discussed, which assume that observa-
tions in the model are independent of one another, the observations in panel
models are not assumed to be independent. Specifically, observations that
share a common panel are assumed to be correlated with one another. How-
ever, the panels of observations are considered to be independent, conditional
on the model. If the panels are considered as independent groups of observa-
tions, then maximum likelihood techniques can oftentimes be used for their es-
timation, particularly if the model is not complex. Other methods are also used
to estimate more complicated panel models; e.g., expectation–maximization
(EM) and quadrature. In any case, an adjustment must be taken to account
for the observations within panels. Typically it is assumed that the within-
panel observations are normally distributed with a mean of zero and unknown
variance of σ2.

Table 6.1 displays three panels from a longitudinal German health eco-
nomics study. This dataset has been used for examples in several leading texts
on count models. The original data has unequal sized panels, ranging from one
to five observations per panel. We have refashioned the data so that there are
1600 panels comprising 5 observations each for a total of 8000 observations.
The five observations per panel each represent a single year of information re-
garding the number of doctor visits made by patients in the study (docvis).
Other variables in the data include id, the panel identifier, year (1984–1988),
gender (female = 1; male = 0), age (25–64), and outwork (patient out of
work during most of the year = 1; working = 0). The panel sample sizes are
equal throughout the data; such data are called balanced.

Recall we stated that the data in Table 6.1 was selected so that panel sizes
would be equal. The original data comprises panels of unequal sizes, with some
patients observed for only a single year, others for two years, and up to five

177

178 Methods of Statistical Model Estimation

TABLE 6.1

German health economics study (3 panels only).

id year docvis female age outwork

86 1984 2 1 32 0
86 1985 6 1 33 0
86 1986 6 1 34 0
86 1987 6 1 35 0
86 1988 1 1 36 0

104 1984 0 0 46 0
104 1985 0 0 47 0
104 1986 0 0 48 0
104 1987 0 0 49 0
104 1988 2 0 50 0

1330 1984 13 0 28 0
1330 1985 0 0 29 1
1330 1986 2 0 30 1
1330 1987 0 0 31 0
1330 1988 2 0 32 1

years. We selected only those panels that had all five years of data, discarding
the remainder. A number of statistical procedures require equal balanced data
for estimation purposes.

Table 6.2 displays 32 observations from the 1993 U.S. national Medicare
in-patient hospital data, referred to as the Medpar data. The data are appro-
priately named medpar. We have used this data before in earlier chapters,
ignoring the fact that the observations are taken from patients at a number
of different hospitals or providers. Note that the provider numbers are associ-
ated with unequal numbers of observations. Of the 32 observations displayed
in Table 6.2, 5 are associated with provider 030067, 1 with 030068, 19 with
030069, 4 with 030073, and 3 with 030078. The 03 in the provider number
designates the state of Arizona; the other numbers specify a hospital within
that state. The data represent the number of patients experiencing a specific
disease, or more technically a diagnostic related group (DRG) of medical con-
ditions. Hospital 030067 had only 5 patients hospitalized for this condition
in 1993. None were members of a Health Maintenance Organization (HMO),
all classified themselves as Caucasian (white), and none were hospitalized 10
days or more. LOS is an acronym for Length of Stay.

If we were asked to model the count of days a patient is hospitalized los,
conditional on hmo and white, we would likely employ a negative binomial
model. The response variable, los, is a count. Given the extra correlation in
the data due to the panel structure of the data, the data will be over-dispersed.
A Poisson model will therefore be inappropriate. In fact, it is possible that the
negative binomial model will also be over-dispersed due to the same reason.

Panel Data 179

TABLE 6.2

From the medpar data.

provnum los hmo white

030067 4 0 1
030067 1 0 1
030067 2 0 1
030067 6 0 1
030067 9 0 1

030068 2 0 1
030069 12 0 1
030069 3 0 1
030069 1 0 1
030069 19 0 1
030069 10 0 1
030069 6 0 1
030069 15 0 1
030069 6 0 1
030069 13 0 1

030069 12 0 1
030069 8 0 1
030069 22 0 1
030069 3 0 1
030069 5 0 1

030069 1 0 1
030069 3 0 1
030069 2 0 1
030069 4 0 1
030069 15 0 1

030073 18 0 0
030073 44 0 0
030073 9 0 0
030073 16 0 0

030078 18 0 0
030078 21 0 0
030078 16 0 0

As discussed in the previous two chapters, we may prima facie assess count
model over-dispersion by checking the value of the Pearson dispersion statistic,
which can be determined by using the P__disp function that we designed for
use following glm or glm.nb (see Section 4.10).

> library(msme)

> data(medpar)

180 Methods of Statistical Model Estimation

> library(MASS)

> nbtest1 <- glm.nb(los ~ hmo + white, data = medpar)

> P__disp(nbtest1) # dispersion

pearson.chi2 dispersion

1980.986080 1.327739

> 1/nbtest1$theta # alpha

[1] 0.4846026

the value of 0.4846 above is the negative binomial scale parameterized to
be directly related to µ and to the correlation in the data. It is the standard
manner of expressing the negative binomial scale, or heterogeneity parameter.
Again, it is the inverse of theta, which is displayed in glm.nb and glm output as
the negative binomial dispersion parameter. Here theta has a value of 2.0635.
The inverse is 0.4846.

Using ml_glm2 from the msme package (Section 5.3.6), the model results
in

> nbtest2 <- ml_glm2(los ~ hmo + white,

+ formula2 = ~1,

+ data = medpar,

+ family = "negBinomial",

+ mean.link = "log",

+ scale.link = "inverse_s")

> summary(nbtest2)

Call:

ml_glm2(formula1 = los ~ hmo + white, formula2 = ~1,

data = medpar, family = "negBinomial",

mean.link = "log", scale.link = "inverse_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0870 -0.8490 -0.2657 -0.2385 0.3774 5.5160

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 2.481 0.0671 36.97 3.69e-299 2.349 2.6126

hmo -0.141 0.0547 -2.57 0.0101 -0.248 -0.0334

white -0.190 0.0702 -2.70 0.0069 -0.327 -0.0521

(Intercept)_s 2.064 0.0893 23.11 3.89e-118 1.889 2.2386

Null deviance: 1585.659 on 1493 d.f.

Residual deviance: 1570.678 on 1491 d.f.

Panel Data 181

AIC: 9706.079

Number of optimizer iterations: 66

Notice that the ml_glm2 function parameterizes the negative bi-
nomial scale as directly related to model correlation. By using the
scale.link = "inverse_s" argument, the algorithm inverts theta and dis-
plays alpha together with its appropriate standard errors, z-statistic, p-value,
and confidence intervals.

Moderate negative binomial over-dispersion is indicated by the estimated
dispersion parameter from P__disp, 1.3278. The extra correlation that results
in the data from the panel structure may be reduced by incorporating a pa-
rameter that accounts for the within-hospital correlation of observations. It
may be that staying in different hospitals makes no difference for the length
of stay. Two common approaches for handing such data are by use of a fixed-
effects or a random-effects model, which are the subjects of this chapter.

6.1.1 Fixed- or Random-Effects Models

There is no unanimity among statisticians as to what constitutes a fixed-
versus a random-effects model. The most common distinction is that a fixed-
effects model assumes that the observations in a panel all come from a fixed
source. The differences in the observations within panels are therefore not
important. In addition, a fixed-effects model assumes that the primary interest
of the study are the measurements themselves.

A random-effects model, on the other hand, assumes that the measure-
ments within panels are representative of a greater population. Inference to a
greater population is therefore of paramount importance. Typically the ran-
dom effects are given as normally distributed with a mean of 0 and variance
of σ2, but this does not need to be the case.

We shall discuss each type of model in the following two sections. Our
primary interest, however, is not in the theory of panel models, but rather in
the code that can be used to estimate panel models in general. An overview
of the logic of these two types of models will be given together with a brief
look at some of their characteristics and caveats.

6.2 Fixed-Effects Model

6.2.1 Unconditional Fixed-Effects Models

A fixed-effects model may be parameterized as unconditional or as conditional.
Unconditional fixed-effects estimators include a dummy or indicator variable
for each of the J − 1 panels in the data. The same model that was used for

182 Methods of Statistical Model Estimation

non-panel or pooled data is used to estimate the unconditional model. In R
this is done by use of the factor option, where the individual panels in the
data are each given an intercept, with the lowest level being the reference.
The model can be rather cumbersome if there are more than a few panels in
the model.

For example, we model the medpar data as we did above, but add a factor
predictor for hospital (provnum). Since there are 54 distinct hospitals, the
model will display 53 separate coefficients that are related to the reference
level, provnum = 030001, in addition to the parameter estimates of hmo and
white. We also recode the factor to save space.

> medpar$pr <- factor(substr(medpar$provnum, 3, 6))

> ufenb <- ml_glm2(los ~ hmo + white + pr,

+ formula2 = ~1,

+ data = medpar,

+ family = "negBinomial",

+ mean.link = "log",

+ scale.link = "identity_s")

The reader may wish to compare the speed of convergence of ml_glm2 with
that of (the superior) glm.nb. To save space we display only the first and last
few fixed panel effects of the model output.

> summary(ufenb)

Call:

ml_glm2(formula1 = los ~ hmo + white + pr, formula2 = ~1,

data = medpar, family = "negBinomial", mean.link = "log",

scale.link = "identity_s")

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8990 -0.8706 -0.2023 -0.2114 0.4889 3.6050

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 1.9851 0.1154 17.2044 2.46e-66 1.75896 2.2113

hmo -0.1063 0.0548 -1.9400 0.0524 -0.21364 0.0011

white -0.0177 0.0713 -0.2484 0.804 -0.15746 0.1220

. . .

pr0093 0.2861 0.1465 1.9528 0.0508 -0.00105 0.5732

pr0094 0.1565 0.2362 0.6625 0.508 -0.30648 0.6195

pr2000 1.3115 0.1437 9.1291 6.91e-20 1.02991 1.5931

pr2002 1.3724 0.2279 6.0206 1.74e-09 0.92559 1.8191

Panel Data 183

pr2003 1.8933 0.4639 4.0812 4.48e-05 0.98405 2.8026

(Intercept)_s 0.3905 0.0181 21.5281 8.5e-103 0.35499 0.4261

Null deviance: 1868.147 on 1493 d.f.

Residual deviance: 1565.204 on 1438 d.f.

AIC: 9551.933

> nbtest3 <- glm.nb(los ~ hmo + white + pr, data = medpar)

> P__disp(nbtest3) # Pearson dispersion

pearson.chi2 dispersion

1492.374547 1.037091

The dispersion statistic has reduced to 1.037 from 1.329. Clearly the un-
conditional fixed-effects model is superior to the standard negative binomial
model. It is also evident that modelling all 54 hospitals this way is messy, with
many provnum levels not significantly contributing to the model. Probably
many levels can be combined. As a rule, contiguous panels may be combined
if their slopes are near identical, or if one panel is a significant level and one
or more contiguous levels to it are not. If the level contiguous to the reference
level is not significant, one may refrain from entering it in the model. In such
a case the new reference is the combined first two levels of the factored panel
variable. Note that unless one actually encodes the first two levels to form a
single enlarged level, each non-reference level must be specifically indicated in
the model. For any of these modelling options, it is necessary to test the new
relationships, for example using a likelihood ratio test.

An unconditional fixed-effects model may be appropriate if it comprises no
more than four to ten or twelve levels. Such models are also preferred when
one wishes to know the values of the various fixed panel-level parameters in
the model. When there are a large number of levels, most statisticians will
select a conditional fixed-effects model if the data consists of fixed panels.

6.2.2 Conditional Fixed-Effects Models

Unconditional fixed-effects models are estimated using standard GLM soft-
ware. Conditional fixed-effects models, however, are derived from a different
parameterization of the underlying exponential family of distributions from
which generalized linear models are based. That is, conditional fixed-effects
models amend the GLM PDF and log-likelihood to accommodate the panel
nature of the data. An extra parameter, γ, is provided to the model. γ sym-
bolizes the unknown cluster-specific parameters, which are independent across
panels.

yij = Xijβj + γj + ǫij (6.1)

The key to understanding conditional fixed-effects models is to under-

184 Methods of Statistical Model Estimation

stand that the fixed-panel effects are conditioned out of the likelihood func-
tion through the sufficient statistic yij . In the case of the negative binomial,
the heterogeneity parameter is also conditioned out, leaving a log-likelihood
that appears as follows.

L(λ|y) =

n∑

i=1

[
log Γ

(
ni∑

t=1

λit

)
+ log Γ

(
ni∑

t=1

yit + 1

)

− log Γ

(
ni∑

t=1

λit + yit

)

+

ni∑

t=1

[log Γ(λit + yit)− log Γ(λit)− log Γ(yit)]

]
(6.2)

Note that neither γ nor the negative binomial heterogeneity parameter α
is included in the log-likelihood. Except for the many summations employed
in the function, the log-likelihood is relatively simple to estimate.

