
http://www.cambridge.org/9780521116596

This page intentionally left blank

FAST MULTIPOLE BOUNDARY ELEMENT METHOD

The fast multipole method is one of the most important algorithms in
computing developed in the 20th century. Along with the fast multi-
pole method, the boundary element method (BEM) has also emerged
as a powerful method for modeling large-scale problems. BEM mod-
els with millions of unknowns on the boundary can now be solved on
desktop computers using the fast multipole BEM. This is the first book
on the fast multipole BEM, which brings together the classical theo-
ries in BEM formulations and the recent development of the fast multi-
pole method. Two- and three-dimensional potential, elastostatic, Stokes
flow, and acoustic wave problems are covered, supplemented with exer-
cise problems and computer source codes. Applications in modeling
nanocomposite materials, biomaterials, fuel cells, acoustic waves, and
image-based simulations are demonstrated to show the potential of the
fast multipole BEM. This book will help students, researchers, and engi-
neers to learn the BEM and fast multipole method from a single source.

Dr. Yijun Liu has more than 25 years of research experience on the
BEM for subjects including potential; elasticity; Stokes flow; and elec-
tromagnetic, elastic, and acoustic wave problems, and he has published
extensively in research journals. He received his Ph.D. in theoretical and
applied mechanics from the University of Illinois and, after a postdoc-
toral research appointment at Iowa State University, he joined the Ford
Motor Company as a CAE (computer-aided engineering) analyst. He
has been a faculty member in the Department of Mechanical Engineer-
ing at the University of Cincinnati since 1996. Dr. Liu is currently on the
editorial board of the international journals Engineering Analysis with
Boundary Elements and the Electronic Journal of Boundary Elements.

Fast Multipole
Boundary Element Method

THEORY AND APPLICATIONS
IN ENGINEERING

Yijun Liu
University of Cincinnati

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore,

São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-11659-6

ISBN-13 978-0-511-60504-8

© Yijun Liu 2009

2009

Information on this title: www.cambridge.org/9780521116596

This publication is in copyright. Subject to statutory exception and to the

provision of relevant collective licensing agreements, no reproduction of any part

may take place without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy

of urls for external or third-party internet websites referred to in this publication,

and does not guarantee that any content on such websites is, or will remain,

accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (NetLibrary)

Hardback

http://www.cambridge.org
http://www.cambridge.org/9780521116596

Contents

Preface page xi

Acknowledgments xv

Acronyms Used in This Book xvii

1 Introduction . 1

1.1 What Is the Boundary Element Method? 1
1.2 Why the Boundary Element Method? 1
1.3 A Comparison of the Finite Element Method and the

Boundary Element Method 2
1.4 A Brief History of the Boundary Element Method and

Other References 3
1.5 Fast Multipole Method 3
1.6 Applications of the Boundary Element Method in

Engineering 4
1.7 An Example – Bending of a Beam 5
1.8 Some Mathematical Preliminaries 9

1.8.1 Integral Equations 9
1.8.2 Indicial Notation 10
1.8.3 Gauss Theorem 11
1.8.4 The Green’s Identities 12
1.8.5 Dirac δ Function 12
1.8.6 Fundamental Solutions 12
1.8.7 Singular Integrals 13

1.9 Summary 15
Problems 15

2 Conventional Boundary Element Method for Potential
Problems . 17

2.1 The Boundary-Value Problem 17

v

vi Contents

2.2 Fundamental Solution for Potential Problems 18
2.3 Boundary Integral Equation Formulations 19
2.4 Weakly Singular Forms of the Boundary Integral Equations 23
2.5 Discretization of the Boundary Integral Equations for 2D

Problems Using Constant Elements 24
2.6 Using Higher-Order Elements 26

2.6.1 Linear Elements 26
2.6.2 Quadratic Elements 29

2.7 Discretization of the Boundary Integral Equations for 3D
Problems 30

2.8 Multidomain Problems 34
2.9 Treatment of the Domain Integrals 35

2.9.1 Numerical Integration Using Internal Cells 35
2.9.2 Transformation to Boundary Integrals 35
2.9.3 Use of Particular Solutions 36

2.10 Indirect Boundary Integral Equation Formulations 36
2.11 Programming for the Conventional Boundary Element

Method 38
2.12 Numerical Examples 39

2.12.1 An Annular Region 39
2.12.2 Electrostatic Fields Outside Two Conducting Beams 40
2.12.3 Potential Field in a Cube 43
2.12.4 Electrostatic Field Outside a Conducting Sphere 43

2.13 Summary 45
Problems 45

3 Fast Multipole Boundary Element Method for Potential
Problems . 47

3.1 Basic Ideas in the Fast Multipole Method 48
3.2 Fast Multipole Boundary Element Method for 2D Potential

Problems 50
3.2.1 Multipole Expansion (Moments) 51
3.2.2 Error Estimate for the Multipole Expansion 53
3.2.3 Moment-to-Moment Translation 54
3.2.4 Local Expansion and Moment-to-Local Translation 54
3.2.5 Local-to-Local Translation 56
3.2.6 Expansions for the Integral with the F Kernel 56
3.2.7 Multipole Expansions for the Hypersingular

Boundary Integral Equation 57
3.2.8 Fast Multipole Boundary Element Method

Algorithms and Procedures 58
3.2.9 Preconditioning 64
3.2.10 Estimate of the Computational Complexity 65

Contents vii

3.3 Programming for the Fast Multipole Boundary Element
Method 65
3.3.1 Subroutine fmmmain 67
3.3.2 Subroutine tree 67
3.3.3 Subroutine fmmbvector 69
3.3.4 Subroutine dgmres 70
3.3.5 Subroutine upward 70
3.3.6 Subroutine dwnwrd 70

3.4 Fast Multipole Formulation for 3D Potential Problems 71
3.5 Numerical Examples 74

3.5.1 An Annular Region 74
3.5.2 Electrostatic Fields Outside Conducting Beams 75
3.5.3 Potential Field in a Cube 78
3.5.4 Electrostatic Field Outside Multiple Conducting

Spheres 78
3.5.5 A Fuel Cell Model 79
3.5.6 Image-Based Boundary Element Method Models and

Analysis 80
3.6 Summary 83
Problems 83

4 Elastostatic Problems . 85

4.1 The Boundary-Value Problem 86
4.2 Fundamental Solution for Elastostatic Problems 87
4.3 Boundary Integral Equation Formulations 88
4.4 Weakly Singular Forms of the Boundary Integral

Equations 91
4.5 Discretization of the Boundary Integral Equations 92
4.6 Recovery of the Full Stress Field on the Boundary 93
4.7 Fast Multipole Boundary Element Method for 2D

Elastostatic Problems 95
4.7.1 Multipole Expansion for the U Kernel Integral 97
4.7.2 Moment-to-Moment Translation 98
4.7.3 Local Expansion and Moment-to-Local

Translation 98
4.7.4 Local-to-Local Translation 99
4.7.5 Expansions for the T Kernel Integral 99
4.7.6 Expansions for the Hypersingular Boundary Integral

Equation 100
4.8 Fast Multipole Boundary Element Method for 3D

Elastostatic Problems 101
4.9 Fast Multipole Boundary Element Method for Multidomain

Elasticity Problems 104

viii Contents

4.10 Numerical Examples 108
4.10.1 A Cylinder with Pressure Loads 108
4.10.2 A Square Plate with a Circular Hole 110
4.10.3 Multiple Inclusion Problems 111
4.10.4 Modeling of Functionally Graded Materials 113
4.10.5 Large-Scale Modeling of Fiber-Reinforced

Composites 115
4.11 Summary 117
Problems 118

5 Stokes Flow Problems . 119

5.1 The Boundary-Value Problem 120
5.2 Fundamental Solution for Stokes Flow Problems 120
5.3 Boundary Integral Equation Formulations 121
5.4 Fast Multipole Boundary Element Method for 2D Stokes

Flow Problems 124
5.4.1 Multipole Expansion (Moments) for the U Kernel

Integral 126
5.4.2 Moment-to-Moment Translation 127
5.4.3 Local Expansion and Moment-to-Local Translation 127
5.4.4 Local-to-Local Translation 128
5.4.5 Expansions for the T Kernel Integral 128
5.4.6 Expansions for the Hypersingular Boundary Integral

Equation 129
5.5 Fast Multipole Boundary Element Method for 3D Stokes

Flow Problems 130
5.6 Numerical Examples 133

5.6.1 Flow That Is Due to a Rotating Cylinder 133
5.6.2 Shear Flow Between Two Parallel Plates 135
5.6.3 Flow Through a Channel with Many Cylinders 138
5.6.4 A Translating Sphere 141
5.6.5 Large-Scale Modeling of Multiple Particles 142

5.7 Summary 144
Problems 145

6 Acoustic Wave Problems . 146

6.1 Basic Equations in Acoustics 147
6.2 Fundamental Solution for Acoustic Wave Problems 150
6.3 Boundary Integral Equation Formulations 152
6.4 Weakly Singular Forms of the Boundary Integral

Equations 154
6.5 Discretization of the Boundary Integral Equations 156

Contents ix

6.6 Fast Multipole Boundary Element Method for 2D Acoustic
Wave Problems 157

6.7 Fast Multipole Boundary Element Method for 3D Acoustic
Wave Problems 159

6.8 Numerical Examples 163
6.8.1 Scattering from Cylinders in a 2D Medium 163
6.8.2 Radiation from a Pulsating Sphere 164
6.8.3 Scattering from Multiple Scatterers 165
6.8.4 Performance Study of the 3D Fast Multipole

Boundary Element Method Code 166
6.8.5 An Engine-Block Model 167
6.8.6 A Submarine Model 169
6.8.7 An Airbus A320 Model 170
6.8.8 A Human-Head Model 170
6.8.9 Analysis of Sound Barriers – A Half-Space Acoustic

Wave Problem 172
6.9 Summary 174
Problems 174

APPENDIX A: Analytical Integration of the Kernels 177
A.1 2D Potential Boundary Integral Equations 177
A.2 2D Elastostatic Boundary Integral Equations 178
A.3 2D Stokes Flow Boundary Integral Equations 181

APPENDIX B: Sample Computer Programs 184
B.1 A Fortran Code of the Conventional Boundary Element

Method for 2D Potential Problems 184
B.2 A Fortran Code of the Fast Multipole Boundary Element

Method for 2D Potential Problems 192
B.3 Sample Input File and Parameter File 220

References 223

Index 233

Preface

This book is an introduction to the fast multipole boundary element method
(BEM), which has emerged in recent years as a powerful and practical numer-
ical tool for solving large-scale engineering problems based on the boundary
integral equation (BIE) formulations. The book integrates the classical results
in BIE formulations, the conventional BEM approaches applied in solving
these BIEs, and the recent fast multipole BEM approaches for solving large-
scale BEM models. The topics covered in this book include potential, elastic-
ity, Stokes flow, and acoustic wave problems in both two-dimensional (2D)
and three-dimensional (3D) domains.

The book can be used as a textbook for a graduate course in engineering
and by researchers in the field of applied mechanics and engineers from indus-
tries who would like to further develop or apply the fast multipole BEM to
solve large-scale engineering problems in their own field. This book is based
on the lecture notes developed by the author over the years for a graduate
course on the BEM in the Department of Mechanical Engineering at the Uni-
versity of Cincinnati. Many of the results are also from the research work of the
author’s group at Cincinnati and from the collaborative research conducted by
the author with other researchers during the last 20 years.

The book is divided into six chapters. Chapter 1 is a brief introduction
to the BEM and the fast multipole method. Discussions on the advantages
of the BEM are highlighted. A simple beam problem is used to illustrate the
idea of transforming a problem cast in a differential equation formulation to a
boundary equation formulation. The mathematical background needed in this
book is also reviewed in this chapter.

Chapter 2 is on the potential problems governed by the Poisson equation
or the Laplace equation. This is the most important chapter of this book, which
presents the procedures in developing the BIE formulations and the conven-
tional BEM to solve these BIEs. The fundamental solution and its proper-
ties are discussed. Both the conventional (singular) and hypersingular BIE
formulations are presented, and the weakly singular nature of these BIEs is

xi

xii Preface

emphasized. Discretization of the BIEs using constant and higher-order ele-
ments is presented, and the related issues in handling multidomain problems,
domain integrals, and indirect BIE formulations are also reviewed. Finally,
programming for the conventional BEM is discussed, followed by numerical
examples solved by using the conventional BEM.

Chapter 3 is on the fast multipole BEM for solving potential problems,
which lays the foundations for all the subsequent chapters. Detailed deriva-
tions of the formulations, discussions on the algorithms, and computer pro-
gramming for the fast multipole BEM are presented for 2D potential prob-
lems, which will serve as the prototype of the fast multipole BEM for all other
problems discussed in the subsequent chapters. Then, the fast multipole for-
mulation for 3D potential problems is presented. Numerical examples of both
2D and 3D problems are presented to demonstrate the efficiency and accu-
racy of the fast multipole BEM for solving large-scale problems. This chap-
ter should be considered the focus of this book and studied thoroughly if one
wishes to develop his or her own fast multipole BEM computer codes for solv-
ing other problems.

The approaches and results developed in Chapters 2 and 3 are extended
in the following three chapters to solve 2D and 3D elasticity problems (Chap-
ter 4), Stokes flow problems (Chapter 5), and acoustic wave problems (Chap-
ter 6). In each case, the related BIE formulations are presented first, and the
same systematic fast multipole BEM approaches developed for 2D and 3D
potential problems are extended to the related fast multipole formulations for
the subject of the chapter. In all of these chapters, the use of the dual BIE for-
mulations (a linear combination of the conventional and hypersingular BIEs)
is emphasized because of the faster convergence rate they have for the fast
multipole BEM solutions.

One important objective of this book is to demonstrate the applications
of the fast multipole BEM in solving large-scale practical engineering prob-
lems. To this end, many numerical examples are presented in Chapters 3–6 to
demonstrate the relevance and usefulness of the fast multipole BEM, not only
in academic research but also in real engineering applications. Many of the
large-scale models solved by using the fast multipole BEM are still beyond
the reach of the domain-based numerical methods, which clearly demonstrates
the huge potentials of the fast multipole BEM in many emerging areas such as
modeling of advanced composites, biomaterials, microelectromechanical sys-
tems, structural acoustics, and image-based modeling and analysis.

Exercise problems are provided at the end of each chapter for readers to
review the materials covered in the chapter. More exercise problems or course
projects on computer-code development and software applications can be uti-
lized to help further understand the methods and enhance the skills. All of the
computer programs of the fast multipole BEM for potential, elasticity, Stokes

Preface xiii

flow and acoustic wave problems that are discussed in this book are available
from the author’s website (http://urbana.mie.uc.edu/yliu).

Analytical integration of the kernel functions for 2D potential, elasticity,
and Stokes flow cases and the sample computer source codes for both the 2D
potential conventional BEM and the fast multipole BEM are provided in the
two appendices. Electronic copies of these source codes can be downloaded
from this book’s webpage at the Cambridge University Press website. Refer-
ences for all the chapters are provided at the end of the book.

The author hopes that this book will help to advance the fast multipole
BEM – an elegant numerical method that has huge potential in solving many
large-scale problems in engineering. The author welcomes any comments and
suggestions on further improving this book in its future editions and also takes
full responsibility for any mistakes and typographical errors in this current
edition.

Yijun Liu
Cincinnati, Ohio, USA
Yijun.Liu@uc.edu

Acknowledgments

The author would like to dedicate this book to Professor Frank J. Rizzo, a pio-
neer in the development of the BIE and BEM and now retired after teaching
for more than 30 years at four universities in the United States. The author
was fortunate enough to have the opportunity of conducting research under
the guidance of Professor Rizzo from 1988 to 1994, first as a Ph.D. student and
later as a postdoctoral research associate, at three of the four universities. His
insightful views on the BIE and BEM, his serious attitude toward research,
and his thoughtfulness to his students have had an immense and long-lasting
impact on the author’s academic career.

The author is also indebted to Professor Tianqi Ye, now retired from the
Northwestern Polytechnical University in Xi’an, China, who introduced the
author to the interesting subject of the BIE and BEM and taught the author
that “everything important is simple” in order to pursue the best solutions for
seemingly complicated problems.

The author would also like to thank Professor Naoshi Nishimura at Kyoto
University for his tremendous help in the research on the fast multipole BEM
in the past few years. During 2003–2004, the author spent eight months in Pro-
fessor Nishimura’s group and gained in-depth knowledge of the fast multipole
BEM through almost daily discussions with Professor Nishimura. Much of the
content presented in this book is based on the collaborative work of the author
with Professor Nishimura’s group at Kyoto University.

During the course of his research in the last 20 years, the author received a
great deal of advice and help from many other researchers in the field of BIE
and BEM. He would like to thank Professor David J. Shippy at the Univer-
sity of Kentucky and Professor Thomas J. Rudolphi at Iowa State University
for their advice in different stages of his graduate studies, and Professor Sub-
rata Mukherjee at Cornell University for the continued exchange of ideas and
collaborations on several research endeavors that have benefited the author
greatly.

xv

xvi Acknowledgments

The author would also like to sincerely thank his former and current stu-
dents at the University of Cincinnati for their contributions to the research
on the fast multipole BEM, especially to Drs. Liang Shen (3D potential
and acoustics), Xiaolin Chen (image-based modeling with the fast multi-
pole BEM), and Milind Bapat (2D and 3D acoustics). Without the students’
research contributions, this book would not have been possible.

The author sincerely acknowledges the U.S. National Science Founda-
tion for supporting his research and the Japan Society for the Promotion of
Science Fellowship for Senior Researchers. Permission from Advanced CAE
Research, LLC (ACR) in using the software package FastBEM Acoustics R© for
solving the 3D examples in Chapter 6 is also acknowledged.

Senior editor Peter C. Gordon at Cambridge University Press offered
tremendous encouragement and advice to the author in the preparation of this
manuscript. The author sincerely thanks him for his professional help in this
endeavor.

Finally, the author would like to express his gratitude to his wife Rue
Yuan, son Fred, and family back in China for their understanding, encour-
agement, patience, and sacrifice during the last 20 years.

Acronyms Used in This Book

1D: one-dimensional
2D: two-dimensional
3D: three-dimensional

BC: boundary condition
BEM: boundary element method
BIE: boundary integral equation
BNM: boundary node method

CBIE: conventional boundary integral equation
CHBIE: dual BIE formulation
CNT: carbon nanotube
CPU: central processing unit
CPV: Cauchy principal value

DOF: degree of freedom

EFM: element-free method

FDM: finite difference method
FEM: finite element method
FFT: fast Fourier transform
FMM: fast multipole method

GMRES: generalized minimal residual

HBIE: hypersingular boundary integral equation
HFP: Hadamard finite part

L2L: local-to-local

M2L: moment-to-local
M2M: moment-to-moment
M2X: multipole-to-exponential

xvii

xviii Acronyms Used in This Book

MD: molecular dynamics
MEMS: microelectromechanical system

NURBS: nonuniform rational B spline

ODE: ordinary differential equation

PC: personal computer
PDE: partial differential equation

Q8: eight-node
Q4: four-node

RAM: random-access memory
RBC: red blood cell
RVE: representative volume element

SOFC: solid oxide fuel cell
STL: stereolithography

X2L: exponential-to-local
X2X: exponential-to-exponential

1 Introduction

1.1 What Is the Boundary Element Method?

The boundary element method (BEM) is a numerical method for solving
boundary-value or initial-value problems formulated by use of boundary inte-
gral equations (BIEs). In some literature, it is also called the boundary inte-
gral equation method. Figure 1.1 shows the relation of the BEM to other
numerical methods commonly applied in engineering, namely the finite differ-
ence method (FDM), finite element method (FEM), element-free (or meshfree)
method (EFM), and boundary node method (BNM). The FDM, FEM, and
EFM can be regarded as domain-based methods that use ordinary differential
equation (ODE) or partial differential equation (PDE) formulations, whereas
the BEM and BNM are regarded as boundary-based methods that use the BIE
formulations. It should be noted that the ODE/PDE formulation and the BIE
formulation for a given problem are equivalent mathematically and represent
the local and global statements of the same problem, respectively. In the BEM,
only the boundaries – that is, surfaces for three-dimensional (3D) problems or
curves for two-dimensional (2D) problems – of a problem domain need to be
discretized. However, the BEM does have similarities to the FEM in that it
does use elements, nodes, and shape functions, but on the boundaries only.
This reduction in dimensions brings about many advantages for the BEM that
are discussed in the following sections and throughout this book.

1.2 Why the Boundary Element Method?

The BEM offers some unique advantages for solving many engineering prob-
lems. The following are the main advantages of the BEM:

� Accuracy: The BEM is a semianalytical method and thus is more accurate,
especially for stress concentration problems such as fracture analysis of
structures.

1

2 Introduction

Engineering Problems

Mathematical Models

Differential Equation
(ODE/PDE) Formulations

Boundary Integral Equation
(BIE) Formulations

Analytical AnalyticalNumerical Numerical

FDM FEM EFM Others BEM OthersBNM

Figure 1.1. Relations of commonly used numerical methods for solving engineering
problems.

� Efficient in modeling: The BEM mesh (a collection of the elements used to
discretize a continuum structure) is much easier to generate for 3D prob-
lems or infinite domain problems because of the dimension reduction in
the BIE formulations.

� An independent numerical method: The BEM can be applied along with
the other domain-based methods to verify the solutions to a problem for
which no analytical solution is available.

1.3 A Comparison of the Finite Element Method and
the Boundary Element Method

Table 1.1 gives a comparison of the BEM with the FEM regarding their main
features, as well as advantages and disadvantages. This comparison is by no

Table 1.1. A comparison of the FEM and BEM

FEM BEM

Features
� Derivative-based (local) approach
� Domain mesh: 2D or 3D mesh
� Symmetrical, sparse matrices
� Many commercial packages available

� Integral-based (global) approach
� Boundary mesh: 1D or 2D mesh
� Nonsymmetrical, dense matrices
� Fewer commercial packages available

Advantages
� Solution is fast
� Suitable for general structure analysis;

large mechanical systems
� Nonlinear problems
� Composite materials (macroscale analysis)

� Mesh generation is fast
� Suitable for stress concentration

problems (e.g., fracture mechanics)
� Infinite domain problems
� Composite materials (e.g., microscale

continuum models)

1.5 Fast Multipole Method 3

means complete, and certainly will change with the new development in either
the FEM or BEM.

1.4 A Brief History of the Boundary Element Method
and Other References

The direct BIE formulations and their modern numerical solutions that use
boundary elements for problems in applied mechanics originated more than
40 years ago during the 1960s. The 2D potential problem was first formulated
in terms of a direct BIE and solved numerically by Jaswon [1], Symm [2], and
Jaswon and Ponter [3]. This work was later extended to the vector case – 2D
elastostatic problem by Rizzo in the early 1960s for his Ph.D. dissertation at
the University of Illinois at Urbana-Champaign, which was later published as
a journal article in 1967 [4]. Following these early works, extensive research
efforts were made in BIE formulations of many problems in applied mechanics
and in the numerical solutions during the 1960s and 1970s [5–20]. The name
boundary element method appeared in the mid-1970s in an attempt to make an
analogy with the FEM [21–23].

Some of the important textbooks and research volumes in the 1980s and
early 1990s, which made significant contributions to the research and develop-
ment of the BIE/BEM, can be found in Refs. [24–28]. A few recent research
volumes with advanced treatment of the topics on BIE/BEM can be found in
Refs. [29–32]. Readers may consult these publications for more detailed dis-
cussions on many of the topics in this book or other topics not covered in this
book regarding the BIE formulations and the related conventional BEM solu-
tion techniques.

1.5 Fast Multipole Method

Although the BEM has enjoyed the reputation of easy meshing in modeling
many problems with complicated geometries, its efficiency in solutions has
been a serious problem for analyzing large-scale models. For example, the
BEM has been limited to solving problems with a few thousand degrees of
freedom (DOFs) on a personal computer (PC) for many years. This is because
the conventional BEM, in general, produces dense and nonsymmetric matri-
ces that, although smaller in size, require O(N 2) operations to compute the
coefficients and another O(N 3) operations to solve the system by using direct
solvers (here, N is the number of equations of the linear system or DOFs in
the BEM model).

In the mid-1980s, Rokhlin and Greengard [33–35] pioneered the innova-
tive fast multipole method (FMM) that can be used to accelerate the solutions
of BIE by severalfold to reduce the CPU time in a FMM-accelerated BEM

4 Introduction

to O(N). However, it took almost a decade for the mechanics community to
realize the potential of the FMM for the BEM. Some of the early research on
the fast multipole BEM in applied mechanics can be found in Refs. [36–40],
which show the great promise of the fast multipole BEM for solving large-
scale engineering problems. A comprehensive review of the fast-multipole-
accelerated BIE/BEM and the research work up to 2002 can be found in
Ref. [41].

In this book, we use the FMM to solve the various BEM systems of equa-
tions for potential, elastostatic, Stokes flow, and acoustic wave problems. The
fast multipole BEM represents the future of BEM research and applications.
However, understanding the BIE formulations and the conventional BEM
procedures in solving these BIEs is still very important. Learning the intri-
cacies of the BIE formulations and the conventional BEM while promoting
the fast multipole BEM is emphasized in this book.

1.6 Applications of the Boundary Element Method in Engineering

Today, the BEM has gained a great deal of attention in the field of compu-
tational mechanics, especially with the help of the FMM. The applications
of the BEM are now well beyond the range of classical potential and elastic-
ity theories, extending to many engineering fields, including heat transfer, dif-
fusion and convection, fluid flows, fracture mechanics, geomechanics, plates
and shells, inelastic problems, contact problems, wave propagations (acous-
tic, elastic, and electromagnetic waves), electrostatic problems, design sensi-
tivity and optimizations, and inverse problems. Examples of the fast multipole
BEM applications are given in the following chapters, in which applications of
the fast multipole BEM for solving large-scale problems in many engineering
fields are presented.

As an example, we use an engine-block model (Figure 1.2) to conduct
a thermal analysis and compare the results obtained with the FEM and the
BEM. With the FEM (using ANSYS R©), more than 363,000 volume elements
are applied with DOFs above 1.5 million. With the BEM (a fast multipole
BEM code discussed in Chapter 3), only about 42,000 constant surface ele-
ments (triangular constant elements) are applied with the same number of
DOFs. Furthermore, meshing the volume is considerably more difficult and
takes longer human time than meshing the surfaces of the engine block. On a
desktop PC, the FEM solution took 50 min to finish, whereas the BEM solu-
tion took only about 16 min. The differences in the computed results for the
temperature fields by the FEM and the BEM (Figure 1.3) are less than 1%.
Considering the human time saved during the discretization stage, the advan-
tage of the BEM in modeling 3D problems with complicated geometries is
most evident.

1.7 An Example – Bending of a Beam 5

z

y

x(a) (b)
z

y

x

Figure 1.2. An engine block discretized using finite elements and boundary elements:
(a) FEM (363,000 volume elements/1.5 million DOFs), (b) BEM (42,000 surface
elements/DOFs).

1.7 An Example – Bending of a Beam

We first study a simple beam-bending problem (Figure 1.4) to see that the
boundary approach is a valid and equivalent approach to solving engineering
problems that are usually written in ODEs or PDEs.

We have the following governing equations based on simple beam
theory:

EI
d 2v

dx 2
= M(x), (1.1)

dM
dx

= Q(x), (1.2)

dQ
dx

= q(x), (1.3)

 (b)(a)

z

y

x
z

y

x

Figure 1.3. Temperature field computed using finite elements and boundary elements:
(a) FEM (CPU time = 50 min), (b) BEM (CPU time = 16 min).

6 Introduction

q(x)

L

y

ML

QL

x
M0

Q0

Figure 1.4. A simple beam-bending problem.

for x ∈ (0, L), where v(x) is the deflection of the beam, EI is the bending stiff-
ness, M(x) is the bending moment, Q(x) is the shear force, and q(x) is the
distributed load in the lateral direction (Figure 1.4). Combining Eqs. (1.1)–
(1.3), we also have:

EI
d 4v

dx 4
= q(x). (1.4)

To solve the beam problem, we need to solve either Eq. (1.1) if the bend-
ing moment M(x) is known or Eq. (1.4) if M(x) is not readily available, under
given boundary conditions at x = 0 and x = L. In the following discussion, it
is shown that solving ODE (1.1) is equivalent to solving an integral equation
formulation that involves boundary values only.

We first consider the so-called fundamental solution for Eq. (1.1), or the
Green’s function for an infinitely long beam (Figure 1.5). Consider the load
case in which a unit concentrated force P = 1 is applied at point x0 of the
beam.

The bending moment M∗(x0, x) in the beam at x is governed by the fol-
lowing equation [see Eqs. (1.2) and (1.3)]:

d2 M∗(x0, x)
dx2

= δ(x0, x), ∀x, x0 ∈ (−∞, +∞), (1.5)

where δ(x0, x) is the Dirac δ function used to represent the distributed load
q(x) in this case. An engineering “definition” of the Dirac δ function δ(x0, x)
can be given as:

δ(x0, x) =
{

0, if x �= x0

∞, if x = x0
. (1.6)

An important property of the Dirac δ function δ(x0, x), which is a generalized
function, is the sifting property [42] given by:∫ +∞

−∞
f (x)δ(x0, x)dx = f (x0) (1.7)

for any continuous function f (x).

x0

y

x x0r

P = 1
Figure 1.5. An infinitely long beam with
a point force.

1.7 An Example – Bending of a Beam 7

Solving Eq. (1.5) by using, for example, Fourier transformation (see Prob-
lem 1.1) or simply from the physical argument, we can show that the bending
moment at x that is due to the unit point force at x0 is:

M∗(x0, x) = 1
2

r, (1.8)

where r = |x0 − x| is the distance between the source point x0 and field point x.
This is the fundamental solution for Eq. (1.1) and is the first ingredient needed
in our boundary formulation. The second ingredient is the following general-
ized Green’s identity:∫ L

0

(
u

d2v

dx2
− d2u

dx2
v

)
dx =

(
u

dv

dx
− du

dx
v

)∣∣∣∣x=L

x=0
(1.9)

for any two functions u(x) and v(x) with sufficient smoothness (continuity of
the derivatives). The significance of this identity is that it can transform a one-
dimensional (1D) domain integral to evaluations of the functions at the bound-
aries.

Now if we select u to be the fundamental solution M∗(x0, x) satisfying
Eq. (1.5) and v to be the deflection of the beam satisfying Eq. (1.1), we have
the following result from Eq. (1.9):∫ L

0

(
M∗ d2v

dx2
− d2 M∗

dx2
v

)
dx =

(
M∗ dv

dx
− dM∗

dx
v

)∣∣∣∣x=L

x=0
.

Applying Eqs. (1.1) and (1.5), we obtain

v(x0) =
∫ L

0

(
M∗ M

EI

)
dx −

(
M∗ dv

dx
− dM∗

dx
v

)∣∣∣∣x=L

x=0

or

v(x0) =
∫ L

0
M∗(x0, x)

M(x)
EI

dx + Q∗(x0, L)vL − Q∗(x0, 0)v0

− M∗(x0, L)θL + M∗(x0, 0)θ0, ∀x0 ∈ (0, L), (1.10)

in which v0, vL, θ0, and θL are the deflection and rotation of the beam at the
left and right ends, respectively, and Q∗ is the shear force in the fundamental
solution corresponding to M∗ in (1.8); that is:

Q∗(x0, x) = dM∗(x0, x)
dx

=

1
2
, for x > x0

−1
2
, for x < x0

. (1.11)

Equation (1.10) is an expression of the solution for deflection at any point
inside the beam. Once the deflections and rotations at the two ends (bound-
aries) of the beam are obtained, we can use Eq. (1.10) to evaluate the deflec-
tion of the beam at any point x0.

8 Introduction

x

F

L

 y

EI Figure 1.6. A cantilever beam.

To derive a boundary formulation, we first let x0 tend to 0 in Eq. (1.10) to
have:

v0 =
∫ L

0

x
2

M(x)
EI

dx + 1
2
vL + 1

2
v0 − L

2
θL,

and then we let x0 tend to L in Eq. (1.10) to have:

vL =
∫ L

0

L− x
2

M(x)
EI

dx + 1
2
vL+1

2
v0 + L

2
θ0.

Writing the two equations in a matrix form, we obtain the following boundary
formulation:

1
2

[
1 −1

−1 1

]{
v0

vL

}
+ L

2

[
0 1

−1 0

]{
θ0

θL

}
= 1

2EI

∫ L

0

{
x

L− x

}
M(x)dx.

(1.12)
This boundary formulation is equivalent to the ODE given in (1.1). If

the bending moment is known, this equation can be applied to solve for the
unknown boundary variables v0, vL, θ0, and θL first.

As an example, we consider the cantilever beam in Figure 1.6 by using
our derived boundary formulation. In this case, the bending moment is found
to be:

M(x) = F(L− x),

and the boundary conditions are:

v0 = 0, θ0 = 0.

Thus, boundary equation (1.12) yields:

1
2

[
−1 L

1 0

]{
vL

θL

}
= F L3

12EI

{
1
2

}
.

Solving this equation, we obtain the deflection and rotation of the beam at the
right end: {

vL

θL

}
= F L3

6EI

{
2

3/L

}
.

1.8 Some Mathematical Preliminaries 9

Substituting these results into expression (1.10), we also have:

v(x0) =
∫ L

0

|x − x0|
2

F(L− x)
EI

dx + 1
2

(
F L3

3EI

)
− L− x0

2

(
F L2

2EI

)
= F

6EI
(3L− x0)x2

0 , ∀x0 ∈ (0, L);

which agrees with the result from solving Eq. (1.1) directly. Thus, boundary
formulation (1.12) is equivalent to the ODE formulation in Eq. (1.1).

Note that the simple beam example is used here to illustrate the proce-
dures in transforming an ODE or PDE statement of a problem to a boundary
formulation and the ingredients needed in this process. It does not mean that
we will use this boundary formulation to solve beam-bending problems. In
fact, there are no advantages in solving 1D problems by using the boundary
formulations or the BEM in general.

The two major ingredients in the boundary formulation are the funda-
mental solution and the generalized Green’s identity. These two topics are
expanded in following sections.

1.8 Some Mathematical Preliminaries

Some mathematical results needed in later chapters of this book are reviewed
in this section. For more detailed coverage of these topics, the reader should
consult other books on the related topics. Many of the topics are covered in
Fung’s outstanding textbook [43].

1.8.1 Integral Equations

An integral equation is an equation that contains unknown functions under the
integral sign. For example, the following equations are two integral equations
in one dimension: ∫ b

a
K(x, y)φ(y)dy = f (x), (1.13)

φ(x) =
∫ b

a
K(x, y)φ(y)dy + g(x), (1.14)

in which φ is an unknown function, K(x, y) is a known kernel function, and f
and g are two given functions. Equation (1.13) is a linear Fredholm equation
of the first kind, whereas Eq. (1.14) is a linear Fredholm equation of the second
kind. The kernel function K(x, y) determines the characteristics of the integral
equation. For example, if:

K(x, y) = 1
|x − y| ,

10 Introduction

then the integrals in (1.13) and (1.14) are singular when x ∈ (a, b), and Eqs.
(1.13) and (1.14) are called singular integral equations.

1.8.2 Indicial Notation

Indicial notation is extremely useful in deriving the equations in BIE for-
mulations. In indicial notation, coordinates x, y, and z are replaced with
x1, x2, and x3, respectively, for 3D problems, or simply as xi , for i = 1, 2 (for
two dimensions) or 1, 2, 3 (for three dimensions). For example, the equation
of a plane in 3D space, ax + by + cz = p, can be written as:

3∑
i=1

ai xi = p,

if we set a1 = a, a2 = b, and a3 = c. The preceding expression can be further
simplified if we apply Einstein’s summation convention, which says that sum-
mation is implied if an index is repeated twice in the same term. With this
convention, the preceding equation for the plane in 3D space can be written
simply as:

ai xi = p,

where i is called a dummy index and can be changed to other symbols. For
example, the dot product of two vectors −→a and −→b can be expressed as:

−→a · −→b = ai bi = akbk,

in indicial notation. A linear system of equations Ax = b can be written as:

ai j x j = bi ,

with indices i and j running from 1, 2, . . . , n (number of the equations).
Differentiations of a function f (x, y, z) = f (xi) can be expressed as:

∂ f
∂x

,
∂ f
∂y

,
∂ f
∂z

⇒ ∂ f
∂xi

≡ f,i ,

df = ∂ f
∂x1

dx1 + ∂ f
∂x2

dx2 + ∂ f
∂x3

dx3 = f,i dxi ,

∇2 f = ∂2 f

∂x2
1

+ ∂2 f

∂x2
2

+ ∂2 f

∂x2
3

= f,i i . (1.15)

The Kronecker delta δi j is defined by:

δi j =
{

1, if i = j
0, if i �= j

, (1.16)

1.8 Some Mathematical Preliminaries 11

which is similar to the identity matrix. The Kronecker delta can be used to
simplify expressions. For example,

ai bjδi j = ai bi = a j bj and f,i j δ jk = f,ik .

Another important symbol in indicial notation is the permutation symbol
ei jk , which is defined as:

ei jk =

1, for cyclic suffix order: 123, 231, 312

−1, for cyclic suffix order: 132, 213, 321

0, if any two indices are the same.

(1.17)

For example, e112 = 0, e231 = 1, e213 = −1, e333 = 0, and so on. The vector
product of two vectors −→a and −→b is −→c = −→a × −→b . In indicial notation, the
components of −→c are given by ci = ei jka j bk when the permutation symbol is
used.

A useful relation between the Kronecker delta and the permutation
symbol is:

ei jkeilm = δ jlδkm − δ jmδkl . (1.18)

This relation can be verified from the vector identity:

−→a × (−→b × −→c) = (−→a · −→c)−→b − (−→a · −→b)−→c .

1.8.3 Gauss Theorem

The Gauss theorem in calculus is probably the single most important formula
we need in the development of BIE formulations. For a closed domain V
(either in two or three dimensions) with boundary S, we have:∫

V
φ,i dV =

∫
S
φni dS (1.19)

for any differentiable function φ(xi), where ni is the component (direction
cosines) of the outward normal. The following equations are some of the vari-
ations of the Gauss theorem:∫

V
Fi , j dV =

∫
S

Fi n j dS, (1.20)

∫
V

div FdV =
∫

S
F · ndS, (1.21)

∫
V

∇ × FdV =
∫

S
n × FdS, (1.22)

where F = Fi (xj) is a vector function.

12 Introduction

1.8.4 The Green’s Identities

Using the Gauss theorem, we can establish readily the following Green’s first
identity: ∫

V
u∇2vdV =

∫
S

u
∂v

∂n
dS −

∫
V

u,i v,i dV, (1.23)

and the Green’s second identity:∫
V

(u∇2v − v∇2u)dV =
∫

S

(
u

∂v

∂n
− v

∂u
∂n

)
dS (1.24)

for any two continuous functions u and v. Various forms of the Green’s second
identity are used in the development of the BIEs for different problems.

1.8.5 Dirac δ Function

The Dirac δ function δ(x, y) in two and three dimensions has the following
sifting properties [42]:∫

V
f (y)δ(x, y)dV(y) =

{
f (x), if x ∈ V

0, if x /∈ V ∪ S
, (1.25)

∫
V

f (y)
∂

∂xi
δ(x, y)dV(y) =

− ∂

∂xi
f (x), if x ∈ V

0, if x /∈ V ∪ S,

(1.26)

in which x and y represent two points in space, and f (x) = f (xi) is a differen-
tiable function. In generalized function theory, the Dirac δ function is contin-
uous and differentiable [42]. Applications of the Dirac δ function can greatly
simplify the derivations of the BIEs.

1.8.6 Fundamental Solutions

Fundamental solutions are important ingredients in BIE formulations. With-
out these fundamental solutions, we cannot convert the ODEs or PDEs into
BIEs in general. For different problems, we have different fundamental solu-
tions, which are the solutions that are due to a unit source (heat source, point
force, unit charge, and so on) in an infinite space. These solutions have been
found for most linear problems, and we do not delve into the derivations of
these fundamental solutions. However, understanding the behaviors of the
fundamental solution for a particular problem at hand is very important in
developing good strategy to solving the problem with the BEM. This point is
elaborated on in later chapters.

For simple problems, a Fourier transform can be applied to obtain the
fundamental solutions. For example, for beam equation (1.4), the fundamental

1.8 Some Mathematical Preliminaries 13

solution v∗(x0, x) satisfies the following equation:

EI
d4v∗(x0, x)

dx4
= δ(x0, x), ∀x, x0 ∈ (−∞, +∞), (1.27)

in which the Dirac δ function δ(x0, x) represents the unit point force at x0

(Figure 1.5). For a function f (x), the Fourier transform and its inverse are
defined by:

F [f (x)] = 1√
2π

∫ +∞

−∞
f (x)eiλxdx = F(λ), (1.28)

f (x) = 1√
2π

∫ +∞

−∞
F (λ) e−iλxdλ, (1.29)

respectively. Applying the Fourier transform to Eq. (1.27) and noticing that

F [δ(x)] = 1, F
[

dv∗

dx

]
= iλF [v∗] ,

we obtain from Eq. (1.27):

λ4 EIF [v∗] = 1 or F [v∗] = 1
EIλ4

.

The inverse transform yields:

v∗(x0, x) = 1
12EI

r3, with r = |x0 − x| . (1.30)

This is the deflection of the beam at x that is due to the point force at x0.
Applying Eq. (1.1), we have:

M∗(x0, x) = EI
d2v∗

dx2
= 1

2
r,

which is the corresponding moment in the fundamental solution as given in
Eq. (1.8).

1.8.7 Singular Integrals

We encounter various so-called singular integrals in the BIE formulations. In
these singular integrals, the integrands have singular points at which the inte-
grands tend to infinity. Although we can show in later chapters that singu-
lar integrals in the BIEs can be removed analytically by use of the so-called
weakly singular forms of the BIEs, understanding the singular integrals is still
very important in studying BIEs and BEMs.

We use a few 1D cases as examples to illustrate the behaviors and results
of the singular integrals. First, consider the following integral:

f1(x) =
∫ b

a
log |x − y|dy for a < x < b. (1.31)

14 Introduction

The integrand tends to infinity at x = y; thus, the integral is singular. This is an
improper integral and is evaluated as follows:

f1(x) = lim
ε1→0

∫ x−ε1

a
log |x − y| dy + lim

ε2→0

∫ b

x+ε2

log |x − y| dy

= lim
ε1→0

[−(x − y) log(x − y) − y]
∣∣y=x−ε1

y=a

+ lim
ε2→0

[(y − x) log(y − x) − y]
∣∣y=b

y=x+ε2

= (x − a) [log(x − a) − 1] + (b − x) [log(b − x) − 1] .

Thus, integral f1(x) in (1.31) exists regardless of the values of ε1 and ε2 and is
called a weakly singular integral.

Next, consider the following strongly singular integral:

f2(x) =
∫ b

a

1
y − x

dy for a < x < b. (1.32)

We regard this as an improper integral and evaluate it as follows:

f2(x) = lim
ε1→0

∫ x−ε1

a

1
y − x

dy + lim
ε2→0

∫ b

x+ε2

1
y − x

dy

= lim
ε1→0

[log |y − x|]∣∣y=x−ε1

y=a + lim
ε2→0

[log |y − x|]∣∣y=b
y=x+ε2

= log
(

b − x
x − a

)
+ lim

ε1→0
log ε1 − lim

ε2→0
log ε2,

which does not exist if ε1 and ε2 are kept independent of each other. It is only
when ε1 = ε2 that the integral has a finite value:

f2(x) = log
(

b − x
x − a

)
, (1.33)

which is called the Cauchy principal value (CPV) of the integral in (1.32).
Therefore, f2(x) is called a CPV integral in that the integral is evaluated
with a small “symmetrical” region subtracted from the domain of integration
(ε1 = ε2) at x.

Consider the following hypersingular singular integral:

f3(x) =
∫ b

a

1

(y − x)2 dy, for a < x < b. (1.34)

We evaluate this integral by using the CPV definition:

f3(x) = lim
ε→0

[∫ x−ε

a

1

(y − x)2 dy +
∫ b

x+ε

1

(y − x)2 dy

]

= lim
ε→0

[
− 1

(y − x)

∣∣∣∣x−ε

a
− 1

(y − x)

∣∣∣∣b
x+ε

]

= − 1
x − a

− 1
b − x

+ lim
ε→0

(
2
ε

)
,

Problems 15

which does not exist even in the sense of a CPV integral. However, in the
BIE formulations, we find that an infinite term like 2/ε is canceled out by the
integral with the same integrand on the small region (x − ε, x + ε). Therefore,
f3(x) is still meaningful and called a Hadamard finite part (HFP) integral [44],
with the finite part given by [45]:

f3(x) = − 1
x − a

− 1
b − x

. (1.35)

1.9 Summary

In this chapter, a general introduction of the BIE and the BEM is provided. A
comparison of the BEM with the FEM is discussed. A simple beam problem is
used as an example to show the procedures in formulating and solving a prob-
lem by using the boundary formulation. Two important ingredients are needed
in the BIE formulations. One is the fundamental solution that is specific to a
given problem and is available for most linear problems. Another ingredient
is the generalized Green’s identity associated with the differential operator
for describing the problem. Some mathematical results that are needed in the
development of the BIE and the BEM are reviewed, especially the index nota-
tion and the Gauss theorem in various forms.

Problems

1.1. Using a Fourier transform, solve Eq. (1.5) to obtain the moment in the
fundamental solution given in (1.8) for the simple beam problem.

1.2. Derive the generalized Green’s identity given in (1.9).
1.3. Derive the following generalized Green’s identity corresponding to ODE

(1.4),∫ L

0

[
u

d4v

dx4
− d4u

dx4
v

]
dx =

[
u

d3v

dx3
− d3u

dx3
v + d2u

dx2

dv

dx
− du

dx
d2v

dx2

] ∣∣∣∣x=L

x=0
,

(1.36)

for any two continuous functions u and v on the interval (0, L). If u and v

represent the deflections of a straight beam with length L, bending stiff-
ness EI, and under two different sets of loading conditions, respectively,
what is the physical meaning of this identity?

1.4. Give the values of the following expressions, if defined:

δi j = ?; δi jδi j = ?; δi jδi jδi j = ?.

1.5. Verify the following results:

ei jkei jk = 6; ei jk A j Ak = 0.

16 Introduction

1.6. Express the triple scalar product −→u · (−→v × −→w) of three vectors −→u , −→v ,
and −→w (in three dimensions) in the index form.

1.7. Verify Eq. (1.18) using the vector identity −→a × (−→b × −→c) = (−→a · −→c)−→b −
(−→a · −→b)−→c .

1.8. Write Eqs. (1.21) and (1.22) in index forms.
1.9. Show that the CPV of the following integral does not exist:

f (x) =
∫ b

a

1
|y − x|dy, for a < x < b.

2 Conventional Boundary Element Method
for Potential Problems

Many problems in engineering can be described by the Laplace equation or
the Poisson equation. These problems can be termed potential problems, such
as heat conduction, potential flows, electrostatic fields, or the mechanics prob-
lem of a bar in torsion. In this chapter, we study the BIE formulations for
solving potential problems and learn how to solve these BIEs by using the
conventional BEM. In Chapter 3, we study the fast multipole BEM that can
accelerate the BEM solutions for large-scale potential problems.

2.1 The Boundary-Value Problem

We consider the following Poisson equation governing the potential field φ in
domain V (either 2D or 3D, finite or infinite):

∇2φ + f = 0, in V, (2.1)

where f is a known function in domain V. The boundary conditions (BCs) to
be considered are:

φ = φ, on Sφ (Dirichlet BC), (2.2)

q ≡ ∂φ

∂n
= q, on Sq (Neumann BC), (2.3)

in which the over bar indicates the prescribed value for the function, Sφ ∪
Sq = S is the boundary of the domain, and n is the outward normal of the
boundary S (Figure 2.1). Note that the normal derivative of φ (correspond-
ing to heat flux in thermal analysis) can be expressed as q = ∂φ

∂xk
nk = φ,k nk

in index notation, with nk being the components or direction cosines of
normal n.

With the fundamental solution and the second Green’s identity, we can
convert the preceding boundary-value problem given in Eqs. (2.1)–(2.3) into
BIE formulations.

17

18 Conventional Boundary Element Method for Potential Problems

r

S
x

y
n

V

1

2

3

Figure 2.1. A 3D finite domain V with
boundary S.

2.2 Fundamental Solution for Potential Problems

The fundamental solution G(x, y) for potential problems satisfies:

∇2G(x, y) + δ(x, y) = 0, ∀x, y ∈ R2/R3, (2.4)

in which the derivatives are taken at point y, that is, ∇2 = ∂2 (·) /∂yi∂yi , and
R2 and R3 indicate the full 2D and 3D spaces, respectively. The Dirac � func-
tion δ(x, y) in Eq. (2.4) represents a unit source (e.g., heat source) at the source
point x, and G(x, y) represents the response (e.g., temperature) at the field
point y that is due to that source.

The fundamental solution G(x, y) is given by:

G(x, y) =

1

2π
log

(
1
r

)
, for two dimensions,

1
4πr

, for three dimensions,

(2.5)

where r is the distance between the source point x and field point y, and its
normal derivative is:

F(x, y) ≡ ∂G(x, y)
∂n(y)

=

− 1

2πr
r,k nk(y), for two dimensions,

− 1
4πr2

r,k nk(y), for three dimensions,

(2.6)

with r,k = ∂r/∂yk = (yk − xk)/r . The fundamental solution satisfies the follow-
ing integral identities [46–48]:

First identity:

∫
S

F(x, y) dS(y) =
−1, ∀x ∈ V

0, ∀x ∈ E.
(2.7)

Second identity: ∫
S

∂ F(x, y)
∂ n(x)

dS(y) = 0, ∀x ∈ V ∪ E. (2.8)

2.3 Boundary Integral Equation Formulations 19

Third identity:∫
S

∂G(x, y)
∂ n(x)

nk(y)dS(y) −
∫

S

∂ F(x, y)
∂ n(x)

(yk − xk)dS(y) =
nk(x), ∀x ∈ V

0, ∀x ∈ E.

(2.9)
Fourth identity:∫

S
F(x, y)(yk − xk) dS(y) −

∫
S

G(x, y) nk(y)dS(y) = 0, ∀x ∈ V ∪ E,

(2.10)

in which S can be an arbitrary closed contour (for two dimensions) or surface
(for three dimensions), V is the domain enclosed by S, and E is the infinite
domain outside S. These identities have clear physical meanings and can be
very convenient in deriving various weakly singular or nonsingular forms of
the BIEs for potential problems [46–48]. We can obtain these identities readily
by integrating governing equation (2.4) over the domain V and invoking the
Gauss theorem [46–48].

2.3 Boundary Integral Equation Formulations

To derive the direct BIE corresponding to PDE (2.1), we apply the second
Green’s identity given in Eq. (1.24):∫

V

[
u∇2v − v∇2u

]
dV =

∫
S

[
u

∂v

∂n
− v

∂u
∂n

]
dS. (2.11)

Let v(y) = φ(y), which satisfies Eq. (2.1), and u(y) = G(x, y), which satisfies
Eq. (2.4). We have, from identity Eq. (2.11):∫

V

[
G(x, y)∇2φ(y) − φ(y)∇2G(x, y)

]
dV(y)

=
∫

S

[
G(x, y)

∂φ(y)
∂n(y)

− φ(y)
∂G(x, y)
∂n(y)

]
dS(y).

Applying Eqs. (2.1), (2.4), and (1.25), we obtain:

φ(x) =
∫

S
[G(x, y)q(y) − F(x, y)φ(y)] dS(y)

+
∫

V
G(x, y) f (y)dV(y), ∀x ∈ V, (2.12)

where q = ∂φ/∂n.
Equation (2.12) is the representation integral of the solution φ inside the

domain V for Eq. (2.1). Once the boundary values of both φ and q are known
on S, Eq. (2.12) can be applied to calculate φ everywhere in V, if needed.

20 Conventional Boundary Element Method for Potential Problems

S − Sε

x

1

2

Sε

V
d

Figure 2.2. Limits as x approaches boundary S.

To solve the unknown boundary values of φ and q on S, we let x tend to S
to obtain a BIE from Eq. (2.12). To do this, we consider the following limit:

lim
x→S

φ(x) = lim
x→S

{∫
S

[G(x, y)q(y) − F(x, y)φ(y)] dS(y) +
∫

V
G(x, y) f (y)dV(y)

}
.

(2.13)

The kernel G(x, y) is weakly singular at r = 0 [of O(log r) in two dimensions
and O(1/r) in three dimensions] and F(x, y) is strongly singular [of O(1/r)
in two dimensions and O(1/r2) in three dimensions]. Therefore, we cannot
place x on boundary S directly in Eq. (2.13). Careful consideration of the limit
process is necessary for each integral on the right-hand side of Eq. (2.13).

We now proceed to use the 2D case as an example to see how to evaluate
the limits in (2.13). We first divide the boundary S into two parts: S − Sε and
Sε, where Sε is a small segment with length 2ε centered around the point to
which x will approach (Figure 2.2).

The first integral on the right-hand side of (2.13) is evaluated as:

lim
x→S

∫
S

G(x, y)q(y)dS(y) = lim
ε→0

∫
S−Sε

G(x, y)q(y)dS(y)

+ lim
d→0
ε→0

∫
Sε

G(x, y)dS(y)q(yξ),

where yξ is a point on Sε. When ε is small, Sε can be regarded as a straight-line
segment (assuming S is smooth); the analytical integration of G kernel on this
line segment is given in Appendix A.1, Eq. (A.5). When Eq. (A.5) is used, the
limit of this integral turns out to be:

lim
d→0
ε→0

∫
Sε

G(x, y)dS(y)q(yξ) = 0.

Therefore:

lim
x→S

∫
S

G(x, y)q(y)dS(y) = lim
ε→0

∫
S−Sε

G(x, y)q(y)dS(y) =
∫

S
G(x, y)q(y)dS(y),

(2.14)
where the last integral is evaluated with the definition of a CPV integral. (For
simplicity of notation, no special symbol is used here to indicate this fact.)

2.3 Boundary Integral Equation Formulations 21

Similarly, the second integral on the right-hand side of (2.13) is evaluated
as:

lim
x→S

∫
S

F(x, y)φ(y)dS(y) = lim
ε→0

∫
S−Sε

F(x, y)φ(y)dS(y)

+ lim
d→0
ε→0

∫
Sε

F(x, y)dS(y)φ(yξ).

