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A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 1

1 Empirical Analysis of Term Structure Data
1.1 Introduction

Before looking at the empirical behaviour of yields, we need to introduce some
notation. Let y�

t denote a set of yields that together form a yield curve, that
is, a vector that stacks individual annual yields, with the same dating, t, but
that are observed at different maturities, � . In the practical examples included
in this Element, we will typically use � D f3; 12; 24; : : : ; 120g months, but
� can naturally take any value, at which yields are observed. When referring
to a panel of yield observations (of dimension number of dates by number of
maturities; i.e. a collection of yield curves observed at different dates), we will
either write y, y.�/, or Y.
In a factor model, X will denote the extracted factors, and H;G, or B, will

typically denote the matrix that translates factors into yields; this matrix is of-
ten denoted the ‘loading’ matrix because it expresses how each of the extracted
factors impact, or load on, the yields at different maturities. Vector autoregress-
ive models will be written as zt D m C ˆ � .zt�1 � m/ C et, when written in
mean-adjusted form, and sometimes as zt D c Cˆ � zt�1 C et, when written in
constant form (i.e. m D ŒI �ˆ��1 � c).
At this point it may also be worth recalling that the yield curve is a by-

product of the financial market trading process. Agents trade bonds that are
quoted in prices, pt.�/. A risk-free bond, the ones we primarily deal with here,
guarantees to pay Eur 1 (in reality some scaling of 1, most often Eur 100)
at the maturity of the bond. The price today is therefore, as always in fin-
ance, the discounted value of the promised payment that falls in the future:
Pt.�/ D 1 � .1 C yt.�//

��
, yt.�/ D .Pt.�//

1=��
� 1, in discrete time, and

Pt.�/ D 1 � e�y�
t �� , yt.�/ D �

1
�

� log .Pt.�//, in continuous time.
We will model exclusively zero-coupon bonds. These bonds are important

because they form the basis for fixed income pricing: since all coupon paying
bonds can be expressed as portfolios of zero-coupon bonds (of relevant ma-
turities), once we know the prices of zero-coupon bonds, we can also find the
market-clearing price for all existing coupon paying bonds, assuming that there
is no idiosyncratic risk attached to these bonds, such as, for example, illiquid-
ity risk. Most often, however, we do not work with prices, but instead focus on
rates/yields, that is, on the annualised percentage return the bond gives, if we
hold it to maturity. As implied by its name, a zero-coupon bond does not pay
any coupons during its life, and its cashflow stream is therefore simple, as illus-
trated in Figure 1 for zero-coupon bonds of one, two, and ten-year maturities.
Typically, we get zero-coupon data from Bloomberg, Reuters, and other

data providers. These data are available at daily, weekly, and monthly
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2 Quantitative Finance

Figure 1 Zero-coupon cashflows

observation frequencies, and at predefined target maturities, for example, at
f0:25; 1; 2; : : : ; 10; 15; 20; 30g years.

1.2 Exploring Yield Curve Data
The example data used in this section are stored in the MATLAB work-
space file named ‘Data’. Data are obtained from public sources. The US
data are downloaded from the Federal Reserve Board homepage.1 These are
the well-known and often-used Gurkaynak, Sack and Wright (2006) data.
German yield curve data are obtained from the homepage of the German
Bundesbank.2

For each segment, we have yields in per cent per annum across maturities,
as well as model-based estimates for the expectations component and the term
premium, both estimated at a ten-year maturity point. We will return to these
latter two variables later on and for now only focus on the yield curve data. Let’s
load and plot these data: each data set contains monthly observations for the
following variables: date and yields, and spans the period from January 1975 to
December 2018, that is, a total of 528 time-series observations for each of the 6
included maturities per yield curve segment, which are f3; 12; 24; 60; 84; 120g

months.3

In addition to the time-series evolution of yields shown in Figure 2, it is also
informative to see what the yield curve looks like in the cross-sectional dimen-
sion. For example, what does the average yield curve look like? And, what

1 https://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
2 https://www.bundesbank.de/en/statistics/time-series-database
3 The shortest maturity observed for the raw German data downloaded from the homepage of
the German Bundesbank is six months. For the illustrative examples shown in this section, it is
simpler if observations at equal maturities are available for the German and the US yield curve
data. Hence, an interpolation technique is used to obtain a three-month maturity observation for
the German data. The exact process used is documented in the MATLAB code in Section 1. In
an actual analysis we would not do this because it is not needed. Yield curve models can easily
handle data observed at different maturities: we employ this trick here simply for expositional
reasons.
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A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 3
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Figure 2 Yield curve data
The figure shows the time series of yields, observed monthly and covering the period
from 1975 to end-2018, for maturities of six-month, one-year, two-year, five-year,
seven-year, and ten-year for Germany, and for the US market the following maturities
are shown three-month, one-year, two-year, five-year, seven-year, and ten-year. Yields
for the USA, Germany, and the euro area are included in the plot. It is noted that the
shortest maturity in the German market is six months (that is what is available from the
German Bundesbank home page) while the shortest maturity available for the US data
is three months.

are some of the most extreme shapes and locations that yield have displayed
historically? These questions are explored in the following.
Note that one of the curves shown in Figures 3 and 4 may actually have

materialised historically, since the calculations are done for each of thematurity
points separately.
Going back to the time-series plots of the yields observed for the USA and

German market segments, it is also interesting to observe that there is a very
high degree of correlation among yields within a given market segment, and
that a similarly high degree of correlation exists between market segments. It
almost seems as if every little up- and down-ward movement in one maturity is
mirrored by the other maturities in that market segment, with more pronounced
movements the higher the maturity. Similarly, the secular swings that yields
display over the twenty years of data are equally well visible across market
segments.
A more structured view on the within and between segment correlation is

illustrated in the following. For presentational purposes, correlations are shown
only for a subset of the included maturities.
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Figure 3 Generic shapes of the German yield curves
The figure shows the mean, median, min, and max of the German yields observed at a
monthly frequency and covering the period from January 1975 to December 2018. The
statistics are calculated across maturities. The x-axis shows the maturity of the yields in
months (e.g. 120 months correspond to 10 years).
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Figure 4 German yields with varying slopes
The figure shows German yield curves on the days when the slope (y�D10y-y�D3m)
reached its minimum, maximum and average value, for the period from January 1975
to December 2018.

Figure 5 provides a visual representation of the correlation between German
and US yields. If we had included other or additional yield curve segments, in
addition to the three-month, five-year, and ten-year maturities, we would get
qualitatively identical results. As expected based on the visual inspection of
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Figure 5 Correlations
The figure shows the pair-wise correlation between US and German yield levels observed at a monthly frequency and covering the period from January
1975 to December 2018. Correlations are calculated between the three-month, five-year, and ten-year maturity points. In each sub-element of the figure, the
red number indicates the correlation coefficient, and the red line shows the fitted regression line. On the diagonal, histograms of the series are plotted.
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6 Quantitative Finance

the time series plots, the cross correlations confirm our suspicion: yields within
and across yield segments are very highly correlated. Note that a red number
in the Figure 3 correlation matrix indicates that the correlation is statistically
significant from zero at a 1 per cent significance level.
We could repeat the above correlation analysis for the first differences of the

yield series – this would, for example, make sense, if yields were believed to be
I(1) processes (i.e. integrated of order one). And, if we did this, wewould obtain
a correlation picture that is qualitatively identical to the one discussed here.
Now, looking at the time series plots of the yield curve segments, one could

conclude, based on a preliminary and casual visual inspection, that the beha-
viour displayed by yields is somewhat different from what most people have
in the back of their mind when they think about the trajectory of a station-
ary I(0) process. While this is a relevant thought, the discussion of stationarity
will be taken up later on, when we discuss the eigenvalues of estimated vec-
tor autoregressive processes (VAR models – not to be confused with VaR, i.e.
value-at-risk). For now, we treat observed yields as coming from a stationary
data-generating process.
How can the overwhelming degree of correlation between yields be ex-

ploited? The answer is: by using principal component analysis (PCA)/ factor
models. At this stage, it is worth noting that virtually all term structure mod-
els, as well as many other important financial models (e.g. ATP and CAPM for
equity return modelling), rely heavily on PCA modelling principles. In fact,
this econometric technique is quite possibly the single most important model-
ling idea in the field of quantitative time-series finance. To my mind, it is as
important as PDEs (partial differential equations) are to the branch of finance
that deals with derivative pricing. It is therefore fairly important to master this
technique.
Before embarking on the factor modelling principle, it is worth spending a

few minutes explaining why it is generally not advisable to use raw lagged
yields directly to explain current yields. Doing this would amount to applying
the following VAR-model set-up, where Y is a vector of yields, c is a constant,
ˆ is a matrix of autoregressive coefficients, and e is a vector of residuals:

Yt D c Cˆ � Yt�1 C et (1.1)

Arguments against this modelling strategy are, amongst others:

� The number of yields modelled may vary from market to market and over
time. It is therefore not clear which maturities that should be included in the
model.
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A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 7

� One may need to adapt the dimension of the model, depending on which
market is modelled. This is inconvenient as well, as model results may not
be comparable.

� Since correlation between yields is so high, we may run into the problem of
multicollinearity.

� Projected yield curves and yield curve forecastsmay turn out to violate stand-
ard regularities (e.g. individual yield curve points may be out of sync with
the rest of the curve).

� The econometrician has very little control over the simulations; for example,
it is difficult to steer the projections in a certain direction, if that is desired.
Likewise, it is difficult to avoid certain (unrealistic) yield curve shapes and
developments.

This last point is illustrated in Figure 6, using the German data.
It is dangerous these days to make statements about whether a given sim-

ulated yield curve has a realistic shape or not – and the future may prove me
wrong – but despite what we have seen over the past years, I believe that the
depicted simulated curves in Figure 7 are too oddly shaped to be considered
for financial analysis (unless for some wild economic scenario): this applies to
their shape and location, and to the overall simulated trajectory (Figure 6) for

Jan-18 Jan-19 Jan-20 Jan-21 Jan-22 Jan-23

–4

–3.5
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–2.5

–2

–1.5

–1

–0.5

0

0.5

1

Figure 6 Naive yield curve forecasts
The figure shows how one can do naive forecasts of the yield curve, and what problems
this may bring. A VAR model is fitted to individual maturity points using the full histor-
ical sample (from 1975 to end-2018) of German yields. Each maturity is then projected
forty-two monthly periods ahead using the VAR. These projections are started at the last
observation covered by the data sample.
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Figure 7 Randomly chosen projected yield curves
The figure shows randomly selected sample curves picked among the forty-two projec-
ted curves. The x-axis shows the maturities in months at which yields are recorded.

the yields over the coming forty-two months. One may of course have a rule-
of-thumb and a routine that kicks out too oddly looking yield constellations
and trajectories. Doing this will naturally change the distributional assumptions
of the forecasted yields (since they are truncated at some pre-specified value)
compared to the distribution exhibited by the historical data. One way to rem-
edy this is to rely on approaches similar to Rebonato, Mahal, Joshi, Bucholz
and Nyholm (2005), where historical residuals are block-bootstrapped (i.e. re-
sampled) and the resulting simulated yields are smoothed to achieve shapes
that are akin to those seen in historical data.

1.3 A First Look at Principal Component Models
Dimension reduction is one of the great feats of PCA / factors models: the core
idea is that the majority of the variability of a given data set derives from a few
underlying (sometimes not directly observable) factors. This concept is famil-
iar; for example, the well-known CAPM prescribes that a single market factor
is responsible for the expected return on all equities traded in the economy.
Recall that the security market line is written as: EŒri� D r f C ˇi �

�
rm � rf

�
,

where investors are rewarded only for taking market risk in excess of the risk
free rate. rm is the return on the market portfolio, that is, the underlying factor
in this model, rf is the observable risk free rate, and ˇi is the sensitivity of
the i’th security’s return, ri. In factor model language, rf is the constant, rm is
the underlying factor, and ˇi is the factor sensitivity that translates the factor
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A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 9

observation into something that is applicable to the i’th security. We can natur-
ally operate with more than one factor. Typically, term structure models include
between one and five factors.
In general terms, and using matrix notation, we can write a factor model for

the yield data in the following way:

Yt„ƒ‚…
.#� � 1/

D G„ƒ‚…
.#� � #F/

� Xt„ƒ‚…
.#F � 1/

C †„ƒ‚…
.#� � #�/

� et„ƒ‚…
.#� � 1/

et � N.0; I/

(1.2)

where Y is the vector of yields observed at time t, G is the aforementioned
loading matrix, that translates the extracted factors X into into yields, † col-
lects the standard deviations of the residuals, and e N.0; 1/. The dimensions of
the variables are recorded below each entry, with the#-sign referring to the di-
mension of each variable: so, for example, #�x1 reads ‘number tau by 1’. Say
that yields are observed at the following f3; 12; 24; 36; 60; 120g months: in this
case we would have: �f3; 12; 24; 36; 60; 120g0 so, #� D 6, and since this is a
column vector, the number of columns included in � is just 1. Consequently, the
dimension of � is therefore 6x1. The dimension of the other included variables
are denoted in a similar way, with #F representing the number of included
factors. So, our first job when using factor models is to settle on an appro-
priate number of factors to extract (i.e. to choose #F). We will always have
that#F < #� , utilising the high cross-sectional correlation between yields, as
shown in Figure 5, to reduce the dimensionlity of Y.4

Looking at the expression for Yt in (1.2) indicates that if we know the factor
loadings ˆ, then we can find the factors Xt using linear regression, or by in-
version. Underline the previous sentence! – we will use this ‘trick’ extensively
when dealing with Nelson-Siegel type yield curve models later on. To preview
a bit, let’s quickly see how to back out the factors X using the full set of data
– as mentioned, we will return to this issue in greater detail later on. First we
write the above expression in terms of the full data set:

E ŒY�„ƒ‚…
.#� � #Obs/

D G„ƒ‚…
.#� � #F/

� X„ƒ‚…
.#F � #Obs/

where nObs is the number of dates the data spans. Assume G is known.
Then, in the context of an OLS regression, G represents the explanatory

4 If a purely statistical factor model is estimated on the yield curve data, we will obtain factors that
are orthogonal. However, later on it will become clear that the choice of G defines the economic
interpretation that can be attached to the extracted yield curve factors; and in this case we will,
in general, not find orthogonal factors.
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10 Quantitative Finance

variables and X the parameters to be estimated. We can therefore find X in the
following ways:

XO D G�1
� Y (1.3)

or

XO D .G0
� G/�1

� G0
� Y (1.4)

where the first equation in (1.3) represents a pure inversion, and the second
is the standard OLS formula. Returning to the main topic of this section (i.e.
factor models), let’s see if the DE and US data hide some interesting underlying
patterns (i.e. factors), and let’s try to construct a completely data-driven joint
model for these to yield curve segments on the basis of such underlying factors.
The intention here is only to show how factor models can be useful for

modelling term structure data, without infusing any term structure modelling
knowledge – in other words, the illustrated strategy may be what an economet-
rician would choose to do if she had not received any term structure schooling.
Later on in the Element it will become clear, that such an econometrician can
actually be quite successful at modelling term structure data!
A clarification about the term ‘factor models’ is warranted here. When I refer

to ‘factor models’ and ‘factors’, I do in fact mean ‘principal Components’, (i.e.
the outcome of applying the PCA function in MATLAB). So, throughout, it
is assumed that yield curve factors can be formed as a linear combination of
observed yields. Alternatively, if a true factor modelling approach was applied,
the starting point would be some underlying latent factors that were causing the
evolution observed in the yield curve, and we would try to extract these factors.
As we shall see, we will typically revert to factors that are directly interpretable
in terms of yield curve observables (e.g. the level, slope and curvature of the
yields curve), or actual maturity points on the yield curve. We will not, however,
include unobservable quantities, such as, for example, the effective stance of
monetary policy, or the natural long-term rate, as factors in the models that we
work with in this Element.
Individual eigenvalues express how much of the overall variability in the

data set the respective eigenvector explains. To help decide how many factors
we need to include in our model, we can therefore link the number of factors
to the overall variance that we want our model to capture.
Table 1 shows the cumulative fraction explained by the first six extracted

principal components/factors explain of the US and German data. It is seen
that four factors capture 100 per cent of the historical variability of both US
and German yields, confirming the high degree of cross-sectional correlation
among yield levels documented. If we believe that some of the variability in
the observed data is due to noise, we should chose to model fewer than four
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A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 11

Table 1 Cumulative variability explained by the
extracted yield curve factors

US DE

1st 0.9884 0.9675
2nd 0.9982 0.9964
3rd 0.9998 0.9995
4th 1.0000 0.9999
5th 1.0000 1.0000
6th 1.0000 1.0000

The table shows the cumulative fraction of variability ex-
plained by the principal components extracted from US and
euro area yield curve data (in levels). The data cover the
period from January 1975 to December 2018 and are observed
monthly. The following maturities are included in the data
sets: f3; 12; 24; 60; 84; 120g months.

factors: we don’t want a model that propagates idiosyncratic noise from the
past into the future. Three factors also look to be on the high side, so a sensible
choice may be to include two factors. In fact, the explained variability may
suggest that only one factor is needed, since the most important factor explains
95 per cent of the variability in the US data, and 98 per cent of the variability
in the German data. But, a model with just one factor is quite simplistic: while
it naturally can portray realistic shapes of the yield curve observed at a given
point in time, if the dynamic evolution of the yield curve factors are modelled
and used to project yield curves, a one-factor model is only able to generate
parallel shifts in yields from t to t C j, with j > 0. In the following we will
therefore typically rely on model having thee to four factors.
For convenience, we will refer to distinct groups of yields as: ‘yield curve

segments’. There is of course no universal definition of what a segment is, and
our use of this terminology is deliberately loose: we will use this ‘terminology’
as referring to a distinct a group of yields that intuitively (and economically)
belong together. For example, US government zero-coupon yields can form a
yield curve segment; German sovereign zero-coupon yields can form another
segment; similarly, yields carrying a certain credit grade can form another yield
curve segment. Although the segmentation of yields into these distinct ‘seg-
ments’ follows from the actual model application, it should be clear from the
context what constitutes a yield curve segment.5

5 In the interest of completeness, it should be mentioned that the use of the word “segment” in
this context has nothing to do with the yield curve segmentation hypothesis, the theory where
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Table 2 Root mean squared errors

US DE
3m 1y 2y 5y 7y 10y 3m 1y 2y 5y 7y 10y

RMSE 8 12 4 12 6 11 2 10 7 11 4 11

The table displays the fit of the joined yield curve model, comprising US and euro area
German data, to the used data. The degree of fit is assessed via the root mean squared
error (RMSE) denominated in basis points.

Say we want to jointly model US and German government zero-coupon
yields. And, lets assume that for our practical application, that it makes sense
to treat the US yields as the ‘base’ yields curve segment, and hence the Ger-
man yields will be modelled as a spread/add-on to the base US yield curve
segment. To investigate whether such a set-up, where one segment constitutes
yields (here US yields) and the other segment constitutes yield spread (here
German yields minus US yields, naturally observed for identical maturities)
makes sense econometrically, we will investigate what the loading structures
look like, and whether it is possible to approximate the German yield spreads
sufficiently well using a factor structure. We will do this before looking in more
detail at the complete model formulation and how we can include a model that
captures well the time series dynamics of the yield curve factors.
Figure 8 shows the empirical loadings when two factors are extracted for

the US yield curve segment, and when two factors are used to model the
spread data. It is interesting to see how similar the loadings are: the loading for
the first US factor is constant across all maturities; likewise, the first spread-
segment factor has a constant impact across all maturities. The loadings across
the sampled maturities for the second factor are also similar, and so are the
loadings for the third factor.
The RMSEs delivered by this model are fine and what we would expect of a

3-factor model (see Table 2). To provide a visual comparison between observed
and model fitted yields, Figure 9 shows the three-month and ten-year segments
of the German and US yield curve segments.

1.4 Adding Time-Series Dynamics to the Factors
It is now natural to add dynamics to our empirical model, such that we can
use it as a projection and scenario-generation tool. To do this, we assume that

bond traders are believed to have a preference for a given set of maturities: see e.g. Vayanos and
Vila (2009), Greenwood and Vayanos (2014), Li and Wei (2013), and Eser, Lemke, Nyholm,
Radde and Vladu (2019).

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 13

–1

–0.5

0

0.5

1
V
a
lu
e

US loading structure

3 12 24 60 84 120

3 12 24 60 84 120

–1

–0.5

0

0.5

1

V
a
lu
e

Spread loading structure (US-DE)

Figure 8 Yield curve data
The figure shows the empirical loadings for the US data (upper panel), and the German
yield curve spread data (lower panel). The spreads are defined as the difference between
the US andGerman yields observed for identical maturities: SUS�DE

t D YUSt .�/�YUSt .�/

for � D f3; 12; 24; 60; 84; 120g months. The data used in this example are observed
monthly and cover the period from 1975 to 2018 The loading structures are estimated
using principal component analysis assuming that two factors are needed to provide a
good characterisation of the US data, and that two factors are needed to model the spread
data.

a VAR(p) model is an appropriate devise to capture the dynamic behaviour of
the yield curve factors. First, we want to identify the log-order p. Following
the BIC criterion6, a VAR(1) model is applied as an adequate description of the
law of motion for the four yield curve factors. Our purely empirically derived
joint German and US yield curve model is then ready to be put to work. The
model can be summarised in the following way:"

yUS
yDE

#
t

D

"
GUS 0
GUS Gsprd

#
�

"
XUS

Xsprd

#
t

C†et (1.5)"
XUS

Xsprd

#
t

D

"
cUS
csprd

#

C

"
ˆUS;US ˆUS;sprd

ˆsprd;US ˆsprd;sprd

#
�

"
XUS

Xsprd

#
t�1

C†vt (1.6)

6 This is the Bayesian information criterion, which can be used to determine the optimal lags to
include in a time-series model; see Lütkepohl (1991)[ch.4]
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Figure 9 Observed and fitted yields
The figure shows the time-series evolution of selected maturity points for the US and
German yield curve data. The figures show the observed and model-fitted yields for the
3-month and 120-month maturity points.

The eigenvalues of ˆ are Œ0:9569; 0:9569; 0:9720; 0:9921�. Given that the
maximum eigenvalue of the auroregressive matrix is less than one, the estim-
ated VAR is stationary. So, lets see what kind of yield and return projections we
can generate using this model. But, before we embark on this exercise, lets first
backtest the model using a pseudo out-of-sample forecasting experiment. Our
data sample covers 468monthly observations from January 1975 to April 2018,
and the last five years of the sample is used for backtesting purposes. Naturally,
this choice is somewhat arbitrary, since other equally appropriate combinations
of the amount of data available for the first estimation of the model, and num-
ber of data points available for backtesting, naturally exists. The backtesting
exercise is therefore structured in the following way:

� The model is estimated using data from January 1975 to May 2013.
� Factor projections are generated using the dynamic model for the yield curve
factors, shown previously. Projections are generated for months one to six
ahead, (i.e. for April, May,…,September 2013).

� The factor projections are converted to yields using the Yield Equation,
shown previously.

� Projected yields are compared to observed yields at the appropriate horizon.
� As a comparison, random walk projections are also generated and compared
to the relevant observed yields.
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Table 3 Back-testing the joint model

US DE
3m 1y 2y 5y 10y 3m 1y 2y 5y 10y

Model

Fitted 6 8 2 6 5 2 8 2 12 13
Forecasted 1m ahead 15 11 13 19 22 8 9 9 19 18
Forecasted 2m ahead 21 13 18 24 29 11 10 10 23 21
Forecasted 3m ahead 27 15 23 29 34 13 11 13 27 25
Forecasted 4m ahead 31 19 28 33 37 17 14 16 31 29
Forecasted 5m ahead 34 22 32 37 41 20 16 19 35 34
Forecasted 6m ahead 36 25 35 40 43 24 20 23 39 39

Random Walk

Fitted 10 13 13 18 23 8 9 8 18 20
Forecasted 1m ahead 13 18 17 23 31 9 10 9 21 24
Forecasted 2m ahead 16 22 21 27 36 11 10 10 24 28
Forecasted 3m ahead 20 27 27 31 40 13 12 12 27 32
Forecasted 4m ahead 23 32 31 34 44 15 12 13 29 34
Forecasted 5m ahead 27 37 36 37 46 17 13 15 31 37
Forecasted 6m ahead 31 42 41 40 49 19 14 16 34 41

The table shows the s-step ahead prediction RMSEs in basis points for the joint model
and the Random Walk model.

� One month is added to the dataset used to estimate the model and the
aforementioned steps are repeated until the end of the dataset is reached

�

�

More can naturally be done, but this is left to the reader, should they have the
urge to go more into detail at this stage. It is also left to the reader to evaluate
the outcomes shown in Table 3 and to reach a conclusion on whether the model
is useful for any practical purposes – apart from illustrative ones.
With this out of the way, let’s now see what kind of forward-looking return

distributions the model can generate. Assuming that we are working with con-
tinuously compounded yields, which we are, the holding period return on a
�-maturity bond over the period from t to t C j is rt�;tCj D ptC

�

j
j
� pt� , where p is

the log bond price. The intuition here is that we buy a bond at time t with ma-
turity � , .pt� /, and sell it j periods later, at time t C j, where the bond is j periods
closer to redemption, and its maturity is therefore � � j. Since pt� D �� � yt� , we
can rewrite the return in terms of yields as: rt�;tCj D � � yt� � .� � j/ � ytC

�

j
j.
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Table 4 Simulated return statistics

US SE

1y 5y 10y 1y 5y 10y

Mean 2.51 1.42 -0.88 -0.76 -2.93 -5.37
Std. 0.00 5.12 9.69 0.00 3.33 7.09

The table shows distribution statistics for the simulated return distributions for the five-
year and ten-year segments of the curve.

As an example, we will use our model to simulate return distributions for
the 12, 60, and 120 months segments of the curve, using the last observa-
tion in our data sample as a starting point. With this application in mind, it
is clear that we cannot use the model directly. A bit of adjustment is needed
since the empirical factor loadings only are available at the maturities at
which data are observed, i.e. for maturities f3; 12; 24; 60; 84; 120g months,
and since we also need yield observations at maturities f0; 48; 108g months
to calculate the desired returns. We therefore need somehow to enlarge our
loading matrix such that it also comprises loadings for these additional ma-
turity points. We will see later on that this is an easy operation, if we have
a parametric description of the loading matrix (such as e.g. in the Nelson-
Siegel model). However, for now, we have to come up with a solution
applicable to the empirical problem at hand by using inter-/extra-polation
techniques.
The derived loadings are shown in Figure 10. It is observed that the expanded

loadings are inline with the ones calculated for the maturities at which yields
are observed. The expanded loadings are shown as blue lines while the original
observations are indicated using red stars. It looks good, so it can be concluded
that the chosen expansions methodology did a good job. We can now proceed
with the generation of yield simulations and return calculations, and proceed
with the generation of yield simulations and return calculations.
Figure 11 shows the simulated return distributions for the 5- and 10-year

maturity points and Table 4 shows the two first moments of the simulated dis-
tributions. I have not shown the plots of the 1-year maturity points – why not?
To illustrate the distributional properties of the simulated returns, the red lines
in the plots show superimposed normal distributions. These distributions fit the
returns quite well, as expected, since the estimated model for the yields relies
on the normal distribution. We will see later on how we can escape the world
of normality and how distributions can be generated that match assumptions
about the expected future trajectory of the economy.
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Figure 10 Model and observed yields
The figure shows the loading structures for the US and spread yield curve segments,
including the additional loadings that are needed to calculate monthly returns. Since
returns are calculated for the 60- and 120-month maturities, we need to approximate
yields also at the 48- and 108-month maturities. The loadings for these points are seen
in the figure.
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Figure 11 Return Distributions
The figure shows empirical return distributions evaluated against the normal distribution
for the 5-year and 10-year segments of the examined yield curve data.

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


18 Quantitative Finance

MATLAB code

..
filename: Empirical_Investigation_of_Observed_Yields.m

1 %% Section 1: Empirical exploration of yield curve data
2 %
3 clear all; % clear all variables
4 close all; % close all figures
5 clc; % clear command window
6 disp(’Please wait...’)
7 load(’Data_YCM.mat’);
8
9 % adjusting the minimum maturity for the German data:
10 % the 6 month maturity is the shortest observed maturity in the
11 % downloaded german data. Using a principal component analysis
12 % (more about this in the text) a three-month yield observation is
13 % is fitted. This makes US and German yields available for an
14 % identical set of maturities.
15 %
16 x_ = [1:1:11]’;
17 tau_in = [6 12:12:120]’;
18 tau_out = [3 12:12:120]’;
19 Dates = DE_data(:,1);
20 Y_tmp = DE_data(:,2:end);
21 [G, F ] = pca(DE_data(:,2:end),’Centered’,’off’);
22 G_ = nan(11,11);
23 for (j=1:11)
24 G_(:,j) = interp1(tau_in,G(:,j),tau_out,’spline’,’extrap’);
25 end
26 DE_data = [];
27 DE_data = [Dates (G_*F’)’];
28
29 start_ = datenum(’31-Jan-1975’); % defines the start date of the data samples.
30 % can be changed to test whether the results
31 % below are robust to other starting points.
32
33 indx_s = find(US_data(:,1)==start_,1,’first’);
34 indx_tau = [1 2 3 6 8 11]; % selected maturities
35 tauDE = [3 12 24 60 84 120]’; % defines the maturities
36 tauUS = [3 12 24 60 84 120]’;
37 Y_US = US_data(indx_s:end,indx_tau+1); % ... first column holds the date ...
38 Y_DE = DE_data(indx_s:end,indx_tau+1); % contains the yield curve
39 dates = US_data(indx_s:end,1); % observations nObs-by-nTau
40 [nObs,nTau] = size(Y_US); % number of time series observations and
41 % number of maturities.
42
43 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
44 subplot(2,1,1), plot( dates, Y_US )
45 date_ticks = datenum(1975:5:2020,1,1);
46 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
47 datetick(’x’,’mmm-yy’,’keepticks’), title(’US’)
48 set(gca, ’FontSize’, 20)
49
50 subplot(2,1,2), plot(dates, Y_DE),
51 date_ticks = datenum(1975:5:2020,1,1);
52 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
53 datetick(’x’,’mmm-yy’,’keepticks’), title(’German’)
54 set(gca, ’FontSize’, 20)
55
56 print -depsc Empirical_YieldCurves_US_DE_EA
57
58 %% Cross sectional plots
59 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
60 plot(tauDE,[mean(Y_DE)’ median(Y_DE)’ min(Y_DE)’ max(Y_DE)’ ], ...
61 ’o-’,’LineWidth’,2), ...
62 xticks(tauDE’), grid, ’on’;
63 xticklabels(tauDE’ ), ...
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64 ylabel(’Pct’), legend(’Mean’, ’Median’, ’Min’, ...
65 ’Max’, ’Location’,’northeast’)
66 ylim([-2 15])
67 set(gca, ’FontSize’, 20)
68 print -depsc AverageYieldsDE
69
70 diff_S = Y_DE(:,end)-Y_DE(:,1); % difference between the 10y and
71 % 6m yields (a measure for the slope)
72
73 [~, indxS_med] = min(abs(diff_S-median(diff_S))); % finds the index of
74 [~, indxS_min] = min(abs(diff_S-min(diff_S))); % the curve having the
75 [~, indxS_max] = min(abs(diff_S-max(diff_S))); % median, min, and max
76 % slope in the sample
77
78 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
79 plot(tauDE,[Y_DE(indxS_med,:)’ Y_DE(indxS_min,:)’...
80 Y_DE(indxS_max,:)’],’o-’, ’LineWidth’,2 ), ...
81 %title(’Generic Slope-Based Shapes of the Yield Curve - Germany’), ...
82 legend( datestr(dates(indxS_med,1)), datestr(dates(indxS_min,1)), ...
83 datestr(dates(indxS_max,1)), ’Location’, ’SouthEast’ ), ...
84 xticks(tauDE), xticklabels(tauDE’), ...
85 ylabel(’Pct’), grid, ’on’; ...
86 ylim([0 15])
87 set(gca, ’FontSize’, 20)
88 print -depsc GenericYieldCurveShapesDE
89
90
91 %% Correlation analysis
92 subData = array2table([Y_DE(:,1), Y_DE(:,4), Y_DE(:,6), Y_US(:,1), Y_US(:,4),
93 Y_US(:,6)]);
94 subData.Properties.VariableNames = { ’DEm6’, ’DEy5’, ’DEy10’, ...
95 ’USm3’, ’USy5’, ’USy10’ };
96 corrplot(subData,’type’,’Pearson’,’testR’,’on’,’alpha’,0.01)
97
98 print -depsc YieldCorrPlot
99
100 %% Generating projections from a yields-only model
101 %
102 rng(42+42+42); % fixing the starting point for the random number generator
103 % to ensure replicability
104 nHist = 12; % number of historical observations to inlude in the plot
105 nSim = 42; % number of periods to be simulated
106 VAR_y = varm(nTau, 1); % sets up a VAR1 model: 11 variables and 1 lag
107 est_DE = estimate(VAR_y, Y_DE); % estimate VAR1 model on all obs.
108 sim_DE = simulate(est_DE, nSim, ’Y0’, Y_DE(end,:)); % simulate the model
109 % star at last obs
110 simDates = [ dates(end-11:end,1); ...
111 dates(end,1)+(31:31:nSim*31)’ ];
112 % concatenating the dates for the last 12 data observations
113 % with the dates spanning the forecasts
114 data2plot = [ Y_DE(end-nHist+1:end,:); sim_DE]; % hist. + sim. data
115
116 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
117 plot(simDates, data2plot, ’--’, ’LineWidth’,2), ...
118 hold on, grid, ’on’;
119 plot(simDates(1:nHist,1), Y_DE(end-nHist+1:end,:), ’-’, ...
120 ’LineWidth’,2)
121 %title(’Forecasting German Yields the Incorrect way’), ...
122 set(gca, ’FontSize’, 20)
123 datetick(’x’,’mmm-yy’)
124 print -depsc WrongProjections
125
126 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
127 subplot(3,1,1), plot(tauDE,sim_DE(17,:),’o-’), ...
128 ylim([-4 0]), grid,’on’; ...
129 title(datestr(simDates(17+nHist),’mmm-yy’))
130 xticks(tauDE), xticklabels({tauDE}),
131 set(gca, ’FontSize’, 18)
132 subplot(3,1,2), plot(tauDE,sim_DE(36,:),’o-’), ...
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133 ylim([-4 0]), grid,’on’; ...
134 title(datestr(simDates(36+nHist),’mmm-yy’))
135 xticks(tauDE), xticklabels({tauDE}),
136 set(gca, ’FontSize’, 18)
137 subplot(3,1,3), plot(tauDE,sim_DE(42,:),’o-’), ...
138 ylim([-4 0]), grid,’on’; ...
139 title(datestr(simDates(42+nHist),’mmm-yy’))
140 xticks(tauDE), xticklabels({tauDE})
141 set(gca, ’FontSize’, 18)
142 print -depsc FunnySimYields
143
144
145 %% A first look at factor models
146 %
147 [G_US, F_US, eig_US] = pca(Y_US); % run factor analysis on US data
148 [G_DE, F_DE, eig_DE] = pca(Y_DE); % run factor analysis on DE data
149
150 [ cumsum(eig_US./sum(eig_US)) cumsum(eig_DE./sum(eig_DE)) ]
151
152 nF = 3;
153 Spread = Y_DE-Y_US; % the pure spread in percentage points
154 [G_Sprd, F_Sprd, eig_Sprd] = pca(Spread); % run factor analysis on US data
155
156 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
157 subplot(2,1,1), plot(tauUS,G_US(:,1:nF),’o-’, ...
158 ’LineWidth’,2), ylim([-1 1]), title(’US loading structure’),
159 xticks(tauUS),xticklabels(tauUS’),
160 ylabel(’Value’), grid, ’on’; set(gca, ’FontSize’, 20)
161 subplot(2,1,2), plot(tauDE,G_Sprd(:,1:nF),’o-’, ...
162 ’LineWidth’,2), ylim([-1 1]), title(’Spread loading structure (US-DE)’),
163 xticks(tauDE), xticklabels(tauDE’),
164 ylabel(’Value’), grid, ’on’; set(gca, ’FontSize’, 20)
165 print -depsc EmpiricalLoadingStructures
166
167 %% Joint model for DE and US yields
168 %
169 Y2 = [ Y_US Y_DE ]; % collecting the relevant yield segments
170 G_mdl = [ G_US(:,1:nF) zeros(nTau,nF); % loading structure for the joint model
171 G_US(:,1:nF) G_Sprd(:,1:nF)] ;
172 F_mdl = G_mdl\Y2’;
173 Y2_hat = (G_mdl*F_mdl)’; % fitted yield curves
174 err = Y2-Y2_hat; % fitting errors
175
176 RMSE_bps = 100*(mean(err.^2)).^(1/2) % RMSE in basis points
177
178 Tab_rmse = array2table(round(RMSE_bps)); % just for the display of output
179 for (j=1:nTau)
180 Tab_rmse.Properties.VariableNames(1,j) = {strcat([’US’,num2str(tauDE(j,1))])

