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OUTER CIRCLES

We live in a three-dimensional space; what sort of space is it? Can we build it from
simple geometric objects? The answers to such questions have been found in the last
30 years, and Outer Circles describes the basic mathematics needed for those answers
as well as making clear the grand design of the subject of hyperbolic manifolds as a
whole.

The purpose of Outer Circles is to provide an account of the contemporary theory,
accessible to those with minimal formal background in topology, hyperbolic geome-
try, and complex analysis. The text explains what is needed, and provides the exper-
tise to use the primary tools to arrive at a thorough understanding of the big picture.
This picture is further filled out by numerous exercises and expositions at the ends of
the chapters and is complemented by a profusion of high quality illustrations. There
is an extensive bibliography for further study.

ALBERT MARDEN is a Professor of Mathematics in the School of Mathematics at the
University on Minnesota.



The discreteness locus in the extended Bers slice of the hexagonal once-punctured
torus (see Exercise 6-8). The Bers slice—the red central object—is surrounded by
other islands of discontinuity, in blue. The inward pointing cusps on the Bers slice
boundary represent geometrically finite groups and the same is presumably true for
the other components. The yellow dots are the fuchsian centers of the components.
Only a small number of islands are shown because of theoretical and computational
limitations.

The computation and image were made by David Dumas of Brown University; his
web site contains many beautiful related images.
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Preface

To a topologist a teacup is the same as a bagel, but they are not the same to a geome-
ter. By analogy, it is one thing to know the topology of a 3-manifold, another thing
entirely to know its geometry — to find its shortest curves and their lengths, to make
constructions with polyhedra, etc. In a word, we want to do geometry in the manifold
just like we do geometry in euclidean space.

But do general 3-manifolds have “natural” metrics? For a start we might wonder
when they carry one of the standards: the euclidean, spherical or hyperbolic metric.
The latter is least known and not often taught; in the stream of mathematics it has
always been something of an outlier. However it turns out that it is a big mistake to
just ignore it! We now know that the interior of “ most” compact 3-manifolds carry
a hyperbolic metric.

It is the purpose of this book to explain the geometry of hyperbolic manifolds. We
will examine both the existence theory and the structure theory.

Why embark on such a study? Well after all, we do live in three dimensions; our
brains are specifically wired to see well in space. It seems perfectly reasonable if not
compelling to respond to the challenge of understanding the range of possibilities. In
particular, it is not at all established that our own universe is euclidean space, as many
so like to believe.

I will briefly summarize the recent history of our subject. Although Poincaré rec-
ognized in 1881 that Möbius transformations extend from the complex plane to upper
half-space, the development of the theory of three-dimensional hyperbolic manifolds
had to wait for progress in three-dimensional topology. It was as late as the mid-
1950s that Papakyriakopoulos confirmed the validity of Dehn’s Lemma and the Loop
Theorem. Once that occurred, the wraps were off.

In the early 1960s, while 3-manifold topology was booming ahead, the theory of
kleinian groups was abruptly awoken from its long somnolence by a brilliant discov-
ery of Lars Ahlfors. Kleinian groups are the discrete isometry groups of hyperbolic
3-space. Working (as always) in the context of complex analysis, Ahlfors discovered
their finiteness property. This was followed by Mostow’s contrasting discovery that
closed hyperbolic manifolds of dimension n ≥ 3 are uniquely determined up to isom-

xiii
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etry by their isomorphism class. This too came as a bombshell as it is false for n= 2.
Then came Bers’ study of quasifuchsian groups and his and Maskit’s fundamental
discoveries of “degenerate groups” as limits of them. Along a different line, Jørgensen
developed the methods for dealing with sequences of kleinian groups, recognizing the
existence of two distinct kinds of convergence which he called “algebraic” and “geo-
metric”. He also discovered a key class of examples, namely hyperbolic 3-manifolds
that fiber over the circle.

It wasn’t until the late 1960s that 3-manifold topology was sufficiently understood,
most directly by Waldhausen’s work, and the fateful marriage of 3-manifold topology
to the complex analysis of the group action on �2 occurred. The first application was
to the classification and analysis of geometrically finite groups and their quotient
manifolds.

During the 1960s and 1970s, Riley discovered a slew of faithful representations
of knot and link groups in PSL(2,�). Although these were seen as curiosities at
the time, his examples pressed further the question of just what class of 3-manifolds
did the hyperbolic manifolds represent? Maskit had proposed using his combination
theorems to construct all hyperbolic manifolds from elementary ones. Yet Peter Scott
pointed out that the combinations that were then feasible would construct only a
limited class of 3-manifolds.

So by the mid-1970s there was a nice theory, part complex analysis, part three-
dimensional geometry and topology, part algebra. Noone had the slightest idea as to
what the scope of the theory really was. Did kleinian groups represent a large class
of manifolds, or only a small sporadic class?

The stage (but not the players) was ready for the dramatic entrance in the mid-1970s
of Thurston. He arrived with a proof that the interior of “most” compact 3-manifolds
has a hyperbolic structure. He brought with him an amazingly original, exotic, and
very powerful set of topological/geometrical tools for exploring hyperbolic manifolds.
The subject of two- and three-dimensional topology and geometry was never to be
the same again.

This book. Having witnessed at first hand the transition from a special topic in
complex analysis to a subject of broad significance and application in mathematics,
it seemed appropriate to write a book to record and explain the transformation. My
idea was to try to make the subject accessible to beginning graduate students with
minimal specific prerequisites. Yet I wanted to leave students with more than a routine
compendium of elementary facts. Rather I thought students should see the big picture,
as if climbing a watchtower to overlook the forest. Each student should end his or her
studies having a personal response to the timeless question: What is this good for?

With such thoughts in mind, I have tried to give a solid introduction and at the same
time to provide a broad overview of the subject as it is today. In fact today, the subject
has reached a certain maturity. The characterization those compact manifolds whose
interiors carry a hyperbolic structure is complete, the final step being provided by
Perelman’s recent confirmation of the Geometrization Conjecture. Attention turned
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to the analysis of structure of hyperbolic manifolds assuming only a finitely generated
fundamental group. Within the past few years, the structure of these has been worked
out as well. The three big conjectures left over from the 1960s and 1970s have been
solved: tameness, density, and classification of the ends (ideal boundary components).
If one is willing to climb the watchtower, the view is quite remarkable.

It is a challenge to carry out the plan as outlined. The foundation of the subject
rests on elements of three-dimensional topology, hyperbolic geometry, and modern
complex analysis. None of these are regularly covered in courses at most places.

I have attempted to meet the challenge as follows. The presentation of the basic
facts is fairly rigorous. These are included in the first four chapters, plus the optional
Chapters 7 and 8. These chapters include crash courses in three-manifold topology,
covering surfaces and manifolds, quasiconformal mappings, and Riemann surface
theory. With the basic information under our belts, Chapters 5 and 6 (as well as parts
of Chapters 3 and 4) are expository, without most proofs. The reader will find there
both the Hyperbolization Theorem and the newly discovered structural properties of
general hyperbolic manifolds.

At the end of each chapter is a long section titled “Exercises and Explorations”.
Some of these are genuine exercises and/or important additional information directly
related to the material in the chapter. Others dig away a bit at the proofs of some of
the theorems by introducing new tools they have required. Still others are included to
point out various paths one can follow into the deeper forest and beauty spots one can
find there. Thus there are not only capsule introductions to big fields like geometric
group theory, but presentations of other more circumscribed topics that I (at least)
find fascinating and relevant.

Acknowledgments. It is a great pleasure to thank the people who have helped
bring the book to fruition.

First I want to acknowledge the essential contributions of my friend and colleague
Troels Jørgensen. Over more than 25 years we walked in the forest together dis-
cussing and admiring the landscape our studies revealed. In particular we discussed
the “universal properties” of Chapter 3 for years, until it was too late to publish them.
Chapters 7 and 8 are based on his private lectures.

David Wright kindly computed a number of limit sets of kleinian groups, some
never before seen, others adapted from pictures created for Indra’s Pearls [Mumford
et al. 2002]. The extent of his contribution is evident from the list of figures. His
pictures can be downloaded from www.okstate.edu/~wrightd/Marden together with
computational details. In addition, David Dumas was willing to share his visualiza-
tion of a Bers slice amidst the surrounding archipelago of discreteness components.
It serves as the frontispiece. Jeff Brock contributed his pictures of algebraic and
geometric limits that originally appeared in [Brock 2001b]; these too can be seen on
www.math.brown.edu/˜brock. The presence of the many artfully crafted pictures
is a tangible expression of the mathematical beauty of the subject.

I am very grateful to Ken’ichi Ohshika for reading and commenting on an early
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draft and Dick Canary for reading several chapters of a later draft of the manuscript.
Ian Agol, Ken Bromberg, Richard Evans, Sadayoshi Kojima, Howie Masur, Vlad
Markovic, Yair Minsky, Peter Scott and Juan Souto as well as other mathematicians
have been generous in responding to specific questions as well.

I could not have completed the book in the present form without the expert guidance
and participation of Silvio Levy. He identified math problems, fixing some of them,
properly handled the LATEX formatting, improved the syntax, crafted the diagrams,
and inserted the pictures.

I want to acknowledge the institutional support from the Forschungsinstitut für
Mathematik at ETH in Zurich, the Maths Research Center, University of Warwick,
and not least, from my own department, the School of Mathematics of the Univer-
sity of Minnesota. In my semester course Math 8380, I was able to present a solid
introduction and overview of the subject based on the main points in the first six
chapters.

I am grateful to Caroline Series for introducing me to the Press and for her enthu-
siasm for the project. Cambridge University Press in the person of David Tranah has
shown great flexibility in keeping the retail price down and publishing standards high.
Most importantly, David provided Silvio Levy as editor.

The nineteenth-century history. The history of noneuclidean geometry in the
early nineteenth century is fascinating because of a host of conflicted issues concern-
ing axiom systems in geometry, and the nature of physical space [Gray 1986; 2002].

Jeremy Gray [2002] writes:

Few topics are as elusive in the history of mathematics as Gauss’s claim to be a, or even the,
discoverer of Non-Euclidean geometry. Answers to this conundrum often depend on unspo-
ken, even shifting, ideas about what it could mean to make such a discovery. . . . [A]mbiguities
in the theory of Fourier series can be productive in a way that a flawed presentation of a new
geometry cannot be, because there is no instinctive set of judgments either way in the first
case, but all manner of training, education, philosophy and belief stacked against the novelties
in the second case.

Gray goes on to quote from Gauss’s 1824 writings:

. . . the assumption that the angle sum is less than 180◦ leads to a geometry quite different from
Euclid’s, logically coherent, and one that I am entirely satisfied with. It depends on a constant,
which is not given a priori. The larger the constant, the closer the geometry to Euclid’s. . . .
The theorems are paradoxical but not self-contradictory or illogical. . . . All my efforts to find
a contradiction have failed, the only thing that our understanding finds contradictory is that,
if the geometry were to be true, there would be an absolute (if unknown to us) measure of
length a priori. . . . As a joke I’ve even wished Euclidean geometry was not true, for then we
would have an absolute measure of length a priori.

From his detailed study of the history, Gray’s conclusion expressed in his recent
Zurich lecture is that the birth of noneuclidean geometry should be attributed to the
independently written foundational papers of Lobachevsky in 1829 and Bólyai in
1832. As expressed in [Milnor 1994, p. 246], those two were the first “with the
courage to publish” accounts of the new theory. Still,
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[f]or the first forty years or so of its history, the field of non-euclidean geometry existed in a
kind of limbo, divorced from the rest of mathematics, and without any firm foundation.

This state of affairs changed upon Beltrami’s introduction in 1868 of the methods
of differential geometry, working with constant curvature surfaces in general. He gave
the first global description of what we now call hyperbolic space. See [Gray 1986,
p. 351], [Milnor 1994, p. 246], [Stillwell 1996, pp. 7–62].

It was Poincaré who brought two-dimensional hyperbolic geometry into the form
we study today. He showed how it was relevant to topology, differential equations,
and number theory. Again I quote Gray, in his translation of Poincaré’s work of 1880
[Gray 1986, p. 268–9].

There is a direct connection between the preceding considerations and the non-Euclidean
geometry of Lobachevskii. What indeed is a geometry? It is the study of a group of op-
erations formed by the displacements one can apply to a figure without deforming it. In
Euclidean geometry this group reduces to rotations and translations. In the pseudo-geometry
of Lobachevskii it is more complicated. . . [Poincaré’s emphasis].

As already mentioned, the first appearance of what we now call Poincaré’s confor-
mal model of noneuclidean space was in his seminal 1881 paper on kleinian groups.
He showed that the action of Möbius transformations in the plane had a natural ex-
tension to a conformal action in the upper half-space model.

Actually the names ”fuchsian” and “kleinian” for the isometry groups of two- and
three-dimensional space were attached by Poincaré. However Poincaré’s choice more
reflects his generosity of spirit toward Fuchs and Klein than the mathematical real-
ity. Klein himself objected to the name “fuchsian”. His objection in turn prompted
Poincaré to introduce the name “kleinian” for the discontinuous groups that do not
preserve a circle. The more apt name would perhaps have been “Poincaré groups” to
cover both cases. For the full story see [Gray 1986, §6.4].

So here we are today, nearly 125 years after Poincaré and approaching 200 after
the initial ferment of ideas of Gauss, witnessing a full flowering of the vision and
struggle for understanding of the nineteenth-century masters.

Albert Marden
am@umn.edu
Minneapolis, Minnesota
May 19, 2006





1

Hyperbolic space and its isometries

In this chapter we gather together basic information about the geometry of two- and
three-dimensional hyperbolic spaces and their isometries. This will set the stage for
our study of quotient manifolds and orbifolds which begins in the next chapter.

1.1 Möbius transformations

A Möbius transformation in the unit sphere �n of dimension n is, by definition, the
result of a composition of reflections in (n−1)-dimensional spheres in �n . It will
be orientation preserving if it is the composition of an even number of reflections.
A defining property is that Möbius transformations send (n−1)-dimensional spheres
onto (n−1)-dimensional spheres. Automatically, a symmetric pair of points (with
respect to reflection) about one sphere gets sent to a symmetric pair about the other.

From now on, the unqualified term Möbius transformation will be reserved for
those that preserve orientation. The orientation reversing kind will be called anti-
Möbius transformations. For a discussion of the latter, see Exercise 1-31 at the end
of the chapter.

The study of hyperbolic 3-manifolds is intimately connected with the study of
Möbius and anti-Möbius transformations on the two-dimensional sphere �2. Via

Fig. 1.1. Stereographic projection

1



2 Hyperbolic space and its isometries

stereographic projection (Figure 1.1), �2 is homeomorphic to the extended plane
�∪∞, and we will freely use this fact to change points of view between the extended
plane and the 2-sphere. Under stereographic projection, the collection of circles and
straight lines in � corresponds to the collection of circles on �2; a straight line in
� corresponds to a circle on �2 through the north pole. With this correspondence
in mind, we can refer to the collection of circles and lines in � simply as “circles”.
Moreover stereographic projection is a conformal map, that is, it preserves angles
between intersecting arcs — in particular, angles of intersection between circles.

Möbius transformations in two dimensions are fractional linear transformations of
the extended plane. That is, a Möbius transformation acting on �∪∞ has the form

z �→ A(z)= az+ b

cz+ d
, with a, b, c, d ∈ � such that ad − bc 
= 0. (1.1)

(When ad−bc=0 the expression on the right is a constant, so the map is not a Möbius
transformation.) As we will see shortly, a map of this form can indeed be expressed
as the composition of an even number of reflections in circles (in fact, two or four
circles: see Exercise 1-7). The symmetry properties of such maps are established in
Exercise 1-2.