Applying the result in Eq. (A.6) of Appendix A.1, we obtain:

lim
d→0
ε→0

∫
Sε

F(x, y)dS(y)φ(yξ) = −1
2
φ(x), x ∈ S,

lim
x→S

∫
S

F(x, y)φ(y)dS(y) = lim
ε→0

∫
S−Sε

F(x, y)φ(y)dS(y) − 1
2
φ(x)

=
∫

S
F(x, y)φ(y)dS(y) − 1

2
φ(x), x ∈ S, (2.15)

where the last integral is understood as a CPV integral that is evaluated on
S − Sε with ε → 0. We see that there is a jump term associated with the integral
with the F kernel as x approaches S. The third integral on the right-hand side
of (2.13) has no jump term; that is:

lim
x→S

∫
V

G(x, y) f (y)dV(y) =
∫

V
G(x, y) f (y)dV(y). (2.16)

Substituting Eqs. (2.14)–(2.16) into (2.13) and combining the free terms, we
arrive at the following conventional BIE (CBIE):

c(x)φ(x) =
∫

S
[G(x, y)q(y) − F(x, y)φ(y)] dS(y)

+
∫

V
G(x, y) f (y)dV(y), ∀x ∈ S, (2.17)

in which c(x) is a coefficient and c(x) = 1/2 if S is smooth around x. The same
result can be derived for the 3D case. In this equation, both variables φ and q
are now on the boundary S. Later, we will see that we can write CBIE (2.17) in
a weakly singular form by using the integral identities for the fundamental
solution, so that we do not need to evaluate the CPV integral (with the F ker-
nel) and the constant c(x) explicitly in the solutions of the BIE.

Treatment of the domain integral in CBIE (2.17) is discussed in Section
2.9 for the case in which f (y) is nonzero over a finite area or volume within
the domain V. When f (y) is due to a concentrated or point source within V,
we can write f (y) as:

f (y) = Qδ(xQ, y), (2.18)

22 Conventional Boundary Element Method for Potential Problems

where xQ is the location of the source and Q represents the intensity of the
source. Using the sifting property of the Dirac � function [Eq. (1.25)], we can
evaluate the domain integral in CBIE (2.17) for this case as follows:∫

V
G(x, y) f (y)dV(y) = Q

∫
V

G(x, y)δ(xQ, y)dV(y) = QG(x, xQ). (2.19)

This contribution is added to the right-hand side vector b of the BEM system
of equations based on the CBIE (discussed in Section 2.5).

Once we obtain the unknown variables φ and q on S from solving CBIE
(2.17), we can evaluate the potential inside the domain V by using the repre-
sentation integral of (2.12), if needed. To evaluate the derivatives of the poten-
tial in V, we take the derivative of (2.12) to obtain:

∂φ

∂xi
(x) =

∫
S

[
∂G(x, y)

∂xi
q(y) − ∂ F(x, y)

∂xi
φ(y)

]
dS(y)

+
∫

V

∂G(x, y)
∂xi

f (y)dV(y), ∀x ∈ V. (2.20)

Letting the source point x tend to boundary S and multiplying both sides
of (2.20) with the normal at x, we obtain the so called hypersingular BIE
(HBIE):

c(x)q(x) =
∫

S
[K(x, y)q(y) − H(x, y)φ(y)] dS(y)

+
∫

V
K(x, y) f (y)dV(y), ∀x ∈ S, (2.21)

where the two new kernels are:

K(x, y) ≡ ∂G(x, y)
∂n(x)

=

1

2πr
r,k nk(x), for two dimensions,

1
4πr2

r,k nk(x), for three dimensions,

(2.22)

H(x, y) ≡ ∂ F(x, y)
∂n(x)

=

1

2πr2
[nk(x)nk(y) − 2r,k nk(x)r,l nl(y)] , for two dimensions

1
4πr3

[nk(x)nk(y) − 3r,k nk(x)r,l nl(y)] , for three dimensions

.

(2.23)

K(x, y) kernel is strongly singular, and the first integral in HBIE (2.21) is a
CPV integral, the H(x, y) kernel is hypersingular, and the second integral in
(2.21) is a HFP integral. HBIE (2.21) also can be written in a weakly singular
form, and we do not need to evaluate these singular or hypersingular integrals
in the BEM unless they can be evaluated readily (as in the constant-element
case that we discuss in the next section).

2.4 Weakly Singular Forms of the Boundary Integral Equations 23

The CBIE degenerates when it is applied to solve crack problems or thin
inclusion problems [49]. In these cases, the HBIE can be applied alone or in
combination with the CBIE to have a nondegenerate dual BIE formulation
for crack problems and thin-shape problems. We will see some examples later
in this and subsequent chapters.

CBIE (2.17) and HBIE (2.21) are also valid for an infinite domain prob-
lem, where the domain is outside a closed boundary S and extends to infin-
ity. We can show that contributions of integrals on the boundaries at infinity
vanish if we assume that φ(R) ∼ O(1/Rα) and q(R) ∼ O(1/R1+α), as R → ∞,
where R is the radius of a large circle (2D) or sphere (3D) and the real number
α > 0.

2.4 Weakly Singular Forms of the Boundary Integral Equations

CBIE (2.17) and HBIE (2.21) can be recast into forms that involve only weakly
singular integrals [46–48] or even nonsingular forms without any singular inte-
grals [47]. For example, using the first identity in (2.7) for the fundamental
solution G(x, y), we can show that the coefficient c(x) in CBIE (2.17) can be
written as:

c(x) = 1 + lim
d→0
ε→0

∫
Sε

F(x, y)dS(y) = γ − lim
ε→0

∫
S−Sε

F(x, y)dS(y)

= γ −
∫

S
F(x, y)dS(y), ∀x ∈ S (a CPV integral), (2.24)

in which γ = 0 for finite domain and γ = 1 for infinite domain problems. Sub-
stituting the preceding expression for c(x) in CBIE (2.17), we obtain the fol-
lowing weakly singular form of the CBIE:

γφ(x) +
∫

S
F(x, y) [φ(y) − φ(x)] dS(y)

=
∫

S
G(x, y)q(y)dS(y) +

∫
V

G(x, y) f (y)dV(y), ∀x ∈ S, (2.25)

in which the integral with the F kernel is now weakly singular, because

F(x, y) [φ(y) − φ(x)] ∼

O

(
1
r

)
O (r) = O (1) , for two dimensions,

O
(

1
r2

)
O (r) = O

(
1
r

)
, for three dimensions,

as r → 0, if φ is continuous. Similarly, using the first three identities for the
fundamental solution, we can derive the following weakly singular form of the

24 Conventional Boundary Element Method for Potential Problems

HBIE (see Refs. [50, 51] for the results of a Helmholtz equation with a Laplace
equation as a special case):

γ q(x) +
∫

S
H(x, y)

[
φ(y) − φ(x) − ∂ φ

∂ ξα

(x)(ξα − ξoα)
]

dS(y)

+ eα k
∂ φ

∂ ξα

(x)
∫

S
[K(x, y)nk(y) + F(x, y)nk(x)] dS(y)

=
∫

S
[K(x, y) + F(x, y)] q(y) dS(y)

−
∫

S
F(x, y) [q(y) − q(x)] dS(y) +

∫
V

K(x, y) f (y)dV(y), ∀x ∈ S,

(2.26)

in which ξα and ξoα are the coordinates of y and x, respectively, in tangen-
tial directions (α = 1 for two dimensions and α = 1, 2 for three dimensions)
in the local (natural) coordinate system on an element and eα k = ∂ ξα/∂ xk

[51]. All the integrals in (2.26) are now, at most, weakly singular if φ has con-
tinuous first derivatives.

Weakly singular forms of the BIEs, or regularized BIEs, which do not con-
tain any strongly singular and hypersingular integrals, are useful in cases in
which higher-order boundary elements are applied to solve the BIEs. In these
cases, analytical evaluations of the singular integrals are difficult or impossible
to obtain and the use of numerical integrations is troublesome. When constant
elements are used, all the singular and hypersingular integrals can be evalu-
ated analytically (see Appendix A.1); therefore, the original singular forms of
CBIE (2.17) and HBIE (2.21) can be applied directly.

2.5 Discretization of the Boundary Integral Equations
for 2D Problems Using Constant Elements

We now apply the boundary elements to discretize the BIEs in order to solve
them numerically for the unknown boundary variables. As an example, we dis-
cretize the CBIE (assuming f = 0) in (2.17) for 2D problems by using constant
elements.

First, we divide the boundary S into line segments (elements) �Sj and
place one node on each element (Figure 2.3). The total number of elements
is M, and the total number of nodes is N. In the case of using constant ele-
ments, we have N = M. Next, we place the source point x at node i and notice
that:

φ(y) = φ j , q(y) = qj , on element �Sj ,

2.5 Discretization of the Boundary Integral Equations 25

i

∆

r

S

y n

V

1

2

 = 0 = 1

element
node

Sj

ξ ξ ξ

Figure 2.3. Discretization of boundary S using constant elements.

where φ j and qj (j = 1, 2, . . . , N) are the nodal values of φ and q, respec-
tively, on element �Sj for constant elements. CBIE (2.17) becomes:

1
2
φi =

N∑
j=1

∫
�Sj

[Gi qj − Fiφ j] dS =
N∑

j=1

[∫
�Sj

Gi dSqj −
∫

�Sj

Fi dSφ j

]
, (2.27)

where Gi and Fi are the kernels with the source point x placed at node i. We
obtain the following discretized equation of CBIE (2.17) for node i:

1
2
φi =

N∑
j=1

[
gi j qj − f̂ i jφ j

]
, for i = 1, 2, . . . , N, (2.28)

where the coefficients are given by:

gi j =
∫

�Sj

Gi dS, f̂ i j =
∫

�Sj

Fi dS, for i, j = 1, 2, . . . , N. (2.29)

The preceding integrals can be evaluated analytically for all singular (i = j) or
nonsingular (i �= j) cases with the constant elements (see Appendix A.1).

In matrix form, Eq. (2.28) can be written as:
f11 f12 · · · f1N

f21 f22 · · · f2N
...

...
. . .

...
fN1 fN2 · · · fNN

φ1

φ2
...
φN

 =

g11 g12 · · · g1N

g21 g22 · · · g2N
...

...
. . .

...
gN1 gN2 · · · gNN

q1

q2
...
qN

 , (2.30)

where fi j = f̂ i j + 1
2δi j . In the conventional BEM approach, we form a stan-

dard linear system of equations as follows by applying the boundary condition

26 Conventional Boundary Element Method for Potential Problems

at each node and switching the columns in the two matrices in Eq. (2.30):
a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

λ1

λ2
...
λN

 =

b1

b2
...
bN

 , or Aλ = b, (2.31)

where A is the coefficient matrix, λ is the unknown vector (with unknown φ

or q at each node), and b is the known right-hand-side vector. Obviously, the
construction of matrix A requires O(N 2) operations using Eqs. (2.29), and
the size of the required memory for storing A is also O(N 2) because A is,
in general, a nonsymmetric and dense matrix. The solution of the system in
Eq. (2.31) using direct solvers such as Gauss elimination requires O(N 3) oper-
ations because of this general matrix. Thus, the conventional BEM approach
by solving Eq. (2.31) directly can handle only BEM models with a few thou-
sand equations on a desktop computer with 1-GB RAM (GB is gigabyte and
RAM is random-access memory).

By solving Eq. (2.31), we can obtain all the unknown boundary variables
on each element. If the fields inside the domain are demanded, we can com-
pute φ by using integral representation (2.12) and the derivatives of φ by using
(2.20) in similar discretized forms. Discretization of the BIEs using constant
elements is straightforward, and all the integrals of the kernels on the ele-
ments can be evaluated analytically. However, the accuracy of the constant
elements is not very good, and usually more constant elements are needed to
obtain reasonably accurate BEM results as compared with those obtained with
high-order elements.

2.6 Using Higher-Order Elements

Higher-order boundary elements are needed to improve the accuracy and effi-
ciency of the BEM solutions in situations in which accuracy and efficiency
are critical, such as stress concentration problems. For curved boundaries,
higher-order elements, such as quadratic elements, are also beneficial because
of the more accurate representation of the geometry. However, the use of
higher-order elements also presents some challenges. Analytical integrations
of the coefficients are no longer available, in general, and numerical integra-
tions need to be used. In the following subsection, we discuss the linear and
quadratic elements for 2D problems.

2.6.1 Linear Elements

For discretization using linear elements (Figure 2.4), each element is associ-
ated with two nodes placed at the ends of the element. The element is assumed

2.6 Using Higher-Order Elements 27

i

Sk

r

S

y n

V

1

2

 = 0 = 1

1 2

n

Sk

∆

∆

ξξξ

Figure 2.4. Discretization of boundary S using linear elements.

to be straight, and the fields are assumed to vary linearly over the element.
Two shape functions are introduced to represent the function on an element.
For example, on element �Sk (k = 1, 2, 3, . . . , M, with M being the total num-
ber of elements), we have:

φ(y) = φ(ξ) =
2∑

α=1

Nα(ξ)φα, (2.32)

q(y) = q(ξ) =
2∑

α=1

Nα(ξ)qα, (2.33)

where φ1, φ2 and q1, q2 are the nodal values of φ and q at local nodes 1 and
2, respectively; ξ is the local (natural) coordinate defined on the element; and
N1(ξ) and N2(ξ) are the linear shape functions given by:

N1(ξ) = 1 − ξ, and N2(ξ) = ξ. (2.34)

Placing source point x at node i (i = 1, 2, 3, . . . , N), we have the following
discretized equation for CBIE (2.17) (with f = 0):

ciφi =
M∑

k=1

∫
�Sk

[Gi q − Fiφ] dS,

=
M∑

k=1

∫
�Sk

[
Gi

2∑
α=1

Nαqα

]
dS −

M∑
k=1

∫
�Sk

[
Fi

2∑
α=1

Nαφα

]
dS,

=
M∑

k=1

2∑
α=1

[∫
�Sk

Gi NαdS
]

qα −
M∑

k=1

2∑
α=1

[∫
�Sk

Fi NαdS
]

φα, (2.35)

that is,

ciφi =
M∑

k=1

2∑
α=1

gα
ikqα −

M∑
k=1

2∑
α=1

f̂ α
ikφα, (2.36)

28 Conventional Boundary Element Method for Potential Problems

where:

gα
ik =

∫
�Sk

Gi NαdS

f̂ α
ik =

∫
�Sk

Fi NαdS (2.37)

with i = 1, 2, 3, . . . , N (number of nodes), k = 1, 2, 3, . . . , M (number of
elements), and � = 1 and 2 (number of local nodes on each element). Re-
arranging the terms according to the global nodes (instead of elements), we
obtain from Eq. (2.36):

ciφi =
N∑

j=1

gi j qj −
N∑

j=1

f̂ i jφ j , (2.38)

where gi j and f̂ i j are sums of the integrals gα
ik and f̂ α

ik on elements around
node j, respectively. Thus, we have a linear system of equation similar to
Eq. (2.28) and the matrix form is identical to Eq. (2.30), where fi j = f̂ i j +
ciδi j (no sum over i).

In general, numerical integration schemes need to be used to evaluate
the coefficients in (2.30) using formulas (2.37). For example, for nondiagonal
terms (i �= j), we have:

gα
ik =

∫
�Sk

Gi NαdS =
∫ 1

0
Gi [x, y(ξ)]Nα(ξ) |J |dξ, (2.39)

where the global coordinate y is related to the local coordinate by:

yl(ξ) =
2∑

α=1

Nα(ξ)yα
l , for l = 1, 2,

with yα
l being the nodal values of yl , and:

dS =
√(

dy1

dξ

)2

+
(

dy2

dξ

)2

dξ = |J | dξ, where |J | =
√(

dy1

dξ

)2

+
(

dy2

dξ

)2

is the Jacobian of the coordinate transformation. The integral on the right-
hand side of Eq. (2.39) can be evaluated by standard Gaussian quadrature. In
most cases, a four-point quadrature should be sufficient. The second integral
in (2.37) is handled in a similar way.

For the diagonal terms, we can evaluate the coefficients analytically by
using the definition of CPV integrals. The results are:

gii = La

8π

[
3 + 2 log

(
1

La

)]
+ Lb

8π

[
3 + 2 log

(
1
Lb

)]
,

f̂ i i = 0, i = 1, 2, 3, . . . , N;
(2.40)

2.6 Using Higher-Order Elements 29

n

1

2

 = 1

1 32
i

Sk

r

S

y

V

n

Sk∆
∆

ξξ = 0ξ = –1ξ

Figure 2.5. Discretization of boundary S using quadratic elements.

in which La and Lb are the lengths of the two elements before and after node
i. For coefficient fii , there is an easy way to calculate their values. Suppose we
have a uniform potential field, with φ = 1 and q = 0 everywhere. Then, from
Eq. (2.30), we obtain:

fii = −
N∑

j �=i

fi j , (2.41)

for finite domain problems, which avoids calculation of ci at each node. For
infinite domain problems, the contributions from integrals at infinity do not
vanish for uniform potentials. Thus, the relation in (2.41) is changed to:

fii = 1 −
N∑

j �=i

fi j . (2.42)

Results in (2.41) and (2.42) are exact, meaning that there is no additional error
introduced. We can derive these results analytically by using identity (2.7) for
the fundamental solution [46].

2.6.2 Quadratic Elements

Quadratic elements can be used for problems demanding even higher accu-
racy, such as problems with singular fields caused by cracklike objects, prob-
lems with curved boundaries, and so on. There are three nodes on a quadratic
element (Figure 2.5). The element can be a quadratic curve, which is a more
accurate representation for a domain with curved boundaries. The three
quadratic-shape functions are given as follows in the local coordinate ξ :

N1(ξ) = 1
2
ξ(ξ − 1), N2(ξ) = (1 − ξ)(1 + ξ), N3(ξ) = 1

2
ξ(ξ + 1). (2.43)

30 Conventional Boundary Element Method for Potential Problems

On each element, we have:

φ(y) = φ(ξ) =
3∑

α=1

Nα(ξ)φα, (2.44)

q(y) = q(ξ) =
3∑

α=1

Nα(ξ)qα, (2.45)

and for the geometry:

yl(ξ) =
3∑

α=1

Nα(ξ)yα
l , for l = 1, 2. (2.46)

Using quadratic elements, we can write the discretized form of CBIE
(2.17) (with f = 0) as:

ciφi =
M∑

k=1

3∑
α=1

gα
ikqα −

M∑
k=1

3∑
α=1

f̂ α
ikφα, (2.47)

in which:

gα
ik =

∫
�Sk

Gi NαdS,

f̂ α
ik =

∫
�Sk

Fi NαdS,

(2.48)

with i = 1, 2, 3, . . . , N, k = 1, 2, 3, . . . , M, and � = 1, 2, and 3. Rearranging the
terms according to the global nodes (based on the element connectivity infor-
mation), we obtain a system of equations similar to that given in (2.30). In
this case, all the coefficients gi j and fi j in (2.30) need to be calculated numeri-
cally by Gaussian quadrature, except for fii , which still can be determined by
Eq. (2.41) for a finite domain or Eq. (2.42) for an infinite domain, without
introducing any additional errors.

2.7 Discretization of the Boundary Integral Equations
for 3D Problems

For 3D problems, surfaces of a domain will be discretized using surface ele-
ments, which can be constant, linear, or quadratic (Figure 2.6). The shape of
an element can be triangular or quadrilateral. For a constant element, there is
only one node located at the center of the element. For a linear element, there
is one node at each vertex of the element. For a quadratic element, there is one
node at each vertex and on each edge of the element. Implementation of the
constant elements is straightforward, and analytical integrations of the kernels

2.7 Discretization of the Boundary Integral Equations for 3D Problems 31

(a) (b) (c)

Figure 2.6. Surface elements for 3D problems: (a) constant, (b) linear, (c) quadratic.

are possible. However, using linear and quadratic elements is more accurate
and efficient.

We use the quadrilateral four-node (Q4) linear elements (Figure 2.7) as
an example to see how to discretize the CBIE for 3D problems.

In the natural coordinate system (ξ, η), the four shape functions are:

N1(ξ, η) = 1
4

(1 − ξ)(1 − η),

N2(ξ, η) = 1
4

(1 + ξ)(1 − η),

N3(ξ, η) = 1
4

(1 + ξ)(1 + η),

N4(ξ, η) = 1
4

(1 − ξ)(1 + η).

(2.49)

Note that
∑4

α=1 Nα = 1 at any point inside the element, as expected.

1

2 1

3

2

4 ξ

η

ξ = −1 ξ =1
η = −1

η = 1

3

Figure 2.7. A Q4 linear element for 3D
problems.

32 Conventional Boundary Element Method for Potential Problems

For a 3D problem, the discretized form of CBIE (2.17) (with f = 0) can
still be written as follows with the Q4 elements:

ciφi =
M∑

k=1

4∑
α=1

gα
ikqα −

M∑
k=1

4∑
α=1

f̂ α
ikφα, (2.50)

where:

gα
ik =

∫
�Sk

Gi NαdS,

(2.51)
f̂ α

ik =
∫

�Sk

Fi NαdS,

with i = 1, 2, 3, . . . , N (total number of nodes on the surface), k = 1, 2, 3, . . . ,
M (total number of elements), and � = 1, 2, 3 and 4 (for Q4 elements). Infor-
mation about the element connectivity is needed to assemble the system of
equations as given in Eq. (2.30). For example, if the global node number of
local node � of element k is j, then coefficient gα

ik should go to the ith row and
jth column of the g matrix on the right-hand side of Eq. (2.30).

In 3D cases, all the coefficients gi j and fi j we determine by using (2.51) are
surface integrals that we can calculate numerically using Gaussian quadrature,
except for fii , which we can still determine by Eq. (2.41) for a finite domain or
Eq. (2.42) for an infinite domain. For example, to compute gi j , we proceed as
follows:

gα
ik =

∫
�Sk

Gi NαdS =
∫ 1

−1

∫ 1

−1
Gi [x, y(ξ, η)]Nα(ξ, η) |J|dξdη, (2.52)

where |J| is the determinant of the Jacobian matrix; that is:

|J| = det

î1 î2 î3

∂y1

∂ξ

∂y2

∂ξ

∂y3

∂ξ

∂y1

∂η

∂y2

∂η

∂y3

∂η

 , (2.53)

with îk being the unit base vector along the yk axis.
Quadrilateral eight-node (Q8) quadratic elements (Figure 2.8) have also

been used widely in the BEM for 3D problems because of their accuracy and
flexibility in modeling curved surfaces. Using quadratic elements is even more
beneficial for the conventional BEM because they can deliver more accurate
results with fewer elements when the number of elements is limited by the
method or the computer.

2.7 Discretization of the Boundary Integral Equations for 3D Problems 33

1

2

1

3

2

4

ξ

η

3

8

7

6

5

Figure 2.8. A Q8 quadratic element for
3D problems.

In the natural coordinate system (ξ, η), the eight shape functions for Q8
elements are:

N1(ξ, η) = 1
4

(1 − ξ)(η − 1)(ξ + η + 1),

N2(ξ, η) = 1
4

(1 + ξ)(η − 1)(η − ξ + 1),

N3(ξ, η) = 1
4

(1 + ξ)(1 + η)(ξ + η − 1),

N4(ξ, η) = 1
4

(ξ − 1)(η + 1)(ξ − η + 1),

N5(ξ, η) = 1
2

(1 − η)(1 − ξ 2),

N6(ξ, η) = 1
2

(1 + ξ)(1 − η2),

N7(ξ, η) = 1
2

(1 + η)(1 − ξ 2),

N8(ξ, η) = 1
2

(1 − ξ)(1 − η2).

(2.54)

Again, we have the relation
∑8

α=1 Nα = 1 at any point (ξ, η) inside the ele-
ment. Both the physical fields and the geometry (coordinates) are interpolated
using these shape functions in a manner similar to that previously discussed for
Q4 elements.

It is difficult to evaluate analytically the singular (CPV) and hypersingular
(HFP) integrals on 3D curved elements. Therefore, the weakly singular forms
of the BIEs can be applied to avoid direct evaluation of such singular inte-
grals, especially using any numerical integration scheme. Treatment of various
singular integrals using the weakly singular forms of the BIEs and quadratic
surface elements can be found in Refs. [18, 46, 50–54].

34 Conventional Boundary Element Method for Potential Problems

S1

S2SI

V2V1

(φ1, q1)
(φ2, q2)

n

n

Figure 2.9. A multidomain problem.

2.8 Multidomain Problems

For multidomain problems, regions of different materials can be treated sepa-
rately first by the BEM and then assembled together with the interface condi-
tions. For example, suppose that we need to solve the potential problem in a
multiple domain comprising two material regions V1 and V2 with the interface
SI (Figure 2.9).

For region 1, we have the following BEM equation from Eq. (2.30):

[
F1 FI

1

]{φ1

φI
1

}
=

[
G1 GI

1

]{q1

qI
1

}
, (2.55)

and for region 2:

[
F2 FI

2

]{φ2

φI
2

}
=

[
G2 GI

2

]{q2

qI
2

}
, (2.56)

where fm and qm are the nodal values of φ and q, respectively, on the bound-
ary Sm of domain m; and φI

m and qI
m are the nodal values of φ and q, respec-

tively, on interface SI from domain m (here, m = 1 or 2). Applying the inter-
face conditions (assuming perfect bonding):

φI
1 = φI

2 ≡ φI ,

qI
1 = −qI

2 ≡ qI ,
(2.57)

we can write Eqs. (2.55) and (2.56) in a single matrix equation as:

[
F1 FI

1 0
0 FI

2 F2

]
φ1

φI

φ2

 =
[

G1 GI
1 0

0 −GI
2 G2

]
q1

qI

q2

 . (2.58)

Moving the unknown term qI to the left-hand side, we obtain:

[
F1 0 FI

1 −GI
1

0 F2 FI
2 GI

2

]
φ1

φ2

φI

qI

 =
[

G1 0
0 G2

]{
q1

q2

}
. (2.59)

2.9 Treatment of the Domain Integrals 35

It is noticed that for multidomain problems, the matrices of the BEM system
of equations become banded, which will be more obvious when more sub-
domains are involved. This is an advantage for solving the system of equations
because of the improved conditioning. For problems with slender domains,
even if they are not multidomain problems, we can apply the multidomain
technique to reduce the bandwidth of the equations.

2.9 Treatment of the Domain Integrals

If the function f (x) in CBIE (2.17) is not zero over a finite area or volume,
we need to deal with this domain integral that contains no unknown vari-
ables. There are several options in evaluations of the domain integrals. Some
basic approaches are reviewed briefly in the following subsections. More
advanced techniques for dealing with various domain integrals in the BEM
can be found in the literature, such as the dual reciprocal methods (see, e.g.,
Ref. [55]).

2.9.1 Numerical Integration Using Internal Cells

In this approach, we simply divide the domain V into L cells Vk (k =
1, 2, . . . , L) and proceed as follows, with the source point x placed at node i
on the boundary:

bi =
∫

V
G(x, y) f (y)dV(y) =

∫
V

Gi f dV =
L∑

k=1

∫
Vk

Gi f dV, (2.60)

where the integral on each cell can be evaluated numerically with a Gaussian
quadrature. The contribution bi is added to the right-hand side vector in Eq.
(2.31). The internal cells can be coarser and do not need to match the mesh
on the boundary. This is the easiest and earliest approach for dealing with the
domain integrals in the BEM. However, it is no longer used widely because
of the need to use the domain cells, which is not consistent with the boundary
approach.

2.9.2 Transformation to Boundary Integrals

A more elegant approach to deal with domain integrals is to transform them
into boundary integrals and use the same boundary mesh to evaluate them as
that used to solve the boundary variables. There were many methods devel-
oped in the past 30 years or so in this regard, including the dual reciprocal
methods. A very basic method is given here as an example.

36 Conventional Boundary Element Method for Potential Problems

Suppose that f (x) is a harmonic function (e.g., f is constant or linear over
the domain V); we have ∇2 f = 0. Next, we write the fundamental solution as:

G(x, y) = ∇2G∗(x, y). (2.61)

This is possible because for two dimensions, we have:

G∗(x, y) = 1
8π

[
log

(
1
r

)
+ 1

]
r2, (2.62)

and for three dimensions, we have:

G∗(x, y) = 1
8π

r. (2.63)

Applying the Green’s second identity (2.11), we evaluate:∫
V

G(x, y) f (y)dV(y) =
∫

V

(∇2G∗) f dV

=
∫

V
G∗ (∇2 f

)
dV +

∫
S

(
∂G∗

∂n
f − G∗ ∂ f

∂n

)
dS;

that is, ∫
V

G(x, y) f (y)dV(y) =
∫

S

(
∂G∗

∂n
f − G∗ ∂ f

∂n

)
dS, (2.64)

which transforms the domain integral into a boundary integral.

2.9.3 Use of Particular Solutions

In this approach, we simply seek to find a particular solution φ p of Eq. (2.1),
such that φ = φc + φ p and:

∇2φ p + f = 0, ∇2φc = 0. (2.65)

Thus, the free term f is taken care of by the particular solution φ p. The prob-
lem is reduced to solving a Laplace equation for φc under modified boundary
conditions.

2.10 Indirect Boundary Integral Equation Formulations

We can use the fundamental solutions to construct BIEs directly, without
using the Green’s identities. The BIEs constructed in this way often con-
tain density functions that do not have direct physical meanings. Thus, these
BIEs are called indirect BIE formulations. For example, consider the following
integral representation:

φ(x) =
∫

S
G(x, y)σ (y)dS(y), ∀x ∈ V, (2.66)

2.10 Indirect Boundary Integral Equation Formulations 37

which is called a single-layer potential [56]. It can be shown that φ(x) given by
(2.66) satisfies the Laplace equation [Eq. (2.1) with f = 0]. The density function
σ (y) has no clear physical meaning in this case. Field φ(x) can be determined
by Eq. (2.66) after the density function σ (y) is found on the boundary. Taking
the derivative of (2.66) and letting x approach boundary S, we can obtain the
following two BIEs:

φ(x) =
∫

S
G(x, y)σ (y)dS(y), ∀x ∈ S, (2.67)

∂φ

∂n
(x) =

∫
S

∂G(x, y)
∂n(x)

σ (y)dS(y) + 1
2
σ (x), ∀x ∈ S. (2.68)

If we use (2.67) on Sφ where φ is given (Dirichlet BC), we obtain from (2.67):

φ(x) =
∫

S
G(x, y)σ (y)dS(y), ∀x ∈ S, (2.69)

which is an integral equation of the first kind. If we use (2.68) on Sq where q is
given (Neumann BC), we obtain from (2.68):

q(x) =
∫

S

∂G(x, y)
∂n(x)

σ (y)dS(y) + 1
2
σ (x), ∀x ∈ S, (2.70)

which is an integral equation of the second kind. BEM equations based on
Eqs. (2.67) and (2.68) can be applied to solve for unknown density σ (y) over
the entire boundary S. Then, going back to the single-layer potential repre-
sentation of φ(x) in Eq. (2.66), we can evaluate φ(x) everywhere inside the
domain V. This is one of the indirect BIE formulations in the BEM.

Starting with the following double-layer potential [56] representation:

φ(x) =
∫

S

∂G(x, y)
∂n(y)

µ(y)dS(y), ∀x ∈ V, (2.71)

we can formulate another indirect BIE formulation for potential problems.
The advantages of using indirect BIE formulations are that fewer inte-

grals need to be computed to form the BEM system of equations, and bet-
ter conditioning of the BEM equations can be achieved by selecting integral
equations of the second kind based on the boundary conditions. The disad-
vantage of using indirect BIEs is obvious, in that the density functions σ (y)
and µ(y) are not the physical quantities directly, and a postprocessing step is
needed to obtain the field φ(x), which can offset the savings in forming the
BIE equations. In addition, better conditioning can always be achieved with a
combination of the CBIE and HBIE (direct BIEs), as discussed later.

38 Conventional Boundary Element Method for Potential Problems

Start
Initiate parameters

Read in the BEM model
(prep_model.f)

Compute the right-hand-side vector in Aλ = b
(bvector.f)

 Form the coefficient matrix in Aλ = b
(coefficient.f)

Call LAPACK direct solver
(dgesv.f)

Evaluate fields inside the domain
(domain_field.f)

Stop

Output the results

Figure 2.10. Flowchart for a conventional
BEM program for solving 2D potential prob-
lems.

2.11 Programming for the Conventional Boundary
Element Method

A sample program written in Fortran for solving general 2D potential prob-
lems is provided in Appendix B.1. In the conventional BEM approach, we
need to first form the BEM system of equations, as shown in Eq. (2.31), then
use a direct solver (e.g., using Gauss elimination) or an iterative solver (e.g.,
the generalized minimal residual method [GMRES]) to solve the linear sys-
tems, and finally we evaluate the field inside the domain if needed.

The flowchart as shown in Figure 2.10 is typical for conventional BEM
programs using the Fortran language. The main components of a BEM pro-
gram are subroutines for reading the model data (nodes, elements, BCs, and
field points inside the domain), computing the right-hand-side vector b, com-
puting the coefficients to form the system matrix A, solving the system of
equations (in this case, using the direct solver from LAPACK), evaluating
the field values inside the domain when needed, and writing the output files.

2.12 Numerical Examples 39

a b

O

V

Sb

Sa

Figure 2.11. A simple potential problem in an annular
region V.

The subroutines indicated in the flowchart in Figure 2.10 are those given in
Appendix B.1 for the program for solving general 2D potential problems with
the CBIE and using constant elements. Programs for other problems or using
other types of elements may need a few additional subroutines, such as those
for numerical integration of singular and nonsingular integrals.

For a beginner in BEM research and development, it is very important
and beneficial if he or she can write a 2D BEM code using the conventional
BEM approach first, so that he or she can understand the structure of a BEM
program and implementation of its major components. The program provided
in Appendix B.1 can serve as a starting point. Explanations of the main pro-
gram, subroutines, and main variables are provided within the code. A sample
input file is also provided in Appendix B.3, which can be used as a template
to prepare input files for other 2D potential problems. In this program, all the
integrals, including the singular ones, are computed with the analytical results
given in Appendix A.1, which is possible only with constant elements.

2.12 Numerical Examples

A few examples are given in this section to show the accuracy of the BEM for
solving potential problems. More examples, especially those involving large-
scale problems, are given in the next chapter related to the fast multipole
BEM.

2.12.1 An Annular Region

We first consider a simple potential (e.g., heat conduction) problem in a 2D
annular region, as shown in Figure 2.11, for which the available analytical
solution can be used to verify the BEM results. The BEM program given
in Appendix B.1 is used in this study. The field φ is given on the inner
boundary Sa , and the normal derivative is given on the outer boundary Sb.

40 Conventional Boundary Element Method for Potential Problems

Table 2.1. Results of the potential and
normal derivative for the annular region

N qa φb

36 −401.7715 376.7236
72 −400.4007 377.1410

360 −400.0148 377.2548
720 −400.0036 377.2579

1440 −400.0005 377.2586
2400 −400.0006 377.2588
4800 −400.0006 377.2589
7200 −399.9982 377.2589
9600 −399.9969 377.2589

Analytical solution −400.0000 377.2589

The analytical solution for this (axisymmetric) problem is given by:

φ(r) = φa + qbb log
(r

a

)
, (2.72)

where φa and qb are the given values of φ and q on boundaries Sa and Sb,
respectively, and r is the radial coordinate in a polar-coordinate system cen-
tered at O. This gives:

φb = φ(b) = φa + qbb log
(

b
a

)
, qa = ∂φ

∂n
(a) = −qb

b
a

. (2.73)

For this problem, we choose a = 1, b = 2, φa = 100, and qb = 200. This
gives:

φb = 377.258872, qa = −400.0.

We discretize the inner and outer boundaries with the same number of ele-
ments. Table 2.1 shows the results of φb and qa for this problem as the total
number of elements increases from 36 to 9600. As we can see, the results for
the BEM converge quickly to the exact solution for the mesh with only 72 con-
stant elements with a relative error of 0.1%. The results continue to improve
until reaching the mesh with 4800 elements. For the two larger meshes (with
7200 and 9600 elements), the results for qa deviate slightly from the exact solu-
tion, which may be caused by numerical errors that are due to the extremely
small elements in the mesh.

2.12.2 Electrostatic Fields Outside Two Conducting Beams

Next, we consider the electrostatic field surrounding two thin beams that are
applied with opposite voltages (Figure 2.12). This is an exterior problem that is
also governed by the Laplace equation. However, for this problem, a dual BIE
formulation that is a linear combination of CBIE (2.17) and HBIE (2.21) is

2.12 Numerical Examples 41

h

h

g

L

+V

– V

x

y

L σ +

σ

σ –

σ ––

++

d

Figure 2.12. Electrostatic field around two parallel beams.

used to overcome the difficulties associated with thin shapes if the CBIE is
applied alone [49, 57].

In Figure 2.12, the length of the beam is L, the thickness is h, and the
gap between the two beams is g. An offset d in the x direction also may be
introduced between the two beams. A potential (voltage) V is applied to the
top beam, and the negative potential (−V) is applied to the bottom beam. For
this problem, the analytical solution for the charge density σ− on the lower
surface of the top beam is given by (see, e.g., Ref. [58]):

σ− = ε
∂φ

∂n
= ε

�V
�n

= ε
2V
g

(2.74)

for the region away from the edges of the beams. This formula is used to verify
the BEM results.

The parameters used here are ε = 1, L = 0.01 m, h = 0.0001 m, g = 0.0011
m, d = 0, and V = 1. Constant elements are used. The number of elements
along the beam-length direction is increased from 10, 20, 50, to 100, and 5
elements are used on each edge (side) of the beams, corresponding to BEM
models with 30, 50, 110, and 210 elements per beam, respectively. The BEM
results obtained with the dual BIE formulations converge very quickly. Figure
2.13 shows the convergence of the BEM results for the charge densities on
the lower and upper surfaces of the top beam. In fact, the model with just 10
elements along the beam-length direction yields a value of σ− at the middle
of the lower surface of the top beam that agrees with the analytical solution
(σ− = 1818 in this case) within the first four digits.

Figure 2.14 shows the charge density on the top beam in the same parallel
beam model but with an offset d = g = 0.0011 m and using 210 elements per
beam. The charge densities in the middle of the beam remain the same (σ− =
1818), whereas the fields near the edges have marked changes. The charge
densities on the bottom beam have negative values and are “antisymmetrical”
relative to the results on the top beam and thus are not plotted.

–200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

x (m)

C
ha

rg
e

de
ns

it
y

10 elements/length 10 elements/length

20 elements/length 20 elements/length

50 elements/length 50 elements/length

100 elements/length 100 elements/length

σ σ– +

Figure 2.13. Convergence of the BEM results obtained using a dual BIE on the top
beam in the parallel beam model (ε = 1, L = 0.01 m, h = 0.0001 m, g = 0.0011 m, d =
0, and V = 1).

–200

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

3600

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
x (m)

C
h
ar

g
e

d
en

si
ty

top beam top beamσ − σ +

Figure 2.14. Charge density on the top beam in the parallel beam model with offset
(ε = 1, L = 0.01 m, h = 0.0001 m, g = 0.0011 m, d = g, V = 1, and 210 elements per
beam).

2.12 Numerical Examples 43

x

–0.4

–0.2

0

0.2

0.4

y

–0.4

–0.2

0

0.2

0.4
z

–0.4

–0.2

0

0.2

0.4

x y

z

Figure 2.15. A cube meshed with 768 elements and with linear potential in the x
direction.

2.12.3 Potential Field in a Cube

Two 3D examples are given next using a BEM program with constant sur-
face elements [59]. A cube is shown in Figure 2.15, which is a simple interior
problem used to show the accuracy of the 3D code with constant elements. The
cube has an edge length = 1 and is applied with a linear potential φ(x, y, z) = x
on all surfaces. The normal derivative q for this problem should be 1 on the
surface at x = 0.5 and −1 on the surface at x = −0.5.

Table 2.2 shows the results obtained with the conventional BEM and by
using the CBIE, HBIE, and dual BIE for BEM meshes with increasing num-
bers of elements. One can conclude from these results that the HBIE and the
dual BIE are equally as accurate as the CBIE. Note that constant triangular
elements are used in this study. If linear or quadratic elements were applied,
a few elements should have been sufficient for obtaining results with a similar
level of accuracy because of the specified linear field.

2.12.4 Electrostatic Field Outside a Conducting Sphere

A single conducting sphere model (Figure 2.16) is shown next. This is a simple
exterior problem with curved boundaries. The conducting sphere has a radius

44 Conventional Boundary Element Method for Potential Problems

Table 2.2. Results for the cube with a linear potential in the x direction

Model Normal derivative at (0.5, 0, 0)

Elem/edge Total DOFs CBIE HBIE Dual BIE

2 48 1.08953 1.07225 1.06800
4 192 0.99124 1.00624 0.99754
8 768 0.99825 1.00438 0.99894

12 1728 0.99908 1.00327 0.99934
16 3072 0.99942 1.00260 0.99953
20 4800 0.99959 1.00216 0.99963
24 6912 0.99969 1.00185 0.99970

Exact Value 1.00000

a = 1, and a constant electric potential φ0 = 1 is applied on its surface. The
analytical solution of the electric field outside the sphere is φ = (a/r)φ0, with r
being the distance from the center of the sphere, which gives a charge density
on the surface equal to 1, assuming the dielectric constant ε = 1.

Table 2.3 gives the BEM results of the charge density at the point (1, 0,
0) on the surface of the sphere. For this problem, the dual BIE is slightly less
accurate than the CBIE because of the curved surface that cannot be repre-
sented accurately by constant elements and can cause the evaluations of hyper-
singular integrals to be less accurate [59].

Several numerical examples for solving both 2D and 3D potential prob-
lems are presented in this subsection. Constant elements are used for all the
examples, and reasonably accurate BEM solutions are obtained. Linear or
quadratic elements can be applied to improve the accuracy of the BEM solu-
tions (see problems). These examples are used again in the next chapter on

x y

z

Figure 2.16. A spherical perfect conductor meshed with 4800 elements.

Problems 45

Table 2.3. Results for the single perfect
conducting sphere

Charge density at (1, 0, 0)
Model
DOFs CBIE Dual BIE

768 0.98749 0.95086
1728 0.99377 0.96609
3072 0.99634 0.97431
4800 0.99761 0.97937
6912 0.99832 0.98278

Exact Value 1.00000

the fast multipole solution techniques to demonstrate the computational effi-
ciencies of the fast multipole BEM for solving large-scale problems.

2.13 Summary

In this chapter, the BIE formulations for solving potential problems are pre-
sented. It is shown that the partial differential equation (Poisson equation or
Laplace equation) can be transformed into BIEs with the help of the funda-
mental solution and the Green’s identity. Both the conventional BIE and the
hypersingular BIE formulations are discussed. Weakly singular forms of these
BIEs are also presented to show that singular integrals in the BIE formula-
tions and therefore their BEM solutions can be avoided altogether if the inte-
gral terms are arranged properly. The discretization procedures are discussed
with constant, linear, and quadratic line elements for 2D problems and with
linear and quadratic surface elements for 3D problems. Programming for the
BEM using the conventional approach is discussed briefly, and several numer-
ical examples are presented.

This chapter is the basis for all other chapters dealing with fast multipole
solution techniques for potential, elasticity, Stokes flow, and acoustic wave
problems. The basic ideas, BIE formulations, BEM discretization procedures,
programming, and solutions for those problems are similar to these discussed
in this chapter. Therefore, it is very important to understand all of the material
covered in this chapter before moving on to the following chapters.

Problems

2.1. Show that G(x, y) given by Eq. (2.5) does satisfy Eq. (2.4); that is,
∇2G(x, y) = 0, for r �= 0; and near r = 0, −∇2G(x, y) behaves like a
δ(x, y) function. For example, − ∫

Vε
∇2G(x, y)dV(y) = 1, where Vε is a

circular region centered at x with radius ε.

46 Conventional Boundary Element Method for Potential Problems

2.2. Verify that φ given by integral representation (2.12) does satisfy Poisson
equation (2.1).

2.3. Show that:

r,i j = 1
r

(δi j − r,i r, j) , (2.75)

where r = √
(yi − xi)(yi − xi) is the distance between source point x and

field point y.
2.4. Verify the second integral identity for the fundamental solution G(x, y)

given in (2.8).
2.5. Show that CBIE (2.17) and HBIE (2.21) are also valid for infinite domain

problems; that is, contributions of integrals on boundaries at infinity
should vanish.

2.6. Verify the weakly singular form of the CBIE in (2.25) using integral iden-
tity (2.7).

2.7. Verify formulas in Eqs. (2.40) for linear elements.
2.8. Show that the result in Eq. (2.42) is true for infinite domain problems

regardless of which type of element is used.
2.9. Applying the program in Appendix B.1, solve the cylinder problem

shown in Figure 2.11 by using a quarter-symmetry model and compare
your results with those presented in Table 2.1.

2.10. Develop a program (in Fortran, C/C++, or Matlab) using linear line ele-
ments for solving general 2D potential problems. You can start with the
program using constant elements given in Appendix B.1.

2.11. Develop a program (in Fortran, C/C++, or Matlab) using quadratic line
elements for solving general 2D potential problems. You can start with
the program using constant elements given in Appendix B.1.

3 Fast Multipole Boundary Element Method
for Potential Problems

Although the BEM has enjoyed the reputation of ease in modeling or meshing
for problems with complicated geometries or in infinite domains, its efficiency
in solutions has been a serious drawback for analyzing large-scale models. For
example, the BEM has been limited to solving problems with only a few thou-
sand DOFs on a PC for many years. This is because the conventional BEM, as
described in the previous chapter, produces dense and nonsymmetric matri-
ces that although smaller in sizes, require O(N 2) operations for computing
the coefficients and O(N 3) operations for solving the system by using direct
solvers (N is the number of equations of the linear system or DOFs).

In the mid-1980s, Rokhlin and Greengard [33–35] pioneered the innova-
tive fast multipole method (FMM) that can be used to accelerate the solu-
tions of BEM by severalfold, promising to reduce the CPU time in FMM-
accelerated BEM to O(N). With the help of the FMM, the BEM can now solve
large-scale problems that are beyond the reach of other methods. We call the
fast multipole accelerated BEM fast multipole BEM or simply fast BEM from
now on to distinguish it from the conventional BEM described in the previ-
ous chapter. Some of the early work on fast multipole BEMs in mechanics can
be found in Refs. [36–40], which show the great promise of the fast multipole
BEM for solving large-scale problems. A comprehensive review of the fast
multipole BIE/BEM research up to 2002 can be found in Ref. [41].

In this chapter, the FMM for solving the BEM systems of equations for
potential problems is introduced. First, the fast multipole BEM for 2D poten-
tial problems is discussed in detail. Then, the fast multipole BEM for 3D
potential problems is introduced. Several examples of modeling large-scale
potential problems are provided. This chapter forms the basis for all subse-
quent chapters on fast multipole BEM approaches for elasticity, Stokes flow,
and acoustic wave problems.

47

48 Fast Multipole Boundary Element Method for Potential Problems

3.1 Basic Ideas in the Fast Multipole Method

To facilitate the discussion, the BEM system of equations (2.30) is repeated
here:

f11 f12 · · · f1N

f21 f22 · · · f2N
...

...
. . .

...
fN1 fN2 · · · fNN

φ1

φ2
...

φN

 =

g11 g12 · · · g1N

g21 g22 · · · g2N
...

...
. . .

...
gN1 gN2 · · · gNN

q1

q2
...

qN

 . (3.1)

After the boundary conditions are applied, a standard linear system of equa-
tions [Eq. (2.31)] is formed as follows by switching the columns in the two
matrices in Eq. (3.1):

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

λ1

λ2
...

λN

 =

b1

b2
...

bN

 , or Aλ = b, (3.2)

where A is the coefficient matrix, λ is the unknown vector, and b is the known
right-hand-side vector. Obviously, the construction of matrix A requires
O(N 2) operations and the size of the required memory for storing A is also
O(N 2) because A is, in general, a nonsymmetric and dense matrix. The solu-
tion of the system in Eq. (3.2) by use of direct solvers such as Gauss elimina-
tion is even worse, requiring O(N 3) operations because of this general matrix.
Even with iterative solvers, the solution time is still O(N 2). That is why the
conventional BEM approach for solving BIEs is, in general, slow and ineffi-
cient for large-scale problems despite its robustness in the meshing stage as
compared with other domain-based methods.

The main idea of the fast multipole BEM is to apply iterative solvers (e.g.,
GMRES) to solve Eq. (3.2) and use the FMM to accelerate the matrix–vector
multiplication (Aλ) in each iteration, without ever forming the entire matrix
A explicitly. Direct integrations are still needed when the elements are close
to the source point, whereas fast multipole expansions are used for elements
that are far away from the source point. Figure 3.1 is a graphical illustration of
the fast multipole BEM compared with the conventional BEM. For the far-
field calculations, the node-to-node (or element-to-element) interactions in
the conventional BEM [Figure 3.1(a)] are replaced with cell-to-cell interac-
tions [Figure 3.1(b)] by a hierarchical tree structure of cells containing groups
of elements (in Figure 3.1, the dots indicate nodes and cells and the lines indi-
cate the interactions needed). This is possible by use of the multipole and local
expansions of the integrals and some translations that are discussed in the fol-
lowing section. The numbers of lines represent the computational complexities

3.1 Basic Ideas in the Fast Multipole Method 49

(a) (b)

Figure 3.1. A graphical illustration of (a) the conventional BEM approach [O(N 2)],
and (b) the fast multipole BEM [O(N) for log N].

of the two approaches, and a dramatic decrease of operations in the fast mul-
tipole BEM is obvious from this illustration.

A fundamental reason for the reduction in operations in the fast multipole
BEM, as shown in Figure 3.1(b), is due to the fact that the Green’s functions
or the kernels in the BIEs can be expanded in the following form:

G(x, y) =
∑

i

Gx
i (x, yc)Gy

i (y, yc), (3.3)

where yc is an expansion point. This can be achieved by use of various forms
of expansions, including but not limited to Taylor series expansions. By using
an expansion as in Eq. (3.3), we can write the original integral, such as the one
with the G kernel in CBIE (2.17), as:∫

Sc

G(x, y)q(y)dS(y) =
∑

i

Gx
i (x, yc)

∫
Sc

Gy
i (y, yc)q(y)dS(y), (3.4)

where Sc is a subset of S away from x. In the conventional BEM, the integral is
computed with the expression on the left-hand side of Eq. (3.4) directly. Any
changes in the location of the source point x will require reevaluation of the
entire integral. In the fast multipole BEM, when the source point x is far away
from Sc, the original integral is computed with the expression on the right-
hand side of Eq. (3.4), in which the new integrals need to be evaluated only
once, independent of the locations of the source point x. That is, the direct
relation between x and y is cut off by use of the expansion and introduction
of the new “middle” point yc. Additional expansions and translations, as well
as the hierarchical tree structure of the elements, are introduced in the fast
multipole BEM to further reduce the computational costs.

Using the FMM for the BEM, we can reduce the solution time to O(N)
for large-scale problems [41]. We can also reduce the memory requirement
to O(N) because, with iterative solvers, the entire matrix does not need to be
stored in the memory. This drastic improvement in computing efficiency has
presented many opportunities for the BEM. Large BEM models with a couple

50 Fast Multipole Boundary Element Method for Potential Problems

1

2

r

Sc

z0

z
n

zLzL′

zc′
zc

0

Figure 3.2. Complex notation and the related
points for fast multipole expansions.

million DOFs that could not be solved by the conventional BEM before can
now be solved readily by using the fast multipole BEM within hours on a PC
or BEM models with tens of millions of DOFs on a supercomputer.

3.2 Fast Multipole Boundary Element Method
for 2D Potential Problems

In this section, we first discuss the expansions that are used in the FMM for
2D potential problems. Then, the main procedures and algorithms in the fast
multipole BEM are described.

We first consider the following integral with the G kernel in CBIE (2.17):∫
Sc

G(x, y)q(y)dS(y), (3.5)

in which Sc is a subset of boundary S and away from the source point x.
For convenience, we introduce complex notation; that is, we replace the

source point:

x ⇒ z0 = x1 + i x2

and the field point:

y ⇒ z = y1 + iy2

in the complex plane, where i = √−1 (Figure 3.2). Using the complex nota-
tion, we can write:

G(x, y) = Re{G(z0, z)}, (3.6)

where:

G(z0, z) = − 1
2π

log(z0 − z) (3.7)

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 51

is the fundamental solution in complex notation and Re{ } indicates the real
part of the variable or function. Thus, the integral in (3.5) is equivalent to the
real part of the following integral:∫

Sc

G(z0, z)q(z)dS(z), (3.8)

where q(z) is still a real-valued function of complex variable z.
We now introduce several important concepts in the FMM that form the

building blocks for the fast multipole BEM.

3.2.1 Multipole Expansion (Moments)

The first idea is to expand the kernel function to see if we can separate the
source point z0 (x) and field point z (y). To do this, we introduce an expansion
point zc that is close to the field point z (Figure 3.2); that is, |z − zc| � |z0 − zc|.
We can write:

G(z0, z) = − 1
2π

log(z0 − z) = − 1
2π

[
log(z0 − zc) + log

(
1 − z − zc

z0 − zc

)]
. (3.9)

Applying the following Taylor series expansion:

log(1 − ξ) = −
∞∑

k=1

ξk

k
, for |ξ | < 1, (3.10)

to the second logarithmic term on the right-hand side of Eq. (3.9), we obtain:

G(z0, z) = 1
2π

∞∑
k=0

Ok(z0 − zc)Ik(z − zc). (3.11)

We previously introduced two auxiliary functions Ik(z) and Ok(z) defined by:

Ik(z) = zk

k!
, for k ≥ 0;

Ok(z) = (k − 1)!
zk

, for k ≥ 1; and O0(z) = − log(z).

(3.12)

The derivatives of functions Ik(z) and Ok(z) satisfy:

I ′
k(z) = Ik−1(z), for k ≥ 1; and I ′

0(z) = 0;

O′
k(z) = −Ok+1(z), for k ≥ 0 .

(3.13)

In addition, we have the following two results:

Ik(z1 + z2) =
k∑

l=0

Ik−l(z1)Il(z2) =
k∑

l=0

Il(z1)Ik−l(z2);

Ok(z1 + z2) =
∞∑

l=0

(−1)l Ok+l(z1)Il(z2), for |z2| < |z1| .
(3.14)

52 Fast Multipole Boundary Element Method for Potential Problems

The first equation is simply the binomial formula and the second is simply a
Taylor series expansion of Ok about point z1.

Note that in the G kernel given in Eq. (3.11), z0 and z are now separated
because of the introduction of the “middle point” zc, which is a key in the
FMM. The integral in (3.8) is now evaluated as follows:∫

Sc

G(z0, z)q(z)dS(z) = 1
2π

∫
Sc

[∞∑
k=0

Ok(z0 − zc)Ik(z − zc)

]
q(z)dS(z);

that is, the multipole expansion:∫
Sc

G(z0, z)q(z)dS(z) = 1
2π

∞∑
k=0

Ok(z0 − zc)Mk(zc), (3.15)

where:

Mk(zc) =
∫

Sc

Ik(z − zc)q(z)dS(z), k = 0, 1, 2, . . . , (3.16)

are called moments about zc, which are independent of the collocation point z0

and need to be computed only once. After these moments are obtained, the G
kernel integral can be evaluated readily by using Eq. (3.15) for any collocation
point z0 away from Sc (which will be within a cell centered at zc).