};
181 Tab_rmse.Properties.VariableNames(1,j+nTau) = {strcat([’DE’,num2str(tauUS(j,1))])

};
182 end
183 disp(Tab_rmse)
184 disp(’Min and Max RMSE’)
185 disp(round([ min(RMSE_bps) max(RMSE_bps) ]))
186 %% Comparing observed and fitted yields
187 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
188 subplot(2,2,1), plot(dates,[Y2(:,1) Y2_hat(:,1)], ’LineWidth’,2), ...
189 set(gca, ’FontSize’, 20)
190 title(Tab_rmse.Properties.VariableNames(1,1)), ...
191 datetick(’x’,’yyyy’),
192 legend(’Obs’,’Fitted’,’Location’,’northeast’)
193
194 subplot(2,2,2), plot(dates,[Y2(:,6) Y2_hat(:,6)], ’LineWidth’,2), ...
195 set(gca, ’FontSize’, 20)
196 title(Tab_rmse.Properties.VariableNames(1,6)), ...
197 datetick(’x’,’yyyy’),
198 legend(’Obs’,’Fitted’,’Location’,’northeast’)
199
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200 subplot(2,2,3), plot(dates,[Y2(:,7) Y2_hat(:,7)], ’LineWidth’,2), ...
201 set(gca, ’FontSize’, 20)
202 title(Tab_rmse.Properties.VariableNames(1,7)), ...
203 datetick(’x’,’yyyy’),
204 legend(’Obs’,’Fitted’,’Location’,’northeast’)
205
206 subplot(2,2,4), plot(dates,[Y2(:,12) Y2_hat(:,12)], ’LineWidth’,2), ...
207 set(gca, ’FontSize’, 20)
208 title(Tab_rmse.Properties.VariableNames(1,12)), ...
209 datetick(’x’,’yyyy’),
210 legend(’Obs’,’Fitted’,’Location’,’northeast’)
211 print -depsc EvaluatingJointModel
212
213
214 %% Adding dynamics to the model
215 %
216 maxLags = 6;
217 aic_bic = zeros(maxLags,2);
218 for ( j=1:maxLags )
219 Mdl_ = varm(nF*2,j);
220 Mdl_est = estimate(Mdl_,F_mdl’);
221 Info_ = summarize(Mdl_est);
222 aic_bic(j,:) = [ Info_.AIC Info_.BIC ];
223 end
224 disp(’Optimal lag-order according to:’)
225 disp(’ AIC BIC ’)
226 disp( [find(min(aic_bic(:,1))==aic_bic(:,1)) ...
227 find(min(aic_bic(:,2))==aic_bic(:,2))])
228
229 Mdl_dynamics = varm(nF*2,1);
230 Est_dynamics = estimate(Mdl_dynamics, F_mdl’);
231 sort(real(eig(Est_dynamics.AR{:,:})))
232
233 end_ = datenum(’31-May-2013’); % end-date of the est data sample
234 indx_e = find(dates==end_,1,’first’)-1;
235 horizon_ = 6; % projection horizon
236 nCast = nObs-indx_e-horizon_; % number of times to re-estimate
237 err_mdl = NaN(horizon_+1,nTau*2,nCast); % container for the output
238 err_rw = NaN(horizon_+1,nTau*2,nCast); % container for the random-walk
239 Mdl_cast = varm(nF*2,1);
240 for ( j=1:nCast )
241 % estimate on expanding data window
242 est_tmp = estimate(Mdl_cast, F_mdl(:,1:indx_e+j)’);
243 % forecast VAR model
244 F_cast = forecast(est_tmp,horizon_,F_mdl(:,1:indx_e+j)’);
245 % forecast random-walk
246 F_rw = repmat(F_mdl(:,indx_e+j-1)’,horizon_+1,1);
247 Y_obs = Y2(indx_e+j:indx_e+j+horizon_,:);
248 F_cast = [ F_mdl(:,indx_e+j)’; F_cast ];
249 Y_cast = (G_mdl*F_cast’)’; % convert forecasted factors into yields
250 Y_rw = (G_mdl*F_rw’)’; % convert random projections into yields
251 err_mdl(:,:,j) = (Y_obs-Y_cast)*100;
252 err_rw(:,:,j) = (Y_obs-Y_rw)*100;
253 end
254 tab_Fcast_mdl_rmse = array2table( round( (mean(err_mdl.^2,3)).^(1/2)) );
255 tab_Fcast_mdl_rmse.Properties.VariableNames = Tab_rmse.Properties.VariableNames;
256 tab_Fcast_mdl_rmse.Properties.RowNames = {’Fitted’, ’Forecast 1m ahead’, ...
257 ’Forecast 2m ahead’,
258 ’Forecast 3m ahead’, ...
259 ’Forecast 4m ahead’,
260 ’Forecast 5m ahead’, ...
261 ’Forecast 6m ahead’};
262
263 tab_Fcast_rw_rmse = array2table( round( (mean(err_rw.^2,3)).^(1/2)) );
264 tab_Fcast_rw_rmse.Properties.VariableNames = tab_Fcast_mdl_rmse.Properties.
265 VariableNames;
266 tab_Fcast_rw_rmse.Properties.RowNames = tab_Fcast_mdl_rmse.Properties.RowNames;
267 disp(’Projections from the estimated model’)
268 disp(’------------------------------------’)
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269 disp(tab_Fcast_mdl_rmse)
270 disp(’Projections assuming an Random-Walk model’)
271 disp(tab_Fcast_rw_rmse)
272 disp(’-------------------------------------’)
273
274 %% Creating the expanded loading matrix
275 % to facilitate monthly return calculations
276 % for the 1, 60, 120 months maturity points
277 %
278 tau_new = sort([tauUS;[0;48;108]]);
279 nTau_new = length(tau_new);
280 % inter- and extra-polation of the Base loadings
281 G_ext = interp1(tauUS,G_mdl(1:nTau,1:3),tau_new,’pchip’);
282 % inter- and extra-polation of the Spread loadings
283 G_Sprd = interp1(tauUS,G_mdl(nTau+1:end,4:6),tau_new,’pchip’);
284 % expanded loading matrix
285 G_sim = [ G_ext zeros(nTau_new,3); G_ext G_Sprd ];
286
287 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
288 subplot(2,1,1), plot(tau_new, G_sim(1:nTau_new,1:3),’-b*’,’LineWidth’,2)
289 hold on, ylim([-1 1])
290 subplot(2,1,1), plot(tauUS, G_mdl(1:nTau,1:3),’r*’,’LineWidth’,5),
291 title(’Expanded loadings: US’)
292 set(gca, ’FontSize’, 20), xticks(tau_new), xticklabels({tau_new})
293 grid, ’on’;
294 subplot(2,1,2), plot(tau_new, G_sim(nTau_new+1:end,4:6),’-b*’,’LineWidth’,2)
295 hold on, ylim([-1 1])
296 subplot(2,1,2), plot(tauUS, G_mdl(nTau+1:end,4:6),’r*’,’LineWidth’,5),
297 title(’Expanded loadings: Spread’)
298 set(gca, ’FontSize’, 20), xticks(tau_new), xticklabels({tau_new})
299 grid, ’on’;
300 print -depsc ExpandedLoadingMatrix
301
302 %% Calculates return distributions
303 % defines the end-date of the first data sample
304 end_ = datenum(’31-Dec-2018’);
305 indx_e = find(dates==end_,1,’first’);
306 horizon_ = 12; % simulation horizon
307 nSim = 1e4; % number of simulation paths
308 nAssets = length(tau_new)-length(tauDE); % number of points on the curve
309 % for which returns are generated
310 Sim_Ret = NaN(nSim, nAssets); % container for the simulated returns
311 Mdl_ = varm(nF*2,1);
312 % estimate the VAR model on the selected data
313 est_Mdl = estimate(Mdl_, F_mdl(:,1:indx_e)’);
314 Y0 = repmat(F_mdl(:,indx_e)’,nSim,1);
315 F_sim1 = repmat(F_mdl(:,indx_e)’,1,1,nSim);
316 % Simulated paths for the factors
317 F_sim2 = simulate(est_Mdl, horizon_, ’Y0’, Y0, ’NumPaths’, nSim);
318 % combining obs and simulated data
319 F_sim3 = cat(1,F_sim1,F_sim2);
320 % transposing first two dimensions
321 F_sim = permute(F_sim3,[2 1 3]);
322 % container for simulated yields
323 Y_sim = NaN(2*nTau_new,horizon_+1,nSim);% dim: Tau x horizon x sim_path
324 % container for the simulated annual returns
325 R_sim = NaN(nSim,nAssets*2);
326 e1 = [3;6;9;12;15;18]; % indicator for relevant maturity points
327 e2 = [1;5;8;10;14;17]; % at time t, and t+1
328 tau_ret = [tau_new;tau_new]./12;
329
330 for ( j=1:nSim ) % calculating returns
331 Y_sim(:,:,j) = G_sim*squeeze(F_sim(:,:,j));
332 R_sim(j,:) = (tau_ret(e1,1).*squeeze(Y_sim(e1,1,j)) - ...
333 tau_ret(e2,1).*squeeze(Y_sim(e2,horizon_+1,j)))’;
334 end
335 ret_Tab = array2table([ round(mean(R_sim).*100)./100; ...
336 round(std(R_sim)*100)./100 ]); % organising results
337 ret_Tab.Properties.VariableNames = ...
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338 Tab_rmse.Properties.VariableNames(1,(2:2:12));
339 ret_Tab.Properties.RowNames = [{’Mean’};{’Std.’}];
340 disp(’Summary of the simulated return distributions’)
341 disp(ret_Tab)
342
343 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
344 subplot(2,2,1), histfit(R_sim(:,2),50,’Normal’), ...
345 set(gca, ’FontSize’, 20), title(ret_Tab.Properties.VariableNames(2))
346 subplot(2,2,2), histfit(R_sim(:,3),50,’Normal’), ...
347 set(gca, ’FontSize’, 20), title(ret_Tab.Properties.VariableNames(3))
348 subplot(2,2,3), histfit(R_sim(:,5),50,’Normal’), ...
349 set(gca, ’FontSize’, 20), title(ret_Tab.Properties.VariableNames(5))
350 subplot(2,2,4), histfit(R_sim(:,6),50,’Normal’), ...
351 set(gca, ’FontSize’, 20), title(ret_Tab.Properties.VariableNames(6))
352 print -depsc ReturnDistributions
353 disp(’Done executing the code’)

2 P and Q measures
2.1 Introduction

It is impossible to escape a treatment of the P and Q measures. Even if we
choose only to rely on models that do not impose arbitrage restrictions, such
as, for example, the Nelson-Siegel family (among others, Nelson and Siegel
(1987), Diebold and Li (2006)), and Diebold and Rudebusch (2013)) we need,
as a minimum, to appreciate what we are missing (and gaining), such that our
modelling choice is made in full consciousness. The main point here is to bring
into sharper focus the elements that are necessary for gaining an intuitive and
practical understanding of the difference between the P and Q measures. In
my opinion, this is sufficient for ‘blue-collar’ yield-curve implementation work
(i.e. the work that ensures the correct implementation of existing models in the
context of financial decision support frameworks).7

2.2 Switching between Measures
One of the central principles of financial theory is that asset prices (of equities,
bonds, business projects, and so on) can be found as the sum of the discoun-
ted expected future cashflow stream, where the discount rate is set to match
the riskiness of the cashflows being discounted. The risk adjustment is done by
adding an appropriate risk premium to the discount rate, that is, the discounting
is done using 1 C rt C � , where rt is the risk-free rate and � is the market-
determined equilibrium risk-premium, scaled by the risk of the cashflows in
question. Another key insight is that financial option pricing does not fit im-
mediately into this framework.8 The main reason for this is that these assets

7 In-depth treatments of the topics touched upon in this section can be found in, for example,
Campbell (2018), Cochrane (2005), Karatzas and Shreve (1996), and Mikosch (1998).

8 You may wonder why I am bringing financial option pricing into play here, when the focus of
attention is purely on fixed income pricing and yield curve modelling. But, please bear with me,
I hope it will become clear.
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have asymmetric (hockey-stick shaped) pay-off schedules, and our traditional
P -measure pricing tool-kits (such as the CAPM and APT) can only risk-adjust
assets that have symmetric pay-off distributions.9

To solve this dilemma, Black, Scholes, and Merton, came up with a clever
scheme where the (P -measure) cashflows, as opposed to the discount rate,
undergo a risk adjustment. This adjustment is achieved by weighting the
state-contingent cashflows by a new set of probabilities, drawn from a new
probability distribution, such that the expected value of the cashflows can be
discounted using the risk-free rate (term structure). Since the risk-free rate is
used for discounting, the distribution and the accompanying probability meas-
ure, can be called risk neutral. This probability measure is also referred to as the
pricing measure, because observed/theoretical prices are obtained using the ad-
justed probability distribution. After all, the correct pricing of financial options
was the primary motivation behind the ideas developed by Black, Scholes, and
Merton, so pricing measure seems like a very appropriate name. In the finan-
cial option pricing literature, as well as in the term structure literature, it has
become common practice to associate the risk-neutral pricing measure with the
letter Q, and the historical/empirical measure with the letter P .
The idea of adjusting the size of the cashflows to reflect the euro amount a

risk-averse investor would accept, instead of taking on a risky bet, is also known
from introductory investment science text books, as the ‘certain-equivalent
cashflow method’. Often tucked away in an appendix, this method is presen-
ted as a way to determine a reference value for new products, or the premium
companies should offer to entice new investors and make them participate in
new equity or bond offerings. So, one way to see theQmeasure is as a solution
to the certain-equivalent cashflow adjustment process: aQ distribution assigns
risk-adjusted probabilities to each possible cashflow–outcome combination for
the assets that exist in the economy, such that all assets are priced correctly.
This means that any asset that is priced in the economy, can be written in the
following way:

Pt D e�rt � EQ
t ŒPtC1� D e�rt

Z
S
ctC1.s C 1/ � f Q

t .s C 1/ds.t C 1/; (2.1)

where P is the price, r is the risk-free rate, c.s/ is the cashflow in the possible
(continuous) states=s; : : : ; S of the world, e.g. ct � N.�; �2/, and f Q gives the

9 Think of how you would find the appropriately risk-adjusted discount rate, using the CAPM or
APT, for pricing a call-option on the SP500 index. To determine the ˇ of the call-option in the
CAPMworld, we would need the covariance between the call-option’s return (pay-offs) and the
return on the market portfolio: how do we calculate the covariance between a variable that has
a pay-off of the form max.0; S � X/ (the option) and the market portfolio that can assumed to
be normally distributed? Pursuing this question is not necessarily a meaningful endeavour.
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accompanying (pricing) probability density function. If we are dealing with
risk-free bonds, it is also known that PT D 1 (i.e. that all bonds repay their
principal at the maturity date.
Since risk-averse investors pay extra attention to outcomes of the world

that they see as being undesirable (risky), the Q distribution is effectively a
shifted/skewed version of the P distribution, where more probability mass is
allocated to negative states of the world. We can write the relationship between
the distributions in the following way:

f Q
t .stC1/ D f P

t .stC1/ � Rt.stC1/; (2.2)

whereR is the risk-adjustment function that financial market participants agree
on, and which therefore becomes embedded in observed prices.10

The more pessimistic (risk averse) the financial market participants are at a
given point in time, the more attention (weight) is given to bad states of the
world. But, what are these bad, or undesirable, outcomes, that demand a risk
premium? The general answer is: states where the prices turn out to be low.
For equities, we would therefore expect the mean of the Q distribution to be
lower than that of the P distribution. Conversely, if we look at fixed income
markets, and our focus is on the yield curve, we would expect the mean of
the Q distribution to be higher than that of the P distribution, given the inverse
relationship between bond prices and yields. This type of reasoning is of course
only valid, when the risk premium is positive. On the other hand, if investors,
for example, regard government bonds as a safe-heaven asset, then they are
willing to pay a premium to acquire such securities, and the risk premium will,
consequently, turn negative.
Participants in fixed-income markets will require compensations for risk

factors that may lead to yield increases. And the higher the risk that yields
increase, the higher the premium. So, if we first consider the shape of the
term structure of term premia, it is natural to expect that it is upward slop-
ing in the maturity dimension: The higher the duration of the bond, the more
exposed it is to yield developments, compared to a bond with lower maturity,
over the same holding period. Second, it is reasonable to consider the economic
factors that impact the yield curve, andwhich therefore demand a risk premium.
For default-free nominal bonds, the relevant factors are: the rate of economic
growth, and the inflation rate. Uncertainty surrounding the future evolution of
these macro gauges will therefore impact fixed-income term premia. Investors

10 The function R is also called the Radon-Nikodym derivative, and it is assumed that R obey
the conditions necessary such that f Q behaves like, and can be interpreted as, a probability
density function.
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may also require compensation for holding illiquid bonds, that is, bonds that
may take a longer time to sell than the investor would like to spend on this
activity: here the compensation is of course not for the time spent but for the
adverse price movement that may materialise during the time it takes to find a
buyer for the bond.
Some bonds are also exposed to credit risk. The issuer of the bond may be

subjected to a credit-downgrade, whereby the bonds will trade at lower prices,
because they are now priced off a new and higher yield curve. A downgrade
action by rating agencies will typically be expected by market participants so
the downward drift inmarket prices will to some extent happen before the rating
agencies’ official announcement. Rating downgrades are not the only possible
credit event. It is also possible that the issuer defaults. In this case, the bond
holders will receive a certain recover percentage, depending on the prices, at
which the available assets can be sold.
In summary, investors require compensations for having exposure to the

following systematic risk factors:

� the economic growth rate
� the inflation rate
� credit migration risk (downgrade risk)
� default risk
� liquidity risk

However, in the remaining parts of the Element we will deal exclusively with
credit- and liquidity-risk free bonds.

2.3 A Simplified Empirical Example
Later on, we will introduce the commonly used parametrisation of the market
price of risk in the context of yield curve modelling, and go more into de-
tail. For now, a simplified example is used to illustrate the idea.11 Assume that
fixed-income prices are governed by a single factor, the short rate, and that an
AR(1) model gives a good characterisation of the dynamic behaviour of this
factor:

rt D cP
C ˛P

� rt�1 C � � et; (2.3)

where r is the annualised three-month short rate, cP is a constant, ˛P is the
autoregressive coefficient, � is the volatility of the process, and e � N.0; 1/.

11 For the more traditional exposition using a binomial tree and the portfolio-replication strategy
to derive the risk neutral probabilities, see e.g. Hull (2006), Rebonato (2018), and Luenberger
(1998)
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As is evident, the model is written under the empirical P measure, and in
passing, it is noticed that this set-up is similar to a discrete-time version of
Vasicek (1977):

�rt D a � .b � rt�1/C � � et; (2.4)

m

rt D cP
C ˛P

� rt�1 C � � et (2.5)

with the parameter-mapping, ˛P D 1� a, and cP D a � b. We will return to the
Vasicek (1977) model in Section 2.4.
If we use (2.3) together with (2.1), we can obtain P - and Q-measure price

expressions, denoted by QP�
t and P�

t respectively, for a � maturity bond at time
t. First, the recursive structure of (2.1) is used to obtain:

QP�
t D EP

t

h
e�rt�t

� QP��1
tC1

i
D EP

t

h
e�rt�t

� e�rtC1�t
� QP��2

tC2

i
D EP

t

h
e�rt�t

� e�rtC1�t
� e�rtC2�t

� QP��3
tC3

i
D : : :

and because QP0T D 1 (i.e. the bond repays its principal at maturity), this
expression generalises to:

QP�
t D EP

t

h
e�

P�
t rt�t

i
; (2.6)

and by similarity, we can write:

P�
t D EQ

t

h
e�

P�
t rt�t

i
: (2.7)

Using monthly observations for the three-month maturity point on the US risk-
free zero-coupon term structure, covering the period from 1961 to 2018, the
following P -measure parameter estimates are obtained:12

Based on (2.3), the comparable P -measure prices, QP�
t can be calculated, with

�t D 1=12 (because we use a monthly observation frequency), and using the
parameter estimates in Table 5. The good thing is that with the above set-up (i.e.
using the assumption of an AR(1) model for the short rate), there is a closed-
form solution to the sum of the short rate that enters in equation (2.6):

�X
t
rt D rt �

1 � ˛�

1 � ˛
C

c � .˛� � ˛ � � C � � 1/
.˛ � 1/2

(2.8)

12 Here we are using the data contained in the MATLAB file: Data_GSW_factors.mat.
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Table 5 P -measure estimates

Estimate

cP 0.0763
˛P 0.9943
�P 0.5886

Note that the superscript on the parameters are omitted in expression (2.8) be-
cause it is valid for any AR(1) model following the general notation used in
equation (2.3).
With this, it is now possible to calculate P prices and compare them to ob-

served Q prices, in order to gauge the size of the risk premium. When we use
term structure models in practice, and apply them to observed market yields, it
is easy to forget that yields are a by-product of the trading process: Investors
observe market prices, and the trading commences until prices reach equilib-
rium, that is, until all investors agree that the price is right (even if this moment
is only a micro-second). However, we model yields and not prices, and we are
therefore used to thinking about the risk premium in yield-space (and we will
continue doing so), but, in fact, the risk adjustment enters the stage through the
pricing process, and is therefore originally a pricing concept, as also outlined.
Before reverting to our normal yield-thinking mode, it may still be illustrative
to see the risk premium as it materialises in price-space – even if this is only
done using example prices.
On a randomly selected day, zero-coupon bond prices are sampled from the

US market; see the row labelled PQ in Table 6. Prices are sampled across the
maturity spectrum, covering 3 to 120 months. The next row in the table gives
the corresponding P prices, i.e. the prices that would prevail if equation (2.6)
together with the parameter estimates shown in Table 5, were used to price
the bonds. The difference between the two price rows is the risk premium, the
compensation that investors require to hold bonds at different maturities, here
given in price-space.

Table 6 P and Q example of prices and the price of risk

� in months 3 12 36 60 84 120

PQ (Eur) 99.12 96.22 88.56 81.53 74.71 64.82
PP (Eur) 99.48 97.76 92.24 85.98 79.47 69.90
Price of risk (Eur) 0.36 1.54 3.69 4.45 4.75 5.08

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 29

Once the price of risk has been calculated in euro terms, we can fiddle with
the parameters of the dynamic evolution of the yield curve factor in (2.3), such
that we match the observed market prices as closely as possible. That is, we
aim to find appropriate values for cQ and ˛Q, from this equation:

rt D cQ
C ˛Q

� rt�1 C � � et; (2.9)

This ‘appropriate adjustment’ constitutes the risk-adjustment in yield space,
and we will see later on how exactly to map parameters between the two
measures. For now, this link is (intentionally) left to be vague.
In our example, when the parameter-tinkering is done, we can draw the res-

ulting distributions for the short rate, see Figure 12. Since the Q distribution
falls to the right of the P distribution, it appears that a positive risk premium is
present in the sampled data.
It is worth emphasising again, that the above is just an example. In general,

we would not calibrate models using more observations than what was used
here; in fact, models would typically be fitted to match a whole panel of yields
covering no less than ten years of monthly time-series observations, where each
monthly observation would cover several maturity points.
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Figure 12 Example P - and Q distributions on a randomly selected day
The figure shows an example of the relationship between the P - and Q measure
distributions. Only the mean differs between the two measures in this example.
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2.4 A Generic Discrete-Time One-Factor Model
A discrete-time one-factor model is presented here as a prelude to the multi-
factor models that we will concentrate on for the most part of the remainder of
this Element. Themodel can be seen as the discrete-time counterpart of Vasicek
(1977).
As previously, we assume that the underlying factor driving the yield curve is

the short rate, and that the short rate is governed by a stationary AR(1) process:

rt D cP
C ˛P

� rt�1 C � � eP
t : (2.10)

The bond price is an exponential affine function of the short rate:

P�
t D exp .A� C B� � rt/ ; (2.11)

and we can therefore write the yield at maturity � as:

y�
t D �

1
�

� log
�
P�
t
�

D �
A�

�
�

B�

�
� rt: (2.12)

In order for bond prices to exclude arbitrage opportunities, a single stochastic
discount factor (SDF, also called the pricing kernel) is assumed to exist, and to
price all bonds (and other asset in the economy):

P�
t D EP

t
�
MtC1 � P��1

tC1
�
; (2.13)

it is typically assumed that the SDF is parameterised in the following way:

MtC1 D exp
�

�rt �
1
2
�2t � �teP

tC1

�
; (2.14)

and that:

�t D �0 C �1rt; (2.15)

Armed with these prerequisites, the fun can begin. By inserting (2.14) and
(2.11) into (2.13), we get:

P�
t D EP

t

�
exp

�
� rt �

1
2
�2t � �teP

tC1

�
� exp

�
A��1 C B��1 � rtC1

��
D EP

t

�
exp

�
� rt �

1
2
�2t � �teP

tC1 C A��1 C B��1 � rtC1

��
(2.16)

into which we substitute (2.10):

P�
t D EP

t

�
exp

�
� rt �

1
2
�2t � �teP

tC1 C A��1 C B��1��
cP

C ˛P
� rt C �eP

tC1

��
: (2.17)
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Now, the terms can be separated into two groups: one group related to the fu-
ture (i.e. t C 1), where the expectations operator is needed, and another group,
which are known at time t, and where the expectations operator is therefore not
needed:

P�
t DEP

t

�
exp

�
� rt �

1
2
�2t � �teP

tC1 C A��1 C B��1 �

�
cP

C ˛P
� rt C �eP

tC1

��
DEP

t

�
exp

�
� rt �

1
2
�2t � �teP

tC1 C A��1 C B��1 � cP

CB��1 � ˛P
� rt C B��1 � �eP

tC1

��
Dexp

�
� rt �

1
2
�2t C A��1 C B��1 � cP

C B��1 � ˛P
� rt
�

� EP
t

h
exp

�
� �t � eP

tC1 C B��1 � � � eP
tC1

�i
Dexp

�
� rt �

1
2
�2t C A��1 C B��1 � cP

C B��1 � ˛P
� rt
�

� EP
t

h
exp

��
� �t C B��1 � �

�
� eP

tC1

�i
:

(2.18)

Since E Œexp.aX/� D exp
� 1
2a

2� when X � N.0; 1/, the expectations part of
(2.18) can be written as:

EP
t

h
exp

��
� �t C B��1 � �

�
� eP

tC1

�i
D exp

�
1
2
.��t C B��1 � �/2

�
D exp

�
1
2
B2��1�

2
� B��1�t� C

1
2
�2t

�
:

(2.19)

The derived expression for the expectations part (2.19) can now be reinserted
into (2.18)

P�
t D exp

�
� rt �

1
2
�2t C A��1 C B��1 � cP

C B��1 � ˛P
� rt

C
1
2
B2��1�

2
� B��1�t� C

1
2
�2t

�
D exp

�
� rt C A��1 C B��1 � cP

C B��1 � ˛P
� rt C

1
2
B2��1�

2
� B��1�t�

�
:

(2.20)

Recall the expression for the market price of risk, shown in equation (2.15).
Insert it in (2.20), and collect terms related to rt:

P�
t D exp

�
� rt C A��1 C B��1 � cP

C B��1 � ˛P
� rt C

1
2
B2��1�

2
� B��1�t�

�
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D exp
�

� rt C A��1 C B��1 � cP
C B��1 � ˛P

� rt C
1
2
B2��1�

2

� B��1�.�0 C �1 � rt/
�

D exp
�
A��1 C B��1 � cP

C B��1 � ˛P
� rt C

1
2
B2��1�

2

� B��1�.�0 C �1 � rt/ � rt
�

D exp
�
A��1 C B��1 � cP

C
1
2
B2��1�

2
� Bt�1��0

C B��1 � ˛P
� rt � B��1��1 � rt � rt

�
D exp

�
A��1 C B��1 � cP

� Bt�1��0 C
1
2
B2��1�

2

C

�
B��1 � ˛P

� B��1��1 � 1
�

� rt
�

D exp
�
A��1CB��1

�
cP

���0

�
C

1
2
B2��1�

2„ ƒ‚ …
A�

C

h
B��1

�
˛P

� ��1

�
�1
i

„ ƒ‚ …
B�

�rt
�
:

(2.21)

Matching coefficients between equations (2.11) and (2.21), it is seen that:

A� D A��1 C B��1

�
cP

� ��0

�
C

1
2
B2��1�

2
D A��1 C B��1cQ

C
1
2
B2��1�

2

(2.22)

B� D B��1

�
˛P

� ��1

�
� 1 D B��1˛

Q
� 1 (2.23)

First, notice the nice interpretation of the constant and the autoregressive
coefficient. When excluding arbitrage opportunities, by imposing a common
risk-adjusted pricing equation for all assets that trade in the economy, see equa-
tion (2.13), the coefficients that determine the dynamics of the yield curve
factor, rt, under the market-pricing measure Q, are being risk adjusted. We
see that: cQ D cP � ��0, and ˛Q D ˛P � ��1, appear as the Q-measure
parameters, where � has an interpretation as the amount of risk, and �0;1 can
be interpreted as the price of risk. Second, the expressions for A� and B� have
iterative structures, such that A� depends on A��1, and B� depends on B��1.
This structure is no coincidence. It emerges as a natural consequence of the
imposed sequential nature of the above pricing equation. With this structure, it
is now possible to derive closed-form expressions for these parameters.
Starting with the general expression for B� in (2.23), gives:

B1 D B0˛Q
� 1

B2 D B1˛Q
� 1 D

�
B0˛Q

� 1
�
˛Q

� 1 D B0
�
˛Q
�2

� ˛Q
� 1
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B3 D B2˛Q
� 1 D

�
B0
�
˛Q
�2

� ˛Q
� 1

�
˛Q

� 1

D B0
�
˛Q
�3

�

�
˛Q
�2

� ˛Q
� 1

B4 D B0
�
˛Q
�4

�

�
˛Q
�3

�

�
˛Q
�2

� ˛Q
� 1: (2.24)

When the bond matures its price is P0t D exp .A0 C B0 � rt/ D 1, which implies
that A0 D 0 and B0 D 0. The above expression therefore generalises in the
following way:

B� D �

��1X
jD0

�
˛Q
�j

D �
1 �

�
˛Q
��

1 � ˛Q
(2.25)

where the last line results from the closed-form expression of the summed
power series. Doing the same exercise for the A� term, now that B� is known,
gives:

A� D �
cQ

1 � ˛Q
�

"
� �

1 �
�
˛Q
��

1 � ˛Q

#

C
�2

2
�
1 � ˛Q

�2 �

"
� C

1 �
�
˛Q
�2�

1 �
�
˛Q
�2 � 2 �

1 �
�
˛Q
��

1 � ˛Q

#
(2.26)

Given the relationship between bond prices and yields in (2.12), the resulting
yield equation for the discrete-time one-factor model can be written as:

y�
t D �

1
�
A� �

1
�
B� rt C �yut

D a� C b� rt C �yut (2.27)

with

a� D
cQ

�
�
1 � ˛Q

� �

"
� �

1 �
�
˛Q
��

1 � ˛Q

#

�
�2

2�
�
1 � ˛Q

�2 �

"
� C

1 �
�
˛Q
�2�

1 �
�
˛Q
�2 � 2 �

1 �
�
˛Q
��

1 � ˛Q

#
(2.28)

b� D
1 �

�
˛Q
��

�
�
1 � ˛Q

� : (2.29)

2.4.1 Estimating the Short-Rate Model

Using example data collected from the US market, we can estimate our derived
model. To this end, MATLAB’s state-space toolbox (SSM) is used. Since the
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model relies on the short rate being the underlying factor that drives the dy-
namics of the model, it is assumed that the three-month rate can play this role.
And the model is therefore parameterised such that the yield curve factor is
observed.
The model looks like this:

rt„ƒ‚…
1�1

D cP„ƒ‚…
1�1

C ˛P„ƒ‚…
1�1

� rt�1„ƒ‚…
1�1

C �r„ƒ‚…
1�1

et„ƒ‚…
1�1

(2.30)

Yt„ƒ‚…
#��1

D a�„ƒ‚…
#��1

C b�„ƒ‚…
#��1

� rt„ƒ‚…
1�1

C †y„ƒ‚…
#��#�

ut„ƒ‚…
#��1

; (2.31)

with (2.30) being the state equation, and (2.31) being the observation equation,
andwith the dimension of the variables and parameters provided in brackets un-
der the respective entries. Here #� refers to the number of maturities at which
the yield curve is observed, at a give point in time. To set up the model in MAT-
LAB’s SSM toolbox requires a bit of reworking of the model, such that it fits
into the required format. Indeed, it is required that the equations of the model
match the following generic set-up:

state equation: Xt D R � Xt�1 C S � et
observation equation: Yt D T � Xt C U � ut:

To align the one-factor model with this, the following is done for the state
equation:"

rt
1t

#
„ ƒ‚ …

Xt

D

"
˛P cP

0 1

#
„ ƒ‚ …

R

�

"
rt�1

1t�1

#
„ ƒ‚ …

Xt�1

C

"
�r

0

#
„ ƒ‚ …

S

et;

where 1t D 1 is a constant that is equal to 1 for all values of t. The observation
equation takes the following form:264 yt

rt
1t

375
„ ƒ‚ …

Yt

D

264 b� a�

1 0
0 1

375
„ ƒ‚ …

T

�

"
rt
1t

#
„ ƒ‚ …

Xt

C

264 †y

0
0

375
„ ƒ‚ …

U

ut:

It is well known that a one-factor model is not flexible enough to capture both
the time- and cross-sectional behaviour of yields. In fact, it appears that when
one-factor models are used in the industry, they are applied to fit the yield curve
at a given point in time, and while the model parameters should be stable over
time, in reality they are not, so model parameters in these models are frequently
re-estimated. There is therefore not much hope for the practical usefulness of
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the aforementioend state-space model. However, as an example, it is useful to
carry on.
As a complement to the state-space approach, we can also explore the possib-

ility that the amount of risk in the economy is time-varying. With the intention
to be as practical as possible, a two-step estimation approach is pursued to
identify the relevant parameters of this model. First, the P dynamics are estim-
ated, and the resulting parameter estimates are kept constant during the second
stage of the estimation procedure. Second, theQ parameters are estimated (sub-
ject to the estimates obtained in step 1). For the sake of clarity, it is recalled
that the first step takes care of the time-series dimension of the data, while the
second step is concerned with the cross-sectional fit of the model, that is, with
the maturity dimension.

step 1: rt D cP
C ˛P

� rt�1 C �tet (2.32)

�2t D ! C ��2t�1 C e2t (2.33)

Having obtained the parameter estimates: OcP , Ǫ P , and the time series of time-
varying variances, O�2t 8 t, the next step can be completed:

step 2: a�;t D f
�

OcP ; Ǫ
P ; O�t; �0; �1; �

�
(2.34)

b�;t D f
�

Ǫ
P ; O�t; �1; �

�
(2.35)

which amounts to estimating the market price of risk parameters, �0 and �1.
This can be done by minimising the sum of the squared errors between model
and observed yields.

minf�0;�1g D
X
t

X
�

h
Y � OY

i2
D
X
t

X
�

ŒY � .a� C b� � rt/�2 : (2.36)

The results from the above two estimation approaches and model specific-
ations are sketched in the following.13 The model fits are compared to that of
a completely empirically determined one-factor model, where the factor is the
observed short rate.14

13 The results are generated using the MATLAB scripts named: “P_and_Q_Measure_
Vasicek_2_- step_approach.m” and “P_and_Q_Measure_Vasicek_State_Space.m”, that accom-
pany the Element. See the Appendix MATLAB code, for a print of the code.