Also note that the conditional fixed-effects negative binomial model is
based on the linear parameterization of the negative binomial, commonly re-
ferred to as NB1 (Hilbe, 2011). The NB1 likelihood is

L(λ|y, δ) =
Γ(yi + λi)

Γ(yi + 1)Γ(λi)

(
δ

1 + δ

)λi
(

1

1 + δ

)yi

(6.3)

which includes the heterogeneity parameter, δ. Conditioning on the sufficient
statistic eliminates δ. The relationship of NB1 and the conditional fixed-effects
model is fully discussed in Hardin and Hilbe (2012). δ is understood the same
way as α, the heterogeneity parameter of the traditional parameterization of
negative binomial, NB2.

The difference in the NB1 and NB2 derives from their respective variance
functions. With µ symbolizing the same mean parameter as λ, the NB1 and
NB2 models have variance functions defined as µ + αµ and µ + αµ2, respec-
tively. The ‘1’ and ‘2’ associated with NB in the above equations indicate the
degree of the variance function, with NB1 being linear and NB2 quadratic.
The symbol µ is nearly always used with respect to generalized linear models,
whereas λ is generally used to indicate the mean parameter for count models
that are estimated using a non-IRLS full maximum likelihood routine.

A foremost concern of panel models in general is the relationship of
between-panel variation to within-panel variation. When panels deal with ob-
servations on people over time, the consideration is of the relationship of
between-person to within-person variation. For fixed characteristics such as
gender, race, date-of-birth and so forth, there is only between-person varia-
tion. A specific person will be male, for example, across other characteristics,
with no change in value (unless the study relates to sex change operations
for instance). For our example, panels are of hospitals, which do not change

Panel Data 185

within panels. Conditional fixed-effects models, by eliminating fixed panels or
items from the model, focus on explaining within-panel variation for items or
characteristics that are not fixed. Between-item or person variation, however,
is not estimated by the conditional fixed-effects model. The result of this is an
inflation of standard errors. Random-effects models solve this problem though
by modelling both within and between item variation, and by having γ fol-
low a specific probability distribution whose parameters are estimated by the
model (Hilbe, 2009). We address random-effects models in the next section.

It should be mentioned that each type of conditional fixed-effects model
has features that may not be shared by other conditional fixed-effects mod-
els. For instance, the negative binomial conditional fixed-effects model has an
intercept, whereas the corresponding Poisson model does not. Excellent dis-
cussions of these model characteristics can be found in Hsiao (2003) and Frees
(2004).

We now address an approach that can be taken to estimate conditional
fixed-effects negative binomial parameter estimates. We do not estimate a
value of the heterogeneity parameter, nor of the fixed-effects parameter. The
key to the solution is accounting for the panel structure of the data, which
must be summed within panels and then across panels. We note that R has
not previously supported this model to our knowledge. We have compared its
estimates, standard errors and associate statistics with Stata output on the
same data.

6.2.3 Coding a Conditional Fixed-Effects Negative Binomial

We selected to encode conditional fixed-effects negative binomial because it
can be estimated using maximum likelihood methodology and since neither
the heterogeneity parameter, δ, nor the parameter for the within-item panel
effect needs to be estimated. Not all fixed-effects models are as simple, and
not all can be estimated using maximum likelihood, requiring techniques such
as EM and quadrature. This will be particularly the case when dealing with
random-effects models.

We may adapt the previous code used for estimating a model using max-
imum likelihood for the conditional fixed-effects negative binomial. Without
having to estimate any parameter other than the mean, which we may sym-
bolize as either µ or λ, estimation is relatively simple. The challenge is in
summing observations within samples, then summing across panels. It is also
easier to break up the log-likelihood function into separate terms, performing
the required operations separately on each.

We program the conditional fixed-effects negative binomial log-likelihood
as:

> jll.gNegBinomial <- function(y, y.hat, groups, ...) {

+ y.hat.sum.g <- tapply(y.hat, groups, sum)

+ y.sum.g <- tapply(y, groups, sum)

186 Methods of Statistical Model Estimation

+ both.sum.g <- y.hat.sum.g + y.sum.g

+ lg.y.hat.sum.g <- tapply(lgamma(y.hat), groups, sum)

+ lg.y.sum.g <- tapply(lgamma(y + 1), groups, sum)

+ lg.both.sum.g <- tapply(lgamma(y + y.hat), groups, sum)

+ ll <- sum(lgamma(y.hat.sum.g) + lgamma(y.sum.g + 1) -

+ lgamma(both.sum.g) + lg.both.sum.g -

+ lg.y.sum.g - lg.y.hat.sum.g)

+ }

We have made liberal use of the excellent tapply function, which allows for
the calling of a function across levels of a factor, here the grouping structure.

Note that this likelihood is a function of the linear predictor and the data.
We can re-use much of the programming infrastructure that was developed in
the first part of Chapter 4, which we do not list here again. The reader should
ensure that the objects defined in that chapter are loaded, ideally by loading
the msme package.

> library(msme)

We need to do one more thing. It turns out that fitting a null model is
problematic with the setup we developed in Chapter 5. So, we rewrite our
ml_glm2 function to drop the null model. We refer to this version as ml_glm3.

> ml_glm3 <- function(formula,

+ data,

+ family,

+ link,

+ offset = 0,

+ start = NULL,

+ verbose = FALSE,

+ ...) {

+ mf <- model.frame(formula, data)

+ y <- model.response(mf, "numeric")

+ class(y) <- c(family, link, "expFamily")

+ X <- model.matrix(formula, data = data)

+ if (any(is.na(cbind(y, X)))) stop("Some data are missing!")

+ if (is.null(start)) start <- kickStart(y, X, offset)

+ fit <- maximize(start, Sjll, X, y, offset, ...)

+ if (verbose | fit$convergence > 0) print(fit)

+ beta.hat <- fit$par

+ se.beta.hat <- sqrt(diag(solve(-fit$hessian)))

+ residuals <- devianceResiduals(y, beta.hat, X, offset, ...)

+ results <- list(fit = fit,

+ X = X,

+ y = y,

+ call = match.call(),

Panel Data 187

+ obs = length(y),

+ df.null = length(y) - 1,

+ df.residual = length(y) - length(beta.hat),

+ deviance = sum(residuals^2),

+ null.deviance = NA,

+ residuals = residuals,

+ coefficients = beta.hat,

+ se.beta.hat = se.beta.hat,

+ aic = - 2 * fit$val + 2 * length(beta.hat),

+ i = fit$counts[1])

+ class(results) <- c("msme","glm")

+ return(results)

+ }

> data(medpar)

The code to fit the conditional fixed-effects negative binomial model is now
run using the familiar function call.

> med.nb.g <- ml_glm3(los ~ hmo + white,

+ family = "gNegBinomial",

+ link = "log",

+ group = medpar$provnum,

+ data = medpar)

We can obtain the usual important summary information from our function
as follows.

> summary(med.nb.g)

Call:

ml_glm3(formula = los ~ hmo + white, data = medpar,

family = "gNegBinomial", link = "log",

group = medpar$provnum)

Deviance Residuals:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-51.14 51.14 51.14 37.66 51.14 51.14

Coefficients:

Estimate SE Z p LCL UCL

(Intercept) 0.92927 0.07581 12.258 1.525e-34 0.7807 1.07786

hmo -0.07014 0.05153 -1.361 0.1735 -0.1711 0.03086

white -0.02698 0.06533 -0.413 0.6796 -0.1550 0.10106

Null deviance: NA on 1494 d.f.

188 Methods of Statistical Model Estimation

Residual deviance: 3909331 on 1492 d.f.

AIC: 8992.173

Number of iterations: 248

We checked these results against the same model fit using Stata’s xtnbreg

function, and the estimates, standard errors, and fit statistics are identical.
We see that neither hmo nor white significantly contribute to the model

fit. Neither did they contribute to the unconditional model. Recall that both
hmo and white appeared to be significant when used in a traditional negative
binomial model, but the fact that the model was over-dispersed meant that
the estimates of the standard errors were biased.

It should be noted that the negative binomial conditional-effects model
is not a true fixed-effects model. Allison and Waterman (2002) discovered
that the model fails to control for all of its predictors. Several statisticians
attempted to resolve the problem by using a negative multinomial model in
place of a conditional fixed-effects negative binomial, but it was discovered
that the estimates were identical to the conditional Poisson, and therefore do
not appropriately accommodate any excess dispersion over that modeled by
the conditional Poisson (Hilbe, 2011). Allison and Waterman (2002) recom-
mend using the unconditional fixed-effects model rather than the conditional,
but in cases where there are a host of panels such a recommendation is not
satisfactory. We recommend that an unconditional fixed-effects model be used
in place of an conditional model if possible. For data situations in which there
are a large number of panels it may be preferred to employ a random-effects
or a generalized estimating equation model.

6.3 Random-Intercept Model

6.3.1 Random-Effects Models

Random-effects models are appropriate when the observations being measured
or recorded are assumed to be randomly drawn from a greater population
that is distributed according to some known probability distribution. This set
of models is not intended to directly estimate random effects, but rather a
variance component from the distribution of the random effect. An important
assumption that is characteristic of random-effects models is that the random
effects are uncorrelated with the explanatory predictors.

Modelling an effect as random usually — although not necessarily — as-
sumes that the random effects are normally distributed. Often, however, this
is not the case. For example, with random-effects count models the random-
effects term can be assumed to follow the gamma distribution. Whether one
assumes a non-normal distribution for the random effect is usually driven by

Panel Data 189

whether the resulting joint distribution has an analytic solution. As such, we
focus on normal effects to keep the model as elementary as possible.

Many researchers use the term random effects referring to what is now
commonly called a random-intercept model. The random-intercept model is
a subset of random-coefficient models. The larger set of models allow model
coefficients to vary between panels; the random-intercept model allows only
the intercept to vary between panels. For a longitudinal study where each
panel in the data consists of measurements made on an individual over time,
a random-intercept model of the data comprises a separate intercept for each
panel or individual. We shall examine a Gaussian random-intercept model
where panels, or individuals, are normally distributed with a zero mean and
estimated random-intercept variance σ2.

Random-intercept models have been symbolized in a variety of ways. The
following is a common way of symbolizing the basic random-intercept model:

yit = αi + Xitβ + ǫit (6.4)

with αi indicating the random intercept for each panel in the model, Xit

representing data structured with observations, i, within panels, t. β is the
coefficient or slope of the predictors, and ǫit are the observation-level model
errors measured for each individual within panels. The unobserved random
intercepts are assumed to follow a normal distribution with mean 0 and vari-
ance σ2

α and are sometimes referred to as random effects. It should be noted
that we used γ as the parameter for the panel effect in the fixed-effects model
in the previous section. α is used here to clearly differentiate between the
two types of models. Each is dealt with by their respective model in entirely
different ways.

The random effects may be correlated within panels but are independent
between panels. A random-intercept model is best estimated if the model con-
sists of ten or more panels each with two or more observations. Random-effects
models may include single-unit panels, but such panels obviously provide no
information regarding within-panel correlation, or information regarding the
relationship of within-panel to between-panel variance. Single panels do, how-
ever, contribute to estimation of the model βs.

Typical output from a Gaussian random intercept model includes statis-
tics for both the standard deviation of αi, the random intercepts, and of the
standard deviation of ǫit, the residuals. If the standard deviation of αi signif-
icantly differs from zero, the intercepts do vary, and contribute to the extra
correlation in the data. A likelihood ratio test may also be used to evaluate if
the data are best modeled using a random-effects model or a pooled model;
i.e., a model where panels are pooled and have no effect on the model. Both
statistics often thought to be distributed as Chi2 with one degree of freedom;
however, see Stram and Lee (1994), Pinheiro and Bates (2000), and our Sec-
tion 7.2.3. p-values under 0.05 indicate that the random-intercept model is
preferred.

Keep in mind that there are more complex random-effects models, as well

190 Methods of Statistical Model Estimation

as mixed-effects models. We have described the most elementary model of
this set of models where only the intercept varies across panels. However,
it is a good model to use for explaining the logic of this set of models in
general. Also, note that random-effects models, including random intercept
models, are many times estimated by means other than maximum likelihood.
We show how to encode a maximum-likelihood Gaussian random-intercept
model in this chapter, and will leave discussion of the EM algorithm to the
following section.

We shall use the ufc data from the msme package for an example of a
panel model that is suitable for estimation using a Gaussian random-intercept
model. The data relates to a forestry study. We propose to construct a model
with tree height (height.m) as the response and tree bole (trunk) diameter
at 1.37 m from the ground (dbh.dm) as the predictor. Panels consist of plots
(plot), which can be regarded as a representative sample from the greater
population of all plots. There are 144 distinct plots with a total of 637 obser-
vations, only about half of which have measures for both variables. Panels of
plots consist of 1 to 13 observations. DBH size ranges from 100 to 1120 cm.
The response variable, height.m, ranges from 0 (1 observation) to 380 cm.

Before describing code that can be used to estimate a basic random-effects
model, we load and display the type of data that will be used in the model.