We can evaluate the moments analytically by using the complex notation
on constant elements. Suppose we have a line element starting at point za and
ending at zb. From Eq. (3.16), the contribution to the moment from this ele-
ment can be evaluated as:

M(e)
k (zc) =

∫ zb

za

Ik(z − zc)q(z)dS(z) = qe

∫ zb

za

Ik(z − zc)dS(z)

= qe

∫ zb

za

(z − zc)k

k!
dS(z), (3.17)

in which qe is the nodal value of q on this element. Notice the relation:

dz = dy1 + idy2 =
[(

dy1

dS

)
+ i

(
dy2

dS

)]
dS = ωdS, (3.18)

where ω is the complex (unit) tangential vector along the boundary S. Using
this relation, we can evaluate the preceding moment contribution as:

M(e)
k (zc) = qe

∫ zb

za

(z − zc)k

k!
ωdz = qeω [Ik+1(zb − zc) − Ik+1(za − zc)] , (3.19)

where ω is the complex conjugate of ω. This analytical result can facilitate
very efficient and accurate evaluations of the moments defined in Eq. (3.16)
for constant elements.

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 53

3.2.2 Error Estimate for the Multipole Expansion

Errors in the multipole expansion are controlled by the number of terms used
in the expansion in (3.11). An error bound can be derived readily for this multi-
pole expansion (cf. results in Ref. [35]). If we apply a multipole expansion with
p terms in Eq. (3.15), we have for the error bound:

Ep
M ≡

∣∣∣∣∣
∫

Sc

G(z0, z)q(z)dS(z) − 1
2π

p∑
k=0

Ok(z0 − zc)Mk(zc)

∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣
∞∑

k=p+1

Ok(z0 − zc)Mk(zc)

∣∣∣∣∣∣
≤ 1

2π

∞∑
k=p+1

∣∣Ok(z0 − zc)
∣∣ ∣∣Mk(zc)

∣∣
≤ 1

2π

∞∑
k=p+1

∣∣Ok(z0 − zc)
∣∣ ∣∣∣∣∫

Sc

Ik(z − zc)q(z)dS(z)
∣∣∣∣

≤ 1
2π

∞∑
k=p+1

∣∣Ok(z0 − zc)
∣∣ ∫

Sc

∣∣Ik(z − zc)
∣∣ ∣∣q(z)

∣∣dS(z)

≤ A
2π

∞∑
k=p+1

∣∣Ok(z0 − zc)
∣∣ Rk

k!

= A
2π

∞∑
k=p+1

(k − 1)!

|z0 − zc|k
Rk

k!
≤ A

2π

∞∑
k=p+1

Rk

|z0 − zc|k

= A
2π

Rp+1

|z0 − zc|p+1

1
1 − R/|z0 − zc| ,

in which R is the radius of a region centered at zc such that:

|z − zc| < R and A ≡
∫

Sc

∣∣q(z)
∣∣dS(z). (3.20)

Let ρ = |z0 − zc|/R; the preceding estimate of the error bound can be written
as:

Ep
M ≤ A

2π

1
(ρ − 1)

(
1
ρ

)p

. (3.21)

We notice from estimate (3.21) that the larger the value of ρ, the smaller the
value of this estimate of the error bound. If ρ ≥ 2 – that is, when |z0 − zc| ≥
2R – we have the following estimate:

Ep
M ≤ A

2π

(
1
2

)p

. (3.22)

54 Fast Multipole Boundary Element Method for Potential Problems

An error bound can be used to estimate the number (p) of the expansion terms
so that it can be determined automatically by the computer program.

3.2.3 Moment-to-Moment Translation

If the expansion point zc is moved to a new location zc′ (Figure 3.2), we can
apply a translation to obtain the moment at the new location without recom-
puting the moment by using Eq. (3.16). We obtain this translation by consid-
ering the following for the moments:

Mk(zc′) =
∫

Sc

Ik(z − zc′)q(z)dS(z)

=
∫

Sc

Ik [(z − zc) + (zc − zc′)] q(z)dS(z).

Applying the binomial formula or the first equation in Eq. (3.14), we obtain:

Mk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ml(zc). (3.23)

This is the moment-to-moment (M2M) translation for the moments in which zc

is moved to zc′. Note that there are only a finite number of terms needed in
this translation; that is, no additional truncation error is introduced in M2M
translations.

3.2.4 Local Expansion and Moment-to-Local Translation

Next, we introduce another expansion, the so-called local expansion about
the source point z0 (x). Suppose zL is a point close to the source point z0

(Figure 3.2); that is, |z0 − zL| � |zL − zc|. From the multipole expansion in
Eq. (3.15), we have:∫

Sc

G(z0, z)q(z)dS(z) = 1
2π

∞∑
k=0

Ok(z0 − zc)Mk(zc)

= 1
2π

∞∑
k=0

Ok [(zL − zc) + (z0 − zL)] Mk(zc).

Applying the second equation in Eq. (3.14) with z1 = zL − zc and z2 = z0 − zL,
we obtain the following local expansion:∫

Sc

G(z0, z)q(z)dS(z) = 1
2π

∞∑
l=0

Ll(zL)Il(z0 − zL), (3.24)

where the local expansion coefficients Ll(zL) are given by the following
moment-to-local (M2L) translation:

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc). (3.25)

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 55

Similar to the multipole expansion, an estimate of the error bound for a
local expansion with p terms from Eq. (3.24) can be found as follows [35]:

Ep
L ≡

∣∣∣∣∣
∫

Sc

G(z0, z)q(z)dS(z) − 1
2π

p∑
l=0

Ll(zL)Il(z0 − zL)

∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣
∞∑

l=p+1

Ll(zL)Il(z0 − zL)

∣∣∣∣∣∣ ≤ A
[
4e(p + ρ)(ρ + 1) + ρ2

]
2πρ(ρ − 1)

(
1
ρ

)p+1

(3.26)

for any p ≥ max{2, 2ρ/(ρ − 1)}, where e is the base of the natural logarithm,
and A and ρ are as defined for estimate (3.21).

It is interesting to note that we can also derive the preceding results in
Eqs. (3.24) and (3.25) for the local expansion by starting from the following
expression:

G(z0, z) = − 1
2π

log(z0 − z) = 1
2π

∞∑
k=0

Ok(z − zL)Ik(z0 − zL), (3.27)

which is a Taylor series expansion of G(z0, z) about the point z0 = zL that we
can establish readily by using the Taylor series expansion as in Eq. (3.10). This
expansion is symmetrical to the one in Eq. (3.11), which is an expansion of
G(z0, z) about the point z = zc.

We start with the expansion in Eq. (3.27) and evaluate:∫
Sc

G(z0, z)q(z)dS(z)

= 1
2π

∞∑
k=0

[∫
Sc

Ok(z − zL)q(z)dS(z)
]

Ik(z0 − zL)

= 1
2π

∞∑
k=0

[∫
Sc

Ok ((z − zc) + (zc − zL)) q(z)dS(z)
]

Ik(z0 − zL)

= 1
2π

∞∑
k=0

[∫
Sc

∞∑
l=0

(−1)l Ok+l(zc − zL)Il(z − zc)q(z)dS(z)

]
Ik(z0 − zL),

where zc is an expansion point near z with |z − zc| � |zL − zc| and the second
relation in Eq. (3.14) has been applied. That is:∫

Sc

G(z0, z)q(z)dS(z)

= 1
2π

∞∑
k=0

[∞∑
l=0

(−1)l Ok+l(zc − zL)
∫

Sc

Il(z − zc)q(z)dS(z)

]
Ik(z0 − zL).

(3.28)

Invoking the definition of the moment in Eq. (3.16), we can obtain Eqs. (3.24)
and (3.25) for the local expansion from Eq. (3.28). This suggests that we can
also establish the local expansion directly by simply defining the moment

56 Fast Multipole Boundary Element Method for Potential Problems

by using Eq. (3.16) without introducing the multipole expansion as given in
Eq. (3.15).

3.2.5 Local-to-Local Translation

If the point for local expansion is moved from zL to zL′ (Figure 3.2), we
have the following expression by using a local expansion with p terms from
Eq. (3.24):∫

Sc

G(z0, z)q(z)dS(z) ∼= 1
2π

p∑
l=0

Ll(zL)Il(z0 − zL)

= 1
2π

p∑
l=0

Ll(zL)Il [(z0 − zL′) + (zL′ − zL)].

Applying the first result in Eq. (3.14) and the relation
∑p

l=0

∑l
m=0 =∑p

m=0

∑p
l=m , we obtain:∫

Sc

G(z0, z)q(z)dS(z) ∼= 1
2π

p∑
l=0

Ll(zL′)Il(z0 − zL′), (3.29)

where the new coefficients are given by the following local-to-local (L2L)
translation:

Ll(zL′) =
p∑

m=l

Im−l(zL′ − zL)Lm(zL). (3.30)

Replacing m − l with m, we can also write (3.30) in an alternative form:

Ll(zL′) =
p−l∑

m=0

Im(zL′ − zL)Ll+m(zL). (3.31)

Note again that L2L translations involve only finite sums and do not introduce
any new source of errors once the number of the local expansion terms p is
fixed.

3.2.6 Expansions for the Integral with the F Kernel

We now consider the integral with the F kernel in CBIE (2.17) in complex
notation: ∫

Sc

F(z0, z)φ(z)dS(z), (3.32)

where φ(z) is still a real-valued function of complex variables z, and F(z0, z) is
the F kernel in complex notation and can be written as:

F(z0, z) = ∂G
∂n

= (n1 + in2)G ′ = n(z)G ′, with G ′ ≡ ∂G
∂z

. (3.33)

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 57

Thus, the F kernel in real variables can be expressed as:

F(x, y) = Re{F(z0, z)} = n1 Re G ′ − n2 Im G ′. (3.34)

From Eq. (3.11), we have:

G ′ = 1
2π

∞∑
k=1

Ok(z0 − zc)Ik−1(z − zc), (3.35)

and the integral in Eq. (3.32) becomes:∫
Sc

F(z0, z)φ(z)dS(z) = 1
2π

∞∑
k=1

Ok(z0 − zc)M̃k(zc), (3.36)

in which:

M̃k(zc) =
∫

Sc

n(z)Ik−1(z − zc)φ(z)dS(z), k = 1, 2, 3, . . . , (3.37)

are the moments for the F kernel integral, similar to those in Eq. (3.16) for the
G kernel integral.

Again, on a constant element starting at point za and ending at zb, we can
evaluate the contribution to this moment analytically by using the relation in
Eq. (3.18):

M̃(e)
k (zc) =

∫ zb

za

n(z)Ik−1(z − zc)φ(z)dS(z) = φenω [Ik(zb − zc) − Ik(za − zc)] ,

(3.38)
where φe is the nodal value of φ on this element.

The M2M, M2L, and L2L translations remain the same for the F kernel
integral, except that M̃0 = 0. Therefore, all the translations used for Mk are
applied for M̃k directly.

3.2.7 Multipole Expansions for the Hypersingular Boundary
Integral Equation

For the two integrals in HBIE (2.21), we can obtain the multipole expansions
by directly taking derivatives of the related integrals in the CBIE. For exam-
ple, for the K kernel integral, we have the following relations:

K(z0, z) = ∂G
∂n(z0)

= n(z0)
∂G
∂z0

, (3.39)

∫
Sc

K(z0, z)q(z)dS(z) = n(z0)
∂

∂z0

∫
Sc

G(z0, z)q(z)dS(z)

= 1
2π

n(z0)
∞∑

l=1

Ll(zL)Il−1(z0 − zL),

58 Fast Multipole Boundary Element Method for Potential Problems

1

2 r

i (x)

y
n

V

S

Sj∆

Figure 3.3. Discretization of the bound-
ary S by use of constant elements.

by using Eq. (3.24) for the G kernel integral. That is, the local expansion for
the K kernel integral in the HBIE is given by:∫

Sc

K(z0, z)q(z)dS(z) = 1
2π

n(z0)
∞∑

l=0

Ll+1(zL)Il(z0 − zL), (3.40)

in which the same moments, M2M, M2L, and L2L translations for the G kernel
integral in the CBIE can be applied directly. The same relation exists between
the H kernel integral in the HBIE and the F kernel integral in the CBIE.

3.2.8 Fast Multipole Boundary Element Method Algorithms
and Procedures

We are now ready to discuss the algorithms in the FMM for solving 2D poten-
tial problems by using the BEM. These fast multipole algorithms are the basic
ones that can be extended readily to solve 3D potential problems and other
2D and 3D problems. Advanced algorithms, such as the adaptive algorithms,
that can further speed up the solutions of the BEM equations also exist in the
literature [60, 61].

An iterative solver, such as GMRES, is used to solve BEM equation (3.2).
Each equation in this system of equations represents the sum of the integrals
on all the elements when the source point is placed at one node. The FMM
is used to evaluate the integrals on those elements that are far away from the
source point, whereas the conventional approach is applied to evaluate the
integrals on the remaining elements that are close to the source point.
The detailed algorithms or procedures in the fast multipole BEM can be
described as follows:

Step 1. Discretization. For a given problem, discretize the boundary S in the
same way as in the conventional BEM approach. For example, we can
apply constant elements to discretize the boundary S of a 2D domain,
as shown in Figure 3.3.

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 59

0

3 2

1

1
2

3 4 5
6 7

8

9

10

11

12

13

14

15
16

17
181920

21

22

23

24

25

26

27

28

29

30

Figure 3.4. A hierarchical cell structure covering all of the boundary elements (the
small square on the right-hand side shows the numbering scheme for the child cells of
any given cell).

Step 2. Determine a tree structure of the boundary element mesh. For a 2D
problem, we first consider a square that covers the entire boundary
S and call this square the cell of level 0 (Figure 3.4). Then, we start
dividing this parent cell into four equal child cells of level 1. Continue
dividing in this way the cells that contain elements. For example, take
a parent cell of level l and divide it into four child cells of level l + 1.
Stop dividing a cell if the number of elements in that cell is fewer than
a prespecified number (for illustration only, this number is taken as
1 in the example shown in Figure 3.4). A cell having no child cells is
called a leaf (e.g., the shaded cells in Figure 3.4). Note that the edge
length of a cell at level l is given by L/2l , with L being the length of the
edge of the largest cell at level 0. In this process, an element is consid-
ered to be within a cell if the center of the element is inside that cell. A
quad-tree structure of the cells covering all the elements is thus formed
after this procedure is completed (Figure 3.5).

Step 3. Upward pass. Compute the moments on all cells, at all levels with l ≥
2, with up to p terms, and trace the tree structure upward (Figure 3.6).
For a leaf, Eq. (3.16) is applied directly (with Sc being the set of the

60 Fast Multipole Boundary Element Method for Potential Problems

0

0 1 2 3

0 1 2 0 2 3 0 2 3 1 2 3

Cell level:

1

0

2

3

1 2

3

4
29 30

19 20

10 9

0 1 3 3 0 1

1 3

1 3

12 11

1 3

1

2 3

2 3

3 2

8 7

2 3

4 5

6

23 24

0 2

1 3

25 22

21

1 2

14 13

0 1

18 17

0

0 1

15 16

26

0 2

1 2

2728
elements

Figure 3.5. A hierarchical quad-tree structure for the 2D boundary element mesh.

elements contained in the leaf and zc the centroid of the leaf). For a
parent cell, calculate the moment by summing the moments on its four
child cells using the M2M translation – that is, Eq. (3.23) – in which zc′
is the centroid of the parent cell and zc is the centroid of a child cell.
Note that the moments need to be computed again for each new iter-
ation of the solution because these moments involve the integration

Multipole expansion

M2M translation

Center of parent cells

Center of leaves

Figure 3.6. Upward pass: Multipole expansions and M2M translations (Step 3).

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 61

Cell C (direct)

Adjacent cells
(direct)

Cells in
interaction list

(M2L)

Far cells
(L2L)

Figure 3.7. Grouping of the cells for cell C at level l.

of the kernels and estimated boundary solutions from the previous
iteration.

Step 4. Downward pass. Let us first define a few terms used in describing the
downward pass (Figure 3.7). Two cells are said to be adjacent cells at
level l if they have at least one common vertex. (For two leaf cells
at different levels, if the parent cell of one of the leaf cells shares at
least a common vertex with the other leaf cell, they are also said to
be adjacent cells.) Two cells are said to be well separated at level l if
they are not adjacent at level l but their parent cells are adjacent at
level l − 1. The list of all the well-separated cells from a level l cell C
is called the interaction list of C. Cells are called to be far cells of C if
their parent cells are not adjacent to the parent cell of C.

In the downward pass, we compute the local expansion coeffi-
cients on all cells starting from level 2 and tracing the tree structure
downward to all the leaves (Figure 3.8). The local expansion associated
with a cell C is the sum of the contributions from the cells in the inter-
action list of cell C and from all the far cells. The former is calculated
by use of the M2L translation, Eq. (3.25), with moments associated
with cells in the interaction list. The latter is calculated by use of the
L2L translation, Eq. (3.30) or (3.31), for the parent cell of C with the
expansion point being shifted from the centroid of C’s parent cell to
that of C. For a cell C at level 2, we use only the M2L translation
to compute the coefficients of the local expansion. Figure 3.8 shows
how the local expansion coefficient is calculated through this down-
ward pass for cell C where node 29 is located in our example model
(see Figure 3.4).

62 Fast Multipole Boundary Element Method for Potential Problems

 M2L translation

 L2L translation

 Level 2 cell center

 Level 3 cell center

 Level 4 cell center

M2L at level 3

M2L at level 4

(a)

(b)

 Cell C

 M2L translation

 Level 2 cell center

Figure 3.8. Downward pass: M2L and L2L translations (Step 4). (a) Level 2 cells;
(b) levels 3 and 4 cells.

3.2 Fast Multipole Boundary Element Method for 2D Potential Problems 63

Direct evaluation

Local expansion

Level 3 cell center

Level 4 cell center

Collocation point

Node 29

A leaf cell (adjacent
to cell C)

Figure 3.9. Evaluation of all the integrals for a collocation point (Step 5).

Step 5. Evaluation of the integrals. We use the G kernel integral in Eq. (3.8) as
an example. Suppose the collocation point z0 is on an element in leaf C
(see Figure 3.7). We compute the contributions from elements in leaf
C and its adjacent cells directly as in the conventional BEM.

We compute contributions from all other cells (cells in the inter-
action list of C and far cells) by using the local expansion; that is, Eq.
(3.24). We do this by using the local expansion coefficients for cell C,
which were computed in Step 4, and shifting the expansion point from
the centroid of C to the collocation point z0 (see Figure 3.6). That is,
the integral is decomposed as follows:∫

S
G(z0, z)q(z)dS(z) =

∫
S Near

GqdS +
∫

S Far
GqdS, (3.41)

where the integral on S Near (cell C and its adjacent cells) is done
by direct integration as in the conventional BEM, and the integral on
S Far (cells in the interaction list and far cells for cell C) is done by the
FMM (M2L and L2L translations, respectively). Figure 3.9 shows how
the evaluation of all the integrals is done for node 29 in our example
model (see Figure 3.4).

Step 6. Iterations of the solution. The iterative solver updates the unknown
solution vector λ in the system Aλ = b and continues at Step 3 to eval-
uate the next matrix and vector multiplication (Aλ) until the solution
of λ converges within the given tolerance.

64 Fast Multipole Boundary Element Method for Potential Problems

The fast multipole algorithm discussed in this section is the original algo-
rithm, which is efficient for BEM models in which the elements are about the
same size and distributed uniformly in a bulky domain. For BEM models with
nonuniform element distributions and especially with large elements adjacent
to smaller elements, the so-called adaptive FMMs are more efficient, in which
the definitions of the adjacent cells and cells in the interaction list are further
refined. Discussions on the adaptive algorithms can be found in Refs. [60, 61].

3.2.9 Preconditioning

Applying a good preconditioner for the iterative solver is very beneficial, if
not crucial, for the convergence of the iterative solutions and the computa-
tional efficiency. Unlike that of the direct solver, the CPU time used by an
iterative solver in solving a linear system of equations is unpredictable. The
solution can converge within a few iterations for some cases, whereas it takes
a few hundred iterations in other cases, depending on the conditioning of the
system. It has been found that the number of iterations is directly related to
the condition number of the system of equations to be solved with iterative
solvers. To accelerate the iterative solution process – that is, to reduce the
number of iterations for a given tolerance – a preconditioning matrix can be
introduced to improve the conditioning of the BEM system matrix.

A simple and effective choice is to use a block diagonal preconditioner in
the form:

M =

A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
...

. . . 0
0 0 0 0 An

 , (3.42)

in which Ai is a submatrix of A with the coefficient formed on a leaf by direct
evaluation of the integrals within that leaf. Using the preconditioner matrix M,
we change the original system:

Aλ = b (3.43)

to (
M−1A

)
λ = M−1b (3.44)

for left preconditioning, or to:(
AM−1) (Mλ) = b (3.45)

for right preconditioning, both of which can potentially yield better condi-
tioned systems. Other forms of the preconditioners are also available, and it

3.3 Programming for the Fast Multipole Boundary Element Method 65

is still an important research topic to find a better preconditioner for the fast
multipole BEM in many applications. Further discussion on the precondition-
ers for multidomain and elasticity problems is provided in the next chapter
after the discussion of the fast multipole BEM for elasticity problems.

3.2.10 Estimate of the Computational Complexity

When the size of a BEM model is large, the estimated cost of the entire process
just described for the fast multipole BEM is O(N), with N being the number of
elements or nodes, if the number of terms p in the multipole and local expan-
sions and the maximum number of elements maxl allowed in a leaf are kept
constant [41]. This claim on the O(N) complexity of the fast multipole BEM
is based on the following observations:

� Nleaf = number of leaves in the mesh ∼= N/maxl = O(N)
� Ncell = number of cells ∼= Nleaf × (1 + 1/4 + 1/42 + 1/43 + · · · +) ≤ Nleaf ×

(4/3) = O(N)
� Number of adjacent cells = 9; number of cells in the interaction list = 27

(for 2D models)
� Number of operations in computing multipole moments = p × maxl ×

Nleaf = O(N)
� Number of operations in upward pass = Ncell × 4 × p2 = O(N)
� Number of operations in downward pass = Ncell × [

p2(L2L) + 27 × p2

(M2L)] = O(N)
� Number of operations in local expansions = N × p = O(N)
� Number of operations in direct evaluation of the integrals = N × 9 ×

maxl = O(N)

All the preceding estimates are at most O(N); therefore, the total com-
putational cost is also O(N). These estimates will be slightly different for 3D
cases and for dynamic problems. This O(N) efficiency in computing for the
fast multipole BEM is very significant when we solve large-scale problems, as
will be demonstrated later through the numerical examples.

3.3 Programming for the Fast Multipole Boundary Element Method

We now discuss the main structure of a fast multipole BEM code for solving
general 2D potential problems. This code, written in Fortran, is discussed in
Ref. [62] and is provided in Appendix B.2. This fast multipole BEM code for
general 2D potential problems can be used as the basis to develop fast multi-
pole BEM programs for 3D potential, as well as 2D and 3D elasticity, Stokes
flow, and acoustic wave problems, using constant or higher-order elements.

66 Fast Multipole Boundary Element Method for Potential Problems

Start the program
Initiate parameters and

call FMM BEM
(fmmmain.f)

Read in the BEM model
(prep_model.f)

Construct the tree structure
(tree.f)

Compute the right-hand-side vector b
(fmmbvector.f)

Call GMRES solver to
solve Aλ = b

(dgmres.f)

msolve.f

matvec.f

Output the results

Stop

upward.f

dwnwrd.f

upward.f

dwnwrd.f

moment.f

direct.f

moment.f

direct.f

Figure 3.10. Flowchart for a fast multipole BEM program.

The flowchart of this fast multipole BEM code for the 2D potential code is
given in Figure 3.10. The chart shows the main tasks for the program and the
related subroutines (functions). The source code (dgmres.f) for the iterative
solver GMRES (SLATEC GMRES package) can be downloaded from the
netlib website (http://www.netlib.org/).

The program for the fast multipole BEM is much more involved than the
program for the conventional BEM because of the tree structure of the cells
and various expansions. Because of the restrictions of the SLATEC GMRES
solver, a large array is needed in the program to pass the variables to the
GMRES solver. Therefore, the main purpose of the main program is to allo-
cate all the variables in this large array by calling the lpointer subroutine. Then,
the subroutine for the fast multipole BEM, fmmmain, is invoked, which can be
regarded as the starting point for the fast multipole BEM code. Explanations

3.3 Programming for the Fast Multipole Boundary Element Method 67

of all the main variables used in the program are given at the end of the main
program (see Appendix B.2). A few important subroutines in the program are
discussed in the following subsection, and other subroutines can be understood
readily by reading the source code directly.

3.3.1 Subroutine fmmmain

The fmmmain subroutine starts with calling subroutine prep model, which
reads in the data for the boundary nodes, elements, boundary conditions, and
field (interior) points from file input.dat (which is identical to the one used for
the conventional BEM code in Appendix B.1), and the additional parameters
used in the fast multipole expansions and solver GMRES from file input.fmm
(a sample file is given in Appendix B.3). It then generates the tree structure,
computes the right-hand-side b vector, solves the system of equations Aλ = b
using the GMRES solver, computes values at interior points, and finally out-
puts the results.

3.3.2 Subroutine tree

We create the quad-tree structure for the elements by calling the subroutine
tree, which is an essential piece of the entire code. The information of the
tree structure is stored in several arrays in the code. To understand how this
subroutine is used to create the tree structure, let us use the BEM model shown
in Figure 3.4 as the example.

Cells in the tree structure are numbered in the following way: The largest
cell at level 0 is called Cell 1, the four cells at level 1 are numbered 2, 3, 4, and
5, respectively, according to the order 0, 1, 2, 3, as shown in the side box in Fig-
ure 3.4. We continue in this way to level 2 cells and so on until we reach all the
leaves. Empty cells (without any elements) are ignored. Cell numbers for the
cells at levels 0, 1, and 2 for the model in Figure 3.4 are shown in Figure 3.11.

There are 30 elements in the model in Figure 3.4. The tree code sorts the
elements in each cell (using the nodes, which are at the centers of the ele-
ments), first in the y direction and then in the x direction (twice) by dividing
the elements into two groups according to the centerline in the related direc-
tion. This is done by invoking the subroutine bisec. Four child cells are formed
after this process, which continues until a leaf is reached (in this example, each
leaf contains only one element). The process can be illustrated as in Table 3.1,
which produces a tree structure with 4 levels, 53 cells, and 30 leaves, as shown
in Figure 3.5. The elements in the tree structure are rearranged (from left to
right as shown in Table 3.1 and Figure 3.5); this information is stored in array
ielem(k), which gives the original element number for the kth element in the
tree structure.

68 Fast Multipole Boundary Element Method for Potential Problems

Table 3.1. Regrouping the elements using the tree code for the model in Figure 3.4

Tree
level Sequences of the elements in the tree structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 1 2 3 26 27 28 29 30 4 5 6 7 8 9 10 19 20 21 22 23 24 25 11 12 13 14 15 16 17 18
2 29 30 1 2 3 26 27 28 4 5 6 7 8 9 10 22 23 24 25 21 19 20 11 12 13 14 17 18 15 16
3 29 30 1 2 3 27 28 26 4 5 6 7 8 9 10 25 23 24 22 21 20 19 11 12 13 14 18 17 15 16
4 30 29 1 2 3 28 27 26 4 5 6 7 8 9 10 25 24 23 22 21 20 19 11 12 13 14 18 17 16 15
ielem(k) 30 29 1 2 3 28 27 26 4 5 6 7 8 9 10 25 24 23 22 21 20 19 11 12 13 14 18 17 16 15

Five other arrays are used in the subroutine itree to store the additional
information for the tree structure: itree, loct, numt, ifath, and level.

Array itree(i) gives the cell location of the ith cell within its corresponding
tree level. At level l, the bounding square for the domain (Cell 0) is divided by
2l × 2l grids. The numbering of the 2l × 2l small squares starts from the lower-
left corner with numbers 0, 1, 2, 3, . . . , and so on, first in the x direction, then
in the y direction. For example, for Cell 5 in Figure 3.11, itree(5) = 3, and for
Cell 12, itree(12) = 8. Values of itree can be used to determine the locations
(coordinates) of the cells at all tree levels.

1
2

3 4 5 6 7

8

9

10

11

12

13

14

15
16

17
181920

21

22

23

24

25

26

27

28

29

30

Cell 1

Cell 2 Cell 3

Cell 4 Cell 5

Cell 6 Cell 7

Cell 8

Cell 9

Cell 10 Cell 11

Cell 12

Cell 13 Cell 14

Cell 15

Cell 16 Cell 17

Figure 3.11. Cell numbers for cells at levels 0, 1, and 2 for the model in Figure 3.4.

3.3 Programming for the Fast Multipole Boundary Element Method 69

Table 3.2. Values of the arrays defining the tree
structure for cells at levels 0, 1, and 2

Cell no. i itree(i) loct(i) numt(i) ifath(i)

1 0 1 30 1
2 0 1 8 1
3 1 9 7 1
4 2 16 7 1
5 3 23 8 1
6 0 1 2 2
7 1 3 3 2
8 4 6 3 2
9 2 9 2 3

10 3 11 1 3
11 7 12 4 3
12 8 16 4 4
13 12 20 1 4
14 13 21 2 4
15 11 23 4 5
16 14 27 2 5
17 15 29 2 5

...
...

...
...

...

Array loct(i) indicates the starting place of the elements included in the
ith cell in the array ielem. For example, for Cell 15 in Figure 3.11, loct(15) =
23.

Array numt(i) gives the number of elements included in the ith cell. For
example, numt(3) = 7 for Cell 3 in Figure 3.11.

Array ifath(i) gives the cell number of the parent cell of the ith cell. For
example, ifath(1) = 0 for Cell 1 and ifath(11) = 3 for Cell 11 in Figure 3.11.

The values of the arrays itree, loct, numt, and ifath for cells at levels 0, 1,
and 2 for the model in Figure 3.11 are listed in Table 3.2, which we can use to
understand the meanings of these arrays and the tree structure generated by
the subroutine tree.

Finally, array level(l) is used to indicate the starting cell number of all
level l cells in the tree structure. For the model in Figure 3.11, level(1) = 2,
level(3) = 6, and level(3) = 18.

3.3.3 Subroutine fmmbvector

After the tree structure is formed, we compute the right-hand-side b vector
by using the fast multipole algorithms using the subroutine fmmbvector. We
do this only once by calling the subroutines upward and dwnwrd. For large-
scale models, using the FMM in computing the right-hand-side b vector can

70 Fast Multipole Boundary Element Method for Potential Problems

also save significant CPU time as compared with using the conventional direct
method, which is also O(N2).

3.3.4 Subroutine dgmres

The dgmres subroutine is the GMRES solver in the SLATEC package from
www.netlib.org. One does not need to understand the inner workings of this
GMRES iterative solver to apply this subroutine. To use this GMRES solver,
one needs to prepare only two subroutines: msolve and matvec, which are two
external subroutines for dgmres.

The msolve subroutine prepares a preconditioning matrix for the itera-
tive solver GMRES. In this program, the preconditioning matrix is formed by
the block diagonal matrices based on the elements on the leaves. This pre-
conditioning matrix is computed only once in the first iteration with the direct
method and stored for use in all other iterations. This matrix is stored in the
array rwork, and the related information (location and dimensions of each
diagonal block matrix) is stored in array iwork.

The matvec subroutine provides the algorithm for the matrix–vector multi-
plication (Aλ) using the fast multipole algorithms by simply calling the upward
and dwnwrd subroutines using the values for the solution vector from the pre-
vious iteration.

3.3.5 Subroutine upward

The upward subroutine calculates the multipole moments for all cells from
leaves up to cells at level 2, climbing the tree structure upward and by using
the boundary values from the previous iteration. For leaves, the moments are
computed directly using the definition by calling the subroutine moment. For
parent cells, M2M translations are applied to form the moments from the
moments on their child cells.

3.3.6 Subroutine dwnwrd

The dwnwrd subroutine calculates the local expansions of the two integrals
with G and F kernels at each source point. For far cells, the contributions are
calculated with L2L translations. For cells in the interaction list, the contribu-
tions are calculated with M2L translations. For neighboring cells, direct inte-
grations are applied by calling the direct subroutine, which is a variation of the
coefficient subroutine used in the conventional BEM code (see Appendix B.1).

The 2D program just discussed can be extended readily to develop fast
multipole BEM programs for 3D potentials and 2D or 3D elasticity, Stokes

3.4 Fast Multipole Formulation for 3D Potential Problems 71

flow, and acoustic wave problems. For 3D problems, the major changes will
be in the tree structure, in which the quad-tree structure for 2D problems is
changed to an oct-tree structure.

3.4 Fast Multipole Formulation for 3D Potential Problems

In this section, the basic fast multipole expansions for 3D potential problems
are discussed. We can implement the 3D fast multipole BEM by extending
many of the results discussed in the previous sections for 2D potential prob-
lems. For example, the quad-tree structure for the elements in 2D problems
is extended to an oct-tree structure of elements in 3D problems, in which the
cells will be boxes and each parent cell will have eight child cells. The main
structure of a computer program for 3D problems remains the same as the
one discussed in the previous section for 2D problems.

First, we note that the kernel G(x, y) in Eq. (2.5) for 3D potential prob-
lems can be expanded as follows (see, e.g., Refs. [41, 61, 63]):

G(x, y) = 1
4πr

= 1
4π

∞∑
n=0

n∑
m=−n

Sn,m(x − yc)Rn,m(y − yc),
∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ ,
(3.46)

where yc is the expansion center close to the field point y and the overbar
indicates the complex conjugate. The two functions Rn,m and Sn,m are called
solid harmonic functions, given by:

Rn,m(x) = 1
(n + m)!

Pm
n (cos θ)eimφrn, (3.47)

Sn,m(x) = (n − m)!Pm
n (cos θ)eimφ 1

rn+1
, (3.48)

where (ρ, θ, φ) are the coordinates of x used here in a spherical coordinate
system (specifically, x1 = ρ sin θ cos φ, x2 = ρ sin θ sin φ, x3 = ρ cos θ) and Pm

n

is the associated Legendre function. In this book, the following definition of
the associated Legendre function is applied [64]:

Pm
n (x) = (1 − x2)m/2 dm

dxm
Pn(x), (3.49)

where Pn(x) is the Legendre polynomials of degree n [64]. In the literature, a
slightly different definition exists for the associate Legendre function, in which
a factor (−1)m is added to the right-hand side of Eq. (3.49).

72 Fast Multipole Boundary Element Method for Potential Problems

The kernel F(x, y) for 3D potential problems can also be expanded as
follows:

F(x, y) = ∂G(x,y)
∂n(y)

= 1
4π

∞∑
n=0

n∑
m=−n

Sn,m(x − yc)
∂ Rn,m(y − yc)

∂n(y)
,

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣ .

(3.50)

Applying expansions in Eqs. (3.46) and (3.50), we can evaluate the G and F
integrals in CBIE (2.17) on Sc (a subset of S that is away from source point x)
as follows:∫

Sc

G(x,y)q(y)dS(y) = 1
4π

∞∑
n=0

n∑
m=−n

Sn,m(x − yc)Mn,m(yc),
∣∣y − yc

∣∣< ∣∣x − yc
∣∣ ,

(3.51)∫
Sc

F(x,y)φ(y)dS(y) = 1
4π

∞∑
n=0

n∑
m=−n

Sn,m(x − yc)M̃n,m(yc),
∣∣y − yc

∣∣< ∣∣x − yc
∣∣ ,

(3.52)

where Mn,m and M̃n,m are the multipole moments centered at yc and defined
as:

Mn,m(yc) =
∫

Sc

Rn,m(y − yc)q(y)dS(y), (3.53)

M̃n,m(yc) =
∫

Sc

∂ Rn,m(y − yc)
∂n(y)

φ(y)dS(y). (3.54)

When the multipole expansion center is moved from yc to yc′, we apply the
following M2M translation:

Mn,m(yc′) =
∫

Sc

Rn,m(y − yc′)q(y)dS(y) =
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(yc − yc′)Mn−n′,m−m′(yc),

(3.55)
which is also valid for M̃n,m.

The local expansion for the G kernel integral on Sc is given as:∫
Sc

G(x,y)q(y)dS(y) = 1
4π

∞∑
n=0

n∑
m=−n

Rn,m(x − xL)Ln,m(xL), (3.56)

where the local expansion coefficients Ln,m(xL) are given by the following M2L
translation:

Ln,m(xL) = (−1)n
∞∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(xL − yc)Mn′,m′(yc), |x − xL| < ∣∣yc − xL
∣∣,

(3.57)
in which xL is the local expansion center.

3.4 Fast Multipole Formulation for 3D Potential Problems 73

The local expansion center can be shifted from xL to xL′ by the following
L2L translation:

Ln,m(xL′) =
∞∑

n′=n

n′∑
m′=−n′

Rn′−n,m′−m(xL′ − xL)Ln′,m′(xL). (3.58)

A similar local expansion and the same M2L and L2L translations are also
valid for the F kernel integral with the moment M̃n,m.

For HBIE (2.21) in three dimensions, we can obtain the local expansions
for the K and H integrals by taking the normal derivatives of the local expan-
sions for the G and F integrals, respectively. For example, we have for the K
kernel integral:

∫
Sc

K(x,y)q(y)dS(y) = 1
4π

∞∑
n=0

n∑
m=−n

∂ Rn,m(x − xL)
∂n(x)

Ln,m(xL), (3.59)

with Mn,m in M2L translation (3.57). A similar local expansion exists for the
H kernel integral in the HBIE. Therefore, the same moments, M2M, M2L,
and L2L translations used for the G and F integrals in the CBIE can be used
directly for the K and H integrals in the HBIE.

As mentioned previously, the implementation of the fast multipole BEM
for 3D problems can be done readily by extending the results from the 2D
case. First, the quad-tree structure used for 2D domains is replaced with an
oct-tree structure, in which each cell in the oct-tree structure is a cube or a
box. A parent cell will contain eight child cells for 3D problems. Other data
structures are similar to those in the 2D case, and the 2D fast multipole BEM
code discussed in the previous section can be modified readily to develop a
code for solving 3D potential problems.

However, the fast multipole BEM for 3D problems is much more com-
puting intensive than that for 2D problems because of the complexities of
the expansions and translations required in the formulation. Careful consid-
erations are needed in the computation of these expansions and translations;
for example, using various recursive relations in evaluating the solid har-
monic functions [63]. Adaptive algorithms [60, 61] based on further refined
tree structures and a new version of the FMM using diagonal translations
[61, 65, 66] have also been developed that can significantly improve the com-
putational efficiencies for solving large-scale 3D potential problems.

An adaptive fast multipole BEM code for solving 3D potential prob-
lems based on the work in Ref. [61] can be found at the author’s website
(http://urbana.mie.uc.edu/yliu/Software), where the program and sample input
files can be downloaded. This adaptive FMM BEM code is used in solving all
the 3D examples in the following section.

74 Fast Multipole Boundary Element Method for Potential Problems

Table 3.3. Results of the potential and normal derivative for the annular region

qa φb

Fast multipole Conventional Fast multipole Conventional
N BEM BEM BEM BEM

36 −401.7716 −401.7715 376.7237 376.7236
72 −400.4006 −400.4007 377.1410 377.1410

360 −400.0149 −400.0148 377.2548 377.2548
720 −400.0035 −400.0036 377.2579 377.2579

1440 −400.0007 −400.0005 377.2586 377.2586
2400 −400.0019 −400.0006 377.2588 377.2588
4800 −400.0016 −400.0006 377.2589 377.2589
7200 −399.9973 −399.9982 377.2588 377.2589
9600 −399.9977 −399.9969 377.2589 377.2589

Analytical solution −400.0000 377.2589

3.5 Numerical Examples

The same examples used in the previous chapter (see Section 2.12) with the
conventional BEM approach are solved again with the fast multipole BEM
programs. The accuracy and efficiency of the fast multipole BEM are com-
pared with those of the conventional BEM.

3.5.1 An Annular Region

We first solve the same 2D potential problem as described in Section 2.12.1
and shown in Figure 2.11. For the fast multipole BEM, the numbers of terms
for both moments and local expansions were set to 15, the maximum number
of elements in a leaf to 20, and the tolerance for convergence of the solution
to 10−8. The fast multipole BEM results converged in 11 iterations for the
smallest model (with 36 elements) and in 43 iterations for the largest model
(with 9600 elements). These numbers can be reduced to 9 and 28 iterations,
respectively, if the tolerance for convergence is reduced to 10−6.

Table 3.3 shows the results of φb and qa obtained for this problem by use of
the fast multipole BEM and compared with the conventional BEM as the total
number of elements increases from 36 to 9600. As we can see, the fast multi-
pole BEM is found to be as equally accurate as the conventional BEM with
moderate values for the parameters in the fast multipole BEM. The CPU times
used for both approaches in these calculations are plotted in Figure 3.12, which
shows the significant advantage of the fast multipole BEM in savings compared
with those of the conventional BEM. For example, for the largest model with
9600 elements, the fast multipole BEM used fewer than 17 s, whereas the con-
ventional BEM used about 7500 s of CPU time on a laptop PC with a Pentium
IV 2.4-GHz CPU.

3.5 Numerical Examples 75

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
DOFs

To
ta

l C
P

U
 ti

m
e

(s
)

Conventional BEM

FMM BEM

Figure 3.12. Comparison of the CPU times used by the conventional BEM and the
FMM BEM.

3.5.2 Electrostatic Fields Outside Conducting Beams

We next study the simplified 2D models of comb drives used in microelectro-
mechanical systems (MEMSs) by using the developed fast multipole BEM and
comparing it with the conventional BEM. Both the CBIE and the dual BIE
(CHBIE) formulations are used for this study. For the fast multipole BEM,
the numbers of terms for both moments and local expansions are set to 15, the
maximum number of elements in a leaf to 100, and the tolerance for conver-
gence of the solutions to 10−6.

The comb-drive models are built with the basic two-parallel-beam model
used in Chapter 2 and shown in Figure 2.12. The parameters used are ε = 1,
L = 0.01 m, h = 0.0002 m, g = 0.0003 m, d = 0.0005 m, and V = 1. Figure
3.13 shows a model with 17 beams. The two support beams on the left-hand
and right-hand sides are not modeled in the BEM discretization. Two hundred
elements are used along the beam length and five elements on each edge (with
a total of elements equal to 410 for each beam). When more beams are added
into the model, the number of elements along the beam length is increased to
400.

Figure 3.14 shows the computed charge densities on the center beam
(beam 1) with positive voltage and the beam just below the center beam (beam
2) with negative voltage for the model with 17 beams shown in Figure 3.13.

x(m)

y(
m

)

0 0.002 0.004 0.006 0.008 0.01

–0.004

–0.002

0

0.002

0.004

+V –V

Figure 3.13. A 2D comb-drive model with 17 beams.

x(m)

C
ha

rg
e

de
ns

it
y

0 0.002 0.004 0.006 0.008 0.01

–10,000

–5000

0

5000

10,000

On beam 1 (V = +1)

On beam 2 (V = –1)

Figure 3.14. Charge densities on center beam 1 and beam 2 (below the center beam).

76

3.5 Numerical Examples 77

1
103 104 105 106

10

100

1000

10,000

DOFs

C
P

U
 T

im
e

(s
)

Conventional BEM with Dual BIE

Fast Multipole BEM with Regular BIE

Fast Multipole BEM with Dual BIE

Figure 3.15. CPU times for the conventional BEM and fast multipole BEM.

Because of the symmetry of the fields above and below each beam, the charge
densities on the top and bottom surfaces of each beam are identical; thus, only
one field is plotted for each beam. The charge densities on the two beams are
also of opposite sign and “antisymmetrical,” as expected. It should be noted
that the fields in MEMS are more complicated than those that the simple
parallel-beam models can represent, especially near the edges of the beams,
because of the simplified geometries used.

Figure 3.15 shows the CPU time comparison in which the conventional
BEM and the fast multipole BEM are used in solving these simple comb-drive
models on the 2.4-GHz Pentium IV laptop PC. Again, the conventional BEM
can solve models only with up to 10,000 DOFs. Conversely, the fast multi-
pole BEM with the dual BIE converges faster than the one with the regular
BIE (CBIE alone) because of the better conditioning of the dual BIE for-
mulation. The fast multipole BEM results converge in about 30 to 70 itera-
tions when the dual BIE is used and in about 50 to more than 100 iterations
when the regular BIE is used. It is evident from these studies that the dual
BIE is very effective in solving MEMS problems with thin beams and the fast
multipole BEM using the dual BIE is very efficient in solving large-scale 2D
models.

78 Fast Multipole Boundary Element Method for Potential Problems

Table 3.4. Results for the cube with a linear potential in the x direction

Charge density at (0.5, 0, 0)

Model Conventional BEM Fast multipole BEM

Elem/edge DOFs CBIE HBIE CHBIE CBIE HBIE CHBIE

2 48 1.08953 1.07225 1.06800 1.08955 1.07278 1.06843
4 192 0.99124 1.00624 0.99754 0.99124 1.00624 0.99754
8 768 0.99825 1.00438 0.99894 0.99825 1.00438 0.99894

12 1728 0.99908 1.00327 0.99934 0.99908 1.00327 0.99934
16 3072 0.99942 1.00260 0.99953 0.99943 1.00260 0.99953
20 4800 0.99959 1.00216 0.99963 0.99962 1.00218 0.99965
24 6912 0.99969 1.00185 0.99970 0.99969 1.00184 0.99969
28 9408 − − − 0.99976 1.00161 0.99975
32 12288 0.99981 1.00143 0.99979

Exact value 1.00000

3.5.3 Potential Field in a Cube

The cube problem used in Subsection 2.12.3 and shown in Figure 2.15 is solved
with the 3D fast multipole BEM code and compared with the conventional
BEM. For the fast multipole BEM, 15 terms are used in all of the expansions
and the tolerance for convergence is set to 10−6.

Table 3.4 shows the results obtained with the fast multipole BEM and
compared with those of the conventional BEM, using the CBIE, HBIE, and
CHBIE, for BEM meshes with increasing numbers of elements. We can con-
clude from these results that the HBIE and CHBIE are equally as accurate
as the CBIE; so is the fast multipole BEM compared with the conventional
BEM. Constant triangular elements are used in this study. If linear or
quadratic elements were applied, a few elements should have been sufficient
for obtaining results of a similar accuracy because of the specified linear field.

3.5.4 Electrostatic Field Outside Multiple Conducting Spheres

In this example, 11 perfectly conducting spheres (Figure 3.16) are analyzed
with the fast multipole BEM. The center large sphere has a radius of 3; the 10
small spheres have the same radius of 1, and are distributed evenly on a circle
with a radius of 5 and cocentered with the large sphere. A constant electric
potential φ = +5 is applied to the large sphere and five of the small spheres,
and a potential φ = −5 is applied to the other five small spheres (Figure 3.16).
For the fast multipole BEM, elements per leaf are limited to 200, 10 terms are
used in the expansions, and the tolerance for convergence is set to 10−4.

The charge densities on the surfaces of the spheres are plotted in Fig-
ure 3.17 with the mesh using 10,800 elements per sphere. The plots are almost

3.5 Numerical Examples 79

5+=φ

5−=φ

yx

z

Figure 3.16. An 11-spherical perfect conductor model.

identical among the different meshes and exhibit the same symmetrical pat-
tern, as it should be. Table 3.5 shows the maximum and minimum values of
the charge densities on the spheres when the different meshes are used. These
values are very stable and converged within the first two significant digits
(except for the last set of data with the CBIE). Further improvements can be
achieved by using a tighter set of parameters for the fast multipole BEM (e.g.,
more expansion terms and smaller tolerance). The last two columns of Table
3.5 show the numbers of iterations with the GMRES solver for the CBIE and
the CHBIE. The numbers of iterations for the CHBIE is about half those for
the CBIE because of the better conditioning of the systems of equations based
on the CHBIE.

3.5.5 A Fuel Cell Model

Next, an example of more challenging problems is presented. Figure 3.18(a)
shows a solid oxide fuel cell (SOFC) model with nine cells used for thermal
analysis. There are 1000 small holes on the inner and outer surfaces of each

q

yx

z

 10
 8
 6
 4
 2
 0
−2
−4
−6
−8
−10
−12
−14
−16

Figure 3.17. Contour plot of the charge densities on the spheres.

80 Fast Multipole Boundary Element Method for Potential Problems

Table 3.5. Results for the 11-sphere model obtained with the fast multipole BEM

Charge densities on the spheres Numbers of
Model min max iterations

Elem/sphere DOFs CBIE CHBIE CBIE CHBIE CBIE CHBIE

768 8448 −16.4905 −15.5285 11.1837 10.3923 14 8
1200 13200 −16.5363 −15.7922 11.2218 10.5920 15 8
1728 19008 −16.6322 −15.9618 11.2558 10.7156 17 8
2352 25872 −16.6436 −16.0789 11.2746 10.8041 18 8
3072 33792 −16.6733 −16.1618 11.3792 10.9160 19 8
3888 42768 −16.6648 −16.2195 11.3810 10.9464 20 7
4800 52800 −16.7435 −16.2671 11.3787 10.9763 20 8
7500 82500 −16.7068 −16.3614 11.2964 11.0283 21 8

10800 118800 −17.1157 −16.4279 12.6511 11.0851 22 7

cylindrical cell, with a total of 9000 holes for the entire stack model. Because
of the extremely complicated geometry, the FEM (e.g., ANSYS R©) can model
only one cell on a PC with 1-GB RAM. For the fast multipole BEM, how-
ever, multicell models can be handled readily, such as the nine-cell stack mod-
eled successfully with 530,230 elements and solved on a desktop PC with 1-GB
RAM [Figure 3.18 (b)].

3.5.6 Image-Based Boundary Element Method Models and Analysis

In recent years, digital models using 3D scanning technologies have attracted
much attention in many engineering fields, such as reverse engineering and
biomedical engineering applications. Computer-scanned images are often

(a) (b)

950
900
850
800
750
700
650
600
550
500
450

x

y z

φ

Figure 3.18. A fuel cell model using the fast multipole BEM: (a) 3 × 3 stack model;
(b) computed temperature.

3.5 Numerical Examples 81

complicated in geometry and difficult to mesh and analyze with the domain-
based methods because of the lack of the volume data from the scanned
images. The scanned data are surface-based and usually in stereolithography
(STL), nonuniform rational B spline (NURBS), and other file formats. Con-
struction of the volume using these surface data is time-consuming and often
inaccurate. Conversely, meshing the boundary of a scanned object using the
surface data is straightforward and can be as accurate as the resolution of the
scanner allows.

The fast multipole BEM seems to be a very natural choice to be inte-
grated for the image-based analysis of various engineering problems. Bound-
ary meshes can be obtained quickly from the scanned surface data, especially
data in the STL format. Fast and accurate analysis using the fast multipole
BEM can then be obtained. The potentials of the integration of the fast mul-
tipole BEM with 3D imaging technologies are huge in applications of reverse
engineering, material characterizations, and biomedical applications.

A couple of examples are presented here to show the potential of the
image-based analysis with the fast multipole BEM. This work is described in
more detail in Ref. [67]. Figure 3.19 shows oil-lamp models generated by a
3D laser scanner and analyzed by both the FEM (ANSYS R© software) and the
3D fast multipole BEM code [61]. The FEM volume mesh contains 403,271
tetrahedral elements, whereas the BEM mesh has 42,810 triangular elements
to maintain a similar surface mesh density as in the FEM mesh. The top of
the lamp is applied with a temperature of one unit and the bottom with a zero
temperature. The other surfaces have zero-flux BCs. The two computed tem-
perature results are comparable, as shown in the figure. The CPU times are
close to 1 h for the ANSYS solution and less than 15 mins for the fast multi-
pole BEM simulation, computed on a 3.2-GHz Pentium IV desktop PC.

Figure 3.20 shows a microscale model and thermal analysis of a weak tra-
becular bone sample using a 3D microscanner together with the fast multipole
BEM code. There are about 200,000 elements in this model, and the model
was solved in 3.4 h on the Pentium IV PC. The longer CPU time in solv-
ing this model is due to the increased number of iterations. Because of the
many thin shapes in this complicated model, the conditioning of the BEM sys-
tem of equations worsened; thus, it requires more iterations when the itera-
tive solver is used. More discussions of the preceding results can be found in
Ref. [67].

All of the preceding numerical examples clearly demonstrate the accu-
racy and efficiency of the fast multipole BEM for solving large-scale 2D and
3D potential problems. In all of the cases, constant elements were applied
to implement the fast multipole BEM. Constant elements can certainly be
replaced with higher-order elements to improve the accuracy of a fast mul-
tipole BEM code. However, this may not be advantageous, considering the

82 Fast Multipole Boundary Element Method for Potential Problems

(a) (b)

.111111
.222222

.333333
.444444

.555556
.666667

.777778
.888889

1

T

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0

(c) (d)

Figure 3.19. Image-based thermal analysis of an oil lamp model: (a) FEM volume
mesh, (b) FEM temperature results, (c) BEM surface mesh, (d) BEM temperature
results.

160

180

200

220

240

160

180

200

220

240

−100

0

100

50

0

−50

−50
x

100

50

−50

xy

−100

0

0

z

x y

−50
y

z z

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

T

z

x y

(a) (b)

Figure 3.20. Image-based thermal analysis of a trabecular bone microstructure:
(a) BEM surface mesh, (b) BEM temperature results.

Problems 83

efficiency of the code for large-scale problems. For constant elements, all the
integrals can be evaluated analytically for all nonsingular, nearly singular, and
singular cases. There are no numerical integrations in the code. Therefore, the
code can be very efficient. For higher-order elements, however, this is not the
case, and we have to use numerical integration in the direct evaluations of
the integrals that can involve singular and nearly singular integrals. This com-
plicates the code and reduces the efficiency of the fast multipole BEM solu-
tions for large-scale problems.

3.6 Summary

An introduction of the fast multipole BEM is presented in this chapter for
2D and 3D potential problems. The main idea of the fast multipole BEM is
to replace the element-to-element interactions, which are costly to compute,
with cell-to-cell interactions through the introduction of the multipole expan-
sions of the kernels and related translations that are integrated with a hier-
archical tree structure of the boundary elements. Complete formulations and
implementation details of the fast multipole BEM are provided in this chapter.
The Fortran code provided in Appendix B is also discussed; it can be used to
solve 2D potential problems, to learn the structure of a fast multipole BEM
code, and to expand it to solve other large-scale 2D and 3D problems. Sev-
eral numerical examples are presented to demonstrate the accuracy, efficien-
cies, and usefulness of the fast multipole BEM for solving large-scale 2D and
3D potential problems, especially in new technologies such as image-based
modeling and simulations in reverse engineering and biomedical engineering.
The fast multipole BEM algorithms and code presented in this chapter are
the essence of the discussions in this book that should be studied thoroughly
before one embarks on studying other topics in the fast multipole BEM. The
approaches and the code discussed in this chapter can also be extended read-
ily to solve 2D and 3D vector (elastostatic and Stokes flow) and 2D and 3D
acoustic problems, as well as many other problems in applied mechanics.

Problems

3.1. Show that for two functions f1(N) = aN 2 and f2(N) = bN, one can
always have f1 � f2 for sufficiently large N, no matter how small the
value of a and how large the value of b can be.