14 This empirical model is estimated in MATLAB like this:

1 %% Empirical one-factor short-rate model
2 %
3 F = [ones(nObs,1) RDNS.yields(:,1)];
4 H = F\RDNS.yields;
5 Y_fit = F*H;
6 RMSE = (mean((RDNS.yields - Y_fit).^2)).^(0.5);
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Figure 13 Time-varying volatility of the short-rate factor
The figure shows the estimated time-varying volatility of the short-rate factor, obtained
from am AR(1)-GARCH(1,1) model applied to monthly data.

As anticipated, figure 14 shows that all three one-factor models have diffi-
culties in matching the time-series evolution of yields. In fact, the average root
mean squared error of the models, across all maturities, is of a similar mag-
nitude and far too large to qualify these models as applicable to capture both
the time-series and cross-sectional behaviour of yields. This observation under-
scores the usefulness of such one-factor models as a means to fit the prevailing
term structure, on a day-to-day or intraday basis, for example, for pricing pur-
poses and for detecting rich and cheap bonds at a given time-point. For that
purpose, such models are great.

2.5 Summary
The main objective of this section is to illustrate, in an intuitive a practical way,
what we mean, when we refer to the P and Q measures in the context of yield
curve models. This topic can be a stumbling block, and a source of confusion,
when entering into this literature the first time. Sure, we can read, accept, and

where Y contains the data for the 3-month to 10-year yields. Each column of Y contains the time-
series observations for one maturity. Hence, the first column holds the short rate (the 3-month
yield).
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Figure 14 Model fit
The figure shows the two-year and ten-year observed and fitted yields. The models
described in the text are used and comprise discrete-time Vasicek models estimated
using a state-space approach, a simple empirical approach, and a two-step procedure
allowing for time-varying volatility.

replicate what is written in text books and academic papers, but it may be dif-
ficult to discern from this a true sense of understanding. As mentioned in the
introduction, my goal here is a modest one. But, I hope, after all, that the pre-
vious discussion may help to illustrate, and thereby further the understanding,
of the P and Q measures, and the derived yield curve modelling frameworks.

(1) The arbitrage constraint amounts to assuming and imposing the existence
of a unique pricing equation on the market being modelled. By pricing all
assets that trade on this market, the unique pricing equation ensures that
model prices for all assets are consistent with their exposure to the risk
factors included in the model.

(2) Zero-coupon bonds are priced under the Q measure as the discounted
value of its terminal payment, that is, the payment the bond makes when
it matures, using the risk-free rate as the discount rate. The recursive
structure of the discounting approach, together with the unique pricing
equation, implies that the loading structure (i.e. the matrix that converts
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yield curve factors into model yields), also can be found via a set of
recursive equations.

(3) For many models, it is possible to solve these recursive equations in closed
form, which makes model estimation faster.

(4) It is possible to find arbitrage-free counterparts to many of the yield curve
models typically used by practitioners: for example, the Nelson-Siegel
model and the Svensson-Soderlind models.

(5) When used appropriately, there is not much difference between arbitrage-
free models, and models that do not impose arbitrage constraints. Still, the
arbitrage-free models represent internally consistent frameworks and give
additional information about the market being modelled, for example, on
the market prices of factor risks.

MATLAB code

A discrete-time Vasicek model: state-space estimation

..
filename: P_and_Q_Measure_Vasicek_State_Space.m

1 %% State-space estimation of the Vasicek model
2 % Used in the section: the P and Q measures of the lecture notes
3
4 %% Load yield factors and construct yield curves
5 %
6 path_=[pwd,’\MATLAB_classes’];
7 addpath(path_);
8 load(’Data_GSW.mat’);
9 GSW_ = GSW; % creates an instance of the GSW class
10 GSW_.tau = [3 12:12:120]’; % vector of maturities
11 GSW_.beta = GSW_factors(:,2:5); % yield curve factors
12 GSW_.lambda = GSW_factors(:,6:7); % lambdas
13 GSW_ = GSW_.getYields; % getting yields
14 figure
15 plot(GSW_factors(:,1),GSW_.yields(:,[1 11]));
16 datetick(’x’,’mmm-yy’), title(’US yields’), legend(’3m’,’10y’)
17
18 RDNS = TSM; % creates an instance of the TSM class
19 RDNS.yields = GSW_.yields; % adds yields to the model
20 RDNS.tau = GSW_.tau; % adds maturities
21 RDNS.biasCorrect = 0;
22 RDNS.DataFreq = 12;
23 RDNS.nF = 3;
24 RDNS = RDNS.getSRB3; % estimates a 3 factor SRB model
25 figure
26 plot(GSW_factors(:,1), RDNS.beta’),
27 title(’Extracted yield curve factors’)
28 datetick(’x’,’mmm-yy’),
29 legend(’Short rate’,’Slope’,’Curvature’)
30 figure
31 plot(GSW_factors(:,1),[RDNS.beta(1,:)’ RDNS.yields(:,1)]),
32 title(’Model and Observed short rate’),
33 datetick(’x’,’mmm-yy’), legend(’Model’,’Observed’)
34 figure
35 plot(GSW_factors(:,1),[RDNS.TP(:,11) ACM(:,2)]),
36 title(’10Y Term Premium’),
37 datetick(’x’,’mmm-yy’), legend(’SRB’,’ACM’)
38
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39 [nObs,nTau] = size(RDNS.yields);
40
41 %% Estimating the parameters of the discrete-time one-factor model
42 % Data are scaled to monthly decimals (percentage annual yields are
43 % converted to monthly decimal rates, because the formulas for the
44 % yield curve loadings are calculated for monthly step-sizes and thus
45 % for monthly rates.
46 %
47 scl_ = 1200;
48 Y = [ RDNS.yields./scl_ ...
49 RDNS.yields(:,1)./scl_ ...
50 ones(nObs,1) ];
51
52 cP = 0.01;
53 aP = 0.95;
54 s = 1.15;
55 L0 = 0;
56 L1 = 0;
57 sY = 1.25.*ones(nTau,1);
58
59 p0 = [ cP; aP; s; L0; L1; sY ];
60 lb_ = [ 0.00; 0.00; 0; -inf; -inf; zeros(nTau,1) ];
61 ub_ = [ 1.00; 1.00; 1; inf; inf; 1000.*ones(nTau,1) ];
62
63 % constraints that ensure that all yield volatilities, ie. the
64 % entries of the variance-covariance matrix in the observation
65 % equation are equal for all maturities included in the analysis.
66 %
67 nP = size(p0,1);
68 Aeq = zeros(nTau-1,nP);
69 Aeq(1,[6 7]) = [1 -1];Aeq(2,[7 8]) =[1 -1];Aeq(3,[8 9]) = [1 -1];
70 Aeq(4,[9 10]) = [1 -1];Aeq(5,[10 11])=[1 -1];Aeq(6,[11 12])= [1 -1];
71 Aeq(7,[12 13]) = [1 -1];Aeq(8,[13 14])=[1 -1];Aeq(9,[14 15])= [1 -1];
72 Aeq(10,[15 16])= [1 -1];
73 beq = zeros(size(Aeq,1),1);
74
75 Mdl_sr = ssm(@(p) pMap(p, RDNS.tau));
76 options = optimoptions(@fmincon,’Algorithm’,’interior-point’,...
77 ’MaxIterations’,1e6, ...
78 ’MaxFunctionEvaluations’,1e6, ...
79 ’TolFun’, 1e-6, ’TolX’, 1e-6);
80
81 disp(’... Estimating the model using the SSM module’)
82 [ EstMdl_sr, pHat, pCov, logl, outFlags ] = ...
83 estimate( Mdl_sr,Y,p0,’Display’,’iter’,’Aeq’,Aeq,’beq’,beq,...
84 ’lb’,lb_,’ub’,ub_,’univariate’,true,’options’,options )
85
86 x_filter = filter( EstMdl_sr, Y ); % extract filtered state variables
87 sr_filter = x_filter(:,1); % filtered short rate
88
89 cP_ = pHat(1,1);
90 aP_ = pHat(2,1);
91 s_ = pHat(3,1);
92 L0_ = pHat(4,1);
93 L1_ = pHat(5,1);
94 sY_ = pHat(6:end,1);
95 mP = (cP_/(1-aP_))*scl_;
96
97 a_tau_ = EstMdl_sr.C(1:nTau,2);
98 b_tau_ = EstMdl_sr.C(1:nTau,1);
99 Y_fit = (a_tau_ + b_tau_*sr_filter’)’;
100
101 RMSE = 100.*(mean((scl_.*Y(:,1:11)-scl_.*Y_fit).^2)).^(1/2)
102
103 figure
104 plot(GSW_factors(:,1),[sr_filter Y(:,12)]),
105 title(’Yield curve factor’)
106 datetick(’x’,’mmm-yy’), legend(’obs’,’fit’)
107 figure
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108 plot(GSW_factors(:,1),[Y_fit(:,1) Y(:,1)]),
109 title(’3M rate’)
110 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
111 figure
112 plot(GSW_factors(:,1),[Y_fit(:,2) Y(:,2)]),
113 title(’1Y rate’)
114 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
115 figure
116 plot(GSW_factors(:,1),[Y_fit(:,3) Y(:,3)]),
117 title(’2Y rate’)
118 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
119 figure
120 plot(GSW_factors(:,1),[Y_fit(:,4) Y(:,4)]),
121 title(’3Y rate’)
122 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
123 figure
124 plot(GSW_factors(:,1),[Y_fit(:,5) Y(:,5)]),
125 title(’4Y rate’)
126 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
127 figure
128 plot(GSW_factors(:,1),[Y_fit(:,6) Y(:,6)]),
129 title(’5Y rate’)
130 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
131 figure
132 plot(GSW_factors(:,1),[Y_fit(:,11) Y(:,11)]),
133 title(’10Y rate’)
134 datetick(’x’,’mmm-yy’), legend(’fit’,’obs’)
135
136 %%
137 function [R,S,T,U,Mean0,Cov0,StateType] = pMap( p, tau )
138 %
139 % Setting up the matrices necessary to estimate the state-space model
140 %
141 nTau_1 = length(tau);
142 nTau = max(tau);
143
144 cP = p(1,1);
145 aP = p(2,1);
146 s = p(3,1);
147 L0 = p(4,1);
148 L1 = p(5,1);
149 sY = p(6:end,1);
150
151 cQ = cP - s*L0;
152 aQ = aP - s*L1;
153
154 [ a_tau, b_tau ] = find_a_b(s,cQ,aQ,tau);
155
156 R = [ aP cP; 0 1 ];
157 S = [ s; 0 ];
158 T = [ b_tau a_tau; 1 0; 0 1 ];
159 U = [ diag(sY); zeros(2,nTau_1) ];
160
161 % ... other assignments
162 Mean0 = [];
163 Cov0 = [];
164 StateType = [ 0; 1 ];
165 end
166
167 function [a_n, b_n] = find_a_b(s,cQ,aQ,tau)
168 % determines the loadings and the constant vector using the
169 % recursive equations and closed form expressions.
170 %
171 flagg = 1; % 1-> closed form results, 0->iterative solution
172
173 a_nF = @(a_,n_,c_,s_) -c_/(1-a_)*( n_ - (1-a_.^n_)/(1-a_) )...
174 +(s_^2)/(2*((1-a_)^2)).*(n_ + ...
175 (1-a_.^(2*n_))./(1-a_^2) - 2*(1-a_.^n_)./(1-a_) );
176 b_nF = @(a_,n_) -(1-a_.^n_)./((1-a_));
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177
178 if (flagg==0)
179 nTau = max(tau(:));
180 ttau = (1:1:nTau)’;
181 a_t = zeros(nTau,1);
182 b_t = zeros(nTau,1);
183 for (j=2:nTau+1)
184 b_t(j,1) = b_t(j-1,1)*aQ - 1;
185 a_t(j,1) = a_t(j-1,1) + b_t(j-1,1)*cQ - 0.5*s^2*(b_t(j-1,1))^2;
186 end
187 a_n = -a_t(tau+1,1)./tau;
188 b_n = -b_t(tau+1,1)./tau;
189 else
190 a_n = -a_nF(aQ,tau,cQ,s)./tau;
191 b_n = -b_nF(aQ,tau)./tau;
192 end
193 end

A discrete-time Vasicek model: two-step estimation procedure

..
filename: P_and_Q_Measure_Vasicek_2_step_approach.m

1 %% Two-step estimation procedure for the discrete-time Vasicek model
2 % Used in the section: the P and Q measures of the lecture notes
3
4 %% Load yield factors and construct yield curves
5 %
6 path_=[pwd,’\MATLAB_classes’];
7 addpath(path_);
8 load(’Data_GSW.mat’);
9 GSW_ = GSW; % instance of the GSW class
10 GSW_.tau = [3 12:12:120]’; % vector of maturities
11 GSW_.beta = GSW_factors(:,2:5); % yield curve factors
12 GSW_.lambda = GSW_factors(:,6:7); % lambdas
13 GSW_ = GSW_.getYields; % getting yields
14 figure
15 plot(GSW_factors(:,1),GSW_.yields(:,[1 11]));
16 datetick(’x’,’mmm-yy’), title(’US yields’), legend(’3m’,’10y’)
17
18 RDNS = TSM; % instance of the TSM class
19 RDNS.yields = GSW_.yields; % adds yields to the model
20 RDNS.tau = GSW_.tau; % adds maturities
21 RDNS.biasCorrect = 0;
22 RDNS.DataFreq = 12;
23 RDNS.nF = 3;
24 RDNS = RDNS.getSRB3; % est. a 3 factor SRB model
25 figure
26 plot(GSW_factors(:,1), RDNS.beta’),
27 title(’Extracted yield curve factors’)
28 datetick(’x’,’mmm-yy’),
29 legend(’Short rate’,’Slope’,’Curvature’)
30 figure
31 plot(GSW_factors(:,1),[RDNS.beta(1,:)’ RDNS.yields(:,1)]),
32 title(’Model and Observed short rate’)
33 datetick(’x’,’mmm-yy’), legend(’Model’,’Observed’)
34 figure
35 plot(GSW_factors(:,1),[RDNS.TP(:,11) ACM(:,2)]),...
36 title(’10Y Term Premium’)
37 datetick(’x’,’mmm-yy’), legend(’SRB’,’ACM’)
38
39 [nObs,nTau] = size(RDNS.yields);
40 %% Time-varying volatility and the Vasicek model
41 % Below we implement a two-step approach to estimating the Vasicek model
42 % with time-varying volatility, as outlined in the lecture notes.
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43 %
44 Y = RDNS.yields./1200; % US Yields in decimal form
45 tau = RDNS.tau; % for maturities 3, 12:12:120 months
46 %
47 % ... Step 1
48 Sr = Y(:,1); % 3-month rate = short rate
49 Mdl_AR_garch = arima(’ARLags’,1,’Variance’,garch(1,1), ...
50 ’Distribution’,’Gaussian’); % AR(1)-GARCH(1,1) model
51 Est_AR_garch = estimate(Mdl_AR_garch,Sr); % estimate the model
52 [eps,s2] = infer(Est_AR_garch,Sr); % extract cond. variances
53 cP = Est_AR_garch.Constant;
54 aP = Est_AR_garch.AR{:};
55 s = sqrt(s2);
56
57 %
58 % ... Step 2
59 p0 = [0;0];
60 lb_ = [-100;-100];
61 ub_ = [ 100; 100];
62 %
63 % minimise the squared residuals defined in the function
64 % Est_Vasicek - see below
65 [pHat,fval,flagg,output,lamb_,G_,H_] = fmincon(@Est_Vasicek,p0,...
66 [],[],[],[],lb_,ub_,...
67 [],[],Y,s,cP,aP,tau,Sr)
68
69 [err2,Y_hat,a_tau,b_tau] = Est_Vasicek(pHat,Y,s,cP,aP,tau,Sr);
70 Y_hat = 12.*Y_hat;
71 RMSE = 10000.*(mean((12.*Y-Y_hat).^2)).^(1/2);
72
73 figure
74 plot(GSW_factors(:,1),sqrt(s2))
75 datetick(’x’,’mmm-yy’)
76 ylabel(’\sigma_t’)
77 % print -depsc P_Q_distribution
78
79 function [err2,Y_hat,a_tau,b_tau] = Est_Vasicek(p,Y,s,cP,aP,tau,Sr)
80 % This function calculates the difference between model and observed
81 % yields that can be used to estimate the parameters $\lambda_0$ and
82 % $\lambda_1$
83 %
84 nObs = size(s,1);
85 nTau = max(tau);
86
87 a_nF = @(a_,n_,c_,s_) -c_/(1-a_)*( n_ - (1-a_.^n_)/(1-a_) )...
88 +(s_^2)/(2*((1-a_)^2)).*(n_ + ...
89 (1-a_.^(2*n_))./(1-a_^2) - 2*(1-a_.^n_)./(1-a_) );
90 b_nF = @(a_,n_) -(1-a_.^n_)./((1-a_));
91
92 L0 = p(1);
93 L1 = p(2);
94 cQ = cP - L0.*s;
95 aQ = aP - L1.*s;
96 a_tau = NaN(size(tau,1),nObs);
97 b_tau = NaN(size(tau,1),nObs);
98 Y_hat = NaN(nObs,size(tau,1));
99 for (j=1:nObs)
100 a_tau(:,j) = -a_nF( aQ(j,1), tau, cQ(j,1), s(j,1) )./tau;
101 b_tau(:,j) = -b_nF( aQ(j,1), tau )./tau;
102 Y_hat(j,:) = (a_tau(:,j) + b_tau(:,j)*Sr(j,1))’;
103 end
104 err2 = sum(sum((Y-Y_hat).^2));
105 end

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 43

3 The Basic Yield Curve Modelling Set-Up
3.1 Introduction

Our staring point is the empirical observation that yields observed across the
maturity spectrum are highly cross-correlated, and that their time-series dy-
namics tend to exhibit some degree of autocorrelation. A good and practical
modelling approach may therefore be to stack yields at different maturities,
but observed at the same point in time, in a vector, and to collect all the vec-
tors into a single panel of yield observations. The question is now, how do we
model such a panel of correlated data points in a parsimonious way, while en-
suring that as much of the information relevant to us is preserved? In coming
up with an answer to this question, we will pursue a route that is purely em-
pirically founded; the treatment of the arbitrage-free pricing set-up will follow
in later sections. Here we will mainly follow the modelling ideas of Litterman
and Scheinkman (1991), Nelson and Siegel (1987), Diebold and Li (2006), and
in general, Diebold and Rudebusch (2013). In terms of estimation techniques,
both state-space approaches and two-step OLS will be covered.

3.2 The Factor Structure of Yields
Let Y be a data set of yield curve observations covering time and maturity di-
mensions. Figure 15 shows an example of what Y can look like. The shown data
are US zero-coupon yields, observed at amonthly frequency for the period from
June 1961 to July 2018, and covering maturities from 3 to 120 months. As in
other parts of this text, these are the data we will work with.
To illustrate further, Y can be sliced in two dimensions (obviously!): a single

slice of Y in the maturity dimension, Yt, contains yield observations at different
maturity points, at the date where the slice is carved out of the data set; in other
words, Yt constitutes a yield curve observed at time t. We can also slice the data
in the date dimension, and then collect the time-series observations of a given
maturity point on the yield curve. These two ways of slicing Y are illustrated in
Figure 16.
Now, if wewant tomodel the observations contained in Y, the natural starting

point is to assume, test, and estimate a time-series model for Yt. But, we have
already seen empirically in Section 1, that this may not be the best of ideas
because of the strong cross-sectional relationship that exist between yields ob-
served at different maturities. We have also seen that a more viable strategy is
to model a few yield curve factors, and to find out how these yield curve factors
map into observed yields – as described in the papers referred in Section 3.1,
and the related large body of related literature.
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Figure 15 Yield curve data
The figure shows the US example data used throughout these notes. Monthly yield data
are observed since 1961 to 2018, for maturities from 3–120 months. These data are from
Gurkaynak et al. (2006) and made available and updated by the Federal Reserve Board.

Jan-60 Jan-65 Jan-70 Jan-75 Jan-80 Jan-85 Jan-90 Jan-95 Jan-00 Jan-05 Jan-10 Jan-15 Jan-20
0

5

10

15

Y
ie
ld
 (
p
c
t)

Ten-year yield

3  12 24 36 48 60 72 84 96 108 120

Maturity (months)

0

2

4

6

8

Y
ie
ld
 (
p
c
t)

Yield curve on 30 Nov 1971

Figure 16 The maturity and time dimension of yield curve data
The figure shows the two dimensions of yield curve data. The upper panel displays the
time-series dimension, and the lower shown the maturity dimension.

In its most general linear form, such an approach can be written as a two-
equation dynamic system, which we typically refer to as a state-space model:15

15 This does not necessary mean that we need to estimate the model using the Kalman filter. If, for
example, we are working with observable yield curve factors, then an OLS estimation approach
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state equation:

Xt„ƒ‚…
#F�1

D k„ƒ‚…
#F�1

C ˆ„ƒ‚…
#F�#F

� Xt�1„ƒ‚…
#F�1

C †X„ƒ‚…
#F�#F

� et„ƒ‚…
#F�1

observation equation:

Yt„ƒ‚…
#��1

D a„ƒ‚…
#��1

C b„ƒ‚…
#��#F

� Xt„ƒ‚…
#F�1

C †Y„ƒ‚…
#��#�

� ut„ƒ‚…
#��1

:

where .#F/ is the number of factors, and .#�/ is the number of maturity points
modelled.
The state equation governs the dynamic evolution of the yields curve factors,

X, where k is a vector of constants,ˆ is a matrix of autoregressive coefficients,
†X is the cholesky decomposition of the covariance matrix (i.e. it is a lower
triangular matrix of covolatilities), and et is a vector of standard normal innov-
ations, et � N.0; 1/, so, E ŒXtjXt�1� � N.�X; †X†

0
X/. The observation equation

translates the yield curve factors into yields, Yt, as they are observed in the mar-
ket place. In the state equation, a is a constant vector, b is the matrix that maps
factor space into yield space,†Y is a diagonal matrix of maturity specific yield
volatilities, and ut � N.0; 1/.
It was shown in Section 1 that a principal component analysis can cast light

on the empirical factor structure underlying yields. What is hypothesised here
is addition that: (a) the factor structure can be parameterised in a parsimonious
way (this idea was spearheaded by Nelson and Siegel (1987)), and that (b)
the factors can be modelled by standard time-series models such as a VAR(1),
as originally proposed by Diebold and Li (2006). To test out these ideas, we
employ MATLAB’s state-space modelling toolbox (SSM). Using MATLAB’s
built0in toolboxes generally comes at the cost of having to conform with a
requiredmodel set-up and so on. This is of course the same for the SSMmodule,
although the barrier-of-entry with this toolbox may at first sight seem higher
thanwith other toolboxes. Still, in my estimation, it is worth the effort (although
one also has to forego the fun of implementing the Kalman-filter from scratch),
because the added benefits far outweigh this initial investment of time.
To use the SSM toolbox, it is required that the model to be estimated follows

this generic set-up:

state equation: Xt D R � Xt�1 C S � et
observation equation: Yt D T � Xt C U � ut;

suffices. On the other hand, if factors enter non-linearly and are unobservable, then we need to
use an appropriate filtering technique such as, for example, the unscented Kalman filter (see,
e.g. Julier and Uhlmann (2004), Julier and Uhlmann (1997), and Wan and Merwe (2001)).
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which means that the constants need to be integrated into the R and Tmatrices.
This is done by including additional state variables that are preconditioned to
be constant, and set equal to 1 at each observation point. Apart from this, it
should be relatively straight forward to set up the model. The below set-up
assumes that three factors are included in the model – but it is naturally easy to
accommodate any number of factors by appropriately adjusting the dimensions
of the parameter matrices.

State equation2664
X.1/

X.2/

X.3/

1#�

3775
t

D

2664
ˆ1;1 ˆ1;2 ˆ1;3 k1 0 0 01;#��3
ˆ2;1 ˆ2;2 ˆ2;3 0 k2 0 01;#��3
ˆ3;1 ˆ3;2 ˆ3;3 0 0 k3 01;#��3

0#�;3 I#�

3775 �

2664
X.1/

X.2/

X.3/

1#�

3775
t�1

C

2664
†X.1;1/ 0 0
†X.2;1/ †X.2;2/ 0
†X.3;1/ †X.3;2/ †X.3;3/

0#�;1 0#�;1 0#�;1

3775 et;

where 1#� is a constant unit vector of dimension #� , and I#� is the identity
matrix of dimension .#� �#�/. The rest of the dimension assignments follow
the same principle.
The observation equation takes the following form:

Observation equation26666664
y3m

y12m
:::

y120m

1#�

37777775
t

D

266666664

b1;3m b2;3m b3;3m a3m 0 � � � 0

b1;12m b2;12m b3;12m 0
: : : � � � 0

:
:
:

:
:
:

:
:
:

:
:
: 0

: : : 0

b1;120m b2;120m b3;120m 0 0 0 a120m
0 0 0 I.#��#�/

377777775
�

26664
X.1/

X.2/

X.3/

1#�

37775
t

C

26666666664

†y;.1;1/ 0 0 � � � 0

0 †y;.2;2/ 0 � � � 0

0 0
: : : � � � 0

:
:
:

:
:
:

:
:
:

: : :
:
:
:

0 0 0 0 †y;.#�;#�/

0#�;#�

37777777775
ut

With the model now adhering to the notation used by MATLAB, it can be
implemented and estimated using the SSM toolbox. This is done in the script
included in the Annex part 4.2.2. Two model implementations are embedded
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in the code: one allows for the estimation of a fully empirical version of the
model, where no prior structure is imposed on the constant vector, a, and the
loading structure b in the observation equation; the other constrains a and b to
follow the prescription by Nelson and Siegel (1987) using the parametrisation
suggested by Diebold and Li (2006). This means that:

a D 0 (3.1)

b� D

h
1 1�e.� ��/

 ��
1�e.� ��/

 ��
� e.� ��/

i
: (3.2)

Note that the notation is changed slightly compared to what is traditionally
used.We use  to denote the time-decay parameter, which is most often denoted
by � in the literature. This is done to avoid notational confusion, since � is
elsewhere in this Element used to denote the market price of risk.
When running the code shown in Annex part 4.2.2 (in its two guises by ad-

justing the input in line 52, choosing either ‘Emp’, for empirical, or ’NS’, for
the Nelson-Siegel model) we can compare the loadings and extracted factors.
Since the empirical model is virtually unspecified in its generic form, it is not
clear what to expect in terms of an outcome. In essence, this model is too flex-
ibly specified, since there is nothing that locks down the scale and sign of the
factors, and by the same token, there is noting ensuring that a reasonable and
interpretable structure will emerge for the loadings contained in b. In principle,
we have a linear regression model, y D a C b � x, we only know y, and we try
to determine a, b, and x, by using some clever estimation technique (i.e. the
Kalman filter). Clearly, there are many combinations of aC b � x that will fulfil
the equation. We must therefore expect that, depending on the starting values,
the iterative algorithm can converge to a multitude of maxima all providing
exactly the same fit to data. If we would like to have a model that facilitates
economic analysis, it is useful to attach a certain meaning to the factors, and
that this meaning remains constant over time (i.e. across the multiple times the
model will be re-estimated, as time progresses). We will look more carefully at
this in the next section; for now we will push ahead, and see what we get when
we run the code.
Figure 17 shows the loadings that are generated by the two models, and Fig-

ure 18 shows the extracted factors. Using these two estimates, which amount to
b and X in the above-outlined model-notation, together with the constant, a, we
can assess how well the estimated models fit the observed yields. This is done
by means of the RMSE (root-mean-squared-error) expressed in basis points.
Model predictions are denoted by OyEmp and OyNS, respectively, and calculated in
the following way:

Oy D Oa C Ob � OX: (3.3)
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(a) (b)

The empirical model The Nelson-Siegel model

Figure 17 Estimated loadings
Panel (a) shows the loading structure of the empirical model specification, i.e. the para-
meter estimates contained in the b-matrix from the observation equation: y D aC b �X.
Panel (b) shows the same for the Nelson-Siegel model. The displayed loading structures
provide a graphical representation of the loadings for the three estimated factors (i.e. the
loadings for each factor across the modelled maturity dimension).
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Figure 18 Estimated factors
Panel (a) shows the time-series evolution of the extracted yield curve factors, i.e. the
estimates contained in the X-matrix from the observation equation: y D aC b �X. Panel
(b) shows the same for the Nelson-Siegel model.

Using the O notation here underscores that estimates are used to produce the
model predictions. This is an obvious fact, and this notation will therefore
not be used throughout, unless the context is ambiguous. Another thing to
note is that only the parameter estimates from the observation equation are
used at the moment – but rest assured, we will return to the state equation,
and use it extensively, in the section that looks at forecasting and scenario
generation.
While it may not be evident to the naked eye, there is quite some com-

monality between the loading structures shown in Figure 17. Taking the
Nelson-Siegel loadings as the starting point, the first factor has an equal im-
pact on all yields, regardless of their maturity: that is, loading 1 equals unity
across the maturity spectrum (see panel (b)). While the empirical model does
not generate a constant value of one across the maturity spectrum for its first

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 49

loading, the value is approximately constant. In the language of PCA analysis,
where scale and signs of loadings and factors can switch around, this common
feature (i.e. constancy across the maturity spectrum) is enough to declare, that
the first factor has a similar interpretation for both model variants. And, by the
virtue of its impact on the yield curve, shifting it upwards and downwards in
a parallel fashion, this first factor can be seen as the duration risk factor. It is
too early to say whether the duration factor is shifting the curve from the short,
middle, or long end of the maturity dimension. To determine this, we need to
look at the second factor. As is well known, in the Nelson-Siegel model, the
second factor constitutes the slope of the yield curve, or rather, the negative
slope, that is, the short-end yield minus the long-end yield. This is evident from
the shape and location of Loading 2 in panel (b). At the short end of thematurity
spectrum, this factor records its maximum impact, and its impact falls to zero
(beyond the maturities shown in Figure 17) as the maturity increases, following
a convex trajectory. Thinking, for example, about how the three-month yield
is recovered from these two first-factor loadings of the Nelson-Siegel model,
shows that the first factor is defined as the long-end level of the yield curve
(and it is from here that parallel shifts are induced on the yield curve), and the
second factor is the negative slope:

short rate D loading 1 � Factor 1 C loading 2 � Factor 2

D 1 � Factor 1 C 1 � Factor 2

D 1 � level C 1 � .�level C short rate/

D short rate:

Following this logic, it is established that the Nelson-Siegel model imposes
factor interpretations for the first two factors that are equal to a yield curve level
factor, and to a negative (compared to the traditional definition) slope factor, re-
spectively. In the example, we have also established that the first factor detected
by the empirical model, is similar in shape to the level factor of the Nelson-
Siegel model. The question is now, whether either of the two remaining loading
structures in panel (a) of Figure 17 resembles the second Nelson-Siegel factor
loading. It appears that Loading 3 exhibits a convex and increasing pattern,
and if rotated around the x-axis, it compares well to the second Nelson-Siegel
factor!
But, why does the empirical model swap the ordering of the factors around?

Well, since we haven’t given the model any information about how we want it
to organise it does not know any better, and it orders the factors basically on the
basis of the starting values given to the optimisation routine, and the path that
the routine follows to reach the maximum. This is different when we do a PCA
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analysis, since most econometric packages order the extracted factors/principal
components according to their eigenvalues, that is, according to the amount of
variance that they each explain. And, since PCA analysis in principle underpins
the Nelson-Siegel model, the ordering of the NS-factors follows this principle:
by the way, obviously, it also makes a lot of economic and intuitive sense to
order the factors in this way, since it corresponds to placing the most risky
factor first in the hierarchy and the least risky factor last.
Finally, the two remaining factors – factor two from the empirical model and

factor three from the Nelson-Siegel model – also match up in terms of patterns,
with the weighting across maturities fitting that of a curvature impact, that is,
having little impact in the short and long ends of the curve and larger impact in
the middle part of the maturity spectrum.
Sorting out the relationship between the empirical and the Nelson-Siegel

model specifications by visual inspection of the loading structure shown in
Figure 17, as we have done above, has hopefully helped to further our intuitive
understanding of yield curve factor-models. At least, this was the main purpose
of this exercise. In my experience, it is in general helpful to think about yield
curve factor models as the the multiplication of loadings and factors (plus a
constant), so, y D a C b � X, in visual terms as the multiplication of the load-
ings, as, for example, shown in panel (a) of Figure 17, with the time series of
factors, shown in panel (b) of Figure 18. Having such a visual representation
in the back of the mind helps to lock down the entities that enter the model and
facilitates an immediate intuitive sense of the economic interpretation of the
factors.
There is an easier and (perhaps) more natural way to match up the factor

interpretation across the two estimated models. Given that we have obtained
the time series of the yield curve factors for each model, as shown in Figure
18, we can simply calculate the cross-correlations between the series. This is
done in Table 7. And, luckily, the conclusions we drew are confirmed: there
is a correlation of 0:99 between factor 1 of the empirical and Nelson-Siegel
models, a correlation of 0:96 between the second factor from the empirical
model and the third Nelson-Siegel factor, and finally a correlation of �0:85
between the third empirically determined factor and the second Nelson-Siegel
factor. The negative sign of the latter correlation coefficient matches the fact
that the loading structure for the third empirical factor had to be rotated around
the x-axis (i.e. it had to be multiplied by �1) in order to obtain a pattern similar
to that of the Nelson-Siegel model.
As the final issue in this section, we will have a look at how well the two

models fit the data. To fix ideas, it is observed that the Nelson-Siegel model can
be seen as a constrained version of the empirical model, since the Nelson-Siegel
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Table 7 Factor correlations

Emp F1 Emp F2 Emp F3 NS F1 NS F2 NS F3

Emp F1 1.00
Emp F2 0.32 1.00
Emp F2 �0.68 �0.28 1.00
NS F1 0.99 0.23 �0.59 1.00
NS F2 0.19 0.14 �0.85 0.08 1.00
NS F3 0.48 0.96 �0.54 0.38 0.38 1.00

The table shows the correlations between the extracted factors from the empirically
founded (Emp) model and from the Nelson-Siegel (NS) model.

model imposes a certain functional structure on the loadings contained in the
b-matrix. In fact, at first sight, it seems that Nelson and Siegel chose to impose
some rather severe constraints: where the empirical model relies on #� � 3 D

33 parameters, all to be estimated, theNelson-Siegelmodel uses only one single
parameter, namely the time-decay parameter  , together with functions of 
and � . On the other hand, we also know that the Nelson-Siegel model is hugely
popular, and one of the tools often used by central banks asset managers. If the
model produced a poor fit to data, it probablywould not be sowidely used. So, it
is no surprise that the two-parameter functional-forms utilised by the Nelson-
Siegel model do not impose any devastating constraints. This is, of course,
because the chosen functional forms match well the patterns that result from
PCA analysis on yields, and that yields in most markets, and across time, are
well captured by these patterns.
Using the US data, Table 8 shows the root mean squared error (RMSE) for

each model across maturities from three months to ten years. Both models fit
data very well, and they both have very low average RMSEs. While the empir-
ical model fits slightly better, we see that the cost of the constraints imposed by
the Nelson-Siegel model are very small, at most 1 to 3 basis points. And, these
results are obtained on data covering the period from 1960 to 2018, so this res-
ults seems to have general validity, and it surely not an artefact of a carefully
selected data sample.

