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OUTER CIRCLES

We live in a three-dimensional space; what sort of space is it? Can we build it from
simple geometric objects? The answers to such questions have been found in the last
30 years, and Outer Circles describes the basic mathematics needed for those answers
as well as making clear the grand design of the subject of hyperbolic manifolds as a
whole.

The purpose of Outer Circles is to provide an account of the contemporary theory,
accessible to those with minimal formal background in topology, hyperbolic geome-
try, and complex analysis. The text explains what is needed, and provides the exper-
tise to use the primary tools to arrive at a thorough understanding of the big picture.
This picture is further filled out by numerous exercises and expositions at the ends of
the chapters and is complemented by a profusion of high quality illustrations. There
is an extensive bibliography for further study.

ALBERT MARDEN is a Professor of Mathematics in the School of Mathematics at the
University on Minnesota.



The discreteness locus in the extended Bers slice of the hexagonal once-punctured
torus (see Exercise 6-8). The Bers slice—the red central object—is surrounded by
other islands of discontinuity, in blue. The inward pointing cusps on the Bers slice
boundary represent geometrically finite groups and the same is presumably true for
the other components. The yellow dots are the fuchsian centers of the components.
Only a small number of islands are shown because of theoretical and computational
limitations.

The computation and image were made by David Dumas of Brown University; his
web site contains many beautiful related images.
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Preface

To a topologist a teacup is the same as a bagel, but they are not the same to a geome-
ter. By analogy, it is one thing to know the topology of a 3-manifold, another thing
entirely to know its geometry — to find its shortest curves and their lengths, to make
constructions with polyhedra, etc. In a word, we want to do geometry in the manifold
just like we do geometry in euclidean space.

But do general 3-manifolds have “natural” metrics? For a start we might wonder
when they carry one of the standards: the euclidean, spherical or hyperbolic metric.
The latter is least known and not often taught; in the stream of mathematics it has
always been something of an outlier. However it turns out that it is a big mistake to
just ignore it! We now know that the interior of “ most” compact 3-manifolds carry
a hyperbolic metric.

It is the purpose of this book to explain the geometry of hyperbolic manifolds. We
will examine both the existence theory and the structure theory.

Why embark on such a study? Well after all, we do live in three dimensions; our
brains are specifically wired to see well in space. It seems perfectly reasonable if not
compelling to respond to the challenge of understanding the range of possibilities. In
particular, it is not at all established that our own universe is euclidean space, as many
so like to believe.

I will briefly summarize the recent history of our subject. Although Poincaré rec-
ognized in 1881 that Mobius transformations extend from the complex plane to upper
half-space, the development of the theory of three-dimensional hyperbolic manifolds
had to wait for progress in three-dimensional topology. It was as late as the mid-
1950s that Papakyriakopoulos confirmed the validity of Dehn’s Lemma and the Loop
Theorem. Once that occurred, the wraps were off.

In the early 1960s, while 3-manifold topology was booming ahead, the theory of
kleinian groups was abruptly awoken from its long somnolence by a brilliant discov-
ery of Lars Ahlfors. Kleinian groups are the discrete isometry groups of hyperbolic
3-space. Working (as always) in the context of complex analysis, Ahlfors discovered
their finiteness property. This was followed by Mostow’s contrasting discovery that
closed hyperbolic manifolds of dimension n > 3 are uniquely determined up to isom-

Xiii
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etry by their isomorphism class. This too came as a bombshell as it is false for n = 2.
Then came Bers’ study of quasifuchsian groups and his and Maskit’s fundamental
discoveries of “degenerate groups” as limits of them. Along a different line, Jgrgensen
developed the methods for dealing with sequences of kleinian groups, recognizing the
existence of two distinct kinds of convergence which he called “algebraic” and “geo-
metric”. He also discovered a key class of examples, namely hyperbolic 3-manifolds
that fiber over the circle.

It wasn’t until the late 1960s that 3-manifold topology was sufficiently understood,
most directly by Waldhausen’s work, and the fateful marriage of 3-manifold topology
to the complex analysis of the group action on S? occurred. The first application was
to the classification and analysis of geometrically finite groups and their quotient
manifolds.

During the 1960s and 1970s, Riley discovered a slew of faithful representations
of knot and link groups in PSL(2, C). Although these were seen as curiosities at
the time, his examples pressed further the question of just what class of 3-manifolds
did the hyperbolic manifolds represent? Maskit had proposed using his combination
theorems to construct all hyperbolic manifolds from elementary ones. Yet Peter Scott
pointed out that the combinations that were then feasible would construct only a
limited class of 3-manifolds.

So by the mid-1970s there was a nice theory, part complex analysis, part three-
dimensional geometry and topology, part algebra. Noone had the slightest idea as to
what the scope of the theory really was. Did kleinian groups represent a large class
of manifolds, or only a small sporadic class?

The stage (but not the players) was ready for the dramatic entrance in the mid-1970s
of Thurston. He arrived with a proof that the interior of “most” compact 3-manifolds
has a hyperbolic structure. He brought with him an amazingly original, exotic, and
very powerful set of topological/geometrical tools for exploring hyperbolic manifolds.
The subject of two- and three-dimensional topology and geometry was never to be
the same again.

This book. Having witnessed at first hand the transition from a special topic in
complex analysis to a subject of broad significance and application in mathematics,
it seemed appropriate to write a book to record and explain the transformation. My
idea was to try to make the subject accessible to beginning graduate students with
minimal specific prerequisites. Yet I wanted to leave students with more than a routine
compendium of elementary facts. Rather I thought students should see the big picture,
as if climbing a watchtower to overlook the forest. Each student should end his or her
studies having a personal response to the timeless question: What is this good for?

With such thoughts in mind, I have tried to give a solid introduction and at the same
time to provide a broad overview of the subject as it is today. In fact today, the subject
has reached a certain maturity. The characterization those compact manifolds whose
interiors carry a hyperbolic structure is complete, the final step being provided by
Perelman’s recent confirmation of the Geometrization Conjecture. Attention turned
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to the analysis of structure of hyperbolic manifolds assuming only a finitely generated
fundamental group. Within the past few years, the structure of these has been worked
out as well. The three big conjectures left over from the 1960s and 1970s have been
solved: tameness, density, and classification of the ends (ideal boundary components).
If one is willing to climb the watchtower, the view is quite remarkable.

It is a challenge to carry out the plan as outlined. The foundation of the subject
rests on elements of three-dimensional topology, hyperbolic geometry, and modern
complex analysis. None of these are regularly covered in courses at most places.

I have attempted to meet the challenge as follows. The presentation of the basic
facts is fairly rigorous. These are included in the first four chapters, plus the optional
Chapters 7 and 8. These chapters include crash courses in three-manifold topology,
covering surfaces and manifolds, quasiconformal mappings, and Riemann surface
theory. With the basic information under our belts, Chapters 5 and 6 (as well as parts
of Chapters 3 and 4) are expository, without most proofs. The reader will find there
both the Hyperbolization Theorem and the newly discovered structural properties of
general hyperbolic manifolds.

At the end of each chapter is a long section titled “Exercises and Explorations”.
Some of these are genuine exercises and/or important additional information directly
related to the material in the chapter. Others dig away a bit at the proofs of some of
the theorems by introducing new tools they have required. Still others are included to
point out various paths one can follow into the deeper forest and beauty spots one can
find there. Thus there are not only capsule introductions to big fields like geometric
group theory, but presentations of other more circumscribed topics that I (at least)
find fascinating and relevant.

Acknowledgments. It is a great pleasure to thank the people who have helped
bring the book to fruition.

First I want to acknowledge the essential contributions of my friend and colleague
Troels Jgrgensen. Over more than 25 years we walked in the forest together dis-
cussing and admiring the landscape our studies revealed. In particular we discussed
the “universal properties” of Chapter 3 for years, until it was too late to publish them.
Chapters 7 and 8 are based on his private lectures.

David Wright kindly computed a number of limit sets of kleinian groups, some
never before seen, others adapted from pictures created for Indra’s Pearls [Mumford
et al. 2002]. The extent of his contribution is evident from the list of figures. His
pictures can be downloaded from www.okstate.edu/~wrightd/Marden together with
computational details. In addition, David Dumas was willing to share his visualiza-
tion of a Bers slice amidst the surrounding archipelago of discreteness components.
It serves as the frontispiece. Jeff Brock contributed his pictures of algebraic and
geometric limits that originally appeared in [Brock 2001b]; these too can be seen on
www.math.brown.edu/ brock. The presence of the many artfully crafted pictures
is a tangible expression of the mathematical beauty of the subject.

I am very grateful to Ken’ichi Ohshika for reading and commenting on an early
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draft and Dick Canary for reading several chapters of a later draft of the manuscript.
Ian Agol, Ken Bromberg, Richard Evans, Sadayoshi Kojima, Howie Masur, Vlad
Markovic, Yair Minsky, Peter Scott and Juan Souto as well as other mathematicians
have been generous in responding to specific questions as well.

I could not have completed the book in the present form without the expert guidance
and participation of Silvio Levy. He identified math problems, fixing some of them,
properly handled the IATEX formatting, improved the syntax, crafted the diagrams,
and inserted the pictures.

I want to acknowledge the institutional support from the Forschungsinstitut fiir
Mathematik at ETH in Zurich, the Maths Research Center, University of Warwick,
and not least, from my own department, the School of Mathematics of the Univer-
sity of Minnesota. In my semester course Math 8380, I was able to present a solid
introduction and overview of the subject based on the main points in the first six
chapters.

I am grateful to Caroline Series for introducing me to the Press and for her enthu-
siasm for the project. Cambridge University Press in the person of David Tranah has
shown great flexibility in keeping the retail price down and publishing standards high.
Most importantly, David provided Silvio Levy as editor.

The nineteenth-century history. The history of noneuclidean geometry in the
early nineteenth century is fascinating because of a host of conflicted issues concern-
ing axiom systems in geometry, and the nature of physical space [Gray 1986; 2002].

Jeremy Gray [2002] writes:

Few topics are as elusive in the history of mathematics as Gauss’s claim to be a, or even the,
discoverer of Non-Euclidean geometry. Answers to this conundrum often depend on unspo-
ken, even shifting, ideas about what it could mean to make such a discovery. ... [A]mbiguities
in the theory of Fourier series can be productive in a way that a flawed presentation of a new
geometry cannot be, because there is no instinctive set of judgments either way in the first
case, but all manner of training, education, philosophy and belief stacked against the novelties
in the second case.

Gray goes on to quote from Gauss’s 1824 writings:

... the assumption that the angle sum is less than 180° leads to a geometry quite different from
Euclid’s, logically coherent, and one that I am entirely satisfied with. It depends on a constant,
which is not given a priori. The larger the constant, the closer the geometry to Euclid’s. ...
The theorems are paradoxical but not self-contradictory or illogical. ... All my efforts to find
a contradiction have failed, the only thing that our understanding finds contradictory is that,
if the geometry were to be true, there would be an absolute (if unknown to us) measure of
length a priori. ... As a joke I've even wished Euclidean geometry was not true, for then we
would have an absolute measure of length a priori.

From his detailed study of the history, Gray’s conclusion expressed in his recent
Zurich lecture is that the birth of noneuclidean geometry should be attributed to the
independently written foundational papers of Lobachevsky in 1829 and Bélyai in
1832. As expressed in [Milnor 1994, p. 246], those two were the first “with the
courage to publish” accounts of the new theory. Still,
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[f]or the first forty years or so of its history, the field of non-euclidean geometry existed in a
kind of limbo, divorced from the rest of mathematics, and without any firm foundation.

This state of affairs changed upon Beltrami’s introduction in 1868 of the methods
of differential geometry, working with constant curvature surfaces in general. He gave
the first global description of what we now call hyperbolic space. See [Gray 1986,
p. 351], [Milnor 1994, p. 246], [Stillwell 1996, pp. 7-62].

It was Poincaré who brought two-dimensional hyperbolic geometry into the form
we study today. He showed how it was relevant to topology, differential equations,
and number theory. Again I quote Gray, in his translation of Poincaré’s work of 1880
[Gray 1986, p. 268-9].

There is a direct connection between the preceding considerations and the non-Euclidean
geometry of Lobachevskii. What indeed is a geometry? It is the study of a group of op-
erations formed by the displacements one can apply to a figure without deforming it. In
Euclidean geometry this group reduces to rotations and translations. In the pseudo-geometry
of Lobachevskii it is more complicated. .. [Poincaré’s emphasis].

As already mentioned, the first appearance of what we now call Poincaré’s confor-
mal model of noneuclidean space was in his seminal 1881 paper on kleinian groups.
He showed that the action of Mobius transformations in the plane had a natural ex-
tension to a conformal action in the upper half-space model.

Actually the names “fuchsian” and “kleinian” for the isometry groups of two- and
three-dimensional space were attached by Poincaré. However Poincaré’s choice more
reflects his generosity of spirit toward Fuchs and Klein than the mathematical real-
ity. Klein himself objected to the name “fuchsian”. His objection in turn prompted
Poincaré to introduce the name “kleinian” for the discontinuous groups that do not
preserve a circle. The more apt name would perhaps have been “Poincaré groups” to
cover both cases. For the full story see [Gray 1986, §6.4].

So here we are today, nearly 125 years after Poincaré and approaching 200 after
the initial ferment of ideas of Gauss, witnessing a full flowering of the vision and
struggle for understanding of the nineteenth-century masters.

Albert Marden
am@umn.edu
Minneapolis, Minnesota
May 19, 2006






1

Hyperbolic space and its isometries

In this chapter we gather together basic information about the geometry of two- and
three-dimensional hyperbolic spaces and their isometries. This will set the stage for
our study of quotient manifolds and orbifolds which begins in the next chapter.

1.1 Mobius transformations

A Mobius transformation in the unit sphere S” of dimension 7 is, by definition, the
result of a composition of reflections in (n—1)-dimensional spheres in S”. It will
be orientation preserving if it is the composition of an even number of reflections.
A defining property is that Mobius transformations send (n—1)-dimensional spheres
onto (n—1)-dimensional spheres. Automatically, a symmetric pair of points (with
respect to reflection) about one sphere gets sent to a symmetric pair about the other.

From now on, the unqualified term Mobius transformation will be reserved for
those that preserve orientation. The orientation reversing kind will be called anti-
Mobius transformations. For a discussion of the latter, see Exercise 1-31 at the end
of the chapter.

The study of hyperbolic 3-manifolds is intimately connected with the study of
Mobius and anti-Mobius transformations on the two-dimensional sphere S2. Via

Fig. 1.1. Stereographic projection



2 Hyperbolic space and its isometries

stereographic projection (Figure 1.1), S? is homeomorphic to the extended plane
CUoo, and we will freely use this fact to change points of view between the extended
plane and the 2-sphere. Under stereographic projection, the collection of circles and
straight lines in C corresponds to the collection of circles on S?; a straight line in
C corresponds to a circle on S? through the north pole. With this correspondence
in mind, we can refer to the collection of circles and lines in C simply as “circles”.
Moreover stereographic projection is a conformal map, that is, it preserves angles
between intersecting arcs — in particular, angles of intersection between circles.
Mobius transformations in two dimensions are fractional linear transformations of
the extended plane. That is, a Mobius transformation acting on C U oo has the form

b
2> AZ) = “Zid, with a, b, ¢, d € C such that ad — be # 0. (1.1)
CcZ

(When ad —bc =0 the expression on the right is a constant, so the map is not a Mobius
transformation.) As we will see shortly, a map of this form can indeed be expressed
as the composition of an even number of reflections in circles (in fact, two or four
circles: see Exercise 1-7). The symmetry properties of such maps are established in
Exercise 1-2.

Mobius transformations are conformal maps. In fact, the only conformal homeo-
morphisms of CU oo are Mobius transformations.

We will generally assume that the representation in (1.1) is normalized, meaning
that ad —bc = 1. Then we can identify the group of Mobius transformations with the
quotient PSL(2, C) := SL(2, C)/ £ I, where SL(2, C) is the group of 2 x 2 matrices
of determinant one and / is the identity matrix:

az+b a b -1 d —b
A(Z)_cz+d <~ :I:(C d)’ A7 (2) «~— :i:(_c a)'

The 4 ambiguity cannot be avoided. We will not keep inserting it, unless it plays an
essential role. In any case the value of changing from transformations to matrices lies
mainly in the algebra of composition. If A, B are M&bius transformations, the Mobius
transformation resulting from the application of A followed by B is written BA; the
corresponding matrix is just the usual product B A of the component matrices, in the
order written. The + ambiguity follows along. We will hop from one to the other,
the representation as a transformation to the representation as a matrix, depending on
which best suits the situation, without changing the labeling.

Two Mobius transformations A, B are conjugate if there is a Mobius transformation
U such that B = UAU~'. Conjugate transformations have the same geometry: U
effects transfer of the geometry of A to that of B.

The expression ABA~!B~! is called the commutator of A and B and written as
[A, B]. Two elements commute if and only if their commutator is the identity. *

 The alternative conventions [A, Bl = B~ 'A~1BA or A"'B~1AB are preferred by some authors; they do the
same job, but the formulas come out differently.



1.1 Mobius transformations 3

The trace of a Mobius transformation A is, by definition, the trace of the normalized
matrix of A:

Ta=trA==x(a+d).

It is invariant under conjugation. The £ ambiguity can be avoided either by using rﬁ
or by specifying 0 < argty <.

By solving the equation A(z) = z, we find that a nontrivial M6bius transformation
has one or two fixed points in s?, namely (a —d £ /142 —4)/2c, when ¢ # 0, or
otherwise the points oo and b/(d —a) = ab/(1 —a?). Here A = (i Z), ad —bc=1.
Only the identity can have three fixed points.

Given three distinct points (p2, p3, pa) € S?, there exists a necessarily unique
Mobius transformation sending ps to 1, p3 to 0, p4 to co. It is given by

(z—=p3)(p2—p4)

(z = pa)(p2—p3)
when none of the points p; is co. By taking the limit as some p; — 00, we obtain
the correct expression for p; = oo. The expression (z, p2, p3, p4) is called the cross
ratio of the four points. * Cross ratios are invariant under Mébius transformations:

= (2, p2, D3, P4),

(Az, Apa, Aps, Aps) = (2, p2, p3, pa) forany A.

This is a consequence of the fact that T'(z) = (z, p1, p2, p3) satisfies T o A7(z) =

(z, Ap1, Apa, Ap3).
Apart from the identity, Mobius transformations fall into one of three types:

A is parabolic if the following equivalent properties hold.
e A isconjugate to z +— z+ 1.
e A has exactly one fixed point in S.
e T4 ==2and A #id.

A is elliptic if the following equivalent properties hold.

e A is conjugate to z — €%z, with 20 = 27.

o 74 €(—2,42).

e A has exactly two fixed points, and the derivative of A has absolute value 1 at
each of them.

A is loxodromic if the following equivalent properties hold.
e A is conjugate to z > A%z, with [A| > 1.
e 74 C\[-2,42].
e A has exactly two fixed points, one attracting and one repelling.

We will use the term standard forms for the conjugates for the conjugates just listed.
The geometry of a general normalized Mobius transformation A is most easily read
off from the conjugate standard form. Note that the elliptic z — 1/z is conjugate to
> —2Z.

+ The definition given has the property (z, 1, 0, 00) = z. A common alternate definition results in (z, 0, 1, c0) = z.
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Fig. 1.2. Invariant spiral of a loxodromic with trace A + 1! = 1.976 4 0.005i.

A loxodromic M&bius transformation A has a collection of loxodromic curves or
invariant spirals in S*. (In navigation, a loxodromic curve or rhumb line is a path
of constant bearing: it makes equal oblique angles with all meridians, and so coils
around the poles without ever reaching them.) For the standard form z — A2z, one
such spiral is given by

2(0) =2, —oco<t<oo0.

If o denotes the segment 0 < ¢ < 1 of the spiral, the various images {A" (o)} cover
the spiral without overlap. See Figure 1.2.

For additional structure in special cases see [Wright 2006].

The term hyperbolic transformation has historically been used to designate a lox-
odromic transformation whose trace is real. Such a transformation is conjugate to
z > A%z with A > 1. Nowadays the term “hyperbolic” is also used for a loxodromic
element acting in hyperbolic 3-space.

The classification is proved by first conjugating A so that one fixed point lies at oo
and the other, if there is one, at 0. The further conjugation z + 1/z that interchanges
0 and oo may be needed to put the attracting fixed point at co.

If p € C is a fixed point of A # id, p is attracting if and only if |A’(p)| < 1 and
repelling if and only if |A’(p)| > 1. The transformation A is parabolic if and only if
A'(p) = 1; A is elliptic if and only if |A’(p)| = 1 but A'(p) # 1.

Upon referring to the normalized matrix A = (f Z), we find that the eigenvalues
are A, .~ = 1(tr A= v/tr2 A — 4). The corresponding eigenvectors (Z) satisfy

a r—d a Al—d

—=——=p and -—= =gq,

p c p c
where p, g are the fixed points. Like the trace, the eigenvalues are invariant under
conjugation. The eigenvalues of an elliptic transformation have the form e¢*'? and the
trace is 2 cos #. A loxodromic transformation has eigenvalues A*! and trace A + 17",
We can choose X so that |A| > 1, that is, so that X is the expanding eigenvalue.
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The expanding eigenvalue of a loxodromic element A can be expressed as a cross
ratio by the formula

A2 = (2, AQ2), p1s P-),

where py, p_ are the attracting and repelling fixed points. (It is enough to confirm
this when p; = oo and p_ =0.)
. b
We can write A = (¢ ) as
1

a a b
= 4 if 0 Az = — — if c =0. 1.2
z —c2(z+d/c)+c ifc#0, F4 d(z+a> if ¢ (1.2)

This expresses A in terms of simple building blocks: maps in standard form, plus
the map z — 1/z. Each of these has the property of preserving (generalized) circles.
Therefore any Mobius transformation preserves circles, as mentioned earlier. Like-
wise each building block is easily seen to be a composition of two reflections, so a
Mobius transformation is the composition of an even number of reflections.

Three distinct points p;, p3, pa uniquely determine a circle C, with an orientation
determined by their order. When C is a proper circle, we say that the orientation
thus defined is positive if the interior of the circle lies to the left as p», p3, pa are
encountered in that order. Let g2, g3, g4 be another set of distinct points, and C’ the
circle through them. The Mdobius transformation 7' that sends p; — ¢; automatically
sends C onto C’. If both are proper circles, T sends the interior of C to the interior of
C’ if and only if the triples give both circles positive (or negative) orientations. The
transformation 7 : z — w can be expressed in terms of cross ratios as

(w, 92, 93, q4) = (2, p2, P3, p4).

But if we focus simply on sending C to C’, and a designated side of C to a designated
side of C’, it is more efficient to find T by cross ratio using the symmetry property:
A Mobius transformation sends points symmetric with respect to reflection in one
circle, to a pair of points symmetric in the image (Exercise 1-2). For a proper circle,
the most conspicuous symmetric points are its center and oo.

A cross ratio (p, p2, p3, pa) is real if and only if the four points lie on a circle
in S?. The cross ratio is positive if and only if (p, p3, p4) gives the circle the same
orientation as (p2, p3, p4).

We are now ready to show that Mobius transformations in C U oo can be extended
to Mdbius transformations acting in upper half-space {Xx = (z,7) : z € C, t > 0}.
The simplest way to see this is by applying the following observation. Each M&bius
transformation is the composition of an even number of reflections in circles or lines
in C. A reflection in a circle extends naturally to the reflection in the upper hemi-
sphere bounded by that circle. Likewise the reflection in a straight line extends to the
reflection in the vertical half-plane bounded by that line. (The same argument shows
that Mobius transformations on S” = R" U {oo} extend to upper half (n+1)-space.)
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A Mobius transformation acting on C U oo sends a given circle to another circle
or line. Its extension to upper half-space will therefore map the hemisphere bounded
by the circle to the hemisphere or half-plane bounded by the image of the circle. We
conclude that the extension to upper half-space maps the totality of hemispheres and
vertical half-planes onto itself.

If two hemispheres intersect, or a hemisphere and a vertical half-plane intersect,
the intersection is a semicircle which is orthogonal to C. If two vertical half-planes
intersect, they intersect in a vertical half-line orthogonal to C. The extension of a
Mobius transformation thus maps the totality of half-lines and semicircles orthogonal
to C onto itself. The dihedral angles between intersecting hemispheres is the same as
the angle of intersection between their bounding circles in C.

It is useful to explicitly work out the formula for extension to upper half-space
{X =(z,1):z€C, t > 0}. We first extend the building blocks. First,

> az becomes (z, 1) +— (az, |a|t);
z+—>2z+b becomes (z,t)— (z+b,1).

The inversion z +—> 7!

is most easily dealt with as the composition of two anti-Mobius
transformations: z > z (reflection in a line) and z — z/|z|*> = z~! (reflection in the
unit circle). Extending to reflections in a vertical plane and the unit hemisphere, we

get respectively (z, ) — (z,t) and

N

- X Z t
)H—)W or (z,t) <|z|2+t2’ IZIZ—HZ)'
Therefore,
7 1 becomes (z,1) ( Z ! )
z ’ |22 +127 |z|> + 12

Composing the building blocks we find that the extension of ( Z Z) is

z+d/c a t
+_’
A(lz+d/cP+12) ¢ |cP(lz+d/c]>+12)

(z,1) — (— ) when ¢ # 0.

@0 (i’(z+b/a>, }9\ t) when ¢ = 0,
d d

1.2 Hyperbolic geometry

In the euclidean plane, there is exactly one line through a given point and not meeting
a given line disjoint from the point; this is the famous fifth postulate of Euclid. It
gradually became clear in the nineteenth century that one can have a self-consistent
and interesting geometry where this postulate is not valid — where “parallel” lines
are not unique and indeed exist in uncountable abundance. This became known as
hyperbolic geometry. Though the name was bestowed in connection with conics and
projective geometry [Klein 1871, p. 72], it is a doubly felicitous choice, because the
Greeks had named the hyperbola after the word for excess (compare “hyperbole”,
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from the same Greek word). Hyperbolic geometric certainly has an excess of lines —
and of “room” — compared to euclidean geometry!

Here are some of the salient features that distinguish hyperbolic geometry from the
familiar euclidean and spherical geometry.

(i) The angle sum X of a hyperbolic triangle A satisfies 0 < ¥ < m; in fact, X
equals m —area A. The limiting case X = 0 is achieved by ideal triangles whose
vertices are “at infinity”: we will have more to say about such ideal vertices
soon (page 14). At the other extreme, the case ¥ = m is the limiting case
of hyperbolic triangles of very small area. Indeed, on the infinitesimal scale,
hyperbolic geometry is euclidean.

(i) There are no similarities in hyperbolic space — one cannot scale a figure up or
down without changing its angles and shape. It follows, for instance, that all
hyperbolic triangles with the same angles are isometric (hyperbolic triangles are
“rigid”), and also that the choice of a unit of length is not arbitrary, as in euclidean
space; one can privilege a unit having some special property, say the side length
of an equilateral triangle whose vertex angles are /4.

(iii) For any 0 < 6 < 7 /(n — 2) there is a regular n-sided hyperbolic polygon with
vertex angles 6. More generally, a necessary and sufficient condition for the
existence of an n-sided convex polygon with vertex angles 6; (with 0 <6; < )
in clockwise order is that ) _ 6; < (n —2)m. The polygon is uniquely determined
up to isometry and its area is (n —2)w — Y _ 6;.

(iv) Two convex hyperbolic polyhedra that are combinatorially the same with the
same dihedral angles and valence 3 at all vertices are isometric [Rivin 1996;
Bobenko and Springborn 2004].

(v) The hyperbolic volume V of a ball and the surface area S of its bounding sphere
grow exponentially with the hyperbolic radius p. The ratio of the surface area
to the volume approaches 2 as p — 0.

In short, in the hyperbolic plane and space there are more geometric shapes, they
have a tendency toward rigidity, and there is a lot more space in which to build them —
in the estimate of Dick Canary, a baseball game played in the hyperbolic plane would
require more than 10'% ballplayers to provide the same level of outfield coverage as
in euclidean space!

Most 2-dimensional abstract surfaces and 3-dimensional manifolds can be modeled
using hyperbolic geometry, but not euclidean or spherical geometry. Hyperbolic space
is a good place to embed exponentially growing graphs, like a graph representing
interconnected web sites. In fact PARC has patented an algorithm for laying out such
graphs in H? [Lamping et al. 1995]. A different, unpatented, algorithm for laying out
graphs in H? is presented in [Munzner 1997]. The change of focus from one site to
another is effected by a hyperbolic isometry.

By studying the ancient microwave radiation that pervades the universe, astrophysi-
cists hope to get clues about the topology and large-scale curvature of our cosmic
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Fig. 1.3. Disk and upper half-plane models of H? showing the same geodesics.

home. An earlier proposal that we live in a hyperbolic universe appears to be incom-
patible with recent data from the Wilkinson Microwave Anisotropy Probe (WMAP),
which found the total density (matter plus vacuum energy) to have essentially the
value expected for flat space. To the extent that there may be deviation, it is toward
a spherical universe (positive curvature); see the discussion in [Weeks 2004]. If the
universe is a closed manifold with positive curvature, it can have one of only a few
topological types. * To establish that the universe is not simply connected would be
astounding!

We now discuss the most commonly used models of the hyperbolic plane and of
hyperbolic space. These are subsets of R" with appropriate riemannian metrics.

The hyperbolic plane
The upper half-plane model is {z € C : Im z > 0} with the metric

ds = Id_zl
Imz
Here Im z is the notation for the imaginary part. The unit disk modelis {z € C:|z| <1}
with the metric
_21d|
=z

The two models are equivalent under any Mobius transformation that maps the
upper half-plane onto the unit disk. We will denote either one of these models by H?,
the notation for the hyperbolic plane. These models have the following properties.

(1) The metrics are infinitesimally euclidean; at each point they equal a rescaled
euclidean metric. Thus the angle between two curves in the disk or upper half-
plane is the same whether measured in the hyperbolic or the euclidean geometry;

* For example, it might conceivably be Poincaré dodecahedral space, the famous ﬁrst example found by Henri
Poincaré of a closed manifold Wlth zero homology which is not homeomorphic to S3. He had initially believed

that such a manifold must be S3; the example led him to the Poincaré Conjecture. A good explanation of this
space and of the classification of spherical three-manifolds can be found in [Thurston 1997].
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as a result these models are often called conformal. (For other models see Exer-
cise 1-25 and following.)

(i) H? is complete in its metric. Every arc tending to the boundary has infinite
length.

(iii)) The metrics are invariant under any Mdbius transformation that maps the model
onto itself. In fact these transformations comprise the full group of orientation
preserving isometries of the model.

(iv) The hyperbolic lines (geodesics) in the upper half-plane model are semicircles
orthogonal to R and vertical half lines. In the disk model they are diameters and
circular arcs orthogonal to {|z| = 1}.

Hyperbolic space
The upper half-space model is {(z, t) : z € C, t > 0} with the metric

|dx|
— T >

ds |dX|? = |dz|* + di>.

The ball model is {X € R3 : || < 1} with the metric
21dX|
1= %2

The two models are equivalent by a Mobius transformation that maps one to the
other. Stereographic projection extends to such a Mobius transformation (Exercise
1-11). We will refer to either of these models with its metric as hyperbolic space and
denote it by H>.

We repeat our list of properties:

ds =

(i) The metrics are infinitesimally euclidean and correctly represent the angles in
H3.
(i) H? is complete in its metric.
(iii)) The metrics are invariant under any Mobius transformation that maps the model
onto itself. These transformations form the full group of orientation preserving
isometries of the models.

Fig. 1.4. Ball and upper half-space model of H* showing geodesic planes.
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(iv) The hyperbolic planes in the upper half-space model are hemispheres orthogonal
to C and vertical euclidean half-planes. The lines (geodesics) are semicircles
orthogonal to C and vertical euclidean half-lines. In the ball model the hyperbolic
planes are spherical caps orthogonal to the unit sphere, and equatorial planes.
The lines are circular arcs orthogonal to the unit sphere, and euclidean diameters.

Restricting the hyperbolic metric to a hyperbolic plane in the model yields the
2-dimensional hyperbolic metric on that plane. Particular cases are the vertical half-
plane rising from R in the upper half-space model and the equatorial plane in the ball
model, where the restriction of the metrics give rise to our models of H?.

Proof of property (iii). For the proof that the Mobius transformations are orientation
preserving isometries of the models, see Exercises 1-9 and 1-12. Here we show that
there are no other such isometries, concentrating on the hyperbolic plane.

Given three positive distances dy, d», d3 satisfying the triangle inequality, and a
point z on an oriented line £ € H?, there are exactly two triangles with a vertex at z, a
side of length d; lying on the positive side of ¢, a side of length d; sharing the vertex
Z, and a third side of length d3. They are reflections of each other in £ and one of the
two is uniquely determined if an ordering of the vertices is given and required to give
the positive orientation of the triangle they bound.

Given an orientation preserving isometry 7, the T-images of three points not on
a line are not on a hyperbolic line either. There is a Mobius transformation A such
that A o T fixes the three points. It then pointwise fixes the sides of the triangle they
determine, and then fixes the whole triangle A. That is, T(z) = A~!(z), for z € A. If
A’ is a triangle sharing an edge with A, there is Mobius transformation A; such that
T(z) = Al_1 (z) on A’. Necessarily A = A. Continuing on, building up the whole
plane H? by adding in succession adjacent triangles, we conclude that 7 = A. U

Proof of property (iv). In view of (iii)) we need only prove that the vertical axis ¢
is itself a geodesic. We will work in the upper half-space model. Let ¢ denote the
vertical axis rising from z = 0. Given ¥ = (z, 1) € H, define the map r : H? — ¢
as r(X) = (0,1). This map is called a retraction since in the hyperbolic distance
d(r(xX),r(y)) < d(x,¥). There is equality if and only if both X, y liec on a vertical
line. This is an immediate consequence of the differential inequality
dx* 4 dy* +dr? . dr?

12 -2

ds® =

Now suppose y (1), with 0 <u <1, is a differentiable path both of whose endpoints
lie on £. Its length strictly exceeds the length of r(y), unless the path is the segment
on £ between its endpoints. That is, £ is a geodesic: the unique shortest path between
two points lying on £ is the segment of £ between the two points. Therefore all images
of ¢ by the isometries are also geodesics. In particular, through any two points there
passes a unique geodesic.

Likewise the vertical half-plane resting on R is a hyperbolic plane: the geodesic
through any two points of the plane also lies in the plane. Therefore the totality of
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images under the isometries are the totality of hyperbolic planes. Any three distinct
points, not on a line, uniquely determine a hyperbolic plane through them. U

Euclidean circles in H? and euclidean circles and spheres in H? are also hyperbolic
circles and spheres. This is seen by starting with circles and spheres in the disk and
ball models which are centered at the origin. The image of a circle or sphere under
any Mobius transformation is again a euclidean circle or sphere, if no point on it gets
sent to co. Conversely any circle or sphere can be sent by a Mobius transformation
to one centered at the origin.

However the hyperbolic center is not the euclidean center, except for the circles
and spheres with center at the origin in the disk and ball models (Exercise 1-4).

1.3 The circle or sphere at infinity

From the point of view of the hyperbolic metric, the models have no boundary: the
metric is complete, and hyperbolic straight lines extend forever, though equal hy-
perbolic distances are represented by increasingly smaller euclidean distances in the
model as one approaches the edge (the unit circle in the disk model, etc.)

However, it is useful to regard the edge of the model as a sort of “conformal bound-
ary” in a way that will be explained shortly. This boundary is denoted by dH? (= S!
or R U {oo} for the hyperbolic plane) and by dH* (= S? or C U {oo}) for hyperbolic
space. Another common designation is S, for the circle or sphere at infinity. If we
fix a point in H3, we can also identify dH? with the visual sphere of rays emanating
from this point.

In H? or H3, each hyperbolic line determines two “endpoints” on the boundary.
Conversely, two distinct boundary points uniquely determine a line. Distinct lines
may share an endpoint—indeed, a way to define the sphere at infinity intrinsically,
without reference to a model, is by taking all oriented geodesics (parametrized by
arclength) and defining as equivalent any two that remain within a bounded distance
of each other as t — o0; the set of equivalence classes is Soo.

Two hyperbolic lines intersect in at most one point. In H?, they intersect if and
only if their endpoints alternate on dH>. Given a line £ and a point z ¢ £ in H?,
there are infinitely many lines through z which do not meet £ —unlike the case of
the euclidean plane! These are the “parallel lines” of the hyperbolic plane. Among
all these parallel lines, there are two that share an endpoint with £.

In H? each hyperbolic plane P is bounded by a circle on dH? (which may be real-
ized as a euclidean line on the boundary of the upper half-space model). Conversely
each circle on §? = 9H? determines one such plane.

The isometries of H? extend to dH? as conformal automorphisms, that is, as Mobius
or anti-Mobius transformations (depending on whether the isometry preserves or re-
verses orientation).

As mentioned earlier, the set of geodesic rays from a given point ¥ € H* can be
identified with dH>. Any hyperbolic plane not through X subtends a solid angle at X
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Fig. 1.5. Outer circles: Isometric circles (see page 19) on S? of numerous elements of a cyclic
group generated by a loxodromic with approximate trace 1.92 4 .03i.

of < 2. That is, on a tiny sphere of radius € about X, the intersection of the sphere
with the rays from X to the plane fill out a surface area strictly less than 272, less
than half the area of the sphere. In contrast, in euclidean space any plane subtends
exactly a solid angle 2.

If we lived in hyperbolic space, what we would see as flat lines and planes would
automatically be the hyperbolic geodesics, since light would travel along hyperbolic
geodesics. If we stood on a plane P, we would see the “circle at infinity” that supports
a plane P as the horizon of P.

In practice, we have to view hyperbolic space from the outside, from euclidean
space using one of our models. We then see the euclidean lines and planes as flat
while most of the hyperbolic ones look curved. Looking at the disk or ball model
from the outside, we also see the entire circle or sphere at infinity.

From the outside, dH? is full of circles corresponding to elements of discrete groups
of isometries, the outer circles of the book title. (See Figure 1.5.) The action of
isometries on geodesic planes in H? is paired with the corresponding action on the
outer circles.

An elliptic transformation T has an axis of rotation inside H>. It is the hyperbolic
line connecting its fixed points on S%. The axis is pointwise fixed by T.
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Fig. 1.6. Invariant tubes viewed in cross section, in the ball model and the upper half-space.
The axis of the transformation is shown thicker in each case. The transversal lines represent
discs orthogonal to the axis; all these disks (within the same tube) are congruent.

A loxodromic transformation T likewise has an axis in H3. It too is the hyperbolic
line connecting the fixed points. 7" maps the line onto itself, moving each point toward
the attracting fixed point. If T is in standard form, A2 z, with |[A| > 1, the axis is the
vertical half-line z = 0 in upper half-space. The hyperbolic distance between any pair
of points z, T(z) on the axis is d = 2log |A|, or 2cosh(d/2) = [A| + |27 = |z7].

Both elliptic and loxodromic transformations in H? leave invariant not just the
axis, but also each of a family of surfaces equidistant from the axis. These surfaces
are particularly easy to visualize in upper half-space when the transformation is in
standard form: the surface is a euclidean cone with vertex at (z,¢) = (0,0) and a
vertical axis (the half-line z = 0). When both endpoints of the axis line on the plane
t = 0, the euclidean shape of the surfaces is a tube, tapering to a cone at each end-
point (Figure 1.6). Note that though we often describe features of hyperbolic space
by talking about their euclidean shapes in the model — and this mixture is almost
inevitable — you should strive to visualize each object both intrinsically (the tube has
constant diameter) and in terms of the model (the tube looks like a cone or a crescent).

A parabolic transformation P has no axis, since there
is only one fixed point. P does have invariant surfaces,
each mapped to itself (in the spirit of the tubes of the
previous paragraph); they look like euclidean spheres,
and are called horospheres. (Watch out: horospheres
are not hyperbolic spheres! See Exercise 1-33.) All
horospheres of a parabolic transformation P are tangent
to one another and to the sphere at infinity at the fixed
point ¢ of P. The region of H? cut off by a horosphere is
called a horoball. In the upper half-space model, there ¢
is an exceptional case, when the fixed point ¢ is at infinity (say for P(z) =z+41): then
the horospheres are euclidean planes {(z, ) : t = constant}, and the horoballs are the
half-spaces above these planes. For parabolic transformations of H? the corresponding
objects in are called horocycles and horodisks.

At a parabolic fixed point ¢ € S?, there is a double family of mutually tangent
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circles at ¢ that bound disjoint open disks and are invariant under the parabolic trans-
formation. In the case { = oo and P(z) = z 4+ a, with a € R, they are the family
{z :Imz = £s, s # 0}. More generally if the flow associated with P has the vector
direction a € C, the pairs of horocycles are {z : Im az = £s, s # 0}.

The prefix “horo” comes form the Greek word for “limit”. Fix a point O € H?. Take
the hyperbolic sphere o, centered at x € H3 and passing through O. As x — ¢ € dH?,
the limit of o, is the horosphere at ¢ passing through O.

We now take up the study of triangles. As already mentioned the area of a triangle
is equal to the “angle deficit” 7 — ) _ 6;, where the 6; are the vertex angles; see Exercise
1-6 for a proof. Thus the greatest area a triangle can have is 7, which happens when
all vertices have “angle zero” — this is really a limiting case, when the vertices are no
longer points in hyperbolic space by in the sphere at infinity. A point in the sphere at
infinity is also called an ideal point, and so triangles whose vertices are at infinity are
ideal triangles. Given two ideal triangles and a labeling of the respective vertices in
the positive direction, there is a unique isometry that takes one to the other, matching
the designated labeling.

Theorem 1.3.1 (All triangles are thin). Any point & on a side of a hyperbolic triangle
A is within distance log(1 + V2) = arcsinh 1 from one of the two other sides. The
distance attains its maximum only for an ideal triangle, with & of equal distance from
the two other sides.

Any point inside a hyperbolic triangle is within distance log(1 4+ +/2) = arcsinh 1
of one of the sides.

Proof. We work in the upper half-plane model. We may assume by changing the
position of A in H? by an orientation preserving isometry that the side [p, ¢] of
A = (p, g, r) containing & lies on the unit semicircle centered at the origin, A lies
above this semicircle, and the side [p, r] lies on the vertical euclidean line through

/
-

o [

~

Fig. 1.7. Universal thinness of triangles.
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p. Here take p to be the left vertex on the semicircle. Assume at the start that none
of the vertices is ideal. (See Figure 1.7.)

We start by showing that we may replace r by r’ = co. As r goes up along the
vertical line from p, the distance of & to [p, r] increases or (once r is no longer the
closest point to &) remains the same. The distance of & to the side [¢, '], too, either
equals the distance ¢g& or the length of the perpendicular from & to [¢, r']; therefore it
exceeds the distance from & to [g, r], since [g, r] separates [¢, '] from & in the new
triangle (p, ¢, r"). Thus the minimum distance of & to the sides increases when we
more r to r’ = 00, so that A becomes a triangle with an ideal vertex.

Next consider what happens as ¢ slides down the semicircle to its right endpoint
q’ € R. The distance of & to [¢, 0o] strictly increases as g changes to ¢’; in the new
triangle (p, ¢’, 00) the side [g, 0o] separates [¢’, oo] from &. Similarly the distance
of £ to [p, oo] strictly increases as p slides down the semicircle to its left endpoint
p eR.

So now we have an ideal triangle with & on the side that is now the full semicircle.
The minimal distance of & to the two vertical sides is greatest when & is the symmetric
point & = i. Finally we have to compute the distance from & to one of the vertical
sides. There is exactly one semicircle C’ through & =i with center at z = p’ which
is orthogonal to the vertical line [p’, co]. In polar coordinates at p’, the orthogonal
segment is the arc 0 <0 < /4 of C’, if 6 is measured from the vertical. The length
of this segment is

/4 do
/ P log(V2+1).
0

p cos b

Here the radius p of C’ doesn’t enter — the map z +> kz, k > 0 (a euclidean similarity)
is a hyperbolic isometry.

Given a point z in a triangle A and a pair of sides, divide A by a geodesic arc
between the designated sides and passing through z. Application of what we just
proved shows that z is within distance arcsinh 1 of the two designated sides. Then
repeat the argument with an arc through z from the third side. O

A related fact is described in Exercise 1-17.

1.4 Gaussian curvature

The hyperbolic plane is a simply connected surface with a complete riemannian metric
of constant negative gaussian curvature. It is usually taken (by multiplying the metric
by the appropriate constant) to be —1, as we have done in §1.2. The purpose of this
section is to explain the meaning of the expression “gaussian curvature —1”.

Using the disk model of H? and polar coordinates (r, 6) based at the origin, we
begin with the following computations: the hyperbolic radius p of the circle of eu-
clidean radius R < 1 centered at the origin, its hyperbolic area A, and its hyperbolic
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circumference C. Our results are as follows:

R 2d 1+R hp—1
,0=/ = =log—+ , R=tanh£=—cos, p
1—r2 1-R 2 sinh p

4rdrd6 4w R?
A =2 hp—1),
(o) = /e /,o<1—r2>2 o =m(eoshp— 1)

c /2” 2R dO 47 R o it
= = = 47T SIn .
P=], 1R 1-r? p

C(p)* = A(p)* +4m A(p).

Thus both the area and the circumference grow exponentially with the hyperbolic
radius; more than 63% of the surface of any hyperbolic disk is within 1 unit of the
boundary; the ratio A(p)/C (p) equals R < 1 and in particular approaches 1 as p — oo.

(For the record, the analogous formulas for the volume V (p) of a hyperbolic ball
of hyperbolic radius p and its surface area S(p) are:

e r d
V(p)—S/ d@/ s1n¢d¢/ (1 = (sinh 2p —2p),

27 2
S(p) = f / K (Slm_¢Rcifzd9 = 47 sinh® p
Thus 2V (p) < S(p) and lim,_, o, 2V (p)/S(p) = 1.)

Now consider a smooth riemannian surface, a point z on the surface, and, for p > 0
variable, the disk of radius p around that point (in the given metric). The gaussian
curvature Ky at z can be characterized by the following properties involving the lim-
iting behavior of the area A(p) and circumference C(p) of such disks, compared with
their euclidean counterparts [Struik 1950, §4.3]:

d* (C(p) 3 . 2mp—C(p)
Ko=-3— 2 == lim —— %7,

dp? \ 2mp T p—0 p3

d> (A 12 Z_A
Ko= -6 (ALY _ 12, 7ot Al)

dp? \ mp? T p—0 o4

In particular negative curvature is characterized by the property that C(p) > 2mp
for all small values of R. Or by the property that A(p) > mp?. This is confirmed
for H? from the formulas for area and circumference above. Contrast this with the
corresponding properties of euclidean space.

Here is a construction of a surface with discrete negative curvature: Take equilateral
(euclidean) triangles with unit side lengths. Of course these tessellate the euclidean
plane; six are arranged about each vertex. Instead form a polyhedral surface by plac-
ing seven triangles about each vertex. This forms a polyhedral surface which is flat
except at the vertices. In a polyhedral surface, each vertex v has a discrete curvature
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defined by 27 — ) _ 6;, where the 6; are the vertex angles at v of the triangles sharing v.
In this case the curvature at each vertex is — /3. On our surface, the “circle” of radius
R =1 about a vertex has circumference 7, larger than the euclidean circumference of
6 when there are six triangles about each vertex.
If u|dz|, with u(z) > 0, is a conformal metric on a Riemann surface, the gaussian
curvature of the metric can be defined in terms of the laplacian as
Alogu

. 4
e w2 u?

8% logu
0z 07

Ahlfors had great success early in his career [1973] with applications involving sin-
gular conformal metrics of this form.

If instead we want a model of H?> with gaussian curvature —c < 0, take the disk
|z| < 1/4/c with the metric

2|dz|
1—clz|*

Gauss originally defined the curvature as follows. Suppose S C R? is an embedded
surface and p € S. Draw a simple closed curve ¢ C S enclosing a region D C S
containing p. Interpret each exterior unit normal vector N (determined by the right-
hand rule) at a point of D as a vector from (0, 0, 0) to the unit 2-sphere S?. As N
ranges over all possibilities, a certain region Q C S? is filled out. Gauss defined
the total curvature of D to have absolute value A(S2), the area of 2. The sign is
determined as follows. As N runs over c in the positive direction (D to its left), use
+ if the corresponding N runs over < also in the positive direction (€2 to its left);
otherwise use —. Thus the total curvature of a region in a plane is zero, while the
total curvature of a hemisphere is 27 sin(/2). Gauss defined the curvature of S at
the point p as

. FA(Q)
lim ———.
D\i{p} A(D)

Gaussian curvature is an intrinsic property of a surface — although the definition
just given is for surfaces embedded in R?, Gauss’s famous Theorema Egregium is that
isometric surfaces have the same gaussian curvature at corresponding points. So we
can define the curvature for a metric defined on an abstract surface.

Hilbert proved that there is no C? surface in R? whose metric induced from R? is
a complete metric of constant negative gaussian curvature; see [Thurston 1997,
§2.1], for example. There do, of course, exist smooth surfaces
embedded in R® with constant negative curvature, but
they cannot be extended to a complete surface. The
most famous example is the pseudosphere, a surface of revolution
about the x-axis in R? described by the parametric equations

(u —tanhu, sechucosv, sechusinv) foru >0, veR.
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If we take the subset {z : Imz > 1 > 0} of H? and quotient it by the cyclic group of
hyperbolic isometries generated by z — z+2m, we get a riemannian surface isometric
to the pseudosphere (with its inherited metric from R?); see [Coxeter 1961, p. 378],
for example. Conformally, this is a once punctured disk.

The Gauss—Bonnet formula for a simply connected surface element S of gaussian
curvature K, bounded by the union of n smooth arcs meeting with interior angles 6;
at the vertices, is

//de+/ keds=2m =Y (T—0)=mQ-n)+Y 6, (13
N s i1

i=1
where «, is the geodesic curvature of the arcs [Struik 1950, §4.8]. For a geodesic

arc, the geodesic curvature k, vanishes; thus, for example, if § C H? is a hyperbolic
triangle A, the formula becomes

—area A = —m + 6] + 6, + 05.

The Gauss—Bonnet formula, and indeed the area formula for triangles directly, can be
verified by using Green’s formula (see also Exercise 1-6). By breaking more general
surfaces into simply connected regions one can apply the formula further.

See Exercise 1-33 for computations of the hyperbolic curvature of horocycles,
equidistant arcs to geodesics, and circles.

For hyperbolic 3-space H? (or n-space more generally), the normalized metric is
characterized by having sectional curvature —1: all 2-dimensional planes through a
given point have gaussian curvature —1 in the metric induced from that of H>.

1.5 Further properties of Mobius transformations

The following facts must be part of our repository of basic knowledge.

Commutativity
Lemma 1.5.1. Let A, B be Mobius transformations # id.

(i) A and B share a fixed point if and only if
tr(ABA™'B™!) = +2.

(if) Assume that A and B do not share a fixed point. Then ABA~' B~ is parabolic
if and only if
tr(ABA™'B~ ) = —2.
Proof. The second statement follows directly from the characterization on page 3.

The proof of the first is not hard is one takes one of the transformations to be in
standard form. O

Lemma 1.5.2. Let A and B be Mdbius transformations distinct from +1id. There is
equivalence between:
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(i) A and B commute.
(ii) Either A and B have the same set of fixed points, or A and B have order two
and each interchanges the fixed points of the other.
(iii) Either A and B are parabolic with the same fixed point, or the axes of A and

B coincide, or A and B have order two and their axes intersect orthogonally in
H?3.

Again, this can be checked by assuming A to be in standard form, and observing
that the general elliptic transformation of order two exchanging 0 with oo is z > a?/z.

Lemma 1.5.3. Let k > 1 and let A and B be Mobius transformations, with Ak #1id.
Then A* = BX if and only if either A = B, or A = E B for an elliptic E whose order
divides k and whose set of fixed points is the same as that of B.

Proof. Sufficiency is obvious, since £ and B commute by Lemma 1.5.2.

To prove necessity, we can assume that k is minimal with the property that A* = B
Note that taking powers preserves both type and fixed points, except that an elliptic
can become the identity. Thus, if A is parabolic, so is A, and hence so is B; but the
parabolic elements fixing a given point of S, form a torsion-free abelian group (see
again Lemma 1.5.2), so A = B in this case. If instead A fixes two points, the same
argument (allied to the fact that A¥ # id) again shows that A and B commute; hence
(AB~")* =id, so E = AB~! is elliptic and shares the fixed points of A, B. U

Isometric circles and planes

Consider a Mobius transformation A on C U oo. If A does not fix oo, it has the form

az+b

A = ——,
@ cz+d

ad —bc=1, c#0.

One may ask, at what points does A preserve the size of (euclidean) tangent vectors,
as well as angles? Since A’(z) = 1/(cz +d)?, the set of such points, denoted by

JA) ={zeC:|A@)|=1}={z€C:|cz+d| =1},

is a circle. We call it the isometric circle of A. Its center and radius satisfy

centerJ(A) = —% =A""(0c0), radiusI(A)= %
Because A maps circles to circles, the restriction of A to J(A) is a euclidean isometry
onto the circle J(A~") of the same radius. Also, |A’(z)| > 1 for z in the interior of
J(A), and |A’(z)| < 1 for z in the exterior.
Now consider the same transformation A, regarded as an isometry of H? in the
upper half-space model (recall that C U co = dH?). The isometric plane of A is
likewise defined as the set of points where the jacobian preserves length:

(F: 1A' G| =1). (1.4)
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Explicitly, it is the hemisphere
(X=(z, 1), t>0:|cz+d>+|c|*? =1}

rising from the isometric circle J(A) C dH3. When the context is clear, we will use
the notation J(A) interchangeably for the isometric circle and the isometric plane.
There is also an isometric circle and plane for the ball model, with the same defining
equation (1.4) as for the upper half-space model. However, the isometric circle in one
model does not usually map to the isometric circle in the other under a hyperbolic
isometry conjugating the two models; in fact, even within the same model, a con-
jugating isometry U need not map J(A) to J(UAU '), as is the case with the axis
and fixed points. Although not intrinsic, the notion of isometric circles and planes is
nonetheless useful because of its metric properties. It was introduced by L. R. Ford.
Here is another description of the isometric planes (see Exercises 1-10 and 3-4).

Lemma 1.5.4.

(1) In the ball model, the isometric plane for A is the perpendicular bisector of the
line segment [0, A~1(0)], where 0 denotes the origin of the ball.

(i1) In the upper half-space model, if oo is not a fixed point of A, the isometric plane
results from the following construction. There is exactly one horosphere H at 0o
such that the horosphere A~'H at A~ (c0) is tangent to H. The line £ between
oo and A~1(00) goes through the point of tangency and is orthogonal to the
two horospheres. The isometric plane is the unique plane through the point of
tangency and orthogonal to {.

We summarize here the properties of isometric planes and circles in the upper half-
space model. Refer to Figure 1.8 for examples.

Proposition 1.5.5. Let A be a Mobius transformation of the upper half-space model,
not fixing oo. Let B(A) be the closed disk bounded by the isometric circle J(A) in C,
and let E(A) be the closure of its exterior (including o).

(1) A sendsI(A) toI(A™Y), B(A) to E(A™Y), and E(A) to B(A™Y). If X = (2, t) lies
on the isometric plane J(A), then A(X) = (A(z), t) lies on J(A™1).

(2) J(A) =T(A" Y ifand only if T4 = 0.

(3) The intersection of circles J(A) N I(A~Y) consists of two points if and only if
0 < |ta| < 2. If A is elliptic, these intersection points are the fixed points and the
corresponding isometric planes intersect in the axis of rotation.

(4) I(A) and I(A~") are tangent if and only if A is parabolic, in which case the
tangency point is the fixed point.

(5) I(A) and I(A~") are disjoint if and only if |t4] > 2.

(6) If A is loxodromic, B(A) N E(A™Y) contains the repelling fixed point of A, and
B(A~YYNE(A) its attracting fixed point.

(7) If U fixes oo, then JUAU™") = U@I(A)). If U is a euclidean translation,
JUA) =I(A) and (AU ™) = UI(A).
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DD R LE

Fig. 1.8. Isometric circles for various transformations A that have the same fixed points. From
left to right, the elliptic case (t4 € (—2, 2)), the loxodromic case with 74 ¢ R and respectively
T4l <2, |tal =2 and |t4]| > 2, and finally the loxodromic case with 74 real.

(8) If A preserves a circle in S2,9(A) is orthogonal to that circle.

Proof. (1) The Jacobian determinants or derivatives are related:

(BA™") (A2) = B'(2)/A'(2).
(2) A normalized matrix A = £A~! if and only if either A = +id or 74 = 0. The
isometric circle | —cz +a| =1 of A~! is identical to that of A if and only a +d = 0.
(3)—(5) The distance between the centers of the isometric circles is
a d la +d|

c c lc|

Since the radius of the circles is 1/|c| they intersect whenever the distance between
centers is less than 2/|c| and are tangent when there is equality.

Now the distance between the centers is exactly 2/|c| when A is parabolic, less
than 2/|c| when A is elliptic, and can have any positive value when A is loxodromic.
Only when the loxodromic satisfies |t4| > 2 does the distance between centers exceed
2/|c| so that the circles are disjoint.

(6) The derivative |A’| is greater than 1 at the repelling fixed point, and less than 1
at the attracting one, when these points are finite. (In contrast, at a finite elliptic or
parabolic fixed point ¢, |A"(¢)| = 1.)

(7) This is a direct computation, or an application of the chain rule.

(8) If A preserves R U oo, its normalized form has real or purely imaginary entries,
the latter case if A interchanges the upper and lower half-planes. Therefore the center
of the isometric circle is real, so J(A) is orthogonal to R. If A maps the unit disk onto
itself, it has the following form (Exercise 1-2):
A= ﬂ.
1 —az

From this we compute that J(A) has center 1/a and squared radius (1 — la|?)/|al>.
This implies that J(A) is orthogonal to the unit circle. If A interchanges the two
sides of the unit circle, it can be expressed by replacing z by 1/z in the formula and
proceeding in the same way. The general transformation A is conjugate to one we
have considered via a transformation that fixes oo. 0
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Trace identities

Here we present the common trace identities that help form the bridge between the
algebra of matrices and hyperbolic geometry. See also Exercise 1-20.

Lemma 1.5.6. Let X and Y be 2 x 2 complex matrices of determinant one.

() tr(XY ™) =tr(X) tr(Y) — tr(XY).

(i) (XY XY ) 4+2=t2(X) +tr2(Y) + tr2(XY) — tr(X) tr(Y) tr(X V).
i) (XY XY ™) =2 = (tr(X) — tr(¥))” = (tr(XY) = 2) (tr(XY ™) —2).
(iv) If tr*(X) # 4 then

w(X"YX"y"H -2  wXyXx'y -2
tr2(Xm) — 4 N tr2(X)—4
) If [X,Y]1=XYX'Y~Vis parabolic and X, Y do not share a fixed point, so that
tr(XYX~'Y—1)y = -2, then

tr(X) tr(Y) tr(XY) = t2(X) + tr? (V) + (X Y),
tr(XY) tr(XY ™) = t?(X) + tr(Y).
Conversely, either of these two identities implies tr[ X, Y] = —2.

Remark 1.5.7. The first equation in (v) is called the Markov identity. Markov proved
that for the equation xyz = x? + y? 4 z2, the only integer solutions (called Markov
triples) are provided by the traces of group elements X, Y, Z = XY in the modular
group (Exercise 2-9), with tr[X, Y] = —2. If (4, v, w) is a Markov triple, so are
(u, v,uv—w), (U, uw—v, w), (Vw—x, v, w). A famous unsolved problem in number
theory is Markov’s conjecture that if (x, y, z), (x, y’, z) are Markov triples, with
x<y<zandx' <y <7, thenx =x' and y = y’. See [Bowditch 1998] and
[Goldman 2003] for more detail.

Proof. To verify (i), (ii) and (iii), apply a conjugacy to convert Y to standard form:

A0 1 A a b
N P E S NS Co s PR

The identities are now easily verified. In particular we find that for ¥ normalized we
have, depending on whether Y is nonparabolic and parabolic,

tr(XY X 'Y H=2—bc(h—27H? or 24222

Thus the commutator cannot have trace +2 unless » =0, c =0, or X = £/7. All three
possibilities are excluded by the hypotheses.

The Markov identity in (v) can be regarded as a quadratic equation for w = tr(XY)
in terms of the coefficients tr(X) and tr(Y). The two solutions are w = tr(XY) and
w =tr(XY ). This is the reason for the second identity in (v). If the transformations
corresponding to X and Y are loxodromic and preserve the upper half-plane, and
their matrix representations are chosen so that the traces are positive, then tr(XY)
will automatically be positive as well.
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For item (iv), put X instead of Y in standard form. It is enough to verify the formula
for m = 2; the general case follows by induction. The ratio has the constant value

—bcif Y =(“}). O

1.6 Exercises and explorations

1-1. For a Mobius transformation 7' of C U oo with normalized matrix (‘Cl Z), prove:

@) 1T@) —Tw)|=lz—wlVIT'@IWIT (W)

(i) T preserves the upper half-plane if and only all of a, b, ¢, d are real. (Thus the
group of orientation preserving isometries of the hyperbolic plane is PSL(2, R).)
If such a T is loxodromic or parabolic, its fixed points lie in R. If T is elliptic,
its fixed points are symmetric about R under reflection, but do not lie in R.
Moreover, In 7T (z) = Imz) - |T'(2)].

(iii) T preserves the right half-plane if and only if 7 = (_‘1, ’5,/) witha',b',c’,d e R
and a’'d' —b'c’ = 1.

(iv) Find conditions on a, b, ¢, d for T to preserve the unit disk. (Hint: Conjugate
by a Mobius transformation taking —1, 1, co to —1, 1,i.) Prove an alternative
characterization: 7 preserves the unit disk if and only if it can be written as

i £ 20
1—Zoz’
Moreover, such a T satisfies |T7(z)|(1 — |z|?) = (1 — | T (2)|?).

T(z)=e |20l < 1.

1-2. Two points are said to be symmetric in a circle or straight line if reflection in the
circle or line carries one point to the other. Thus z and 7 are symmetric in R, while z
and 1/z are symmetric in the unit circle centered at the origin. Verify that the formula
for symmetric points ¢, ¢* with respect to the circle {|z —a| = R} is

R2
¢ _a:Z—Ez'

This map extends to a reflection about the corresponding hyperbolic plane in H?3.

(i) Prove that a Mdbius transformation maps points symmetric in a circle/line to
points symmetric in the image circle/line. Hence the extension to H? preserves
symmetry in planes. (See [Ahlfors 1978].)

(i) If Cy, C, are disjoint circles and A is the region they bound on S2, show how to
find a Mobius transformation that sends A to an annulus centered at z = 0 with
C, sent to the outer circle of radius 1.

(iii) Suppose Dy C Dy are disks centered at z = 0 of radii 1, < r respectively. Let
T be any Mobius transformation such that T~'(c0) is not in the closure of D;.
Denote the radii of 7(D,) C T(Dy) by r5, r{. Show that

When is there equality?
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1-3. Liouville measure. Suppose £ is a hyperbolic line in the disk model, with end
points a, b. Suppose p, g are two points on £ so labeled that p separates a and q.
Show that the hyperbolic distance d(p, g) between p and g is given in terms of the
cross ratio by

(g—a)—=p)
(p—a)b—q)

Suppose £1, £, are hyperbolic lines which intersect in H? with angle 6. Suppose
their end points a;, b;, i = 1,2, are arranged clockwise [ay, a2, by, b>] around oH2.
Prove that

d(p,q)=1log(a,b, p,q) =log

0 cosf +1
(a1, as, by, by) = cos® o=

The Liouville measure is a measure on the space G (H?) of unoriented geodesics in
H?. In terms of endpoints on S! = dH?,

G(H?) = (S' x S'\ {diagonal}) /Z»,

which is topologically a Mdbius band (Exercise 4-15). The Liouville distance L
between nonintersecting geodesics yj, y» with endpoints (a, b) and (c, d) is

(a—c)(b—d)
log‘ (a—dy(b—c)

For any isometry T', L(Ty1, Ty2) = L(y1, y2).
The infinitesimal form of L is
dadf  dadB . ,a—p

. Sm—— sin
leid — eif |2 4 2

L(y1, y2) =

where a, B are the endpoints of y. It is this quantity that defines a measure on G (H?).
For details see [Bonahon 1988].

1-4. Tubular neighborhood about a geodesic. Suppose £ is the vertical half-line rising
from the origin in the upper half-space or upper half-plane model. Given d > 0, show
that the locus of the points of hyperbolic distance d from ¢ consists of the cone of
angle ¢, or the two euclidean lines of angle ¢ from £, where sec ¢ = coshd.

The corresponding neighborhood about a geodesic which is a semicircle looks like
a banana (Figure 1.6).

Next construct a sphere with euclidean center on £ which is tangent to the cone
of distance d. Find its hyperbolic center which by symmetry also lies on €. Hint:
Construct the hyperbolic line segment between two opposite points of tangency of
the sphere with the cone. It is orthogonal to both the sphere and £. Show that it is a
hyperbolic diameter. Denote by (0, a), (0, b) the north and south pole of the sphere
with hyperbolic center (0, ¢). Show that ¢? = ab.

Show that in the disk model, the hyperbolic center of a circle coincides with the
euclidean center if and only they are at the origin. In the upper half-plane model they
never coincide. The corresponding statements hold in three dimensions.
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1-5. Let £ be a line in the upper half-space model, which we assume without loss of
generality to have endpoints £1/8 € R on the boundary plane C. Suppose given two
other points on ¢; their projections to C lie on the line segment joining the endpoints
and so are the form A/8, u/B, with —1 < A < u < 1. Let their heights above C be s
and ¢, respectively. Show that

P Lo S G o et )
X.—< 5B Ig-i-ls, ﬂ+lt> “Va-nd+n < 1. (1.5)

Specialize to the case that £ is the axis of a loxodromic T with T(A/B8 +is) =
up+it.

1-6. Prove directly (without Gauss—Bonnet) that the angle sum X of a hyperbolic
triangle A satisfies ¥ = w — Area A. Hint: First prove this for a triangle in the upper
half-plane model with a vertex at oo and the other two above the points 0, 1 € R. Then
show that the area of a general triangle is the difference of the areas of two such ideal
triangles. To find the area of the ideal triangle, you can use Green’s formula from
advanced calculus, plus the fact that the hyperbolic length of the horizontal segment
{yv=t, 0<x <1} goesto0ast— oo.

Go on to prove, as in [Epstein and Marden 1987, A.6.1,2], that the area of a hy-
perbolic triangle A with a side of finite hyperbolic length s is strictly less than s.
(Hint: The area only increases if the other two sides of A have infinite length. Then
show, still in the upper half-plane model, that given a > 0, the hyperbolic area of the
rectangular strip {z : 0 < Rez < s, a <Imy} is s/a. Use this to show that

dA .
(—) =sinf < 1,
ds s=0

where 6 is the angle between the short side and one of the vertical sides.)

Deduce that the area of a hyperbolic polygon P with one ideal vertex is less than s,
where s is the sum of the lengths of the finite sides. Moreover, the sum of the exterior
angles of P is less than s + 2.

1-7. Let T =(¢ Z) be a Mobius transformation of CUoo such that 72 (c0) # oo (so that
the isometric circles J(T) and J(7 ') are distinct). Show that T is the composition
of reflection in J(T"), followed by reflection in the perpendicular bisector of the line
joining the center of J(T) to the center of J(T~!), followed by a rotation about the
center of J(T~") of angle ¢, where et = (M) /(a +d). What about the case that
HT) =T~ 1?

If the trace of T is real, the rotation step is not needed.

Show that every Mobius transformation is the composition of two or four reflections
in circles on S?. (A rotation is the composition of two reflections.) If tr(7') is real,
only two reflections are needed.

1-8. (i) Prove that a Mobius transformation that has a real trace leaves invariant
some circle in 9H? (which can be taken as the real line).
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(i1) If, in addition, the transformation is loxodromic, it maps every hyperbolic plane
that contains its axis onto itself.

(iii) [Van Vleck 1919] Prove that the composition F' = E» o E; of two elliptics has
real trace if and only if there is a circle o in S? containing the fixed points of E|
and E,. If the fixed points of E; separate the fixed points of £ on o then F is
elliptic. If the fixed points do not so separate, then E|E2 E 1_1 E; !is loxodromic
with real trace.

1-9. Prove the formula for the extension to upper half-space:
1 X1 — 22

[e2 [ — A= (00)[|¥2 — A= 1(c0)

|AX) — A% | = , c#0, (1.6)

and a corresponding formula for ¢ = 0. Deduce that the hyperbolic metric is invariant
under Mobius transformations and that the designation “isometric hemisphere” is
justified as |A’(X)| = 1, where here |A’| denotes the Jacobian determinant.

The extension to upper half-space — in fact to all R? U oo — is conformal. Conver-
sely if F: D C R* — R”" is a conformal mapping, then F' is the restriction to D of
a Mobius transformation, provided n > 3. This striking result is called Liouville’s
Theorem. Liouville proved it under the assumption that the third partial derivatives of
F are continuous; it is now known to be true under much weaker hypotheses on F;
see [Vuorinen 1988].

1-10. Symmetry in isometric circles and planes. Suppose S preserves the upper half-
plane UHP, S(oc0) # oo, while T preserves the unit disk D. Prove that the isometric
circle J(S) is characterized by the property that J(S) N UHP is the (hyperbolic) per-
pendicular bisector of [i, S=1@)), that is, i and S~ (i) are symmetric about J(S).
Correspondingly prove that J(T) N D is the perpendicular bisector of [0, 7~!(0)],
that is, 0 and 7~!(0) are symmetric about J(7').

Deduce that if A(D) =UHP, then A maps J(T') to J(S).

Show that the corresponding facts are true for the isometric planes of transforma-
tions that preserve the upper half-space and ball models of H>.