3.2. Verify Eq. (3.6) with Eq. (3.7); that is, the real part of G(z0, z) in (3.7)
does give the real-valued Green’s function G(x, y) in real variables.

3.3. Derive expression (3.11) for the complex Green’s function by using a
Taylor series expansion.

3.4. Derive the L2L translation given in Eq. (3.30).

84 Fast Multipole Boundary Element Method for Potential Problems

3.5. Verify Eq. (3.34) with Eq. (3.33).
3.6. Write a computer code to generate the quad-tree structure shown in

Figure 3.5 for the boundary element mesh shown in Figure 3.4.
3.7. Continuing Problem 2.9 in Chapter 2, apply the 2D fast multipole BEM

code to the quarter-symmetry annular region model. Compare the accu-
racy and efficiency of the results obtained with the conventional BEM and
the fast multipole BEM.

3.8. Develop a 2D potential fast multipole BEM code using linear elements,
based on the 2D potential fast multipole BEM code given in Appendix
B.2 and with constant elements. Compare the accuracy and computational
efficiency of the developed code with those of the code using constant
elements.

3.9. Develop a 3D potential fast multipole BEM code using constant triangular
elements by extending the 2D potential fast multipole BEM code given in
Appendix B.2.

4 Elastostatic Problems

The direct BIE formulation and its numerical solutions using the BEM for 2D
elasticity problems were developed by Rizzo in the early 1960s and published
in Ref. [4] in 1967. Following this early work, extensive research efforts were
made for the development of the BIE and BEM for solving various elastic-
ity problems (see, e.g., Refs. [24–28]). The advantages of the BEM for solv-
ing elasticity problems are the accuracy in modeling stress concentration or
fracture mechanics problems and the ease in modeling complicated elastic
domains such as various composite materials.

The FMM was applied to solving elasticity problems for more than a
decade. For 2D elasticity problems, Greengard et al. [68, 69] developed a fast
multipole formulation for solving the biharmonic equations using potential
functions. Peirce and Napier [36] developed a spectral multipole approach that
shares some common features with the FMMs. Richardson et al. [70] proposed
a similar spectral method using both 2D conventional and traction BIEs in
the regularized form. Fukui [71] and Fukui et al. [72] studied both the conven-
tional BIE for 2D stress analysis and the HBIE for large-scale crack problems.
In his work, he first applied the complex variable representation of the ker-
nels and then used the multipole expansions in complex variables as originally
used for 2D potential problems [35, 62]. Liu [73, 74] further improved Fukui’s
approach and proposed a new set of moments for 2D elasticity CBIEs, which
yields a very compact and efficient formulation with all the translations being
symmetrical regarding the two sets of moments. Wang and Yao [75] also stud-
ied crack problems by using a dual BIE approach, with the CBIE collocating
on one surface of a crack and HBIE on the other. They expanded the kernel
functions in their original forms by using complex Taylor series in an auxiliary
way following the approach in Ref. [76].

For 3D elasticity problems, Fu et al. [38] formulated the BIE for 3D elas-
tic inclusion problems by using the FMM. Some other earlier development of
the fast multipole BEM for general 3D elasticity problems can be found in
Ref. [77] and for crack problems in Refs. [39, 78, 79]. Large-scale modeling of

85

86 Elastostatic Problems

composite materials using the fast multipole elasticity BEM can be found in
Refs. [80–82].

In this chapter, the governing equations for elasticity problems are
reviewed first. Then, the fundamental solutions are introduced and the BIEs
are established. The conventional BEM approach is discussed briefly, followed
by discussions on the FMM for solving the BIEs for 2D and 3D elasticity prob-
lems in both single and multiple domains. Numerical examples are provided
to demonstrate the accuracy and efficiencies of the fast multipole BEM for
solving large-scale elasticity problems.

4.1 The Boundary-Value Problem

Consider the displacement ui , strain εi j , and stress σi j in a linearly elastic solid
occupying domain V with boundary S. The governing equations for these elas-
tic fields are as follows:

Equilibrium equations:

σi j , j + fi = 0, in V, (4.1)

where fi is the body force.

Strain–displacement relation:

εi j = 1
2

(ui , j +u j ,i), in V. (4.2)

Stress–strain relation (constitutive equations):

σi j = Ei jklεkl , in V, (4.3)

where Ei jkl is the elastic modulus tensor given by:

Ei jkl = λδi jδkl + µ(δikδ jl + δilδ jk) (4.4)

for isotropic materials, and λ and µ are the Lamé constants that are related to
Young’s modulus E and Poisson’s ratio ν by:

λ = Eν

(1 + ν)(1 − 2ν)
, µ = E

2(1 + ν)
. (4.5)

The boundary conditions for an elasticity problem can be described by:

ui = ui on Su (displacement BC), (4.6)

ti = σi j n j = ti on St (traction BC), (4.7)

where the overbar indicates the given value, ti is the traction, ni are the com-
ponents of the outward normal, and Su ∪ St = S.

The main objective in elasticity is to solve for the fields ui , εi j , and σi j using
governing equations (4.1), (4.2), and (4.3) under the BCs in (4.6) and (4.7).

4.2 Fundamental Solution for Elastostatic Problems 87

r

x

y
U31

R3

1

2

3

U33

U32

P = 1

Figure 4.1. An infinite elastic domain applied with a unit concentrate force P at x.

4.2 Fundamental Solution for Elastostatic Problems

Consider the full infinite space (R2 for two dimensions or R3 for three dimen-
sions) filled by an elastic material. Apply a unit concentrate force P at point
x in the ith direction. The responses (displacement, strain, and stress) at any
point y that are due to this unit force are called the fundamental solution (or
Kelvin’s solution) in elasticity (Figure 4.1).

The stress component �i jk(x, y) in the fundamental solution satisfies the
following equilibrium equation:

�i jk,k (x, y) + δi jδ(x, y) = 0, ∀x, y ∈ R2/R3, (4.8)

where () ,k = ∂ () /∂yk , the first index i indicates the direction of the unit con-
centrated force at the source point x, and the Dirac δ function δ(x, y) repre-
sents the body force corresponding to the unit concentrated force.

For 2D (plane-strain) problems, the displacement and traction compo-
nents in the fundamental solution are given by:

Ui j (x, y) = 1
8πµ(1 − ν)

[
(3 − 4ν)δi j log

(
1
r

)
+ r,i r, j −1

2
δi j

]
, (4.9)

Ti j (x, y) = − 1
4π(1 − ν)r

{
∂r
∂n

[(1 − 2ν)δi j + 2r,i r, j] − (1 − 2ν) (r,i n j − r, j ni)
}

,

(4.10)

in which the index i indicates the direction of the unit force at the source
point x and the index j indicates the jth component of the field at the field
point y. For plane-stress problems, Poisson’s ratio ν in the preceding expres-
sions is replaced with ν/(1 + ν).

For 3D problems, the fundamental solution gives:

Ui j (x, y) = 1
16πµ(1 − ν)r

[(3 − 4ν)δi j + r,i r, j] , (4.11)

Ti j (x, y) = − 1
8π(1 − ν)r2

{
∂r
∂n

[(1 − 2ν)δi j + 3r,i r, j] − (1 − 2ν) (r,i n j − r, j ni)
}

.

(4.12)

88 Elastostatic Problems

It is interesting to note that the fundamental solution for elasticity problems is
closely related to the fundamental solution for potential problems. Both fun-
damental solutions have the same order of singularities as their corresponding
2D and 3D counterparts. For example, Ui j is weakly singular and Ti j is strongly
singular, similar to G and F, respectively, for the potential problems.

The fundamental solution for elastostatic problems also satisfies several
integral identities [46–48] as given in the following equations:

First identity: ∫
S

Ti j (x, y)dS(y) =
{

−δi j , ∀x ∈ V

0, ∀x ∈ E
. (4.13)

Second identity: ∫
S

∂Ti j (x, y)
∂xk

dS(y) = 0 , ∀x ∈ V ∪ E. (4.14)

Third identity:

Ejlpq

∫
S

∂Uiq(x, y)
∂ xk

np(y)dS(y)−
∫

S

∂ Ti j (x, y)
∂ xk

(yl − xl)dS(y) =
{

δi jδkl , ∀x ∈ V

0, ∀x ∈ E
.

(4.15)
Fourth identity:∫

S
Ti j (x, y)(yk − xk)dS(y) − Ejkpq

∫
S

Uip(x, y)nq(y)dS(y) = 0, ∀x ∈ V ∪ E,

(4.16)

where S is an arbitrary and closed contour (for two dimensions) or surface (for
three dimensions), V is the domain enclosed by S, and E is the infinite (exte-
rior) domain outside S. These identities have clear physical meanings and can
be very convenient in deriving various weakly singular forms of the BIEs for
elasticity problems [46–48]. These identities can be derived readily by inte-
grating governing equation (4.8) over the domain V and invoking the Gauss
theorem [46–48].

4.3 Boundary Integral Equation Formulations

To derive the BIEs for elastostatic problems, we first establish the general-
ized Green’s identity corresponding to elasticity equations. Let (ui , εi j , σi j)
and (u∗

i , ε
∗
i j , σ

∗
i j) be two sets of solutions satisfying governing equations (4.1)–

(4.3) in domain V. The following generalized Green’s identity, also called
Somigliana’s identity, holds:∫

V

(
σ jk,k u∗

j − σ ∗
jk,ku j

)
dV =

∫
S

(
t j u∗

j − t∗
j u j

)
dS. (4.17)

This identity can be derived readily by using either the Gauss theorem or the
virtual work theorem.

4.3 Boundary Integral Equation Formulations 89

Now, let (ui , εi j , σi j) be the solution of the boundary-value problem that
needs to be solved, and let (u∗

i , ε
∗
i j , σ

∗
i j) be the fundamental solution; that is:

u∗
j (y) = Ui j (x, y), t∗

j (y) = Ti j (x, y), σ ∗
jk,k(y) = �i jk,k(x, y).

Substituting these results into identity (4.17) and applying Eqs. (4.1) and (4.8),
we obtain the following representation integral of the displacement field in
domain V:

ui (x) =
∫

S
[Ui j (x, y)t j (y) − Ti j (x, y)u j (y)] dS(y)

+
∫

V
Ui j (x, y) f j (y)dV(y), ∀x ∈ V. (4.18)

Once the displacement ui and traction ti are obtained on the entire boundary
S, the preceding expression can be used to evaluate the displacement at any
point inside the domain V, if needed.

Let the source point x approach boundary S in Eq. (4.18) in the same way
as discussed in Chapter 2 for the BIE for potential problems; we obtain the
following conventional BIE (CBIE) for elastostatic problems:

ci j (x)u j (x) =
∫

S
[Ui j (x, y)t j (y) − Ti j (x, y)u j (y)] dS(y)

+
∫

V
Ui j (x, y) f j (y)dV(y), ∀x ∈ S, (4.19)

where the coefficients ci j = 1/2δi j if S is smooth at source point x. In general,
we have the following expression for ci j :

ci j (x) = δi j + lim
ε→0

∫
Sε(x)

Ti j (x, y)dS(y) = γ δi j −
∫

S
Ti j (x, y)dS(y), (4.20)

in which γ = 0 for finite domain problems and γ = 1 for infinite domain prob-
lems and the last integral is a CPV integral. In deriving the preceding result,
the first identity in Eq. (4.13) is applied.

In CBIE (4.19), the integral with the U kernel is a weakly singular inte-
gral, whereas the integral with the T kernel is a strongly singular (CPV) inte-
gral. CBIE (4.19) can be applied to solve for the unknown displacement and
traction on the boundary.

The domain integral in CBIE (4.19) can be handled with the approaches
presented in Section 2.9 in the case in which f j (y) is nonzero over a finite area
or volume within the domain V. If f j (y) is due to a concentrated or point force
within V, we can write f j (y) as:

f j (y) = Qjδ(xQ, y), (4.21)

where xQ is the location of the concentrated force and Qj represents the com-
ponents of the concentrated force. Using the sifting property of the Dirac δ

90 Elastostatic Problems

function [Eq. (1.25)], we can evaluate the domain integral in CBIE (4.19) for
a concentrated force readily as follows:∫

V
Ui j (x, y) f j (y)dV(y) = Qj

∫
V

Ui j (x, y)δ(xQ, y)dV(y) = QjUi j (x, xQ).

(4.22)

This contribution is added to the right-hand-side vector b of the BEM system
of equations based on CBIE (4.19).

Taking the derivatives of representation integral (4.18), applying the
stress–strain relation, and letting the source point x go to the boundary, we
can obtain the traction or HBIE as follows:

c̃i j (x)t j (x) =
∫

S
[Ki j (x, y)t j (y) − Hi j (x, y)u j (y)] dS(y)

+
∫

V
Ki j (x, y) f j (y)dV(y), ∀x ∈ S, (4.23)

where the coefficients c̃i j = 1/2δi j if S is smooth at source point x. For 2D
(plane-strain) problems, the two new kernels are:

Ki j (x, y) = 1
4π(1 − ν)r

[(1 − 2ν)(δi j r,k + δ jkr,i − δikr, j) + 2r,i r, j r,k] nk(x),

(4.24)

Hi j (x, y) = µ

2π(1 − ν)r2

{
2
∂r
∂n

[(1 − 2ν)δikr, j + ν(δi j r,k + δ jkr,i) − 4r,i r, j r,k]

+ 2ν(nir, j r,k + nkr,i r, j) − (1 − 4ν)δikn j

+ (1 − 2ν)(2njr,i r,k + δi j nk + δ jkni)
}

nk(x), (4.25)

where ni (x) is the normal at the source point x. For 3D problems, the two new
kernels are:

Ki j (x, y) = 1
8π(1 − ν)r2

[(1 − 2ν)(δi j r,k + δ jkr,i − δikr, j) + 3r,i r, j r,k] nk(x),

(4.26)

Hi j (x, y) = µ

4π(1 − ν)r3

{
3
∂r
∂n

[(1 − 2ν)δikr, j + ν(δi j r,k + δ jkr,i) − 5r,i r, j r,k]

+ 3ν(nir, j r,k + nkr,i r, j) − (1 − 4ν)δikn j

+ (1 − 2ν) (3njr,i r,k + δi j nk + δ jkni)
}

nk(x). (4.27)

In HBIE (4.23), the integral with kernel K is a CPV integral, whereas the one
with kernel H is a HFP integral [83, 84]. As in the potential problem case, a

4.4 Weakly Singular Forms of the Boundary Integral Equations 91

dual BIE (or CHBIE) formulation using a linear combination of the CBIE
and HBIE can be written as:

CBIE + βHBIE = 0, (4.28)

where β is the coupling constant. Dual BIE formulations were found to be
very effective and efficient for solving crack problems and problems involving
thin shapes [49, 85]. Dual BIE formulations are especially beneficial to the fast
multipole BEM because they provide better conditioning for BEM equations
and thus can facilitate faster convergence with iterative solvers.

4.4 Weakly Singular Forms of the Boundary Integral Equations

As for the BIEs for potential problems, CBIE (4.19) and HBIE (4.23) can be
recast into forms that involve only weakly singular integrals [46–48] or even
nonsingular forms without any singular integrals [47]. For example, by using
the result in (4.20) for the coefficient ci j (x) in CBIE (4.19), we obtain the fol-
lowing weakly singular form of the CBIE for elastostatics:

γ ui (x) +
∫

S
Ti j (x, y) [u j (y) − u j (x)] dS(y)

=
∫

S
Ui j (x, y)t j (y)dS(y) +

∫
V

Ui j (x, y) f j (y)dV(y), ∀x ∈ S, (4.29)

in which γ = 0 for finite domain problems and γ = 1 for infinite domain prob-
lems. The integral with the T kernel is now weakly singular, because:

Ti j (x, y) [u j (y) − u j (x)] ∼

O

(
1
r

)
O (r) = O (1) , for two dimensions

O
(

1
r2

)
O (r) = O

(
1
r

)
, for three dimensions

as r → 0 if the displacement ui is continuous.
Similarly, by using the first three identities (4.13)–(4.15) for the fundamen-

tal solution, we can derive the following weakly singular form of the HBIE for
elastostatics [52]:

γ ti (x) +
∫

S
Hi j (x, y)

[
u j (y) − u j (x) − ∂ u j

∂ ξα

(x)(ξα − ξoα)
]

dS(y)

+ Ejkpqeα q
∂ up

∂ ξα

(x)
∫

S
[Ki j (x, y)nk(y) + Tji (x, y)nk(x)] dS(y)

=
∫

S
[Ki j (x, y) + Tji (x, y)] t j (y)dS(y)

−
∫

S
Tji (x, y) [t j (y) − t j (x)] dS(y) +

∫
V

Kij(x, y)fj(y)dV(y), ∀x ∈ S ,

(4.30)

in which ξα and ξoα are the coordinates of y and x, respectively, in tangential
directions (α = 1 for two dimensions and α = 1, 2 for three dimensions) in the

92 Elastostatic Problems

local (natural) coordinate system on an element and eα k = ∂ξα/∂xk [52]. All
the integrals in (4.30) are now, at most, weakly singular if the displacement
field ui has continuous first derivatives.

Weakly singular forms of the BIEs, or regularized BIEs, which do not
contain any strongly singular and hypersingular integrals, are useful in cases
in which higher-order boundary elements are applied to solve the BIEs. In
these cases, analytical evaluations of the singular integrals are difficult or
impossible to obtain, and the use of numerical integration is troublesome.
When constant elements are used, all the singular and hypersingular inte-
grals can be evaluated analytically (see Appendix A.2 for 2D cases); therefore,
the original singular forms of CBIE (4.19) and HBIE (4.23) can be applied
directly.

4.5 Discretization of the Boundary Integral Equations

Discretization of the BIEs for elasticity problems is similar to that for the
potential problems. The only difference is that we have two or three unknowns
at each node for 2D or 3D problems, respectively. For example, the discretized
form of CBIE (4.19) can be written as follows (without considering the body
force):

T11 T12 · · · T1N

T21 T22 · · · T2N
...

...
. . .

...
TN1 TN2 · · · TNN

u1

u2
...

uN

 =

U11 U12 · · · U1N

U21 U22 · · · U2N
...

...
. . .

...
UN1 UN2 · · · UNN

t1

t2
...

tN

 ,

(4.31)

in which ui and ti are the displacement and traction vectors at node i on
boundary S (i = 1, 2, . . . , N), and Ti j and Ui j are 2 × 2 (for 2D) or 3 × 3 (for
3D) submatrices we obtain by integrating the T and U kernels, respectively,
when the source point x is at node i and integrations are done on all elements
surrounding node j. For 2D constant elements, all the integrals can be evalu-
ated analytically (Appendix A.2), whereas for linear and quadratic elements,
numerical integrations need to be used. The diagonal submatrices Ti i can be
determined by imposing a rigid-body motion on Eq. (4.31) to obtain:

Ti i =

−

N∑
j �=i

Ti j , for a finite domain

I −
N∑

j �=i

Ti j , for an infinite domain.

(4.32)

We can also prove this result by discretizing the weakly singular form of the
CBIE in Eq. (4.29) directly [46].

4.6 Recovery of the Full Stress Field on the Boundary 93

A standard linear system of equations is formed as follows by applying the
BC at each node and switching the columns in the two matrices in Eq. (4.31):

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...
AN1 AN2 · · · ANN

λ1

λ2
...

λN

 =

b1

b2
...

bN

 , or Aλ = b, (4.33)

where A is the coefficient matrix of dimensions 2N×2N (for two dimensions)
or 3N × 3N (for three dimensions), λ is the unknown vector, and b is the
known right-hand-side vector (which may also contain contributions from the
body forces). Again, the construction of matrix A requires O(N2) operations,
and the size of the required memory for storing A is also O(N2) because A
is, in general, a nonsymmetric and dense matrix. The solution of the system in
Eq. (4.33) by use of direct solvers such as Gauss elimination requires O(N3)
operations. Thus, the conventional BEM approach by solving Eq. (4.33)
directly is limited to BEM models with only a few thousand equations on a
desktop computer. In later sections, we discuss how to apply iterative solvers
to the linear system of equations in (4.33) and how to use the FMM to eval-
uate the far-field contributions in the matrix–vector multiplication in order to
accelerate the solutions of the BEM equations for elasticity problems and to
achieve the O(N) efficiency.

4.6 Recovery of the Full Stress Field on the Boundary

In stress analysis, values of all the stress components on the boundary are of
interest. However, in the BEM solution, only the displacement and traction
components on the boundary are solved. The full stress field is not known
from this solution, and the most important stress component – for example, the
hoop stress on the edge of a hole – is often missing. In the following, we discuss
how to recover the full stress field from the BEM solution of the displacement
and traction fields, using the 2D case as an example.

For 2D elasticity, we know the values of the displacement components
u and v and the traction components tx and ty at each node on the boundary
after we solve the BEM system of equations. To recover the stress components
σx, σy, and τxy on the boundary, we proceed as follows.

First, we note the following two equations relating the stress and traction
components:

σxnx + τxyny = tx, (4.34)

τxynx + σyny = ty, (4.35)

in which nx and ny are the direction cosines of the normal n.

94 Elastostatic Problems

Second, we take the derivatives of the displacement field in the tangential
direction ξ (local coordinate) of the boundary S to obtain two more relations:

∂u
∂x

∂x
∂ξ

+ ∂u
∂y

∂y
∂ξ

= ∂u
∂ξ

, (4.36)

∂v

∂x
∂x
∂ξ

+ ∂v

∂y
∂y
∂ξ

= ∂v

∂ξ
, (4.37)

where we can readily compute the values of ∂u/∂ξ, ∂v/∂ξ, ∂x/∂ξ, and ∂y/∂ξ

on a boundary element by using the shape functions. For constant elements,
we can first compute the averaged displacement values at the end points of all
the elements and then apply a linear interpolation to compute the values of
these derivatives at the nodes (centers) of the elements.

Third, we write the 2D stress–strain relations as follows:

σx − C
(

(1 − ν)
∂u
∂x

+ ν
∂v

∂y

)
= 0, (4.38)

σy − C
(

ν
∂u
∂x

+ (1 − ν)
∂v

∂y

)
= 0, (4.39)

τxy − G
(

∂u
∂y

+ ∂v

∂x

)
= 0, (4.40)

where C = E/ [(1 + ν)(1 − 2ν)] , G = E/ [2(1 + ν)], E is Young’s modulus,
and ν is Poisson’s ratio for the plane-strain case.

Therefore, we have seven equations, Eqs. (4.34)–(4.40), for seven un-
knowns on the boundary, σx, σy, τxy, ∂u/∂x, ∂u/∂y, ∂v/∂x, and ∂v/∂y, which
are sufficient to recover all the stress components on the boundary. Note
that the four derivatives of the displacement components ∂u/∂x, ∂u/∂y,

∂v/∂x, and ∂v/∂y can be used to determine directly the strain components
εx, εy, and γxy, if needed.

Combining the seven equations in (4.34)–(4.40), we obtain the following
linear system of equations for the recovery of the full stresses (and strains) in
the 2D case:

nx 0 ny 0 0 0 0
0 ny nx 0 0 0 0

0 0 0
∂x
∂ξ

∂y
∂ξ

0 0

0 0 0 0 0
∂x
∂ξ

∂y
∂ξ

1 0 0 −C(1 − ν) 0 0 −Cν

0 1 0 −Cν 0 0 −C(1 − ν)
0 0 1 0 −G −G 0

σx

σy

τxy

∂u
∂x
∂u
∂y
∂v

∂x
∂v

∂y

=

tx

ty

∂u
∂ξ

∂v

∂ξ

0
0
0

.

(4.41)

4.7 Fast Multipole Boundary Element Method for 2D Elastostatic Problems 95

We can derive a similar linear system with 15 equations for the 3D elasticity
case by following the same approach, which can be applied to recover all the
six stress (and strain) components on the boundary surface.

4.7 Fast Multipole Boundary Element Method
for 2D Elastostatic Problems

The fast multipole algorithms for solving general 2D elasticity problems by
using CBIE (4.19) and HBIE (4.23) are described in detail in this section. As
in the 2D potential case, complex notation is used. The kernels are represented
by complex functions from the classical 2D elasticity theory.

First, we note that the two integrals in CBIE (4.19) can be represented
in complex variables readily if we write the fundamental solution Ui j (x, y)
and Ti j (x, y) in the complex notation by using the results in 2D elasticity.
In 2D elasticity theory with complex variables, the displacement field U =
U1 + iU2 at a field point z(= y1 + iy2, with i = √−1) because of a point force
P = P1 + i P2 at the source point z0(= x1 + i x2) can be written as (see, e.g.,
Refs. [86, 87]):

U1(z) + iU2(z) = 1
4πµ(1 + κ)

{
−κ P

[
log(z0 − z) + log(z0 − z)

]
+ P

z0 − z
z0 − z

}
,

(4.42)

in which the overbar indicates the complex conjugate and κ = 3 − 4ν for the
plane-strain case.

We can obtain the fundamental solution Ui j exactly as given in Eq. (4.9)
by letting P = 1 and i (first in the x direction, then in the y direction, respec-
tively), in Eq. (4.42). Using the preceding result, we can show that the first inte-
gral in CBIE (4.19) can be written in the following complex form by applying
Eq. (4.42) (with no body force) [73]:

1
2

u(z0) = Dt (z0) − Du(z0), (4.43)

where u = u1 + iu2 is the complex representation of the displacement field and
boundary S is assumed to be smooth at the source point z0. In the preceding
equation:

Dt (z0) ≡
[∫

S
U1 j (x, y)t j (y)dS(y)

]
+ i

[∫
S

U2 j (x, y)t j (y)dS(y)
]

= 1
2µ(1 + κ)

∫
S

[
κG(z0, z)t(z) − (z0 − z) G′ (z0, z) t(z)

+ κG(z0, z)t(z)
]
dS(z), (4.44)

96 Elastostatic Problems

representing the first integral with the U kernel in CBIE (4.19), and:

Du(z0) ≡
[∫

S
T1 j (x, y)u j (y)dS(y)

]
+ i

[∫
S

T2 j (x, y)u j (y)dS(y)
]

= − 1
1 + κ

∫
S

{
κG′(z0, z)n(z)u(z) − (z0 − z) G′′(z0, z) n(z) u(z)

+G′(z0, z)
[
n(z) u(z) + n(z)u(z)

]}
dS(z), (4.45)

representing the second integral with the T kernel in CBIE (4.19), where t =
t1 + i t2 and n = n1 + in2 are the complex traction and normal, respectively:

G(z0, z) = − 1
2π

log(z0 − z) (4.46)

is the Green’s function (in complex form) for 2D potential problems [see
Eq. (3.7)], and ()′ ≡ ∂()/∂z0.

To derive the complex form of HBIE (4.23), we first note that the real
variable traction ti on boundary S is given by:

ti = σi j n j = [λδi j uk,k +µ(ui , j + u j ,i)] nj , (4.47)

in which σi j is the stress tensor and λ = 2µν/(1 − 2ν) for plane-strain prob-
lems. It is interesting to note that this relation can be written in complex form
as follows:

t(z) = 2µ

[
1

κ − 1

(
∂u
∂z

+ ∂u
∂z

)
n + ∂u

∂z
n
]

, (4.48)

in which t, u, and n are the complex traction, displacement, and normal on
boundary S, respectively. In applying this formula, z and z must be considered
as two independent variables; that is, ∂z/∂z = ∂z/∂z = 0. It is straightforward
to verify that Eq. (4.48) is indeed equivalent to Eq. (4.47) by simply extracting
the real and imaginary parts of t(z) from Eq. (4.48) and comparing with the
results we obtain by expanding Eq. (4.47).

Applying the relation in Eq. (4.48), we can show that HBIE (4.23) can be
written in the following complex form (with no body force):

1
2

t(z0) = Ft (z0) − Fu(z0), (4.49)

where:

Ft (z0) = 2µ

[
1

κ − 1

(
∂ Dt (z0)

∂z0
+ ∂ Dt (z0)

∂z0

)
n(z0) + ∂ Dt (z0)

∂z0
n(z0)

]
(4.50)

represents the first integral with the K kernel in HBIE (4.23), and:

Fu(z0) = 2µ

[
1

κ − 1

(
∂ Du(z0)

∂z0
+ ∂ Du(z0)

∂z0

)
n(z0) + ∂ Du(z0)

∂z0
n(z0)

]
(4.51)

4.7 Fast Multipole Boundary Element Method for 2D Elastostatic Problems 97

represents the second integral with the H kernel in HBIE (4.23). Applying
Eqs. (4.44) and (4.45), we obtain the following explicit results:

Ft (z0) ≡ [F1(x) + i F2(x)]t

≡
[∫

S
K1 j (x, y)t j (y)dS(y)

]
+ i

[∫
S

K2 j (x, y)t j (y)dS(y)
]

= 1
1 + κ

∫
S

{ [
G′(z0, z)t(z) + G′(z0, z)t(z)

]
n(z0)

+[
κG′(z0, z)t(z) − (z0 − z) G′′ (z0, z)t(z)

]
n(z0)

}
dS(z), (4.52)

Fu(z0) ≡ [F1(x) + i F2(x)]u

≡
[∫

S
H1 j (x, y)u j (y)dS(y)

]
+ i

[∫
S

H2 j (x, y)u j (y)dS(y)
]

= − 2µ

1 + κ

∫
S

([
G′′(z0, z)n(z)u(z) + G′′(z0, z)n(z)u(z)

]
n(z0)

+ {
G′′(z0, z)

[
n(z)u(z) + n(z)u(z)

]
− (z0 − z) G′′′(z0, z)n(z)u(z)

}
n(z0))dS(z). (4.53)

To show that complex variable CBIE (4.43) is equivalent to real variable CBIE

(4.19) and complex variable HBIE (4.49) is equivalent to real variable HBIE
(4.23), we can simply introduce the polar coordinate system (r, θ) with the
origin at z0; notice that:

z − z0 = reiθ , G′ = 1
2π (z − z0)

= 1
2πr

e−iθ , G′ = 1
2πr

eiθ , and so on,

(4.54)

and extract the real and imaginary parts of the results in the complex variable

BIEs.
In the following discussion, we first study the multipole expansions, local

expansions, and their translations related to Eqs. (4.44) and (4.45) in the fast
multipole BEM for CBIE (4.43). Then, we present the expansions related to
Eqs. (4.52) and (4.53) for HBIE (4.49). The derivations of these results are
similar and closely related to those for 2D potential problems discussed in the
previous chapter.

4.7.1 Multipole Expansion for the U Kernel Integral

Let zc be a multipole expansion point close to z (Figure 3.2) – that is,
|z − zc| � |z0 − zc|; the multipole expansion for Dt (z0) in (4.44) with the U

98 Elastostatic Problems

kernel is given by [73]:

Dt (z0) = 1
4πµ(1 + κ)

[
κ

∞∑
k=0

Ok(z0 − zc)Mk(zc) + z0

∞∑
k=0

Ok+1(z0 − zc) Mk(zc)

(4.55)

+
∞∑

k=0

Ok(z0 − zc)Nk(zc)

]
,

where:

Mk(zc) =
∫

Sc

Ik(z − zc)t(z)dS(z), for k ≥ 0, (4.56)

N0 = κ

∫
Sc

t(z)dS(z);

(4.57)
Nk(zc) =

∫
Sc

[
κ Ik(z − zc)t(z) − Ik−1(z − zc)zt(z)

]
dS(z), for k ≥ 1,

are the two sets of moments about zc, with Sc being a subset of S that is
far away from the source point z0 (Figure 3.2). The two auxiliary functions
Ik(z) and Ok(z) were defined in Eqs. (3.12). Equation (4.55) is derived readily
by use of the expansion for G(z0, z) given in Eq. (3.11).

4.7.2 Moment-to-Moment Translation

If the multipole expansion point zc is moved to a new location zc′ (Figure 3.2),
we have:

Mk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ml(zc), for k ≥ 0. (4.58)

Similarly,

Nk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Nl(zc), for k ≥ 0. (4.59)

These are the M2M translations for the moments when zc is moved to zc′ . Note
that these translation coefficients are symmetrical for the two sets of moments
(Ik−l and conjugate of Ik−l) and coefficients Ik−l are exactly the same as used
in the 2-D potential case (see Eq. (3.23)).

4.7.3 Local Expansion and Moment-to-Local Translation

Let zL be a local expansion point close to the source point z0 (Figure 3.2); that
is, |z0 − zL| � |zc − zL|. Expanding Dt (z0) in (4.55) about z0 = zL by using a

4.7 Fast Multipole Boundary Element Method for 2D Elastostatic Problems 99

Taylor series expansion, we have the following local expansion [73]:

Dt (z0) = 1
4πµ(1 + κ)

[
κ

∞∑
l=0

Ll(zL)Il(z0 − zL) − z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (4.60)

where the coefficients are given by the following M2L translations:

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc), for l ≥ 0; (4.61)

Kl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Nk(zc), for l ≥ 0. (4.62)

Note that these M2L translation coefficients are also symmetrical regarding
the translation coefficients [see Eq. (3.25)].

4.7.4 Local-to-Local Translation

If the local expansion point is moved from zL to zL′ (Figure 3.2), the new local
expansion coefficients are given by the following L2L translations [73]:

Ll(zL′) =
∞∑

m=l

Im−l(zL′ − zL)Lm(zL), for l ≥ 0; (4.63)

Kl(zL′) =
∞∑

m=l

Im−l(zL′ − zL)Km(zL), for l ≥ 0, (4.64)

which are also symmetrical regarding the translation coefficients [see
Eq. (3.30)].

4.7.5 Expansions for the T Kernel Integral

Through a procedure similar to that used for the U kernel integral in (4.44),
the multipole expansion of the T kernel integral Du(z0) in (4.45) can be written
as [73]:

Du(z0) = 1
2π(1 + κ)

[
κ

∞∑
k=1

Ok(z0 − zc)M̃k(zc) + z0

∞∑
k=1

Ok+1(z0 − zc)M̃k(zc)

+
∞∑

k=1

Ok(z0 − zc)Ñk(zc)

]
, (4.65)

100 Elastostatic Problems

where the two sets of moments are:

M̃k(zc) =
∫

Sc

Ik−1(z − zc)n(z)u(z)dS(z), for k ≥ 1; (4.66)

Ñ1 =
∫

Sc

[
n(z)u(z) + n(z)u(z)

]
dS(z);

(4.67)
Ñk(zc) =

∫
Sc

{
Ik−1(z − zc)

[
n(z)u(z) + n(z)u(z)

]
− Ik−2(z − zc)zn(z)u(z)

}
dS(z), for k ≥ 2.

These moments are similar to those for the U kernel integral. It can be shown
that all the M2M, M2L, and L2L translations remain the same for the T kernel
integrals, except that M̃0 = Ñ0 = 0. In fact, moments Mk and M̃k are com-
bined, as well as moments Nk and Ñk , so that only two sets of moments are
involved in the M2M and M2L translations.

The local expansion for Du(z0) is [73]:

Du(z0) = 1
2π(1 + κ)

[
κ

∞∑
l=0

Ll(zL)Il(z0 − zL) − z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (4.68)

where the local expansion coefficients Ll(zL) and Kl(zL) are given by
Eqs. (4.61) and (4.62), with Mk and Nk replaced with M̃k and Ñk , respectively.

4.7.6 Expansions for the Hypersingular Boundary Integral Equation

To derive the multipole expansions and local expansions for HBIE (4.49), we
can simply take the derivatives of the local expansions for the two integrals
in the CBIE – that is, the integrals in Eqs. (4.60) and (4.68), respectively –
and then invoke the constitutive relation in the complex form; that is, Eqs.
(4.50) and (4.51). The result of the local expansion for the first integral Ft (z0) in
Eq. (4.52) for the HBIE is:

Ft (z0) = 1
2π(1 + κ)

{[∞∑
l=0

Ll+1(zL)Il(z0 − zL) +
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL) +
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
,

(4.69)

in which the expansion coefficients Ll(zL) and Kl(zL) are given by the same
M2L translations in (4.61) and (4.62), respectively. That is, the same sets of
moments Mk and Nk used for Dt (z0) are used for Ft (z0) directly.

4.8 Fast Multipole Boundary Element Method for 3D Elastostatic Problems 101

Similarly, it can be shown that the local expansion for the second integral
Fu(z0) in Eq. (4.53) for the HBIE is:

Fu(z0) = µ

π(1 + κ)

{[∞∑
l=0

Ll+1(zL)Il(z0 − zL) +
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL) +
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
,

(4.70)

in which Ll(zL) and Kl(zL) are given by Eqs. (4.61) and (4.62), with Mk

replaced by M̃k and Nk with Ñk . Again, the same sets of moments M̃k and Ñk

used for Du(z0) are used for Fu(z0) directly; thus, all of the M2M, M2L, and
L2L translations for the HBIE remain the same as those used for the CBIE.

The details of the fast multipole algorithms for solving 2D elasticity prob-
lems are similar to those for 2D potential problems, which are described in the
previous chapter. For example, if constant boundary elements (straight-line
segment with one node) are applied to discretize the 2D elasticity BIEs, all
of the moments can be evaluated analytically, as well as the integration of the
kernels in the near-field direct evaluations (Appendix A.2).

4.8 Fast Multipole Boundary Element Method
for 3D Elastostatic Problems

To discuss the fast multipole formulation for 3D elasticity problems, we first
note that the fundamental solution in Eq. (4.11) can be written in the following
form:

Ui j (x, y) = 1
8πµ

(
δi j

2
r

− λ + µ

λ + 2µ

∂

∂xi

xj − yj

r

)
. (4.71)

Start with the following expansion [see Eq. (3.46) used for 3-D potential prob-
lems]:

1
r(x, y)

=
∞∑

n=0

n∑
m=−n

Sn,m(x − yc)Rn,m(y − yc),
∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ , (4.72)

where yc is an expansion point close to the field point y and the overbar indi-
cates the complex conjugate. The functions Rn,m and Sn,m are solid harmonic
functions given in Eqs. (3.47) and (3.48), respectively. Note that the left-hand
side of Eq. (4.72) is a real function. Therefore, the complex conjugate can also
be placed on Rn,m in Eq. (4.72). Substituting the results in (4.72) into Eq. (4.71),
we arrive at:

Ui j (x, y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)Rn,m(y − yc)

+ Gi,n,m(x − yc)(y − yc) j Rn,m(y − yc)
]
, (4.73)

102 Elastostatic Problems

where:

Fi j,n,m(x − yc) ≡ λ + 3µ

λ + 2µ
δi j Sn,m(x − yc) − λ + µ

λ + 2µ
(x − yc) j

∂

∂xi
Sn,m(x − yc),

(4.74)

Gi,n,m(x − yc) ≡ λ + µ

λ + 2µ

∂

∂xi
Sn,m(x − yc). (4.75)

Consider the first integral with the U kernel in CBIE (4.19) on a subdomain Sc

of S away from the source point x. Applying expression (4.73), with point yc

being close to subdomain Sc (elements within a leaf), we obtain the following
multipole expansion:∫

Sc

Ui j (x, y)t j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)Mj,n,m(yc)

+ Gi,n,m(x − yc)Mn,m(yc)
]
, (4.76)

in which:

Mj,n,m(yc) =
∫

Sc

Rn,m(y − yc)t j (y)dS(y),

Mn,m(yc) =
∫

Sc

(y − yc) j Rn,m(y − yc)t j (y)dS(y)
(4.77)

are the moments for given n and m. Evaluations of these four moments are
independent of the location of the source point x and thus need to be calcu-
lated only once on each element.

To obtain the multipole expansion for the T kernel integral in CBIE
(4.19), we note that:

Ti j (x, y) = Ejklpnk(y)
∂

∂yp
Uil(x, y). (4.78)

From this relation and expansion in Eq. (4.73), we obtain the multipole expan-
sion for the T kernel integral as follows:∫

Sc

Ti j (x, y)u j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)M̃j,n,m(yc)

+ Gi,n,m(x − yc)M̃n,m(yc)
]
, (4.79)

in which:

M̃j,n,m(yc) = Ejpkl

∫
Sc

∂

∂yp
[Rn,m(y − yc)] nk(y)ul(y)dS(y),

M̃n,m(yc) = Ejpkl

∫
Sc

∂

∂yp
[(y − yc) j Rn,m(y − yc)] nk(y)ul(y)dS(y).

(4.80)

Depending on the boundary conditions, only one in each of the pairs
(Mj,n,m, M̃j,n,m) and (Mn,m, M̃n,m) are used in the moment calculations. There
is a total of four moments that need to calculated on each boundary element.

4.8 Fast Multipole Boundary Element Method for 3D Elastostatic Problems 103

When the expansion point is moved from yc to yc′ , we have the following
M2M translations:

Mj,n,m(yc′) =
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(yc′ − yc)Mj,n−n′,m−m′(yc),

(4.81)
Mn,m(yc′) =

n∑
n′=0

n′∑
m′=−n′

Rn′,m′(yc′ − yc) [Mn−n′,m−m′(yc)

+ (yc′ − yc) j Mj,n−n′,m−m′(yc)] ,

which are also valid for M̃j,n,m and M̃n,m.

The local expansion of the U kernel integral on Sc about the point x = xL

is given as follows:

∫
Sc

Ui j (x, y)t j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
F R

i j,n,m(x − xL)Lj,n,m(xL)

(4.82)

+ GR
i,n,m(x − xL)Ln,m(xL)

]
,

where the local expansion coefficients are given by the following M2L trans-

lations:

Lj,n,m(xL) = (−1)n
∞∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(xL − yc)Mj,n′,m′(yc),

(4.83)Ln,m(xL) = (−1)n
∞∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(xL − yc)

× [Mn′,m′(yc) − (xL − yc) j Mj,n′,m′(yc)] ,

and F R
i j,n,m and GR

i,n,m are obtained from Eqs. (4.74) and (4.75), respectively,

with Sn,m replaced with Rn,m in each case. The local expansion for the T kernel
integral is similar to that of Eq. (4.82), only with Mj,n′,m′ and Mn′,m′ replaced
with M̃j,n′,m′ and M̃n′,m′ , respectively, in Eq. (4.83) when the local expansion
coefficients for the T kernel integral are computed.

When the local expansion point is moved from xL to xL′ , we have the fol-
lowing L2L translations:

Lj,n,m(xL′) =
∞∑

n′=n

n′∑
m′=−n′

Rn′−n,m′−m(xL′ − xL)Lj,n′,m′(xL),

(4.84)

Ln,m(xL′) =
∞∑

n′=n

n′∑
m′=−n′

Rn′−n,m′−m(xL′ −xL) [Ln′,m′(xL) − (xL′ − xL) j Lj,n′,m′(xL)].

104 Elastostatic Problems

We can readily obtain the fast multipole formulation for the HBIE by taking
the derivatives of the local expansions for the CBIE and invoking the consti-
tutive equations, as we did in the 2D elasticity case.

As in the 2D cases, the fast multipole formulations for 3D elasticity prob-
lems closely resemble those for 3D potential problems. In fact, all of the expan-
sions and translations (M2M, M2L, and L2L) for the 3D elasticity case are
similar to those for 3D potential cases, as we discussed in the previous chapter.
The only difference is that we have four moments in the multipole expansion
for 3D elasticity problems, whereas we have only one moment for 3D potential
problems. From this fact, we can readily obtain a fast multipole BEM program
for 3D elasticity problems by extending a fast multipole BEM program for 3D
potential problems.

It should be pointed out that the M2L translations are more expen-
sive compared with other operations in the FMM, especially for 3D vector
problems. A new version of the FMM was introduced by Greengard and
Rokhlin in 1997 [65], which uses exponential expansions and replaces the M2L
translations with multipole-to-exponential (M2X), exponential-to-exponential
(X2X), and exponential-to-local (X2L) expansions. This new version is more
difficult to implement. However, it can speed up the solutions by about 20%–
40% for many 3D applications [61, 66].

4.9 Fast Multipole Boundary Element Method for Multidomain
Elasticity Problems

In this section, we discuss a BEM formulation for multidomain elasticity prob-
lems [74] that can be applied to model fiber-reinforced composite materials,
functionally graded materials, and other inclusion problems in elasticity. The
efficient preconditioner for this BEM formulation can be constructed that can
provide efficient solution strategies for the fast multipole BEM for solving such
multidomain elasticity problems.

Consider a 2D or 3D elastic domain V0 with boundary S0 and embed-
ded with n elastic inclusions Vα with interface Sα , where α = 1, 2, . . . , n (Fig-
ure 4.2). In this discussion, we assume all the inclusions are completely
embedded inside the elastic matrix domain; that is, there is no intersection
of the interface Sα with the outer boundary S0. This is a special case of
the general multidomain problems. We also assume that no body force is
present.

For the matrix domain V0, we have the following CBIE from Eq. (4.19):

1
2

ui (x) =
∫

S
[Ui j (x, y)t j (y) − Ti j (x, y)u j (y)]dS(y), ∀x ∈ S, (4.85)

4.9 Fast Multipole Boundary Element Method for Multidomain Elasticity Problems 105

S0

n
Sα

x

y

V0

S2

S1

Sn

n

r

n
V1

V2

Vα

Vn

1

2

3

Figure 4.2. Matrix domain V0 and n inclusions.

where ui and ti are the displacement and traction, respectively; S = ∪n
α=0 Sα is

the total boundary of domain V0 (assuming that S is smooth around x) and
Ui j (x, y) and Ti j (x, y) are the two kernel functions.

For each inclusion, the CBIE from Eq. (4.19) can be written as:

1
2

u(α)
i (x) =

∫
Sα

[
U(α)

i j (x, y)t (α)
j (y) − T(α)

i j (x, y)u(α)
j (y)

]
dS(y), ∀x ∈ Sα, (4.86)

for α = 1, 2, . . . , n, in which u(α)
i and t (α)

i are the displacement and traction,
respectively, for inclusion α, and U(α)

i j (x, y) and T(α)
i j (x, y) are the two ker-

nels using the shear modulus, Poisson’s ratio, and outward normal for inclu-
sion α.

HBIE (4.23) can also be applied in the matrix as well as in the inclusion
domains. In fact, the dual BIE formulation (CHBIE, a linear combination of
the CBIE and HBIE) is preferred for modeling inclusion problems in which
thin shapes often exist and can present difficulties for the CBIE formulation
when it is applied alone.

Assume that the inclusions are perfectly bonded to the matrix; that is,
there are no gaps or cracks and no interphase regions. We have the following
interface conditions:

ui = u(α)
i , ti = −t (α)

i , (4.87)

for α = 1, 2, . . . , n, which state that the displacements are continuous and the
tractions are in equilibrium at the interfaces.

From the assumptions just mentioned, we can write the discretized form
of the multidomain BIEs by using either the CBIE or CHBIE for the matrix

106 Elastostatic Problems

domain and the inclusions as follows [74]:

Matrix

S0

S1

S2

...
Sn

Inclusions

S1

S2

...
Sn

A00 A01 A02 · · · A0n −B01 −B02 · · · −B0n

A10 A11 A12 · · · A1n −B11 −B12 · · · −B1n

A20 A21 A22 · · · A2n −B21 −B22 · · · −B2n

...
...

...
. . .

...
...

...
. . .

...
An0 An1 An2 · · · Ann −Bn1 −Bn2 · · · −Bnn

0 A f
1 0 · · · 0 B f

1 0 · · · 0

0 0 A f
2 · · · 0 0 B f

2 · · · 0

...
...

...
. . .

...
...

...
. . .

...

0 0 0 · · · A f
n 0 0 · · · B f

n

u0

u1

u2

...
un

t1

t2

...
tn

=

B00

B10

B20

...
Bn0

0
0
...
0

{t0} , (4.88)

in which u0 and t0 are the displacement and traction vector on the outer
boundary S0, ui and ti are the displacement and traction vector on the inter-
face Si from the matrix domain, Ai j and Bi j are the coefficient submatrices
from the matrix domain, and A f

i and B f
i are the coefficient submatrices from

inclusion i. By rearranging the terms in Eq. (4.88), we can write an alternative
form of the BEM system of equations as [74]:

Matrix S0

Matrix S1

Inclusion S1

Matrix S2

Inclusion S2

...
Matrix Sn

Inclusion Sn

A00 A01 −B01 A02 −B02 · · · A0n −B0n

A10 A11 −B11 A12 −B12 · · · A1n −B1n

0 A f
1 B f

1 0 0 · · · 0 0

A20 A21 −B21 A22 −B22 · · · A2n −B2n

0 0 0 A f
2 B f

2 · · · 0 0
...

...
...

...
...

. . .
...

...
An0 An1 −Bn1 An2 −Bn2 · · · Ann −Bnn

0 0 0 0 0 · · · A f
n B f

n

u0

u1

t1

u2

t2
...

un

tn

=

B00

B10

0

B20

0
...

Bn0

0

{t0} .

(4.89)
Both systems of equations in (4.88) and (4.89) can be applied with the fast multi-
pole BEM to solve inclusion problems in elasticity. The multipole expansions
and related translations discussed in the previous two sections for 2D and 3D
elasticity BIEs can be applied readily for the BIEs from the matrix domain and

4.9 Fast Multipole Boundary Element Method for Multidomain Elasticity Problems 107

those from the inclusion domains. The only difficult part in the implementation
is the bookkeeping of the locations of the submatrices from different domains
in the systems of equations.

Preconditioning for the fast multipole BEM is even more crucial
for its convergence and efficiency in solving multidomain problems. Two
preconditioners can be devised based on the two forms of the BEM systems of
equations shown in Eqs. (4.88) and (4.89).

For Preconditioner A, a block diagonal preconditioner based on Eq. (4.88)
is used. For the matrix domain, a diagonal submatrix is formed on each leaf
by use of direct evaluations of the kernels on the elements within that leaf,
whereas for the inclusions, the submatrix B f

i in Eq. (4.88) along the main diag-
onal is used for each inclusion.

For Preconditioner B, a block diagonal preconditioner based on Eq. (4.89)
is used. In this case, the following matrix from the matrix in Eq. (4.89) is used
as the preconditioner:

M =

A00 0 0 0 0 · · · 0 0
0 A11 −B11 0 0 · · · 0 0

0 A f
1 B f

1 0 0 · · · 0 0
0 0 0 A22 −B22 · · · 0 0

0 0 0 A f
2 B f

2 · · · 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · Ann −Bnn

0 0 0 0 0 · · · A f
n B f

n

. (4.90)

This preconditioner is equivalent to solving many inclusion problems as if
there were only one inclusion embedded in an infinite domain in each case.
For this preconditioner, larger diagonal matrices need to be processed for
each inclusion, which can be time-consuming if the number of elements on
each inclusion is large. However, this preconditioner is very effective for inclu-
sion problems because the number of iterations for the GMRES solver can
be reduced significantly, as is shown in the numerical examples in the follow-
ing section (also in Ref. [74]). A similar preconditioner is applied in the 3D
fast multipole BEM for modeling rigid inclusion problems by the 3D single-
domain CBIE in Refs. [80, 81].

The systems in Eqs. (4.88) and (4.89) are right preconditioned with the
preceding two preconditioners, respectively, in solving elasticity inclusion
problems by using the fast multiple BEM. LU decompositions (LU stands for
lower triangular and upper triangular matrices) of the submatrices in these
preconditioners can be computed once and saved in memory in the subsequent
iterations to save the CPU time in solving such problems.

108 Elastostatic Problems

a

b
O

V po

pi

S

Figure 4.3. A thick cylinder with pressure loads.

4.10 Numerical Examples

Several numerical examples are given in this section to demonstrate the accu-
racy and efficiency of the fast multipole BEM for solving 2D and 3D elasticity
problems. Most of the computations were done on a Pentium IV laptop PC
with a 2.4-GHz CPU and 1-GB RAM. In all of the cases, the material has
Young’s modulus E and Poisson’s ratio ν.

4.10.1 A Cylinder with Pressure Loads

We first consider a thick cylinder under pressure loads (in the plane-strain
case) as shown in Figure 4.3. The inner pressure is pi and the outer pressure
is po. In the case studied, b = 2a, pi = po = p, and Poisson’s ratio ν = 0.3.
We discretize the inner and outer boundaries with the same number of ele-
ments and run both the fast multipole BEM code and a conventional BEM
code that also uses constant elements and analytical integrations. The con-
ventional BEM code uses both the direct solver (LAPACK) and the iterative
solver (GMRES) for solving the linear system. For the fast multipole BEM,
the numbers of terms for both multipole and local expansions were set to 20,
the maximum number of elements in a leaf to 20, and the tolerance for conver-
gence of the solution to 10−6. All the fast multipole BEM results converged in
about three iterations without using any preconditioner in this example.

Table 4.1 shows the results of radial displacement ur and hoop stress σθ

at the inner boundary obtained with both the fast multipole BEM and the
conventional BEM (with the direct solver) as the total number of elements
increases from 200 to 4800 (DOFs from 400 to 9600). As we can see, the results
for both the fast multipole BEM and the conventional BEM converge quickly
to the exact solution [88] for the mesh with 360 constant elements with a rel-
ative error of less than 3%. The results continue to improve with the increase
of the number of elements.

4.10 Numerical Examples 109

Table 4.1. Radial displacement and hoop stress at the inner boundary

ur (× pa/E) σθ (× p)

Conventional Fast multipole Conventional Fast multipole
DOFs BEM BEM BEM BEM

400 −0.52233 −0.52233 −1.00228 −1.00228
720 −0.52143 −0.52143 −1.00149 −1.00148

1440 −0.52076 −0.52076 −1.00081 −1.00082
2880 −0.52039 −0.52039 −1.00042 −1.00042
4800 −0.52024 −0.52024 −1.00026 −1.00026
9600 −0.52012 −0.52012 −1.00013 −1.00007

Exact Solution −0.52000 −1.00000

The CPU times used for the two BEM approaches are plotted in Fig-
ure 4.4, which shows the significant advantage of the fast multipole BEM com-
pared with the conventional BEM with either a direct or an iterative solver.
For example, for the model with 4800 elements (DOFs = 9600), the fast multi-
pole BEM used only 3 s of the CPU time, whereas the conventional BEM used
1483 s with the direct solver and 38 s with the iterative solver. Beyond 10,000
DOFs, the conventional BEM (with double precision) encounters the 1-GB
physical memory barrier and cannot run efficiently without using the virtual
memory. It is also interesting to note from Figure 4.4 that the slopes of the

0.01

0.10

1.00

10.00

100.00

1,000.00

10,000.00

100 1000 10,000 100,000

DOFs

To
ta

l C
P

U
 ti

m
e

(s
)

Conventional BEM with direct solver [~O(N 3)]

Conventional BEM with GMRES solver [~O(N2)]

Fast multipole BEM [~O (N)]

Figure 4.4. CPU times used by the conventional BEM and fast multipole BEM.

110 Elastostatic Problems

p
a B

A

L x

y

Figure 4.5. A square plate with a circular hole
at the center and loaded with p.

three curves for the conventional BEM with direct solver, iterative solver, and
the fast multipole BEM are close to 3, 2, and 1 on the log–log scales, suggesting
O(N3), O(N2), and O(N) efficiencies of the three methods, respectively.

This example shows that the fast multipole BEM is very efficient com-
pared with the conventional BEM. In addition, the fast multipole BEM results
are equally accurate as the conventional BEM results, and they are very stable
with the increase of the model size.