3.3 Rotating the Yield Curve Factors
As practitioners, wemay, at times, be interested in imposing a certain economic
meaning on one or more of the yield curve factors, while still staying within the
comforting remit of the Nelson and Siegel (1987) and Diebold and Li (2006)
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Table 8 RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 96 108 120

Empirical model (bps) 6 13 4 4 6 5 4 2 1 4 6
Nelson-Siegel (bps) 8 14 5 3 5 5 4 3 1 3 6
Difference -2 -1 -1 1 -1 0 0 -1 0 1 0

Model fits are compared for the two estimated versions of the model: the empirical one
and the Nelson-Siegel model. The table shows the root mean squared error (RMSE) for
each model. For each maturity point covered by the data, the RMSE is calculated as�
mean

��
y�.i/ � Oyj

�.i/

�2��. 12 /
, where y�.i/ and Oyj

�.i/ are time series for the i’th maturity

point, j 2 fEmp;NSg.

modelling frameworks.16 For a given task, we may find that it is convenient to
work directly with the short rate: for example, if yield curve scenarios need to
be generated for risk assessment purposes, where a set of predefined scenarios
are defined in terms of the future path of the monetary policy rate. In this case,
it seems reasonable to model the short rate directly, rather than to backward
engineer how the Nelson-Siegel level and slope factors would need to evolve,
to match the predefined scenario paths for the short rate. It could may also
be the case that a certain relationship between the short rate, the slope, and
some macroeconomic variables, are believed to exist. For example, we may
believe that a Taylor-rule (Taylor (1993)) inspired relationship holds between
macroeconomic variables, and that slope is related to the perceived risk in the
fixed income markets, and that scenarios need to be generated against this set-
up. Again, it seems more fruitful to use on a Nelson-Siegel type model that
relies on a short rate factor, rather than the level factor. Other examples are
the evaluation of trading strategies and return decompositions. To the extent
that trading positions are specified in terms of actual yield curve points, for
example, long/short the 2y-10y spread positions, curvature positions (e.g. as
combinations of the 2Y-5Y-10Y, and so on), it may be relevant to model yield
curve points directly, rather than the level, slope, and curvature factors.
Under the requirement that the desired alternative factor interpretation can

be expressed as a linear combination of the existing factors, it is possible to find
a rotation matrix A, where I D A�1 � A, such that the desired factor structure
emerges.17

16 Factor rotation is a well-known concept in statistical analysis, see e.g. Johnson and Wichern
(1992)[ch. 9.4].

17 The matrixA will be orthogonal, so the rotation I D A0 � A becomes I D A�1 � A.
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Consider the observation equation from the standard dynamicmodel.We can
naturally expand this expression by I, without changing it in any way:

yt D a C b � Xt C†y � ut
D a C b � I � Xt C†y � ut
D a C b � A�1

� A � Xt C†y � ut: (3.4)

By doing this, we have obtained new interpretations of the factors and the factor
loadings, that are in accordance with the chosen A matrix.

Qb D b � A�1 (3.5)
QXt D A � Xt: (3.6)

Later on, we will see how to chooseA, for now the objective is to see how the
state equation changes:

QXt D A � Xt D A .k Cˆ � Xt�1 C†X � et/ (3.7)

D A � k C A �ˆ � Xt�1 C A �†X � et (3.8)

D A � k C A �ˆ � A�1
� QXt�1 C A �†X � et; (3.9)

D Qk C Q̂ � QXt�1 C Q†X (3.10)

where the second-to-last line follows from (3.6). The parameters of the rotated
model can be read from equation (3.9), and are:

Qk D A � k (3.11)
Q̂ D A �ˆ � A�1 (3.12)

Q†X D A �†X: (3.13)

In practical applications of rotated models, it is naturally enough to rotate the
loading matrix, b, in the observation equation, and then to proceed with the
estimation as usual. Doing this will result in the extraction of rotated factors
as well. Equations (3.11)-(3.13) are only needed if a standard model has been
estimated and it subsequently needs to be rotated, or if a rotated model has been
estimated and it needs to be un-rotated.
How is A determined? This naturally depends on the desired factor inter-

pretation. I present two simple cases where the factors have interpretations as:
[short rate, slope, curvature], and as the [2Y yield, 5Y yield, 10Y yield].

3.3.1 A Short-Rate Based Model

Aswe have seenmany times, the original Nelson-Siegel factors are level, slope,
and curvature. To obtain a factor structure that equals the short rate, the slope,
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and the curvature, the following A-matrix will do the trick (“SRB stands for
short rate based”):

ASRB
D

2641 1 0
0 -1 0
0 0 1

375 :
Lets insert it and see if it rotates that factors as desired:264short rate

slope

curvature

375 D

264 1 1 0
0 -1 0
0 0 1

375�

264 level

-slope

curvature

375 D

264 level-slope

slope

curvature

375 :
It is important to recall that nothing is gained, in terms of model fit or improved
forecasting performance, after a rotation is performed. This is clear since I D

A � A�1. Only the factor interpretation is changed.

3.3.2 Using Yields as Factors

Another rotation that may be relevant for practical work, is a rotation towards
an interpretation of the factors as yield curve maturity points. In Figure 19, the
Nelson-Siegel factors are rotated to have interpretations as the [2y, 5y, 10y]
yields. To achieve this, we need to establish a link between the Nelson-Siegel
factors and the desired factor interpretation. Often, it is mentioned in the lit-
erature that the following relationships hold: [level = 10y yield], [-slope = 3m
yield – 10y yield], and [curvature = 2� 2y yield – 10y yield – 3m yield]. From
this we could, in principle, obtain a rotation matrix that approximately would
give us the factor interpretation that we are looking for. But, it may be bet-
ter to devise a general methodology that also would work, should we want to
implement other types of factor interpretations/rotations. This can be done in
a (perhaps) surprisingly simple way, by using linear regression. Of course, a
prerequisite for this methodology to work is that the factors we rotate towards
are observable or can be estimated.
Second, we see whether the rotated model fits the observed yields as well as

the Nelson-Siegel model does. This assessment can be made on the basis of the
RMSE across maturities. Table 9 shows the obtained numbers. As expected,
the RMSEs of the rotated model are exactly the same as those obtained from
the original Nelson-Siegel model.18

18 It is worth noting that the RMSEs reported in Table 9 deviate slightly from the ones reported
in Table 8. This is due to the difference in estimation methods applied: the results obtained in
Table 8 rely on a state-space implementation, where as the results in Table 9 are based on a step-
wise OLS implementation (via the TSM (term structure model) object-oriented class), where
the time-decay parameter is determined to a precision of three decimals.
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Two-year

Five-year

Ten-year

Figure 19 2y, 5y, and 10y yields, and rotated NS factors
The figure compares the yield curve factors of a rotated dynamic Nelson-Siegel model,
where the factors are the 2y, 5y, and 10y yield curve points, with the actually observed
2y, 5y, and 10y yield curve points. The lines fall on top of each other, therefore only one
line is visible in the panels.

To fulfil our current factor appetite, we fill the entries of the rotation matrix
via the three OLS regressions (see Appendix with the MATLAB code to see
how this can be implemented in practise):

y2Y D Ay
.1;W/

� OXNS

y5Y D Ay
.2;W/

� OXNS

y10Y D Ay
.3;W/

� OXNS: (3.14)

The regressions are run with the normalisation constraint that the impact of the
level factor is equal to 1 for all rotated factors. Doing this gives:

Ay
D

2641:00 0:56 0:28
1:00 0:31 0:26
1:00 0:15 0:16

375 : (3.15)

Even if we firmly believe that this approach will work, it may be a good idea
to perform a double check. First, we can visually inspect how well the ro-
tated factors match the observed counterparts. This is done in Figure 19, with
convincing results: the lines are indistinguishable.
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Table 9 RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 96 108 120

NS (OLS) (bps) 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 1.16 3.48 6.45
Rotated (bps) 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 1.16 3.48 6.45

RMSEs are calculated for the dynamic Nelson-Siegel model estimated using a two-step
OLS methodology, as implemented in the object-oriented term structure model (TSM)
class, and for themodel presented in the text, where the Nelson-Siegel factors are rotated
to be the time series of the 2y, 5y, and 10y yield curve points.

3.4 The Building Blocks That Shape the Yield Curve
Even if we resist the strong temptation to impose arbitrage constraints on our
model, we will still be able to extract and analyse the fundamental build-
ing blocs that shape the location and dynamics of the yield curve. These are:
(a) the term structure of term premia, and (b) the term structure of rate ex-
pectations. To assess the current economic environment in terms of risks and
expectations to future economic growth, it is important to have reliable es-
timates of the term premium and the expected risk-free term structure. As
also mentioned in Section 2 describing the P and Q measures, the term
premium, �t;� , at time t for some maturity � , is a summary measure for the
risks that financial agents are deemed to face, when trading fixed income se-
curities. The items displayed in italics font are typically not included in the
list, when we deal with risk-free sovereign bonds, as we do here. However,
they are included just to remind us of these additional systematic risk factors
when we start working with corporate bonds and possibly less liquid market
segments:

� uncertainty about the economic growth rate
� uncertainty about the inflation rate
� credit migration risk
� default risk
� liquidity risk

The term premium-free (P measure) term structure is constructed mechanic-
ally as the average of the short-rate (P ) expectation over future periods. It is risk
free, because the one period (short) rate is risk-free, period after period. Another
way to realise this, is to consider that a model needs to be fitted to historically
observed short-rate data, that represent past realisations of the risk-free rate.
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Following Gürkaynak and Wright (2012), the risk-free term structure can be
calculated as:

yrft;� D
1
�

� Et

��1X
jD0

rt;tCj; (3.16)

and, the term premium, �t;� , as the difference between the model fitted yield,
Oyt;� and the risk-free yield, y

rf
t;� :

�t;� D Oyt;� � yrft;� : (3.17)

To illustrate how we can obtain rate expectations and term premia also from
models that do not exclude arbitrage by construction, and to see to what ex-
tent they differ from model to model, we perform the following case studies,
comparing the:

(A) three-factor SRB model with the standard Nelson-Siegel parametrisation.
(B) three- and four-factor SRB models.
(C) three-factor SRB model with and without bias correction (what bias

correction entails will be outlined in the folllowing).
(D) three-factor SRB model with different assumptions on the mean of the

short rate.
(E) three-factor SRB model with published term premium and rate expecta-

tions from the Adrian, Crump and Mönch (2013) and Kim and Wright
(2005) models.

Before embarking on this task, we need to introduce the three- and four-
factor versions of the short-rate based (SRB) model. The state and transition
equations of the four-factor model will be presented, since the three-factor
model is simply a constrained version of the four-factor model; the constraint
being that the fourth factor is deleted in the three-factor version of the model.
We will use a discrete-time version of the model, and we will derive it formally
in a later section. For now, only the relevant equations are presented, as in the
case of the Nelson-Siegel model, as shown in equations (3.1) and (3.2).
The four-factor model is shown in equations (3.18) and (3.19).

Xt D �Cˆ � .Xt�1 � �/C†X � et (3.18)

yt;� D b� � Xt C†Y � ut

D

2666664
1

1 �
1��

.1�/��

1��

.1�/��
�  ��1

�
1
2 .� � 1/. � 1/ .n�2/

3777775

0

� Xt C†Y � ut (3.19)
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Note that the VAR(1) model in (3.18) is written in mean-adjusted form, so �
is the mean of the included factors. Since we know that the the first factor in Xt

is the short rate, we can work on equation (3.16), and turn it into a closed-from
expression, in the following way:

yrft;� D
1
�

� Et

��1X
jD0

rt;tCj

D
1
�

�

24rt C Et

��1X
jD1

rt;tCj

35
D

1
�

8<:X0
t � ı1 C

24Et

��2X
jD0

�Cˆ �
�
XtCj � �

�350

� ı1

9=;
D

1
�

�
X0
t � ı1 C

�
.� � 1/ � �C

ˆ� �ˆ

ˆ � I
� .Xt � �/

�0

� ı1

�
(3.20)

where ı1 is a vector of appropriate dimension that selects the first element of
the vector generated inside the brackets, that is, ı1 D Œ1; 0; 0; 0�0 when we work
with a four-factor model, and ı1 D Œ1; 0; 0�0, when working with a 3-factor
model. The reason for separating out the .X0

t � ı1/ part is to highlight that this
equals rt, and the factor, .ˆ� �ˆ/.ˆ� I/.�1/, originates as the limit of the sum
of the power series implied by line 3 of (3.20).
It may be worth highlighting that it is much simpler to use the close-form

expression in (3.20) compared to calculating the rate expectation using the
summation over all � , as implied by (3.16). The closed-form expression is both
faster and less computationally intensive. While this is not a big deal when us-
ing monthly data, it may be an issue if we estimate the model on daily data.
Imagine we want to calculate the ten-year rate expectation, and we have es-
timated our model on daily data, and we that have data for the period from
January 1961 to July 2018, a total of around 14; 800 days. When using (3.20),
we would then need to roll forward the state equation (3.18) for 3;650 observa-
tion points, for each of the 14;800 days covered by our sample; implying that
we would need to calculate ˆk for k 2 f1; 2; : : : ; 3;650g at each observation
point, a total of 54mill calculations. Compared to this, it is easier to use (3.20),
because only 14;800 calculations are needed, one for each day. A second thing
that is worth mentioning is that either of the two outlined calculation methods
can be efficiently completed using the eigenvalue decomposition19 of ˆk:

19 Can be obtained in MATLAB using the eig command.
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ˆk
D V � Dk

� V�1; (3.21)

whereV is thematrix of eigenvectors, andD is a diagonalmatrix of eigenvalues.
Recall that it requires much less computational effort to calculate the power of
a diagonal matrix, because one just needs to raise each diagonal element of the
matrix to the desired power.
Case (C) in our list aims to investigate the relevance of bias-correcting

the VAR(1) model, included in the state equation. When estimating a VAR
model using OLS on relatively few time-series data points, as is often the
case in yield curve applications, the parameters of the VAR can be biased
downwards. This implies that the estimated factors can exhibit a lower de-
gree of persistency, compared to their true process parameters. I think Bauer,
Rudebusch and Wu (2012) were the first to highlight this issue. Our bias
correction method, which is implemented in MATLAB via the term struc-
ture class (TSM) that accompany this Element, is based on the description
in Engsted and Pedersen (2014), of the analytical approach suggested by
Pope (1990).
The persistence of the factors is naturally important for the decomposi-

tion of the yield curve into rate expectations and term premium components.
Imagine, for example, that the short rate factor exhibits a very low degree
of persistency, in fact so low that the process converges to its sample mean
within three to seven years, for any of the short-rate levels observed in the
sample. Consequently, if we focus on the ten-year rate expectation, it will
equal the sample mean for all dates covered by the sample, and the resulting
time series of ten-year rate expectations is just a constant flat line equal to the
sample mean, lets say, for example, 4:88 per cent. Then we will obtain a time
series of ten-year term premium estimates that is equal to Oyt;�D10years � 4:88%,
and assuming that the model fits data well, then this is very close to being
equal to the observed series of 10-year yields minus 4:88 per cent. Not a very
believable result. At the other end of the absurdity scale is a super-highly
persistent process. Imagine a process where the short-rate hardly moves (in
expectations) from its starting point, and for example, takes 10;000 years for
the process to converge to its sample mean. Calculating the term premium in
this case amounts approximately to calculating the slope of the yield curve
(again assuming a good fit of the model), at any date covered covered by
the sample. An equally unbelievable outcome. So, the persistency of the
estimated VAR model typically has a large impact on the model-derived ex-
pectations/term premium decomposition: we will check this empirically in the
following.

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


60 Quantitative Finance

All estimations done in the context of the five case studies are performed
used the TSM class. To learn more about this object-oriented class, you can
type help TSM at the command prompt. The basics of it is:

(1) To create an instance of the TSM class. An instance is, so to say, your
private copy of the class, that you can work with. To create an instance,
type: <name>=TSM, for example: SRB_1 = TSM.

(2) The created instance can now be populated with data: SRB_1.yields=Y
(assuming that the data to be used for the estimation of the model are
stored in the matrix Y), SRB_1.tau=tau, (assuming that the vector of
maturities is stored in tau), and SRB_1.DataFreq=12, if data are
sampled at a monthly time-interval. And so on. It should be noted that
the variable names used in the TSM class are not optional, so the name
that appears after the dot (i.e. in the example above .yields, .tau,
and .DataFreq), has to be used as shown in the help file – the TSM
class does not understand if yields, for example, are assigned to a con-
tainer called SRB_1.YieldsForTheModel, or any other user-defined
name. On the other hand, the name of the class instance (i.e. SRB_1) can
be chosen freely.

(3) Given that all data have been passed successfully to the created instance,
any of the models covered by the class can be estimated. Four models
are covered at the moment, but this number will increase over time. The
following are covered: the dynamic Nelson-Siegel model, the dynamic
Svensson-Soderlind model, the 3-factor SRB model, and the 4-factor SRB
model.

(4) Any of the models can be estimated using the command .get<model
name>. For example, to estimate the three-factor SRB model we would
write: SRB1 D SRB_1:getSRB3. This estimates the desired model and
stores the results in the created class instance called SRB_1. The other
models are estimated using the commands .getDNS, .getDSS, and
.getSRB4, respectively.

(5) The output covers, among other things, model parameters, time series of
extracted yield curve factors, RMSE, the term structure of term premia (at
the provided maturities), and the term structure of rate expectations (at the
provided maturities).

To complete the scenarios outlined, we will implement the five steps from
the list. More details on the coding can be found in MATLAB Appendix in
Section 4.2.2. Comparisons will be drawn in terms of rate expectations and term
premia, typically at the ten-year maturity point; model fit in terms of RMSEs,
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Ten-year term premium

Ten-year expectations component and ten-year observed yield

–2

Figure 20 The SRB3 and DNS models
The figure shows the ten-year term premium estimates from the three- and four-factor
SRB models. In the figure, the upper panel shows the ten-year term expectations com-
ponent, and the lower panel shows the ten-year premium. Estimates from the standard
SRB3 model is shown in blue, and the mean adjusted version is shown in red. For
comparison, the observed 10-year yield is plotted in yellow, in the upper panel.

and persistency of the VAR(1) model featuring in the state equation and judged
on the basis of the eigenvalues of Ô .

Case (A): Comparing the 3-factor SRB model with the standard dynamic
Nelson-Siegel model

Figure 20 draws a comparison between the 3-factor SRB model, and the dy-
namic Nelson-Siegel (DNS) model. While these models have different factor
interpretations – the SRB-model explicitly includes the short rate, and the DNS
model explicitly includes the long-term rate (i.e. the yield curve level) – they
are very similar, and intimately linked via the rotation matrix A. However,
since the SRB model is derived in discrete-time (as we will see later on), and
the DNS model is derived in a continuous time, the link between the two mod-
els, via a rotation-matrix, does not produce mathematically identical models.20

It is actually not possible to rotate the DNS model into the SRB model, as it is
used here, because of the mentioned difference between the models. But, it is
possible to rotate the DNS model into a continuous-time SRB model, and the
difference between this rotated model, and the SRB model (in discrete-time)

20 The practical difference is that the SRB model’s loading structure is defined in terms of
power functions, while the DNS model relies on exponentials. The continuous-time limit of
a power function is the exponential function: recall, for example, the link between discretely
and continuously compounded interest rates: limn!1

�
1 C r�T

n
�n

D erT.
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Table 10 Case A: RMSE and eigenvalues

RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 6.38
SRB3, bias
corrected 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 6.45

Eigenvalues of Ô

1 2 3
SRB3 0.990 0.957 0.808
DNS 0.990 0.957 0.807

RMSEs are calculated and shown in basis points for the two models under investigation,
together with the eigenvalues of Ô , sorted in descending order.

is very, very small. So, this is the degree of intimacy between the two models
used in this section.
The similarity between the models is confirmed in Figure 20, with the plots

of the 10-year rate expectation and term premia being indistinguishable from
one model to the next. A minor difference is observed on the third eigenvalue,
where the SRB model is insignificantly more persistent than the DNS model;
likewise, minor and non-significant differences are seen in terms of in-sample
fits. For practical purposes in the area of extracting past information from the
3-factor SRB and DNS models, they are identical. In a later section of the Ele-
ment, we will see whether this conclusion also carries over to the forecasting
performance of the models.

Case (B): Comparing 3- and 4-factor SRB models

Including an additional factor into the SRB model greatly improves the in
sample fit, as seen in Table 11, but dispite this, there is hardly any difference
to detect between the models’ output in terms of rate expectations and term
premia, as seen in Figure 21. This result echoes the mantra that the potential
merits of a model should never be judged only on its in-sample perform-
ance. Clearly, as more yield curve factors are added, the in-sample fit will, by
definition, improve. One can think of a good in-sample fit, as being a min-
imum requirement for including a given model into the toolbox of models
that one relies on: as long as a model provides a reasonably good in-sample
fit, say below 10–20 basis points per maturity bucket, then it is worthwhile
to consider whether other features makes it worthwhile to start using the
model.
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Table 11 Case B:RMSE and eigenvalues

RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 6.38
SRB3, bias
corrected 1.48 4.76 3.92 2.77 1.01 1.94 2.52 2.12 3.06

Eigenvalues of Ô

1 2 3 4
SRB3 0.990 0.957 0.808
SRB4 0.990 0.957 0.893 0.640

RMSEs are calculated and shown in basis points for the two models under investigation,
together with the eigenvalues of Ô , sorted in descending order.

–2

Ten-year term premium

Ten-year expectations component and ten-year observed yield

Figure 21 The SRB3-model with bias correction
The figure shows the ten-year term premium estimates from the three- and four-factor
SRB models. In the figure, the upper panel shows the ten-year expectations component
and the lower panel shows the ten-year premium. Estimates from the standard SRB3
model is shown in blue, and the mean adjusted version is shown in red. For comparison,
the observed ten-year yield is plotted in yellow, in the upper panel.

Case (C): Comparing 3-factor SRB models with and without bias
correction

Bauer et al. (2012) remind us that ˆ, in the VAR model: Xt D � C ˆ �

.Xt�1 � �/C†Xet, most likely will be biased downwards in term structure ap-
plications, because lagged endogenous variables are included, and the VAR is
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estimated using OLS. Too-low persistency in the yield curve factors, and hence
also in the short-rate process, may severely impact measures derived from the
term structure dynamics, such as rate expectations and term premia estimates.
On the other hand, it is worth noting that the potential bias is reduced, as the
number of time-series observations is increased. For instance, Engsted and Ped-
ersen (2014) show that the bias nearly disappears when the sample comprises
500 observations in the time-series dimension. However, the simulation study
they conduct is based on a VAR that, at the outset, exhibits somewhat less per-
sistency compared to what is typically encountered in term structure models.
So, it is not clear that their result can be directly transferred to a term structure
context.
Using the closed-form bias-correctionmethodology of Pope (1990), we com-

pare the impact of bias correction on the 3-factor SRBmodel. Results are shown
in Figure 22 and Table 12.
A higher degree of persistency implies that the short-rate process reverts in a

more sluggish manner towards its sample mean. The impact of this on derived
rate expectations and term premia estimates, is that the time-series evolution
of the ten-year rate expectation (we use ten-years here because this is what is
shown in the figure, but the conclusion holds for any maturity point) is that the
rate expectation becomes more volatile, assuming that one or more rate cycles
are contained in the data sample. The mirror image of this is, of course, that the
term premia will evolve more smoothly. And, this is exactly what we observe
in Figure 22.
Table 12 shows that the bias correction has absolutely no bearing on the in-

sample fit. It is interesting to note that accounting for potential biases in Ô only
affects the relative weighting of the rate expectation and term premia compon-
ents (that together make up the model fitted yield), and not of the overall fit of
the model.

Case (D): The SRB model with a constraint on the mean of the short rate

For scenario analysis, or because the sample mean is judged to poorly reflect
the true mean of one or more of the underlying yield curve factors, it may be
relevant to impose constraints on the mean vector,�, in the transition equation.
Figure 23 shows the impact of doing this. For illustrative purposes, it is assumed
that the true mean of the short rate is 2:00 per cent, and this is imposed on the
optimisation algorithm estimating the VAR parameters; the in sample mean is
4:88 per cent, so changing it to 2:00 per cent is somewhat of a moderate to sub-
stantial change. In Figure 23 a comparison between the standard 3-factor SRB
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Ten-year term premium

Ten-year expectations component and ten-year observed yield

–2

Figure 22 The SRB3-model with bias correction
The figure shows the ten-year term premium estimates from the 3-factor SRBmodel and
a version of the model where ˆ in the transition equation, Xt D �C ˆ.�Xt�1 � �/C

†Xet, is bias corrected according to Pope (1990). In the figure, the upper panel shows the
ten-year term expectations component, and the lower panel shows the ten-year premium.
Estimates from the standard SRB3model is shown in blue, and themean adjusted version
is shown in red. For comparison, the observed ten-year yield is plotted in yellow, in the
upper panel.

Table 12 Case C: RMSE and eigenvalues

RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 6.38
SRB3, bias
corrected 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 6.38

Eigenvalues of Ô

1 2 3
SRB3 0.991 0.957 0.808
SRB3, bias
corrected

0.998 0.962 0.816

RMSEs are calculated and shown in basis points for the two models under investigation,
together with the eigenvalues of Ô , sorted in descending order.

model (i.e. where sample means are used for �), and the constrained version
of the model. It is clear that this constraint has a significant influence on the
10-year rate expectation, and the 10-year term premium. In fact, the time-series
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Ten-year term premium

Ten-year expectations component and ten-year observed yield

Figure 23 Mean adjusting the SRB3-model
The figure shows the 10-year term premium estimate from the 3-factor SRB model, and
a version where the mean vector, �, in Xt D �C ˆ.�Xt�1 � �/C †Xet, is altered. A
constraint is imposed such that the mean of the short rate factor equals 2:00 per cent
(changed from 4:88 per cent, which is its sample mean). The the slope and the curvature
parameters are left at their sample means. In the figure, the upper panel shows the 10-
year term expectatoins component and the lower panel shows the 10-year premium.
Estimates from the standard SRB3model is shown in blue, and themean adjusted version
is shown in red. For comparison, the observed 10-year yield is plotted in yellow in the
upper panel.

evolution of the gauges shown in Figure 23 bears a lot of resemblance to the
ones produced in Case C, where the bias correction is active, as shown in Figure
22.
Having a look at the eigenvalues in Table 13 confirms that not only is the

mean of the short rate changed, also the persistence of the process has changed:
the eigenvalue for the short-rate process (the first factor) in the plain SRB3
model is 0:9909; when constraining the mean, this eigenvalue increases to
0:9956; and finally, when bias correction is introduced, the eigenvalue equals
0:9976.
Why does the persistence of the VAR model change, when constraints are

imposed on �? One part of the system has to change such that the constrained
set of means can be achieved, and the only part left in the equation is the ˆ
matrix, since the fit of the model, as seen in Table 13, is virtually unchanged.
Let’s consider the univariate case (which clearly generalises to the multivariate
case), and assume that the yield curve factor is the short rate and it follows the
AR(1) process:
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Table 13 Case D: RMSE and eigenvalues

RMSE (basis points)

� in months 3 12 24 36 48 60 72 84 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.65 4.51 2.57 6.38
SRB3, mean
adjusted 8.42 14.03 4.89 3.56 5.31 5.60 4.54 2.59 6.45

Eigenvalues of Ô

1 2 3
SRB3 0.991 0.957 0.808
SRB3, mean
adjusted 0.996 0.960 0.827

RMSEs are calculated and shown in basis points for the two models under investigation,
together with the eigenvalues of Ô , sorted in descending order.

Case (E): Comparing the 3-factor SRB model with published term
premium from the ACM and KW models

It is seen that Figure 24 confirms the notion highlighted in previous figures,
that the main variation in term premia do not come from the applied model,
but from the data sample used, and the thereby implied persistency of the un-
derlying yield curve values and the convergence level for the factors (i.e. their
sample mean). The KW premium estimate deviates most from the other two,
and this is probably due to the different estimation window used. KW estim-
ates only spans the period from 1990 and onwards, and the persistency and the
sample mean of the factors is therefore likely different from the parameter es-
timates used in ACM and SRB3.We have seen that the SRB3 and ACM 10-year
term primia are very similar, both in terms of dynamic behaviour and levels.
A relevant question to ask, with respect to published model estimates, is

whether the parameter estimates are updated regularly, or whether they are kept
constant over time. Onewould think that it would be better to update parameters
such that the derived metrics make use of as much information as possible.
However, updating parameters means that the newly produced estimates are
not backward-comparable, since earlier estimates were based on another set
of parameter estimates. This then opens the gate to potential confusion, since
different vintages of term premia estimates would have to be published, one
vintage for each parameter update, and it does not take much imagination to
envisage the problems that can transpire from such a setting, especially when
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Figure 24 SRB3, ACM, and KW 10-year permia
The figure shows the ten-year term premium estimates from the three-factor SRBmode,
the ACM model (Adrian et al. (2013)) and the KW model (Kim and Wright (2005)).
The KW estimate is available from 1990 onwards. Both the ACM and KW estimates
are downloaded from Bloomberg.

the metrics are used to support policy decisions on, for example, strategic asset
allocation issues. Another issue is the standard choice to be made in terms of
the length of the data history to include in the estimation of any model (i.e.
the trade-off between additional parameter accuracy against the possibility of
covering distinct economic regimes). In the end, this choice is not so trivial.

3.5 Modelling Yields at the Lower Bound
A non-negligible part of the term structure literature deals with the modelling
of the yield curve and its dynamics, when the level of yields approaches zero,
or hovers around some low level.21 Such approaches have become increasingly
popular, as the monetary policy rates have decreased steadily in Japan, the USA
and UK, as well as the euro zone, at least since around 2008/2009. To illustrate,
Figure 25 shows the evolution of the short end of the term structure in the
mentioned economies.
The majority of this literature falls within the arbitrage-free framework, and

it builds on Black (1995). Black suggests that the observed nominal rate, rt,

21 For a representative sample of the literature, see, Black, (1995), Christensen and Rudebusch
(2013), Kim and Priebsch (2013), Bauer and Rudebusch (2014), Krippner (2015b), Wu and Xia
(2015), and Lemke and Vladu (2017).
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One-year yields

Figure 25 The maturity and time dimension of yield curve data
The figure shows the evolution of the 1-year yields in the euro area, the USA, UK, and
Japan, from January 1999 to August 2018. The data used are obtained from Bloomberg,
and the following series are used: EUSWE1Curncy (euro area OIS rate), I11101Y Index
(on-the-run US curve), GUKG1 Index (UK generic yield curve), GTJPY1Y Govt (JP
generic yield curve). Data are observed monthly.

cannot be negative, because agents in the economy can hold cash at zero cost.
We know now, that this is not necessarily completely true, since we have seen
negative yields to a great extent, over the last years: just have another look at
Figure 25 and observe that the 1-year yields is Japan and the euro area has been
in negative territory since 2015. And, today (18 September 2018), according
to Bloomberg, the German sovereign curve displays negative yields from the
3-month to the 6-year maturity points. So, there are storage costs, and the pos-
sibility of being robbed. For these, and possibly other reasons, it is possible to
observe negative rates in the economy.22 But, this does, of course, not invalidate
the modelling idea proposed by Black (1995); rather than having a zero-lower
bound, we can simply work with a lower bound, set at some reasonably low
level.
Following Black (1995), the observed short rate, rt, is modelled like a call-

option, where the underlying asset is the unconstrained shadow short rate, st:

rt D max.0; st/ (3.22)

22 A negative rate can be interpreted as the storage cost of money, and/or the insurance premium to
be paid to avoid running the possibility of being robbed while have large amounts of cash tucked
away in the mattress at home – just imagine, for example, howmany mattresses Goldman Sachs
would need.
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Here, we will also use Black (1995) as a starting point, but then we will deviate
from the main-stream approach, and build a Nelson-Siegel inspired shadow
short-rate model. This is done mainly for illustrative purposes, but also in the
hope that it possibly could be useful from a yield curve practitioners view-point.
One of the arguments for using a shadow short-rate model is that traditional

dynamic yield curve models have difficulties in matching the persistence dis-
played by yields when they evolve around a lower boundary, as, for example,
shown in Figure 25 since 2009. As we have seen, yield curve factors are mod-
elled using a stationary VAR model framework, and, consequently, yield curve
factors, and thereby yields, will naturally converge back to their historical
means, when projected forward. To circumvent this ‘problem’, the shadow-
short rate idea allows for the evolution of an unobserved short-rate process,
which is then truncated at some lower level, if the process at some point passes
this threshold. In this way, if the underlying process (i.e. st), displays some level
of persistence and stays in the truncation zone for an extended period of time,
wewill be able to replicate the observed dynamics of rt, and then also the hover-
ing dynamics of yields at longer maturities. There is one other potential benefit
of shadow-rate models, and that is if the short rate is modelled together with
macroeconomic variables. It is econometrically challenging to model the joint
dynamic evolution of the short rate and macroeconomic variables, if the short
rate appears to be truncated (i.e. if it stays around the lower bound for years).
Allowing the shadow short rate to move freely makes it an ideal candidate to
enter into a model where the evolution of the yield curve and macroeconomic
variables are modelled jointly.
We need to find an appropriate functional form for the truncation function in

(3.22). One shorthand approach is presented by Coche, Nyholm and Sahakyan
(2017), and this is what we will rely on here:

Qy� D

h
1 1 �

1��

.1�/��
� ��1 C

1��

.1�/��

i
� QXt (3.23)

˛ .X/ D
tanh

�
 1 � X.2;1/ C  2

�
C 3

2
�
tanh

�
 3 � X.3;1/ C  4

�
C 3

2
2 Œ1; 4�

(3.24)

y� D rL C
Qy� � rL

1 � eŒ�˛.QX/�.Qy� �rL/�
(3.25)

Lets have a look to better understand what the components of this function
are about. It is important to know that (3.24) and (3.25) work together with the
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short-rate-based (SRB) version of the Nelson-Siegel model, that is, where the
factors have interpretations as [short rate, slope, curvature], as shown in (3.23).
The variables Qy and QX, refer to the shadow yield curve and the shadow factors,
respectively. The shadow factors are the shadow short rate, the shadow slope,
and the shadow curvature.23 Equation (3.25) indicates that the shadow yield
curve, Qyt, is transformed into the observed yield curve, yt. This is similar to the
traditional shadow-short-rate set-up, where the dynamics of the shadow rate im-
pact the shape and location of the whole yield curve. The ˛-function in (3.24)
generates a scalar-weight that is applied to the shadow yield curve, depending
on the values at time t, of the shadow-slope and the shadow-curvature factors,
contained in QX. 1- 4 are scaling constants applied to the shadow slope and the
shadow curvature. There are quite a number of moving parts – the impact of
parameter constellations of  1 to  4, together with the value of the shadow
factors contained in QX can be explored using the interactive MATLAB app
called ‘PG2TSM_SSR_original’ contained in the MATLAB library accompanying
this Element.
Two screenshots generated using the app are shown in Figure 26. This is

done to give a brief view on how certain parameter settings affect the shape
and location of the curves.24

One thing is to use the previously mentioned Shadow Short Rate App to
fit the shadow short-rate model to a single yield curve. Although it would be
entertaining (at least for a while), it would be too consuming to fit shadow short
rates to the whole set of monthly US yields over the period from 1961 to 2018.
Instead, we apply equations (3.23)–(3.24) to the whole data set at once, and
minimise the overall sum of squared residuals to find the shadow short rate and
the shadow slope; we impose the constraint that the shadow curvature is equal
to the SRB curvature estimated on the observed yields. To obtain the estimates,
the following steps are applied:

1. Estimate the SRB model via the TSM class, to obtain OXt 8t using (3.23).
2. Guess values for OQXt 8t, a handy way to make these guesses is to use OXt.
3. Calculate Ǫ tjf

OQXt;  1;  2;  3;  4g, that is, one value for Ǫ per observation
point included in the data set, conditional on the generated shadow factors
and the fixed parameters  1 to  4. This step is done via (3.24).

4. Calculate Oyt 8t using (3.25).

23 For practical reasons, when the model is estimated, we constrain the shadow curvature to be
equal to the curvature obtained from the short-rate-based version of the Nelson-Siegel model.

24 The app is flexible and allows for analysing other curves, and all parameters can be selected by
the user.
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(a)

(b)

September 2009

November 2011

Figure 26 Examples using the MATLAB Shadow Short Rate App
Panel (a) shows an example using data from 30 September 2009. The black circles in
the figure show the observed curve on this day. The red curve shows the shadow short
rate, generated using the app. And, the blue line shows the corresponding fitted yield
curve, the transformed shadow short rate using equations (3.23)–(3.24). Similarly, panel
(b) shows a fitting example using data observed on 30 November 2011.
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5. Calculate the sum of squared residuals between the observed yield curve
data, y, and the fitted yield curves.