> library(msme)

> data(ufc)

> ufc <- na.omit(ufc)

> head(ufc)

plot tree species dbh.cm height.m

2 2 1 DF 39 20.5

3 2 2 WL 48 33.0

5 3 2 GF 52 30.0

8 3 5 WC 36 20.7

11 3 8 WC 38 22.5

12 4 1 WC 46 18.0

The basic descriptions of the response variable, height.m, and predictor,
dbh.cm, are displayed as:

> summary(ufc$height.m)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 18.85 24.00 24.07 29.15 48.00

> summary(ufc$dbh.cm)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.00 22.85 33.50 36.44 46.30 112.00

Panel Data 191

The nlme, gamlss.mx, lme4, and plm packages can all be used to estimate
a wide range of fixed-, random-, and mixed-effects models. All four may be
downloaded from CRAN, and the first is included in the base R installation.
Here we use the lme function from the nlme package (Pinheiro and Bates,
2000).

> library(nlme)

> renorm.lme <- lme(height.m ~ dbh.cm,

+ random = ~ 1 | plot,

+ data = ufc, method = "ML")

> summary(renorm.lme)

Linear mixed-effects model fit by maximum likelihood

Data: ufc

AIC BIC logLik

2362.745 2378.62 -1177.373

Random effects:

Formula: ~1 | plot

(Intercept) Residual

StdDev: 1.279798 4.758336

Fixed effects: height.m ~ dbh.cm

Value Std.Error DF t-value p-value

(Intercept) 12.698399 0.5760215 256 22.04501 0

dbh.cm 0.310401 0.0140255 256 22.13119 0

Correlation:

(Intr)

dbh.cm -0.884

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-6.78362499 -0.55246700 0.02914238 0.53189967 2.50511273

Number of Observations: 391

Number of Groups: 134

6.3.2 Coding a Random-Intercept Gaussian Model

We first must provide the log-likelihood function for the random-intercept
Gaussian model. With the variance of the random intercepts symbolized as
σ2

u and the variance of the errors as σ2
ǫ , a standard formulation for the log-

likelihood of the i-th panel is

L = −1

2

∑
t z2

it − γi(
∑

t zit)
2

σ2
ǫ

+ ln

(
ni

σ2
u

σ2
ǫ

+ 1

)
+ ni ln(2πσ2

ǫ) (6.5)

192 Methods of Statistical Model Estimation

where i is the panel indicator, t the within-panel indicator, ni is number of
observations in i-th panel, zit = yit − xitβ, and

γi =
σ2

u

niσ2
u + σ2

ǫ

(6.6)

A pseudo-code setup of the log-likelihood function simplifies understanding
complex models. Pseudo-code is code that appears close to the code that
will be used to estimate the model. It provides the logic of the log-likelihood
function. Note that we use Su to indicate the natural log of the standard
deviation of the intercepts and Se to symbolize the natural log of the standard
deviation of the errors, that is, we will use the log link function for the variance
components. It is necessary to use the standard deviations here because terms
will be used to modify them prior to squaring.

g = exp(Se)2/(N ∗ exp(Su)2 + exp(Se)2)

a = (
∑

t

(z2)− g ×
∑

t

(z)2/ exp(Se)2

b = ln(N ∗ exp(Su)2/ exp(Se)2 + 1)

c = N ∗ ln(2 ∗ π ∗ exp(Se)2)

L =
∑

(−0.5 ∗ (a + b + c))

Translating this pseudo-code into R gives the following code as a definition of
the objective function.

> jll_gnormal <- function(params, y, X, group, ...) {

+ p <- ncol(X)

+ N_i <- tapply(y, group, length)

+ Su <- exp(params[p+1])

+ Se <- exp(params[p+2])

+ z <- y - X %*% params[1:p]

+ gamma_i <- Su^2 / (N_i * Su^2 + Se^2)

+ c1 <- (tapply(z^2, group, sum) -

+ gamma_i * tapply(z, group, sum)^2) / Se^2

+ c2 <- log(N_i * Su^2 / Se^2 + 1)

+ c3 <- N_i * log(2 * pi * Se^2)

+ return(sum(-0.5 * (c1 + c2 + c3)))

+ }

We now gather the pieces of data that we need to populate and then maximize
this function. For convenience, we will place them in a list object. Following the
examples above, y will be tree height, X will be a design matrix constructed
for the regression of tree height upon tree diameter, and the group structure
will be defined by the forest plot.

Panel Data 193

> ufc.model <- with(ufc,

+ list(y = height.m,

+ X = model.matrix(~ dbh.cm),

+ group = plot))

We pick some arbitrary starting points for our parameter estimates to provide
to the optimizer, and try to evaluate the objective function at those points.

> start <- c(1,1, 1, 1)

> with(ufc.model, jll_gnormal(start, y, X, group))

[1] -5286.406

This result seems satisfactory. We can now call optim on the objective function
using these data and start points with some confidence.

> ufc.fit <-

+ with(ufc.model,

+ optim(start,

+ jll_gnormal,

+ y = y,

+ X = X,

+ group = group,

+ method = "BFGS",

+ control = list(fnscale = -1,

+ reltol = .Machine$double.eps,

+ maxit = 10000)))

The fitting exercise has converged. The astute reader will note that we have
used the method and control arguments to change the nature and behavior
of the optimizer. The same reader may wish to experiment with the default
settings and these data and model.

The parameter estimates for the fixed and random effects, as fitted above,
are the same as obtained in the earlier demonstration, to three significant
digits. First we compare the fixed effects, with the lme object presented first:

> fixed.effects(renorm.lme)

(Intercept) dbh.cm

12.6983992 0.3104011

> ufc.fit$par[1:2]

[1] 12.6983993 0.3104011

then the random effects, lme object presented first:

> VarCorr(renorm.lme)[,2]

194 Methods of Statistical Model Estimation

(Intercept) Residual

"1.279798" "4.758336"

> exp(ufc.fit$par[3:4])

[1] 1.279796 4.758338

6.4 Handling More Advanced Models

We indicated that the random-intercept model is a subset of the more gen-
eral random-coefficient model, for which the coefficients of the slopes are also
allowed to vary across panels. This type of model is nearly always estimated
using an EM algorithm, or by either adaptive or Gaussian quadrature, pe-
nalized least squares, generalized least squares, or by simulation. In order to
capture the effects of both slopes and intercepts varying the general random-
effects model is generally symbolized as:

yit = Xitβt + btZit + ǫit (6.7)

where ζt are the random coefficients of the model, including the intercept, and
z are the predictors or covariates corresponding to the random effects. Xβ are
the fixed effects. A random-intercept model will be indicated as having the
random component symbolized as btZ0t. This formulation leads to the more
general set of mixed and multilevel models.

We have been discussing two-level models in the chapter. Three and four-
level nested models can also be developed by adding more terms to Equa-
tion 6.7, an extra term for each level. Partitioning more levels of variability
does not come without problems though. We recommend Gelman and Hill
(2007) for a thorough discussion of these types of models. The authors use R
for all examples.

6.5 The EM Algorithm

The EM algorithm is an iterative method used to determine the maximum
likelihood estimator of a model parameter when some of the data in the model
are unobserved. The method was first defined and referred to as EM by Demp-
ster et al. (1977), with their acknowledgment that forms of the method had
previously been used in research by others. For example, Hartley (1958) used
a technique very similar to EM when dealing with multinomial models having
missing data. He admits in his article, though, that the method he used was

Panel Data 195

old and varied. Dempster et al. trace EM back to McKendrick (1926), and
Efron in his discussion of Dempster et al.’s paper mentions Fisher (1925) as
having anticipated the method. It should also be noted that the Baum–Welch
algorithm presented by Baum et al. (1970) for modelling hidden Markov mod-
els in speech recognition used the same method as now recognized as EM. The
use of EM in related fields is largely due to this paper. We recommend Meng
and van Dyk (1997) for an excellent overview of the method and its origin.
McLachlan and Krishnan (2008) is recommended as an excellent text on the
method and its variations.

Missing and unobserved data have been a problem in statistics for a long
time. The EM algorithm is now primarily used to handle models with miss-
ing values, as well as models with random effects, latent and censored vari-
ables, and models with other types of multilevel and panel structures. The
method generally used for missing values, however, is a bit different from
how the method is employed when finding maximum likelihood estimates of
unobserved parameters. In fact, there are a host of variants of the basic EM
method. The acronym EM represents “Expectation–Maximization,” which in-
dicates that it is a two-stage process.

The first stage of the method separates the data into two components —
(1) where data or parameters are observed, and (2) for data that is missing
or parameters that are unobserved. The first step calculates a full maximum
likelihood estimation on the observed data and parameters. The conditional
expectation of the missing data or parameters are obtained. This is the E-step.

The next stage is to maximize the data using the conditionally expected
values in the place of missing values or unobserved parameters. This is the
M-step.

The conditional expected values for the original missing values are again
calculated, and are inserted as new values into the data. This is the second
stage E-step. A full MLE of the data including the imputed values is obtained
— the second stage M-step. The procedure continues to when there is very
little change in the parameter estimates of the M-step model.

The EM algorithm has a number of statistically appealing properties, in-
cluding:

1. It can be used to provide estimates of missing values.

2. Most of the leading software applications support EM.

3. It can produce unbiased parameter estimates for models with miss-
ing values, and with adjustment, unbiased standard errors.

Likewise, there may be complications with implementing the method, includ-
ing:

1. It can be slow, taking hundreds or more iterations to converge.

2. The variance-covariance matrix is not estimated; however, with ad-
justments it can usually be determined.

196 Methods of Statistical Model Estimation

3. The algorithm can be difficult to implement for various modelling
situations.

It is also important to keep in mind that when using EM for imputing
missing values, it is assumed that the missing values are either missing com-
pletely at random (MCAR) or at least missing at random (MAR). If there is
a correlation to the missingness, or missing values come in blocks, then EM
methodology will not be appropriate. When missing values are MCAR, they
are randomly distributed across all observations in the data. When MAR, the
missing values are randomly distributed within one of more subsamples of the
data. See Hardin and Hilbe (2002) for a discussion of missingness in general
and its application to both pooled and panel models.

6.5.1 A Simple Example

We demonstrate a simple example of an EM algorithm for imputing missing
values using the ufc data. Note that we eliminated the missing values during
our previous usage, so we need to reload the data.

> library(msme)

> data(ufc)

We next examine the missingness pattern with the ufc dataframe. We do
this by using the sapply function upon a bespoke function that simply sums
the count of missing values on a vector.

> sapply(ufc, function(x) sum(is.na(x)))

plot tree species dbh.cm height.m

0 0 0 10 246

We then eliminate the responses that correspond to empty plots, namely those
that have missing values for dbh.cm.

> ufc <- ufc[!is.na(ufc$dbh.cm),]

We now record which observations have missing height values in a variable
called na, and replace the missing heights with the mean height.

> ufc$na <- is.na(ufc$height.m)

> ufc$height.m[ufc$na] <- mean(ufc$height.m, na.rm = TRUE)

We are in position to begin looping. Here we just use a tuned for loop;
we could also apply a while function, but this is left as an exercise for the
reader. The loop comprises three steps, two major and one minor: we fit the
model to the complete dataset (this is the Maximization step), then use the
model to predict the missing heights (this is the Expectation step), and finally
we record the coefficients for post-hoc reporting.

Panel Data 197

> reps <- 20

> trace <- vector(mode = "list", length = reps)

> for (i in 1:reps) {

+ refit.lm <- lm(height.m ~ dbh.cm,

+ data = ufc,

+ na.action = na.exclude) # M step

+ ufc$height.m[ufc$na] <-

+ predict(refit.lm, newdata = ufc)[ufc$na] # E step

+ trace[[i]] <- coef(refit.lm)

+ }

The combination of functions do.call and rbind provide a convenient way
to stitch the elements of the trace list together.

> trace <- do.call(rbind, trace)

Figure 6.1 shows the trajectory of the EM parameter estimates, along
with a cross at the least-squares estimates, which is in any case the location
of convergence. It is constructed using the following code.

> par(las = 1, mar=c(4,4,2,1))

> plot(dbh.cm ~ ‘(Intercept)‘, data = trace, type = "b")

> base.model <- lm(height.m ~ dbh.cm, data = ufc)

> points(coef(base.model)[1], coef(base.model)[2],

+ cex = 2, pch = 3)

6.5.2 The Random-Intercept Model

We now demonstrate how to fit the random-intercept model using the EM al-
gorithm. This example is instructive because it shows that despite the concep-
tual simplicity of EM, quite a lot of work has to be done to make it operational
in real settings.

First, we review the algorithm, which is from Demidenko (2004). Let the
model for the data in the i-th group be

yi = Xiβ + Zibi + ǫi, i = 1, . . . , n. (6.8)

where the definitions are as previously. Let ǫi ∼ N(0, σ2) and bi ∼ N(0, σ2D).
Let NT be the count of all the observations. Denote

Vi = I + ZiDZ′
i (6.9)

The updating algorithms to go from s to s + 1 are then

σ2
s+1 = σ2

s − 1 +
1

σ2
sNT

N∑

i=1

(yi −Xiβs)′V−1
is (yi −Xiβs) (6.10)

198 Methods of Statistical Model Estimation

13 14 15 16 17

0.20

0.22

0.24

0.26

0.28

0.30

(Intercept)

d
b

h
.c

m

FIGURE 6.1

Trajectory of EM-based parameter estimates for the regression of tree height
upon diameter for the ufc dataset.