Möbius transformations are conformal maps. In fact, the only conformal homeo-
morphisms of �∪∞ are Möbius transformations.

We will generally assume that the representation in (1.1) is normalized, meaning
that ad−bc= 1. Then we can identify the group of Möbius transformations with the
quotient PSL(2,�) := SL(2,�)/± I , where SL(2,�) is the group of 2× 2 matrices
of determinant one and I is the identity matrix:

A(z)= az+ b

cz+ d
←→ ±

(
a b
c d

)
, A−1(z) ←→ ±

(
d −b
−c a

)
.

The± ambiguity cannot be avoided. We will not keep inserting it, unless it plays an
essential role. In any case the value of changing from transformations to matrices lies
mainly in the algebra of composition. If A, B are Möbius transformations, the Möbius
transformation resulting from the application of A followed by B is written B A; the
corresponding matrix is just the usual product B A of the component matrices, in the
order written. The ± ambiguity follows along. We will hop from one to the other,
the representation as a transformation to the representation as a matrix, depending on
which best suits the situation, without changing the labeling.

Two Möbius transformations A, B are conjugate if there is a Möbius transformation
U such that B = U AU−1. Conjugate transformations have the same geometry: U
effects transfer of the geometry of A to that of B.

The expression AB A−1 B−1 is called the commutator of A and B and written as
[A, B]. Two elements commute if and only if their commutator is the identity. ∗

∗ The alternative conventions [A, B] = B−1 A−1 B A or A−1 B−1 AB are preferred by some authors; they do the
same job, but the formulas come out differently.



1.1 Möbius transformations 3

The trace of a Möbius transformation A is, by definition, the trace of the normalized
matrix of A:

τA = tr A =±(a+ d).

It is invariant under conjugation. The ± ambiguity can be avoided either by using τ 2
A

or by specifying 0≤ arg τA < π .
By solving the equation A(z)= z, we find that a nontrivial Möbius transformation

has one or two fixed points in �2, namely (a − d ±√τA
2− 4)/2c, when c 
= 0, or

otherwise the points∞ and b/(d−a)= ab/(1−a2). Here A= (a
c

b
d

)
, ad− bc= 1.

Only the identity can have three fixed points.
Given three distinct points (p2, p3, p4) ∈ �2, there exists a necessarily unique

Möbius transformation sending p2 to 1, p3 to 0, p4 to∞. It is given by

z �→ (z− p3)(p2− p4)

(z− p4)(p2− p3)
= (z, p2, p3, p4),

when none of the points pi is ∞. By taking the limit as some pi →∞, we obtain
the correct expression for pi =∞. The expression (z, p2, p3, p4) is called the cross
ratio of the four points. ∗ Cross ratios are invariant under Möbius transformations:

(Az, Ap2, Ap3, Ap4)= (z, p2, p3, p4) for any A.

This is a consequence of the fact that T (z) = (z, p1, p2, p3) satisfies T ◦ A−1(z) =
(z, Ap1, Ap2, Ap3).

Apart from the identity, Möbius transformations fall into one of three types:

A is parabolic if the following equivalent properties hold.

• A is conjugate to z �→ z+ 1.
• A has exactly one fixed point in �2.
• τA =±2 and A 
= id.

A is elliptic if the following equivalent properties hold.

• A is conjugate to z �→ e2iθ z, with 2θ 
≡ 2π .
• τA ∈ (−2,+2).
• A has exactly two fixed points, and the derivative of A has absolute value 1 at

each of them.

A is loxodromic if the following equivalent properties hold.

• A is conjugate to z �→ λ2 z, with |λ|> 1.
• τA ∈ � \ [−2,+2].
• A has exactly two fixed points, one attracting and one repelling.

We will use the term standard forms for the conjugates for the conjugates just listed.
The geometry of a general normalized Möbius transformation A is most easily read
off from the conjugate standard form. Note that the elliptic z �→ 1/z is conjugate to
z �→ −z.

∗ The definition given has the property (z, 1, 0,∞)= z. A common alternate definition results in (z, 0, 1,∞)= z.
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Fig. 1.2. Invariant spiral of a loxodromic with trace λ+ λ−1 = 1.976+ 0.005i .

A loxodromic Möbius transformation A has a collection of loxodromic curves or
invariant spirals in �2. (In navigation, a loxodromic curve or rhumb line is a path
of constant bearing: it makes equal oblique angles with all meridians, and so coils
around the poles without ever reaching them.) For the standard form z �→ λ2z, one
such spiral is given by

z(t)= λ2t , −∞< t <∞.

If σ denotes the segment 0 ≤ t < 1 of the spiral, the various images {An(σ )} cover
the spiral without overlap. See Figure 1.2.

For additional structure in special cases see [Wright 2006].
The term hyperbolic transformation has historically been used to designate a lox-

odromic transformation whose trace is real. Such a transformation is conjugate to
z �→ λ2z with λ > 1. Nowadays the term “hyperbolic” is also used for a loxodromic
element acting in hyperbolic 3-space.

The classification is proved by first conjugating A so that one fixed point lies at∞
and the other, if there is one, at 0. The further conjugation z �→ 1/z that interchanges
0 and∞ may be needed to put the attracting fixed point at∞.

If p ∈ � is a fixed point of A 
= id, p is attracting if and only if |A′(p)| < 1 and
repelling if and only if |A′(p)|> 1. The transformation A is parabolic if and only if
A′(p)= 1; A is elliptic if and only if |A′(p)| = 1 but A′(p) 
= 1.

Upon referring to the normalized matrix A = (a
c

b
d

)
, we find that the eigenvalues

are λ, λ−1 = 1
2(tr A±√tr2 A− 4). The corresponding eigenvectors

(
α
β

)
satisfy

α

β
= λ− d

c
= p and

α

β
= λ

−1− d

c
= q,

where p, q are the fixed points. Like the trace, the eigenvalues are invariant under
conjugation. The eigenvalues of an elliptic transformation have the form e±iθ and the
trace is 2 cos θ . A loxodromic transformation has eigenvalues λ±1 and trace λ+λ−1.
We can choose λ so that |λ|> 1, that is, so that λ is the expanding eigenvalue.
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The expanding eigenvalue of a loxodromic element A can be expressed as a cross
ratio by the formula

λ2 = (z, A(z), p+, p−),

where p+, p− are the attracting and repelling fixed points. (It is enough to confirm
this when p+ =∞ and p− = 0.)

We can write A = (a
c

b
d

)
as

Az = 1

−c2(z+ d/c)
+ a

c
if c 
= 0, Az = a

d

(
z+ b

a

)
if c = 0. (1.2)

This expresses A in terms of simple building blocks: maps in standard form, plus
the map z �→ 1/z. Each of these has the property of preserving (generalized) circles.
Therefore any Möbius transformation preserves circles, as mentioned earlier. Like-
wise each building block is easily seen to be a composition of two reflections, so a
Möbius transformation is the composition of an even number of reflections.

Three distinct points p2, p3, p4 uniquely determine a circle C , with an orientation
determined by their order. When C is a proper circle, we say that the orientation
thus defined is positive if the interior of the circle lies to the left as p2, p3, p4 are
encountered in that order. Let q2, q3, q4 be another set of distinct points, and C ′ the
circle through them. The Möbius transformation T that sends pi → qi automatically
sends C onto C ′. If both are proper circles, T sends the interior of C to the interior of
C ′ if and only if the triples give both circles positive (or negative) orientations. The
transformation T : z→ w can be expressed in terms of cross ratios as

(w, q2, q3, q4)= (z, p2, p3, p4).

But if we focus simply on sending C to C ′, and a designated side of C to a designated
side of C ′, it is more efficient to find T by cross ratio using the symmetry property:
A Möbius transformation sends points symmetric with respect to reflection in one
circle, to a pair of points symmetric in the image (Exercise 1-2). For a proper circle,
the most conspicuous symmetric points are its center and∞.

A cross ratio (p, p2, p3, p4) is real if and only if the four points lie on a circle
in �2. The cross ratio is positive if and only if (p, p3, p4) gives the circle the same
orientation as (p2, p3, p4).

We are now ready to show that Möbius transformations in �∪∞ can be extended
to Möbius transformations acting in upper half-space {�x = (z, t) : z ∈ �, t > 0}.
The simplest way to see this is by applying the following observation. Each Möbius
transformation is the composition of an even number of reflections in circles or lines
in �. A reflection in a circle extends naturally to the reflection in the upper hemi-
sphere bounded by that circle. Likewise the reflection in a straight line extends to the
reflection in the vertical half-plane bounded by that line. (The same argument shows
that Möbius transformations on �n = �n ∪ {∞} extend to upper half (n+1)-space.)
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A Möbius transformation acting on � ∪∞ sends a given circle to another circle
or line. Its extension to upper half-space will therefore map the hemisphere bounded
by the circle to the hemisphere or half-plane bounded by the image of the circle. We
conclude that the extension to upper half-space maps the totality of hemispheres and
vertical half-planes onto itself.

If two hemispheres intersect, or a hemisphere and a vertical half-plane intersect,
the intersection is a semicircle which is orthogonal to �. If two vertical half-planes
intersect, they intersect in a vertical half-line orthogonal to �. The extension of a
Möbius transformation thus maps the totality of half-lines and semicircles orthogonal
to � onto itself. The dihedral angles between intersecting hemispheres is the same as
the angle of intersection between their bounding circles in �.

It is useful to explicitly work out the formula for extension to upper half-space
{�x = (z, t) : z ∈ �, t > 0}. We first extend the building blocks. First,

z �→ az becomes (z, t) �→ (az, |a| t);
z �→ z+ b becomes (z, t) �→ (z+ b, t).

The inversion z �→ z−1 is most easily dealt with as the composition of two anti-Möbius
transformations: z �→ z̄ (reflection in a line) and z �→ z/|z|2 = z̄−1 (reflection in the
unit circle). Extending to reflections in a vertical plane and the unit hemisphere, we
get respectively (z, t) �→ (z̄, t) and

�x �→ �x
|�x |2 or (z, t) �→

( z

|z|2+ t2
,

t

|z|2+ t2

)
.

Therefore,

z �→ 1

z
becomes (z, t) �→

( z̄

|z|2+ t2
,

t

|z|2+ t2

)
.

Composing the building blocks we find that the extension of
(a

c
b
d

)
is

(z, t) �→
(
− z+ d/c

c2
(|z+ d/c|2+ t2

) + a

c
,

t

|c|2(|z+ d/c|2+ t2
)
)

when c 
= 0.

(z, t) �→
(

a

d
(z+ b/a),

∣∣∣a
d

∣∣∣ t

)
when c = 0.

1.2 Hyperbolic geometry

In the euclidean plane, there is exactly one line through a given point and not meeting
a given line disjoint from the point; this is the famous fifth postulate of Euclid. It
gradually became clear in the nineteenth century that one can have a self-consistent
and interesting geometry where this postulate is not valid — where “parallel” lines
are not unique and indeed exist in uncountable abundance. This became known as
hyperbolic geometry. Though the name was bestowed in connection with conics and
projective geometry [Klein 1871, p. 72], it is a doubly felicitous choice, because the
Greeks had named the hyperbola after the word for excess (compare “hyperbole”,
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from the same Greek word). Hyperbolic geometric certainly has an excess of lines —
and of “room” — compared to euclidean geometry!

Here are some of the salient features that distinguish hyperbolic geometry from the
familiar euclidean and spherical geometry.

(i) The angle sum 	 of a hyperbolic triangle 
 satisfies 0 < 	 < π ; in fact, 	
equals π−area
. The limiting case 	= 0 is achieved by ideal triangles whose
vertices are “at infinity”: we will have more to say about such ideal vertices
soon (page 14). At the other extreme, the case 	 = π is the limiting case
of hyperbolic triangles of very small area. Indeed, on the infinitesimal scale,
hyperbolic geometry is euclidean.

(ii) There are no similarities in hyperbolic space — one cannot scale a figure up or
down without changing its angles and shape. It follows, for instance, that all
hyperbolic triangles with the same angles are isometric (hyperbolic triangles are
“rigid”), and also that the choice of a unit of length is not arbitrary, as in euclidean
space; one can privilege a unit having some special property, say the side length
of an equilateral triangle whose vertex angles are π/4.

(iii) For any 0 ≤ θ < π/(n − 2) there is a regular n-sided hyperbolic polygon with
vertex angles θ . More generally, a necessary and sufficient condition for the
existence of an n-sided convex polygon with vertex angles θi (with 0≤ θi < π)
in clockwise order is that

∑
θi < (n−2)π . The polygon is uniquely determined

up to isometry and its area is (n− 2)π −∑ θi .

(iv) Two convex hyperbolic polyhedra that are combinatorially the same with the
same dihedral angles and valence 3 at all vertices are isometric [Rivin 1996;
Bobenko and Springborn 2004].

(v) The hyperbolic volume V of a ball and the surface area S of its bounding sphere
grow exponentially with the hyperbolic radius ρ. The ratio of the surface area
to the volume approaches 2 as ρ→∞.

In short, in the hyperbolic plane and space there are more geometric shapes, they
have a tendency toward rigidity, and there is a lot more space in which to build them —
in the estimate of Dick Canary, a baseball game played in the hyperbolic plane would
require more than 10100 ballplayers to provide the same level of outfield coverage as
in euclidean space!

Most 2-dimensional abstract surfaces and 3-dimensional manifolds can be modeled
using hyperbolic geometry, but not euclidean or spherical geometry. Hyperbolic space
is a good place to embed exponentially growing graphs, like a graph representing
interconnected web sites. In fact PARC has patented an algorithm for laying out such
graphs in �2 [Lamping et al. 1995]. A different, unpatented, algorithm for laying out
graphs in �3 is presented in [Munzner 1997]. The change of focus from one site to
another is effected by a hyperbolic isometry.

By studying the ancient microwave radiation that pervades the universe, astrophysi-
cists hope to get clues about the topology and large-scale curvature of our cosmic
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Fig. 1.3. Disk and upper half-plane models of �2 showing the same geodesics.

home. An earlier proposal that we live in a hyperbolic universe appears to be incom-
patible with recent data from the Wilkinson Microwave Anisotropy Probe (WMAP),
which found the total density (matter plus vacuum energy) to have essentially the
value expected for flat space. To the extent that there may be deviation, it is toward
a spherical universe (positive curvature); see the discussion in [Weeks 2004]. If the
universe is a closed manifold with positive curvature, it can have one of only a few
topological types. ∗ To establish that the universe is not simply connected would be
astounding!

We now discuss the most commonly used models of the hyperbolic plane and of
hyperbolic space. These are subsets of �n with appropriate riemannian metrics.

The hyperbolic plane

The upper half-plane model is {z ∈ � : Im z > 0} with the metric

ds = |dz|
Im z

.

Here Im z is the notation for the imaginary part. The unit disk model is {z ∈� : |z|<1}
with the metric

ds = 2 |dz|
1− |z|2 .

The two models are equivalent under any Möbius transformation that maps the
upper half-plane onto the unit disk. We will denote either one of these models by �2,
the notation for the hyperbolic plane. These models have the following properties.

(i) The metrics are infinitesimally euclidean; at each point they equal a rescaled
euclidean metric. Thus the angle between two curves in the disk or upper half-
plane is the same whether measured in the hyperbolic or the euclidean geometry;

∗ For example, it might conceivably be Poincaré dodecahedral space, the famous first example found by Henri
Poincaré of a closed manifold with zero homology which is not homeomorphic to �3. He had initially believed
that such a manifold must be �3; the example led him to the Poincaré Conjecture. A good explanation of this
space and of the classification of spherical three-manifolds can be found in [Thurston 1997].
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as a result these models are often called conformal. (For other models see Exer-
cise 1-25 and following.)