6. Ask MATLAB to minimise this quantity:
P

t
P

tau .y � Oy/2, calculated in
step 5, by repeating steps 2–5, until optimal parameter values for the shadow
short rate and the shadow slope are obtained.

Following these steps produces a time series of shadow short rates as shown in
Figure 27.
It is observed that the time-series behaviour of our measure25 (red line) is

similar to the estimate produced by Krippner (2015b) (purple line). The min-
imum value for both estimates occur on the same date (April 2013), and the
dynamics towards and from this minimum point is roughly the same, with
our measure falling a bit faster, and raising towards normalisation levels a
bit slower, compared to Krippner’s measure. In contrast to this, Fed Atlanta’s

–2

–4

–6

Figure 27 Shadow short-rate estimates
The figure shows the estimated shadow short rate using the estimation framework out-
lined in the text (red line), based on Coche et al. (2017). This estimate is compared
with two officially published estimates downloaded from Bloomberg. One is produced
by Fed Atlanta using the model presented in Wu and Xia (2015) (yellow line), and the
other is produced by Leo Krippner (Reserve Bank of New Zealand) following Krippner
(2015b) (purple line). Both of these series are available via Bloomberg as ‘wuxiffrt in-
dex’ and ‘nzssus index’, respectively. The last (blue) line shows the short-rate factor
estimated by the SRB model.

25 By ‘our measure’ I mean the estimate obtained from the methodology proposed by Coche et al.
(2017). And, ‘our’ is used as an inclusive term here, that also comprises you, the reader: because,
the code is available in the annex, and it can be used freely (at your own risk, of course).
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shadow short-rate measure, based on Wu and Xia (2015) (yellow line), be-
haves in a distinctly different manner. It decreases very slowly, almost linearly,
until October 2013, after which the decline picks up speed, and it reaches its
minimum on May 2014.
A detailed chronology of the Fed’s QE actions is provided in Krippner

(2015a), and he further shows that the Krippnermeasure better reflects these ac-
tions than theWu and Xia short-rate measure does. His conclusion is, therefore,
that as a gauge of the effective monetary policy stance, when unconventional
policies are enacted, the Krippner measure is more precise. The reason for this
is probably, as also highlighted by Krippner (2015a), that Krippner’s model in-
cludes two factors, and the model of Wu and Xia (2015) includes three factors.
We typically model the yield curve using three factors, for example, the level,
the slope, and the curvature. However, when yields are close to the effective
lower bound, one of these dimensions will be redundant, because the short rate
is fixed, and the level and the slope will consequently measure the same thing,
namely the difference between a constant and the long end of the yield curve.26

A two-factormodel is thereforemore appropriate to use in such cases. But, what
happens then when the economy exits the lower bound period, and it again be-
comes relevant to use three factors? This is where the approach of Coche et
al. (2017) comes into play. The derived shadow short-rate measure is based on
three factors, the short rate, the slope, and the curvature – but one of the factors
(the curvature) is frozen, and left unchanged, when the economy enters the ef-
fective lower bound period. And, when exit is observed (well, rather, judged to
have occurred), the factor is again unfrozen. With the chosen factor structure, it
is enough to reduce the dimensionality in the direction of the curvature, because
the short short rate and the slope will not produce redundancies. This would
have been the case, if the traditional factor interpretation as level, slope, and
curvature had been chosen. To some extent, the Coche et al. (2017) methodo-
logy resembles that of a regime-switching model, where the regime is imposed
exogenously on the curvature factor.

3.6 Summary
Honestly, the materials covered in this section went a bit beyond what I had
planned at the outset. But, I hope that I have still managed to convey the main
messages, at an acceptable and practical level, without messing things up too
much. The main takeaways can be summarised in the following way:

26 Let l, s, c, be the level, the negative of the slope, and curvature, respectively. If r D 0, or some
other fixed lower bound, then we have that r D 0 D l C s , �s D l.
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(1) Term structure models are best thought of in terms of a state-space model,
where the state equation evolves the yield curve factors over time using
a VAR(1) model, and the observation equation translates the yield curve
factors into fitted yields using a loading matrix and possibly a constant as
well.

(2) Even if a state-space model is used to characterise the dynamics and cross-
sectional dimensions of yield curve data, it is not always necessary to
estimate the model using the Kalman filter. A two-step OLS procedure
is often faster and yields the same results.

(3) Assigning a certain economic and/or financial meaning to the yield curve
factors is done via the choice of the loading matrix (in the observation
equation).

(4) Yield curve factor models can be rotated, such that their factor interpreta-
tion changes, without affecting the model fit.

(5) Yield curves comprise information about future rate expectations and term
premia. The distribution between these two important gauges is model and
parameter dependant. Most important for the dissection of yields along
these two dimensions is the model-implied mean for the short rate, and
the persistence of the VAR(1) in the state equation.

(6) The persistence of the VAR can be changed via bias-correcting tech-
niques applied to the (autoregressive) VAR parameters, and by imposing
constraints on the mean vector in the VAR model.

(7) To better capture the behaviour of yields that evolve around some lower
effective bound, it is possible to apply the concept of shadow short-rate
models. These models rely on a truncation function that maps unrestricted
factors into restricted factors that match observed yields. In essence, when
such a non-linear truncation function is included into the modelling set-up,
the state-space model becomes non-linear in the underlying factors and the
Kalman filter is no longer usable. Instead, non-linear Kalman filters must
be applied, or alternative methodologies, as presented in Section 3.5.

MATLAB code

Yield curve model estimation via the SSM toolbox

..
filename: Basic_yield_curve_setup.m

1 %% Script for: the basic yield curve modelling setup
2 % Access to the MATLAB class GSW is required.
3 %
4 %% Loading and plotting data
5 %
6 path_=[pwd,’\MATLAB_classes’];
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7 addpath(path_);
8 load(’Data_GSW.mat’);
9 GSW_ = GSW; % creates an instance of the GSW class
10 GSW_.tau = [3 12:12:120]’; % vector of maturities
11 GSW_.beta = GSW_factors(:,2:5); % yield curve factors
12 GSW_.lambda = GSW_factors(:,6:7); % lambdas
13 GSW_ = GSW_.getYields; % getting yields
14
15 dates = GSW_factors(:,1);
16 Y = GSW_.yields;
17 tau = GSW_.tau;
18 nTau = size(tau,1);
19
20 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
21 surf(tau./12,dates,Y)
22 date_ticks = datenum(1960:4:2020,1,1);
23 set(gca, ’ytick’, date_ticks);
24 datetick(’y’,’mmm-yy’,’keepticks’)
25 xticks(0:1:11), xticklabels({tau}),
26 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),
27 view([-109 38]),
28 ytickangle(-25),
29 set(gca, ’FontSize’, 18)
30 print -depsc Y3D
31
32 nn = 3*42;
33 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
34 subplot(2,1,1), plot(dates,Y(:,11),’LineWidth’,2), datetick(’x’,’mmm-yy’),
35 title(’10 year yield’),
36 ylabel(’Yield (pct)’)
37 set(gca, ’FontSize’, 18)
38 subplot(2,1,2), plot(tau,Y(nn,:)’,’*-’,’Linewidth’,2),
39 xlabel(’Maturity (months)’),
40 title([’Yield curve on ’ datestr(dates(nn))]),
41 ylabel(’Yield (pct)’),
42 ylim([0,ceil(max(Y(nn,:))+1)])
43 xticks(tau), xticklabels({tau}),
44 set(gca, ’FontSize’, 18)
45 print -depsc Yslices
46
47 %% ....................................................................
48 % ... Empirical factor structure and the Nelson-Siegel parameterisation
49 % ... This section uses the pMap function that appears at the end
50 % ... of this script.
51 % .....................................................................
52
53 % ... Model selection
54 %
55 flagg = ’Emp’; % choose: ’NS’ -> Nelson-Siegel
56 % or : ’Emp’ -> Empirical model
57 [nObs,nTau] = size(Y);
58 Y_dat = [Y ones(nObs,nTau)];
59
60 % ... assigning starting values ...
61 %
62 Phi0 = [ 0.99 0.00 0.00;
63 0.00 0.99 0.00;
64 0.00 0.00 0.99];
65 k0 = [ 0; 0; 0 ];
66 Sx0 = [ 1.00;
67 0.00; 1.00;
68 0.00; 0.00; 1.00 ];
69 b0 = [ ones(nTau,1) linspace(1,0,nTau)’ zeros(nTau,1) ];
70 a0 = zeros(nTau,1);
71 Sy0 = 1.00*ones(nTau,1);
72
73 p0 = [ Phi0(:); k0(:); Sx0(:); b0(:); a0(:); Sy0(:) ];
74 nP = size(p0,1);
75
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76 % ... defining upper and lower parameter bounds
77 %
78 lb_=(*-}*)inf(nP,1); lb_(1:9,1)=(*-}*)1; lb_(10:12,1)=0;
79 lb_([13;15;18])=0; lb_(19:51,1)=-1;
80 lb_(52:62,1)=-1; lb_(63:73,1)=0;
81
82 ub_ = inf(nP,1); ub_(1:9,1)= 1.1; ub_(10:12,1)=1;
83 ub_([13;15;18]) = 1; ub_(19:51,1)=1;
84 ub_(52:62,1)=1; ub_(63:73,1)=1;
85
86 % ... parameter constraits ...
87 %
88 nP = size(p0,1);
89 % ... equal yield vols across all maturities
90 Aeq = zeros(nTau-1,nP);
91 Aeq(1,[63 64])=[1 -1];Aeq(2,[64 65])=[1 -1];Aeq(3,[65 66])=[1 -1];
92 Aeq(4,[66 67])=[1 -1];Aeq(5,[67 68])=[1 -1];Aeq(6,[68 69])=[1 -1];
93 Aeq(7,[69 70])=[1 -1];Aeq(8,[70 71])=[1 -1];Aeq(9,[71 72])=[1 -1];
94 Aeq(10,[72 73])=[1 -1];
95 % ... no constants in the observation equation (i.e. a=0)
96 if (strcmp(flagg,’NS’))
97 Aeq(11:21,52:62) = eye(11);
98 end
99 % ... value of the constraints
100 beq = zeros(size(Aeq,1),1);
101
102 Mdl_ = ssm(@(p) pMap(p,flagg,tau));
103 options = optimoptions(@fmincon,’Algorithm’,’interior-point’,...
104 ’MaxIterations’,1e6, ...
105 ’MaxFunctionEvaluations’,1e6, ...
106 ’TolFun’, 1e-6, ’TolX’, 1e-6);
107
108 [ EstMdl_, p_hat ] = ...
109 estimate( Mdl_,Y_dat,p0,’Display’,’iter’,’Aeq’,Aeq,’beq’,beq,...
110 ’lb’,lb_,’ub’,ub_,’univariate’,true,’options’,options );
111
112 x_filter = filter( EstMdl_, Y_dat ); % extract filtered state variables
113
114 % ... plotting the results
115 %
116 X_hat = x_filter(:,1:3);
117 Phi_hat = EstMdl_.A(1:3,1:3);
118 k_hat = diag(EstMdl_.A(1:3,4:6));
119 b_hat = EstMdl_.C(1:11,1:3);
120 a_hat = diag(EstMdl_.C(1:11,4:14));
121 if (strcmp(flagg,’NS’))
122 L_hat = p_hat(19);
123 end
124 Y_hat = (a_hat + b_hat*X_hat’)’;
125 RMSE_bps = 100.*(mean((Y-Y_hat).^2)).^(0.5);
126
127 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
128 plot(dates,X_hat,’Linewidth’,2), legend(’Factor 1’, ’Factor 2’, ’Factor 3’),
129 date_ticks = datenum(1960:10:2020,1,1);
130 set(gca, ’xtick’, date_ticks);
131 datetick(’x’,’mmm-yy’,’keepticks’)
132 set(gca, ’FontSize’, 30)
133 if (strcmp(flagg,’NS’))
134 print -depsc EstFactors_NS
135 else
136 print -depsc EstFactors_Emp
137 end
138
139 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
140 plot(tau,b_hat,’Linewidth’,2),
141 legend(’Loading 1’, ’Loading 2’, ’Loading 3’,’Location’,’SE’),
142 xlabel(’Maturity (months)’), ylim([-1 1.25]),
143 xticks([3 12:12:120]’), xticklabels({tau})
144 if (strcmp(flagg,’NS’))
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145 title([’time-decay parameter = ’, num2str(L_hat)])
146 end
147 set(gca, ’FontSize’, 30)
148 if (strcmp(flagg,’NS’))
149 print -depsc EstLoadings_NS
150 else
151 print -depsc EstLoadings_Emp
152 end
153
154 disp(RMSE_bps)
155
156 %% ..............................
157 % ... Rotation matrices
158 % ..............................
159 % ................................................
160 % ... rotating toward 2Y, 5Y and 10Y yields
161 % ................................................
162 NS_ = TSM; % create an instance of the TSM class
163 NS_.yields = Y; % populating the model with input data
164 NS_.tau = tau;
165 NS_.nF = 3;
166 %NS_.mP_pre = [0;0;0];
167 NS_.DataFreq = 12;
168
169 NS_ = NS_.getDNS; % estimate Dynamic Nelson-Siegel model
170 % using OLS
171
172 FunErr2 = @(p,dat_) sum(sum((dat_(:,1)-dat_(:,2:end)*p).^2)); % calc SSR
173
174 p0 = [1;0;0]; % starting values - no constant, only slope coefficients
175 Aeq = [1 0 0]; % constraining the coefficient of the level factor to be =1
176 beq = 1;
177 lb = [0.99;0;0]; % just to help fmincon a bit
178 ub = [1.01;1;1];
179
180 lst = [3;6;11];
181 A_rotate = zeros(size(p0,1),size(p0,1));
182 for ( z=1:3 )
183 dat = [NS_.yields(:,lst(z,1)) NS_.beta’];
184 [pHat] = fmincon(FunErr2,p0,[],[],Aeq,beq,lb,ub,[],[],dat);
185 A_rotate(z,:) = pHat’;
186 end
187
188 % ... double checking if the objective is achieved
189 X_rotate = A_rotate*NS_.beta;
190 b_rotate = NS_.B*inv(A_rotate);
191
192 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
193 subplot(3,1,1), plot(dates,[NS_.yields(:,3) X_rotate(1,:)’], ...
194 ’LineWidth’,2),
195 date_ticks = datenum(1960:10:2020,1,1);
196 set(gca, ’xtick’, date_ticks), title(’2 year’);
197 datetick(’x’,’mmm-yy’,’keepticks’), legend(’Obs.’,’Fit’,’Location’,’SW’)
198 set(gca, ’FontSize’, 20)
199 subplot(3,1,2), plot(dates,[NS_.yields(:,6) X_rotate(2,:)’], ...
200 ’LineWidth’,2),
201 date_ticks = datenum(1960:10:2020,1,1);
202 set(gca, ’xtick’, date_ticks), title(’5 year’),
203 datetick(’x’,’mmm-yy’,’keepticks’), legend(’Obs.’,’Fit’,’Location’,’SW’)
204 set(gca, ’FontSize’, 20)
205 subplot(3,1,3), plot(dates,[NS_.yields(:,11) X_rotate(3,:)’], ...
206 ’LineWidth’,2),
207 date_ticks = datenum(1960:10:2020,1,1);
208 set(gca, ’xtick’, date_ticks), title(’10 year’),
209 datetick(’x’,’mmm-yy’,’keepticks’), legend(’Obs.’,’Fit’,’Location’,’SW’)
210 set(gca, ’FontSize’, 20)
211 print -depsc RotatedFactors2_5_10
212
213 RMSE_rotate = 100*(mean((Y - (b_rotate*X_rotate)’).^2)).^(1/2)
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214 [NS_.RMSE;RMSE_rotate]
215
216 %% ...........................................................
217 % ... Building blocks of the yield curve
218 % ...........................................................
219 %
220 % Case A: 3-factor SRB model and the DNS model
221 %
222 SRB3_ = TSM;
223 DNS_ = TSM; % creating class instances
224
225 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq=12; SRB3_.nF=3;
226 DNS_.yields=Y; DNS_.tau=tau; DNS_.DataFreq=12; DNS_.nF=3; % allocating data
227
228 SRB3_ = SRB3_.getSRB3;
229 DNS_ = DNS_.getDNS; % estimate the models
230
231 RMSE_A = [ SRB3_.RMSE; DNS_.RMSE ]; % generating output
232 EIG_A = [ sort(real(eig(SRB3_.PhiP))); ...
233 sort(real(eig(DNS_.PhiP))) ];
234
235 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
236 subplot(2,1,1), plot(dates, [ SRB3_.Er(:,11) DNS_.Er(:,11) ...
237 Y(:,11)], ’LineWidth’,2),
238 date_ticks = datenum(1960:10:2020,1,1);
239 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
240 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,’DNS’,’yield 10Y’,...
241 ’Location’,’NW’)
242 set(gca, ’FontSize’, 20)
243 title(’10-year expectations component and 10-year observed yield’)
244
245 subplot(2,1,2), plot(dates, [SRB3_.TP(:,11) DNS_.TP(:,11) ], ...
246 ’LineWidth’,2),
247 date_ticks = datenum(1960:10:2020,1,1);
248 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
249 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,’DNS’,...
250 ’Location’,’NW’)
251 set(gca, ’FontSize’, 20)
252 title(’10-year term premium’)
253 print -depsc Case_A_Er_TP
254
255 %
256 % Case B: 3- and 4-factor SRB models
257 %
258 SRB3_ = TSM;
259 SRB4_ = TSM; % creating class instances
260
261
262 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq=12; SRB3_.nF=3;
263 SRB4_.yields=Y; SRB4_.tau=tau; SRB4_.DataFreq=12; SRB4_.nF=4; % allocating data
264
265 SRB3_ = SRB3_.getSRB3;
266 SRB4_ = SRB4_.getSRB4; % estimate the models
267
268
269 RMSE_B = [ SRB3_.RMSE; SRB4_.RMSE ]; % generating output
270 EIG_B = [ sort(real(eig(SRB3_.PhiP))); ...
271 sort(real(eig(SRB4_.PhiP))) ];
272
273 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
274 subplot(2,1,1), plot(dates, [ SRB3_.Er(:,11) SRB4_.Er(:,11) ...
275 Y(:,11)], ’LineWidth’,2),
276 date_ticks = datenum(1960:10:2020,1,1);
277 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
278 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,’SRB4’, ...
279 ’yield 10Y’,’Location’,’NW’)
280 title(’10-year expectations component and 10-year observed yield’)
281 set(gca, ’FontSize’, 20)
282
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283
284 subplot(2,1,2), plot(dates, [SRB3_.TP(:,11) SRB4_.TP(:,11) ], ...
285 ’LineWidth’,2),
286 date_ticks = datenum(1960:10:2020,1,1);
287 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’),
288 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,’SRB4’, ...
289 ’Location’,’NW’)
290 title(’10-year term premium’)
291 set(gca, ’FontSize’, 20)
292 print -depsc Case_B_Er_TP
293
294 %
295 % Case C: 3-factor SRB model with and without bias correction
296 %
297 SRB3_ = TSM;
298 SRB3_BC = TSM; % creating class instances
299
300 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq=12; SRB3_.nF=3;
301 SRB3_BC.yields=Y; SRB3_BC.tau=tau; SRB3_BC.DataFreq=12; SRB3_BC.nF=3;
302 % allocating data
303 SRB3_BC.biasCorrect = 1; % bias correction
304
305 SRB3_ = SRB3_.getSRB3;
306 SRB3_BC = SRB3_BC.getSRB3; % estimate the models
307
308 RMSE_C = [ SRB3_.RMSE; SRB3_BC.RMSE ]; % generating output
309 EIG_C = [ sort(real(eig(SRB3_.PhiP))); ...
310 sort(real(eig(SRB3_BC.PhiP_bc))); ];
311
312 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
313 subplot(2,1,1), plot(dates, [ SRB3_.Er(:,11) SRB3_BC.Er(:,11) ...
314 Y(:,11)], ’LineWidth’,2),
315 date_ticks = datenum(1960:10:2020,1,1);
316 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
317 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’, ...
318 ’SRB3 bias corrected’, ...
319 ’yield 10Y’,’Location’,’NW’)
320 title(’10-year expectations component and 10-year observed yield’)
321 set(gca, ’FontSize’, 20)
322 subplot(2,1,2), plot(dates, [ SRB3_.TP(:,11) SRB3_BC.TP(:,11)], ...
323 ’LineWidth’,2),
324 date_ticks = datenum(1960:10:2020,1,1);
325 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
326 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’, ...
327 ’SRB3 bias corrected’, ...
328 ’Location’,’NW’)
329 title(’10-year term premium’)
330 set(gca, ’FontSize’, 20)
331 print -depsc Case_C_Er_TP
332
333 %
334 % Case D: 3-factor SRB model with different assumptions on
335 % the mean of the short rate
336 %
337 SRB3_ = TSM; % creating class instances
338 SRB3_ma = TSM;
339
340 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq=12; SRB3_.nF=3; % allocating data
341 SRB3_ma.yields=Y; SRB3_ma.tau=tau; SRB3_ma.DataFreq=12; SRB3_ma.nF=3;
342 SRB3_ma.mP_pre=[2.00;1.79;-1.19];
343
344 SRB3_ = SRB3_.getSRB3; % estimate the models
345 SRB3_ma = SRB3_ma.getSRB3;
346
347 RMSE_D = [ SRB3_.RMSE; SRB3_ma.RMSE ]; % generating output
348 EIG_D = [ sort(real(eig(SRB3_.PhiP))); ...
349 sort(real(eig(SRB3_ma.PhiP))) ];
350
351 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
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352 subplot(2,1,1), plot(dates, [ SRB3_.Er(:,11) SRB3_ma.Er(:,11) ...
353 Y(:,11)], ’LineWidth’,2),
354 date_ticks = datenum(1960:10:2020,1,1);
355 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
356 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,...
357 ’SRB3 mean adjusted’, ...
358 ’yield 10Y’,’Location’,’NW’)
359 title(’10-year expectations component and 10-year observed yield’)
360 set(gca, ’FontSize’, 20),
361 subplot(2,1,2), plot(dates, [SRB3_.TP(:,11) SRB3_ma.TP(:,11)], ...
362 ’LineWidth’,2),
363 date_ticks = datenum(1960:10:2020,1,1);
364 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
365 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’, ...
366 ’SRB3 mean adjusted’, ...
367 ’Location’,’NW’)
368 title(’10-year term premium’)
369 set(gca, ’FontSize’, 20)
370 print -depsc Case_D_Er_TP
371
372 %
373 % Case D: 3-factor SRB model against ACM and KW
374 %
375 SRB3 = TSM; % creating class instances
376 SRB3.yields=Y; SRB3.tau=tau; SRB3.DataFreq=12; SRB3.nF=3; % allocating data
377 SRB3 = SRB3.getSRB3; % estimate the model
378
379 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
380 plot(dates, SRB3.TP(:,11), ’lineWidth’,2)
381 hold on
382 plot(ACM(:,1), ACM(:,2), ’lineWidth’,2)
383 hold on
384 plot(KW(:,1), KW(:,2), ’lineWidth’,2)
385 date_ticks = datenum(1960:10:2020,1,1);
386 set(gca, ’xtick’, date_ticks), ylabel(’(pct)’)
387 datetick(’x’,’mmm-yy’,’keepticks’), legend(’SRB3’,’ACM’,’KW’, ...
388 ’Location’,’NW’)
389 title(’Term premium comparison’)
390 set(gca, ’FontSize’, 20)
391 print -depsc Case_E_Er_TP
392
393 %% ................................................
394 % ... Modelling yields at the zero lower bound
395 % ................................................
396
397 % ... plot of 1Y rates in EU, US, UK, JP
398 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
399 plot(Yield1Y(:,1), Yield1Y(:,2:end),’LineWidth’,2),
400 date_ticks = datenum(1999:3:2020,1,1);
401 set(gca, ’xtick’, date_ticks), title(’1 year yields’);
402 datetick(’x’,’mmm-yy’,’keepticks’),
403 legend(’EA’,’US’,’US’,’JP’)
404 set(gca, ’FontSize’, 20)
405 print -depsc EU_US_UK_JP_1Y_yields
406
407 % ... Calling the TSM class to estimate a short rate based (SRB) model
408 SRB = TSM; % create an instance of the TSM class
409 SRB.yields = Y; % populating the model with input data
410 SRB.tau = tau;
411 SRB.mP_pre = [];
412 SRB.DataFreq = 12;
413 SRB.nF = 3;
414
415 % ... step 0: fix the parameters that need to be fixed
416 %
417 rL = 0.00; % preset effective lower bound
418
419 % ... step 1: estimate the 3-factors from the short rate based model
420 %
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421 SRB = SRB.getSRB3;
422 X_ = SRB.beta; % factors: short rate, slope, curvature
423 B_ = SRB.B; % loading structure
424 Y_ = SRB.yields; % observed yields (also contained in Y)
425
426 % ... step2: estimate the shadow short rate and the shadow slope
427 %
428 X_tmp = X_’;
429 p0 = X_tmp(:);
430 Aeq = zeros(nObs,3*nObs);
431 Aeq(1:nObs,2*nObs+1:end) = eye(nObs);
432 beq = X_(3,:)’;
433 X_shadow = NaN(size(X_));
434 options_ = optimoptions(@fmincon,’Algorithm’,’sqp’,...
435 ’MaxIterations’,1e8, ...
436 ’MaxFunctionEvaluations’,1e8, ...
437 ’TolFun’, 1e-4, ’TolX’, 1e-4, ...
438 ’display’,’iter’);
439
440 FX_min = @(p) Yshadow( p, Y_, B_, rL );
441 [ pHat_sr ] = fmincon(FX_min, p0,[],[],Aeq,beq,[],[],[], options_);
442 alpha_ = pHat_sr(1:4,1);
443 X_shadow_hat = reshape(pHat_sr,nObs,3);
444
445 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
446 plot(dates, [ X_(1,:)’ X_shadow_hat(:,1) ],’LineWidth’,2)
447 hold on
448 plot(BB_US_shadow_rate(:,1),[BB_US_shadow_rate(:,3), ...
449 BB_US_shadow_rate(:,2)], ...
450 ’LineWidth’,2 )
451 % yyaxis right
452 % plot(BB_US_shadow_rate(:,1), -(BB_US_shadow_rate(:,4)),’:g’,...
453 % ’LineWidth’,2)
454 date_ticks = datenum(1999:3:2020,1,1);
455 set(gca, ’xtick’, date_ticks)
456 datetick(’x’,’mmm-yy’,’keepticks’),
457 legend(’Short rate factor’,’Shadow short rate’, ...
458 ’Bloomberg US shadow rate (Fed, Atlanta)’, ...
459 ’Bloomberg US shadow rate (NZ)’, ...
460 ’Location’,’SW’)
461 ylabel(’Yield (pct)’)
462 set(gca, ’FontSize’, 20)
463 print -depsc Shadow_sr
464
465 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
466 plot(dates, [ X_shadow_hat ],’LineWidth’,2)
467 date_ticks = datenum(1999:3:2020,1,1);
468 set(gca, ’xtick’, date_ticks), title(’Short rates’);
469 datetick(’x’,’mmm-yy’,’keepticks’),
470 legend(’Sr’,’Slope’,’curvature’)
471 set(gca, ’FontSize’, 20)
472
473 %% functions
474 %
475 function [R,S,T,U,Mean0,Cov0,StateType] = pMap( p, flagg, tau )
476 %
477 % Parameter mapping function for MATLAB’s SSM mudule
478 %
479 nTau = size(tau,1);
480
481 Phi = [p(1) p(4) p(7) ;
482 p(2) p(5) p(8) ;
483 p(3) p(6) p(9) ];
484
485 k = diag([p(10);p(11);p(12)]);
486
487 Sx = zeros(3,3);
488 Sx(1,1)=p(13); Sx(2,1)=p(14); Sx(2,2)=p(15);
489 Sx(3,1)=p(16); Sx(3,2)=p(17); Sx(3,3)=p(18);
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490
491 if (strcmp(flagg,’Emp’))
492 b = [ p(19:29,1) p(30:40,1) p(41:51,1) ];
493 elseif (strcmp(flagg,’NS’))
494 L = p(19,1); p(20:51,1)=0;
495 b = [ ones(nTau,1) ...
496 (1-exp(-L.*tau))./(L.*tau) ...
497 (1-exp(-L.*tau))./(L.*tau) - exp(-L.*tau)];
498 else
499 disp(’The variable flagg must take on either of the following values’)
500 disp(’NS (Nelson-Siegel)’)
501 disp(’or, Emp (empirical model) ’)
502 end
503
504 a = diag(p(52:62,1));
505 Sy = diag(p(63:73,1));
506
507 % ... Assigning the parameters following MATLAB’s notation
508 %
509 R = [ Phi k zeros(3,nTau-3); zeros(nTau,3) eye(nTau) ];
510 S = [ Sx; zeros(nTau,3) ];
511
512 T = [ b a; zeros(nTau,3) eye(nTau) ];
513 U = [ Sy; zeros(nTau,nTau) ];
514
515 % ... other assignments
516 Mean0 = [];
517 Cov0 = [];
518 StateType = [ 0 0 0 ones(1,nTau) ];
519 end
520
521 function [ err2, X_shadow, y_shadow, err ] = Yshadow( p0, Y_, B_, rL )
522 %
523 % calculating the sum of squared residuals from the static
524 % shadow short rate model set-up
525 %
526 nObs = size(Y_,1);
527
528 % ... Defining the shadow rate transformations
529 %
530 alfa_ = @(Xshdw,zz) ( tanh(zz(1,1).*Xshdw(2,:)+zz(2,1)) ...
531 +3 )./2 .*( tanh( zz(3,1).*Xshdw(3,:)+zz(4,1) )+3 )./2;
532
533 yFit_ = @(yS_,alpha_,rL_) rL_+(yS_-rL_)./(1-exp(-alpha_.*(yS_-rL_)));
534
535 % ... fixing some of the free parameters
536 %
537 zz_ = [ -5.00; 1.00; 4.00; 1.00 ];
538
539 % ... calculating shadow yields
540 %
541 X_shadow = reshape(p0,nObs,3)’;
542 y_shadow = B_*X_shadow;
543 alpha = alfa_(X_shadow,zz_);
544 yFit = yFit_(y_shadow,alpha,rL)’;
545 err = Y_-yFit;
546 err2 = sum(sum(err.^2));
547
548 end

4 Modelling Yields under the Q Measure
4.1 Introduction

In this section, we will look at yield curve models that exclude arbitrage by
construction. The treatment is purposefully pragmatic, and it will focus on, and
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emphasise, the pure mechanics of the modelling frameworks. A deep-dive into
the mathematical underpinnings of these models, and a full account of how the
literature has evolved over time, is beyond the purpose of this Element.
As a gentle introduction, a four-factor short rate based (SRB) model will be

derived, based on Nyholm (2018). Then we will move on to Joslin, Singleton
and Zhu (2011), a corner-piece in the literature, and see how they cut to the
bone of the inner workings of term structure models.

4.2 A Discrete-Time Four-Factor SRB Model
Our purpose here is to illustrate how the standard linear modelling set-up (see,
e.g., Duffie and Kan (1996), Dai and Singleton (2000), and Ang and Piazzesi
(2003)) can be used to derive a tailor-made discrete-time arbitrage-free model
that has a loading structure similar to that of a dynamic Svensson and Söderlind
(1997) model, but where the first factor can be interpreted as the short rate,
rather than as the yield curve level. Since this will result in a four-factor model,
we get the three-factor model for free, so to say, since we can reduce the factor
space by simply omitting the fourth factor and fourth factor loading.
Within the continuous-time setting Christensen, Diebold and Rudebusch

(2011) have shown how to maintain the parametric loading structure of the
Nelson and Siegel (1987) model, while ensuring that arbitrage constraints are
fulfilled.27 Discrete-time versions of the same model have been derived pre-
viously (Niu and Zeng (2012) and Li, Niu and Zeng (2012)). Christensen et
al. (2011) show that five factors are needed to generate an arbitrage-free term
structure model, where the factor loadings match precisely those of Svensson
and Söderlind (1997). Instead of providing an exact fit, here we derive a parsi-
monious four-factor model with a closed-form loading structure that maintains
the characteristics of the Svensson and Söderlind (1997) model, where only
one time decay is used (recall that the original Svensson and Söderlind (1997)
model relies on two time-decay parameters to define its loading structure).
As before, let Xt denote the vector of the modelled yield curve factors, at

time t. Furthermore, let the dynamics of Xt be governed by vector autoregress-
ive (VAR) processes of order 1 under both the empirical measure, P , and the
pricing measure, Q:

Xt D kP
CˆP

� Xt�1 C†P �P
t ; �P

t � N.0; 1/ (4.1)

Xt D kQ
CˆQ

� Xt�1 C†Q�Q
t ; �Q

t � N.0; 1/: (4.2)

27 See also, Krippner (2013) and Diebold and Rudebusch (2013).
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with††0 D � being the variance of the residuals, and it is assumed that†P D

†Q. It is noted that we do not use the mean-adjusted version of the VARmodel
here; the reason for this will become clear at the end of the section.
The risk-free one-period short rate is assumed to be a function of Xt, such that:

rt D �0 C �0
1Xt: (4.3)

In the model that we derive, we want our factors, X, to have interpretations
as the short rate, the slope, and curvature 1 and 2. Given that the first factor
is the short rate, we impose the following constraints on (4.3): �0 D 0 and
�1 D Œ1; 0; 0; 0�0.
As in the derivation of the discrete-time version of the Vasicek (1977), in one

of the previous sections of this Element, we now impose absence of arbitrage
on the model by introducing the unique pricing mechanism, that governs all
traded assets:

Pt;� D Et ŒMtC1 � PtC1;��1� (4.4)

The idea here is that when the bond matures at time T, its value is known with
certainty, since it is default-free: the bond pays its principal value on that day, so
PT;0 D 1. At any time tC j before maturity, the price of the bond can therefore
be found as the one-period discounted-value of the price at time t C j C 1, all
the way back to time t. Discounting is done using the stochastic discount factor
(also called the pricing kernel), which is denoted byMt:

MtC1 D exp
�

�rt �
1
2
�0
t�t � �0

t�
P
tC1

�
(4.5)

We recognise the univariate case of this expression, from when we derived the
Vasicek (1977) model, but now we are dealing with a multifactor model, since
X contains four factors. So, we also bring the expression for the time-varying
market price of risk into the multi-variate domain by specifying:

�t D �0 C �1 � Xt; (4.6)

with �t being of dimension .4 � 1/ in our application, because we have four
factors, �0 is of dimension .4 � 1/, and �1 is a matrix of dimension .4 � 4/.
It is recalled that:

yt;� D �
1
�
log.Pt;� /; (4.7)

and that we can write the yield curve expression as a linear (plus a constant,
i.e. affine) function:

yt;� D �
A�

�
�

B0
�

�
Xt: (4.8)
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The bond price is therefore exponential affine in terms of A� and B� :

Pt;� D exp
�
A� C B0

�Xt
�
: (4.9)

To derive closed-form expressions for A� and B� , the fundamental pricing
equation is invoked (4.5):

Pt;� D Et ŒMtC1 � PtC1;��1� (4.10)

D Et

�
exp

�
�rt �

1
2
�0
t�t � �0

t�
P
tC1

�
� exp

�
A��1 C B0

��1XtC1
��
:

(4.11)

The expression for XtC1 (see equation 4.1) is substituted:

Pt;� D Et

�
exp

�
�rt �

1
2
�0
t�t � �0

t�
P
tC1

�
(4.12)

�exp
�
A��1 C B0

��1

�
kP

CˆPXt C†�P
tC1

�� �
;

(4.13)

and the terms are then separated into two groups: one to which the expectations
operator should be applied, i.e. tC1 terms, and another group, which are known
at time t:

Pt;� Dexp
�

�rt �
1
2
�0
t�t C A��1 C B0

��1k
P

C B0
��1ˆ

PXt

�
� Et

h
exp

�
��0

t�
P
tC1 C B0

��1†�
P
tC1

�i
:

(4.14)

The question is then, how can we calculate the expectations part of (4.14):

Et

h
exp

�
��0

t C B0
��1†

�
�P
tC1

i
: (4.15)

To this end, the moment-generating function of the multivariate normal distri-
bution is used. Since �P � N.0; I/, it is known that:

EŒexp.a0�P /� D exp
�
1
2
a0

� I � a
�
; (4.16)

so, the expectation in (4.14) can be calculated, using a0 D .��0
t C B0

��1†/, as:

exp
�
1
2
.��0

t C B0
��1†/ � I � .��0

t C B0
��1†/

0

�
Dexp

�
1
2
.��0

t C B0
��1†/ � I � .��t C†0B��1/

�
Dexp

�
1
2
�
�0
t�t � �0

t†
0B��1 � B0

��1†�t C B0
��1††

0B��1
��
; (4.17)
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and, since B0
��1†�t is a scalar, and for a scalar h, we know that h D h0, so

B0
��1†�t D �0

t†
0B��1. We can then write:

Et

h
exp

�
��0

t C B0
��1†

�
�P
tC1

i
D exp

�
1
2
�0
t�t � B0

��1†�t C
1
2
B0

��1††
0B0

��1

�
:

This term is then reinserted into (4.14), giving:

Pt;� D exp
�
�rt C A��1 C B0

��1k
P

C B0
��1ˆ

PXt � B0
��1†�t

C
1
2
B0

��1††
0B0

��1

�
:

(4.18)

It is recalled that rt D �0
1Xt, and that �t D �0C�1Xt. Inserting these expressions

into (4.18), gives:

Pt;� D exp
�
��0

1Xt C A��1 C B0
��1k

P
C B0

��1ˆ
PXt � B0

��1†.�0 C �1Xt/

C
1
2
B0
n�1††

0B0
��1

�
:

(4.19)

Reorganising this expression into terms that load on Xt and terms that do not,
help matching coefficients with respect to equation (4.9):

Pt;� D exp
�
A��1 C B0

��1

�
kP

�†�0

�
C

1
2
B0

��1††
0B0

��1

C B0
��1ˆ

PXt � �0
1Xt � B0

��1†�1Xt

�
; (4.20)

which is:

Pt;� D exp

 
A��1 C B0

��1

�
kP

�†�0

�
C

1
2
B0

��1††
0B0

��1

C

h
B0

��1

�
ˆP

�†�1

�
� �0

1

i
Xt

!
:

(4.21)

Matching the coefficients of (4.21) with those of (4.9) establishes the recursive
formulas for A� and B� :

A� D A��1 C B0
��1k

Q
C

1
2
B0

��1††
0B0

��1 (4.22)

B0
� D B0

��1ˆ
Q

� �0
1 (4.23)

with kQ
D kP

�†�0, and ˆQ D ˆP �†�1. Recall that �0 D 0 in our model
set-up. Using recursive substitution, we realise that the expression for B0

n also
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can be written in the following way:28

B� D �

"
��1X
kD0

�
ˆQ

�k#0

� �1: (4.24)

It is convenient to write the loading structure in this way, when we want to find
a closed-form solution for B� , because the expression in (4.24) is the sum of a
matrix power series, and we know that this can be solved if ˆQ comes from a
stationary VAR model.
The last task remaining is then to find a ˆQ matrix that, when inserted in

(4.24), gives us loadings that are as similar as possible to the ones appearing in
Svensson and Söderlind (1997), while still imposing the constraints mentioned
previously that ensure that the first factor is the short rate. So, let’s start the
guessing game. What happens, for example, if we use the following matrix?