Ds+1 =Ds −
1

N

N∑

i=1

[
DsZ′

iV
−1
is ZiDs

− DsZ′
iV

−1
is eise′

isV−1
is ZiDs/σ2

s

]
(6.11)

βs+1 =

[
N∑

i=1

X′
i(I + ZiDsZ′

i)
−1Xi

]−1 N∑

i=1

X′
i(I + ZiDsZ′

i)
−1yi (6.12)

We code the algorithms in the following way. The representation is group-
by-group, which keeps the memory overhead comparatively low. In order to
retain this structure of the algorithm conveniently, we create lists of matrices,
and use the mapply function to manipulate them elementwise. First, we recover
the data, and strip out the missing values.

> data(ufc)

> ufc <- na.omit(ufc)

The following declarations are definitions from the model specification.

Panel Data 199

> (N_T <- nrow(ufc))

> N <- length(unique(ufc$plot))

> y_i <- with(ufc, split(height.m, plot))

> x_i <- with(ufc, split(dbh.cm, plot))

> X_i <- lapply(x_i, function(x) cbind(1, x))

> Z_i <- lapply(x_i, function(x) matrix(1, nrow = length(x)))

We need to find suitable start points. We take the residual variance from an
OLS fit to the data as σ2

0 , the variance of the plot-level means of the residuals
as D0, and the coefficients from the same model as the starting parameter
estimates β0.

> lm.start <- with(ufc, lm(height.m ~ dbh.cm))

> (s2 <- summary(lm.start)$sigma^2)

[1] 24.41567

> (D <- with(ufc,

+ var(tapply(residuals(lm.start),

+ plot,

+ mean))))

[1] 11.84213

> beta <- coef(lm.start)

> dim(beta) <- c(length(beta), 1)

We also need to define the inverse of the variance matrix V. Here we do so as
elements of a list.

> V_inv <- lapply(Z_i,

+ function(Z, D)

+ solve(diag(nrow(Z)) + Z %*% D %*% t(Z)),

+ D = D)

We can now begin the loop. In this variation we update the estimates sequen-
tially because the program flow is easier to follow. Hence the code below does
not quite marry with Equations 6.9–6.12.

> for (i in 1:2000) {

+

+ ## First, compute the list of E_i as within-group residuals

+ ## from the fixed effects.

+

+ E_i <- mapply(function(y, X, beta)

+ y - X %*% beta,

+ y = y_i, X = X_i, beta = list(beta))

200 Methods of Statistical Model Estimation

+

+ ## Then obtain the within-group variance contribution by the

+ ## weighted inner product of the residuals for each group.

+

+ s2.i <- mapply(function(E, V)

+ sum(t(E) %*% V %*% E),

+ E = E_i, V = V_inv)

+

+ ## Sum these across the groups, scale them, and use them to

+ ## update the variance estimate.

+

+ s2 <- s2 - 1 + sum(s2.i) / (s2 * N_T) # This is 6.10

+

+ ## D_i is the groupwise calculated correction to matrix D.

+ ## Refer to Equation 6.11; the following is the quantity

+ ## within the squared brackets.

+

+ D.i <-

+ mapply(function(D, Z, V, E, s2)

+ D %*% t(Z) %*% V %*% Z %*% D -

+ D %*% t(Z) %*% V %*% E %*% t(E) %*%

+ V %*% Z %*% D / s2,

+ D = list(D), Z = Z_i, V = V_inv, E = E_i,

+ s2 = list(s2))

+

+ D <- D - sum(D.i) / N # This is 6.11

+

+ ## We can now update V, given the new D. Note our use of

+ ## diag(nrow(Z)) to create a suitably sized identity matrix

+ ## on the fly.

+

+ V_inv <- lapply(Z_i,

+ function(Z, D)

+ solve(diag(nrow(Z)) + Z %*% D %*% t(Z)),

+ D = D) # This is 6.9

+

+ ## Finally we update Beta

+

+ beta.denom <-

+ mapply(function(X, D, Z)

+ t(X) %*% solve(diag(nrow(Z)) +

+ Z %*% D %*% t(Z)) %*% X,

+ X = X_i, D = list(D), Z = Z_i, SIMPLIFY = FALSE)

+

+ beta.num <-

Panel Data 201

+ mapply(function(X, D, Z, y)

+ t(X) %*% solve(diag(nrow(Z)) +

+ Z %*% D %*% t(Z)) %*% y,

+ X = X_i, D = list(D), Z = Z_i, y = y_i,

+ SIMPLIFY = FALSE)

+

+ beta <- solve(Reduce(‘+‘, beta.denom)) %*%

+ Reduce(‘+‘, beta.num) # 6.12

+

+ }

The only new function used here is Reduce, which we use to sum the
lists of matrices, elementwise. See ?Reduce for its general purpose. After a
sufficiently large number of iterations, we examine the parameter estimates.
The EM estimates of the fixed effects are here compared with the result from
lme, with the latter presented first.

> fixed.effects(renorm.lme)

(Intercept) dbh.cm

12.6983992 0.3104011

> beta[,1]

x

12.6983992 0.3104011

Next we compare the estimated random effects from each model, again with
that from lme first.

> VarCorr(renorm.lme)[,1]

(Intercept) Residual

" 1.637883" "22.641760"

> c(D*s2, s2)

[1] 1.637883 22.641760

All of the EM parameter estimates compare well with those from lme.

6.6 Further Reading

There are numerous excellent texts on the analysis of panel models. We par-
ticularly admire Pinheiro and Bates (2000), Schabenberger and Pierce (2002),
Fitzmaurice et al. (2004), Demidenko (2004), and Gelman and Hill (2007).
Robert and Casella (2010) provide very easy to read coverage of the EM al-
gorithm.

202 Methods of Statistical Model Estimation

6.7 Exercises

1. Why does having a panel structure to the data violate the distribu-
tional assumptions of maximum likelihood theory?

2. What is the essential difference between a fixed- and random-effects
model?

3. What is the foremost difference between an unconditional and a
conditional fixed-effects model?

4. Amend the conditional fixed-effects code in Section 6.2.3 so that it
can be used to estimate conditional fixed-effects logistic regression.

5. Write the needed functions to wrap the random-intercepts model
above in an ml_ style model-fitting function.

6. Use the EM algorithm for a normal regression model with missing
values for one of more predictors. The use of the norm package from
CRAN is acceptable.

7. Rewrite the EM code to use while instead of for.

7

Model Estimation Using Simulation

7.1 Simulation: Why and When?

Simulation has been part of statistics since near its very beginnings. However,
due to the memory requirements needed to perform all but the most ele-
mentary simulations, the method was not used until recently. Markov chain
sampling, for example, began with Metropolis et al. (1953) as an application in
physics. It was later refashioned as a statistical sampling method by Hastings
(1970). The sampling method he proposed became known as the Metropolis–
Hastings sampling algorithm. We discuss the method and provide full working
code for estimating a Bayesian Poisson model in the final section of the chap-
ter. A further advance to the methodology was made by statisticians Stuart
and Donald Geman in 1984 when they published a sampling method based on
the Metropolis–Hastings algorithm (Geman and Geman, 1984). They named
the method Gibbs sampling, after Josiah Gibbs of Yale University, one of
the leading physicists and engineers in the 19th century. In 1863 Gibbs was
awarded the first PhD in engineering in the United States. Gibbs is perhaps
best known for his work in developing the area of statistical mechanics with
Ludwig Boltzman and James Clerk Maxwell, as well as being the inventor
of vector calculus. Today the Metropolis–Hastings sampling algorithm and
Gibbs sampling are the two foremost methods of sampling used in Bayesian
modelling. Here, we cover only the former.

The sampling method proposed by Hastings did not gain popularity until
computers were powerful enough to run the many iterations needed for the
algorithms to find the appropriate posterior distribution for a given model.
Some work had been done using mainframe computers, but personal com-
puters were not widely available until the 1980s. The first IBM PC was not
released until August 1981.

In Bayesian modelling, the posterior distributions are obtained as the prod-
uct of the likelihood and prior distributions. It is from the posterior distri-
bution that model coefficients, standard deviations, and confidence/credible
intervals are determined. In the early days of Bayesian modelling, the prior
distribution was nearly always the conjugate of the likelihood. The conjugate
distribution, as will be discussed in the final section of the chapter, has the
same form as its associated probability, and therefore likelihood, function.
This allows for a relatively easy calculation of the posterior. However, when

203

204 Methods of Statistical Model Estimation

the conjugate is not appropriate, or available, for a given PDF, calculations
of the posterior can become very difficult, if not in practice impossible. The
Metropolis–Hastings method uses a Markov Chain sampling procedure, ex-
plained later, which employs a large number of iterations before stabilizing
at the posterior distribution of a model parameter; i.e., a coefficient or scale
parameter. Each parameter of a model has its own posterior distribution from
which the relevant summary statistics can be abstracted. In any case, this
procedure requires substantial computing memory and speed.

When Bayesian modelling was limited for practical purposes to models
based on conjugate distributions, many leading statisticians found fault with
the entire procedure, and in particular with the subjectivity with which prior
distributions were brought into the modelling process. But when computers
became powerful enough to fully employ methods like Metropolis–Hastings
and Gibbs sampling, such objections weakened substantially.

Bootstrap re-sampling was initiated by Bradley Efron in 1979, and be-
came a popular method for assessing model distributional assumptions from
the early 1990s (Efron, 1979). The acceptance of jackknife and bootstrap sam-
pling, however, made it easier for statisticians to accept Bayesian methodol-
ogy, which did not begin to become in use until shortly before 2000. Even with
increased computing power, and an acceptance of sampling as acceptable sta-
tistical methods, finding an appropriate Bayesian posterior distribution for
more complex models, and in particular hierarchical models, was still diffi-
cult, and only a few statistical packages existed for those wishing to engage
in Bayesian modelling.

With the turn of the century came WinBUGS, MLwiN, and R software.
Versions of these applications were available in beta and development form
earlier than this, but with 2000 came packages for general use. MLwiN is
a hierarchical models application with Bayesian modelling capability that is
developed at the University of Bristol in the U.K., and WinBUGS is mutu-
ally developed at Imperial College School of Medicine London and by MRC
Biostatistics in Cambridge, U.K. Based on Gibbs sampling, it is currently the
most well-used Bayesian application. SAS also has Bayesian modelling capa-
bility, having recently added it to the Genmod Procedure, SAS’s primary GLM
and GEE modelling software. The procedure uses a Gamerman sampling algo-
rithm. SAS has other Bayesian procedures as well. R developers have gradually
been adding Bayesian capabilities to R, but many R programmers prefer to
write their own functions, including their own Metropolis–Hastings and Gibbs
algorithms. Given the complexity of a generic Bayesian function R program-
mers prefer to develop software for the particular modelling task at hand. In
the final section of this chapter, we develop a complete Metropolis–Hastings
algorithm, which readers can then expand on for their own needs.

First though we show how sampling and what has become known as
Monte Carlo methodology develops. We begin by creating synthetic statis-
tical models which we have used in the text for assessing the distributional
properties of various models. We shall look with more detail here to how such

Model Estimation Using Simulation 205

synthetic models are developed. Following an examination of a single syn-
thetic model, we embed synthetic models within a sampling or Monte Carlo
algorithm which turns point estimate coefficients and parameters into random
variables. The mean, standard deviation, and confidence intervals are calcu-
lated in the normal manner. We next turn to sampling real model data from
estimated coefficients obtained using a maximum likelihood function. Finally,
in the last section, we discuss and develop an annotated Metropolis–Hastings
Poisson model.

7.2 Synthetic Statistical Models

Synthetic models are valuable for testing model assumptions and the bias of
model statistics. We shall demonstrate in this section how synthetic models
may be used to test our statement in Section 4.10 that the Pearson Chi2
dispersion statistic is the appropriate measure or test for assessing apparent
count model over-dispersion, whereas the deviance dispersion is not. In or-
der to test this contention, we shall construct synthetic Poisson and negative
binomial models, including the Monte Carlo estimates of model parameters,
including coefficients, standard errors and confidence intervals. The object of
the exercise is to demonstrate how to construct such models, and then how
to apply them to a particular problem.

7.2.1 Developing Synthetic Models

There has been some discussion in the statistical literature regarding the use
of the deviance or the Pearson Chi2 based dispersion statistic for assessing the
apparent extra-dispersion inherent in count models. We say “apparent” be-
cause it may be the case that the dispersion statistic indicates over-dispersion,
but if the researcher who is modelling the data employs an interaction term,
or converts a predictor to another scale, or performs some other operation on
the model, then the apparent over-dispersion may disappear. A full discussion
of this problem may be found in Hilbe (2009, 2011). We shall assume that all
such checks of the data have been made and that the value of the dispersion
statistic under consideration remains.