(ii) �2 is complete in its metric. Every arc tending to the boundary has infinite
length.

(iii) The metrics are invariant under any Möbius transformation that maps the model
onto itself. In fact these transformations comprise the full group of orientation
preserving isometries of the model.

(iv) The hyperbolic lines (geodesics) in the upper half-plane model are semicircles
orthogonal to � and vertical half lines. In the disk model they are diameters and
circular arcs orthogonal to {|z| = 1}.

Hyperbolic space

The upper half-space model is {(z, t) : z ∈ �, t > 0} with the metric

ds = |d �x |
t
, |d �x |2 = |dz|2+ dt2.

The ball model is {�x ∈ �3 : |�x |< 1} with the metric

ds = 2 |d �x |
1− |�x |2 .

The two models are equivalent by a Möbius transformation that maps one to the
other. Stereographic projection extends to such a Möbius transformation (Exercise
1-11). We will refer to either of these models with its metric as hyperbolic space and
denote it by �3.

We repeat our list of properties:

(i) The metrics are infinitesimally euclidean and correctly represent the angles in
�3.

(ii) �3 is complete in its metric.
(iii) The metrics are invariant under any Möbius transformation that maps the model

onto itself. These transformations form the full group of orientation preserving
isometries of the models.

Fig. 1.4. Ball and upper half-space model of �3 showing geodesic planes.
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(iv) The hyperbolic planes in the upper half-space model are hemispheres orthogonal
to � and vertical euclidean half-planes. The lines (geodesics) are semicircles
orthogonal to � and vertical euclidean half-lines. In the ball model the hyperbolic
planes are spherical caps orthogonal to the unit sphere, and equatorial planes.
The lines are circular arcs orthogonal to the unit sphere, and euclidean diameters.

Restricting the hyperbolic metric to a hyperbolic plane in the model yields the
2-dimensional hyperbolic metric on that plane. Particular cases are the vertical half-
plane rising from � in the upper half-space model and the equatorial plane in the ball
model, where the restriction of the metrics give rise to our models of �2.

Proof of property (iii). For the proof that the Möbius transformations are orientation
preserving isometries of the models, see Exercises 1-9 and 1-12. Here we show that
there are no other such isometries, concentrating on the hyperbolic plane.

Given three positive distances d1, d2, d3 satisfying the triangle inequality, and a
point z on an oriented line � ∈�2, there are exactly two triangles with a vertex at z, a
side of length d1 lying on the positive side of �, a side of length d2 sharing the vertex
z, and a third side of length d3. They are reflections of each other in � and one of the
two is uniquely determined if an ordering of the vertices is given and required to give
the positive orientation of the triangle they bound.

Given an orientation preserving isometry T , the T -images of three points not on
a line are not on a hyperbolic line either. There is a Möbius transformation A such
that A ◦ T fixes the three points. It then pointwise fixes the sides of the triangle they
determine, and then fixes the whole triangle 
. That is, T (z)= A−1(z), for z ∈
. If

′ is a triangle sharing an edge with 
, there is Möbius transformation A1 such that
T (z) = A−1

1 (z) on 
′. Necessarily A1 = A. Continuing on, building up the whole
plane �2 by adding in succession adjacent triangles, we conclude that T ≡ A. �

Proof of property (iv). In view of (iii) we need only prove that the vertical axis �
is itself a geodesic. We will work in the upper half-space model. Let � denote the
vertical axis rising from z = 0. Given �x = (z, t) ∈ �3, define the map r : �3 → �

as r(�x) = (0, t). This map is called a retraction since in the hyperbolic distance
d(r(�x), r(�y)) ≤ d(�x, �y). There is equality if and only if both �x, �y lie on a vertical
line. This is an immediate consequence of the differential inequality

ds2 = dx2+ dy2+ dt2

t2
≥ dt2

t2
.

Now suppose γ (u), with 0≤ u≤ 1, is a differentiable path both of whose endpoints
lie on �. Its length strictly exceeds the length of r(γ ), unless the path is the segment
on � between its endpoints. That is, � is a geodesic: the unique shortest path between
two points lying on � is the segment of � between the two points. Therefore all images
of � by the isometries are also geodesics. In particular, through any two points there
passes a unique geodesic.

Likewise the vertical half-plane resting on � is a hyperbolic plane: the geodesic
through any two points of the plane also lies in the plane. Therefore the totality of
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images under the isometries are the totality of hyperbolic planes. Any three distinct
points, not on a line, uniquely determine a hyperbolic plane through them. �

Euclidean circles in �2 and euclidean circles and spheres in �3 are also hyperbolic
circles and spheres. This is seen by starting with circles and spheres in the disk and
ball models which are centered at the origin. The image of a circle or sphere under
any Möbius transformation is again a euclidean circle or sphere, if no point on it gets
sent to∞. Conversely any circle or sphere can be sent by a Möbius transformation
to one centered at the origin.

However the hyperbolic center is not the euclidean center, except for the circles
and spheres with center at the origin in the disk and ball models (Exercise 1-4).

1.3 The circle or sphere at infinity

From the point of view of the hyperbolic metric, the models have no boundary: the
metric is complete, and hyperbolic straight lines extend forever, though equal hy-
perbolic distances are represented by increasingly smaller euclidean distances in the
model as one approaches the edge (the unit circle in the disk model, etc.)

However, it is useful to regard the edge of the model as a sort of “conformal bound-
ary” in a way that will be explained shortly. This boundary is denoted by ∂�2 (=�1

or �∪ {∞} for the hyperbolic plane) and by ∂�3 (= �2 or �∪ {∞}) for hyperbolic
space. Another common designation is �∞, for the circle or sphere at infinity. If we
fix a point in �3, we can also identify ∂�3 with the visual sphere of rays emanating
from this point.

In �2 or �3, each hyperbolic line determines two “endpoints” on the boundary.
Conversely, two distinct boundary points uniquely determine a line. Distinct lines
may share an endpoint — indeed, a way to define the sphere at infinity intrinsically,
without reference to a model, is by taking all oriented geodesics (parametrized by
arclength) and defining as equivalent any two that remain within a bounded distance
of each other as t→∞; the set of equivalence classes is �∞.

Two hyperbolic lines intersect in at most one point. In �2, they intersect if and
only if their endpoints alternate on ∂�2. Given a line � and a point z /∈ � in �2,
there are infinitely many lines through z which do not meet �— unlike the case of
the euclidean plane! These are the “parallel lines” of the hyperbolic plane. Among
all these parallel lines, there are two that share an endpoint with �.

In �3 each hyperbolic plane P is bounded by a circle on ∂�3 (which may be real-
ized as a euclidean line on the boundary of the upper half-space model). Conversely
each circle on �2 = ∂�3 determines one such plane.

The isometries of �3 extend to ∂�3 as conformal automorphisms, that is, as Möbius
or anti-Möbius transformations (depending on whether the isometry preserves or re-
verses orientation).

As mentioned earlier, the set of geodesic rays from a given point �x ∈ �3 can be
identified with ∂�3. Any hyperbolic plane not through �x subtends a solid angle at �x
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Fig. 1.5. Outer circles: Isometric circles (see page 19) on �2 of numerous elements of a cyclic
group generated by a loxodromic with approximate trace 1.92+ .03i .

of < 2π . That is, on a tiny sphere of radius ε about �x , the intersection of the sphere
with the rays from �x to the plane fill out a surface area strictly less than 2πε2, less
than half the area of the sphere. In contrast, in euclidean space any plane subtends
exactly a solid angle 2π .

If we lived in hyperbolic space, what we would see as flat lines and planes would
automatically be the hyperbolic geodesics, since light would travel along hyperbolic
geodesics. If we stood on a plane P , we would see the “circle at infinity” that supports
a plane P as the horizon of P .

In practice, we have to view hyperbolic space from the outside, from euclidean
space using one of our models. We then see the euclidean lines and planes as flat
while most of the hyperbolic ones look curved. Looking at the disk or ball model
from the outside, we also see the entire circle or sphere at infinity.

From the outside, ∂�3 is full of circles corresponding to elements of discrete groups
of isometries, the outer circles of the book title. (See Figure 1.5.) The action of
isometries on geodesic planes in �3 is paired with the corresponding action on the
outer circles.

An elliptic transformation T has an axis of rotation inside �3. It is the hyperbolic
line connecting its fixed points on �2. The axis is pointwise fixed by T .
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Fig. 1.6. Invariant tubes viewed in cross section, in the ball model and the upper half-space.
The axis of the transformation is shown thicker in each case. The transversal lines represent
discs orthogonal to the axis; all these disks (within the same tube) are congruent.

A loxodromic transformation T likewise has an axis in �3. It too is the hyperbolic
line connecting the fixed points. T maps the line onto itself, moving each point toward
the attracting fixed point. If T is in standard form, λ2 z, with |λ| > 1, the axis is the
vertical half-line z= 0 in upper half-space. The hyperbolic distance between any pair
of points z, T (z) on the axis is d = 2 log |λ|, or 2 cosh(d/2)= |λ| + |λ−1| ≥ |τT |.

Both elliptic and loxodromic transformations in �3 leave invariant not just the
axis, but also each of a family of surfaces equidistant from the axis. These surfaces
are particularly easy to visualize in upper half-space when the transformation is in
standard form: the surface is a euclidean cone with vertex at (z, t) = (0, 0) and a
vertical axis (the half-line z = 0). When both endpoints of the axis line on the plane
t = 0, the euclidean shape of the surfaces is a tube, tapering to a cone at each end-
point (Figure 1.6). Note that though we often describe features of hyperbolic space
by talking about their euclidean shapes in the model — and this mixture is almost
inevitable — you should strive to visualize each object both intrinsically (the tube has
constant diameter) and in terms of the model (the tube looks like a cone or a crescent).

A parabolic transformation P has no axis, since there
is only one fixed point. P does have invariant surfaces,
each mapped to itself (in the spirit of the tubes of the
previous paragraph); they look like euclidean spheres,
and are called horospheres. (Watch out: horospheres
are not hyperbolic spheres! See Exercise 1-33.) All
horospheres of a parabolic transformation P are tangent
to one another and to the sphere at infinity at the fixed
point ζ of P . The region of �3 cut off by a horosphere is
called a horoball. In the upper half-space model, there
is an exceptional case, when the fixed point ζ is at infinity (say for P(z)= z+1): then
the horospheres are euclidean planes {(z, t) : t = constant}, and the horoballs are the
half-spaces above these planes. For parabolic transformations of �2 the corresponding
objects in are called horocycles and horodisks.

At a parabolic fixed point ζ ∈ �2, there is a double family of mutually tangent
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circles at ζ that bound disjoint open disks and are invariant under the parabolic trans-
formation. In the case ζ = ∞ and P(z) = z + a, with a ∈ �, they are the family
{z : Im z = ±s, s 
= 0}. More generally if the flow associated with P has the vector
direction a ∈ �, the pairs of horocycles are {z : Im āz =±s, s 
= 0}.

The prefix “horo” comes form the Greek word for “limit”. Fix a point O ∈�3. Take
the hyperbolic sphere σx centered at x ∈�3 and passing through O . As x→ ζ ∈ ∂�3,
the limit of σx is the horosphere at ζ passing through O .

We now take up the study of triangles. As already mentioned the area of a triangle
is equal to the “angle deficit” π−∑ θi , where the θi are the vertex angles; see Exercise
1-6 for a proof. Thus the greatest area a triangle can have is π , which happens when
all vertices have “angle zero” — this is really a limiting case, when the vertices are no
longer points in hyperbolic space by in the sphere at infinity. A point in the sphere at
infinity is also called an ideal point, and so triangles whose vertices are at infinity are
ideal triangles. Given two ideal triangles and a labeling of the respective vertices in
the positive direction, there is a unique isometry that takes one to the other, matching
the designated labeling.

Theorem 1.3.1 (All triangles are thin). Any point ξ on a side of a hyperbolic triangle

 is within distance log(1+√2) = arcsinh 1 from one of the two other sides. The
distance attains its maximum only for an ideal triangle, with ξ of equal distance from
the two other sides.

Any point inside a hyperbolic triangle is within distance log(1+√2) = arcsinh 1
of one of the sides.

Proof. We work in the upper half-plane model. We may assume by changing the
position of 
 in �2 by an orientation preserving isometry that the side [p, q] of

 = (p, q, r) containing ξ lies on the unit semicircle centered at the origin, 
 lies
above this semicircle, and the side [p, r ] lies on the vertical euclidean line through

Fig. 1.7. Universal thinness of triangles.
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p. Here take p to be the left vertex on the semicircle. Assume at the start that none
of the vertices is ideal. (See Figure 1.7.)

We start by showing that we may replace r by r ′ = ∞. As r goes up along the
vertical line from p, the distance of ξ to [p, r ] increases or (once r is no longer the
closest point to ξ ) remains the same. The distance of ξ to the side [q, r ′], too, either
equals the distance qξ or the length of the perpendicular from ξ to [q, r ′]; therefore it
exceeds the distance from ξ to [q, r ], since [q, r ] separates [q, r ′] from ξ in the new
triangle (p, q, r ′). Thus the minimum distance of ξ to the sides increases when we
more r to r ′ =∞, so that 
 becomes a triangle with an ideal vertex.

Next consider what happens as q slides down the semicircle to its right endpoint
q ′ ∈ �. The distance of ξ to [q,∞] strictly increases as q changes to q ′; in the new
triangle (p, q ′,∞) the side [q,∞] separates [q ′,∞] from ξ . Similarly the distance
of ξ to [p,∞] strictly increases as p slides down the semicircle to its left endpoint
p′ ∈ �.

So now we have an ideal triangle with ξ on the side that is now the full semicircle.
The minimal distance of ξ to the two vertical sides is greatest when ξ is the symmetric
point ξ = i . Finally we have to compute the distance from ξ to one of the vertical
sides. There is exactly one semicircle C ′ through ξ = i with center at z = p′ which
is orthogonal to the vertical line [p′,∞]. In polar coordinates at p′, the orthogonal
segment is the arc 0 ≤ θ ≤ π/4 of C ′, if θ is measured from the vertical. The length
of this segment is

∫ π/4

0

ρ dθ

ρ cos θ
= log(

√
2+ 1).

Here the radius ρ of C ′ doesn’t enter — the map z �→ kz, k>0 (a euclidean similarity)
is a hyperbolic isometry.

Given a point z in a triangle 
 and a pair of sides, divide 
 by a geodesic arc
between the designated sides and passing through z. Application of what we just
proved shows that z is within distance arcsinh 1 of the two designated sides. Then
repeat the argument with an arc through z from the third side. �

A related fact is described in Exercise 1-17.

1.4 Gaussian curvature

The hyperbolic plane is a simply connected surface with a complete riemannian metric
of constant negative gaussian curvature. It is usually taken (by multiplying the metric
by the appropriate constant) to be −1, as we have done in §1.2. The purpose of this
section is to explain the meaning of the expression “gaussian curvature −1”.

Using the disk model of �2 and polar coordinates (r, θ) based at the origin, we
begin with the following computations: the hyperbolic radius ρ of the circle of eu-
clidean radius R < 1 centered at the origin, its hyperbolic area A, and its hyperbolic
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circumference C . Our results are as follows:

ρ =
∫ R

0

2 dr

1− r2
= log

1+ R

1− R
, R = tanh

ρ

2
= cosh ρ− 1

sinh ρ
,

A(ρ)=
∫ 2π

θ=0

∫ R

r=0

4r dr dθ

(1− r2)2
= 4πR2

1− R2
= 2π(cosh ρ− 1),

C(ρ)=
∫ 2π

0

2R dθ

1− R2
= 4πR

1− R2
= 2π sinh ρ.

C(ρ)2 = A(ρ)2+ 4π A(ρ).