Returning to the upper half-space assertion of Lemma 1.5.4, suppose p € dH? is
not a fixed point of A (normalized). Given X € H3, let e(X, A) denote the plane which
is the perpendicular bisector of the line segment [¥, A~ (X)]. Then p lies on the circle
bounding e(X, A) if and only if X lies on the plane e(p, A), which has the expression
(with A = (“%))

(pPc+pd—pa—b)a—poN|* ,  |pPc+ pd— pa—bl?
Z— (p + ) +1° = ,
la — pel> —1 (la — pe]? — 1)2

if |a — pc| # 1. If p = oo, then e(p, A) reduces to the isometric plane for A. Also
the plane e(x, A) converges to e(p, A) as X — p.

Choose A so that A~!(co0) = 0. Then when X = (0, ), the vertical coordinate of
A(X) is 1/(t|c|?). This takes the value 1/|c| when ¢ = 1/|c|. Thus the horosphere
o at z =0 of euclidean diameter 1/|c| is tangent to the horizontal plane P of height
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t = 1/|c|. Moreover A maps (0, 1/|c|) to (a/c, 1/|c|). Therefore A maps o onto P.
The hemisphere centered at z = 0 of radius 1/|c| is the isometric circle.

1-11. Stereographic projection. Confirm that stereographic projection from the north
pole of the unit sphere S to the complex plane C containing the equator of S is given
by the following formulas: If (xi, x2, x3) € S? and z = x + iy is the corresponding
point in C then

X1 X 14+ x3
y= 2l = ——

X = s
I—X3

’

I—X3 _1—X3'

This can be extended to map the interior B of S? to upper half-space as follows.
Reflection in the unit circle z — 1/Z extends to the reflection in S? given by x
X/|%|2. Take however the reflection in the sphere Sy of radius ~/2 about the north
pole of S

N

. X—k - -
L(X)=2———+4k, k=(0,0,1).
X — k|2

Sy intersects S? in its equator and /; pointwise fixes that. Also fixed are the vertical
planes through the origin.

Because I; sends (0,0, 1) to oo, (1,0,0) to (1,0,0), (0,1,0) to (0, 1,0), and
(0,0, —1) to (0,0, 0), we see that the image of dB is the plane {x3 = 0} and the
image of B is lower half-space.

Follow I; by reflection in the horizontal plane {x3 = 0}:

I (x1, x2, x3) = (X1, X2, —X3).

The required extension of stereographic projection is I = I o I;. the collection of
euclidean half-planes and hemispheres in upper half-space correspond to the collec-
tion of spherical caps in B orthogonal to dB. We know this once we know that
stereographic projection maps the collection of circles/lines in C to circles on S2.
From this we can also deduce that / preserves the dihedral angles between intersecting
hyperbolic planes.

The group of isometries of B is then the conjugate of the group of the upper half-
space by the Mobius transformation /. The formulas are best found by the method
given in the next exercise.

1-12. Formulas for the ball model. We follow the elegant treatment presented by
Ahlfors [1981]. The notation x* = ¥/|x|? for reflection of X in the unit sphere will
be useful. More generally, given a € B3, the sphere with center a* orthogonal to 983
has radius (Ja*|?> — 1)!/%. The formula for reflection in it is

y=a*+ (la*]* = )X —a®)*.

The group of Mébius transformations preserving B* is generated by an even number
of such reflections. A Mobius transformation that sends B> onto itself and a given
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point a to the origin 0 is (dropping the vector notation)
T,x=—a+(—la®)(x* —a)*.

The general transformation that sends a — 0 is the composition of 7, followed by
a euclidean rotation about 0. The jacobian determinant |7, (x)| of 7, represents the
local stretch of T, the same in all directions. It remains unchanged if 7, is followed
by a rotation about 0, so it represents the Jacobian determinant of any element that
sends @ — 0 and preserves B°.

The Jacobian satisfies

a2 2
IT/(x)] (I —lal?) 1 —lal

Pt —al? | —q)x )
In addition confirm the formulas

| Tax| = Tax — Toal = |x —al /T (x) T (a),

and
|x —al
|Tox| = ———,
lal |x —a*|
so that ) )
(I'—=1|x[HA —lal?)
1= |Tx|> =
T jaPlx —arP?
Conclude that
[T, (x)] 1

1= |Tyx2 1—|x]?
In other words, the hyperbolic metric is invariant under any transformation that sends
some point a — 0; therefore is invariant under all Mobius transformations preserving
the ball.
In fact, for any Mobius transformation 7' in 3-space, whether or not it preserves a
ball or half-space,

ITX =Ty =T GIT' V1% -yl

This follows from the fact that any nontrivial M&bius transformation 7 is the com-
position of similarity mappings ¥ > mX -+ b and the reflection ¥ — ¥ /|x|2. The jaco-
bian matrix for the similarity is simply mI. For the reflection it is (I —2Q(X))/|x|?,
where the matrix Q(X) = (1/]x|?) (x;x;) satisfies 0? = Q and (I —2Q)* = I. In other
words, at each point X, the jacobian 7'(X) is a scalar multiple |7 (X)| of an orthogonal
matrix.

1-13. Show the existence of regular n-sided hyperbolic polygons as follows. In the
disk model of H? start at the origin with a tiny regular n-sided euclidean polygon. Ra-
dially expand the polygon insuring by rotational symmetry that all sides remain equal
in length. Show that the vertex angle decreases monotonically from the euclidean
(n —2)m/n to zero when the vertices are on the unit circle. Use the same argument
for regular polyhedra.
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1-14. If g is a Mobius transformation acting in B3 with center O (really (0, 0, 0)) and
d(-,-) denotes hyperbolic distance, show that

o—d0.8(0) _ 1— |g(0)|
1+1g(0)]

Also show that for any two points X, y in B>,

1 - |8(£)| - Zed(i’y).
1—1[gOI ~

Let G be a countable group of Mobius transformations. Show that for o > 0,

Z e~ 24020 — 5o ifand only if Z 4.8 00,
geG geCG

and correspondingly

> (=g <oo ifandonlyif Y (I —[g(X))* < oo.

8eG geG

Referring back to Exercise 1-12 show that

Ze—ad(o,g(O)) < oo ifandonlyif Z 18" (0)|* < o0.
2cG geG

Confirm the analogous formulas for groups acting instead in the unit disk.

1-15. For the group of Mobius transformations acting in the upper half-space model,
that is for the simple Lie group Isom H?, confirm the Iwasawa decomposition

IsomH® = KAN,

where K is the compact group of rotations about (z =0, 7 =1), A is the abelian sub-
group of loxodromic elements with fixed points 0, oo, and N is the nilpotent subgroup
of euclidean translations.

1-16. Given four distinct points z1, z2, wi, wy € C U oo, show that there exists a
Mobius transformation A suchthat A(z1)=—1, A(zp) =1, A(w1) =—u, and A(w;) =
u for some u € C. Clearly (z1, z2, wy, w2) =(—1, 1, —u, u). A is uniquely determined
if it is required that |u| > 1. Hint: Take z; = —1, zo = 1, w; =i, wp, = ¢. Find an
equation for the coefficients of A. For there to be a nonzero solution, the determinant
of the coefficients must vanish.

Consider the hyperbolic lines ¢ with endpoints z1, z» and m with endpoints wy, w,.
Show that there is a uniquely determined common perpendicular to £ and m. Show
that the hyperbolic distance between the lines is log |u].

1-17. Prove that there is a unique largest disk in an ideal triangle and that its hyperbolic
radius is %log 3. Deduce that any hyperbolic disk in H” that meets three mutually
disjoint open half-planes must have radius exceeding %log 3. (Hint: Put z =0 and the

vertices of the ideal triangle at equally spaced points on the circle.)
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In particular a line in H? at hyperbolic distance %log 3 from a point z € H? covers
exactly one third of the horizon. The union of three hyperbolic lines, each at distance
at least %log 3 from z and at least one at distance strictly greater than that, do not
separate z from 9H?.

Conclude that in H?, a hyperbolic ball B that meets three mutually disjoint open
hyperbolic half-spaces must likewise have radius exceeding %log 3.

(Hint: In the ball model assume that the origin is the center of B. The half-spaces
determine three mutually disjoint disks D; C dH?3. Denote their spherical radii by ;.
A great circle has length 277 so Y 2r; < 2. For at least one index, 2r i <2m/3. The
distance to the origin of the plane rising from 9 D; is therefore at least % log3.)

1-18. Given a point z € H? and a geodesic y not through z show that
sinhd(z, y) = cot(0,/2),

where d(z, y) is the distance from z to y and 6, < = is the visual angle y subtends
at z.

Hint: In the disk model take z = 0. Then y is an arc of a circle of euclidean radius
say of radius r. Seta=d (0, y). Show thatsinha =1/r and sinh d (0, a) = 2a/(l—a2).
Use the right triangle with euclidean sides of length 1, r, d+r.

1-19. In the upper half-space model let y be the geodesic with endpoints +1. Show
that in the hyperbolic arc length parameter s with basepoint at z =1,

14+ie”*
—— =—tanhs +1i sechs.
1—ie™s

y(s)=

1-20. Let T = tr A be normalized so that 0 < argt < . Prove (by putting A in
standard form and using induction) that there is a sequence {8, }, —00 < n < o0, such
that o =0, 81 =1,

A" =—B, I +B,A, and BT =—B,_1 +7 B

Show that 8_, = —B,. Furthermore, 8, = 0 for some # if and only if A"(z) =id.
Set 7, =tr A", so that tp = 2 and 7y = t. Then 7_, = 1,,. Prove that

1) t=—PBu1+ Br+1;
() ift=r+1"1thent, =A"+A2"and B, = (X" — 17" /(A — 1~ 1);
(111) T Tn = Tm+n+ Tim—n>» ﬂm Tn zﬁm-‘rn +,3m—n’ and ,Bm ,Bn = (Tm-‘rn _Tm—n)/(f2_4)-

Show also that lim,|— o0 B, = lim}, |- 00 T, = 00, if [T] > 2.
Finally show that 8, is a polynomial of degree |n| — 1 in 7, and t, is of degree |n|

in 7. Furthermore

d d nt, — P

ETnZnIBn’ E,an 2_4

The isometric circles J(A*!) are symmetric about the midpoint of line segment
joining their centers. Replace A by a conjugate so that the midpoint A(c0)+ A~!(c0)
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becomes z = 0. Show that A then has the form
1. 12 4y
A:(Zt 4”1 )). (1.7)
1 ET
Jorgensen [1973] used this form to study the behavior of the cyclic group (A) as a
function of its trace.
Show that
1 1 -
Aﬂ:(itn Z(Tnz_4)ﬁnl)‘ (1.8)
Bn %fn
Also A¥(—z) = —A7k(z), for —o0 < k < .
1-21. Consider with Tukia [1985¢] the 3-manifold

K = {(x1, x2, x3) : x; € R are distinct and induce the positive orientation.

Define a map p : K — UHP as follows. Let £ be the geodesic in UHP between x|
and x;. Let x3 be the foot of the perpendicular from x3 to £. Set p(x1, x2, x3) = x™.
Prove:

(i) For z € UHP, the set p~!(z) is homeomorphic to the circle S!, and hence that
K is homeomorphic to UHP xS!.
(ii) If A is loxodromic and preserves UHP with axis £ € UHP, the set S(A) := p~1(0)
is homeomorphic to R x S!.
(iii) If B is another Mobius transformation preserving UHP, B(S(A)) = S(BAB™!).
(iv) $(A) and B(8(A)) are either disjoint, identical, or have intersection p~'(z) for
some z € UHP.

Suppose R = UHP/ G is a closed hyperbolic surface. Show that there is a natural
discrete action of G on K. Show that K/G is homeomorphic to the unit tangent
bundle 7' (R) of R.

Next, show that any orientation preserving homeomorphism (automorphism) « :
R — R induces an automorphism & : T(R) — T(R) of the 3-manifold T (R) =
K/G. Moreover, homotopic automorphisms «, oy of R correspond to homotopic
automorphisms &, @; of T(R). This result is attributed to Cheeger and Gromov —
see [Casson and Bleiler 1988, pp.54-55] for details. (Hint: Set x = p(x1, x2, x3) and
p(x) = (x, oy) where o, C ¢ is the oriented segment of length two, centered at x.)

1-22. Ideal tetrahedra. On dH?, choose any four distinct points z1, z2, z3, z4. Then
draw the six hyperbolic lines obtained by connecting pairs of points. Each triple of
points lies on the edge of a uniquely determined hyperbolic plane. The four hyperbolic
planes so obtained pairwise intersect in the six lines. The common exterior of these
four planes is a four sided solid called an ideal tetrahedron. It is uniquely determined
up to isometry by its four “ideal” vertices z1, 22, 23, Z4.

Now using the upper half-space model, send any one of the vertices to co. the
three faces meeting at oo now become vertical planes. The cross section obtained by
intersecting with any sufficiently high horizontal plane {r = N} is a euclidean triangle.
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Fig. 1.9. An ideal tetrahedron in the ball model. The dihedral angles are the same as the
angles of intersection of the circles on dH?* determined by the faces.

The three angles «, 8, y of that triangle are exactly the dihedral angles formed by the
intersection of the corresponding two planes. And of course « + 8+ y = 7.

Label the three other dihedral angles so that § is opposite 8, € is opposite y, and
o is opposite «. Any of the four ideal vertices can be sent to co. As a consequence
the six dihedral angles satisfy four equations. From this, deduce that « = p, B =y,
y = €. That is, the dihedral angles at opposite edges are the same. In addition, the
sum of all the dihedral angles is 2.

Show that the ideal tetrahedron is uniquely determined by the three angles «, 8, y
at the vertex oo up to similarity (z — az + b).

Taking thus one of its vertices at oo denote the other three ideal vertices by ¢, u, v,
all of which lie in C. These are the vertices of the ideal triangle forming the base of the
tetrahedron. Orthogonal projection to C takes this to a euclidean triangle with vertices
t,u,v. Assume the labeling is chosen so that ¢, u, v in order give the clockwise
orientation. Define

z1 = (t,u,v,00) =z,
2= (u,v,t,00)=(z—-1)/z,
i3 = (U,t,l/t,oo) = 1/(1_2)

Then z;z2z3 = —1 (which implies Y arg(z;) = 7) and z;220 — z1 + 1 = 0. Each z;
determines the other two.

Assign the numbers z1, z2, z3 to the vertical edges of the tetrahedron through v, 7, u,
that is, the three edges at co. Now apply a Mobius transformation to the tetrahedron
sending a different ideal vertex to oo and correspondingly obtain three numbers, using



1.6 Exercises and explorations 33

the same clockwise ordering. Show that the same three numbers appear as before and
an edge which runs between the original vertex and the new one placed at oo is
assigned the same number.

Conclude that ideal tetrahedra are uniquely determined up to isometry by three
complex numbers z1, 22, z3 that satisfy the two equations above: Starting at any vertex
the three edges there are labeled in clockwise order z1, z2, z3. Then the three opposite
edges are given the same labeling.

Show that an ideal tetrahedron is also determined up to isometry by the three
dihedral angles (which sum to ) along the three edges ending at an ideal vertex.
Conversely, given three positive angles which sum to 7, there is an ideal tetrahedron
with these as dihedral angles at an ideal vertex. The dihedral angles at opposite edges
of an ideal tetrahedron are the same.

It may happen that the four ideal vertices lie on a circle in S%. In this case the
“ideal tetrahedron” is degenerate: it lies in a plane. There are three patterns (up to
reordering) in which a proper ideal tetrahedron may degenerate, namely the possible
orders of the ideal vertices on the circle are (1234), (1342), (1423).

1-23. Volume of tetrahedra. Show that the volume of tetrahedra, like the area of
triangles, is uniformly bounded above.

An exact formula for the volume of an ideal tetrahedron is derived in [Milnor 1994,
§3] and [Ratcliffe 1994, §10.4]. The basic function involved is what Milnor calls the
Lobachevsky function,

o

0 2n
. 2 B 2n
ﬂ(e):—fo log|231nu|du:0< —log29+§ zn(an), ) (1.9)

where B, denotes the n-th Bernoulli number. The series, which is obtained by twice
integrating d>J1(0)/d6% = — cot6, converges for |#| < 7 although JI(0) itself is
periodic with period 7. For computations, one generally works with the infinite series.
The volume of the ideal tetrahedron with dihedral angles «, «, 8, 8, v, y (the opposite
dihedral angles of an ideal tetrahedron are equal) is

J(er) + JL(B) + JL(y). (1.10)

One can also compute the volumes of the regular hyperbolic polyhedra.

Of all hyperbolic tetrahedra, ideal or not, there is a one with the largest volume,
which is uniquely determined up to Mdbius equivalence [Milnor 1994, p. 200]. It is
the ideal tetrahedron whose vertices are the vertices of a regular euclidean tetrahedron
inscribed in S2. All its dihedral angles are 77 /3 and its group of orientation preserving
hyperbolic symmetries is the group of rotations preserving the euclidean tetrahedron.
Its volume is 1.0149. ... (The area of the ideal triangle is 77.)

There is a classical variational formula useful in studying deformations of hyper-
bolic polyhedra. It is called the Schléfli formula [Milnor 1994, p. 281]:

dV(P) = —% Z L(e) db,.
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Here P is a hyperbolic polyhedron of volume V (P), the sum is over all edges e of
P; L(e) is the length of the edge e and 6, is the interior dihedral angle along e.

1-24. Recall from Theorem 1.3.1 that if p is a point on a side of a triangle, there is a
point on at least one of the other two sides which is of distance at most log(1+ V2) =
arcsinh 1 away.

Show that something similar holds for hyperbolic tetrahedra in H?: there exists
C > 0 such that if X is a point on an edge of the tetrahedron, then the minimum
distance from X to the union of the other edges does not exceed C. Can you find the
optimal C? An analogous property is that there is a constant C > 0 such that if X is
any point in a tetrahedron, the minimum distance of X to an edge does not exceed C.
See Exercise 1-17.

1-25. We will build two more models of the hyperbolic plane, closely related to one
another, and explain their relationship to the conformal models introduced in this
chapter. For another approach, see [Cannon et al. 1997, Section 7].

We start with the plane C = R?, containing the unit circle S! and the real line R,
which we complete to RU oo (the boundary of the upper half-plane model). Let U be
the unique Mobius transformation of C U oo fixing —1 and 1 and taking oo to i; you
found its expression, U (z) = (z —i)/(1 —iz), in Exercise 1-1(iv). When restricted to
the real line, U can be thought of as stereographic projection from the point 7, that is,
it maps x e RUoo to

2x x2—1
X241 x2+1

Ux) = G ) = ( )eR=c;
the inverse stereographic projection from the circle to the line (compare Exercise
1-11) is (X1, X2) = x1/(1 — X3).

U conjugates the upper half-plane model and the disk model; in particular, the
orientation preserving isometries of the disk model can be thought of as elements
of UPSL(2, R) U~ ¢ PSL(2, C) — since we know from Exercise 1-1 that the ori-
entation preserving isometries of the upper half-plane model are the elements of
PSL(2, R).

The setup is completed by considering E'-2, which is R® with the inner product

(X,¥) =x1y1 + X252 — X3)3. (1.11)

(This is studied in detail in exercises 1-26 and 1-27.) The set of vectors in E'-? having
length 0 — that is, satisfying (X, X) =0 —is the light cone. The light cone corresponds
to the unit circle in R? via the usual projectivization map

~ X1 ~ X2
X1=—, Xp=—.
X3 X3
The name “light cone” comes from relativity. Vectors of “imaginary length” ((xX, X) <
0) are called timelike, those lying on the light cone are lightlike, and those of positive

length are spacelike.
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Now take a Mobius transformation A preserving R U oo and having normalized
matrix (f Z); recall that a, b, ¢, d are real. We associate to A the linear map A of El-2
given by the matrix
2(ad+bc) 2(ac—bd) 2(ac+bd)
= | 2(ab—cd) a*—b*—c*+d*  a’+b*—c*—d?
2
2(ab+cd) a?—b*+c*—d?>  a?+b*+c*+d?
Check that:

(i) A preserves the inner product of E!'2, and thus leaves the light cone invariant.
(Hint: Taking the inner product (1.11) of the columns of the matrix of A yields
zero if the columns are distinct and %1 if the columns are the same — the minus
sign appearing for the third column only. Thus the matrix is “orthonormal” for
the given inner product.)

(i) The map from the light cone onto itself defined by A induces on S! a map that
coincides with UAU~!.

(1ii) A also induces a map on the unit disk bounded by S' (since the set of timelike
vectors in E'? is also preserved by A and corresponds to the unit disk). This
map on the disk takes straight line segments to straight line segments.

The hyperboloid model of the hyperbolic plane is the (half-)hyperboloid with equa-
tion x12 + x% — x32 = —1, x3 > 0, with the metric induced from the ambient space
E'2. The projective model or Klein model of the hyperbolic plane is the unit disk in
R?, with the metric transported from the hyperboloid model by the central projection
map (xp, x2, x3) > (X1, X2)(x1/x2, x1/x3). We now justify these metrics and study
the basic properties of these models.

(iv) We first define standard maps from the upper half-plane (UHP) to the hyper-
boloid and projective disk. Given a point z in the upper half-plane, take any
nontrivial A € PSL(2, R) that fixes z; show that the corresponding linear map
A has a timelike 1-dimensional eigenspace in E'? that does not depend on the
choice of A. We take the intersection of this eigenspace with the hyperboloid as
the image of z in the hyperboloid model; likewise we take the projection of this
eigenspace onto the projective disk as the image of z in the projective model.

(v) Show that this standard map from UHP to the hyperboloid is an isometry between
the hyperbolic metric on UHP and the metric induced on the hyperboloid from
the ambient space E!-2. Thus the hyperboloid really is a model of the hyperbolic
plane. So s, trivially, the projective disk (since we defined the metric by pullback
from the hyperboloid.)

(vi) Show that hyperbolic lines are straight line segments in the projective model.
What are they in the hyperboloid model? What are the horocycles in the projec-
tive and hyperbolic models?

(vii) The orientation preserving isometries of the hyperboloid and projective models
are induced by the linear maps A, as A ranges over PSL(2, R). Work out the
special cases for A in standard form: x — x + 1, x —> A2 x, and x — (x cos ©+



36 Hyperbolic space and its isometries

sin ¢)/(—x sin ¢ 4+ cos ¢). For each case show that there is a 1-dimensional fixed
eigenspace and determine where it is. Identify what corresponds to the axes and
fixed points of loxodromic transformations, and to horocycles for parabolics.

(viii) The map U and the map constructed in (iv) take UHS to the disk model and the
projective model, respectively. Composing one with the inverse of the other we
get a map that fixes the boundary — see (ii) above. Show that its action of this
map on the interior of the disk —that is, the map that conjugates the disk and
projective models —is radial and corresponds to stereographic projection onto
a hemisphere, followed by orthogonal projection back to the unit circle.

(ix) Consider a hyperbolic polygon in the disk model of H? and then, as Poincaré
before you, take its counterpart in the projective model. Show that the property
that a vertex angle be < 7 is preserved, although the angle itself is not. Recover
Poincaré’s proof that all of the interior vertex angles of a hyperbolic polygon are
< mr if and only if the polygon is hyperbolically convex.

1-26. [Cannon et al. 1997, p. 66] The space E!:? of the previous exercise is called
Minkowski space. To thoroughly understand its metric and that of the hyperboloid
model, consider the situation in one dimension lower, taking the hyperbola x* —
y2 = —1in R? = E!. Suppose p(r) = (x(¢), y(¢)) describes the motion of a car
on say the upper sheet of the hyperbola. We can express the velocity vector as 1;’ =
k(t)(y(t), x(t)) for a scalar function k().

With respect to the inner product (p1, p2) = x1x2 — y1y2, the vectors p(t), p'(t)
are orthogonal, namely (p(z), p’(t)) = 0, just as they are with the euclidean metric.
But suppose the hyperbolic speed is one: (p’, p’) = 1, in other words that 7 is the
hyperbolic arc length parameter. This forces |k(¢)| = 1. Taking k = 1 we have the
coupled pair of differential equations x'(¢) = y(r), y'(t) = x(¢). We can solve these
by infinite series; in fact for suitable initial values, y = cosh¢, x = sinh¢.

Deduce that the restriction of the indefinite inner product to the hyperbola gives
a definite inner product on tangent vectors or points, specifically in the arclength
parameter and distance along the hyperbola,

(P'(t1), p'(r2)) = cosh d(p(11), p(t2)) = —(p(t1), p(12)).

1-27. We now consider Minkowski space in arbitrary dimension. The inner product
in E'"" s

n
(F,5) =D Xiyi = Xu1¥nt1,
i

where X = (x1, ..., X,+1). Two nonzero vectors are called orthogonal if (x, y) = 0.
A vector X is called timelike, lightlike, or spacelike according to whether |)_c'|2 =
(X, X) is negative, zero, or positive. The collection of lightlike vectors forms the light
cone {X : |X| = 0}; the upper sheet of the cone is denoted by L™} it is asymptotic to
the upper-sheet hyperboloid H" = {X € R"*! : |X]?> = —1, x,41 > 0}.
A ray from the origin in L™ corresponds to a point on dH" = §"~!.
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An n-dimensional hyperplane P with a spacelike normal vector v, namely P =
(x e EM o (¥ — E, v) = 0} for some E € P, intersects H" in a (n—1)-dimensional
hyperbolic subspace.

A plane P with a fimelike normal vector v # 0 intersects H" in a (possibly degen-
erate) (n—1)-sphere.

For the borderline case, a plane P with a lightlike normal vector v # 0 € L™
intersects " in an (n—1)-dimensional horosphere. There is a unique lightlike vector
v such that P = {X € E'" : (¥, v) = —1}. The ray of L* from the origin through v
corresponds to the point at oo of the horosphere. The corresponding horoball is

(XeH":0> (x,v) > —1}.

As v increases along its ray, the horoball contracts to its point at co. Because of
the peculiarities of the metric, the normal vector is simultaneously orthogonal to and
parallel to the plane P.

Now set n = 3. 3 is the space/time of relativity theory. Parabolic, elliptic, and
loxodromic Mobius transformations correspond to linear transformations conjugate
to the respective linear isometries:

1 01 —1 cosf —sind 0 0O cosf —sinb 0 0
010 sin cosf 0 0 sinf cosf 0 0
103 -1 0 0 10} 0 0 coshi sinha
105 3 0 0 01 0 0 sinhA cosha

A parabolic transformation has only one eigenvalue, which is 1, and preserves a single
ray in L*. A loxodromic has two eigenvalues not on the unit circle, which are cosh A4
sinh A (its other two are e*'?), and preserves two rays in L*. All the eigenvalues of
an elliptic lie on the unit circle; the eigenvalue 1 is repeated twice, the other two are
otif

Show that if x = Ax is parabolic with fixed point u € R U 0o, the corresponding
linear transformation fixes every point on the corresponding ray of the light cone L™
in E12;

2u ur—1
2y Tt

X 1 = 3.

If instead x — Ax is loxodromic with fixed points p, g, show that the corresponding
linear transformation fixes each point of the ray from (0,0, 0,) € L™ orthogonal to
the plane spanned by the two rays in the light cone determined by the fixed points.
There is expansion by the factor p? along the ray for the attracting fixed point, and
contraction by p~2 along the ray for the repelling one. In fact, it is best to work out
first the geometry for E!-2. For more detail see [Hodgson and Weeks 1994].

Explain why elliptic, parabolic, and hyperbolic transformations of H? are associ-
ated with ellipses, parabolas, and hyperbolas, respectively. (Each has an invariant
plane that cuts the light cone in the respective conics.)
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Here is an alternate way to view H%. Associate column vectors in E'-? with real
symmetric matrices as follows:

X1
X3 —X2 X1
X2 <> .

X1 X3+ X2
X3

Again let A be a normalized 2 x 2 matrix with real coefficients. Consider the action

X3 — X X X3 — X X
3—X2 1 oA T 1 Al
X1 X3+ X2 X1 X3+ x2
which preserves the determinant —(xf + x% — x32). Relate this action to the action of

A in Exercise 1-25.

Passing on to E!+3, associate vectors with hermitian matrices as follows:

X1

X X4 — X X2 +ix
2 4 .1 2 3 ‘
X3 X2 —1X3 X4+X1

X4
Let A be a normalized 2 x 2 matrix now with complex coefficients. It acts on E!3 by
x4—.x1 X2 +1ix3 s A X4—‘x1 X2 +ix3 Al
X2 —1X3 X4-+Xx1 Xo —I1X3 X4-+X1
which leaves the determinant —()cl2 + x% + x32 — xf) invariant. Show that the action
preserves H (the upper sheet of the hyperboloid). Show that this is the action brought

over from C U oo to E*? by stereographic projection and homogeneous coordinates.
See [Weeks 1993] or [Greenberg 1962] for more details.

1-28. The quaternion description. Upper half-space can be neatly described by the
division ring of quaternions. Quaternions can be identified with the group of matrices

Q:{( lf ?):u,ve@}
-0 u
as follows. Set

= (50 = ) =(0 ) = (0 0),

Thenij =k, jk=1i, ki = j. Also i> = j> = k* = —1. Writing u = u; + ius,
v =v; +1ivy, set
u v , . .
(_1_) 12) =uituyi+vij+wnk =utvj.
Forz =u+vj € Q, define 7 = it — vj, and |z| by |z|> = |u|> + |v|>. Note that for
ceC,cj=jc.
Points in R® can now be denoted as the special quaternion z =z+1j,z€C, t € R.
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Given (‘Cl Z), with ad — bc =1, a, b, ¢, d € C, show that the action of the corre-
sponding Mobius transformation in upper half-space is described by

A(z) = (az+b)(cz+d)" = (zc+d) ' (za+b),

where the quaternion A(z) is of the same special type as z. For details see [Ahlfors
1981], [Beardon 1983] and [Fenchel 1989].

1-29. Let T : 1" — €17 be a (not necessarily orientation preserving) linear trans-
formation that maps the (upper-sheet) hyperboloid H" onto itself and preserves the
inner product:

(Tx, Ty)=(x,y).

Prove the following necessary and sufficient condition for 7 to be of this type,
where M is the matrix corresponding to 7':

M'JM=J and M, 41 >0.

Then prove that T acts isometrically on ", and that the only isometries of H" are
of this type. See [Cannon et al. 1997] if you need help.

1-30. Relation of hyperbolic and euclidean metrics. Suppose f : D — Q is a confor-
mal mapping from the unit disk. The hyperbolic or Poincaré metric in 2 is defined
to be

21f d
pLuldul = 1|J:|(;)<|zl>|i|'

The Riemann map f is uniquely determined only up to postcomposition by Md&bius
transformations, but such compositions do not change the metric in €2. Prove using the
Koebe A—{—Theorem from conformal mapping theory (see [Pommerenke 1992, 4.6(6)])
that

2dw. o ~ P W= Jwany

where d(w, 0€2) is the shortest euclidean distance from w to the boundary of .
Equality on the left holds if and only if the complement of €2 is a ray to oo in a line
through w. Equality on the right holds if and only if €2 is a round disk centered at w.

Suppose instead that 2 C C is a multiply, possibly infinitely, connected region
whose complement contains at least two points (plus oo). That is, assume that
carries a hyperbolic metric p(w) |dw| that arises from projection from the unit disk,
its universal cover (see Chapter 2). According to [Beardon and Pommerenke 1978],
[Pommerenke 1984] there exists C = C(£2) > 0 such that

dw. o =W = gy (1.12)

if and only if X = 02 has the property called uniformly perfect.
The notion of uniformly perfect is really directed to multiply connected regions as
when 2 is simply connected # C we already know that Equation 1.12 holds with C =



40 Hyperbolic space and its isometries

1/2. Yet it simplifies terminology to simply declare that closed, connected sets X € S?
with more than two points are automatically uniformly perfect (their complementary
components are simply connected).

So consider closed sets X C S? that are not connected. Then X C S? is called
uniformly perfect [Beardon and Pommerenke 1978; Pommerenke 1984] if there ex-
ists a constant M < oo such that any annular region A C S?\ X that separates the
components of X has modulus mod(A) < M. Here mod(A) = (logr)/2mw where
f:A— {1 <|z| <r}is aconformal map. The uniformly perfect condition relates to
arequirement that X be “uniformly thick” at each of its points, independent of scaling
by Mobius transformations. For example if X contains an isolated point, there would
be a separating annular region of arbitrarily large modulus.

If X is uniformly perfect, the boundary of any multiply connected complementary
component is uniformly perfect as well.

An equivalent condition is that X is uniformly perfect if for every a, b € X and
w ¢ X there exists ¢ € X such that for some constant M the cross ratio satisfies

1
— <|(a,b,c, <M.
M_I(a c,w)|

Most importantly for us, the limit set A(G) of any finitely generated (nonelemen-
tary) kleinian group G is uniformly perfect [Pommerenke 1984]! Therefore each
component 2 of the complement 2 (G) satisfies Equation 1.12 for some C = C(£2).
On the other hand, there exist infinitely generated Schottky groups whose limit sets
are not uniformly perfect. See Chapter 2 for the basic properties of kleinian groups.

1-31. Anti-Mobius transformations. An anti-Mobius transformation A can be ex-
pressed as A = BoJ, where J is complex conjugation and B is orientation preserving.
Show that in S%, A either pointwise fixes a circle, or it has zero, one or two fixed
points. Examples:

1 _ _
==, > —=4+1, z—>2741, z+2Z.

Z

IS TR

The extension of A to open upper half-space pointwise fixes a plane, a line, or a point.

A finer classification [Fenchel 1989, pp. 48-53] has the possibilities grouped in
three conjugacy (by an orientation preserving transformation) classes. The first two
are called involutive since the elements have order two. The third conjugacy class
consists of elements 7 with the property that T2 is loxodromic or parabolic. These
arise as described below.

To understand the classification, we have to anticipate the result of Lemma 7.3.1
that a loxodromic or parabolic transformation has a square root which is a Mobius
transformation of the same type. From Lemma 7.1.2 we take the result that any
Mobius transformation that interchanges two distinct points in S? is elliptic of order
two. Fenchel’s classification is as follows:

Reflection in a plane: Reflection J in a plane in H?.
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Reflection in a point ¢ € H*: Suppose ¢ = (0, 0, t) in the upper half-space model of
H3. Let £ denote the vertical axis and P be a plane through ¢ and orthogonal to
£. The point-reflection in ¢ has the form J o E where E is the elliptic of order
two E : (x, y,t) — (—x, —y, t) with rotation axis £ and J is reflection in P.

Noninvolutive anti-Mobius transformations: Let T? be loxodromic or parabolic and
pick a square root 7. Choose any x € S? distinct from its fixed points and set
y = T~ (x), z = T(x) so that the three points x, y, z are distinct. Let 7 ¢ H?
be the line with endpoints y, z and let P be the plane orthogonal to T whose
boundary passes through x. Let J denote reflection in P. Then 7o J = E
interchanges x, z so that it is elliptic of two with rotation axis £ C P. Thus
T=EolJ.

Show that an elliptic of order two is itself the composition of reflections in two
orthogonal planes intersecting in its rotation axis.

Given two distinct circles Cy, C, € S?, show that there is a circle C* such that
reflection in C* interchanges C; and C5.

1-32. Hilbert’s metric. Let 2 be a bounded, euclidean convex domain in R”. Then
every euclidean straight line that contains a point of €2 intersects its boundary 9€2 in
exactly two points. Given two points x, y € 2, denote by x’, y’ € IR the two points
of intersection of the line L through x, y with 9€2, so labeled that x separates x’ from
y along L. Consider the expression

/ /
d(x. y) = log = ylly =«
|x —x[|y = ']

Show that €2 is a complete metric space with metric d( -, - ). The geodesics in this
space are the euclidean line segments.

An affine map of R" sends the metric to the Hilbert metric of the image domain. It
turns out that d(-, -) is a riemannian metric on €2 if and only if €2 is an ellipsoid and
d is the hyperbolic metric on €2, here considering €2 as the Klein model of H".

Show that if d€2 contains a straight line segment, then two rays from any point
O € Q to different points on the line are of uniformly bounded distance apart.

1-33. Hyperbolic curvature of arcs. Suppose z =z(t) = x(t)+iy(t) is a parametrized
arc in H?, —m < t < m, with continuous second derivative. In euclidean geometry,
the parameter ¢ is an arc length parameter if and only if |z'(#)] = 1. In hyperbolic
geometry, in the upper half-plane model, ¢ is arc length parameter if and only if

2O _
y()

In euclidean geometry with arc length parameter s the curvature of z = z(s) is
defined as

1, —-m<t<m.

. Ag|
— 1 .
els) = lim
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Here Ap = ¢(s + As) — ¢(s), where the slope of the tangent line at the point z(s) is
tan ¢ (s) and correspondingly tan ¢ (s 4+ As) at z(s + As).

In hyperbolic geometry, the curvature is defined by exactly same formula but the
meaning of the terms is hyperbolic: s is the hyperbolic arc length parameter and Ag
is the angle between the hyperbolic tangent lines at z(s) and z(s + As).

Another characterization valid in both the euclidean and hyperbolic situations is
this: About the point s = 0 take the local coordinate system determined by the tangent
vector « to the curve at s = 0 and the normal B to the curve at that point. In this new
coordinate system the curve ¢ = ¢(s) has the expansion

2
> §7 =
§(s) =sd+1c(0) 5B+ 0(s?).
Using Exercise 1-19 confirm that the curvature of a geodesic is zero.

Curvature of a horocycle. In the upper half-plane model, consider the horocycle
z(t) =ai+t, a >0 (which is already in euclidean arc length parameter). In hyperbolic
arc length parameter, the equation is

z(s) =ai +as.

Along the horocycle, aAs = Ax. So it suffices to compute the limit of %. Actu-
ally it suffices to take the case a = 1.

The hyperbolic tangent lines to {z : Imz = 1} are the semicircles with center on
R and unit radius. Because the horocycle is invariant under the continuous group of
translations, it suffices to make the computation at say s = 0. To do this take the unit
semicircle centered at z = 0 and the semicircle centered at z = Ax. Find their point
of intersection, and then find the angle between them at this point (choose the angle
so that it would be zero if the two tangents coincided); this is our Ag. Taking the
limit as Ax — 0 we find (in sharp contrast to the euclidean case) that

curvature of a horocycle = 1.

Curvature of an equidistant arc. In the upper half-plane model measure distances
from the vertical half line. Consider the line y = cx, ¢ > 0, making angle 6 with the
vertical. In its hyperbolic arc length parameter,

Z(S) = cos&ei(ﬂ/279)

where ¢ = cotf. The line is invariant under the continuous group z — kz, k > 0, so
it suffices to make the computation at (m, mc) where m = sin6. Find the angle of
intersection A¢ between the hyperbolic tangent lines at (1, cm) and e* <% (m, cm).
Show that at the point s = 0,

Ay

As

cos 0

lim =
As—0 C

Conclude that

curvature of a line of distance d from a geodesic = tanhd = sin6. (1.13)



1.6 Exercises and explorations 43
For example, the 45° line has curvature 1/ \/5

Curvature of a circle. In the unit disk model, consider a circle of euclidean radius R
about the origin. In hyperbolic arc length coordinates starting from (R, 0) its equation
is

2(s) = relSU—R*)/2R)

Take the geodesics tangent to the circle at z = R and at z = Re'?. Find their point of
intersection (xg, yo) within the unit disk and then their angle ¢ = ¢ () of intersection.
After a long calculation, for example by calculating limg_.¢ ¢/6, one finds

do 1+ R?
b, " T-R
Because the circle is invariant under the continuous group of rotations, it suffices to
make this calculation at a single point.
Note that
dp 1—R>dy
ds 2R do

The hyperbolic radius p satisfies e” = (1+ R)/(1 — R) so that coth p = (1+ RZ)/ZR.
We end up with the following formula (compare Section 1.4):

curvature of a circle of hyperbolic radius p = coth p. (1.14)

In both 1.13 and 1.14, the curvature approaches 1 as R — 1 or p — co. Why?

Summary:
<1 <= curves of finite distance from a geodesic,

constant curvature § =1 <= horocycles,
> 1 <= circles.

In H? consider a surface of distance d from a hyperbolic plane. The nearest point
map that projects the surface to the plane scales hyperbolic distances by a factor
1/ coshd. Conclude from this that:

Gaussian curvature of a surface of distance d from a plane = — sech® d.
Also deduce:
Gaussian curvature of surface of distance d from a line = 0.

1-34. Conjugation by involution: Wada’s Lemma [2003]. Suppose A, B are two
Mbobius transformations which do not share a fixed point. If A and B are conjugate,
show that there is a Mobius transformation Q, with Q% = id, such that A = QBQ.
That is, show that A and B are conjugate by an involution.

Hint: For the parabolic case take A = (). If B= XAX "', set Y = XT where
T =(,!)- Note that YAY ! = B.
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1-35. Parametrization of two generator groups with parabolic commutator [Jor-
gensen 2003]. Assume that the matrices X, Y satisfy the relation [ X, Y11= (_(1) :?)
Introduce the notation

a=twX, b=tY, c=tuXY'=ua¥Y'X, J=uXY.
Applying Lemma 1.5.6, these quantities are connected by the relations
abc=a> +b*+c*, o =a®+ b

These relations are symmetric with respect to ¢, ¢’, that is, abc’ = a?+b*+c2. If one
of the traces a, b, c is zero, that element represents an elliptic of order two. If two of
the traces are zero, say a = b = 0, then ¢ = 0. If none of the traces are zero,

a b c a b c
+ — 4+ 1 + — + —. (1.15)

% ac E - E ac’ ab

Complex numbers u, v, w that lie on the hyperplane
P = {wv,weC utv+w=1}

are called complex probabilities. From our perspective, the singular subset ¥y € 3
is the union of the three coordinate lines:

Yo ={(u,v,w), u+v+w=1:u=00rv=00rw=0}.

Note that 3 \ X is connected.

We are now ready to parametrize two generator groups with parabolic commutator
by complex probabilities. Confirm the following facts.

Suppose u, v, w € C are nonvanishing numbers such that u + v+ w = 1. Set

d=——, a=+~ud, b=+vd,
uvw

where the arguments are chosen so that —m < arg d, arg a, arg b <. Choose arg ¢
so that

c=~wd
satisfies
abe = Vudvvd~vwd =d.
Set
() () e
Then

y—ly _ (1 2 1 [c —1Jc Sy c 1/c
XYXY_(O—I’XY_CO’YX_—CO’

and trX =a, trY = b, and r XY ! = ¢ with a, b, ¢ # 0. Conversely, if X and Y

satisfy [X, Y11= (_(1) j), and the numbers a = tr X, b=trY and c = tr XY ! are
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nonzero, and XY ' (0) = oo, then X and ¥ ~! have the matrix representations (1.16).
In summary,

trX=a, tr¥Y=b wXY '=c,

a b c 1 1 1
9 w=——, a2: 9 b2: N 02:_, abC:_,
bc ac ab vw uw uv uvw

a?+b*+ct=abe, ut+v+w=1.
And in the opposite direction:
Lemma 1.6.1. Set K = (_(1) :%) Suppose the matrices X, Y satisfy
Xy 'x7'y = Kk,

and the transformation corresponding to X does not fix oo. Then X and Y~ have the

form
x - (* * y-1 — x %
™ *x )’ —1y %)

Proof. As usual, all matrices have determinant one. Set

X = a b s Y_l = o ﬂ .
c d y 4
Replace X and Y ! by the conjugates WX W~ and WY ~'W~!, where W = (j “/),
so that WX W ~1(0) = oo; conjugation by the translation W leaves K unchanged and
it also leaves the entries ¢ and y in the matrix for X and ¥ ~! unchanged. The identity

XY~! = KY~'X gives the four equations

cBf=—-by, ca=-—ay—cd, aou-+by=—au—cB—2ay —2c6,
ap +bs = —ba —2by.

Substituting the first and second into the third we wind up with either c =a = tyx or
o = 0. In the former case, —y =a+d6 =1y and f = —ry/rf(, since bc = —1. With
the normalization X (0) = oo, leaving aside the formulas for «, §, we have

X = (TX _1/”‘) Yy~ = ( * _TY/T?Z‘). (1.17)
TX 0 —Ty 1)

Suppose instead o = 0. Using the fact bc = —1 and By = —1, we find from the first
equation that ¢> = —y2, or y = %ci. The second equation becomes ay + ¢8 =0, or
8 = Fai; in other words ty = Frtxi. The fourth equation becomes af + béd = —2by
and upon rewriting in terms of ¢ and « yields ¢ = a = tx. Putting it all together we
actually have a special case of (1.17),

X — (‘EX —l/fx)’ Y_l _ ( 0 1/1’y>.
Tx 0 —Ty Ty

In this case Y ~' X and XY ~! represent the order two elliptics z +— —z and z > —z+2.
O
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The bottom line is that given the traces of generators X, Y, plus the trace of XY 1,
plus the condition that the trace of the commutator is —2, the group is uniquely deter-
mined up to conjugation. Moreover, by the trace identities, the trace of any element
of (X, Y) is a polynomial in the initial traces. The systematic method for doing this
uses the modular diagram and the Farey sequence; it is spelled out in [Mumford et al.
2002].

1-36. Suppose the Mobius transformations A, B are such that [A, B] is parabolic.
Assume that A, B, C = BA all have real traces. Show that for some Mobius T,
the entries of the normalized matrices for TAT ', TBT~! are real. Consequently
the group T (A, B)T~! preserves the upper half-plane. What if [A, B] is instead
elliptic? Show by modifying Jgrgensen’s method of complex probabilities that the
same conclusion holds.

1-37. Two-jets of locally injective analytic functions. Suppose f(z) is a locally injec-
tive analytic function (that is, f'(z) 7 0) in a neighborhood of zy € C. Show that there
is a Mobius transformation M (f; zo) uniquely determined by the three properties:

M(f:20)(z0) = f(z0), M(f;20) (z0) = f'(z0), M(f;20)"(z0) = f"(z0).

The value of the first two derivatives of f at zg is called the two-jet of f at zg. If A
is any Mobius transformation, M (Af; zo) = AM(f; zo).
Thurston [1986d] showed that for any v # 0 € C,
2

N N P
08 (z0) = v((f?) -5(%) ) — M5 Mz )
Here S¢(zo) is called the schwarzian derivative (Exercise 6-8).

Suppose now that f : UHP — C is a conformal map. There is an extension F of
fto H3, taken as UHS, determined as follows.

Denote by P C H? the vertical half-plane rising from R. Identify P with UHP
by orthogonal projection. Given x € H?, let £, be the geodesic through x that is
orthogonal to P. Denote by r(x) its intersection with P =UHP.

Set

t=0,z=z0

F(x)=M(f:r(x)).

Show that F is continuous. It is also equivariant if f is so: Suppose G is a fuchsian
group acting on UHP, and on H3, and f satisfies forall y € G, foy = ¢(y) o f,
where ¢ is a homomorphism of G to another group, not necessarily discrete. Then

M(f;r(yx)=¢()M(f;rx)y ",

and consequently F oy = ¢(y) o F. Although F is not necessarily a local home-
omorphism, there exists d > 0 such that F is a local homeomorphism outside of a
distance-d neighborhood of P. See [Bromberg 2000] for details.

1-38. The hyperbolic Gauss map. Suppose S C H? is a smoothly immersed, oriented
surface in the ball model. Given ¢ € S let n¢ denote the geodesic ray normal to S at ¢
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and denote its endpoint on S? by n(¢). Epstein [1986] defined the hyperbolic Gauss
map by G(¢) =n™"(¢), for ¢ € S There is a uniquely determined horosphere o (¢)
based at n(¢) that is tangent to S at ¢.

If we reverse the orientation of § we get another Gauss map n~ (¢) that sends ¢ to
the “other” side of S?>. When S is smoothly embedded and its principal curvatures
satisfy ky, k; < 1, the maps n™, n~ are diffeomorphisms to disjoint open sets in S°.
The composition n~ o (n™)~!is a kind of “reflection” in S C S?. The situation is
studied in detail in [Epstein 1986].

1-39. Fricke’s Lemma (see [Magnus 1980] for the history and a proof). Let A, A;, A3
be Mobius transformations. With Magnus introduce the notation

Xy =trA,, Yw=trAA,, Zyuo =trA,A,A,,
P =x1y23+x2y13 +x3y12 — X1X2X3,
Q = x{ 4 X3 +X3 + Yia + ¥i3 Va3 + Y12Y13Y23 — X1X2)12 — X1X3Y13 — X2X3)23 — 4.
Prove Fricke’s Lemma, namely the formula

P=zip3+z132, O =21232132.
In other terms, 7123 and z13; are the roots of the equation 22— Pz+0Q0=0.

1-40. Finer properties of isometric circles. The following properties have proved very
useful in Jgrgensen’s hands in analyzing one and two generator groups.

Lemma 1.6.2. Let A and B be Mobius transformations on S* and let J, B be as in
Section 1.5.

(1) B(B) covers a set o on the isometric plane or circle J(A) if and only ifB(BA‘l)
covers A(o) on the isometric plane or circle J(A™.

(i) If the circle J(B) is internally tangent to J(A) at the point x, then J(BA™Y) is
externally tangent to J(A™") at A(x).

(iii) J(A), I(AB), J(B) have a common point x if and only if J(A), J(AB~1), I(B™1)
have a common point B(x).

@iv) Suppose J(By),...,J(B,), n > 3, go through a point x, and that U’f B(B;)
covers a neighborhood of x. Then for each k, the circle J(B, Y and every circle
J(B; Bk_l),fori # k, pass through By (x), and the union of their interiors covers
a neighborhood of By (x).

(v) The sum of the excesses (see below) of the three pairs of isometric circles (A, B),
(A7, BA™YY and (B, AB7Y) is 121 — 2(A1 + A2 + A3), where Ay, A2, A3 are
the exterior angles of intersection of each of the three pairs of circles.

If two circles bound overlapping open disks, the overlap is bounded by an arc of
each one. The excess of the pair is defined as the sum of the (euclidean) central angles
subtended at the center of the two circles by the complements of the arcs. If the circles
do not intersect at all, the excess is defined as 4.
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Proof. Properties (1)—(4) follow from the chain rule,

B'(2)

A'(2)

For z € o we have |A’(z)| = 1 and |B’(z)| > 1, so [(BA~')(Az)| > 1. Conversely,
if (BA™")(Az)| > 1 and |A’(z)| = 1, then A(z) € J(a) and necessarily |B'(z)| > 1.
Assertions (3) and (4) are consequences and (2) is a limiting case.

For (5), the key step here is to remember a theorem from high school geometry.
Consider a closed arc o on a circle. Draw the rays from the center to its end points.
Let 26 denote the angle they subtend. Choose a point { on the circle, but not on o
and draw the lines from ¢ to the end points of o. Then the lines from ¢ subtend the
angle 6 with o. In the limiting case that one of the end points of o approaches ¢, the
angle 6 approaches the angle between the remaining line from ¢ and the tangent to
the circle at ¢.

Next, suppose B(A) N B(B) # @. Let o4 denote the arc J(A) N B(B) and op
the arc J(B) N B(A). Let 6; denote the angle subtended at the center c(A) by the
complementary arc J(A) \ o4 and 6, subtended at c(B) by J(B) \ op. The excess at
this intersection is, by definition, 6 + 6,.

Draw the straight line ! through the two points J(A) NJ(B). For ease of reference
assume / is a vertical line. Choose one of the points of intersection ¢ and draw there
the tangent lines to the two circles. Let A3z denote the exterior angle of intersection
of the two circles, that is, the angle between the two tangents that lies exterior to
both circles. We claim that the angle between / and the tangent line to J(A) is 6;/2
and correspondingly that between [ and J(B) is 6,/2. This is a consequence of the
limiting case of the high school theorem presented above.

Summing the angles at { shows that %91 + %02 + A3 =2m.

Now pass on to the next pair of intersecting circles, J(A~!) and J(BA™!). Let 041
and o 4-1 denote the arcs J(A~H) N B(BA™!) and J(BA~') N B(A~!). Recall that
J(A) has the same radius as J(A~!) and that A is a euclidean isometry from the former
to the latter. This means that the angle subtended at c(A~") by the complementary
arc J(A™1) \ 04-1 1s again 6. Let 65 denote the angle subtended at c(BA™Y by the
complementary arc J(BA™')\ o5 4-1. Denote the exterior angle of intersection of the
two circles by A,. Again we find that %01 + %03 + Ay =2m.

Once more, carry out this construction for the intersecting circles J(B~!) and
J(AB~"). The angle subtended at c(B™") is now 6, while the angle at c(AB™h
is 63. If 1| denotes the exterior angle of intersection of the circles, we find as before
that 36, + 103 + Ay = 27.

Putting the three calculations together we conclude that the rofal excess is

(BA™YY(Az) =

201 + 60,4+ 03) = 120 —2(A1 + Ao + A3).

In the limiting case that the circles do not cross each other, the total excess is 3 x 4.
n
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Discrete groups

This chapter introduces the related notions of discreteness and discontinuity, limit
set and ordinary set. We establish the connection between discrete groups of Mobius
transformations and hyperbolic manifolds and orbifolds. Some classical special cases
of discrete groups are presented: elementary groups (which we classify), fuchsian
and Schottky groups. The chapter includes crash courses on covering manifolds,
Riemann surfaces, and quasiconformal mappings. The first two of these topics help
us understand the boundaries of the 3-manifolds, while the latter shows us how to
make controlled deformations of them.

We start by recalling some notions from group theory. Two groups G, H of Mobius
transformations are said to be conjugate if there is a Mobius transformation 7' such
that G = THT~'; in other words G is the group consisting of the elements ThT !,
for h € H. As we did with single Mobius transformations in Chapter 1, we will
often find it convenient to “normalize” a group of transformations, replacing it by a
representative of its conjugacy class for which we stipulate some propitious property.

If A, B are Mobius transformations, (A, B) denotes the group generated by A and
B and (A) the cyclic group generated by A.

A group is forsion-free if no element apart from the identity has finite order. Thus
a torsion-free group of Mobius transformations is one that has no elliptic elements.

If a group G acts on a set X, the stabilizer of a subset ¥ C X under G is the set

Stab(T) = Stabg () = {g € G : g(T) = =},

The case that interests us is where G is a group of Md&bius transformations and X is
a subset of S2.

2.1 Convergence of Mobius transformations

Lemma 2.1.1 (Convergence of Mobius transformations). Suppose {1} is an infinite
sequence of distinct Mobius transformations such that the corresponding fixed points
Pn» qn converge to p,q € S%; here either p, = q,, or T, is elliptic, or p, is the
repelling and g, the attracting fixed point of T,,. There is a subsequence {T}} with one
of the following properties.

49
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(1) There exists a Mobius transformation T such that lim Ty (z) = T (z) uniformly
on H3 U S? (considered with the euclidean metric), or equivalently, Ty — T for
suitable choices of the associated matrices.

(i1) lim Ty (z) =q for all 7 # p, uniformly on compact subsets ofl]-[l3 U(S*\{p)). Also
lim kal (z) = p for all z # q, uniformly on compact subsets of H> U (S*\ {¢}).
Possibly p =q.

Examples: {z +n}, {k"z}, {¢//"z}, {a’z+n(1—d?)}.

Before proving the lemma, we state as a corollary a stronger form of Montel’s
famous theorem on “normal families” (the original version requires three omitted
values).

Corollary 2.1.2. Suppose {T,} is an infinite sequence of distinct Mobius transfor-
mations and U C S? is a connected open set. Suppose there are two distinct points
21, o in S? such that T,(U) avoids ¢y and &, for all n. Then there is an infinite
subsequence {T,,} which converges on U, uniformly on compact subsets, to a Mobius
transformation or to a constant.

Proof of Lemma 2.1.1. Assume that {T,} is a sequence whose fixed points converge
as described in Lemma 2.1.1, and assume it has no subsequence which converges to
a Mobius transformation.

Case 1: p # q. Choose ¢ € C distinct from p, ¢, p,, g, for all n. Set R,(z) =
(z, ¢, pu> qn) so thatlim R, (z) = R(z) = (2, ¢, p, q), uniformly on S2.

The transformation S, (z) = R, T, R, I(2) fixes 0, oo and has the same convergence
properties as {7,}. We have for large indices S,(z) = a,z with |a,| > 1. If |a,]|
is bounded for infinitely many indices then a subsequence converges to a Mobius
transformation. Otherwise there exists a subsequence {S,,} for which lim a,, = co. In
this case, {S,,} converges uniformly to oo outside any given neighborhood of z = 0.

Case 2: p =q. Choose {1, {2 # qn, q and {1 # §o. Set Ry (2) = (2, &1, 2, gn)- Again
limR,(z) = R(2) = (2, ¢1, &2, q). Set S,,(z) = R, Tan_l(z). This fixes co and has the
same convergence properties as {7,}. So S,(z) = a,z + b,; the other fixed point of
Sy is —by, /(a, — 1). If for a subsequence lim b,, = b # oo, then lima,, = 1. In this
case lim S,,(z) = z + b. If instead lim b,,, = o0, rewrite S, as

a, — 1)z
S () = b (—( m = +1> bz
b
Since lim(a,;, — 1)/b,, = 0, we have lim S,,,(z) = oo for all z. As for the inverse,

b, [ z
Sly="(=>=-1).
m (2) am(bm )

Because
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and lim b,, = oo, we find lima,, /b,, = 0. Therefore lim §,, (z) = oo as well, for all
zeC. O

Proof of Corollary 2.1.2. Let {T,} be a convergent sequence as in Lemma 2.1.1.
Suppose the limit is not a Mdbius transformation. Then lim 7,,(z) = ¢ uniformly
outside any given neighborhood of p.

Case 1: p #qg. We may assume that p =0, g =0c0. If 0 ¢ U, Corollary 2.1.2 is true.
If 0 € U then p,, € U for all large indices. We show that then, for all large indices,
the equation 7,,(z) = 0 has a solution in U. For choose a disk D C U centered at 0.
Given a smaller concentric disk Dy, the fixed points {p,,} are contained in Dy for all
large indices, while the {g,,} are in the exterior of D. The image disk 7, (D) contains
pm but not g,,. And lim,,—  T;,,(0 D) = oco. Therefore T,,(D) covers 0, and in fact
any given point ¢ € C, for all large indices.

In sum, if p € U, then p # ¢y, ¢. Furthermore, if ¢; # oo, T,,,(D) covers {¢;} for all
large indices, in contradiction to our assumption. We conclude that p ¢ U, in which
case there is a subsequence converging uniformly on compact subsets to g.

Case 2: p=qg. We may assume that p =g = oco. Choose a disk D centered at 0o so that
at least one of the points ¢; does not lie in D. Since lim 7, ! (z) = oo, uniformly in the
complement of D, we have in particular 7, ! (¢;) € D for all large indices. Therefore
T,,(D) covers ¢; for all large indices. Once again we conclude that p = oo ¢ U so
that {7, } converges uniformly to co on compact subsets of U. U

The example of the powers of a loxodromic transformation acting on the comple-
ment U of its attracting fixed point shows that the hypotheses of Corollary 2.1.2 are
best possible.

We also include in this section the following elementary fact.

Lemma 2.1.3. If g is loxodromic and h exchanges the fixed points of g, then h* = id
(tr(h) = 0).

Proof. In any case h” fixes the fixed points of g. But 4 has its own fixed point or
points which 1 fixes as well. O

2.2 Discreteness

In this section we begin our study of groups of Mobius transformations. A group G of
Mobius transformation is discrete if there is no infinite sequence of distinct elements
in the group that converges to the identity. Using Lemma 2.1.1 we see that each of
the following conditions is equivalent to discreteness.

(1) No infinite sequence of distinct elements of G converges to a Mobius transfor-
mation.

(i) G acts properly discontinuously in H3: Given any closed ball B C H?, the set
{g € G:g(B)NB # I} is finite.
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(iii) G has no limit points in H3: Given ¥ € H?, there is no point y € H*® with an
infinite sequence of distinct elements {g,} in G such that lim g, (y) = X.

Proper discontinuity implies that discrete groups have at most a countable number
of elements. To see this, exhaust H> by a countably many closed balls V; C V> C - - -
centered at some point O € H3. For each i, enumerate the at most finitely many
elements g € G for which g(0) € V;.

A group G is called elementary if and only if it preserves one point or a pair of
points on S?, or a point in H3. An equivalent definition is that a group is elementary if
and only if any two elements of infinite order have a common fixed point; see Exercise
2-1.

It is difficult to determine whether the group generated by a given set of elements is
discrete. An algorithm for deciding discreteness of two-generator groups in PSL(2, R)
is presented in [Gilman 1995]. The best general result is the following necessary
condition.

Jorgensen’s Inequality [Jorgensen 1974b]. If G = (A, B) is discrete then
|t? (A) — 4|+ |w (ABA™'B™") 2| > 1, (2.1)
except in the following three cases, which are elementary groups:

(i) G cyclic or a finite abelian extension of a cyclic group and |tr*(A) — 4| < 1.
(ii) A is loxodromic or elliptic with [tr2(A) — 4| < % while B interchanges the fixed
points of A.
(iii) A is parabolic while B is parabolic or elliptic of order 2, 3, 4 or 6 and fixes the
fixed point of A.

Note that the left side of (2.1) depends continuously on the Mobius entries.

The inequality is often applied to show the impossibility of a situation that (A,, B,)
remains nonelementary while lim A,, = id.

Jgrgensen went on to draw the following conclusion [1977b].

Corollary 2.2.1. A nonelementary group G is discrete if and only if every two-
generator subgroup is discrete.

If G preserves a disk in S?, then G is discrete if and only if every one-generator
subgroup is discrete, that is, if and only if there are no elliptic transformations of
infinite order.

In contrast, if a nonelementary group H is not discrete, Leon Greenberg [1962]
proved that its closure in PSL(2, C), that is the set of all Mdbius transformations
which are limits of elements of H, is either the full group PSL(2, C) or it is the group
of all Mobius transformations which preserve some round disk in S2.

Proof of Corollary 2.2.1. Assume G is nonelementary. We will see below (Corollary
4.1.5) that if all elements in G are elliptic, then G is elementary with a common
fixed point in H3. Assuming this, there is a loxodromic or parabolic element B in



2.2 Discreteness 53

G and an element C which neither shares a fixed point with B; nor interchanges
the fixed points p, g of By, if loxodromic. Then the fixed points C(p), C(g) of the
loxodromic or parabolic By = C B1C~! are distinct from p, q. For all n we have
B (C(p)) # C(p) and B{(C(q)) # C(q), yet these points are as close as we please
to one of p, g. Therefore for some n the fixed points of B3 = By B,B; " are distinct
from those of both B;, B;. That is, the three loxodromic or parabolic transformations
B1, By, B3 have mutually distinct fixed points.

We claim that By, B, B3 can be replaced if necessary by three other transforma-
tions with distinct fixed points, so that all of them are loxodromic. To confirm the
claim, it is enough to show that B; and B, can be chosen not to be parabolic. This is
a consequence of the following argument.

If X, Y are parabolic without a common fixed point we may assume X = (1 1) and

01
Y= (“ b) in normalized matrices. Then tr(X"Y) =a+d +nc, so that Z = X"Y will

be loxco(diromic for all large n and will not share a fixed point with Y. Consequently
Y ZY ! is loxodromic as well and does not share a fixed point with Z.

Now assume that G is not discrete. We will show the existence of a two-generator
subgroup that is not discrete. This will show that if every two-generator subgroup of
a group is discrete, the group itself must be discrete.

So assume that there is an infinite sequence {A,} of distinct elements of G with

lim A, = id. For n sufficiently large,
|t?(A,) — 4| + |o(A, B A, BT —2| < 1,

fori =1, 2, 3. For each n, at least one element of B, B>, B3 does not share a fixed
point with A,. Passing to a subsequence if necessary we may assume say Bj does
not share a fixed point with any A,. The group (A,, B;) is not elementary provided
that A, does not exchange the fixed points of B;. Since lim A,, = id, the order of A,,,
if finite must increase to co. For large enough n, A,, By do not satisfy Jgrgensen’s
inequality; therefore (A,, B;) cannot be discrete.

Now assume that G is a nonelementary group preserving the unit disk D. Suppose
G is not discrete. We claim that G then contains an elliptic element of infinite order.

By the previous result we may assume that G is a two-generator group. By Sel-
berg’s lemma below (page 68), there is a finitely generated subgroup G of finite
index without elliptic transformations of finite order. This too is nonelementary and
nondiscrete. Now we call on a theorem of C. L. Siegel repeated in [Lehner 1964,
II1.3]] and that we will ask the reader to prove in Exercise 2-3, that establishes that
Go must contain elliptic elements of arbitrarily high order. In fact then, Gy must
contain elliptic elements of infinite order. U

Proof of Jprgensen’s inequality. We will follow the original proof. Assume the in-
equality fails to hold, so that for A, B # id generating a discrete group,

1= |ue*(A) —4|+|wABAT' BT -2 < L
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We study the sequence obtained by setting 7y = B and define inductively

a, by

T,=T, 1AT, ;' = (
¢, dy

) ,  apd, —b,c, =1.

Case l: A = ((1) }) is parabolic. Write

ao bo
B =
(Co dO)’

where apdy — boco = 1. We may assume B does not fix co — otherwise (A, B) would
be elementary and to be discrete, B would have to be parabolic or be elliptic of order
2, 3,4 or 6 by Lemma 2.3.1(iii). Therefore ¢y 7~ 0. Furthermore,

1+ apco + 602 1 —apcy — a()z

ABAT'BT! = ( 5

) , t(ABAT'B™hH—2=¢].
Co I —agco

Therefore u = |c%| < 1. We find for the sequence of conjugates {7,,} that

2
a, by _ I —an_1ch—1 an—1
= 5 .
Cn dn —Cn—1 1 +ap—1cp—1

From this we deduce that

2n—1

2'1
¢, = —co”, lexl=n < 1,

lant1 =11 < leal(n+laol),  Idn1 =11 < leal 2 +laol),  |basr — 1] = lan® = 1.

Solimc¢, =0, lima, =limd, =limb, =1, and hence lim 7,, = A. Since 0 < |¢cg| < 1
we see from ¢, = —co?" that the elements of the sequence {c, }, hence of the sequence
of transformations {7}, are distinct. Therefore (A, B) is not discrete, a contradiction.

Case2: A= (% 1?[)), with |p| > 1. Take B as before. We find that

tr(ABAT'B™) —2=—boco(p—p 1%, (p—p H? =t (A) —4.

Note in particular that |p — o P<u<l.
Now
(andnp_bncnpl anbn(pil _/O) )
Tn+] - 1 1 .
Cndn(p—p77) andnp™" — bycyp
Consequently,

buyi1cny1 = —apbyc,nd, (p — ,0_1)2 = —byc,(1+bycy)(p — 10_1)2-
Inserting the formula for tr(ABA~!'B~1),
i1l = [bocol |(1+boco) (o — p~ 7]
= |bocol|tr*(A) —4 — tr(ABA™' B™") + 2| < |bocolp < |bocol,

since we are assuming u < 1. Using induction starting with the case n = 1 we
just investigated, we find that |b,c,| < |boco|t*. Moreover the analysis shows that
sequence {|b,c,|} strictly decreases to 0, unless it equals zero after some point.
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Note that b,1/b, = ay, (p~!' — p) and Cny1/cn = dp(p — p~h. Consequently if
bp+1 = cpe1 =0 while b, # 0 and ¢, # 0, necessarily a, = d, =0 at tr(7,,) = 0.

Case 2a: byc, # 0, for all n. Since the sequence {b,c,} is strictly decreasing, the
elements {7} are distinct. Because lima,d, = 1, from the formula for 7,1 we see
that lima, = p and limd, = p—'. Again using the formula for 7,,.; we find that
lim(by41/by) = p(p~" — p) and limc, 41 /c, = p~ (o — p7 ).

If A is elliptic, that is if |p| = 1, the ratios |b,+1|/|b,| and |c,+1]/|c| are approx-
imately |p — p~ !l < 1 and therefore lim b, = limc, = 0. Consequently lim 7,, = A,
contradicting discreteness.

Consider more generally the transformations

—2n
— anp 1% b2n
S, = A", A" = .
" o (panZn doy, )

Again from the formula for 7}, 1, the ratios |by,|/|b2,—2| and |c2,|/|c2n—2]| are approx-
imately |p — p~ !> < 1. Therefore lim S, = A, again a contradiction to discreteness.

Case 2b: b,c, =0, n > N. Forn> N, A and T, share a fixed point.

If A is elliptic, its order exceeds 6. This is because © < 1 implies sinf < % since
since tr’(A) —4 =4 sin® @ and A has the form z — ¢*%z. If A and T}, share exactly
one fixed point, then by Lemma 2.3.1 G is not discrete, a contradiction.

If A is loxodromic and shares exactly one fixed point with 7, then (A, 7,,) cannot
be discrete.

Therefore A and T,,, n > N, have the same pair of fixed points 0, co.

If N=0, G = (A, B) is a discrete elementary group.

If N =1, then ag = dy =0 and G is elementary.

Suppose N > 2 so that Ty_; is conjugate to A. Then tr(Ty_;) = tr(A) = 0. But
then u > 4, contrary to our assumption.

Further analysis yields the itemization of elementary groups for Jgrgensen’s in-
equality. O

In particular the group (((1) }), (‘; Z)), where ad — bc = 1, is not discrete when
0<lel <1.

2.3 Elementary discrete groups

A loxodromic or elliptic element g in a discrete group G is called primitive if g is a
generator of the cyclic subgroup consisting of all loxodromic or elliptic elements in
G having the same fixed points (and axis) as g.

The purpose of this section is to present the classical classification [Ford 1929] of
the elementary discrete groups. We will see that a discrete group is elementary if and
only if it is either finite, abelian or it contains an abelian subgroup of finite index.
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Finite groups

If G is a finite group, it consists only of elliptic transformations and there is a common
fixed point in H* (Corollary 4.1.8). If the group is not cyclic there is exactly one
fixed point. The common fixed point may be taken as the origin of the ball model
so that G becomes a group of rotations of S?. Thus G is the group of orientation
preserving symmetries of a regular figure inscribed in S?: one of the platonic solids,
or else an equatorial regular polygon. More specifically, we have the following cases:
the tetrahedral group of order 12, which preserves (collectively) the set of vertices
of a tetrahedron; the octahedral group of order 24, which preserves the vertices of
an octahedron, or those of its dual cube; the icosahedral group of order 60, which
preserves the vertices of an icosahedron or dodecahedron; and the dihedral group of
order 2n, for n > 2, which preserves the dihedron, the degenerate “solid” consisting
of two coincident faces in the shape of an n-sided regular polygon inscribed in the
equator. The dihedral group contains, in addition to rotations by 2mi/n about the
center, rotations of order two about any diameter from a vertex or the midpoint of a
side. Each of these groups is generated by two elements.