Obtaining discrete response model dispersion statistics involves dividing
the respective deviance or Pearson Chi2 statistic by the model residual de-
grees of freedom. R’s glm and glm.nb functions provide the residual deviance
and residual degrees of freedom in their default output, as well as in the sum-
mary function output, but nothing regarding the Pearson Chi2 statistic is
displayed. As a consequence, many researchers using R simply employ the de-
viance dispersion statistic to check for possible count model over-dispersion.
There were other reasons why statisticians believed that the deviance disper-

206 Methods of Statistical Model Estimation

sion is a good measure for assessing excess correlation in count data. For true
binomial models, e.g., grouped logistic regression models, both the Pearson
and deviance dispersion statistics produce a value of 1.0. Moreover, until re-
cently the deviance statistic was itself used as a goodness-of-fit statistic for
Poisson models. The deviance statistic is Chi2 distributed with degrees of free-
dom equal to the number of observations in the model minus the number of
predictors, including intercept. In addition, an Analysis of Deviance Table has
been a popular means to assess the worth of model predictors. Therefore, the
deviance appears to have a central role in Poisson model fit analysis. However,
as it turns out, the deviance dispersion is biased for count models with respect
to correlation, displaying over-dispersion in the data when in fact there may
not be. Only the Pearson dispersion has a value of 1.0 for a well-fitted count
model.

How do we know this? We create synthetic models that are designed to
have no violations of model assumptions. If we create a true Poisson model,
for example, and hold that either the deviance or Pearson Chi2 dispersion is
acceptable for assessing extra-dispersion, then we should expect the dispersion
statistics to approximate 1.0. The Pearson dispersion statistic may be calcu-
lated using the saved statistics with glm or glm.nb. Assuming a model name
of mymod, we display the Pearson Chi2 statistic and its associated dispersion
using the code presented in Section 4.10.

A synthetic model is based on the inverse transformation of the model
probability distribution function, or PDF. In the case of the Poisson model
this inverse transformation is exp(xβ). This value is used as the Poisson mean.

First we generate explanatory predictors for the model as pseudo-random
uniform numbers. Next, we specify coefficient values to be associated with the
predictors, including an intercept. The sum of the coefficient-predictor terms
is the linear predictor, Xβ (xb in the code). The inverse-link transformation
is applied to the linear predictor, resulting in the mean, or µ. In the code
below we designate the mean as exb. The vector of mean values is then put
into the Poisson generator, together with the number of observations given the
model. This results in a vector of random Poisson variates, py. Modelling py

on the uniform predictors we specified produces a synthetic model with near
identical values to the assigned coefficient values, together with associated
model statistics. The example below is given an intercept of 2 and respective
coefficient values of 0.75 and −1.25. The synthetic model comprises 50,000
observations.

> # Synthetic Poisson

> # =====================

> # syn.poisson.r

> set.seed(1)

> nobs <- 50000

> x1 <- runif(nobs)

> x2 <- runif(nobs)

> xb <- 2 + .75*x1 - 1.25*x2 # linear predictor

Model Estimation Using Simulation 207

> exb <- exp(xb) # mean

> py <- rpois(nobs, exb) # random Poisson variates

> poireg <-glm(py ~ x1 + x2, family = poisson)

> coef(summary(poireg))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0025563 0.004684840 427.4546 0

x1 0.7469615 0.006261905 119.2866 0

x2 -1.2551332 0.006392715 -196.3380 0

The Pearson Chi2 dispersion is then

> sum(residuals(poireg, type="pearson")^2) / poireg$df.residual

[1] 0.9951837

and the deviance dispersion is

> with(poireg, deviance/df.residual)

[1] 1.040959

We notice that the deviance dispersion is 1.041, some 4.1% greater than
unity. The Pearson dispersion approximates 1.0. The fact that we used data
comprising 50,000 observations indicates that the estimates should be close
to their true values. However, given that pseudo-random numbers are being
used to create the model, and that each run produces another set of coefficient
values and dispersion statistics, albeit close to the values displayed here, it is
possible that random variation has resulted in the apparent high deviance-
dispersion value.

Before dealing with the possibility that the synthetic model we generated
above has not produced true values, we develop a synthetic binomial-logit
model, or synthetic logistic regression. A synthetic grouped logit model is
created in the same manner as the synthetic Poisson model was developed
above. The only differences are the inverse transform, or inverse link function,
which is 1/(1 + exp(−xb)) or exp(xb)/(1 + exp(xb)), and the creation of a
binomial denominator. The identical coefficient values are specified.

It should be noted that binary response (1/0) binomial models are not
extra-dispersed. They may be implicitly extra-dispersed if, when converted to
grouped format, they are shown to be extra-dispersed (see Hilbe, 2009). But
as binary response models they are not over- or under-dispersed. We also need
to remind readers that R has a unique manner of setting up grouped binomial
models. The binomial numerator is subtracted from the denominator to form
a not-y variable, which is entered into the algorithm as combined dual term.
In Chapter 4, we show how to develop grouped logit models that employ the
traditional format. For our purposes here, though, it makes no difference; the
statistical results are identical.

208 Methods of Statistical Model Estimation

We need to generate a binomial denominator before inserting it into the
algorithm. Usually the data has such a variable, indicating how many obser-
vations have the identical covariate pattern. In the code below we create a
denominator having 10,000 observations each of the values 100, 200, . . . , 500.
No numerator value exceeds an associated denominator value, d. A table of
denominator values is displayed below the model statistics.

> # Synthetic Grouped Logit

> # ===============================

> # syn.glogit.r

> nobs <- 50000

> set.seed(1)

> x1 <- runif(nobs); x2 <- runif(nobs)

> d <- rep(1:5, each=10000, times=1)*100 # binomial denominator

> xb <- 2 + .75*x1 - 1.25*x2 # linear predictor

> exb <- 1/(1+exp(-xb)) # mean

> by <- rbinom(nobs, size = d, p = exb) # logit variates

> dby = d - by # set up y and not-y

> gby <- glm(cbind(by, dby) ~ x1 + x2,

+ family = binomial)

> coef(summary(gby))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.0003226 0.001972347 1014.1837 0

x1 0.7484219 0.002520616 296.9203 0

x2 -1.2473561 0.002550580 -489.0480 0

The Pearson Chi2 dispersion is then

> sum(residuals(gby, type="pearson")^2) / gby$df.residual

[1] 0.9944635

and the deviance dispersion is

> with(gby, deviance/df.residual)

[1] 1.000861

Notice that both the Pearson and deviance dispersion values approximate
1.0, confirming the statement we made earlier. The code may be made more
brief by combining terms. This is the case with much of R code. The problem,
however, is in being able later to interpret what was combined. For example,
the coefficients, predictors, and inverse transform we defined above may be
combined into a single term within the rpois function. We add the confint

function, which calculates model confidence intervals.

> confint(gby)

Model Estimation Using Simulation 209

2.5 % 97.5 %

(Intercept) 1.9964576 2.0041891

x1 0.7434818 0.7533624

x2 -1.2523556 -1.2423575

Note that a message appears directly under the confint function when it
is being run. The user is informed that profile confidence intervals are be-
ing developed. As noted in Section 2.4, profile intervals differ from Wald
confidence intervals. Wald confidence intervals may be obtained using the
confint.default function. In either case, however, the use of standard er-
rors in statistical modelling is essential to the interpretation of coefficients.
True synthetic models will have profile confidence intervals that will be near
identical to model-based confidence intervals.

> confint.default(gby) # Wald

2.5 % 97.5 %

(Intercept) 1.9964569 2.0041883

x1 0.7434815 0.7533622

x2 -1.2523551 -1.2423570

7.2.2 Monte Carlo Estimation

We now return to the query regarding how we could be sure that the statistics
displayed in the synthetic Poisson model output accurately reflect the true
underlying values inherent in the data. Recall that we asked if the dispersion
statistics, which were not assigned to the model, but rather were generated
from the model, might have values that significantly vary from what we would
expect in a true equi-dispersed Poisson model.

The accuracy of calculated statistics such as those that are produced in
a synthetic Poisson or logit regression may be determined using a technique
referred to as Monte Carlo analysis. Monte Carlo techniques entail that a large
number of synthetic models are run, with the mean values of the statistics of
interest being calculated at the end. The fact that the coefficients we assign to
the model are near identical to the mean values displayed in the Monte Carlo
results guarantee that the mean values of the statistics of interest accurately
reflect values of the statistics for a true model. Thus if the coefficients of a
Monte Carlo run are the same as the values we assigned the model, we can be
sure that the values of the dispersion statistics are accurate as well.

The code for a Monte Carlo Synthetic Poisson is provided below. The
results are displayed directly under the code. The same synthetic Poisson
model we ran earlier is executed 1,000 times, with the mean values of the
coefficients and both dispersion statistics saved as vectors of values. That is,
the procedure generates 1,000 values for each coefficient as well as for each
dispersion statistic, saving them separately for later analysis. As before, the
model itself consists of 50,000 observations. With each run, a new 50,000-
observation dataset is generated.

210 Methods of Statistical Model Estimation

> # Monte Carlo Estimation: Synthetic Poisson

> # =================================

> # sim.poi.r

> set.seed(1)

> mysim <- function() {

+ nobs <- 50000

+ x1 <- runif(nobs)

+ x2 <- runif(nobs)

+ xb <- 2 + .75*x1 -1.25*x2

+ exb <- exp(xb)

+ py <- rpois(nobs, exb)

+ poisim <- glm(py ~ x1 + x2, family=poisson)

+ pr <- sum(residuals(poisim, type="pearson")^2)

+ prdisp <- pr/poisim$df.residual

+ dvdisp <- with(poisim, deviance/df.residual)

+ beta <- poisim$coef

+ list(prdisp, dvdisp, beta)

+ }

We now perform the simulations using the following code.

> reps <- 1000

> B <- replicate(reps, mysim())

Having performed the simulations, we are now in a position to assess the
distributions of the dispersion statistics. The Pearson dispersion is

> summary(unlist(B[1,]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9715 0.9952 0.9998 0.9998 1.0050 1.0190

and the deviance dispersion is

> summary(unlist(B[2,]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.015 1.041 1.045 1.045 1.050 1.064

We can obtain histograms of the parameter estimates using the following code
(Figure 7.1).

> beta.hat <- do.call(rbind, B[3,])

> par(mfrow=c(1,3), mar=c(5,4,1,2), las=1)

> for (i in 0:2)

+ hist(beta.hat[,i+1], breaks = 50, main = "",

+ xlab = bquote(paste("Simulated ", beta[.(i)])))

Model Estimation Using Simulation 211

Simulated β0

F
re

q
u

e
n

c
y

1.985 1.995 2.005

0

10

20

30

40

Simulated β1

F
re

q
u

e
n

c
y

0.73 0.75 0.77

0

10

20

30

40

50

60

Simulated β2

F
re

q
u

e
n

c
y

−1.26 −1.24

0

20

40

60

FIGURE 7.1

Histograms of simulated parameter estimates. The x-axis labels are unneces-
sarily ornate.

The results closely resemble the values given in the single run model. It is
clear that a “true” Poisson model for these data – one for which the mean and
variance are identical – has a Pearson Chi2 dispersion statistic of 1.0, and a
deviance dispersion of 1.0455, some 4.5% higher than unity. Our interpretation
is that Poisson models are apparently over-dispersed, based on the deviance
dispersion. It may be the case, in general, that converting a term in the model
to another scale, or perhaps adding an interaction term, may result in a model
with a Pearson dispersion value of 1.0. However, if no such operations are able
to correct the model, then the data are truly Poisson over-dispersed.

The usual manner of handling over-dispersed Poisson data is by using a
negative binomial (NB2) model. Other types of models may be more appro-
priate for a given data situation, but researchers usually apply a negative
binomial model to the data as a first attempt at accommodating model over-
dispersion. If a model is under-dispersed, i.e., the Pearson dispersion statistic
is less than 1, then a negative binomial model is not appropriate. Researchers
typically use a generalized Poisson, a generalized negative binomial, or a hur-
dle model for such data.

We have elaborated a bit on these models for the purpose of demonstrat-
ing how synthetic models may be useful in determining the statistical con-
sequences of the distributional assumptions of a given model. In the above
case, we used Monte Carlo techniques to determine the appropriate statistic
to use for assessing Poisson over-dispersion. We may use the same techniques
for more complex models as well, e.g., a negative binomial model.

There are a number of different types of negative binomial models. We have
been using the traditional parameterization, which is used to model otherwise
over-dispersed Poisson models. This parameterization is often referred to as
an NB2 negative binomial (see Hilbe, 2011); we shall simply refer to it as a
negative binomial model.

The negative binomial is a mixture of Poisson and gamma distributions.
The gamma scale parameter in the mixture becomes the negative binomial

212 Methods of Statistical Model Estimation

scale parameter, or heterogeneity parameter, which is used to adjust for Pois-
son over-dispersion. Such over-dispersion indicates more correlation in the
data than is allowed by the distributional assumptions of the model. Negative
binomial models may be over-dispersed, or under-dispersed.

The negative binomial scale parameter is traditionally parameterized such
that a value of 0 is a Poisson model. Increasing values indicating more dis-
persion, or correlation, in the data. This parameterization of the negative bi-
nomial scale parameter is usually referred to as alpha. Since a Poisson model
has no extra correlation, i.e., the mean and variance are identical, alpha =
0. Values of alpha greater than 2 usually indicate that there was substantial
over-dispersion or correlation in the Poisson data.