Thus both the area and the circumference grow exponentially with the hyperbolic
radius; more than 63% of the surface of any hyperbolic disk is within 1 unit of the
boundary; the ratio A(ρ)/C(ρ) equals R<1 and in particular approaches 1 as ρ→∞.

(For the record, the analogous formulas for the volume V (ρ) of a hyperbolic ball
of hyperbolic radius ρ and its surface area S(ρ) are:

V (ρ)= 8
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ R

0

r2 dr

(1− r2)3
= π(sinh 2ρ− 2ρ),

S(ρ)= 4
∫ 2π

0

∫ π

0

R2 sinφ dφ dθ

(1− R2)2
= 4π sinh2 ρ.

Thus 2V (ρ) < S(ρ) and limρ→∞ 2V (ρ)/S(ρ)= 1.)
Now consider a smooth riemannian surface, a point z on the surface, and, for ρ > 0

variable, the disk of radius ρ around that point (in the given metric). The gaussian
curvature K0 at z can be characterized by the following properties involving the lim-
iting behavior of the area A(ρ) and circumference C(ρ) of such disks, compared with
their euclidean counterparts [Struik 1950, §4.3]:

K0 =−3
d2

dρ2

(
C(ρ)

2πρ

)
ρ=0
= 3

π
lim
ρ→0

2πρ−C(ρ)

ρ3
,

K0 =−6
d2

dρ2

(
A(ρ)

πρ2

)
ρ=0
= 12

π
lim
ρ→0

πρ2− A(ρ)

ρ4
.

In particular negative curvature is characterized by the property that C(ρ) > 2πρ
for all small values of R. Or by the property that A(ρ) > πρ2. This is confirmed
for �2 from the formulas for area and circumference above. Contrast this with the
corresponding properties of euclidean space.

Here is a construction of a surface with discrete negative curvature: Take equilateral
(euclidean) triangles with unit side lengths. Of course these tessellate the euclidean
plane; six are arranged about each vertex. Instead form a polyhedral surface by plac-
ing seven triangles about each vertex. This forms a polyhedral surface which is flat
except at the vertices. In a polyhedral surface, each vertex v has a discrete curvature
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defined by 2π−∑ θi , where the θi are the vertex angles at v of the triangles sharing v.
In this case the curvature at each vertex is−π/3. On our surface, the “circle” of radius
R = 1 about a vertex has circumference 7, larger than the euclidean circumference of
6 when there are six triangles about each vertex.

If u |dz|, with u(z) > 0, is a conformal metric on a Riemann surface, the gaussian
curvature of the metric can be defined in terms of the laplacian as

Ku =−
 log u

u2
=− 4

u2

∂2 log u

∂z ∂ z̄
.

Ahlfors had great success early in his career [1973] with applications involving sin-
gular conformal metrics of this form.

If instead we want a model of �2 with gaussian curvature −c < 0, take the disk
|z|< 1/

√
c with the metric

2|dz|
1− c |z|2 .

Gauss originally defined the curvature as follows. Suppose S⊂�3 is an embedded
surface and p ∈ S. Draw a simple closed curve c ⊂ S enclosing a region D ⊂ S
containing p. Interpret each exterior unit normal vector �N (determined by the right-
hand rule) at a point of D as a vector from (0, 0, 0) to the unit 2-sphere �2. As �N
ranges over all possibilities, a certain region � ⊂ �2 is filled out. Gauss defined
the total curvature of D to have absolute value A(�), the area of �. The sign is
determined as follows. As �N runs over c in the positive direction (D to its left), use
+ if the corresponding �N runs over ∂� also in the positive direction (� to its left);
otherwise use −. Thus the total curvature of a region in a plane is zero, while the
total curvature of a hemisphere is 2π sin(π/2). Gauss defined the curvature of S at
the point p as

lim
D↘{p}

±A(�)

A(D)
.

Gaussian curvature is an intrinsic property of a surface — although the definition
just given is for surfaces embedded in �3, Gauss’s famous Theorema Egregium is that
isometric surfaces have the same gaussian curvature at corresponding points. So we
can define the curvature for a metric defined on an abstract surface.

Hilbert proved that there is no C2 surface in �3 whose metric induced from �3 is
a complete metric of constant negative gaussian curvature; see [Thurston 1997,
§2.1], for example. There do, of course, exist smooth surfaces
embedded in �3 with constant negative curvature, but
they cannot be extended to a complete surface. The
most famous example is the pseudosphere, a surface of revolution
about the x-axis in �3 described by the parametric equations

(u− tanh u, sech u cos v, sech u sin v) for u ≥ 0, v ∈ �.
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If we take the subset {z : Im z ≥ 1 > 0} of �2 and quotient it by the cyclic group of
hyperbolic isometries generated by z→ z+2π , we get a riemannian surface isometric
to the pseudosphere (with its inherited metric from �3); see [Coxeter 1961, p. 378],
for example. Conformally, this is a once punctured disk.

The Gauss–Bonnet formula for a simply connected surface element S of gaussian
curvature K , bounded by the union of n smooth arcs meeting with interior angles θi

at the vertices, is
∫ ∫

S
K d S+

∫
∂S
κg ds = 2π −

n∑
i=1

(π − θi )= π(2− n)+
n∑

i=1

θi , (1.3)

where κg is the geodesic curvature of the arcs [Struik 1950, §4.8]. For a geodesic
arc, the geodesic curvature κg vanishes; thus, for example, if S ⊂ �2 is a hyperbolic
triangle 
, the formula becomes

−area
=−π + θ1+ θ2+ θ3.

The Gauss–Bonnet formula, and indeed the area formula for triangles directly, can be
verified by using Green’s formula (see also Exercise 1-6). By breaking more general
surfaces into simply connected regions one can apply the formula further.

See Exercise 1-33 for computations of the hyperbolic curvature of horocycles,
equidistant arcs to geodesics, and circles.

For hyperbolic 3-space �3 (or n-space more generally), the normalized metric is
characterized by having sectional curvature −1: all 2-dimensional planes through a
given point have gaussian curvature −1 in the metric induced from that of �3.

1.5 Further properties of Möbius transformations

The following facts must be part of our repository of basic knowledge.

Commutativity

Lemma 1.5.1. Let A, B be Möbius transformations 
= id.

(i) A and B share a fixed point if and only if

tr(AB A−1 B−1)=+2.

(ii) Assume that A and B do not share a fixed point. Then AB A−1 B−1 is parabolic
if and only if

tr(AB A−1 B−1)=−2.

Proof. The second statement follows directly from the characterization on page 3.
The proof of the first is not hard is one takes one of the transformations to be in
standard form. �

Lemma 1.5.2. Let A and B be Möbius transformations distinct from ± id. There is
equivalence between:
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(i) A and B commute.
(ii) Either A and B have the same set of fixed points, or A and B have order two

and each interchanges the fixed points of the other.
(iii) Either A and B are parabolic with the same fixed point, or the axes of A and

B coincide, or A and B have order two and their axes intersect orthogonally in
�3.

Again, this can be checked by assuming A to be in standard form, and observing
that the general elliptic transformation of order two exchanging 0 with∞ is z �→a2/z.

Lemma 1.5.3. Let k ≥ 1 and let A and B be Möbius transformations, with Ak 
= id.
Then Ak = Bk if and only if either A = B, or A = E B for an elliptic E whose order
divides k and whose set of fixed points is the same as that of B.

Proof. Sufficiency is obvious, since E and B commute by Lemma 1.5.2.
To prove necessity, we can assume that k is minimal with the property that Ak= Bk .

Note that taking powers preserves both type and fixed points, except that an elliptic
can become the identity. Thus, if A is parabolic, so is Ak , and hence so is B; but the
parabolic elements fixing a given point of S∞ form a torsion-free abelian group (see
again Lemma 1.5.2), so A = B in this case. If instead A fixes two points, the same
argument (allied to the fact that Ak 
= id) again shows that A and B commute; hence
(AB−1)k = id, so E = AB−1 is elliptic and shares the fixed points of A, B. �

Isometric circles and planes

Consider a Möbius transformation A on �∪∞. If A does not fix∞, it has the form

A(z)= az+ b

cz+ d
, ad − bc = 1, c 
= 0.

One may ask, at what points does A preserve the size of (euclidean) tangent vectors,
as well as angles? Since A′(z)= 1/(cz+ d)2, the set of such points, denoted by

I(A)= {z ∈ � : |A′(z)| = 1} = {z ∈ � : |cz+ d| = 1},
is a circle. We call it the isometric circle of A. Its center and radius satisfy

center I(A)=−d

c
= A−1(∞), radius I(A)= 1

|c| .

Because A maps circles to circles, the restriction of A to I(A) is a euclidean isometry
onto the circle I(A−1) of the same radius. Also, |A′(z)| > 1 for z in the interior of
I(A), and |A′(z)|< 1 for z in the exterior.

Now consider the same transformation A, regarded as an isometry of �3 in the
upper half-space model (recall that � ∪ ∞ = ∂�3). The isometric plane of A is
likewise defined as the set of points where the jacobian preserves length:

{�x : |A′(�x)| = 1}. (1.4)
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Explicitly, it is the hemisphere

{�x = (z, t), t > 0 : |cz+ d|2+ |c|2t2 = 1}.
rising from the isometric circle I(A) ⊂ ∂�3. When the context is clear, we will use
the notation I(A) interchangeably for the isometric circle and the isometric plane.

There is also an isometric circle and plane for the ball model, with the same defining
equation (1.4) as for the upper half-space model. However, the isometric circle in one
model does not usually map to the isometric circle in the other under a hyperbolic
isometry conjugating the two models; in fact, even within the same model, a con-
jugating isometry U need not map I(A) to I(U AU−1), as is the case with the axis
and fixed points. Although not intrinsic, the notion of isometric circles and planes is
nonetheless useful because of its metric properties. It was introduced by L. R. Ford.

Here is another description of the isometric planes (see Exercises 1-10 and 3-4).

Lemma 1.5.4.

(i) In the ball model, the isometric plane for A is the perpendicular bisector of the
line segment [0, A−1(0)], where 0 denotes the origin of the ball.

(ii) In the upper half-space model, if∞ is not a fixed point of A, the isometric plane
results from the following construction. There is exactly one horosphere H at∞
such that the horosphere A−1H at A−1(∞) is tangent to H. The line � between
∞ and A−1(∞) goes through the point of tangency and is orthogonal to the
two horospheres. The isometric plane is the unique plane through the point of
tangency and orthogonal to �.

We summarize here the properties of isometric planes and circles in the upper half-
space model. Refer to Figure 1.8 for examples.

Proposition 1.5.5. Let A be a Möbius transformation of the upper half-space model,
not fixing∞. Let B(A) be the closed disk bounded by the isometric circle I(A) in �,
and let E(A) be the closure of its exterior (including∞).

(1) A sends I(A) to I(A−1), B(A) to E(A−1), and E(A) to B(A−1). If �x = (z, t) lies
on the isometric plane I(A), then A(�x)= (A(z), t) lies on I(A−1).

(2) I(A)= I(A−1) if and only if τA = 0.
(3) The intersection of circles I(A) ∩ I(A−1) consists of two points if and only if

0< |τA|< 2. If A is elliptic, these intersection points are the fixed points and the
corresponding isometric planes intersect in the axis of rotation.

(4) I(A) and I(A−1) are tangent if and only if A is parabolic, in which case the
tangency point is the fixed point.

(5) I(A) and I(A−1) are disjoint if and only if |τA|> 2.
(6) If A is loxodromic, B(A)∩ E(A−1) contains the repelling fixed point of A, and

B(A−1)∩E(A) its attracting fixed point.
(7) If U fixes ∞, then I(U AU−1) = U (I(A)). If U is a euclidean translation,

I(U A)= I(A) and I(AU−1)=UI(A).
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Fig. 1.8. Isometric circles for various transformations A that have the same fixed points. From
left to right, the elliptic case (τA ∈ (−2, 2)), the loxodromic case with τA /∈� and respectively
|τA|< 2, |τA| = 2 and |τA|> 2, and finally the loxodromic case with τA real.

(8) If A preserves a circle in �2, I(A) is orthogonal to that circle.

Proof. (1) The Jacobian determinants or derivatives are related:(
B A−1)′(Az)= B ′(z)/A′(z).

(2) A normalized matrix A = ±A−1 if and only if either A = ± id or τA = 0. The
isometric circle |− cz+a| = 1 of A−1 is identical to that of A if and only a+d = 0.

(3)–(5) The distance between the centers of the isometric circles is∣∣∣∣ac +
d

c

∣∣∣∣= |a+ d|
|c| .

Since the radius of the circles is 1/|c| they intersect whenever the distance between
centers is less than 2/|c| and are tangent when there is equality.

Now the distance between the centers is exactly 2/|c| when A is parabolic, less
than 2/|c| when A is elliptic, and can have any positive value when A is loxodromic.
Only when the loxodromic satisfies |τA|> 2 does the distance between centers exceed
2/|c| so that the circles are disjoint.

(6) The derivative |A′| is greater than 1 at the repelling fixed point, and less than 1
at the attracting one, when these points are finite. (In contrast, at a finite elliptic or
parabolic fixed point ζ , |A′(ζ )| = 1.)

(7) This is a direct computation, or an application of the chain rule.

(8) If A preserves �∪∞, its normalized form has real or purely imaginary entries,
the latter case if A interchanges the upper and lower half-planes. Therefore the center
of the isometric circle is real, so I(A) is orthogonal to �. If A maps the unit disk onto
itself, it has the following form (Exercise 1-2):

A = eiθ z− a

1− āz
.

From this we compute that I(A) has center 1/ā and squared radius (1− |a|2)/|a|2.
This implies that I(A) is orthogonal to the unit circle. If A interchanges the two
sides of the unit circle, it can be expressed by replacing z by 1/z in the formula and
proceeding in the same way. The general transformation A is conjugate to one we
have considered via a transformation that fixes∞. �
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Trace identities

Here we present the common trace identities that help form the bridge between the
algebra of matrices and hyperbolic geometry. See also Exercise 1-20.

Lemma 1.5.6. Let X and Y be 2× 2 complex matrices of determinant one.

(i) tr(XY−1)= tr(X) tr(Y )− tr(XY ).
(ii) tr(XY X−1Y−1)+ 2= tr2(X)+ tr2(Y )+ tr2(XY )− tr(X) tr(Y ) tr(XY ).

(iii) tr(XY X−1Y−1)− 2= (tr(X)− tr(Y )
)2− (tr(XY )− 2

)(
tr(XY−1)− 2

)
.

(iv) If tr2(X) 
= 4 then

tr(XmY X−mY−1)− 2

tr2(Xm)− 4
= tr(XY X−1Y−1)− 2

tr2(X)− 4
.

(v) If [X, Y ] = XY X−1Y−1 is parabolic and X, Y do not share a fixed point, so that
tr(XY X−1Y−1)=−2, then

tr(X) tr(Y ) tr(XY )= tr2(X)+ tr2(Y )+ tr2(XY ),

tr(XY ) tr(XY−1)= tr2(X)+ tr2(Y ).

Conversely, either of these two identities implies tr[X, Y ] = −2.

Remark 1.5.7. The first equation in (v) is called the Markov identity. Markov proved
that for the equation xyz = x2 + y2 + z2, the only integer solutions (called Markov
triples) are provided by the traces of group elements X, Y, Z = XY in the modular
group (Exercise 2-9), with tr[X, Y ] = −2. If (u, v, w) is a Markov triple, so are
(u, v, uv−w), (u, uw−v,w), (vw−x, v, w). A famous unsolved problem in number
theory is Markov’s conjecture that if (x, y, z), (x ′, y′, z) are Markov triples, with
x ≤ y ≤ z and x ′ ≤ y′ ≤ z′, then x = x ′ and y = y′. See [Bowditch 1998] and
[Goldman 2003] for more detail.