ˆQ
D

26664
1 1 �  1 �  1 � 

0   � 1  � 1
0 0   � 1
0 0 0 

37775 : (4.25)

A closed-form expressions for B� can then be derived by first finding
�
ˆQ

�k:
�
ˆQ

�k
D

2666664
1 1 �  k �k k�1. � 1/ �

k
2

k�2 �.k C 1/2 � 2k C k � 1
�

0  k k k�1. � 1/ k
2

k�2 �.k C 1/2 � 2k C k � 1
�

0 0  k k k�1. � 1/

0 0 0  k

3777775 ;
(4.26)

28 We see this by the use of an example. For � D 3, we have:

B0
1 D ��0

1

B0
2 D B0

1ˆ
Q � �0

1 D ��0
1ˆ

Q � �0
1

B0
3 D B0

2ˆ
Q � �0

1 D .��0
1ˆ

Q � �0
1/ˆ

Q � �0
1

D ��0
1

�
ˆQ

�2
� �0

1ˆ
Q � �0

1

D ��0
1

��
ˆQ

�2
C

�
ˆQ

�1
C

�
ˆQ

�0�

D ��0
1

" 2X
kD0

�
ˆQ

�k#
so,

B3 D �

" 2X
kD0

�
ˆQ

�k#0

�1;

which generalises to equation (4.24).
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and then by substituting (4.26) into (4.24), we get:

B� D �

2666664
�P��1

kD0 1 �  kP��1
kD0 �k k�1. � 1/P��1

kD0 �
k
2

k�2 �.k C 1/2 � 2k C k � 1
�

3777775 : (4.27)

Solving (4.27) gives:29:

B� D �

2666664
�

� �
1��

.1�/

�� ��1 C
1��

.1�/

�
1
2�.� � 1/. � 1/ ��2

3777775 : (4.28)

An expression for the yield curve at time t is then obtained if Yt collects yt;�
8� by increasing maturity, and if a D �A�=� and b D �B0

�=� are defined
similarly. The expression for the yield curve observed at time t is then:

Yt D a C bXt C†Yut: (4.29)

with:

b D

2666664
1

1 �
1��

.1�/��

� ��1 C
1��

.1�/��

�
1
2 .� � 1/. � 1/ ��2

3777775 : (4.30)

4.2.1 The Relationship between the SRB Model and the Joslin, Singleton
and Zhu (2011) Framework

Here we will briefly look at Joslin et al. (2011) (JSZ). This is a core paper in the
literature because it shows that many of the existing model parametrisations are
built from the same inner foundation, and are in fact identical up to a rotation.
JSZ also present an algorithm to estimate arbitrage-free term structure models
that is fast and that converges effortlessly. In addition, they provide insights
on what to expect in terms of forecasting performance of certain term structure

29 The first entry of (4.27) follows immediately, the second entry uses
P��1

kD0 xk D 1�x�

1�x , the third
and fourth entries can be found by consecutive substitution. For example, for � D 5 the third
entry of (4.27) is: 44 � 3 � 2 � 1 � 0, which generalizes to .� � 1/��1 �

P��2
kD0  k.

Similarly, the fourth entry of (4.28) for � D 5 is: �.0 C 1. � 1/0 C 3. � 1/1 C 6. �

1/2 C 10. � 1/3/, which generalizes to � 1
2 �.� � 1/. � 1/��2.
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models, and why some models have equal forecasting performance (to the de-
gree of uncertainty present in the data). It is a true treat for the reader: if only
the paper was easier to understand, it would be perfect.
From my reading of Joslin et al. (2011), the key takeaways are:

1. Gaussian dynamic term structure models (GDTSM) can be parameterised
such that the parameters that govern the P measure, and thus the P -measure
forecasts of the yield curve factors, X, do not appear in the measurement-
error density. This means that the P - and Q-measure parameters can be
estimated separately.

2. It also means that constraints imposed under Q do not affect the dynamics
of the yield curve factors under P , so no-arbitrage constraints cannot help
in providing better model forecasts.

3. For an N-factor GDTSM, the following parameters need to be specified:
3.1 rQ1, the long-run mean of the short rate under Q

3.2 Q, mean reversion speed (eigenvalues) of the factor dynamics under
Q. Other notation uses � for this parameter, but we have reserved � for
the market price of risk.

3.3 †P , the conditional covariancematrix of the yield factors from the VAR
model governing their dynamics.

4. The JSZ model characterisation-framework is based on the idea of ‘similar’
matrices, known from linear algebra, where similarity is defined on the basis
of the Jordan form. JSZ apply this idea to GDTSMs: if a given model’s Q-
dynamics can be rewritten in Jordan form, with ordered eigenvalues, then
the model is identical (up to a rotation) to the JSZ canonical form.

If a comparison is made to the notation used in Joslin et al. (2011), it may be
relevant to note that they specify VAR models in difference form. Throughout
the Element, we have looked at VAR models in level form. Although it is not a
big deal, I will continue using the level form here, and thus rewrite (and adapt
their notation) to what we have been using so far.30

Let’s start by looking at the issue from an intuitive angle on the basis of a gen-
eral VAR model for the yield curve factors under the Q measure. As in Joslin
et al. (2011), we choose a specific set of yield curve factors that are formed as
linear combinations of yields. JSZ refer to these factors as being ‘portfolios of
yields’ i.e. implying that they can be obtained by applying a weighting matrix

30 A VAR model written in difference form looks like this: �Xt D kC Q̂ Xt�1 C †et, which can
be written as, Xt � Xt�1 D k C Q̂ Xt�1 C †et, and as Xt D k C Q̂ Xt�1 C Xt�1 C †et. So,
the difference between the difference and level forms is that ˆ D Q̂ C I, where ˆ refers to the
autoregressive matrix in the level form.
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to the yield curve data in the following way31:

Xt D W � yt: (4.31)

According to this definition, any linear combination of yields qualify, thus also
principal components. We continue by writing a general VAR model for these
factors:

Xt D kQ
CˆQ

� Xt�1 C†Qut; (4.32)

We know that ˆQ governs the dynamics of the VAR model under the Q meas-
ure, and thus the shape of the yield loadings b� and the constant, a� . But, what
are the core components of this matrix? If we look at the eigenvalue decompos-
ition ofˆQ, the eigenvalues express the degree of persistency of the matrix, that
is, how fast (or slowly) it converges to its steady state (assuming, as always,
that the VAR is stationarity). The eigenvectors of ˆ (not of X, just to be clear)
can be interpreted as the ‘direction’ the matrix points in, or the space that it
spans; one way to use eigenvectors is to multiply them with a matrix having
eigenvalues raised to the power of ‘s’ on its diagonal. This operation will give
the s-step ahead projection matrix.32 We can naturally imagine many different
sets of yield curve factors (one for each occasion), and all sets spanning dif-
ferent directions, and all formed according to (4.31). Some of these sets could,
for example, be (a) the three first principal components; (b) level, slope, and
curvature; (c) short-rate slope and curvature; and (d) the three-month yield, the
three-year yield, and the ten-year yield. The crux of JSZ is that all these pos-
sible factors definitions (i.e. also our examples in (a)-(d)), can be converted (or
rotated) into a common single basis form. So, in fact, the various factors defin-
itions, and their associated models, are all (just) variations over a single core
model; all having identical properties, but appearing to be different.
To express the GDTSM in its purest form, Joslin et al. (2011) rely on the

Jordan decomposition of ˆQ. The Jordan decomposition is a generalisation of
the eigenvalue decomposition, see, for example, Hamilton (1994)[pp.730–31],
in that it explicitly handles repeated eigenvalues. An eigenvalue decomposi-
tion can still be successfully completed, even if there are repeated eigenvalues,
as long as the eigenvectors form a full-rank matrix. But this is not guaran-
teed to always be the case, hence the generalisation represented by the Jordan

31 Joslin et al. (2011) denote the yield factors by P , but we continue by using X to denote the
factors.

32 Recall from our discussion of the term premia in a previous section, that we can calculate the
s-step ahead projection of the VAR as the s’th power of the diagonal matrix containing the
eigenvalues, pre- and post- multiplied by the eigenvectors.

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


92 Quantitative Finance

decomposition (formulas [A.4.26] and [A.4.27] from Hamilton (1994)):

J D

266664
J1 0 � � � 0
0 J2 � � � 0
:::

::: � � �
:::

0 0 � � � Jn

377775 (4.33)

and

Ji D

26666664
i 1 0 � � � 0
0 i 1 � � � 0
0 0 i � � � 0
:::

:::
::: � � �

:::

0 0 0 : : : i

37777775 (4.34)

where the i’th eigenvalue is denoted by i. Similarly to the eigenvalue decom-
position, the Jordan decomposition is given by:

ˆQ
D V �ˆJ

� V�1: (4.35)

To facilitate the rotation from the Jordan form to any other observationally
equivalent model, we start with the VAR model:

XJ
t D kJ CˆJ

� XJ
t�1 C†JeJt ; (4.36)

where J refers to the Jordan form. A general rotation of this VAR model is
implemented below:

Xt D N C M � XJ
t

D N C M �
�
kJ CˆJ

� XJ
t�1 C†Jet

�
D N C M � kJ C M �ˆJ

� XJ
t�1 C M �†Jet

D N C M � kJ C M �ˆJ
� M�1

� .Xt�1 � N/C M �†Jet
D N � M �ˆJ

� M�1
� N C M � kJ C M �ˆJ

� M�1
� Xt�1 C M �†Jet

D
�
I � MˆJM�1�N C MkJ„ ƒ‚ …

kQ

C MˆJM�1„ ƒ‚ …
ˆQ

� Xt�1 C M†J„ƒ‚…
†Q

et

D kQ
CˆQ

� Xt�1 C†Qet: (4.37)

Line 4 follows from line 1, since Xt D N C M � XJ
t , XJ

t D M�1
� .Xt � N/.

We know from (4.3) that the short rate depends on the yield curve factors. In
the SRB model, this link is simply defined by the parameter constraints �0 D 0
and �1 D Œ1; 0; : : : ; 0�0. However, for other factors, �0 and �1 contain paramet-
ers that need to be estimated. So, we need also to show how the introduced
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rotation affects the short-rate equation:

rt D �J0 C �J1X
J
t

D �J0 C �J1M
�1 .Xt � N/

D �J0 � �J1M
�1

� N„ ƒ‚ …
�0

C �J1M
�1„ƒ‚…

�1

� Xt

D �0 C �1Xt: (4.38)

With this behind us, we can now show that the SRB-model developed in
Section 4.2 is a constrained member of the general family of Gaussian dynamic
term structure model derived by Joslin et al. (2011).33

Now, let J be the Jordan matrix, and V be a rotation matrix such that equation
(4.25) can be reformulated as:

ˆQ
D V � J � V�1: (4.39)

Choosing V to be:

V D

26664
1 �. � 1/2  � 1 �1
0 2 � 2 �  C 1 1 �  1
0 0  � 1 �2
0 0 0 1

37775 ; (4.40)

implies that:

J D

26664
1 0 0 0
0  1 0
0 0  1
0 0 0 

37775 ; (4.41)

Since (4.41) is in Jordan form with repeated eigenvalues, there exists a map-
ping between theQ-dynamics I propose in .4:25/ and the framework suggested
by JSZ. The proposed SRBmodel is therefore a constrained member of the JSZ
family of models.34

33 This is not overly surprising since the SRB model is a generalisation of the arbitrage-free
Nelson-Siegel model suggested by Christensen et al. (2011) (CDR), and since Joslin et al. (2011)
show that the CDR model is a constrained member of the JSZ family.

34 The restriction of repeated eigenvalues, compared to the canonical JSZ form, is not rejected by
the data used in the paper at a 5 per cent level, using a likelihood ratio test.
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4.2.2 The Relationship between the Four-Factor SRB Model and the
Svensson-Söderlind Model

Since the four-factor SRB model aims to replicate the Svensson and Söderlind
(1997) loading structure as closely as possible, but by the use of a single time-
decay parameter,  , it may be relevant to draw a comparison between the two
models.
It is recalled that the Svensson-Soderlind loadings are given by:

H D

2666664
1

1�e��1n

�1n
1�e��1n

�1n � e��1n

1�e��2n

�2n � e��2n

3777775 ; (4.42)

and that the loading structure of the SRB model is given by B D Bn=n, where
B is given by equation (4.28):

B D �

2666664
1

1 �
1�n

.1�/�n

�n�1 C
1�n

.1�/�n

�
1
2 .n � 1/. � 1/n�2

3777775 : (4.43)

Figure 28 compares the loading structures of the Svensson and Söderlind
(1997) and the SRB models. The shape parameter of the SRB model is set to
 D 0:945, and the two Svensson-Söderlind shape parameters take on the val-
ues �1 D 0:0381 and �2 D 0:1491 (similar to what is found on US data).
The loadings for the first factor are not shown in the figure, as they equal
1 for both models, across the included maturities. The first panel in the fig-
ure shows the loadings for the slope factor; and to facilitate easy comparison,
the loading of the Svensson-Söderlind model is rotated to match that are the
SRB model: let Hslope be the original slope loading for the Svensson-Söderlind
model, panel 1 then plots 1 � Hslope. The second and third panels compare
the loadings for the first and second curvature loadings. Returning to the first
panel. It shows that the loadings for the slope factor are quite similar across the
two models, although the SRB loading assumes slightly higher values through-
out the maturity spectrum, and also seems to arch upwards a bit more than
the Svensson-Söderlind loading does. Level differences between the loading
structures can naturally be subsumed by the corresponding factor values, so the
shape attained by the loadings are of greater importance for the relative com-
parison between the models. Similarly, the second and the third panels show
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Four-factor SRB

Figure 28 Loading structures
The figure compares the loading structures of the Svensson-Soderlind and the SRB
models. The shape parameter of the SRB model is  D 0:945, and the two Svensson-
Soderlind shape parameters are estimated to be �1 D 0:0381 and �2 D 0:1491. The
loadings for the first factor are not shown as they equal 1 for both models across the
included maturities. The first panel shows the loadings for the slope factor, and to fa-
cilitate the comparison, the Svensson-Soderlind loading structure is rotated, to match
that of the SRB model, and this is done in the following way: Let Hslope be the ori-
ginal slope loading for the Svensson-Soderlind model, panel 1 then plots 1 � Hslope.
The second and third panels compare the loadings for the first and second curvature
loadings.

relatively good correspondence between the curvature loadings of the twomod-
els. Panel 2 indicates that the SRB model loading peaks around a maturity of
30 months, while the corresponding Svensson-Söderlind loading peaks around
40 months.
To test the impact of the detected differences in the loading structures, as

noted, themodels are fitted to theUS data used in other sections of this Element.
Table 14 documents that both models produce very low root mean squared
errors and that the added flexibility of the Svensson-Söderlind model, via its
reliance on two shape parameters, �1 and �2 (see equation (4.42)), as opposed to
the one used by the SRBmodel ( ), gives it an economically insignificant edge
of 1 basis points on average. The worst-fitted maturity of the SRB model is the
one-year segment with a RMSE of 4:7 basis points, and the average RMSE
across the eleven included maturities is 2:68 basis points. In comparison, the
Svensson-Söderlind model produces the worst RMSE at the two-year segment
of 3:0 basis points, with the average RMSE of 1:58 basis points across the
included maturities.
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Table 14 Root mean squared errors (basis points)

3m 1y 2y 3y 4y 5y 6y 7y 10y Average

SRB Model 2.8 4.7 4.1 2.5 1.6 2.3 2.3 2.1 3.4 2.6
Svensson-Söderlind 0.3 2.6 3.0 2.0 0.7 1.4 1.9 1.6 2.3 1.5

The table shows the root mean squared errors in basis points of the SRB and the Svens-
son and Söderlind (1997) models when estimated using monthly US yield curve data
covering the period from January 1961 to November 2017. Data are observed at ma-
turities spanning three months to ten years. The shape parameter of the SRB model
is  D 0:945, and the two Svensson-Söderlind shape parameters are estimated to be
�1 D 0:0381 and �2 D 0:1491.

MATLAB code

Yield curve model estimation via the SSM toolbox

..
filename: Modelling_yields_under_Q.m

1 %% Modelling yields under Q
2 % All we do here is to plot the loading structures of the Svensson-
3 % Soderlind and the 4-factor SRB models
4 %
5 path_=[pwd,’\MATLAB_classes’];
6 addpath(path_);
7
8 tau = ( 1:1:120 )’;
9 nTau = size(tau,1);
10
11 Bfunc_SS = @(lambda_,tau_,nTau_) ...
12 [ ones(nTau_,1) (1-exp(-lambda_(1,1).*tau_))./ (lambda_(1,1).*tau_) ...
13 (1-exp(-lambda_(1,1).*tau_))./(lambda_(1,1).*tau_)-exp(-lambda_(1,1).*tau_) ...
14 (1-exp(-lambda_(2,1).*tau_))./(lambda_(2,1).*tau_)-exp(-lambda_(2,1).*tau_) ];
15
16
17 Bfunc_SRB4 = @(lambda_,tau_,nTau_) ...
18 [ ones(nTau_,1) 1-(1-lambda_.^tau_)./((1-lambda_).*tau_) ...
19 -(lambda_.^(tau_-1))+(1-lambda_.^tau_)./((1-lambda_).*tau_) ...
20 -0.5.*(tau_-1).*(lambda_-1).*lambda_.^(tau_-2) ];
21
22 L_SS = [ 0.0381; 0.1491 ];
23
24 L_SRB4 = 0.945;
25
26 B_SS = Bfunc_SS( L_SS, tau, nTau );
27 B_SRB4 = Bfunc_SRB4( L_SRB4, tau, nTau );
28
29 tau_plot = [3 12:12:120]’;
30 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])
31 subplot(3,1,1), plot( tau, 1-B_SS(:,2) , ...
32 ’LineWidth’,2), ylim([0 1]), title(’Slope’),
33 ylabel(’Value’), set(gca, ’FontSize’, 20)
34 hold on
35 subplot(3,1,1), plot(tau,B_SRB4(:,2) , ...
36 ’LineWidth’,2), grid ’on’
37 xticks(tau_plot),xticklabels(tau_plot)
38 legend(’Svensson-Soderlind’,’4-factor SRB’,’Location’,’SE’)
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39
40 subplot(3,1,2), plot( tau, B_SS(:,3) , ...
41 ’LineWidth’,2), ylim([0 0.5]), title(’Curvature 1’),
42 ylabel(’Value’), set(gca, ’FontSize’, 20)
43 hold on
44 subplot(3,1,2), plot(tau,B_SRB4(:,3) , ...
45 ’LineWidth’,2), grid ’on’
46 xticks(tau_plot),xticklabels(tau_plot)
47
48 subplot(3,1,3), plot( tau, B_SS(:,4) , ...
49 ’LineWidth’,2), ylim([0 0.5]), title(’Curvature 2’),
50 ylabel(’Value’), set(gca, ’FontSize’, 20)
51 hold on
52 subplot(3,1,3), plot(tau,B_SRB4(:,4) , ...
53 ’LineWidth’,2), grid ’on’
54 xticks(tau_plot),xticklabels(tau_plot)
55 print -depsc Loadings_SS_SRB4

5 Model Implementation
5.1 Introduction

In addition to the modelling explanations provided so far in this Element, it is
also important to discuss how model implementation is achieved in practice.
When looking at a model on the Internet or in a paper (here I am of course refer-
ring to a term structure model), it is not always clear how the authors manage to
apply the model to data and how they obtain the relevant parameter estimates.
The aim of the current section is therefore to discuss practical issues, supported
by step-wise implementation guidelines.

5.2 A Brief Note on Model Implementation
Before getting started on outlining detailed implementation recipes and coding
up the Joslin et al. (2011) model and the arbitrage-free version of the dy-
namic Nelson-Siegel model, following Nyholm (2018), this section describes
the central building blocks that arbitrage-free models consist of. As we have
seen in Section 4 these building blocks consists of the P -measure dynamics,
the Q-measure dynamics, the parametrisation of the market price of risk, and
the no-arbitrage pricing relationship. These elements, and how they interact,
are illustrated in Figure 29.
The triangle in the figure is meant to illustrate that there are three ways to

parameterise an arbitrage-free model. A model is parameterised by selecting
two of the three corners in the triangle, and by letting the third, unselected,
corner be implied by the parameter relationships recorded in the lower part of
Figure 29. More specifically, you can choose to:

1. estimate the parameters governing the P - and the Q-dynamics, that is, the
two lower parts of the triangle, leaving the parameters of the market price of
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risk to be implied by the parameter relationships: kQ
D kP

� †P � �0, and
ˆQ D ˆP �†P � �1.

2. estimate the parameters governing the P dynamics and the market price
of risk, and letting the parameters of the Q dynamics be implied by the
parameter relationships: kQ

D kP
�†P � �0, and ˆQ D ˆP �†P � �1.

3. estimate the parameters governing the Q dynamics and the market price
of risk, and letting the parameters of the P dynamics be implied by the
parameter relationships: kQ

D kP
�†P � �0, and ˆQ D ˆP �†P � �1.

A final issue to consider is what the main object of the estimation routine
is going to be. In Figure 29, it is observed that the no-arbitrage relationship is
specified in term of bond prices by Pt;� D EtŒMtC1 � PtC1;��1. However, it is
rarely the case that observed market prices are used to fit yield curve models.35

The vast majority of models use yields as the primary object for writing up the
objective function, meaning most models minimise the (squared) difference
between observed and model yields, in order to estimate the model paramet-
ers. This is also the approach that we rely on below. However, it should be

Figure 29 Building blocks for arbitrage-free models.

35 One exception to this rule is the Smith and Wilson (2000) model, which use is prescribed in
the context of European Solvency II calculations for insurance companies, see CEIOPS (2010).
This model is fitted directly to prices via discount functions.
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mentioned that there is another strand of literature using fixed income returns,
as the basis for fittingmodel parameters; see among others, Adrian et al. (2013).

5.3 Implementing the Joslin, Singleton and Zhu (2011) Model
Although the MATLAB code for estimating the Joslin et al. (2011) model is
available on the Internet,36 we still choose to implement the model here. Our
implementation will most likely be less efficient, compared to the code made
available by the authors. The JSZ code available on the net typically converges
within seconds: this is hard to beat, and originates from the clever step-wise es-
timation approach suggested by Joslin et al. (2011). We will also implement the
model in a step-wise fashion, but integrate the code into our TSM-class. While
it may seem as poor judgement not simply to use what is already available on
the net, in our context, where we may want to include exogenous variables
and to do conditional projections, we would anyway have to adapt the JSZ
code to our particular needs. So, in the end, it may be easier (and more fun) to
implement the model ourselves.
In section 4.2.1 we met the JSZ model, and saw how the SRB model is a

constrained member of the of JSZ family. Here we will take a deep-dive and
present the model parameters that need to be estimated and how we achieve
model convergence.
Following the traditional linear yield curve modelling set-up, the three

factors included in the Joslin et al. (2011) model are governed by VAR(1)
dynamics. In their paper, JSZ write up the dynamics in difference form, we
will however continue using the level-form as we have done throughout this
Element:

Xt D kP
CˆP

� Xt�1 C†eP
t (5.1)

Xt D kQ
CˆQ

� Xt�1 C†eQ
t (5.2)

rt D �0 C �1 � Xt (5.3)

where rt is a linear function of the factors, and the residual covariance is given
by ††0. JSZ normalise their model by requiring that ˆQ is in Jordan form,
that is,

ˆQ
D J.Q/ D

266664
J1 0 � � � 0
0 J2 � � � 0
:::

::: � � �
:::

0 0 � � � Jn

377775 (5.4)

36 See, www-bcf.usc.edu/ sjoslin/.
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and

Ji D

26666664
Q
i 1 0 � � � 0
0 

Q
i 1 � � � 0

0 0 
Q
i � � � 0

:::
:::

::: � � �
:::

0 0 0 : : : 
Q
i

37777775 (5.5)

where the i’th eigenvalue is denoted by Q
i . With this in place, it turns out that

the likelihood function can be partitioned in a convenient way:

f.ytjyt�1I �/ D f.ytjXt; †
P
X ; �0; �1I 

Q; kQ
1; †y/„ ƒ‚ …

translates factors into yields

� f.XtjXt�1I kP ; ˆP ; †P
X /„ ƒ‚ …

evolves factors over time

(5.6)

where the parameters to be estimated, � D

n
Q; kQ

1; †y; †
Q
X ; k

P ; ˆP ; †P
X ;

�0; �1g, are neatly separated into one group that converts yield curve factors
into yield (i.e. the Q-measure parameters), and the parameters that cater for
the time-series evolution of the factors under the empirical P measure. As a
consequence, our traditional state-space set-up:

y� D a� C b� � Xt C†yut (5.7)

Xt D kP
CˆP

� Xt C†P
X e

P
t (5.8)

can be broken down into two distinct operations where, first, the state
equation is estimated, and second, the observation equation is estimated.
From (4.22) and (4.24) we know that the no-arbitrage restriction imposes
the following functional form on the parameters that enter the observation
equation:

A� D A��1 C B0
��1k

Q
C

1
2
B0

��1††
0B0

��1 (5.9)

B� D �

"
��1X
kD0

�
ˆQ

�k#0

� �1; (5.10)

and

a� D �
A�

�

b� D �
B�

�
:
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In addition, the JSZ normalisation implies the following parameter constraints:

rt D �0 C �0
1 � Xt;

�0 D 0;

�1 D �; (5.11)

kQ
D

266664
kQ

1

0
:::

0

377775 : (5.12)

With these constraints and (5.4), exact identification of the model is achieved.
In practice, this means that we in some sense uncover the structural parameters
that govern the yield curve dynamics and cross-sectional behaviour, at its most
fundamental level. It is noted that kQ

1 is the long-run constant for the short rate
under the Q measure, such that the long-run mean is rQ

1 D
�kQ

1


Q
1
, when Q

1 is
not a repeated root.
As we saw in section 4.2.1, JSZ use principal components as the staring

point for setting up their model. So, together with (5.2), the dynamics of the
PCA factors, P , can be written in the following way, where W denotes the
PCA weights:

Pt D W � yt: (5.13)

To be clear about the notation used, we denote by aJ;� and bJ;� the con-
stant and the factor loadings for the yield curve model where the underlying
process for Xt is in its most fundamental form (i.e. where ˆQ is in Jordan
form):

EŒyt� D aJ;� C bJ;� � Xt: (5.14)

Using (5.13), the PCA-based model can now be written in terms of the
parameters that define the Jordan basis form:

Pt D W � EŒyt�

D W � .aJ;� C bJ;� � Xt/

D W � aJ;� C W � bJ;� � Xt

m

W � bJ;� � Xt D Pt � W � aJ;�
Xt D .W � bJ;� /�1

� Pt � .W � bJ;� /�1
� W � aJ;�

D .W � bJ;� /�1
� .Pt � W � aJ;� / (5.15)
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To complete the model, such that it can be estimated, expression (5.15) is
inserted into (5.14):

EŒyt� D aJ;� C bJ;� � .W � bJ;� /�1
� Pt � bJ;� � .W � bJ;� /�1

� W � aJ;�
D aJ;� � bJ;� � .W � bJ;� /�1

� W � aJ;� C bJ;� � .W � bJ;� /�1
� Pt

D

�
I � bJ;� � .W � bJ;� /�1

� W
�

� aJ;� C bJ;� � .W � bJ;� /�1
� Pt

D aP;� C bP;� � Pt

where

aP;� D

�
I � bJ;� � .W � bJ;� /�1

� W
�

� aJ;� (5.16)

bP;� D bJ;� � .W � bJ;� /�1 (5.17)

Via equations (5.16) and (5.17), JSZ create a link between the dynamics that
characterise the time-series dynamics and cross-sectional behaviour of yields,
as represented by the Jordan form, and the parameters that govern the yield
curve, when using principal components as underlying factors.
As mentioned earlier, JSZ make their MATLAB code available on the net,

and their suite of functions works extremely well and converges exceptionally
fast. My implementation below is much less general than the JSZ code, and it
does not converge as fast as their code does. However, the educational benefits
of making our own implementation hopefully outweigh the programming de-
ficiencies. To estimate a version of the Joslin et al. (2011) model the following
steps are followed:

1. �0 and �1 are determined by the normalisation constraints, so no short-rate
regression is needed.

2. Use principal component analysis to identify the factors P and the
weightsW.

3. Find kP , ˆP , and †P
P using linear regression, or maximum likelihood (if

constraints are imposed on the parameters), from the time-series evolution
of Pt.

4. Make a first guess on the eigenvalues contained in Q, and for kQ
1.

5. Calculate aJ;� and bJ;� using the recursive equations in (5.9) and (5.10).
6. Use (5.16) and (5.17) to find aP;� and bP;� .
7. Then find Q, and for kQ

1 as the solution to theminimisation problem below:

n
OQ; OkQ

1

o
D argmin

Q;kQ
1

X
t

X
�

.y � .aP C bP � P//2 (5.18)
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where y is the whole panel of yield curve observations spanning all dates and
maturities. After having obtained the parameter estimates of the Jordan form
of the model, the remaining parameters of the PCA-founded model can be
determined. This is done here, starting with the short-rate equation:

rt D �J;0 C �J;1 � Xt

D �J;0 C �J;1 � .W � bJ;� /�1 .Pt � W � aJ;� /

D �J;0 � �J;1 � .W � bJ;� /�1
� W � aJ;� C �J;1 � .W � bJ;� /�1

� Pt

D �P;0 C �P;1 � Pt

where

�P;0 D �J;0 � �J;1 � .W � bJ;� /�1
� W � aJ;� (5.19)

�P;1 D �J;1 � .W � bJ;� /�1 : (5.20)

And, then for the Q dynamics of the factors:

Xt D mJ
CˆJ

�
�
Xt�1 � mJ�

m

.W � bJ;� /�1
� .Pt � W � aJ;� / D mJ

CˆJ
� .W � bJ;� /�1

� .Pt�1 � W � aJ;� / �ˆJ
� mJ

m

.W � bJ;� /�1
� Pt D .W � bJ;� /�1

� W � aJ;� C mJ
CˆJ

� .W � bJ;� /�1

� .Pt�1 � W � aJ;� / �ˆJ
� mJ

m

.W � bJ;� /�1
� Pt D ˆJ

� .W � bJ;� /�1 Pt�1

C
�
I � �J�

�

�
mJ

C .W � bJ;� /�1
� W � aJ;�

�
m

Pt D .W � bJ;� / �ˆJ
� .W � bJ;� /�1 Pt�1

C .W � bJ;� /
�
I �ˆJ�

�

�
mJ

C .W � bJ;� /�1
� W � aJ;�

�
:

(5.21)

This means that the parameters of the dynamic evolution of the principal
components can be found in the following way:37.

ˆ
Q
P D .W � bJ;� / �ˆJ

� .W � bJ;� /�1 : (5.22)

37 Note that (5.21) is written in the constant form, and not in mean-adjusted form. Consequently,
the mean is found via the generic expression: m D .I � ˆ/�1 � c
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mQ
P D

�
I � .W � bJ;� / �ˆJ

� .W � bJ;� /�1
��1

.W � bJ;� /

�
�
I �ˆJ�

�

�
mQ

J C .W � bJ;� /�1
� W � aJ;�

�
:

(5.23)

The notation may have gotten a bit out of hand here. I hope it is still roughly
clear, what we have achieved (or rather what Joslin et al. (2011) have achieved):
by specifying the term structure model in its most fundamental form, via the
Jordan basis, helped clarify which of the variables are central for its empirical
implementation and, by afterwards rotating the model to one that relies on prin-
cipal components as underlying factors, a link was established to data and we
are therefore able to estimate the model. In addition, it was shown in equation
(5.6), that the P and Q measures can be separated – this is of course important
from amodel-forecasting perspective: basically, this separation principle tell us
that superior forecasting performance of a model is unrelated to whether or not
it belongs to the family of arbitrage-free models. And, it directs our attention
to what may facilitate superior forecasting performance, namely the careful se-
lection of exogenous variables to include, and to the number of factors that the
model specification relies on.
As far as notation goes, the intention was that whenever a J appears, as a

super- or subscript, it means that the parameter belongs to the Jordan form of
the model, and whenever aP appears, it indicates that the parameter belongs to
the model based on principal components. Hopefully, this is not too confusing
after all.

5.4 Implementing the Arbitrage-Free SRB Model
Similar to the previous section, a very short implementation guideline is
provided here for the arbitrage-free SRB model. This model is also integrated
into the TSM class (for completeness). Two-, three-, and four-factor models are
supported.
A step-wise estimation algorithm is used (following Nyholm (2018)), which

can be seen as a special case of Andreasen and Christensen (2015) and Rios
(2015):

1. Conditional on Q, the arbitrage-free yield loading, b� , is known in closed-
form from (4.30).

2. Using the yield equation, as in (5.7), the yield factors can be found as:
X D b�1

� � y0, where b�1
� is the pseudo-inverse of b� . This is similar to JSZ’s

approach in equation (5.13), where PCA weights are used to construct the
underlying yield curve factors, although here we use b�1

� as the weighting
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matrix (because we want to impose a certain economic interpretation onto
the extracted factors).