For any finite G, the sphere S? is a branched covering of $?/ G = S? with branching
orders r; > 2. If G is cyclic, there are two branch points, the fixed points of G. If G is
not cyclic, the branching is over three points having the following orders (ry, 1, r3):
(2, 3, 3) for the tetrahedral group, (2, 3, 4) for the octahedral group, (2, 3, 5) for the
icosahedral group, and (2, 2, n) for the dihedral group. See 3-1, 2-26.

More generally, we will show in Lemma 4.1.5 that if H is an arbitrary group con-

sisting entirely of elliptic transformations, then H is conjugate to a group of rotations
of S2.

Infinite elementary discrete groups

An elementary discrete group G that is not finite has one of two additional properties:
(1) G fixes a single point ¢ on S?; or (2) G fixes a pair of points on S.

(1) One fixed point. Here G contains only parabolic transformations and elliptic trans-
formations all sharing the same fixed point, say co. The parabolic subgroup Gy is
either cyclic and conjugate to (z +> z + 1), or it is a free abelian group of rank two
and conjugate to (z+> z+1, z+> z+ 1), for some 7 € C with Im 7 > 0. See Exercise
2-4.

In the cyclic case G itself can be the finite extension by an elliptic of order two.

In the rank-two case, G is a finite extension of G by elliptics fixing oo, of order
not exceeding six by Lemma 2.3.1(iii). The possibilities are (2, 2, 2, 2) and (3, 3, 3),
(2,3,6), (2,4, 4), meaning these are the orders of primitive elliptic elements, non-
conjugate under G, which generate the four possible extensions. For each of the
triples to arise, Gy must have a special choice of 7. For details see [Ford 1929] and
Exercise 2-27.

(2) Two fixed points. Here G is a finite extension of a cyclic loxodromic group with
axis £. It can be extended by an elliptic of finite order with rotation axis £ and extended
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once again by an elliptic of order two which exchanges the endpoints. All these groups
preserve £.

Lemma 2.3.1. Let G be an infinite group of Mobius transformations.

(i) If G is discrete, G is elementary if and only if it is a finite extension of an abelian
group.
(ii) If g € G is loxodromic and h € G has exactly one fixed point in common with g
then G is not discrete.
(iii) If g1 € G is elliptic of order exceeding six and g, € G has exactly one fixed point
in common with g1, then G is not discrete.
(iv) If g #id is an element of a nonelementary discrete or nondiscrete group G, there
is a loxodromic element in G without a common fixed point with g.
(v) A nonelementary discrete or nondiscrete group contains two loxodromic ele-
ments with no fixed points in common, and hence it contains infinitely many
loxodromic elements with mutually distinct fixed points.

Proof. Item (i) follows from the discussion above.

For (ii), we may assume that g = (/ 1(/),;) and h = ( ll/’a). We find that

o 1 —ab(l —p*")
n n 1
ghg "h = (o 1 >

If |[p| < 1letn — +o0. If |p| > 1, let n — —o0. In either case, G cannot be discrete.

To prove (iii) suppose g; and g> have the common fixed point co. According to
Lemma 1.5.2, their commutator g gzgl_1 & Uis parabolic, also with fixed point oo.
If G = (g1, g2) is to be discrete, then the subgroup G, of parabolic transformations
fixing oo has a generator K whose period w satisfies || < |@'| in comparison to the
periods o’ of other elements of G« (see [Ahlfors 1978]). Write g;(z) =az+b, |a|=1
and K (z) =z+w. Then glKg]_1 (z) =z+aw. Inparticular || < |aw—w]| or 1 <|a—1]|.

Now a = €', where 6 = 27k /m for some relatively prime m, k € Z, since if G
is to be discrete the elliptic elements have finite order. We may choose g; so that
0 =2m/m > 0 and then |a — 1| = 2sin(;r/m). If |a — 1] is to be > 1, then we must
have m < 6, where m = 6 gives equality.

The proof of (iv) involves three cases. We will show later in Corollary 4.1.5 that a
nonelementary group, discrete or not, contains nonelliptic elements.

Case 1. g = ((1) i) is parabolic. There exists & € G without a common fixed point
with g: i = (%) with ¢ # 0. We find that tr(g"h) = (a +d) + nc. Thus for all large
|n|, g"h is loxodromic and does not share a fixed point with g.

Case 2. g = ( /0’ p?l) is loxodromic, |p| > 1. We have to show there is an element
h € G which does not share one of the fixed points p, g of g. Not all elements of
G can fix say p, but perhaps there is one i, which fixes only p and another A, that
fixes only q. But then h = h,h, fixes neither. In addition /& does not exchange p, g.

Since tr(g"h) = ap" +dp™", g"h is loxodromic for most n, and does not share a
fixed point with g.
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Case 3. g = (8 pgl ), |p| =1, is elliptic with fixed points p =0, g = oo. If there is
a loxodromic & € G which does not share a fixed point with g we are done. If there
is a parabolic 4 € G which does not share a fixed point, then A" g is loxodromic for
all large |n|. Moreover it does not share a fixed point with g. Finally if 7 € G shares
exactly one fixed point with g then either / is parabolic or ghg~'h~! is parabolic.
So assume k), is parabolic and fixes p while h, is parabolic and fixes p. Then for all
large |n|, h’[’,hq is loxodromic and fixes neither.

Item (v) follows from (iv). For given g # id let 4 € G be loxodromic without a
common fixed point with g. Then the fixed points of the loxodromic element ghg ™!
are g(p), g(g) where p, g are the fixed points of 4. Unless g is elliptic of order two
and exchanges p, ¢, the fixed points of ghg~! will be distinct. If g exchanges the
fixed points of & the subgroup (g, /) is elementary. Yet there is some element g; € G
which does not fix or exchange the fixed points of 4. Now we can use g1hg, ! Once
we have two, we can keep conjugating so as to get infinitely many. ([l

2.4 Kleinian groups

Discrete groups of Mobius transformations are called kleinian groups. To avoid spe-
cial cases, a kleinian group is often assumed to be nonelementary as well. A kleinian
group that preserves the interior (hence also the exterior) of a round disk on S? is
called a fuchsian group. Typically, a fuchsian group is taken to act on the unit disk
D = {z € C:|z| < 1} or on the upper half-plane {z € C: Im z > 0}.

We know that a group is discrete if and only if it is properly discontinuous on H?.
Therefore we focus our attention on S? and make the following definition.

A point ¢ € S? is a limit point of the discrete group G if there exists £ € S such
that lim 7,,(§) = ¢, for an infinite sequence of distinct elements {7} € G. The set

A(G) ={¢ € S*: ¢ is alimit point}

is called the limit set of G. It contains all loxodromic and parabolic fixed points. It
is automatically invariant under G. If A(G) contains no, one, or two points, G is an
elementary group.

Lemma 2.4.1 (Properties of the limit set). Suppose G is nonelementary, so A(G)
contains at least three points.

(i) The G-orbit of any ¢ € A(G) is dense in A(G).
(ii) A(G) is the closure of the set of loxodromic fixed points, and if there are
parabolics, it is the closure of the set of parabolic fixed points as well.
(iii) A(G) is a closed set.
(iv) The G-orbit of any point x € H> U'S? accumulates onto A(G).
(v) If Dy, Dy € S? are two open disks with disjoint closures, each of which meets
A(G), there exists a loxodromic element in G with a fixed point in Dy and in
D;.
vi) A(G) is a perfect set (it has no isolated points).
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(vii) Either A(G) = S? or its interior is empty.
(viii) If Go has finite index in G, or if G is a normal subgroup of G, then A(Gg) =
A(G).

Proof. Suppose ¢ € A(G) and let D be an open disk centered at ¢. For some w € S$?
we have ¢ =1lim A, (w), where {A,} € G is an infinite sequence of distinct elements.

Choose ¢ # ¢ in A(G). We claim that the family {G} of Mobius transformations
acting in D cannot omit the two values {1, {>. Assume otherwise. Then by Montel’s
Theorem (Corollary 2.1.2), {G} is a normal family on D.

However, for some index N, we have A, (w) € D foralln > N. Set B, = AnAX,1
and w' = Ay (w). Since lim B, (w’) =¢ and we must have convergence, lim B, (z) =¢,
uniformly on compact subsets of D. In particular, given a subdisk ¢ € D’ ¢ D’ C D,
for all large indices B, (D’) is a proper subset of D’. Therefore for each large index
n and k > 1, we have B,’f(D’) C B,’l‘*l(D’) C --- C D’. This can only happen for
a loxodromic transformation with attracting fixed point in D’. Thus, for all large
indices, B, is loxodromic and ¢ must be the limit of the attracting fixed points. But
then, for a fixed large n, the sequence {B,* }i=; does not converge uniformly on
compact subsets of D because it contains the repelling fixed points. We have found
a contradiction.

Suppose that, for some & € A(G), ¢ is not a limit point of the G-orbit G (£). Then
there is a disk D centered at ¢ that contains no point of G(£); in other terms, the
G-orbit of D does not meet & nor any other point of its orbit. We have just shown
that this is impossible. This argument proves (i). It also proves (vi).

Since G is nonelementary, there are infinitely many distinct loxodromic transfor-
mations in G. If £ is a fixed point of the loxodromic 7', any point A(§) in its G-orbit
is a fixed point of a loxodromic AT A~!. The same holds if £ is a parabolic fixed
point.

In addition, the closure of the set of loxodromic fixed points lies in A(G). Indeed,
letting ¢, be the attracting fixed point of the loxodromic 7;, € G, we see that the limit
¢ =limg, is the limit of a subsequence of the set of positive powers {Tnk (w)} for any
w € C distinct from p = lim p,. Therefore (ii) and (iii) hold. This argument also
shows that property (iv) holds.

If A(G) is not all of S? there is an open set U in its complement. Every loxodromic
fixed point is a limit point of the G-orbit of U, and then so is every point of A(G).
Therefore A(G) can have no interior, as was claimed in (vii).

To prove (v) (after [Beardon 1983, Theorem 5.3.8]), choose loxodromics A| € G
with attracting fixed point in Dj and A, € G with attracting fixed point in D;. If the
repelling fixed point of A; is in D; we are finished, so assume that it is not. There is
a loxodromic 4 with fixed points g, ¢ distinct from the fixed points of A, A;. Its
conjugate By = AT'"hA[™, m > 0 has fixed points AT (¢1), A'(¢2). For sufficiently
large m these will both lie in Dy; fix such an m.

Choose a closed disk D] C D; containing the repelling p but not the attracting
fixed point ¢ of B;. Fix a large n such that A’ sends ¢ into D>.
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We claim that we can choose r > 0 so large that " = A’ B has the properties
T(Dy) C Dy, T7'(D})C D.

For take r large enough that B} (D>) is so close to ¢ that application of A’ then sends
it properly into D». In the other direction A%(g) ¢ D] says g ¢ A5" (D)) so we may
increase r as needed so that B;" A," (D)) is properly contained inside D], close to
the repelling fixed point of Bj.

A transformation 7" with these mapping properties can only be loxodromic with
attracting fixed point in D, and repelling in Dj.

The proof of (viii) is as follows. If A € G is loxodromic and G has finite index in
G, then A¥ € G, for some k > 0. Therefore A(Gg) has the same set of loxodromic
fixed points as A (G), so the closures of the sets are the same. Instead, suppose that G
is a normal subgroup of G so that gGog~' = G for all g € G. Then G cannot be an
elementary subgroup. The g-image of the fixed points of & € G are the fixed points
of ghg™! € G(. Therefore gA(Go) = A(Gy) for all g € G. Since A(Go) C A(G),
the G-orbit of a fixed point of a loxodromic & € Gy is dense in A(G); therefore the
limit sets are identical. 0

Each component of A(G) which is not a circle or a point is a fractal set; see
Exercises 2-14 and 3-20.
The complementary open set,

Q(G) =S*\ AG),

is called the ordinary set or regular set, or set of discontinuity. Like A(G), Q(G)
is preserved by G. It is the largest open subset of S* on which G acts properly
discontinuously.

Lemma 2.4.2 (Properties of the ordinary set). Assume that G is finitely generated
and not elementary, and that Q(G) # &.

(i) 2(G) has one, two, or infinitely many components.
(ii) Each component of Q2(G) is either simply or infinitely connected.
(iii) If each of two components 21, 2, of Q2(G) is preserved by G, then each one is
simply connected and Q(G) = 21 U Q5.
(iv) If one component Q2 of Q2(G) is preserved by G, all the others are simply con-
nected.

Proof. To prove (ii), assume a component €2 is finitely but not simply connected. At
this point we have to anticipate the Ahlfors Finiteness Theorem (page 105) to assert
that 2 is preserved by an element g € G of infinite order (such a g may not exist if
G is not finitely generated). Choose a simple loop o C €2 that separates the boundary
components. The simple loops {gX(c)} C Q converge to the fixed points or point of
g. But each simple loop g* (o) separates boundary components of 2. Hence the fixed
points are limits of infinitely many boundary components of €2, a contradiction.
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To prove (i), suppose there are a finite number of components 21, . . ., 2, of Q(G);
we may assume that co € €2,,. There is a subgroup Gy of finite index and with the
same limit set that preserves each of them.

Choose a loxodromic transformation g € Gg. Since g in particular preserves €21
and €2, we can find simple arcs 0; € Q;,7 =1, 2, such that 0" = U,fifoo gk (0;) forms
a simple arc in €2; between the two fixed points of g. This is most easily done by
using the quotient surface €2;/Stab(£2;). Then o* = 0" Uo; U {p, g} forms a simple
closed curve meeting 2(Gyg) only in 2] and €2,. Consider the two components of
s? \ o*. One of them, say U, contains €2,, and co. The other, U’, contains points
of A(Gy), for otherwise o} and o could be connected by an arc that does not meet
A(Gp). Therefore we can find a loxodromic element 7 € G with attracting fixed
point in U’. Connect oo to h(co) by an arc T C €2, and set 7* = ,:2’8 h*(t). Now
7* is an arc in €, connecting oo € U to the attracting fixed point of 4 in U’, so t*
must cross o*, giving a contradiction.

Item (iii) also depends on Ahlfors’ theorem. Using that the simplest proof involves
3-dimensional topology. We will present it in Section 3.8.

Item (iv) is a consequence of the fact that A(G) = d2. The analysis in terms of
three-dimensional topology is suggested in Exercise 3-11. 0

It is relevant to refer again to L. Greenberg’s theorem [1962], which has the fol-
lowing consequence. Suppose 2 # S? is a connected open set which is not a round
disk. Then the group of all M6bius transformations which map €2 onto itself is either
discrete or elementary, as in the case of a horizontal strip. Usually it will consist only
of the identity.

The term function group is usually reserved for a group G with the property that
©(G) has an infinitely connected component 2 that is invariant under G. The term
arises from the fact that functions invariant under G can be constructed on €2. The
finitely generated function groups can be completely classified [Maskit 1988] or by
topology; see [Marden 1977] and Exercise 3-11.

When G is not finitely generated, if two of the components of 2(G) are invariant
under G then as before they are both simply connected. Yet there may also be other
components; each of these is also simply connected, but its stabilizer consists only of
the identity (see [Accola 1966] or apply 3-dimensional topology as in Section 3.8). An
example of Accola shows that indeed there can be infinitely many other components,
which he called “atoms”. (The situation is reminiscent of the classical construction
in point set topology known as the lakes of Wada: a family of three — or any number
up to countably infinite— simply connected open sets on S? each of which has the
same boundary, namely the complement in S? of the union of the open sets. See
[Hocking and Young 1961, pp. 143-145].) However, when G is finitely generated,
atoms cannot occur, as we will see from the Ahlfors Finiteness Theorem.
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Here is an answer to the question of the + ambiguity as we go from a group of
Mobius transformations to a set of associated matrices in SL(2, C). In short, for
discrete groups, the signs can be chosen unambiguously, except if there are elements
of order two.

Theorem 2.4.3 [Culler 1986]. A discrete group G can be lifted to an isomorphic
group of matrices in SL(2, C) if and only if G has no elements of order two.

This result is the best that can be hoped for, since the matrices corresponding to
Mbobius transformations of order two have order four — for example the normalized
matrix that corresponds to z — 1/z has order four. On the other hand, one can ask,
with John Fay, whether any group can be lifted to an unnormalized matrix group in
GL(2, C). (For example, the unnormalized matrix (? (1)) does have order two.) The
answer is not known, to my knowledge.

2.5 Quotient manifolds and orbifolds
A kleinian group G is usually best studied by studying its quotient space:

M(G) = H*UQ(G)/G, IM(G) = Q(G)/G,
namely, the set of equivalence classes
{{x} : x € H* UQ with x = x; if and only x| = g(x), g € G}.

The projection x — {x} is denoted by 7.

We will often switch between thinking of a situation in H* U Q(G) and thinking of
it in the quotient 77 : H? U Q — M.

If G is torsion-free (no elliptics), then M(G) is an oriented™ manifold with bound-
ary dM(G), which may be empty. The projection 7 is a local homeomorphism
H3 — H3/G and Q — dM(G), because of proper discontinuity of the group action.
The interior M(G)™ = H?/G has a complete hyperbolic structure arising from the
projection of the hyperbolic metric in H?. Its fundamental group 771 (M) is isomorphic
to G. If we lived inside M, then we would see the universal cover H> as it is the
space of light rays (geodesic rays) of M meeting our eye, since light follows the
shortest paths. What we would see standing at a point 7 (x) € M'™ is the picture at
x € H3. This is strikingly demonstrated in the video Not Knot [Gunn and Maxwell
1991].

The name “hyperbolic manifold” is reserved for those M(G) arising from groups G
without elliptics.

On the other hand if G contains elliptics, M(G) is called an orbifold. The additional
structure of orbifolds will be described below.

* For the record we point out that if G were a group with orientation reversing elements, the subgroup of orientation
preserving elements would form a normal subgroup of index two. The corresponding nonorientable quotient man-
ifold would have a two-sheeted cover which is orientable and an orientation reversing isometry which interchanges
the sheets.
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Manifolds and their coverings

We will briefly review salient aspects of the theory of coverings of oriented surfaces
and 3-manifolds thereby giving more insight to the nature of quotient spaces as well.
Our applications will be to Riemann surfaces (Section 2.6) and hyperbolic manifolds,
so our discussion will be carried out with these cases in mind. In particular the sur-
faces and manifolds will be oriented.

We will start by focusing on surfaces.™

Associated with a surface S and a given basepoint O € S is the fundamental group
1(S; O) of homotopy classes of closed paths from O. Choose a subgroup H of
G =m(S; 0). For example, H may be the cyclic group generated by a single loop, or
it may be the identity. A more interesting example is the commutator subgroup, which
is the subgroup generated by commutators of pairs of elements of G (the subgroup
is also called the homology group since it corresponds to the elements in 71 (S; O)
which are homologous to zero).

Corresponding to H is the regularT covering surface Sy constructed as follows.
Consider equivalence classes of pairs {(z; o)}, where z € § and «, is a path from
O to z. The pairs associated with paths o1, ap from O to z are equivalent if the
homotopy class of a;lal is in H. In particular (z,«;) = (z,a,y) if y € H. The
surface Sy is the set of equivalence classes {(z, «;)} with the topology determined
from § as follows: A neighborhood N* of (z, ;) consists of the pairs {(w, oy, 0;)},
where w lies in a neighborhood N of z and oy, is a path in N from z to w.

The map 7 : (z, or;) € Sy — z € S, called the projection, is a local homeomorphism
of Sy onto S. The points in {m~'(2)} are said to lie over z € S. If H has finite index*
nin G = m(S; O), Sy is n-sheeted over S —there are exactly n distinct points of
Su lying over each point of S.

The point O* € Sy determined by the class (O, y), y ~ 1, is the corresponding
basepoint of Sy ; it (and many others) lies over O. The fundamental group 7w (Sy; O*)
is isomorphic to H. If H #id is cyclic, so is the fundamental group of Sg; in this
case Sy is homeomorphic to an annulus. If H =id, then Sy is simply connected and
is called the universal covering surface of S. If H = G then Sy = S.

A map f:S — S that, say, fixes the basepoint O lifts to a map Sy — Sy if and
only if f induces an automorphism of the subgroup H onto itself.

A deck transformation (also called a cover transformation) is a fixed point free,
orientation preserving homeomorphism 7* of Sy onto itself with the property that
7 (T*(x)) = 7 (x); that is for each point z € S, t* interchanges the points lying over z.
The group of deck transformations of M(H ) over M(G) is isomorphic to the quotient
group N(H)/H. Here N(H)={g € G :gHg~' = H} is called the normalizer of H in
G. An element y # id € N(H) induces the cover transformation (z, o;) — (z, «;y).

% Formally a surface is a connected 2-dimensional manifold, that is a Hausdorff space with an open covering of sets
homeomorphic to open sets in C.

T A regular covering S* is one with the property that if & C S is a closed arc, and x* € $* lies over its initial point,
then « can be lifted in its entirety from x*.

% Hhas index n in G if there are n distinct cosets { Hg }, gx € G, such that G = J; Hgg. In this case ﬂgeG gHg_1

=N gkH gk_1 is a normal subgroup of finite index in G.
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If N(H) = G then H is a called a normal subgroup of H and Sg is called a normal
covering. In this case the group of deck transformations is isomorphic to G/H: Given
any two points Of, O} over O, in anormal covering Sy there is a deck transformation
taking O} — Oj. In particular, when H = {id}, the group of deck transformations
of the universal cover is isomorphic to the fundamental group G. Another normal
covering is generated by the commutator subgroup. In this case the group of deck
transformations is isomorphic to G/H and to the first homology group of S, this is a
free abelian group of rank 2g if S is a closed surface.

In general however, there may or may not be deck transformations; for example if
H is cyclic and S is a closed surface of genus exceeding one, then N(H) = H and
there are none, yet Sy is infinite-sheeted over S.

We will have need of extending our definition to branched covers S* of S. The
difference here is that a discrete set of points {¢;} C S* is distinguished. We then have
regular coverings of the punctured surfaces S*\ {¢;} — S\ {7 (&)} on which 7 is a
local homeomorphism. But in a small neighborhood N of each ¢;, 7 : $* — § is not
a homeomorphism, rather it can be taken as the map z — 7", where ¢; corresponds
to 0: In N the projection is r-to-1. The point ¢; € S* is referred to as a branch point
and its projection m(¢;) is the branch value or cone point. The integer r = r(¢;) > 1
is the order of ramification (» = 1 stands for a regular point). Paths in § lift to S*
provided they avoid the cone points. That the branched cover has N sheets implies
that if {x} C §* are the distinct points lying over x € S, then

> rxf)=N.

In particular, if N = 2, there is at most one branch point over x; if there is one, its
order is two.

The Euler characteristic of an oriented, compact, triangulated surface of genus g >0
and b > 0 boundary components is

X(S)=V—E+T=2-2g—b, 2.2)

where V is the number of vertices, £ the number of edges and T the number of
triangles.

The precise relationship between the topologies of a surface and its covering is
governed by the Riemann—Hurwitz formula. Suppose S* is an N-sheeted cover of
the compact surface S, where S has genus ¢ > 0 and b > 0 boundary compo-
nents. Triangulate S so that all the branch values are vertices, and assume there
are no branch values on the boundary components. Lifting the triangles to S*, we
can compute y (S*) in terms of x(S). The result is the Riemann—Hurwitz formula,
x(8*) = Nx(S)— > (r(x;) — 1), where the sum is over all branch points on $*. In a
more useful form,

28" +b* =2(1-N)+NQg+b)+ Y _(r(x;) — 1. (2.3)
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Thus, if S =S?, the (finite) coverings are closed surfaces™ satisfying 2g*+2N —2=
> (r(x;) — 1); a closed surface of any genus can be so constructed. For a torus,
g =1, b =0, the corresponding formula is g* — 1 = % > (r(x;)—1). If each r; =2,
the formula is g* — 1 + N = n/2, where there are n branch points.

We now turn to the case of hyperbolic manifolds M(G). Covering manifolds (un-
branched) correspond to subgroups H of G, that is, M(H) is a hyperbolic covering
of M(G). The group of deck transformations is isomorphic to N(H)/H; the deck
transformations are fixed point free, orientation preserving isometries. On the other
hand, the group of orientation preserving isometries M(G) — M(G) is isomorphic
to N(G)/G. Here N(G) is the normalizer of G in the full group of all Mobius
transformations. Now elements of N (G) can be elliptic. However very often M(G)
has no orientation preserving “symmetries”, that is, N(G) = G.

Two hyperbolic manifolds M(G ), M(G») are commensurable if G1NG, has finite
index in both G| and G». In this case M (G N G») is a finite-sheeted cover of both
M(G) and M(G,). Conversely if M(H) is a finite-sheeted cover of both M(G)
and M(G») then H is conjugate to a subgroup of finite index in each of G| and G».
The term can equally be applied to fuchsian and orbifold groups (see below).

The set of all Mdbius transformations g which have the property that gGg~! is
commensurable with G, is called the commensurator C(G) of G. It is a group as
well since if g;gGg™! gfl has finite index in gGg~' and gGg~! has finite index in
G then g1gGg~'g;" also has finite index in G.

Contrast the commensurator C(G) of G with its normalizer N (G) which is a sub-
group of C(G). The normalizer contains all (orientation preserving) isometries of
M(G). The commensurator consists of all orientation preserving isometries of all
finite-sheeted covers of M(G). For if M(H) — M(G) is a finite cover, then H is
conjugate to a finite index subgroup of G; we may assume H C G. If the Mobius
transformation 7 induces an automorphism of M(H), then THT ' = H so that
TGT~'NG D H. Since H also has finite index in TGT ', TGT~' N G has finite
index in G. For more applications, see Exercise 3-14.

Orbifolds

Consider now the situation when G has elliptic elements. In this case the quotient
M(G) is called an orbifold. The hyperbolic structure of M(G), which is also oriented,
has mild singularities (see Exercise 2-2) along the projection of the totality of rotation
axes of the elliptic elements. This projection is called the singular set or branch locus
of the orbifold.

The projection of an elliptic axis € is usually called a cone axis as it is reminiscent
of the paper-and-scissors construction of a cone by wrapping up a wedge of angle
< 2m; correspondingly the points on the cone axis are called cone points. Locally
the projection has the form (z, t) — (2", t), where ¢ is a coordinate along the rotation
axis and z is a complex coordinate in a plane orthogonal to the axis. The cone angle

% A closed surface or manifold is one which is compact, without boundary.
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2 /r assigned to w(£) is the angle of rotation of a primitive element—a generator
of the cyclic subgroup that has rotation axis €. The Isolation of Cone Axes property
in Theorem 3.3.4 gives additional information about the separation of cone axes in
M(G).

An elliptic rotation axis y* may also be the axis of a loxodromic in G. In this
case £ will project to a simple loop y in the singular set of the quotient. There may
also be other elliptic axes that intersect y*. If so, the common point of intersection is
stabilized by a finite elliptic group.

To better understand the structure of the singular set, we will start with the case of
a finite group G.

Lemma 2.5.1. For a finite group G associated with a regular solid, M(G) is topo-
logically a closed ball, and there exists a point O € H3/G from which exactly three
cone axes emanate. Each cone axis from O ends at one of three branch points on
OM(G) = S?/G. The angles at O between the axes are uniquely determined by G.

Conversely given three distinct points on S? there are conjugates of G whose cone
axes end at those points in any prescribed order.

An elliptic rotation axis either ends at a point of €2(G), or at a parabolic fixed point
¢ € 1>, In a discrete group, the subgroup of parabolics that fix ¢ is either cyclic, or
it is free abelian of rank two, as we found when we examined the elementary groups.
Correspondingly, we will refer to ¢ as a rank one or rank two parabolic fixed point.
The conjugacy classes of parabolic fixed points give rise to certain structures in M(G)
called cusps, to be described in detail in Section 3.2. Here it suffices to say that a
geodesic ray in M(G) ends at a rank one or rank two cusp if and only if any lift to
H? ends at a rank one or rank two parabolic fixed point.

Here is a description of the singular set as a graph in the quotient orbifold:

Proposition 2.5.2. In any kleinian M(H ), the singular locus is a graph, and a compo-
nent can be compact in Int(M(G)) or not. Each edge has an order n > 2. Emanating
from each interior vertex are three edges of orders (2,3,3), (2,3,4), (2,3,5), or
(2,2,n), forn > 2.

If an edge does not end at a vertex, it may end at a point on dNU(G), or at a rank
one or rank two cusp. If it ends at a rank one cusp, it must have order two. If it ends
at a rank two cusp it may have order two; two or three additional edges can end there
as well, in which case they have orders (3, 3, 3), (2,3,6), (2,4,4),0r (2,2,2,2).

Note that for the various cases, quotient of a small horoball or euclidean ball about
the common fixed point results in a euclidean or spherical orbifold (compare with
Section 3.2 and Exercise 3-1).

For an example, consider three mutually orthogonal lines €1, £;, {3 intersecting at a
point, for example the three coordinate axes at the origin in the ball model. Consider
the group G generated by 180° rotations about each line.

Next take a point x 7 0 on say £, and take an orthogonal system £}, £}, £} through
x. Let G be the group generated by the 180° rotations about the three lines £1, £, £5.
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Consider the group H = (G, G’). Now £, is the axis of a loxodromic element T
that maps O to 7(0) which have equal distance from x. The branch lines form a
trivalent graph, three edges hit every vertex. A fundamental set consists of half-lines
E;r , Z;r, Z;, E; and, in addition the segment of ¢; from O to x. Down in H?/H, the
projection 7 (£1) is a line segment from 7 (0) to 7 (x), and back, a degenerate simple
loop. From each of 77 (0) and 7 (x), there are two rays ending at points on the boundary.

The boundary of H?/(T) is a torus and on it are eight distinguished points, the
endpoints of the projection of £, £3, £, £. There is an automorphism of order two
of the torus, that has no fixed points, that takes four of these points to the other four.
Also acting on the torus is a group of order four generated by two automorphisms of
order two, each with four of the distinguished points as fixed points. The quotient
of the torus with respect to this group of order four is the sphere, and the torus is
a four-sheeted cover, branched over four points on the sphere. The boundary of the
orbifold H3/H is the sphere: The four branch values are the endpoints of the four
singular loci 7 (£2), 7w (€3), w(£5), mw(€5).

Proof of Proposition 2.5.2. The quotient of S? under the groups of the regular solids
is again S? with exactly three branch values. These have orders (2, 3, 3) for the sym-
metries of a regular tetrahedron, (2, 3, 4) for the symmetries of a cube or octahedron,
(2,3,5) for the symmetries of a icosahedron or dodecahedron, and (2,2, n) for a
dihedral group. All of the groups are triangle groups, which have three generators
each of finite order (Exercise 2-5). These statements follow from the formula of
Exercise 3-1 with details given in Exercise 2-26.

As in the example above, a given rotation axis £ may be intersected by other rotation
axes at succession of distinct points. Each intersection point is the fixed point of one
of the standard finite groups.

The second statement also follows from our itemization of elementary groups. Ap-
plying Equation 2.3, we see that the torus is a two-sheeted cover of S? in the case
(2,2,2,2), a three-sheeted cover in the case (3, 3, 3), or a four-sheeted cover in the
cases (2,4, 4) and (2, 3, 6). ]

To distinguish a quotient with the extra structure of cone axes, Thurston coined the
term orbifold. For kleinian groups with elliptics, H? is a simply connected branched
cover of the orbifold H?3 /G and ©(G) may or may not be branched over 0M(G). Ac-
tually 3-orbifolds are manifolds too, but new local coordinates need to be introduced
in neighborhoods of the singular edges and vertices that map them to euclidean balls.

We will reserve the term orbifold for the cases that a singular set— cone axes —
exists. Some authors use it to include both manifolds and orbifolds. We have not
considered the case of nonorientable orbifolds. Such an orbifold would result, for
example, from a reflection in a plane in H3.

The conformal boundary

The “boundary” dM(G) is infinitely far away from any interior point in the hyperbolic
metric on M(G)™, yet it is intimately related to the interior structure. The isometries
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and the geodesics extend to it. The infinitesimal 3-dimensional coordinate frame at
each point in Q(G), with one direction the interior normal to S?, projects to the
corresponding frame in M, also with one direction the interior normal to dM. The
boundary dM(G) has a conformal structure induced from Q (G) C S2: itis a union of
Riemann surfaces (see next section). For this reason it is often called the conformal
boundary of M(G).

If G is not elementary, no component of dM can be a sphere or a torus. Tori
(without cone points) are excluded because by the Uniformization Theorem (see next
section), they can arise only if a component 2 of 2(G) over the torus is Mobius
equivalent to C if €2 is simply connected, or Mobius equivalent to C \ {0} if €2 is not.

2.5.1 Two fundamental algebraic theorems

Using the following purely algebraic fact, the quotient orbifolds can often be analyzed
by analyzing manifolds. For every orbifold obtained from a finitely generated group
has a finite-sheeted cover which is a manifold:

Selberg’s Lemma [1960]. Every finitely generated group of matrices in SL(2, C) has
a finitely generated normal subgroup of finite index which contains no element # id
of finite order.

For a proof see [Matsuzaki and Taniguchi 1998] or [Ratcliffe 1994].

To obtain the corresponding result for a finitely generated kleinian group, choose
a set of N generators, and then pass to the matrix group generated by the 2N pairs of
matrices {+A;}.

Let G be a group generated by elements g1, g2, ...; we write G = (g1, g2, ...). A
word in the chosen generators is a finite sequence (of length > 0) whose elements
are of the form g; or g;° I any such word gives rise, by multiplication, to an element
of G. A word (of length > 0) giving rise to the identity of G is called a relator in
G; it is called a trivial relator if it of the form g;g;” Vor g Lg; for one of the chosen
generators.

Suppose Rj, Ry, ... arerelators in G. A word W is derivable from the relators {R;}
if repeated application of the following operations changes W to the empty word in

finitely many steps: Insertion or deletion of one of the words R, Rfl, ..., or of one
of the trivial relators, between any two consecutive letters of W, or before or after the
word W. If every relator is so derivable from the relators on the list Ry, R3, ... (plus

the empty word), we say that the generators g, g2, ... and the relators Ry, Ro, ...
constitute a presentation of G, and we write

G=(g1,g2,...|R1,R2,...).

A free group is one that has a presentation (g1, g2, . . .| ); thatis, if (for appropriately
chosen generators) there are no nontrivial relators. A group is finitely presented if it
has a presentation where both the generators g; and the relators R; are finite in number.
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Suppose G is generated by g1, ..., gy and Fy = (f1,..., fn |) is a free group in
the same number of generators. The map ¢ : fi — g; extends to a homomorphism
¢ : Fy — G, and the elements in the kernel of ¢ are exactly the relators of G; any
generating set for this kernel is a set of relators for a presentation of G.

The fundamental group of a closed surface of genus g has a presentation

<a1, bi,ay, by, ..., ae, b | [15_,lai, b,']),

where the generators come from appropriately chosen loops, as in Figure 2.1, p. 73.

For example, a closed surface of genus g has the single relation Hf’: lai, bi]=1.
Here [a, b] denotes the commutator aba~'b~!. On the other hand, the fundamental
group of a closed surface with punctures is a free group.

It is a basic property of hyperbolic 3-manifolds (and 3-manifolds more generally)
that finitely generated fundamental groups are automatically finitely presented. The
proof, due to Scott and Shalen, is a formal consequence of the existence of a compact
core in the quotient manifold (see Section 3.9).

For orbifolds, Selberg’s lemma can be applied.

Theorem 2.5.3 (Scott and Shalen). Finitely generated kleinian groups are finitely
presented.

The finite presentation property is automatically true for compact manifolds, as we
will see in Section 3.5.

This is in sharp contrast to the case of 4-manifolds, where any countable group,
finitely presented or not, can be a fundamental group. There even exist finitely pre-
sented groups which have finitely generated subgroups which are not finitely pre-
sented [Scott 1973b].

2.6 Introduction to Riemann surfaces and their uniformization

A Riemann surface is a 1-dimensional complex analytic manifold: It is defined by
coordinate coverings {U,, ¢} (of a connected Hausdorff space), where ¢, : U, — C
is such that the transition mappings ¢ﬂ¢>a_1 associated with overlapping coordinate
neighborhoods are analytic homeomorphisms (conformal mappings).™ Riemann sur-
faces are orientable and have countable bases. A homeomorphism f : R — § between
Riemann surfaces is a conformal mapping if ¢g f ¢o " is conformal where defined.
Usually one does not distinguish between conformally equivalent surfaces. The clas-
sic reference is [Ahlfors and Sario 1960], while [Farkas and Kra 1980] is excellent
for closed surfaces, and the most elementary is [Springer 1957].

To put it informally, but more to the point, a Riemann surface is an oriented 2-
dimensional surface with a rule (typically coming from a riemannian metric) for
measuring angles; the angles about each point must sum to 2. Two surfaces are

+ If the transition mappings are instead required to be the restriction of Mobius transformations, the additional
structure is called a complex projective structure. These structures will be explored in Exercise 6-14.
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conformally equivalent if there is an orientation preserving homeomorphism that pre-
serves angles as measured by the corresponding rules.

The most familiar cases are regions 2 C C where the euclidean angles are taken.
Make a new rule for measuring angles by defining the angle between two rays at z € Q2
to be the angle resulting after applying the affine transformation 7 : (x, y) — (x', y')
with x’ = x, y’ = 2y. This determines a new Riemann surface structure on the same
underlying point set. However €2, with its new structure, is conformally equivalent to
T (2) with the natural structure from C.

Another common situation is a smoothly embedded surface in R* with the “rule”
that is induced by the ambient euclidean metric. So is a polyhedral surface with the
rule given by the euclidean metric in the polygons, except the neighborhood around
each vertex must be flattened out so the angles add to 27 (the vertices can also be
viewed as cone points with ,the cone angle being the sum of the vertex angles of the
triangles sharing the vertex). In this connection, a mention of the following theorem
[Riiedy 1971] is irresistible: Any abstract Riemann surface can be conformally em-
bedded as a C™ surface, or even a polyhedral surface, in R*. Here the angles on the
embedded surface are to be measured by restricting the ambient euclidean metric. If
the surface is not compact, the ends of the embedded conformal equivalent go off to
00. A conformal embedding can be found in an arbitrarily small neighborhood of a
smoothly embedded model surface by deforming it in the normal direction.

However for most applications one works with Riemann surfaces that are not nat-
urally embedded in any ambient space. Such an example is given below in terms of
algebraic curves.

A Riemann surface may be of any genus g > 0 (number of “handles”), and with
any number of “ends” (or “ideal boundary components”), countable or uncountable —
like the Riemann surface which is the complement of the Cantor set. A puncture is an
isolated ideal boundary component which has a neighborhood conformally equivalent
to the once punctured unit disk. To put it another way, a puncture is obtained by
removing a point from a Riemann surface. One can also speak of Riemann surfaces
with borders — like the closed unit disk — but we will not be using them here.

A regular (unbranched) covering surface R of a Riemann surface is also a Rie-
mann surface. The local complex structure can just be lifted. Deck transformations
automatically become conformal automorphisms of R.

A branched cover R is also a Riemann surface. It has a discrete set of special points
called branch points. If £* € R is a branch point of order r > 2 and w(§*) = £ is
its projection in R, then given a small V neighborhood of & there is a neighborhood
U of £* such that 7 (U) = V and each point # & of V is covered exactly r times in
U. If the branch values are removed from R and preimages from R, one is left with
a regular covering, that can be described by a subgroup of the fundamental group of
the base surface.

For a survey of recent work on Riemann surfaces with singular conformal metrics
see [Bonk 2002].
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Conversely, if G is a discontinuous group acting on R then R/ G is also a Riemann
surface with R a possibly branched cover, depending on whether G has fixed points
in R. A typical example is H?>/G.

What is uniformization?

An abstract Riemann surface is described only in terms of local coordinates. Wouldn’t
it be nice if there were a global coordinate system w = ¢ (¢), in terms of a complex
parameter 7, that served uniformly at all points? By way of analogy, the unit circle
{w : |lw| = 1} is uniformized by the real line via the projection map w = e'’, —0o <
1t < 0o0.

For example, suppose P is an irreducible polynomial of two complex variables.
Then R = {(x, y) € C*: P(x, y) =0} is a Riemann surface. To suggest why, suppose
m is the degree of P in y. For most x € S? there will be m distinct values yy (x) that
satisfy P(x, y) = 0; the m points (x, yx(x)) € R lie over x. A small neighborhood
N about such an x determines m disjoint neighborhoods Ny C R and the map x :
(x, y) — x is a homeomorphism of each back down to N. The complex structure can
be extended over the other points as well. As a result, R is a closed Riemann surface.
Conversely, it is a famous classical theorem that every closed Riemann surface can
be generated in this fashion.

A noteworthy class of examples are the Fermat curves x" + y" = 1, n > 2, which
represent closed Riemann surfaces of genus %(n — 1)(n — 2). The world now knows
that when n > 3, there are no solution pairs of nonzero rational numbers. For algebraic
curves more generally, Mordell’s Conjecture is known to be true too: For curves
P(x,y) =0 of genus at least two, there are at most a finite number of solution pairs
(x, y) where both x and y are rational numbers.

In short, for closed Riemann surfaces in particular, it would be nice if we could find
a single complex parameter ¢ such that x = x(¢), y = y(¢) for all points (x, y) € R,
that is, for all solution pairs of an associated P = 0.

Uniformization Theorem A. A simply connected Riemann surface can be confor-
mally mapped onto exactly one of: the Riemann sphere S?, the complex plane C, the
unit disk D.

Ahlfors [1973, p. 136] referred to the Uniformization Theorem as “the single most
important theorem in the whole theory of analytic functions of one variable” (a proof
can be found in that same reference). For regions properly embedded in C it reduces to
the Riemann Mapping Theorem. The famous application is to the universal covering
surface R of a Riemann surface R, which as defined is not embedded anywhere.

Uniformization Theorem B. The universal cover R is conformally equivalent to

(i) S? if and only if R is itself conformally S?,
(i) Cif and only if R is conformally equivalent to C, to C\ {0}, or to a torus,
(iti) D in all other cases.
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The group I' of deck (or cover) transformations is isomorphic to the fundamental
group m1(R). Deck transformations are conformal automorphisms of the universal
covering, that is, Mobius transformations when one of the standard models are used.
A deck transformation cannot have a fixed point in the cover, hence cannot be elliptic.
Furthermore, I" is properly discontinuous in R:NN y(N) = for any y € I" distinct
from id, and any small neighborhood N of any point in R. So the deck transformations
form a discrete group.

Parabolic deck transformations are associated with punctures on R: recall that a
puncture is an isolated “ideal boundary component” with the property that it has a
“neighborhood” in R conformally equivalent to the once punctured unit disk. The
lift of a small loop surrounding a puncture determines a parabolic transformation,
and conversely, every parabolic transformation is associated with a puncture in this
manner. If R has no punctures then I" contains only loxodromic transformations (plus
the identity).

Once we know that the abstract R is conformally equivalent to, say, the concrete
D, we can replace it by (identify it with) . Likewise, R is conformally equivalent
to—and we can replace it by — the quotient surface D/ I with I" the group of deck
transformations. The complex structure descends automatically from D to D/ I". The
coordinate coverings are just {U,, z}, where the U, C D are small enough to project
injectively, via the identity map, into R. In fact the group I' is uniquely determined
up to conjugation: if @/ I is conformally equivalent to D/ Ty, then I'y = TT'T~! for
some D-preserving Mobius transformation 7.

The third case of Theorem B is operative in particular whenever R is a closed Rie-
mann surface of genus exceeding one. Such Riemann surfaces are algebraic curves,
nonelliptic ones. Yet uniformization is not an algebraic process. One of the mysteries
concerns the precise relation between an explicit polynomial that generates the surface
and the uniformizing function.

The group of conformal automorphisms of a Riemann surface is discrete if and
only if its fundamental group is nonabelian. For the record, the group of conformal
automorphisms of a closed surface of genus g > 2 has at most 84(g — 1) elements; see
Exercise 3-1. The lowest genus for which this number can be attained is g =3 and the
surface that attains it is the Klein surface. In D it can be represented by fitting together
24 isometric regular hyperbolic heptagons with interior angles 277 /3 (and area 7 /3);
see Figure 2-5, on p. 87. After making the appropriate pairwise identification of the
consequent free edges, the configuration “rolls up” to form a closed surface composed
of 24 regular heptagons arranged in triples around 56 vertices. A model was sculpted
by Helaman Ferguson and is on the terrace at the Mathematical Sciences Research
Institute in Berkeley. The Klein surface as an algebraic curve is x>y + y3 +x = 0.

Even though it does not include the cases of simply and doubly connected plane
regions, often one proclaims:

Hyperbolization Theorem for Riemann Surfaces. Every Riemann surface with a
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Fig. 2.1. Rolling up a regular octagon: The four transformations mapping edges a; — a; L

b; — bi_1 and sending the octagon into its exterior generate the fuchsian covering group.

nonabelian fundamental group carries a hyperbolic metric compatible with its com-
plex structure.

The Uniformization/Hyperbolization Theorem expresses the fact that when the uni-
versal cover R can be taken as D, we can bring to bear the dual role of D = H?
having both a complex structure and a hyperbolic structure. The group I' of deck
transformations consists of conformal automorphisms of D); therefore the complex
structure of D induces a complex structure on R = D/ I". The group I is also a
group of isometries of H2. Therefore the hyperbolic structure on D = H? induces
a hyperbolic structure on R = H?/T". That is, if z denotes the coordinate in D and
w = (z) the corresponding coordinate in R, define the hyperbolic metric on R by the
equation A(w) |[dw| = p(z) |dz|, where p |dz| is the hyperbolic metric in D). Usually it
is not possible to compute A(w) = p(z)/|7'(z)| with z = 7 N w) explicitly. Notable
exceptions are the once punctured disk {0 < |w| < 1} and annulus {1 < |w| < R} —
see Exercise 2-2.

The surface R has finite hyperbolic area if and only if it is a closed Riemann surface
of genus g > 0 with n > 0 points removed (punctures) satisfying 2g +n > 3. Its area
is 2 (2g +n — 2). Examples include the n-punctured spheres when n > 3.

On the one hand we can study analytic and meromorphic functions on R, in terms
of its complex structure. On the other hand we can do geometry on R, talking about
geodesics, triangles, etc. It is often easier to study the analysis and geometry in the
universal cover, taking account of the covering group I'. As explained in Section
3.5, there is a concrete model of R within D as a convex hyperbolic polygon called
a Dirichlet region. Its sides are organized in pairs; when the polygon is “rolled up”
by identifying the side pairs by I', a surface results and it is conformally equivalent
to R.

There is a generalization of uniformization theory to Riemann surfaces with a dis-
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crete set of points designated as cone points. Assign to each of these points a rational
cone angle of the form 2w /r, where r is a positive integer > 2. The choice r = oo
means that the point should become a puncture. One requires now a branched simply
connected cover with the following property. If £ is a cone point with cone angle 27”
then at each point £* over &, the stabilizer of £* in the cover group G is generated
by an elliptic transformation of order ». A branched, simply connected covering
corresponding to the assigned data exists as S, C, or most commonly H? according
to the possibilities described in Exercise 3-1.

We emphasize there are two aspects to the consideration of branch points. Consider
the cyclic group H = (z > €>™/%7). A fundamental region for H in D is the sector
{z: 0 <argz < 2w /6}. There are two ways to consider the quotient R = D/(z
e?71/%) One way is require R to be a Riemann surface; necessarily then R = D and
D is a branched covering of itself with projection map w = z°. From a different
prospective, R can be viewed as portion of the cone with cone angle 2 /6 obtained
when the fundamental sector {z € D : 0 < argz < 27 /6} is rolled up to identify the
edges. To make the cone into a Riemann surface at the cone point, it must be flattened
out there. This is what is done by interpreting the map z — z° as a homeomorphism
of the sector of central angle 277/6 with the edge identifications onto the full disk D.

To a complex analyst, D/ H is made into a Riemann surface by defining the complex
structure in D/ H in terms of the map w = z® : D/H — D. On the other hand, a
geometer sees D/ H as the cone obtained by rolling up the sector, without bothering
to define a complex structure at the cone point. The point {z = 0} is called a cone
point. The situation is analogous to that encountered by 3-dimensional orbifolds. An
orbifold is actually a manifold, but that involves “flattening out” the cone points which
is not such a natural operation.

The Uniformization Theorem can be divided into a topological part and an analytic
part. The topological part says in particular that every orientable surface with non-
abelian fundamental group has a hyperbolic structure — that is, it is homeomorphic
to H?/G for some fuchsian group G. This can be proven directly by modeling each
surface type by a fuchsian group. The analytic part says that for a Riemann surface,
the hyperbolic metric can be taken to be compatible with the conformal metric. It
is the topological part that has an analogue for 3-manifolds, as is realized in the
Hyperbolization Theorem, page 324. This too is proved by finding geometric models.

2.7 Fuchsian and Schottky groups
Fuchsian groups

Suppose G is a nonelementary, discrete group preserving the upper UHP and lower
half-plane LHP. Each element A € G is symmetric in R; it satisfies A(z) = A(z). Each
elliptic transformation has one fixed point in UHP and the other at the symmetric point
in LHP. The limit set is contained in R. Classically, G is said to be of the first kind if
A(G) = R, otherwise it is said to be of the second kind.
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Fig. 2.2. A Schottky group’s generators (left) and the group’s quotient (right).

Suppose G is of the first kind. Then 2(G) = UHPULHP and if G is finitely gener-
ated, Ry, = UHP/G is a closed surface with at most a finite number of punctures and
a finite number of branch values (cone points); see [Marden 1967; Casson and Bleiler
1988]. The quotients of the upper and lower half-plane are symmetric surfaces under
reflection z > Z. The 3-manifold M(G) = H?* U (UHP U LHP) /G is homeomorphic
t0 Ryop x [0, 7r]; that is M(G) is an “I-bundle” with top surface Rop. This can be seen
explicitly as follows. Let Hp be the euclidean half-plane bordering R, inclined at
angle 0 <0 < to C. G maps each half-plane Hy onto itself. Their quotients Hy/ G
are the cross sections in the I-bundle. In addition the orientation reversing involution
7+ 7 extends to all H? and projects to an orientation reversing involution of M(G),
interchanging its top and bottom boundary components, pointwise fixing the middle
surface Ry >.

Suppose instead G is of the second kind and nonelementary. Its ordinary set Q2 (G)
contains the countable number of open intervals Ay = (R U {oo}) \ A(G) and is
connected and infinitely connected. The quotient Ry, = UHPUA /G, if G is finitely
generated, is a compact bordered Riemann surface containing at most a finite number
of punctures and branch values. Its boundary consists of the finite number of simple
closed curves A4 /G which are pointwise fixed by the involution of Q(G), z — Z.
Equally we have an involution of the surface ©2(G)/G, which is called the double
of Riop. The 3-manifold M(G) has a connected boundary and the product structure
Riop % [0, 1], where the “top” and “bottom” pieces are joined across 9 Ryop.

Schottky groups

This is the simplest class of function groups. Take g > 1 pairs of mutually disjoint
circles in C, {Cy, C i, G, C é}, with mutually disjoint interiors. For each index,
choose any Mdbius transformation A; that maps C; to its partner C; and sends the
interior of C; to the exterior of its partner. The group generated by {A;} is called
a Schottky group of genus g. It is the archetypical free group on g generators. The
G-orbit of the circles nest down on the limit set A(G) which is totally disconnected
(every component of A(G) is a point) as shown in Figure 2.7 (page 76). If G is
not cyclic (which is an exceptionally simple special case), the limit set is a perfect
set. In Mandelbrot’s terminology it is “fractal dust”, since it is known to have a
positive Hausdorff dimension (Exercise 3-20). The ordinary set 2(G) is connected
and infinitely connected. The quotient surface R = 2(G)/G is a closed surface of
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Fig. 2.3. A 2-generator Schottky group showing the orbit of the Schottky circles nesting to
the limit set.

genus g. From the point of view of R, Q(G) is a planar covering surface. There is a
wonderful, thorough discussion of the two-generator case in [Mumford et al. 2002].
In the opposite direction, we have:

Maskit Planarity Theorem [Maskit 1988]. Suppose R is a closed Riemann surface
with at most a finite number of punctures and the covering surface R determined by
a normal subgroup N of wi(R; O) is planar. Then there is a finite set of mutually
disjoint simple loops {«;} in R and a corresponding set of integers {r; > 1} with the
following property: N is the smallest normal subgroup™ of m;(R; O) determined by
{a;"1}, or equivalently, R is the highest normal covering surface of R with the property

that all lifts of the curves {«;"'} are simple loops.

* That is, N is generated by {y«;"i yfl} for all y € 1 (R; O) with each ¢; joined to O by an auxiliary path.
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A planar Riemann surface R is one which is conformally equivalent to a region in
C. Because the covering R—R corresponds to a normal subgroup N C 71 (R), the
deck transformations are conformal automorphisms of R CC. If the result of cutting R
along the simple loops {«;} is itself a planar surface, then the deck transformations of
R are known to consist of the restrictions of Mobius transformations — see [Ahlfors
and Sario 1960, IV.4B, IV.19F]. Otherwise, as shown in [Maskit 1968], there is a
conformal map of R onto another representation R’ of the covering for which the
deck transformations become restrictions of Mobius transformations (Exercise 2-16).

Returning to Schottky groups, the quotient manifold M(G) is a handlebody of
genus g. The common exterior of the circles serves as a fundamental region for
©(G). The common exterior of the hyperbolic planes rising from the circles serves
as a fundamental region in H*. For g = 1 it is a solid torus — a bagel! More generally
M(G) is homeomorphic to the result of gluing g bagels together.

A handlebody M of genus g > 1 is characterized by the following property. Its
boundary dM is a closed surface of genus g. There exist g mutually disjoint simple
curves on oM called compressing curves, each of which bounds a disk within M —
in our construction above these disks can be taken to be the planes rising from the
circles— such that when M is cut along these disks what results is connected and
homeomorphic to a ball. If the handlebody M is embedded in R, its exterior in S is
either a handlebody, with its own, distinct, collection of compressing curves on d M,
or it is knotted.

Suppose X and X, are two handlebodies of the same genus and ®: 0X| — 9 X is
ahomeomorphism. Attach X to X, by identifying each point x € 9 X to ®(x) € 9 X>.
The result is a closed orientable 3-manifold M. Conversely it has long been known
that in every closed, orientable 3-manifold M 3_one can find embedded surfaces S with
the property that M3\ S is the union of two handlebodies; see [Hempel 1976] or [Jaco
1980]. Such a decomposition is called Heegaard splitting. For example a Heegaard
splitting of a closed manifold can be obtained by taking a tubular neighborhood about
the union of 1-simplices of a triangulation. There are two sets of simple loops S;, 8>
on S such that each loop in 8; bounds a disk in one component of M3\ S and each loop
in 8, bounds a disk in the other. There is an orientation reversing homeomorphism
between the two components that interchanges the two sets. The seeming simplicity
of the splitting is very deceptive; all efforts to decipher the topology of the resulting
manifold from the homeomorphism & and its interplay with compressing curves have
failed.

It is a conjecture of Agol that every 2-generator, closed kleinian manifold is home-
omorphic to the result of so gluing two genus-2 handlebodies.

The Schottky construction works equally well if we replace the circle pairs by
pairs of Jordan curves that are known to be associated with Mobius transformations
sending the interior of one to the exterior of its partner. To reflect this distinction the
Schottky groups generated by circles are known to aficionados as classical Schottky
groups, whereas groups with the less restrictive requirement are known merely as
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Schottky groups. The more general situations arise naturally in planar uniformizations
of surfaces. It is known [Marden 1974c] that not every Schottky group in the general
sense can be generated by circles, no matter how the generators are chosen— for
examples see [Gilman and Waterman 2003]. In any case Schottky groups form that
class of kleinian groups for which M(G) is a handlebody. The handlebodies of genus
g obtained from classical groups are characterized by the property of containing g
mutual disjoint hyperbolic planes that are bounded by simple loops which are not
retractable to points in the boundary.

Conversely, a discrete, finitely generated, purely loxodromic group with Q2(G) # @
that is a free group is automatically a Schottky group [Maskit 1988, X.H.6]. A special
case is a finitely generated fuchsian group of the second kind, without elliptics or
parabolics. In fact this is a classical Schottky group; it is an illuminating exercise to
verify this fact directly. See Exercise 2-18.

2.8 Riemannian metrics and quasiconformal mappings

In terms of local coordinates, a smooth, nonsingular riemannian metric ds> = E dx’>+
2 F dx dy+ G dy?* on surface element (or a region 2 C C) can be written in complex
form in terms of z =x+iy, z=x—iy as ds> =A(z)| dz+u(z) dz|?, where A(z) > 0 and
0<|u(z)] <k < 1. Inthe special case =0, it is a conformal metric |[dw|=A(z)|dz|;
this means that a tiny circle |z| = ¢ will become a tiny circle |[w| =A(0)¢ and the angle
measure is the same as in the z-coordinate.

Given the riemannian metric, we can introduce new local coordinates — we can
change the rule for measuring angles — on the surface in terms of which the metric
becomes conformal. This is a classical procedure called introducing isothermal coor-
dinates. Put another way, changing to isothermal coordinates makes the surface into
a Riemann surface. Or, if we start with a Riemann surface and a riemannian metric,
the metric determines a new Riemann surface structure on the underlying pointset.

To find the new structure, we must solve in each coordinate patch the Beltrami
equation

oF oF

3_2 = M(Z)a—z 2.4)
If £ =0, (2.4) reduces to the Cauchy—Riemann equations for analyticity. A solution F
will satisfy the infinitesimal equation |d F| = | F;| |dz+u(z) dz|. 1tis the solution w =
F(z) that is used to introduce a new complex structure —a new rule for measuring
angles — on the same underlying pointset.

For example, consider the metric ds* = |dz +kdz|* in C. The map w = F(z) =
z+kz,7€C,0 <k < 1, solves the Beltrami equation with ¢ = k. This is an orientation
preserving (since k < 1), nonsingular (since k # 1), homeomorphism sending circles
about z = 0 to ellipses with major and minor axes in the ratio K = (1 +k)/(1 — k).
Introduce a new angle measure at z = 0 by defining the angle between two rays to be
the angle between the image of the rays. This is the angle measure determined by the
riemannian metric |dz + k dz|?. In this case the new Riemann surface is also C.
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In the general theory, ©(z) needs only to be measurable on its domain, say €2 C
C with essential supremum ||t|l.c = k < 1. The Beltrami equation has a solution
F which is a K-quasiconformal mcqnping.>HL Near a point, say z = 0, where F
is differentiable (which it is almost everywhere), F is approximated by an affine
map z > az + bz. A solution F' is uniquely determined up to postcomposition with
conformal mappings of its range. Indeed, if g is a conformal mapping of the range,
then both F' and g o F satisfy the same Beltrami equation. The number K = (1 +
k)/(1 —k), where k = || ;]| o, 18 called the maximal dilatation of F, and u = F;/F; is
called its complex dilatation. The maximal dilatation measures the maximal distortion
of the mapping in the sense that infinitesimal circles are sent to infinitesimal ellipses
with ratio of major to minor axis uniformly bounded by K; K =1 if and only if F is
conformal.

The inverse of a K -quasiconformal mapping is also a K -quasiconformal mapping.

Itis often better to define the complex dilatation x on all C — which can be regarded
as S? as the values of j at isolated points do not matter. For example, set & = 0 on
the complement of Q. When u is defined on S?, except perhaps for a set of zero
spherical area, and satisfies ||it|loo < 1 then there is a unique solution of the Beltrami
equation up to postcomposition by Mobius transformations. It is a homeomorphism
S? — S?. Consequently the easiest way of normalizing the solution is to require that
it fix three prescribed points.

Now suppose 2 C C is preserved by a kleinian group G. We want to consider
mappings F that project to map €2/G onto itself or onto another Riemann surface.
For this to happen, u must be a Beltrami differential with respect to G, that is, © must
imply, for any g € G, that both F' and F o g satisfy the same Beltrami equation. The
condition that this be the case is

3@
g'(2)

Often we will extend u to C by setting it equal to zero in the complement of €2, so

n(g2) = u(z) forall g € G and (almost) all z € Q2. (2.5)

w will automatically become a Beltrami equation for G in S%. Any solution F will a
quasiconformal map when restricted to €2 and a conformal mapping when restricted
to the complement of Q.

If we know that A(G) has zero area, it suffices to require u to be a Beltrami
differential on Q(G) = S*\ A(G).* If u satisfies (2.5) on C, then both F and
F o g are solutions of (2.4) for any g € G. Therefore, if F has been normalized,
there exists a uniquely determined Mobius transformation ¢(g) with the property that
Fog(z) = ¢(g) o F(z) for all z € S%. Consequently F induces an isomorphism
+ F1is an orientation preserving homeomorphism with locally integrable distributional derivatives F;, F3.

F The equivalent geometric definition that generalizes to arbitrary metric spaces is that a homeomorphism F of Q
is quasiconformal if there is some constant H < oo such that for every z € €,

. SUPpy —z|= |f (W) = f(2)]
lim sup - <
r—0 infjy—zj= [f(w) = f(2)]

% Actually we do not have to worry about A(G) at all, only about the ordinary set, by Sullivan’s Theorem (p. 158).
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¢ : G — ¢(G) = H onto another kleinian group H. The group H = FGF~! is
called a quasiconformal deformation of G. It is a trivial deformation, really not a
deformation at all, if for some M&bius U, ¢(g) = UgU~! for all g € G, that is, if ¢
is a conjugation.

Suppose G is a fuchsian group acting in the upper half-plane UHP and u is a
Beltrami differential for G. There is a way of arranging things so that the quasicon-
formal deformation is fuchsian as well. This is done by extending p by symmetry
to the lower half-plane LHP: 1 (z) = m It will remain a Beltrami differential for
G. Normalize F so as to fix, for example, (0, 1, 00). Then F maps each of UHP and
LHP onto itself. The quasiconformal deformation H = FGF~! is fuchsian.

Another example is a Schottky group G. Take a Beltrami differential p in its
ordinary set 2(G). We don’t need to bother with the limit set because it has zero
area. A normalized solution F of the Beltrami equation will induce an isomorphism
¢ onto another Schottky group H. Even if G is a classical Schottky group it is unlikely
that the F-images of the Schottky circles are round circles. But the pairing geometry
of these F'-images will remain the same.

Return to the case that €2 is simply connected. At the quotient level: F induces a
quasiconformal mapping f. : R = Q/G — S = F(2)/H. In each homotopy class
[f] of a quasiconformal map between the two surfaces, there will be uncountably
many quasiconformal mappings. One of them may even be conformal. If so, the
deformation, or deformation class [ f], is said to be trivial — there has been no real
deformation at all. One of Teichmiiller’s basic contributions is a characterization of
trivial classes.

Many people have tried to resolve the Ehrenpreis—Siegel conjecture: given any two
closed Riemann surfaces R;, R, and ¢ > 0, does there exist finite-sheeted, unbranched
covers R} of Ry and R of R* which are homeomorphic and are close to each other
in the sense that there is a quasiconformal map F : Rf — R} with complex dilatation

litlloo < €7

Teichmiiller spaces of Riemann surfaces

Suppose R =H?/G is a closed Riemann surface of genus g > 0 with n > 0 punctures
such that 3g +n — 3 > 0. The Teichmiiller space Teich(R) is defined as the quotient
space

Teich(R) ={(S, f)| f : R — S is quasiconformal}/ =,
with the equivalence
(S, f)= (S, f)ifand only if f o f~!:§ — S’ is homotopic to a conformal map.

If R is a closed surface, we can use the term “orientation preserving homeomorphism”
rather than “quasiconformal”. The latter is needed only to insure that the punctures
are not opened up to holes. We emphasize that Teich(R) is the space of “marked”
Riemann surfaces: each equivalence class is associated with a particular homotopy
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class of maps R — §, or an isomorphism 71 (R) — m1(S), that relates each point to
the basepoint (R, id).

A lift F to H? of a quasiconformal mapping f : R = H?>/G — S = H?/H has a
homeomorphic extension to dH?. It induces an isomorphism 6 : G — H. If ¢ CH? is a
geodesic, the endpoints of F'(£), which in general is not a geodesic, are the F-images
of the endpoints of £. In other words, F' determines a injection between geodesics on
R and S.

Another definition is as the space of hyperbolic metrics (curvature —1) on a fixed
say C*-surface R; instead of changing surfaces, change metrics: A hyperbolic metric
is associated with each riemannian metric on R via isothermal coordinates and the
uniformization theorem. An orientation preserving C°-diffeomorphism 2 : R — R
sends the hyperbolic metric to another (set z = h(w) in |dz|/y, for example). Let
Diffy denote the group of those diffeomorphisms which are homotopic (and hence
isotopic) to the identity.

Teich(R) = {g : g is a hyperbolic metric on R}/Diff.

That is, two metrics are identified if they differ by a diffeomorphism homotopic to
identity.
A third definition is as the deformation space of fuchsian groups:

Teich(G) = {0 |6 : G — G is a type preserving isomorphism to a fuchsianG'}/ = .

(Type preserving here means that parabolics correspond to parabolics.) Here 6 cor-
responds to a homotopy class of quasiconformal maps H?/G — H?/G’, and 6, 6’
represent the same point if and only if they are conjugate: 8(g) = U 06'(g) o U~ for
some U and all g € G.

Teichmiiller’s famous theorem tells us that among all the quasiconformal maps in
the homotopy class of a quasiconformal map g : § — §; there is a unique extremal
mapping, called a Teichmiiller mapping, that minimizes the maximal dilatation K
among all quasiconformal mappings in the homotopy class. The Teichmiiller distance
between two points (S, f), (S1, f1) € Teich(R) is defined as log K, where K = (1 +
k)/(1 — k) is the minimal maximal dilatation of all quasiconformal mappings in the
homotopy class [fi o f~' : S — S;]: There is exactly one such mapping whose
maximal dilatation achieves the value K. The theory [Strebel 1984] shows that each
such extremal mapping F corresponds to a Beltrami equation of the following form:
Corresponding to F is is a uniquely determined (up to positive constant multiple)
holomorphic quadratic differential ¢ (z) dz> on S such that F and ¢ = ¢ are related
by the Beltrami equation F;: = k(¢/|¢|) F;.

With this as metric, Teich(R) turns into a metric space, homeomorphic to R®827=6,
Each point lies on a uniquely determined geodesic ray from a given point S determined
by the solution to a Beltrami equation F;z =t (¢/|p|) F,, for some 0 <t < 1 on S. See
also Exercise 5-23.

If «: R — R is a quasiconformal automorphism, then o — or rather its homo-
topy class — determines an automorphism, also denoted by «, of Teich(R) defined
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on equivalence classes by « : (S, f) — (S, f oa). The totality of homotopy classes
of such automorphisms [«] form the mapping class group (or Teichmiiller modular
group) MM(R)™. In the case of the deformation space of tori, this corresponds to the
classical modular group (Exercise 2-5). It is a celebrated theorem of Royden [1971]
that 2T(R) constitutes the full group of isometries of Teich(R).

A point (S, f) is fixed by [«] € M(R) if and only if fOlf_l : § — S is homotopic
to a conformal map, that is if S has a conformal symmetry in the homotopy class of
faf~'. If « has a fixed point it has finite order — it can be thought of as an “elliptic”
element. It is a famous theorem of Kerckhoff [1983], resolving a longstanding conjec-
ture called the Nielsen Realization Problem: Corresponding to every finite subgroup
F C 9N(R), there exists (S, f) € Teich(R) such F corresponds to a finite group of
conformal automorphisms of §; that is, F' has a common fixed point in Teich(R).

Besides the elements of finite order, 2t has elements analogous to the parabolics
and loxodromics of kleinian groups. We will return to these matters in Exercise 5-6.

Rather than bothering with homotopy classes, one might wonder if 2T(R) is iso-
morphic to an actual group of homeomorphisms of R, as it is in the case of a torus or
in the case of a finite subgroup. The answer is negative for closed surfaces of genus
exceeding five [Markovic 2005].

For closed surfaces of genus exceeding two, the mapping class group is generated
by six elements, each of order two [Brendle and Farb 2004]. The mapping class group
is also known to be finitely presented.

The mapping class group acts discontinuously on Teich(R). The quotient orbifold
Teich(R)/M(R) is called the moduli space. It comprises all Riemann surfaces which
are quasiconformally equivalent to R; two such surfaces determine the same point
if and only if they are conformally equivalent, no matter what homotopy class the
conformal mapping is in. Unlike Teich(R), the moduli space is an algebraic object.

It is an interesting fact that in parallel to Selberg’s Lemma for Mobius transfor-
mations, there is a torsion free subgroup My C M(G) of finite index, see [[vanov
1992].

Teich(R) is also a complex analytic manifold of dimension (3g + b — 3), where
g is the genus of R and b > 0 is the number of punctures.™ With respect to the
analytic structure, the modular group constitutes the full group of biholomorphic au-
tomorphisms of Teich [Earle and Kra 1974]. Thus Teich(G)/9(G) is an analytic
orbifold and its finite sheeting covering Teich(G)/9My(R) is an analytic manifold.
Unlike Teich(R), these quotients are open subsets of (compact) algebraic varieties.

We will present a “concrete” realization of Teich(R) in Section 5.6 in which its
complex structure is more apparent.

For excellent introductions to the theory of quasiconformal mappings and Teich-

* As defined here, 9JI(R) consists of orientation preserving mappings; one can also consider the extended mapping
class group which consists in addition of orientation reversing mappings.

* In contrast fuchsian representations of 771 (R) depend on 6g 4 2b — 6 real numbers, including one relation costing
3 real numbers and normalization costing another 3.
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miiller spaces, we cite [Ahlfors 1966; Lehto 1987; Imayoshi and Taniguchi 1992].

2.9 Exercises and explorations
2-1. Elementary and reducible groups.

(i) Prove that a (not necessarily discrete) group G is elementary if and only if any
two elements of infinite order have a common fixed point.