Proof. To verify (i), (ii) and (iii), apply a conjugacy to convert Y to standard form:

Y =
(
λ 0
0 λ−1

)
or

(
1 λ

0 1

)
, X =

(
a b
c d

)
, ad − bc = 1.

The identities are now easily verified. In particular we find that for Y normalized we
have, depending on whether Y is nonparabolic and parabolic,

tr(XY X−1Y−1)= 2− bc(λ− λ−1)2 or 2+ c2λ2.

Thus the commutator cannot have trace +2 unless b= 0, c= 0, or X =±I . All three
possibilities are excluded by the hypotheses.

The Markov identity in (v) can be regarded as a quadratic equation for w= tr(XY )
in terms of the coefficients tr(X) and tr(Y ). The two solutions are w = tr(XY ) and
w= tr(XY−1). This is the reason for the second identity in (v). If the transformations
corresponding to X and Y are loxodromic and preserve the upper half-plane, and
their matrix representations are chosen so that the traces are positive, then tr(XY )
will automatically be positive as well.
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For item (iv), put X instead of Y in standard form. It is enough to verify the formula
for m = 2; the general case follows by induction. The ratio has the constant value
−bc if Y = (a

c
b
d

)
. �

1.6 Exercises and explorations

1-1. For a Möbius transformation T of �∪∞ with normalized matrix
(a

c
b
d

)
, prove:

(i) |T (z)− T (w)| = |z−w|√|T ′(z)|√|T ′(w)|.
(ii) T preserves the upper half-plane if and only all of a, b, c, d are real. (Thus the

group of orientation preserving isometries of the hyperbolic plane is PSL(2,�).)
If such a T is loxodromic or parabolic, its fixed points lie in �. If T is elliptic,
its fixed points are symmetric about � under reflection, but do not lie in �.
Moreover, Im T (z)= (Im z) · |T ′(z)|.

(iii) T preserves the right half-plane if and only if T = ( a′
−ic′

ib′
d ′
)

with a′, b′, c′, d ′ ∈�

and a′d ′ − b′c′ = 1.
(iv) Find conditions on a, b, c, d for T to preserve the unit disk. (Hint: Conjugate

by a Möbius transformation taking −1, 1,∞ to −1, 1, i .) Prove an alternative
characterization: T preserves the unit disk if and only if it can be written as

T (z)= eiθ z− z0

1− z̄0z
, |z0|< 1.

Moreover, such a T satisfies |T ′(z)|(1− |z|2)= (1− |T (z)|2).
1-2. Two points are said to be symmetric in a circle or straight line if reflection in the
circle or line carries one point to the other. Thus z and z̄ are symmetric in �, while z
and 1/z̄ are symmetric in the unit circle centered at the origin. Verify that the formula
for symmetric points ζ, ζ ∗ with respect to the circle {|z− a| = R} is

ζ ∗ − a = R2

ζ̄ − ā
.

This map extends to a reflection about the corresponding hyperbolic plane in �3.

(i) Prove that a Möbius transformation maps points symmetric in a circle/line to
points symmetric in the image circle/line. Hence the extension to �3 preserves
symmetry in planes. (See [Ahlfors 1978].)

(ii) If C1,C2 are disjoint circles and 
 is the region they bound on �2, show how to
find a Möbius transformation that sends 
 to an annulus centered at z = 0 with
C2 sent to the outer circle of radius 1.

(iii) Suppose D2 ⊂ D1 are disks centered at z = 0 of radii r2 < r1 respectively. Let
T be any Möbius transformation such that T−1(∞) is not in the closure of D1.
Denote the radii of T (D2)⊂ T (D1) by r ′2, r

′
1. Show that

r ′1
r ′2
≥ r1

r2
.

When is there equality?
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1-3. Liouville measure. Suppose � is a hyperbolic line in the disk model, with end
points a, b. Suppose p, q are two points on � so labeled that p separates a and q.
Show that the hyperbolic distance d(p, q) between p and q is given in terms of the
cross ratio by

d(p, q)= log(a, b, p, q)= log
(q − a)(b− p)

(p− a)(b− q)
.

Suppose �1, �2 are hyperbolic lines which intersect in �2 with angle θ . Suppose
their end points ai , bi , i = 1, 2, are arranged clockwise [a1, a2, b1, b2] around ∂�2.
Prove that

(a1, a2, b1, b2)= cos2 θ

2
= cos θ + 1

2
.

The Liouville measure is a measure on the space G(�2) of unoriented geodesics in
�2. In terms of endpoints on �1 = ∂�2,

G(�2)= (�1×�1 \ {diagonal}) /�2,

which is topologically a Möbius band (Exercise 4-15). The Liouville distance L
between nonintersecting geodesics γ1, γ2 with endpoints (a, b) and (c, d) is

L(γ1, γ2)=
∣∣∣∣log

∣∣∣ (a−c)(b−d)
(a− d)(b− c)

∣∣∣
∣∣∣∣.

For any isometry T , L(T γ1, T γ2)= L(γ1, γ2).
The infinitesimal form of L is

dα dβ

|eiα − eiβ |2 =
dα dβ

4
sin2 α−β

2
,

where α, β are the endpoints of γ . It is this quantity that defines a measure on G(�2).
For details see [Bonahon 1988].

1-4. Tubular neighborhood about a geodesic. Suppose � is the vertical half-line rising
from the origin in the upper half-space or upper half-plane model. Given d > 0, show
that the locus of the points of hyperbolic distance d from � consists of the cone of
angle φ, or the two euclidean lines of angle φ from �, where secφ = cosh d.

The corresponding neighborhood about a geodesic which is a semicircle looks like
a banana (Figure 1.6).

Next construct a sphere with euclidean center on � which is tangent to the cone
of distance d . Find its hyperbolic center which by symmetry also lies on �. Hint:
Construct the hyperbolic line segment between two opposite points of tangency of
the sphere with the cone. It is orthogonal to both the sphere and �. Show that it is a
hyperbolic diameter. Denote by (0, a), (0, b) the north and south pole of the sphere
with hyperbolic center (0, c). Show that c2 = ab.

Show that in the disk model, the hyperbolic center of a circle coincides with the
euclidean center if and only they are at the origin. In the upper half-plane model they
never coincide. The corresponding statements hold in three dimensions.
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1-5. Let � be a line in the upper half-space model, which we assume without loss of
generality to have endpoints ±1/β ∈� on the boundary plane �. Suppose given two
other points on �; their projections to � lie on the line segment joining the endpoints
and so are the form λ/β,μ/β, with −1< λ < μ< 1. Let their heights above � be s
and t , respectively. Show that

χ :=
(
− 1

β
,

1

β
,
λ

β
+ is,

μ

β
+ i t

)
=
√
(1+ λ)(1−μ)
(1− λ)(1+μ) < 1. (1.5)

Specialize to the case that � is the axis of a loxodromic T with T (λ/β + is) =
μβ + i t .

1-6. Prove directly (without Gauss–Bonnet) that the angle sum 	 of a hyperbolic
triangle 
 satisfies 	 = π −Area
. Hint: First prove this for a triangle in the upper
half-plane model with a vertex at∞ and the other two above the points 0, 1∈�. Then
show that the area of a general triangle is the difference of the areas of two such ideal
triangles. To find the area of the ideal triangle, you can use Green’s formula from
advanced calculus, plus the fact that the hyperbolic length of the horizontal segment
{y = t, 0≤ x ≤ 1} goes to 0 as t→∞.

Go on to prove, as in [Epstein and Marden 1987, A.6.1,2], that the area of a hy-
perbolic triangle 
 with a side of finite hyperbolic length s is strictly less than s.
(Hint: The area only increases if the other two sides of 
 have infinite length. Then
show, still in the upper half-plane model, that given a > 0, the hyperbolic area of the
rectangular strip {z : 0< Re z < s, a < Im y} is s/a. Use this to show that(

d A

ds

)
s=0
= sin θ < 1,

where θ is the angle between the short side and one of the vertical sides.)
Deduce that the area of a hyperbolic polygon P with one ideal vertex is less than s,

where s is the sum of the lengths of the finite sides. Moreover, the sum of the exterior
angles of P is less than s+ 2π .

1-7. Let T = (a
c

b
d

)
be a Möbius transformation of �∪∞ such that T 2(∞) 
=∞ (so that

the isometric circles I(T ) and I(T−1) are distinct). Show that T is the composition
of reflection in I(T ), followed by reflection in the perpendicular bisector of the line
joining the center of I(T ) to the center of I(T−1), followed by a rotation about the
center of I(T−1) of angle φ, where eiφ = (a+ d)/(a+ d). What about the case that
I(T )= I(T−1)?

If the trace of T is real, the rotation step is not needed.
Show that every Möbius transformation is the composition of two or four reflections

in circles on �2. (A rotation is the composition of two reflections.) If tr(T ) is real,
only two reflections are needed.

1-8. (i) Prove that a Möbius transformation that has a real trace leaves invariant
some circle in ∂�3 (which can be taken as the real line).
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(ii) If, in addition, the transformation is loxodromic, it maps every hyperbolic plane
that contains its axis onto itself.

(iii) [Van Vleck 1919] Prove that the composition F = E2 ◦ E1 of two elliptics has
real trace if and only if there is a circle σ in �2 containing the fixed points of E1

and E2. If the fixed points of E2 separate the fixed points of E1 on σ then F is
elliptic. If the fixed points do not so separate, then E1 E2 E−1

1 E−1
2 is loxodromic

with real trace.

1-9. Prove the formula for the extension to upper half-space:

∣∣A �x1− A �x2
∣∣= 1

|c|2
∣∣ �x1− �x2

∣∣∣∣ �x1− A−1(∞)∣∣∣∣ �x2− A−1(∞)∣∣ , c 
= 0, (1.6)

and a corresponding formula for c= 0. Deduce that the hyperbolic metric is invariant
under Möbius transformations and that the designation “isometric hemisphere” is
justified as |A′(�x)| = 1, where here |A′| denotes the Jacobian determinant.

The extension to upper half-space — in fact to all �3∪∞— is conformal. Conver-
sely if F : D ⊂ �n → �n is a conformal mapping, then F is the restriction to D of
a Möbius transformation, provided n ≥ 3. This striking result is called Liouville’s
Theorem. Liouville proved it under the assumption that the third partial derivatives of
F are continuous; it is now known to be true under much weaker hypotheses on F ;
see [Vuorinen 1988].

1-10. Symmetry in isometric circles and planes. Suppose S preserves the upper half-
plane UHP, S(∞) 
= ∞, while T preserves the unit disk �. Prove that the isometric
circle I(S) is characterized by the property that I(S)∩UHP is the (hyperbolic) per-
pendicular bisector of [i, S−1(i)], that is, i and S−1(i) are symmetric about I(S).
Correspondingly prove that I(T ) ∩ � is the perpendicular bisector of [0, T−1(0)],
that is, 0 and T−1(0) are symmetric about I(T ).

Deduce that if A(�)=UHP, then A maps I(T ) to I(S).
Show that the corresponding facts are true for the isometric planes of transforma-

tions that preserve the upper half-space and ball models of �3.
Returning to the upper half-space assertion of Lemma 1.5.4, suppose p ∈ ∂�3 is

not a fixed point of A (normalized). Given �x ∈�3, let e(�x, A) denote the plane which
is the perpendicular bisector of the line segment [�x, A−1(�x)]. Then p lies on the circle
bounding e(�x, A) if and only if �x lies on the plane e(p, A), which has the expression
(with A = (a

c
b
d

)
)∣∣∣∣ z−

(
p+ (p

2c+pd−pa−b)(a− pc)

|a− pc|2− 1

)∣∣∣∣
2

+ t2 = |p
2c+ pd − pa− b|2
(|a− pc|2− 1)2

,

if |a − pc| 
= 1. If p =∞, then e(p, A) reduces to the isometric plane for A. Also
the plane e(�x, A) converges to e(p, A) as �x→ p.

Choose A so that A−1(∞) = 0. Then when �x = (0, t), the vertical coordinate of
A(�x) is 1/(t |c|2). This takes the value 1/|c| when t = 1/|c|. Thus the horosphere
σ at z = 0 of euclidean diameter 1/|c| is tangent to the horizontal plane P of height
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t = 1/|c|. Moreover A maps (0, 1/|c|) to (a/c, 1/|c|). Therefore A maps σ onto P .
The hemisphere centered at z = 0 of radius 1/|c| is the isometric circle.

1-11. Stereographic projection. Confirm that stereographic projection from the north
pole of the unit sphere �2 to the complex plane � containing the equator of �2 is given
by the following formulas: If (x1, x2, x3) ∈ �2 and z = x + iy is the corresponding
point in � then

x = x1

1− x3
, y = x2

1− x3
, |z|2 = 1+ x3

1− x3
.

This can be extended to map the interior � of �2 to upper half-space as follows.
Reflection in the unit circle z �→ 1/z̄ extends to the reflection in �2 given by �x �→
�x/|�x |2. Take however the reflection in the sphere SN of radius

√
2 about the north

pole of �2:

I1(�x)= 2
�x − �k
|�x − �k|2 +

�k, �k = (0, 0, 1).

SN intersects �2 in its equator and I1 pointwise fixes that. Also fixed are the vertical
planes through the origin.

Because I1 sends (0, 0, 1) to ∞, (1, 0, 0) to (1, 0, 0), (0, 1, 0) to (0, 1, 0), and
(0, 0,−1) to (0, 0, 0), we see that the image of ∂� is the plane {x3 = 0} and the
image of � is lower half-space.

Follow I1 by reflection in the horizontal plane {x3 = 0}:
I2 : (x1, x2, x3) �→ (x1, x2,−x3).

The required extension of stereographic projection is I = I2 ◦ I1. the collection of
euclidean half-planes and hemispheres in upper half-space correspond to the collec-
tion of spherical caps in � orthogonal to ∂B. We know this once we know that
stereographic projection maps the collection of circles/lines in � to circles on �2.
From this we can also deduce that I preserves the dihedral angles between intersecting
hyperbolic planes.

The group of isometries of � is then the conjugate of the group of the upper half-
space by the Möbius transformation I . The formulas are best found by the method
given in the next exercise.

1-12. Formulas for the ball model. We follow the elegant treatment presented by
Ahlfors [1981]. The notation x∗ = �x/|x |2 for reflection of �x in the unit sphere will
be useful. More generally, given �a ∈�3, the sphere with center a∗ orthogonal to ∂�3

has radius (|a∗|2− 1)1/2. The formula for reflection in it is

�y = a∗ + (|a∗|2− 1)(�x − a∗)∗.

The group of Möbius transformations preserving �3 is generated by an even number
of such reflections. A Möbius transformation that sends �3 onto itself and a given
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point �a to the origin 0 is (dropping the vector notation)

Ta x =−a+ (1− |a|2)(x∗ − a)∗.

The general transformation that sends �a → 0 is the composition of Ta followed by
a euclidean rotation about 0. The jacobian determinant |T ′a(x)| of Ta represents the
local stretch of Ta , the same in all directions. It remains unchanged if Ta is followed
by a rotation about 0, so it represents the Jacobian determinant of any element that
sends �a→ 0 and preserves �3.

The Jacobian satisfies

|T ′a(x)| =
(1− |a|2)
|x |2|x∗ − a|2 =

1− |a|2∣∣x − a |x |2∣∣2 .
In addition confirm the formulas

|Ta x | = |Tax − Taa| = |x − a|√T ′a(x)
√

T ′a(a),

and

|Tax | = |x − a|
|a| |x − a∗| ,

so that

1− |Ta x |2 = (1− |x |
2)(1− |a|2)

|a|2|x − a∗|2 .