3. The optimal value for  is found via grid-search, as the  that minimisesP
t
P

� .y � b� ./ � X/2.
4. Using the extracted factors and (5.8), the parameters governing the P -

measure dynamics can be found.
5. Recalling that ˆQ is a function of Q, the last remaining parameter, mQ, is

found as the solution to argmin
mQ

P
t
P

� .y � .a� C b� � X//2.

5.5 Constructing a Model with the Short Rate and the Ten-Year
Term Premium as Underlying Factors

A specific factor structure can help communicate the results of the model more
easily to third parties (including decision makers), by better supporting a given
narrative and communication style. For example, as we have seen, the under-
lying economic building blocks of the yield curve are the rate expectation and
the term premium components. Often, in economic analysis, yield curve levels
and changes around important events, such as, among other things, govern-
ing council meetings, major economic news release dates, and when some
unexpected news hits the market, are typically broken down into these com-
ponents to give a reading of how the financial market participants interpret the
event. It is naturally important to know the degree to which market participants
see an event as affecting the future economic environment (the rate expecta-
tions) and how it affects their perception of current and future risks (the term
premium component). Such decompositions are typically done on the basis of
term structure models that use principal components as underlying factors, and
where the factors therefore have interpretations as the level, the slope, and the
curvature; and, most often, such models fall in the camp that excludes arbitrage
by construction.
So, the aim of the current section is to build an empirical model that in-

cludes the short rate, the term premium, and curvature factors, as underlying
yield curve factors. This is, perhaps surprisingly, not done very often and the
literature on models having this kind of factor structure is very scarce. Actu-
ally, to the best of my knowledge, a notable exception from this generalisation
is the seminal paper by Creal and Wu (2017).
As always, our approach is modest and it cuts a fair number of corners. The

first corner we cut is the one where the arbitrage-free models rest. By relying
on a purely empirical model, we are able to finalise its implementation quickly
– and we can then look at how to build an arbitrage-free model, with the same
factor structure, at a later stage. The following steps are applied:
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1. Extraction of observable factors: We rely on the SRB3 model to generate
the two factors that are directly attainable – the short rate, the ten-year term
premium. Any reasonable term structure model could, in principle, be used
to this end. So, now we have the two first elements of X, denoted by X.1W2/.

2. Finding the loading structure b�;.1W2/: The yield loadings b�;.1W2/ that match
X.1W2/ are obtained by inversion (or linear regression) y D X.1W2/ � b0

�;.1W2/

, b0
�;.1W2/ D X�1

.1W2/ � y, where the pseudo-inverse is used to obtain X�1
.1W2/.

3. Obtaining the remaining factors: The third and fourth factors are obtained
via PCA performed on the residuals from the model using the two factors
obtained in step 1, and the loading structure found in step 2. The residuals
are found as: e D y � X.1W2/ � b0

�;.1W2/, and the first two factors (i.e. the ones
having the largest eigenvalues) are sampled as X.3W4/. That is, the PCA is
performed on the covariance matrix, �y D 1=T � e0e.

4. Finding the loading structure b�;.1W4/: Similar to step 2, b� is found as: b0
� D

X�1
� y, where X hold the time series of all four factors.

Steps 1–4 complete the yield equation of the model, and since the factors con-
tained in X are observable, the parameters that govern their dynamic evolution
can be obtained by VAR analysis, as it is done in all the models that we have
looked at so far. For convenience, we include this empirical model in our TSM
class, that accompany this Element.

6 Scenario Generation
6.1 Introduction

In this section, we bring together elements from the other sections, and show
concrete examples of how yield curvemodels can be used in a risk management
context. What we will look at is unconditional and conditional forecasting, as
well as scenario generation. To this end, three case studies will be solved:

(1) A horse race between the models we have looked at so far. Starting in Janu-
ary 1994, the models are evaluated against each other in terms of how well
they predict future yield developments.

(2) Macroeconomic variables are included, and a subset of the models are used
to generate conditional forecasts.

(3) Scenarios are constructed where the future path of the yield curve is forced
to pass through a set of exogenously determined future fixed points.

We are naturally using the same US yield curve data in this section that we have
been using throughout this Element.
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6.1.1 The Horse Race

Eighteen different model specifications are tested. Their differences fall along
three dimensions (i) whether they impose arbitrage constraints, or not; (ii)
whether bias correction is performed on the VAR dynamics, or not; and (iii)
and whether they rely on two, three, or four factors.
The pseudo out-of-sample forecasting experiment is carried out in the

following way:

1. Sample data from June 1961 till January 1994.
2. Estimate the model under consideration.
3. Perform model forecasts for the horizon of one month to twelve months

ahead, for each of the maturity points covered by the data sample, that is,
for the f0:25; 1; 2; : : : ; 10g year segments of the yield curve.

4. Calculate and store the differences between observed and forecasted yields.
5. Add one month to the sample, and repeat the above steps.
6. Repeat the process for the 282 data points covered by the evaluation sample,

that is, from February 1994 to June 2017 (we lose 1-year of data due to the
twelve-month forecasting horizon).

7. Repeat the above for each of the eighteen models to be evaluated.

Tables 15, 16, and 17, show the resulting forecast RMSE for each model
at forecast horizons of one, two, three, six, and twelve months ahead. Only a
representative set of yield curve segments (maturities) are shown, and these
are the three-month and the five and 10-year segments. For example, the first
data row of Table 15 shows the ability of the dynamic Nelson-Siegel (DNS)
model to forecast the three-month maturity-segment of the yield curve: one-
month ahead the DNSmodel misses observed yields with an RMSE of 18 basis
points, two-months ahead the model misses with an RMSE of 27, and so on for
the three, six and twelve-months projection horizons, with RMSEs of, 38, 67,
and 122 basis points, respectively. For a model-free comparison, the last data
line in each of the tables shows the RMSE of the random walk model.
It is interesting to see that the forecasting performance reported here is very

similar to the results of Diebold and Li (2006), both in terms of size and pat-
tern across maturity segments and forecasting horizons – with one significant
difference, which is addressed in the following. It is recalled that Diebold
and Li (2006) conducted their analysis on US data covering the period from
1985 to 2000, and that the forecasting experiment they conducted was based
on pseudo out-of-sample forecasts beginning in 1994. Our analysis extends
the data sample to cover historical data going back to 1961 and our forecast
also starts in 1994, but extends to 2018. Still, results are quite well aligned. To

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


108 Quantitative Finance

Table 15 Forecast RMSEs for the three-month yield curve segment
(basis points)

Forecast horizon

1-month 2-month 3-month 6-month 12-month

DNS 18 27 38 67 122
DNS (bc) 17 27 38 66 111
DSS 18 28 39 68 122
DSS (bc) 18 28 39 66 122
SRB-3 18 27 38 67 122
SRB-3 (bc) 17 27 38 66 111
SRB-4 18 28 39 68 122
SRB-4 (bc) 18 28 39 67 122
JSZ 29 51 70 111 166
JSZ (bc) 26 44 60 91 133
AFSRB-2 30 31 39 67 122
AFSRB-2 (bc) 32 35 43 68 122
AFSRB-3 18 27 38 67 122
AFSRB-3 (bc) 17 28 39 67 122
AFSRB-4 30 45 63 122 200
AFSRB-4 (bc) 18 28 39 68 122
SRTPC1C2 44 47 53 74 122
SRTPC1C2 (bc) 38 42 50 74 122
Random walk 38 42 50 74 122

The RMSE of model forecasts calculated for the period covering January 1994 to July
2018 are shown. Each model is re-estimated each at each monthly observation point that
is included in the evaluation period (using an expanding data sample), that is, for each
of the 282 months that falls in the period between January 1994 and July 2017. Twelve
months ahead forecasts are generated at each of the 282 observation points covered
by the evaluation sample (this is why the last month estimations are performed is July
2017). The table shows the RMSE of the forecasts for one, two, three, six, and, twelve-
months ahead, for the three-month yield curve segment. Model names featuring a ‘(bc)’
have been bias corrected using Pope (1990). The actual models that hides behind the
shown abbreviations can be found in the MATLAB TSM class that accompany this
Element.

illustrate the similarity of the produced forecasting performance, some repres-
entative figures are reported here. Table 5 in Diebold and Li (2006) shows that
the RMSE of the three-months, five-year and ten-year maturity points, forecas-
ted six-months ahead are 52, 78, and 72, respectively. In comparison, our study
gives the following RMSEs: 67, 74, 61. Differences of similar sizes are seen
for the tested maturities and forecasting horizons. So, there is a much smaller
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Table 16 Forecast RMSEs for the five-year yield curve segment
(basis points)

Forecast horizon

1-month 2-month 3-month 6-month 12-month

DNS 30 44 53 74 100
DNS (bc) 29 42 51 70 92
DSS 27 41 50 71 97
DSS (bc) 27 41 49 69 91
SRB-3 30 44 53 74 100
SRB-3 (bc) 29 42 51 70 92
SRB-4 28 42 51 72 98
SRB-4 (bc) 27 41 50 69 91
JSZ 29 41 49 69 93
JSZ (bc) 29 42 50 67 85
AFSRB-2 34 47 55 77 100
AFSRB-2 (bc) 33 45 53 72 95
AFSRB-3 30 44 53 75 100
AFSRB-3 (bc) 30 43 51 71 93
AFSRB-4 67 77 84 100 133
AFSRB-4 (bc) 29 41 50 70 92
SRTPC1C2 44 53 60 78 100
SRTPC1C2 (bc) 44 53 61 79 100
Random walk 44 53 61 79 100

The RMSE of model forecasts calculated for the period covering January 1994 to July
2018 are shown. Each model is re-estimated each at each monthly observation point
that is included in the evaluation period (using an expanding data sample), is for each
of the 282 months that falls in the period between January 1994 and July 2017. Twelve
months ahead forecasts are generated at each of the 282 observation points covered
by the evaluation sample (this is why the last month estimations are performed is July
2017). The table shows the RMSE of the forecasts for one, two, three, six, and, twelve-
months ahead, for the five-year yield curve segment. Model names featuring a ‘(bc)’
have been bias corrected using Pope (1990). The actual models that hides behind the
shown abbreviations can be found in the MATLAB TSM class that accompany this
Element.

difference between the numbers produced by Diebold and Li (2006) and our
results, despite of the differences in the historical and forecast-evaluation
periods.
There might be some who are of the opinion that the documented differences

are large – roughly 10 basis points difference in term of standard deviation is
not small, they may say. To assess whether the size of the difference is large
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Table 17 Forecast RMSEs for the ten-year yield curve segment (basis points)

Forecast horizon

1-month 2-month 3-month 6-month 12-month

DNS 28 40 45 61 75
DNS (bc) 29 40 46 61 73
DSS 27 39 45 61 76
DSS (bc) 28 40 46 62 74
SRB-3 28 40 45 61 75
SRB-3 (bc) 29 40 46 61 73
SRB-4 27 39 45 61 76
SRB-4 (bc) 27 40 45 62 74
JSZ 31 44 52 75 111
JSZ (bc) 30 42 48 67 86
AFSRB-2 38 47 52 65 74
AFSRB-2 (bc) 39 49 54 67 77
AFSRB-3 29 40 45 60 74
AFSRB-3 (bc) 29 41 46 61 73
AFSRB-4 49 49 51 61 79
AFSRB-4 (bc) 28 40 46 62 73
SRTPC1C2 45 52 57 70 86
SRTPC1C2 (bc) 46 53 59 74 87
Random walk 46 53 59 74 87

The RMSE of model forecasts calculated for the period covering January 1994 to July
2018 are shown. Each model is re-estimated each at each monthly observation point
that is included in the evaluation period (using an expanding data sample), is, for each
of the 282 months that falls in the period between January 1994 and July 2017. Twelve
months ahead forecasts are generated at each of the 282 observation points covered
by the evaluation sample (this is why the last month estimations are performed is July
2017). The table shows the RMSE of the forecasts for one, two, three, six, and, twelve-
months ahead, for the ten-year yield curve segment.Model names featuring a ‘(bc)’ have
been bias corrected using Pope (1990). The actual models that hides behind the shown
abbreviations can be found in the MATLAB TSM class that accompany this Element.

or not, it may be illustrative to consider the standard error on the forecasts
themselves. Inspecting the estimated models suggest that a comparable (i.e for
the same maturity point and forecast horizon) forecast error is in the range of
20–30 basis points, so, to my reading, the differences between the Diebold and
Li (2006) results and our results are immaterial.
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Now, as mentioned previously there is one important difference between our
results and those of Diebold and Li (2006). And, this relates to the behaviour
of the short end of the curve. Starting with the Fed’s response to the 2007/2008
financial crises by lowering the policy rate (see the top panel of Figure 2), the
dynamics of the short end has been under the control of the monetary author-
ity and has remained at very low levels until around year 2017. In addition,
the Fed’s asset purchase programmes, implemented during this period, have
impacted the term structure of term premia. However, our forecasting results
imply that the dynamics of longer maturities of the curve can be well approx-
imated by the same DGP as before 2007 – only the short end is materially
impacted – as is clear from the performance of the three-month segment of the
curve shown in Table 15.
If we had been asked to make an unconditional guess, we would probably

have said that the precision of the model forecasts would deteriorate as the
forecast-horizon is increased. And, this is also what Tables 15, 16, and 17
confirm. Furthermore, being aware of the implemented policy measures since
2007/2008, we would also have said that the dynamics of the short end would
be forecasted poorly, and that a shadow-short-rate model may alleviate this
problem (the reason why the SSR model is not included in the horse race is be-
cause it is very time consuming to re-estimate this model 282 times). Finally,
based on the separation of the likelihood function as derived by Joslin et al.
(2011), see equation (5.6), we may also have reached the conclusion – since all
tested models are based on a VAR(p) model for the factor dynamics – that their
forecasting performance must be reasonably close; although differences may
materialise due to a marginally better performance of, for example, a VAR(3)
model, compared to VAR(2) and VAR(4) alternatives.
One of the practical conclusions that can be drawn from this horse race is that

the choice of yield curve model has little impact on the precision of the uncon-
ditional forecasting performance. It does not seem feasible to choose the ‘best’
model on the basis of its forecasting skills, when forecasts are made uncondi-
tionally. We have confirmed this empirically via the results of the performed
horse race, as shown in Tables 15, 16, and 17. And, theoretical considerations
also support this conclusion, as argued previously.
What then, should guide our choice of model set-up? One element could

be models’ conditional forecasting performance; but we are not now going to
conduct another horse race to explore different conditioning datasets – this
would take too much time, as there are so many different constellations of
macroeconomic variables that may be relevant. Another element is more sub-
jective, yet important, and it relates to the factor structure that better fits the
narratives we aim to support with our model. And, this of course depends on
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the business context in which the model is used. So, unfortunately, all the hard
work that went in to producing the results shown in Tables 15, 16, and 17, while
perhaps helpful from a general perspective, will not solve the model-selection
problem for us.

6.1.2 Conditional Projections

In many practical applications, we are interested in generating conditional yield
curve scenarios. For example, in the context of strategic fixed income asset
allocation, our objective is to assess risk and return characteristics of bond in-
dices and portfolios in a setting where the investment horizon is long. For this
purpose, unconditional forecasts are not overly useful, because the underlying
VAR model that governs the dynamic evolution of the yield curve factors (and
therefore also the yields) will typically converge to its sample mean before
the end of the investment horizon. There are, therefore limits to what kind of
relevant questions such model projections can answer. Instead, when deciding
on long-term asset allocations, it is relevant to know what the yield curve will
look like, if one or the other macroeconomic environment materialises, and
how the yield curve converges to such scenario-based economic outcomes. In
effect, the yield curve model becomes a tool that can help illustrate the con-
sequence of various, more or less realistic, economic scenario developments
on expected returns and risks along the maturity dimension of the investable
asset universe. So, rather then hoping for a yield curve model that will generate
accurate point forecasts, we seek a model that links macroeconomic variables
to yield curve developments, such that accurate conditional yield distributions
can be generated (as opposed to accurate point estimates).
The reason why macroeconomic variables are pulled to the forefront here

is that we may have a better grasp of what value such variables would take
in different possible future scenarios, and it would be harder for us to dir-
ectly predict how the yield curve would evolve. This is why we build a bridge
between the dynamic evolution of yield curves and macroeconomic (or other)
variables, such that we can generate scenarios for these bridge variables and
subsequently extract the yield curve evolution, because this is what we are
genuinely interested in.
As mentioned in the previous section, there are many macro variables to

choose from. Out of convenience, we chose to use the same type of macroe-
conomic variables as used in Diebold, Rudebusch and Aruoba (2006), namely
manufacturing capacity utilisation (CU) and annual price inflation (INFL)38.

38 The variable INFL is the twelve-month percent change in the Personal Consumption Expendit-
ures Excluding Food and Energy (Chain-Type Price Index), (FRED code PCEPILFE). The used
CU variable has FRED code MCUMFN. Diebold et al. (2006) also include the federal funds
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Figure 30 Capacity utilisation and inflation
US macroeconomic variables observed monthly since 1972. Manufacturing capacity
utilisation (CU) and annual price inflation (INFL) are shown. Capacity utilisation
(FRED code MCUMFN) is divided by 25 to align its scale. The inflation rate is cal-
culated as the twelve-month percent change in the Personal Consumption Expenditures
Excluding Food and Energy (Chain-Type Price Index), (FRED code PCEPILFE).

These data are obtained from the FRED database, and are shown in Figure
30. These two variables gauge the level of real economic activity relative to
potential, and the inflation rate. The macroeconomic variables are observable
at a monthly frequency since January 1972, and our conditional forecasting
experiment is therefore limited to using data from this date onwards.
We then form a set of possible macroeconomic scenarios. Although the con-

ditional yield distributions were mentioned previously as a main reason for this
exercise, to keep things manageable in terms of visual representations, we show
only the mean paths of the yield curve. The presented framework can easily be
used to also generate distributions.
Since the objective is to extract the model-implied trajectories for the

yield curve factors ˇy, conditional on the macroeconomic variables ˇmacro,
we first need to estimate the parameters that govern the joint evolution of
ˇ D Œˇy; ˇmacro�. For demonstration purposes alone we do this in the con-
text of the SRB3 model (any of the term structure models included in these
lecture note can naturally be used). After the model parameters have been iden-
tified, we then use the Kalman filter to extract the model-implied conditional
projections of interest. The game plan is the following:

rate in their study, but since we will rely on a multi-factor short-rate based model (SRB3), we
already have the short rate included among the yield curve factors that we model.
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1. Estimate the SRB3 model by including the two macro variables as exogen-
ous variables (using the TSM class).

2. Set up the VAR(1)-part of the model (i.e. the part involving the dynamic
evolution of the yield curve factors) in aMATLAB SSMmodel. This allows
us to easily calculate the conditional projections for the yield curve factors
using MATLAB’s pre-programmed Kalman filter.

3. Make scenario projections for the macroeconomic variables over a five-year
period. To exemplify, four scenario developments are examined: (1) random
walk (INLF and CU stay constant at their levels as observed at the end of
the sample period); (2) exponential growth in inflation until a level of 4 per
cent is reached, after which the inflation rate normalises over a period of
twelve months, and it then stays constant at 2:5 per cent until the end of the
projection horizon; (3) a linear drop in inflation to a level of 1:75 per cent
followed by a linear recovery; (4) a steady increase in economic growth over
a period of four years, while the inflation rate is under control.

4. The conditional-scenario projections for the yield curve factors are conver-
ted into yields using the estimated-SRB3 model’s loading structure.

It is important to emphasise that the parametrisation of the model that is used
here has not been validated, nor has it undergone any testing/calibration to en-
sure that its economic narrative is sound: in other words, the model is used
exactly as it comes, directly from the machine-room. The purpose here is, of
course, not to construct a model that can enter directly into the SAA/policy
process. The objective is simply to illustrate how the provided tool box can be
used to make conditional yield curve projections.
It is left to the reader to investigate and inspect the outcome of each of the

sketched scenarios using Figures 31, 32, 33, and 34.
It is recalled that the mapping between the projected yield curve factors and

the scenario yields is given by the observation equation of our well-known yield
curve state-space model:

Y D a C b � Xt C†Y � ut (6.1)

So far, we have plotted only the mean scenarios (i.e. EŒY�). But, it is (of
course) possible to use this framework to generate distributions around the
shown mean paths. This can be done by drawing innovations for the state and
observation equations and by feeding these though †X and †Y, respectively.
Another often-used method is to block-bootstrap the historical residuals, pos-
sibly only sampled from historical periods that are judged to be similar to the
one characterising the projection horizon.
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(a)

(b)

Figure 31 Scenario 1: Random walk for inflation and economic growth
The (a) panel shows themacroeconomic scenario as illustrated by the assumed evolution
of the macroeconomic variables. The macroeconomic developments are only dictated
for the period of time that defines the scenario. After this period, theKalman filter is used
to find the relevant projections. The yield curve factors of themodel are also obtained via
the Kalman filter as projections that are calculated conditional on the macroeconomic
developments. The (b) panel shows the corresponding development in the yield curve.
The scenario spans a horizon of five years.
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(a)

(b)

Figure 32 Scenario 2: Exponential growth in inflation
The (a) panel shows themacroeconomic scenario as illustrated by the assumed evolution
of the macroeconomic variables. The macroeconomic developments are only dictated
for the period of time that defines the scenario. After this period, theKalman filter is used
to find the relevant projections. The yield curve factors of themodel are also obtained via
the Kalman filter as projections that are calculated conditional on the macroeconomic
developments. The (b) panel shows the corresponding development in the yield curve.
The scenario spans a horizon of five years.
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(a)

(b)

Figure 33 Scenario 3: A sudden drop in inflation
The (a) panel shows themacroeconomic scenario as illustrated by the assumed evolution
of the macroeconomic variables. The macroeconomic developments are only dictated
for the period of time that defines the scenario. After this period, theKalman filter is used
to find the relevant projections. The yield curve factors of themodel are also obtained via
the Kalman filter as projections that are calculated conditional on the macroeconomic
developments. The (b) panel shows the corresponding development in the yield curve.
The scenario spans a horizon of five-years.
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(a)

(b)

Figure 34 Scenario 4: Steady economic growth
The (a) panel shows themacroeconomic scenario as illustrated by the assumed evolution
of the macroeconomic variables. The macroeconomic developments are only dictated
for the period of time that defines the scenario. After this period, theKalman filter is used
to find the relevant projections. The yield curve factors of themodel are also obtained via
the Kalman filter as projections that are calculated conditional on the macroeconomic
developments. The (b) panel shows the corresponding development in the yield curve.
The scenario spans a horizon of five-years.
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(a)

(b)

–1

Figure 35 A yield curve scenario using fixed-point projections
The (a) panel shows the development of the yield curve factors of the SRTPC1C2-
model, i.e. the short rate, the ten-year term premium, and the two curvature factors. The
projected scenario is defined by three fixed-point vectors that the factors are required
to pass through, (1) after six months where the ten-year term premium equals 0:00%
(at the start of the projection-horizon sample (July 2018) the ten-year term premium is
estimated to be around �0:70%); (2) after an additional eighteen months, the 10-year
term premium equals 4:00%; and (3) at the end of the sixty-month projection horizon
the ten-year term premium equals 1:5% and the short rate equals 4:00%. The resulting
factor trajectories and yield curve evolutions are displayed in. The (b) panel shown the
corresponding yield curve projection.
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6.1.3 Fix-Point Scenarios

Sometimes we may be able to construct scenarios directly using the yield
curve factors; this is particularly the case when our chosen model is built on
yield curve factors that have interpretations that we can relate to and that have
straight-forward economic interpretations. For example, we may be interested
in a scenario where the curve steepens by x% or to a certain level, or perhaps a
scenario where the yield curve steepens to some predefined level. Such scen-
arios can be used, for example, to analyse the size of portfolio losses and gains
given the materialisation of some future shape and location of the yield curve.
The point is, contrary to the previous section where the yield curve and its dy-
namic evolution was tied to macroeconomic variables, that sometimes we are
able to directly specify scenarios exclusively in terms of the future values that
the yield curve factors are assumed to take on.
To cater for the generation of such scenarios, a neat little reformulation of

the VAR model is helpful. Let XtargettCh be the sequence of future fixed points
that the factors are assumed to take on. h D fh1; h2; : : : ; hng is a vector of future
horizons, that define the scenario factor values (and thus naturally the scenario
yield curves). In order to illustrate this process, we will focus on a single future
horizon, but the process naturally generalises to multiple horizons, as we shall
see in the empirical illustration to follow.
Starting with the VAR(1) model that governs the dynamic evolution of

the yield curve factors (and suppressing the expectations operator for ease of
notation), and making a projection for the horizon h1, gives the following:

XtCh1 D �Cˆh1 .Xt � �/ : (6.2)

We now want to ensure that this projection exactly meets a given future set of
yield curve factor values, such that XtCh1 D Xtarget

tCh1 . We also want to retain the
factor interpretation that is embedded in our chosen term structure model. In
other words, we need to leave the eigenvectors ofˆ unchanged during this ex-
ercise, because it is the eigenvectors that define the direction of the factors and
thus their economic interpretation. This leaves us with the persistency para-
meters (the eigenvalues ofˆ), and the meanm to be eligible for changing. Lets
implement the changes via the presistency parameters, and write ˆ using the
eigenvalue decomposition:

Xt D �C V � D � V�1
� .Xt � �/ ; (6.3)

where V contains the eigenvectors, and D holds eigenvalues on the diagonal.
We can then write:

XtargettCh1 � � D V � Dh1 � V�1
� .Xt � �/
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m

Dh1 � V�1
� .Xt � �/ D V�1

�
�
XTargettCh1 � �

�
m

Dh1 D V�1
�
�
XTargettCh1 � �

�
ˇ
�
V�1

� .Xt � �/
��1

; (6.4)

whereˇ represents the element-by-element multiplication. The last line works
because D is diagonal.
Intuitively, it makes sense to change the persistency part of the system to

force the yield curve factors to pass through a certain future fix point. The
persistency of the model (the eigenvalues) is what makes the model converge
to its sample mean: the higher the persistency (the higher the eigenvalues) the
slower the convergence to historical means. So, by keeping the eigenvectors
fixed, the economic interpretation of the factors remains unchanged, while the
persistency is changed such that the desired fix-point values can be met at the
desired projection horizon.
To illustrate this process, we again generate a scenario over the coming five

years, now using the SRTPC1C2-model, hat is, the one where we have included
the short rate and the 10-year term premium as yield curve factors (together
with two curvature factors). Having the short rate and the term premium as
underlying factors allows to us make scenarios where future fixed-point values
are specified exogenously for the value that these factors may take on at future
dates covered by the projection horizon.
Following a period of central bank intervention in the fixed income markets

via bond purchases, as seen in the USA from 2008 to 2018, where the purpose
of such interventions is to compress the term premium – and thereby the yield
curve – it is likely that we have in mind particular future trajectories for the
term premium and the short end of the yield curve, and it is therefore handy to
be able to model these factors explicitly in the context of a formal modelling-
and-projection framework. But, the relevance of having a direct handle on these
factors naturally extends beyond the quantitative easing example provided here,
and is of a general interest in monetary policy modelling as well as strategic
investment analysis.
In the current example, it is assumed that we have three fix-points: (1) after

six months where the ten-year term premium equals 0:00% (at the start of
the projection-horizon sample (July 2018) the ten-year term premium is es-
timated to be around �0:70%); (2) after an additional eighteen months, the
ten-year term premium equals 4:00%; and (3) at the end of the sixty-month
projection horizon, the ten-year term premium equals 1:5% and the short rate
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equals 4:00%. The resulting factor trajectories and yield curve evolutions are
displayed in Figure 35.
The familiar relationship between factors and yields recalled in equation

(6.1) is also used here to translate projected yield curve factors into yield
evolutions.
In the LHS panel of Figure 35 it is observed that the projections for the short

rate and the ten-year term premium pass through the scenario fixed-points at
the pre-specified future dates, and that the RHS panel of Figure 35, traces out
the scenario yields that follow as a logical consequence of the yield curve factor
trajectories.

MATLAB code

..
filename: Scenario_and_forecasting.m

1 %% Scenario generation and forecasting

2 %

3 % preparing the data

4 %

5 warning(’off’,’all’)

6 path_=[pwd,’\MATLAB_classes’];

7 addpath(path_);

8 load(’Data_GSW.mat’);

9 GSW_ = GSW; % creates an instance of the GSW class

10 GSW_.tau = [3 12:12:120]’; % vector of maturities

11 GSW_.beta = GSW_factors(:,2:5); % yield curve factors

12 GSW_.lambda = GSW_factors(:,6:7); % lambdas

13 GSW_ = GSW_.getYields; % getting yields

14
15 dates = GSW_factors(:,1);

16 Y = GSW_.yields;

17 tau = GSW_.tau;

18 nTau = size(tau,1);

19
20 figure

21 plot(dates,Y(:,11))

22 date_ticks = datenum(1960:4:2020,1,1);

23 set(gca, ’xtick’, date_ticks);

24 datetick(’x’,’mmm-yy’,’keepticks’)

25
26 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

27 plot(US_MacroVariables(:,1),[US_MacroVariables(:,2)./25 ...

28 US_MacroVariables(:,3) ],’LineWidth’,2)

29 date_ticks = datenum(1972:4:2020,1,1);

30 set(gca, ’xtick’, date_ticks);

31 datetick(’x’,’mmm-yy’,’keepticks’)

32 set(gca, ’FontSize’, 18),

33 legend(’Capacity Utilisation’,’Inflation rate’)

34 % print -depsc MacroVariables

35
36
37 %% The horse-race

38 % The following models are included in the horce-race

39 % ---------------------------------------------------

40 % DNS -> Dynamic Nelson-Siegel model

41 % DNS_bc -> Dynamic Nelson-Siegel model, bias corrected

42 % DSS -> Dynamic Svensson-Soderlind model

43 % DSS_bc -> Dynamic Svensson-Soderlind model, bias corrected

44 % SRB3 -> Short-Rate based 3-factor model
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45 % SRB3_bc -> Short-Rate based 3-factor model, bias corrected

46 % SRB4 -> Short-Rate based 4-factor model

47 % SRB4_bc -> Short-Rate based 4-factor model, bias corrected

48 % JSZ -> Joslin, Singleton, Zhu (2011)

49 % JSZ_bc -> Joslin, Singleton, Zhu (2011), bias corrected

50 % AFSRB -> Arbitrage-free SRB model with 2,3, or 4 factors

51 % AFSRB_bc -> Arbitrage-free SRB model with 2,3, or 4 factors, bias c.

52 % SRTPC1C2 -> Model with Short rate, 10-year term premium,

53 % and 2 additional empirical factors

54 % SRTPC1C2_bc -> Model with Short rate, 10-year term premium,

55 % and 2 additional empirical factors, bias corrected

56 %

57 % Note that program execution could possibly be improved by combining

58 % the pseudo out-of-sample forecasts, performed for each model,

59 % inside one loop. However, with an eye to clarity of the code,

60 % a slower model-by-model implementation is used.