4.10.2 A Square Plate with a Circular Hole

In the second example, we further study the accuracy of the fast multipole
BEM by using a stress concentration problem – a square plate with a circular
hole at the center, as shown in Figure 4.5. The edge length of the square plate is
L, and the radius of the hole is a = 0.1L. The plate is loaded in the x direction
with a uniform load p and Poisson’s ratio ν = 0.3. The maximum (at point
A) and minimum (at point B) hoop stresses on the edge of the hole are sought
(Figure 4.5) using both the fast multipole BEM code and ANSYS. In the BEM
models, the number of boundary elements on the edge of the hole increases
whereas that on the outer edges of the plate is kept at 100, except for the last
BEM model, in which 200 elements are used on the outer edges of the plate.
The numbers of terms for both multipole and local expansions were set to
20, the maximum number of elements in a leaf to 100, and the tolerance for
convergence to 10−6. All of the fast multipole BEM results converged in about
20 iterations. In the FEM models, Q4 elements are used to compare with the
BEM models (which use constant boundary elements).

Table 4.2 shows the comparison of the computed hoop stresses at points
A and B. For an infinitely large plate with a hole, the hoop stress at point A is
3p and that at point B is −p [88]. For our finite-sized plate with the hole, the

4.10 Numerical Examples 111

Table 4.2. Computed hoop stress σθ (× p) on the edge of the hole

Fast multipole BEM FEM

DOFs At point A At point B DOFs At point A At point B

560 3.215 −1.176 1206 3.148 −1.101
920 3.216 −1.183 4522 3.229 −1.185

1640 3.216 −1.185 9490 3.225 −1.187
3080 3.217 −1.188 38,440 3.226 −1.192
7600 3.222 −1.190

hoop stresses should be slightly higher than these values. The stress values for
both fast multipole BEM (with DOFs = 1640) and FEM (with DOFs = 4522)
converged quickly to around 3.22p at point A and −1.19p at point B. Fur-
ther increases of the numbers of elements provided little improvement in the
results. This example demonstrates again that the results obtained when the
fast multipole BEM code is used are accurate and stable.

It should be pointed out that the element types used for both the BEM
and the FEM in this study are the simplest elements available. If higher-order
elements such as quadratic elements are used, a few hundred elements should
be sufficient for both the BEM and the FEM to achieve the same accuracy as
reported in this example.

4.10.3 Multiple Inclusion Problems

We next study multiple inclusion problems by using the dual BIE and the fast
multipole BEM [74]. The same square domain and BCs as in the previous
example are used (Figure 4.5) but with elliptical inclusions (long axis a and
short axis b). Two cases are considered here, one with multiple circular inclu-
sions (long and unidirectional fibers) under the plane-strain condition and the
other with multiple cracklike inclusions under plane-stress condition. For the
circular inclusion case, the parameters used are a = b = 0.2, fiber volume frac-
tion = 12.57%, E = 1, and ν = 0.25 for the matrix and E = 10 and ν = 0.25
for the inclusions. For the cracklike inclusion case, b = 0.2, a/b = 0.01, crack
density = b2 = 4%, E = 1 and ν = 0.25 for the matrix, and E = 0.00001 and
ν = 0.25 for the inclusions (cracks). In both cases, the inclusions are randomly
distributed in the material domains. Two BEM models for the two cases are
shown in Figure 4.6. For the outer boundary, 400 elements are used; on each
interface, 200 elements are used.

We evaluate the effective Young’s moduli of the materials containing the
circular inclusions and cracks in the x–y plane by using the fast multipole BEM
with the CHBIE and compare with the estimates by using homogenization

112 Elastostatic Problems

(a) (b)

Figure 4.6. Elastic domains embedded with 400 elastic inclusions: (a) circular inclusions
(fibers) with Ei/E0 = 10, (b) cracklike inclusions with Ei/E0 = 0.00001 and a/b = 0.01.

theories. Table 4.3 shows the BEM results with different numbers of the inclu-
sions in the models, and excellent results are obtained for both cases. With
the increase of the size of the models, the evaluated effective Young’s moduli
approach constant values, as expected.

Figure 4.7 is a plot of the CPU times used with the fast multipole BEM for
the two cases studied and with the two preconditioners discussed in the previ-
ous section on the multidomain BEM. Preconditioner A is based on the coef-
ficients calculated on leaves, and preconditioner B is based on those on the

Table 4.3. Computed effective moduli for the materials with
circular and cracklike inclusions

Effective Moduli (× E0)

No. of Circular Cracklike
inclusions Total DOFs inclusions (Ex, Ey) inclusions (Ex)

2 × 2 4000 1.2678 0.7631
4 × 4 13,600 1.2728 0.8024
6 × 6 29,600 1.2596 0.7808
8 × 8 52,000 1.2605 0.7923

10 × 10 80,800 1.2649 0.7891
12 × 12 116,000 1.2640 0.7902
14 × 14 157,600 1.2635 0.7886
16 × 16 205,600 1.2651 0.7900
18 × 18 260,000 1.2642 0.7897
20 × 20 320,800 1.2644 0.7885

Analytical estimates [89] 1.2491 0.7992

4.10 Numerical Examples 113

1

10

100

1000

10,000

100,000

1000 10,000 100,000 1,000,000

DOFs

To
ta

l C
P

U
 ti

m
e

(s
)

Circular inclusion (Preconditioner A)

Circular inclusion (Preconditioner B)

Crack (Preconditioner A)

Crack (Preconditioner B)

Figure 4.7. CPU times used for the multiple circular and cracklike inclusion models.

inclusions [74]. The computer used for these calculations is a desktop PC with
an Intel Pentium D 3.2-GHz processor and 2-GB memory size. For the circu-
lar inclusion case, the numbers of iterations using preconditioner A range from
141 to 550, whereas those using preconditioner B range from 11 to 16, with a
tolerance of 10−6. For the cracklike inclusion case, the numbers of iterations
using preconditioner A range from 29 to 41, whereas those using precondi-
tioner B range from 12 to 14. Significant advantages of using preconditioner
B are observed in both cases. It is also observed that the dual BIE (CHBIE)
formulation, which uses a linear combination of the CBIE and HBIE, pro-
vides much better conditioning for the cracklike inclusion problems, based on
the fact that much faster convergence was achieved for the cracklike problem
than for the circular inclusion problem.

4.10.4 Modeling of Functionally Graded Materials

We next show an example in modeling functionally graded materials by
using the fast multipole BEM for 2D elasticity inclusion problems. We model
functionally graded composites with long fibers that are distributed randomly
and with a decreasing density in one direction. The plane-strain model is used
to extract the moduli of the composites in the transverse directions. Two cases
are studies, one with the fibers of a circular shape and the other with the fibers

114 Elastostatic Problems

(a) (b)

Figure 4.8. Functionally graded composites: (a) circular-shaped fibers; (b) star-shaped
fibers.

of a star shape (Figure 4.8). The volume fraction of the fibers is fixed at 12.57%,
and the material properties for the fibers and matrix are the same as in the pre-
vious example [Figure 4.6(a)].

Table 4.4 shows the computed effective Young’s moduli for the function-
ally graded composite models. The cell sizes increase with the increase of the
included fibers to keep the fiber volume fraction at 12.57%, as in the previous
example. It turns out that the effective moduli converge to the same value of
the analytical solution [89] that is based on a “uniform” (nongraded) distribu-
tion of the fibers as used in the previous example [Figure 4.6(a)]. This suggests

Table 4.4. Computed effective moduli for the functionally
graded composites

Effective Moduli Ex (× E0)

No. of Total Circular-shaped Star-shaped
inclusions DOFs fibers fibers

4 4000 1.2752 1.2254
16 13,600 1.2600 1.2181
36 29,600 1.2674 1.2227
64 52,000 1.2645 1.2208

100 80,800 1.2639 1.2227
144 116,000 1.2616 1.2200
196 157,600 1.2621 1.2216
256 205,600 1.2600 1.2209
324 260,000 1.2625 1.2224
400 320,800 1.2628 1.2215

Analytical estimates [89] 1.2491

4.10 Numerical Examples 115

that the effective moduli of the composites are not affected by the shape and
the distribution of the fibers, as expected, if the volume fraction of the fibers
is the same. However, the graded distribution of the fibers may reduce the
stresses in the composites, and the star-shaped fibers may improve the interfa-
cial properties of the composites.

4.10.5 Large-Scale Modeling of Fiber-Reinforced Composites

The 3D BEM was applied to model fiber-reinforced composite materials for
quite some time (see, e.g., Refs. [54, 90]). However, because of the limitations
in the conventional BEM, only models with a few fibers can be modeled and
analyzed with the BEM, even with parallel computing techniques. With the
advance of the fast multipole BEM, we can now analyze 3D BEM models
of composite materials with more than tens of thousands of fibers that are
modeled explicitly.

To demonstrate this, we next study a few 3D representative volume ele-
ments (RVEs) of fiber-reinforced composites by using the fast multipole BEM
for 3D problems. In these models, the fibers are regarded as rigid inclusions
and the matrix material is considered as an elastic medium. These models are
useful in cases in which the Young’s moduli of the fibers are much higher than
those of the matrix, as in the case of carbon nanotube (CNT) composites. The
RVE is loaded in the x direction to evaluate the effective modulus in that
direction. Elements are needed on only the boundaries and interfaces with
the BEM. More examples in modeling fiber-reinforced composites, especially
CNT composites, including those incorporating the molecular dynamics (MD)
and cohesive interface conditions, can be found in Refs. [80–82]. The following
large models were solved on a supercomputer at Kyoto University.

Figure 4.9 shows a smaller RVE of a short fiber-reinforced composite and
the stress contour plot on the interfaces between the fibers and matrix. A
boundary element mesh using constant triangular elements on the interfaces
is shown in the insert. Using the fast multipole BEM, we can readily study the
interface stresses in such models and extract the effective mechanical proper-
ties of the composites.

Figure 4.10 shows a larger RVE model with 5832 long fibers and
10,532,592 DOFs. The volume fraction of the fibers is 3.85%, and Poisson’s
ratio for the matrix is 0.3. Figure 4.11 shows the normalized effective Young’s
moduli (Eeff/Ematrix) computed from the RVE models for the composite with
increasing numbers of the fibers (from 9 to 5832) and with uniform and random
distributions of the fibers, while keeping the same value of the volume fraction.
Theoretically, the moduli of the materials should be independent of the sizes
of the RVE models. However, when the RVE sizes are small (with only a few
fibers), there are significant changes in the estimated moduli as we increase
the model sizes, which suggests that the models are not yet representative

50

0

−50

−50
0

50 300

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100

0

−100

−200

−300

z

x y

z

yx

sigmax:

Figure 4.9. Stress contour plot (× σ∞) for a RVE with 216 short fibers (insert shows
the mesh).

200

100

0

−100

−200
−100

0
100

200

500

0

−500

z

yx

Figure 4.10. A RVE containing 5832 long fibers with the total DOFs = 10,532,592.

116

4.11 Summary 117

1.40

1.50

1.60

1.70

1.80

1.90

2.00

2.10

2.20

1 10 100 1000 10,000

Number of fibers in the model (log scale)

E
ff

ec
ti

ve
 Y

o
u

n
g

’s
 m

o
d

u
li

(E
ef

f/E
m

at
ri

x)

Effective Young’s modulus (Uniform case)

Effective Young’s modulus (“Random” case)

Figure 4.11. Estimated effective Young’s moduli in the x direction for the composite
models.

of the composites. The estimated moduli approach constant with the increase
of the fibers and thus the sizes of the models. The increases in the values of
the moduli compared with those of the matrix range from 75.9% to 95.0% for
the uniform case and from 65.4% to 87.6% for the random case. However, the
increases in the random case are about 8% lower than those in the uniform
case. This suggests that even small misalignments and rotations of fibers can
offset the enhancement in the stiffness of composites.

The largest BEM model solved so far in modeling fiber-reinforced com-
posites contains 16,000 fibers with a total of 28.8 million DOFs and was solved
on the supercomputer at Kyoto University [80]. More discussion and examples
of modeling the fiber-reinforced composites using the fast multipole BEM can
be found in Refs. [80–82].

4.11 Summary

In this chapter, the governing equations for elastostatic problems are
reviewed. The fundamental solutions, their properties, and the generalized
Green’s identity (Somigliana’s identity) are introduced. The BIE formula-
tions are presented based on this identity and the fundamental solutions. The

118 Elastostatic Problems

fast multipole formulations for solving the BIEs are described in detail for
2D problems, and the results for 3D problems are presented. Fast multipole
BEMs for multidomain problems are also discussed. Numerical examples are
presented to demonstrate the accuracy and efficiencies of the fast multipole
BEM for solving large-scale 2D and 3D elasticity problems.

Problems

4.1. For an isotropic, linearly elastic body, derive the following equilibrium
equations in terms of the displacement field ui :

µui, j j + µ

1 − 2ν
u j, j i + fi = 0. (4.91)

4.2. Derive the generalized Green’s identity for elasticity problems
(Somigliana’s identity) in Eq. (4.17) by using both the Gauss theorem and
the virtual work theorem.

4.3. Derive the traction kernel Ti j in Eq. (4.10) from the displacement kernel
Ui j in Eq. (4.9) for 2D (plane-strain) problems.

4.4. Prove the results given in Eq. (4.32).
4.5. Verify that Eq. (4.42) does give the same fundamental solution given in

Eq. (4.9).
4.6. Prove the complex notation of the traction given in Eq. (4.48).
4.7. Write a conventional BEM code for solving 2D elasticity problems

using constant elements. Use the 2D potential code used in Chap-
ter 2 (Appendix B.1) as the starting point and use the analytical integra-
tion results in Appendix A.2 for the 2D elasticity case.

4.8. Solve the cylinder model in Figure 4.3 by using a quarter-symmetry model
and compare the accuracy and efficiency of the results obtained with those
using the full model.

4.9. Write a fast multipole BEM code for solving 2D elasticity problems using
constant elements based on the 2D potential fast multipole BEM code
given in Appendix B.2. Study its accuracy and efficiency by using the cylin-
der example.

5 Stokes Flow Problems

Stokes flows are incompressible flows at low Reynolds’ number [91], which can
be found in many applications such as creeping flows in biological systems and
fluid–structure interactions in MEMSs. Stokes flow problems were formulated
with BIEs and solved by the BEM for decades with either direct or indirect
BIE formulations (see, e.g., Refs. [92, 93]).

For Stokes flow problems using the fast multipole BEM, there are sev-
eral approaches reported in the literature. Greengard et al. [68] developed a
fast multipole formulation for directly solving the biharmonic equations in 2D
elasticity with the Stokes flow as a special case. Gomez and Power [37] studied
2D cavity flow governed by Stokes equations by using both direct and indirect
BIEs and the FMM in which they used Taylor series expansions of the kernels
in real variables directly. Mammoli and Ingber [40] applied the fast multipole
BEM to study Stokes flow around cylinders in a bounded 2D domain by using
direct and indirect BIEs with the kernels expanded by a Taylor series of the
real variables. In the context of modeling a MEMS, Ding and Ye [94] devel-
oped a fast BEM by using the precorrected fast Fourier transform (FFT) accel-
erated technique for computing drag forces with 3D MEMS models with slip
BCs. Frangi and co-workers [95–98] conducted extensive research by using the
direct BIE formulations and the fast multipole BEM for evaluating damping
forces of 3D MEMS structures. They applied a mixed-velocity–traction BIE in
modeling large-scale 3D MEMS problems under both no-slip and slip BCs. Liu
[99] also developed a fast multipole BEM for solving 2D Stokes flow problems
based on a dual BIE formulation.

In this chapter, the direct BIE formulations for solving Stokes flow prob-
lems are reviewed first. Then, the FMMs for both 2D and 3D Stokes flow prob-
lems are presented. Because of the similarities of the Stokes flow equations to
those for the elasticity problems, many of the results for Stokes flow problems
can be obtained directly from those for elasticity presented in the previous
chapter. Several numerical examples are presented, which clearly show the

119

120 Stokes Flow Problems

accuracy, efficiency, and potentials of the fast multipole BEM for analyzing
large-scale Stokes flow problems.

5.1 The Boundary-Value Problem

Consider the following boundary-value problem for a steady-state Stokes flow
in domain V with boundary S:

Equilibrium equations:

σi j, j = 0, in V; (5.1)

Continuity equations:

ui ,i = 0, in V; (5.2)

Constitutive equations:

σi j = −pδi j + µ(ui , j +u j ,i), in V, (5.3)

where σi j is the stress in the fluid, ui is the velocity, p is the pressure, and µ

is the coefficient of viscosity of the fluid. Substituting Eqs. (5.2) and (5.3) into
Eq. (5.1), we obtain the Stokes equation as follows:

−p,i +µui , j j = 0, in V. (5.4)

Taking the derivative of this equation again and applying Eq. (5.2), we note
that the pressure p field satisfies the Laplace equation:

∇2 p = 0, in V. (5.5)

Two typical BCs for Stokes flow problems are:

ui = ui on Su (velocity BCs), (5.6)

ti = σi j n j = ti on St (traction BCs), (5.7)

where the overbar indicates the specified value of the field, ti is the traction, ni

are the components of the outward normal n, and Su ∪ St = S.

5.2 Fundamental Solution for Stokes Flow Problems

Let �i jk(x, y), Ui j (x, y), and Pi (x, y) be the stress, velocity, and pressure fields,
respectively, in the fundamental solution for Stokes flow problems, with i indi-
cating the direction of the unit concentrate force acting at the source point x.
We have the following equations:

�i jk,k (x, y) + δi jδ(x, y) = 0, ∀x, y ∈ R2/R3, (5.8)

Ui j , j (x, y) = 0, ∀x, y ∈ R2/R3, (5.9)

5.3 Boundary Integral Equation Formulations 121

in which the Dirac δ function δ(x, y) represents the body force corresponding
to the unit force. From Eq. (5.3), we have:

�i jk = −Piδ jk + µ(Ui j ,k +Uik, j). (5.10)

Substituting this result into Eq. (5.8) and applying Eq. (5.9), we have:

−Pi , j (x, y) + µUi j ,kk (x, y) + δi jδ(x, y) = 0, ∀x, y ∈ R2/R3. (5.11)

Taking the derivative again with respect to yj , we obtain:

−∇2 Pi (x, y) + ∂

∂yi
δ(x, y) = 0, ∀x, y ∈ R2/R3. (5.12)

Comparing this equation with Eq. (2.4), we find that:

Pi (x, y) = −G,i (x, y) = −∂G(x, y)
∂yi

, (5.13)

where G is the fundamental solution for potential problems.
For 2D Stokes flow problems, the pressure, velocity, and traction fields in

the fundamental solution are given by:

Pi (x, y) = 1
2πr

r,i , (5.14)

Ui j (x, y) = 1
4πµ

[
δi j log

(
1
r

)
+ r,i r, j −1

2
δi j

]
, (5.15)

Ti j (x, y) = − 1
πr

r,i r, j r,k nk(y). (5.16)

For 3D Stokes flow problems, the fundamental solution gives:

Pi (x, y) = 1
4πr2

r,i , (5.17)

Ui j (x, y) = 1
8πµr

(δi j + r,i r, j) , (5.18)

Ti j (x, y) = − 3
4πr2

r,i r, j r,k nk(y). (5.19)

It is noticed that the U and T kernels for Stokes flow problems also can be
obtained readily from the U and T kernels for elasticity problems, respectively,
by simply setting Poisson’s ratio ν = 1/2 in the results for elasticity problems.
Similar integral identities as those in Eqs. (4.13)–(4.16) are satisfied by the fun-
damental solutions for Stokes flow problems.

5.3 Boundary Integral Equation Formulations

Applying a generalized Green’s identity, similar to the one in Eq. (4.17), we ob-
tain the following representation integral for the velocity within the domain V:

ui (x) =
∫

S
[Ui j (x, y)t j (y) − Ti j (x, y)u j (y)]dS(y), ∀x ∈ V. (5.20)

122 Stokes Flow Problems

Let the source point x approach the boundary S; we obtain the CBIE for
Stokes flow problems (see, e.g., Refs. [92, 93]):

ci j (x)u j (x) =
∫

S
[Ui j (x, y)t j (y) − Ti j (x, y)u j (y)]dS(y), ∀x ∈ S, (5.21)

where ci j = 1/2δi j if S is smooth around x, the integral with the U kernel is
a weakly singular integral, and the integral with the T kernel is a Cauchy
principal-value integral. Equation (5.21) is valid for both interior and exte-
rior problems (assuming velocity and traction fields vanish at the infinity for
the latter). Equation (5.21) is the direct BIE formulation for Stokes flow prob-
lems in which the density functions have direct physical meanings; that is, they
represent the velocity and traction (ui and ti , respectively).

The pressure field can be represented by the following integral (see also
Refs. [92, 93]):

p(x) =
∫

S
[G, j (x, y)t j (y) − 2µF, j (x, y)u j (y)]dS(y), ∀x ∈ V, (5.22)

in which F(x, y) is the same F kernel for potential problems; that is:

F(x, y) = ∂G(x, y)
∂n(y)

. (5.23)

From Eq. (5.22), we can find the pressure field p(x) in domain V once the
velocity and traction fields are known on boundary S.

Taking the derivatives of Eq. (5.20) and applying Eq. (5.3), we have the
following results:

σi j (x)nj (x) = −p(x)ni (x) + ni (x)
∫

S
[G, j (x, y)t j (y) − 2µF, j (x, y)u j (y)] dS(y)

+
∫

S
[Ki j (x, y)t j (y) − Hi j (x, y)u j (y)] dS(y), ∀x ∈ V, (5.24)

with ni (x) being a vector at x. Noting Eq. (5.22) and letting x tend to S, we
obtain the following traction BIE (HBIE) from the preceding result:

c̃i j (x)t j (x) =
∫

S
[Ki j (x, y)t j (y) − Hi j (x, y)u j (y)] dS(y), ∀x ∈ S, (5.25)

where c̃i j = 1/2δi j , assuming S is smooth around x. For 2D Stokes flow prob-
lems, the two new kernels are:

Ki j (x, y) = 1
πr

r,i r, j r,k nk(x), (5.26)

Hi j (x, y) = µ

πr2
[(δi j r,k + δ jkr,i − 8r,i r, j r,k) r,l nl(y)

+ nir, j r,k + nkr,i r, j + δikn j] nk(x), (5.27)

5.3 Boundary Integral Equation Formulations 123

where ni (x) is the normal at the source point x. For 3D problems, the two new
kernels are:

Ki j (x, y) = 3
4πr2

r,i r, j r,k nk(x), (5.28)

Hi j (x, y) = µ

4πr3

{
[3(δi j r,k + δ jkr,i) − 30r,i r, j r,k] r,l nl(y)

+ 3(nir, j r,k + nkr,i r, j) + 2δikn j
}

nk(x). (5.29)

In HBIE (5.25), the integral with the K kernel is a CPV integral, whereas the
one with the H kernel is a HFP integral. For exterior problems, it has been
assumed that the pressure field p(x) vanishes at infinity in the derivation of
HBIE (5.25).

We can obtain CBIE (5.21) and HBIE (5.25) with the four kernels Ui j , Ti j ,

Ki j , and Hi j from those for elasticity problems by simply setting Poisson’s
ratio to 1/2 in the corresponding elasticity BIEs. However, it is still beneficial
to derive these BIEs based on the field equations in order to better under-
stand the BIEs for Stokes flow problems. In addition, it should be pointed out
that the relations between the elasticity BIEs and the Stokes flow BIEs do not
provide an easy path for solving Stokes flow problems by just using the fast
multipole BEM code for elasticity problems. A few results related to the elas-
ticity BIEs become invalid when Poisson’s ratio ν is set to 1/2 directly (e.g., the
Lamé constant λ = 2µν/(1 − 2ν) → ∞ when ν → 1/2).

Some observations on CBIE (5.21) and HBIE (5.25) are in order:

1. For a Dirichlet problem in which velocity is prescribed on the entire
boundary S, CBIE (5.21) is reduced to:∫

S
Ui j (x, y)t j (y)dS(y) = bi (x), ∀x ∈ S, (5.30)

where bi is a known vector from the velocity field; HBIE (5.25) is reduced
to:

1
2

ti (x) =
∫

S
Ki j (x, y)t j (y)dS(y) + di (x), ∀x ∈ S, (5.31)

where di is another known vector (assuming S is smooth). Equation (5.30),
a Helmholtz equation of the first kind, is often ill-conditioned and not suit-
able for iterative solvers, whereas Eq. (5.31), a Helmholtz equation of the
second kind, often yields a system of equations with better conditioning
[37, 40, 92, 93].

2. Any constant-pressure field p(x) = p0, with ui = 0 and ti = −p0ni , is a
solution of both Eq. (5.30) (for interior and exterior problems) and
Eq. (5.31) (for interior problems only). That is, ti = −p0ni are eigenfunc-
tions of both Eq. (5.30) and Eq. (5.31), although corresponding to different

124 Stokes Flow Problems

eigenvalues, and their solutions for the traction field may not be unique
[37, 40, 92, 93].

3. HBIE (5.25) has another “defect”; that is, an arbitrary constant can be
added to the velocity field on a closed contour without changing HBIE
(5.25) because: ∫

Sk

Hi j (x, y)dS(y) = 0,

for any closed contour Sk [46]. This means that we have either nonunique
solutions of the velocity on the contour if traction is prescribed or inac-
curate evaluation of this contour integral if velocity is given, when HBIE
(5.25) is applied alone. This deficiency with the HBIE and its remedies
have been discussed in the context of elasticity in Refs. [100, 101].

A remedy to the previously mentioned defects or difficulties is to use
CBIE (5.21) and HBIE (5.25) together in the form of a linear combination,
which was found to be very effective for 3D exterior Stokes flow problems
in Refs. [95–98] and for both 2D and 3D interior and exterior potential and
elasticity problems as in previous chapters. Other remedies include the so-
called completed indirect BIE formulations [37, 40, 92, 93], which have been
shown to yield BEM equations with better conditioning for solving Stokes flow
problems.

In operator or matrix form, CBIE (5.21) and HBIE (5.25) can be written as:

1
2

u + Tu = Ut, −1
2

t + Kt = Hu,

respectively. Thus, a dual BIE formulation using a linear combination of
CBIE (5.21) and HBIE (5.25) can be written as:(

1
2

u + Tu − Ut
)

+ β

(
−1

2
t + Kt − Hu

)
= 0, (5.32)

where β is the coupling constant. A positive β (e.g., β = 1) was found to
work quite well for all the cases studied for 2D Stokes flow problems. More
discussion on the selections of β can be found in Refs. [50, 52, 57, 59, 85,
102] for other problems. As mentioned in the previous chapters, dual BIE
formulations are especially beneficial to the fast multipole BEM because they
can provide better conditioning for the BEM systems of equations and thus
can facilitate faster convergence when the iterative solvers are used with the
fast multipole BEM.

5.4 Fast Multipole Boundary Element Method for 2D Stokes
Flow Problems

The fast multipole algorithms for solving 2D potential and elasticity prob-
lems were described in detail in the previous two chapters. As a case similar

5.4 Fast Multipole Boundary Element Method for 2D Stokes Flow Problems 125

to 2D elasticity, the 2D Stokes flow case can be handled by using the same
algorithms as in 2D elasticity. The only task is to derive the required expan-
sions and moments. For both CBIE (5.21) and HBIE (5.25), the results can be
extracted from those for the 2D elasticity case given in the previous chapter.
Therefore, only the results for Stokes flow problems without detailed deriva-
tions are listed.

In the previous chapter, it is shown that the two integrals in the CBIE
for 2D elasticity can be represented readily in complex variables if the funda-
mental solutions Ui j (x, y) and Ti j (x, y) are written in complex form by using
the results in 2D elasticity. By setting Poisson’s ratio to 1/2 in these results, we
obtain the corresponding expressions for 2D Stokes flow problems. For exam-
ple, the first integral in CBIE (5.21) can be written in the following complex
form [cf. Eq. (4.44) for 2D elasticity]:

Dt (z0) ≡ [�1(x) + i�2(x)]t ≡
[∫

S
U1 j (x, y)t j (y)dS(y)

]

+ i
[∫

S
U2 j (x, y)t j (y)dS(y)

]

= 1
4µ

∫
S

[
G(z0, z)t(z) + G(z0, z)t(z) − (z0 − z) G′ (z0, z)t(z)

]
dS(z),

(5.33)

where i = √−1; the overbar indicates the complex conjugate; t = t1 + i t2 is the
complex traction; z0(= x1 + i x2) and z(= y1 + iy2) represent x and y, respec-
tively; G(z0, z) = −(1/2π) log(z0 − z) is the complex Green’s function for 2D
potential problems; and G′(z0, z) ≡ ∂G/∂z0. The integral in Eq. (5.33) can be
used to evaluate readily the U kernel integral in CBIE (5.21).

Similarly, the complex representation for the second integral with the T
kernel in CBIE (5.21) can be written as follows [cf. Eq. (4.45) for 2D elasti-
city]:

Du(z0) ≡ [�1(x) + i�2(x)]u ≡
[∫

S
T1 j (x, y)u j (y)dS(y)

]

+ i
[∫

S
T2 j (x, y)u j (y)dS(y)

]

= − 1
2

∫
S

{
G′(z0, z)n(z)u(z) − (z0 − z) G′′(z0, z)n(z)u(z)

+ G′(z0, z)
[
n(z)u(z) + n(z)u(z)

]}
dS(z), (5.34)

in which u = u1 + iu2 and n = n1 + in2 are the complex velocity and normal,
respectively.

126 Stokes Flow Problems

The first integral with the K kernel in HBIE (5.25) can be written in the
following complex form [cf. Eq. (4.52) for 2D elasticity]:

Ft (z0) ≡ [F1(x) + i F2(x)]t ≡
[∫

S
K1 j (x, y)t j (y)dS(y)

]

+ i
[∫

S
K2 j (x, y)t j (y)dS(y)

]

= 1
2

∫
S

{[
G′(z0, z)t(z) + G′(z0, z)t(z)

]
n(z0)

+ [
G′(z0, z)t(z) − (z0 − z) G′′ (z0, z)t(z)

]
n(z0)

}
dS(z). (5.35)

Similarly, the second integral with the H kernel in HBIE (5.25) can be written
as follows [cf. Eq. (4.53) for 2D elasticity]:

Fu(z0) ≡ [F1(x) + i F2(x)]u ≡
[∫

S
H1 j (x, y)u j (y)dS(y)

]

+ i
[∫

S
H2 j (x, y)u j (y)dS(y)

]
= − µ

∫
S

(([
G′′(z0, z)n(z)u(z) + G′′(z0, z)n(z)u(z)

]
n(z0)

+ {
G′′(z0, z)

[
n(z)u(z) + n(z)u(z)

]
− (z0 − z) G′′′(z0, z)n(z)u(z)

}
n(z0)

))
dS(z). (5.36)

In the following subsections, the multipole expansions, local expansions, and
their translations related to Eqs. (5.33) and (5.34) in the fast multipole BEM
for CBIE (5.21) are presented. Then, we discuss those related to Eqs. (5.35)
and (5.36) for HBIE (5.25).

5.4.1 Multipole Expansion (Moments) for the U Kernel Integral

It can be shown that the multipole expansion for the integral Dt (z0) is as fol-
lows [cf. Eq. (4.55) for 2D elasticity]:

Dt (z0) = 1
8πµ

[∞∑
k=0

Ok(z0 − zc)Mk(zc) + z0

∞∑
k=0

Ok+1(z0 − zc)Mk(zc)

+
∞∑

k=0

Ok(z0 − zc)Nk(zc)

]
, (5.37)

5.4 Fast Multipole Boundary Element Method for 2D Stokes Flow Problems 127

where zc is the expansion point close to the field point z (see Figure 3.2), and
the two sets of moments about zc are:

Mk(zc) =
∫

Sc

Ik(z − zc)t(z)dS(z), for k ≥ 0, (5.38)

N0 =
∫

Sc

t(z)dS(z);
(5.39)

Nk(zc) =
∫

Sc

[
Ik(z − zc)t(z) − Ik−1(z − zc)zt(z)

]
dS(z), for k ≥ 1.

5.4.2 Moment-to-Moment Translation

If point zc is moved to a new location zc′ (see Figure 3.2), we have the following
M2M translations:

Mk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Ml(zc), for k ≥ 0, (5.40)

Nk(zc′) =
k∑

l=0

Ik−l(zc − zc′)Nl(zc), for k ≥ 0, (5.41)

which are exactly the same as those used in the 2D elasticity case.

5.4.3 Local Expansion and Moment-to-Local Translation

We have the following local expansion [cf. Eq. (4.60) for 2D elasticity]:

Dt (z0) = 1
8πµ

[∞∑
l=0

Ll(zL)Il(z0 − zL) − z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (5.42)

where zL is the local expansion point close to point z0 (see Figure 3.2), and the
coefficients are given by the following M2L translations:

Ll(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Mk(zc), for l ≥ 0, (5.43)

Kl(zL) = (−1)l
∞∑

k=0

Ol+k(zL − zc)Nk(zc), for l ≥ 0, (5.44)

which are the same as those used in the 2D elasticity case.

128 Stokes Flow Problems

5.4.4 Local-to-Local Translation

If the point for the local expansion is moved from zL to zL′ (see Figure 3.2), the
new local expansion coefficients are given by the following L2L translations:

Ll(zL′) =
∞∑

m=l

Im−l(zL′ − zL)Lm(zL), for l ≥ 0, (5.45)

Kl(zL′) =
∞∑

m=l

Im−l(zL′ − zL)Km(zL), for l ≥ 0, (5.46)

which are also the same as those used in the 2D elasticity case.

5.4.5 Expansions for the T Kernel Integral

The multipole expansion of (5.34) can be written as follows [cf. Eq. (4.65) for
2D elasticity]:

Du(z0) = 1
4π

[∞∑
k=1

Ok(z0 − zc)M̃k(zc) + z0

∞∑
k=1

Ok+1(z0 − zc)M̃k(zc)

+
∞∑

k=1

Ok(z0 − zc)Ñk(zc)

]
, (5.47)

where the two sets of moments are:

M̃k(zc) =
∫

Sc

Ik−1(z − zc)n(z)u(z)dS(z), for k ≥ 1; (5.48)

Ñ1 =
∫

Sc

[
n(z)u(z) + n(z)u(z)

]
dS(z); (5.49)

Ñk(zc) =
∫

Sc

{
Ik−1(z − zc)

[
n(z)u(z) + n(z)u(z)

]
− Ik−2(z − zc)zn(z)u(z)

}
dS(z), for k ≥ 2.

The M2M, M2L, and L2L translations remain the same for the T kernel inte-
grals, except for the fact that M̃0 = Ñ0 = 0. In fact, the moments Mk and M̃k

will be combined, as well as moments Nk and Ñk , so that only two sets of
moments are involved in the M2M and M2L translations.

The local expansion for Du(z0) is [cf. Eq. (4.68) for 2D elasticity]:

Du(z0) = 1
4π

[∞∑
l=0

Ll(zL)Il(z0 − zL) − z0

∞∑
l=1

Ll(zL)Il−1(z0 − zL)

+
∞∑

l=0

Kl(zL)Il(z0 − zL)

]
, (5.50)

5.4 Fast Multipole Boundary Element Method for 2D Stokes Flow Problems 129

where the coefficients Ll(zL) and Kl(zL) are given by Eqs. (5.43) and (5.44)
with Mk replaced with M̃k and Nk with Ñk .

5.4.6 Expansions for the Hypersingular Boundary Integral Equation

To derive the multipole expansions and local expansions for HBIE (5.25),
we can simply apply the results for 2D elasticity problems and set Poisson’s
ratio to 1/2 to obtain the results for 2D Stokes flow problems. The result of the
local expansion for the first integral Ft (z0) in Eq. (5.35) for the HBIE is [cf.
Eq. (4.69) for 2D elasticity]:

Ft (z0) = 1
4π

{[∞∑
l=0

Ll+1(zL)Il(z0 − zL) +
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL) +
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
,

(5.51)

in which the expansion coefficients Ll(zL) and Kl(zL) are given by the same
M2L translations in Eqs. (5.43) and (5.44), respectively. Therefore, the same
sets of moments Mk and Nk used for Dt (z0) are used for Ft (z0) directly.

The local expansion for the second integral Fu(z0) in Eq. (5.36) for the
HBIE is [cf. Eq. (4.70) for 2D elasticity]:

Fu(z0) = µ

2π

{[∞∑
l=0

Ll+1(zL)Il(z0 − zL) +
∞∑

l=0

Ll+1(zL)Il(z0 − zL)

]
n(z0)

+
[
−z0

∞∑
l=1

Ll+1(zL)Il−1(z0 − zL) +
∞∑

l=0

Kl+1(zL)Il(z0 − zL)

]
n(z0)

}
,

(5.52)

in which Ll(zL) and Kl(zL) are given by Eqs. (5.43) and (5.44) with Mk replaced
with M̃k and Nk with Ñk . Again, the same sets of moments M̃k and Ñk used
for Du(z0) are used for Fu(z0), and all the M2M, M2L, and L2L translations
for the HBIE remain the same as those used for the CBIE.

The details of the fast multipole algorithms for solving 2D Stokes prob-
lems are similar to the ones for 2D potential and elasticity problems, which
have been described in detail in the previous two chapters. Preconditioners
for the fast multipole BEM are crucial for its convergence and computing effi-
ciency. The block diagonal preconditioner is used in the study of the numerical
examples, which are formed on each leaf by direct evaluations of the kernels
on the elements within that leaf.

When constant elements (straight-line segment with one node) are used to
discretize the BIEs, all of the moments can be evaluated analytically, as well

130 Stokes Flow Problems

as the integrations of the kernels in the near-field direct evaluations for 2D
Stokes flow problems (Appendix A.3).

5.5 Fast Multipole Boundary Element Method for 3D Stokes
Flow Problems

The fast multipole formulation for 3D Stokes flow problems can be derived
readily from that for the 3D elasticity problems through a limiting process.
For convenience and completeness, the results are subsequently summarized.
First, we note that the fundamental solution in Eq. (5.18) for the 3D Stokes
flow case can be written in the following form:

Ui j (x, y) = 1
8πµ

(
δi j

2
r

− ∂

∂xi

xj − yj

r

)
. (5.53)

Then, we start with the following expansion [same as Eq. (4.72)]:

1
r(x, y)

=
∞∑

n=0

n∑
m=−n

Sn,m(x − yc)Rn,m(y − yc),
∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ , (5.54)

where yc is the expansion center close to the field point y and functions Rn,m

and Sn,m are solid harmonic functions given in Eqs. (3.47) and (3.48), respec-
tively. Substituting (5.54) into (5.53), we have:

Ui j (x, y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)Rn,m(y − yc)

+ Gi,n,m(x − yc)(y − yc) j Rn,m(y − yc)
]
, (5.55)

in which:

Fi j,n,m(x − yc) = δi j Sn,m(x − yc) − (x − yc) j
∂

∂xi
Sn,m(x − yc), (5.56)

Gi,n,m(x − yc) = ∂

∂xi
Sn,m(x − yc). (5.57)

Applying expression (5.55), with point yc being close to subdomain Sc, we
obtain the following multipole expansion for the U kernel integral in CBIE
(5.21):

∫
Sc

Ui j (x, y)t j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)Mj,n,m(yc)

+ Gi,n,m(x − yc)Mn,m(yc)
]
, (5.58)

5.5 Fast Multipole Boundary Element Method for 3D Stokes Flow Problems 131

in which:

Mj,n,m(yc) =
∫

Sc

Rn,m(y − yc)t j (y)dS(y),

(5.59)
Mn,m(yc) =

∫
Sc

(y − yc) j Rn,m(y − yc)t j (y)dS(y)

are the moments for the given n and m. Note that these moments are similar
to those for 3D elasticity problems.

To derive the multipole expansion for the T kernel integral in CBIE (5.21),
we first note that the T kernel can be expressed as:

Ti j = �i jknk(y) = [−Piδ jk + µ(Ui j ,k +Uik, j)] nk(y)

= [G,i δ jk + µ(Ui j ,k +Uik, j)] nk(y)

= 1
8π

[
δi j

∂

∂yk

(
1
r

)
+ δik

∂

∂yj

(
1
r

)
+ (y − x) j

∂2

∂yk∂xi

(
1
r

)

+ (y − x)k
∂2

∂yj∂xi

(
1
r

)]
nk(y), (5.60)

where Eqs. (5.13) and (5.53) have been applied. Using the results in Eqs. (5.54)
and (5.60), we obtain the multipole expansion for the T kernel integral in
CBIE (5.21) as follows:

∫
Sc

Ti j (x, y)u j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
Fi j,n,m(x − yc)M̃j,n,m(yc)

+ Gi,n,m(x − yc)M̃n,m(yc)
]
, (5.61)

in which:

M̃j,n,m(yc) = µ

∫
Sc

[nk(y)u j (y) + nj (y)uk(y)]
∂

∂yk
Rn,m(y − yc)dS(y),

(5.62)

M̃n,m(yc) = µ

∫
Sc

(y − yc) j [nk(y)u j (y) + nj (y)uk(y)]
∂

∂yk
Rn,m(y − yc)dS(y).

We can also derive these moments from those for the 3D elasticity case by
letting the Poisson’s ratio tend to 1/2 in the corresponding elasticity results.
As in the elasticity case, only one in each of the pairs (Mj,n,m, M̃j,n,m) and
(Mn,m, M̃n,m) is used in the moment calculations, depending on the BCs.
Therefore, there are only four moments that need to be calculated on each
boundary element.

132 Stokes Flow Problems

When the expansion point is moved from yc to yc′ , we have the following
M2M translations:

Mj,n,m(yc′) =
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(yc′ − yc)Mj,n−n′,m−m′(yc),

(5.63)Mn,m(yc′) =
n∑

n′=0

n′∑
m′=−n′

Rn′,m′(yc′ − yc) [Mn−n′,m−m′(yc)

+ (yc′ − yc) j Mj,n−n′,m−m′(yc)] ,

which also apply to M̃j,n,m and M̃n,m.
The local expansion of the U kernel integral on Sc about the point x = xL

is given by:∫
Sc

Ui j (x, y)t j (y)dS(y) = 1
8πµ

∞∑
n=0

n∑
m=−n

[
F R

i j,n,m(x − xL)Lj,n,m(xL)

+ GR
i,n,m(x − xL)Ln,m(xL)

]
, (5.64)

where the local expansion coefficients are given by the following M2L transla-
tions:

Lj,n,m(xL) = (−1)n
∞∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(xL − yc)Mj,n′,m′(yc),

Ln,m(xL) = (−1)n
∞∑

n′=0

n′∑
m′=−n′

Sn+n′,m+m′(xL − yc) [Mn′,m′(yc) (5.65)

− (xL − yc) j Mj,n′,m′(yc)] ,

and F R
i j,n,m and GR

i,n,m are obtained from Eqs. (5.56) and (5.57), respectively,
with Sn,m replaced with Rn,m in each case. The local expansion for the T kernel
integral is similar to that of Eq. (5.64), only with Mj,n′,m′ and Mn′,m′ replaced
with M̃j,n′,m′ and M̃n′,m′ , respectively, in Eq. (5.65) when the local expansion
coefficients are computed for the T kernel integral.

When the local expansion point is moved from xL to xL′ , we have the fol-
lowing L2L translations:

Lj,n,m(xL′) =
∞∑

n′=n

n′∑
m′=−n′

Rn′−n,m′−m(xL′ − xL)Lj,n′,m′(xL),

(5.66)

Ln,m(xL′) =
∞∑

n′=n

n′∑
m′=−n′

Rn′−n,m′−m(xL′ − xL) [Ln′,m′(xL) − (xL′ − xL) j Lj,n′,m′(xL)].

We can readily obtain the fast multipole formulation for the HBIE by taking
the derivatives of the local expansions for the CBIE and invoking the consti-
tutive equations.

5.6 Numerical Examples 133

a

r

V S

Ω

n

θ
Figure 5.1. A rotating cylinder in an infinite fluid.

As in the 2D cases, we can readily obtain the fast multipole expansions
for 3D Stokes flow problems by letting Poisson’s ratio ν tend to 1/2 in the cor-
responding results for 3D elasticity problems. All the M2M, M2L, and L2L
translations are identical to those for the 3D elasticity case. Based on this fact,
a fast multipole BEM program for 3D elasticity problems can be extended
readily to a fast multipole BEM program for 3D Stokes flow problems if the
direct BIE formulations are used for the Stokes flow problems.

5.6 Numerical Examples

Three examples are first presented in two dimensions to demonstrate the accu-
racy and the efficiency of the fast multipole BEM for Stokes flow problems. In
all the 2D examples, the computations are done on a Pentium IV laptop PC
with a 2.4-GHz CPU and 1-GB RAM. The numbers of terms in expansions
are set to 20, the maximum number of elements in a leaf to 100, and the cou-
pling constant β = 1 for the dual BIE. Finally, two 3D models are presented to
further demonstrate the applications and potentials of the fast multipole BEM
for solving Stokes flow problems.

5.6.1 Flow That Is Due to a Rotating Cylinder

The flow in an infinite 2D medium that is due to a rotating circular cylinder
is considered first (Figure 5.1). The radius of the cylinder is a and the angu-
lar velocity is �. A solution to this problem exists [103]; that is, in the polar
coordinate system, we have:

ur (r, θ) = 0, uθ (r, θ) = �a2/r, σrθ (r, θ) = −2µ�a3/r2, (5.67)

which can be used to verify the BEM solutions. The velocity is specified on the
boundary by use of the preceding results, and the tractions are sought with the
BEM. For the fast multipole BEM solutions, the tolerance for convergence is
set to 10−6.

Table 5.1 shows the results of the tractions at the boundary computed by
the fast multipole BEM with both the CBIE and CHBIE formulations (the
HBIE cannot provide solutions in this case due to defect (3) mentioned in

134 Stokes Flow Problems

Table 5.1. Traction ty at (a, 0) and numbers of iterations used
in the fast multipole BEM

ty (×µ�a) Number of iterations

DOFs CBIE CHBIE CBIE CHBIE

80 1.9999 1.9891 16 7
160 2.0003 1.9936 18 7
320 2.0054 1.9965 13 7
640 2.0028 1.9981 13 4

1280 2.0011 1.9990 14 4
2560 2.0005 1.9995 16 4
5120 1.9997 1.9998 21 4

10,240 1.9997 1.9999 28 4
20,480 2.0007 1.9999 32 4

Exact solution 2.0000

Section 5.3). Although both BIE formulations give results of comparable accu-
racies, the CHBIE converges much faster than the CBIE, as indicated by the
number of iterations used, which are also listed in Table 5.1.

Figure 5.2 is a plot of the traction components on the boundary of the
cylinder with 40 elements and using CHBIE. Figure 5.3 shows the velocity
computed at points inside the fluid domain with the same mesh and the

–2.5

–2.0

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 30 60 90 120 150 180 210 240 270 300 330 360
Degrees

Tr
ac

tio
ns

Traction tx (BEM)

Traction ty (BEM)

Traction tx (Analytical)

Traction ty (Analytical)

Figure 5.2. Computed tractions on boundary S (with 40 elements).

5.6 Numerical Examples 135

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Distance (r)

V
e

lo
ci

ty
(u

)

uθ (BEM)

uθ (Analytical)

Figure 5.3. Computed velocity uθ at points inside the fluid domain V (with 40
elements).

CHBIE. Both results demonstrate that the fast multipole BEM results are
quite accurate with only 40 constant elements.

The CPU times used for the fast multipole BEM based on the CBIE
and CHBIE approaches are plotted in Figure 5.4, which shows the significant
advantage of the CHBIE formulation over the CBIE formulation. For exam-
ple, for the model with 10,240 elements (DOFs = 20,480), the fast multipole
BEM with CHBIE used about 17 s of CPU time, whereas the BEM with the
CBIE used about 92 s, which is about four times slower. Higher condition
numbers are observed for the CBIE and very low condition numbers for the
CHBIE with a direct solver, which is consistent with the solution efficiency
with the iterative solver.

5.6.2 Shear Flow Between Two Parallel Plates

The flow between two parallel plates (Figure 5.5) is studied next using the
CBIE, HBIE, and CHBIE formulations. The top plate is moving with a con-
stant speed v0 in the x direction and a no-slip condition is assumed between
the plates and fluid. The analytical solutions for this problem are:

ux(x, y) = v0 y/h, uy = 0, σx = σy = 0, σxy = µv0/h. (5.68)

136 Stokes Flow Problems

10

102

10−1

10−2

10

0

100 1000 10,000 100,000

DOFs

To
ta

l C
P

U
 ti

m
e

(s
)

CBIE

CHBIE

Figure 5.4. Total CPU time used for solving the rotating cylinder problem (log–log
scale).

The purpose of this example is to show the behaviors of the BEM solutions
as the ratio h/L approaches zero; that is, when the fluid domain becomes a
narrow channel. The narrow spaces between two fingers of a MEMS comb-
drive device closely resemble the configuration studied in this example with
small ratios of h/L.

Mixed boundary conditions are used so that all of the three BIE formula-
tions – that is, CBIE, HBIE, and CHBIE – can be tested. For the lower bound-
ary, zero velocities are specified, whereas for the upper boundary, velocities

x

y
v0

h

L

V

Figure 5.5. Shear flow between two par-
allel plates.

5.6 Numerical Examples 137

Table 5.2. Comparison of the three BIE formulations for the shear flow problem

Traction tx (× µv0/h) at L/2, 0 Number of iterations
Number of elements

h/L on edges L and h CBIE HBIE CHBIE CBIE HBIE CHBIE

0 100/100 −0.99980 −1.00135 −0.99961 15 17 16
10−1 100/20 −0.99998 −1.00264 −1.00185 25 21 21
10−2 100/10 −1.00000 −1.00027 −1.00021 73 68 69
10−3 100/5 −1.00000 −0.99985 −0.99988 142 67 67
10−4 100/3 −1.00000 −0.99931 −0.99935 185 65 94
10−5 100/2 −0.99998 −0.99943 −0.99514 227 49 70
10−6 100/1 −0.99979 −0.99322 −0.98546 298 40 54

Exact solutions −1.00000

are given as ux = v0 and uy = 0. For the two vertical boundaries, tractions are
given as tx = 0, ty = µv0/h at x = L and tx = 0, ty = −µv0/h at x = 0. The tol-
erance for convergence in the fast multipole BEM is set to 10−6.

Table 5.2 shows the dimension, discretization, and computed tractions at
the midpoint of the lower boundary and the numbers of iterations used in the
fast multipole BEM solutions with the three BIE formulations. It is observed
that as the ratio of h/L becomes smaller, more iterations are needed for the
CBIE formulation, whereas about the same numbers of iterations are needed
for the HBIE and the CHBIE formulations. These results indicate the poor
conditioning of the CBIE but also indicate the good and improved condition-
ing of the HBIE and CHBIE, respectively. Most interesting is the fact that
even at h/L = 10−6, all three BIE formulations can still provide reasonably
good results of the tractions. The results from the HBIE and the CHBIE are
slightly less accurate than those from the CBIE at small h/L, which may be
caused by the extremely small elements on the two small vertical edges. Recall
that for 2D problems, the finite part of the hypersingular integral is propor-
tional to 1/R, where R is the element length (see Appendix A.3). If R is very
small, as is tested in this case, 1/R can be very large and can cause numerical
errors in the BEM systems of equations. In fact, the BEM code fails when the
ratio h/L is smaller than 10−6 for this example because of the existence of the
hypersingular kernel H. This is different from the results reported in Chapter
3 and Ref. [57] for electrostatic MEMS problems, in which the ratio h/L of
a beam can reach 10−16 for the dual BIE formulation that does not have the
hypersingular kernel.

This example demonstrates that the dual BIE formulation can facilitate
fast convergence for the fast multipole BEM even when the domain under
consideration is extremely thin. This is consistent with the conclusions with
the dual BIE approach for a fast multipole BEM in the context of electrostatic
analysis of the MEMS models shown in Chapter 3 and Refs. [57, 59].

138 Stokes Flow Problems

x

y

L

h

2a

v0 v02b

Figure 5.6. Channel flow around a cylinder.

5.6.3 Flow Through a Channel with Many Cylinders

We next consider an interior Dirichlet problem; that is, Stokes flows through a
channel placed with one or multiple cylinders. The dimensions of the channel
are shown in Figure 5.6. At the inlet of the channel (x = 0), the flow has a
parabolic velocity profile:

ux(0, y) = 4v0(1 − y/h)y/h, uy(0, y) = 0, (5.69)

where v0 is the maximum value of the velocity. At the outlet of the channel (x
= L), the same velocity profile is assumed (see Figure 5.6); that is, the flow is
assumed to have recovered from the disturbances by the cylinder(s) placed in
the middle section of the channel. On the upper and lower boundaries and all
cylinder boundaries, no-slip BCs are assumed. For this test, the tolerance for
convergence for the solver is set to 10−5.

First, the case with one circular cylinder placed in the center of the chan-
nel is studied, with L = 2h and a = 0.1h. Figure 5.7 shows the velocity vec-
tor plot within the fluid obtained by use of the CHBIE. There are about 800
points distributed evenly inside the domain where the velocity is evaluated
with the representation integral after the tractions are obtained from the BEM
solutions.

Table 5.3 shows the total fluid force applied on the cylinder and evaluated
by integration of the obtained traction field on the boundary of the cylinder
(assuming a unit depth). There are 600 elements on the outer boundary and
the number of elements on the cylinder increases. Both the CBIE and the
CHBIE are used, and the results for the total force on the cylinder are very
stable with the CBIE, whereas those with the CHBIE increase slowly to reach
a stable value. The errors with the CHBIE may be due to the finite-part inte-
grals in the HBIE on curved boundaries computed with constant elements that

5.6 Numerical Examples 139

Table 5.3. Force F computed on the cylinder with CBIE and CHBIE

Number of
Force F (× µv0) No. of iterations CPU time (s)

elements on Total
cylinder DOFs CBIE CHBIE CBIE CHBIE CBIE CHBIE

320 1840 16.21 15.38 23 12 9.8 5.7
640 2480 16.21 15.76 26 12 16.2 8.5

1280 3760 16.21 15.96 28 9 30.8 12.0
2560 6320 16.21 16.06 28 9 68.8 26.2
5120 11,440 16.21 16.11 33 9 137.8 45.2

10,240 21,680 16.21 16.14 37 9 277.1 82.1

can introduce numerical errors. As shown in Table 5.3, the number of itera-
tions with the CBIE increases as the model size increases, whereas the number
of iterations with the CHBIE is almost constant and only about one half to one
quarter of that for the CBIE.

Next, the models with multiple elliptic cylinders placed in the middle sec-
tion of a channel with L = 3h are studied. These models are motivated by the
examples presented by Greengard et al. in Ref. [68], with different geometries,
BCs, and numbers of elements.