Hint: Clearly the definition given in Section 2.2 implies this one. If all elements
are elliptic, we must appeal to the fact, to be proven in Corollary 4.1.5, that either the
group is cyclic, or it has a common fixed point in H3. All the parabolic elements of
G must share the same fixed point. If A and B share the fixed point ¢ and at least
one of them is not parabolic, then their commutator [A, B] = ABA~'B~! is either
parabolic or the identity; it is the identity if and only if A and B have the same set
of fixed points. Thus for B € G with two fixed points, there cannot exist two other
transformations, A, C such that A, B share one fixed point of B and C, B share the
other. In particular all parabolic and loxodromic elements of G must have a common
fixed point ¢. Then any elliptic element must fix ¢ as well, unless all the loxodromic
elements have the same pair of fixed points and the elliptic element interchanges the
two fixed points.

Conclude as in Lemma 2.3.1(v) that every nonelementary group contains two lox-
odromic elements without a common fixed point.

(ii) A Mobius group H is called reducible if there is a fixed point common to all
elements of H. A reducible group is, in particular, elementary.

Suppose that H is not reducible. Show that there exist two elements without a
common fixed point. As a consequence show that a nonabelian group is reducible if
and only if the trace of every commutator is +2 (Lemma 1.5.1).

Hint: Assume that H is not reducible. Choose an element 4 # id. If 4 is parabolic,
there is an element which does not fix the fixed point of 4. Instead suppose & is
loxodromic or elliptic with fixed points ¢, & € S2. If there is an element with distinct
fixed points we are finished. Otherwise there is an element /; which fixes {; but not
&, and hy, which fixes ¢, but not ¢;. If h; and h, have distinct fixed points we are
done. Otherwise /; and &, have a common fixed point {3 # 1, ¢». But /iy o by fixes
neither £; nor &;.

2-2. Show that w = e>'? is a conformal mapping of the quotient space
H*/(z > z+1)
onto the punctured disk O < |w| < 1. Find a corresponding mapping from

H?/(z > kz),
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where k > 1, to some annulus 1 < |w| < R. Then show that the hyperbolic metrics
A(w) |[dw| in the punctured disk and annulus are given by

A(w):;l, A(w)z( i ) !

log R . mwlog|w|’
|lw[log — |w| sin ————
lwl log R

In the annulus, the geodesic is the circle {|jw| = «/E}, it is fixed by the involution,
. . . 2 2
and its hyperbolic length is @.
In contrast, verify the following formula for the mildly singular metric that results
from pulling the hyperbolic metric down to H?/(E), where E is elliptic of order n:

2

M) = (L [w2/n)’

Hint: use the disk model and the map w = z".

2-3. Prove the result of C. L. Siegel repeated in [Lehner 1964, Theorem III.J] that
a nonelementary group that preserves the upper half-plane and which is not discrete
contains an elliptic element of arbitrarily high order.

Hint: Suppose A = (g 1%) is an element of G and there is a sequence {B,} with
lim B, = id. Compute the trace of the commutators C,, = ABnA_an_ and D, =
AC,A"'C o L Writing the normalized matrix B, = (Z’: ZZ ), show first that lim b,,¢,, =0
so that lima,d, =1 and a,d, > 0 for large indices. Conclude that for infinitely many
indices either tr?(C,) < 4, so that C, is elliptic, or tr?(D,,) < 4.

2-4. Suppose {T,} is a sequence of loxodromic or elliptic transformations such that
(tr T,,)? has limit 4. Show that for a subsequence, there is a sequence of conjugates
(U T U, 1} such that lim U, T, U~ lisa parabolic transformation. One example is
the sequence {z > ¢*"/"z}. (For an application, see the video Not Knot [Gunn and
Maxwell 1991].)

2-5. The modular group. For this exercise it may be helpful to refer, for example, to
[Ahlfors 1978]. The group M of normalized matrices with integer entries is called
the modular group and is often denoted by Mod = PSL(2, Z). This is an object of
fundamental importance in number theory, in particular in the proof of Fermat’s Last
Theorem by Wiles. It is also involved in the theory of quadratic forms: if an integer N
can be represented as N = ax? +2bxy +cy2, where a, b, ¢ are given integers and x, y
are integer variables, then replacing x, y by mx 4+ ny, px + gy, where ("I; ;) € Mod,
gives a new representation of N.

Show that is generated by z — z+ 1 and z — —1/z. It can also be expressed as
the free product 7, * Z3, that is, it is generated by elliptics of order two and three
with parabolic commutator. Confirm that the following is a fundamental polygon F
for the action of Mod in the upper half-plane: {z : —% <Rez < %, |z| > 1} with the
boundary segment {|z| =1, 0 <Rez < %}.
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Fig. 2.4. Tessellations of the upper half-plane and disk by the orbits of the standard funda-
mental polygon under the modular group.
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Fig. 2.5. Tessellation of the upper half-plane and disk by the orbit of an ideal quadrilateral, the
union of two adjacent ideal triangles, under the 3-punctured sphere group. The ideal vertices
are labeled by the Farey sequence (Exercise 2-9), which are their coordinates on R. If the
endpoints of the outer edge of an ideal triangle are p/q < r/s, then ps — gr = £1 and the
coordinate of the third vertex is (p +7r)/(qg + ).
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For later use also note that the intersection F of the region in the upper half-plane
{lz—n|>1:n € Z} with the strip {0 < Re z < 1} also serves as a fundamental polygon
for M (with due consideration for boundary arcs).

Denote by M, the subgroup of the modular group M, called the level 2 congruence
subgroup of M, consisting of normalized matrices which satisfy

a b 1 0
(c d>=:|:<0 1>m0d2.

Show that M, is generated by z — z+ 2 and z +— z/(2z + 1). Furthermore M, has
index 6 in M; show this by showing that the ideal quadrilateral

F={z:=1<Rez=<1, lz+3]> 3 lz—3= 3}

is a fundamental polygon for M, and that it contains 6 copies of F'. The quotient
surface H? /M, is conformally equivalent to the triply punctured sphere.

Conversely suppose all three transformations A, B, C = AB are parabolic with
distinct fixed points. Prove that (A, B) is a discrete group preserving some round
disk in S?. In fact, it is conjugate to M>. In short, there is only one triply punctured
sphere, up to Mdbius equivalence.

More generally, a fuchsian group I is called a (hyperbolic) triangle group of signa-
ture (p, q,r),2<p,q,r <oo,ifitis generated by elements A, B suchthat A, B, C =
B A are elliptic of orders p, g, r — or parabolic if the corresponding order is infinite.
Providing %—i—é—i—% < 1, there exists such a fuchsian group (Exercise 3-1). The triangle
group arises from a hyperbolic triangle with vertex angles (7t/p, w/q, 7w/r) by first
taking the group (a, b, c) generated by the reflections in the sides and then passing to
the index two, orientation preserving, subgroup generated by A =ab, B=bc, C =ca.
The presentationis ' = (A, B,C: A» =B1=C"=ABC =1).

The modular group has signature (2, 3, co) and M; has signature (0o, 0o, 00).
Prove that up to Mdobius equivalence there is only one group for each such signa-
ture. In fact, show using the trace identities that a triangle group must necessarily be
fuchsian.

While we are dealing with the fundamental polygon for M, we will take the op-
portunity of pointing out the following phenomenon. If we move the fundamental
polygon to the unit disk D, it is bounded by a chain of four circular arcs orthogonal to
0D and mutually tangent at their points of intersection. The group M is generated by
pairing successive arcs, sending the exterior of one to the interior of its partner. The
four points of tangency correspond to the three punctures on the quotient 3-punctured
sphere. But we can equally pair the opposite arcs instead of the adjacent ones. Show
that this results in a quotient which is a once punctured torus!

In particular we have shown that the same fundamental polygon can serve for two
entirely different groups.

SL(2, Z) itself is generated by A = ((1) 7(1)) and B = ((1) *i), and also by (é }) and
V = (i (1)) It has the presentation (A, B | A% = B3 AY = id). See [Magnus 1974,
p. 108].
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Fig. 2.6. Tessellation by the (2,3,7) group. Two adjacent triangles form a fundamental poly-
gon. A single triangle is a fundamental polygon for the reflection group. A fundamental
polygon for the subgroup associated with the Klein surface (page 72) is also indicated.

2-6. A crash course on tori. Take wi, wy € C with Im(w,/w;) > 0. Consider the rank
two parabolic group

G={(zz+w, 2> 2+ w),

associated with the lattice in C of the points {mw|+nw,}, m, n € Z. The parallelogram
with vertices (0, w1, wz, w1 + wy) is a fundamental parallelogram: its G-orbit covers
C without overlap. The quotient 7 = C/G is a torus. The euclidean metric in C
projects to 7' and the sides [0, w], [0, w2] project to a pair of simple loops which
cross each other only at the projection of 0.

Set W) = aws + bw|, w| = cwy + dwy, where a, b, c,d are integers satisfying
ad — bc =1 (so that wy, w, likewise can be expressed as an integral combination of
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o, w)). Thus {w], w)} is a new basis of the lattice. Every change of basis arises in
this manner.

The only conformal mappings of C are the affine mappings z — az +b. An affine
mapping takes one lattice (w1, w») to another; it projects to a conformal mapping of
one quotient torus to the other, sending one pair of loops to the other. Since we do
not want to distinguish two lattices so related, we can normalize by focusing instead
on ratios T = wp/wy, with Im t # 0, and lattices {m + ni}.

In this convention 7" = ) /| determines the same lattice if and only if there exists
a normalized Mobius transformation with integer entries a, b, ¢, d such that

_ar—i—b _m

'=At) = ——, 1=—"-.
ct+d W]

Such a transformation A is called a modular transformation. It sends each torus
to a conformally equivalent one: Instead of the parallelogram (1, ) there is a new
fundamental parallelogram (1, t’) for the same lattice. The group of modular trans-
formations is of course the modular group of Exercise 2-5.

We can subject 7 to the following additional normalization: Imt > 0, |t| > 1,
—% <Ret < % but Re 7 > 0 if |[t| = 1 [Ahlfors 1978, §6.2.3]. This choice uniquely
determines t amidst its orbit under the modular group (Exercise 2-5).

The space T of all tori can thus be taken to be the upper half-plane {r : Imt > 0}.
Two points 7, ” represent conformally equivalent tori if and only if they differ by a
modular transformation. The modular transformations are of course isometries of ‘T.

A fundamental parallelogram “rolls up” to give the quotient torus 7". The specific
choice of fundamental parallelogram gives a marking of the torus, in that the two
pairs of edges project to an specific ordered pair of simple loops on the quotient torus.
(The two loops are geodesics in the euclidean metric of the torus and cross each other
exactly once.) Different choices for the fundamental parallelogram correspond to
different choices for this pair of simple loops and different choices in the orbit of the
initial T under the modular group.

The change of marking arising from changing t to t’ is induced by a conformal
automorphism of the underlying torus if and only if t” = 7 is a fixed point of A, which
is then necessarily elliptic. This can happen only for special lattices — special values
of 7, namely for t =i (square), T = e>*!/3, or T = ¢**//6. The modular transformation
that fixes the point t =i is ¢/ = —1/.

There is a continuous group that maps every torus unto itself, without fixed points.
There is a unique element that maps a given point to any other. This group is the
projection to the torus of the group {z +> z+c: ¢ € C} of translations of C. By fixing
say z = 0 as a lattice point, we prevent this group from acting on the quotients.

In addition the map z — —z projects to every torus 7. It becomes a conformal
automorphism of order two with exactly four fixed points. The quotient 7 /{z > —z)
is conformally equivalent to CUoco. and T is branched of order two over four distinct
points. Apart from the group of translations above, this is the only affine map that
induces a conformal automorphism of all tori. Since it has order two, it is called the
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hyperelliptic involution. All closed surfaces of genus 2 also have such an conformal
involution which by necessity has six fixed points (see Exercise 2-13), but relatively
few closed Riemann surfaces of each g > 2 support such an automorphism.

The euclidean line segment from O to p +¢7, with (p, ¢g) relatively prime integers,
projects to a simple loop, and conversely every simple loop on T from the projection of
0 is determined in such a fashion. In other words, there is a one-to-one correspondence
between rational numbers g/ p and unoriented simple loops from a given point 0 € 7.
The fraction 0/1 corresponds to o and 1/0 corresponds to 8.

Actually it is quite artificial to choose the base point 0. Given a slope p/q with p, g
relatively prime, consider the family of all parallel euclidean lines with this slope. The
projection to 7 is a family of parallel, mutually disjoint simple loops (geodesics in the
euclidean metric) that fills up 7. Conversely, each simple loop is freely homotopic to
such a family. In short, given any torus 7" and a basis «, 8 the set of free homotopy
or homology classes of simple closed curves on 7T is in one-to-one correspondence
with the rational numbers.

Let T be the square torus T =i and « € T be the simple geodesic loop coming from
a line with slope p/q. If (p, q) are relatively prime, which of course we will always
assume, there are relatively prime positive integers (r, s) for which ps — gr = %1.
Choose B € T to be the simple loop coming from a line with slope r/s. Show that
the number of times that o crosses 8 on T is exactly

i(a,B) = |det("7)]-

Here i (o, B) is called the geometric intersection number of the loops «, 8. It is the
least number of intersections any pair of curves «’ in the free homotopy class of
a and B’ in the free homotopy class of B can have. Therefore if h : T — T is a
homeomorphism, i («, B) =i(f(a), f(B)).

Let p, g be relatively prime integers, 0 < p < ¢ and consider the line L: y=(p/q)x
in the (x, y)-plane. It projects to a simple loop « on the quotient torus 7. On 7', there
is a shortest distance d from one side of « to the other side. Remembering that there
is a pair of integers (p’, ¢’) with pp’ —gq’ = £1, show that

1
NI
Hint: minimize the distance of the lattice point m + ni to the line L. Show that the
line L' : y=(p/q)x+1/2q is as close as possible to L while projecting to the simple
geodesic on T parallel to o and halfway between its two sides.
What happens if t — p/q, t € A(F), for some A € Mod? The torus becomes
pinched along its (p, ¢) curve. What happens if T — ¢ € R with ¢ irrational? Then

7 runs through a sequence of polygons {A;(F)} with A; e Mod and lim A; =¢. The
sequence of tori, which may be taken to be conformally all the same, collapse to the

d=

lines of slope ¢, which is the “ending lamination” for the sequence. We will formally
study this idea in a more general context in Chapter 5.
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Again work with the square torus 7. It is known that any (orientation preserving)
automorphism 7 id of T is homotopic to the projection of an affine map f described
in terms of column vectors by

)= (22)0)

y c d y)’

where a, b, c, d are integers satisfying ad —bc = 1. Let A, A~! denote the eigenvalues
of the coefficient matrix (which therefore is conjugate to (5% )). If 1 > 1 show that
lim,— ~ i (f"(a), B)) = co. Such a map on a torus, which is area preserving, is called
an Anosov mapping. It preserves two lines through z =0, ¢, and ¢,, both at irrational
angles with respect to 7. It stretches one by a factor of A and compresses the other by
a factor A~!. The projection of each line to T is a geodesic of infinite length, never
intersecting itself and dense on 7. In contrast, if |A| = 1, A #% %1, then f has finite
order (f" =id for some n). If A = =1, f satisfies f(«) =« for some simple geodesic
loop o on 7. The map f is what we will later call a Dehn twist.

An affine map A(z) = az + B maps the lattice A = (1, 7) onto itself if and only
if o € A and ot € A. Of course this is satisfied if « € Z. For particular values of
T it can be that o ¢ Z. For these cases show that T and likewise o satisfy quadratic
equations with integer coefficients.

The jacobian of the mapping is |a|>. That means the fundamental parallelogram
P = (1, 7) is sent to a parallelogram of |« |>-times the area of P; the image covers the
torus 7 |a|?-times, which is necessarily an integer. Alternately P can be subdivided
into |a|? subparallelograms so that the image of each covers the torus once. The
induced (analytic) mapping A, of the torus onto itself has degree |o|°.

How many fixed points does A, have? How many distinct solutions mod(A) does
(¢ — 1)z = 0 have? Well |o — 1|? is the jacobian of the map z — (¢ — 1)z so it
induces a map of the torus that covers itself |o — 1|>-times, and by necessity this
too is an integer. So A, has exactly |o — 1|>-fixed points. Likewise the n-th iterate
A"(z) = a"z+ B, has |o" — 1|? fixed points. These become dense in T as n — o0, if
|| # 1, thatis, if A, is an > 2 to 1 analytic mapping of 7" onto itself.

For example, if @ =i then we must have T = i. The map A, has degree one and
two fixed points, namely the points on 7" corresponding to z =0 and z = (1 +i)/2.

2-7. Suppose G is a noncyclic discrete group all of whose elements fix co. Suppose
the subgroup G of parabolic transformations is a rank two parabolic group. Then G is
the extension of G by at least one of the following: an element of order two (possible
in all cases), an element of order four (possible only if a fundamental parallelogram
P for Gy is a square), or an element of order three or six (P is a rhombus with a 77/3
vertex angle).

2-8. Suppose G is discrete. Take all the matrices corresponding to G and replace
them by their complex conjugates. Show that the resulting group G’ is also discrete
and Q(G'") = J(2(G)), A(G") = JA(G), where J(z) =Z. Infact G' = JGJ.
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If two elements A, B in a discrete group without elliptics satisfy A”? = BAYB~!,
P, q #0, then B preserves the fixed point set of A. Furthermore p =¢ and either A, B
lie in a one or two generator parabolic subgroup or both are powers of a loxodromic
element C.

2-9. Punctured tori and the Farey sequence. A once punctured torus has a hyperbolic
metric but a torus has only a euclidean metric. Yet topologically and analytically there
is a close relationship as a once punctured torus corresponds to a choice of basepoint
on the torus.

A group G representing a once-punctured torus in H? is given by two loxodromic
generators X, Y without common fixed point and with parabolic commutator K =
XYX~'y~!. Prove that XY cannot fix co. Hint: If XY fixes oo show that Y X
also fixes co and must be parabolic. Then show that X and Y must fix oo (hint:
YX =X"1"(XY)X).

A once-punctured torus is called square if it has two simple geodesics «, § which
have the same length and cross each other exactly once. Show that these curves are
the systoles for the surface —the geodesics that have the minimum length among all
geodesics on the surface. Automatically afa~!'f~! is freely homotopic to a simple
loop that is retractable to the puncture.

Show that the matrices

=7 ) =L )

determine a square torus. Find a fundamental polygon in UHP.

Find the matrix generators for the once-punctured torus that corresponds to a reg-
ular euclidean hexagon with puncture at the center. What are its symmetries?

The Farey sequence F is very useful in studying once punctured tori. It is based
on the modular diagram. The Farey sequence is the orbit of the boundary d F, of
the fundamental polygon for M, presented in Exercise 2-5. What is interesting is its
labeling.

Note that the orbit of the ideal vertex {oo} under Mod is the set of all rational
numbers Q (plus co). Prove:

(i) The rational numbers m/n and p/q are ideal vertices of the tile g(F>), g € M>
if and only if mq —np = £1.

(i) The ideal vertex x/y of a tile g(F;) separates the other two ideal vertices m/n <
p/q of g(F>) if and only if

X m-+p

y n+gq’

Each irrational number ¢ is the limit of a nested sequence of geodesics in the orbit of
o F». For example the sequence

...» [p/q.m/nl, [p/q, (p+m)/(qg+n)], [Cp+m)/2q+n)], ...
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The sequence can be described in terms of a left-right pattern in the edges of the
tessellation {M;(F>)}. There is a wonderful description of the Farey sequence in
[Mumford et al. 2002].

What we want to point out here is that the geodesic with endpoints m/n, p/q
represents a pair of simple closed geodesics «, 8 on the punctured torus with the
property that o crosses 8 exactly once. Here « has slope m/n and g has slope p/q —
see Exercise 2-6.

2-10. Here are some volumes and areas to compute. G is a nonelementary kleinian
group.

(i) Consider the group P, = (z+> z+ 1, z+— z+ 1), where Im t > 0. The horoball
H = {(z,1) € H* : t > a > 0} is invariant under P,. Assume that its projection
C(7) to M(G) is embedded; this is a solid cusp torus. Using the hyperbolic
volume form dV = dx dy dt/t> show that for § = arg t,

|T|sind |T|sinf Vol(C (7)) 1

7 Area(dC (7)) = a> ' Ara(dC(r)) 2

For the universal horoball, @ = 1. By Exercise 2-5 a fundamental parallelogram

for P, can be chosen so that || > 1 and % <0< 2% Thus the volume of the

3
solid cusp torus is not less than \/Tg‘
(i) Likewise assume that the equidistant tube 7 (r) of hyperbolic radius r about a
closed geodesic of length L is embedded in M(G). Show by working in the

upper half-space model that

Vol(C (7)) =

Vol T(r)y=nL sinh®r, Area oT (r) =2m L sinhr coshr,
Vol T (r) | 1
mzitanhr/'i aSF/OO,
Vol T(r) = $AreadT (r) + 3 L(e™> —1).

(iii) In the case that M(G) has finite volume, borrowing terminology from Section
3.4, deduce that

Vol(M(G)) < Vol(M(G)™'¥) + 1 Area(d9M(G)™M'k). (2.6)

In fact M(G)™K is a compact submanifold whose complement consists of a
finite number of cusp tori and tubes about short geodesics.

(iv) Suppose M(G) is a closed manifold (compact, without boundary). Show that
there is a shortest closed geodesic y. If y has length L, show that it has an
embedded tubular neighborhood of radius L /4. Hint: expand the tubular neigh-
borhood until at radius r it first touches itself at a point p. The two orthogonals
of length r from p to y, with a segment of y of length < L/2, form a closed
loop. Its length must be > L.

2-11. A gaussian integer is a number of the form p + ig, where p, g are integers.
The group I' of normalized matrices whose entries are gaussian integers is called the
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Picard group. Show that it is a discrete group but its limit set is the whole sphere.
Hint: It is generated by the four parabolic transformations,

< . Z
S)=z+1, T()= 1 U()=z+i, V(@)= e
However note that T = ASA, V=AU A, where A(z) = —1/z. Furthermore, if B(z) =
—2, A=TST and B = UAU ' AUA. Therefore the Picard group is generated by
three elements (S, 7', A). For details, including an explicit fundamental polyhedron
see [Wielenberg 1978].

The same reference discusses a variety of subgroups of finite index without elliptic
elements of I'. These interesting subgroups give rise to quotient spaces which are
homeomorphic to a variety of knot and link complements, including the Borromean
rings.

2-12. Equality in Jprgensen’s inequality. There are continuous families of geo-
metrically finite groups (Section 3.6) as well as uncountably many nonconjugate,
nonelementary, geometrically infinite 2-generator discrete groups that give equality
in Jgrgensen’s inequality [Jgrgensen et al. 1992]. In these cases A must be elliptic or
parabolic [Jgrgensen 1976]. The examples are typically extensions of the modular or
other triangle groups. The Picard group is one such extreme group.

However in the class of fuchsian groups, only the triangle groups G (Exercise 2-5)
with signature (2, 3, g) with 7 < g < oo give equality [Jgrgensen and Kiikka 1975].
Confirm that this is the case for the first few examples.

Prove that if (A, B) gives equality, then (A, Bj =B AB Yisalsoa nonelementary,
discrete group which gives equality in Jgrgensen’s inequality. Hint: You will need the
identity,

tr(ABiA™'B ™) = [r(ABA™'B™Y) = 2][tr(ABA™'B~) — tr’(A) + 2],
and its consequence,
tr(ABiA™'B; ™) — 2| < |wr(ABAT'B™") - 2.

See also Lemma 1.5.6.
Using the property proved in the preceding paragraph, prove that if (A, B) gives
equality, then A is either elliptic of order at least 7 or is parabolic.

Prove that if two Mo6bius transformations A, B with equal traces generate a nonele-
mentary discrete group, then [Jgrgensen 1981]

r(ABA™'B™") —2| > ¢.

2-13. Genus-two surfaces. In the disk model find a regular hyperbolic octagon with
vertex angles 7 /4. Hint: start with a tiny octagon centered at z = 0. It is nearly a
regular euclidean octagon with vertex angles 37 /4. Now increase the distance of the
vertices from the origin; the vertex angles strictly decrease to zero, as they become
ideal vertices.
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Next, in the positive direction label the sides of the octagon P as ay, by, al_l, bl_l,
as, by, az_l, bz_l, as in Figure 2.1 on p. 73. Find an isometry A; that maps a; onto ai_1
but sends the positive direction along a; to the negative direction along a;” ! that is
A; (P) is adjacent to P along the exterior side of a; ! Similarly find B;. By starting
with a vertex p of side a;, show that the commutator product (starting from the right)
satisfies Bz_lAz_leAzBl_lAl_lBl A =id. This is called a vertex relation; it says that
in the orbit of P, successive images of P are arranged in the indicated cyclic order
about a vertex. Show that the orbit of P under the group (A;, As, By, By) covers
H? without overlap. Show that the quotient surface R is a genus 2 surface, the eight
vertices project to a single point O, each side projects to a simple loop from O, the
loops are mutually disjoint except at O, and they bound a simply connected region
A on R. The vertex relation is a consequence of the fact that if you make a complete
circuit of dA, the resulting loop is contractible to a point.

Does the rotation by /4 of the octagon induce a conformal mapping of R onto
itself? How about rotation by 7 ? How about reflection about the geodesic between
two opposite vertices. What fixed points on R do the induced mappings have?

Instead of the above pattern, label the edges in the sequence ay, b1, az, ba, afl , bfl ,
a, b by I and repeat the process, pairing the opposite sides of P as before. Find the
vertex relation. The quotient gives another surface of genus 2 but for which the simple
loops are arranged in a different pattern. Consider the rotation of P by 7. Confirm
that on the quotient, it maps each simple loop to its inverse, and has exactly six fixed
points. This involution is called the hyperelliptic involution J; every closed surface
of genus two has one. The quotient R/(J) is a sphere with six branch values of order
two, that is, R is a two-sheeted cover of S?, branched over six points.

Conversely, given six distinct points in S?, the two-sheeted cover branched over
the six points is a closed surface of genus two. The covering surface is determined by
a normal subgroup of index two in the fundamental group of the 6-punctured sphere;
can you find the subgroup?

Show using fuchsian groups that every closed genus-2 surface has a hyperelliptic
involution. Hint (following Jgrgensen): Express the basic relation

ABA-'B-'cpCc 'D ' =1

as ABAT'B~' = DCD™'C™". Set U = A"'B~!C and V = DC~'BA. Conclude
that ABUV = VU BA. Think then of a double bagel with A, B simple loops around
the holes and U, V through the holes. Skewer the double bagel, puncturing it at 6
points, and then rotate by 180°. The involution is given by A — A~!, B — B~!,
C — C~', D— D!, See also the example of Section 7.2.

2-14. No tangents at loxodromic fixed points. Show that a limit set A (G) cannot have
a tangent line at a fixed point of a loxodromic g € G with tr(G) ¢ R unless A(G) is
Mobius equivalent to a circle. Therefore there are no smooth limit sets except circles
and euclidean lines. See also Exercise 3-21.
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Outline of proof. [Lehto 1987, Lemma 4.2]. Assume A = A(G) is not Mdbius
equivalent to a circle. Suppose to the contrary that R is the tangent line to A at z =0
and there is a loxodromic g € G of the form z > ke'?z,0 <k <1, 0 < ¢ < 2m.

If =0, find z € A, Imz # 0. Then for all n, arg g"(z) = argz # 0, . There is a
contradiction as n — oo. If instead ¢ = 7, upon working with g we likewise get a
contradiction.

More generally set ¢ = min{¢, |r—¢|, 2 —¢} so that 0 < ¢ < w/2. Construct
the symmetric wedges of angle ¢ centered along R: V = {re'® : 0 € (—¢/2, ¢/2)},
V' ={re? :0 e (m—¢/2, 71 +¢/2)}. Thus if z liesin VUV, then g(z) ¢ VUV'.
Choose a sufficiently small disk D about 0 so that AND C (VUV’)N D. Then
choose z # 0 in A N D sufficiently small so that g(z) € D. But then g(z) € AN D yet
g(z) ¢ VUV’ a contradiction.

2-15. Prove a Mobius transformation of the form A = (Z Z), ad — b* = 1, satisfies
JAJ = A~!, where J(z) = —z. Conclude that if a discrete group G is generated by
elements of this form, then A(G) is invariant under J.

2-16. Modeling conformal groups by Mobius groups. Suppose G is a group of Mobius
transformations preserving 2 C C and ¢ : G — H is an isomorphism onto a group
of conformal automorphisms H that map another region Q' onto itself. Suppose
® : Q — Q' is a quasiconformal mapping such that ®gd~! = ¢(g) for all g € G.
Prove that there is a conformal mapping W : Q' — Q* such that WAW~! is a Mdbius
transformation for all ~ € H. Thus if the action of H on €’ can be modeled by the
action of a group of Mobius transformations, we can find a region Q*, conformally
equivalent to ', where the group H actually becomes a group of Mdbius transfor-
mations [Maskit 1968].
Hint: Confirm that the Beltrami differential © = (0®/09z) / (0®/0z) satisfies

g
8'(2)

n(gz) = u(z)forall g € G.

Extend  to S? by setting it equal to zero in the complement of 2. Then solve the
corresponding Beltrami equation on S?; the solution W : Q — W () = Q* is uniquely
determined if we require it to fix three prescribed points. Show that ¥ : g > WgW~!
is an isomorphism of G to a group of Mobius transformations H* preserving €2*.
Show that ¥ o ®~! : Q' — Q* is a conformal mapping inducing the isomorphism
Voop ' H— H*

2-17. Geometric group theory. An abstract finitely generated group H can be investi-
gated geometrically by analyzing its action on the Cayley graph A(H). The graph is
constructed as follows. Select a generating set § = {g1, g2, ..., & }. We will assume
that if g; € G then also g,;l € G; the identity is not put in G. The vertices of the graph
H are the distinct elements of H. An (oriented) edge is a triple E = (hy, hy; g¢°),
where hy, hy € G, ho = h1g,°%, and € = 1. The initial point of E is &, the terminal
point is s, and the inverse of E is E~'=(hy, hy; g1~ %). There is a special case when
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the element g has order two: then the edge E can be regarded as unoriented. If O
is the vertex that corresponds to id € H, then any word in the designated generators
is uniquely represented by a path of oriented edges starting from O. The word is the
identity if and only if the corresponding path is a closed loop.

For example the word g;g>g; ! reading from the left corresponds to the path com-
posed of the successive edges from O:

(id, g1; 81), (81,8182 82), (2182, 812281 5817 ).

If glgzgl_l = id then the third edge is the inverse of (id, gi; g1)-

Two graphs are called isomorphic if there is a one-one mapping of the vertices and
edges of one onto the vertices and edges of the other which preserves orientations.

To embed J{ in a particular space, for example in R?, H? or H3, we have to represent
its vertices by distinct points and its edges by smooth arcs or geodesic arcs which are
mutually disjoint except for common endpoints.

The Cayley graph A(H) is connected (why?). If there are no (nontrivial) closed
loops the graph is called a tree. A closed loop is trivial if it is a succession of edges
followed by the succession of edges with the opposite orientations.

Show that for a free group H on one generator with generating set {g, g}, A(H) is
isomorphic to the graph on R whose vertices are integers and whose edges are directed
segments between them. Show that graph of the free group on two generators with
a generating set G of four elements is a tree and draw an embedding in R?. Use the
model of a n-generator Schottky group to embed the Cayley graph of an n-generator
free group in C.

A Cayley graph can be made into a metric space by mapping each edge with distinct
endpoints onto the unit interval thereby assigning it unit length and proportionally
giving smaller lengths to each segment of the edge. If both endpoints of the edge are
the same, map it onto the circle of unit length. There is at least one geodesic between
any two vertices; its length is the number of edges in a shortest chain in the graph
that connects them. This metric determines a topology on the graph.

The ends of the graph are defined as follows. For any compact subset K, count
the number of unbounded components of I" \ K. The number of ends of A(G) is
defined to be the supremum of the number of such components over all K. Show that
the number of ends does not depend on the generating set. It is known that a Cayley
graph has either zero, one, or an infinity of ends.

The Cayley graph allows “visualization” of the group H, generalizing the follow-
ing classical representations: To construct the Cayley graph of a fuchsian group or
kleinian group we can use the tiling by a fundamental polygon or polyhedron centered
at a point O, which is not an elliptic fixed point (Section 3.5). Use the generating
set determined by the face pairing transformations. Show that the Cayley graph is
represented by drawing geodesic segments from O the successive points in the orbit
of O under words in the face pairing transformations. The graph then appears as
“dual” to the tiling by the orbit of the fundamental region and combinatorially reflects
that tiling — see Section 3.4. As the graph gets closer to the boundary, more and more
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it looks like hyperbolic space itself, especially if you are very farsighted an cannot see
the edges clearly. Analogy with this concrete situation often inspires the intuition for
finding “geometry” in abstract Cayley graphs and looking for a “sphere at infinity”.
The Cayley graph has turned out to be a powerful tool to study particular classes of
abstract groups.

The group H acts on its Cayley graph. Each f € H sends a vertex v to fv and an
edge E = (h1, ho; g¢°) to fE=(fhi, fho; g° f). The group action is an isometry in
the path metric. In the classical cases at least, we can find a connected finite subgraph
that serves as a fundamental set for the action.

Even the family of finitely presented groups is too general to deal with; for example,
the question of deciding whether a given element of the group is the identity is known
to be undecidable; such groups do not seem amenable to a geometric approach. It was
Thurston’s work that brought modern combinatorial group theory back to its historic,
geometrical roots. In his famous 1987 paper, Gromov presented a condition on the
groups that would make possible an effective geometric theory. His definition models
a certain property of isometry groups of hyperbolic space.

An abstract, infinite, finitely generated group H is said to be negatively curved or
8-hyperbolic or word-hyperbolic or simply hyperbolic if it has the following property:
There exists a universal constant § > 0 such that for any geodesic triangle™ A in the
Cayley graph A(H), a point on one side of A lies within distance § of the union of
the other two sides, however long the sides are. This property is called &-thinness
or the Rips thin triangle property. We know it holds for hyperbolic triangles. The
thinness property is independent on the chosen generating set of H. (What does
“zero thinness” mean?)

The condition of thinness is a global condition that suggests that the Cayley graph
in the large “looks” like hyperbolic space. The theory was first outlined in [Gromov
1987]. It now occupies a large place in combinatorial group theory (see the wonderful
expositions [Cannon et al. 1997], [Cannon 2002], which has many explicit examples,
[Cannon 1991] or [Ohshika 2002]). The study of hyperbolic groups involves a kind
of discrete hyperbolic geometry in the large. A word-hyperbolic group has an “space
at infinity”, which for kleinian groups is S?, and which serves a fundamental role in
analyzing the group. Within the theory a major question is how to determine whether
a hyperbolic group is isomorphic to a kleinian group, more specifically ,

Cannon’s Conjecture. A hyperbolic group with boundary homeomorphic to S? is
isomorphic to a kleinian group representing a closed manifold.

The boundary d H of a hyperbolic group H is defined as equivalence classes of
geodesic rays with a “natural topology” in terms of the action on the rays by H (as
is to be expected from knowledge of hyperbolic space).

According to Gromov, randomly chosen groups are hyperbolic. Measure the com-
plexity of a group given by n generators and a finite number of relations in the gen-
erators {ry} by N =n+ ), length(r;). Let Ay denote the number of groups with

* A geodesic triangle consists of three vertices and three geodesic segments connecting them.
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complexity < N and let Hy be the number of hyperbolic groups with complexity
< N. Itis a theorem [Ol’shanskii 1992] that limy_~ Hy/Any = 1!

Word hyperbolic groups include all finite groups, finitely generated free groups,
fundamental groups of closed hyperbolic n-manifolds. Yet not all groups are hyper-
bolic, for example, a 2-generator abelian group. Its Cayley graph is a square lattice in
C. In turn, hyperbolic groups are a special class of automatic groups as in finite state
automata. This is the class of groups that can be effectively analyzed by computer, see
[Epstein et al. 1992; Ohshika 2002]. The theory originated with a paper of Cannon as
distilled by Thurston, and was extensively developed in The Geometry Center (1988—
1994). Automatic groups are finitely presented, and have a solvable word problem.
An extension to the theory admits the fundamental groups of finite volume hyperbolic
manifolds which are not closed. A finitely presented group is hyperbolic if and only
if its Cayley graph satisfies a linear isoparametric inequality, while if it is automatic
it satisfies a quadratic isoparametric inequality.

Actually the notion of “hyperbolic” is not restricted to graphs. Any metric space
with the property that there is a geodesic between any two points can be considered
from the point of view of hyperbolicity — see [Ohshika 2002].

Hyperbolic groups have a certain “negative curvature” while abelian groups have
more of a zero curvature (think tori!). Interesting groups may have a negative-like
structure yet may also include some special abelian subgroups. An example is the
mapping class group, that is, the group of homotopy classes of orientation preserving
homeomorphisms of a surface onto itself. To remedy this situation in many cases,
Farb [1998] introduced the concept of relatively hyperbolic groups.

Here is the definition in the simplest situation. Suppose H is a finitely generated
group and A(H) is its Cayley graph. Let G C H be a finitely generated subgroup.
Form a new graph A as follows. For each h € H identify all the vertices of A(H)
that correspond to elements lying in the left coset 1G.

H is said to be relatively hyperbolic with respect to G if A is Gromov hyperbolic.
One can extend this definition to a finite number of finitely generated subgroups G;.
For example if M(H) has finite volume with one cusp then H is hyperbolic relative
to the maximal parabolic subgroup associated with the cusp.

With this new definition, the mapping class group and Teichmiiller space itself
become relatively hyperbolic [Masur and Minsky 1999].

2-18. More on Schottky groups. Prove that a freely generated, purely loxodromic
fuchsian group G (which is necessarily a group of the second kind) acting in the
upper and lower half-planes, normalized so that oo is a limit point, is a classical
Schottky group, where the Schottky circles are orthogonal to R. Hint: Start with the
simplest case that UHP/G is a torus with one boundary component so that G has
2-generators. There are four circles, and the opposite, not adjacent, circles are paired.
(If instead the adjacent circles are paired the quotient is a 2-holed disk.) When does
the converse hold?
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What happens when the 4-Schottky circles form a chain of mutually tangent circles
with respect to S?? (Answer: When the pairing is again opposite there results a once
punctured torus and the group becomes fuchsian of the first kind; the fractal dust of
a Schottky groups congeals to R.)

Really, in talking about Schottky groups, to a large degree it makes little matter,
in describing the construction, if there are tangencies of circles, so long as they are
arranged in pairs such that the pairing elements are loxodromic or parabolic sending
the exterior of one circle onto the interior of its partner. When a point of tangency
is fixed by a parabolic it becomes a puncture, however if the point is not so fixed
it does not necessarily become a puncture —see [Gilman and Waterman 2003]. In
particular, any finitely generated fuchsian group such that the quotient is a finitely
punctured (> 1) closed surface is such a limiting case of a circle-Schottky group.

Of course the conditions can be weakened further so that the Schottky circles be-
come Jordan curves. Such will be the case we take general quasiconformal deforma-
tions of these fuchsian groups. There are explicit examples given in [Mumford et al.
2002].

Using Ahlfors’ Finiteness Theorem (Section 3.1) and Maskit’s Planarity Theorem,
prove that any finitely generated, free, purely loxodromic kleinian group G with
Q(G) # @ is a Schottky group [Maskit 1967]. A much shorter proof makes use of the
convex core to be introduced in Section 3.10: A Schottky group G is characterized
by the fact that the convex core of M(G) is a handlebody (in the case G is fuchsian,
we have to take an e-neighborhood of the convex core). This must be the case for a
geometrically finite group that is free and purely loxodromic.

Bringing in the notions of ends and tameness from Section 5.3 for M(G), together
with the Covering Theorem (5.6.1), we can state the following which is particularly
interesting when Q(G) = @ [Canary 1996, Corollary D]:

Theorem 2.9.1. Assume G is a finitely generated kleinian group such that W?/ G has
infinite volume. Suppose H C G is a finitely generated subgroup of infinite index
which is purely loxodromic and free. Then H is a Schottky group.

Given a set of Schottky circles, consider the group generated by reflections in them.
How is this group related to the Schottky group?

Given a set of Schottky circles (mutually disjoint) let U denote their common exte-
rior in S2. Show that any conformal automorphism of U is the restriction of a Mobius
transformation. (Hint: Consider the group of reflections in the circles and correspond-
ingly reflect each automorphism g to get a conformal map on the complement of the
limit set A; the map also extends to be an automorphism of A. You will need to use
the fact that this set has area zero so that the functions are analytic on this set as well.)
Go on to prove that this group of automorphisms is finite — if there are more than two
circles. (Hint: erect the hyperbolic plane in H? on each circle and consider the set of
hyperbolic distances between every two of them.) What is the effect of the group of
automorphism on the quotient surface 2(G)/G?
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2-19. If g, h generate a discrete group without elliptics, prove that at least one of the
four transformations is loxodromic: g, , gh, gh™'.

2-20. Rational billiards. Here is a Riemann surface construction that has been used
extensively to study the dynamics of “rational” billiards on a euclidean polygon P C
C, that is not necessarily convex or even simply connected.

Corresponding to each side ¢; of P, place a parallel line ¢;, through the origin.
Denote the reflection in ¢; by o;. By definition, a rational billiard table is one with the
property that the group I" generated by the reflections {o;} is finite; denote the identity
by o9. If d P is connected, this condition is satisfied if and only if each interior vertex
angle is a rational fraction of 2. If 9 P is not connected, this requirement is only a
necessary condition for a rational table.

We will also use the notation o; to denote the reflection of P in the edge e;.

Under the assumption that P is a rational table, here is how to glue copies of P
together to get a closed Riemann surface.

Let N be the number of distinct elements {y;} of I'. Take N copies of P each with
the labeled edges; denote the copies by {P), }, 1 <k < N.

Suppose y; = y;0,, for some index m. Then identify the edge e, of Py, with the
edge e,, of the reflection o, (P,,): attach the reflected polygon o,,(P,,) to the polygon
Py, along the common edge e,

Show that with this rule for attachment, an abstract polygon S can be built up from
the N tiles. The end result will have no free edges. The vertex angles will be integer
multiples of 2.

Another description of gluing is as follows. Consider the normal subgroup I'¢
of even index 2M in T consisting of even numbers of reflections in the lines e.
Interpreted as the product of reflections in the edges of P, 'y consists orientation
preserving euclidean motions z > ¢'#z + c. The cosets of I'y C I are {I'go i}, 0=
Jj < m. Now take the polygon P, and the reflected copies of P, o{(P), oo(P), ...,
and glue the edges together using the elements of ['y.

The complex structure on S is given by the euclidean coordinates on the polygons,

but the vertices must be flattened out by use of z% at a vertex with angle sum 2mp.

When P is a rectangle, the group has order 4 and the Riemann surface is a torus;
when P is an equilateral triangle, the group has order 10 and the Riemann surface is
also a torus. For the theory, see [Masur and Tabachnikov 2002]. The point is that on
the surface, a ball starting at a point of P, instead of bouncing off the edges of P runs
in a straight line on S, except a billiard path that hits a vertex must end since there is
no unique continuation.

2-21. Starting with the finite group of a euclidean polyhedron, can you adjoin other
such finite polyhedral groups to obtain a nonelementary kleinian group with singu-
lar set forming a specified trivalent graph with the properties specified by Proposi-
tion 2.5.27
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2-22. Homology and simple loops. Confirm the following folk theorem: Suppose S is
a closed, oriented surface of genus g > 1. Fix a “canonical homology basis” A;, B;,
1 <i < g. This means {A;, B;} are simple loops generating the first homology, and
A; crosses B; once but is disjoint from A, B; for j # i, that is, each pair (A;, B;)
corresponds to a “handle”. An element y of the first integral homology group can be
written, y ~ Y (a; A; + b; B;), where each a;, b; is an integer.

Prove that the homology class of y contains a simple closed curve if and only if the
greatest common denominator of {a; ...a,, by ... bg} is one. For a proof see [Schafer
1976].

2-23. Belyt functions on Riemann surfaces. A Belyl function on the closed Rie-
mann surface R is a meromorphic (rational) function f : R — S? such that each
of its critical values is at one of the points 0, 1, co. Here a critical point is a point x
where the derivative vanishes, and the corresponding critical value is f(x). Not every
closed surface supports such a function; not every Riemann surface can be realized
as the branched cover of S? with all branch values in {0, 1, oo} (for the topological
possibilities see page 63).

Each of the following conditions is necessary and sufficient for R to support a Bely{
function:

(i) There exists a finite set of points {x;} C R such that the Riemann surface R’ =
R\ {x;} is uniformized by a finite index subgroup I" of the modular group Mod =
PSL(2,7Z): R' =H?*/T.

(ii) R’ carries a horocycle packing: a collection of mutually disjoint horodisks such
that the complement is a union of triangular regions.

(iii) Belyi’s Theorem. R is the Riemann surface determined by an irreducible poly-
nomial equation P (x, y) =0 whose coefficients are algebraic numbers.

A horodisk on R’ is the projection of a horodisk at a parabolic fixed point of I".

For example for the Riemann surface given by x” + y" = 1, the projection f :
(x, y) — x has critical values in {1, co} and so is a Bely{ function.

In particular Riemann surfaces carrying Belyi functions are dense in all Riemann
surfaces. Markovic asks: In the moduli space of a closed Riemann surface R, could
it be that corresponding to any two Belyi surfaces, there a Riemann surface which is
an unbranched cover of each?

The proof of the first item is simplest. Let 7w : H?> — H2?/M, be the projection
to the thrice punctured sphere S3 = S?\ {0, 1, oo} as in Exercise 2-5. If a Bely{
function f exists on R then R\ f~'{0, 1, 0o} is a covering surface of S3 and therefore
corresponds to a finite index subgroup of Mod. Conversely suppose R =H?/ . Then
R is a covering surface of S = H?/Mod, which is the sphere punctured at oo with two
branch values. Let f : R — S be the projection. Let R’ denote the result of removing
from R inverse images of the branch values on S, and let S’ be the sphere punctured
at the two branch values and at co. Then f : R — S’ is an unbranched covering. The
points on R that we removed are the critical points of f.
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For thorough studies of this subject and its relation to oriented trivalent graphs and
Grothendieck’s “dessins d’enfants”, see the beautiful papers [Jones and Singerman
1978; 1996], and also [Brooks 1999].

2-24. A group is determined by its traces. Suppose A, B, C are loxodromic without
both fixed points in common. Show that the two-generator group (A, B) is determined
up to conjugacy by the traces of A, B, C = BA. Then show that any finitely generated
irreducible group (Exercise 2-1) is determined up to conjugacy by the traces of its
elements. Hint: Normalize A to have fixed points 0, oo and B to have 1 as a fixed
point. If the group is generated by A, B, D, E, ... work in turn with A, D, DA,
by temporarily conjugating so that D has fixed point 1, etc. Two parabolics A, B
without a common fixed point can be conjugated so that A is the unit translation and
B has fixed point at 0. Work out the precise requirements to carry out your argument.
Discreteness is not needed for your proof.

2-25. Subgroups of finite index. Suppose G is a fuchsian group representing a closed

surface R = H?/G. Show that there are subgroups of finite index k (not necessarily

normal subgroups) for any k > 2. In other words, show that there are k-sheeted,

unbranched covering surfaces of R. If A has index k in G, the subgroup H* D H

generated by {ghg™' : g € G, h € H} is a normal subgroup of G, of index at most k.
The topological possibilities are described by the Riemann—Hurwitz relation

g —1=k(g—D,

where g* is the genus of the k-sheeted cover. (Hint: If you can topologically find
finite-sheeted cover S’ of R, you can lift the hyperbolic metric from R to S’ to get
a conformal cover of R. To find a topological cover, cut R along a simple geodesic,
and join two copies of the cut surface by cross identifying along the cuts.) In fact
there are only a finite number of index-n subgroups (why?).

Let G} be the intersection of all subgroups {G¢} of G of index k < n. Show that
G also has finite index; H?/G* is at most a finite-sheeted cover of R and of any
other k-sheeted cover of R, where k < n. (Hint: The intersection G N G;c has index
at most n2.) Show that Guy1 C Gy.

Define a metric p (-, -) on G as follows. Given two elements A, B € G set

p(A, B) = min {% : AB! lies in a subgroup of index n}

Thus p(A, B) <1 and p(A,,id) — 0 if and only if A, € G, with n — oo. The
completion of G with respect to the metric p (called the profinite completion) is a
compact topologlcal group G homeomorphic to a Cantor set. One then works with
the space D x G. The action of G on this spaceis T (z,t)=(Tz,tT~ 1, where T € G,
t€G. Foran exposition and further development of this subject, which leads to an
infinite-dimensional Teichmiiller-like space called the universal hyperbolic solenoid,
see [Markovic and Sari¢ 2004].
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2-26. The groups of regular polyhedra: spherical orbifolds. Here we will follow
the treatment of [Ford 1929]. Let P be a regular euclidean polyhedron inscribed in
the unit sphere S*>. Denote the number of its faces, edges and vertices by F, E, V
respectively. By Euler’s formula, F — E 4+ V = 2. Let v denote the number of faces
at each vertex. When 9 P is projected on S? there results a tessellation of S by F
regular spherical polygons of vertex angles 27 /v. Let u denote the number of edges
bounding each face.

We are interested in the group G of symmetries of P. This is a group of rotations
of S?. There are 2E of them: for given an edge [a, bg] and another [a, b], there is a
symmetry that sends [ag, bo] to [a, b] and to [b, a] in either order.

Here is how to construct a fundamental domain for the action of G on S?. It will
be a spherical triangle (with one exceptional case to be included below).

Choose an edge, to be called the outer edge, and an adjacent face. Join the ends of
the edge to the midpoint of the face by two lines we will call inner edges. We have
then a euclidean triangle with central angle 27 /.

Project the triangle to S?, for example by stereographic projection from the plane.
We have an spherical triangle o of central angle 27 /mu and angle /v at the other
two vertices.

Let S be the elliptic of order u that fixes the inner vertex of o. Locate the midpoint
of the outer edge and let T be the elliptic of order two that fixes it. The axes of S and
T pass through the center of the ball; S and T rotate P onto itself.

Prove that G = (S, T') with (T o S)” = id, and that o is a fundamental region for
its action on S2.

All the groups in this class are 2-generator groups. The rays from the origin of the
ball to the fixed point of S, T, 7'S on the boundary of o are pointwise fixed by these
three elliptics, and their G-orbit gives the complete set of rotation axes for G.

The possibilities are listed in the following table from [Ford 1929]:

F V E pn v Order(G)
Tetrahedron 4 4 6 3 3 12
Cube 6 8 12 4 3 24
Octahedron 8 6 12 3 4 24
Dodecahedron 12 20 30 5 3 60
Icosahedron 20 12 30 3 5 60
Dihedron 2 n n n 2 2n

The dihedron is special in that it has zero volume and two faces which are regular
n > 2 sided polygons inscribed in the equatorial plane.
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2-27. Euclidean orbifolds. Show that any rank two parabolic group Gy is a subgroup
of a group generated by four elliptics of order two (whose fundamental domain is half
a fundamental parallelogram of Gy. This is the (2, 2, 2, 2)-group.

Show that the rank two group of the square torus can be generated by two elliptics
of order four and one of order two (its fundamental domain is 1/4 of the fundamental
square of the rank two parabolic subgroup. This is the (2, 4, 4)-group.

Consider the rank two group Gy whose fundamental parallelogram P is spanned
by the vectors 1 and e™//3. Show that Gy is a subgroup of (i) the group generated by
two elliptics of order three, fixed points at the two centers of the equilateral triangles
Ty, T> formed by the diagonal [1, ¢™/3], and (ii) the group generated by an elliptic
of order two with fixed point the midpoint of [1, ¢™//3], and an elliptic of order three
with fixed point the center of 7. These are the (3, 3, 3)-group and (2, 3, 6)-group. A
fundamental domain of (i) is the equal sided 60° parallelogram with vertices 1, ¢™/3
and the centers of 77, T3, and of (ii) is the 30° isosceles triangle formed by the diagonal
and the center of Tj.
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Properties of hyperbolic manifolds

In this chapter we gather together basic properties of hyperbolic 3-manifolds. We
start with a characterization of their (conformal) boundaries. Then we study the uni-
versality of key elements of their internal geometry and the thick/thin decomposition.
After that, we study the global structure as revealed by their fundamental polyhedra,
and by their convex and compact cores. We introduce the class of manifolds which
are essentially compact (geometrically finite); this class is at the core of our studies.
Along the way, we describe the class of quasifuchsian groups and digress to take crash
courses in 3-manifold surgery and the theory of geodesic laminations. The chapter
ends with a description of the rigidity of manifolds of finite volume.

3.1 The Ahlfors Finiteness Theorem

The beginning of the modern theory of hyperbolic manifolds can be pinpointed at the
appearance in 1964 of a fundamental result:

Abhlfors Finiteness Theorem [Ahlfors 1964]. If G is a finitely generated kleinian
group, IM(G) = Q(G)/ G is the union of a finite number of surfaces. Each of them
is a closed surface with at most a finite number of punctures and elliptic cone points.

Punctures arise from rank one parabolic fixed points, and cone (branch) points from
elliptic fixed points.

The hyperbolic area formula (Exercise 3-1) implies that a Riemann surface R of
genus g > 0 with m > 0 cone points of (finite) orders ry,...,r, >2andn >0
punctures appears as a boundary component of IM(G), for finitely generated, nonele-
mentary G, only if

1
2¢+n—-2+ E (1—7) > 0.
, i
1

In fact the inequality is a necessary and sufficient condition for R to be represented
as R = H?/H for some fuchsian group H.

Good estimates can be found for the genus and number of punctures of the boundary
of kleinian manifolds M(G) in terms of the number N of generators, and the number

105
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of rank one and rank two parabolic conjugacy classes. In particular ) g; < N where
gi 1s the genus of the i-th component of dM(G). If G is purely loxodromic, then
dM(G) has at most N /2 components. This calculation is made using the homology
considerations of Remark 3.7.2.

The deepest part of Ahlfors’ theorem is the assertion that the ideal boundary of a
component of IM(G) consists only of punctures — that, in particular, there are no
simply connected components. The proof is based on the following idea. The group
G, being finitely generated, depends on the finite number of complex parameters in its
generating matrices. On the other hand, if a boundary surface R were not of the “finite
analytic type” indicated above, then that surface would have an infinite dimensional
space of distinct deformations. This results in a contradiction. Recent proofs (see
[Kapovich 2001, §4.9] or [Marden 2006], for example) are much easier than Ahlfors’
original; in particular, the finiteness assertions on total genus, number of punctures
and cone points can be deduced by topological methods. The Ahlfors theorem also
follows from the solution of the tameness conjecture (Section 5.4); see Exercise 5-11.

Conjugacy classes of parabolic and elliptic subgroups are not necessarily repre-
sented by punctures and cone points in IM(G). Yet these classes are finite too
(Exercise 3-15), rounding out Ahlfors’ theorem.

3.2 Tubes and horoballs

Consider the axis y* of a primitive loxodromic element g € G (g is a generator of
the cyclic loxodromic group fixing y*). Suppose first that y* is not also the rotation
axis of an elliptic element, and that there is no elliptic element (of order two) that
interchanges its endpoints. Then y* projects to a closed geodesic y in M™™; the
full collection of lifts of y is the orbit {G(y*)}. The length of y is the length of
any segment [x, gx] of y*. The loop y is a simple loop if and only if the orbit of
y* consists of mutually disjoint geodesics. Conversely, every closed geodesic is the
projection of a loxodromic axis y*.

Suppose y* is taken as the vertical axis from 0 € C in the upper half-space model.
Given r consider the tubular neighborhood of radius r about y*,

N,(yH) ={x el dE, y*) <r).

This appears as a euclidean cone with central angle 26 given by the equation r =
log(sec 6 + tan 0). Alternate expressions of the equation are

tanhr =sinf, coshr =secH, sinhr =tan6. (3.1

The image of N, under a Mobius transformation A such that A(0), A(0co) 7~ oo looks
like a banana (Exercise 1-4).

If it is embedded, the projection N,(y) = 7 (N,(y*)) C M is called the fubular
neighborhood of radius r about y. The volume and surface area of tubular neighbor-
hoods in M(G) are presented in Exercise 2-10.
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If y* is also the axis of rotation of an elliptic element, the projection y is a closed
curve and a cone axis. If there is an elliptic element that interchanges the endpoints of
y*, then y* projects to a finite geodesic segment of length [x, g(x)]/2 with endpoints
on cone axes, the degenerate case of a closed curve as we go forth and return along
the segment.

We now turn to the structure at a parabolic fixed point ¢ € S of G. Let o denote
any horosphere at ¢. The horosphere has an intrinsic euclidean metric d, (-, - ). There
is a parabolic pair T*! € G for which

dy (x, TE' (%)) < dy (x, T1 (%))

for all parabolic 77 € Stab; and all x € 0. The same inequality is true for T*!
on any horosphere at ¢. We will refer to either T*! as a least (translation) length
parabolic in Stab, . For the parabolic x — x+1, d, (x, x+1) =1/ h on the horosphere
o={(z,t):t =h}.

We can replace G by a conjugate so that { = oo € S? and that z — z + 1 is a least
length parabolic. Suppose for simplicity, ¢ is not also fixed by an elliptic element.
Then Stab, is either a cyclic parabolic group or a free abelian parabolic group of rank
two; we may assume that Stab; is either (z > z+ 1) or (z+—> z+1, 2z 2+ 1),
where Im7 > 0 and || > 1.

In the former case, the doubly infinite strip {z : 0 < Re z < 1} forms a fundamental
domain for its action in C. In the upper half-space model, the slab rising vertically
from the strip is a fundamental region for its action in H3. We see that C/ Stab; can
be viewed as a doubly infinite cylinder; w = ¢**’? conformally maps it onto C \ {0}.
The quotient H3/ Stab; is homeomorphic to {z : 0 < |z] < 1} x (=00, 00), since the
quotient of each vertical slice of the slab is conformally equivalent to the punctured
disk.

In the latter case, the parallelogram with vertices {0, 1, 7, T + 1} with two adjacent
sides included is a fundamental parallelogram for the action of Stab, on C. The
quotient is a torus. The vertical chimney rising from the parallelogram is a funda-
mental region for the action in the upper half-space model of H3. The quotient is
homeomorphic to {z : 0 < |z| < 1} x {z : |z] = 1}, where the first factor comes as
before from the quotient of vertical slices.

The projection of the horoball H; = {(z,¢) € H3 ¢ > s) may or may not be
embedded in M(G). Once it is embedded for some ¢ = s it will be embedded for all
larger values of ¢. If Stab; is cyclic and 7 (J,) is embedded, it is homeomorphic to
{0 < |z] < 1} x R. We refer to this as a solid cusp tube, a curtain rod with its axis
removed. It has infinite volume and surface area. Its boundary, 7 (d3H;) is called a
cusp cylinder.

If Stab; has rank two and 7 (Hy) is embedded, it is homeomorphic to the product
{0 < |zl <1} x S! and is called a solid cusp torus. Its boundary is called a cusp torus.
It has finite volume and surface area by Exercise 2-10. We have defined the solid
objects to be closed sets, but we will not always be fastidious in distinguishing one
from its interior.
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3.3 Universal properties

We will record some important internal properties of the quotient. While the prop-
erties are stated for hyperbolic 3-manifolds and orbifolds, they have analogues for
hyperbolic surfaces. During the proof we will often rely on the characterization of
limits of nonelementary groups to be presented in Theorem 4.1.1. For our use here
we will draw from it the following special case.

Lemma 3.3.1. Suppose {(A,, B,)} is a sequence of nonelementary, discrete groups
such that im A, = A, lim B, = B. Then (A, B) is also a nonelementary, discrete
group. The corresponding conclusion holds as well for a sequence of three generator
nonelementary, discrete groups.

We begin with some notations and definitions.
Given a discrete group G and x € H?, for r > 0 set

8x(r)={A#ide G:d(x, Ax) <2r}.
Define the injectivity radius at x as
ry =Inj(x) =Inj(G; x) = inf{r : §;(r) # <}.

Thus d(x, Ax) > 2r,, for any A #1d € G; that is, the G-orbit of the ball {y : d(x, y) <
ry} has no overlaps. Interpreted at the projection 7 (x) € M(G), Inj(7r (x)) is the radius
of the largest embedded open ball centered at 7w (x). On the other hand there exists
A € 8, (ry) such that the points A*!(x) lie on the boundary of the ball of radius 2r,
about x.

The injectivity radius is infinite for all points x € H? only when G = {id}. As long
as x is not on a rotation axis, the radius is positive by the discreteness of G. As m(x)
approaches a cusp, Inj((x)) — 0.

Lemma 3.3.2. Given § > 0 there exists M = M (8) such that for any x € H? and for
any kleinian group G with ry =1Inj(G; x) < 6, the set §,(ry) has at most M elements.

Proof. If A, B €8, (ry), A # B, then d(Ax, Bx) =d(x, A~' Bx) > 2r,. Therefore the
points Ax, Bx on the sphere of radius 2r, about x are of distance > 2r, apart. For fixed
r = ry, only finitely many such points are possible. As r — 0, it is approximately
the same number as in the euclidean case and this number is uniformly bounded,
independent of x € H?. g

In the same vein:

Lemma 3.3.3. Suppose M is a hyperbolic surface or manifold with the property that
there is a constant § > 0 such that all geodesics have length at least 25 (and there are
no punctures or cusps). Then M can be covered by embedded 5-balls.

Given V > 0, there exists N (V) such that all M with area or volume not exceeding
V can be covered by N (V) embedded 5-balls.
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Theorem 3.3.4 (Universal properties of kleinian groups). There exist universal con-
stants in terms of which any nonelementary kleinian group G has the following prop-
erties.

Universal ball. There exists § > 0 such that M(G)\{cone axes} contains an embedded
hyperbolic ball of radius §.

Universal horoball. Suppose ¢ = oo is a parabolic fixed point and z +— z+1 € G
is a least length parabolic. Then the horoball H = {(z.t) € H3: ¢ > 1},
called the universal horoball, satisfies A(H) NH = & for all A € G such that
A(o0) #o00. If A= (7)€ G, withc #0, then |c| > 1.

If H' is the universal horoball at a parabolic fixed point ¢’ # oo of G, then
HNH=0.

Tubular neighborhoods about short geodesics. There exist r > 0 and Ly > 0 such

that in any M(G):
(i) The radius r tubular neighborhood about any closed geodesic of length
< Lg is embedded; any geodesic of length < L is simple.
(ii) The r-tubular neighborhoods about different geodesics of length < Ly
are mutually disjoint.
(iii) The r-tubular neighborhoods about geodesics of length < Lo do not
intersect the universal horoballs.

Universal elementary neighborhood. There exists § > 0 such that for any x € H>,
the subgroup generated by {A € G : d(x, Ax) < 28} is elementary; if the
generator A is loxodromic, it represents a simple geodesic.

Isolated cone (rotation) axes. There exists § > 0 such that the distance between any
nonintersecting rotation axes in M(G) is at least 8, except if they have a
common endpoint at a rank two cusp, or perhaps if they are axes of order
two.

Proof: The universal horoball.. The universal horoball corresponding to a parabolic
T is invariantly defined as that horoball bounded by the horosphere o = d H such
that for x € 0H, d,(x, T(x)) = 1 in the intrinsic flat metric on o. The existence
of the universal constant is an immediate consequence of Jgrgensen’s inequality: If
X=(}})and Y = (“"), ad — bc = 1, then we find that tr(XY X 'Y 1) =2 + 2.
Jgrgensen’s inequality with A = X implies that |c| > 1, if ¢ # 0.

The formula for extension of Y to upper half-space (z, t) — (2/, t') says that

t t 1

/

/= < <-.
lcz+d|?>+|c|?t?2 ~ |c|?t? ~ ¢t

Hence whent > 1, wehave t' < 1 sothat Y(H)NH = @.

If there is another parabolic S with fixed point ¢’ # oo we may conjugate the group
by a translation so that the fixed point of S is moved to (0, 0). The parabolic then has
the form S’ : z > z/(cz+1). We know that |c| > 1. To see that the universal horoball
at 0 is disjoint from the one at oo note that z — 1/z conjugates S’ to z + z+c and its
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universal horoball there is (z, ) : ¢ > |c| > 1. Returning to S” we see that the boundary
of the horoball at 0 meets the vertical axis at 1/|c| < 1.

It is possible that a parabolic fixed point, say ¢ = 00, is also fixed by elliptics £ € G.
Such elliptics have the form E(z) = ¢*?z +a and clearly preserve the horoballs at oo
as well.

Note that if the least length parabolic at oo is instead z — z 4+ a, the universal
horoball is given by {z : Imz > 1/]al}.

A similar argument applies in H?. See also Exercise 3-3 on page 164. U

Corollary 3.5.3 presents a version of the horodisk theorem that applies in certain
simply connected regions  C C rather than just H?.

Tubular neighborhoods about short geodesics. If the property (i) does not hold, there
are sequences r, — 0, L, — 0 and a corresponding sequence of groups G, and
geodesics y, such that the radius r,-tube about y,, of length < L, is not embedded.

Let ¢ denote the vertical half-line rising from z = 0 in the upper half-space model.
We may replace each G, by a conjugate so that y, is the projection of ¢ and the
corresponding primitive transformation is A, : z +— a,z, |a,| > 1 where log |a,| — 0
is the length of y,,.

Our hypothesis insures that there is no elliptic of order two in G,, that interchanges
the fixed points of A,,. However our proof will still work if we allow elliptics with the
same axis as A,, although the tubular neighborhood will then have a singular axis.

Let C,, denote the euclidean cone about ¢, which is the radius-r, tubular neighbor-
hood of £. Let F, ={x € C,, : 1 < |X| < |a,|} be a fundamental chunk of C,. There
is an element B, € G,, which does not preserve £, with B;(C,) N C, # <. For some
P, q, B, = Al B*Al € G, has the property that B, (F,) N F, # @. Therefore for some
Xn € Fy, B, (x,) € F,. Furthermore (A,, B,) is not elementary.

After passing to a subsequence if necessary, lim A,, = A and lim B,, = B exist. But
A, B fix the point p € € with |p| =1 so that (A, B) is elementary, a contradiction to
Lemma 3.3.1.

Exactly the same proof shows that there cannot be a sequence of groups {G,} in
which there are two loxodromics A,,, B, with translation lengths satisfying L, — 0,
such that the closure of their r,-tubes intersect, r,, — 0.

To prove (iii), suppose that A : z+> z+1is an element of G and T € G is loxodromic
with translation length L, which is the length of the corresponding geodesic in M(G).
Conjugate the group by a translation so that the fixed points of 7" are symmetric about
z = 0. Then a normalized matrix for T has the form 7 = (d‘/’b b:), a —d* =1,
tr(T) = 2a, and its fixed points are +b. Therefore the r-tube about the axis of 7 will
not intersect the horoball H = {(z, 7) : t > 1}, provided that |b| <e™".

We claim that for all sufficiently small L > 0, it will be true that |b| < e™". For
otherwise, there is a sequence of groups G, containing A and a loxodromic 7,, with
fixed points +b, symmetric to z = 0 such that lim L, = 0, while limb, = b* >
e~ ". If b* = oo, then a long segment of the axis of 7, penetrates H in which case
T,,(H)NH # & in contradiction to the universal horoball property. On the other hand,
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since b* # 0, limT,, = T exists with T either elliptic or the identity. This violates
Lemma 3.3.1. We conclude that there exists L' < L for which the r-tube about any
geodesic in any M(G) of length < L’ does not intersect any universal solid cusp torus
or cusp tube.

With the proper interpretation, the case that the loxodromic axis is also the rotation
axis of an elliptic in G, or is preserved by an element of order two, is included in our
analysis. U

For the record we also point out the following interesting inequality [Meyerhoff
1987]. By the universal horoball property |b| < |d| so that 4|b|*> <4|d|* = |tr*(T) —4|.
Now T is conjugate to (]5 k9] ), where k = e%ei‘/’, 0<@p<wm,and trz(T)—4 = (k—k~! )2.
Consequently

L
|b|> < sinh® 5+ sin® @. (3.2)

With the help of a sophisticated computer search, D. Gabai, R. Meyerhoff, and N.
Thurston [Gabai et al. 2003] proved that with a few exceptions, if G has no parabolic
or elliptic transformations, there is a geodesic in M(G) with an embedded tubular
neighborhood of radius » = (log 3)/2.

Isolated rotation axes. Confirmation of this property runs along the same lines. In a
sequence of groups {G,}, suppose that {d,, d, > 0} is a sequence with limd, = 0,
that E,, € G, is an elliptic with rotation axis £, and that F,, € G, is an elliptic whose
axis ¢, does not intersect £ but comes within distance d, of £. We may replace G,
by a conjugate so that for some p, € ¢,, lim p, = p € £.

For all large n we may assume that either (E,, F},) is nonelementary, it is an infinite
dihedral group, that is, each of E,, F,, is of order two and E, F,, is loxodromic with
axis orthogonal to the axes of E, and F,,, or £, £, have a common endpoint at a
rank two cusp at co with (E,, F},) a subgroup of Stab, (c0). In the former case for a
subsequence, both lim E,, = E, lim F,, = F are Mobius transformations fixing p. But
then (E, F) is elementary, again a violation of Lemma 3.3.1. O

The universal elementary neighborhood. Denote by G (r) the subgroup of G gener-
ated by the set §, (r), that is by the elements A for which d(x, Ax) <2r. We claim that
there exists 7 > 0 such that, for any x € H3, and any kleinian group G, the subgroup
G, (r) is elementary. In other words, for the ball B, (r), the subgroup generated by
the elements {g} for which g(B,(r)) N B,(r) # & is elementary.

For a fixed G and x € H, there must be some r > 0 for which G (r) is elementary.
For as r = r, — 0, any infinite sequence of distinct elements A, € §,(r,) converges
either to an elliptic transformation fixing x or to the identity. No such sequence can
exist! So for all sufficiently small r, the set of elements §, (r) is independent of r and
either contains no elements or consists of elliptic transformations fixing x.