61 %

62 fDate = datenum(’31-Jan-1994’); % start date for the horse-race

63 horizon = 12; % forecast horizon

64 startIndx = find(fDate==dates,1,’first’);

65 nIter = GSW_.nObs - startIndx - horizon;

66
67 %

68 % ... DNS

69 %

70 DNS_fErr = NaN(horizon+1,GSW_.nTau,nIter);

71 for ( j=1:nIter )

72 estYields = Y(1:startIndx+j,:);

73 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

74 A_TSM = [];

75 A_TSM = TSM;

76 A_TSM.yields = estYields;

77 A_TSM.tau = tau;

78 A_TSM.DataFreq = 12;

79 A_TSM.nF = 3;

80 A_TSM.biasCorrect = 0;

81 A_TSM = A_TSM.getDNS;

82 castY = [];

83 A_SSM = TSM2SSM;

84 A_SSM.TSM = A_TSM;

85 A_SSM = A_SSM.getMdl;

86 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

87 horizon, A_SSM.Data(startIndx+j-1,:) )];

88 DNS_fErr(:,:,j) = oYields-castY(:,1:11);

89 end

90 DNS_fRMSE = 100.*sqrt(mean((DNS_fErr.^2),3));

91
92 %

93 % ... DNSbc

94 %

95 DNSbc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

96 for ( j=1:nIter )

97 estYields = Y(1:startIndx+j,:);

98 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

99 A_TSM = [];

100 A_TSM = TSM;

101 A_TSM.yields = estYields;

102 A_TSM.tau = tau;

103 A_TSM.DataFreq = 12;

104 A_TSM.nF = 3;

105 A_TSM.biasCorrect = 1;

106 A_TSM = A_TSM.getDNS;

107 castY = [];

108 A_SSM = TSM2SSM;

109 A_SSM.TSM = A_TSM;

110 A_SSM = A_SSM.getMdl;

111 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

112 horizon, A_SSM.Data(startIndx+j-1,:) )];

113 DNSbc_fErr(:,:,j) = oYields-castY(:,1:11);
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114 end

115 DNSbc_fRMSE = 100.*sqrt(mean((DNSbc_fErr.^2),3));

116
117 %

118 % ... DSS

119 %

120 DSS_fErr = NaN(horizon+1,GSW_.nTau,nIter);

121 for ( j=1:nIter )

122 estYields = Y(1:startIndx+j,:);

123 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

124 A_TSM = [];

125 A_TSM = TSM;

126 A_TSM.yields = estYields;

127 A_TSM.tau = tau;

128 A_TSM.DataFreq = 12;

129 A_TSM.nF = 3;

130 A_TSM.biasCorrect = 0;

131 A_TSM = A_TSM.getDSS;

132 castY = [];

133 A_SSM = TSM2SSM;

134 A_SSM.TSM = A_TSM;

135 A_SSM = A_SSM.getMdl;

136 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

137 horizon, A_SSM.Data(startIndx+j-1,:) )];

138 DSS_fErr(:,:,j) = oYields-castY(:,1:11);

139 end

140 DSS_fRMSE = 100.*sqrt(mean((DSS_fErr.^2),3));

141
142 %

143 % ... DSSbc

144 %

145 DSSbc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

146 for ( j=1:nIter )

147 estYields = Y(1:startIndx+j,:);

148 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

149 A_TSM = [];

150 A_TSM = TSM;

151 A_TSM.yields = estYields;

152 A_TSM.tau = tau;

153 A_TSM.DataFreq = 12;

154 A_TSM.nF = 3;

155 A_TSM.biasCorrect = 1;

156 A_TSM = A_TSM.getDSS;

157 castY = [];

158 A_SSM = TSM2SSM;

159 A_SSM.TSM = A_TSM;

160 A_SSM = A_SSM.getMdl;

161 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

162 horizon, A_SSM.Data(startIndx+j-1,:) )];

163 DSSbc_fErr(:,:,j) = oYields-castY(:,1:11);

164 end

165 DSSbc_fRMSE = 100.*sqrt(mean((DSSbc_fErr.^2),3));

166
167
168 %

169 % ... SRB3

170 %

171 SRB3_fErr = NaN(horizon+1,GSW_.nTau,nIter);

172 for ( j=1:nIter )

173 estYields = Y(1:startIndx+j,:);

174 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

175 A_TSM = [];

176 A_TSM = TSM;

177 A_TSM.yields = estYields;

178 A_TSM.tau = tau;

179 A_TSM.DataFreq = 12;

180 A_TSM.nF = 3;

181 A_TSM.biasCorrect = 0;

182 A_TSM = A_TSM.getSRB3;
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183 castY = [];

184 A_SSM = TSM2SSM;

185 A_SSM.TSM = A_TSM;

186 A_SSM = A_SSM.getMdl;

187 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

188 horizon, A_SSM.Data(startIndx+j-1,:) )];

189 SRB3_fErr(:,:,j) = oYields-castY(:,1:11);

190 end

191 SRB3_fRMSE = 100.*sqrt(mean((SRB3_fErr.^2),3));

192
193
194 %

195 % ... SRB3bc

196 %

197 SRB3bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

198 for ( j=1:nIter )

199 estYields = Y(1:startIndx+j,:);

200 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

201 A_TSM = [];

202 A_TSM = TSM;

203 A_TSM.yields = estYields;

204 A_TSM.tau = tau;

205 A_TSM.DataFreq = 12;

206 A_TSM.nF = 3;

207 A_TSM.biasCorrect = 1;

208 A_TSM = A_TSM.getSRB3;

209 castY = [];

210 A_SSM = TSM2SSM;

211 A_SSM.TSM = A_TSM;

212 A_SSM = A_SSM.getMdl;

213 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

214 horizon, A_SSM.Data(startIndx+j-1,:) )];

215 SRB3bc_fErr(:,:,j) = oYields-castY(:,1:11);

216 end

217 SRB3bc_fRMSE = 100.*sqrt(mean((SRB3bc_fErr.^2),3));

218
219
220 %

221 % ... SRB4

222 %

223 SRB4_fErr = NaN(horizon+1,GSW_.nTau,nIter);

224 for ( j=1:nIter )

225 estYields = Y(1:startIndx+j,:);

226 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

227 A_TSM = [];

228 A_TSM = TSM;

229 A_TSM.yields = estYields;

230 A_TSM.tau = tau;

231 A_TSM.DataFreq = 12;

232 A_TSM.nF = 4;

233 A_TSM.biasCorrect = 0;

234 A_TSM = A_TSM.getSRB4;

235 castY = [];

236 A_SSM = TSM2SSM;

237 A_SSM.TSM = A_TSM;

238 A_SSM = A_SSM.getMdl;

239 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

240 horizon, A_SSM.Data(startIndx+j-1,:) )];

241 SRB4_fErr(:,:,j) = oYields-castY(:,1:11);

242 end

243 SRB4_fRMSE = 100.*sqrt(mean((SRB4_fErr.^2),3));

244
245
246 %

247 % ... SRB4bc

248 %

249 SRB4bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

250 for ( j=1:nIter )

251 estYields = Y(1:startIndx+j,:);
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252 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

253 A_TSM = [];

254 A_TSM = TSM;

255 A_TSM.yields = estYields;

256 A_TSM.tau = tau;

257 A_TSM.DataFreq = 12;

258 A_TSM.nF = 4;

259 A_TSM.biasCorrect = 1;

260 A_TSM = A_TSM.getSRB4;

261 castY = [];

262 A_SSM = TSM2SSM;

263 A_SSM.TSM = A_TSM;

264 A_SSM = A_SSM.getMdl;

265 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

266 horizon, A_SSM.Data(startIndx+j-1,:) )];

267 SRB4bc_fErr(:,:,j) = oYields-castY(:,1:11);

268 end

269 SRB4bc_fRMSE = 100.*sqrt(mean((SRB4bc_fErr.^2),3));

270
271
272 %

273 % ... JSZ

274 %

275 JSZ_fErr = NaN(horizon+1,GSW_.nTau,nIter);

276 for ( j=1:nIter )

277 estYields = Y(1:startIndx+j,:);

278 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

279 A_TSM = [];

280 A_TSM = TSM;

281 A_TSM.yields = estYields;

282 A_TSM.tau = tau;

283 A_TSM.DataFreq = 12;

284 A_TSM.nF = 3;

285 A_TSM.biasCorrect = 0;

286 A_TSM = A_TSM.getJSZ;

287 castY = [];

288 A_SSM = TSM2SSM;

289 A_SSM.TSM = A_TSM;

290 A_SSM = A_SSM.getMdl;

291 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

292 horizon, A_SSM.Data(startIndx+j-1,:) )];

293 JSZ_fErr(:,:,j) = oYields-castY(:,1:11);

294 end

295 JSZ_fRMSE = 100.*sqrt(mean((JSZ_fErr.^2),3));

296
297
298 %

299 % ... JSZ_bc

300 %

301 JSZbc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

302 for ( j=1:nIter )

303 estYields = Y(1:startIndx+j,:);

304 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

305 A_TSM = [];

306 A_TSM = TSM;

307 A_TSM.yields = estYields;

308 A_TSM.tau = tau;

309 A_TSM.DataFreq = 12;

310 A_TSM.nF = 3;

311 A_TSM.biasCorrect = 1;

312 A_TSM = A_TSM.getJSZ;

313 castY = [];

314 A_SSM = TSM2SSM;

315 A_SSM.TSM = A_TSM;

316 A_SSM = A_SSM.getMdl;

317 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

318 horizon, A_SSM.Data(startIndx+j-1,:) )];

319 JSZbc_fErr(:,:,j) = oYields-castY(:,1:11);

320 end
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321 JSZbc_fRMSE = 100.*sqrt(mean((JSZbc_fErr.^2),3));

322
323
324 %

325 % ... AFSRB2

326 %

327 AF2_fErr = NaN(horizon+1,GSW_.nTau,nIter);

328 for ( j=1:nIter )

329 estYields = Y(1:startIndx+j,:);

330 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

331 A_TSM = [];

332 A_TSM = TSM;

333 A_TSM.yields = estYields;

334 A_TSM.tau = tau;

335 A_TSM.DataFreq = 12;

336 A_TSM.nF = 2;

337 A_TSM.biasCorrect = 0;

338 A_TSM = A_TSM.getAFSRB;

339 castY = [];

340 A_SSM = TSM2SSM;

341 A_SSM.TSM = A_TSM;

342 A_SSM = A_SSM.getMdl;

343 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

344 horizon, A_SSM.Data(startIndx+j-1,:) )];

345 AF2_fErr(:,:,j) = oYields-castY(:,1:11);

346 end

347 AF2_fRMSE = 100.*sqrt(mean((AF2_fErr.^2),3));

348
349
350 %

351 % ... AFSRB2

352 %

353 AF2bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

354 for ( j=1:nIter )

355 estYields = Y(1:startIndx+j,:);

356 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

357 A_TSM = [];

358 A_TSM = TSM;

359 A_TSM.yields = estYields;

360 A_TSM.tau = tau;

361 A_TSM.DataFreq = 12;

362 A_TSM.nF = 2;

363 A_TSM.biasCorrect = 1;

364 A_TSM = A_TSM.getAFSRB;

365 castY = [];

366 A_SSM = TSM2SSM;

367 A_SSM.TSM = A_TSM;

368 A_SSM = A_SSM.getMdl;

369 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

370 horizon, A_SSM.Data(startIndx+j-1,:) )];

371 AF2bc_fErr(:,:,j) = oYields-castY(:,1:11);

372 end

373 AF2bc_fRMSE = 100.*sqrt(mean((AF2bc_fErr.^2),3));

374
375 %

376 % ... AFSRB3

377 %

378 AF3_fErr = NaN(horizon+1,GSW_.nTau,nIter);

379 for ( j=1:nIter )

380 estYields = Y(1:startIndx+j,:);

381 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

382 A_TSM = [];

383 A_TSM = TSM;

384 A_TSM.yields = estYields;

385 A_TSM.tau = tau;

386 A_TSM.DataFreq = 12;

387 A_TSM.nF = 3;

388 A_TSM.biasCorrect = 0;

389 A_TSM = A_TSM.getAFSRB;
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390 castY = [];

391 A_SSM = TSM2SSM;

392 A_SSM.TSM = A_TSM;

393 A_SSM = A_SSM.getMdl;

394 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

395 horizon, A_SSM.Data(startIndx+j-1,:) )];

396 AF3_fErr(:,:,j) = oYields-castY(:,1:11);

397 end

398 AF3_fRMSE = 100.*sqrt(mean((AF3_fErr.^2),3));

399
400
401 %

402 % ... AFSRB3_bc

403 %

404 AF3bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

405 for ( j=1:nIter )

406 estYields = Y(1:startIndx+j,:);

407 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

408 A_TSM = [];

409 A_TSM = TSM;

410 A_TSM.yields = estYields;

411 A_TSM.tau = tau;

412 A_TSM.DataFreq = 12;

413 A_TSM.nF = 3;

414 A_TSM.biasCorrect = 1;

415 A_TSM = A_TSM.getAFSRB;

416 castY = [];

417 A_SSM = TSM2SSM;

418 A_SSM.TSM = A_TSM;

419 A_SSM = A_SSM.getMdl;

420 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

421 horizon, A_SSM.Data(startIndx+j-1,:) )];

422 AF3bc_fErr(:,:,j) = oYields-castY(:,1:11);

423 end

424 AF3bc_fRMSE = 100.*sqrt(mean((AF3bc_fErr.^2),3));

425
426
427 %

428 % ... AFSRB4

429 %

430 AF4_fErr = NaN(horizon+1,GSW_.nTau,nIter);

431 for ( j=1:nIter )

432 estYields = Y(1:startIndx+j,:);

433 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

434 A_TSM = [];

435 A_TSM = TSM;

436 A_TSM.yields = estYields;

437 A_TSM.tau = tau;

438 A_TSM.DataFreq = 12;

439 A_TSM.nF = 4;

440 A_TSM.biasCorrect = 0;

441 A_TSM = A_TSM.getAFSRB;

442 castY = [];

443 A_SSM = TSM2SSM;

444 A_SSM.TSM = A_TSM;

445 A_SSM = A_SSM.getMdl;

446 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

447 horizon, A_SSM.Data(startIndx+j-1,:) )];

448 AF4_fErr(:,:,j) = oYields-castY(:,1:11);

449 end

450 AF4_fRMSE = 100.*sqrt(mean((AF4_fErr.^2),3));

451
452
453 %

454 % ... AFSRB4_bc

455 %

456 AF4bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

457 for ( j=1:nIter )

458 estYields = Y(1:startIndx+j,:);
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459 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

460 A_TSM = [];

461 A_TSM = TSM;

462 A_TSM.yields = estYields;

463 A_TSM.tau = tau;

464 A_TSM.DataFreq = 12;

465 A_TSM.nF = 4;

466 A_TSM.biasCorrect = 1;

467 A_TSM = A_TSM.getAFSRB;

468 castY = [];

469 A_SSM = TSM2SSM;

470 A_SSM.TSM = A_TSM;

471 A_SSM = A_SSM.getMdl;

472 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

473 horizon, A_SSM.Data(startIndx+j-1,:) )];

474 AF4bc_fErr(:,:,j) = oYields-castY(:,1:11);

475 end

476 AF4bc_fRMSE = 100.*sqrt(mean((AF4bc_fErr.^2),3));

477
478
479 %

480 % ... SRTPC1C2

481 %

482 SRTPC1C2_fErr = NaN(horizon+1,GSW_.nTau,nIter);

483 for ( j=1:nIter )

484 estYields = Y(1:startIndx+j,:);

485 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

486 A_TSM = [];

487 A_TSM = TSM;

488 A_TSM.yields = estYields;

489 A_TSM.tau = tau;

490 A_TSM.DataFreq = 12;

491 A_TSM.nF = 4;

492 A_TSM.biasCorrect = 0;

493 A_TSM = A_TSM.getSRTPC1C2;

494 castY = [];

495 A_SSM = TSM2SSM;

496 A_SSM.TSM = A_TSM;

497 A_SSM = A_SSM.getMdl;

498 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

499 horizon, A_SSM.Data(startIndx+j-1,:) )];

500 SRTPC1C2_fErr(:,:,j) = oYields-castY(:,1:11);

501 end

502 SRTPC1C2_fRMSE = 100.*sqrt(mean((SRTPC1C2_fErr.^2),3));

503
504
505 %

506 % ... SRTPC1C2bc

507 %

508 SRTPC1C2bc_fErr = NaN(horizon+1,GSW_.nTau,nIter);

509 for ( j=1:nIter )

510 estYields = Y(1:startIndx+j,:);

511 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

512 A_TSM = [];

513 A_TSM = TSM;

514 A_TSM.yields = estYields;

515 A_TSM.tau = tau;

516 A_TSM.DataFreq = 12;

517 A_TSM.nF = 4;

518 A_TSM.biasCorrect = 1;

519 biasCorrect = 1;

520 A_TSM = A_TSM.getSRTPC1C2;

521 castY = [];

522 A_SSM = TSM2SSM;

523 A_SSM.TSM = A_TSM;

524 A_SSM = A_SSM.getMdl;

525 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl, ...

526 horizon, A_SSM.Data(startIndx+j-1,:) )];

527 SRTPC1C2bc_fErr(:,:,j) = oYields-castY(:,1:11);
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528 end

529 SRTPC1C2bc_fRMSE = 100.*sqrt(mean((SRTPC1C2bc_fErr.^2),3));

530
531 %% preparing output tables

532 %

533 % RMSE of all models

534 % For maturities : 3m 1Y 5Y 10Y

535 % and forecasts adead : 1m 2m 3m 6m 12m

536 %

537
538 ahead = [2;3;4;7;13];

539 %

540 % ... for the 3m maturity segment

541 %

542 ZZmat_3m = [ DNS_fRMSE(ahead,1)’;

543 DNSbc_fRMSE(ahead,1)’;

544 DSS_fRMSE(ahead,1)’;

545 DSSbc_fRMSE(ahead,1)’;

546 SRB3_fRMSE(ahead,1)’;

547 SRB3bc_fRMSE(ahead,1)’;

548 SRB4_fRMSE(ahead,1)’;

549 SRB4bc_fRMSE(ahead,1)’;

550 JSZ_fRMSE(ahead,1)’;

551 JSZbc_fRMSE(ahead,1)’;

552 AF2_fRMSE(ahead,1)’;

553 AF2bc_fRMSE(ahead,1)’;

554 AF3_fRMSE(ahead,1)’;

555 AF3bc_fRMSE(ahead,1)’;

556 AF4_fRMSE(ahead,1)’;

557 AF4bc_fRMSE(ahead,1)’;

558 SRTPC1C2_fRMSE(ahead,1)’;

559 SRTPC1C2bc_fRMSE(ahead,1)’];

560
561 %

562 % ... for the 1Y maturity segment

563 %

564 ZZmat_1Y = [ DNS_fRMSE(ahead,2)’;

565 DNSbc_fRMSE(ahead,2)’;

566 DSS_fRMSE(ahead,2)’;

567 DSSbc_fRMSE(ahead,2)’;

568 SRB3_fRMSE(ahead,2)’;

569 SRB3bc_fRMSE(ahead,2)’;

570 SRB4_fRMSE(ahead,2)’;

571 SRB4bc_fRMSE(ahead,2)’;

572 JSZ_fRMSE(ahead,2)’;

573 JSZbc_fRMSE(ahead,2)’;

574 AF2_fRMSE(ahead,2)’;

575 AF2bc_fRMSE(ahead,2)’;

576 AF3_fRMSE(ahead,2)’;

577 AF3bc_fRMSE(ahead,2)’;

578 AF4_fRMSE(ahead,2)’;

579 AF4bc_fRMSE(ahead,2)’;

580 SRTPC1C2_fRMSE(ahead,2)’;

581 SRTPC1C2bc_fRMSE(ahead,2)’];

582
583
584 %

585 % ... for the 5Y maturity segment

586 %

587 ZZmat_5Y = [ DNS_fRMSE(ahead,6)’;

588 DNSbc_fRMSE(ahead,6)’;

589 DSS_fRMSE(ahead,6)’;

590 DSSbc_fRMSE(ahead,6)’;

591 SRB3_fRMSE(ahead,6)’;

592 SRB3bc_fRMSE(ahead,6)’;

593 SRB4_fRMSE(ahead,6)’;

594 SRB4bc_fRMSE(ahead,6)’;

595 JSZ_fRMSE(ahead,6)’;

596 JSZbc_fRMSE(ahead,6)’;
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597 AF2_fRMSE(ahead,6)’;

598 AF2bc_fRMSE(ahead,6)’;

599 AF3_fRMSE(ahead,6)’;

600 AF3bc_fRMSE(ahead,6)’;

601 AF4_fRMSE(ahead,6)’;

602 AF4bc_fRMSE(ahead,6)’;

603 SRTPC1C2_fRMSE(ahead,6)’;

604 SRTPC1C2bc_fRMSE(ahead,6)’];

605
606 %

607 % ... for the 10Y maturity segment

608 %

609 ZZmat_10Y = [ DNS_fRMSE(ahead,11)’;

610 DNSbc_fRMSE(ahead,11)’;

611 DSS_fRMSE(ahead,11)’;

612 DSSbc_fRMSE(ahead,11)’;

613 SRB3_fRMSE(ahead,11)’;

614 SRB3bc_fRMSE(ahead,11)’;

615 SRB4_fRMSE(ahead,11)’;

616 SRB4bc_fRMSE(ahead,11)’;

617 JSZ_fRMSE(ahead,11)’;

618 JSZbc_fRMSE(ahead,11)’;

619 AF2_fRMSE(ahead,11)’;

620 AF2bc_fRMSE(ahead,11)’;

621 AF3_fRMSE(ahead,11)’;

622 AF3bc_fRMSE(ahead,11)’;

623 AF4_fRMSE(ahead,11)’;

624 AF4bc_fRMSE(ahead,11)’;

625 SRTPC1C2_fRMSE(ahead,11)’;

626 SRTPC1C2bc_fRMSE(ahead,11)’];

627
628 ZZZ_tex_3msegment = latex(vpa(sym(ZZmat_3m),2));

629 ZZZ_tex_1Ysegment = latex(vpa(sym(ZZmat_1Y),2));

630 ZZZ_tex_5Ysegment = latex(vpa(sym(ZZmat_5Y),2));

631 ZZZ_tex_10Ysegment = latex(vpa(sym(ZZmat_10Y),2));

632
633 %% RW forecasts

634 %

635 RW_fErr = NaN(horizon+1,GSW_.nTau,nIter);

636 for ( j=1:nIter )

637 RW_cast = Y(startIndx+j-1,:);

638 oYields = Y(startIndx+j-1:startIndx+j-1+horizon,:);

639 RW_fErr(:,:,j) = oYields-RW_cast;

640 end

641 RW_fRMSE = 100.*sqrt(mean((SRTPC1C2bc_fErr.^2),3));

642
643 ZZ_RW = RW_fRMSE(ahead,[1 2 6 11])’;

644
645 ZZZ_tex_RW = latex(vpa(sym(ZZ_RW),2));

646
647 %% Plots

648 %

649
650 %

651 % ... 1Y maturity, 12 months ahead

652 %

653 hori = 13;

654 matu = 11;

655 figure

656 subplot(2,1,1), plot(dates(startIndx+1:end-12,1),Y(startIndx+1:end-12,matu))

657 datetick(’x’,’mmm-yy’)

658 subplot(2,1,2), plot(dates(startIndx+1:end-12,1),squeeze(DNS_fErr(hori,matu,:).^2))

659 hold on

660 subplot(2,1,2), plot(dates(startIndx+1:end-12,1),squeeze(JSZbc_fErr(hori,matu,:).^2))

661 hold on

662 subplot(2,1,2), plot(dates(startIndx+1:end-12,1),squeeze(AF2_fErr(hori,matu,:).^2))

663 datetick(’x’,’mmm-yy’), legend(’DNS’,’JSZ’,’AFSRB2’)

664
665 %% Conditional forecasting exercise
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666 %

667 nCast = 60;

668 indxStart = find(dates==US_MacroVariables(1,1),1,’first’);

669 % index to match yield and macro data

670 datesX = dates(indxStart:end,1);

671 datesCast = (dates(end,1):31:dates(end,1)+(nCast)*31)’;

672 SRB3 = TSM;

673 SRB3.yields = Y(indxStart:end,:);

674 SRB3.tau = tau;

675 SRB3.DataFreq = 12;

676 SRB3.nF = 3;

677 SRB3.eXo = [US_MacroVariables(:,2)./25 US_MacroVariables(:,3)];

678 SRB3 = SRB3.getSRB3;

679 %

680 % ... convert the VAR part of the model into SSM format

681 %

682 SRB3_SSM = TSM2SSM;

683 SRB3_SSM.TSM = SRB3;

684 SRB3_SSM = SRB3_SSM.getMdl;

685 nX = SRB3_SSM.TSM.nF+SRB3_SSM.TSM.nVarExo; % number of factors and exogenous

686 variables

687 AA = [ SRB3_SSM.Mdl.A(1:nX,1:nX*2);

688 zeros(nX,nX) eye(nX) ];

689 BB = [ SRB3_SSM.Mdl.B(1:nX,1:nX); zeros(nX,nX)];

690 CC = eye(nX*2);

691 stateType = [ zeros(1,nX), ones(1,nX) ];

692 castMdl = ssm(AA,BB,CC,’statetype’,stateType); % VAR model as SSM model

693
694 beta_Cast = [ NaN( size(SRB3_SSM.Mdl.B,2), nCast); ones(nX,nCast)];

695 beta_Cast(1:nX,1) = SRB3_SSM.TSM.beta(:,end);

696 % start projections at last obs of factors

697
698 % .......................................

699 % ... Conditional forecasting examples

700 % .......................................

701
702 %

703 % 0: unconditional forecast

704 %

705 beta_0 = beta_Cast;

706
707 filter_0 = [ [SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB,2))] ;

708 filter(castMdl,beta_0’) ];

709 Y_0 = [SRB3_SSM.Mdl.C(1:nTau,1:nX*2)*filter_0’]’;

710
711 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

712 surf(tau./12,datesCast,Y_0)

713 date_ticks = datenum(2018:1:2024,1,1);

714 set(gca, ’ytick’, date_ticks);

715 datetick(’y’,’mmm-yy’,’keepticks’)

716 xticks(0:1:11), xticklabels({tau}),

717 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

718 zlim([0 5])

719 view([-53 16]),

720 ytickangle(25),

721 set(gca, ’FontSize’, 18)

722 %print -depsc Forecast_Y0

723
724 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

725 plot(datesCast,filter_0(:,4:5),’LineWidth’,2)

726 date_ticks = datenum(2018:1:2024,1,1);

727 set(gca, ’xtick’, date_ticks);

728 datetick(’x’,’mmm-yy’,’keepticks’)

729 ylabel(’ (pct)’), legend(’CU (scaled)’, ’INFL’)

730 ylim([0 4])

731 set(gca, ’FontSize’, 18)

732 %print -depsc Forecast_X0

733
734 %

                

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108975537
https://www.cambridge.org/core


A Practitioner’s Guide to Discrete-Time Yield Curve Modelling 133

735 % 1: random walk assumption on macro variables

736 %

737 beta_1 = beta_Cast;

738 beta_1(4:5,2:nCast) = repmat(beta_1(4:5,1),1,nCast-1);

739
740 filter_1 = [ [SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB,2))] ;

741 filter(castMdl,beta_1’) ];

742 Y_1 = [SRB3_SSM.Mdl.C(1:nTau,1:nX*2)*filter_1’]’;

743
744 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

745 surf(tau./12,datesCast,Y_1)

746 date_ticks = datenum(2018:1:2024,1,1);

747 set(gca, ’ytick’, date_ticks);

748 datetick(’y’,’mmm-yy’,’keepticks’)

749 xticks(0:1:11), xticklabels({tau}),

750 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

751 zlim([0 6])

752 view([-53 16]),

753 ytickangle(25),

754 set(gca, ’FontSize’, 18)

755 %print -depsc Forecast_Y1

756
757 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

758 plot(datesCast,filter_1(:,4:5),’LineWidth’,2)

759 date_ticks = datenum(2018:1:2024,1,1);

760 set(gca, ’xtick’, date_ticks);

761 datetick(’x’,’mmm-yy’,’keepticks’)

762 legend(’CU (scaled)’, ’INFL’)

763 ylim([0 4])

764 set(gca, ’FontSize’, 18)

765 %print -depsc Forecast_X1

766
767 %

768 % 2: Inflation overshooting, and increased CU

769 %

770 nn = 12;

771 beta_2 = beta_Cast;

772 a = beta_Cast(5,1);

773 b = 2*a;

774 a1 = 2.5;

775 g1 = (b/a)^(1/nn);

776 g2 = (a1/b)^(1/nn);

777 infl_ = [a*g1.^(0:nn) b*g2.^(0:nn) ];

778 cu_ = linspace(beta_Cast(4,1),beta_Cast(4,1)+0.25,nn+1);

779
780 beta_2(4,1:length(cu_)) = cu_;

781 beta_2(5,1:length(infl_)) = infl_;

782 beta_2(5,length(infl_):end) = 2.5;

783
784 filter_2 = [[SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB,2))]; filter(castMdl,beta_2’)];

785 Y_2 = [SRB3_SSM.Mdl.C(1:nTau,1:nX*2)*filter_2’]’;

786
787 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

788 surf(tau./12,datesCast,Y_2)

789 date_ticks = datenum(2018:1:2024,1,1);

790 set(gca, ’ytick’, date_ticks);

791 datetick(’y’,’mmm-yy’,’keepticks’)

792 xticks(0:1:11), xticklabels({tau}),

793 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

794 zlim([0 25])

795 view([-64 25]),

796 ytickangle(25),

797 set(gca, ’FontSize’, 18)

798 %print -depsc Forecast_Y2

799
800 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

801 plot(datesCast,filter_2(:,4:5),’LineWidth’,2)

802 date_ticks = datenum(2018:1:2024,1,1);

803 set(gca, ’xtick’, date_ticks);
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804 datetick(’x’,’mmm-yy’,’keepticks’)

805 legend(’CU (scaled)’, ’INFL’)

806 ylim([0 5])

807 set(gca, ’FontSize’, 18)

808 %print -depsc Forecast_X2

809
810
811 %

812 % 3: New drop in inflation

813 %

814 nn = 12;

815 beta_3 = beta_Cast;

816 a = beta_Cast(5,1);

817 b = a-0.25;

818 a1 = 2;

819 g1 = (b/a)^(1/nn);

820 g2 = (a1/b)^(1/nn);

821 infl_ = [a*g1.^(0:nn) b*g2.^(0:nn) ];

822 cu_ = linspace(beta_Cast(4,1),beta_Cast(4,1)-0.05,nn+1);

823
824 beta_3(4,1:length(cu_)) = cu_;

825 beta_3(5,1:length(infl_)) = infl_;

826 %beta_3(5,length(infl_):end) = 2.5;

827
828 filter_3 = [ [SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB,2))] ;

829 filter(castMdl,beta_3’) ];

830 Y_3 = [SRB3_SSM.Mdl.C(1:nTau,1:nX*2)*filter_3’]’;

831
832 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

833 surf(tau./12,datesCast,Y_3)

834 date_ticks = datenum(2018:1:2024,1,1);

835 set(gca, ’ytick’, date_ticks);

836 datetick(’y’,’mmm-yy’,’keepticks’)

837 xticks(0:1:11), xticklabels({tau}),

838 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

839 zlim([0 4])

840 view([-53 16]),

841 ytickangle(25),

842 set(gca, ’FontSize’, 18)

843 %print -depsc Forecast_Y3

844
845 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

846 plot(datesCast,filter_3(:,4:5),’LineWidth’,2)

847 date_ticks = datenum(2018:1:2024,1,1);

848 set(gca, ’xtick’, date_ticks);

849 datetick(’x’,’mmm-yy’,’keepticks’)

850 legend(’CU (scaled)’, ’INFL’,’location’,’NW’)

851 ylim([0 4])

852 set(gca, ’FontSize’, 18)

853 %print -depsc Forecast_X3

854
855
856 %

857 % 4: high growth, inflation under control

858 %

859 nn = 36;

860 beta_4 = beta_Cast;

861 a = beta_Cast(5,1);

862 b = a;

863 a1 = 2;

864 g1 = (b/a)^(1/nn);

865 g2 = (a1/b)^(1/nn);

866 infl_ = [a*g1.^(0:nn/2) b*g2.^(0:nn/2) ];

867 cu_ = linspace(beta_Cast(4,1),beta_Cast(4,1)+0.15,nn+1);

868
869 beta_4(4,1:length(cu_)) = cu_;

870 beta_4(5,1:length(infl_)) = infl_;

871 %beta_4(5,length(infl_):end) = 2.5;

872
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873 filter_4 = [ [SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB,2))] ;

874 filter(castMdl,beta_4’) ];

875 Y_4 = [SRB3_SSM.Mdl.C(1:nTau,1:nX*2)*filter_4’]’;

876
877 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

878 surf(tau./12,datesCast,Y_4)

879 date_ticks = datenum(2018:1:2024,1,1);

880 set(gca, ’ytick’, date_ticks);

881 datetick(’y’,’mmm-yy’,’keepticks’)

882 xticks(0:1:11), xticklabels({tau}),

883 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

884 zlim([0 6])

885 view([-53 16]),

886 ytickangle(25),

887 set(gca, ’FontSize’, 18)

888 %print -depsc Forecast_Y4

889
890 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

891 plot(datesCast,filter_4(:,4:5),’LineWidth’,2)

892 date_ticks = datenum(2018:1:2024,1,1);

893 set(gca, ’xtick’, date_ticks);

894 datetick(’x’,’mmm-yy’,’keepticks’)

895 legend(’CU (scaled)’, ’INFL’,’location’,’NW’)

896 ylim([0 4])

897 set(gca, ’FontSize’, 18)

898 %print -depsc Forecast_X4

899
900 %% Fix-point projections

901 %

902 % h_target: is the number of periods ahead at which the target is met

903 % X_target: is the fix-point forecast for the yield curve factor

904 % V : id the eigenvector of Phi

905
906 % % Function that calculate the adjusted mean

907 % m_target = @(X_t, Phi, X_target,h_target) ...

908 % 1/h_target*((eye(length(X_t))-Phi)^(-1)*(X_target-Phi*X_t));

909
910 % Function that calculates

911 D_target = @(X_t, V, m, X_target, h_target) ...

912 diag(((V^(-1)*(X_target-m))./(V\(X_t-m))).^(1/h_target));

913
914 % ... Using the model with factors equal to the: short rate, term premium,

915 % and C1 and C2

916 %

917 nCast = 60;

918 datesCast = (dates(end,1):31:dates(end,1)+(nCast-1)*31)’;

919
920 SR_TP = TSM;

921 SR_TP.yields = GSW_.yields;

922 SR_TP.tau = GSW_.tau;

923 SR_TP.nF = 3;

924 SR_TP.DataFreq = 12;

925 SR_TP = SR_TP.getSRTPC1C2; % est model with SR,TP,C1,C2

926
927 % ... Generating scenarios

928 %

929 % ... Scenario 1: (a) TP goes to 0% in 6 months,

930 % (b) Thereafter TP goes to 2% after additional 12 months

931 % while short rate stays low

932 % (c) At the end of the 60 months projection horizon,

933 % the short rate converges to 4% and the TP to 3%

934
935 X_t1 = SR_TP.beta(:,end);

936 X_t1(2,1) = 0;

937 X_t2 = SR_TP.beta(:,end);

938 X_t2(2,1) = 2;

939 X_t3 = SR_TP.beta(:,end);

940 X_t3(1,1) = 4.00;

941 X_t3(2,1) = 1.50;
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942 h1 = 6;

943 h2 = 12;

944 h3 = 42;

945 beta_proj = NaN(SR_TP.nF+1,h1+h2+h3);

946 beta_proj(:,1) = SR_TP.beta(:,end);

947
948 [V,D] = eig(SR_TP.PhiP);

949 D_1 = D_target( beta_proj(:,1), V, SR_TP.mP, X_t1, h1-1 );

950 for ( j=2:h1+1 )

951 beta_proj(:,j) = SR_TP.mP + (V*(D_1)*V^(-1)) * ...

952 (beta_proj(:,j-1) - SR_TP.mP);

953 end

954 D_2 = D_target( beta_proj(:,h1), V, SR_TP.mP, X_t2, h2 );

955 for ( j=h1+1:h1+h2+1 )

956 beta_proj(:,j) = SR_TP.mP + (V*(D_2)*V^(-1)) * ...

957 (beta_proj(:,j-1) - SR_TP.mP);

958 end

959 D_3 = D_target( beta_proj(:,h1+h2), V, SR_TP.mP, X_t3, h3 );

960 for ( j=h1+h2+1:h1+h2+h3 )

961 beta_proj(:,j) = SR_TP.mP + (V*(D_3)*V^(-1)) * ...

962 (beta_proj(:,j-1) - SR_TP.mP);

963 end

964 beta_proj = real(beta_proj);

965 Y_proj = (SR_TP.B*real(beta_proj))’;

966 fDates = cumsum([h1;h2;h3]);

967
968 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

969 surf(tau./12,datesCast,Y_proj)

970 date_ticks = datenum(2018:1:2024,1,1);

971 set(gca, ’ytick’, date_ticks);

972 datetick(’y’,’mmm-yy’,’keepticks’)

973 xticks(0:1:11), xticklabels({tau}),

974 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

975 zlim([0 8])

976 view([-53 16]),

977 ytickangle(25),

978 set(gca, ’FontSize’, 18)

979 %print -depsc Y_fixed_point_1

980
981 figure(’units’,’normalized’,’outerposition’,[0 0 1 1])

982 plot(datesCast,beta_proj,’LineWidth’,2),

983 hold on

984 plot(datesCast(fDates,1),beta_proj(:,fDates’)’,’*b’,’LineWidth’,5), ...

985 legend(’Short rate’,’10-year term premium’,’Curvature 1’,’Curvature 2’,

986 ’Fix-points’,’Location’,’NW’)

987 hold off

988 date_ticks = datenum(2018:1:2024,1,1);

989 set(gca, ’xtick’, date_ticks);

990 datetick(’x’,’mmm-yy’,’keepticks’)

991 set(gca, ’FontSize’, 18)

992 %print -depsc beta_fixed_point_1
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Appendix
On the Included MATLAB Codes and Scripts
This Element is intended for students and practitioners as a gentle and intu-

itive introduction to the field of discrete-time yield curve modelling. I strive to
be as comprehensive as possible, while still adhering to the overall premise of
putting a strong focus on practical applications. Some experience difficulties
when embarking on the vast field of yield curve modelling approaches. It is my
hope that the materials covered here can ease the entry into this interesting and
useful field.
To emphasise the applied nature of the text, I have included MATLAB tran-

scripts where relevant, as well as a set of MATLAB object oriented classes that,
among other things, facilitate the estimation of all the included yield curvemod-
els. Virtually all the empirical examples and results shown in the text can be
replicated using the supplied MATLAB materials. Of course, no warranty is
provided for the MATLAB codes, and bugs are very likely still lurking around;
if you find any, then please do not hesitate to report them to me.
An overview of the MATLAB classes that I have programmed to help digest

the presented content is given in the following. In addition to these function-
alities, I provide MATLAB scripts at the end of each of the empirically tilted
chapters. To provide an overview, a list of these script files is also provided.
Note that all the provided codes can be inspected in MATLAB by typing edit
and then the name of the code you want to see. It is recommended that the ac-
companying MATLAB files are stored in a separate directory, and that the path
(with sub-folders) is added to the MATLAB path.
The data that are used throughout the text are contained in the MATLAB

files: Data_YCM.mat, Data_TSM.mat and Data_GSW.mat.
To illustrate how shadow-short rate models work, I have created a small

graphical MATLAB add-in. This add-in can be installed by double clicking
on the file name: ShadowRateExample.mlappinstall. More information on this
is provided in Chapter 3.5.
GSW.m is a class-file that can be used to convert Gurkaynak, et al. (2006)

yield curve factors, and in general Svensson and Söderlind (1997) factors, into
yields at a set of pre-specified maturity points. The help file for this class is
shown.
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Appendix 139

TSM.m is a class-file that allows for the estimation of various term structure
models. The help file for this class is reproduced in the following.
TSM2SSM.m is a class that translates an estimated TSM model into MAT-

LAB’s state-space format. This is, for example, relevant if we want to use
MATLAB’s built-in Kalman filter routines to generate conditional projections
for the estimated yield curve factors. Once a TSM model has been estimated,
the TSM2SSM class can be used to translate the model into SSM format. The
help file for this class file is shown here.

EX_Script_Classes.m is a script file that provides information on how class
files are run. Many more examples are given in the codes listed here and found
at the end of each section of the Element:

1. Empirical_Investigation_of_Observed_Yields.m
2. P_and_Q_Measure_Vasicek_State_Space.m
3. P_and_Q_Measure_Vasicek_2_step_approach.m
4. Basic_yield_curve_setup.m
5. Modelling_yields_under_Q.m
6. P_and_Q_Measure_1.m39

7. Scenario_and_forecasting.m

39 Used just for illustration, not shown as end-chapter code.
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