Figure 5.8(a) shows the velocity plot for a 5 × 5 array of elliptic cylinders
with a uniform distribution, and Figure 5.8(b) shows the velocity field with
a random distribution, both using CHBIE with 16,600 DOFs. For the uni-
form distribution, 59 iterations are used (381-s CPU time), whereas for the
random distribution, 82 iterations are used (491-s CPU time). It is observed
that when more cylinders are placed in the same space or when cylinders
are distributed randomly, the iteration numbers for the BEM solutions will
increase because of the intensified interactions between the cylinders, as dis-
cussed in Ref. [40]. Figure 5.8(c) shows a larger model with 13 × 13 elliptic

Figure 5.7. Vector plot of the velocity field for one circular cylinder with a = 0.1h and
L = 2h.

140 Stokes Flow Problems

(a)

(b)

(c)

Figure 5.8. Various BEM models of the channel with many elliptic cylinders (L = 3h):
(a) velocity plot for uniform distribution of 5 × 5 elliptic cylinders with a = 0.05h, b =
0.5a, DOFs = 16,600; (b) velocity plot for random distribution of 5 × 5 elliptic cylin-
ders with a = 0.05h, b = 0.5a, DOFs = 16,600; (c) a larger model with 13 × 13 elliptic
cylinders and a = 0.02h, b = 0.5a, DOFs = 103,000.

cylinders packed evenly in the middle section of the channel. The model has
103,000 DOFs and both the CBIE and the CHBIE are applied. The number
of iterations increases dramatically for this large model. The CBIE used 248
iterations (9130-s CPU time), whereas the CHBIE used 168 iterations (6631-s
CPU time). Again, the advantage of the CHBIE formulation with the fast
multipole BEM is evident.

From the preceding 2D examples, we can conclude that the dual BIE
approach, using a linear combination of the CBIE and the HBIE, can signifi-
cantly improve the conditioning of the BEM systems of equations and thus
facilitate faster convergence in the fast multipole BEM.

5.6 Numerical Examples 141

x y

z

Figure 5.9. A translating sphere meshed with 10,800 constant triangular elements.

5.6.4 A Translating Sphere

We next study a 3D example by using a translating sphere, as shown in Figure
5.9. The sphere has radius R and moves with a constant velocity U0 in the
x direction in an infinite 3D fluid. The analytical solution of this Stokes flow
problem is available and can be used to validate the BEM solutions.

Table 5.4 shows the computed total drag force on the sphere with differ-
ent BEM discretizations and using the 3D fast multipole BEM code for Stokes

Table 5.4. Computed drag force for the translating sphere

Drag force (× µRU0)

Number of Total Stokes Elasticity BIE Number of
elements DOFs BIE with v = 0.499 iterations

432 1296 18.6585 18.6396 9
768 2304 18.7414 18.7226 11

1200 3600 18.7801 18.7613 12
2700 8100 18.8187 18.7999 12
4800 14,400 18.8319 18.8131 16
7500 22,500 18.8382 18.8194 17

10,800 32,400 18.8422 18.8234 16
14,700 44,100 18.8440 18.8252 18
19,200 57,600 18.8452 18.8264 20
24,300 72,900 18.8462 18.8274 20
30,000 90,000 18.8468 18.8280 20
36,300 108,900 18.8473 18.8285 20
43,200 129,600 18.8479 18.8291 20

Exact value 18.8496

142 Stokes Flow Problems

10

100

1000

10,000

100 1000 10,000 100,000 1,000,000

DOFs

C
P

U
 T

im
e

(s
)

Elasticity BIE with v = 0.499

Stokes BIE

Figure 5.10. CPU times used for solving the translating sphere problem.

flow problems. For comparison, the results obtained with the 3D elasticity
code with Poisson’s ratio ν = 0.499 (close to 1/2) are also listed in the table.
Both BIE results are very satisfactory compared with the analytical solution,
with the Stokes BIE solutions closer to the analytical solution, as expected.
The number of iterations is also listed, and fast convergence is observed for
this exterior domain Stokes flow problem. In the BEM solutions, the tolerance
for convergence is set to 10−4, the number of terms in expansions to 15, and
the number of elements in a leaf to 100. A Pentium D 3.2-GHz PC with 2-GB
RAM is used for this study. The total CPU times used to run all the models
are plotted in Figure 5.10, which shows a computational efficiency very close
to O(N).

5.6.5 Large-Scale Modeling of Multiple Particles

For the last example, a 3D model is shown with multipole particles that move
through an infinite fluid, as shown in Figure 5.11. These particles are in the
shape of a typical red-blood cell (RBC) and are used here to study the drag
forces on these cells as they move in the fluid. The cells move with a constant
velocity U0 in the x direction. There are 40 cells in this model, and each cell is
discretized with 7500 constant triangular elements (Figure 5.12). The number

5.6 Numerical Examples 143

x y

z

Figure 5.11. BEM model of 40 cells.

of the total DOFs for the model is 900,000, and the model is solved on the
2.4-GHz Pentium IV laptop with 1-GB RAM.

The computed drag forces (traction tx) on the cells are shown in Figure
5.13. As expected, most of the values of traction are negative; that is, the forces
are in the opposite direction of the motion of the cells. The large forces occur
near the front and the end of the group of the cells. The CPU time used in
solving this large BEM model with 900,000 DOFs is 730 min with 49 iterations
for a tolerance of 10−4 and 15 expansion terms.

The results in this example are preliminary because the cells have been
considered to be rigid bodies and the motion to be constant. These results
can be regarded as a snapshot in one instance. To improve the BEM model,
deformation of the cells should be considered; for example, by applying the

Figure 5.12. BEM mesh on each cell
with 7500 constant triangular elements.

144 Stokes Flow Problems

x y

z

−0.26tx: −0.24 −0.22 −0.2 −0.18 −0.16 −0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0

Figure 5.13. Computed traction (drag force) on the cells in the flow direction.

elasticity BEM or other mechanics models [103–105] for the cells. Quasi-
dynamic analysis of the cells also can be conducted [40] to predict the evo-
lution of the cell configurations.

Other potential applications of the 2D and the 3D Stokes flow fast multi-
pole BEMs discussed in this chapter include studies of damping forces in
MEMSs [95–98, 106] and Stokes flows interacting with deformable bodies
[103–105]. Indeed, combining the Stokes flow fast multipole BEM code with
the one for elasticity problems to study coupled fluid–structure interaction
problems in general is an interesting research topic for applications in ana-
lyzing biological systems as well as MEMS devices.

5.7 Summary

In this chapter, the governing equations for solving Stokes flow problems are
reviewed. The BIE formulations for 2D and 3D Stokes flow problems are pre-
sented, and the deficiencies of the direct CBIE and HBIE formulations are
discussed. The fast multipole formulations for solving the BIEs are discussed
for 2D problems, and the formulations for 3D problems are presented. Numer-
ical examples are presented to demonstrate the accuracy and efficiencies of the
fast multipole BEM for solving large-scale 2D and 3D Stokes flow problems.
The advantages of the dual BIE (CHBIE) formulation for solving the Stokes
flow problems are demonstrated regarding the computational efficiencies.

Problems 145

It is observed that the Stokes flow case is very similar to the elasticity case
discussed in the previous chapter, regarding the fundamental solutions, singu-
larities of the kernels, BIE formulations, fast multipole formulations, and solu-
tion procedures. Many of the results for Stokes flow problems can be obtained
readily from their corresponding elasticity equations.

Problems

5.1. Solve the Stokes equation and obtain the analytical solutions in Eq. (5.67)
for the rotating cylinder example.

5.2. Derive representation integral (5.22) for the pressure field p(x).
5.3. Derive the K and H kernels in Eqs. (5.28) and (5.29), respectively, for 3D

Stokes flow problems from the corresponding elasticity equations.
5.4. Verify expression (5.60) for the T kernel in three dimensions.
5.5. Verify multipole expansion (5.61) for the T kernel integral in the 3D

CBIE.
5.6. Write a 2D Stokes flow conventional BEM code using the CBIE and con-

stant elements, based on the code for 2D potential problems in Appendix
B.1. Test your code on the 2D examples used in this chapter.

5.7. Write a 2D Stokes flow fast multipole BEM code using the CBIE and con-
stant elements, based on the code for 2D potential problems in Appendix
B.2. Test your code on the 2D examples used in this chapter and study its
accuracy and efficiency.

6 Acoustic Wave Problems

Solving acoustic wave problems is one of the most important applications of
the BEM, which can be used to predict sound fields for noise control in auto-
mobiles, airplanes, and many other consumer products. Acoustic waves often
exist in an infinite medium outside a structure that is in vibration (a radiation
problem) or impinged on by an incident wave (a scattering problem). With the
BEM, only the boundary of the structure needs to be discretized. In addition,
the BCs at infinity can be taken into account analytically in the BIE formula-
tions, and thus these conditions are satisfied exactly. The governing equation
for acoustic wave problems is the Helmholtz equation, which was solved using
the BIE and BEM for more than four decades (see, e.g., some of the early
work in Refs. [107–120]). Especially, the work by Burton and Miller in Ref.
[108] is regarded as classical work that provides a very elegant way to over-
come the so-called fictitious frequency difficulties existing in the conventional
BIE for exterior acoustic wave problems. Burton and Miller’s BIE formula-
tion has been used by many others in their research on the BEM for acoustic
problems (see, e.g., Refs. [50, 51, 121–125]).

The development of the fast multipole BEM for solving large-scale acous-
tic wave problems is perhaps the most important advance in the BEM that
has made the BEM unmatched by other methods in modeling acoustic wave
problems. The fast multipole method developed by Rokhlin and Greengard
[33–35] has been extended to solving the Helmholtz equation for quite some
time (see, e.g., Refs. [102, 126–137] and review [41]). Most of these works are
good for solving acoustic wave problems at either low or high frequencies.
For example, Greengard et al. [130] suggested a diagonal translation in the
FMM for the low-frequency range. Rokhlin [127] proposed a diagonal form
of the translation matrices for high-frequency ranges for the Helmholtz equa-
tion. Most recently, the same group also proposed integrated algorithms that
are valid for a wide range of frequencies [137]. Gumerov and Duraiswami’s
research volume [136] is the first book that is devoted entirely to the topic of
the FMM for solving Helmholtz equations in three dimensions.

146

6.1 Basic Equations in Acoustics 147

In this chapter, we first review the basic governing equations for acous-
tic wave problems and the fundamental solutions. Then, the BIE formulations
for acoustic wave problems are presented, followed by a discussion on the fast
multipole BEM for solving the acoustic BIEs in both two and three dimen-
sions. Finally, several numerical examples are presented to demonstrate the
advantages of the fast multipole BEM in solving acoustic wave problems and
to discuss the remaining challenges.

6.1 Basic Equations in Acoustics

In 1D space, the acoustic wave equation can be written as:

∂2φ

∂x2
− 1

c2

∂2φ

∂t2
+ Qδ(x, xQ) = 0, (6.1)

in which φ = φ(x, t) is the perturbation acoustic pressure, x is the coordinate,
t is the time, c is the speed of sound in the medium (e.g., c = 343.6 m/s in air
at a temperature of 20◦C), and Qδ(x, xQ) represents a possible point source
located at xQ. The preceding equation can be applied to describe the acoustic
wave in a 1D long duct that is due to a disturbance along the axis of the duct
(x direction).

We can verify that the solutions of Eq. (6.1) are of the following forms
when Q = 0:

φ(x, t) = f (x − ct), φ(x, t) = g(x + ct). (6.2)

Function f (x − ct) represents a right-traveling wave (waves moving along the
+x direction) and g(x + ct) is a left-traveling wave (waves moving along the
–x direction).

Similarly, in 2D or 3D spaces, the acoustic wave equation can be written
as:

∇2φ − 1
c2

∂2φ

∂t2
+ Qδ(x, xQ) = 0, ∀x ∈ E, (6.3)

where φ = φ(x, t) is the perturbation acoustic pressure at point x and time t,
c is the speed of sound, Qδ(x, xQ) is a typical point source located at xQ in
E (Figure 6.1), and ∇2() = ∂2()/∂xk∂xk = (),kk is the Laplace operator. The
acoustic domain E is considered to be isotropic and homogeneous and can be
an infinite domain exterior to a body V or a finite domain interior to a closed
surface.

For time harmonic waves, the point source intensity Q = Q̃e−iωt and the
solutions to the governing equation can be written as:

φ(x, t) = φ̃(x, ω)e−iωt , (6.4)

148 Acoustic Wave Problems

SV

E

n(y)
r

n(x)

y

x

x
Q

Figure 6.1. The acoustic medium E, body V, and boundary S.

in which φ̃(x, ω) is the (complex) acoustic pressure in the frequency domain,
ω is the circular frequency, and i = √−1. Substituting Eq. (6.4) into Eq. (6.3),
we obtain:

∇2φ̃ + ω2

c2
φ̃ + Q̃δ(x, xQ) = 0, ∀x ∈ E.

Let k = ω/c be the wavenumber and, for convenience, we drop the tildes in the
preceding equation. We obtain the following governing equation for acoustic
wave problems:

∇2φ + k2φ + Qδ(x, xQ) = 0, ∀x ∈ E, (6.5)

with φ(x, ω) being the complex acoustic pressure and Qδ(x, xQ) representing
the point source located at xQ (inside domain E). The preceding equation
is the well-known inhomogeneous Helmholtz equation. Note that the cyclic
frequency:

f =ω/2π (with units of inverse seconds, or Hertz), (6.6)

and the wavelength:

λ = c/ f = 2πc/ω = 2π/k (with units of meters). (6.7)

The BCs for the governing equation can be classified as follows:

Pressure is given:

φ = φ, ∀x ∈ S; (6.8)

Velocity is given:

q ≡ ∂φ

∂n
= q = iωρvn, ∀x ∈ S; (6.9)

Impedance is given:

φ = Zvn, ∀x ∈ S, (6.10)

6.1 Basic Equations in Acoustics 149

x1

x2

x3

a

n

E

S

v0

r
x

Figure 6.2. A pulsating sphere in an infinite acoustic
domain E.

where ρ is the mass density (e.g., ρ = 1.29 kg/m3 for air at 0◦C and 1-atm
pressure), vn is the normal velocity, Z is the specific acoustic impedance, and
the quantities with overbars indicate given values.

For the boundary-value problem for acoustic waves, we need to solve gov-
erning equation (6.5) at a given frequency or wavenumber and under the BCs
in (6.8)–(6.10). Once we have the solution φ(x,ω) in the frequency domain, we
can obtain the solution in the time domain from Eq. (6.4) for the time har-
monic case.

There are two typical types of problems in acoustic wave analysis. One is
called a radiation problem, in which a structure is in vibration and causes dis-
turbances in the acoustic field outside or inside the structure. In this case, the
velocity on the boundary S is specified in the acoustic analysis. Another type
of acoustic wave problem is called a scattering problem, in which the structure
stands still and an incoming disturbance (a plane incident wave or an incident
wave from a point source) interacts with the structure and waves are scattered
by the structure.

For exterior (infinite domain) acoustic wave problems, in addition to the
boundary conditions on S, the field at infinity must satisfy the following Som-
merfeld radiation condition:

lim
R→∞

[
R

∣∣∣∣ ∂φ

∂ R
− ikφ

∣∣∣∣] = 0, (6.11)

where R is the radius of a large sphere covering the structure and φ is the radi-
ated wave in a radiation problem or the scattered wave in a scattering prob-
lem. Basically, the Sommerfeld condition says that any acoustic disturbances
caused by the structure (either radiated or scattered) should die out at infinity
based on the energy considerations.

As an example, let us consider a pulsating sphere in an infinite acoustic
medium (Figure 6.2). This example is often used as a test problem to ver-
ify the numerical solutions. The sphere has a radius a and is applied with a
uniform velocity v0 in the radial direction (imagine a balloon expanding and

150 Acoustic Wave Problems

contracting uniformly in the radial directions and harmonically in time). This
is a radiation problem, and the boundary-value problem is given by:

∇2φ + k2φ = 0 ∀x ∈ E,
(6.12)

∂φ

∂n
= −iωρv0, ∀x ∈ S.

To solve this problem, we note the spherical symmetry and use the spherical
coordinates; that is, φ(x, ω) = φ(r, ω), where r is the radial coordinate (see Fig-
ure 6.2).

We have in the spherical coordinate system:

∇2φ =
(

∂2

∂r2
+ 2

r
∂

∂r

)
φ = 1

r
d2

dr2
(rφ) ;

therefore, the governing equation in (6.12) is reduced to:

d2

dr2
(rφ) + k (rφ) = 0. (6.13)

The solution of this ODE is of the form:

φ(r, ω) = 1
r

(
A1eikr + A2e−ikr) ,

where A1 and A2 are two constants. For the field caused by the pulsating
sphere, the wave should be an outgoing wave (traveling away from the sphere).
Thus, the second term representing an incoming wave (traveling toward the
sphere) should vanish (A2 = 0). We have:

φ(r, ω) = 1
r

A1eikr .

To determine A1, we apply the BC in Eq. (6.12) and find that:

A1 = iωρv0a2

ika − 1
e−ika = ρcv0(ika)

ika − 1
ae−ika .

Therefore, the solution to the pulsating-sphere problem is found to be:

φ(r, ω) = ρcv0(ika)
ika − 1

a
r

eik(r−a), (6.14)

which represents the perturbation pressure field that is due to the pulsating
sphere. We notice that this is an outgoing wave and it vanishes at infinity (i.e.,
satisfies the Sommerfeld radiation condition).

6.2 Fundamental Solution for Acoustic Wave Problems

If we place a unit concentrated source (disturbance or “pulsating point”) at
point x in an acoustic medium occupying the full space, then the mathemati-
cal representation for the response (acoustic disturbance pressure) at another
point y is called the fundamental solution or the full-space Green’s function

6.2 Fundamental Solution for Acoustic Wave Problems 151

for acoustic problems. This fundamental solution, denoted as G(x, y, ω) in this
chapter, satisfies the following governing equation:

∇2G(x, y, ω) + k2G(x, y, ω) + δ(x, y) = 0, ∀x, y ∈ R2/R3, (6.15)

in which the derivative is taken at field point y and the Dirac δ function repre-
sents the unit source at source point x. G(x, y, ω) should represent an outgoing
wave and have spherical (radial) symmetry. From the solution in Eq. (6.14) for
the pulsating sphere, we know that G(x, y, ω) should have the following form
for 3D problems:

G(x, y, ω) = A
r

eikr , (6.16)

where r is the distance between x and y and A is a constant. To determine
A, which represents the strength of the source, we integrate Eq. (6.15) over a
small spherical domain Eε(x) centered at x, with radius ε and boundary Sε(x)
to obtain:∫

Eε(x)

[∇2G + k2G
]
dE(y) = −

∫
Eε(x)

δ(x, y)dE(y) = −1. (6.17)

Applying the Gauss theorem and expression (6.16), we have:∫
Eε(x)

∇2GdE(y) =
∫

Sε(x)

∂G
∂n

dS(y) = 4π A(ikε − 1)eikε.

Similarly, using the spherical coordinates (r, θ, ϕ), we obtain:∫
Eε(x)

k2GdE(y) = k2 A
∫ ε

0

∫ 2π

0

∫ π

0

1
r

eikrr2 sin ϕdϕdθdr

= 4π A
[
(1 − ikε)eikε − 1

]
.

Substituting the preceding two results into Eq. (6.17), we obtain A = 1/4π

and the following results for the fundamental solution for 3D acoustic wave
problems:

G(x, y, ω) = 1
4πr

eikr , (6.18)

F(x, y, ω) ≡ ∂G(x, y, ω)
∂n(y)

= 1
4πr2

(ikr − 1)r, j n j (y)eikr . (6.19)

Note that when k = 0 – that is, when the problem becomes a static one –
the preceding two results are exactly the same as those for the 3D potential
problems discussed in Chapter 2. This is expected because Helmholtz equation
(6.5) becomes a Poisson equation if k = 0.

152 Acoustic Wave Problems

For 2D acoustic wave problems, we have the following results for the fun-
damental solution:

G(x, y, ω) = i
4

H(1)
0 (kr), (6.20)

F(x, y, ω) ≡ ∂G(x, y, ω)
∂n(y)

= − ik
4

H(1)
1 (kr)r,l nl(y), (6.21)

in which H(1)
n () denotes the Hankel function of the first kind [138].

6.3 Boundary Integral Equation Formulations

To derive the BIE corresponding to Helmholtz equation (6.5), we apply the sec-
ond Green’s identity given in Eq. (1.24) (we use the 3D case as the example):∫

E

[
u∇2v − v∇2u

]
dE =

∫
S∪SR

[
u

∂v

∂n
− v

∂u
∂n

]
dS, (6.22)

in which E is a domain bounded by the boundary S of the structure (see Figure
6.1) and a large sphere SR of radius R (with R → ∞). For interior problems, SR

does not exist. Let v(y) = φ(y), which satisfies Eq. (6.5), and u(y) = G(x, y, ω),
which satisfies Eq. (6.15). We have from identity (6.22):∫

E

[
G∇2φ − φ∇2G

]
dE =

∫
S∪SR

[
G

∂φ

∂n
− φ

∂G
∂n

]
dS.

Applying Eqs. (6.5), (6.15), and (1.25), we obtain:

φ(x) =
∫

S∪SR

[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y)+ QG(x, xQ, ω), ∀x ∈ E,

(6.23)
in which q = ∂φ/∂n and the term QG(x, xQ, ω) is due to the point source at xQ

in the domain.
Now, consider the integral on SR as R → ∞ for an infinite domain. For

this purpose, we first note the following inequalities:∣∣∣∣∫ f (x)dx

∣∣∣∣ ≤
∫ ∣∣ f (x)

∣∣ dx,∣∣ f (x) + g(x)
∣∣ ≤ ∣∣ f (x)

∣∣ + ∣∣g(x)
∣∣ , and so on.

For radiation problems, φ is the radiated wave, and we evaluate:

lim
R→∞

∣∣∣∣∫
SR

[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y)
∣∣∣∣

≤ lim
R→∞

∫
SR

|Gq − Fφ| dS ≤ lim
R→∞

∫
SR

∣∣∣∣[1
4π R

∂φ

∂ R
− (ikR − 1)

4π R2
φ

]
eikR

∣∣∣∣dS

≤ lim
R→∞

∫
SR

[
1

4π R

∣∣∣∣ ∂φ

∂ R
− ikφ

∣∣∣∣ + 1
4π R2

|φ|
]

dS

= lim
R→∞

R

∣∣∣∣ ∂φ

∂ R
− ikφ

∣∣∣∣ + lim
R→∞

|φ| = 0 (6.24)

6.3 Boundary Integral Equation Formulations 153

by using the Sommerfeld radiation condition in Eq. (6.11) and noting the fact
that φ itself should vanish at the infinity.

For scattering problems, φ is the total wave that is the sum of the incident
wave φ I and the scattered wave φS; that is, φ = φ I + φS. The scattered wave
φS also satisfies the Sommerfeld condition. Thus, for scattering problems, we
have for the integral on SR as R → ∞:∫

SR

[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y)

=
∫

SR

[
GqI − Fφ I]dS +

∫
SR

[
GqS − FφS]dS,

in which qI = ∂φ I/∂n and qS = ∂φS/∂n. The first integral on the right-hand
side is equal to the incident wave φ I by considering φ I within the domain as
enclosed by SR, and the second integral vanishes as in the radiation problems.
Therefore, for the scattering problems, we have:∫

SR

[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y) = φ I(x). (6.25)

From the results in Eqs. (6.24) and (6.25), we obtain from Eq. (6.23) the fol-
lowing general representation integral:

φ(x) =
∫

S
[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y)

+φ I(x) + QG(x, xQ, ω), ∀x ∈ E, (6.26)

where the incident wave φ I(x) does not present for radiation problems.
Equation (6.26) is the representation integral of the solution φ inside

domain E for Helmholtz equation (6.5) for both exterior and interior domain
problems. Once the values of both φ and q are known on S, Eq. (6.26) can be
applied to calculate φ everywhere in E, if needed.

Let the source point x approach the boundary S. We obtain the following
CBIE for acoustic wave problems:

c(x)φ(x) =
∫

S
[G(x, y, ω)q(y) − F(x, y, ω)φ(y)] dS(y)

+φ I(x) + QG(x, xQ, ω), ∀x ∈ S, (6.27)

where the constant c(x)= 1/2 if S is smooth around x. This CBIE can be used
to solve for the unknown φ and q on S. The integral with the G kernel is a
weakly singular integral, whereas the one with the F kernel is a strongly singu-
lar (CPV) integral, as in the potential case.

It is well known that this CBIE has a major defect for exterior domain
problems; that is, it has nonunique solutions at a set of fictitious eigenfrequen-
cies associated with the resonate frequencies of the corresponding interior
problems [108]. This difficulty is referred to as the fictitious eigenfrequency

154 Acoustic Wave Problems

difficulty. A remedy to this problem is to use the normal derivative BIE in
conjunction with this CBIE. Taking the derivative of integral representation
(6.26) with respect to the normal at the point x and letting x approach S, we
obtain the following HBIE for acoustic wave problems:

c̃(x)q(x) =
∫

S
[K(x, y, ω)q(y) − H(x, y, ω)φ(y)] dS(y)

+ qI(x) + QK(x, xQ, ω), ∀x ∈ S, (6.28)

where c̃(x)= 1/2 if S is smooth around x. For 3D problems, the two new kernels
are given by:

K(x, y, ω) ≡ ∂G(x, y, ω)
∂n(x)

= − 1
4πr2

(ikr − 1)r, j n j (x)eikr , (6.29)

H(x, y, ω) ≡ ∂ F(x, y, ω)
∂n(x)

= 1
4πr3

{
(1 − ikr)nj (y)

+ [
k2r2 − 3(1 − ikr)

]
r, j r,l nl(y)

}
nj (x)eikr , (6.30)

and for 2D problems, the two new kernels are:

K(x, y, ω) ≡ ∂G(x, y, ω)
∂n(x)

= ik
4

H(1)
1 (kr)r, j n j (x), (6.31)

H(x, y, ω) ≡ ∂ F(x, y, ω)
∂n(x)

= ik
4r

H(1)
1 (kr)nj (x)nj (y)

− ik2

4
H(1)

2 (kr)r, j n j (x)r,l nl(y). (6.32)

In HBIE (6.28), the integral with the K kernel is a strongly singular (CPV)
integral, whereas the one with the H kernel is a hypersingular (HFP) integral.

For exterior acoustic wave problems, a dual BIE (CHBIE or composite
BIE [50]) formulation using a linear combination of CBIE (6.27) and HBIE
(6.28) can be written as:

CBIE + β HBIE = 0, (6.33)

where β is the coupling constant. This dual BIE formulation is called the
Burton–Miller formulation [108] for acoustic wave problems and was shown
by Burton and Miller to yield unique solutions at all frequencies, if β is a com-
plex number (which, for example, can be chosen as β = i/k [112, 114, 122,
139]).

6.4 Weakly Singular Forms of the Boundary Integral Equations

CBIE (6.27) and HBIE (6.28) contain singular integrals that are difficult to
evaluate analytically on higher-order elements. Numerical integration can be
used to compute all the singular integrals with proper care, but it was found

6.4 Weakly Singular Forms of the Boundary Integral Equations 155

to be not very efficient computationally with higher-order elements. As in
all of the other problems using the BIE and BEM, the best approach in such
cases is to use the weakly singular forms of these BIEs, which are obtained
analytically and do not introduce any approximations. For dynamic problems,
however, there were no integral identities found with the dynamic kernels
directly. Therefore, there are extra steps in the development of the weakly
singular forms of the BIEs for acoustic wave and other dynamic problems
using the BIEs [50, 52, 124].

For CBIE (6.27), we first note that the free-term coefficient c(x) can be
written as (see notation used in Chapter 2):

c(x) = 1 + lim
ε→0

∫
Sε(x)

F(x, y, ω)dS(y) = 1 + lim
ε→0

∫
Sε(x)

F(x, y)dS(y)

= γ − lim
ε→0

∫
S−Sε(x)

F(x, y)dS(y)

= γ −
∫

S
F(x, y)dS(y), ∀x ∈ S (a CPV integral), (6.34)

in which F(x, y) = F(x, y, 0) is the static F kernel for potential problems (an
overbar is added in this chapter to distinguish static kernels from the dynamic
ones), γ = 0 for a finite domain, and γ = 1 for an infinite domain. In deriv-
ing Eq. (6.34), the first identity in Eq. (2.7) for the potential (static) kernel is
applied. The fact that the dynamic kernel can be replaced with the static kernel
is due to the following results for small r (with the 3D case as the example):

G(x, y, ω) − G(x, y) = 1
4πr

[
eikr − 1

]
= 1

4πr

[
ikr + 1

2!
(ikr)2 + 1

3!
(ikr)3 + · · · +

]
= a0 + a1r + a2r2 + · · · +,

F(x, y, ω) − F(x, y) = ∂

∂n(y)

[
a0 + a1r + a2r2 + · · · +]

= O(r,n) = O(r), as r → 0, (6.35)

where a0, a1, a2, . . . , are some constants. Substituting the expression in (6.34)
for c(x) into CBIE (6.27), we obtain the following weakly singular form of the
CBIE for acoustic wave problems:

γφ(x) +
∫

S

[
F(x, y, ω) − F(x, y)

]
φ(y)dS(y) +

∫
S

F(x, y) [φ(y) − φ(x)] dS(y)

=
∫

S
G(x, y, ω)q(y)dS(y) + φ I(x) + QG(x, xQ, ω), ∀x ∈ S, (6.36)

in which all three integrals are now, at most, weakly singular and can be han-
dled readily by numerical integration schemes.

156 Acoustic Wave Problems

Similarly, if we introduce the static kernel and a two-term subtraction and
apply the identities satisfied by the static kernels, we can show that HBIE
(6.28) can be written in the following weakly singular form [50, 51]:

γ q(x) +
∫

S

[
H(x, y, ω) − H(x, y)

]
φ(y)dS(y)

+
∫

S
H(x, y)

[
φ(y) − φ(x) − ∂ φ

∂ ξα

(x)(ξα − ξoα)
]

dS(y)

+ eα k
∂ φ

∂ ξα

(x)
∫

S

[
K(x, y)nk(y) + F(x, y)nk(x)

]
dS(y)

=
∫

S

[
K(x, y, ω) + F(x, y)

]
q(y) dS(y)

−
∫

S
F(x, y) [q(y) − q(x)] dS(y) + qI(x) + QK(x, xQ, ω), ∀x ∈ S ,

(6.37)

in which ξα (α = 1 for two dimensions and α = 1, 2 for three dimensions) are
local coordinates in tangential directions at x ∈ S and eα k = ∂ ξα/∂ xk [51]. All
of the integrals in (6.37) are now, at most, weakly singular if φ has continuous
first derivatives, which we can verify by simply expanding the kernels as shown
in Eqs. (6.35) and (6.36).

6.5 Discretization of the Boundary Integral Equations

We can obtain the discretized equations of the CBIE, HBIE, or Burton-
Miller’s BIE formulation, in either singular or weakly singular forms, by dis-
cretizing the boundary S using constant [102], linear, or quadratic [50] (see
Figure 2.6) or other higher-order elements [140]. As in potential and other
problems, the discretized BIEs can be written as:

a11 a12 . . . a1N

a21 a22 · · · a2N
...

...
. . .

...
aN1 aN2 · · · aNN

λ1

λ2
...

λN

 =

b1

b2
...

bN

 , or Aλ = b, (6.38)

where A is the system matrix; λ is the vector of unknown boundary variables
at the nodes; b is the known vector containing contributions from the possible
source term, the plane incident wave, or boundary conditions; and N is the
number of nodes on the boundary. In contrast to static problems, for acoustic
wave problems, this system of equations is in complex numbers; that is, all
of the coefficients and variables are complex numbers, and thus the memory
requirement is four times as large as its counterpart in potential problems.

6.6 Fast Multipole Boundary Element Method for 2D Acoustic Wave Problems 157

As a result of this, only relatively small models can be solved by use of the
conventional BEM approach with direct solvers.

6.6 Fast Multipole Boundary Element Method for 2D Acoustic
Wave Problems

We first discuss the fast multipole BEM formulation for 2D acoustic wave
problems (see, e.g., Ref. [41]). The 2D formulation is based on Graf’s equa-
tion [see Ref. [138], p. 363, Eq. (9.1.79)] for the kernel G. That is, the far-field
expansion for the G kernel can be represented as follows:

G(x, y, ω) = i
4

H(1)
0 (kr) = i

4

∞∑
n=−∞

On(x − yc)I−n(y − yc),
∣∣y − yc

∣∣< ∣∣x − yc
∣∣ ,

(6.39)

where k is the wavenumber, yc is an expansion point close to y, and the two
auxiliary functions In and On are given by:

In(x) = (−i)n Jn(kr)einα, (6.40)

On(x) = in H(1)
n (kr)einα. (6.41)

In the preceding two expressions, x is a typical vector, Jn () is the Bessel J
function, and (r, α) is the polar coordinate of x.

Using Eq. (6.39), we find that the far-field expansion for the F kernel is
given by:

F(x, y, ω) = ∂G(x, y, ω)
∂n(y)

= i
4

∞∑
n=−∞

On(x − yc)
∂ I−n(y − yc)

∂n(y)
,∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ , (6.42)

in which the derivative can be obtained by the formula:

∂ I−n(y − yc)
∂n(y)

= (−i)nk
2

[Jn+1(kr)eiδ − Jn−1(kr)e−iδ]einα, (6.43)

where δ is the angle between the vector −→r from yc to y and the outward normal
n(y).

Applying expansions in Eqs. (6.39) and (6.42), we can evaluate the G and
F integrals in CBIE (6.27) on Sc (a subset of S that is away from the source
point x) with the following multipole expansions:∫

Sc

G(x,y, ω)q(y)dS(y) =
∞∑

n=−∞
On(x − yc)Mn(yc),

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣ , (6.44)

∫
Sc

F(x,y, ω)φ(y)dS(y) =
∞∑

n=−∞
On(x − yc)M̃n(yc),

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣ , (6.45)

158 Acoustic Wave Problems

where Mn and M̃n are the multipole moments centered at yc and given by:

Mn(yc) = i
4

∫
Sc

I−n(y − yc)q(y)dS(y), (6.46)

M̃n(yc) = i
4

∫
Sc

∂ I−n(y − yc)
∂n(y)

φ(y)dS(y). (6.47)

When the multipole expansion center is moved from yc to yc′ , we have the
following M2M translation for both Mn and M̃n:

Mn(yc′) =
∞∑

m=−∞
In−m(yc − yc′)Mm(yc). (6.48)

The local expansion for the G kernel integral in CBIE (6.27) is given as:∫
Sc

G(x, y, ω)q(y)dS(y) =
∞∑

n=−∞
Ln(xL)I−n(x − xL), (6.49)

where xL is the local expansion point close to x (|x − xL| <
∣∣yc − xL

∣∣), and the
expansion coefficients are given by the following M2L translation:

Ln(xL) =
∞∑

m=−∞
(−1)mOn−m(xL − yc)Mm(yc). (6.50)

This result, which is slightly different from that given in Ref. [41], is derived
with Graf’s equation [138].

Similarly, the local expansion for the F kernel integral in CBIE (6.27) is
given by: ∫

Sc

F(x, y, ω)φ(y)dS(y) =
∞∑

n=−∞
Ln(xL)I−n(x − xL), (6.51)

with M̃n replacing Mn in M2L translation (6.50) for calculating the expansion
coefficient.

The local expansion center in expansion (6.49) can be shifted from xL to
xL′ using the following L2L translation:

Ln(xL′) =
∞∑

m=−∞
Im(xL′ − xL)Ln−m(xL). (6.52)

For HBIE (6.28), the local expansion of the K kernel integral can be written
as: ∫

Sc

K(x, y, ω)q(y)dS(y) =
∞∑

n=−∞
Ln(xL)

∂ I−n(x − xL)
∂n(x)

, (6.53)

6.7 Fast Multipole Boundary Element Method for 3D Acoustic Wave Problems 159

with the same local expansion coefficient Ln(xL) as that given by Eq. (6.50).
Similarly, the local expansion for the H kernel integral is given by:∫

Sc

H(x, y, ω)φ(y)dS(y) =
∞∑

n=−∞
Ln(xL)

∂ I−n(x − xL)
∂n(x)

, (6.54)

with M̃n replacing Mn in Eq. (6.50) for evaluating Ln(xL). Therefore, the same
moments, M2M, M2L, and L2L translations as used for the G and F integrals
in the CBIE are used for the K and H integrals in the HBIE, respectively.

The fast multipole algorithms and implementations for 2D acoustic wave
problems are similar to those for 2D potential problems, as given in Chapter 3.
For example, the same tree structure and code for a 2D potential program can
be applied to a 2D acoustic program. The only difficult part is to select a proper
p, the number of expansion terms in the multipole and local expansions. For
low-frequency problems, a value of p less than or equal to 10 is found to be suf-
ficient, and for higher-frequency problems, larger values of p will be needed,
and this will consume more CPU time because of the nature of the expansions
for the kernels.

6.7 Fast Multipole Boundary Element Method for 3D Acoustic
Wave Problems

The FMM for solving Burton–Miller’s BIE (6.33) is discussed in this section
for the 3D case [102]. We first note that the fundamental solution G(x, y, ω)
for the Helmholtz equation in three dimensions can be expanded as (see, e.g.,
Refs. [63, 128]):

G(x,y, ω) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Om
n (k, x − yc) Īm

n (k, y − yc),

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣ , (6.55)

where k is the wavenumber, yc is an expansion point near y, and the outer
function Om

n is defined by:

Om
n (k, x) = h(1)

n (k |x|) Ym
n

(
x
|x|

)
, (6.56)

the inner function Im
n given by:

Im
n (k, x) = jn (k |x|) Ym

n

(
x
|x|

)
, (6.57)

and Īm
n is the complex conjugate of Im

n . In the preceding equations, h(1)
n is

the nth-order spherical Hankel function of the first kind, jn is the nth-order

160 Acoustic Wave Problems

spherical Bessel function of the first kind, and Ym
n are the spherical harmonics

given by:

Ym
n (x) =

√
(n − m)!
(n + m)!

Pm
n (cos θ)eimφ, for n = 0, 1, 2, . . . , m = −n, . . . , n,

(6.58)

with (ρ, θ, φ) being the coordinates of x here in a spherical coordinate sys-
tem (i.e., x1 = ρ sin θ cos φ, x2 = ρ sin θ sin φ, x3 = ρ cos θ), and Pm

n is the asso-
ciated Legendre function defined in Eq. (3.49). These spherical harmonics are
orthogonal to each other over the unit sphere and thus can form the basis
for expanding other functions [136]. Note that slightly different definitions of
the spherical harmonics exist in the literature [136, 137], and care needs to be
taken to make sure that the fast multipole formulations are consistent with
these different notations.

Similarly, the kernel F(x, y, ω) for 3D acoustic wave problems can be
expanded as:

F(x,y, ω) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Om
n (k, x − yc)

∂ Īm
n (k, y − yc)

∂n(y)
,

∣∣y − yc
∣∣ <

∣∣x − yc
∣∣ . (6.59)

Applying expansions in Eqs. (6.55) and (6.59), we can evaluate the G and F
integrals in CBIE (6.27) on Sc (a subset of S that is away from the source point
x) with the following multipole expansions:∫

Sc

G(x,y, ω)q(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Om
n (k, x − yc)Mn,m(k, yc),∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ , (6.60)∫
Sc

F(x,y, ω)φ(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Om
n (k, x − yc)M̃n,m(k, yc),∣∣y − yc

∣∣ <
∣∣x − yc

∣∣ , (6.61)

where Mn,m and M̃n,m are the multipole moments centered at yc and given by:

Mn,m(k, yc) =
∫

Sc

Īm
n (k, y − yc)q(y)dS(y), (6.62)

M̃n,m(k, yc) =
∫

Sc

∂ Īm
n (k, y − yc)

∂n(y)
φ(y)dS(y). (6.63)

When the multipole expansion center is moved from yc to yc′, we have the
following M2M translation:

Mn,m(k, yc′) =
∞∑

n′=0

(2n′ + 1)
n′∑

m′=−n′

n+n′∑
l=|n−n′|

n′+n−l: even

(−1)m′
Wn,n′,m,m′,l

× I−m−m′
l (k, yc − yc′)Mn′,−m′(k, yc), (6.64)

6.7 Fast Multipole Boundary Element Method for 3D Acoustic Wave Problems 161

where Wn,n′,m,m′,l is calculated with the following formula:

Wn,n′,m,m′,l = (2l + 1)in′−n+l

(
n n′ l
0 0 0

)(
n n′ l
m m′ −m − m′

)
, (6.65)

and

(
• • •
• • •

)
denotes the Wigner 3j symbol [141].

The local expansion for the G kernel integral in CBIE (6.27) is given as
follows:∫

Sc

G(x,y, ω)q(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL) Īm
n (k, x − xL),

(6.66)
where the local expansion coefficients are given by the following M2L trans-
lation:

Ln,m(k, xL) =
∞∑

n′=0

(2n′ + 1)
n′∑

m′=−n′

n+n′∑
l=|n−n′|

n+n′−l: even

Wn′,n,m′,m,l Õ−m−m′
l (k, xL − yc)

× Mn′,m′(k, yc), (6.67)

for |x − xL| <
∣∣yc − xL

∣∣, in which xL is the local expansion center and Õm
n is

defined by:

Õm
n (k, x) = h(1)

n (k |x|)Ym
n

(
x
|x|

)
. (6.68)

The local expansion center can be shifted from xL to xL′ by the following L2L
translation:

Ln,m(k, xL′) = (−1)m
∞∑

n′=0

(2n′ + 1)
n′∑

m′=−n′

n+n′∑
l=|n−n′|

n+n′−l: even

Wn′,n,m′,−m,l

× Im−m′
l (k, xL′ − xL)Ln′,m′(k, xL). (6.69)

The local expansion for the F kernel integral in CBIE (6.27) is similar to that
of Eq. (6.66):∫

Sc

F(x,y, ω)φ(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL) Īm
n (k, x − xL),

(6.70)
with M̃n,m replacing Mn,m in M2L translation (6.67).

For HBIE (6.28), we can obtain the local expansions for the K and H
integrals by taking the normal derivatives of the local expansions for the G
and F integrals, respectively. We have:∫

Sc

K(x,y, ω)q(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL)
∂ Ī m

n (k, x − xL)
∂n(x)

,

(6.71)

162 Acoustic Wave Problems

with Mn,m in M2L translation (6.67), and similarly for the H kernel integral:∫
Sc

H(x,y, ω)φ(y)dS(y) = ik
4π

∞∑
n=0

(2n + 1)
n∑

m=−n

Ln,m(k, xL)
∂ Īm

n (k, x − xL)
∂n(x)

,

(6.72)
with M̃n,m replacing Mn,m in M2L translation (6.67). Again, the same moments,
M2M, M2L, and L2L translations, as used for the G and F integrals in the
CBIE are used for the K and H integrals in the HBIE, respectively.

To determine p, the order of the multipole and local expansions, the fol-
lowing empirical formula (see, e.g., Ref. [41]) can be applied:

p = kD + c0 log(kD + π), (6.73)

where D is the diameter of the cell on which the expansions are calculated and
c0 is a number that depends on the precision of the arithmetic. Formulas like
(6.73) can be applied to adaptively determine the values of p at different tree
levels in the fast multipole algorithms.

The fast multipole formulations just discussed for solving 3D acoustic
wave problems or Helmholtz equations in general are good for low frequen-
cies because of the O(p5) nature of the formulation. To perform the M2M,
M2L, and L2L translations, O(p5) computations are required because there
are three summations in all of these translations and two indices in the coef-
ficients, as shown in Eqs. (6.64), (6.67), and (6.69). Although the number of
operations can be reduced to O(p4) by use of various recursive relations, the
computing time can still increase quickly with the increase of the value of
p. In addition, the use of the Wigner 3j symbol in Eq. (6.65), which is time-
consuming to calculate each time and consumes more memory if its values
are stored, further reduces the computational efficiency. As mentioned in the
2D case and also shown in Eq. (6.73), at higher frequencies, more terms are
required in the expansions to represent the increased variations in the field,
leading to a larger p and a slower performance of any fast multipole BEM
code based on the formulations discussed previously. In fact, the FMM gives
O(N 2) computing complexity using these original formulations [41]. Adaptive
fast multipole algorithms [60, 61] are used to accelerate the solutions of the fast
multipole BEM for 3D acoustic wave problems based on these formulations
[102]. Large acoustic BEM models with total DOFs (in complex variables) of
up to 200,000 are solved at lower frequencies on a laptop with only 512-MB
RAM [102].

For higher-frequency problems, the diagonal form proposed by Rokhlin
[127] can be used to accelerate the computations of all the translations. Unfor-
tunately, this diagonal form breaks down at lower frequencies, where the orig-
inal formulations will need to be applied [41]. The wideband FMM proposed
by Cheng et al. [137] may be considered; it provides a seamless framework for
combining the low- and high-frequency formulations. Conversely, an O(p3)

6.8 Numerical Examples 163

P
135
126.25
117.5
108.75
100
91.25
82.5
73.75
65

Figure 6.3. Scattering from a single cylinder with 1000 elements.

formulation was developed by Gumerov and Duraiswami [132, 136] that is
adequate for both low- and high-frequency applications. This O(p3) formula-
tion does not use the Wigner 3j symbol, which also can reduce the memory
usage.

Based on the adaptive fast multipole algorithms reported in Ref. [102]
and the Gumerov and Duraiswami’s O(p3) formulations presented in Ref.
[136], a very robust acoustic software, FastBEM Acoustics R©, was developed
that has been applied successfully in solving large-scale acoustic BEM mod-
els with DOFs above 2 million on desktop PCs with 32-bit operating systems.
Several 3D numerical examples presented in the following section are solved
with the FastBEM Acoustics R© (V.1.2.0) software.

6.8 Numerical Examples

Several examples of 2D and 3D acoustic wave problems are presented in this
section. Constant elements are used in all cases; that is, one-node line elements
for 2D models and one-node triangular elements for 3D problems. The 2D
computer code is based on the formulations presented in Section 6.6 and the
same fast multipole algorithms for 2D potential problems discussed in Chapter
3. The 3D code, named FastBEM Acoustics R©, is based on an improved adap-
tive fast multipole algorithm of that in Ref. [102] and the O(p3) formulations
in Ref. [136].

6.8.1 Scattering from Cylinders in a 2D Medium

First, we consider a 2D scattering problem with a single rigid cylinder with the
incident wave coming from the right. The cylinder has a radius a = 1 and is
discretized with 1000 elements. A relative error of 0.01% is achieved for ka =

164 Acoustic Wave Problems

100

50

0

−50

−50 0

130
125
120
115
110
105
100
95
90
85
80
75
70

50 100
x

y

Figure 6.4. Scattering from multiple cylinders with 195,000 elements.

1 with 16 expansion terms and a tolerance of 10−8. Figure 6.3 is the contour
plot of the magnitude of the scattered-pressure field outside the cylinder in a
square-field region.

We next consider a case with multiple scatterers in which an array of
15 × 10 cylinders is modeled with 195,000 elements. Again, the incident wave
is from the right. Figure 6.4 shows the computed scattered-pressure field with
10,000 field points inside the domain and at ka = 5.4. The model was solved in
about 3.5 h for a tolerance of 10−8 on an Intel R© Core2 Duo desktop PC. In this
case, about 2 h of the total CPU time was spent on solving the BEM system
of equations and another 1.5 h on calculating the pressure at the 10,000 field
points inside the domain, which also can be accelerated by the fast multipole
algorithms.

6.8.2 Radiation from a Pulsating Sphere

A pulsating sphere with radius a = 1 m is used next to verify the 3D fast multi-
pole BEM code. The analytical solution for this problem was discussed in Sec-
tion 6.1. We consider the case with changing frequencies (frequency sweep) for
the nondimensional wavenumber ka varying from 0.1 to 10. The total number
of elements used is 1200. The computed pressures at (5a, 0, 0) are plotted in
Figure 6.5, which shows that the conventional BEM with the CBIE fails to

6.8 Numerical Examples 165

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0 1 2 3 4 5 6 7 8 9 10 11
ka

|P
|

Analytical solution

Conventional BEM (CBIE)

Conventional BEM (CHBIE)

Adaptive FMBEM (CHBIE)

Figure 6.5. Frequency-sweep plot for the pulsating-sphere model.

predict the surface-pressure field at the fictitious eigenfrequencies (ka = π ,
2π , . . . , for this case). The results obtained with the conventional BEM with
the Burton–Miller (CHBIE) formulation agree well with the analytical solu-
tion at all wavenumbers. The adaptive fast multipole BEM with the CHBIE
also yields results very close to those of the conventional BEM with the
CHBIE, suggesting that the truncation errors introduced in multipole expan-
sions are under control for ka ranging from 0.1 to 10. In this example, the
maximum number of elements in a leaf is set to 100, the number of multipole
and local expansion terms to 10, and the tolerance for GMRES to 10−3.

6.8.3 Scattering from Multiple Scatterers

A multiscatterer model (Figure 6.6) containing 1000 randomly distributed
capsulelike rigid scatterers in a 2 m × 2 m × 2 m domain is studied next. Each
scatterer is meshed with 200 elements, with a total of 200,000 elements for the
entire model. The incident wave is e−ikx with k = 1. Sample field points are
taken at an annular field surface with inner and outer radii equal to 5 m and
10 m, respectively. The computed sound-pressure distribution is shown in
Figure 6.7 for this discretization. The total CPU time used to solve this large
model is 56 min on a HP laptop with an Intel R© 1.6-GHz Centrino CPU and
512-MB RAM.

166 Acoustic Wave Problems

x y

z

Figure 6.6. A BEM model of 1000 capsulelike
scatterers with a total of 200,000 elements.

6.8.4 Performance Study of the 3D Fast Multipole Boundary
Element Method Code

Next, we use a radiating sphere to test the accuracy and efficiency of the 3D
acoustic fast multipole BEM code. The numbers of elements used range from
588 to 1,503,792. The nondimensional wavenumbers are ka = 2 and 20, with
corresponding initial numbers of expansion terms p = 6 and 10, respectively.
All the BEM models were solved on a Dell R© PC with Intel R© Core2 Duo CPU
at 2.2 GHz and 2-GB RAM. The tolerance for convergence is set at 10−4.

Figure 6.8 shows the relative errors in the computed sound pressure and
power (integration of the pressure and velocity on the surface). As seen from

x y

z

P : 0.9985 0.999 0.9995 1.0005 1.001 1.0015 1.0021

Figure 6.7. Computed sound pressure on the multiple scatterers and field surface.

6.8 Numerical Examples 167

–0.20%

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

100 1000 10,000 100,000 1,000,000 10,000,000

DOFs

R
el

at
iv

e
E

rr
or

s

Error in Computed Pressure pmax

Error in Computed Power

Figure 6.8. Relative errors of the fast multipole BEM solutions for a pulsating sphere
at ka = 2.

the plot, the accuracy of the fast multipole BEM is quite satisfactory consid-
ering the tolerance (10−4) used and the sizes of the BEM models. The errors
decrease quickly and stay around 0.2% for models with more than 100,000
DOFs at ka = 2, indicating the numerical stability of the used fast multipole
algorithms.

Figure 6.9 shows the CPU time used by the fast multipole BEM code com-
pared with that of a conventional BEM code. The CPU time for the fast mul-
tipole BEM code increases almost linearly with the increase of the DOFs, and
the largest BEM model with 1.5 million DOFs was solved within 65 min at ka =
2 (note that this is a system of equations with complex variables, which is
equivalent to a system of about 3 million DOFs in real variables). The con-
ventional BEM, however, can only solve models with up to 10,800 DOFs on
the same PC, and the CPU time used increases almost as a cubic function of
the DOFs. The efficiencies of the fast multipole BEM compared with those of
the conventional BEM are most evident from this example.

6.8.5 An Engine-Block Model

We next study the radiation of acoustic waves from an engine block. The
engine block has an overall dimension of 0.31 m × 0.27 m × 0.36 m in the

168 Acoustic Wave Problems

1

10

100

1000

10,000

100,000

100 1000 10,000 100,000 1,000,000 10,000,000

DOFs

C
P

U
 T

im
e

(s
)

Conventional BEM (ka = 2)

Fast BEM (ka = 2)

Fast BEM (ka = 20)

Figure 6.9. Total CPU time used to solve the pulsating-sphere model.

x, y, and z directions, respectively, and is discretized with 51,766 triangular
elements, as shown in Figure 6.10. Velocity BCs are applied on the surfaces
of the engine block, and the sound-pressure field on a semispherical field
surface is sought at wavenumber ka = 3.6. Figure 6.11 shows the computed

x

y

z

Figure 6.10. An engine-block model discretized with 51,766 boundary elements.

6.8 Numerical Examples 169

Figure 6.11. Computed sound-pressure
distribution for the engine-block model.

sound-pressure distribution on this field surface. The model was solved in
9 min on a Dell R© PC with Intel R© Core2 Duo CPU and with the tolerance set
at 10−4.

6.8.6 A Submarine Model

A submarine model is studied next to predict the noise that is due to the vibra-
tion of the propeller. This is an interesting example of using the fast multipole
BEM in solving large-scale underwater acoustic problems, which has been a
challenging task for other domain-based methods. The Skipjack submarine is
modeled, which has a length of 76.8 m. A total of 250,220 elements are used,
with a typical element size equal to 0.14 m. Velocity BCs are applied to the
propeller, and the model is solved at a nondimensional wavenumber ka = 38.4
(frequency f = 123.3 Hz). The computed sound-pressure level on the surface
of the submarine is shown in Figure 6.12, and the radiated wave on a cylindri-
cal field surface is shown in Figure 6.13. The model was solved in 54 min on
a Dell R© PC with Intel R© Core2 Duo CPU and with the tolerance set at 10−4.
Scattering problems, in which the submarine is motionless and incident waves
impinge on the model from different directions, were also solved with the same
BEM model.

170 Acoustic Wave Problems

x

y

z

Figure 6.12. Computed sound-pressure level on the submarine model with 250,220
elements.

6.8.7 An Airbus A320 Model

In this example, prediction of the jet noise from an airplane is attempted by
using the fast multipole BEM code. A model of Airbus A320 is used, which
has a length of 123 ft. There are 541,152 elements for this model with a typical
element size equal to 0.2 ft. The plot of the BEM mesh on one of the engines is
shown in Figure 6.14. The acoustic pressure on the surface of the airplane that
is due to the vibrations of the two jet engines was computed at ka = 12.3 and is
shown in Figure 6.15. The model was solved in 131 min on a Dell R© PC with a
tolerance of 10−4. Prediction of jet noise is still a very challenging problem for
the fast multipole BEM because of the nature of the high frequencies involved.
Large BEM models with considerably more elements need to be used, and the
models need to be solved on PC clusters or supercomputers.

6.8.8 A Human-Head Model

A human-head model is now presented for acoustic analysis. Such models
using the BEM can be used to study the impact of noise on human hearing and
to help design better audio devices. The head model is discretized using 87,340

6.8 Numerical Examples 171

x

y

z

Figure 6.13. Radiated sound pressure on the field surface.

elements, and the sound pressure on the surface of the model for a plane inci-
dent wave coming in the –x direction and at 11 kHz (ka = 50) is computed,
as shown in Figure 6.16. The model was solved in 10 min on a Dell R© PC with
a tolerance of 10−4. It is interesting to note that both ears on the illuminated

Figure 6.14. Plot of BEM mesh near one
engine of the Airbus A320 model (with
a total of 541,152 elements).