Now assume that for some x € H?, there is no universal elementary neighborhood.
Then there is a sequence of kleinian groups {G,} and a sequence r,, — O such that
G, (rp) is not elementary. On the other hand, for fixed n, G, x(p) is elementary for
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some p with 0 < p < r,. As p increases to r,, the elementary groups G, (p) are
nested. There is a first number 7, < r,, for which G, x(p) = G, x(7,) for 7, < p <
r), < ry, and is elementary but G, . (r;) not. We may take r, =r,.

If G, () is finite but not cyclic, there are elements A,,, B, € §;(t,) with distinct,
yet intersecting, axes of rotation. The set §, (r,) must contain an element X, which
does not fix the common fixed point of A,, B,,. Hence (A,,, B,, X,) is not elementary.

If G, « (7y,) is finite cyclic, let A, €5, (t,,) be a generator. We can find an X, € 8, (r,)
that does not fix the axis of A,,. If X, is elliptic with axis intersecting that of A,,, there
must be another element Y,, € §,(r,) that does not fix this common point. Thus one
of (A, X,,) and (A,, B,, X,) is not elementary.

Next suppose G, . (7,) is an infinite group that keeps invariant a line £ C H?. Either
8x(t,) contains a loxodromic A,, or it contains two elliptics A,,, B, of order two that
interchange the endpoints of £. There must be an element X,, € §,(r,) which does
not leave ¢ invariant. Again, (A,, X,) or (A,, X,, Y,;) is not elementary.

Finally, suppose G, .(t,) fixes a point { € S?, but does not fall into one of the
previous cases. Then §,(7,) contains a parabolic transformation A,, or two elliptics
A,, B, such that B, A, is parabolic (e.g., z + —z, z +> —z + 1). The set §,(ry,)
contains an element X, that does not fix ¢. Hence (A,, X,) or (A,, B,, X,;) is not
elementary.

In all cases we have found a nonelementary two- or three-generator subgroup gen-
erated by elements of §,(r,). As n — oo, convergent subsequences converge to
elements which fix x and are therefore elliptic or the identity. Once again we draw
on Lemma 3.3.1 to reach the contradiction.

To complete the argument we claim that, if A € G, (r) is loxodromic, it represents
a simple geodesic in the quotient. Otherwise the projection of [x, Ax] into M(G)
would contain two simple subloops of shorter length. (The projection 7 ([x, Ax]) is a
closed loop which is a geodesic except for a likely corner at 7 (x).) We could find two
other loxodromics A, A, with different axes, and satisfying d(x, A;x) < 2r. Both
elements would be in G, (r) which then could not be elementary. ]

The universal ball. Given an x € H? that is not an elliptic fixed point of G, denote
by G, the subgroup of G generated by the set §, (r,), where r, = Inj(G; x); in other
terms, 8, (ry) ={A € G :d(x, Ax) = 2r,}.

Given any nonelementary, discrete group G we will find somewhere in H? a ball of
radius 8§, where § is the universal elementary neighborhood constant, with the property
that there is no overlapping in its G-orbit. To do this we will find a point x € H? for
which G is not elementary. The universal elementary neighborhood property then
assures us that », > 6, and as a consequence g(B,(8)) N By (§) = forall g #id € G,
for the §-ball about x. In searching for such a point, we may restrict our attention to
groups whose injectivity radii are uniformly bounded above (no elementary discrete
groups have this property).

Start with a point x € H* which is not a fixed point. Suppose G, is elementary. We
will find a polygonal line along which the injectivity radius strictly increases until the
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terminal point y where G, is nonelementary. To find this line we have to examine
various classes of elementary groups separately.

Case 1: The elements of G, have a single common fixed point & € dH?. We may
take & = oo in the upper half-space model. Then G, is a finite extension of a rank
one or rank two parabolic group. For each A € Stab(G), A # id, the perpendicular
bisectors of the segments [x, A*!x] are vertical half-planes. If A € §,(r,), they are
tangent to the ball D, of radius r, about x. For A ¢ §, (), the perpendicular bisectors
are uniformly bounded away from D;.

Let the point y move down the vertical line ¢ through x. For a certain open interval
near x, Inj(y) = ry is determined by the same vertical planes that determine Inj(x).
However r, is strictly increasing since y is moving closer to dH?3, away from oo.
Since we are assuming ry is uniformly bounded there must be a first point w with
the following property. For some B € §,,(ry), B ¢ 8§, (ry), the perpendicular bisector
of [w, Bw] is tangent to the ball D,, of radius r,, about w. This cannot be a vertical
plane since B ¢ Stabs,. Because (G, B) C Gy, the group G, is not elementary.

Case 2: G, is a finite group but not a cyclic group nor a Z, extension of a cyclic
group. We now use the ball model and take the common fixed point of G to be the
origin. Then G, is a subgroup of the finite group Staby C G of euclidean rotations.
The ball D, of radius r, centered at x is inscribed in a convex cone with flat faces
and vertex at the origin; its faces are contained in the perpendicular bisecting planes
of [x, A*!x], for A € 8, (r,). These are equatorial planes of the ball model H3.

Let now the point y move away from x along the ray from the origin through
x. There is a first point w for which the ball D, of radius r, hits a new plane, the
perpendicular bisector of some [w, Bw], B ¢ §,(r,). This new plane does not pass
through the origin so that B ¢ Staby. Therefore (G, B) C G, is not elementary.

Case 3: G, is cyclic loxodromic or a finite extension of a cyclic loxodromic group.
In preparation for the analysis of this case, we take note of the following situation.
Suppose, say in the ball model, we have a closed ball B with center on the positive
radius of H? that does not contain 0. Let P denote the equatorial plane through 0 and
orthogonal to the vertical diameter of H?; it contains the center of B. Let p denote
the diameter of B that lies in P and is orthogonal to the positive radius. Consider two
planes 81, B tangent to B at the ends of p. Compare these two planes with two planes
X1, X» containing the vertical diameter of H> that are tangent to B, as the pages of
a book with spine the vertical diameter. Necessarily the planes X, X» intersect the
planes 81, B> in two lines. Consequently we see that the pages of the book grow apart
more quickly than do B, B», as we head toward dH?> along the positive radius.

Now we can deal with Case 3. Let £ denote the axis of a primitive loxodromic
element T € 6, (r,); we may assume that it is the vertical diameter. The ball B, (ry)
of radius r, about x is tangent to two planes B4 orthogonal to ¢, namely, the perpen-
dicular bisectors of the segments [x, 7% (x)].

If 8, (ry) contains a rotation z — ¢%?z with axis £ then By (ry) is also supported by
two planes passing through ¢ and opened at angle 26.
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If §;(r,) has an element of order two that interchanges the endpoints of ¢, then
T = E»E;, where each E; is such a half-rotation. There are two other planes f.
orthogonal to ¢ and tangent to B, (R, ). One contains the axis of E| and the other the
axis of its conjugate E> E| E>.

Construct the ray p orthogonal to £ and passing through x. Follow a point y € p
as y moves from x towards dH?>. The thrust of our initial observation is that By(ry)
will eventually no longer be supported by the pages of the open book whose spine
is £ and G will be either cyclic or an infinite dihedral group. As y continues to move
out, there will be a first point w such that §,,(r,,) contains an element S ¢ 5, (r,). The
perpendicular bisecting plane of [w, S(w)] cannot contain £, nor can it be orthogonal
to £. Consequently (G, S) is not elementary.

Case 4: G, is a finite cyclic group or the extension of one by an elliptic of order two
that exchanges the fixed points. Once again in the ball model, we can assume the
vertical diameter £ is the axis of rotation. If G is cyclic the ball B, (r,) of radius r,
about x is supported by two vertical planes containing ¢, as between the pages of an
open book. If in addition if there is an elliptic of order two E € G, exchanging the
north and south poles, then E € §,(r,) and we can assume in addition that B, (r,) is
also tangent to the horizontal equatorial plane.

In the latter case, let the point y, as before, move toward dH? from x along the ray
orthogonal to ¢ passing through x. There is a first point w at which the ball By, (ry,)
hits the perpendicular bisecting plane P of [w, Sw] for S ¢ &, (7). The new plane P
does not contain £. If (G, S) is still elementary, we must return to Cases 1-3.

If G, is cyclic, follow the same procedure. There is a first point w at which the ball
By, (ry) hits the perpendicular bisecting plane of [w, Sw] for S ¢ §,(ry). The group
(G, S) is not cyclic but may fall into any of the cases 1-4. U

In the case of fuchsian groups, the tubular neighborhood property is called the
collar lemma. The first paper on it was by Linda Keen. The sharp statement is
this: On a Riemann surface, the length of any nonsimple closed geodesic must exceed
4 sinh 1. If @ is a simple closed geodesic of length L, then it has a collar neighborhood
of width 2 arcsinh((sinh L/2)~") (see Exercise 8-7); for a complete discussion see
[Buser 1992, Chapter 4].

There has been much recent work studying tubular neighborhoods, especially as a
way of better understanding the volume of manifolds [Meyerhoff 1987; Gabai et al.
2001; Przeworski 2003]. The radius p of the tube about a closed geodesic y can
be chosen as a function of the length so that as the length of y shrinks to O (in a
sequence of groups), and a primitive loxodromic generator converges to a parabolic
transformation, N (y*) converges to the corresponding universal horoball. Explicit
estimates are given in [Meyerhoff 1987].

Historical remarks

The universal horoball property seems to have been discovered by Fatou [1930, p. 159]
though, as pointed out by Alan Beardon, his proof was incomplete. Apparently the
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first complete proof in the literature is in [Shimizu 1963] and in some papers the
property is referred to as “Shimizu’s lemma”.

The universal elementary constant is today usually called the Margulis constant.
For the case without elliptics, it appears in [Kazhdan and Margulis 1968]. The gen-
eral case appears in [Wang 1969]. These early results were proved in the context of
general Lie groups. Following an entirely different track, in the context of hyperbolic
geometry in H?, the property was discovered in 1973 in discussion with Jgrgensen.
It was one of a number of universal properties that followed from Jgrgensen’s in-
equality. This discovery was motivated by the fuchsian analogue in [Marden 1974d],
and independently [Sturm and Shinnar 1974]. Jgrgensen’s lemma brings the analysis
closer to the actual phenomena allowing, in principle, estimates for the optimal value.

In this book we have chosen to call the universal constants by descriptive names.

3.4 The thick/thin decomposition of a manifold

Assume that G has no elliptics; the only elementary subgroups of G are then rank
one and two parabolic groups, and cyclic loxodromic groups.
The e-thin part MMN(G) of M(G) is defined as

{x € Int M(G) : Inj(x) < &}.

Here Int M denotes the interior of M.

For example, if a geodesic y has length s < 2¢, then it lies in the e-thin part (the
diameter of the ball of radius ¢ is 2¢). There is number r such that the r-tube about y
has the property that the length of the shortest curve on its boundary, freely homotopic
to v, has hyperbolic length 2¢. So the r tube is the maximal tube about y with the
property that all points in it have injectivity radius < €.

Also lying in the e-thin part are the projection of horoballs corresponding to para-
bolic rank one or rank two groups P. Assuming 7 : z — z + 1 lies in P, choose the
horoball bounded by the horosphere o with the property that the hyperbolic distance
satisfies d(x, T(x)) =2¢, x € 0.

Let ¢ = § denote the universal elementary constant. Given x € M(G), the set
{g € G :d(x, g(x)) < 2¢} either consists only of the identity, or generates either a
cyclic loxodromic or a parabolic subgroup. In the latter cases, x lies in a ¢ tubu-
lar neighborhood about a short geodesic or in a solid cusp tube or cusp torus, the
projection of a horoball as described above.

These tubes and cusp tori are necessarily disjoint. For if a point x € H? is common
to two of them, there are two elements g1, g» € 6, (&) which together do not generate
an elementary group, a contradiction to our choice of ¢.

We summarize our discussion as follows.

* The intrinsic distance and the hyperbolic distance d between (—1/2, a) and (1/2, a) on the horosphere {(z, ?) :
t=a>0}are 1/a and d = 2log((1 +V4a? + 1)/(2a)). To have d = 2¢, we must have a = 1/(2sinh ¢€).
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Proposition 3.4.1. Let G be a kleinian group without elliptics. For the universal
elementary constant & > 0, the e-thin part MM (G) is the union of mutually disjoint
components consisting of:

(1) The e-tube about a geodesic of length < 2¢,
(ii) The e-solid cusp tube corresponding to a rank one parabolic subgroup,
(iii) The e-solid cusp torus corresponding to a rank two parabolic subgroup.

It is shown in [Meyerhoff 1987] that one can choose ¢ = 0.052.
The complement of M™" is called the thick part and denoted by MMick:

MBIk — (x € Int M(G) : Inj(x) > &}.

3.5 Fundamental polyhedra

Fundamental polyhedra provide “concrete” models of the manifolds M. Suppose we
are standing at an interior point 7(0) € M(G) and blow up a balloon. If it keeps
growing without ever touching itself, we must be living in H? itself. Otherwise at
some point the balloon will meet itself. We blow some more, and keep blowing until
the balloon fills the whole manifold (ignoring the fact that this may require an infinite
volume of air). The balloon will then be the projection of the Dirichlet region centered
at O; the faces comprise the balloon surface and form a spine for the manifold.

The Dirichlet regions, or Poincaré fundamental polyhedra (Poincaré first used them
to study kleinian groups), are constructed as follows. Given a kleinian group G,
choose a base point © € H? which is not a fixed point of G. For each element g € G,
g # id, construct the hyperbolic plane which is the perpendicular bisector P, of the
geodesic segment [0, g~ (0)]. Denote by H, the relatively closed half-space which
is bounded by P, and contains O. The labeling is such that g(Pg) = P,-1 and g(Hy)
is complementary to H,-1 but shares with it the bounding plane P,-1. This notation is
used because it is consistent with what is forced in the construction of the isometric
polyhedron where the isometric plane for g in the ball model is the perpendicular
bisector of [0, gil(O)].

The Dirichlet region or Dirichlet fundamental polyhedron P9 with center O is
defined as the closed, convex hyperbolic polyhedron

Po=Po(G)=(")H, CH.
8
(The use of the word “region”, and also “domain”, is traditional in this context al-
though the set in question is not open.)

IfhegG, fPh(o) = h('Po).

The relative boundary of P is the union of possibly an infinite number of faces { f'}
(afaceis a polygonal region in some P,), edges {e} (an edge is a geodesic segment that
lies in the boundary of two adjacent faces), and vertices {v}. At most a finite number
of faces, edges, and vertices meet any given compact subset of H*. Moreover, since
P is convex, its intersection with any hyperbolic plane is connected.
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Proposition 3.5.1. Py has the following properties:

(1) The faces are arranged in pairs (o, c’). To each pair corresponds an element
g € G, called a face pairing transformation, such that

go)=0" and g(Po)NPy=0".

(i1) If a face pairing transformation is elliptic, there is an edge contained in its rota-
tion axis.

(iii) To each edge e corresponds an edge relation: g,g; . .. g, = g. where either g, is
elliptic with rotation axis containing e and g,' = id for some m > 1, or g, =id.
Each g; is a face pairing transformation. The polyhedra

Po. 81(Po), 8182(P0), ..., 8182+ 8(Po)

are arranged cyclically about e, each sharing a face with the previous and the
succeeding. If g, = id then g1g2 - - - g2.(Po) = Po. Otherwise the full cycle is
completed by applying in succession g,, g?, ..., &' =id to the union of the listed
polyhedra.

(iv) The orbit of Po under G fills H3 without overlap on interiors.

(v) The face pairing transformations generate G; the edge relations generate the

relations in G.

(vi) ?o N Q2(G) is a fundamental region for the action of G on Q2(G). Here io
denotes the closure of Po in Q(G) U H3.

(vii) Let Br(Q) be the closed ball of radius R centered at O. Then the intersection
Po N Br(O) projects to a compact submanifold of M(G) bounded by the pro-
Jjection of PoNIBR(0O).

Proof. (a) The polyhedron P is characterized by the property that a point y € H? lies
in its interior if and only if d(O, y) <d(y, h='(0)) =d (O, h(y)) forall h #id € G.
Thus Int(Pe)) NAh(Pp) = @ since y is closer to O than any A (0O).

In particular, g maps Pg to P,-1 and H, into the closure of H3\ H,-1. For x € Py,
d(0,x) =d(x, g7'(9)) =d(g(x), 0).

The argument shows that the interior of P cannot contain points of a rotation axis
of G; also that there cannot be any overlap in the interiors in the G-orbit of P¢.
(b) If x is an interior point of a face f’ C P,, we have d(g(x), 0) = d(x,0) <
d(x, g7 'h(0)), so long as h # id. Thus g(x) € P,-1 also lies in a face.

On the other hand, no conjugate 4gh~' can also be a face pairing transformation.
Instead, hgh~! is a face pairing transformation of P; = h(Pg).

(c) There cannot be different faces fi, f>» with the property that g;(f1) =g2(f2) = f.
For g1(Po) is exterior to P but adjacent to f. The transformation g, ! maps f to f>
and necessarily sends g;(Po) back to Py. Thus h = g, ! g1 maps Po onto itself so
g1 = g2 and hence f; = f>.

We conclude that the faces of P are arranged in mutually disjoint (except for
perhaps a common edge) isometric pairs.
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(d) The edge relations. Choose an edge e; and then one of the two faces sharing ey,
say fi. A face pairing transformation g; sends the partner face f| to fi = gi1(f])
and g1(Pp) is adjacent to P along fi. An edge e, of f] is sent by g; to e;. A
special case is when g; is elliptic and e; is contained in its axis of rotation. Then the
partner face f| and f; both share the edge e;. If g has order m, the m polyhedra
Po, g1(Po), -+, 81" 1 (Po) form a complete cycle of polyhedra, sharing the edge
e1, each sharing a face with the adjacent polyhedra. In this case the edge relation
determined by e; is simply g, = id.

Otherwise there is a face f 7 f; that shares with f| the edge ;. Its partner face f;
is sent by some g} to f> = g2(f;). There is an edge e3 of f, that g; sends to e;. Note
that the three polyhedra P, g1(Po), g1£2(Pw) are arranged in cyclic order about the
edge e;. Successive polyhedra share a face.

Next take the face f3 # f, that also shares e3 and find its partner and the face
pairing map g3(f;) = f3. To our cyclic arrangement about ¢; we can add one more,
218283(Po). Keep going. The process will necessarily end after a finite number of
steps. We will arrive at f; with the property that f; shares e; with f. At this point
the polyhedra Po, g1(Po), ..., 2182 ..., g (Po) are arranged in cyclic order about
e1. Furthermore the transformation 7 = g1g> .. ., gx fixes the edge e;. There are two
possibilities.

The first is that g; - - - gx = id, that is, the final polyhedron in the cycle, namely
8182 ..., gr(Po), coincides with Py. The edge relation determined by e; is h = id.
The sequence of edges ey, . .., ex = ey, is called an edge cycle. Had we started instead
with a different edge ¢; in the cycle, its edge relation is conjugate to that for e. The
dihedral angles corresponding to the edges in the cycle sum to 2.

The second possibility is that 7 = g; - - - g is an elliptic transformation fixing the
edge ey, and k > 1 is the smallest number with this property. If 4 has order m then for
P =PoUg(Po)U---Ugigr--- g(Po), the collection P*, h(P*), ..., k™1 (P*)
is a nonoverlapping cyclic ordering of km polyhedra about e;. The edge relation
associated with e; is /" = id. The sequence of edges e, ez, ..., ey = e; forms
an elliptic edge cycle. Each edge in the cycle is contained in the rotation axis of
an elliptic element conjugate to 4. The sum of the dihedral angles about e; of the
polyhedra P, g1(Po), ..., gr(Po) must be 277 /m.

By adjoining to P the polyhedra which share a face with P, and then those that
share just an edge, we can completely surround P by other polyhedra of its orbit.
A vertex v of Py will be shared exactly by those polyhedra that are part of the edge
cycles about the edges of P that end at v.

(e) The G-orbit of Py covers H3. For suppose to the contrary that the orbit does not
cover y € H3. Consider the geodesic segment [O, y]. At most a finite number of
elements in the orbit can intersect this segment. There is a point w € [0, y] such that
w lies on the boundary of some element of the orbit, but no point closer to y does.
But we know we can completely surround any element 2 (Po) of the orbit by other
neighbors sharing a face or edge. Therefore w = y and y is covered, after all.
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(f) As a consequence we can assert that the rotation axis of each elliptic in G contains
a segment which is conjugate to an edge of P. For if not, the rotation axis of some
conjugate g would meet the interior of Po. But then g could not send P into its
exterior, a contradiction.

The rotation axis of an elliptic g is the line of intersection of the two planes Py1.
If the rotation axis of a primitive elliptic contains an edge e of P, the two faces
sharing e must necessarily be contained in the planes P,+i. Therefore g is a face
pairing transformation, and no conjugate can also be face pairing.

It is time to bring up a special case: Suppose f” is contained in P, for g elliptic
of order two. Then g(P,-1) = P; = P,-1, and g(f’) = f'. The face f” is divided in
two parts by the rotation axis of g and application of g interchanges the two parts. To
incorporate this special case into our general theory, we must allow any segment of
the rotation axis that meets Py to be counted as an edge of P, and regard f’ itself
as the union of two adjacent faces.

(g) The presentation of G. In the G-orbit of P, the first generation of polyhedra
consists of those that share an edge with Py. The second generation consists of
those which share an edge with a member of the first generation. The n-th generation
consists of polyhedra that share an edge with the (n — 1) generation but not with a
member of an earlier generation. It is clear that any given compact subset of H? is
covered by the polyhedra in a sufficiently high generation. This shows that the face
pairing transformations of P9 generate G: any g € G can be written as a composition
of face pairing transformations by following a connected union of polyhedra in the
orbit, beginning with P« and ending with g(Pg).

A small sphere about a vertex v is subdivided into circular polygons by its inter-
section with the polyhedra sharing v.

Consider the graph I', formed by the union of the edges of the polyhedra in the
orbit of Py. This may or may not be connected. But any simple loop in H3 \ T, is
homotopic to a finite product of tiny circles about edges, connected by an arc to the
base point of the fundamental group. Furthermore each edge is conjugate to an edge
of Py. This translates into the statement that all relations in G are generated by the
edge relations of P . For any relation in the generators g;g» - - - g = id corresponds
to a loop in the complement of I,.

(h) If Q(G) # @, set P, = PN Q(G). We claim that the G-orbit of P, covers Q(G)
without overlap on the interiors. But this is clear from the fact the orbit of P covers
H3 without overlap. In general P, is not connected. The sides of P, are outer edges
of faces of P, and the vertices of P, are endpoints of edges. Thus the sides of P,
are arranged in pairs where the side pairing transformations also generate G.

(1) Finally if P is truncated by intersection with Bg(0O), the ball of radius R about
O, the truncated faces of Py are still arranged in pairs, with the same pairing trans-
formations as before. This is because if a point x in a face o is distance R from O
and g : 0 — o' is the face pairing transformation, then g(x) € o', being equidistant
from O and g(0), is also distance R from O. ]
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Fig. 3.1. A regular hyperbolic dodecahedron with 72° dihedral angles (right). There is a
Mobius transformation that maps each face to the opposite face with a 13—0 clockwise twist.
These generate a kleinian group. The quotient manifold is called the Seifert—Weber dodecahe-
dral space. Its first homology group vanishes. The combinatorial pattern of the identifications
is shown on the left.

The Ford fundamental region and polyhedron

In this section we will work with the upper half-space model. For the basic facts
about isometric circles and planes we refer back to Section 1.7. They are defined for
all elements # id in a group provided oo is not a limit point. So long as Q(G) # I,
we can replace G by a conjugate if necessary so that co € Q(G). Then every element
has a well defined isometric circle and isometric plane which is the hemisphere that
rises from the isometric circle.

For g € G, let £(g) and £*(g) denote the closure of the exterior of the isometric
circle for g and the isometric hemisphere rising from that circle, respectively. In
line with our penchant to define “fundamental regions” as relatively closed sets, we
define the Ford region or isometric fundamental region F and the Ford polyhedron or
isometric fundamental polyhedron F as the following relatively closed sets:

F=(Ngec E@)NQG), T =Ny &)

The isometric polyhedron is a limiting case of Dirichlet polyhedra. For if g does not
fix 00, as O — co € dH?, H ¢ converges to the complement of the isometric hemisphere
for g (see Exercise 3-4). From this we see that P converges to F uniformly on
compact subsets of H?3.

The polyhedron & (as well as F') has all the properties listed in Proposition 3.5.1:

Lemma 3.5.2. If oo € Q(G), the isometric fundamental polyhedron P (G) = F in
the upper half-space model is well defined and is the limit of the Dirichlet polyhedra
Poas O — oo.
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Ifinstead O = o0 is a parabolic fixed point of G, the convex polyhedron 500 exterior
to the isometric planes of all g € G, g(00) # 00, is periodic with respect to the
stabilizer Stab(co), while the elements of the G-orbit of fJNDOO correspond to the G-
cosets of Stabn.

The second statement follows from Proposition 1.5.5(7). It is sometimes a very
useful object to consider, in spite of the periodicity. This is especially true when there
is only one cusp.

The intersection with §(G) of the euclidean closure P, is the isometric region
F=PNQ(G). It may have isolated points, as a church steeple rising toward 2 (G)
from P,. This subtlety is of concern only if one desires precise information about
F itself because a neighborhood of an isolated point is covered by a finite number of
elements in the orbit of F'. The Ford region itself is not necessarily connected and
its intersection with a component of €2(G) may not be connected. Certainly it is not
connected if 2(G) is not connected. In any case the orbit of F' tiles the region of
discontinuity €2(G) without interior overlap.

The interior of F is characterized by the property that for any g #ide€ G, |g'(z)| <1
for z € F. Therefore among all tiles in the orbit of F, it is F itself that is largest, in
view of the formula

// dudv:/f Ig’(z)Idedy</f dx dy = oo.
g(F) F F

Since ¢’ (z)|?> = O(]z|7?) as |z| = oo, the intermediate integral is automatically finite.
The inequality becomes more meaningful if €2(G) has a bounded component €2 and
we replace F by F N Q2 and G by Stab(£2).

We can now prove the following extended form of the universal horodisk theorem.

Corollary 3.5.3. Suppose Q2 C C is invariant under a nonelementary group G without
elliptics and containing the translation T (z) = z + 1. Assume that T is determined
by a puncture in 2/ G. Then there exists M > 0 such that 2 contains one of the two
half-planes {z : | Im z| > M}. Its image under any g € G that does not fix oo is disjoint.

Proof. The isometric circle of any g € G that does not fix oo has its center g ! (c0)
on 2. As a consequence of the universal horoball property, its isometric circle has
radius not exceeding one. Any g € G that does not fix oo sends the exterior of its
isometric circle onto the interior of that of g~

The assumption on the quotient insures there is a horodisk o at 4+-ico in the hyper-
bolic metric on 2 and do is an open analytic arc of period one. In the fundamental
strip S = {z: 0 <Rez < 1}, the set do N S is uniformly bounded above. Therefore o
contains a half-plane.

Without the assumption on the quotient, the conclusion would be false, as we will
well understand when we discuss deformations and pinching: If T is not determined
by a puncture in the quotient, it acts in €2 as if it were loxodromic. U
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Poincaré’s Theorem

A particular consequence of Proposition 3.5.1 is the local finiteness of the G-orbits
of Py in H? and io N Q(G) in 2(G): Any neighborhood of a point intersects only
a finite number of elements of the orbit.

It is possible to have a polygon or polyhedron that seems to have the properties of a
fundamental region, yet it does not have the local finiteness property. A nice example
is presented in [Mumford et al. 2002, Project 7.1] (another example is [Beardon 1983,
9.2.5]): Consider the group generated by the two parabolics A(z) =z+3 and B(z) =
2z/(3z 4 2), which acts in the upper and lower half-plane. The element A maps the
circle Cy ={|z+1/2|=1/2} onto C, ={|z— 1| = 1}, sending the inside of C; onto the
outside of C,. The element B maps the line C3 = {Rez = —1} onto C4 = {Re z =2}
sending the right side of C3 onto the right side of C4. The group G = (A, B) is
discrete and preserves the upper and lower half-planes. In fact G is a variation on
the modular group M, of Exercise 2-9. The element A~! B is loxodromic with fixed
points —2, —1. Therefore lim,_, ;o (A~!B)"(C3) is the circle {|z + 3/2| = 1/2}.
The quotient H?/G is conformally equivalent to a twice punctured disk. The region
exterior to Cp, Cp and between C3 and Cy4 has the properties of a fundamental region,
except it is not locally finite. It has an edge which ends at a fixed point of a loxodromic
element but which is not itself preserved by that element; the projection of the edge
to the quotient spirals into the corresponding geodesic without meeting it.

It is also possible to have a polyhedron that seems to be a fundamental polyhedron
but the face pairing transformations do not generate a discrete group. Take a convex
euclidean quadrilateral Q with no two sides parallel. Find the two affine mappings
A;(z) = a;z + b; that map one side to its opposite side and send Q to a polygon
A;(Q) that does not overlap Q except along a side. The two elements generate a
nondiscrete group in C. In the upper half-space model, above Q rises a chimney Q*.
The transformations A; act in H? and are hyperbolic isometries pairing opposite faces
of Q*, as required of face pairing transformations. Yet the group they generate is not
discrete. What went wrong? This example is from [Epstein and Petronio 1994].

Still, if we start with a convex polyhedron Q* with the properties (1), (3) of Propo-
sition 3.5.1, the face pairing transformations will in general generate a discrete group
for which Q* is a (locally finite) fundamental region. This is called Poincaré’s The-
orem. One must be particularly careful in understanding the orbit of the ends of the
polyhedron on dH?. While this is often self-evident if there are a finite number of
faces, in the presence of infinitely many faces special care must be taken. For the
definitive analysis, valid in all dimensions, see [Epstein and Petronio 1994].

Note that there are perfectly good fundamental regions that are neither Dirichlet
nor isometric fundamental regions. Simple examples are most fundamental parallel-
ograms for discrete, rank two groups of translations. Another example is the modular
group M, of Exercise 2-6; there one pair of circles are isometric circles, but the other
pair are not. However one might think of the fundamental region as a truncated Ford
polygon because oo is a parabolic fixed point.
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The Cayley graph corresponding to a Dirichlet polyhedron

The dual graph A associated with P is constructed as follows. Draw a geodesic from
O to each point g(O) where g(Po) shares a face with P . Then draw geodesics to the
centers of the polyhedra of the G-orbit that share faces with the first generation, and
so on. We get an infinite connected graph A, embedded in H?3. If each edge cycle has
length 3, which is true in the generic case, then there is a geodesic triangle transverse
to each edge. These geodesic triangles are the 2-simplices of the graph.

The graph A is equivariant under G. Its projection is therefore a graph A, C M(G).
The edges of the graph project to simple loops from 7 (O). These loops generate the
fundamental group 7 (M(G); O). The 2-cells generate the relations in 771 (M(G); O).

For the general definition of Cayley graphs see Exercise 2-17. If P has an infinite
number of faces, A is perhaps not useful. In contrast, the abstract Cayley graph for
G does not suffer under the same handicap.

Additional remarks

Wielenberg [1981] has given examples showing that a polyhedron may be the funda-
mental polyhedron for more than one group; different pairings of faces give rise to
different groups. An example of this phenomenon for fuchsian groups is in Exercise
2-13.

R. Riley over many years developed a computer program to test whether a group
given by generating matrices is discrete [Riley 1983]. In effect, it tests for discreteness
using Jgrgensen’s inequality and the universal horoball property, and then it tries to
construct an isometric fundamental polyhedron. If successful, the program can read
off the presentation of the group.

Jgrgensen [1973] has completely analyzed the isometric fundamental polyhedron
for cyclic loxodromic groups (7') in terms of the trace parameter, using the normaliza-
tion of Exercise 1-34. The polyhedron can have an arbitrarily large number of faces;
large numbers of faces arise when the trace with |tr(7)| < 2 tangentially approaches
2. (When |tr(T)| > 2, the isometric circles of T*! are disjoint.) The combinatorial
arrangement of faces is completely described in terms of tr(7"). Moreover, either F
is the region bounded by the isometric circles of 7=! (when |tr(T)| > 2) or it is the
closure of a simply connected domain with either four or six sides. Wada [> 2007a]
wrote a computer program showing the structure of the isometric fundamental poly-
hedron as a function of the trace.

Jgrgensen also analyzed the Ford fundamental polyhedra of once-punctured torus
groups G in terms of the combinatorics of the faces. He shows how, starting with the
side pairing transformations of the Ford regions (typically bounded by six circular
arcs) on the two components of 2(G), the sequence of face pairing transformations of
the Ford polyhedron can be read off. This study has been important to this day because
this class is the simplest nontrivial class of groups, depending on only two complex
parameters. Besides important applications in its own right, especially to two-bridge
knots [Akiyoshi et al. 1999], it serves as a test bed for more general situations. For
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details of Jgrgensen’s analysis see [Jgrgensen 2003; Akiyoshi et al. 2003], [Akiyoshi
et al. 2005].

3.6 Geometric finiteness

The importance of the class of geometrically finite groups lies in the fact that the
class corresponds to the manifolds M(G) which are “essentially” compact [Marden
1974a]. The longstanding conjecture that geometrically finite groups are dense in all
finitely generated kleinian groups has recently been proved. (This will be discussed
in some detail in Sections 5.4-5.6.) The precise definition and characterization is as
follows (*“pairs of punctures” and “solid pairing tubes” will be explained below):
Assume G is nonelementary and, unless stated otherwise, has no elliptics.

Theorem 3.6.1 [Marden 1974a; 1977]. Given a base point O € H, Po(G) has a
finite number of faces if and only if the quotient manifold M(G) is compact except
perhaps for a finite number of rank one and rank two cusps, and the rank one cusps
correspond to pairs of punctures on dIM(G).

If the condition holds for one base point O, it holds for any choice of base point.

Corollary 3.6.2. A manifold M(G) is geometrically finite if and only if (i) the punc-
tures on ON(G) are arranged in pairs such that each pair determines a solid pairing
tube, and (ii) the result of removing the interiors of all solid pairing tubes and solid
cusp tori is a compact manifold My(G).

A group that has a finite sided Dirichlet polyhedron is called geometrically finite.
Correspondingly, a geometrically finite manifold is one that is the quotient of such a
group. The term also applies to orbifolds.

Schottky groups and finitely generated fuchsian groups (Section 2.7) are examples
of geometrically finite groups with Q(G) # @. Alternate characterizations of geo-
metric finiteness are given in terms of the convex core in Section 3.10.3, the conical
limit points in Exercise 3-18, and the Hausdorft dimension of the limit set in Exercise
3-20.

The term was coined by Leon Greenberg. After Ahlfors’ announcement of his
finiteness theorem, the next thought was that a Dirichlet region in H? for a finitely
generated kleinian group had to have a finite number of faces, as is the analogous case
in H? for fuchsian groups. This hope was decisively dashed when Greenberg pointed
out that this is not the case for the “degenerate” groups (Chapter 5) discovered by
Bers on the boundary of Teichmiiller space [Greenberg 1966; Marden 1974a]. This
was the first indication that H? really matters.

In contrast, consider the following interesting fact, a consequence of the Ahlfors
Finiteness Theorem. For proofs see [Beardon and Jgrgensen 1975], [Greenberg 1977],
and Exercise 3-31 below.

The boundary §O N Q(G) “at 0co” of a Dirichlet polyhedron ?o(G), or the Ford
Jundamental region F(G), where G is finitely generated, has a finite number of sides.
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Fig. 3.2. Solid pairing tube for a rank one cusp.

The special role of parabolics. Let ¢ € dH? be a parabolic fixed point of G and
Stab, the parabolic subgroup fixing ¢. We have called ¢ a rank one or rank two cusp
if Stab; has one or two generators respectively. Associated with ¢ is its universal
horoball J{, whose “size” depends only on a least length generator (Section 3.2). For
T ¢ Stab;, T (H) NH = @ while T (H) = H for T € Stab,.

The geometric structure associated with a rank two cusp is the same for all hyper-
bolic manifolds, even those with nonfinitely generated fundamental groups. Embed-
ded in M is a one-parameter family of solid cusp tori (Section 3.2) for every conjugacy
class of rank two parabolic subgroups. The universal horoball property assures us
that if we choose the solid cusp tori to come from horoballs properly contained in the
universal horoballs, those corresponding to different conjugacy classes have mutually
disjoint closures.

If the interiors of the solid cusp tori interiors are removed from M(G), there results
a manifold with the same fundamental group but with a number of torus boundary
components. These are in addition to the components of dM(G), none of which can
be tori. Every noncyclic abelian subgroup of 1 (M) = G arises by an injection into
1 (M) of the fundamental group of a cusp torus. A particular horoball associated
with a rank two cusp can be chosen to be of maximal size in that its boundary torus is
just tangent to itself; this is not necessarily true of the universal horoball. The set of
volumes of these maximal solid cusp tori is an invariant of the particular hyperbolic
structure.

If there are elliptics sharing the fixed point ¢ then instead of the solid cusp torus
there will be an object homeomorphic to §” x [0, c0) where S’ is a sphere with three
or four cone points.

Rank one cusps in a geometrically finite group are associated with a very particular
geometric structure that may not appear in a general group. The geometric structure
is much stronger than the mere existence of a horosphere and solid cusp tube (Section
3.2); the solid cusp tube must be directly related to two punctures on the boundary of
the manifold. In a geometrically finite group, there corresponds a pair of punctures
p1, p2 on 9M(G), uniquely associated with the conjugacy class of the cusp: If ¢q, ¢
are small circles in 9M(G) retractable to py, p», there is a pairing cylinder C in
M(G), which is a cylinder, closed in M(G), and bounded by ¢; and c;. It bounds a
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Fig. 3.3. Solid cusp torus for a rank two cusp.

subregion of M(G), called a solid pairing tube, which is homeomorphic to C x (0, 1]
(and retractable to a cusp). The solid pairing tubes corresponding to the different
conjugacy classes of rank one cusps can be chosen to be mutually disjoint in the
geometrically finite manifold M(G).

Let T be a parabolic generator of an element of the conjugacy class that represents
the cusp. The circles ¢y, ¢ can be chosen so that the pair lifts to round circles in
Q2 (G) mutually tangent at the fixed point ¢ of T'; see Corollary 3.5.3. Such a pair of
circles is called a double horocycle at ¢, even though this is an abuse of terminology
if the components of Q(G) containing them are not round disks on S?.

Suppose the fixed point ¢ is shared by an order two elliptic. then instead of the
solid pairing cylinder there will be an object of the form D* x [0, o). The subset
D* x {0} of Int(M(G)) is a disk with one puncture or cone point.

Consider a fuchsian manifold M(G) with G acting on the upper and lower half-
planes; every puncture on one component of dM is paired with a puncture on the other.
Suppose T : z+> z+1 is a least length generator of a rank one parabolic subgroup. For
b>1,{z € C:Imz = %b} is a pair of horocycles at the fixed point co. These project
to “circles” about a pair of punctures. Let P. C H? denote the vertical planes rising
from them and consider the vertical slab Q = {(z,¢) € H: —b<Imz<b, t> 0}
they bound. Truncate Q by the half-space K = {(z,t) : + > a > 1}. The relative
boundary in H? of the resulting tunnel Q \ K projects to a pairing tube. This explicit
construction suggests how solid pairing tubes can be created in general — there does
not seem to be a canonical construction.

Proof of Theorem 3.6.1. We continue to assume that G has no elliptics — elliptics will
be dealt with at the end of the proof. Assume that P« has a finite number of faces.
The set F = PN S? consists of a finite number of finite sided circular polygons and
perhaps a finite number of isolated points. By a vertex of F' we mean a point which
is on the edge of at least two different faces of P(; either the circles bounding two
faces cross at v, or they are tangent at v.

We claim that if a point x € F is contained in the closure of only finitely many
elements P; = Py, Pa, ..., Py of the orbit G(Po), then x € Q(G). To verify this
statement (as in [Greenberg 1966]), construct a horosphere H, at x so small in
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Fig. 3.4. Schematics of a geometrically finite manifold. Each gray line joining a pair of x’s
indicates a pairing tube; the gray closed curve indicates a rank two cusp.

spherical diameter that it intersects only the polyhedra {P;}. This means that J,
is partitioned into sectors, each of which lies in some P;. A neighborhood of x on
S? is likewise partitioned. Therefore x ¢ A(G).

If there are no parabolics, each vertex of F' is completely surrounded by a finite
number of elements of the orbit of F'; no vertex cycle can result in a parabolic while
a loxodromic cannot fix a point on closure of Py. Likewise the edges in H? are also
completely surrounded. Therefore M(G) is compact.

Now consider an ideal point x € F N A(G). Because there are only a finite num-
ber of faces, x lies in the boundary of infinitely many elements {P;} of the G-orbit
G(Po). Of the infinitely many faces of the {PP;} that contain x on their boundary,
infinitely many are images of the same face of P by elements of Stab, C G. All
these transformations must be parabolic. For if T € Stab, were loxodromic, and if P
were a plane with x in its boundary, than the limit points of P under the cyclic group
(T) is the axis of T. This is impossible for a plane containing a face in the G orbit of
Po. So x is the common fixed point of a rank one or two parabolic subgroup and the
Dirichlet region P, = P(Stab,) contains P . If Stab, has rank one, P, is the region
bounded by two hyperbolic planes which are tangent at x. If Stab, has rank two, P,
is a chimney of four or six faces rising to x.

We have to consider in more detail the case where Stab, is rank one. In S?, choose
two circles tangent at x that bound a strip S, whose Stab,-orbit is all C. For example,
if x = oo and Stab, is generated by z +— z + 1, we can choose the strip S, = {0 <
Re z < 1}. The intersection with S, of a small neighborhood of x must lie in F since
boundaries of faces of Py cannot accumulate to x within S,. This shows that there is
a double horocycle at x with respect to Stab,.. In other words with respect to a9M(G),
X supports a pair of punctures.

We conclude that M(G) is compact except for a finite number of solid cusp tori
and solid cusp tubes with respect to pairs of punctures.

Conversely, if M(G) has the “essential compactness” just described, we claim that
P has a finite number of faces. Otherwise, where in M(G) would the projection of an

infinite number of faces {7 (f;)} accumulate? We know there can be no accumulation
point within M(G).
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Suppose infinitely many 7 ( f;) were in the interior C of a solid cusp torus. A face
7 (f;) C C does not separate C. Therefore there is a simple loop in C, not retractable
to a point, joining one side to the other. This loop determines an element of the
fundamental group 71 (C), which is a rank two abelian group. Because not more than
one pair of faces can be paired by elements of a cyclic subgroup, the projection of at
most two faces can lie inside C, a contradiction. The same argument applies to the
interior of a solid pairing tube. We conclude that Py has a finite number of faces.

Corollary 3.6.2 follows from our argument.

We will indicate how the corresponding theorem for orbifolds can be derived from
the theorem for manifolds. By Selberg’s Lemma (page 68), there is a torsion free nor-
mal subgroup H of finite index. Let G = U,N= 1&H = UlN: | Hg; be a decomposition
by distinct cosets. Then P* = UZN: 1 & (Po(G)) serves as a fundamental domain for H.
Although it may not be connected, it has the properties of P, in particular the faces
are arranged in pairs with respect to H. For example, if (f, g(f)) is a pair of faces
of P(G) then the 2N faces {g;(f), gig(f)} are arranged in N pairs under H. Now
gig =hgj forsome j and h € H—because G =Gg=\JgiHg=\JgigH=JHgi.
Therefore the faces g;(f) and g;(f) are paired by h € H. Also we know that
higj # hagi for k # j, hi,hy € H. In effect, Po(H) is made up of N copies
of Po(G). We conclude that G is geometrically finite if and only if H is as well.
(The picture at orbifold cusps is more complicated if there are elliptics that share the
parabolic fixed points.) U

Lemma 3.6.3 [Thurston 1986b]. If G is geometrically finite and Q2(G) is nonempty,
every finitely generated subgroup is also geometrically finite.

A proof is indicated in Exercise 3-7. Without the assumption that Q2(G) # @, the
statement would be false in general, as we will later see in Section 6.1.

Finite volume

Lemma 3.6.4 [Wiclenberg 1977]. If VoOI(M(G)) < oo, then G is geometrically finite.

Proof. Again we may assume that G has no elliptics. Consider the e-thick part
M(G)thiek (with & chosen as in Proposition 3.4.1). The surface area of a cusp cylinder
coming from a rank one cusp is infinite. Therefore a small neighborhood in the thick
part would have infinite volume. So G cannot have any rank one cusps. On the other
hand the volume of each e-solid cusp torus is not less than 22|t |sin€ > +/3¢% by
Exercise 2-10, so there are at most a finite number of them. If the thick part were
not compact there would be an infinite sequence x,, € M(G)™M* which are centers of
mutually disjoint ¢ balls. Therefore the volume of M(G) would have to be infinite,
which is not the case. 0
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3.7 Three-manifold surgery

In this section we will present what is needed from 3-manifold topology for direct ap-
plication to hyperbolic manifolds. For a rigorous treatment of the aspects of topology
that we are using, we refer to [Hempel 1976] or [Jaco 1980].

Dehn’s Lemma and the Loop Theorem. Let S be a boundary component of an
orientable 3-manifold M>. Suppose y C S is a simple loop homotopic to a point
within M3 but not within S. Then y is the boundary of an essential disk.

Suppose a nonsimple loop y C S is homotopic to a point in M3 but not in S. Given
a neighborhood N, C S of y, there a simple loop yy C N, that bounds an essential
disk D € M(G).

An essential disk is an embedded closed disk D ¢ M? such that DN dM3 = 3D,
where 8 D is not homotopic to a point in dM?>. We call a loop y C S nontrivial if it is
not homotopic to a point within S. When obtaining a disk from application of Dehn’s
Lemma and the Loop Theorem, we will automatically choose one that is essential. A
boundary component that supports an essential disk is called compressible.

The equivariant version is also useful:

Equivariant Dehn’s Lemma and the Loop Theorem [Meeks and Yau 1981]. Sup-
pose X is a finite group of automorphisms of some M(H) with compressible bound-
ary. Then there is a set of mutually disjoint compressing disks whose members are
permuted by G and project injectively to M(H)/ X.

In our applications M3 is a smooth, oriented manifold, and y can also be chosen
to be smooth. There is an important generalization:

Cylinder Theorem. Suppose y;, y» C dM? are disjoint nontrivial simple loops that
are freely homotopic in M?> but not within dM?>. There is an essential cylinder em-
bedded in M? bounded by y, and y».

Suppose instead that the freely homotopic loops are not simple but y; C N C dM?>,
where the neighborhoods Ny and N; are disjoint. There are simple loops y! C N; that
bound an essential cylinder in M>.

That two loops are freely homotopic means that there is a continuous mapping of an
annulus A into M? sending the boundary components of A to the two loops. Another
way of describing free homotopy is as follows: y; is freely homotopic to y» if and
only if there is an arc « from any given point O; € y; to any given point O; € y» such
that y; is homotopic to & ~'y»a (here we are composing curves from right to left).

Two disjoint simple loops that are freely homotopic in d M3, but neither is homo-
topic to a point in 9 M?>, bound a (topological) annulus in d M3,

An essential cylinder is a closed cylinder C ¢ M3 such that C N dM?> = dC, the
boundary components of C are not homotopic to points in M3, and C cannot be
homotoped (relative to M (G), that it is allowed to slide along dM?) to an annulus
in 9M>. When obtaining a cylinder from application of the Cylinder Theorem, we
will automatically choose one that is essential.
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Fig. 3.5. Cutting a solid torus along a compressing disk results in a topological ball.

In the case of a kleinian manifold M(G) we will add the following requirement to
the definition: For C to be called an essential cylinder, it cannot bound a solid pairing
tube. Here we are regarding a pairing cylinder as homotopic into the boundary.

It is possible that a simple loop y € dIM(G) may be a boundary component of
two or more homotopically distinct essential cylinders which are disjoint, except for
sharing the common boundary y. On the other hand,

A simple nontrivial loop on a cusp cylinder or cusp torus cannot be freely homotopic
to a loop either on a cusp cylinder or cusp torus corresponding to a different cusp.

Application of Dehn’s Lemma and the Loop Theorem

If a component 2 of 2(G) is not simply connected, there is a simple loop y* € Q
which separates its boundary components. Of course y* is homotopic to a point if
we move it into H?. Its projection y C R = 2/ Stab(<2) is a closed loop, perhaps not
a simple loop, which is not homotopic to a point in R, but is homotopic to a point in
M(G). Dehn’s Lemma and the Loop Theorem say that there is a simple loop ' € R
which bounds an essential disk in M(G).

A component R of dM(G) is incompressible if the inclusion 71 (R) — 71 (M(G))
is injective. Our argument shows that R is incompressible if and only if all the
components of €2(G) which lie over R are simply connected. Otherwise R is called
compressible. If all the boundary components are incompressible, the manifold M(G)
is called boundary incompressible.

More generally, an orientable surface S embedded in M(G) is called incompress-
ible if it is not a topological disk and if the inclusion 71 (S) < 71 (M(G)) is injective.
This means that every loop in S which is homotopic to a point in M(G) is already
homotopic to a point in S. Otherwise there is a simple loop in S bounding an essential
disk whose interior lies in M(G)\ S [Jaco 1980, I11.8]. The surface S is incompressible
if and only if each lift over it in H? is simply connected.

An essential disk D in M(G), dD C OM(G), is called a compressing disk. It either
divides M(G) into pieces M|, M or M} = M(G) \ D is connected. In the first case
the fundamental group of M(G) splits into a free product: 71 (M) = 1 (M) *x 71 (M>)
and correspondingly G splits: G = G| * G, (van Kampen’s Theorem). In the second
case let y be a simple loop from an origin O € M; that crosses D once. Then
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11 (M(G)) = (m1 (M), y) or G = (G, T) where TG\ T '=G,, T ¢ Gy (G is an
HNN-extension of G ).

The subgroup 71 (M;) corresponds to a conjugacy class of subgroups of G — take
a lift M of M; to H3 and let G; denote its stabilizer. There are one or more copies
of the compressing disk D in the relative boundary of M in H3. These lifted disks
bound a topological half-space of H* not containing M?. Adding these half-spaces
to M gives back all H?3. Moreover the half-spaces project injectively into M(G;).

Now starting with some manifold M(G), the process of repeated insertion of com-
pressing disks, which we can take to be mutually disjoint, terminates after a finite
number of steps. We end up with a union of manifolds that are either balls or are
boundary incompressible (see [Hempel 1976] or [Jaco 1980]). For example, if we
start with a handlebody of genus g coming from a Schottky group, after cutting it
along g mutually disjoint disks none of which divide the handlebody we will end up
with a topological ball. See Exercise 3-11.

Here is a way of reversing the process of cutting M(G) by an essential disk: Choose
disjoint, closed, round disks Dj, D; in €2(G). Choose them small enough that each
projects injectively into dM(G) and they remain disjoint there. Let oy, 02 denote the
hyperbolic planes rising from the circles d Dy, dD,. Let o; denote the half-space
adjacent to D; and af the other half-space. Choose any Mobius transformation 7
which has the property that 7' (o) = 0, and T(crl+ ) =0, . We see that G* = (G, T)
is a discrete group: T conjugates all the action of G in crl+ to the action of TGT ! in
o, . Of course the operation is duplicated over the full orbit G(D;). The associated
manifold M(G™) is obtained from M(G) as follows. Down in M(G) we have the disks
D; C dM(G), and the planes o; which lie in the interior of M(G) except for their
boundaries and bound balls (here we are using the same notation for the projections).
Let M denote the result of removing from M(G) the two half-spaces o, . The action
by T forms a new hyperbolic manifold M(G*) from M by gluing o} to o,. In M(G™),
o] = 03 is an essential disk which does not separate.

The procedure works equally well if we have two manifolds M(G;) and take a
disk in each boundary. In this case the new essential disk will divide the manifold.
This process we have described is an example of Klein—-Maskit combination theory,
developed by Klein and refined and extended by Maskit [1988]; see [Marden 1974a]
for the manifold interpretation. See also Exercise 3-8.

For the following result, see for example [Waldhausen 1968].

Proposition 3.7.1. Suppose M? is a compact, orientable and irreducible 3-manifold.
If T (M?)= A% B, A, B #id, is a free product of subgroups, there exists a compress-
ing disk bounded by a simple loop in dM?>.

Remark 3.7.2. In calculating the genus of the boundary of a 3-manifold in terms of
its fundamental group the following simple fact is very useful. Suppose «, 8 € M3
are two 1-cycles with nonzero intersection number. Then at most one of them can
be homologous to zero, or, in particular, homotopic to a point in M>. Thus if the
fundamental group has N generators so that its first homology group has at most
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N generators, the total genus of the boundary is at most N. In particular, if G has
no parabolics, dM(G) has at most N /2 components. Similar arguments give useful
estimates for the topology of the boundary [Marden 1971; 1974a]. For example, if
G is a g-generator free group (g > 2) and M(G) is compact with OM(G) a closed
surface of genus g, then M(G) is a handlebody.

Equivariant extensions 0M — M

Often we will be in the position of having a group G and a quasiconformal defor-
mation F : Q(G) — Q(H) that induces an isomorphism ¢ : G — H. Such a map
is called equivariant; it is the lift of a quasiconformal map f : IM(G) — IM(H)
which (i) sends puncture pairs to puncture pairs, and (ii) sends compression loops to
compression loops.

We will spell out in terms of given basepoints how the boundary map f respects the
isomorphism ¢ : 771 (M(G); O) — 71 (M(H); O’). On each boundary component R of
dM(G), choose a basepoint p, and then choose the basepoint f(p) € f(R). To each
loop @ C R with basepoint p corresponds a loop f(«) C f(R) with basepoint f(p).
Upon joining the loops to the basepoints O, O’ by auxiliary arcs, we get inclusion
homomorphisms 71 (R; p) <= 71 (M(G); O) and w1 (f(R); f(p)) = mi(M(H); O')
with kernels K = 7.(R), K' = m.(f(R)). There are a finite number of mutually
disjoint simple compression loops on R such that the kernel K is the least normal sub-
group 7.(R) C 1 (R) generated by these (see the Maskit Planarity Theorem, p. 76).
In turn the map f induces an isomorphism between the images of the inclusions.

We want to find a quasiconformal extension to f : M(G) — M(H). Although no
“canonical” method seems available, the extension can be done by topological means
(extension is not always possible in the geometrically infinite case).

Suppose first that M(G) is compact. According to [Hempel 1976, Theorem 13.9
and Corollary 13.7], f is homotopic on dM(G) to a homeomorphism f; which has
an extension to a homeomorphism between the manifolds fi : M(G) — M(H). In
turn f] is homotopic to a diffeomorphism f> : M(G) — M(H), [Munkres 1960]; f>
is automatically quasiconformal. We can choose a lift F> of the new f> to H*UQ(G)
so that its restriction to €2(G) induces ¢ and is homotopic to F. But now, applying
[Gehring 1962], F> has an ¢-equivariant quasiconformal extension to all of S2.

If there are parabolics we have to replace the manifolds by the compact manifolds
resulting from the removal of the solid pairing tubes and the solid cusp tori and extend
the extension back to the original manifolds.

For applications it suffices to replace (F, f) by (F2, f>). However it is nicer to
apply the stronger result Theorem 3.7.3 below.

Itis shown in Exercise 3-34 that the original F itself has a homeomorphic extension
to S? satisfying F(¢) = F»(¢) for all ¢ € A(G). In fact, the extension of F is
quasiconformal on all S? by Theorem 3.14.6. This puts us in a position to apply
Theorem 3.7.4(iii) below. We end up with a most satisfying result as follows:
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Theorem 3.7.3. Assume that G is geometrically finite and F is a quasiconformal
mapping Q(G) onto Q2(H) that induces an isomorphism ¢ : G — H. Then F is the
restriction of an equivariant quasiconformal map of S* which extends to an equivari-
ant quasiconformal mapping F : H> U S?* — H3 U S%. The mapping F then projects
to a quasiconformal mapping f : M(G) — M(H).

Now suppose M(G) is not necessarily geometrically finite. We start afresh with
a quasiconformal mapping F : S* — S? that induces an isomorphism ¢ : G — H
satisfying F(g(z)) = ¢(g)F(z) for all g € G, z € S2. If the restriction of F is
conformal 2(G) — Q(H), or if Q(G) = &, F is is Mobius and the two groups are
conjugate. Here we are applying Theorem 5.6.6 or, if Q(G) = &, Corollary 3.13.4.

One general approach is the following. It is based on a canonical method of Douady
and Earle to extend a quasiconformal automorphism F of the (n—1)-sphere (when
n =2 such a map is called quasisymmetric) to a surjective mapping of n-ball for n > 2.
The extension is equivariant if F is so. That is, if F satisfies F o g(z) = ¢(g) o F(2)
for all z € S"~! and g € G for any M&bius group G and an isomorphism to another
group ¢ : G — H, then its extension is also equivariant with the same ¢. On the other
hand the extension is guaranteed to be a homeomorphism only when n = 2, or when
the complex dilatation of the boundary mapping is sufficiently small (see [McMullen
1996, p. 231]). Fortunately in the case n = 3 a modification suggested by Pekka Tukia
(personal communication) allows one to get a homeomorphism of the ball without
any restrictions. This modification is based on the fact [Ahlfors 1966, p. 100] that
in dimension 2, given ¢ > 0, a quasiconformal mapping can be factored into the
composition F' = F, o F,,_{o-- -0 F| of a finite number of equivariant quasiconformal
mappings each of whose complex dilatations satisfies ||u|lc < €. This is done by
taking puy = (k/n)u for sufficiently large n, where p is the complex dilatation of
F. In consistent normalizations, denote the solution of the corresponding Beltrami
equation by g. Then set F = g o gk__ll. The Douady-Earle extension is then applied
to each factor Fy resulting in an extension to a equivariant homeomorphism of H?.

The weakness of this approach is that the extension is not known to be quasicon-
formal or even bilipschitz. There is an alternate approach by integrating an extension
of a vector field on S%. This method is suggested in in [Thurston 1979, Chapter 11;
Reimann 1985] and carried out in [McMullen 1996, Corollary B.23]. The possibilities
are itemized below.

Theorem 3.7.4 (Basic Extension Theorems). Suppose G, H are arbitrary kleinian
groups and F :S*> — S? is a K -quasiconformal mapping that induces an isomorphism
¢:G — H. Then:

(/) [Douady and Earle 1986; Tukia 2005] The map F has an equivariant extension
to W3 that is a homeomorphism which also induces ¢;, its projection f : M(G) —
M(H) is an orientation preserving homeomorphism.
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(ii) [Tukia 1985c] The map F has an equivariant (L, a)-quasiisometric extension
for some L = L(K), a = a(K); its projection f : M(G) - M(H) is a (L, a)-
quasiisometric mapping.

(iii) [McMullen 1996, Corollary B.23] The map F has an equivariant extension to a
K3/-bilipschitz diffeomorphism of H3; its projection f : M(G) — M(H) is a
K3/2-bilipschitz diffeomorphism (and hence quasiconformal).

A mapping f of H? is (L, a)-quasiisometric if there exist finite constants 1 < L
and a > 0 such that in the hyperbolic metric

1
740 y) —a=d(fx), f()) = Ld(x, y) +a.

Thus a quasiisometric map need not be continuous but at long range it is essentially
bilipschitz. Like quasiconformal maps of H® [Gehring 1962], quasiisometric maps
can be extended to dH® = S? and the extension is a quasiconformal map of S?.
If in addition it is a homeomorphism, it will automatically be quasiconformal (but
quasiconformal maps are not automatically bilipschitz). See Exercise 3-19.

3.8 Quasifuchsian groups

A quasifuchsian group G is the quasiconformal deformation (page 80) of a fuchsian
group I'. The purpose of this section is to characterize this class of groups by the
topology of M(G).

Assume first we have a finitely generated kleinian group G with Q(G) = ;U 2
such that G preserves 21, €22. We will show that G is quasifuchsian. By the Ahlfors
Finiteness Theorem, the quotients €2; /G = R; are closed surfaces with at most a finite
number of punctures and branch points.

Each component must be simply connected. Otherwise there would a simple loop
a in 1, say, that separates its boundary. This would force €2, to make a choice of
which component of S\ « to lie in. Whichever it chose, its boundary could not be
the full limit set, a contradiction.

Choose a fuchsian group I' and quasiconformal mappings f; : UHP/T" — Ry,
f> : LHP — R that lift to F} : UHP — @, F; : LHP — Q,. We also need the
reflection J : z — z. We must choose these maps so that the orientation reversing
map H = FroJoF,~l:Q — Q satisfies Hog=goH forall g € G. Once fj
is chosen, the homotopy type of f; is determined by this requirement. In particular
there is an isomorphism ¢ : I' — G for which Fioy =¢(y)oF;,i=1,2,forall y €T.
The complex dilation u of Fy, F> is a Beltrami differential on UHP U LHP. Define i
to vanish on R U {0co}. Solve the Beltrami equation. There results a quasiconformal
map F of S? that conjugates I" to a quasifuchsian group G’. Because they solve
the same Beltrami equation, F o Fi_l is conformal on ;, i = 1, 2 and induces an
isomorphism ¢’ : G — G’. Anticipating Theorem 3.13.3, ¢’ is a conjugation. So after
renormalizing F', we may assume F restricts to F| and F5.
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We will now show that if €2(G) has two invariant components €2, €2, then Q(G)
has only the two components €2, €2, as claimed in Lemma 2.4.2(iii).

From the perspective of dM(G) = R; U Ry there is an “identity” isomorphism
j :m(Ry) — m(Ry) that comes from identification of the action of g € G on Q
with its action on €2;: Fix basepoints O] € ; and a geodesic T* in H? that connects
them. Given g € G, a simple arc y;* C ; from O to g(O;") projects to a loop y; € R;
from the point O; = 7(0), i = 1,2. Then y" ~ g(r*)y;r*_1 and the projections
to M(G) satisfy y; ~ ty»1~!; ¥, is freely homotopic to y, in M(G). This gives
the isomorphism j. A change of basepoints will give the same isomorphism j if the
connecting arc ¥ is correspondingly adjusted.

Applying the Cylinder Theorem, given a simple loop y; C R there is a simple loop
y» C R, that bounds an essential cylinder within M(G).

A very similar situation arises for punctures and cone points. If g € G is parabolic,
since each 2; is simply connected, its fixed point corresponds to a puncture in each
of R;. According to Corollary 3.5.3, its fixed point supports a horocycle in both €2
and €2,. From this, we can construct a solid pairing tube in M(G) pairing the two
punctures. Also each elliptic transformation has one fixed point in each component
and its axis of rotation extends from one to the other, analogous to the situation for a
parabolic.

The argument proceeds as follows. Suppose first that there are no elliptics or
parabolics. Consider a simple closed geodesic ¢ in the hyperbolic metric on R;. There
is a corresponding geodesic ¢’ in R; such that ¢, ¢’ are the boundary components of
a cylinder in M. If d is a simple geodesic in R; crossing ¢ exactly once and d’ C R;
corresponds to d, the two cylinders can be adjusted so that they are transverse to each
other within M(G) — they intersect in a single arc.

Now take a chain of 2g simple geodesics {c;} in R, where g is the genus, such that
c; crosses ¢;—1 and ¢;41 while ¢, crosses ¢z, and cy, but otherwise the geodesics
are mutually disjoint. The complement of their union in R; is simply connected.
Insert cylinders so that within M(G) each is transverse to its neighbors but disjoint
from the others. Let M denote the complement in M(G) of the union of the cylinders.
The interior of M can only be a ball because it is bounded by a topological 2-sphere.
This establishes the product structure for this case.

In the general case, choose mutually disjoint solid cusp pairing tubes for the pairs of
punctures and solid tubes about the rotation axes. Connect the union of the geodesics
{c;} with the circles about the punctures and branch points in R; so the result bounds a
simply connected region. Then extend this to connect within M the union of the cylin-
ders with the cylinders about punctures and branch points to once again get a comple-
mentary region M bounded by a topological 2-sphere. The argument is completed as
before. So there is an (orientation preserving) homeomorphism M(G) — Ry x [0, 1].

Appealing in addition to Theorem 3.7.3, we conclude that there is a quasiconformal
mapping F : S? — S?, taking UHP ULHP to € U », such that:
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(1) there is an isomorphism ¢ : ' — G such that (F o y)(z) = (¢(y) o F)(z) for all
zeS?and y eT.
(ii) FoJ o F~!isan involution of G.
(iii) F projects and extends to a quasiconformal map f : M(I") - M(G).

Simultaneous uniformization

Suppose I' is a fuchsian group acting again in the upper and lower half-planes and
then in upper half-space. The orientation reversing involution Jy : (z, t) € H3 — (z,1)
interchanges the upper and lower half-planes, UHP and LHP, and pointwise fixes
the vertical plane P rising from R. It satisfies Jooy =y o Jp for all y € I'. The
projection Jy, to M(I") is an anticonformal mapping that exchanges the two boundary
components, and pointwise fixes P/ .

A quasifuchsian deformation G of I' is induced by a quasiconformal map (see
Section 3.6.3) f : H?> U dH?® — H3 U dH? that satisfies f o y(x) = 6(y) o f(x)
for all x € H? U dH?, for an isomorphism 6 : ' — G. The map f projects to a
homeomorphism f, : M(I") — M(G). Hence J, = fi o Jo, f*_1 1S an orientation
reversing involution of M(G), exchanging its two boundary components and inducing
the identity automorphism of 71 (G).

It is customary to refer to the boundary component UHP/I" as the top boundary
component of M(I") and LHP/I" as the bottom and correspondingly for any quasi-
fuchsian deformation of I'. The following generative result is due to Bers.

Simultaneous uniformization. Suppose Ryo;, R'™P are two Riemann surfaces of finite
hyperbolic area and J : Ry <> R'™P is an orientation reversing involution. There
exists a quasifuchsian group G, uniquely determined up to Mébius equivalence, such
that the top boundary component of M(G) is conformally equivalent to R'P, the
bottom conformally equivalent to Ry, and such that J is homotopic to the restriction

of J to OM(G).

3.9 Geodesic and measured geodesic laminations

In this section we will introduce the notions of geodesic and measured geodesic lam-
inations in H? which are needed to understand the internal structure of hyperbolic
manifolds. General references are [Fathi et al. 1979], [Canary et al. 1987], [Bonahon
2001].

It is helpful to think in terms of the disk model of H?. Let G be a fuchsian group
such that H?/ G = R is a surface of finite hyperbolic area (no elliptics).

Draw any simple closed curve y from a basepoint O € R which is not homotopic
to a point or a puncture. Choose O* € H? over O. A lift Yo of y beginning at O*
terminates at g(O*) for some g #id € G. The orbit y* of y; under the cyclic group
(g) is a simple arc in H? with end points at the fixed points of g. Since y* projects to
a simple loop, it will have the property that its orbit under the full group G consists
of mutually disjoint arcs.
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Fig. 3.6. A discrete geodesic lamination consisting of the lifts of a long simple geodesic on a
once punctured torus. A fundamental polygon is shaded.

Now consider the axis o™ of g, namely the hyperbolic line between the endpoints
of y*; a* projects to a closed loop o on R which is necessarily a simple loop and a
geodesic. Furthermore, y is freely homotopic to «. In Exercise 3-3 we will find that
o™ does not penetrate the universal horoballs at parabolic fixed points.

Fix a fundamental polygon P for G (for an explicit example, see Exercise 2-13).
Consider a sequence of closed geodesics {«,} that are getting longer and longer, say
in terms of a fixed set of generators for 1 (R; O). Choose a point p, € «, and a lift
so that p» € a; lies in P; the corresponding axes «;, all intersect P. What happens
as n — oo? Since all the axes intersect P (but do not enter the universal horoballs
at the cusps of P) we can find a subsequence that converges to a geodesic o™ in
H?. Necessarily neither endpoint of o* is a parabolic fixed point. What about the
projection o to R?



138 Properties of hyperbolic manifolds

First of all o, can have no self-intersections, since the orbit of o* under G consists
of mutually disjoint geodesics. Second, it cannot be a closed geodesic, for lim g,
cannot exist as a proper Mobius transformation. Therefore o is a simple geodesic of
infinite length on R. As such it has limit points in R — that is there are sequences of
points {p,} € o* which converge to an endpoint so that the projections {p, =7 (p;;)} €
R converge to a point p € R. Such a geodesic o is called recurrent; it keeps returning
to a compact set in R.

However we cannot say that in R, {«,} “converges” to o. For if a different point
P, € a,, increasingly far away along «, from p,, was lifted to P, the sequence of
lifts will not necessarily converge to o*, or even to a leaf in the G-orbit of o*.

A geodesic lamination A* C H? is a closed set of mutually disjoint geodesics. Two
leaves are allowed to have a common endpoint on dH?. Each component of A* is
called a leaf. The components of H?\ A* are called gaps. The gaps are ideal polygons,
possibly infinite sided, possibly bounded by arcs of dH?2.

The space GL of all geodesic laminations on H? is given the topology of Hausdorff
convergence: A sequence converges Ay — A* if every neighborhood of A* contains
all but a finite number of A*, and if U € H? is an open set containing all but a finite
number of A} then A* C U. With this topology G4 becomes a compact Hausdorff
space. Simple closed geodesics are dense in the subspace GLo(R) of those geodesic
laminations without leaves ending at a puncture (recall that simple closed geodesics
cannot penetrate the universal horodisks); see [Canary et al. 1987].

In fact, there is a natural topology on the space of geodesics in H? so that it becomes
a Mobius band (Exercises 1-3 and 4-15). An individual geodesic becomes a point in
the Mdobius band while a geodesic lamination becomes a closed pointset.

Assume now that A* is G-invariant. The projection A to R = H?/G is a closed
set of mutually disjoint simple geodesics in R which cover a set of zero area. A leaf
£ C A is isolated if every point z € £ has a neighborhood whose intersection with A
consists of a segment of £ through z. For example, suppose «, 8 are disjoint simple
closed geodesics on R. There is an isolated geodesic £ one end of which spirals
infinitely often around one side of o and the other end infinitely often around . A
lift of y in H? will connect one fixed point of a loxodromic over « to a fixed point of
a loxodromic over 8. Yet £ is not a lamination since it is not closed in the space of
geodesics. The lamination is y Ua U B.