R’s glm and glm.nb functions, the latter being part of the MASS package
(Venables and Ripley, 2010) that comes with the default download of the
software, are unique in that they parameterize the negative binomial scale as
having an inverse relationship with the amount of correlation in the data. The
parameter is called theta (θ), and a negative binomial with θ = 0 is infinitely
over-dispersed, and a model where θ = inf indicates a Poisson model with
no extra-dispersion. Care must be taken when comparing negative binomial
model results using other major software, which use alpha, and when using
R’s glm and glm.nb functions. In Chapter 5 we demonstrated developing a
two-parameter maximum likelihood model with a negative binomial having
alpha as the scale parameter.

We provide below a Monte Carlo synthetic negative binomial model using
the same number and value for the coefficients. The point is to check the
dispersion statistics to see if a “true” negative binomial has the same values.
We would expect they do. However, even though the Pearson Chi2 dispersion
is expected to be 1.0 regardless of the value of alpha given the model, we
expect the deviance dispersion to vary depending on the value of alpha. Lower
values have a lower deviance dispersion; higher values of alpha have a greater
deviance value — up to a limit. For these data and coefficient values, the
deviance dispersion ranges from a low of approximately 0.7 (α = 0.1) to a high
of 1.14 (α = 0.9), with values more extreme making no important difference.

We use 1000 iterations. We specify alpha = 0.5, which is the same as
θ = 2. Note that alpha is inverted in the code so that R’s glm.nb function
produces the scale value that we specify.

> # Monte Carlo Estimation: Synthetic Negative Binomial

> # ===

> # sim.nb2.r

> library(MASS)

> mysim <- function() {

+ nobs <- 50000

+ x1 <-runif(nobs)

+ x2 <-runif(nobs)

+ xb <- 2 + .75*x1 - 1.25*x2

Model Estimation Using Simulation 213

+ a <- .5 # alpha

+ ia <- 1/.5 # theta

+ exb <- exp(xb) # log link

+ xg <- rgamma(nobs, a, a, ia) # gamma variates

+ xbg <-exb*xg # means

+ nby <- rpois(nobs, xbg) # Poisson variates

+ nbsim <-glm.nb(nby ~ x1 + x2) # model

+ alpha <- nbsim$theta

+ pr <- sum(residuals(nbsim, type="pearson")^2)

+ prdisp <- pr/nbsim$df.residual

+ dvdisp <- nbsim$deviance/nbsim$df.residual

+ beta <- nbsim$coef

+ list(alpha, prdisp, dvdisp, beta)

+ }

As before, we run the simulations by

> set.seed(1)

> reps <- 1000

> B <- replicate(reps, mysim())

Having performed the simulations, we are now in a position to assess the
distributions of the dispersion statistics. The estimates of alpha are

> summary(unlist(B[1,]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4875 0.4973 0.4997 0.4999 0.5024 0.5122

The Pearson dispersion is

> summary(unlist(B[2,]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.9706 0.9936 1.0000 0.9999 1.0060 1.0310

and the deviance dispersion is

> summary(unlist(B[3,]))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.095 1.098 1.099 1.099 1.099 1.102

We can again obtain histograms of the parameter estimates using the same
code as before (Figure 7.2), noting that the parameter estimates are retained
in B[,4] instead of B[,3].

More complex models may be developed of course, including two-part mix-
ture models such as zero-inflated count models, ordered and unordered slopes
models, finite mixture models, fixed, random and mixed effects models, and so
forth. A relatively simple two-part synthetic zero-inflated Poisson algorithm
is displayed below. The pscl package must be installed for this code to work.

214 Methods of Statistical Model Estimation

Simulated β0

F
re

q
u

e
n

c
y

1.94 1.98 2.02 2.06

0

10

20

30

40

50

Simulated β1

F
re

q
u

e
n

c
y

0.68 0.72 0.76 0.80

0

10

20

30

40

Simulated β2

F
re

q
u

e
n

c
y

−1.30 −1.25 −1.20

0

20

40

60

80

FIGURE 7.2

Histograms of simulated parameter estimates for the negative binomial regres-
sion simulation exercise.

> # Synthetic Zero-inflated Poisson with logit component for 0’s

> # ==

> # syn.zip.r

> library(MASS); library(pscl)

> set.seed(1)

> nobs <- 50000

> x1 <- runif(nobs); x2 <- runif(nobs)

> xb <- 2 + .75*x1 - 1.25*x2 # Poisson lin predictor

> exb <- exp(xb) # Poisson fitted values

> poy <- rpois(nobs, exb) # Poisson

> pdata <- data.frame(poy, x1, x2) # Create dataframe

> pi <- 1/(1+exp(-(.9*x1 + .1*x2 + .2))) # Logit probabilities

> pdata$bern <- runif(nobs) > pi # Filter

> zy <- pdata$bern * poy # Mixture

> zip <- zeroinfl(zy ~ x1 + x2 | x1 + x2,

+ dist = "poisson",

+ data = pdata)

> coef(summary(zip))

Confidence intervals for both components of the model may be obtained
using the confint function. Note that profile likelihood confidence intervals
are not displayed since they are not an option with zeroinfl.

> confint(zip)

2.5 % 97.5 %

count_(Intercept) 1.98226951 2.0129524

count_x1 0.72672558 0.7701504

count_x2 -1.27393715 -1.2284106

zero_(Intercept) 0.15508471 0.2523075

zero_x1 0.83097289 0.9631452

zero_x2 0.01384794 0.1448562

Model Estimation Using Simulation 215

To reiterate, constructing synthetic models can be an important adjunct to
understanding the importance of assumptions upon which statistical models
are based. They may also be used to test the application of statistics that
can be generated on the basis of a specified model, or set of models. We
demonstrated this when comparatively evaluating the deviance and Pearson
Chi2 dispersion statistics for count models, as well as comparing them for use
with binomial grouped logistic regression models. A host of other tests may
be performed as well, which lead to a better understanding of the statistical
models we employ in research. This type of testing appears to have first been
used by Hilbe and Linde-Zwirble (1995), although the authors would welcome
earlier references. Refer to Gelman and Hill (2007) and Hilbe and Linde-
Zwirble (1995); Hilbe (2010, 2011) for a further discussion.

We demonstrate the use of a simulation algorithm, sim, found in Andrew
Gelman’s arm package, located on CRAN. Following estimation of medpar

data using a Poisson regression, the two binary coefficients, hmo and white

are treated as random variables. Empirical distributions are created for them.
We take the mean, the standard deviation and apply the quantile function to
obtain simulated coefficients, standard errors, and confidence intervals of each
predictor.

> library(msme)

> data(medpar)

> library(arm)

> # fit initial model to get coefficients

> fit.1 <- glm(los ~ hmo + white,

+ family = poisson,

+ data = medpar)

> fit.1$coef

(Intercept) hmo white

2.4822518 -0.1415782 -0.1908900

> # simulation 1000 "random" values of each coefficient

> n.sims <- 1000

> sim.1 <- sim(fit.1, n.sims)

> pcoef <- coef(sim.1)

> # get stats for hmo

> hmo.coef <- pcoef[,2]

> summary(hmo.coef)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.22820 -0.15810 -0.14160 -0.14170 -0.12630 -0.06424

> quantile(hmo.coef, p = c(0.025, 0.975))

216 Methods of Statistical Model Estimation

2.5% 97.5%

-0.18818771 -0.09115243

> # get stats for white

> white.coef <- pcoef[,3]

> summary(white.coef)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.2693 -0.2111 -0.1904 -0.1911 -0.1717 -0.1101

> quantile(white.coef, p = c(0.025, 0.975))

2.5% 97.5%

-0.2438868 -0.1345252

Coefficient for HMO

F
re

q
u
e
n
c
y

−0.20 −0.10

0

20

40

60

80

Coefficient for White

F
re

q
u
e
n
c
y

−0.25 −0.15

0

20

40

60

80

FIGURE 7.3

Histograms of simulated parameter estimates for the simulated Poisson re-
gression simulation exercise using arm.

7.2.3 Reference Distributions

We conclude this section with some code that demonstrates that choosing
a reference distribution for testing a random-effects model as opposed to a
pooled model is a tricky problem. First, we obtain the data for the model.

The rwm5yr dataset is based on the German Health Registry from the
years 1984–1988. It is a panel dataset, but not every patient was observed for
each of the 5 years. The response variable is docvis, the number of days a
patient visits a physician during the calendar year. The predictors are age, a
continuous variable from 25–64; outwork, a binary variable with 1 = patient

Model Estimation Using Simulation 217

out of work, 0 = employed during year; female, a binary variable with 1 =
female, 0 = male; married, a binary variable with 1 = married, 0 = single;
and id, the patient ID number.

> library(COUNT)

> library(nlme)

> data(rwm5yr)

> rwm5yr <- rwm5yr[,c(1,2,6:9)]

> for(i in 1:6) class(rwm5yr[,i]) <- "numeric"

> rwm5yr$id <- factor(rwm5yr$id)

We can now fit the random intercept model and the pooled model and, in
theory, compare them using the likelihood ratio test, for which the reference
distribution is the Chi2 distribution with 1 degree of freedom.

> test.lme <- lme(docvis ~ age + outwork + female + married,

+ random = ~1 | id,

+ method = "ML",

+ data = rwm5yr)

> test.lm <- lm(docvis ~ age + outwork + female + married,

+ data = rwm5yr)

> anova(test.lme, test.lm)

Model df AIC BIC logLik Test L.Ratio

test.lme 1 7 121893.2 121948.4 -60939.59

test.lm 2 6 124311.1 124358.4 -62149.53 1 vs 2 2419.89

p-value

test.lme

test.lm <.0001

However, we can also develop a reference distribution for this particular case
in the following way. First, we simulate from the null model — here, the pooled
model — a given number of times. We then fit both models to the simulated
data, for which we know that the null model is correct. Hence, any appearance
of improvement of the random effects model is purely due to chance.

> reps <- 1000

> new.y <- simulate(test.lm, nsim = reps, seed = 100)

> new.rwm <- rwm5yr

> should.be.chi2 <-

+ sapply(new.y,

+ function(x){

+ out <- try({

+ new.rwm$docvis <- x

+ new.lm <- update(test.lm, data = new.rwm)

+ new.lme <- update(test.lme, data = new.rwm)

+ anova(new.lme, new.lm)$L.Ratio[2]})

218 Methods of Statistical Model Estimation

+ if (class(out) == "numeric") return(out)

+ else return (NA)

+ })

We can now use the reference distribution in two ways: first, we can com-
pare it with the observed critical value, which in this instance is much greater
than any of these simulated values. Note from Figure 7.4 that the maximum
simulated value is 15, and the observed value from the output on the previous
page is greater than 2000. Second, we can compare the distribution of the sim-
ulated values with the theoretical reference distribution, as per the following
code (see Figure 7.4). The reference distribution is a very poor fit, but here
the poor fit does not matter at all.

> par(mfrow=c(1,2), mar=c(4,4,2,1), las=1)

> qqplot(should.be.chi2, rchisq(10000, df = 1),

+ xlab = "Simulated Dist.", ylab = "Theoretical Dist.")

> abline(0, 1)

> plot(ecdf(pchisq(should.be.chi2, df=1)),

+ main = "Empirical Reference CDF")

0 5 10 15

0

5

10

15

Simulated Dist.

T
h
e
o
re

ti
c
a
l
D

is
t.

0.0 0.4 0.8

0.0

0.2

0.4

0.6

0.8

1.0

Empirical Reference CDF

x

F
n
(x

)

FIGURE 7.4

Comparison of simulated and reference distribution for the null hypothesis
that the pooled model is just as good as the random effects model for the
rwm5yr data.

Model Estimation Using Simulation 219

7.3 Bayesian Parameter Estimation

As we saw in Chapter 6, there are a number of models which preclude the
use of standard maximum likelihood methods for the estimation of model pa-
rameters. When data are structured in panels, observations cannot generally
be regarded as independent. There is likely greater correlation within pan-
els than between panels. In fact, when maximum likelihood, or better quasi-
or pseudo-maximum likelihood, methods are used for the estimation of panel
models, panels of observations are assumed to be independent, whereas the
observations within panels are correlated. The model is adjusted by various
means to accommodate for the correlation within panels. Generalized Esti-
mating Equations (GEE), for example, employ various types of correlation
structures into the distributional variance of the model in order to adjust for
the within-panel correlation. The result is a model that estimates unbiased
parameters. Random-, fixed-, and mixed-effects models also aim to provide
appropriate adjustment for panel data.

We also have previously observed that even with adjustments to a max-
imum likelihood algorithm, at times such methods are still not appropriate
for the unbiased estimation of model parameters. In particular, application of
an EM algorithm or the use of quadrature now finds widespread use in com-
mercial statistical software for the estimation of hierarchical models. However,
even these methods may still not be satisfactory for models based on com-
plex distributions. And even where quadrature, for example, may be used, it
may be accompanied with considerable convergence difficulties as well as an
unsatisfactory handling of variability.