172 Acoustic Wave Problems

Figure 6.15. Sound-pressure distribu-
tion on the Airbus A320 model.

side (left ear) and the shadow side (right ear) register higher values of sound
pressure, in addition to the area between the two lips, indicating the unique
acoustic effects of the geometries near these areas. The same phenomenon is
observed in models at other frequencies or with the sound from other direc-
tions.

6.8.9 Analysis of Sound Barriers – A Half-Space Acoustic
Wave Problem

Many of the acoustic problems are present in a half-space, such as airport or
other traffic noise control problems. With the BEM, these half-space acoustic
wave problems also can be modeled readily. Formulations of the adaptive fast
multipole BEM for 3D half-space acoustic wave problems can be found in
Ref. [142].

x

y

z

Figure 6.16. BEM mesh and sound-pressure plots for a human-head model (87,340
elements).

6.8 Numerical Examples 173

dB: 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94

20

10

0
−50

0
50

100
150

0 y

50

x

z

x

y

z

Figure 6.17. Noise level (in decibels) on buildings without a barrier.

Figures 6.17 and 6.18 show the computed sound-pressure levels (in deci-
bels) for the BEM models of three buildings near a highway without and with a
sound barrier, respectively, using the fast multipole BEM for half-space acous-
tic wave problems [142]. The dimensions (length × width × height) of the
three buildings are 30 × 10 × 20, 20 × 12 × 15, and 9.5 × 9 × 8 (in meters),
respectively. The barrier has a height of 6 m and a length of 255.94 m. One
point source load with a frequency of 20 Hz is located 13 m away from the
middle point of the barrier and 1 m above the ground. The BEM model con-
tains 56,465 triangular elements. In the case with no sound barrier, the surface

dB: 45 50 55 60 65 70 75 80 85 90 95 100 105

20

10

0
−50

0
50

100
150

0 y

50

x

z

x

y

z

Figure 6.18. Noise level (in decibels) on buildings with a barrier.

174 Acoustic Wave Problems

of the largest building closest to the source has the maximum sound level of
94 dB, as shown in Figure 6.17. After the barrier is inserted into the model,
the maximum sound level on the surfaces of the buildings is reduced to 90 dB,
as shown in Figure 6.18. The effect of the sound barriers in reducing the noise
level is evident from this BEM simulation.

All of the preceding examples clearly demonstrate the accuracy, effi-
ciency, and huge potentials of the fast multipole BEM for solving large-scale
acoustic wave problems in both two and three dimensions. To extend the
applications, the fast multipole BEM codes can be combined with other meth-
ods to solve more complicated problems, such as acoustic waves interacting
with elastic structures [143, 144] and multidomain acoustic wave problems
[145]. Conversely, the fast multipole BEM also has been applied success-
fully in solving various large-scale elastic wave or elastodynamic problems,
and extensive research results on this important topic can be found in
Refs. [41, 63].

6.9 Summary

The basic governing equations for acoustic wave problems are reviewed in
this chapter. The main equation to be solved in acoustic wave problems is
the Helmholtz equation, which reduces to the Laplace equation for potential
problems if the wavenumber is zero. Thus, the acoustic wave problems are
closely related to the potential problems we studied in Chapters 2 and 3. The
fundamental solution for the Helmholtz equation is derived for 3D cases using
the solution of a pulsating sphere. BIE formulations are presented with the
emphasis on the Burton–Miller BIE formulation, which can provide unique
solutions for all wavenumbers for exterior acoustic wave problems. Weakly
singular forms of the CBIE and HBIE are introduced by using the static ker-
nels for potential problems and using the integral identities satisfied by these
static kernels. Formulations in the fast multipole BEM for solving Helmholtz
equations in both two and three dimensions are presented. Several numerical
examples are provided to demonstrate the accuracy and efficiency of the fast
multipole BEM for solving large-scale acoustic wave problems in both two and
three dimensions, including half-space problems.

Problems

6.1. Verify that the two functions given in Eq. (6.2) satisfy the 1D wave equa-
tion in Eq. (6.1).

6.2. Verify that the fundamental solution G(x, y, ω) given in Eq. (6.18)
for three dimensions satisfies the Sommerfeld radiation condition in
Eq. (6.11).

Problems 175

6.3. Derive the kernels K and H in Eqs. (6.29) and (6.30) for the 3D HBIE.
6.4. Prove Eq. (6.36); that is, show that r,n = ∂r

∂n(y) = O(r) as r → 0.
6.5. Show that all the integrals in Eq. (6.38) are weakly singular; that is, all of

the integrands have O(1/r) or less singularity in 3D cases.
6.6. Because the constant solution or rigid-body solution approach does not

apply to the Helmholtz equation, discuss how we can determine the diag-
onal coefficients in the matrix associated with the F kernel for acoustic
wave problems.

6.7. Write a 2D acoustic conventional BEM code using the CBIE and constant
elements, based on the code for 2D potential problems in Appendix B.1.
Test your code on a “pulsating-cylinder” problem.

6.8. Write a 2D acoustic fast multipole BEM code using the CBIE and con-
stant elements, based on the code for 2D potential problems in Appendix
B.2. Test your code on the “pulsating-cylinder” problem and study its
accuracy and efficiency.

APPENDIX A

Analytical Integration of the Kernels

A.1 2D Potential Boundary Integral Equations

For 2D potential problems, we have the following four kernels for the CBIE
and HBIE:

G(x, y) = 1
2π

log
(

1
r

)
, (A.1)

F(x, y) = ∂G(x, y)
∂n(y)

= − 1
2πr

r,k nk(y), (A.2)

K(x, y) = ∂G(x, y)
∂n(x)

= 1
2πr

r,k nk(x), (A.3)

H(x, y) = ∂2G(x, y)
∂n(x)∂n(y)

= 1
2πr2

[nk(x)nk(y) − 2r,k nk(x)r,l nl(y)] . (A.4)

The integrations of the four kernels on a line segment �S shown in Figure
A.1 (from point 1 to point 2) can be evaluated analytically as follows (note
that on �S, r = d/ cos θ, dS = rdθ/ cos θ):∫

�S
G(x, y)dS = 1

2π
[−(θ2 − θ1)d + 2R − T2 log r2 + T1 log r1] , (A.5)

∫
�S

F(x, y)dS = − 1
2π

(θ2 − θ1), (A.6)

∫
�S

K(x, y)dS = 1
2π

[
(θ2 − θ1)nk(y) + log

(
r2

r1

)
tk(y)

]
nk(x), (A.7)

∫
�S

H(x, y)dS = 1
2π

[
−

(
T2

r2
2

− T1

r1
2

)
nk(y) + d

(
1

r2
2

− 1
r1

2

)
tk(y)

]
nk(x),

(A.8)

in which 2R(= T2 − T1) is the total length of the line element and tk is the
component of the tangential vector t (Figure A.1). These results can be used
to evaluate directly the coefficients of the CBIE and HBIE for 2D potential

177

178 Appendix A: Analytical Integration of the Kernels

S

n(y)

n(x)

r

d

y

r1

r2

x

1

2

T1

T2

1

2

t

1

2

θ
θ

θ

∆

Figure A.1. Analytical integration on an arbitrary line segment.

problems using constant elements. If the source point x is on the element of
integration (at the midpoint), we have:

θ2 − θ1 = π, d = 0, r1 = r2 = R, T1 = −T2 = −R,

and the four integrals have the following values:∫
�S

G(x, y)dS = R
π

(1 − log R) , (A.9)

∫
�S

F(x, y)dS = −1
2
, (A.10)

∫
�S

K(x, y)dS = 1
2
, (A.11)

∫
�S

H(x, y)dS = − 1
π R

. (A.12)

Note that in the preceding results, the second (F) and third (K) integrals are
equal to the CPV integrals plus the jump terms, and the last (H) integral is a
HFP integral.

A.2 2D Elastostatic Boundary Integral Equations

For 2D elasticity, we have the following four kernels for the CBIE and
HBIE:

Ui j (x, y) = 1
8πµ(1 − ν)

[
(3 − 4ν)δi j log

(
1
r

)
+ r,i r, j −1

2
δi j

]
, (A.13)

Appendix A: Analytical Integration of the Kernels 179

Ti j (x, y) = − 1
4π(1 − ν)r

{
∂r
∂n

[(1 − 2ν)δi j + 2r,i r, j]− (1−2ν) (r,i n j − r, j ni)
}

,

(A.14)

Ki j (x, y) = 1
4π(1 − ν)r

[(1 − 2ν)(δi j r,k + δ jkr,i −δikr, j) + 2r,i r, j r,k] nk(x),

(A.15)

Hi j (x, y) = µ

2π(1 − ν)r2

{
2
∂r
∂n

[(1 − 2ν)δikr, j + ν(δi j r,k + δ jkr,i) − 4r,i r, j r,k]

+ 2ν(nir, j r,k +nkr,i r, j) − (1 − 4ν)δikn j

+ (1 − 2ν) (2njr,i r,k +δi j nk + δ jkni)
}

nk(x). (A.16)

To evaluate the integrals of these kernels over the straight-line segment �S (a
constant element) shown in Figure A.1, we use the local coordinate system n–t
at y on �S. In this local coordinate system, we have:∫

�S
U(n−t)

i j (x, y)dS = 1
8πµ(1 − ν)

[
(3 − 4ν)I0δi j + I(n−t)

i j − Rδi j

]
, (A.17)

∫
�S

T(n−t)
i j (x, y)dS = − 1

4π(1 − ν)

[
(1 − 2ν)

(
�0δi j − �

(n−t)
i δ1 j + �

(n−t)
j δ1i

)
+ 2�

(n−t)
i j

]
, (A.18)∫

�S
K(n−t)

i j (x, y)dS = Ci jknk(x), (A.19)

∫
�S

H(n−t)
i j (x, y)dS = Di jknk(x), (A.20)

where:

4π(1 − ν)C111 = (1 − 2ν)�(n−t)
1 + 2�

(n−t)
11 ,

4π(1 − ν)C112 = (1 − 2ν)�(n−t)
2 + 2�

(n−t)
12 ,

4π(1 − ν)C121 = −(1 − 2ν)�(n−t)
2 + 2�

(n−t)
12 ,

4π(1 − ν)C122 = (1 − 2ν)�(n−t)
1 + 2�

(n−t)
22 , (A.21)

4π(1 − ν)C212 = −(1 − 2ν)�(n−t)
1 + 2�

(n−t)
22 ,

4π(1 − ν)C222 = (1 − 2ν)�(n−t)
2 + 2�

(n−t)
222 ,

C211 = C112, C221 = C122;

180 Appendix A: Analytical Integration of the Kernels

2π(1 − ν)
µ

D111 = −�12 − 2d2�14,

2π(1 − ν)
µ

D112 = −d�02 + 2d3�04,

2π(1 − ν)
µ

D122 = −�12 + 2d2�14, (A.22)

2π(1 − ν)
µ

D222 = 3d�02 − 2d3�04,

D211 = D121 = D112, D212 = D221 = D122.

In the preceding expressions:

I0 = −d(θ2 − θ1) + 2R − T2 log r2 + T1 log r1,

I(n−t)
11 = d(θ2 − θ1),

(A.23)
I(n−t)
12 = I(n−t)

21 = d log(r2/r1),

I(n−t)
22 = T2 − T1 − d(θ2 − θ1);

�0 = θ2 − θ1,

�
(n−t)
1 = θ2 − θ1,

�
(n−t)
2 = log(r2/r1),

�
(n−t)
11 = (θ2 − θ1)/2 + d�12/2, (A.24)

�
(n−t)
12 = �

(n−t)
21 = �22/2,

�
(n−t)
22 = (θ2 − θ1)/2 − d�12/2,

�
(n−t)
222 = log(r2/r1) + d2�02/2;

�02 = 1/r2
2 − 1/r2

1 ,

�04 = 1/r4
2 − 1/r4

1 ,

�12 = T2/r2
2 − T1/r2

1 , (A.25)

�14 = T2/r4
2 − T1/r4

1 ,

�22 = T2
2 /r2

2 − T2
1 /r2

1 ;

Appendix A: Analytical Integration of the Kernels 181

in which all the parameters are as defined in Figure A.1. Once the integrals of
the kernels are determined in the local n–t system, they need to be transformed
to the global x–y system.

When the source point x is on the element of integration, we have:

θ2 − θ1 = π, d = 0, r1 = r2 = R, T1 = −T2 = −R,

and the four integrals have the following results:∫
�S

U(n−t)
11 (x, y)dS = R

8πµ(1 − ν)
[2(3 − 4ν)(1 − log R) − 1] ,∫

�S
U(n−t)

12 (x, y)dS =
∫

�S
U(n−t)

21 (x, y)dS = 0, (A.26)∫
�S

U(n−t)
22 (x, y)dS = R

8πµ(1 − ν)
[2(3 − 4ν)(1 − log R) + 1] ,

∫
�S

T(n−t)
i j (x, y)dS = −1

2
δi j , (A.27)

∫
�S

K(n−t)
i j (x, y)dS = 1

2
δi j , (A.28)∫

�S
H(n−t)

i j (x, y)dS = − µ

π(1 − ν)R
δi j . (A.29)

Similar to the potential case, the second (T) and third (K) integrals are equal
to the CPV integrals plus the jump terms, and the last (H) integral is a HFP
integral.

A.3 2D Stokes Flow Boundary Integral Equations

For 2D Stokes flow problems, we have the following four kernels for the CBIE
and the HBIE:

Ui j (x, y) = 1
4πµ

[
δi j log

(
1
r

)
+ r,i r, j − 1

2
δi j

]
, (A.30)

Ti j (x, y) = − 1
πr

r,i r, j r,k nk(y), (A.31)

Ki j (x, y) = 1
πr

r,i r, j r,k nk(x), (A.32)

Hi j (x, y) = µ

πr2
[(δi j r,k + δ jkr,i − 8r,i r, j r,k) r,l nl(y)

+ nir, j r,k +nkr,i r, j + δikn j] nk(x). (A.33)

The integrals of these kernels over the straight-line segment �S shown in
Figure A.1 can be obtained from the results for 2D elasticity problems by

182 Appendix A: Analytical Integration of the Kernels

setting Poisson’s ratio ν = 1
2 . In the local coordinate system, we obtain (see

results in the previous section):∫
�S

U(n−t)
i j (x, y)dS = 1

4πµ

[
I0δi j + I(n−t)

i j − Rδi j

]
, (A.34)

∫
�S

T(n−t)
i j (x, y)dS = − 1

π
�

(n−t)
i j , (A.35)

∫
�S

K(n−t)
i j (x, y)dS = Ci jknk(x), (A.36)

∫
�S

H(n−t)
i j (x, y)dS = Di jknk(x), (A.37)

where:

2πC111 = 2�
(n−t)
11 ,

2πC112 = 2�
(n−t)
12 ,

2πC122 = 2�
(n−t)
22 , (A.38)

2πC222 = 2�
(n−t)
222 ,

C121 = C211 = C112, C212 = C221 = C122,

π

µ
D111 = −�12 − 2d2�14,

π

µ
D112 = −d�02 + 2d3�04,

π

µ
D122 = −�12 + 2d2�14, (A.39)

π

µ
D222 = 3d�02 − 2d3�04,

D211 = D121 = D112, D212 = D221 = D122,

and all the parameters I, �, and � are as defined earlier for elasticity ker-
nels in Eqs. (A.23)–(A.25). Once the integrals of the kernels are deter-
mined in the local n–t system, they need to be transformed to the global x–y
system.

When the source point x is on the element of integration, we have the
following results for the four integrals:

Appendix A: Analytical Integration of the Kernels 183

∫
�S

U(n−t)
11 (x, y)dS = R

4πµ
[2(1 − log R) − 1] ,

∫
�S

U(n−t)
12 (x, y)dS =

∫
�S

U(n−t)
21 (x, y)dS = 0, (A.40)

∫
�S

U(n−t)
22 (x, y)dS = R

4πµ
[2(1 − log R) + 1] ,

∫
�S

T(n−t)
i j (x, y)dS = −1

2
δi j , (A.41)

∫
�S

K(n−t)
i j (x, y)dS = 1

2
δi j , (A.42)

∫
�S

H(n−t)
i j (x, y)dS = − 2µ

π R
δi j . (A.43)

Similar to the potential and elasticity cases, the second (T) and third (K) inte-
grals are equal to the CPV integrals plus the jump terms, whereas the last (H)
integral is a HFP integral.

APPENDIX B

Sample Computer Programs

B.1 A Fortran Code of the Conventional Boundary Element Method
for 2D Potential Problems

The following is a list of the source code written in Fortran for the program
discussed in Section 2.11 for 2D potential problems using the conventional
BEM. The direct solver dgesv from LAPACK can be downloaded from the
website www.netlib.org.

c--

c Program: 2D_Potential - A boundary element method (BEM) code in Fortran

c for analyzing general 2D potential problems (governed by

c Laplace equation) using constant elements.

c

c Developer: Dr. Yijun Liu at the University of Cincinnati, Cincinnati, OH.

c

c Version: V.1.20.

c Released: October 1, 2008.

c

c Copyright(c)2004--2008 By University of Cincinnati.

c This code is intended for educational use only. No part of

c the code can be used for any commercial applications/

c distributions without prior written permission of the

c original developer.

c

c--

implicit real*8(a--h,o--z)

character*80 Prob_Title

allocatable :: a(:,:),u(:),x(:,:),y(:,:),node(:,:),bc(:,:),

& dnorm(:,:),xfield(:,:),f(:),atu(:),itemp(:)

184

Appendix B: Sample Computer Programs 185

open (5, file=’input.dat’, status=’old’)
open (6, file=’output.dat’, status=’unknown’)
open (7, file=’phi_boundary.plt’, status=’unknown’)
open (8, file=’xy.plt’, status=’unknown’)
open (9, file=’phi_domain.plt’, status=’unknown’

call CPU_Time(time0)

c Read in initial data

read(5,1) Prob_Title

read(5,*) n, nfield

1 format(A80)

write(6,1) Prob_Title

write(*,1) Prob_Title

write(6,*) ’ Total number of elements =’, n

write(*,*) ’ Total number of elements =’, n

write(6,*)

write(*,*)

c Allocate the arrays

allocate (a(n,n),u(n),x(2,n),y(2,n),node(2,n),bc(2,n),dnorm(2,n),

& xfield(2,nfield),f(nfield),atu(n),itemp(n))

c Input and prepare the BEM model

call prep_model(n,x,y,bc,dnorm,node,xfield,nfield)

c Compute the right-hand-side vector b

call bvector(u,x,y,bc,node,dnorm,n)

c Computer the coefficient matrix A

call coefficient(a,n,x,y,bc,node,dnorm)

c Solve the system of equations Ax = b

c Use LAPACK direct solver (double precision, available at www.netlib.org)

write(6,*) ’ LAPACK direct solver is called’

186 Appendix B: Sample Computer Programs

write(*,*) ’ LAPACK direct solver is called’

call dgesv(n,1,a,n,itemp,u,n,info)

write(6,*) ’ LAPACK solver info = ’, info

write(*,*) ’ LAPACK solver info = ’, info

c Output the boundary solution

write(6,*)

write(6,*) ’ Boundary Solution:’

do i=1,n
write(6,*) i, u(i)

write(7,*) i, u(i)

enddo

c Evaluate the potential field inside the domain and output the results

call domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u)

c Estimate the total CPU time

call CPU_Time(time)

write(*,*)

write(*,*) ’ Total CPU time used =’, time-time0, ’(sec)’

write(6,*)

write(6,*) ’ Total CPU time used =’, time-time0, ’(sec)’

stop

end

c--

c Definition of the Variables:

c

c n = total number of (middle) nodes (elements)

c x(2,n) = coordinates of the nodes

c y(2,n) = coordinates of the end points defining the elements

c node(2,n) = element connectivity

c bc(2,n) = bc(1,i) contains BC type, bc(2,i) BC value, for

element i

c dnorm(2,n) = normal of the elements

c a(n,n) = matrix A

c u(n) = first stores b vector; then solution vector of Ax = b

c nfield = total number of the field points inside the domain

c xfield(2,nfield) = coordinates of the field points inside the domain

Appendix B: Sample Computer Programs 187

c f(nfield) = values of potential at field points inside the domain

c atu(n) = temp array for the solver

c itemp(n) = temp array for the solver

c

c--

subroutine prep_model(n,x,y,bc,dnorm,node,xfield,nfield)

implicit real*8(a--h,o--z)

dimension x(2,*),y(2,*),bc(2,*),xfield(2,*),dnorm(2,*),node(2,*)

c Input the mesh data

read(5,*)

do i=1,n
read(5,*) itemp, y(1,i), y(2,i)

enddo

read(5,*)

do i=1,n
read(5,*) itemp, node(1,i), node(2,i), bc(1,i), bc(2,i)

enddo

c Input the field points inside the domain

if (nfield .gt. 0) then

read(5,*)

do i=1,nfield
read(5,*) itemp, xfield(1,i), xfield(2,i)

enddo

endif

c Compute mid-nodes and normals of the elements

do i=1,n
x(1,i) = (y(1,node(1,i)) + y(1,node(2,i)))*0.5d0

x(2,i) = (y(2,node(1,i)) + y(2,node(2,i)))*0.5d0

h1 = y(2,node(2,i)) − y(2,node(1,i))

h2 = −y(1,node(2,i)) + y(1,node(1,i))

el = sqrt(h1**2 + h2**2)

dnorm(1,i) = h1/el

dnorm(2,i) = h2/el

enddo

188 Appendix B: Sample Computer Programs

c Output nodal coordinates for plotting/checking

do i = 1,n

write(8,*) x(1,i), x(2,i)

enddo

return

end

c--

subroutine bvector(u,x,y,bc,node,dnorm,n)

implicit real*8(a--h,o--z)

dimension u(*),x(2,*),y(2,*),bc(2,*),node(2,*),dnorm(2,*)

data pi/3.141592653589793D0/

pi2 = pi*2

do i=1,n

u(i) = 0.d0

enddo

do j=1,n ! Loop on field points (Column)

al = sqrt((y(1,node(2,j)) − y(1,node(1,j)))**2 +
(y(2,node(2,j)) − y(2,node(1,j)))**2) ! Element length

do i=1,n ! Loop on source points (Row)

c Compute parameters used in the formulas for the two intergals

x11 = y(1,node(1,j)) − x(1,i)

x21 = y(2,node(1,j)) − x(2,i)

x12 = y(1,node(2,j)) − x(1,i)

x22 = y(2,node(2,j)) − x(2,i)

r1 = sqrt(x11**2 + x21**2)

r2 = sqrt(x12**2 + x22**2)

d = x11*dnorm(1,j) + x21*dnorm(2,j)

Appendix B: Sample Computer Programs 189

t1 = −x11*dnorm(2,j) + x21*dnorm(1,j)

t2 = −x12*dnorm(2,j) + x22*dnorm(1,j)

ds = abs(d)

theta1 = datan2(t1,ds)

theta2 = datan2(t2,ds)

dtheta = theta2 − theta1

aa = (−dtheta*ds + al + t1*log(r1) − t2*log(r2))/pi2

if(d .lt. 0.d0) dtheta = −dtheta
bb = −dtheta/pi2
if(i .eq. j) bb = 0.5

if(bc(1,j).eq.1.) u(i) = u(i) − bb*bc(2,j) ! Potential is given

if(bc(1,j).eq.2.) u(i) = u(i) + aa*bc(2,j) ! Derivative is given

enddo

enddo

return

end

c--

subroutine coefficient(a,n,x,y,bc,node,dnorm)

implicit real*8(a--h,o--z)

dimension a(n,n),x(2,*),y(2,*),bc(2,*),node(2,*),dnorm(2,*)

data pi/3.141592653589793D0/

pi2 = pi*2

do j=1,n
do i=1,n

a(i,j) = 0.d0

enddo

enddo

do j=1,n ! Loop on field points (Column)

al = sqrt((y(1,node(2,j)) − y(1,node(1,j)))**2 +
(y(2,node(2,j)) − y(2,node(1,j)))**2) ! Element length

190 Appendix B: Sample Computer Programs

do i=1,n ! Loop on source points (Row)

x11 = y(1,node(1,j)) − x(1,i)

x21 = y(2,node(1,j)) − x(2,i)

x12 = y(1,node(2,j)) − x(1,i)

x22 = y(2,node(2,j)) − x(2,i)

r1 = sqrt(x11**2 + x21**2)

r2 = sqrt(x12**2 + x22**2)

d = x11*dnorm(1,j) + x21*dnorm(2,j)

t1 = −x11*dnorm(2,j) + x21*dnorm(1,j)

t2 = −x12*dnorm(2,j) + x22*dnorm(1,j)

ds = abs(d)

theta1 = datan2(t1,ds)

theta2 = datan2(t2,ds)

dtheta = theta2 − theta1

aa = (−dtheta*ds + al + t1*log(r1) − t2*log(r2))/pi2

if(d .lt. 0.d0) dtheta = −dtheta
bb = −dtheta/pi2

if(i.ne.j) then

if(bc(1,j).eq.1.) a(i,j) = a(i,j) − aa

if(bc(1,j).eq.2.) a(i,j) = a(i,j) + bb

endif

if(i.eq.j) then

if(bc(1,j).eq.1.) a(i,j) = a(i,j) − aa

if(bc(1,j).eq.2.) a(i,j) = a(i,j) + 0.5d0

endif

enddo

enddo

return

end

c--

subroutine domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u)

implicit real*8(a--h,o--z)

Appendix B: Sample Computer Programs 191

dimension xfield(2,*), f(*), x(2,*),y(2,*),bc(2,*),node(2,*),

& dnorm(2,*),u(*)

data pi/3.141592653589793D0/

pi2 = pi*2.d0

do i=1,nfield
f(i) = 0.d0

enddo

do j=1,n ! Loop over all elements

if(bc(1,j).eq.1) then

f0 = bc(2,j)

df0 = u(j)

else if(bc(1,j).eq.2) then

f0 = u(j)

df0 = bc(2,j)

endif

al = sqrt((y(1,node(2,j)) − y(1,node(1,j)))**2 +
(y(2,node(2,j)) − y(2,node(1,j)))**2) ! Element length

do i=1,nfield ! Loop over all field points inside the domain

x11 = y(1,node(1,j)) − xfield(1,i)

x21 = y(2,node(1,j)) − xfield(2,i)

x12 = y(1,node(2,j)) − xfield(1,i)

x22 = y(2,node(2,j)) − xfield(2,i)

r1 = sqrt(x11**2 + x21**2)

r2 = sqrt(x12**2 + x22**2)

d = x11*dnorm(1,j) + x21*dnorm(2,j)

t1 = −x11*dnorm(2,j) + x21*dnorm(1,j)

t2 = −x12*dnorm(2,j) + x22*dnorm(1,j)

ds = abs(d)

theta1 = datan2(t1,ds)

theta2 = datan2(t2,ds)

dtheta = theta2 − theta1

aa = (−dtheta*ds + al + t1*log(r1) − t2*log(r2))/pi2

192 Appendix B: Sample Computer Programs

if(d .lt. 0.d0) dtheta = −dtheta
bb = −dtheta/pi2

f(i) = f(i) + aa*df0 − bb*f0

enddo

enddo

c Output results

do i=1,nfield
write(9,20) xfield(1,i), f(i)

enddo

20 format(1x, 4E18.8)

return

end

c--

B.2 A Fortran Code of the Fast Multipole Boundary Element
Method for 2D Potential Problems

The following is a list of the source code written in Fortran for the program
discussed in Section 3.3 for 2D potential problems using the fast multipole
BEM. The GMRES iterative solver dgmres from the SLATEC package can
be downloaded from the website www.netlib.org.

c--

c Program: 2D_Potential_FMM - A fast multipole boundary element

c Method (BEM) code for analyzing large-scale, general 2D

c potential problems (governed by Laplace equation)

c using constant elements.

c

c Developers: Dr. Naoshi Nishimura at Kyoto University, Japan;

c Dr. Yijun Liu at the University of Cincinnati, Cincinnati, OH.

c

c Version: V.1.20.

c Released: October 1, 2008.

c

c Copyright(c)2004-2008 By Kyoto University and University of Cincinnati.

Appendix B: Sample Computer Programs 193

c This code is intended for educational use only. No part of

c the code can be used for any commercial applications/

c distributions without prior written permissions of the

c original developers.

c

c--

implicit real*8(a--h,o--z)

integer, allocatable :: ia(:)

complex*16, allocatable :: am(:)

character*80 Prob_Title

call CPU_Time(time0)

open (4, file=’input.fmm’, status=’old’)
open (5, file=’input.dat’, status=’old’)
open (3, file=’output.dat’, status=’unknown’)
open (7, file=’phi_boundary.plt’, status=’unknown’)
open (8, file=’xy.plt’, status=’unknown’)
open (9, file=’phi_domain.plt’, status=’unknown’)

c Input the parameters

read(4,*) maxl, levmx, nexp, ntylr, tolerance

read(4,*) maxia, ncellmx, nleafmx, mxl, nwksz

read(5,’(a80)’) Prob_Title

read(5,*) n, nfield

write(3,’(a80)’) Prob_Title

write(*,’(a80)’) Prob_Title

c Estimate the maximum numbers of the cells and leaves,

c and size of the preconditioning matrix, etc.

if(ncellmx.le.0) ncellmx = max(4*n/maxl,100)

if(nleafmx.le.0) nleafmx = max(ncellmx/2,100)

if(nwksz.le.0) nwksz = maxl*maxl*nleafmx

ligw = 20

lrgw = 1+n*(mxl+6)+mxl*(mxl+3)
iwksz = n+3*nleafmx+1

allocate (ia(maxia))

194 Appendix B: Sample Computer Programs

c Load the addresses (pointers) associated with the locations of the

c variables to be stored in the large array "am"

call lpointer(lp, ln, maxia, ia, n, nexp, ntylr, ncellmx,

& levmx, ligw, lrgw, nwksz, iwksz, nfield,

& l_n, l_x, l_y, l_node, l_dnorm,

& l_bc, l_a, l_b, l_xmax,

& l_xmin, l_ymax, l_ymin, l_ielem, l_itree,

& l_level, l_loct, l_numt, l_ifath, l_lowlev,

& l_maxl, l_levmx, l_nexp, l_ntylr, l_tolerance,

& l_ncellmx, l_nleafmx, l_mxl, l_u, l_ax,

& l_sb, l_sx, l_ligw, l_lrgw, l_igwk,

& l_rgwk, l_nwksz, l_iwksz, l_rwork, l_iwork,

& l_xfield, l_nfield, l_f)

c Estimate the memory usage

maxa = lp

write(3,100) maxa*16/1.D6

write(*,100) maxa*16/1.D6

100 format(’ Memory size of the large block am =’, f12.1,’ Mb’/)

c Allocate the large block ’am’

allocate (am(maxa))

c Assign the parameters to the array am()

call assigni(n, am(l_n))

call assigni(maxl, am(l_maxl))

call assigni(levmx, am(l_levmx))

call assigni(nexp, am(l_nexp))

call assigni(ntylr, am(l_ntylr))

call assignd(tolerance, am(l_tolerance))

call assigni(ncellmx, am(l_ncellmx))

call assigni(nleafmx, am(l_nleafmx))

call assigni(mxl, am(l_mxl))

call assigni(ligw, am(l_ligw))

call assigni(lrgw, am(l_lrgw))

call assigni(nwksz, am(l_nwksz))

call assigni(iwksz, am(l_iwksz))

call assigni(nfield, am(l_nfield))

Appendix B: Sample Computer Programs 195

c Call the FMM BEM main program

call fmmmain(maxa, maxia, am, ia,

& am(l_n), am(l_x), am(l_y), am(l_node),

& am(l_dnorm), am(l_bc), am(l_a), am(l_b),

& am(l_xmax), am(l_xmin), am(l_ymax), am(l_ymin),

& am(l_ielem), am(l_itree), am(l_level), am(l_loct),

& am(l_numt), am(l_ifath), am(l_lowlev), am(l_maxl),

& am(l_levmx), am(l_nexp), am(l_ntylr), am(l_tolerance),

& am(l_ncellmx), am(l_nleafmx), am(l_mxl), am(l_u),

& am(l_ax), am(l_nfield), am(l_xfield), am(l_f),

& am(l_sb), am(l_sx), am(l_igwk), am(l_rgwk),

& am(l_ligw), am(l_lrgw), am(l_nwksz), am(l_iwksz),

& am(l_rwork), am(l_iwork))

c Estimate the total CPU time

call CPU_Time(time)

write(3,*)

write(*,*)

write(3,*) ’ Total CPU time used =’, time-time0, ’(sec)’

write(*,*) ’ Total CPU time used =’, time-time0, ’(sec)’

stop

end

c--

c Definition of Variables:

c

c maxa = maximum size of the array am

c maxia = maximum number of variables allowed

c am = a large array storing the variables for the SLATEC GMRES solver

c ia = an array storing the locations of the variables in the array am

c

c n = number of elements (= number of nodes)

c x = coordinates of the nodes

c y = coordinates of the end points of the elements

c node = element connectivity

c dnorm = normal at each node

c bc = BC type and value

c

c a = multipole expansion moments

196 Appendix B: Sample Computer Programs

c b = local expansion coefficients

c xmax,xmin = maximum and minimum x coordinate

c ymax,ymin = maximum and minimum y coordinate

c ielem = ielem(i) gives the original element number for i-th element in

c the quad-tree structure

c itree = itree(c) gives the cell location of c-th cell within each

c tree level

c loct = elements included in the c-th cell are listed starting at

c the loct(c)-th place in the array ielem

c numt = numt(c) gives the number of elements included in the c-th cell

c ifath = ifath(c) gives the number of the parent cell of the c-th cell

c level = level l cells start at the level(l)-th cell in the tree

c lowlev = number of the tree levels

c

c maxl = maximum number of elements allowed in a leaf

c levmx = maximum number of levels allowed in the tree structure

c nexp = number of terms in multipole expansion

c ntylr = number of terms in local expansion

c tolerance = GMRES solution convergence tolerance

c ncellmx = maximum number of cells allowed in the tree

c nleafmx = maximum number of leaves allowed in the tree

c mxl = maximum dimension of Krylov subspace (used in GMRES)

c

c u = first stores b vector; then solution vector of system Ax = b

c ax = resulting vector of multiplication Ax

c nfield = number of the field points inside the domain

c xfield = coordinates of the field points inside the domain

c f = values of the potential at the field points inside the domain

c

c The following variables and arrays are used in the SLATEC GMRES solver:

c sb,sx,igwk,rgwk,ligw,lrgw,nwksz,iwksz,rwork,iwork

c

c--

subroutine lpointer(lp, ln, maxia, ia, n, nexp, ntylr, ncellmx,

& levmx, ligw, lrgw, nwksz, iwksz, nfield,

& l_n, l_x, l_y, l_node, l_dnorm,

& l_bc, l_a, l_b, l_xmax,

& l_xmin, l_ymax, l_ymin, l_ielem, l_itree,

& l_level, l_loct, l_numt, l_ifath, l_lowlev,

& l_maxl, l_levmx, l_nexp, l_ntylr, l_tolerance,

& l_ncellmx, l_nleafmx, l_mxl, l_u, l_ax,

& l_sb, l_sx, l_ligw, l_lrgw, l_igwk,

Appendix B: Sample Computer Programs 197

& l_rgwk, l_nwksz, l_iwksz, l_rwork, l_iwork,

& l_xfield, l_nfield, l_f)

dimension ia(maxia)

lp = 1

l_n = l_address(1,maxia,ia,lp,4,1)

l_x = l_address(2,maxia,ia,lp,8,n*2)

l_y = l_address(3,maxia,ia,lp,8,n*2)

l_node = l_address(4,maxia,ia,lp,4,n*2)

l_dnorm = l_address(5,maxia,ia,lp,8,n*2)

l_bc = l_address(6,maxia,ia,lp,8,n*2)

l_a = l_address(7,maxia,ia,lp,16,(nexp+1)*ncellmx)
l_b = l_address(8,maxia,ia,lp,16,(ntylr+1)*ncellmx)
l_xmax = l_address(9,maxia,ia,lp,8,1)

l_xmin = l_address(10,maxia,ia,lp,8,1)

l_ymax = l_address(11,maxia,ia,lp,8,1)

l_ymin = l_address(12,maxia,ia,lp,8,1)

l_ielem = l_address(13,maxia,ia,lp,4,n)

l_itree = l_address(14,maxia,ia,lp,4,ncellmx)

l_level = l_address(15,maxia,ia,lp,4,levmx+1)
l_loct = l_address(16,maxia,ia,lp,4,ncellmx)

l_numt = l_address(17,maxia,ia,lp,4,ncellmx)

l_ifath = l_address(18,maxia,ia,lp,4,ncellmx)

l_lowlev = l_address(19,maxia,ia,lp,4,1)

l_maxl = l_address(20,maxia,ia,lp,4,1)

l_levmx = l_address(21,maxia,ia,lp,4,1)

l_nexp = l_address(22,maxia,ia,lp,4,1)

l_ntylr = l_address(23,maxia,ia,lp,4,1)

l_tolerance = l_address(24,maxia,ia,lp,8,1)

l_ncellmx = l_address(25,maxia,ia,lp,4,1)

l_nleafmx = l_address(26,maxia,ia,lp,4,1)

l_mxl = l_address(27,maxia,ia,lp,4,1)

l_u = l_address(28,maxia,ia,lp,8,n)

l_ax = l_address(29,maxia,ia,lp,8,n)

l_sb = l_address(30,maxia,ia,lp,8,n)

l_sx = l_address(31,maxia,ia,lp,8,n)

l_ligw = l_address(32,maxia,ia,lp,4,1)

l_lrgw = l_address(33,maxia,ia,lp,4,1)

l_igwk = l_address(34,maxia,ia,lp,4,ligw)

l_rgwk = l_address(35,maxia,ia,lp,8,lrgw)

198 Appendix B: Sample Computer Programs

l_nwksz = l_address(36,maxia,ia,lp,4,1)

l_iwksz = l_address(37,maxia,ia,lp,4,1)

l_rwork = l_address(38,maxia,ia,lp,8,nwksz)

l_iwork = l_address(39,maxia,ia,lp,4,iwksz)

l_xfield = l_address(40,maxia,ia,lp,8,nfield*2)

l_nfield = l_address(41,maxia,ia,lp,4,1)

l_f = l_address(42,maxia,ia,lp,8,nfield)

return

end

c--

integer function l_address(ln,maxia,ia,lp,ibyte,length)

dimension ia(maxia)

l_address = lp

ia(ln) = lp

iu = 16

inc = (ibyte*length−1)/iu+1
lp = lp+inc
if(ln .gt. maxia) then

write(*,*)’!Specified # of variables maxia’,maxia,’is too small’

stop

endif

return

end

c--

subroutine assigni(i,ii)

integer i,ii

ii = i

return

end

subroutine assignd(d,dd)

Appendix B: Sample Computer Programs 199

real*8 d,dd

dd = d

return

end

c--

subroutine fmmmain(maxa, maxia, am, ia, n,x,y,node,dnorm,bc,

& a,b, xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt,

& ifath,lowlev,maxl,levmx,nexp,ntylr,tolerance,ncellmx,

& nleafmx,mxl,u,ax,nfield,xfield,f,sb,sx,igwk,rgwk,

& ligw,lrgw,nwksz,iwksz,rwork,iwork)

implicit real*8(a--h,o--z)

complex*16 am(maxa), a,b

dimension ia(maxia),ja(1),a(0:nexp,ncellmx),b(0:ntylr,ncellmx),

& x(2,n),y(2,n),node(2,n),dnorm(2,n),bc(2,n),

& ielem(n),itree(ncellmx),level(0:levmx),loct(ncellmx),

& numt(ncellmx),ifath(ncellmx), u(n),ax(n),sb(n),sx(n),

& igwk(ligw),rgwk(lrgw),rwork(nwksz),iwork(iwksz),

& xfield(2,nfield),f(nfield)

external matvec, msolve

c Input parameters and prepare the BEM model

call prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,levmx,

& nexp,ntylr,tolerance,xmin,xmax,ymin,ymax)

c Generate the quad-tree structure for the elements

call tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct,numt,

& ifath,lowlev,maxl,levmx,ncellmx,nleafmx,nwksz,iwork)

c Compute the right-hand-side vector b with the FMM

call fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,ymax,ymin,

& ielem,itree,level,loct,numt,ifath,

& nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork)

c Solve the BEM system of equations Ax=b with the fast multipole BEM

c Prepare parameters for calling the iterative solver GMRES

c (SLATEC GMRES solver is used, which is available at www.netlib.org.

200 Appendix B: Sample Computer Programs

c See the documentation for the SLATEC GMRES solver for more information

c about the following related parameters)

nelt = 1

isym = 0

itol = 0

tol = tolerance

iunit = 3

igwk(1) = mxl

igwk(2) = mxl

igwk(3) = 0

igwk(4) = 1

igwk(5) = 10

do i=1,n
ax(i) = 0.d0

enddo

write(*,*) ’Call Equation Solver GMRES ...’

call dgmres(n,u,ax, nelt,ia,ja,am,isym, matvec,msolve,itol,tol,

& itmax,iter,er,ierr,iunit,sb,sx,rgwk,lrgw,igwk,ligw,

& rwork,iwork)

write(3,*) ’ Error indicator from GMRES:’, ierr

write(*,*) ’ Error indicator from GMRES:’, ierr

c Output the boundary solution

do i=1,n
u(ielem(i)) = ax(i)

enddo

write(3,*) ’ Fast Multipole BEM Solution:’

do i=1,n
write(3,*) i, u(i)

write(7,*) i, u(i)

enddo

c Evaluate the field inside the domain and output the results

call domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u)

return

end

c--

Appendix B: Sample Computer Programs 201

subroutine prep_model(n,x,y,node,bc,dnorm,xfield,nfield,maxl,

& levmx,nexp,ntylr,tolerance,

& xmin,xmax,ymin,ymax)

implicit real*8(a--h,o--z)

dimension x(2,*),y(2,*),node(2,*),bc(2,*),dnorm(2,*),xfield(2,*)

write(*,2) n, maxl, levmx, nexp, tolerance

write(3,2) n, maxl, levmx, nexp, tolerance

2 format(’ Total number of elements =’, I12

& /’ Max. number of elements in a leaf =’, I12

& /’ Max. number of tree levels =’, I12

& /’ Number of terms used in expansions =’, I12

& /’ Tolerance for convergence =’, D12.3)

write(*,*)

write(3,*)

c Input the mesh data

read(5,*)

do i=1,n
read(5,*) itemp, y(1,i), y(2,i)

enddo

read(5,*)

do i=1,n
read(5,*) itemp, node(1,i), node(2,i), bc(1,i), bc(2,i)

enddo

c Input the field points inside the domain

if (nfield .gt. 0) then

read(5,*)

do i=1,nfield
read(5,*) itemp, xfield(1,i), xfield(2,i)

enddo

endif

c Compute mid-nodes and normals of the elements

202 Appendix B: Sample Computer Programs

do i=1,n
x(1,i) = (y(1,node(1,i)) + y(1,node(2,i)))*0.5

x(2,i) = (y(2,node(1,i)) + y(2,node(2,i)))*0.5

h1 = y(2,node(2,i)) − y(2,node(1,i))

h2 = -y(1,node(2,i)) + y(1,node(1,i))

el = sqrt(h1**2 + h2**2)

dnorm(1,i) = h1/el

dnorm(2,i) = h2/el

enddo

c Determine the square bounding the problem domain (Largest cell used in FMM)

xmin=x(1,1)
xmax=x(1,1)
ymin=x(2,1)
ymax=x(2,1)

do 10 i=2,n
if(x(1,i).le.xmin) then

xmin=x(1,i)
elseif(x(1,i).ge.xmax) then

xmax=x(1,i)
endif

if(x(2,i).le.ymin) then

ymin=x(2,i)
elseif(x(2,i).ge.ymax) then

ymax=x(2,i)
endif

10 continue

scale = 1.05d0 ! Make the square slightly larger

xyd = max(xmax−xmin,ymax−ymin)/2.d0
xyd = xyd*scale

cx = (xmin+xmax)/2.d0
cy = (ymin+ymax)/2.d0
xmin = cx−xyd
xmax = cx+xyd
ymin = cy−xyd
ymax = cy+xyd

c Output nodal coordinates for plotting

do i = 1,n

Appendix B: Sample Computer Programs 203

write(8,*) x(1,i), x(2,i)

enddo

return

end

c--

subroutine tree(n,x,xmax,xmin,ymax,ymin,ielem,itree,level,loct,

& numt,ifath,lowlev,maxl,levmx,ncellmx,nleafmx,

& nwksz,iwork)

implicit real*8(a--h,o--z)

complex*16 a,b

dimension x(2,*),ielem(*),itree(*),level(0:*),loct(*),numt(*),

& ifath(*), iwork(*), nwk(4)

do i=1,n
ielem(i) = i ! Store the original element numbers in ielem

enddo

c For the level 0 cell (largest cell)

itree(1) = 0

level(0) = 1

level(1) = 2

loct(1) = 1

ifath(1) = 1

numt(1) = n

ndivx = 1

lowlev = 1

nleaf = 0

nswa = 0

c For cells on level 1 to the lowest level (leaves)

do 10 lev=1,levmx
levp = lev−1
levn = lev+1
level(levn) = level(lev)

if(level(lev).eq.level(levp)) goto 900

ndivxp = ndivx

ndivx = 2*ndivxp

204 Appendix B: Sample Computer Programs

dxp = (xmax−xmin)/ndivxp ! Parent cell size

dyp = (ymax−ymin)/ndivxp

do 11 inp=level(levp),level(lev)−1
itrp = itree(inp)

if(numt(inp).gt.maxl .or.

& (lev.le.2 .and. numt(inp).ne.0)) then

itrpx = mod(itrp,ndivxp)

itrpy = itrp/ndivxp

xsep = xmin+(itrpx + 0.5d0)*dxp

ysep = ymin+(itrpy + 0.5d0)*dyp

call bisec(x,ielem(loct(inp)),numt(inp),ysep,nsepy, 2)

call bisec(x,ielem(loct(inp)),nsepy−1, xsep,nsepx1,1)

call bisec(x,ielem(loct(inp)+nsepy−1),
& numt(inp)-nsepy+1,xsep,nsepx2,1)

nwk(1) = nsepx1−1
nwk(2) = nsepy−nsepx1
nwk(3) = nsepx2−1
nwk(4) = numt(inp)−nsepy−nsepx2+2
locc = loct(inp)

do 12 icldy=0,1
do 12 icldx=0,1

icld = icldy*2+icldx+1

if(nwk(icld).gt.0) then

nrel = level(levn)

if(nrel.gt.ncellmx) then

write(*,*) " ncellmx error"

stop

endif

itree(nrel) = ((itrpy*2+icldy)*ndivxp + itrpx)*2

& +icldx
loct(nrel) = locc

numt(nrel) = nwk(icld)

ifath(nrel) = inp

lowlev=lev

c Leaves:

if((lev.ne.1) .and.

& (numt(nrel).le.maxl .or. lev.eq.levmx)) then

nleaf = nleaf+1
if(nleaf.gt.nleafmx) then

Appendix B: Sample Computer Programs 205

write(*,*) " nleafmx error"

stop

endif

nleaf3 = nleaf*3 − 1

iwork(nleaf3) = nrel ! Store cell

number (icell)

iwork(nleaf3+1) = nswa + 1 ! Location of

pre-cond’er

iwork(nleaf3+2) = 1 ! Initial value of switch isw

nswa = nswa + numt(nrel)**2

if(nswa.gt.nwksz) then

write(*,*) " nwksz error"

stop

endif

endif

level(levn) = nrel + 1

locc = locc + nwk(icld)

endif

12 continue

endif

11 continue

10 continue

900 iwork(1) = nleaf ! Store number of leaves in iwork(1)

write(3,*) ’ Number of tree levels =’, lowlev

write(*,*) ’ Number of tree levels =’, lowlev

write(3,*) ’ Number of leaves =’, nleaf

write(*,*) ’ Number of leaves =’, nleaf

write(3,*) ’ Number of cells =’, nrel

write(*,*) ’ Number of cells =’, nrel

write(3,*)

write(*,*)

return

end

c--

subroutine bisec(x,ielem,n,xsep,nsep,ic)

implicit real*8(a--h,o--z)

206 Appendix B: Sample Computer Programs

dimension x(2,*),ielem(*)

nsep = 1

if(n.le.0) return

do ifr=1,n
if(x(ic,ielem(ifr)).le.xsep) then

if(ifr.ne.nsep) then

istore = ielem(nsep)

ielem(nsep) = ielem(ifr)

ielem(ifr) = istore

endif

nsep = nsep + 1

endif

enddo

return

end

c--

subroutine fmmbvector(n,x,y,node,dnorm,bc,u,ax,a,b,xmax,xmin,

& ymax,ymin,ielem,itree,level,loct,numt,ifath,

& nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork)

implicit real*8(a--h,o--z)

complex*16 a,b

dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx),

& x(2,*),y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*),

& ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*),

& rwork(*),iwork(*)

c Switch the BC type

do i=1,n
if(bc(1,i) .eq. 1.) then

bc(1,i) = 2.d0

else

bc(1,i) = 1.d0

endif

enddo

Appendix B: Sample Computer Programs 207

do i=1,n
u(i) = bc(2,ielem(i))

ax(i) = 0.d0

enddo

c Apply the FMM to conpute the right-hand side vector b

call upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem,

& itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl)

call dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin,ymax,ymin,

& ielem,itree,level,loct,numt,ifath,nexp,ntylr,ncellmx,

& lowlev,maxl,rwork,iwork)

c Store b vector in u and switch the BC type back

do i=1,n
u(i) = − ax(i)

if(bc(1,i) .eq. 1.) then

bc(1,i) = 2.d0

else

bc(1,i) = 1.d0

endif

enddo

return

end

c--

subroutine matvec(n,u,ax,nelt,ia,ja,am,isym)

implicit real*8(a--h,o--z)

complex*16 am, a, b

dimension u(*),ax(*),ia(*),ja(*),am(*)

c Retrieve the pointers

l_n = ia(1)

l_x = ia(2)

l_y = ia(3)

l_node = ia(4)

208 Appendix B: Sample Computer Programs

l_dnorm = ia(5)

l_bc = ia(6)

l_a = ia(7)

l_b = ia(8)

l_xmax = ia(9)

l_xmin = ia(10)

l_ymax = ia(11)

l_ymin = ia(12)

l_ielem = ia(13)

l_itree = ia(14)

l_level = ia(15)

l_loct = ia(16)

l_numt = ia(17)

l_ifath = ia(18)

l_lowlev = ia(19)

l_maxl = ia(20)

l_levmx = ia(21)

l_nexp = ia(22)

l_ntylr = ia(23)

l_tolerance = ia(24)

l_ncellmx = ia(25)

l_nleafmx = ia(26)

l_mxl = ia(27)

l_u = ia(28)

l_ax = ia(29)

l_sb = ia(30)

l_sx = ia(31)

l_ligw = ia(32)

l_lrgw = ia(33)

l_igwk = ia(34)

l_rgwk = ia(35)

l_nwksz = ia(36)

l_iwksz = ia(37)

l_rwork = ia(38)

l_iwork = ia(39)

c Evaluate matrix-vector multiplication Ax using the fast multipole BEM

call upward(u, am(l_n), am(l_y), am(l_node),

& am(l_dnorm), am(l_bc), am(l_a), am(l_xmax),

& am(l_xmin), am(l_ymax), am(l_ymin), am(l_ielem),

& am(l_itree), am(l_level), am(l_loct), am(l_numt),

& am(l_ifath), am(l_nexp), am(l_ncellmx), am(l_lowlev),

& am(l_maxl))

Appendix B: Sample Computer Programs 209

call dwnwrd(u,ax, am(l_n), am(l_x), am(l_y),

& am(l_node), am(l_dnorm), am(l_bc), am(l_a),

& am(l_b), am(l_xmax), am(l_xmin), am(l_ymax),

& am(l_ymin), am(l_ielem), am(l_itree), am(l_level),

& am(l_loct), am(l_numt), am(l_ifath), am(l_nexp),

& am(l_ntylr), am(l_ncellmx), am(l_lowlev), am(l_maxl),

& am(l_rwork), am(l_iwork))

return

end

c--

subroutine msolve(n,r,z,nelt,ia,ja,am,isym,rwork,iwork)

implicit real*8(a--h,o--z)

complex*16 am(*)

dimension r(*),z(*),ia(*),ja(1),rwork(*),iwork(*)

c Load the pointers

l_loct = ia(16)

l_numt = ia(17)

c Compute the preconditioning matrix

call msolveinv(r,z,rwork,iwork, am(l_loct), am(l_numt))

return

end

c--

subroutine msolveinv(r,z,rwork,iwork,loct,numt)

implicit real*8(a--h,o--z)

dimension r(*),z(*),iwork(*),rwork(*),loct(*),numt(*)

nleaf = iwork(1)

do l = 1,nleaf

l3 = l*3−1
inod = iwork(l3)

210 Appendix B: Sample Computer Programs

indr = iwork(l3+1)
indx = loct(inod)

indi = indx+3*nleaf+1
nr = numt(inod)

call dcopy(nr,r(indx),1,z(indx),1)

call dluax(rwork(indr),nr,nr,z(indx),iwork(l3+2),
& iwork(indi),icon)

if(icon.ne.0) then

write(*,*) " dluax error, icon =", icon

stop

endif

iwork(l3+2) = 2

enddo

return

end

c--

c This subroutine solves linear system of equations Ax=b by LU

decomposition.

c

c a given regular coefficient matrix.

c k given adjustable dimension for array a.

c n given order of matrix a.

c b given constant vector.

c isw given control information:

c if 1, solve equations entirely.

c if 2, solve equations with last LU-decomposed entries.

c ip auxiliary 1 dimensioned array, size is n.

c transposition vector which represents

c row-exchanging by partial pivoting.

c icon.... resultant condition code.

c

c Slave subroutines used (available at www.netlib.org):

c dgetrf, dgetrs

c

c--

subroutine dluax(a,k,n,b,isw,ip,icon)

implicit real*8 (a--h,o--z)

dimension a(k,n),b(n),ip(n)

data ione/1/

Appendix B: Sample Computer Programs 211

icon = 30000

if(isw.eq.1) go to 1000

if(isw.eq.2) go to 1100

go to 8000

1000 call dgetrf(n,n,a,k,ip,icon)

isw = 2

1100 call dgetrs(’n’,n,ione,a,k,ip,b,n,icon)

8000 continue

return

end

c--

subroutine upward(u,n,y,node,dnorm,bc,a,xmax,xmin,ymax,ymin,ielem,

& itree,level,loct,numt,ifath,nexp,ncellmx,lowlev,maxl)

implicit real*8(a--h,o--z)

complex*16 a,b, z0,zi

dimension a(0:nexp,ncellmx),

& y(2,*),node(2,*),dnorm(2,*),bc(2,*),u(*),

& ielem(*),itree(*),level(0:*),loct(*),numt(*),ifath(*)

do i=1,level(lowlev+1)−1
do k=0,nexp

a(k,i) = (0.d0,0.d0) ! Clear multipole moments

enddo

enddo

do 10 lev=lowlev,2,−1 ! Loop from leaf to level 2 cells (Upward)

ndivx = 2**lev

dx = (xmax−xmin)/ndivx ! Determine cell size

dy = (ymax−ymin)/ndivx

do 20 icell=level(lev),level(lev+1)−1 ! Loop for level l cells

itr = itree(icell)

itrx = mod(itr,ndivx)

itry = itr/ndivx ! Position of the cell

cx = xmin+(itrx + 0.5d0)*dx

cy = ymin+(itry + 0.5d0)*dy ! Center of the cell

212 Appendix B: Sample Computer Programs

c Multipole expansion

if(numt(icell).le.maxl .or. lev.eq.lowlev) then ! Compute moment

call moment(a(0,icell),y,node,ielem(loct(icell)),

& numt(icell),nexp,cx,cy,u(loct(icell)),

& bc,dnorm)

endif

c M2M translation

if(lev.ne.2) then ! Do M2M translation to form moments

cxp = xmin+(int(itrx/2)*2 + 1)*dx

cyp = ymin+(int(itry/2)*2 + 1)*dy ! Center of parent cell

z0 = cmplx(cx−cxp, cy−cyp) ! (z_c − z_c’)

io = ifath(icell) ! Cell no. of parent cell

zi = (1.d0,0.d0)

do k=0,nexp
do m=k,nexp

a(m,io) = a(m,io) + zi*a(m−k,icell) ! Use M2M

enddo

zi = zi*z0/(k+1)
enddo

endif

20 continue

10 continue

return

end

c--

subroutine moment(a,y,node,ielem,num,nexp,cx,cy,u,bc,dnorm)

implicit real*8(a--h,o--y)

implicit complex*16(z)

complex*16 a(0:*)

dimension y(2,*),node(2,*),ielem(*),u(*), bc(2,*),dnorm(2,*)

Appendix B: Sample Computer Programs 213

do i=1,num ! Over elements in the leaf

nelm = ielem(i) ! Element number

n1 = node(1,nelm) ! Two ends of the element

n2 = node(2,nelm)

z1 = cmplx(y(1,n1)−cx, y(2,n1)−cy)
z2 = cmplx(y(1,n2)−cx, y(2,n2)−cy)
zwbar = conjg(z2 − z1)

zwbar = zwbar/abs(zwbar) ! omega bar

zp1 = z1*zwbar

zp2 = z2*zwbar

znorm = cmplx(dnorm(1,nelm),dnorm(2,nelm)) ! complex normal n

if(bc(1,nelm) .eq. 1.d0) then ! Assign values to phi and q

phi = 0.D0

q = u(i)

else if(bc(1,nelm) .eq. 2.d0) then

phi = u(i)

q = 0.D0

endif

c Compute moments:

a(0) = a(0) − (zp2−zp1)*q ! G kernel

do k=1,nexp
a(k) = a(k) + (zp2-zp1)*znorm*phi ! F kernel

zp1 = zp1*z1/(k+1)
zp2 = zp2*z2/(k+1)
a(k) = a(k) − (zp2-zp1)*q ! G kernel

enddo

enddo

return

end

c--

subroutine dwnwrd(u,ax,n,x,y,node,dnorm,bc,a,b,xmax,xmin,

& ymax,ymin,ielem,itree,level,loct,numt,ifath,

& nexp,ntylr,ncellmx,lowlev,maxl,rwork,iwork)

implicit real*8(a--h,o--z)

complex*16 a,b, z0,zi,zo,zp

214 Appendix B: Sample Computer Programs

dimension a(0:nexp,ncellmx),b(0:ntylr,ncellmx),x(2,*),y(2,*),

& node(2,*),dnorm(2,*),bc(2,*),u(*),ax(*),ielem(*),

& itree(*),level(0:*),loct(*),numt(*),ifath(*),

& rwork(*),iwork(*)

data pi/3.141592653589793D0/

pi2 = pi*2.d0

do i=1,level(lowlev+1)−1
do k=0,ntylr

b(k,i) = (0.d0,0.d0)

enddo

enddo

do i=1,n
ax(i) = 0.d0

enddo

leaf = 0

indr = 1

indi = 1

do 110 lev=2,lowlev ! Downward from level 2 cells to leaf cells

ndivx = 2**lev

dx = (xmax−xmin)/ndivx
dy = (ymax−ymin)/ndivx
do 120 icell=level(lev),level(lev+1)−1 ! Loop for level l cells

itr = itree(icell)

itrx = mod(itr,ndivx)

itry = itr/ndivx ! Position of the cell

cx = xmin+(itrx + 0.5d0)*dx

cy = ymin+(itry + 0.5d0)*dy ! Center of the cell

itrxp = itrx/2

itryp = itry/2

c From the parent cell (use L2L)

if(lev.ne.2) then

cxp = xmin+(itrxp*2+1)*dx
cyp = ymin+(itryp*2+1)*dy ! Center of the parent cell

z0 = cmplx(cx−cxp, cy−cyp)
io = ifath(icell) ! Cell no. of the parent cell

zi = (1.d0,0.d0)

do k=0,ntylr
do m=0,ntylr−k

Appendix B: Sample Computer Programs 215

b(m,icell) = b(m,icell) + zi*b(k+m,io) ! L2L translation

enddo

zi = zi*z0/(k+1)
enddo

endif

do 130 jcell=level(lev),level(lev+1)−1
jtr = itree(jcell)

jtrx = mod(jtr,ndivx)

jtry = jtr/ndivx

jtrxp = jtrx/2

jtryp = jtry/2

c The parents must be neighbours

if(iabs(itrxp−jtrxp).gt.1 .or. iabs(itryp−jtryp).gt.1)
& goto 130

c For non-neighbours (cells in interaction list) (use M2L)

if(iabs(itrx−jtrx).gt.1 .or. iabs(itry−jtry).gt.1) then

ccx = xmin + (jtrx + 0.5d0)*dx

ccy = ymin + (jtry + 0.5d0)*dy ! Center of the j cell

z0 = cmplx(cx−ccx, cy−ccy)

b(0,icell) = b(0,icell) − log(z0)*a(0,jcell)

zo = 1.

do m=1,nexp+ntylr
zo = zo/z0

kmin = max(0,m−nexp)
kmax = min(m,ntylr)

sgn = (−1.0)**kmin
do k=kmin,kmax

b(k,icell) = b(k,icell) + sgn*zo*a(m−k,jcell) ! M2L

sgn = −sgn
enddo

zo = zo*m

enddo

c Contribution from neighbouring leaves (use direct)

elseif(numt(jcell).le.maxl .or.