A well known result of Birman and Series [1985] is that the set of all simple (but not
necessarily closed) geodesics on a finite surface R form a set of Hausdorff dimension
one — see Exercise 3-20. An interesting consequence is that almost every geodesic
arc [a,b] C R is generic with respect to simple geodesics in the sense that it is
transverse to every simple closed geodesic on R [Bonahon 2001, p. 19].

Another consequence is that if A has no isolated leaves, then A has uncountably
many leaves: For any transverse segment t, T N A is totally disconnected; T N A is a
Cantor set [Bonahon 2001, Prop. 7].

(Mirzakhani [2004] recently established the precise growth of the number Sx (L)
of simple closed geodesics of length < L on a hyperbolic surface X of genus g and
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7 punctures:

Sx(L) ~nL%t2"=6 a5 [ — o0,

where n = n(X) is a constant depending on X.)

Any lamination can be augmented by additional leaves if necessary so that the
gaps are ideal triangles. The projection of gap in H? near an ideal vertex either ends
at a puncture, or spirals around R without intersecting itself or other gap projections.
Since each ideal triangle has area m, there are exactly 2(2g+n—2) different gaps
(Exercise 3-1).

A given A can be covered with open sets {U;} with continuous maps ¢; : Ui NA —
X; x (0, 1) C R? taking leaves to vertical line segments indexed by X; C R and so that
b; od)i_1 (x,y)=(f(x), g(x, y)) preserves verticality for overlapping neighborhoods.

A lamination A is called minimal if it has no closed sublaminations. Each geodesic
lamination can be decomposed into (i) the union of finitely many infinite isolated
leaves whose ends spiral to a minimal sublamination or end at a cusp, and (ii) the
union of finitely many minimal sublaminations with the property that every half-leaf
is dense in the sublamination. A closed geodesic is in the second category, and a
geodesic whose ends are at punctures is in the first.

Measured laminations

The geodesic lamination A C R (and hence its lift A* C H?) is called a measured
lamination if there is a Borel measure p with support contained in (usually we will
assume equal to) A. More precisely, each transverse segment t, with endpoints in
gaps, has finite, positive measure w(7) where the measure depends only on the equiv-
alence class of T—rt| = t if the endpoints of t; are in the same gaps as the endpoints
of 7.

We will always require that the measure be uniformly bounded in the sense that
there is a constant C such that u(t) < C for all transversals 7 of unit length. For such
a measure to exist with support in A on a punctured surface, no leaves of A can end at
punctures. For up in H?, if there is one leaf ending at the fixed point ¢ of a parabolic
g € G, all the leaves in its (g)-orbit also end at ¢ and are zero asymptotic distance
apart. Thus a transverse segment of unit length ultimately crosses infinitely many
leaves, forcing any transverse measure to be infinite. Likewise no leaf of A can spiral
in to a closed geodesic. This would occur if up in H?, a leaf shares an endpoint with the
axis of a loxodromic representing a simple closed geodesic. For this reason, the only
isolated leaves of a measured lamination are simple closed geodesics. The minimal
gaps are ideal triangles, ideal bigons containing one puncture, and ideal monogons
containing one puncture™. An ideal bigon is the union of two ideal triangles and an
ideal monogon one, after it is slit from the puncture to the ideal point. Each ideal
triangle has area m, each ideal bigon has area 27 and each monogon has area 7. An
* A bigon B (monogon M) on S is a annular region about a puncture whose boundary in S consists of two (one)

infinite geodesics whose ends are asymptotic to each other “at co”. Each lift of B or M is an infinite sided ideal
polygon invariant under a cyclic parabolic subgroup.
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n sided ideal polygon made up of n—2 ideal triangles, or n triangles if it contains one
puncture, can also serve as a gap.

Every geodesic lamination A has a transverse measure whose support consists of
all the minimal sublaminations of A [Bonahon 2001, Prop. 9].

The set ML (R) of uniformly (locally) bounded, measured laminations on a finite
area surface R of genus g and b punctures is topologized as follows: (A,, u,) —
(A, ) if and only if (i) A, — A in the Hausdorff topology, and (i) lim p,, () = ()
for all transversals of A. However we have to allow the possibility that the support
of u is a proper sublamination of the Hausdorff limit A. We also have to allow the
zero-lamination with no leaves and zero measure.

If [«¢], [B] are two free homotopy classes of simple loops, their geometric inter-
section number (([«], [B]) is defined to be the minimum number of crossings ¢(«, 8)
of simple loops «, B in their respective free homotopy classes. This minimum is
achieved by the geodesics ay, B, in the classes. For this reason we will usually use
the geodesics to calculate intersection numbers. We set ¢ (o, o) =0 so that ¢ (o, 8) =0
implies that either the geodesics «, 8 are disjoint, or they coincide. Equally we can
define the geometric intersection number of two collections of mutually disjoint sim-
ple geodesics. And also the intersection number of a geodesic arc with endpoints in
gaps and a finite lamination. (see Exercise 2-5 for the torus case).

The most general transverse measure on a finite system of mutually disjoint closed
geodesics is obtained by assigning an atomic measure «(£) to each leaf. Then for the
measured lamination © we define by linearity

pO) =1 =) 0. (3.3)

e

Thurston proved that the measured laminations with support on a simple closed
geodesic are dense in ML (R) [Thurston 1988; Fathi et al. 1979]. In other words,
given (A, ) € ML(R) there exists a sequence of simple closed geodesics {«;,} and a
corresponding sequence {a,} of strictly positive numbers such that o, — A and, for
any simple loop or arc o transverse to A,

T (o, o) _ f
u(o) = lim = [ dpu. 3.4)
n—o00 a p.

Conversely, given a sequence {«,,} of simple closed geodesics on a closed surface
(or contained in a compact part of a punctured surface), there exists a subsequence
{a;,} with associated positive numbers {a,} that converges to a nonzero element
(A, n) € ML(R). Typically, good choices are a, = Len(w,) (Exercise 3-35) or
a, = t(0g, a,) if op is a fixed geodesic transverse to all «,. Here 1/a, is the atomic
measure assigned to «,.

The sequence {a,} is uniquely determined asymptotically, up to a positive multi-
plicative constant. Namely if {a, } is another sequence, there exists a constant C # 0
such that lima,/a, = C. To see why, set C(0) = lim(o, a,)/a, and C'(c) =
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lim (o, o) /a,,. For some o, C(o) # 0 and for some o’, C'(¢”) # 0. Therefore
lima,/d, = C'(c')/C(c") = C'(c)/C(c) #0, co.

We emphasize that the support of 1 may not be the whole Hausdorff limit A
To illustrate what can happen, take the lamination consisting of two disjoint sim-
ple geodesics o, ap with assigned integer multiplicities m, m>. We can construct
an sequence of simple geodesics {«},} that go nm, times around o, and nm, times
around o». The Hausdorff limit A = lim«;,, is a union «; Uap U £1 U £, where £, >
are infinite length geodesics each spiraling around one side of o and of . Up in H?,
each end point of a lift of ¢; is a fixed point of a transformation determined by one of
the closed leaves. If o is a simple loop transverse to «; but not an, t(o, o0y) /1 — my
and similarly the limit is m if it is transverse to a» but not «. If it is transverse to a
geodesic cutting £1 U £, but not o U ap, the limit is zero.

The bottom line is that every geodesic lamination A has a transverse measure whose
support consists of all the minimal sublaminations of A [Bonahon 2001; Otal 1996].
Two minimal laminations with the same (nonzero) transverse measure are identical.
In the above example the minimal laminations are «; and «,. The spiraling geodesic
cannot be in the support of u.

The sequence of geodesic lengths {Len(c,)} also has a limit if it is scaled by the
same {a,} as determines i, namely

. Len(a,)
Len,(A) = lim ———, (3.5)

n—o00 a,
which exists and is # 0. It is called the length of the measured lamination (A, w).
Unlike intersection numbers, the value of L, depends on the particular hyperbolic
surface R where the measurement is made; it is known to change continuously as
the underlying surface is deformed [Kerckhoff 1985]. An intrinsic expression for the
length is

Len,(A) = // dl xdu, (3.6)
R

where d¢ is the hyperbolic length along the leaves of A and dpu is the transverse
measure. Thus if A is a single simple closed geodesic, and u is the atomic measure
of unit weight, Len, (A) is just the geodesic length on R. The integral is obtained
from the local product structure of the lamination determined by an open cover, using
a partition of unity.

Using a (quasiconformal) homeomorphism f from one finite area surface R to
another S, the space ML (R) can be transferred to ML(S). Namely let f* be a lift
of f to H? =D. The homeomorphism extends to a homeomorphism also denoted f*
on dD. By taking images of endpoints, f* induces a map of the (lifted) measured
lamination over one surface to the other. Then project back to R and S. For this
reason, if you have seen ML on one surface, you have seen it on all surfaces in the
deformation space. However metric properties will differ, one surface to the other.
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Another way of looking at the length is to take a finite number of transverse arcs {t;}
that cut A into (generally uncountably many) segments of finite length: A\ AN (Ut;).
Associate each arc of A with one of the segments t; that contains an endpoint. Then
integrate the lengths of the finite arcs of A with respect to du along the 7;, From this
point of view the continuity of the length function on ML (R) in terms of change of
hyperbolic metric on R follows [Bonahon 2001, p. 21]. Thurston showed that the
arcs can be chosen so that the map from the set of simple closed geodesics to R”
given by pu — (u(ry), ..., u(t,), induces a homeomorphism to a piecewise linear
submanifold of R" of real dimension 6g+2b—6). The manifold is constructed from
the set of simple closed geodesics, as Bonahon remarked, by a process akin to the
passage from a lattice Z> in R? to a torus.

Start with (o, n) defined for an atomic measure on a simple closed geodesic and
a transverse geodesic t. The intersection number can be extended by continuity to
any measured lamination (A, u) € MKL. It can be extended again by continuity to
t(u, v) for any pair of measured laminations [Rees 1981]. Specifically, if we write
(A, ), (A, v) as limits of simple closed geodesics 1 = lima,/a,, v = lim B, /b,,
then
t(an, Bn)

9 :1' 9
t(u, v) =lim e

see [Bonahon 1986]. If «(u, v) = 0, any component of the support of wu is either
identical to a component of the support of v or disjoint from all of its components.

This generalization of the geometric intersection number remains a topological
entity, independent of any particular complex structure the underlying surface R may
have.

With an eye on the fact that the sequences {a,} are asymptotically uniquely deter-
mined only up to positive constants, it is usually better to use instead the space of
projective measured laminations

PML(R) = (ML(R) \ 0)/multiplication by scalars.

For then we do not distinguish between measures that are positive multiples of each
other. The space PML(R) is homeomorphic to the sphere S%~7 (or S®+20=7 if there
are also b punctures).

There is a theory of measured foliations which is the topological version of mea-
sured laminations. Roughly, a measured foliation is a (necessarily singular) foliation
with a measure of distances between leaves. Measured foliations are modeled by
quadratic differentials; see Exercise 5-24. Every measured foliation comes from a
measured lamination by lifting to H?, showing (noncritical) leaves have endpoints on
dH?2, and replace the leaves by geodesics with the same endpoints. The converse is
also true. The quantitative results depend on taking a pants decomposition of R and
classifying the intersection of a measured foliation with each pants (for a taste, see
Exercise 3-35). One way of getting lots of nontrivial examples of measured foliations
is by means of interval exchange maps, see Exercise 3-36.
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Formal introduction to this beautiful and essential subject can be found, for ex-
ample, in [Thurston 1988; Fathi et al. 1979; Canary et al. 1987; Casson and Bleiler
1988; Bonahon 2001; Otal 1996, Appendix; Marden and Strebel 1984; Matsuzaki
and Taniguchi 1998].

Remarks 3.9.1. (i) Each infinite length leaf £ C R of a lamination (with compact
support) is recurrent: there is a sequence of points {¢,} C £ such that along ¢, ¢, — oo
yet there exists ¢ € £ such that in a neighborhood of ¢ in R, lim¢, = ¢. Up in H?,
this says that given a lift £*, there is a sequence of (mutually disjoint) lifts £} which
converge to £* as euclidean circular arcs.

(i) Two measured laminations in H? whose set of leaves have the same combinatorics
and the same transverse measures are usually not Mobius equivalent. For example,
they may be lifts of finite laminations on two different surfaces where the distances
between leaves differ (compare with Theorem 3.11.3).

(iii)) We have seen how a lamination consisting of two or more mutually disjoint
simple geodesics has many projectively inequivalent transverse measures. Yet there
are geodesic laminations which support only one projective class of measures [Masur
1982]; such measured laminations are called uniquely ergodic. Uniquely ergodic
laminations A have the minimality property that A is not the union of proper sublam-
inations. Uniquely ergodic laminations are dense in all measured laminations. Yetitis
a subtle business to determine if a particular lamination is uniquely ergodic. The pair
of laminations fixed by a pseudo-Anosov automorphism of a surface (see Exercise
5-6) does have this property [Thurston 1988]. The analogous result on a square torus
is a famous theorem of Hopf, which says that the projection to the quotient torus of
a line of irrational slope in the square lattice in C is equally distributed on the torus.
A measured lamination (A, 1) on a finite area surface S is called arational if each
complementary component of A is an ideal polygon, possibly containing a single
puncture [Otal 1996]. Consequently there are at most 4g+2n —4 gaps for an arational
lamination, where n > 0 is the number of punctures. An arational lamination is cut
by every simple closed geodesic; more generally, if v is any measured lamination
on R with support different than A, then the geometric intersection number satisfies
t(u, v) # 0. Arational laminations A also have the property that every half-leaf is
dense; in particular A is minimal. Uniquely ergodic laminations are arational.

(iv) The discussion works as well on compact surfaces with boundary. However the
simple geodesics one works with are not allowed to be parallel to boundary compo-
nents.

We summarize by listing the following adjectives attached to geodesic A or mea-
sured geodesic laminations (A, w) on a finite area hyperbolic surface R:

arational measured lamination Each component of R\ A is an ideal polygon pos-
sibly containing one puncture of R. A has positive intersection number with
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every closed geodesic; in particular it has no closed leaves. An arational
measured lamination is minimal.

maximal or filling lamination A is not a proper subset of another lamination; each
component of R\ A is an ideal polygon, possibly containing a puncture.

minimal or connected lamination The support A has no sublaminations; either A
consists of a single closed geodesic, or every leaf A has infinite length and
each half-leaf is dense in A. Every lamination is the union of finitely many
minimal sublaminations and, if A is not measured, possibly finitely many
isolated™ leaves whose ends spiral in to the minimal laminations or end at a
cusp.

filling or binding pair Two laminations A; and A, form a filling pair, and A and
A» fill up R, if every component of R\ (A} U A») is a (simply connected)
polygon or is a polygon containing a puncture of R. A filling pair satisfies
t(y, A1)+ t(y, Ay) > 0 for every simple closed geodesic y.

uniquely ergodic lamination There is one and only one measure p with support
A, up to positive multiples. The support of a uniquely ergodic measured
lamination is minimal, but not necessarily maximal.

3.10 The convex hull of the limit set

Fenchel had long advocated using the convex core construction in H? to study kleinian
groups, since in his work with Nielsen he had found the corresponding construction in
H? for fuchsian groups very useful. However the difficulty was not in the construction,
but in the analysis of the convex hull boundary. It was Thurston who taught us how to
use the convex hull as an effective tool. The application required prior development
of the theory of measured laminations.

In describing the theory, we will stick with the upper half-space model. We start
with a closed set A C CU oo = S?, with a nonempty complement Q = S?\ A. The
hyperbolic convex hull of A is defined as follows.

Let C C Q be a round circle in S? that bounds an open disk A C Q. If A is
connected so that each component of Q is simply connected, any circle in  will
determine such a disk. The circle C in turn determines a hyperbolic plane C* € H?.
Denote by H (C) the relatively closed half-space bounded by C* that abuts the exterior
of A. The (hyperbolic) convex hull of A is the relatively closed set

e = () HO). (3.7)
ccQ
In constructing @(A) it suffices to restrict attention to maximal disks A — those that
are not proper subsets of larger disks in €2. The circle bounding a maximal disk meets
0% in at least two points.
Since @(A) is convex, the (hyperbolic) line segment joining any two of its points
lies in the set. In fact any geodesic with endpoints in €2 = A is contained in ©. With

# A leaf A is isolated if every point p € A has a neighborhood U with U N A an arc through p.
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Peter Storm one can define @(A) as the package obtained by shrink wrapping the set
of all geodesics with endpoints in A.

The relative boundary 8@(A) C H?3 is the union of flat pieces and bending lines.

A flat piece is a noncompact hyperbolic polygon contained in one of the hyperbolic
planes C* used to form the convex hull. It lies in the plane determined by a maximal
disk that is bounded by a circle that meets 0€2 in at least three points.

The complement in dC(A) of the union of open flat pieces is the closed set of
bending lines. A bending line ¢ is a geodesic whose endpoints lie in d€2. Distinct
bending lines are disjoint but they possibly have a common end point. There are in
general an uncountable number of them. The limit of a sequence of bending lines is
either a bending line or a point in the common boundary 3C = 0. A flat piece, if
not a whole plane, is bounded by bending lines.

An isolated bending line £ is the common boundary of adjacent flat pieces. The
bending angle at £ is taken to be the exterior bending angle « so that o« =0 corresponds
to no bending at all and « = 7 corresponds to one flat piece folded over the other.

Each component § of the relative boundary BG(A) N H? faces a component Qg
of Q. It helps to keep in mind the picture of a domed stadium, such as one finds in
Minneapolis. The floor of the stadium is Q25 and the dome is S.

There is a continuous map r : Qg — S called the nearest point retraction. This is
defined as follows: Given z € Qg examine the family of horospheres tangent to dH? at
z. This family depends on a parameter, for example the euclidean diameter. Exactly
one of these spheres just touches §, necessarily at a single point, without crossing
S. This point of first touching is called the nearest point and is denoted by r(z). If
r(z) is in a flat piece, then there is a geodesic ray from r(z), where it is orthogonal to
Bé(A), ending at z. An isolated bending line £ € S with bending angle « will be the
image under r of a crescent Cy € Qg with vertices in 0<25.

The crescent C; is constructed as follows. There are two planes C7, C5 rising from
maximal circles Cy, C, and intersecting with exterior angle «. The angle interior to
@(A) is m —«. The sides of Cy are orthogonal to C, C;. Therefore the interior vertex
angles of Cy are

a=2n—<%+(7r—a)+%).

In particular, Cy is not the crescent formed by C;NC5 unless C and C; are orthogonal.
Distinct isolated bending lines correspond to nonoverlapping crescents in Qg. If
there are no isolated bending lines, r is a homeomorphism.
The nearest point retraction r fixes the points on the common boundary 025 =9S.
Convex hulls are studied in detail in [Epstein et al. 2004].

Examples

In the degenerate case that A has exactly two points, the convex hull is simply the
geodesic between the two points.

If A is the half infinite line [0, 4-oc] the convex hull is the vertical wall arising
from the line. Like the above example, this is a degenerate case in that the interior of
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the convex hull is empty. However in this case, its boundary is regarded as the union
of the two sides of the wall, with exterior bending angle 7.

The dome over a round disk A, is the plane rising from the circle d A. How about
two round disks with angle of intersection & measured exterior to one disk and interior
to the other? The dome over the union consists of two flat pieces meeting with exterior
bending angle «. There are two flat pieces and one bending line.

The dome over the region bounded by an ellipse is a half-ellipsoid. There is a
continuous family of bending lines which sweep out the dome which is a smooth
surface. There are no flat pieces and the dome is a smooth, ruled surface.

Next consider a wedge W = {7z € C, 0 <argz <« <mw}. If A = W, the convex
hull boundary consists of the two flat pieces rising from the edges of W and one
bending line. The exterior bending angle is m — «. If instead A is the closure of the
complement of W, then the dome over W is a half cone. Again it is swept out by the
bending lines; there are no flat pieces.

The dome over a convex euclidean triangle contains one flat piece which is con-
tained in the plane rising from the maximal inscribed circle, and parts of three cones
near the vertices. The dome is a smooth C'-surface. In fact the dome over any
euclidean convex region is a smooth surface [Epstein et al. 2006; 2004].

The bending measure

Each component S =Dome(£2g) which is not a whole plane carries a nonzero bending
measure. At an isolated bending line, it is just the atomic measure with support on
the line given by the exterior bending angle. In general, the bending measure is
constructed by a process akin to Riemann integration, that is, by approximating the
dome by a sequence of finitely bent surfaces. The basic result is the following theorem
of Thurston; the detailed proof appears in [Epstein and Marden 1987].

Theorem 3.10.1. Suppose Q2 is a simply connected region whose complement A in
S? has at least three points.

(i) The hyperbolic metric in H? restricts to give a path metric on Dome(Q) referred

to as its hyperbolic metric.

(ii) There is an isometry in the respective hyperbolic metrics Y : Dome(S2) — H?.

(iii) Under Y, the set of bending lines is carried to a geodesic lamination A in H* and
the bending measure on Dome(S2) is carried to a (bounded) transverse measure
on A.

(iv) If Q is invariant under a kleinian group G, then Dome(2) and the set of bending
lines are also G-invariant. The corresponding measured lamination in H?* is
invariant under the fuchsian group YGY L.

The hyperbolic metric on the simply connected region 2 is carried over from H?
by a Riemann mapping. In terms of the hyperbolic metrics on €2 and its dome, the
nearest point retraction r : 2 — Dome(2) satisfies d(r(z1), r(z2)) < 2d(z1, z2); that
is, r is 2-Lipschitz [Epstein et al. 2004]. If Dome(£2) is instead infinitely connected,
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one can pass to its universal cover and map that and its measured bending lamination
to H2.

Now suppose A(G) is the limit set of a kleinian group G. Its convex hull @(G)
is G-invariant. Each relative boundary component S of @(G) is the dome over a
component Qg of (G) and is invariant under Stab(25).

The convex hull @(G) necessarily contains the axes of all loxodromics of G since
these have endpoints in the limit set. Can the axis of a g € G be a bending line? Only
if the trace of g is real with |tr g| > 2. Otherwise the angular part of the trace would
force a rotation about the axis, and therefore could not preserve the convex hull.

The section cannot be closed without mentioning the following remarkable fact
described by Dennis Sullivan. For a full discussion and proof see [Epstein and Marden
1987] or [Epstein et al. 2004].

Theorem 3.10.2 (Sullivan Convex Hull Theorem). There exists a universal constant
1 < K < 14 with the following property. Given any simply connected region 2 C C,
Q # C, there exists a K -quasiconformal mapping F : Q2 — Dome(S2) which extends
to pointwise fix every point on the common boundary 02.

If Q is invariant under a group I" of Mobius transformations, F can be chosen to
satisfy additionally Foy =y o F forall y € T.

Pleated surfaces

We have spoken of the structure of a convex hull boundary component, especially the
dome over a simply connected region. Now consider the reverse process. That is,
given a measured lamination (A, @) in H?2, can we construct a surface in H> whose
bending measure is ?

Let’s start with the simplest cases. Take the equatorial plane H? (the unit disk) in
the ball model and fix a diameter £. Bend H? along ¢ with exterior bending angle
0 < 6 < m. Here & = 0 corresponds to no bending at all. The other extreme 6 =
corresponds to two situations: (i) folding H? in half along ¢, or (more commonly)
(ii) pushing £ out to 0o to become a single point £ thereby forcing H? in the limit to
become two hyperbolic planes whose boundaries are tangent at & so that one plane is
the image of the other under a designated parabolic with fixed point &.

To normalize the direction of bending, bend so that the result lies in the upper half
of the ball. The resulting “pleated surface” S bounds on one side a convex region
whose floor is bounded by two circular arcs with interior bending angle = — 6. The
dome has only one bending line.

The construction is easily generalized to a finite system of ordered, mutually dis-
joint hyperbolic lines, possibly with common endpoints, £1, ..., £, C H%. Assign an
exterior bending angle 0 < 6; < 7 to each line. Then systematically bend the plane
H?. For example we may assume that first bend along ¢, results in P; = P constructed
above. Then in P; locate the copy of ¢;, say it lies to the right of £;. Then bend the
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Fig. 3.7. A section of the dome over a component of a quasifuchsian ordinary set.

half-plane in P; lying to the right of ¢; along ¢, with exterior angle 6,. And so on for
all the lines. We end up with what is called a pleated surface Pg. It is locally convex
but is not necessarily embedded in H?> —it may well have self-intersections. It has
k bending lines, the images of the {¢;}. In any case there is a hyperbolic isometry
Y : H> — Py—such that Y~ is just unbending. The finite measured lamination is
carried to the bending lines and bending measure on P.

The same construction can be carried out given a general lamination A in H? and
a positive transverse Borel measure by using finite approximations. In fact it equally
works for a real valued transverse Borel measure. In the general case the pleated
surface has both positive and negative bending. It may not be locally embedded and
may even be dense in all H3. The construction is such that if (A, p) is invariant under
a fuchsian group G, a deformation of G to a homomorphic image H is automatically
determined. H is a group of Mdbius transformations acting in H? that map the pleated
surface onto itself in a manner reflecting the action of G in H?, but H is unlikely to
be discrete. The details are carried out in [Epstein and Marden 1987].

Another way of constructing a pleated surface from a geodesic lamination A C
H? is as follows. Suppose A is such that all gaps are ideal triangles; this is the
generic case. If there is an injection f : dH> — 9H? (for example, the restriction
of a quasiconformal deformation of a fuchsian group) then each leaf £ C A can
be mapped to the line determined by the f-images of the endpoints of ¢ and the
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ideal triangles can then be filled in. If in addition A is invariant under a fuch-
sian group G and f conjugates G to a quasifuchsian group H then the lamination
A/G gives rise to a pleated surface in H3/H. For an example, see Exercise 6-
3.

Since the convex hull contains all geodesics, a flat piece of a pleated surface that is
bounded by two or more geodesics lies in the convex hull. Thus most pleated surfaces
lie entirely in the convex hull.

Formally, a pleated surface is determined by a pleating map f : S — M of a
hyperbolic surface S into a hyperbolic 3-manifold M with these properties:

(i) f takes any rectifiable path in S to a path in M of the same length.
(i1) Every z € S lies in an open geodesic arc which f maps to a geodesic arc in M.
(iii) f sends cusps to cusps: it sends a small neighborhood of a cusp of S into a small
neighborhood of a cusp of M; the homomorphism f; : 71 (S) — 71 (M) sends
parabolics to parabolics.

Assumption (i) can replaced by (i’): geodesic paths in S are sent to rectifiable paths
of the same length in M. The apparently stronger definition is equivalent [Canary et al.
1987, 11.5.2.6]. We may equally work with a lift of f to the universal covers.

The pleated surface is called incompressible if f, : 7,(S) — 71 (M) is injective.

The pleating locus is the set A C S consisting of those points z € S with the
following property. There is one and only one open geodesic arc (up to inclusion)
through z which f maps onto a geodesic arc in M. The pleating locus A is a closed
subset of S and is in fact a geodesic lamination. The image f(A) is often referred to
as the pleating locus as well, or as the bending lines. The map f is an isometry of
the complementary gaps onto polygons in M that in general are infinitely sided.

Given such a general pleated surface, there is likely to be a great deal of positive
and negative bending. Yet by associating a transverse segment T to the set of positive
endpoints on dH? of the oriented leaves through 7 and then a continuum in dH?, it
is possible to construct a kind of bending measure which however is only finitely
additive. This measure and the pleating locus characterize the pleated surface. For
the details see [Bonahon 2001; 1996].

Given a lamination A C S and a hyperbolic manifold M, the lamination A is said
to be realizable in M if there is a pleating map f : § — M whose pleating locus
contains A.

Suppose A is a finite geodesic lamination on S and 4 : S — M is a map such
that A, : 7w1(S) — 71 (M) is injective and cusps correspond to cusps. Assume in
addition & is homotopic to a map &’ : § — M whose restriction to each leaf ¢ of
A is a homeomorphism of £ onto a geodesic of M. Then the conformal structure
on S can be changed so that in the new structure, 4 is homotopic to a pleating map
into M, with pleating locus A. If A is maximal lamination and M is geometrically
finite, the new hyperbolic structure needed on S is uniquely determined [Canary et al.
1987, 11.5.3.11]. In these results, S need only be a surface of finite topological type.
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However in normal practice, S is always a finite area surface. Such maps & will
arise when we take earthquakes (Exercise 3-32) followed by bending. In this case the
bending determines a pleated surface on the new hyperbolic structure resulting from
the earthquake.

Proposition 3.10.3 [Thurston 1986b, Proposition 5.3]. Given an ¢ > 0 that determines
the thick/thin decomposition of M and given a constant A > 0, there exists C > 0
with the following property. Any incompressible pleated surface f : S — M with
Area(S) < A satisfies

Injy(f (%)) = Injg(x) = CInjy(f (x)),

provided the distance of f (x) from any closed geodesic in M of length not exceeding
¢ is at least 1.

That the injectivity radius is r = Inj,(f (x)) means there is a hyperbolic ball in M
of radius r, centered at f (x), whose interior is embedded in M, and no larger ball has
this property. The uniform injectivity property guarantees that the injectivity radius in
M at f(x) is not substantially different from the injectivity radius on S at x, provided
that f(x) is not too close to a short geodesic in M. The proof uses the fact that there
is an upper bound for the injectivity radii on S in terms of A.

Consider now for simplicity the case of a closed hyperbolic surface S. The pleated
surface f: S — f(S) C M is called doubly incompressible if, in addition to being
incompressible, (i) two loops on f(S) which are freely homotopic in M come from
loops which are already freely homotopic in S, and (ii) under f,, maximal cyclic
subgroups of m1(S) are sent to maximal subgroups of 7;(M) (primitive elements
are preserved). There is an important injectivity property for such pleated surfaces
as follows (see [Minsky 2000] for the statement when there are parabolics and the
application to the proof of the ending lamination conjecture).

Theorem 3.10.4 (Uniform injectivity of pleated surfaces ([Thurston 1986b, Theorem
5.2))). Fix a closed hyperbolic surface S and a constant €, > 0. Given ¢ > 0 there
exists § > 0 such that the following property holds for any doubly incompressible
pleated surface f:S— M: Let A C S denote the lamination representing the pleating
locus f(A). Thenif x,y € A are in the €,-thick part of S,

drovy(vy, vy) <6 implies d(x,y) <e.

Here v, and v, denote the unit tangent vectors to the leaves of f(A) containing
f(x) and f(y), respectively. Their distance apart is measured in the projectivized
tangent bundle 7' (M). The theorem says that when the tangent vectors are not too far
from being parallel, the initial points x, y (and the leaves of A containing them) are
e-close in S. In particular the bit of f(S) bounded by the lines containing f(x), f(y)
is not wildly oscillating.

It is tough to give conditions on a measured lamination (A, ) with @ a posi-
tive measure, so that the corresponding pleated surface is the dome over a simply
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connected region. The best result is in terms of the norm ||u|| = sup, u (o), where
o ranges over all transverse segments of unit length. In [Epstein et al. 2004] it is
shown that there exists a constant 0 < ¢ < 2 arcsin tanh(%) = 0.96, with the following
property. If | 1] < ¢ then (A, w) is the bending measure of Dome(€2) for some simply
connected region 2. It is conjectured that the upper bound given is best possible; in
any case it is known that it cannot be larger. On the other hand it is known that if the
pleated surface is a dome, then ||u|| < 4.88 [Bridgeman 2003].

3.11 The convex core
The quotient
C(A)/G = C(G) C M(G)™

is hyperbolically convex and is called the convex core of M(G). Every closed geodesic
in M(G) lies in C(G). Indeed the convex core can be defined to be the smallest
convex set with this property. The inclusion € < M(G) is an isomorphism between
fundamental groups. Thus the convex core is representative of the full manifold. At
one extreme, for fuchsian groups the convex core is flat without interior. At the other
extreme, if 2 (G) is empty then the convex core is the full manifold M(G).

Here are two additional facts about convex cores.

(1) The nearest point retraction projects to the quotient and is a continuous map
from each component of dNM(G) to the component of dC(G) that it faces.

(2) If G is not fuchsian, then G is geometrically finite if and only if C(G) has finite
volume.

The reason fuchsian groups are excluded is that their three-dimensional convex core
always has zero volume, even if the group is not finitely generated. The exclusion
could be avoided by requiring that an e-neighborhood of the core be of finite volume.
Instead we will simply exclude fuchsian groups from the statement. For fuchsian
groups, Fenchel and Nielsen made good use of the fact that the group is finitely
generated if and only if its convex core with respect to H? has finite area.

Proof of item (2). We begin with a lemma.

Lemma 3.11.1. Suppose G is nonelementary, has no elliptics and ¢ € dH? is a
parabolic fixed point.

(1) If Stab; is a rank two parabolic group, then @(A) contains a horoball H; at ¢.

(ii) Suppose Stab; is rank one and supports a double horocycle o1, 05 at {. For some
horoball H, /@\(A) contains ;N (H\ N Hy). Here H; is the half-space, bounded
by the plane rising from the horocycle o; = 0 A;, which abuts the exterior of its
horodisk A;.

Proof. We may assume that in the upper half-space model ¢ = oo and T1(z) =z + 1
is a generator of Stab,.
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In the rank two case, there is another generator 7>(z) = z +a and we may assume
that |a| > 1. We claim there is a maximal diameter d for circles C C 2 (G) that bound
disks in €2(G). Suppose otherwise. When C has a sufficiently large diameter the disk
A that it bounds will have the property that A* = AU T (A) U Tr(A)U T T>(A) is
simply connected. But then the orbit of A* under Stab; covers C. This means that
©2(G) = C which is impossible if G is not Stab; itself. Consequently the horoball
{(z,1) : t > d/2} is contained in C(A).

In the rank-one case, because there is a double horodisk at co, A(G) is contained
inside a minimal width strip 8 = {z : b; < Imz < b} where both horizontal lines
Imz = by, by contain limit points. In fact their intersection with the vertical strip
V ={z:0 < Rez < 1} also contains limit points. We see that there is a maximal
diameter d < oo for circles C C Q(G) centered in V that bound disks in € (G). Now
the maximal horocycles oy, 07 are bounded by Im z = by, b>. These two observations
translate into the second statement. ]

We continue our proof of item (2). If M(G) is geometrically finite, parallel to
each component of IM(G) is a component of dC(G). Each cusp is taken care of by
Lemma 3.11.1. The convex hull has finite volume.

Conversely assume the convex hull has finite volume. There are at most a finite
number of solid cusp tori in C(G), according to Lemma 3.11.1. Ahlfors’ Finiteness
Theorem implies that M(G) has a finite number of boundary components and each is
a closed surface with at most a finite number of punctures. Each component is parallel
to a boundary component of the convex hull with the same property. Consequently
C(G) has a finite number of boundary components.

Let C, denote the e-neighborhood of C(G) in M(G) — the set of points of distance
< ¢ from the convex hull. The volume of C, is also finite because each g-ball is either
contained in the interior or it intersects a boundary component. The thick part of the
core is covered by a finite number of these e-balls and is therefore compact.

The boundary of the thick part of the core contains a compact piece of dC(G),
the boundaries of tubes about short geodesics, pairing cylinders, and cusp tori. The
core cannot contain entire cusp cylinders — the projection of horospheres at rank one
cusps — because these are not compact. Instead it is their intersections with C(G)
that are compact. We conclude that each truncated cusp cylinder pairs two punctures
on dC(G), and there are a finite number of them. So M(G) itself has the essential
compactness of a geometrically finite manifold. O

Length estimates

Suppose Sisa simply connected boundary component of @(F), and S is the corre-
sponding boundary component of the convex core C(G) of M(G). The surface S
faces a component R of dM(G). If yg is a closed geodesic in §, there is a uniquely
determined geodesic yg in the hyperbolic metric on R which is freely homotopic
to ys. In the following theorem, the lower bound is obtained from the best current
estimate for the equivariant “K” in Theorem 3.10.2 and the fact that the minimal
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Lipschitz constant in the same homotopy class does not exceed this “K”. The upper
bound follows directly from the fact that the Lipschitz constant of the nearest point
retraction does not exceed 2. The inequality shows that the hyperbolic geometry of
the two surfaces is tightly bound together.

Theorem 3.11.2 [Epstein et al. 2004]. In the respective hyperbolic metrics,

1 V4
1 (vs) <2
14 £(yr)

The same bounds hold for the lengths of corresponding measured laminations.

The length of the geodesic yy, in the interior of M(G) freely homotopic to yg is
likewise bounded by 2¢(yg) as shown in Exercise 5-2 — y,, will be identical to yg if
ys is a bending line.

According to [Bridgeman 1998], there exists a universal constant B with the fol-
lowing property. If S is a component of dC(G) as above, then

£(Bs) < B |x(S)], (3.8)

where £(fs) is the length on S of the bending lamination Bs and x (S) is the Euler
characteristic. In particular if Bg is supported on a single geodesic of length Lg with
bending angle 0, £(Bs) = Lg - 0 is bounded; the longer Lg is, the smaller 6 must be.

Existence of bending measures

There is a beautiful recent result of Bonahon and Otal [2004], completed by Lecuire
[2003], characterizing geometrically finite groups by the bending laminations of their
convex core boundaries. See [Lecuire 2004a; 2004b] for further applications of this
subject.

Start with an orientable, compact manifold M 3 other than a solid torus 72 or a
thickened torus 72 x [0, 1], and whose interior has a hyperbolic structure. Thus M?
is a model for a geometrically finite manifold with solid cusp tubes and cusp tori
removed. We assume that d M3 has some nontorus components, which may or may
not be incompressible, and we may as well assume each has a hyperbolic structure.
Let (A, ) be a measured lamination on the nontorus components of d M 3. We allow
that on some boundary components, (A, ;) may be the zero lamination (no leaves).

On a closed leaf y of A, u has atomic measure w(y) > 0 which we will think of
as a bending angle. Let D and C be an essential disk and cylinder in M3. As we
know, the geometric intersection number (0D, A) or t(dC, A) is the generalization
of the case that A consists of a finite number of closed leaves and p is the unit atomic
measure on each. In the finite case, ((d D, A) or t(dC, A) the minimum number of
times that simple loops freely homotopic to d D cross the leaves of A or the minimum
number of times simple loops freely homotopic to the components of dC cross the
leaves of A. We are assuming that A has at least one leaf, yet it is possible that one
or more nontorus components of M carry no leaves.
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Theorem 3.11.3 (Existence of bending measures [Bonahon and Otal 2004; Lecuire
20031). Given the measured lamination (A, i) on dM?3, there exists a geometrically
finite, nonfuchsian, M(G ) whose convex core boundary has the bending lamination
(A, ) if and only if the following conditions are satisfied:

(i) On each closed leaf a, u(a) satisfies 0 < u(o) < .
(ii) For each essential disk D ¢ M3, (3D, A) > 2.
(iii) There exists n > 0 such that 1(dC, A) > n for each essential cylinder C C M?>.

If A consists of a finite number of closed leaves then the kleinian group G, is uniquely
determined up to Mobius equivalence.

The closed leaves y with u(y) = m will correspond to the rank one cusps of
M(G ). Of course the torus boundary components of 0 M 3 will correspond to the rank
two cusps of M(G,). The proof of uniqueness is outlined in Exercise 6-
3. Uniqueness for all laminations is known for the once-punctured torus quasifuchsian
case [Series 2004] and conjectured for the general case.

Suppose in addition that M3 is compact, boundary incompressible, and has no
essential cylinders (see Exercise 3-17). Assume we are given a maximal finite lam-
ination of ) (3g; — 3) simple closed geodesics A = UfS; on M3, g; the genus of
the i-th component of M3, and an atomic measure 0 < (8 ;) < m for each index.
According to Theorem 3.11.3, there exists a uniquely determined (up to isometry)
hyperbolic structure M(G ) on M3 whose convex core C(G) has exactly the bending
lamination (A, w). In [Choi and Series 2006] it is shown that the > (3g; —3)-complex
lengths in M(G,) (see Section 7.4) of the geodesics {f;} serve as local coordinates
for the local deformations of M(G ) in the representation variety J3(G ) (see Section
5.1).

If the lamination is finite, condition (ii) on the geometric intersection number ¢
requires that the boundary of each essential disk has at least three essential crossings
with A. Condition (iii) insures that if one boundary curve of C is a leaf of A then the
other must be transverse to A.

If a nontorus component of d M3 carries no leaves, Theorem 3.11.3 provides that the
corresponding component R of dM(G,,) is totally geodesic. This means that every
component Q2 of 2(G,) lying over R is a round disk; the convex hull boundary
component that faces R is a hyperbolic plane. A compressible boundary component
cannot become totally geodesic; in line with this fact condition (ii) requires compress-
ible components to contain leaves of A.

To understand why condition (ii) is necessary, suppose we have a compact con-
vex core with bending lines as simple loops {o;} with exterior bending angles {f;}.
Consider a compressing disk D with D C dC(G). We may assume 9 D is piecewise
geodesic and D is piecewise flat. The Gauss—Bonnet formula (1.3) tells us that

Z Bit(dD, 0;) = Area(D) + 27 > 2.
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For (iii) suppose C with 9C C dC(G) is an essential cylinder, also piecewise geodesic.
We find that > B;¢(dC, 0;) = Area(C) so that we must have L(C, U ai) > 0.

The proof in the finite case starts by showing that there exists a geometrically finite
M(G) homeomorphic to M 3 whose convex core is bent along o = [ Jo;. Then the
manifold and bending angles are continuously deformed until they match the assigned
angles. To establish existence the following argument is used. Remove half-tubular
neighborhoods of the {o;} and double the resulting manifold. This gives a compact
manifold with tori boundary components. Make assumptions on {o;} so the manifold
is irreducible and atoroidal. As a consequence it has a complete hyperbolic structure
of finite volume. One then uses the theory of cone manifolds (Exercises 4-7 and 6-
3) to deform the rank two cusps to get a symmetric cone manifold with small cone
angles. Undoubling results in the required convex hull.

A typical application is the following. Consider quasifuchsian groups representing
a pair of surfaces of genus 2, say. For A, take a simple loop ypor On the “bottom”
component and a finite number of mutually disjoint, nonparallel, simple loops {g;}
on the top. To fulfill condition (iii) of Theorem 3.11.3 we must assume that every f;
is freely homotopic to a loop on the bottom component which is transverse to Jpor.
Assign positive atomic measures each less than 7 to all the simple loops. According to
Theorem 3.11.3 there is a unique quasifuchsian group representing genus 2 surfaces
whose convex hull boundary has the prescribed bending measure. By varying the
measure on Yo While leaving the measures on {8;} fixed, we obtain a “slice” of the
deformation space.

Parker and Series [1995] have an explicit construction for bending along one geo-
desic in the case of once-punctured torus quasifuchsian groups; see their bending
formulas (8.39), (8.41).

3.12 The compact and relative compact core

There is another important “core” in a hyperbolic manifold, and this one is always
compact but is not hyperbolic. It was discovered by Peter Scott [1973a] and indepen-
dently by Peter Shalen:

In the interior of any hyperbolic manifold M(G) with G finitely generated there is a
compact, connected, submanifold C = C(G) such that (1) inclusion of the fundamental
group w1 (C) — w1 (M) is an isomorphism, and (ii) each component of dC bounds a
noncompact component of Int(M(G)) \ C.

Property (ii) follows from (i). For if a complementary component were bounded by
two components Sy, S, of dC, there would exist a simple loop in M(G) that crossed
each of Sy, $> exactly once. Such a loop cannot be homotopic to a curve within C.

If M(G) is geometrically finite without parabolics, each component of dC is par-
allel to a component of 9M(G). In the general case of no parabolics, each comple-
mentary component E of the core C is a neighborhood of exactly one end (see §5.5)
of M(G).
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The submanifold C is called a compact core of M(G). A core is uniquely de-
termined up to homeomorphism: Two cores Cy, C, of M(G) are homeomorphic
[McCullough et al. 1985]. An immediate consequence of its existence is that 7r; (M)
is finitely presented, as stated in Theorem 2.5.3. Cores are a fundamental structure
in studying geometrically infinite manifolds. According to [Bonahon 1986] (see also
Exercise 3-11), each core can be cut along incompressible surfaces to result in a finite
union of compression bodies and submanifolds with incompressible boundaries.

When there are parabolics, there is a useful refinement that incorporates the cusps.
Namely, McCullough [1986] chooses a system of mutually disjoint horoballs in H?3,
associated with the parabolic fixed points, having the property that the union I is
invariant under the action of G and the “parabolic locus” P = H/G is embedded in
M(G). The components of P are solid cusp tubes and solid cusp tori. Then M, =
M(G)\ P has the property that each component of the relative boundary M, is either
a component of M(G), a cusp cylinder, or a cusp torus.

There exists a compact, connected, submanifold Crey C M, NInt(M(G)) such that

(i) The inclusion w1 (Cre)) — 11 (M(G)) is an isomorphism,
(ii) Each torus component of 0P is a component of 9 Crel,
(iii) Each cylinder component of 3P intersects 0Cre in a closed annular region, and
(iv) Each component of 0Crel \ Crel NP is the boundary of a noncompact component
Oflnt(Mp) \ Crel-

The submanifold Cy is called a relative compact core.

If M(G) is geometrically finite, each component of dCre \ Cre} N 0P is parallel to
a component of IM(G).

Note that in the presence of rank one parabolics, dM(G) might be incompressible
at the same time the boundary of the relative core is compressible. A simple example
is a fuchsian group G representing a surface with punctures. When the interior of
the solid pairing tubes are removed from M(G), the result is a handlebody. The
compact core and relative compact cores are also handlebodies, but the relative core
incorporates information about the punctures.

3.13 Rigidity

As mentioned in Chapter 1, hyperbolic polygons or convex polyhedra tend to be
rigid — uniquely determined up to isometry by their angles. In dimensions larger than
two, the same is true of finite volume hyperbolic manifolds.™ Yet finite area surfaces
are not rigid, except for the thrice punctured sphere. For this reason it caused a big stir
in the kleinian world when Mostow first came up with his rigidity theorem for closed,
hyperbolic n-manifolds, later extended to cusped manifolds in [Marden 1974a] (for
n = 3), and independently in [Prasad 1973] for n dimensions. This was before the
Thurston era, when we knew a lot less than we thought we did.

* In fact H itself is rigid in the sense that there is no nonconstant harmonic map of H3 into any riemannian 3-
manifold of nonpositive sectional curvature [Leung and Wan 2001].
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Mostow Rigidity Theorem [Mostow 1973]. Suppose we have a hyperbolic manifold
or orbifold M(G) of finite volume, with dimension n > 3, and an isomorphism ¢ : G —
H onto another kleinian group H. Then ¢ is determined by an isometry M(G) —
M(H).

In other words, M(G) is uniquely determined in the isomorphism class of G, up
to orientation preserving or reversing Mdobius equivalence. As already pointed out,
rigidity does not hold in the hyperbolic plane: all surfaces with the same genus and
the same number of punctures have the same (finite) area but are not usually isometric
to each other. Surprisingly, the reason behind this state of affairs is that the limit set
of a fuchsian group of finite area is S', while for n > 3 the limit set is $"~'.

There is a homotopy analogue of Mostow’s theorem as follows. This is a deep
result by Gabai, Meyerhoff and N. Thurston that required a sophisticated computer
program to complete. Later we will restate and discuss this theorem from a different
point of view (page 247).

Theorem 3.13.1 [Gabai et al. 2003]. Suppose M? is a closed, irreducible manifold
(for this notion see Section 6.3) and M(G) a closed hyperbolic manifold. Assume
there is an isomorphism ¢ : w(M>) — 71(M(G)) = G. Then ¢ is induced by a
homeomorphism ® : M3 — M(G).

If 1, @, are homotopic homeomorphisms, then ® is isotopic to P;.

Of course if M? is also hyperbolic, the first statement is just Mostow’s theorem
with ® an isometry. Even in this case the second statement is new. A homotopy is a
continuous map F : M3 x[0, 11— M(G) such that F(-,0)=®, F(-, 1) =®,. Forit
to be an isotopy, each intermediate map F( -, t) must also be a homeomorphism. For
example, a homotopy can send a geodesic « to a simple loop o’ whose intersection
with a tiny ball is knotted there. An isotopy cannot cause this effect. There is a subtle
but important distinction between homotopy and isotopy. See Exercise 3-24.

For a further discussion of topological rigidity see Section 5.3.

Corollary 3.13.2. If M(G) has finite volume, every orientation preserving (and ori-
entation reversing) homeomorphism o of M(G) onto itself is homotopic (isotopic if
M(G) is closed) to an isometry.

Unlike the case for finite area surfaces, the mapping class group of a finite volume
hyperbolic 3-manifold is finite! We are implicitly assuming that a homotopy class
contains at most one isometry, see Exercise 3-25.

In our study of quasifuchsian manifolds we have already made use of an analogue
of Mostow rigidity for manifolds with boundary; in recent literature this is referred
to as Marden’s isomorphism (or rigidity) theorem [1974a]. See also [Tukia 1985b,
Theorems 4.2, 4.7].

Theorem 3.13.3. Suppose G is a geometrically finite group without elliptics and
O : Q(G) — Q(H) is a conformal mapping that induces an isomorphism ¢ : G — H
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by the correspondence ¢(g)(z) = Pogo® 1 (2), z€ Q(H). Then ® is the restriction
to Q(G) of a Mébius transformation A and ¢(g) = AgA™" forall g € G.

Thus M(G) is uniquely determined up to isometry by the isomorphism type of its
fundamental group and the conformal structure of its boundary. In a sense, Mostow’s
theorem is a special case.

Sullivan [1981] established the most general form of rigidity that does not require
geometric finiteness at all:

Sullivan Rigidity Theorem. Suppose 11(z), z € S?, is a Beltrami differential with
respect to a finitely generated kleinian group G. Then u(z) =0 for a.e. z € A(G).

Corollary 3.13.4. Geometrically infinite (as well as geometrically finite) manifolds
M(G) with OM(G) = @ are rigid under quasiconformal deformation.

This result does not require any knowledge of the area of the limit set, nor does it
give any information about its area. It says that the limit set can only support the zero
Beltrami differential so that from the point of view of quasiconformal deformations,
its area has no consequence. In the case that Q(G) # &, we now know that A(G)
has zero area— Ahlfors’ conjecture is confirmed! (See Section 5.5.1.) So Sullivan’s
theorem for this case follows from the fact that a Beltrami differential needs only to
be defined up to a set of zero measure for the Beltrami equation to have a solution
(Section 2.8), uniquely determined up to postcomposition with a Mdbius transfor-
mation. On the other hand when A(G) = S?, Sullivan’s theorem still comes to the
fore:

If f:S?> = S? is quasiconformal, induces an isomorphism ¢ : G — H, and,
if Q(G) # @, restricts to a conformal map Q2(G) — Q(H), then f is a Mobius
transformation.

Outline of the proof of the Mostow Rigidity Theorem. The theorem holds in n-
dimensional hyperbolic space but here we will stick to three.

The orbifold case of the theorem can be reduced to the manifold case by Selberg’s
lemma. Namely, given G, there is a torsion-free, normal subgroup H C G of finite
index; thus M(H) has finite volume, being finite-sheeted over M(G). The isomor-
phism ¢ restricts to the isomorphism H — ¢ (H) = H) C ¢(G) = G. Assuming the
manifold case, ¢ : H — H| is a conjugation h € H — AhA~!, where we can assume
A to be Mobius, rather than anti-Mobius, by replacing H if necessary with the group
H' = JHJ, where J is a reflection in some hyperbolic plane. (The isomorphism
G — H'is then given by ¢(g) = AJgJA™ !, forg e G.)

Now the deck transformations form a finite group C of isometries of M(H) and
likewise the deck transformations of M (H;) over M(G). We conclude that G itself
is A-conjugate to G.

We will base our argument on the following beautiful theorem of Tukia:

Theorem 3.13.5 [Tukia 1985a]. Suppose G is any nonelementary kleinian group,
¢ € A(G) is a conical limit point, and f : S* — S? is a homeomorphism which is
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differentiable at { with nonzero derivative. Assume ¢ : G — H is a homomorphism
to another kleinian group given by fog(z) =¢(g)o f(z) forall g € G, z € S*. Then
f is a Mobius transformation!

Proof. We will give the proof reported in [Kapovich 2001, Theorem 8.34]. We will
assume the homeomorphism is orientation preserving, although this is not necessary.

The limit point { € A(G) is a conical limit point or point of approximation if it has
the following property. Let y(¢), 0 <t < oo, be a geodesic ray ending at {. Given
a point O € H?, there exists » > 0 such that there is an infinite subsequence of the
orbit G(O) that lies in the r-tubular neighborhood about y (and hence converges to
¢). In the quotient manifold, the condition means that the projection of the ray y (¢)
is recurrent in the sense that it meets a ball of radius » about the projection of O for a
sequence {t,}, t, = 00. A loxodromic fixed point is always a conical limit point but a
parabolic fixed point is not. Beardon and Maskit [1974] proved that a kleinian group
is geometrically finite if and only if all limit points, except parabolic fixed points, are
conical limit points; see Exercise 3-18.

We may assume that { =0 = f(0) and that O lies on the vertical axis rising from
z = 0 in the upper half-space model. Let y be the vertical segment descending from
O € H? to z = 0. There is an infinite sequence g, € G such that for some r > 0
and each large index n, the (hyperbolic) distance d(g,(O), y) < r. Find the point
yn, € y that is closest to g,(0); it is within distance r. Then find a, > 0 such that
the transformation A, : X > a,x takes O to y,; further, lima, = 0. Passing to a
subsequence if necessary we may also assume that lim g' A, = B exists as a Mobius
transformation (because the distance of g, 1A,(0) to O is uniformly bounded by r).
Set

f1(@) = ay ' flanz) = A o foAu(z), zeC.

That the complex valued function f(z) is differentiable at z = 0 with nonzero
derivative means that there is a linear transformation L : R*> — R? (i.e., a 2 x 2 real
matrix operating on z € C as a vector), with nonzero determinant, such that

f(Az) = L(Az) +e(Az)Az, Alzigoé(AZ) =0.

(Alternatively L(z, z) = az + bz, for some a, b € C, lal> —|b|? > 0.) Treating A, as
a linear transformation on vectors z € R? and setting Az = A, (z), we obtain for f,
that

fn(2) = L(2) +€(Au(2))z.
We have used that the real diagonal matrix A, commutes with L. Consequently

lim f,(z) =limA ! fA,(2) = L(z) uniformly on compact subsets of C.
n—oo

In short, L is nothing but the “blow-up” of f at z =0.
It now follows that

limA,'GA, = limA,'g,Gg, 'A, = B"'GB.
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This implies that the sequence of groups {A-'GA,} converges geometrically. In
the next chapter, we will study this notion in detail; suffice it to say that every
B~ !gB is the limit of elements of the approximants {A;IGAn}, namely B~!gB =
lim(A; 'g,)g(g, ' A,). Conversely, the limit of any convergent sequence of elements
of {A;lGAn} lies in B~'G B, namely,

hi=1lim A h, A, =1im A g, (g, ' huga)g, ' An = B~ (lim g, h,8,) B.
Recall that for any g € G, fog =¢(g)o f. Given g € G,
LoB™'gBoL™ = lim A foguge, of Ay
= lim A,'¢(gagg, Vo fo f ™ Ay= lim A, d(gngs, ") An.

The element on the left is therefore a Mdbius transformation. We have established
that L o h o L™! is a M&bius transformation for any 7 € B~'GB.

Since not all elements of G fix B(co), there exists 4 € B~'G B with h(c0) £ 00.
We now know that LAL~" is a Mobius transformation. We claim that this forces L
itself to be a Mobius transformation, necessarily fixing 0 and oco.

For let £ be a euclidean line in C. Then L~!(¢) is again a straight line. Choose
¢ such that L~'(¢) does not go through h~'(c0). Then ho L™'({) = C is a proper
circle. Therefore LhL~'(¢) = L(C) is a circle as well, since on the one hand L maps
bounded sets to bounded sets, and on the other, LAL~! is Mobius. But an affine
mapping L that by definition fixes 0 and oo cannot send a circle onto a circle unless it
can be expressed as z — az (or z — az, if we allowed f and hence L to be orientation
reversing). So L is a Mobius transformation, as claimed, and it has the simple form
ZH>az.

Pick three distinct points pi, p2, p3 € S?. For any homeomorphism F : S* — S?
set N(F) = F* o F where the M&bius transformation F* is uniquely chosen so that
N (F) fixes each p;. Upon setting u,, = gn_‘A,, so that limu, = B,

N(f) = N(A, fA) = N(f Ap) = N(fgnttn) = N($(8n) f1n) = N(fup).
Going to the limit,
N(L) = lim N(f,) = N(fB).

Since L and B are Mobius transformations, f must be one as well. O

Mostow’s Rigidity Theorem follows from this result. We have to construct, given
the isomorphism ¢ : G — H, a quasiconformal automorphism of S? that induces it.
If M(G) has finite volume, results of Waldhausen [1968, Lemma 6.3, Theorem 6.1]
applied and extended to the noncompact case in [Marden 1974a], or of Tukia [1985b,
Theorem 4.7] show that there is an orientation preserving or reversing quasiconformal
mapping &, between the manifolds, inducing ¢ on the fundamental group, so that
M(H) has finite volume as well. By replacing H by JHJ if necessary we may
assume it is an ordinary quasiconformal mapping. A lift ® to H? is a quasiconformal
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mapping, and quasiconformal mappings of, say, upper half-space extend to be qua-
siconformal on C U oo [Gehring 1962]. Also ®G®~! = H. Quasiconformal maps
of S? are differentiable with nonzero derivative almost everywhere [Ahlfors 1966].
Since G is geometrically finite and dM(G) = @, every point on S? is a limit point,
and all those except the countable number of parabolic fixed points are conical limit
points. All that remains is to apply Tukia’s result at one point of differentiability
which is not a parabolic fixed point.

If M(G) is a closed manifold the following alternate argument can be used: It
follows from topology that there is a homotopy equivalence (see the discussion in
Section 5.1) between the manifolds: continuous maps fi : M(G) — M(H) and f5 :
M(H) — M(G) such that fj o f, and f o f; are homotopic to the identity. Working
in terms of a piecewise linear structure (subdividing into hyperbolic tetrahedra) on
the manifolds, the mappings can be taken to be Lipschitz. It turns out [Mostow 1973,
Lemma 9.2; Thurston 1979, p. 5.39] that their lifts Fy, F> to H? are quasiisometries;
see Exercise 3-19. Consequently each one extends to dH? and is quasiconformal
there. Using the cusp tori, this approach too extends to the finite volume case; see
[Prasad 1973; Thurston 1979, p. 5.39; Tukia 1985b, Lemma 3.4]. L]

It is interesting to compare the situation we just considered to the case of a qua-
siconformal map f : H> — H?. Likewise f can be extended to S! and is again
a homeomorphism there, necessarily having a derivative almost everywhere. The
extension to dH? is either the restriction of a Mdbius transformation, or its derivative
is zero wherever it exists. Now one knows in advance that most fuchsian groups
have nontrivial deformations. The corresponding homeomorphisms of the circle dH?
are therefore examples of totally singular functions: their derivatives are zero almost
everywhere. This seems to be the simplest construction of singular functions.

3.14 Exercises and explorations

3-1. (a) Prove the area formula for a surface § of constant gaussian curvature K =
0, 1, the area being given in the euclidean, spherical, or hyperbolic metric.
Here S is a closed surface of genus g > 0, with n > 0 punctures and m > 0 cone
points of orders {2 < r; < 00}.

< 1
KArea(S):2n(2—2g—n—Z(l—r—l)). (3.9)

i=1

Hint: The Euler characteristic formula for a triangulated closed surface is x (S) =
T —E+V =2-2g,where T is the number of triangles, E the number of edges,
V the number of vertices and g the genus. Thus if S is a closed surface of genus
g > 0, the Euler characteristic is x (§) =2 —2g, while if S is a closed surface of
genus g with n punctures, x (S) =2 —2g — n (the punctures are not counted as
vertices).
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(b)

(c)
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Now we will compute the area. Cut the surface into small geodesic triangles.
Each puncture and cone point should be a vertex. Think of how the neighbor-
hood on each arises by projection from the branched universal cover. Since
each triangle has three edges each of which is shared by the adjacent triangle,
2E = 3T. The area of each triangle satisfies K Area(A) = 6y + 6, + 03 — 7.
If there are no punctures or cone points, summing the triangles we find that
KArea(S) =2aV —aT = 2w x(S). If there are cusps (cone points of order
oo on a negatively curved surface) the area is too great because the angle sum
about a cusp is 0 instead of 277, so 2rn must be subtracted. At a cone point the
angle sum is instead 27 /r; rather than 2w, so we must subtract the difference
2 (1 —1/ry).

Thus if S is a closed surface of genus g with n-punctures, and K = —1, we have

Area(S) > 2m|x (5)]. (3.10)

Conversely, prove that every possibility S allowed by (3.9) can be realized as
S = P/G where P is exactly one of S?>, C, H? and G is a group of Mobius
transformations acting on P (if there are no cone points, this is a consequence
of the Uniformization Theorem, Section 2.6).

Hint: To simplify notation, consider the case of S? with n cone points {¢;} of
corresponding orders {r;}. Fix a point O and take n simple loops {y;} from O,
each surrounding exactly one cone point, and mutually disjoint except at O. Let
H be the normal subgroup of the fundamental group of S = S? \ cone points
generated by the loops {y,"}. Let S denote the normal covering Riemann surface
determined by H. Each lift of each y, is a simple loop retractable to a puncture.
The group of cover transformations is isomorphic to 771 (S)/H. In particular each
lift of y; determines an element of order r; that necessarily extends to and fixes
the corresponding puncture. There are a countable number of such lifts. When
the punctures are added to S we obtain a simply connected Riemann surface S*.
Now apply the Uniformization Theorem to §*. In general S* is noncompact and
conformally equivalent to H?: there are only a finite number of configurations
that lead to the plane or sphere.

For a closed, oriented surface S of genus g with riemannian metric # and Gaus-
sian curvature K (h) the Gauss—Bonnet formula reads

271)((S)=271(2—2g)=// K(h)dAy,
N

where y (S) is the Euler characteristic and d Aj, is the element of surface area.
In the hyperbolic case K(h) = —1 and the surface area is 47 (g — 1), g > 2.
Hyperbolic metrics are best: If K (h) > —1 (resp. < —1), then Area;, (S) > Areayyp
(resp. <), with equality only when £ is the hyperbolic metric. For generalizations
to 3-manifolds, see [Besson et al. 1999; Storm 2002a; 2002b].

Equation (3.9) is sometimes applied to cone manifolds with arbitrary cone an-
gles. It holds for cone angles 277 /r; < 2. If all the cone points on an n-punctured
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surface S of genus g have angles instead satisfying 27 /r; > 27, Equation (3.10)
becomes

Area(S) <2 |x(S)].

A common application of the area formula is to find the possibilities that a closed
surface of genus g and n punctures with designated cone points carries the spher-
ical metric K = +1, euclidean metric (K = 0), or hyperbolic (K = —1). In other
words, the surface is covered by S2, C or H2. This gives rise to three inequalities:

2¢+n+ Z(l — —) spherical case, 3.11)

2¢g+n+ Z(l — —) =2 euclidean case, (3.12)

2g+n+ 2(1 _ rl) ) hyperbolic case. (3.13)
_ 1

Inequality (3.11) requires g=0andn=0, 1. [fn=1thenm =1and 2 <r; < co.
For n = 0, if m = 3 the possibilities for the cone points are (2, 3, 5), (2, 3, 4),
2,3,3), 2,2,n);ifm=2then2 <r|,rp<oo;if m=1,then2 <r; < oo.
Equality (3.12) requires g =0, 1. If g =1 then m, n = 0. For g = 0, we can
have n =2 and m = 0; otherwise if n =1, thenm =2 and r; =rp, =2;if n =0,
the cone points are given by (2, 2,2, 2), (3,3,3), (2,3,6),or (2,4,4).
Inequality (3.13) is satisfied by all combinations except those listed already.

(d) Show that as I' C PSL(2, R) ranges over all fuchsian groups (that may have
elliptics and/or parabolics), the area of H?/T" achieves its minimum value I
uniquely for the (2, 3, 7)-triangle group. Conclude that for a group R represent-
ing a closed surface R of genus g > 2, the order of the group C(R) of conformal
automorphisms of R cannot exceed 47 (g — 1)/(m/21) = 84(g — 1). (Note that
C(R) is isomorphic to N(G)/G, where N(G) is the normalizer of G, and the
area of H?>/N(G) is not less than 7 /21.)

Show that if the fuchsian group G is of finite index n in the fuchsian group
H, the area of [H]2/H is n times that of ([H]2/G). Because n cannot become
too large, conclude that every fuchsian group of finite area is contained in a
maximal fuchsian group, one that has finite area and is not a subgroup of any
other fuchsian group.

Does the same argument work for finite volume kleinian groups (Section4.11.1)?

3-2. If A is loxodromic prove that in the hyperbolic metric ming 3 d(X, A(X)) is
achieved only when X lies on the axis of A.
Exercise 1-4 showed that the set V = {X¥ € H? : d(¥, A(X)) < €}, if nonempty, is a
radius € tube about the axis of A.
Show that if A is parabolic, the set {x € H3 : d(X, A(X)) < €} is a horoball at the
fixed point of A.
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3-3. Prove that for a fuchsian group G, the universal horodisk at a parabolic fixed
point is not penetrated by the axis of any loxodromic element that represents a simple
geodesic on H?/G. Ts the same statement true for the universal horoball in a kleinian
group? (Hint: apply z — z + 1 to the axis).

Prove that a discrete group with all real traces is conjugate to a fuchsian group.

3-4. Show that if x € H? approaches z € dH?>, then the limit of the half-space H, is
the half-space determined as follows. There is a unique horosphere o at z such that
o is tangent to the horosphere g~'o at g~!(z). Take the hyperbolic plane tangent
to both horospheres at their point of tangencys; it is orthogonal to the geodesic with
endpoints z, g~!(z). Choose the half-space determined by this plane that is adjacent
to z. If z = oo, this half-space is the exterior of the isometric hemisphere for g. Also
see Lemma 1.5.4.

3-5. Figure-8 knot. Find a Dirichlet region for the rank-two parabolic group
G=(zr>z+1, z+—>z+71; Im7t > 0).

Show that it has generically six edges, but in some situations it has only four. The
square and the regular hexagon provide the associated torus with symmetries of order
four and order six.

Compute the hyperbolic volume of the part of the polyhedron lying above a horo-
sphere (a horizontal plane, in the present situation). Show that the quotient H*UC/G
is homeomorphic to {0 < |z]| <1, z € C} x S!, that is, the complement of the central
circle in the solid torus. This is the prototype of the local structure about a knot when
the knot complement has a hyperbolic structure—as all of them do, except torus
knots and satellite knots (Section 6.3). The parabolic fixed point is “stretched” into
the knot.

For example, the figure-8 knot can be formed as follows. In the upper half-space
model, choose an ideal tetrahedron with one vertex at oo, as in Exercise 1-22. Each of
the four faces is an ideal triangle. The ideal vertices of each face lie on a circle in S°.

—
/

Fig. 3.8. The figure-8 knot.
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The circles corresponding to adjacent faces intersect, and their angle of intersection
is the dihedral angle between the faces. Arrange it so that the six dihedral angles are
all 60° so as to become the regular ideal tetrahedron (compare Exercise 1-23). In fact
the dihedral angles of any ideal tetrahedron add up to 360°.

Line up two such ideal tetrahedra 7 and 75, one next to the other so they share a
face and the ideal vertex co. There are six free faces on the union of the two tetrahedra.
The faces can be paired and the face identification via isometries precisely given so
that the tetrahedral union is a fundamental polyhedron for the group G generated by
the face pairing transformations and H*/G is homeomorphic to the complement of
the figure-8 knot in S°. The five ideal vertices become parabolic fixed points which
are in the single parabolic conjugacy class of G. For details see [Thurston 1997,
pp- 39-42], [Ratcliffe 1994, §10.5], or [Neumann 1999].

The figure-8 knot complement is H*/ G, where G can be taken to be generated by

1 0 1 i3
1 1) o 1 )

For a discussion of hyperbolic knots see Section 6.3.

3-6. Volume of maximal solid cusp tori [Adams 1987]. We will use the fact that the
densest circle packing in the plane with circles of the same radius is the hexagonal
packing: each circle is surrounded by six others. This is applied as follows.

Suppose P is a parallelogram. Place a disk of radius r centered at each of the four
vertices. Assume that the interiors of the disks are mutually disjoint. If | P| denotes
the area of P, then |P| > 2r2+/3. Equality occurs if and only if all the sides of P
have the length 2r. If the sides of P have length > 1, then r > 1/2. If one side has
length one, r =1/2.

Now consider a hyperbolic 3-manifold M(G) such that G has a rank two parabolic
subgroup. We can conjugate so that Goo = (z+> z+1, z+— z+7) with Tt =u-+iv, —% <
u <%, y>+/3/2 (Exercise 2-5). A maximal horoball at the fixed point z = oo is the
largest horoball I, with the property that g(H) NHoo =D forall g€ G, g ¢ G-
In our setup with oo the fixed point, this means that Ho, = {(z, 1) € H3: ¢ > s} with
the smallest possible 1 > s > 0.

Let o denote the horosphere {(z,?) : t = s}. Because this bounds the maximal
horoball at co there will be an element g € G, g ¢ G such that the euclidean sphere
g(o) is tangent to 0. We may assume that g(o) is based at z = 0 = g(c0).

Prove that g~ (00) cannot lie in the orbit G, (0). Hint: suppose otherwise so that
for some /1 € Goo, h~'g7 1 (00) =0. Also h~'g~1(0) = oo. Therefore h~'g! fixes a
point on the vertical half line, a contradiction since G has no elliptic elements.