Conclude that |T ′a(x)|
1− |Ta x |2 =

1

1− |x |2 .
In other words, the hyperbolic metric is invariant under any transformation that sends
some point a→ 0; therefore is invariant under all Möbius transformations preserving
the ball.

In fact, for any Möbius transformation T in 3-space, whether or not it preserves a
ball or half-space,

|T �x − T �y| = |T ′(�x)|1/2 |T ′(�y)|1/2 |�x − �y|.
This follows from the fact that any nontrivial Möbius transformation T is the com-

position of similarity mappings �x �→m �x+�b and the reflection �x �→ �x/|x |2. The jaco-
bian matrix for the similarity is simply m I . For the reflection it is (I − 2Q(�x))/|x |2,
where the matrix Q(�x)= (1/|x |2) (xi x j ) satisfies Q2= Q and (I−2Q)2= I . In other
words, at each point �x , the jacobian T ′(�x) is a scalar multiple |T (�x)| of an orthogonal
matrix.

1-13. Show the existence of regular n-sided hyperbolic polygons as follows. In the
disk model of �2 start at the origin with a tiny regular n-sided euclidean polygon. Ra-
dially expand the polygon insuring by rotational symmetry that all sides remain equal
in length. Show that the vertex angle decreases monotonically from the euclidean
(n− 2)π/n to zero when the vertices are on the unit circle. Use the same argument
for regular polyhedra.
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1-14. If g is a Möbius transformation acting in �3 with center 0 (really (0, 0, 0)) and
d( · , · ) denotes hyperbolic distance, show that

e−d(0,g(0)) = 1− |g(0)|
1+ |g(0)| .

Also show that for any two points �x, �y in �3,

1− |g(�x)|
1− |g(�y)| ≤ 2ed(�x,�y).

Let G be a countable group of Möbius transformations. Show that for α > 0,∑
g∈G

e−αd(0,g(0)) <∞ if and only if
∑
g∈G

eαd(�x,g(�x)) <∞,

and correspondingly∑
g∈G

(1− |g(0)|)α <∞ if and only if
∑
g∈G

(1− |g(�x)|)α <∞.

Referring back to Exercise 1-12 show that∑
g∈G

e−αd(0,g(0)) <∞ if and only if
∑
g∈G

|g′(0)|α <∞.

Confirm the analogous formulas for groups acting instead in the unit disk.

1-15. For the group of Möbius transformations acting in the upper half-space model,
that is for the simple Lie group Isom �3, confirm the Iwasawa decomposition

Isom �3 = K AN ,

where K is the compact group of rotations about (z = 0, t = 1), A is the abelian sub-
group of loxodromic elements with fixed points 0,∞, and N is the nilpotent subgroup
of euclidean translations.

1-16. Given four distinct points z1, z2, w1, w2 ∈ � ∪∞, show that there exists a
Möbius transformation A such that A(z1)=−1, A(z2)=1, A(w1)=−u, and A(w2)=
u for some u∈�. Clearly (z1, z2, w1, w2)= (−1, 1,−u, u). A is uniquely determined
if it is required that |u| ≥ 1. Hint: Take z1 = −1, z2 = 1, w1 = i , w2 = ζ . Find an
equation for the coefficients of A. For there to be a nonzero solution, the determinant
of the coefficients must vanish.

Consider the hyperbolic lines � with endpoints z1, z2 and m with endpoints w1, w2.
Show that there is a uniquely determined common perpendicular to � and m. Show
that the hyperbolic distance between the lines is log |u|.
1-17. Prove that there is a unique largest disk in an ideal triangle and that its hyperbolic
radius is 1

2 log 3. Deduce that any hyperbolic disk in �2 that meets three mutually
disjoint open half-planes must have radius exceeding 1

2 log 3. (Hint: Put z= 0 and the
vertices of the ideal triangle at equally spaced points on the circle.)
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In particular a line in �2 at hyperbolic distance 1
2 log 3 from a point z ∈ �2 covers

exactly one third of the horizon. The union of three hyperbolic lines, each at distance
at least 1

2 log 3 from z and at least one at distance strictly greater than that, do not
separate z from ∂�2.

Conclude that in �3, a hyperbolic ball B that meets three mutually disjoint open
hyperbolic half-spaces must likewise have radius exceeding 1

2 log 3.
(Hint: In the ball model assume that the origin is the center of B. The half-spaces

determine three mutually disjoint disks Di ⊂ ∂�3. Denote their spherical radii by ri .
A great circle has length 2π so

∑
2ri ≤ 2π . For at least one index, 2r j ≤ 2π/3. The

distance to the origin of the plane rising from ∂D j is therefore at least 1
2 log 3.)

1-18. Given a point z ∈ �2 and a geodesic γ not through z show that

sinh d(z, γ )= cot(θz/2),

where d(z, γ ) is the distance from z to γ and θz < π is the visual angle γ subtends
at z.

Hint: In the disk model take z = 0. Then γ is an arc of a circle of euclidean radius
say of radius r . Set a=d(0, γ ). Show that sinh a=1/r and sinh d(0, a)=2a/(1−a2).
Use the right triangle with euclidean sides of length 1, r, d+r .

1-19. In the upper half-space model let γ be the geodesic with endpoints ±1. Show
that in the hyperbolic arc length parameter s with basepoint at z = i ,

γ (s)= 1+ ie−s

1− ie−s
= tanh s+ i sech s.

1-20. Let τ = tr A be normalized so that 0 ≤ arg τ < π . Prove (by putting A in
standard form and using induction) that there is a sequence {βn}, −∞< n<∞, such
that β0 = 0, β1 = 1,

An =−βn−1 I +βn A, and βn+1 =−βn−1+ τ βn.

Show that β−n =−βn . Furthermore, βn = 0 for some n if and only if An(z)= id.
Set τn = tr An , so that τ0 = 2 and τ1 = τ . Then τ−n = τn . Prove that

(i) τn =−βn−1+βn+1;
(ii) if τ = λ+ λ−1, then τn = λn + λ−n and βn = (λn − λ−n)/(λ− λ−1);

(iii) τm τn= τm+n+τm−n , βm τn=βm+n+βm−n , and βm βn= (τm+n−τm−n)/(τ
2−4).

Show also that lim|n|→∞ βn = lim|n|→∞ τn =∞, if |τ |> 2.
Finally show that βn is a polynomial of degree |n|− 1 in τ , and τn is of degree |n|

in τ . Furthermore
d

dτ
τn = nβn,

d

dτ
βn = nτn − τβn

τ 2− 4
.

The isometric circles I(A±1) are symmetric about the midpoint of line segment
joining their centers. Replace A by a conjugate so that the midpoint A(∞)+A−1(∞)
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becomes z = 0. Show that A then has the form

A =
( 1

2τ
1
4(τ

2− 4)

1 1
2τ

)
. (1.7)

Jørgensen [1973] used this form to study the behavior of the cyclic group 〈A〉 as a
function of its trace.

Show that

An =
( 1

2τn
1
4(τ

2
n − 4)β−1

n

βn
1
2τn

)
. (1.8)

Also Ak(−z)=−A−k(z), for −∞< k <∞.

1-21. Consider with Tukia [1985c] the 3-manifold

K = {(x1, x2, x3) : xi ∈ � are distinct and induce the positive orientation.

Define a map ρ : K → UHP as follows. Let � be the geodesic in UHP between x1

and x2. Let x∗3 be the foot of the perpendicular from x3 to �. Set ρ(x1, x2, x3) = x∗.
Prove:

(i) For z ∈ UHP, the set ρ−1(z) is homeomorphic to the circle �1, and hence that
K is homeomorphic to UHP×�1.

(ii) If A is loxodromic and preserves UHP with axis �∈UHP, the set S(A) :=ρ−1(�)

is homeomorphic to �×�1.
(iii) If B is another Möbius transformation preserving UHP, B(S(A))= S(B AB−1).
(iv) S(A) and B(S(A)) are either disjoint, identical, or have intersection ρ−1(z) for

some z ∈ UHP.

Suppose R = UHP/G is a closed hyperbolic surface. Show that there is a natural
discrete action of G on K . Show that K/G is homeomorphic to the unit tangent
bundle T (R) of R.

Next, show that any orientation preserving homeomorphism (automorphism) α :
R → R induces an automorphism α̂ : T (R) → T (R) of the 3-manifold T (R) ≡
K/G. Moreover, homotopic automorphisms α, α1 of R correspond to homotopic
automorphisms α̂, α̂1 of T (R). This result is attributed to Cheeger and Gromov —
see [Casson and Bleiler 1988, pp.54–55] for details. (Hint: Set x = ρ(x1, x2, x3) and
p(x)= (x, σx) where σx ⊂ � is the oriented segment of length two, centered at x .)

1-22. Ideal tetrahedra. On ∂�3, choose any four distinct points z1, z2, z3, z4. Then
draw the six hyperbolic lines obtained by connecting pairs of points. Each triple of
points lies on the edge of a uniquely determined hyperbolic plane. The four hyperbolic
planes so obtained pairwise intersect in the six lines. The common exterior of these
four planes is a four sided solid called an ideal tetrahedron. It is uniquely determined
up to isometry by its four “ideal” vertices z1, z2, z3, z4.

Now using the upper half-space model, send any one of the vertices to ∞. the
three faces meeting at∞ now become vertical planes. The cross section obtained by
intersecting with any sufficiently high horizontal plane {t = N } is a euclidean triangle.
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Fig. 1.9. An ideal tetrahedron in the ball model. The dihedral angles are the same as the
angles of intersection of the circles on ∂�3 determined by the faces.

The three angles α, β, γ of that triangle are exactly the dihedral angles formed by the
intersection of the corresponding two planes. And of course α+β + γ = π .

Label the three other dihedral angles so that δ is opposite β, ε is opposite γ , and
ρ is opposite α. Any of the four ideal vertices can be sent to∞. As a consequence
the six dihedral angles satisfy four equations. From this, deduce that α = ρ, β = γ ,
γ = ε. That is, the dihedral angles at opposite edges are the same. In addition, the
sum of all the dihedral angles is 2π .

Show that the ideal tetrahedron is uniquely determined by the three angles α, β, γ
at the vertex∞ up to similarity (z �→ az+ b).

Taking thus one of its vertices at∞ denote the other three ideal vertices by t, u, v,
all of which lie in �. These are the vertices of the ideal triangle forming the base of the
tetrahedron. Orthogonal projection to � takes this to a euclidean triangle with vertices
t, u, v. Assume the labeling is chosen so that t, u, v in order give the clockwise
orientation. Define

z1 = (t, u, v,∞)= z,

z2 = (u, v, t,∞)= (z− 1)/z,

z3 = (v, t, u,∞)= 1/(1− z).

Then z1z2z3 = −1 (which implies
∑

arg(zi ) = π) and z1z2 − z1 + 1 = 0. Each zi

determines the other two.
Assign the numbers z1, z2, z3 to the vertical edges of the tetrahedron through v, t, u,

that is, the three edges at∞. Now apply a Möbius transformation to the tetrahedron
sending a different ideal vertex to∞ and correspondingly obtain three numbers, using
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the same clockwise ordering. Show that the same three numbers appear as before and
an edge which runs between the original vertex and the new one placed at ∞ is
assigned the same number.

Conclude that ideal tetrahedra are uniquely determined up to isometry by three
complex numbers z1, z2, z3 that satisfy the two equations above: Starting at any vertex
the three edges there are labeled in clockwise order z1, z2, z3. Then the three opposite
edges are given the same labeling.

Show that an ideal tetrahedron is also determined up to isometry by the three
dihedral angles (which sum to π) along the three edges ending at an ideal vertex.
Conversely, given three positive angles which sum to π , there is an ideal tetrahedron
with these as dihedral angles at an ideal vertex. The dihedral angles at opposite edges
of an ideal tetrahedron are the same.

It may happen that the four ideal vertices lie on a circle in �2. In this case the
“ideal tetrahedron” is degenerate: it lies in a plane. There are three patterns (up to
reordering) in which a proper ideal tetrahedron may degenerate, namely the possible
orders of the ideal vertices on the circle are (1234), (1342), (1423).

1-23. Volume of tetrahedra. Show that the volume of tetrahedra, like the area of
triangles, is uniformly bounded above.

An exact formula for the volume of an ideal tetrahedron is derived in [Milnor 1994,
§3] and [Ratcliffe 1994, §10.4]. The basic function involved is what Milnor calls the
Lobachevsky function,

L(θ)=−
∫ θ

0
log |2 sin u| du = θ

(
1− log 2θ +

∞∑
1

22n Bn

2n(2n+ 1)!θ
2n
)
, (1.9)

where Bn denotes the n-th Bernoulli number. The series, which is obtained by twice
integrating d2L(θ)/dθ2 = − cot θ , converges for |θ | < π although L(θ) itself is
periodic with period π . For computations, one generally works with the infinite series.
The volume of the ideal tetrahedron with dihedral angles α, α, β, β, γ, γ (the opposite
dihedral angles of an ideal tetrahedron are equal) is

L(α)+L(β)+L(γ ). (1.10)

One can also compute the volumes of the regular hyperbolic polyhedra.
Of all hyperbolic tetrahedra, ideal or not, there is a one with the largest volume,

which is uniquely determined up to Möbius equivalence [Milnor 1994, p. 200]. It is
the ideal tetrahedron whose vertices are the vertices of a regular euclidean tetrahedron
inscribed in �2. All its dihedral angles are π/3 and its group of orientation preserving
hyperbolic symmetries is the group of rotations preserving the euclidean tetrahedron.
Its volume is 1.0149 . . . . (The area of the ideal triangle is π .)

There is a classical variational formula useful in studying deformations of hyper-
bolic polyhedra. It is called the Schläfli formula [Milnor 1994, p. 281]:

dV (P)=−1

2

∑
e

L(e) dθe.
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Here P is a hyperbolic polyhedron of volume V (P), the sum is over all edges e of
P; L(e) is the length of the edge e and θe is the interior dihedral angle along e.

1-24. Recall from Theorem 1.3.1 that if p is a point on a side of a triangle, there is a
point on at least one of the other two sides which is of distance at most log(1+√2)=
arcsinh 1 away.

Show that something similar holds for hyperbolic tetrahedra in �3: there exists
C > 0 such that if �x is a point on an edge of the tetrahedron, then the minimum
distance from �x to the union of the other edges does not exceed C . Can you find the
optimal C? An analogous property is that there is a constant C > 0 such that if �x is
any point in a tetrahedron, the minimum distance of �x to an edge does not exceed C .
See Exercise 1-17.

1-25. We will build two more models of the hyperbolic plane, closely related to one
another, and explain their relationship to the conformal models introduced in this
chapter. For another approach, see [Cannon et al. 1997, Section 7].

We start with the plane � = �2, containing the unit circle S1 and the real line �,
which we complete to �∪∞ (the boundary of the upper half-plane model). Let U be
the unique Möbius transformation of �∪∞ fixing −1 and 1 and taking∞ to i ; you
found its expression, U (z)= (z− i)/(1− i z), in Exercise 1-1(iv). When restricted to
the real line, U can be thought of as stereographic projection from the point i , that is,
it maps x ∈ �∪∞ to

U (x)= (x̂1, x̂2)=
( 2x

x2+ 1
,

x2−1
x2+ 1

)
∈ �2 = �;

the inverse stereographic projection from the circle to the line (compare Exercise
1-11) is (x̂1, x̂2) �→ x̂1/(1− x̂2).

U conjugates the upper half-plane model and the disk model; in particular, the
orientation preserving isometries of the disk model can be thought of as elements
of U PSL(2,�)U−1 ⊂ PSL(2,�)— since we know from Exercise 1-1 that the ori-
entation preserving isometries of the upper half-plane model are the elements of
PSL(2,�).