In this chapter we have demonstrated how sampling can be used to better
understand models based on maximum likelihood estimation. We began by
developing a synthetic Poisson variable that was structured such that it had
two inherent predictors with specifically defined values. We used the runif

function to define two random uniform variates and the rpois function to gen-
erate a random Poisson number having a mean defined as the exponentiation
of xb, a linear predictor formed from the random uniform numbers.

> nobs <- 100

> x1 <- runif(nobs)

> x2 <- runif(nobs)

> xb <- 2 + .75*x1 -1.25*x2

> exb <- exp(xb)

This procedure allows us to create a synthetic Poisson model with user-
defined coefficients. For a negative binomial model, the same procedure may
be extended to allow the data to incorporate a defined scale parameter.

Generating synthetic models like this allows researchers to create true mod-
els. The data is such that all of the distributional assumptions of the model

220 Methods of Statistical Model Estimation

are met. Real data, and statistics associated with the real-data models, can
then be compared to true versions. By developing a synthetic true Poisson
model we can determine that the Pearson-based dispersion statistic is the ap-
propriate statistic to use for assessing Poisson extra-dispersion. It is also the
appropriate statistic to use for assessing negative binomial extra-dispersion.
On the other hand, either the Pearson or deviance dispersion may be used to
determine grouped or proportional binomial-logit extra-dispersion.

The algorithm used to create a synthetic Poisson model, for example, can
be embedded into a covering algorithm that repeatedly creates estimates of
the coefficients and specified ancillary statistics, saving the results of each
estimate iteration. In this manner we in fact make a major change to how we
understand obtaining parameter estimates and values for associated statistics.

Recall that the coefficients of a synthetic model are not exactly the val-
ues as specified at the start of the algorithm. They come back fuzzy, with a
variability that can be measured by the standard errors of the coefficients, for
example. Looked at in this manner, the vectors of saved coefficients and asso-
ciated model parameters are each random variables. The mean of the vector
of coefficients and other parameters and related statistics are their estimated
Monte Carlo values.

Earlier in this chapter we created Monte Carlo estimates for both synthetic
Poisson and negative binomial models. This procedure allows us to more ac-
curately assess the distributional assumptions of the respective models, and
to compare the known statistics with real model data.

We started the Monte Carlo algorithm for synthetic Poisson data by speci-
fying point estimates for the coefficients. By re-estimating the synthetic coeffi-
cient and dispersion values and saving them as vectors of values, we took their
mean, and also their standard deviation and quantiles, or credible intervals,
which are similar to confidence intervals, but without the associated asymp-
totics. We also plotted a histogram for the intercept and each predictor, x1

and x2, so we could more easily observe the distribution of the coefficients. We
may ask for such a model, is the assumption warranted that Poisson regression
coefficients are normally distributed? Or, are Gaussian regression coefficients
actually t-distributed? We also provided a more complex mixture model — a
zero inflated Poisson which is a mixture of Poisson and binomial-logit distri-
butions.

We next changed the focus of modelling from synthetic to real data. The
object was to demonstrate that it is possible to use a simulation function to
create vectors of coefficient and associated parameter values of real data. We
therefore now will think of regression parameters as random variables and not
as fixed values to be discovered. This is the foundation upon which Bayesian
modelling is based.

There are a number of data situations which cannot be modeled using
standard statistical techniques. We mentioned this earlier. Simulation, how-
ever, has been gaining in popularity as a method of estimating parameters
for otherwise intractable models. Limdep, a popular commercial economet-

Model Estimation Using Simulation 221

ric software package, uses simulation for many of its more complex models.
Bayesian models with flat or uniform priors produce the same parameter es-
timates as maximum likelihood, within limits. We shall demonstrate this fact
in the current section. The methods are substantially different, but the results
are closely the same. Lynch (2007), Gill (2009), Hilbe (2011), and Zuur et al.
(2012) are all excellent resources on using R for developing Bayesian GLM
regression models.

The Bayesian approach is similar to the Monte Carlo approach used in
our code earlier this chapter, but extends its scope by not being based on
a previously estimated model. Bayesian models use the raw data itself to
estimate parameters as random variables. The distribution that is used for a
parameter — and from which the coefficients, standard errors and credible
intervals are estimated — is termed the posterior distribution.

The true value in Bayesian modelling is the ability to bring informative
prior information into the model. The goal is to estimate a posterior distribu-
tion from the product of the likelihood and prior distributions, which many
times lead to a complex distribution that must be developed using one of a
variety of Markov Chain Monte Carlo (MCMC) sampling algorithms. A num-
ber of algorithms exist, but for the most part they are based on a general
MCMC procedure.

We use a basic Metropolis–Hastings algorithm to demonstrate the use of
a Bayesian Poisson model using real data. We should clarify the difference
and use of R’s dpois and rpois functions. Both are used in the Metropolis–
Hastings algorithm given below. The R function dpois is the Poisson proba-
bility function, defined as µy × exp(−µ)/y!. If µ = 0.5 and y = 4, then

> m <- 0.5; y <- 4

> m^y * exp(-m)/factorial(y)

[1] 0.001579507

> dpois(y,m)

[1] 0.001579507

while the Poisson log-likelihood, y ln(µ)− µ− ln(y!) can be expressed as

> y*log(m) - m - lfactorial(y)

[1] -6.450643

> log(dpois(y, m))

[1] -6.450643

or, as is preferred,

> dpois(y, m, log=TRUE)

222 Methods of Statistical Model Estimation

[1] -6.450643

The R function rpois is used for generating a given number of Poisson
random numbers with a specified mean value. We have used the rpois function
earlier in the book, but both rpois and dpois will be particularly important
in the code given below.

We shall use the same medpar data that has been used for several other
examples in the text to display the logic of Bayesian modelling using the
Metropolis–Hastings algorithm. There are many variations of the algorithm,
but the fundamental logic is the same for them all. Of course, other sampling
algorithms exist and are used with equal and sometimes superior efficacy.
However, this algorithm is generally regarded as the traditional or standard
MCMC algorithm, so is used for our example.

> library(msme)

> data(medpar)

The response variable is los, or hospital Length Of Stay, a discrete count
variable ranging in values from 1 to 116 days. To keep the example as simple
as possible, we shall use only one binary (1/0) predictor, hmo, which indicates
whether the patient belongs to a Health Maintenance Organization (1) or is a
private pay patient (0). The appropriate model for a count variable is Poisson,
unless there is extra-dispersion in the data. We will not concern ourselves with
dispersion for the example.

We first model the data using the glm function, which employs a version
of maximum likelihood to calculate parameter estimates. We do this simply
to compare it with the results we obtain from the Bayesian model. The log-
likelihood function is also calculated.

> MLpoi <- glm(los ~ hmo, family = poisson, data = medpar)

> summary(MLpoi)

Call:

glm(formula = los ~ hmo, family = poisson, data = medpar)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.6792 -1.7763 -0.6795 0.8803 18.8406

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.310436 0.008888 259.952 < 2e-16 ***

hmo -0.150148 0.023694 -6.337 2.34e-10 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Model Estimation Using Simulation 223

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8901.1 on 1494 degrees of freedom

Residual deviance: 8859.5 on 1493 degrees of freedom

AIC: 14579

Number of Fisher Scoring iterations: 5

> logLik(MLpoi)

’log Lik.’ -7287.331 (df=2)

> confint.default(MLpoi)

2.5 % 97.5 %

(Intercept) 2.2930164 2.3278564

hmo -0.1965864 -0.1037091

The first function needed in the code specifies the log-likelihood of the
model. Since the response variable, los, is a count, we use a Poisson log-
likelihood. Recall that the coefficients we are attempting to determine are
each random parameters. If this were a normal or Gaussian model we would
have to have a parameter for the variance, sigma2. The negative binomial
would likewise have a parameter for the scale. This code is not packaged in a
function, but with a little work can be made to be so. We re-use the following
six functions from Chapter 5.

> jll.poisson <- function(y, mu, m, a) {

+ dpois(x = y, lambda = mu, log = TRUE)

+ }

> jll <- function(y, y.hat, ...) UseMethod("jll")

> predict.expFamily <- function(object, b.hat, X, offset = 0) {

+ lin.pred <- as.matrix(X) %*% b.hat + offset

+ y.hat <- unlink(object, lin.pred)

+ return(y.hat)

+ }

> Sjll <- function(b.hat, X, y, offset = 0, ...) {

+ y.hat <- predict(y, b.hat, X, offset)

+ sum(jll(y, y.hat, ...))

+ }

> unlink <- function(y, eta, ...) UseMethod("unlink")

> unlink.log <- function(y, eta, m=1, a=1) exp(eta)

We now set up the objects that are specific to this particular problem, includ-
ing the response variable, model matrix, and class information.

224 Methods of Statistical Model Estimation

> mh.formula <- los ~ hmo

> family <- "poisson"

> link <- "log"

> mf <- model.frame(mh.formula, medpar)

> y <- model.response(mf, "numeric")

> X <- model.matrix(mh.formula, data = medpar)

> class(y) <- c(family, link, "expFamily")

Hopefully we should now be able to evaluate the summed joint log-likelihood
at a specific value of the parameter estimates.

> Sjll(c(1,0), X, y)

[1] -15613.25

Next we develop a function to provide information about the prior dis-
tribution. The BLogPrior function specifies the log of the prior probability
distributions for the intercept and slope. A very weak or diffuse uniform prior
is given to both parameters, which are called f.prior.a and f.prior.b re-
spectively. Recall that a uniform distribution has two parameters, a and b,
within the extremes of 0 and 1. If we believe that every value within the range
of a and b has an equal or uniform value, use of the uniform distribution
makes sense. Parameters outside the range of a and b have a probability of 0.
Within the range, parameters have a value of 1/(b − a). A wide range leads
to its designation as diffuse or weak.

> BLogPrior <- function(theta){

+ alpha <- theta[1]

+ beta <- theta[2]

+ fprior.a <- dunif(alpha, -25, 30)

+ fprior.b <- dunif(beta, -25, 30)

+ fprior <- fprior.a * fprior.b # a, b independent

+ if (fprior > 0) return(log(fprior))

+ }

We could write more efficient code, e.g., fprior <- dunif(theta, -25, 30);
however, the approach that we used seems a better illustration of the principle.

We then specify that the MCMC algorithm will iterate 50,000 times in
searching for the appropriate posterior distribution. We in fact do not need
that many iterations. When informative priors are used in a model, 50,000
iterations will rarely be sufficient.

Matrices are then defined that will hold the columns of coefficients. The
important line defines Theta.t, which has a dimension defined as the number
of iterations plus 1, by 2, or dim(n,2). The extra 1 is for current.Theta,
defined as c(0,0), which is the first iteration, or Theta.t[1,]. The second
dimension is for parameters alpha and beta.

Model Estimation Using Simulation 225

> nT <- 50000

> Theta.t <- matrix(nrow = nT+1, ncol = 2)

> Theta.star <- vector(length = 2)

> current.Theta <- c(1, 0)

> Theta.t[1,] <- current.Theta

> acc <- 1

Then we go straight to the MCMC algorithm. The sampling algorithm
begins by defining a proposal distribution taken from the normal distribution.
The proposal distribution is the distribution of the next draw or proposed
value in the search for a parameter value. Random values are therefore taken
from the normal distribution with mean based on the current value of the
parameter, θi. The variance of the proposal distribution affects the volatility
of the search. Those values are the proposed new value of the parameter, θp. If
the proposed value passes the selection criterion given below, then it becomes
the new current value, θi+1.

The value of θi is compared with the new proposed value θp in the following
way. We compute

logR = P(θp|d)− P(θi|d) (7.1)

where P refers to the log of the posterior probability of θ, given the data. The
log of the posterior probability is computed as the sum of the log-likelihood
and the log of the prior distribution.

If logR > 0 then we accept the draw, that is, θi+1 ← θp. If logR is less
than 0, then we accept the proposed value with probability exp(logR). In other
words, we draw a random number uniformly distributed between 0 and 1 and
compare it with exp(logR). If the random number is less than exp(logR), then
we accept the proposed values; if greater, then we retain the previous values.
Note that the single line of code below tests both of these conditions at the
same time because log(u) < 0 by definition.

Either way, we then randomly draw another proposal from a normal dis-
tribution starting from θi (if the proposed value was rejected) or θi+1 (if the
proposed value was accepted).

The code below uses the term logU to compare with logR for this final de-
cision in the selection process. The iterations continue in that fashion through
the entire 50,000 iterations, by which time the parameters for the intercept
and slope have stabilized.

> # Metropolis--Hastings MCMC algorithm

> for (i in 1:nT) {

+ # Normal samples or draw for a proposal distribution

+ # We keep the proposal distributions distinct for clarity.