In C, choose the fundamental parallelogram P for G to have vertices at 0, 1, 7,
and 1 + 7. The horoball g(H ) is tangent to C at z = 0 and its G y-orbit contains
horoballs tangent to C at all the vertices of P. Its G -orbit is also disjoint from the
G 5o-orbit of the horoball g_1 (H ). There will be at least one point { € P which is
a tangent point of the latter G -orbit.
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All these horoballs tangent to C have the same euclidean radius r = 1/(2s). The
vertices of P have distance at least 2r = 1 apart, and also must be distance at least
1 from ¢. Place disks of radius 1/2 centered at the vertices of P and at ¢. Consider
their G o-orbit. Their interiors are mutually disjoint and P has to be covered by the
equivalent of two disks. Deduce that | P| > /3.

The volume of Hoo/Goo is | P|/2s.

Conclude that the volume of the maximal solid cusp torus is at least ~/3/2 in any
hyperbolic manifold M(G) with nonelementary G.

Compare with Exercise 2-10.

Now show that the number of primitive lattice points of the orbit G (0) whose
distance from z = 0 is less than 27 is < 48 [Bleiler and Hodgson 1996]; there are
at most 24 simple closed geodesics in the quotient torus of length < 2. Primitive
means that the ray from O to the lattice point does not pass through any other lattice
points.

3-7. Subgroups of geometrically finite groups [Thurston 1986b]. Suppose M(G) is a
geometrically finite hyperbolic 3-manifold such that its convex hull C(G) # M(G).
Prove that for every finitely generated subgroup G| of G, M(G) is also geometrically
finite.

Hint: Consider first the case that G has no parabolics. Then C(G) is compact. There
exists d such that every point x € C(G) has distance at most d from dC(G). Let @(G)
denote the lift to H3. Every point in @(G) has distance at most d from 8@(G). The
quotient @(G) /G is a convex submanifold of M(G) and hence it contains C(G).
Each point x € €(G) therefore has distance at most d from 8@(G) /G and then
also from dC(G1). Now the Ahlfors Finiteness Theorem implies that dC(G) has
a finite number of components and each component is a compact surface without
boundary (there are no parabolics in G). Consequently C(G ), being covered by
a finite number of d-balls with centers on dC(G), is compact. Therefore G is
geometrically finite.

The proof in the general case also uses the thick/thin decomposition of C(G).

3-8. Klein—Maskit combination theory. Here we will display only the classical situa-
tions. In [Maskit 1988] the reader will find extensive generalizations.

(i) Suppose G is a kleinian group. Select two mutually disjoint closed disks Dy, D;
in Q(G) such g(D;)ND; =< fori, j =1,2 and for all g #id € G. Let T be any
Mbobius transformation that maps the exterior of D; onto the interior of D;. Prove
that G* = (G, T) is also discrete, as claimed in Section 3.7.

Topologically show that what you have done is the following. The projection 7 :
D; — A; to the quotient M(G) is a homeomorphism. Remove A, A, from aM(G)
and identify the resulting boundaries d A and dA;. If the two disks lie on the same
component of dM(G) what you have done is create a new handle. If they lie in
different boundary components, you have connected the two components. Otherwise



3.14 Exercises and explorations 167

dM(G™) is the same as dIM(G). In either case, the simple loop dA; = dA, on
oM (G™) bounds a disk within M(G™*). This disk does not divide the 3-manifold.

Exactly the same process can be used to connect two manifolds M(G1) and M(G»).
In this case G* = G| * G is a free product since the new disk divides.

Show that you can adjoin a solid torus and/or a solid cusp torus to M(G).

What happens if you make the following alternative combination? Given a small
closed disk D C 2(G), let J denote reflection in the circle d D, and equally in the
plane in H? rising from 3 D. Form the new group G* = (G, JGJ). This too will be
discrete. Describe M(G™*).

(ii) Suppose ¢1, ¢» are two parabolic fixed points of G. Suppose A € Q(G) is a
closed horodisk associated with ¢; and A is a closed horodisk associated with ¢; so
that g(A;))NA; =d,i =1, 2, unless g € Stab,. Possibly {; = ¢, and then the disks
are externally tangent at the fixed point. Let B be any Mobius transformation that
maps the exterior of A onto the interior of A, and conjugates Stab(¢;) to Stab(&y).
Prove that G* = (G, B) is discrete. Topologically what has happened is this: We have
chosen two circles ¢y, ¢, about two distinct punctures on dM(G), the projections of
the two horocycles. Remove the once punctured disks bounded by these two circles
from 0M(G) and identify the two circles. If the two circles are on the same boundary
component of M(G), that component loses two punctures but gains a handle. If
they are on different components, the two components become connected and lose a
puncture each. In G* the two cyclic parabolic groups become conjugate; if ¢ = &
the cyclic parabolic group becomes a rank two parabolic group. See also Exercise
4-18.

Algebraically G* is the free product with amalgamation of the two cyclic parabolic
groups. Likewise the construction can be carried out to join two different manifolds.

It was originally hoped that with the two classical combination techniques, (i) and
(ii), all kleinian groups could be constructed. Peter Scott, in the mid 1970s, showed
(personal communication) that this cannot be the case. It is a key part of the Thurston
theory, specifically the skinning lemma (Section 6.2), that allows general forms of
combination to be effectively and generally applied —it shows that the group can
be deformed so that there exist Mobius transformations that do the job required of
hyperbolic gluing. Armed with the skinning lemma, most kleinian groups can be
formed from simpler ones using hyperbolic gluing— the combination theorems.

3-9. Extended quasifuchsian groups. Let G be a fuchsian or quasifuchsian group
with Q(G) = Q21 U Q, the components of the regular set. Suppose there is a Mobius
transformation 7 that maps €2; onto 2, and such that if g € G then also TgT‘l eqG.
Show that the extended group G* = (G, T) is discrete. Describe the topology of
M(G™) (it has only one boundary component).

The group G* is called an extended fuchsian or extended quasifuchsian group. It has
the same limit set as G and an index two subgroup which is fuchsian or quasifuchsian.
Construct an extended fuchsian group by adjoining z — —z to the modular group.
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3-10. Suppose G is a finitely generated kleinian group and €2 is a simply connected
component of 2 (G) with the following properties:

(i) € is invariant under G and is a proper subset of Q(G).
(i) Every simple loop in S = 2/G that determines a parabolic element of G is
retractable in S to a puncture.

Apply the Ahlfors Finiteness Theorem and the Cylinder Theorem to prove that G is
a fuchsian or quasifuchsian group.

3-11. Function and Schottky groups,; compression bodies. Assume that a component
Q of Q(G) is invariant under G. Traditionally, complex analysts have called such a
group a function group because by using Poincaré series, differentials and functions
can be constructed on it. We will however reserve the name to the cases that €2 is not
simply connected. Here we will assume that G is finitely generated without elliptics.

An orientable, compact, irreducible 3-manifold M3 is called a compression body
by the topologists if it has a boundary component S C dM? for which the inclusion
71(S) — 7 (M?) is surjective. It is referred to as a trivial compression body if
M3 =S x [0, 1]; we will not use the term for this case.

If M(G) is compact, it can be described topologically as the result of taking a
3-ball B, cutting n > 2 holes in d B and attaching to the boundary of the holes, the
boundary curves of the following collection: solid tori, each with one hole cut out the
boundary, and closed surface bundles S; x [0, 1], with the genus of S; exceeding one,
each with a hole taken out of a boundary component. In the opposite direction, on
the compressible boundary component S there is a finite system of nontrivial simple
loops that bound disks in M(G). Cut M(G) along these disks to get one or more
pieces M;. Here we are using Dehn’s Lemma and the Loop Theorem. If there is only
one piece, then it is a ball and M(G) is a handlebody. Otherwise each M; = §; x [0, 1]
where S; is an incompressible boundary component of M(G).

When there are parabolics and G is geometrically finite, compactify M(G) by
removing solid cusp tori and solid pairing tubes. Then the analysis is the same. Note
that in this case some of the components may be essentially solid cusp tori themselves.
Algebraically, G is the free product of closed surface groups and cyclic groups. If
G is an N-generator function group, find estimates for the number of pieces, and the
genus and punctures of each [Marden 1974a].

Prove that a general geometrically finite manifold M(G) can be decomposed along
incompressible surfaces into finitely many compression bodies and submanifolds with
incompressible boundary. This is a result of Bonahon [1986], who also showed that
the decomposition is unique up to isotopy. Two compact compression bodies with
isomorphic fundamental groups are homeomorphic [McCullough and Miller 1986].

The simplest example is a (not necessarily classical) Schottky group representing
a handlebody M(G) of genus g > 1. Equally important for a Schottky group are the
simple loops which are not compressing. Show that there exist simple noncompress-
ing loops that divide the surface into two parts; see Exercise 5-16.
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In [McCullough and Miller 1986] it is proved after a long argument that given a
compressible boundary component S of a geometrically finite M(G) without parabol-
ics, there is a submanifold X C M(G) with the following properties: (i) S is a bound-
ary component of X, (ii) X \ S is incompressible in M(G), and (iii) the image of the
inclusion 1 (S) < w1 (M(G)) is precisely m1(X), that is, X is a compression body
with § its compressible boundary component.

Suppose M(G) is compact with an incompressible boundary component S. Show
that 771 (S) either has index at most two in G (Exercise 3-9), or it has infinite index in
G [Hempel 1976, Theorem 10.5].

3-12. Assume that oo € Q(G) and €2 is a component of Q2 (G) with co # 2. Suppose
there exists a relatively compact fundamental set F for the action of Stab(£2) (recall
that this is the group {g € G : g(2) = 2}). Prove that

Diam(Q)> < ) Diam(g(F))>.
g€Stab(R)

Prove further that if {g; (Stab(£2))} is the set of left cosets of Stab(£2) in G, then

> Diam(g;(2))* < oo.

Here Diam is the euclidean diameter of the set. There is a one-to-one correspondence
between left or right cosets of Stab(2) in G and components of the orbit G (£2).

3-13. Boundary fixed points [Maskit 1974]. Suppose H is such that the quotient
Q2 (H)/H has a finite number of components each of which is a closed surface. Prove
that if oo is not a limit point,

> lenl* < oo,

heH

where |cj,|~! is the radius of the isometric circle of & # id. Hint: the orbit of a
fundamental region has finite spherical area since there is no overlap.

Now suppose G is a kleinian group, oo is not a fixed point, and Q2 C Q(G) is a
component of the regular set. Consider Stab(2) = {g € G : g(R2) = Q}. Assume that
the quotient €2/ Stab(€2) is a closed surface. Let {€2;} denote the components of the
G-orbit of Q; that is, if G = ] g; Stab(2) is the coset decomposition, then we can
take Q; = g;(2). Prove for the spherical diameters that Diam4(S2,-) < 0. Hint:
Diam(g; (£2;)) <|c; |_2dl._1 where d; is the spherical distance between gi_1 (00) and £2.

Deduce that if a loxodromic g € G has a fixed point on 92 then g"(Q) = Q for
some k. Hint: If no power g preserves Q then }_ Diam(g*(2)) = .

The same conclusion holds in the more general case that €2/ Stab(£2) has in addition
a finite number of punctures.

More generally, prove the following result from [Anderson 1994]. Suppose G is a
not necessarily finitely generated group but G| C G is a finitely generated subgroup.
Assume the loxodromic y € G has a fixed point in A(G1). Prove that y* € G for
some k > 1.
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Analyze the following case. Suppose 2 is a component of the regular set of the
nonelementary, torsion-free finitely generated kleinian group G. Assume the loxo-
dromic A € Stab(£2) represents a simple closed curve ¢ on €2/ Stab(£2). Suppose
A= B", n>2,where B € G preserves | # 2 and also represents a simple closed
curve ¢’. Suppose ¢ and ¢’ are disjoint in the quotient. Now B" preserves both
and Q. In M(G), c is freely homotopic to ¢”*. Since ¢ and ¢’ are disjoint curves, by
the cylinder theorem there is a simple curve ¢* near ¢’ that is freely homotopic to c.
When can you conclude that n = +1?

3-14. Commensurability. Two subgroups groups 'y, ['; of a larger group G* (which
will usually be PSL(2, C) or PSL(2, R)) are said to be commensurable (I'y ~ T'y) if
the subgroup of common elements ', NI"; is of finite index in both I'; and I',. Prove
that if I'; is geometrically finite, I'; is as well [Greenberg 1977].

In the context of kleinian groups, I'; ~ I'y if and only if M(I"';y N I",) is a finite-
sheeted cover of both M(I"y) and M(I",).

The commensurability group or commensurator C(I') of a kleinian group I is the
group C(I') ={g e PSL(2,C) : gl'g~! ~T'}.

Prove the following special case of [Greenberg 1974, Theorem 2(4)]. If I" is a
finitely generated, nonelementary group whose limit set A(I") is not a round circle
on S? nor is all S?, then the index [C(T") : I'] is finite.

To establish this, show that C(I") is discrete. Then show it has the same limit
set as I'. Therefore if F is a fundamental region for C(I"), and {g;} is a set of coset
representatives for I in C(T"), show that | J g; (F) is a fundamental set for I" on Q (T").
Applying the Ahlfors Finiteness Theorem, {g;} is a finite set and therefore [C(I") :
I'] < 0o. Alternatively use the fact that the group K of elements that map A(G) onto
itself is discrete: As a closed subgroup of PSL(2, C), the identity component of K
is a connected Lie subgroup. Since it is not PSL(2, C) or conjugate to PSL(2, R) it
either has a common fixed point in H3 U 3, or it is the identity [Greenberg 1977],
implying that K is discrete.

Prove that C(I") contains any group H with the same limit set as I". That is C(I")
is the group of all Mobius transformations that map the ordinary set €2(G) onto itself
(or equivalently, map A (G) onto itself). Therefore, if H contains I', I" has finite index
in H.

If M(G1), M(G>) have finite volume, show that G|, G, are commensurable if and
only if there are isomorphic subgroups of finite index H; C G| and H, C G3.

What do your results say about the normalizer N (I') of I" in PSL(2, C)?

In contrast to our analysis, if ' = PSL(2, Z) and G* = PSL(2, R), then C(I")
contains PSL(2, Q) so that [C(I") : '] = oo and C(I") is dense in G*.

3-15. Finiteness theorems. Suppose that G is a finitely generated kleinian group.
Prove:

(1) G has at most a finite number of conjugacy classes of rank one and rank two
parabolic subgroups (Sullivan; see [Feighn and McCullough 1987]).
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(i) G has at most a finite number of conjugacy classes of finite subgroups [Feighn
and Mess 1991].

Hint: For (i), use the compact core or the relative compact core and the fact that,
corresponding to the rank one and rank two cusps, there are mutually disjoint cusp
cylinders and cusp tori with the property that a simple nontrivial loop on one is not
freely homotopic to one on another [Kulkarni and Shalen 1989]. For the second, first
apply Selberg’s Lemma (page 68) to get a torsion-free, normal subgroup of finite
index H. The finite group F = G/H is isomorphic to a group of automorphisms of
M(H). It is shown in [Feighn and Mess 1991] that one can choose a compact core C
of M(H) to be invariant under F'; for this, C/F is compact.

3-16. Retractions. [Epstein and Marden 1987]Let K be a hyperbolically convex set
in H3. The retraction map r : H3\ K — K is defined as follows. For each X € H*\ K,
r(X) is to be that point of K closest, in the hyperbolic metric, to x. This closed point is
uniquely attained. In the hyperbolic metric d( -, - ), show that the map r is Lipschitz:
d(r(x),r(y)) <d(x,y).

Hint: Normalize so that the geodesic from r(X) to (y) lies on the vertical axis £ in
the upper half-space model. Draw the planes orthogonal to £ through r(X) and ().
The geodesic segment between r(X) and () lies in K. The points X, y cannot lie in
the open set bounded by the two planes.

3-17. Cylindrical manifolds. Suppose G is geometrically finite and dIM(G) is in-
compressible. Let C C M(G) be an essential cylinder; M(G) \ C has one or two
components My, M>. Choose one of these, say M, and consider a lift M} C H3.
Set G| = Stab(M7). Describe ©2(G1) in terms of €(G) and the topological type of
oM(G1) in terms of dM(G). In turn cut M(G) along an essential cylinder, if it
has one. Show that this process must end after a finite number of steps. Classify the
different possibilities you can end up with.

A parabolic T € G is called accidental if there is a component 2 C €2(G) such that
T (2) = Q2 in which T has the three (equivalent) properties: (i) 7 has no horodisk in
Q; (ii) T corresponds to a loxodromic transformation in the Riemann map image or
the universal cover H? of Q; (iii) the fixed point of T lies in the impression of two
distinct prime ends of d€2. The simplest example is the transformation z = z + 1
acting in the strip S = {z : 0 < Im z < 7r}. The Riemann map z — e* maps S unto the
upper half-plane. The parabolic T is transferred to the loxodromic w + ew. In truth
the attribute “accidental” is singularly inappropriate, as there is nothing accidental
about the appearance of an accidental parabolic.

From the three-dimensional point of view, it is possible that an “essential cylinder”
just bounds a solid cusp tube for a rank one cusp. Then the result of cutting as
proposed above does not change the group and indeed we have decided that such a
cylinder is not officially called an essential cylinder. However it is entirely possible
that one of the boundary components of an essential cylinder be retractable to a punc-
ture, and the other not. This is exactly the situation of an “accidental” parabolic in
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a geometrically finite manifold. Suppose you only cut the manifold along essential
cylinders associated with such parabolics. Show that after a finite number of steps
you will end up with a group or groups that no longer have such any such parabolics:
every cyclic parabolic group pairs exactly two punctures and is not represented by
any homotopically different simple loop in the boundary; see [Abikoff and Maskit
1977].

There is no reason to believe that a core curve ¢ of an essential cylinder C is
primitive; if A € G is determined by c, is it possible that A = B" for B € G and
n>1?

3-18. Conical limit points. If G is a nonelementary kleinian group, a point ¢ € A(G)
is called a conical limit point if the following is true. Let y(¢), 0 <t < oo, be a
geodesic ray ending at ¢. Given O € H?, there exists > 0 such that there is an
infinite subsequence of the orbit G(O) that lies in the r-tubular neighborhood about
y (and hence converges to ¢).

In the quotient manifold, the condition means that the projection of the ray y (¢) is
recurrent in the sense that given any point 7(0) € H?/ G there is an infinite sequence
t, — oo such that each 7w (y (¢,,)) is within distance r of 7 (O). Put another way, there
exists a compact subset K C H3 /G such that w(y(¢)) intersects K infinitely many
times. A loxodromic fixed point is always a conical limit point, and a parabolic fixed
point is never one.

If M(G) is geometrically finite, and ¢ is not a parabolic fixed point, then 7 (y (¢))
will lie in a compact set because it cannot asymptotically penetrate the universal
horoballs.

Prove that G is geometrically finite if and only if all limit points except parabolic
fixed points are conical limit points [Beardon and Maskit 1974]. Hint: All geodesics
lie in the convex hull of A(G).

3-19. Quasiisometries. A quasiisometry of H> (or of any H") is a map f : H® — H?
that satisfies

1
Zd(x,y)—a =d(f(x), f(y)) =Ld(x,y)+a (3.14)

for some L > 1 and a > 0. The map f need not be a homeomorphism nor even
continuous, just asymptotically Lipschitz. It is called a Lipschitz map if the right
inequality holds for @ = 0. The minimum factor L is called the Lipschitz constant
for f. Initially Mostow used “pseudo-isometries”, which satisfy (3.14) except on
the right side a = 0 so the map is Lipschitz; the long range properties are the same
whether or not a =0. A homeomorphism f is L-bilipschitz if (3.14) holds with a =0.
An L-bilipschitz map on H? or H? is L?-quasiconformal. The converse is not true in
general (for an example, consider the radial stretch X — [X|*X, —1 <« < 0).
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An equivalent definition is perhaps more illuminating: there exists constants K > 1
and dy > 0 such that

K~ 'd(x,y) <d(f(x), f(y)) forallx,yeH?®withd(x,y) > do,
Kd(x,y)>d(f(x), f(y)) forallx,yeH?.

For example, H? and H? are quasiisometric to the Cayley graph dual to the tessella-
tion by a fundamental polygon or polyhedron for a fuchsian group or a kleinian group
whose respective quotients are closed [Cannon and Cooper 1992]: The graphs look
like H? and H? if you look at them from afar. In fact, a hyperbolic group (Exercise
2-17) is quasiisometric to H? or H? if and only if it is a fuchsian group representing
a closed surface [Boileau et al. 2003, Theorem 6.18] or a kleinian group representing
a closed manifold [Cannon and Cooper 1992].

Using Equation (8.27) of Exercise 8-9, prove that quasiisometries have the follow-
ing properties [Efremovi¢ and Tihomirova 1964; Thurston 1979, p. 5.39]:

(i) If y is a geodesic ray to a point ¢ € dH?>, then f(y) has a well defined end point

on dH?3. Denote the end point by £(¢).

(ii) There exists a constant M < 0o, such that for any x € y, d(f(x), y') < M, where
y’ denotes a geodesic ray ending at f ().

(ii1)) The extension of f to 9H3 is a homeomorphism.

(v) If f(¢) =¢ for all ¢ € H?, then sup, 3 d(x, f(x)) < 0.

(v) More generally, if fi, f> are quasiisometries with the same boundary values,
there exists a constant B < oo such that d( f1(x), f>(x)) < B for all x € H3.

An additional important property is that the extension to dH? is quasiconformal
[De-Spiller 1970]. To prove this it is necessary to show the metric definition of
quasiconformality is verified: Let T denote the spherical metric on dH>. Set

L(f.r)(&)= sup t(f(). f(5)),

T 5)=r
@ = int T(F@). @),
HUE ) =T LD©)

O @)

The restriction of f to dH? is quasiconformal if there exists K* < oo such that
H(f, ¢) < K* forall ¢ € 9H°.

The use of this theory to prove Mostow’s Rigidity Theorem is indicated at the
end of Section 3.12. It is perhaps interesting to digress to summarize the history of
Mostow’s result. His original announcement and proof had the hypothesis that there
is a quasiconformal mapping between closed manifolds f : M(G) — M(H) (actually
in n-dimensions). Most of his 1968 paper was devoted to the proof, following earlier
work of Gehring, that f, when lifted to H", can be extended to dH" and is there
a quasiconformal mapping. He then used properties of quasiconformal mappings
together with some ergodic theory to prove rigidity. Ahlfors immediately recognized
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the importance of Mostow’s result and worked to make the proof more transparent to
complex analysts. In a short unpublished manuscript, which assumed the boundary
extension property which was known to him, Ahlfors simplified Mostow’s proof,
using fewer properties of quasiconformal mappings and less ergodic theory. The book
[Mostow 1973] contains an entirely new proof of a more general theorem. There
Mostow introduced the notion of a pseudo-isometry (now called a quasiisometry)
and developed its properties. While Mostow was working on his generalization, G.
A. Margulis independently published in 1970 a page-and-a-half “plan of a proof”
of a less encompassing generalization of Mostow’s original theorem. He too used a
method akin to quasiisometries. The key feature that extension to the boundary is
quasiconformal which was published in its own right in [De-Spiller 1970] was thus
apparently independently discovered by Mostow and Margulis in the course of their
application.

3-20. Hausdorff dimension. The notion of Hausdorff dimension is used to measure
the “size” of point sets with smooth curves having dimension one and isolated points
having dimension zero. The «-dimensional Hausdorff measure of a closed set X C C
(or more generally, of a Borel set) is defined in terms of
Ay (X)=1lim | inf Diam(Dy)? ),
«(X) HO({DI{}XI; (Dy) )

where the infimum is taken over all covers { Dy} of X by euclidean disks of diameters
at most €. The Hausdorff dimension is defined as

dim X =inf{a : Ay (X) =0}.

The inequality

> (Diam Dy)P <&#~* > " (Diam Dy)*,
k k
which implies that Ag(X) < P~ A (X), shows that Ay (X) =0 if @ > dim X while
Ag(X) =0 if @ < dim X.
If f is an L-bilipschitz map of X, we have

L™ Aa(X) = Aa(f (X)) = L¥Ao(X).

For sets X € C, 0 < dim X < 2. A connected closed set without interior which
has Hausdorff dimension > 1 is called a fractal. Upper estimates of the Hausdorff
dimension are often found by using a special covering and by the following estimate.
Assume X is a bounded set. Let N (¢) denote the minimum number of round disks of

diameter ¢ needed to cover X. Then
log N
dim X < liminf, o 22V &)
—loge

In this estimate, a square grid of side length ¢ covering X and such that each square
intersects X can replace the minimal cover by disks. For a careful development of
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the theory for plane point sets from the point of view of conformal mapping see
[Pommerenke 1992].

Thanks to the fundamental paper [Bishop and Jones 1997], added to earlier results
(see the discussion in [Canary and Taylor 1994]), we can assert:

Theorem 3.14.1. Suppose G is a finitely generated kleinian group.

(i) dim(A(G)) > 0 if and only if G is nonelementary.
(if) dim(A(G)) < 2 if and only if G is geometrically finite.
(iii) dim(A(G)) > 1 if A(G) C S? is connected but is not a circle (in which case
dim(A(G)) =1).
(iv) If dim(A(G)) < 1 then A(G) is totally disconnected.

In particular for a Schottky group G, A(G) has zero area but positive Hausdorff
dimension, in Mandelbrot’s terminology, it is “fractal dust”. At the other extreme, for
the singly degenerate groups of Section 5.8, in which 2(G) is connected and simply
connected, we have dim A (G) = 2. For further information see the excellent survey
[Matsuzaki and Taniguchi 1998].

Another measure for a kleinian group G acting on the ball model of H? is its critical
exponent which is defined as

1 _ 0 S
3(G) = inf{s : Ze_”’(o’g(o)) < oo} = inf{s : Z (—1 |g(0)|> < oo},
pore Z\1+1g0)]
where 0 is the center of the ball and d( -, -) is hyperbolic distance. Use Exercise 1-14
to show that
8(G) = inf{s DY (=180 < oo} =inf{s: ) " |g'(0)|" < oo).
geG geG
We will see in Exercise 3-22 that §(G) < 2. Moreover
3(G) =dim A (G) <dim A(G),

where A.(G) denotes the set of conical limit points (see Exercise 3-18).

Itis amazing that to know the critical exponent is to know the Hausdorff dimension.
Combining the solution of Ahlfors’ conjecture with a result in [Bishop and Jones
1997] yields:

Theorem 3.14.2. If G is a finitely generated group with Q2(G) # &, then
3(G) =dim(A(G)).
If Q(G) = @, both sides have the value 2.

3-21. This problem and the next are the first steps into the study of the ergodic theory
of kleinian groups. See [Nicholls 1989] for an introduction to the theory, especially
the construction of invariant measures on the limit set. Also see [Patterson 1987].
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Let G be a discrete group acting in the ball model. Define the orbital counting
function to be

N(r;x,y)=card{g € G:d(x, g(y)) <r}.
Prove that there is a constant C depending on G and y, such that for any point X,
N %, 5) < Ce*.

If in addition G has a fundamental polyhedron of finite volume, show that there is a
constant Co = Co(G, X, ¥) such that

N(r;X,y) > Coe* for all large r.

Hint: Prove first that
-
Vol({x :d(0,%) <r}) = 271/ sinhz(t)dt,
0

where ¢ = |X| and d(0, X) = log % Find ¢ > 0 such that no two elements of the

G-orbit of the ball B, (y) of radius ¢ centered at y overlap. However if y is an elliptic
fixed point of order m, then for each element of the orbit, m-images will coincide.
Assuming  is not a fixed point, show that

r+e 1 r+e
Vol(Bs ()N (r; X, ¥) < Vol(B,1.(X)) =21 / sinh?(1)dr < i / eXdr.
0 0

Determine the corresponding statements for the action of a fuchsian group in the
unit disk model of H?.

3-22. Suppose G is a discrete group. Refer back to Exercise 1-14 and prove that
Z e 08 — 5 forall o > 2.
geCG
Hint: Consider Exercise 3-21 and

Z e—ad(O,g(O)) — /r e—otth(t; 0’ 0)
0

2€G:d(0,g(0))<r ,
=N@;0,0) e 4+« / N(t;0,0)e “dt.
0

The same expression for the disk model of H? converges for « > 1.

Let §(G) be the critical exponent for G as defined in Exercise 3-20. We know from
Exercise 3-20 that §(G) < 2 for groups acting in the ball model and that §(G) <1 for
fuchsian groups acting in the unit disk. The group is said to be of convergence type if

I e OO0 o
geG

otherwise G is said to be of divergence type.
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Prove that if G has a fundamental polyhedron of finite volume in the ball model, or
a fundamental polygon of finite area in the disk model, then G is of divergence type.
If however the limit set A(G) # S? in the ball model or # S! in the disk model, then
G is of convergence type.

Hint: Let D be a closed disk in the ordinary set 2(G). We can assume that the
elements of its G-orbit are mutually disjoint. Let do denote the area form on S?: in
spherical coordinates, do = singp dg d6. Then

47 > " Area(g(D)) = ) //D I’ (w)|*do.

geG geG

To finish, deduce from Exercise 1-12 that when |w| = |g(w)| =1,

lg'w)l|gw) —gO)* =1—gO)*, 1—1[g(0)] <4|g'(w)|.

On the other hand, if G has a polyhedron with finite volume, write again

Z ¢—2d0.80) _ /r e 2 dN(z; 0, 0)
0

g€G:d(0,g(0))<r -
= N(r: 0, 0)e2’+2/ N(t;0,0) e 2 dt.
0

Apply Exercise 3-21 to finish the job.

The following result appears as [Matsuzaki and Taniguchi 1998, Theorem 5.15]
and incorporates results from [Ahlfors 1981] and [Sullivan 1981]. For the proof, see
[Nicholls 1989].

Theorem 3.14.3. The following statements about a kleinian group G are equivalent:

(1) The conical limit set A.(G) has Lebesgue measure 47 on S2.
(i) G is of divergence type.
(iii) M(G) does not support a hyperbolic Green’s function.
(iv) G acts ergodically on S* x S?.
(v) The geodesic flow on the unit tangent bundle of Int(M(G)) is ergodic.

The group G is said to act ergodically on S?, or on S? x S?, if and only if the fol-
lowing holds: Given a measurable set X invariant under the action of G, the Lebesgue
measure of either X or of the complement of X vanishes. Here the action of g € G on
S?x S?is (x, y) — (g(x), g(y)). Thus ergodic action on the product implies ergodic
action on S? itself. For a discussion of hyperbolically harmonic functions and their
boundary values see Exercise 5-1.

3-23. Poincaré series. Suppose G is a fuchsian group of convergence type acting in
the unit disk D). Suppose f(z) is a bounded analytic function in . Prove that the
Poincaré series

()= f(g(2)E'()

geG
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is an analytic function in D that satisfies the functional relation
®(g(2)g'(z) =P(z) forall ge G, zeD.

That is, ®(z) dz is an invariant form under G. It projects to a holomorphic differential
on the quotient Riemann surface D/ G.
Now suppose instead that G is of divergence type. Prove that the Poincaré series

() =Y f(g(@)(A)(2)

geG

is analytic in D and satisfies
®(g(2)(8)*(2) =P(z) forallgeG, zeD.

The invariant form ®(z) dz> projects to an holomorphic quadratic differential on
D/G.

3-24. Isotopy. Two mappings between manifolds f, g : M — N are said to be homo-
topic if there is a continuous flow F; : M — N, 0 <t <1 such that Fy = f, F| = g.
In contrast f, g are isotopic if f, g are homeomorphisms and at time 7, 0 <t <1,
F; is a homeomorphism. Show that a homeomorphism of a 3-manifold onto itself
can be homotopic but not isotopic to the identity. (Hint: S x [0, 1] flipped over. A
homeomorphism which on the boundary is a Dehn twist (Example 5-11) about the
boundary of a compressing disk.) In contrast, on a surface, homeomorphisms which
are homotopic are also isotopic.

Two simple curves y;, y» in a surface S are said to be isotopic if there is a continuous
map F; : S! x [0, 1] = S such that for each 7. F, is a homeomorphism of S!into S
such that Fy gives y; and Fy gives y». Two simple curves that are freely homotopic
in S are also isotopic.

On the other hand, the study of knots in S rests on the difference between isotopy
and homotopy: Any knot is homotopic to an embedded circle, but is isotopic to one
if and only if its complement is homeomorphic to the complement of an embedded
circle.

3-25. Homotopic isometries. Prove that homotopic isometries of a hyperbolic mani-
fold are identical, provided the fundamental group is nonabelian. Hint: lift to H?.

3-26. Voronoi diagrams, Delaunay triangulations, and polyhedra. Given a discrete
set of points X in H? (or H"), make the following construction. Given x € X construct
the cell C, with center x consisting of all points closer to x than to any other point
in X. It is the intersection of all half-spaces containing x which are bounded by the
planes orthogonal to the line segments between x and the other points of X. The
Voronoi diagram consists of the totality of cells built around elements of X. Itis a
subdivision of H3. Each face is shared by two cells, and each vertex is shared by at
least three cells. If v is a vertex, then there is a sphere o, about v which contains the
centers of all those cells sharing the vertex v. Moreover the ball bounded by o, lies
in the union of the cells sharing v and its interior contains no points of X.
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The Delaunay triangulation is dual to the Voronoi diagram. Given x € X draw a
geodesic segment from x to the points of X whose cells share a face with Cy, and
continue this process for all elements of X. We obtain a decomposition of space into
polyhedra. There is one polyhedron P, for each vertex v; the edges of P, are the
line segments between the centers of the cells that share the vertex v. The vertices of
P, are the centers x of these cells. The totality of polyhedra {P,} are the Delaunay
“triangles” (the term comes from the 2-dimensional case).

Efficient ways of numerically finding Voronoi diagrams and Delaunay triangula-
tions is an important issue in computer science.

If X consists of the orbit of x under a discrete group G without a fixed point at x,
C, is precisely the Dirichlet region with basepoint x. The dual Delaunay “triangles”
give a dual G-invariant decomposition of H? by polyhedra.

There is an interesting limiting case. Suppose M(G) is a geometrically finite man-
ifold of finite volume. In the upper half-space model, say, assume oo is a parabolic
fixed point. Construct the Ford “polyhedron” & with “center” co. As we have seen
on page 120, F is invariant under the stabilizer Staby, of co. Its orbit under the
cosets of Stab, is a Voronoi diagram. To obtain the Delaunay triangulation, draw
the geodesics between oo and the centers of the polyhedra with share faces with &,
and so on. Show that there results a tessellation of H* by ideal polyhedra centered
on the interior vertices { of I and its orbit. Down below, there is a decomposition of
M(G) into a finite number of ideal polyhedra. For more discussion see [Weeks 1993;
Petronio and Weeks 2000].

3-27. What is the maximum and minimum number of sides that a Dirichlet region
can have for a closed hyperbolic surface of genus g > 0 with b > 0 punctures?

The square once-punctured torus is defined by the property that there are two
geodesics of equal length that cross once. The hexagonal once-punctured torus has the
property that there are three distinct geodesics of equal length that intersect at a point.
Is it true that the hexagonal torus has the longest shortest geodesic in its deformation
space? Construct the corresponding symmetric Dirichlet regions and determine the
generating matrices.

3-28. (V. Markovic) In the ball model, suppose Q C S? is a simply connected com-
ponent of Q(G), for some nonelementary group G. Take the Dirichlet region P,
centered at a point p € Dome(€2). Then let p approach a point on dDome(£2) C A(G).
Show that the euclidean diameter of P, tends to zero. In fact if the euclidean distance
of p from S? is &, then the euclidean diameter of P, is < \/e.

3-29. Isomorphisms that determine homeomorphisms [Tukia 1985b]. Suppose that
¢ : G — H is an isomorphism between geometrically finite, nonelementary groups
without elliptics such that ¢(G) is parabolic if and only if g € G is so. The problem
is to determine when ¢ is induced by a homeomorphism. Start by showing that there
is a uniquely determined homeomorphism f,, between the respective limit sets which
induces ¢. The map f, sends the attracting loxodromic fixed point of g € G to the
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attracting fixed point of ¢(g). There is also need for [Tukia 1985b, Lemma 3.4],
which says there is a quasiisometry F' of the convex hull F : C(G) into C(H) which
induces ¢ and with the property that in the hyperbolic distance, d(x, F(C(G))) is
uniformly bounded for x € C(H). This is akin to one of the techniques used for
Mostow’s theorem.

There is a celebrated theorem of Fenchel and Nielsen concerning isomorphisms
¢ : T — I'" between two fuchsian groups. Namely ¢ is induced by an orientation pre-
serving or reversing homeomorphism H? — H? if and only if the following property
holds: The axes of loxodromics g, h € I intersect in H? if and only if the images
©(g), ¢(h) are also loxodromic and have intersecting axes.

To generalize this we say that a loxodromic g € G and a quasifuchsian subgroup
I C G intersect provided the fixed points of g lie in €2(I"), one in each component.
Suppose ¢ : G — H is an isomorphism between two geometrically finite groups with-
out parabolics or elliptics, and ¢ preserves intersection in the sense that a loxodromic
g € G and quasifuchsian I' C G intersect if and only if ¢(g) and ¢(I") intersect. Here
@(I") is necessarily quasifuchsian because f,(A(I")) is a topological circle.

Suppose G is geometrically finite but not quasifuchsian. Prove that if € is a
component of Q(G) there is a uniquely determined component ' of (H) such
that f,(02) = (') and ¢(Stabg) = Stabg. The intersection property comes in to
establish that if 0 C A(G) is a the limit set of a quasifuchsian subgroup of G, then
x,y € A(G)\ o lie in different components of S?\ & if and only if fo(x), fo(y) are
in different components of S? \ fo(0). The bottom line is:

Theorem 3.14.4 [Tukia 1985b, Theorem 4.7]. Suppose ¢ : G — H is an isomorphism
between nonelementary, geometrically finite groups without elliptics such that ¢(g)
is parabolic if and only if g € G is so. If A(G) is connected, assume that ¢ preserves
intersections. If A(G) is not connected, certain orientability conditions must be sat-
isfied for quasifuchsian subgroups and rank two parabolics. Then ¢ is induced by a
quasiconformal homeomorphism ® of H3 U S,

The orientability condition for a quasifuchsian subgroup H C G is that the map
f restricted to A(H) can be extended to an orientation preserving map of S? which
sends attracting fixed points of loxodromics in H to attracting fixed points of their
@-images. For a rank two parabolic subgroup, ¢ needs to be induced by an orientation
preserving map of S?.

3-30. Intersections. If G1, G, are finitely generated fuchsian groups, prove that the
intersection G| N G5, is also finitely generated.

If H is a finitely generated subgroup of the fuchsian group G and the limit sets are
the same, then H has finite index in G.

Both these results can be found in [Greenberg 1960].

If G| and G, are finitely generated subgroups of the not necessarily finitely gen-
erated H with Q(H) # @, then

AGI)NAGL) =AGNGy).
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This is proved in [Anderson 1996].

3-31. [Greenberg 1977, Theorem 2.5.8] Suppose « : z — z + 1 is a generator of a
rank one parabolic subgroup of the finitely generated kleinian group G. Note that for
any g € G, O € H, the perpendicular bisector of [g(O), ag(09)] is a vertical plane.
Show that the fundamental polyhedron P lies in a slab {(z = x +iy,t) :a < x <
a + 1}. There is a universal horoball at co. Suppose further that o has a horodisk
H={z:y>b}C Q(G). If for the euclidean closure H = Py NH # &, show that
H={z:a<c <x <c; <a+ 1} for some cy, c;. From this prove MacMillan’s
theorem that P N Q(G) has a finite number of sides.

3-32. Earthquakes. This is to introduce Thurston’s theory of earthquakes [1986a].
For this purpose let £ be the positive imaginary axis in the upper half-plane model
UHP of H?. Denote the left and right quarter planes determined by £ by A and B;
A and B have orientations inherited from C. From the point of view of A, a left
earthquake with fracture line £ is a discontinuous map which fixes A pointwise, and
in B is an isometry moving B fo the left with respect to A; that is, it moves B in the
positive direction with respect to the positive orientation of d A. Therefore in B it has
the form z — kz, for k > 1. It is uniquely determined once the displacement along £
is dictated.

If instead we require that B be fixed, the left earthquake along £ moves A to the
left from the point of view of a person standing in B. In A it has the form z — k~'z.

Next suppose we have a finite lamination. Fix a gap o as the base of operations.
Suppose p is a positive transverse measure — that is, to each leaf of the lamination
is assigned a positive number as atomic measure. The earthquake will be the identity
on sigma. A transverse geodesic based in o will cross a number of leaves. Carry
out a sequence of left earthquakes in sequence along the various leaves, using the
displacement assigned by .

Here is a more formal definition. Suppose A C H? is a geodesic lamination. A
left earthquake is a possibly discontinuous injective and surjective map E : H> — H?
which is an isometry on each leaf of A and on each complementary component. Given
two gaps and/or leaves X # Y, a line ¢ is said to be weakly separating if any path from
a point of X to a point of Y intersects £. Let Ex, Ey denote the respective isometric
restrictions of E. We require that the comparison isometry E;l o Ey be loxodromic,
that its axis £ weakly separate X and Y, and that it translate to the left, when viewed
from X. This last requirement means that the direction of translation along ¢ agrees
with the orientation induced from X C H?\ £. The case that one of X, Y is a line in
the boundary of the other is exceptional in that the comparison map is the identity.

The earthquake maps A to another lamination A’. The inverse of a left earthquake
is a right one.

If A has a finite number of leaves, left earthquakes are constructed as illustrated
above. Thurston proves that these finite earthquakes are dense in all left earthquakes,
in the topology of uniform convergence on compact sets.
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A left earthquake between two Riemann surfaces is an injective, surjective map
which lifts to a left earthquake of H?. In particular A is invariant under the deck
transformations. However if one or more leaves of A project to simple geodesics, lifts
are determined only up to “twists” along the geodesics. To avoid this ambiguity one
can associate the earthquake with the homotopy type of a homeomorphism between
the surfaces. A more common way, is to start with both an invariant lamination in
H2, and an invariant transverse measure (more of this below).

Earthquake Theorem [Thurston 1986a]. Every continuous orientation preserving
map dH? — 9H? is the boundary values of a left earthquake E of H?. The lamination
A is uniquely determined. On A, E is uniquely determined except along those leaves
£ on which it is discontinuous. For each such {, there is a range of choices of transla-
tions ranging between the limiting values of E on the two sides; all the choices have
the same image in H.

Suppose R =H?/G;,i =1, 2, are arbitrary Riemann surfaces with possible bound-
ary contours o R; coming from the action of G; on maximal open intervals of discon-
tinuity on 9H?. Assume h : Ry — R, is an (orientation preserving) homeomorphism
which extends to a continuous map Ry — dR». Then the boundary values on dH? of
a lift of h are the boundary values of a left earthquake of H> which projects back to a
left earthquake E : Ry — R,. Moreover, E has the same uniqueness indicated above.

This is a very general theorem. The second statement (which includes the first)
follows from the first as lifts of & extend to continuous maps of dH?. Punctures on
R do not necessarily come from punctures on R;.

Associated to any left earthquake is a nonnegative transverse Borel measure . Two
earthquakes corresponding to the same (A, p) have isometric images. The measure
is constructed by a process akin to Riemann integration (see [Epstein and Marden
1987]).

Normally one only works with the restricted class of uniformly (locally) bounded
earthquakes. These are the class of earthquakes whose transverse measures have the
property that for some K < oo, u(r) < K for all transverse geodesic segments t of
unit length.

The boundary values on dH? of uniformly locally bounded earthquakes are qua-
sisymmetric (that is, 1-quasiconformal) homeomorphisms, which means their bound-
ary values have quasiconformal extensions to H? (and which are equivariant if (A, )
is invariant under deck transformations). In the other direction, the boundary values
of a quasiconformal mapping H?> — H? (say the lift of a map between surfaces)
are also the boundary values of a uniformly bounded left earthquake as described
in the Earthquake Theorem. In particular this is true for bounded earthquakes and
quasiconformal mappings between Riemann surfaces of finite area. For the details,
consult [Thurston 1986a].

Given (A, w), an earthquake flow is the earthquake E, associated with (A, ) with
0 < t. For an application of this technique to the solution of the Nielsen Realization
Problem, see [Kerckhoff 1983].
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In summary, in the dictionary entry relating geometry to complex analysis, earth-
quakes are the analogue of quasiconformal mappings used to deform conformal struc-
ture.

3-33. The Nielsen kernel. Suppose G is a fuchsian group in the unit disk [ with
R = D/G the interior of a compact, bordered Riemann surface R of genus g > 0,
n > 0 punctures and m > 1 boundary contours. There is a set Cy, ..., Cy, of mutually
disjoint simple geodesics such that C; bounds an annular region A; with the boundary
contour y;. Let X denote the convex core of R. This is constructed as follows. Let
I; be a component over y; C dD; it is stabilized by an element ¢; € G. The axis C;
of a; ends at the endpoints of /; and lies over C;. Cut out of D the region bounded
by C;*|J I;. When this is done for all boundary contours and their lifts to D, what is
left is the lift of X;.

The convex core X is itself a compact bordered Riemann surface with the same
genus, number of punctures, and number of boundary contours as R. Introduce on
the interior of X its complete hyperbolic metric. Repeat the process; that is, let X,
be the convex core of X;. There results a nested sequence of subsets of D:

DODXiDX,D---.

Set Z = (2, X;. Bers first raised the problem: Describe Z. Following the insight
provided by the special cases in [Earle 1993], Jianguo Cao [1994] proved that Z has
no interior, and that Z is the Hausdorff limit of souls S(X;).

Cao defines the soul S(R) of R (or of any bordered surface) to be the set of points
Z € R such that there are at least two distinct shortest geodesic segments from z to
(J Ci. 1t contains | J C;. If there are no punctures, the soul is compact.

The soul is a union of geodesic arcs and is a deformation retract of R.

Explore this situation with the goal of gaining more precise information about Z,
and finding a purely geometric proof of Cao’s results. What about 3D?

3-34. Extension from Q(G) to S*. Suppose as in Section 3.7.2 that F, is a qua-
siconformal map of S2, with F, : Q(G) — Q(H), that induces the isomorphism
¢ : G — H between geometrically finite groups. Suppose that F : Q(G) — Q(H)
is quasiconformal, homotopic on €2(G) to the restriction of F3, and also induces ¢.
Using the density of the loxodromic fixed points in A(G) show that

Lemma 3.14.5. F has a continuous extension to a homeomorphism of S? that satisfies
F(¢) = F2(¢) forall ¢ € A(G).

Set H=F,"'oF:Q(G) - Q(G). The map H is homotopic to the identity
on each component of ©2(G), induces the identity automorphism of G, and is equal
to the identity on A(G). Let y, be a shortest geodesic from z to H(z). There is a
constant C; < oo such that L, (z) = dy(z, H(z)) < C) for all z € Q(G) (lift from
the quotient). Here dj,( -, - ) denotes the shortest hyperbolic distance on 2(G). From
this it follows if z — ¢ € A(G) in the spherical metric, then lim y, = ¢ uniformly on
y.. That is, there exists a constant C; such that d(y,, A(G)) < C, for all z € Q2(G),
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where d( -, - ) denotes spherical distance. Hence d(w, A(G)) < Cad(z, A(G)) for all
w € y, and some C, < 0o. (Actually we only need these estimates for z € 2 (G) near
apoint ¢ € A(G).)

I am grateful to Vlad Markovic for allowing inclusion of his unpublished result as
follows.

Proposition 3.14.6 (Markovic). H is quasiconformal on S*; hence F itself is the
restriction to Q(G) of an equivariant quasiconformal map of S*.

Proof. Markovic’s proof is as follows. Set X = A(G). From [Pommerenke 1984]
we know that X has the property of uniform perfectness, see Exercise 1-30. That is,
for the hyperbolic metric p(w)|dw| in each component of €2(G) and some constant
Cs; >0,

Csldw| 2|ldw|

dw.x) ~PWldwl <203

Upon integrating over a shortest geodesic y, of hyperbolic length L;(z) from z to
H(z), we find that C3d(z, H(z) < Lp(z) sup,e,. d(w, X) < L;,C2d(z, X). In other
terms, d(z, H(z)) < Cad(z, ¢) forany { € X. Now d(H (z), ¢) <d(H(z), 2)+d(z, ¢).
Consequently for some constant Cs, d(H (z), {) < Csd(z, ¢). The same holds if we
replace z by H(z). We conclude that

d(H(z),¢)
Cs

So the ratio of distances to ¢ is uniformly bounded between 0 and oo as z — ¢.
We are now in position to apply the geometric definition §2.8 of quasiconformality
to show that H (¢) is quasiconformal at ¢. Since ¢ was arbitrarily chosen this proves
H is quasiconformal on A(G). ]

=d(z,¢) = Csd(H(2), §).

3-35. Intersection number estimates [Fathi et al. 1979, pp. 58-59]. Let Ry denote the
result of removing the universal horodisks from R. Prove:

e There is a constant C > 0 such that for any two simple closed geodesics «,
their intersection number satisfies

t(a, B) < C Len(x) Len(B).

e Let {7;} be a finite system of simple closed geodesics and simple arcs that cut
Ry into simply connected regions. There exists a constant ¢ = ¢(Ut;) such that
for any simple closed geodesic « in Ry,

Z t(a, 7)) > c Len(a).

Hints: For the first, cover o and B by e-disks thereby dividing them into short
geodesic segments. Each segment intersects another at most at one point. Show that

Len(B) T
€

Len
() n
€

ta, B) < ( D) ( ).
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For the second, let ¢ = 1/L where L is the length of the longest simple arc in the
simply connected regions.

3-36. Interval exchange transformations [Masur 1982; Bonahon 2001]. Let I C R be
the interval (0,1]. Write I for its upper and lower edges. Suppose {Il.+} is a partition
of I into n half-closed intervals {[a;_1, a;)} of various lengths, with ¢y =0, a, = 1.
Take the same sequence of intervals on /~ but then permute them in any way. Label
the result by the notation {/;” } where I;~ has the same length as Il.+. The corresponding
internal exchange transformation J is the piecewise euclidean isometry that maps If
onto I;, 1 <i < n. The map is one-to-one, except two-to-one at the endpoints of
the closures of the intervals. We must chose the permutation so the interval exchange
does not reduce to an exchange of fewer intervals, that is, so that J is not continuous
at any interval endpoint.

There is a naturally associated closed Riemann surface R: View the complement
of I in S? as a polygon with n-pairs of edges Il.i. Identify each pair of edges by
the direction preserving isometry; akin to what we did by “rolling up” fundamental
regions by their edge identifications. The resulting surface will have singular points
coming from the endpoints of the intervals. But there will be a natural complex
structure at these points as well which maps the local neighborhoods into C.

The vertical euclidean lines give rise to a measured foliation of R. Namely, except
for a countable number of points, given x € I the forward and backward orbit J*" (x)
will not hit an interval endpoint. These generic points will lie on a leaf of a foliation
of R by vertical lines. The differential dx is the local vertical measure of the foliation.

The foliation is turned into a measured lamination by showing in the universal
cover, the leaves have endpoints on dH? and replacing each leaf by a geodesic.

By adjusting the interval lengths one can obtain minimal laminations, and uniquely
ergodic ones as well. See [Masur 1982] for more details and further references.

3-37. Horocyclic foliations. Assume we have a closed surface S, a hyperbolic metric
g on S, and a maximal geodesic lamination A such that all complementary regions
are ideal triangles. From this data we will construct a measure foliation called a
horocyclic foliation.

First foliate each ideal triangle as follows. Model the triangle by an ideal triangle in
the disk model D whose sides have equal euclidean lengths. Foliate a neighborhood
of each vertex v; by a family of arcs contained in concentric circles with center at v;.
Do this symmetrically about all three vertices. We are left with a small central curved
triangle that is not foliated.

Using our model example, foliate S\ A. The leaves joint together to form a family
of mutually disjoint open arcs of infinite length in S, each orthogonal to the leaves
of A. Collapse the finitely many central triangles to points. This results in a singular
foliation of a new surface Sy equivalent to S with singular points at the collapsed
triangles. Replace S by So.
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The hyperbolic metric g determines a transverse measure [, by measuring vertical
distances along the leaves of A. Thurston [1998] proved that the map g — (Ag, i)
is a homeomorphism of Teich(S) onto its image in measure foliation space.
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Algebraic and geometric convergence

The focus of this chapter is on sequences of kleinian groups, typically sequences
that are becoming degenerate in some way. For these, it is necessary to carefully
distinguish between convergence of groups and convergence of quotient manifolds.
The former has to do with sequences of groups whose generators converge, the latter
with sequences of groups whose fundamental polyhedra converge. Our work in this
chapter will enable us to describe the set of volumes of finite volume hyperbolic 3-
manifolds. In preparation for this discussion, we will introduce the operation called
Dehn surgery.

4.1 Algebraic convergence

In this section we will prove the two theorems which provide the basis for working
with sequences of groups.

Let I' be an abstract group and {¢, : ' — G,} be a sequence of homomorphisms
(also called representations) {¢,} of I to groups G, of Mobius transformations. Sup-
pose for each y € I, lim,,—. oo ¢, (¥) = ¢(y) exists as a Mobius transformation. Then
the sequence {¢,} is said to converge algebraically and its algebraic limit is the group
G ={p(y):y €T}; ¢ : ' > G is a homomorphism. When we say a sequence
of groups converges algebraically, we are assuming that behind the statement is a
sequence of homomorphisms generating the sequence.

In particular, a sequence of r-generator groups G, = (A1,A2, ... A;,) 1S said
to converge algebraically if Ay = lim,_, Ak, exists as a Mobius transformation,
1 < k <r. Its algebraic limit is the group G = (A1, As,...A,;). To make this
terminology consistent with that used above, refer to the free group F, on r-generators
and express G, as the sequence of representations ¢, : F, — G, determined by
sending the k-th generator of F, to Ay ,.

If the sequence {G,} consists of elementary groups, the limit may or may not be
discrete. However in most interesting cases, the sequence consists of nonelementary
groups. For nonelementary groups, the convergence is controlled as spelled out by
the following fundamental results.

187
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Theorem 4.1.1 [Jgrgensen 1976; Jgrgensen and Klein 1982]. Let {G,} be a sequence
of r-generator nonelementary kleinian groups converging algebraically to the group
G. Then G is also a nonelementary kleinian group, and the map Ay — A, 1 <k <r,
determines a homomorphism ¢, : G — G, for all large indices n.

In general ¢, will not be an isomorphism. For example, a sequence of elliptic
transformations {Ay ,} may converge to a parabolic transformation Ax. In the opposite
direction, Theorem 4.1.1 implies that if some Ay is elliptic of order r, then so is A ,
for all large n.

In contrast to Theorem 4.1.1, in applications we frequently work with isomor-
phisms from a fixed group:

Theorem 4.1.2 [Jgrgensen 1976]. Suppose G is a nonelementary kleinian group and
{6, : G — G} is a sequence of isomorphisms onto kleinian groups G,. Assume that
for each element g € G, lim,_. 60,(g) = 0(g) exists as a Mobius transformation.
Then Goo ={0(g) : g € G} is a nonelementary kleinian group and 6 : G — G, is an
isomorphism.

In Theorem 4.1.2, we do not need to require that G be finitely generated.
These two theorems are consequences of Jgrgensen’s inequality.

Proof of Theorem 4.1.2. First we will show 0 : G — 6(G) is an isomorphism. If
it is not, 6(g) is the identity for some g # id € G. Since 6, is an isomorphism, if
g € G has finite order, 6,(g) and in the limit 6(g) must have exactly the same order.
Therefore if 8(g) = id, g must have infinite order. Since G is not elementary, there
is an element 4 € G also of infinite order but without a common fixed point with
g. Each group (6,,(g), 6,(h)) is also nonelementary, since a nonelementary discrete
group cannot be isomorphic to an elementary discrete group. But then we are in
violation of Jgrgensen’s inequality (2.1) for all large n.

Next we will show that 6(G) is discrete. If not, there is a sequence {gx # id € G}
such that limy_, o, 6(gr) =id. There is a sequence n =n (k) so that limy_, », 6, (gx) =id.
We may assume that either all g; lie in the same cyclic subgroup or else their fixed
points are mutually disjoint. In either case we can find an element 4 € G of infinite
order whose fixed points are distinct from those of all but a finite number of the
elements g;. The sequence of nonelementary groups (6, (h), 6,,(gx)) for large k is in
violation of Jgrgensen’s inequality.

Finally we have to show that 6(G) is nonelementary. That is now easy because an
elementary discrete group is a finite extension of an abelian group. O

Proof of Theorem 4.1.1. We start with a sequence of lemmas:

Lemma 4.1.3. If each of the four Mébius transformations A, B, AB, ABA~'B~ ! is
elliptic or the identity, then they have a common fixed point in H>.

Proof. If A and B commute, then according to Lemma 1.5.2, they either have the
same axes, or each is of order two and their axes are orthogonal at a common point



4.1 Algebraic convergence 189

of intersection. In either case the conclusion is obvious. So assume they do not
commute. Find U so that the conjugates UAU ™!, UBU ™! are such that the former
has fixed points 0, co. Then conjugate both by V = (‘/OE ' /?ﬁ), where c is the lower
left entry of U BU . Rename the results by A, B so as to end up with the following:

et? 0 a b
Az(o e‘ie)’ B=(1 d)’ 20 £0, ad —b=1.

Now tr(B) =a +d =r; and tr(AB) = ¢'%a + ¢7%d = r, are real while ¢?¢ # 1.
Solving the two equations for a and d we find that « = d. Since B is elliptic, its trace
satisfies —2 < tr(B) < 2. Hence the fixed points of B, namely %(a —d+./tr2(B) — 4 ),
are purely imaginary. Further the product of the fixed points is 1 —ad = —b.

Next we find for the commutator that tr(ABA™'B~1) — 2 = 4bsin? §. Since this
is elliptic as well, we must have b < 0. Since the product of the fixed points of B is
positive, they lie on opposite sides of z = 0. That is, in the upper half-space model of
H?, the axes of A and B intersect. The point of intersection is fixed by both, and by
the group they generate. U

Lemma 4.1.4. Suppose that A, B are elliptic and that their axes intersect properly in
H3. Then the plane P containing their axes does not contain the axis of AB.

Proof. [Gallo et al. 2000, Lemma 3.4.3] Fix a point x on the axis of the elliptic AB
which does not lie on the axis of B. Set y = B(x) so that A(y) = x. Let P’ denote
the plane which is the perpendicular bisector of the segment [x, y] so that x and y are
equidistant from P’ in the hyperbolic metric. But x and y are also equidistant from
each point on the axis of B, since B is a rotation about its axis. All points equidistant
from x and y lie in P’ so that the axis of B lies in P’. But x and y are also equidistant
from the axis of A so that lies in P’ as well. Therefore P’ = P. But x, which lies in
the axis of AB, does not lie in P’. O

We will digress from the proof of Theorem 4.1.1 to draw the following important
corollary:

Corollary 4.1.5. A group G, discrete or not, composed only of elliptic elements either
has a common axis or it has a unique common fixed point in H>.

Proof. Suppose A, B € G have distinct axes £4, £g. Lemma 4.1.3 shows that they
intersect in a point x € H3. Let P be the plane they span. Consider a third element
C € G with axis £¢ distinct from £4, €p. If x ¢ ¢, then £ C P. So all other axes
from G either pass through x or lie in P. On the other hand by Lemma 4.1.4, the
axis £4p of AB, which intersects £, at x, does not lie in P. So the plane P’ spanned
by 24, £4p does not coincide with P. But repetition of our argument shows that £¢
lies in P’ as well, a contradiction. We have shown that either all elements of G have
the same axis, or the set of axes of elements of G have a single common point of
intersection in H?. O
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Lemma 4.1.6. If (A, B) is nonelementary, then at most one of the three elements
A, B, AB is elliptic of order two.

Proof. An element of order two is conjugate to z — —z whose axis in the upper half-
space model is the half-line rising from z = 0. If both A and B are elliptic of order
two and their axes do not coincide, there is a unique common perpendicular line ¢ to
the two axes. Since A and B are rotations by 7 about their axes, each maps £ onto
itself by rotating it by 7 about the crossing point with its axis. The cyclic subgroup
(A B) which maps ¢ onto itself without reversing direction has index two. The bottom
line is that the group (A, B) is elementary, a contradiction. U

Lemma 4.1.7. Suppose Ay, ..., A, generate an infinite, discrete group G. The set
[Ai, AiAj, AiAj AL, (AADAKAADTIAY 0 jk=1,...,1)
contains an element of infinite order.

Proof. The assertion is true for r = 1. For r > 2, assume the assertion is false so
that all the listed elements have finite order. We will show that this implies they have
a common fixed point in H3. This in turn will imply that G is a finite group, in
contradiction to the hypothesis.

Use our current hypothesis and apply Lemma 4.1.3to A = A;A;, B=A;. We see
that A;A;, A; have a common fixed point x in H? and therefore A ; fixes x as well.
Consequently the axes of the generators {A;} pairwise intersect.

Choose a point x € H? at which a maximal number of generator axes intersect,
say the axes of Ay,..., A, 2 <m <r. If m =r we are finished. If m < r, then
the axis ¢ of A,,4+ does not pass through the common point x of its predecessors.
We may assume that the axes of A; and A> meet ¢ at different points. Let P be the
plane spanned by the axes of Aj, Ay; necessarily P contains x and £. According to
Lemma 4.1.4, the axis of A;A,, which goes through x, does not lie in P. So the axis
of A1 A is disjoint from ¢, in contradiction to Lemma 4.1.3. O

Incidentally we have confirmed the following:
Corollary 4.1.8. A discrete group in which every element is elliptic is a finite group.

Lemma 4.1.9. Suppose that Ay, ..., A, generate a nonelementary, discrete group G
and that g € G is loxodromic or parabolic. Then H; = (A;, g) is nonelementary for
at least one index i.

Proof. Suppose to the contrary that for each index, H; is elementary. If g is loxo-
dromic, each A; must fix or interchange the fixed points of g. Thus G itself must be
elementary since it fixes the set of two fixed points of g. If g is parabolic, each A;
fixes the fixed point of g and again G is elementary. O

Lemma 4.1.10. Suppose that A =lim A,,, B = lim B,, for two sequences of Mdbius
transformations where each group G, = (A, By,) is discrete. Then:

(a) If G, is nonelementary for all indices, A # id.
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(b) If G, is nonelementary for all indices and A is elliptic, its order is finite.
(c) If neither A nor B has order two, then A and B have a common fixed point on
S? if and only if A, and B, also do so for all large indices.

Proof. We will first prove part (c). The hypothesis implies that for all large n, A,,, B,
are not elliptic of order two. First assume that A,, and B, have a common fixed point
on S? for all large indices. The trace of their commutator is +2 by Lemma 1.5.1.
Thus by continuity the commutator of A and B also has trace +2 and therefore A and
B have a common fixed point as well.

Conversely, suppose A and B have a common fixed point so that the trace of their
commutator K = ABA™'B~1is 4+2. Also K =1lim K,, = lim A,,BnA;lBrjl. For all
large indices, either A, and B, have a common fixed point or K,, is not parabolic,
since the trace # —2. If the former case occurs we are finished. So assume that for
all large n, K, is not parabolic.

Since A, B, K all share a fixed point,

r’(K)—4=t(KAK'A™Y—2=w(KBK'B~)—2=0.
For all large indices then,
|tr?(K,) — 4| + (K, A K, A D =2 < 1,
|tr*(K,) — 4| + (K, B,K, "B, —2| < 1.

Since K, is not parabolic and A, and B, are not of order two, according to Theo-
rem 2.1(i), G, is cyclic or a finite abelian extension of a cyclic group. Now K, has
two fixed points and neither A, nor B, exchange them. The remaining possibility is
that A, and B, share the fixed points of K. This completes the proof of (c).

Part (a) is a direct consequence of Jgrgensen’s inequality. To prove (b), assume
A is elliptic. If A is elliptic of infinite order then for some g, A7 is close to id. If
A}l #id, it is elliptic or loxodromic. For some ¢ and all large indices,

|tr? (A7) — 4| + |e(ALB, A, "B, ") — 2| < 1.

Either part (i) or (ii) of Theorem 2.1 applies. If it is (i), then G, is elementary. If it
is (ii), then B, is elliptic of order two and interchanges the fixed points of A{, and
hence of A,. Therefore (A,, B,) is elementary, a contradiction. O

We can now continue with the proof of Theorem 4.1.1. The hardest part is to prove
that G is not elementary. The case r > 3 can be reduced to the case r = 2. For if
r > 3, according to Lemma 4.1.7, there exists a loxodromic or parabolic g, € G,
whose length as a word in the generators {A; ,}, 1 <i <r, is uniformly bounded in
n. Applying Lemma 4.1.9, for each n there is a nonelementary subgroup H, of G,
generated by g, and some generator A; ,. Since the word length of g, is uniformly
bounded terms of the given generators, a subsequence of the two generator groups
H, converges algebraically to a subgroup H of G. If H is nonelementary, so is G.

So we may assume that r = 2 and G, = (A ,, A2,) converges algebraically to
G = (A1, Az). In view of Lemma 4.1.6 after rearranging some more if necessary,
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we may assume that for all n, neither A, nor A, , has order two. Then neither A,
or A, can have order two, for if say A? = id, replace G, by (A%’n, Ay ) to get a
contradiction to Lemma 4.1.10(a).

Since G, is nonelementary, A, and A, , have distinct fixed points. By Lemma
4.1.10(c), A1 and A, have distinct fixed points as well.

Among the four elements A, Ay, AjA», A1A2A1_1A2_1 of G, there is an element
X of infinite order. Otherwise these elements would be elliptic of finite order, and
the same would hold for the corresponding elements of G, for large indices. But by
Lemma 4.1.3, G,, would be a finite group. By Lemma 4.1.10(b), X cannot be elliptic.

If X is parabolic, then at least one of the parabolic elements A; X Al_l, Ar XA, :
has no common fixed point with X. For otherwise A; and A, have a common fixed
point. This makes G nonelementary.

If X is loxodromic, we claim that there exists ¥ € G such that X and Y XY ~! have
no fixed points in common.

To establish this claim, we will first investigate what happens if for Y € G, X and
YXY~! do have a common fixed point. Applying again Lemma 4.1.10(c), we see
that the corresponding elements in G, also have a common fixed point, for all large
indices. These approximants are loxodromic. Since G, is discrete, two loxodromic
elements cannot have exactly one fixed point in common by Lemma 2.3.1(ii),(iii).
Therefore X and Y XY ! have both fixed points in common. Unless Y has order
two and interchanges the fixed points of X, X and Y have the same fixed points too.
Consequently by choosing Y as either A; or A, we obtain the desired result that X
and Y XY ~! have no fixed points in common. We conclude that G is not elementary.

Now return to the hypothesis of Theorem 4.1.1. We are given a sequence G, =
(A1n, ..., Arp) such that lim,_, o Ax, = Ax With G = (A4, ..., A,). We will use
the correspondence ¢ : G — G,, generated by ¢,, : Ay — Ag.p.

We are ready to prove that G is discrete. Suppose otherwise. Then there exists a
sequence of elements By € G with lim By = id. We may assume that no B,, has order
two. Since G is nonelementary, according to Exercise 2-1 there are two loxodromic
elements g1, go € G without a common fixed point. By Lemma 4.1.10(c), g; and
By have a common fixed point if and only if ¢, (g;) and ¢, (By) also do, for large n.
Since G, is discrete, this can occur only if the elements have the same fixed points,
for neither is of order two. In this case g; and By also have the same fixed points.
The bottom line is that we can pick an infinite subsequence so that g, say, has no
fixed point in common with {B,,}. Likewise ¢,(g;) and ¢, (B,,) have no fixed points
in common so generate a nonelementary subgroup. Now {(¢,(g1), ¢, (B,,))} violates
Jgrgensen’s inequality. Hence G is discrete.

The last step is to show that the correspondence ¢,, : Ay — A, can be extended to
a homomorphism ¢,, : G = (Ay, ..., A,) = G,,. A necessary and sufficient condition
that extension of ¢, to a homomorphism G — G, is possible is that for each “relation”
R=[], A7*=idin G also ¢,(R) =[], A7* =id. Firstof all, by Theorem 2.5.3, there

iy i,n
are only a finite number of relations in G: more precisely, there are a finite number
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of relations in G such that every other relation is a consequence of those. For if to the
contrary ¢, (R) # id, application of Lemma 4.1.10(a) results in a contradiction. []

There is another interesting corollary. Denote the space of ordered r-tuples of
Mobius transformations which generate nonelementary groups by V.. Let D, be the
subset consisting of discrete groups.

Corollary 4.1.11 [Jgrgensen 1976]. Each component of D, consists of mutually iso-
morphic groups.

Proof. Choose a component D and a group G € D. Let X denote the set of all
homomorphic images ¢ of G in D. By Theorem 4.1.1, X is relatively open in D. It
is also closed in D. Therefore X = D. The same argument holds upon replacing G
by any G| € D. We conclude that G and G are isomorphic. See also Section 5.1. [J

4.2 Geometric convergence

Algebraic convergence deals not with geometry but with convergence of group gener-
ators. It is possible that in a sequence of groups {G,} there are words W,, € G,, in the
generators, whose length increases without bound as n — oo, yet which converge to
a Mobius transformation. Such phenomena are not detected by focusing on conver-
gence of generators. Instead the phenomenon impacts the behavior of the sequence
of quotient manifolds. From the point of view of a manifold, the generators of the
fundamental group are rather arbitrarily chosen loops. What is fundamental are the
geometrical quantities that determine its “shape”. If we have a sequence of manifolds,
we need a framework for discussing convergence to a limiting manifold.

If {G,} is a sequence of groups of Mdbius transformations, define its envelope as

Env{G,} = {¢ € PSL2,C): g=1im g,, g, € G,}.
It follows that Env{G,} is itself a group.

Lemma 4.2.1. If each G,, is discrete, then either H = Env{G,} is elementary, or it is
a nonelementary, discrete group.