& numt(icell).le.maxl .or. lev.eq.lowlev) then

if(icell.eq.jcell) then

216 Appendix B: Sample Computer Programs

leaf = leaf+1
leaf3 = leaf*3−1
if(iwork(leaf3).ne.icell) then

write(3,*)

leaf,iwork(1),iwork(leaf3),icell,’check’

write(*,*) " icell error"

stop

endif

indr = iwork(leaf3+1)
indi = iwork(leaf3+2)

endif

call direct(ielem(loct(icell)),ielem(loct(jcell)),

& node,x,y,numt(icell),numt(jcell),dnorm,

& ax(loct(icell)),u(loct(jcell)),icell,jcell,

& rwork(indr),indi,bc) ! Direct integration

endif

130 continue

c Compute Ax if reach a leaf (Evaluate local expansion at each

c collocation point)

if(numt(icell).le.maxl .or. lev.eq.lowlev) then

fact = 1.d0

do itylr=1,ntylr
fact = fact/itylr

b(itylr,icell) = b(itylr,icell)*fact

enddo

do in=1,numt(icell)
inax = loct(icell) + in−1 ! Element number in the tree

indx = ielem(inax) ! Original element number

zp = b(ntylr,icell)

z0 = cmplx(x(1,indx)−cx, x(2,indx)−cy)
do itylr=ntylr−1,0,−1
zp = zp*z0 + b(itylr,icell) ! Local expansion

enddo

zp = zp/pi2

ax(inax) = ax(inax) + dreal(zp) ! Array Ax

enddo

endif

120 continue

110 continue

Appendix B: Sample Computer Programs 217

return

end

c--

subroutine direct(inod,jnod,node,x,y,ni,nj,dnorm,ax,u,icell,jcell,

& amat,isw,bc)

implicit real*8(a--h,o--z)

dimension inod(*),jnod(*),node(2,*),x(2,*),y(2,*),

& dnorm(2,*),ax(*),u(*),amat(ni,*), bc(2,*)

data pi/3.141592653589793D0/

pi2 = pi*2.d0

do j = 1, nj

jind = jnod(j)

al = sqrt((y(1,node(1,jind))− y(1,node(2,jind)))**2 +
(y(2,node(1,jind)) − y(2,node(2,jind)))**2) ! Element length

do i = 1, ni

iind = inod(i)

x11 = y(1,node(1,jind)) − x(1,iind)

x21 = y(2,node(1,jind)) − x(2,iind)

x12 = y(1,node(2,jind)) − x(1,iind)

x22 = y(2,node(2,jind)) − x(2,iind)

r1 = sqrt(x11**2 + x21**2)

r2 = sqrt(x12**2 + x22**2)

d = x11*dnorm(1,jind) + x21*dnorm(2,jind)

t1 = −x11*dnorm(2,jind) + x21*dnorm(1,jind)

t2 = −x12*dnorm(2,jind) + x22*dnorm(1,jind)

ds = abs(d)

dtheta = datan2(ds*al,ds**2+t1*t2)

aa = (−dtheta*ds + al + t1*log(r1) − t2*log(r2))/pi2

if(d .lt. 0.d0) dtheta = −dtheta

218 Appendix B: Sample Computer Programs

bb = −dtheta/pi2
if(iind .eq. jind) bb = 0.5d0

if(bc(1,jind) .eq. 1.) then

ax(i) = ax(i) − aa*u(j)

if(icell.eq.jcell .and. isw.eq.1) then ! Store coefficients in

amat(i,j) = − aa ! first iteration

endif

else if(bc(1,jind) .eq. 2.) then

ax(i) = ax(i) + bb*u(j)

if(icell.eq.jcell .and. isw.eq.1) then ! Store coefficients in

amat(i,j) = bb ! first iteration

endif

endif

enddo

enddo

return

end

c--

subroutine domain_field(nfield,xfield,f,n,x,y,bc,node,dnorm,u)

implicit real*8(a--h,o--z)

dimension xfield(2,*), f(*), x(2,*),y(2,*),bc(2,*),node(2,*),

& dnorm(2,*),u(*)

data pi/3.141592653589793D0/

pi2 = pi*2.d0

do i=1,nfield
f(i) = 0.d0

enddo

do j=1,n ! Loop over all elements

if(bc(1,j).eq.1) then

f0 = bc(2,j)

df0 = u(j)

Appendix B: Sample Computer Programs 219

else if(bc(1,j).eq.2) then

f0 = u(j)

df0 = bc(2,j)

endif

al = sqrt((y(1,node(2,j)) − y(1,node(1,j)))**2 +
(y(2,node(2,j)) − y(2,node(1,j)))**2) ! Element length

do i=1,nfield ! Loop over all field points inside the domain

x11 = y(1,node(1,j)) − xfield(1,i)

x21 = y(2,node(1,j)) − xfield(2,i)

x12 = y(1,node(2,j)) − xfield(1,i)

x22 = y(2,node(2,j)) − xfield(2,i)

r1 = sqrt(x11**2 + x21**2)

r2 = sqrt(x12**2 + x22**2)

d = x11*dnorm(1,j) + x21*dnorm(2,j)

t1 = −x11*dnorm(2,j) + x21*dnorm(1,j)

t2 = −x12*dnorm(2,j) + x22*dnorm(1,j)

ds = abs(d)

theta1 = datan2(t1,ds)

theta2 = datan2(t2,ds)

dtheta = theta2 − theta1

aa = (−dtheta*ds + al + t1*log(r1) − t2*log(r2))/pi2

if(d .lt. 0.d0) dtheta = −dtheta
bb = −dtheta/pi2

f(i) = f(i) + aa*df0 − bb*f0

enddo

enddo

c Output results

do i=1,nfield
write(9,20) xfield(1,i), f(i)

enddo

20 format(1x, 4E18.8)

return

end

c--

220 Appendix B: Sample Computer Programs

B.3 Sample Input File and Parameter File

The following is a sample input file that can be used to run both the conven-
tional BEM and the fast multipole BEM programs for 2D potential problems
listed in the previous two sections. The model is for a square domain with
dimensions of 1×1 and discretized with 20 constant line elements (five ele-
ments on each edge). A zero-potential BC is applied on the left edge and a
potential of 100 is applied on the right edge. The upper and lower edges are
applied with flux-free (q = 0) BCs. There are also 11 field points inside the
domain where the potential will be evaluated after the solution on the bound-
ary is obtained.

c--

c A Sample Input File (input.dat):

c---

A Square Plate with Linear Temperature 30-MAR-04

20 11 ! No. of Elements, No. of Field Points

Nodes (Node No., x-coordinate, y-coordinate):

1 0 0

2 0.2 0

3 0.4 0

4 0.6 0

5 0.8 0

6 1 0

7 1 0.2

8 1 0.4

9 1 0.6

10 1 0.8

11 1 1

12 0.8 1

13 0.6 1

14 0.4 1

15 0.2 1

16 0 1

17 0 0.8

18 0 0.6

19 0 0.4

20 0 0.2

Elements and Boundary Conditions (Element No., Local Node 1, Local Node 2,

BC Type, BC Value):

1 1 2 2 0

2 2 3 2 0

Appendix B: Sample Computer Programs 221

3 3 4 2 0

4 4 5 2 0

5 5 6 2 0

6 6 7 1 100

7 7 8 1 100

8 8 9 1 100

9 9 10 1 100

10 10 11 1 100

11 11 12 2 0

12 12 13 2 0

13 13 14 2 0

14 14 15 2 0

15 15 16 2 0

16 16 17 1 0

17 17 18 1 0

18 18 19 1 0

19 19 20 1 0

20 20 1 1 0

Field Points Inside Domain (Field Point No., x-coordinate, y-coordinate):

1 0.01 0.5

2 0.1 0.5

3 0.2 0.5

4 0.3 0.5

5 0.4 0.5

6 0.5 0.5

7 0.6 0.5

8 0.7 0.5

9 0.8 0.5

10 0.9 0.5

11 0.99 0.5

End of File

c--

The following is the parameter file used only for the fast multipole BEM
program for 2D potential problems. All the parameters are explained briefly
in the file, which is used for the FMM and the iterative solver GMRES.
In general, the values of these parameters in this file need not be changed
when one is using the fast multipole BEM code, unless one wishes to use
a different tolerance for convergence or number of terms in the multipole
expansions.

222 Appendix B: Sample Computer Programs

c--

c A Sample Parameter File (input.fmm, for 2D_Potential_FMM Program only):

c--

20 10 15 15 1.0E-8 ! maxl levmx nexp ntylr tolerance

50 50000 50000 50 90000000 ! maxia ncellmx nleafmx mxl nwksz

Definitions of the above parameters:

maxl: maximum number of elements in a leaf

levmx: maximum number of tree levels

nexp: order of the fast multipole expansions (p)

ntylr: order of the local expansions (= p, in general)

tolerance: tolerance for convergence used in the iterative solver

maxia: maximum number of parameters

ncellmx: maximum number of cells allowed in the tree

nleafmx: maximum number of leaves allowed in the tree

mxl: maximum dimension of Krylov subspace used in the iterative solver

nwksz: size of the space used to store coefficients in preconditioner

(use default in the code, if value = 0)

c--

References

[1] M. A. Jaswon, “Integral equation methods in potential theory. I,” Proc.
R. Soc. London A 275, 23–32 (1963).

[2] G. T. Symm, “Integral equation methods in potential theory. II,” Proc.
R. Soc. London A 275, 33–46 (1963).

[3] M. A. Jaswon and A. R. Ponter, “An integral equation solution of the
torsion problem,” Proc. R. Soc. London A 273, 237–246 (1963).

[4] F. J. Rizzo, “An integral equation approach to boundary value problems
of classical elastostatics,” Q. Appl. Math. 25, 83–95 (1967).

[5] F. J. Rizzo and D. J. Shippy, “A formulation and solution procedure for
the general non-homogeneous elastic inclusion problem,” Int. J. Solids
Structures 4, 1161–1179 (1968).

[6] T. A. Cruse and F. J. Rizzo, “A direct formulation and numerical solu-
tion of the general transient elastodynamic problem – I,” J. Math. Anal.
Appl. 22, 244–259 (1968).

[7] T. A. Cruse, “A direct formulation and numerical solution of the general
transient elastodynamic problem – II,” J. Math. Anal. Appl. 22, 341–355
(1968).

[8] T. A. Cruse, “Numerical solutions in three dimensional elastostatics,”
Int. J. Solids Structures 5, 1259–1274 (1969).

[9] F. J. Rizzo and D. J. Shippy, “A method for stress determination in plane
anisotropic elastic bodies,” J. Composite Mater. 4, 36–61 (1970).

[10] F. J. Rizzo and D. J. Shippy, “A method of solution for certain problems
of transient heat conduction,” AIAA J. 8, 2004–2009 (1970).

[11] F. J. Rizzo and D. J. Shippy, “An application of the correspondence prin-
ciple of linear viscoelasticity theory,” SIAM J. Appl. Math. 21, 321–330
(1971).

[12] T. A. Cruse and W. V. Buren, “Three-dimensional elastic stress analysis
of a fracture specimen with an edge crack,” Int. J. Fracture Mech. 7, 1–16
(1971).

[13] T. A. Cruse and J. L. Swedlow, “Formulation of boundary integral equa-
tions for three-dimensional elasto-plastic flow,” Int. J. Solids Structures
7, 1673–1683 (1971).

[14] T. A. Cruse, “Application of the boundary-integral equation method
to three-dimensional stress analysis,” Computers Structures 3, 509–527
(1973).

223

224 References

[15] T. A. Cruse, “An improved boundary-integral equation method for
three-dimensional elastic stress analysis,” Computers Structures 4, 741–
754 (1974).

[16] T. A. Cruse and F. J. Rizzo, eds., Boundary-Integral Equation Method:
Computational Applications in Applied Mechanics (AMD-ASME, New
York 1975), Vol. 11.

[17] J. C. Lachat and J. O. Watson, “Effective numerical treatment of bound-
ary integral equations: A formulation for three-dimensional elastostat-
ics,” Int. J. Numer. Methods Eng. 10, 991–1005 (1976).

[18] F. J. Rizzo and D. J. Shippy, “An advanced boundary integral equation
method for three-dimensional thermoelasticity,” Int. J. Numer. Methods
Eng. 11, 1753–1768 (1977).

[19] M. Stippes and F. J. Rizzo, “A note on the body force integral of classical
elastostatics,” Z. Angew. Math. Phys. 28, 339–341 (1977).

[20] R. B. Wilson and T. A. Cruse, “Efficient implementation of anisotropic
three-dimensional boundary-integral equation stress analysis,” Int. J.
Numer. Methods Eng. 12, 1383–1397 (1978).

[21] P. K. Banerjee and R. Butterfield, “Boundary element methods in
geomechanics,” in G. Gudehus, ed., Finite Elements in Geomechanics
(Wiley, London, 1976), Chap. 16, pp. 529–570.

[22] P. K. Banerjee et al., eds., Developments in Boundary Element Methods
(Elsevier Applied Science, London, 1979–1991), Vols. I–VII.

[23] C. A. Brebbia, The Boundary Element Method for Engineers (Pentech
Press, London, 1978).

[24] P. K. Banerjee, The Boundary Element Methods in Engineering, 2nd ed.
(McGraw-Hill, New York, 1994).

[25] S. Mukherjee, Boundary Element Methods in Creep and Fracture
(Applied Science Publishers, New York, 1982).

[26] T. A. Cruse, Boundary Element Analysis in Computational Fracture
Mechanics (Kluwer Academic, Dordrecht, The Netherlands, 1988).

[27] C. A. Brebbia and J. Dominguez, Boundary Elements – An Introductory
Course (McGraw-Hill, New York, 1989).

[28] J. H. Kane, Boundary Element Analysis in Engineering Continuum
Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1994).

[29] M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids
(Wiley, Chichester, UK, 1995).

[30] L. C. Wrobel, The Boundary Element Method – Vol. 1, Applications in
Thermo-Fluids and Acoustics (Wiley, Chichester, UK, 2002).

[31] M. H. Aliabadi, The Boundary Element Method – Vol. 2, Applications in
Solids and Structures (Wiley, Chichester, UK, 2002).

[32] S. Mukherjee and Y. X. Mukherjee, Boundary Methods: Elements, Con-
tours, and Nodes (CRC, Boca Raton, FL, 2005).

[33] V. Rokhlin, “Rapid solution of integral equations of classical potential
theory,” J. Comput. Phys. 60, 187–207 (1985).

[34] L. F. Greengard and V. Rokhlin, “A fast algorithm for particle simula-
tions,” J. Comput. Phys. 73, 325–348 (1987).

[35] L. F. Greengard, The Rapid Evaluation of Potential Fields in Particle Sys-
tems (MIT Press, Cambridge, MA, 1988).

References 225

[36] A. P. Peirce and J. A. L. Napier, “A spectral multipole method for effi-
cient solution of large-scale boundary element models in elastostatics,”
Int. J. Numer. Methods Eng. 38, 4009–4034 (1995).

[37] J. E. Gomez and H. Power, “A multipole direct and indirect BEM for 2D
cavity flow at low Reynolds number,” Eng. Anal. Boundary Elements 19,
17–31 (1997).

[38] Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K.
Singer, R. A. V. D. Geijn, and K. S. Vemaganti, “A fast solution method
for three-dimensional many-particle problems of linear elasticity,” Int. J.
Numer. Methods Eng. 42, 1215–1229 (1998).

[39] N. Nishimura, K. Yoshida, and S. Kobayashi, “A fast multipole boundary
integral equation method for crack problems in 3D,” Eng. Anal. Bound-
ary Elements 23, 97–105 (1999).

[40] A. A. Mammoli and M. S. Ingber, “Stokes flow around cylinders in a
bounded two-dimensional domain using multipole-accelerated boundary
element methods,” Int. J. Numer. Methods Eng. 44, 897–917 (1999).

[41] N. Nishimura, “Fast multipole accelerated boundary integral equation
methods,” Appl. Mech. Rev. 55, 299–324 (2002).

[42] A. H. Zemanian, Distribution Theory and Transform Analysis – An
Introduction to Generalized Functions, with Applications (Dover, New
York, 1987).

[43] Y. C. Fung, A First Course in Continuum Mechanics, 3rd ed. (Prentice-
Hall, Englewood Cliffs, NJ, 1994).

[44] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differen-
tial Equations (Yale University Press, New Haven, CT, 1923).

[45] P. A. Martin and F. J. Rizzo, “Hypersingular integrals: How smooth must
the density be?” Int. J. Numer. Methods Eng. 39, 687–704 (1996).

[46] Y. J. Liu and T. J. Rudolphi, “Some identities for fundamental solu-
tions and their applications to weakly-singular boundary element formu-
lations,” Eng. Anal. Boundary Elements 8, 301–311 (1991).

[47] Y. J. Liu and T. J. Rudolphi, “New identities for fundamental solutions
and their applications to non-singular boundary element formulations,”
Comput. Mech. 24, 286–292 (1999).

[48] Y. J. Liu, “On the simple-solution method and non-singular nature of
the BIE/BEM – A review and some new results,” Eng. Anal. Boundary
Elements 24, 787–793 (2000).

[49] G. Krishnasamy, F. J. Rizzo, and Y. J. Liu, “Boundary integral equations
for thin bodies,” Int. J. Numer. Methods Eng. 37, 107–121 (1994).

[50] Y. J. Liu and F. J. Rizzo, “A weakly-singular form of the hypersingu-
lar boundary integral equation applied to 3-D acoustic wave problems,”
Comput. Methods Appl. Mech. Eng. 96, 271–287 (1992).

[51] Y. J. Liu and S. H. Chen, “A new form of the hypersingular bound-
ary integral equation for 3-D acoustics and its implementation with C◦

boundary elements,” Comput. Methods Appl. Mech. Eng. 173, 3–4, 375–
386 (1999).

[52] Y. J. Liu and F. J. Rizzo, “Hypersingular boundary integral equations for
radiation and scattering of elastic waves in three dimensions,” Comput.
Methods Appl. Mech. Eng. 107, 131–144 (1993).

226 References

[53] Y. J. Liu, D. M. Zhang, and F. J. Rizzo, “Nearly singular and hypersin-
gular integrals in the boundary element method,” in: C. A. Brebbia and
J. J. Rencis, eds., Boundary Elements XV (Computational Mechanics
Publications, Worcester, MA, 1993), pp. 453–468.

[54] X. L. Chen and Y. J. Liu, “An advanced 3-D boundary element method
for characterizations of composite materials,” Eng. Anal. Boundary Ele-
ments 29, 513–523 (2005).

[55] P. W. Partridge, C. A. Brebbia, and L. C. Wrobel, The Dual Reci-
procity Boundary Element Method (Computational Mechanics Publica-
tions, Southampton, UK, 1992).

[56] O. D. Kellogg, Foundations of Potential Theory (Dover, New York,
1953).

[57] Y. J. Liu, “Dual BIE approaches for modeling electrostatic MEMS prob-
lems with thin beams and accelerated by the fast multipole method,”
Eng. Anal. Boundary Elements 30, 940–948 (2006).

[58] W. H. Hayt and J. A. Buck, Engineering Electromagnetics (McGraw-Hill,
London, 2001).

[59] Y. J. Liu and L. Shen, “A dual BIE approach for large-scale modeling
of 3-D electrostatic problems with the fast multipole boundary element
method,” Int. J. Numer. Methods Eng. 71, 837–855 (2007).

[60] H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole
algorithm in three dimensions,” J. Comput. Phys. 155, 468–498 (1999).

[61] L. Shen and Y. J. Liu, “An adaptive fast multipole boundary element
method for three-dimensional potential problems,” Comput. Mech. 39,
681–691 (2007).

[62] Y. J. Liu and N. Nishimura, “The fast multipole boundary element
method for potential problems: A tutorial,” Eng. Anal. Boundary Ele-
ments 30, 371–381 (2006).

[63] K. Yoshida, “Applications of fast multipole method to boundary integral
equation method,” Ph.D. dissertation, Department of Global Environ-
ment Engineering, Kyoto University (2001).

[64] W. H. Beyer, CRC Standard Mathematical Tables and Formulae, 29th ed.
(CRC, Boca Raton, FL, 1991).

[65] L. Greengard and V. Rokhlin, “A new version of the fast multipole
method for the Laplace equation in three dimensions,” Acta Numerica
6, 229–269 (1997).

[66] K. Yoshida, N. Nishimura, and S. Kobayashi, “Application of new fast
multipole boundary integral equation method to crack problems in 3D,”
Eng. Anal. Boundary Elements 25, 239–247 (2001).

[67] X. L. Chen and H. Zhang, “An integrated imaging and BEM for fast
simulation of freeform objects,” Computer-Aided Design and Applica-
tions 5(1–4), 371–380 (2008).

[68] L. F. Greengard, M. C. Kropinski, and A. Mayo, “Integral equation
methods for Stokes flow and isotropic elasticity in the plane,” J. Com-
put. Phys. 125, 403–414 (1996).

[69] L. F. Greengard and J. Helsing, “On the numerical evaluation of elas-
tostatic fields in locally isotropic two-dimensional composites,” J. Mech.
Phys. Solids 46, 1441–1462 (1998).

References 227

[70] J. D. Richardson, L. J. Gray, T. Kaplan, and J. A. Napier, “Regularized
spectral multipole BEM for plane elasticity,” Eng. Anal. Boundary Ele-
ments 25, 297–311 (2001).

[71] T. Fukui, “Research on the boundary element method – Development
and applications of fast and accurate computations,” Ph.D. dissertation
(in Japanese), Department of Global Environment Engineering, Kyoto
University (1998).

[72] T. Fukui, T. Mochida, and K. Inoue, “Crack extension analysis in sys-
tem of growing cracks by fast multipole boundary element method (in
Japanese),” in Proceedings of the Seventh BEM Technology Conference
(JASCOME, Tokyo, 1997), pp. 25–30.

[73] Y. J. Liu, “A new fast multipole boundary element method for solving
large-scale two-dimensional elastostatic problems,” Int. J. Numer. Meth-
ods Eng. 65, 863–881 (2005).

[74] Y. J. Liu, “A fast multipole boundary element method for 2-D multi-
domain elastostatic problems based on a dual BIE formulation,” Com-
put. Mech. 42, 761–773 (2008).

[75] P. Wang and Z. Yao, “Fast multipole DBEM analysis of fatigue crack
growth,” Comput. Mech. 38, 223–233 (2006).

[76] Y. Yamada and K. Hayami, “A multipole boundary element method
for two dimensional elastostatics,” Report METR 95–07, Department
of Mathematical Engineering and Information Physics, University of
Tokyo (1995).

[77] V. Popov and H. Power, “An O(N) Taylor series multipole boundary
element method for three-dimensional elasticity problems,” Eng. Anal.
Boundary Elements 25, 7–18 (2001).

[78] K. Yoshida, N. Nishimura, and S. Kobayashi, “Application of fast multi-
pole Galerkin boundary integral equation method to crack problems in
3D,” Int. J. Numer. Methods Eng. 50, 525–547 (2001).

[79] Y.-S. Lai and G. J. Rodin, “Fast boundary element method for three-
dimensional solids containing many cracks,” Eng. Anal. Boundary Ele-
ments 27, 845–852 (2003).

[80] Y. J. Liu, N. Nishimura, and Y. Otani, “Large-scale modeling
of carbon-nanotube composites by the boundary element method
based on a rigid-inclusion model,” Comput. Mater. Sci. 34, 173–187
(2005).

[81] Y. J. Liu, N. Nishimura, Y. Otani, T. Takahashi, X. L. Chen, and H.
Munakata, “A fast boundary element method for the analysis of fiber-
reinforced composites based on a rigid-inclusion model,” J. Appl. Mech.
72, 115–128 (2005).

[82] Y. J. Liu, N. Nishimura, D. Qian, N. Adachi, Y. Otani, and V.
Mokashi, “A boundary element method for the analysis of CNT/polymer
composites with a cohesive interface model based on molecular dynam-
ics,” Eng. Anal. Boundary Elements 32, 299–308 (2008).

[83] V. Sladek and J. Sladek, eds., Singular Integrals in Boundary Element
Methods, Advances in Boundary Element Series, C. A. Brebbia and
M. H. Aliabadi, series eds. (Computational Mechanics Publications,
Boston, 1998).

228 References

[84] S. Mukherjee, “Finite parts of singular and hypersingular integrals with
irregular boundary source points,” Eng. Anal. Boundary Elements 24,
767–776 (2000).

[85] Y. J. Liu and F. J. Rizzo, “Scattering of elastic waves from thin shapes
in three dimensions using the composite boundary integral equation for-
mulation,” J. Acoust. Soc. Am. 102, 926–932 (1997).

[86] N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of
Elasticity (Noordhoff, Groningen, The Netherlands, 1958).

[87] I. S. Sokolnikoff, Mathematical Theory of Elasticity, 2nd ed. (McGraw-
Hill, New York, 1956).

[88] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed.
(McGraw-Hill, New York, 1987).

[89] D. Gross and T. Seelig, Fracture Mechanics with an Introduction to
Micromechanics (Springer, Dordrecht, The Netherlands, 2006).

[90] M. S. Ingber and T. D. Papathanasiou, “A parallel-supercomputing
investigation of the stiffness of aligned, short-fiber-reinforced compos-
ites using the boundary element method,” Int. J. Numer. Methods Eng.
40, 3477–3491 (1997).

[91] I. G. Currie, Fundamental Mechanics of Fluids (McGraw-Hill, New
York, 1974).

[92] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized
Viscous Flow (Cambridge University Press, New York, 1992).

[93] H. Power and L. C. Wrobel, Boundary Integral Methods in Fluid
Mechanics (Computational Mechanics Publications, Southampton, UK,
1995).

[94] J. Ding and W. Ye, “A fast integral approach for drag force calcula-
tion due to oscillatory slip stokes flows,” Int. J. Numer. Methods Eng.
60, 1535–1567 (2004).

[95] A. Frangi, “A fast multipole implementation of the qualocation mixed-
velocity-traction approach for exterior Stokes flows,” Eng. Anal. Bound-
ary Elements 29, 1039–1046 (2005).

[96] A. Frangi and A. D. Gioia, “Multipole BEM for the evaluation of damp-
ing forces on MEMS,” Comput. Mech. 37, 24–31 (2005).

[97] A. Frangi and J. Tausch, “A qualocation enhanced approach for Stokes
flow problems with rigid-body boundary conditions,” Eng. Anal. Bound-
ary Elements 29, 886–893 (2005).

[98] A. Frangi, G. Spinola, and B. Vigna, “On the evaluation of damping in
MEMS in the slip–flow regime,” Int. J. Numer. Methods Eng. 68, 1031–
1051 (2006).

[99] Y. J. Liu, “A new fast multipole boundary element method for solving
2-D Stokes flow problems based on a dual BIE formulation,” Eng. Anal.
Boundary Elements 32, 139–151 (2008).

[100] A. Frangi and G. Novati, “Symmetric BE method in two-dimensional
elasticity: Evaluation of double integrals for curved elements,” Comput.
Mech. 19, 58–68 (1996).

[101] J. J. Perez-Gavilan and M. H. Aliabadi, “Symmetric Galerkin BEM for
multi-connected bodies,” Commun. Numer. Methods Eng. 17, 761–770
(2001).

References 229

[102] L. Shen and Y. J. Liu, “An adaptive fast multipole boundary ele-
ment method for three-dimensional acoustic wave problems based
on the Burton–Miller formulation,” Comput. Mech. 40, 461–472
(2007).

[103] C. Pozrikidis, Fluid Dynamics – Theory, Computation and Numerical
Simulation (Kluwer Academic, Boston, 2001).

[104] H. Power, “The interaction of a deformable bubble with a rigid wall
at small Reynolds number: A general approach via integral equations,”
Eng. Anal. Boundary Elements 19, 291–297 (1997).

[105] G. Zhu, A. A. Mammoli, and H. Power, “A 3-D indirect boundary ele-
ment method for bounded creeping flow of drops,” Eng. Anal. Boundary
Elements 30, 856–868 (2006).

[106] S. Mukherjee, S. Telukunta, and Y. X. Mukherjee, “BEM modeling of
damping forces on MEMS with thin plates,” Eng. Anal. Boundary Ele-
ments 29, 1000–1007 (2005).

[107] H. A. Schenck, “Improved integral formulation for acoustic radiation
problems,” J. Acoust. Soc. Am. 44, 41–58 (1968).

[108] A. J. Burton and G. F. Miller, “The application of integral equation
methods to the numerical solution of some exterior boundary-value
problems,” Proc. R. Soc. London Ser. A 323, 201–210 (1971).

[109] F. Ursell, “On the exterior problems of acoustics,” Proc. Cambridge
Philos. Soc. 74, 117–125 (1973).

[110] R. E. Kleinman and G. F. Roach, “Boundary integral equations for
the three-dimensional Helmholtz equation,” SIAM Rev. 16, 214–236
(1974).

[111] D. S. Jones, “Integral equations for the exterior acoustic problem,”
Q. J. Mech. Appl. Math. 27, 129–142 (1974).

[112] W. L. Meyer, W. A. Bell, B. T. Zinn, and M. P. Stallybrass, “Bound-
ary integral solutions of three-dimensional acoustic radiation problems,”
J. Sound Vib. 59, 245–262 (1978).

[113] A. F. Seybert, B. Soenarko, F. J. Rizzo, and D. J. Shippy, “An
advanced computational method for radiation and scattering of acous-
tic waves in three dimensions,” J. Acoust. Soc. Am. 77, 362–368
(1985).

[114] R. Kress, “Minimizing the condition number of boundary integral opera-
tors in acoustic and electromagnetic scattering,” Q. J. Mech. Appl. Math.
38, 323–341 (1985).

[115] A. F. Seybert and T. K. Rengarajan, “The use of CHIEF to obtain unique
solutions for acoustic radiation using boundary integral equations,”
J. Acoust. Soc. Am. 81, 1299–1306 (1987).

[116] K. A. Cunefare and G. Koopmann, “A boundary element method for
acoustic radiation valid for all wavenumbers,” J. Acoust. Soc. Am. 85,
39–48 (1989).

[117] G. C. Everstine and F. M. Henderson, “Coupled finite element/boundary
element approach for fluid structure interaction,” J. Acoust. Soc. Am. 87,
1938–1947 (1990).

[118] R. Martinez, “The thin-shape breakdown (TSB) of the Helmholtz inte-
gral equation,” J. Acoust. Soc. Am. 90, 2728–2738 (1991).

230 References

[119] K. A. Cunefare and G. H. Koopmann, “A boundary element approach to
optimization of active noise control sources on three-dimensional struc-
tures,” J. Vib. Acoust. 113, 387–394 (1991).

[120] R. D. Ciskowski and C. A. Brebbia, Boundary Element Methods in
Acoustics (Kluwer Academic, New York, 1991).

[121] G. Krishnasamy, T. J. Rudolphi, L. W. Schmerr, and F. J. Rizzo, “Hyper-
singular boundary integral equations: Some applications in acoustic and
elastic wave scattering,” J. Appl. Mech. 57, 404–414 (1990).

[122] S. Amini, “On the choice of the coupling parameter in boundary integral
formulations of the exterior acoustic problem,” Appl. Anal. 35, 75–92
(1990).

[123] T. W. Wu, A. F. Seybert, and G. C. Wan, “On the numerical implemen-
tation of a Cauchy principal value integral to insure a unique solution
for acoustic radiation and scattering,” J. Acoust. Soc. Am. 90, 554–560
(1991).

[124] Y. J. Liu, “Development and applications of hypersingular boundary
integral equations for 3-D acoustics and elastodynamics,” Ph.D. disser-
tation, Department of Theoretical and Applied Mechanics, University of
Illinois at Urbana-Champaign (1992).

[125] S.-A. Yang, “Acoustic scattering by a hard and soft body across a wide
frequency range by the Helmholtz integral equation method,” J. Acoust.
Soc. Am. 102, 2511–2520 (1997).

[126] V. Rokhlin, “Rapid solution of integral equations of scattering theory in
two dimensions,” J. Comput. Phys. 86, 414–439 (1990).

[127] V. Rokhlin, “Diagonal forms of translation operators for the Helmholtz
equation in three dimensions,” Appl. Comput. Harmon. Anal. 1, 82–93
(1993).

[128] M. Epton and B. Dembart, “Multipole translation theory for the three-
dimensional Laplace and Helmholtz equations,” SIAM J. Sci. Comput.
16, 865–897 (1995).

[129] S. Koc and W. C. Chew, “Calculation of acoustical scattering from a clus-
ter of scatterers,” J. Acoust. Soc. Am. 103, 721–734 (1998).

[130] L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura, “Accelerating
fast multipole methods for the Helmholtz equation at low frequencies,”
IEEE Comput. Sci. Eng. 5(3), 32–38 (1998).

[131] M. A. Tournour and N. Atalla, “Efficient evaluation of the acoustic radi-
ation using multipole expansion,” Int. J. Numer. Methods Eng. 46, 825–
837 (1999).

[132] N. A. Gumerov and R. Duraiswami, “Recursions for the computation
of multipole translation and rotation coefficients for the 3-D Helmholtz
equation,” SIAM J. Sci. Comput. 25, 1344–1381 (2003).

[133] E. Darve and P. Havé, “Efficient fast multipole method for low-
frequency scattering,” J. Comput. Phys. 197, 341–363 (2004).

[134] M. Fischer, U. Gauger, and L. Gaul, “A multipole Galerkin boundary
element method for acoustics,” Eng. Anal. Boundary Elements 28, 155–
162 (2004).

[135] J. T. Chen and K. H. Chen, “Applications of the dual integral formula-
tion in conjunction with fast multipole method in large-scale problems

References 231

for 2D exterior acoustics,” Eng. Anal. Boundary Elements 28, 685–709
(2004).

[136] N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the
Helmholtz Equation in Three Dimensions (Elsevier, Amsterdam, 2004).

[137] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F.
Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, “A wideband
fast multipole method for the Helmholtz equation in three dimensions,”
J. Comput. Phys. 216, 300–325 (2006).

[138] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 10th ed. (United States
Department of Commerce, U.S. Government Printing Office, Washing-
ton, DC, 1972).

[139] S. Marburg and T. W. Wu, “Treating the phenomenon of irregular fre-
quencies,” in S. Marburg and B. Nolte, eds., Computational Acoustics of
Noise Propagation in Fluids (Springer, Berlin, 2008), pp. 411–434.

[140] Y. J. Liu and F. J. Rizzo, “Application of Overhauser C(1) continuous
boundary elements to ‘hypersingular’ BIE for 3-D acoustic wave prob-
lems,” in C. A. Brebbia and G. S. Gipson, eds., Boundary Elements XIII
(Computation Mechanics Publications, Tulsa, OK, 1991), pp. 957–966.

[141] A. Messiah, “Clebsch–Gordan (C-G) Coefficients and ‘3j Symbols,’” in
Quantum Mechanics, Appendix C.I. (North-Holland Amsterdam, The
Netherlands, 1962), pp. 1054–1060.

[142] M. Bapat, L. Shen, and Y. J. Liu, “An adaptive fast multipole boundary
element method for 3-D half-space acoustic wave problems,” Eng. Anal.
Boundary Elements, in press (2009).

[143] S. H. Chen and Y. J. Liu, “A unified boundary element method for the
analysis of sound and shell-like structure interactions. I. Formulation and
verification,” J. Acoust. Soc. Am. 103, 1247–1254 (1999).

[144] S. H. Chen, Y. J. Liu, and X. Y. Dou, “A unified boundary element
method for the analysis of sound and shell-like structure interactions.
II. Efficient solution techniques,” J. Acoust. Soc. Am. 108, 2738–2745
(2000).

[145] T. W. Wu, ed., Boundary Element Acoustics: Fundamentals and Com-
puter Codes (WIT Press, Southampton, UK, 2000).

Index

acoustic pressure, 147
acoustic wave equation, 147
analytical integration

2D elastostatic kernels, 179
2D potential kernels, 177
2D Stokes flow kernels, 182

associated Legendre function, 71

boundary element method (BEM), 1
boundary elements

constant, 24, 30
linear, 26, 31
quadratic, 29, 32

boundary integral equation (BIE), 1
boundary node method, 1
boundary stress calculation, 94
Burton–Miller formulation, 154

Cauchy principal value (CPV), 14
cells

adjacent, 61
child, 59
far, 61
leaf, 59
parent, 59
well-separated, 61

complex notation, 50, 95
G kernel, 50
traction, 96
U kernel, 95

continuity equation, 120
conventional BIE (CBIE)

acoustics, 153
elastostatics, 89
potential problem, 21
Stokes flow, 122

Dirac δ function, 6
sifting properties, 12

direct BIE formulation, 19, 85, 122
discretization, 24
domain integrals, 35

double-layer potential, 37
downward pass, 61
dual BIE formulation, 40, 91, 124, 154

Einstein’s summation convention, 10
equilibrium equations, 86, 120
error estimate, 53, 55
expansion of kernels

2D acoustics, 157
2D elasticity, 98
2D potential, 51
2D Stokes flow, 126
3D acoustics, 159
3D elasticity, 101
3D potential, 71
3D Stokes flow, 130

exterior acoustic problem, 149

fast multipole BEM, 47
fast multipole method (FMM), 3
fictitious eigenfrequency difficulty, 154
finite difference method, 1
finite element method (FEM), 1
Fourier transform, 12
Fredholm equation, 9
frequency

circular, 148
cyclic, 148

fundamental solution, 12
acoustics, 151, 152, 154
beam bending, 6, 13
elastostatics, 87, 90
potential problem, 18, 22
Stokes flow, 121, 122, 123

Gauss theorem, 11
Green’s function, 6
Green’s identity, 15

first, 12
second, 7, 12, 19, 152

Hadamard finite part (HFP), 15

233

234 Index

Helmholtz equation, 148
hypersingular BIE (HBIE)

acoustics, 154
elastostatics, 90
potential problem, 22
Stokes flow, 122

indicial notation, 10
indirect BIE formulation, 37
infinite domain problem, 23, 152
integral equation, 9

first kind, 37
second kind, 37

integral identities
elastostatics, 88
potential problem, 18

interaction list, 61

Jacobian, 28, 32

Kelvin’s solution, 87
kernel function, 9
Kronecker δ, 10

L2L translation
2D acoustics, 158
2D elastostatics, 99
2D potential, 56
2D Stokes flow, 128
3D acoustics, 161
3D elastostatics, 103
3D potential, 73
3D Stokes flow, 132

Laplace equation, 17
limit to the boundary, 20
local expansion

2D acoustics, 158
2D elastostatics, 99
2D potential, 54
2D Stokes flow, 127
3D acoustics, 161
3D elastostatics, 103
3D potential, 72
3D Stokes flow, 132

M2L translation
2D acoustics, 158
2D elastostatics, 99
2D potential, 54
2D Stokes flow, 127
3D acoustics, 161
3D elastostatics, 103
3D potential, 72
3D Stokes flow, 132

M2M translation
2D acoustics, 158
2D elastostatics, 98
2D potential, 54

2D Stokes flow, 127
3D acoustics, 160
3D elastostatics, 103
3D potential, 72
3D Stokes flow, 132

mass density, 149
mesh-free method, 1
moment

2D acoustics, 158
2D elastostatics, 98
2D potential, 52
2D Stokes flow, 127
3D acoustics, 160
3D elastostatics, 102
3D potential, 72
3D Stokes flow, 131

multidomain problems, 34
elasticity, 104

multipole expansion
2D acoustics, 157
2D elastostatics, 97
2D potential, 52
2D Stokes flow, 126
3D acoustics, 160
3D elastostatics, 102
3D potential, 72
3D Stokes flow, 130

normal velocity, 149

O(N) complexity, 65
oct tree, 71
outgoing wave, 150

p3 complexity, 162
p5 complexity, 162
particular solution, 36
permutation symbol, 11
point force, 89
point source, 21

acoustics, 147
Poisson equation, 17
preconditioning, 64

multidomain elasticity problems, 107
programming

for conventional BEM, 38
for fast multipole BEM, 66

pulsating-sphere problem, 149

quad tree, 59

radiation problem, 149
representation integral

acoustics, 153
elastostatics, 89
potential problem, 19
Stokes flow, 121

rigid-body motion, 92

Index 235

scattering problem, 149
shape function

linear, 27, 31
quadratic, 29, 33

single-layer potential, 37
singular integral, 13

hypersingular, 14, 22, 90, 123, 154
improper, 14
strongly, 14, 20, 22, 89, 90, 122, 123, 153, 154
weakly, 14, 20, 89, 122, 153

solid harmonic functions, 71, 101, 130
Somigliana’s identity, 88
Sommerfeld radiation condition, 149
source code

2D potential conventional BEM, 184
2D potential fast multipole BEM, 192

speed of sound, 147

spherical harmonics, 160
strain–displacement relation, 86
stress–strain relation, 86

time harmonic wave, 147

upward pass, 59

wavelength, 148
wavenumber, 148
weakly singular form

CBIE for acoustics, 155
CBIE for elastostatics, 91
CBIE for potential problem, 23
HBIE for acoustics, 156
HBIE for elastostatics, 91
HBIE for potential problem, 24

	Half-title
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	Acronyms Used in This Book
	1 Introduction
	1.1 What Is the Boundary Element Method?
	1.2 Why the Boundary Element Method?
	1.3 A Comparison of the Finite Element Method and the Boundary Element Method
	1.4 A Brief History of the Boundary Element Method and Other References
	1.5 Fast Multipole Method
	1.6 Applications of the Boundary Element Method in Engineering
	1.7 An Example – Bending of a Beam
	1.8 Some Mathematical Preliminaries
	1.8.1 Integral Equations
	1.8.2 Indicial Notation
	1.8.3 Gauss Theorem
	1.8.4 The Green's Identities
	1.8.5 Dirac δ Function
	1.8.6 Fundamental Solutions
	1.8.7 Singular Integrals

	1.9 Summary
	Problems

	2 Conventional Boundary Element Method for Potential Problems
	2.1 The Boundary-Value Problem
	2.2 Fundamental Solution for Potential Problems
	2.3 Boundary Integral Equation Formulations
	2.4 Weakly Singular Forms of the Boundary Integral Equations
	2.5 Discretization of the Boundary Integral Equations for 2D Problems Using Constant Elements
	2.6 Using Higher-Order Elements
	2.6.1 Linear Elements
	2.6.2 Quadratic Elements

	2.7 Discretization of the Boundary Integral Equations for 3D Problems
	2.8 Multidomain Problems
	2.9 Treatment of the Domain Integrals
	2.9.1 Numerical Integration Using Internal Cells
	2.9.2 Transformation to Boundary Integrals
	2.9.3 Use of Particular Solutions

	2.10 Indirect Boundary Integral Equation Formulations
	2.11 Programming for the Conventional Boundary Element Method
	2.12 Numerical Examples
	2.12.1 An Annular Region
	2.12.2 Electrostatic Fields Outside Two Conducting Beams
	2.12.3 Potential Field in a Cube
	2.12.4 Electrostatic Field Outside a Conducting Sphere

	2.13 Summary
	Problems

	3 Fast Multipole Boundary Element Method for Potential Problems
	3.1 Basic Ideas in the Fast Multipole Method
	3.2 Fast Multipole Boundary Element Method for 2D Potential Problems
	3.2.1 Multipole Expansion (Moments)
	3.2.2 Error Estimate for the Multipole Expansion
	3.2.3 Moment-to-Moment Translation
	3.2.4 Local Expansion and Moment-to-Local Translation
	3.2.5 Local-to-Local Translation
	3.2.6 Expansions for the Integral with the F Kernel
	3.2.7 Multipole Expansions for the Hypersingular Boundary Integral Equation
	3.2.8 Fast Multipole Boundary Element Method Algorithms and Procedures
	3.2.9 Preconditioning
	3.2.10 Estimate of the Computational Complexity

	3.3 Programming for the Fast Multipole Boundary Element Method
	3.3.1 Subroutine fmmmain
	3.3.2 Subroutine tree
	3.3.3 Subroutine fmmbvector
	3.3.4 Subroutine dgmres
	3.3.5 Subroutine upward
	3.3.6 Subroutine dwnwrd

	3.4 Fast Multipole Formulation for 3D Potential Problems
	3.5 Numerical Examples
	3.5.1 An Annular Region
	3.5.2 Electrostatic Fields Outside Conducting Beams
	3.5.3 Potential Field in a Cube
	3.5.4 Electrostatic Field Outside Multiple Conducting Spheres
	3.5.5 A Fuel Cell Model
	3.5.6 Image-Based Boundary Element Method Models and Analysis

	3.6 Summary
	Problems

	4 Elastostatic Problems
	4.1 The Boundary-Value Problem
	4.2 Fundamental Solution for Elastostatic Problems
	4.3 Boundary Integral Equation Formulations
	4.4 Weakly Singular Forms of the Boundary Integral Equations
	4.5 Discretization of the Boundary Integral Equations
	4.6 Recovery of the Full Stress Field on the Boundary
	4.7 Fast Multipole Boundary Element Method for 2D Elastostatic Problems
	4.7.1 Multipole Expansion for the U Kernel Integral
	4.7.2 Moment-to-Moment Translation
	4.7.3 Local Expansion and Moment-to-Local Translation
	4.7.4 Local-to-Local Translation
	4.7.5 Expansions for the T Kernel Integral
	4.7.6 Expansions for the Hypersingular Boundary Integral Equation

	4.8 Fast Multipole Boundary Element Method for 3D Elastostatic Problems
	4.9 Fast Multipole Boundary Element Method for Multidomain Elasticity Problems
	4.10 Numerical Examples
	4.10.1 A Cylinder with Pressure Loads
	4.10.2 A Square Plate with a Circular Hole
	4.10.3 Multiple Inclusion Problems
	4.10.4 Modeling of Functionally Graded Materials
	4.10.5 Large-Scale Modeling of Fiber-Reinforced Composites

	4.11 Summary
	Problems

	5 Stokes Flow Problems
	5.1 The Boundary-Value Problem
	5.2 Fundamental Solution for Stokes Flow Problems
	5.3 Boundary Integral Equation Formulations
	5.4 Fast Multipole Boundary Element Method for 2D Stokes Flow Problems
	5.4.1 Multipole Expansion (Moments) for the U Kernel Integral
	5.4.2 Moment-to-Moment Translation
	5.4.3 Local Expansion and Moment-to-Local Translation
	5.4.4 Local-to-Local Translation
	5.4.5 Expansions for the T Kernel Integral
	5.4.6 Expansions for the Hypersingular Boundary Integral Equation

	5.5 Fast Multipole Boundary Element Method for 3D Stokes Flow Problems
	5.6 Numerical Examples
	5.6.1 Flow That Is Due to a Rotating Cylinder
	5.6.2 Shear Flow Between Two Parallel Plates
	5.6.3 Flow Through a Channel with Many Cylinders
	5.6.4 A Translating Sphere
	5.6.5 Large-Scale Modeling of Multiple Particles

	5.7 Summary
	Problems

	6 Acoustic Wave Problems
	6.1 Basic Equations in Acoustics
	6.2 Fundamental Solution for Acoustic Wave Problems
	6.3 Boundary Integral Equation Formulations
	6.4 Weakly Singular Forms of the Boundary Integral Equations
	6.5 Discretization of the Boundary Integral Equations
	6.6 Fast Multipole Boundary Element Method for 2D Acoustic Wave Problems
	6.7 Fast Multipole Boundary Element Method for 3D Acoustic Wave Problems
	6.8 Numerical Examples
	6.8.1 Scattering from Cylinders in a 2D Medium
	6.8.2 Radiation from a Pulsating Sphere
	6.8.3 Scattering from Multiple Scatterers
	6.8.4 Performance Study of the 3D Fast Multipole Boundary Element Method Code
	6.8.5 An Engine-Block Model
	6.8.6 A Submarine Model
	6.8.7 An Airbus A320 Model
	6.8.8 A Human-Head Model
	6.8.9 Analysis of Sound Barriers – A Half-Space Acoustic Wave Problem

	6.9 Summary
	Problems

	Appendix A Analytical Integration of the Kernels
	A.1 2D Potential Boundary Integral Equations
	A.2 2D Elastostatic Boundary Integral Equations
	A.3 2D Stokes Flow Boundary Integral Equations

	Appendix B Sample Computer Programs
	B.1 A Fortran Code of the Conventional Boundary Element Method for 2D Potential Problems
	B.2 A Fortran Code of the Fast Multipole Boundary Element Method for 2D Potential Problems
	B.3 Sample Input File and Parameter File

	References
	Index