+ Theta.star[1] <- rnorm(1, Theta.t[acc,1], 0.1)

+ Theta.star[2] <- rnorm(1, Theta.t[acc,2], 0.1)

+ # Calculate log(R)

226 Methods of Statistical Model Estimation

+ logR <-

+ (Sjll(Theta.star, X, y) + BLogPrior(Theta.star)) -

+ (Sjll(Theta.t[acc,], X, y) + BLogPrior(Theta.t[acc,]))

+ # Draw new uniform random variate

+ u <- runif(1)

+ # Compare u and r

+ if (log(u) < logR) {

+ acc <- acc + 1

+ Theta.t[acc,] <- Theta.star

+ }

+ }

>

It is of interest to note the proportion of values accepted. This is computed
by

> (acc - 1) / nT

[1] 0.03612

Plots displaying the range of values throughout the iterations are provided
in Figure 7.5. This figure shows the burn-in phenomenon, in which the first
portion of the simulated values are discarded in the hope of minimizing the
impact of the nominated start point on the outcome. In this example we use
a burn-in period of 500 simulations, which is adequate for our purposes but
may be too low for operational work.

> burn.in.length <- 500

> burn <- 1:burn.in.length

> use <- (burn.in.length+1):acc

> par(mfrow = c(2,2), mar = c(5,4,1,2), las = 1)

> plot(Theta.t[burn, 1], xlab = "Index", ylab = "alpha",

+ type= "l")

> abline(h = coef(MLpoi)[1], lwd = 2)

> plot(Theta.t[burn, 2], xlab = "Index", ylab = "beta",

+ type = "l")

> abline(h = coef(MLpoi)[2], lwd = 2)

> plot(Theta.t[use, 1], xlab = "Index", ylab = "alpha",

+ type = "l")

> abline(h = coef(MLpoi)[1], lwd = 2)

> plot(Theta.t[use, 2], xlab = "Index", ylab = "beta",

+ type = "l")

> abline(h = coef(MLpoi)[2], lwd = 2)

We also develop histograms of the parameters for the intercept and slope
(Figure 7.6).

Model Estimation Using Simulation 227

0 100 200 300 400 500

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Index

a
lp

h
a

0 100 200 300 400 500

−0.2

−0.1

0.0

0.1

0.2

0.3

Index

b
e

ta

0 200 600 1000

2.28

2.29

2.30

2.31

2.32

2.33

2.34

Index

a
lp

h
a

0 200 600 1000

−0.20

−0.15

−0.10

Index

b
e

ta

FIGURE 7.5

Parameter estimate trajectories. The left column is for the intercept, and the
right column for the slope. The upper row reports the first 500 values, the
burn in, and the lower row reports the balance, to be used for estimation.

> par(mfrow=c(1,2), mar = c(5,4,1,2), las = 1)

> hist(Theta.t[use, 1], breaks=50, main = "", xlab = "Alpha")

> hist(Theta.t[use, 2], breaks=50, main = "", xlab = "Beta")

Finally, the means, standard deviation, and 2.5% and 97.5% quantiles for
each parameter, ignoring the first 500 simulations, are calculated and dis-
played.

> apply(Theta.t[use,], 2, mean, na.rm = TRUE)

[1] 2.3105982 -0.1499656

228 Methods of Statistical Model Estimation

Alpha

F
re

q
u

e
n

c
y

2.28 2.30 2.32 2.34

0

10

20

30

40

50

60

Beta

F
re

q
u

e
n

c
y

−0.20 −0.10

0

20

40

60

80

100

FIGURE 7.6

Histograms of estimated posterior densities of parameter estimates.

> apply(Theta.t[use,], 2, sd, na.rm = TRUE)

[1] 0.01066127 0.02771301

> quantile (Theta.t[use, 1], na.rm = TRUE,

+ probs = c(.025, .975))

2.5% 97.5%

2.289849 2.330510

> quantile (Theta.t[use, 2], na.rm = TRUE,

+ probs = c(.025, .975))

2.5% 97.5%

-0.20226722 -0.09798302

We prepared a summary table comparing the maximum likelihood results
from glm with the Bayesian results.

SUMMARY

Metropolis--Hastings Credible Intervals

coef sd 2.5% 97.5%

Intercept 2.309970 0.010721 2.2899090 2.330998

hmo -0.151302 0.028923 -0.20760979 -0.09475081

Maximum Likelihood Confidence Intervals

coef se 2.5% 97.5%

(Intercept) 2.310436 0.008888 2.2930164 2.3278564

hmo -0.150148 0.023694 -0.1965864 -0.1037091

Model Estimation Using Simulation 229

The results are remarkably close, considering the very different manner in
which the parameters and statistics are obtained. Of course, we used a simple
example based on a known and simple probability and likelihood function.
Priors may be represented by a variety of distributions, which, when multiplied
by the likelihood, can result in very difficult posterior distributions to develop.
Conjugate priors may be used for situations that are not complex, resulting
in much easier posteriors to calculate.

We now demonstrate fitting the same model using the MCMCpack pack-
age. We select default priors for the parameter estimates, and a burn in length
of 5000. Readers should consult the package documentation.

> library(MCMCpack)

> p.fit <- MCMCpoisson(los ~ hmo,

+ burnin = 5000, mcmc = 100000,

+ data = medpar)

> summary(p.fit)

Iterations = 5001:105000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1e+05

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

(Intercept) 2.3103 0.00871 2.754e-05 8.131e-05

hmo -0.1501 0.02352 7.438e-05 2.223e-04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

(Intercept) 2.2931 2.3044 2.3104 2.3162 2.327

hmo -0.1961 -0.1658 -0.1501 -0.1343 -0.104

Here we have discussed only the basics of the Metropolis–Hastings algo-
rithm, For those who wish to have more details on the use of this method
we suggest Zuur et al. (2012). Our presentation of the algorithm and code is
adapted in part from that source. Zuur et al. discuss a normal model with
both informative and non-informative priors.

7.3.1 Gibbs Sampling

Gibbs sampling is the foremost alternative to the Metropolis–Hastings algo-
rithm we have thus far discussed. In fact, Gibbs sampling is a special version

230 Methods of Statistical Model Estimation

of the Metropolis–Hastings algorithm, in a similar manner as the IRLS al-
gorithm is a version of maximum likelihood estimation. Gibbs is particularly
useful when modelling multivariate models.

As we have discussed, the Metropolis–Hastings algorithm takes samples
from the entire joint distribution, which can take a considerable amount of
time to cover the entire parameter space. The Gibbs sampling method differs
from Metropolis–Hastings in that the unknown parameters of a distribution
or model are partitioned and estimated in sequence, as marginal or condi-
tional distributions. Each parameter, or group of parameters, in this process
is estimated on the basis of the other parameter values.

Suppose that we wish to estimate the parameters in the density

f(θ|x) = f(θ1, θ2, . . . , θk|x) (7.2)

Also, assume that we know the k conditional densities, that is, we know
f(θ1|θ2, θ3, . . . , θk|x), f(θ2|θ1, θ3, . . . , θk|x), etc. After initializing each parame-
ter with values appropriate to it, the algorithm samples from each conditional
distribution in turn. That is, we start with (θ0

1, θ0
2, . . . , θ0

k). We then take a
random draw θ1

1 from the known density

θ1
1 ∼ f(θ1|θ0

2, θ0
3, . . . , θ0

k|x) (7.3)

This sequence repeats until convergence. The sampling is a Markov process
where the distribution at each step is independent of previous steps except for
the immediately previous step.

7.4 Discussion

Calculation of a distribution by simulation is not a panacea. A posterior dis-
tribution may require that the algorithm take 100,0000 or even a million itera-
tions before stabilization. Autocorrelation may be discovered in the iterations,
which need to be thinned or adjusted. Taking every fifth or sixth iteration and
discarding the rest may result in an appropriate sampling distribution with
which to serve as the posterior distribution of the model. Sometimes it is bet-
ter to use the mode or a trimmed mean for calculating the Bayesian coefficient
and related statistics. Many considerations need to be made when the pos-
terior is difficult to calculate. However, the algorithms found in WinBUGS,
SAS and other recognized applications usually can find the proper posterior
for a given data situation.

A particular complication arises when it is not possible to provide a like-
lihood for a model one is attempting to develop. Recently this has been ad-
dressed with the development of ABC algorithms, which is an acronym for
Approximate Bayesian Computation. The method has been used with consid-
erable success in the fields of genetics and epidemiology, although we believe it

Model Estimation Using Simulation 231

can also have use in astrostatistics and ecology, which are areas of our special
interest. Several variations of the ABC algorithm have already been developed,
e.g., Probabilistic ABC. It is likely that this field will develop in future years.
The R package abc on CRAN provides an algorithm with a rather extensive
modelling capability for this set of models.

7.5 Exercises

1. Our simulations to assess the accuracy of the deviance and the Pear-
son dispersion used quite large samples. How would our conclusions
vary with much smaller samples?

2. Construct a synthetic probit model with user specified coefficients
on the intercept of 0.5, and x1 of 1.75, and x2 of −0.8. Use random
uniform variates to create the predictors. The data should have
10,000 observations.

3. Construct a 10,000 observation Monte Carlo gamma model with an
inverse link. The number of predictors and their coefficients is the
choice of the reader. Obtain coefficient values and a value for the
Pearson dispersion statistic. Extra: Compare the Pearson dispersion
statistic with the scale parameter obtained when adding the two-
parameter gamma model to ml_glm2 in Exercise 6 for Chapter 5.

4. Construct a synthetic zero-inflated negative binomial model simi-
lar to the synthetic zero-inflated Poisson model in Section 7.2.2 of
the text. The reader may choose the structure and values of the
coefficients of the model.

5. MCMC simulation

(a) Adapt the code for Metropolis–Hastings so that the function
has informative normal priors on the intercept and the coeffi-
cient of hmo.

(b) Adapt the code for Metropolis–Hastings so that the function
has an informative normal prior on the intercept parameter
and a beta prior on the slope.

(c) Adapt the code for Metropolis–Hastings by adding another pre-
dictor from the medpar data to the model. Give it a reasonable
prior.

(d) Amend the code for Metropolis–Hastings so that it becomes a
Bayesian normal model with two normal priors.

(e) Amend the code for Metropolis–Hastings so that it becomes a
Bayesian logistic model with a normal prior for the intercept
and beta prior on hmo.

232 Methods of Statistical Model Estimation

(f) Wrap the Metropolis–Hastings in a model-fitting function sim-
ilar to the ml_glm series in the earlier chapters.

ISBN: 978-1-4398-5802-8

9 781439 858028

90000

K12707

M e t h o d s o f
s tat i s t i c a l M o d e l

e s t i M at i o n

M
e

t
h

o
d

s
 o

f
 s

t
a

t
is

t
ic

a
l

M
o

d
e

l
 e

s
t

iM
a

t
io

n

J o s e p h M . h i l b e
a n d r e w P. R o b i n s o n

H
ilbe • R

obinson

Methods of Statistical Model Estimation examines the most important and popular
methods used to estimate parameters for statistical models and provide informative
model summary statistics. Designed for R users, the book is also ideal for anyone
wanting to better understand the algorithms used for statistical model fitting.

The text presents algorithms for the estimation of a variety of regression procedures
using maximum likelihood estimation, iteratively reweighted least squares regression,
the EM algorithm, and MCMC sampling. Fully developed, working R code is constructed
for each method. The book starts with OLS regression and generalized linear models,
building to two-parameter maximum likelihood models for both pooled and panel
models. It then covers a random effects model estimated using the EM algorithm and
concludes with a Bayesian Poisson model using Metropolis-Hastings sampling.

The book’s coverage is innovative in several ways. First, the authors use executable
computer code to present and connect the theoretical content. Therefore, code is
written for clarity of exposition rather than stability or speed of execution. Second, the
book focuses on the performance of statistical estimation and downplays algebraic
niceties. In both senses, this book is written for people who wish to fit statistical models
and understand them.

About the Authors
Joseph M. Hilbe is a Solar System Ambassador with NASA’s Jet Propulsion
Laboratory at the California Institute of Technology, an adjunct professor of statistics
at Arizona State University, and an Emeritus Professor at the University of Hawaii. An
elected fellow of the American Statistical Association and elected member (fellow) of
the International Statistical Institute, Professor Hilbe is president of the International
Astrostatistics Association. He has authored twelve statistics texts, including Logistic
Regression Models, two editions of the bestseller Negative Binomial Regression, and
two editions of Generalized Estimating Equations (with J. Hardin).

Andrew P. Robinson is Deputy Director of the Australian Centre for Excellence in
Risk Analysis and Senior Lecturer in the Department of Mathematics and Statistics
at the University of Melbourne. He has coauthored the popular Forest Analytics with
R and the best-selling Introduction to Scientific Programming and Simulation using
R. Dr. Robinson is the author of “IcebreakeR,” a well-received introduction to R that
is freely available online. With Professor Hilbe, he authored the R COUNT and MSME
packages, both available on CRAN. He has also presented at numerous workshops on
R programming to the scientific community.

Statistics

	Front Cover
	Contents
	Preface
	Chapter 1 - Programming and R
	Chapter 2 - Statistics and Likelihood-Based Estimation
	Chapter 3 - Ordinary Regression
	Chapter 4 - Generalized Linear Models
	Chapter 5 - Maximum Likelihood Estimation
	Chapter 6 - Panel Data
	Chapter 7 - Model Estimation Using Simulation
	Back Cover