The setup is completed by considering 	1,2, which is �3 with the inner product

〈�x, �y〉 = x1 y1+ x2 y2− x3 y3. (1.11)

(This is studied in detail in exercises 1-26 and 1-27.) The set of vectors in 	1,2 having
length 0 — that is, satisfying 〈�x, �x〉=0 — is the light cone. The light cone corresponds
to the unit circle in �2 via the usual projectivization map

x̂1 = x1

x3
, x̂2 = x2

x3
.

The name “light cone” comes from relativity. Vectors of “imaginary length” (〈�x, �x〉<
0) are called timelike, those lying on the light cone are lightlike, and those of positive
length are spacelike.
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Now take a Möbius transformation A preserving � ∪∞ and having normalized
matrix

(a
c

b
d

)
; recall that a, b, c, d are real. We associate to A the linear map Â of 	1,2

given by the matrix

1

2

⎛
⎝

2(ad+bc) 2(ac−bd) 2(ac+bd)

2(ab−cd) a2−b2−c2+d2 a2+b2−c2−d2

2(ab+cd) a2−b2+c2−d2 a2+b2+c2+d2

⎞
⎠ .

Check that:

(i) Â preserves the inner product of 	1,2, and thus leaves the light cone invariant.
(Hint: Taking the inner product (1.11) of the columns of the matrix of Â yields
zero if the columns are distinct and ±1 if the columns are the same — the minus
sign appearing for the third column only. Thus the matrix is “orthonormal” for
the given inner product.)

(ii) The map from the light cone onto itself defined by Â induces on S1 a map that
coincides with UAU−1.

(iii) Â also induces a map on the unit disk bounded by S1 (since the set of timelike
vectors in 	1,2 is also preserved by Â and corresponds to the unit disk). This
map on the disk takes straight line segments to straight line segments.

The hyperboloid model of the hyperbolic plane is the (half-)hyperboloid with equa-
tion x2

1 + x2
2 − x2

3 = −1, x3 > 0 , with the metric induced from the ambient space
	1,2. The projective model or Klein model of the hyperbolic plane is the unit disk in
�2, with the metric transported from the hyperboloid model by the central projection
map (x1, x2, x3) �→ (x̂1, x̂2)(x1/x2, x1/x3). We now justify these metrics and study
the basic properties of these models.

(iv) We first define standard maps from the upper half-plane (UHP) to the hyper-
boloid and projective disk. Given a point z in the upper half-plane, take any
nontrivial A ∈ PSL(2,�) that fixes z; show that the corresponding linear map
Â has a timelike 1-dimensional eigenspace in 	1,2 that does not depend on the
choice of A. We take the intersection of this eigenspace with the hyperboloid as
the image of z in the hyperboloid model; likewise we take the projection of this
eigenspace onto the projective disk as the image of z in the projective model.

(v) Show that this standard map from UHP to the hyperboloid is an isometry between
the hyperbolic metric on UHP and the metric induced on the hyperboloid from
the ambient space 	1,2. Thus the hyperboloid really is a model of the hyperbolic
plane. So is, trivially, the projective disk (since we defined the metric by pullback
from the hyperboloid.)

(vi) Show that hyperbolic lines are straight line segments in the projective model.
What are they in the hyperboloid model? What are the horocycles in the projec-
tive and hyperbolic models?

(vii) The orientation preserving isometries of the hyperboloid and projective models
are induced by the linear maps Â, as A ranges over PSL(2,�). Work out the
special cases for A in standard form: x �→ x+1, x �→ λ2 x , and x �→ (x cosϕ+
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sinϕ)/(−x sinϕ+ cosϕ). For each case show that there is a 1-dimensional fixed
eigenspace and determine where it is. Identify what corresponds to the axes and
fixed points of loxodromic transformations, and to horocycles for parabolics.

(viii) The map U and the map constructed in (iv) take UHS to the disk model and the
projective model, respectively. Composing one with the inverse of the other we
get a map that fixes the boundary — see (ii) above. Show that its action of this
map on the interior of the disk — that is, the map that conjugates the disk and
projective models — is radial and corresponds to stereographic projection onto
a hemisphere, followed by orthogonal projection back to the unit circle.

(ix) Consider a hyperbolic polygon in the disk model of �2 and then, as Poincaré
before you, take its counterpart in the projective model. Show that the property
that a vertex angle be <π is preserved, although the angle itself is not. Recover
Poincaré’s proof that all of the interior vertex angles of a hyperbolic polygon are
< π if and only if the polygon is hyperbolically convex.

1-26. [Cannon et al. 1997, p. 66] The space 	1,2 of the previous exercise is called
Minkowski space. To thoroughly understand its metric and that of the hyperboloid
model, consider the situation in one dimension lower, taking the hyperbola x2 −
y2 = −1 in �2 = 	1,1. Suppose �p(t) = (x(t), y(t)) describes the motion of a car
on say the upper sheet of the hyperbola. We can express the velocity vector as �p′ =
k(t)(y(t), x(t)) for a scalar function k(t).

With respect to the inner product 〈 �p1, �p2〉 = x1x2 − y1 y2, the vectors �p(t), �p′(t)
are orthogonal, namely 〈 �p(t), �p′(t)〉 = 0, just as they are with the euclidean metric.
But suppose the hyperbolic speed is one: 〈 �p′, �p′〉 = 1, in other words that t is the
hyperbolic arc length parameter. This forces |k(t)| = 1. Taking k = 1 we have the
coupled pair of differential equations x ′(t) = y(t), y′(t) = x(t). We can solve these
by infinite series; in fact for suitable initial values, y = cosh t , x = sinh t .

Deduce that the restriction of the indefinite inner product to the hyperbola gives
a definite inner product on tangent vectors or points, specifically in the arclength
parameter and distance along the hyperbola,

〈 �p′(t1), �p′(t2)〉 = cosh d( �p(t1), �p(t2))=−〈 �p(t1), �p(t2)〉.
1-27. We now consider Minkowski space in arbitrary dimension. The inner product
in 	1,n is

〈�x, �y〉 =
n∑
1

xi yi − xn+1 yn+1,

where �x = (x1, . . . , xn+1). Two nonzero vectors are called orthogonal if 〈�x, �y〉 = 0.
A vector �x is called timelike, lightlike, or spacelike according to whether |�x |2 =
〈�x, �x〉 is negative, zero, or positive. The collection of lightlike vectors forms the light
cone {�x : |�x | = 0}; the upper sheet of the cone is denoted by L+; it is asymptotic to
the upper-sheet hyperboloid Hn = {�x ∈ �n+1 : |�x |2 =−1, xn+1 > 0}.

A ray from the origin in L+ corresponds to a point on ∂�n = �n−1.
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An n-dimensional hyperplane P with a spacelike normal vector �v, namely P =
{�x ∈ 	1,n : 〈�x − �ζ , �v〉 = 0} for some �ζ ∈ P , intersects Hn in a (n−1)-dimensional
hyperbolic subspace.

A plane P with a timelike normal vector �v 
= 0 intersects Hn in a (possibly degen-
erate) (n−1)-sphere.

For the borderline case, a plane P with a lightlike normal vector �v 
= 0 ∈ L+
intersects Hn in an (n−1)-dimensional horosphere. There is a unique lightlike vector
v such that P = {�x ∈ E1,n : 〈�x, �v〉 = −1}. The ray of L+ from the origin through �v
corresponds to the point at∞ of the horosphere. The corresponding horoball is

{�x ∈�n : 0≥ 〈�x, �v〉 ≥ −1}.

As �v increases along its ray, the horoball contracts to its point at ∞. Because of
the peculiarities of the metric, the normal vector is simultaneously orthogonal to and
parallel to the plane P .

Now set n = 3. 	1,3 is the space/time of relativity theory. Parabolic, elliptic, and
loxodromic Möbius transformations correspond to linear transformations conjugate
to the respective linear isometries:

⎛
⎜⎜⎝

1 0 1 −1
0 1 0 0
1 0 3

2 −1
2

1 0 1
2

1
2

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cosh λ sinh λ
0 0 sinh λ cosh λ

⎞
⎟⎟⎠.

A parabolic transformation has only one eigenvalue, which is 1, and preserves a single
ray in L+. A loxodromic has two eigenvalues not on the unit circle, which are cosh λ±
sinh λ (its other two are e±iθ ), and preserves two rays in L+. All the eigenvalues of
an elliptic lie on the unit circle; the eigenvalue 1 is repeated twice, the other two are
e±iθ .

Show that if x �→ Ax is parabolic with fixed point u ∈ �∪∞, the corresponding
linear transformation fixes every point on the corresponding ray of the light cone L+
in 	1,2:

x1 = 2u

u2+ 1
x3, x2 = u2− 1

u2+ 1
x3.

If instead x �→ Ax is loxodromic with fixed points p, q, show that the corresponding
linear transformation fixes each point of the ray from (0, 0, 0, ) ∈ L+ orthogonal to
the plane spanned by the two rays in the light cone determined by the fixed points.
There is expansion by the factor ρ2 along the ray for the attracting fixed point, and
contraction by ρ−2 along the ray for the repelling one. In fact, it is best to work out
first the geometry for 	1,2. For more detail see [Hodgson and Weeks 1994].

Explain why elliptic, parabolic, and hyperbolic transformations of �2 are associ-
ated with ellipses, parabolas, and hyperbolas, respectively. (Each has an invariant
plane that cuts the light cone in the respective conics.)
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Here is an alternate way to view H2. Associate column vectors in 	1,2 with real
symmetric matrices as follows:⎛

⎝ x1

x2

x3

⎞
⎠←→

(
x3− x2 x1

x1 x3+ x2

)
.

Again let A be a normalized 2× 2 matrix with real coefficients. Consider the action(
x3− x2 x1

x1 x3+ x2

)
�→ A

(
x3− x2 x1

x1 x3+ x2

)
At ,

which preserves the determinant −(x2
1 + x2

2 − x2
3). Relate this action to the action of

Â in Exercise 1-25.
Passing on to 	1,3, associate vectors with hermitian matrices as follows:⎛

⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠←→

(
x4− x1 x2+ i x3

x2− i x3 x4+ x1

)
.

Let A be a normalized 2×2 matrix now with complex coefficients. It acts on 	1,3 by(
x4− x1 x2+ i x3

x2− i x3 x4+ x1

)
�→ A

(
x4− x1 x2+ i x3

x2− i x3 x4+ x1

)
Āt ,

which leaves the determinant −(x2
1 + x2

2 + x2
3 − x2

4) invariant. Show that the action
preserves H (the upper sheet of the hyperboloid). Show that this is the action brought
over from �∪∞ to 	1,3 by stereographic projection and homogeneous coordinates.

See [Weeks 1993] or [Greenberg 1962] for more details.

1-28. The quaternion description. Upper half-space can be neatly described by the
division ring of quaternions. Quaternions can be identified with the group of matrices

Q =
{(

u v

−v̄ ū

)
: u, v ∈ �

}

as follows. Set

1=
(

1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
.

Then i j = k, j k = i, ki = j . Also i2 = j2 = k2 = −1. Writing u = u1 + iu2,
v = v1+ iv2, set (

u v

−v̄ ū

)
= u1+ u2 i + v1 j + v2k = u+ v j .

For z = u + v j ∈ Q, define z = ū − v j , and |z| by |z|2 = |u|2 + |v|2. Note that for
c ∈ �, c j = j c̄.

Points in �3 can now be denoted as the special quaternion z= z+ t j , z ∈�, t ∈�.
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Given
(a

c
b
d

)
, with ad − bc = 1, a, b, c, d ∈ �, show that the action of the corre-

sponding Möbius transformation in upper half-space is described by

A(z) = (az+ b)(cz+ d)−1 = (zc+ d)−1(za+ b),

where the quaternion A(z) is of the same special type as z. For details see [Ahlfors
1981], [Beardon 1983] and [Fenchel 1989].

1-29. Let T : E1,n → E1,n be a (not necessarily orientation preserving) linear trans-
formation that maps the (upper-sheet) hyperboloid Hn onto itself and preserves the
inner product:

〈T x, T y〉 = 〈x, y〉.
Prove the following necessary and sufficient condition for T to be of this type,

where M is the matrix corresponding to T :

MtJ M = J and Mn+1,n+1 > 0.

Then prove that T acts isometrically on Hn , and that the only isometries of Hn are
of this type. See [Cannon et al. 1997] if you need help.

1-30. Relation of hyperbolic and euclidean metrics. Suppose f :�→� is a confor-
mal mapping from the unit disk. The hyperbolic or Poincaré metric in � is defined
to be

ρ(w) |dw| = 2| f ′(z)||dz|
1− | f (z)|2 .

The Riemann map f is uniquely determined only up to postcomposition by Möbius
transformations, but such compositions do not change the metric in�. Prove using the
Koebe 1

4 -Theorem from conformal mapping theory (see [Pommerenke 1992, 4.6(6)])
that

1

2d(w, ∂�)
≤ ρ(w)≤ 2

d(w, ∂�)
,

where d(w, ∂�) is the shortest euclidean distance from w to the boundary of �.
Equality on the left holds if and only if the complement of � is a ray to∞ in a line
through w. Equality on the right holds if and only if � is a round disk centered at w.

Suppose instead that � ⊂ � is a multiply, possibly infinitely, connected region
whose complement contains at least two points (plus ∞). That is, assume that �
carries a hyperbolic metric ρ(w) |dw| that arises from projection from the unit disk,
its universal cover (see Chapter 2). According to [Beardon and Pommerenke 1978],
[Pommerenke 1984] there exists C = C(�) > 0 such that

C

d(w, ∂�)
≤ ρ(w)≤ 2

d(w, ∂�)
, (1.12)

if and only if X = ∂� has the property called uniformly perfect.
The notion of uniformly perfect is really directed to multiply connected regions as

when� is simply connected 
=� we already know that Equation 1.12 holds with C =
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1/2. Yet it simplifies terminology to simply declare that closed, connected sets X ∈�2

with more than two points are automatically uniformly perfect (their complementary
components are simply connected).

So consider closed sets X ⊂ �2 that are not connected. Then X ⊂ �2 is called
uniformly perfect [Beardon and Pommerenke 1978; Pommerenke 1984] if there ex-
ists a constant M <∞ such that any annular region A ⊂ �2 \ X that separates the
components of X has modulus mod(A) < M . Here mod(A) = (log r)/2π where
f : A→{1< |z|< r} is a conformal map. The uniformly perfect condition relates to
a requirement that X be “uniformly thick” at each of its points, independent of scaling
by Möbius transformations. For example if X contains an isolated point, there would
be a separating annular region of arbitrarily large modulus.

If X is uniformly perfect, the boundary of any multiply connected complementary
component is uniformly perfect as well.

An equivalent condition is that X is uniformly perfect if for every a, b ∈ X and
w /∈ X there exists c ∈ X such that for some constant M the cross ratio satisfies

1

M
≤ |(a, b, c, w)| ≤ M.

Most importantly for us, the limit set �(G) of any finitely generated (nonelemen-
tary) kleinian group G is uniformly perfect [Pommerenke 1984]! Therefore each
component � of the complement �(G) satisfies Equation 1.12 for some C = C(�).
On the other hand, there exist infinitely generated Schottky groups whose limit sets
are not uniformly perfect. See Chapter 2 for the basic properties of kleinian groups.

1-31. Anti-Möbius transformations. An anti-Möbius transformation A can be ex-
pressed as A= B◦ J , where J is complex conjugation and B is orientation preserving.
Show that in �2, A either pointwise fixes a circle, or it has zero, one or two fixed
points. Examples:

z �→ 1

z̄
, z �→ −1

z̄
+ 1, z �→ z̄+ 1, z �→ 2z̄.