Proof. According to Corollary 2.2.1 a group is discrete if and only if every two
generator subgroup is discrete. Assume that H is not elementary. Then given an
element A of infinite order there is another /4, without a common fixed point. If the
nonelementary subgroup (i, ho) were not discrete, we could find as in the final part
of the proof of Theorem 4.1.1 that A\, h), € (hy, hy) with i, nearly the identity such
that (A, b)) is nonelementary yet in violation of Jgrgensen’s inequality (2.1). Now
h', I, are each limits of elements in G,. For large n, the pair of approximants in G,
will generate a nonelementary subgroup of G, yet violate Jorgensen’s inequality, a
contradiction. This proves that any two generator nonelementary subgroup of H is
discrete. 0
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We say that the sequence of groups {G,} converges geometrically (to Env{G,})
if and only if for every subsequence {G,,} of {G,}, Env{G,;} =Env{G,}. In other
words, {G,} converges geometrically to H if and only if (i) each & € H is the limit
h=1limg,, gn € G, and (ii) whenever lim g,,, = g exists for a subsequence {n;} then
g € H. Necessarily H = Env{G,}.

To justify use of the term “geometric convergence”, and to give a precise meaning
to the expression “convergent sequence of hyperbolic manifolds” we introduce the
auxiliary concept of polyhedral convergence.

4.3 Polyhedral convergence

The sequence of discrete groups {G,} converges polyhedrally to the group H if H is
discrete and for some point © € H?, the sequence of Dirichlet fundamental polyhedra
{P(G,)} centered at O converge to P(H) for H, also centered at O, uniformly on
compact subsets of H?>.

We need to be more precise about the criterion for polyhedral convergence. Given
r >0, set

B, = (¥ e’ :d(0,X) <r},

where d (-, -) denotes hyperbolic distance. We will work with the truncated polyhedra
Pnr=P(G,)N B, and P, =P(H)N B,. A truncated polyhedron P, has the property
that its faces, that is the intersection with B, of the faces of P, are arranged in pairs,
paired by the corresponding face pairing transformations of P. Thus the projection
of P, into the quotient 3-manifold is a relatively compact submanifold, bounded by
the projection of P N d B, (Proposition 3.5.1).

The criterion for polyhedral convergence is as follows. Given any r sufficiently
large, there exists N = N(r) > 0 such that (i) to each face pairing transformation
h of P,, there corresponds a face pairing transformation g, of P, , foralln > N
such that lim,_, o g, = h, and (ii) if g, is a face pairing transformation of P, , then
the limit 4 of any convergent subsequence of {g,} is a face, edge or vertex pairing
transformation of P,; in particular i # id. In short, each pair of faces of P, is the
limit of a pair of faces of {P, .}, and each convergent subsequence of a sequence of
face pairs of {P, .}, converges to a pair of faces, edges, or vertices of P,.. We remark
that it is possible that P, , = B, for all large n. In this case the sequence of polyhedra
converges to H? itself.

If a given sequence of discrete groups is to converge polyhedrally, one must be
allowed to conjugate the groups if necessary to find a point © € H? that can effectively
serve as center for all the polyhedra. We should be aware of the fact that a group can
be conjugated so that for fixed O, P collapses. Namely conjugating (az+b)/(cz+d)
by z > kz results in k~V(kaz 4+ b)/(kcz +d). Its limit as k — oo is 0, if ¢ # 0.

The criterion needed is that there be a small ball about O that lies in the interior
of the polyhedron for every group in the sequence. This is described in the following
lemma.
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Lemma 4.3.1. 7o any infinite sequence of discrete groups {G,} corresponds a se-
quence of conjugates {A, G, A, "'} which contains a polyhedrally convergent subse-
quence.

Proof. Given O € H?, for each n choose a Mobius transformation A, such that G, =
A,G,A; ! has the following property: Each truncated polyhedron P, = PG,
centered at O contains the ball Bs centered at O for r > 8. Here § > 0 is a fixed
number given by the universal ball property (Proposition 3.3.4). Thus the sequence
of polyhedra centered at O of the conjugate groups cannot collapse to a convex object
without interior... which is certainly possible in general.

We claim that for fixed r > & the number of faces of the truncated polyhedra {P], ,}
is uniformly bounded as n — oo. The reason for this is that there is an upper bound on
the number of mutually disjoint balls of hyperbolic radius é that fit inside Bs,. There-
fore there is an upper bound, independent of 7, on the number of points in the orbit
G,,(0) thatlie in Bs,. A face pairing transformation of T;’r satisfies d (O, g, (0)) <2r,
and the segment [0, g,(0)] pierces a face. Hence there is also a uniform bound M
independent of n on the number of faces.

Consequently given s > 0, there exists a large r = r(s) such that the orbit of P}, ,
under its face pairing transformations covers the ball B, for all n. This is because there
is a uniform bound on the length of words W in the face pairing transformations of
P(G),), and the length of their segments [0, W (0)], required for the images of P(G/,))
to cover By. For sufficiently large r all of the elements W are also words in the face
pairing transformations of the truncated polyhedra. The number of polyhedra meeting
B is uniformly bounded in n by some N < oo.

For fixed r and each n make a list of the face pairing transformation {g; ,} of P} ,,
1 <i < M (by repetition we may assume there are M faces for each n). Take a
subsequence of {n} and relabel so that for each i, h; = lim,_, g, exists; h; # id
because d(0, g;,(0)) > 28. Correspondingly construct the polyhedron

Pr = (¥ el :d(0,X) <d(X hi(0), 1 <i <M}

Thus Bs C Py N B, =1lim P, .

Now take a sequence r = r;y — oo and repeat the process for each r,. We get
a nested sequence of polyhedra Bs C Py C Pf C ---. Set Poo = ;2| Pi. The
successive sets of side pairing transformations of the Py, are nested as well. Let {A;}
denote the union. Let H denote the group they generate.

We claim that H is discrete, and P, = Po(H). Possibly H = {id} and Po, = H?,
the case that the groups {G,} blow up completely.

First we claim that the orbit of P., under H covers H3. As we have seen, given
s > 0 there exists r = r(s) such that the G, -orbit of P} . covers the ball By for all
n. For each n we can make a list of N transformations W; ,,, W2 ,,, ..., Wy, such
that UlN: | Wi,n(ﬂ’;l,r) D Bs. Each W; , is a word in the face pairing transformations
of P, and the lengths are uniformly bounded as a function of s. Passing to a subse-

n,r?
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quence if necessary, each W; = lim,_, o, W;, exists; necessarily W; € H. Therefore
(U; W;(Px)) N B, covers By. Since s is arbitrarily chosen, our claim is established.

Next we claim that no two points in the interior of P, are equivalent under H.
For suppose that W(x) = y for x,y € Int(Po,) and W € H. The element W is a
word in the generators {h;}. For each n, let W, denote the corresponding word in
the approximants {g; ,} so that W, € G, and lim W,, = W, lim W, (x) = y. Choose
r > max(d (0, x),d (0, y)). Then for all large n, x and W, (x) lie in Int(‘.P;l’r). This
is impossible unless W, = W =id.

We conclude that P, is a fundamental polyhedron for H, and that H in turn is
necessarily discrete. U

We can now justify our use of the term “geometric convergence”. But first note
that it is possible for a sequence of nonelementary discrete groups to converge geo-
metrically and polyhedrally to an elementary group: here are two examples:

for-ohomcon). {32, e s )
z—3 n-n°z—3 n
This is why in the following fundamental result we have to explicitly assume that the
groups are nonelementary.

Proposition 4.3.2. A sequence {G,} of kleinian groups converges geometrically to a
nonelementary kleinian group if and only if it converges polyhedrally to a nonelemen-
tary kleinian group. The geometric and polyhedral limits are the same.

Proof. Suppose first the sequence converges polyhedrally to H. If 7 € H then h is
a word W in the face pairing transformations of P(H) = P,. As in the proof of
Lemma 4.3.1, the word is the limit of a sequence of words W,, € G,,. Next we have to
show that if for a subsequence & = lim g, gr € Gy, then h € H. Again we return to
the proof of Lemma 4.3.1. Let s = 2d (0O, h(0)), where the polyhedra are centered at
O. We showed that B, C UlN:l Wi (Poo N B,) where W; =limy_, o W; and W; ;. € Gy.
Therefore h = W;, for some i, and is the limit as k — oo of the corresponding word
Wi; . We conclude that H is the geometric limit.

Conversely, suppose H is the geometric limit of {G,}. By the universal ball prop-
erty of Proposition 3.3.4, there exists © € H? such that the & (Bs) N Bs = & for all
h #1id € H. We claim that the same property holds for G, for all large n. Otherwise
there would be a sequence g, € G, such that g,(Bs) N Bs #= &. A subsequence of
{gn} converges to a Mobius transformation g.. If goo 7 id then it would have to lie in
H, a contradiction. If g, = id we will find a contradiction to Jgrgensen’s inequality
(2.1). Here we have to use the assumption that H is nonelementary. We can find two
loxodromic transformations /1, h, € H which have mutually disjoint fixed points
(Exercise 2-1). Each is the limit #; = lim h; ,,, h; , € G,. For large n at least one of
the h; ,,, say hy ,, does not share a fixed point with g,. Now we can apply Jgrgensen’s
inequality to (g,, h1.,). The conclusion is that {G,} converges polyhedrally. O

We remark that the argument also applies in the following elementary situation. A
sequence of cyclic loxodromic groups converges polyhedrally to a discrete parabolic
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group P if and only if it converges geometrically to P and no sequence of distinct
elements converges to the identity. Here P may be of rank one or rank two. See
Section 4.10.

Since geometric convergence makes no reference to a choice of center O for poly-
hedra, we can now remove any sign of dependence of polyhedral convergence on the
choice of center O.

Corollary 4.3.3. If {G,} converges polyhedrally to the kleinian group H with one
choice of center O for the polyhedra, it converges polyhedrally to H for any choice of
center (which is not an elliptic fixed point of H).

4.4 The geometric limit

We will need two lemmas. The first is a corollary of Theorem 4.1.1.

Lemma 4.4.1. Suppose that {G,} is a sequence of nonelementary kleinian groups
converging algebraically to G. There is no sequence of elements g, € Gy, gr # id,
with lim g, = id or with lim g, = g with g elliptic of infinite order.

Proof. Present G, = (A1, A2.p, ...), where lim Ay , = A and no two generators
have the same set of fixed points.

Case 1. g, is elliptic for all large indices. For all large n, no generator Ay , can
share exactly one fixed point with g,. Otherwise A, would have to be parabolic
and the order of g, could not exceed six. Nor is it possible that every generator Ay ,
shares its fixed points with g, or is of order two and interchanges the fixed points of
gn. For then G,, would be elementary. The conclusion is that for some &, (g, Ax.n)
is nonelementary for all large indices, leading to a violation of Theorem 4.1.1.

Case 2. g, is parabolic for all large indices. At most a finite number of elliptics
can share its fixed point and at least one generator, say A does not. This again leads
to a violation of Jgrgensen’s inequality.

Case 3. g, is loxodromic for all large indices. At most a bounded number of
elliptics share a fixed point or interchange its fixed points, and at least one generator
does neither. One is led to the usual contradiction. U

Lemma 4.4.2. Suppose the sequence of nonelementary kleinian groups G, converges
algebraically to G. There exists a point O € H* and & > 0 such that, for a subsequence
Gy, no element of Gy has a fixed point in the ball B.(0) of radius & about O.

Furthermore, there exists § < € such that for all large indices, Ty (Bs(0)) is disjoint
from Bgs(0), for all Ty #id € Gy.

Proof. We begin by showing that given x € H?3, there exists & with the following
property. There exists a point x,, € B(x) such that any axis of G, which intersects
B (x) passes through x,,.

If this assertion were false there would be a sequence &, — 0 and rotation axes ¢,,, £,
of E,, E|, € G, which intersect B, (x) but don’t have common point of intersection
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in B.(x). We may assume there is convergence E, — E, E; — E’ where E, E’ both
fix x. Also, their rotation axes converge to lines ¢, ¢’ through x. By Lemma 4.4.1
E, E’ are elliptic of finite order with rotation axes £, £'.

According to Theorem 4.1.1, or the Universal Elementary Property, (E,, E,) is
necessarily elementary for all large indices.

Now E,, E/, cannot share a fixed point on S, for their commutator would then
be parabolic and by Lemma 4.4.1 would remain parabolic in the limit. Yet the limit
would have to fix x.

Nor can E,, E], both be elliptic of order two with disjoint axes, for E, E, would
then be loxodromic and the limit, which fixes x, could only be the identity, which is
impossible again by Lemma 4.4.1.

The remaining alternative is that for all large indices, (E,, E},) is a finite, noncyclic
group with a common fixed point x,, € H. As a noncyclic finite group, the number
of elements (the order) of (E,, E/,) is uniformly bounded. Therefore it is isomorphic
to (E, E’), and x, — x.

From our argument we conclude that there exists € > 0 and x,, € B.(x) such that
any rotation axis of G, that intersects B.(x) passes through x,, for all large indices.
Moreover, the finite subgroups Stab(x,) C G, are isomorphic to the limit group de-
noted by Stab(x) and lim x,, = x.

There are only a finite number of possibilities for Stab(x), unless it is cyclic or a Z»
extension of a cyclic group. Find O € B, (x) and ¢ <¢ suchthat 7 B, (O)NB,, (0) =2
for all T # id € Stab(x). This property will persist for Stab(x,), all large n.

Now consider the second assertion of Lemma 4.4.2. If it were false, corresponding
to a sequence §, — 0 there would be a sequence Ty # id € Gy, k = k(n), with

Ti(Bs, (0)) N By, (0) # 2.

Take a convergent subsequence, again labeled {7;}. Its limit 7 = lim 7} fixes O but
its approximates have no fixed point in Bs, (O). Therefore 7' = id, again a violation
of Lemma 4.4.1. ]

Theorem 4.4.3 [Jgrgensen and Marden 1990]. Suppose the nonelementary kleinian
groups G, converge algebraically to G. Then there is a geometrically convergent sub-
sequence {Gy}. The limit H of any geometrically convergent subsequence contains
G; consequently M(G) is a covering manifold of M(H ).

If the geometric limit H is finitely generated, there is a sequence of homomorphisms
to its approximants Y : H — Gy, for all large k, such that lim Y (h)=h forallh € H.
In addition if G is finitely generated, then Yy (H) = Gy.

Proof. Set G, = (g1.n, 82.n»--.) and G = (g1, g2, ...) with g; = lim,_, gi n. Ac-
cording to Lemma 4.4.1 there is no subsequence &y € Gy, hy #~ id, with lim i = id.
Thus if the groups G, contain no elliptic elements, about any given point O € H?,
there is a small ball B, which is contained in every polyhedron P(G,,) centered at O.
In this case we can find a polyhedrally convergent subsequence as in Lemma 4.3.1.
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When the groups G, contain elliptic elements, Lemma 4.4.2 tells us that the ball
B:(0), for some O e H3, is such that for a subsequence, no element of G has a
fixed point in B, (). Then Lemma 4.4.2 tells us more strongly that for some § < ¢,
TBs(O)N Bs(0) =g, for all T #id € Gy. So Bs(0) will lie in the Dirichlet region
for each Gy, centered at O.

Thus in all cases there is a subsequence {Gy} that converges polyhedrally to a
group H.

Given a compact subset X C H?, we claim that there exists » > 0 and N with the
following property: X is covered by the images of the truncated polyhedron P(Gy),
under all words of length < N in the face pairing transformations of P(Gy),, for all
large k.

To see why, choose a larger compact set X’ D X containing X in its interior. For
large enough r, N, the orbit Qn of P(H), under words of length < N in the face
pairing transformations of P(H), covers X’. When k is large, P(Gy), is close to
P(H), since the faces of P(Gy), converge to those of P(H),. The corresponding
orbit Qi y is close to Qy and covers X.

From this we deduce that G is a subgroup of H as follows. Given g € G, take
X so that O, g(0) lie in its interior. We know g = lim gk, gr € Gy, and for large &,
81 (0) € X. Therefore g is a word of length < N in the face pairing transformations
of P(Gy),. In the limit, g € H.

Now assume that H has a finite number of generators {#}. By Theorem 2.5.3, H
is finitely presented. Fix a presentation. Each generator & of H is a word in the
face pairing transformations of P(H) (centered at O). For all sufficiently large k, say
k > ko = ko(h), designate by v (h) that element of G which is the same word in the
corresponding face pairing transformations P(Gy). Then lim v (h) = h.

The correspondence i +— Y (h) determines a homomorphism H — Gy, for large
k. For if R(h) = id is a relation in H, we have lim;_ o ¥x(R(h)) = id, and by
Lemma 4.4.1, ¥ (R(h)) = id for k > k;, where k; > kg is sufficiently large. Every
relation in H is a consequence of the finite number in our presentation so it is only
these we have to worry about. Therefore our argument shows that 1 determines a
homomorphism as claimed.

If in addition G = (g1, ..., gr) is finitely generated, then for each index we have
gi =lim g; 4, with g; x € G¢. By Theorem 4.1.1, the correspondence ¢y : gi — &ik
determines a homomorphism for all large indices. Each generator g; of G is also
a word W; in the generators {h} of H. We know that limj_ o 8 kl Yr(W;) = id.
Therefore for all large indices k, g; x ¥k (W;) =1d, thatis g; y =y (W;) forall 1 <i <r.
So the homomorphism ¥ : H — Gy is onto Gy; it restricts to the homomorphism
¢r : G — Gy given by Theorem 4.1.1. U

There are many examples, in particular examples of fuchsian groups, for which
polyhedral convergence does not imply algebraic convergence. Taking this into ac-
count, we note that the existence of the homomorphism v : H — Gy a few lines
above did not actually require that {G} have an algebraic limit. Thus:
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Corollary 4.4.4. Suppose the sequence of kleinian groups {G} converges polyhe-
drally to a finitely generated kleinian group H. Then there is a homomorphism ¥ of
H into Gy for all large k such that lim iy (h) = h for all h € H.

The following result of Brock, Bromberg, Evans and Souto is a consequence of
Theorems 4.6.3 and 4.6.2(ii).

Theorem 4.4.5 [Brock et al. 2003; Brock and Souto 2006]. Any algebraic limit of
geometrically finite groups is also the geometric limit of geometrically finite groups.

4.5 Convergence of limit sets and regions of discontinuity
Hausdorff and Carathéodory convergence

In a discussion about convergence of sequences of kleinian groups, it is natural to
ask about concomitant convergence of the regions of discontinuity, or of the limit
sets. The precise definitions are as follows. We begin by introducing the notion of
Hausdorff convergence.

The Hausdorff distance between closed sets A and A, in S? is defined as follows
with respect to balls B, (x) C S? of radius r about x in the spherical metric:

dy (A, Ay) = inf{r: A CU,cp, Br(x), and A, C U ey Br(0)}.

We then say that there is Hausdorff convergence lim A,, = A if dy (A A,) — 0. In
words, lim A, = A if every neighborhood of A contains all but a finite number of A,
and if U is an open set containing all but finitely many A, then A C U.

The following is a standard fact about Hausdorff distance:

Lemma 4.5.1. If {A,} is a sequence of closed sets in S?, there is a subsequence { A, )}
which converges in the Hausdorff topology to a closed set A € S?.

We will give two definitions of convergence of simply connected regions in C, not
the whole plane. The first assumes that the limiting region is known. In the second,
the limiting region needs to be found as well. The latter is analogous to our criterion
for geometric convergence of manifolds. For more details on this subject see [Duren
1983] or [Pommerenke 1992].

Situation 1. The sequence of regions {€2,} is said to converge to the region 2 # C
in the sense of Carathéodory if and only if every compact subset K of Q2 lies in €2,
for all large n and one of the following holds:

(i) Each ¢ € 02 is the limit ¢ = ¢, &, € 02,,.
(i) Any open set U that lies in all elements of an infinite subsequence {€2;;} also
lies in 2.

Carathéodory convergence does not imply the Hausdorff convergence of the bound-
aries. For example, the sequence of boundaries may converge to a circle with an
external ray while the regions themselves converge to the enclosed disk.
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However, given a sequence of regions {£2,,} C S?, there is a subsequence such that
{S?\ ©,,} Hausdorff converges to a closed set A € S?. Then {Q,,} converges in the
sense of Carathéodory to S?\ A. And conversely, if {Q,,} so converges to Q then
{S?\ ©,,} Hausdorff converges to S\ .

Or more generally, {0€2,} Hausdorff converges to 92 if and only if both {€2,}
converges to €2, and {S?\ Q,} converges to S?\ 2, both in the sense of Carathéodory.

Situation 2. Suppose {2} is a sequence of regions on S? all of which contain a
point O serving as basepoint. To avoid shrinkage to O, we will assume that a small
disk about O is contained in the members of the sequence. The kernel of the sequence
is defined to be the largest region Y containing O with the property that ; C Y for
all £ with at most a finite number of exceptions. More precisely, let ¥, denote the
component of Int(ﬂk>n Qk) that contains O. Then Y =U,,Y,,.

A sequence {2} co_nverges in the sense of Carathéodory to its kernel Y if and only
if every infinite subsequence also has Y as its kernel. If Y has a hyperbolic metric, it is
the limit of hyperbolic metrics on the approximating regions, uniformly on compact
subsets of Y.

The kernel very much depends on the choice of basepoint O. For example, a
sequence of simply connected regions may pinch in half, resulting in convergence,
say, to the union of two disks. Depending on where the basepoint is chosen, the
Carathéodory limit will be one or the other of the disks.

Carathéodory Convergence Theorem 4.5.2. Suppose that {€2,} is a sequence of
simply connected regions which converge in the sense of Carathéodory, lim Q,, = Q,
with respect to the basepoint O € NK,. Assume that 92 C S? contains at least two
points. Let f,:D— 2, be the Riemann map normalized by f(0)= 0O, f'(0)>0. Then
the sequence { f,,} converges, uniformly on compact subsets of D, to the normalized
Riemann map f : D — Q.

As a consequence, the sequence of hyperbolic metrics converges to the hyperbolic
metric on the limiting region £2.

Multiply connected regions can also be examined by normalizing the fuchsian
covering groups with respect to O and then examining the groups with respect to
geometric convergence. See Exercise 4-8.

More generally, the curvature of the metrics can be allowed to increase to 0 so
the metric becomes euclidean as degeneration occurs. This results in other kinds of
geometric limits.

Sequences of limit sets and regions of discontinuity

Proposition 4.5.3. Assume that T is finitely generated and ¢, : I' — G, is a se-
quence of homomorphisms onto kleinian groups G, which converges algebraically to
a kleinian group G with Q2(G) # & and geometrically to H. Suppose that {Q2(G)}
converges to Q2(G) in the sense that any given compact subset K C Q(G) satisfies
K C Q(G,) for all large indices. Then Q2(G,) converges to 2(G) in the sense of
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Carathéodory and A(G ) converges to A(G) in the sense of Hausdorff. Moreover G
has finite index in H.
If in addition the {@,} are isomorphisms, then H = G.

What is meant here is that each component Y of Q2(G) is the Carathéodory limit
of components Y,, of Q(G,,), and conversely every sequence of components Y, of
Q(G,) contains a subsequence which converges to a component Y of 2(G), in the
sense of Carathéodory. Each of the components is governed by its stabilizer. There
are only a finite number of conjugacy classes of component stabilizers in each G, G
(Ahlfors Finiteness Theorem).

Proof. (See [Jorgensen and Marden 1990].) Suppose H properly contains G. Then
there exists h € H, h ¢ G such that h =1lim g,, g, € G,. Select compact sets K and
K’ such that K C Int(K') C K’ € Q(G). The sequence {g,(K)} converges to h(K).
We claim that 2(K) C Q(G).

If not, the interior Int 2(K") =1im g,, (Int K”) contains limit points of G, in particular
fixed points of loxodromic elements of G. It contains a fixed point of a loxodromic
element ¢(y) =1lim ¢, (y) for some y € I'. For all large n, Int g, (K’) contains a fixed
point of ¢, (y), in contradiction to our hypothesis.

Consequently 2(K) C Q(G) for every compact subset K of 2(G) andevery h € H.
Therefore 1 (Q2(G)) C Q(G). The same argument can be applied to 2~ !. We conclude
that each 7 € H maps Q2 (G) onto itself. In particular the fixed points of all loxodromic
and parabolic elements of H lie in the limit set A(G) showing that A(H) = A(G).

In particular every fixed point of H is the limit of fixed points of G,. Therefore
every limit point of H is the limit of fixed points of G,. We conclude that 2(G,)
converges in the sense of Carathéodory to Q(G).

Furthermore, if an open set U D A(G), then also U D A(G,,) for large n. If instead
U D A(G,) for all large indices, then U D A(G). Therefore the limit sets converge
in the Hausdorff topology.

At this point we bring back [Greenberg 1974] (see Exercise 3-14) which implies
that if A(G) is not a round circle in S?, then G, which we know is contained in H,
has finite index in H. This holds even when A (G) is a circle. For G is then a fuchsian
group of finite area, or a Z>-extension of one (via an order two elliptic), so the larger
discrete group H must contain G as a subgroup of finite index (H?>/G is necessarily
a finite-sheeted covering surface of H?/H).

Now we come to the assumption that each ¢ is an isomorphism. In this case we
claim that H = G. For suppose there were an element 2 =lim ¢, (y;,), vn €', h ¢ G.

Case 1: h is not elliptic. Since G has finite index in H, for some m, h"* #id € G and
h™ = @(B), B € I'. Therefore lim g, (y,"B~') =id. By Lemma 4.4.1, B =y, for all
large n. In a discrete group an element of infinite order has fewer than m m-th roots,
by Lemma 1.5.2. Therefore for a subsequence, we can assume all y,, are the same
and i € G, a contradiction.
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Case 2: h is elliptic. Choose a loxodromic element g € G whose fixed points are not
interchanged by /. By a direct computation using a standard form for g, we see that
for some integer m, g"h is not elliptic. Case 1 again applies to show that g""h € G
and hence h € G, a contradiction. O

If {G,} converges geometrically to H, and H is geometrically finite, that is, if
the fundamental polyhedron P for H at any suitable basepoint has a finite number
of faces, then we can deform P backwards. That is, suppose the face pairing, edge
pairing, and vertex pairing transformations associated with P are moved back to G,,.
Just using this finite set of elements in G, for large n form the corresponding Dirichlet
region P;. One can show that P} = P,, the fundamental polyhedron for G,. Using
this idea, as in [Jorgensen and Marden 1990], one concludes that {€2(G,,)} converges
to 2(H) in the sense of Carathéodory. In view of polyhedral convergence Proposition
4.3.2, this argument leads to:

Theorem 4.5.4. Suppose 6, : I' — G, is a sequence of isomorphisms of a group
" onto kleinian groups G,, that converges algebraically to 6 : ' — G. Suppose G
is geometrically finite with Q2(G) # &. Then {G,} converges geometrically to G if
and only if the regions of discontinuity converge, Q2(G,) — 2(G), in the sense of
Carathéodory or equivalently, if and only if A(G,) converges to A(G) in the sense of
Hausdorff.

The definitive statement of limit set convergence is due to R. Evans and is as
follows; its full proof uses Theorem 5.1.2(ii), p. 242, and numerous prior results
(Exercise 4-6). Note that there is no assumption about parabolics.

Theorem 4.5.5 [Evans > 2007; Evans 2006]. Suppose {6, : I' — G,} is a sequence
of isomorphisms from a geometrically finite group 1" to groups G, not necessarily
geometrically finite. Assume that the sequence converges algebraicallyto 6 : I' — G
and geometrically to H. Then lim A(G,) = A(H), in Hausdorff convergence.

The sequence converges geometrically to G if and only if lim A(G,) = A(G).

4.6 New parabolics

In the example of Section 4.9, a sequence of cyclic loxodromic groups converges
algebraically to a cyclic parabolic group and geometrically to a rank two parabolic
group. In particular the algebraic limit acquires a “new” parabolic.

More generally, if 6, : I' — G, is a sequence of isomorphisms converging alge-
braically to the isomorphism 6 : I' — G, then we say g € G is a new parabolic if for
all large indices, 6,0 !(g) is not parabolic. We may assume that the sequence also
has a geometric limit H D G.

It was conjectured by Troels Jgrgensen that if Q(G) # @ then H = G provided
G does not contain new parabolics (the converse is not true). When Q(G) = &, he
conjectured that always H = G, since there is no “room” for new elements to appear.
Both of these conjectures have been confirmed, as indicated below.
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Here is the description of what happens in the geometrically finite cases.

Theorem 4.6.1 [J¢rgensen and Marden 1990]. Suppose that I is a finitely generated
abstract group without elements of finite order and {6, : I' — G,} a sequence of
isomorphisms onto kleinian groups that converges algebraically to 6 : I — G. Assume
that {G,} converges geometrically to a geometrically finite group H with Q(H) # &.
Then:

(i) The limit sets converge lim A(G,) — A(H) in the Hausdorff topology and the
sets of discontinuity converge, Q2(G,) — Q2(H), in the sense of Carathéodory.
(it) G is also geometrically finite.
(iii) For all large n, there is a homomorphism {,, : H — G, such that lim y,,(h) = h
forallh € H and for g € G, ¥,,(g) = 6,07 (g).
(iv) Let {P;}, 1 < j < N, denote the rank two parabolic subgroups of H for which
Y (P}) is cyclic loxodromic, one representative from each conjugacy class in H .
Let T}, € H denote a generator of the kernel of ¥, : Pj — ¥, (P}). Then Ker(y,)
is the normal closure in H of the subgroup generated by {T; ,},1 < j < N.
(v) Assume each P; contains an element of G. Then there exists T; € P;, T; ¢ G
such that

H=(GT,T,...,Ty).

(vi) H = G if and only if the class { P} is empty.

Outline of proof. As a finitely generated subgroup of the geometrically finite group
H with Q(H) # &, G is also geometrically finite (Lemma 3.6.3). Item (i) fol-
lows from the remarks preceding Theorem 4.5.4. The first part of (iii) comes from
Theorem 4.4.3. The second part of (iii) is a consequence of Lemma 4.4.1, namely
0,071 (g) = ¥, (g) for all large n, first for a set of generators of G and then for all G.
Item (iv) is proved by working backward from a fundamental polyhedron for H to
fundamental polyhedra for its approximates G,. We will omit the detailed proof of
this. The proof of (v) begins with the fact that the common fixed point ¢; of P; is also
a parabolic fixed point of G. Once again this is established by working backwards
from a fundamental polyhedron for H; v,,(P;) represents a simple, short geodesic
in M(G,,) which is associated with a word of uniformly bounded length in the face
pairing transformations for G,,. Solet §; € G be a generator of the parabolic subgroup
that fixes ¢;. Then ¥, (S;) is a generator of v/, (P;). Consequently P; = (S;, T} ).
Take T to be any one of the 77 ,,.

Item (vi) requires the elementary fact that the geometric limit of an algebraically
convergent sequence of cyclic parabolic groups (which is again a cyclic parabolic
group) is the same as the algebraic limit. The only way that H can differ from G
is that there exist rank two groups P; € H that are geometric limits of necessarily
cyclic loxodromic subgroups of {Gy} (while their algebraic limit is a cyclic parabolic
group). g
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Theorem 4.6.1 has been greatly generalized through the efforts of several authors,
particularly Anderson, Brock, Bromberg, Canary, Evans, Ohshika, and Souto. Here
is a statement of the final result incorporating the Tameness Theorem that confirms
Jgrgensen’s Conjecture.

Theorem 4.6.2. Suppose {0, : I' — G,} is a sequence of isomorphisms converging
algebraically to 6 : I' — G. The sequence also converges geometrically to G under
one of the following situations:

(i) [Anderson and Canary 1996b; Evans 2004a] If 2(G) # & and G has “no new
parabolics”, that is, g € G is parabolic if and only if 6,0 ' (g) is parabolic for
all large indices n.

(ii) [Canary 1996, Theorem 9.2; Agol 2004; Calegari and Gabai 2004] If Q(G) = @.

Theorem 4.6.2 does not require that the approximating groups be geometrically
finite (just finitely generated and torsion free). Of course the converse to (i) does not
hold, convergence to G can be geometric even in the presence of new parabolics.
Condition (ii) was initially established under additional assumptions, in particular
when G is known to be tame. By incorporating the Tameness Theorem, we can make
the general statement given here. In this case, whether or not there are new parabolics
makes no difference.

A sequence is often said to be strongly convergent if it converges both algebraically
and geometrically to the limiting group.

Here is another useful fact (especially in the context of the Density Theorem on
p- 260):

Theorem 4.6.3 [Brock et al. 2003]. If H is the algebraic limit of geometrically finite
groups, then H is also the algebraic limit of geometrically finite groups {0, : " — G}
with the property that 0'(g) = lim0,,(g) is parabolic if and only if 6, (g) is parabolic
for all indices.

By Theorem 4.6.2 H is also the geometric limit of {G)}. Of course in general,
the groups I', I'” will not lie in the same quasiconformal deformation space. What is
remarkable about the theorem is that there is no requirement that H be geometrically
finite.

4.7 Acylindrical manifolds

A compact 3-manifold with boundary M3 is called acylindrical (or anannular) if M?>
contains no essential cylinders and is boundary incompressible. We recall from Sec-
tion 3.7 that an essential cylinder C in M3 is a cylinder C such that C N dM?> = dC
and C is not homotopic into d M>.

There are two ways to apply this definition in a geometrically finite M(G). The
usual definition, given in Section 3.7, is to call M(G) acylindrical if it is boundary
incompressible and every essential cylinder is homotopic into dM(G) or into a pairing
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cylinder. This means that every component of €2(G) is simply connected, that a
loxodromic element can preserve at most one component of €2(G), while a rank one
parabolic arises only from simple loops on dM(G) retractable to its associated pair
of punctures.

The second and less commonly used sense of the term is to define “acylindrical”
with respect to the compact My(G) = M(G)thiek which results from removing the
interiors of solid pairing tubes and cusp cylinders. Even if M(G) is boundary incom-
pressible, M (G) may not be so, as removing the totality of the solid pairing tubes
may bring in a new topology to the boundary. Moreover essential cylinders in My (G)
do not necessarily correspond to essential cylinders in M(G): It is possible that there
is an essential cylinder C in My (G) with the property that one component of dC lies
on a cusp torus (Exercise 4-21).

In any case, in M(G) a simple (nontrivial) loop on a cusp cylinder associated with
a rank one cusp or on a cusp torus cannot be freely homotopic to a simple loop on
a different cusp cylinder or cusp torus, for the corresponding parabolic subgroups
belong to distinct conjugacy classes.

A cyclic subgroup corresponding to an essential cylinder C is either loxodromic or
parabolic. In the parabolic case, since C cannot serve as a pairing cylinder, at most
one component of dC can be retractable in the boundary to a puncture (Exercise 4-21).
Consider a component ¥ of dC which is not retractable to a puncture. Examine the
component 2 C Q(G) that contains a lift y* of y. The simple arc y* has both its
endpoints at a parabolic fixed point. When the fixed point is added, y* becomes a
Jordan curve, necessarily separating A(G) into two parts. In particular d€2 is not a
Jordan curve. (This is an example of an “accidental parabolic” transformation.)

This is a good place to interject that one way to exclude accidental parabolics is to
require that for each component 2 C Q(G), the subgroup Stab(£2) is quasifuchsian
(Exercise 3-10).

Acylindrical manifolds have compact algebraic deformation spaces. More pre-
cisely:

Thurston Compactness Theorem [Thurston 1986b]. Let G be a geometrically finite
group such that M(G) is acylindrical with nonempty boundary. Then every sequence
of parabolic preserving isomorphisms to kleinian groups 6, : G — G, has an alge-
braically convergent subsequence.

Suppose there were, in a geometrically finite manifold M(G), an essential cylinder
C corresponding to the conjugacy class of a cyclic loxodromic subgroup. Suppose
for example C divides M(G) into two components M, M'. Focus on M and fix a
lift M* C H3 U Q(G). Normalize things so that a given point O € H? lies in a ball
about O in M*. Set G| ={g € G : g(M*) = M*}. (m;(M(G)) is the free product
of the fundamental groups of M, M’ amalgamated over the common cyclic subgroup
determined by C.)

Then we should expect that there is a sequence of deformations of M(G) = M
so that each cyclic loxodromic subgroup determined by C converges to a cyclic para-
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bolic subgroup and C becomes a cusp cylinder in the limit. Here we keep the same
normalization with respect to O.

If the lift (that is, a component of the preimage) M'* of M’ is adjacent to M*
and G, = Stab(M'*), then except for the cyclic subgroup of G, that corresponds to
the common boundary with M*, the group G, will simply disappear in the limit—
the Mobius transformations do not converge. This is why the acylindrical condition
is necessary in the Compactness Theorem. Such phenomena appear in particular
for fuchsian groups, see Exercise 4-8. One can start with a fuchsian group I' and
the lift of a simple geodesic from H?/T", and “pinch” the geodesic so that in the
limit it corresponds to a parabolic transformation. Thurston’s theorem says that such
degenerations are impossible if there are no essential cylinders to begin with.

Supplementing the Thurston Compactness Theorem we have:

Theorem 4.7.1 [Johannson 1979; Matsuzaki and Taniguchi 1998, Theorem 3.29].

Suppose G is geometrically finite such that M(G) is acylindrical with nonempty
boundary. Let 0 : G — G’ be an isomorphism to a geometrically finite G’ such that
0(g) is parabolic if and only if g € G is parabolic. Then there exists a quasiconformal
mapping F : S* — S? that satisfies F o go F~'(z) =0(g)(2) forallg € G, z € S.
It can be chosen to project and extend to be a (quasiisometric) homeomorphism F, :
M(G) — M(G).

If an initial mapping F turns out to be orientation reversing, it can be replaced
by JF and G’ by JG'J where J is reflection in a plane in H*. Of special interest
is the fact that 0 dictates a bijection between components of 2(G’) and Q2(G). See
Exercise 4-9.

4.8 Dehn surgery

Dehn surgery is an operation performed one or more incompressible torus boundary
components of a manifold M>3. Choose a torus boundary component T and a pair
of simple loops «, B, crossing each other once, so as to generate its homology and
homotopy. Once «, 8 are chosen, (the homology class of) every simple loop y on
the torus can be expressed the form y = ma + nf where m, n are relatively prime
integers. The ratio 0 <n/m < oo is called its slope (in terms of the choice of «, B).

Choose such a simple curve y = ma + nf, not homologous to zero, on T. Glue to
M? along T a solid torus in such a way that y becomes a meridian, that is, y bounds a
disk in the new solid torus. This is the process of (m, n)-Dehn surgery; the designation
of a simple loop y on T as a meridian tells us how to add a solid torus to the boundary
component to result in a larger manifold — with one less boundary component. Dehn
surgery can be applied to any or all of the torus boundary components.

Another way to describe y is as the image of o under an automorphism ¢ of T.
Gluings by two automorphisms ¢, ¢" determine homeomorphic manifolds if and only
if ¢ 0 ! extends to a homeomorphism between the solid tori.
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A more typical implementation is as follows. Choose a simple loop, or a number of
mutually disjoint simple loops in the interior of a 3-manifold M?, for example a link
in S3. Enclose the loops by mutually disjoint tubular neighborhoods. Unlike the case
for a cusp torus, in this situation each torus boundary has a uniquely determined (up to
free homotopy) meridian «, that bounds a disk in the solid torus tubular neighborhood.
Choose a simple loop B that crosses « exactly once and with o generates the homology
of T. Now choose a simple loop y = ma 4 np. Remove the tubular neighborhood
bounded by T and replace it by gluing in a new solid torus so that y becomes its
meridian. This process can be applied to each of the tubular neighborhoods.

For a hyperbolic manifold M(G) with a rank two cusp, the process can be applied
to a cusp torus T and a pair of generators «, 8 of its homology. If the cusp torus
arises from (z — z+ 1, z — z + 1), we may choose « to correspond to the first
generator and S the second. Then choose the simple loop y corresponding to m +nt.
Remove the solid cusp torus bounded by T and replace it by a solid torus in terms
of which y becomes a meridian. This gives a new manifold M? in which the cusp
torus becomes a tubular neighborhood of a nontrivial simple loop— but the initial
hyperbolic structure is lost.

The latter operation are commonly called Dehn filling.

4.9 The prototypical example

This is an explicit example both of Dehn surgery in the simplest case and of differing
algebraic and geometric limits. We will start with a solid cusp torus —a rank two
parabolic group—and do (1, n) Dehn surgery on it. There results a cyclic loxodromic
group. We will then watch what happens as n — oo. Figure 1.5 (p. 12) and Figure 4.1
(p- 209) show several generations of isometric circles of a cyclic loxodromic group.

Start with the parabolic group I' = (T1(z2) = z + w1, Tr(z) = 24+ wy). Set T =
wy/w1, Imt > 0. The quotient C/ " = T is a torus. The generating pair (w, wy)
corresponds to a pair of simple loops «, § on T, crossing each other once.

Change the basis by the rule

N w2 pn T

Wip =w]+nwy, wy,=wy; Tp= = ,
i, 14+nt

sothat 7 ,(2) = 2+ w10, Tr.n(2) =7+ w2, also generate I'. The pair (w; 5, ®2.,)
represents the simple loops « +ng, B on 7.

Map C onto C\ {0} by w,(z) = e 27iz/@1n,

Let U, denote the loxodromic transformation

Uy(w) = e 7w = auw.

We have (wy, o T1)(z) = (Up, ™" o wy)(2) and (wy o 12)(z) = (Uy 0 wy)(2), while
(wy, o Tl,n)(z) = w,(z) and (w, o T2,n)(Z) = (U, ow,)(2).
The map w,, determines a conformal mapping

T = T = (C\{0DH/(Uy)
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Fig. 4.1. A cyclic group generated by a loxodromic of approximate trace 1.919354 +
0.029772i near its rank-2 parabolic geometric limit in the right frame. One can see how
the 6-sided Ford polygon outside the outer circles is becoming a fundamental domain on S?
for the geometric limit. See [Jgrgensen 1973] for a description of the combinatorics of the
approximates.

in which the image of « 4+ nf is a meridian in the solid torus (H3 U (C\ {0))/(U,).
The image of straight lines with tangent vector w , are taken by w, to concentric
circles about w = 0 which in turn project to parallel meridians in 7,,. We have done
Dehn surgery on the original cusp torus M(I") by removing Int(M(I")) and replacing
it by a solid torus so the chosen simple loop « + 1 becomes a meridian.
Asn — oo, limt, =0, lima, = 1, and lim U,, = id. Renormalize U,, to have the
fixed points w; /(1 — a,), 0o, thus
w2
1—a,

Therefore lim V,,(w) = w + w, and

Ap(w) =w+ o Vaw) = AUn AL (w) = ayw + o).

k
a, —1
la)z.

V.kw) = A UFA Y (w) = a,’gw+a
n—

Define
()

(@) = (wp(z) —1).

a, — 1

Thus f,0T1(z) = Vn_nofn(z) and f,,07>(z) = V,o0 f,(z) while anTl,n(Z) = fu(2) and
JnoTa n(z) = Vyo f(2). Inshort, f, induces a conformal mapping to the renormalized
solid torus

T (e {2 ]) .

1—a,

in such a way that the image of « 4+ nf8 remains a meridian.
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Uniformly on compact subsets of C we have the following convergences:

(1) lim f,,(z) = z.
@11) lim V,(w) = w + ws.
(iii) lim V, ™ (w) = w + w;.

To prove (i), we use the estimate e* — 1 ~ x when x is small, and (iii) follows.
It is more complicated to show:

Claim. The sequence of cyclic loxodromic groups {(V,)} converges algebraically to
the cyclic parabolic group (T,) and geometrically to the rank two parabolic group
I'=(T\, To).

Proof. Suppose for a sequence m — 0o and k = k(m) — oo that {V,,X} converges to
a Mobius transformation. We must show the limit lies in I'. For the limit to exist the
ratio (a,,* —1)/(a,, — 1) must remain bounded. Therefore lima,,* = 1.

Write k = pm + g where p, g are integral functions of m, asis k, and 0 < g < m.
Since a,* = exp(—2mikty,) and Imt, = Im7/|1 +mt|?, we must have k(m) =
o(m?). Therefore p(m) =o0(m), as m — oo.

Take the subsequence {m} so that lim g(m)/m = c exists, 0 < ¢ < 1. We claim that
either ¢ = 0 or ¢ = 1. For first of all e 27kt = = 27i(kTn=p) — p=27i(PMTn=p+qTn)
Also,

lim p(mt, —1) = —lim P =0, Ilimgrt,=c.
1+mt
So if ¢ were not an integer, the ratio
a1]1(1 -1 _ e—27rik‘17m -1

“4.1)

am— 1 e 2mim —

would become infinite.
We have to examine (4.1) in more detail. Write

872nikrm — 672ni(krm7pfc)
so that the exponent approaches zero as m — oo. By Taylor’s formula for e*, the
limit of the ratio (4.1) is the limit of

ktw—p—c _pmty—D+qum—c _—p+@g—cm)t—c
T o T o T '

Since Imt > 0, if this is to have a finite limit then lim,,_ (¢ — cm) must exist,
necessarily as an integer. Then lim,,_, o, p must exist as well, also as an integer. We
conclude that

lim Vnﬁ(w) =w —wi(c+1lim p) + w, lim(g — cm). ]
m—00

Summing up, the solid tori M((V,,)) converge algebraically to M(({72)), which
represents a solid cusp tube associated with a cyclic parabolic group. The boundary
torus has become “pinched” — has become a doubly infinite cylinder: the hole in the
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bagel has coalesced to a single point since the length of the geodesic has gone to zero.
In contrast, the manifolds M((V,,)) converge geometrically to the solid cusp torus
M(I"). The process of degeneration introduces so much twisting along the boundary
torus, that in the limit the solid torus fractures, with the fracture line lying at its core.
All this happens while the conformal type of the torus itself does not change, what
changes is the presentation of its fundamental group.

For a generic choice of center O € H?, the fundamental polyhedron P for T is a
6-sided chimney rising from C. The approximates P, acquire more and more faces
as n — oo, but all of the faces, save six, collapse to the fixed point in the limit. The
polyhedra truncated by intersection with a ball of radius r about their center P, ,
converge uniformly to P,.

Remark 4.9.1. We can now give an example of a sequence of cyclic loxodromic
groups {(S,,)} that converge geometrically to a rank two parabolic group, yet which
do not converge algebraically. In fact no subsequence of the generators {S,,} has a
limit.

For an example, take from above V,,(z) = a,,z + wp with lima,, = 1. Pick any
sequence of integers n = n(m) which go to infinity with m. Set d,, = /a,, where the
root is chosen in any way so long as no subsequence approaches 1. Set

m —

dn—1

Sm(z) =dnz+ wy.
Then S, (z) = Vi (z) and S,’}j‘ ()= mG (z) but no subsequence of {S,,} converges since
the constant term — oo.

At the other extreme a sequence of cyclic loxodromic groups (z — ¢,z) with ¢, > 0,
cn — 1 can be conjugated to converge algebraically and geometrically to a cyclic
parabolic group. Only loxodromics whose traces converge “tangentially” to £2 can
have differing algebraic and geometric limits.

The space of cyclic loxodromic groups is completely described in terms of the
combinatorics of the faces of the Ford polyhedron in [Jgrgensen 1973] and visualized
in Wada’s program [> 2007a], which allows exploration of the space of normalized
cyclic loxodromic groups as a function of the trace.

4.10 Manifolds of finite volume

Suppose {M(G )} is an infinite sequence of mutually nonisometric manifolds whose
volumes {V,} do not exceed a number V* < co. We can normalize the groups so that
an g-ball centered at a point O € H3, projects injectively into all of the manifolds.
After passing to a subsequence, we may assume that the sequence {G,} converges
geometrically to a group H.

Theorem 4.10.1. Assume that the sequence {G,} with Vol(M(G,)) =V, < V* <0
converges geometrically to H. Then Vol(M(H)) = lim V,,. Consequently the set of
volumes of finite volume manifolds is a closed subset of R.



212 Algebraic and geometric convergence

Moreover, the number of solid cusp tori in NU(H) is strictly greater than the number
in its approximates, for large indices.

Proof. Take a maximal set of points in the e-thick part M(G )™ such that the dis-
tance between any two of them is not less than £ /2. Then the ¢-balls about these points
cover M(G,,)Miek, The fact that Vol(M(G,,) < V* implies that the number of the cov-
ering balls is uniformly bounded in n. In particular there exists d < oo such that for all
indices, the diameter of M(G )™k does not exceed d. As n — 0o, Vol(M(G,,)hick)
converges to Vol(M(H)™k)  Exercise 2-9, especially Equation (2.6), shows that
lim,_,¢ Vol(M(G,)™") = 0, uniformly in n — the thin parts become successively
thinner. This shows that Vol(M(H)) = lim Vol(M(G,)); in particular M(H) has
finite volume.

Now that we know M(H) has finite volume, the corresponding polyhedra for
G, must have a uniformly bounded number of faces and hence generators —see
Lemma 3.6.4. The methods of the proof of Theorem 4.6.1 apply to describe the
relation of the nearby polyhedra P(G,,) to the polyhedron Po(H) for H.

For all large n there is a homomorphism v, : H — G,,. The ,,-image of each rank
two parabolic subgroup of H is either a rank two subgroup of G, or it represents the
lift of a short geodesic in M(G,,).

If M(H) had the same number of solid cusp tori as M(G,,) for all large indices,
then 1, would be an isomorphism and M(G,) would be isometric to M(H), by
Mostow’s Rigidity Theorem, for the same large indices. Our assumption rules out
this possibility. There are always strictly more solid cusp tori in the geometric limit
than in the approximants. A sequence of cyclic loxodromic subgroups has become a
rank two parabolic group in the geometric limit. see Theorem 4.6.1. U

4.11 The Dehn surgery theorems for finite volume manifolds

Suppose M(G) has finite volume and has k£ > 1 rank two cusps. Denote by M the
compact manifold bounded by k tori {7;} resulting from removing the interior of k
solid cusp tori. We will discuss the result of doing Dehn surgery on these. (We can
allow additional rank two cusps that will then be unaffected.)

Choose a standard homology basis (y;, §;) on each T;, 1 <i <k.

Let Q C S? the set of coprime vectors {d; = (p;, q;)}. Givend =(dy, ..., dy) € ok,
denote by M, the manifold resulting from (p;, ¢;)-Dehn surgery on 7;, 1 <i <k. Here
the respective meridians are {p;y; + ¢;8;}. The resulting manifolds M, are closed.

Before stating the theorem, we will present the argument in [Thurston 1979, §5.6]
that the dimension of the local deformation space of M(G) under the Dehn surgeries
is > k. See [Culler and Shalen 1983, Prop. 3.2.1] for an alternate treatment.

For each index i, 1 <i <k, choose in any way a simple, noncontractible loop {«;}
in the interior of M C M(G) that corresponds to a loxodromic transformation in G.
Fix a basepoint O; € T; that is also the basepoint for «;. Remove a thin tube about
each «; and attach it to 7; so as to form a surface S; of genus two. Do this for all
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indices, assuming the «; are mutually disjoint, ending up with a manifold M ¢ M
bounded by k surfaces of genus two. On each S; chose a simple loop g; that bounds
a compressing disk in M \ M’. We can regard «; to lie on S; and also that the four
simple loops y;, §;, «;, B; have the common basepoint O;. The four loops generate
m1(S;; O;), and satisfy the relation [§;, y;1[8;, o;] = id.

Note that 71 (M) = G is obtained from 7r;(M’) by adding the relations {8; = id}; if
we cut along the compressing disks bounded by the §;, we obtain a manifold home-
omorphic to M.

The elements y;, §;, when lifted from a fixed O over O; determine generators
y;", 87 of a rank two parabolic subgroup of G. The element «; when lifted from O}
determines a loxodromic element «. Under a small deformation, their traces change
slightly, and also the location of the fixed points. Therefore when a homomorphism
¥ is close to id, ¥ (c]') remains loxodromic with fixed points distinct from those of

(), ¥ (6.

Lemma 4.11.1. Suppose v is a homomorphism 71(M') — PSL(2, C) such that (a)
vy, 6;)) #1id, (b) ¥ (w;) is loxodromic, and (¢) ¥ ({«;, Vi, 8;)) is nonelementary.
Then r extends to a homomorphism of wi(M) if and only if for each index i the
following two equations are satisfied:

ry(leg, i) =2, twy () =2. (4.2)

The necessity of the condition is obvious since a homomorphism of 7| (M) must
send both the commutator and the element g; to the identity. The sufficiency is Exer-
cise 4-5.

Now the compact 3-manifold M’ can be triangulated in such a way that there is
only one 0-simplex and the 1-simplices are generators of 7r;(M). The 2-simplices
then generate the relations among the chosen generators. Since the manifold has a
nonempty boundary, the 2-skeleton of the triangulation is a deformation retract of M’.
Its Euler characteristic is then

x(M)=+1—h+r,

where & is the number of generators and r the number of relations.
Moreover x (M) = x (M)—k because M is obtained from M’ by adding k relations.
That is,

x(M)=1—h+r+k.

The y-image of the /& generators of G arising from our construction in M must
satisfy the algebraic equations corresponding to each relation. Each Mobius transfor-
mation in turn depends on 3 complex parameters. In addition Equations (4.2) must
be accounted for; that gives two more equations for each torus boundary. Thus the 34
parameters for the ¥/-image of the generators are subject to constraints and the result
is that ¢ has the degree of freedom given by

3 —3r — 2k = =33 (M) +k+3.



214 Algebraic and geometric convergence

But if we rule out conjugations of the group G, we are left with the complex dimension
—3x(M) +k.

A closed 3-manifold has Euler characteristic zero. Therefore if M denotes the
double of M across its boundary,

0= x(M)=2x(M)— x(OM).

Since all the components of d M are tori, x (M) =0 (for a general geometrically finite
kleinian manifold we would have instead y (0 M) < 0 and then x (M) < 0). Thus
has k degrees of freedom; each rank two cusp contributes one degree.

For a rigorous study of the deformation variety, see [Kapovich 2001, Theorem
8.44].

The following result shows that there are lots of hyperbolic manifolds, independent
of the criteria of the Hyperbolization Theorem (p. 324). The paper [Petronio and
Porti 2000] is the current standard for a complete, rigorous proof of the first part
of the following theorem. It is quite different from the one suggested in [Thurston
1979], and reflects the computational approach of SnapPea (page 234). For another
approach, see [Hodgson and Kerckhoff 1998, §41].

Dehn Surgery Theorem [Thurston 1979, §5.5-8; Petronio and Porti 2000].

(i) There exists a neighborhood U of 0o = (00, ..., 00) € S? x - - - x S? such that
forall d € UN QF, the surgered manifold My has a complete hyperbolic metric.
(ii) More precisely, if a finite number of coprimes {(p;, q;)} are excluded for each
{T;}, 1 <i <k, then all remaining Dehn surgeries on M(G) result in complete
hyperbolic manifolds.
(iii) Suppose limd, = oo in U. The hyperbolic manifolds M(G,) = My, converge
geometrically back to M(G). The corresponding homomorphisms vy, : G — G,
converge to the identity.

In particular there are arbitrarily small deformations {H} of G which send any or
all of the rank two parabolic subgroups to cyclic loxodromic groups. The result of
removing from each such M(H) tubular neighborhoods of its new short geodesics is
homeomorphic to M(G).

When the number of initial cusp tori is at least two, it is not true in general that,
with a finite number of possible exceptions, all surgeries on the cusps of an M(G)
result in hyperbolic manifolds. Consider as M(G) the Borromean rings complement
in S3. The (1, 0) surgery on one of the links results in a manifold homeomorphic to
S? minus two unlinked circles. This is not hyperbolic, nor is the result of any further
surgery — there are noncontractible embedded spheres in the complement. [Thurston
1979, p. 5.38].

A similar process allows the construction of orbifolds where the rank-two parabolic
groups are instead sent to cyclic elliptic groups with designated rotation angles.
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Well ordering of volumes of hyperbolic manifolds

By the universal ball property, there is a uniform positive lower bound for all volumes.
By the uniform horoball property, there is a uniform upper bound on the number of
solid cusp tori in manifolds of volume < V. Here the convergence theorems 4.1.1,
4.1.2 play a central role.

Theorem 4.11.2 [Thurston 1979, Chapter 5-6, Gromov 1981b].

(i) The set of hyperbolic 3-manifolds with a given volume V is finite.
(i) If M(G) of finite volume is homeomorphic to M(H) \ a, where « C M(H) is a
simple geodesic, then Vol(M(G)) > Vol(M(H)).
(iii) If {M(Gy)} is a sequence of manifolds whose volumes are nonincreasing,

-+ = VolM(Gr)) = VolM(Grq1)) = -+ -,

then VoIM(Gy) = VoIM(G,,,) for some m and all k > m.

(iv) For each constant V let My denote the set of hyperbolic 3-manifolds with vol-
ume < V. There is a finite subset Mmoms C My such that any M(H) € My \
Mimoms contains a link L such that M(H) \ L is homeomorphic to some M(G) €
Mmoms and is obtained by Dehn surgery on M(G); moreover Vol(M(H)) <
Vol(M(G)).

In fact according to [Thurston 1979, Theorem 5.11.2], there is a link Ly C S? such
that all manifolds in 1y can be obtained by Dehn surgery along Ly (the limiting
case of simply deleting components of Ly is allowed).

Heuristic discussion. The first item stems from the following argument. If there is an
infinite sequence of nonisometric manifolds of volume exactly V there is a geometric
limit of a subsequence. It must have at least one additional cusp which raises the
volume by (ii).

We refer to [1979, Chapter 6] for the proof of (ii), that is, Vol(M(H)) < Vol(M(G))
when M(H)\Uy; is homeomorphic to M (G) for a union of mutually disjoint nontriv-
ial simple loops y;. The proof is based on the analysis of the volumes of hyperbolic
manifolds which are the images under degree d > 1 maps of a given finite volume
manifold.

The most problematical issue in the background is to prove that the number of
homeomorphism types for e-thick parts M of hyperbolic manifolds of volume at
most V is finite. Here is Thurston’s argument. Take a maximal set of points of M
with the property that no two of the points have distance < ¢/2; maximality insures
that the &/2-balls cover the thick part. The €/4 balls about such points are mutually
disjoint. The total volume of the &/4-balls cannot exceed V so there are a finite
number. The combinatorial pattern of intersections of the ¢/2-balls determines the
homeomorphism type of M; there are only a finite number of possibilities.

Unfortunately, as pointed out in [Benedetti and Petronio 1992, pp. 195-6] it is pos-
sible that a e-tube may bore though an ¢ /2-ball, leaving one or more worm holes. This
increases the possibilities for the topological type of M, beyond what is accounted for
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above. For this reason subsequent authors have to find lengthy alternate treatments to
avoid this difficulty among others; see [Petronio and Porti 2000].

The finiteness of topological types is coupled with the fact that two manifolds
of finite volume which have homeomorphic ¢-thick parts can be obtained from one
another by Dehn surgery. As a consequence, given V, all manifolds of volume < V
are obtained by Dehn surgery on the cusp tori of a finite number of manifolds.

To analyze (iii), suppose a sequence of volumes is strictly decreasing. After passing
to another subsequence if necessary, we may assume the groups G, have a geometric
limit H. Then VoIM(H) = lim VoIM(G,,). By Theorem 4.10.1 the geometric limit
has at least one more rank two cusp than its close approximates. By Theorem 4.6.1,
the close approximates arise from Dehn surgery on the rank two cusps of the geometric
limit. By item (ii), the close approximates have lower volume.

On the one hand the volume of M(H) is greater than the volume of its close ap-
proximates, and on the other, the volume of its approximates is strictly decreasing.
This contradiction proves that the volumes of the sequence must stabilize at a certain
point, as claimed.

Item (iv) holds because there are only a finite number of homeomorphism types of
the solid cusp tori complements of elements of 901y . O

The well ordering

Suppose there is at least one noncompact manifold of volume V. The set of manifolds
with volume V serves as the “mothers” of the manifolds {M(G)} of volume < V
with the following property. There are a finite number of mutually disjoint nontrivial
simple loops, which one can think of as forming a link L = | J; ; € M(G), for
which M(G) \ |, i is homeomorphic to a mother M(H). Each mother M(H) is the
geometric limit of the manifolds M(G,) obtained by Dehn surgeries on its cusp tori.

If we start with the set of noncompact manifolds of lowest possible volume V, then
their set of children comprise all closed hyperbolic manifolds of volume < V.

Theorem 4.10.1 leads to the conclusion that the set of volumes is well ordered
(every subset has a least element):

V] <V < s = Uy <Vpyp] <VUpgd < -0 —> Vg < v —> Vg2 < ---.

Here v, is the lowest volume for 1-cusped manifolds: v; is the lowest volume for
closed hyperbolic manifolds, v, the second lowest, and so on, so that v, is the least
accumulation point of volumes of closed manifolds obtained by Dehn surgery on
the least volume 1-cusped manifolds. Here w is the ordinal of the positive integers.
Then vy, is the next lowest volume of 1-cusped manifolds and is the accumulation
point of volumes vy41, Vpt2, ... obtained by Dehn surgery on these. And so on
until reaching the first accumulation point v, of volumes vy, of 1-cusped manifolds;
v, is the lowest volume for 2-cusped manifolds. This spawns the volume sequence
Vg2, U3g2s - - - Of 2-cusped manifolds which in turn accumulates at the least volume
v,3 for 3-cusped manifolds. Here w stands for the cardinal number of the integers.
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The index ¢ of a general element v, of the volume sequence is an ordinal number
of the form

~1
mu” +m,_10" " 4+ +my,

where m ; is a nonnegative integer. For example the index 2w + 4w + 6 corresponds
to the volume of a manifold obtained first by Dehn surgery on the 2nd lowest volume
2-cusped manifold resulting in a 1-cusped manifold of the 4th lowest volume followed
by surgery resulting in a closed manifold with 6th lowest volume.

Thus the set of volumes form successive intervals on R of the form [0, @], [0, @?],
..., [0, @®). The order type of the set of all volumes is the ordinal »®.

In [Cao and Meyerhoff 2001] it is shown that v, = 2v = 2.03, where v is the
volume of the regular ideal tetrahedron, and that among the cusped manifolds, only
the complement of the figure-8 knot Figure 3.8 (p. 164) and its sibling in S* achieve
it (see Exercise 3-5). Among all (orientable) manifolds, the minimum volume can
be attained only by a closed manifold. It is conjectured that the minimum is v; =
0.9427 ..., that value being attained by the Weeks manifold obtained by (5, 1), (5, 2)
Dehn surgery on the two components of the Whitehead link. Several people, such as
I. Agol [2004] are currently working to find the minimum volume manifold; the best
result to date is that of A. Przeworski: v; > 0.3325.

For a report on the cusped hyperbolic manifolds composed of at most seven ideal
tetrahedra and their Dehn surgery daughters, see [Callahan et al. 1999].

The discovery of the minimal volume orientable orbifold has recently been an-
nounced by Marshall and Martin [> 2007]. It comes from an order two extension
of the orientation preserving subgroup of the reflection group of the following hy-
perbolic tetrahedron: Two faces form a 7 /5-dihedral angle and each of these faces
form a 7 /3-dihedral angle with another; the remaining three dihedral angles are /2.
The minimum volume orbifold is uniquely determined and has volume 0.03905.. . ..
Its discovery allows the investigation of maximal automorphism groups of closed
manifolds; see [Conder et al. 2005]. Earlier Meyerhoff [1987] had shown that the
group H of orientation preserving symmetries of the tessellation of H* by regular
ideal tetrahedra gives the smallest volume orientable orbifold with one cusp.

The well ordering of volumes of finite volume hyperbolic orbifolds is shown in
[Dunbar and Meyerhoff 1994].

Volumes of higher-dimensional manifolds

It is interesting to contrast the situation of 3-dimensional finite volume manifolds
with other dimensions. The areas of finite area 2-dimensional hyperbolic manifolds
are integral multiples of 2w (Exercise 3-1). For a finite volume even dimensional
hyperbolic manifold M>", the formula also comes from the Gauss-Bonnet formula,
for example see [Kellerhals and Zehrt 2001].

Vol(M*") = (—D"%x(Mz”),
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where V), is the surface area of the unit (2n — 1)-dimensional sphere * in R>* and x
denotes the Euler characteristic. The formula holds for orientable and nonorientable
manifolds; in the former case the Euler characteristic is even for a closed manifold.
The paper [Ratcliffe and Tschantz 2000] explicitly constructs the finite volume cusped
(noncompact) hyperbolic 4-manifolds. Exactly 1171 of them have the minimum vol-
ume.

For odd-dimensional finite volume hyperbolic manifolds, the Euler characteristic is
zero. However for cusped manifolds, using ball packing methods, good lower bounds
can be found [Adams 1987; Kellerhals 1998].

It is known that in every dimension n > 4 the number of nonisometric manifolds
with volume less than any prescribed number is finite [Wang 1972]; thus the set
of volumes is a discrete set on R. Furthermore, the number N (V') of nonisometric
manifolds of volume < V grows to 400 with V; in fact, it is shown in [Burger et al.
2002] that there are constants a = a(n) > 0, b = b(n) > 0 such that for all large V,

eaVlogV SN(V) SebVlogV‘

4.12 Exercises and explorations

4-1. Prove that if (U, V) is discrete and nonelementary, the subgroup (U, [U, V]) is
also nonelementary provided U is not elliptic of order < 60.

4-2. Suppose that the sequence of kleinian groups {G} converges polyhedrally to a
geometrically finite group H. Prove that there is a homomorphism v of H into Gy,
for all large k, such that lim vy (h) =h, h € H.

4-3. [Mumford 1971] Prove that the collection of all closed Riemann surfaces (com-
pact surfaces without boundary) of genus g > 2 that have the property that the length
of any closed geodesic exceeds some ¢ > 0 is compact: Every infinite sequence of
such surfaces, or infinite sequence of normalized fuchsian covering groups, has a
geometrically convergent subsequence to a group which represents a surface of the
same type.

4-4. In contrast to the example of Section 4.10, verify the following claim. A sequence
of cyclic loxodromic groups {(S,)} with real traces which converges algebraically to
the cyclic parabolic group (S) also converges to it geometrically.

Show that the conclusion remains the same if the hypothesis is weakened to the
assumption that there exists 6 > 0 such that for all indices,

T is< (tS)<T[ )
—= arg(tr — —34.
2 = Ao =5

Looking at the quotients, the sequence of solid tori converge geometrically to a
solid cusp tube.

# The volume V of SK=1 ¢ RK is 27/2T (n)2).
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4-5. We will follow [Thurston 1979, Lemma 5.6.1] in outlining the sufficiency of
Equation 4.2 for the extension of ¥ from a homomorphism of 7;(M’) to one of
w1 (M) (compare Lemma 4.11.1). The proof proceeds by considering each boundary
torus separately. For simplicity of notation, we may therefore assume there is only
one.

We have chosen generators of the genus two surface S so that [y, §][«, ] =
We are assuming that tr(¢ ([e, B]) = 2, and try () = 2. We are also assuming that
Y ((y,8)) # id, ¥ () is loxodromic (does elliptic and parabolic also work?), and
¥ ({a, v, 8)) is nonelementary. According to Lemma 1.5.2, ¥ («) and ¥ (8) have a
common fixed point, say oo.

Take () = (5 .%). Then y(B) = (4 %). If ¥([e, B]) is not the identity,
then since ¥ ([y, §]) = ¥ ([«, ﬁ]_l), all four of ¢ (a), ¥ (B), ¥ (y), ¥(5) have oo as
a fixed point, a contradiction. Finally if 1/ (8) # id, then 1/ (8) is parabolic. This too
is impossible for then it could not commute with ¥ (o).

4-6. Convergence of limit sets. [McMullen 1996, Prop. 2.4] Suppose {G,} is a
sequence of kleinian groups normalized so that the respective convex hulls é(Gn)
contain a fixed ball about a point O € H? that projects injectively to the quotients. We
may then assume that the sequence converges geometrically to a kleinian group H.

A point z lies in liminf A(G,) when every neighborhood U of z contains points
of A(G,) for all n, with at most a finite number of exceptions. In contrast z €
limsup A(G,) when every neighborhood U of z contains points of infinitely many
A(Gp). The sequence {A(G,)} converges when the two limits agree.

Because every loxodromic fixed point of H is the limit of loxodromic fixed points
of G, conclude that A(H) C liminf A(G,,).

There is not always equality in the two limits. For example, there is a sequence
of fuchsian groups of the first kind whose geometrical limit is just {id} — which has
empty limit set. One such is the sequence of level-n subgroups {M,,} of the modular
group (Exercise 2-9: M, ={g € Mod : g = mod n})

But suppose that there exists p < oo such that Il‘ljn (x) < pforall x € (i’(G,,) and
all n. Prove that lim A(G,) = A(H) in the Hausdorff topology.

Hint: For a kleinian group G and r < oo set M(r) = {x € H? : I~nj(x) <r}. First
show that M (r) N'S?> C A(G), where M (r) denotes closure in the spherical metric.
To see this descend to M(G). Suppose that Inj((x)) < r for w(x) € M(G). Then
there is a noncontractible closed loop ¢ of length < 2r through 7 (x). Shrink it so
that it either becomes a geodesic y C C(G) of length < 2r or a simple loop y on the
boundary of a thin part at a finite distance from c. Back upstairs, in the former case,
the G-orbit of x accumulates to A(G). In the latter case, the orbit of x under a cyclic
parabolic group accumulates to a parabolic fixed point.

Returning to our geometrically convergent sequence, show that {I~njn(x)} for {G,}
converges to I~nj(x) for H, uniformly on compact subsets of H*. That is, lim sup
M, (r) C M(r) with respect to Hausdorff convergence, for any r > 0. When r = p,
G(G ) C M, (p), so lim sup @(G ) C M(p). Since all rays from O € G(G ) to points
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on A(G,) lie in E(Gn), the limiting rays lie in M (p). Conclude that lim sup A(G,) C
M(p) C A(H).

4-7. Hyperbolic cone manifolds and orbifolds We will start with the simplest of
examples. Set o = 2r/n and consider the action of the elliptic E,(z) = 'z on H>.
The quotient M({E)) is an (oriented) orbifold. The cone angle at the set £ of cone
points, which is just the projection of the rotation axis, is 27t /n. The elliptic E, may
be conjugated so that as n — 00, it converges to a parabolic (Exercise 2-4). The
quotient My = H? \ cone axis/(E) has a hyperbolic metric but it is not complete.
It does have a metric completion which is topologically a ball B and is called the
underlying space of the orbifold. In B, the projection of the rotation axis is called the
singular locus X ¢.

What about letting o be an irrational multiple of 277? On the one hand it is perfectly
reasonable 