The extension of A to open upper half-space pointwise fixes a plane, a line, or a point.
A finer classification [Fenchel 1989, pp. 48–53] has the possibilities grouped in

three conjugacy (by an orientation preserving transformation) classes. The first two
are called involutive since the elements have order two. The third conjugacy class
consists of elements T with the property that T 2 is loxodromic or parabolic. These
arise as described below.

To understand the classification, we have to anticipate the result of Lemma 7.3.1
that a loxodromic or parabolic transformation has a square root which is a Möbius
transformation of the same type. From Lemma 7.1.2 we take the result that any
Möbius transformation that interchanges two distinct points in �2 is elliptic of order
two. Fenchel’s classification is as follows:

Reflection in a plane: Reflection J in a plane in �3.
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Reflection in a point c ∈ �3: Suppose c = (0, 0, t) in the upper half-space model of
�3. Let � denote the vertical axis and P be a plane through c and orthogonal to
�. The point-reflection in c has the form J ◦ E where E is the elliptic of order
two E : (x, y, t) �→ (−x,−y, t) with rotation axis � and J is reflection in P .

Noninvolutive anti-Möbius transformations: Let T 2 be loxodromic or parabolic and
pick a square root T . Choose any x ∈ �2 distinct from its fixed points and set
y = T−1(x), z = T (x) so that the three points x, y, z are distinct. Let τ ⊂ �3

be the line with endpoints y, z and let P be the plane orthogonal to τ whose
boundary passes through x . Let J denote reflection in P . Then T ◦ J = E
interchanges x, z so that it is elliptic of two with rotation axis � ⊂ P . Thus
T = E ◦ J .

Show that an elliptic of order two is itself the composition of reflections in two
orthogonal planes intersecting in its rotation axis.

Given two distinct circles C1,C2 ∈ �2, show that there is a circle C∗ such that
reflection in C∗ interchanges C1 and C2.

1-32. Hilbert’s metric. Let � be a bounded, euclidean convex domain in �n . Then
every euclidean straight line that contains a point of � intersects its boundary ∂� in
exactly two points. Given two points x, y ∈ �, denote by x ′, y′ ∈ ∂� the two points
of intersection of the line L through x, y with ∂�, so labeled that x separates x ′ from
y along L . Consider the expression

d(x, y)= log
|x − y′| |y− x ′|
|x − x ′| |y− y′| .

Show that � is a complete metric space with metric d( · , · ). The geodesics in this
space are the euclidean line segments.

An affine map of Rn sends the metric to the Hilbert metric of the image domain. It
turns out that d(·, ·) is a riemannian metric on � if and only if � is an ellipsoid and
d is the hyperbolic metric on �, here considering � as the Klein model of �n .

Show that if ∂� contains a straight line segment, then two rays from any point
O ∈� to different points on the line are of uniformly bounded distance apart.

1-33. Hyperbolic curvature of arcs. Suppose z= z(t)= x(t)+ iy(t) is a parametrized
arc in �2, −m < t < m, with continuous second derivative. In euclidean geometry,
the parameter t is an arc length parameter if and only if |z′(t)| = 1. In hyperbolic
geometry, in the upper half-plane model, t is arc length parameter if and only if

|z′(t)|
y(t)

= 1, −m < t < m.

In euclidean geometry with arc length parameter s the curvature of z = z(s) is
defined as

κe(s)= lim

s→0

|
ϕ|
|
s| .
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Here 
ϕ = ϕ(s+
s)−ϕ(s), where the slope of the tangent line at the point z(s) is
tanϕ(s) and correspondingly tanϕ(s+
s) at z(s+
s).

In hyperbolic geometry, the curvature is defined by exactly same formula but the
meaning of the terms is hyperbolic: s is the hyperbolic arc length parameter and 
ϕ
is the angle between the hyperbolic tangent lines at z(s) and z(s+
s).

Another characterization valid in both the euclidean and hyperbolic situations is
this: About the point s= 0 take the local coordinate system determined by the tangent
vector �α to the curve at s = 0 and the normal �β to the curve at that point. In this new
coordinate system the curve ζ = ζ(s) has the expansion

ζ(s)= s �α+ κ(0)s
2

2
�β + O(s3).

Using Exercise 1-19 confirm that the curvature of a geodesic is zero.

Curvature of a horocycle. In the upper half-plane model, consider the horocycle
z(t)=ai+t , a>0 (which is already in euclidean arc length parameter). In hyperbolic
arc length parameter, the equation is

z(s)= ai + as.

Along the horocycle, a
s =
x . So it suffices to compute the limit of a
ϕ(s)

x . Actu-

ally it suffices to take the case a = 1.
The hyperbolic tangent lines to {z : Im z = 1} are the semicircles with center on

� and unit radius. Because the horocycle is invariant under the continuous group of
translations, it suffices to make the computation at say s = 0. To do this take the unit
semicircle centered at z = 0 and the semicircle centered at z = 
x . Find their point
of intersection, and then find the angle between them at this point (choose the angle
so that it would be zero if the two tangents coincided); this is our 
ϕ. Taking the
limit as 
x→ 0 we find (in sharp contrast to the euclidean case) that

curvature of a horocycle = 1.

Curvature of an equidistant arc. In the upper half-plane model measure distances
from the vertical half line. Consider the line y = cx , c > 0, making angle θ with the
vertical. In its hyperbolic arc length parameter,

z(s)= es cos θei(π/2−θ),

where c = cot θ . The line is invariant under the continuous group z→ kz, k > 0, so
it suffices to make the computation at (m,mc) where m = sin θ . Find the angle of
intersection 
ϕ between the hyperbolic tangent lines at (m, cm) and es cos θ (m, cm).
Show that at the point s = 0,

lim

s→0

∣∣∣∣
ϕ
s

∣∣∣∣= cos θ

c
.

Conclude that

curvature of a line of distance d from a geodesic= tanh d = sin θ . (1.13)
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For example, the 45◦ line has curvature 1/
√

2.

Curvature of a circle. In the unit disk model, consider a circle of euclidean radius R
about the origin. In hyperbolic arc length coordinates starting from (R, 0) its equation
is

z(s)= reis(1−R2)/(2R).

Take the geodesics tangent to the circle at z = R and at z = Reiθ . Find their point of
intersection (x0, y0) within the unit disk and then their angle ϕ=ϕ(θ) of intersection.
After a long calculation, for example by calculating limθ→0 ϕ/θ , one finds

dϕ

dθ

∣∣∣∣
θ=0
= 1+ R2

1− R2
.

Because the circle is invariant under the continuous group of rotations, it suffices to
make this calculation at a single point.

Note that

dϕ

ds
= 1− R2

2R

dϕ

dθ
.

The hyperbolic radius ρ satisfies eρ = (1+ R)/(1− R) so that coth ρ = (1+ R2)/2R.
We end up with the following formula (compare Section 1.4):

curvature of a circle of hyperbolic radius ρ = coth ρ. (1.14)

In both 1.13 and 1.14, the curvature approaches 1 as R→ 1 or ρ→∞. Why?
Summary:

constant curvature

{
< 1 ⇐⇒ curves of finite distance from a geodesic,
= 1 ⇐⇒ horocycles,
> 1 ⇐⇒ circles.

In �3 consider a surface of distance d from a hyperbolic plane. The nearest point
map that projects the surface to the plane scales hyperbolic distances by a factor
1/ cosh d. Conclude from this that:

Gaussian curvature of a surface of distance d from a plane=− sech2 d.

Also deduce:

Gaussian curvature of surface of distance d from a line= 0.

1-34. Conjugation by involution: Wada’s Lemma [2003]. Suppose A, B are two
Möbius transformations which do not share a fixed point. If A and B are conjugate,
show that there is a Möbius transformation Q, with Q2 = id, such that A = Q B Q.
That is, show that A and B are conjugate by an involution.

Hint: For the parabolic case take A = (1
0

1
1

)
. If B = X AX−1, set Y = XT where

T = ( 1
0

t
1

)
. Note that Y AY−1 = B.
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1-35. Parametrization of two generator groups with parabolic commutator [Jør-
gensen 2003]. Assume that the matrices X, Y satisfy the relation [X, Y−1]= (−1

0
−2
−1

)
.

Introduce the notation

a = tr X, b = tr Y, c = tr XY−1 = tr Y−1 X, c′ = tr XY.

Applying Lemma 1.5.6, these quantities are connected by the relations

abc = a2+ b2+ c2, cc′ = a2+ b2.

These relations are symmetric with respect to c, c′, that is, abc′ = a2+b2+c2. If one
of the traces a, b, c is zero, that element represents an elliptic of order two. If two of
the traces are zero, say a = b = 0, then c = 0. If none of the traces are zero,

a

bc
+ b

ac
+ c

ab
= 1 = a

bc′
+ b

ac′
+ c′

ab
. (1.15)

Complex numbers u, v, w that lie on the hyperplane

P = {(u, v, w) ∈ �3 : u+ v+w = 1}
are called complex probabilities. From our perspective, the singular subset 	0 ∈ P

is the union of the three coordinate lines:

	0 = {(u, v, w), u+ v+w = 1 : u = 0 or v = 0 or w = 0}.
Note that P \	0 is connected.

We are now ready to parametrize two generator groups with parabolic commutator
by complex probabilities. Confirm the following facts.

Suppose u, v, w ∈ � are nonvanishing numbers such that u+ v+w = 1. Set

d = 1

uvw
, a =√ud, b =√vd,

where the arguments are chosen so that −π < arg d, arg a, arg b≤ π . Choose arg c
so that

c =√wd

satisfies

abc =√ud
√
vd
√
wd = d.

Set

X =
(

a− b/c a/c2

a b/c

)
, Y−1 =

(
b− a/c −b/c2

−b a/c

)
. (1.16)

Then

XY−1 X−1Y =
(−1 −2

0 −1

)
, XY−1 =

(
c −1/c
c 0

)
, Y−1 X =

(
c 1/c
−c 0

)
,

and tr X = a, tr Y = b, and tr XY−1 = c with a, b, c 
= 0. Conversely, if X and Y
satisfy [X, Y−1] = (−1

0
−2
−1

)
, and the numbers a = tr X , b = tr Y and c = tr XY−1 are
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nonzero, and XY−1(0)=∞, then X and Y−1 have the matrix representations (1.16).
In summary,

tr X = a, tr Y = b, tr XY−1 = c,

u = a

bc
, v = b

ac
, w = c

ab
, a2 = 1

vw
, b2 = 1

uw
, c2 = 1

uv
, abc= 1

uvw
,

a2+ b2+ c2 = abc, u+ v+w = 1.

And in the opposite direction:

Lemma 1.6.1. Set K = (−1
0
−2
−1

)
. Suppose the matrices X, Y satisfy

XY−1 X−1Y = K ,

and the transformation corresponding to X does not fix∞. Then X and Y−1 have the
form

X =
( ∗ ∗
τX ∗

)
, Y−1 =

( ∗ ∗
−τY ∗

)
.

Proof. As usual, all matrices have determinant one. Set

X =
(

a b
c d

)
, Y−1 =

(
α β

γ δ

)
.

Replace X and Y−1 by the conjugates W X W−1 and W Y−1W−1, where W = ( 1
0

d/c
1

)
,

so that W X W−1(0)=∞; conjugation by the translation W leaves K unchanged and
it also leaves the entries c and γ in the matrix for X and Y−1 unchanged. The identity
XY−1 = K Y−1 X gives the four equations

cβ =−bγ, cα =−aγ − cδ, aα+ bγ =−aα− cβ − 2aγ − 2cδ,

aβ + bδ =−bα− 2bγ.

Substituting the first and second into the third we wind up with either c = a = τX or
α = 0. In the former case, −γ = α+ δ = τY and β =−τY /τ

2
X , since bc =−1. With

the normalization X (0)=∞, leaving aside the formulas for α, δ, we have

X =
(
τX −1/τX

τX 0

)
Y−1 =

(
α −τY /τ

2
X

−τY δ

)
. (1.17)

Suppose instead α= 0. Using the fact bc=−1 and βγ =−1, we find from the first
equation that c2 =−γ 2, or γ =±ci . The second equation becomes aγ + cδ = 0, or
δ =∓ai ; in other words τY =∓τX i . The fourth equation becomes aβ + bδ =−2bγ
and upon rewriting in terms of c and a yields c = a = τX . Putting it all together we
actually have a special case of (1.17),

X =
(
τX −1/τX

τX 0

)
, Y−1 =

(
0 1/τY

−τY τY

)
.

In this case Y−1 X and XY−1 represent the order two elliptics z �→−z and z �→−z+2.
�
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The bottom line is that given the traces of generators X, Y , plus the trace of XY−1,
plus the condition that the trace of the commutator is −2, the group is uniquely deter-
mined up to conjugation. Moreover, by the trace identities, the trace of any element
of 〈X, Y 〉 is a polynomial in the initial traces. The systematic method for doing this
uses the modular diagram and the Farey sequence; it is spelled out in [Mumford et al.
2002].

1-36. Suppose the Möbius transformations A, B are such that [A, B] is parabolic.
Assume that A, B,C = B A all have real traces. Show that for some Möbius T ,
the entries of the normalized matrices for T AT−1, T BT−1 are real. Consequently
the group T 〈A, B〉T−1 preserves the upper half-plane. What if [A, B] is instead
elliptic? Show by modifying Jørgensen’s method of complex probabilities that the
same conclusion holds.

1-37. Two-jets of locally injective analytic functions. Suppose f (z) is a locally injec-
tive analytic function (that is, f ′(z) 
= 0) in a neighborhood of z0 ∈�. Show that there
is a Möbius transformation M( f ; z0) uniquely determined by the three properties:

M( f ; z0)(z0)= f (z0), M( f ; z0)
′(z0)= f ′(z0), M( f ; z0)

′′(z0)= f ′′(z0).

The value of the first two derivatives of f at z0 is called the two-jet of f at z0. If A
is any Möbius transformation, M(A f ; z0)= AM( f ; z0).

Thurston [1986d] showed that for any v 
= 0 ∈ �,

vS f (z0)= v
(( f ′′

f

)′ − 1
2

( f ′′

f ′
)2
)

z0

= ∂2

∂z2
M( f ; z)−1 M( f ; z+ tv)

∣∣∣
t=0,z=z0

.

Here S f (z0) is called the schwarzian derivative (Exercise 6-8).
Suppose now that f : UHP→ � is a conformal map. There is an extension F of

f to �3, taken as UHS, determined as follows.
Denote by P ⊂ �3 the vertical half-plane rising from �. Identify P with UHP

by orthogonal projection. Given x ∈ �3, let �x be the geodesic through x that is
orthogonal to P . Denote by r(x) its intersection with P ≡UHP.

Set

F(x)= M( f ; r(x)).
Show that F is continuous. It is also equivariant if f is so: Suppose G is a fuchsian
group acting on UHP, and on �3, and f satisfies for all γ ∈ G, f ◦ γ = φ(γ ) ◦ f ,
where φ is a homomorphism of G to another group, not necessarily discrete. Then

M( f ; r(γ x))= φ(γ )M( f ; r(x))γ−1,

and consequently F ◦ γ = φ(γ ) ◦ F . Although F is not necessarily a local home-
omorphism, there exists d > 0 such that F is a local homeomorphism outside of a
distance-d neighborhood of P . See [Bromberg 2000] for details.

1-38. The hyperbolic Gauss map. Suppose S ⊂�3 is a smoothly immersed, oriented
surface in the ball model. Given ζ ∈ S let �nζ denote the geodesic ray normal to S at ζ
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and denote its endpoint on �2 by n(ζ ). Epstein [1986] defined the hyperbolic Gauss
map by G(ζ ) = n+(ζ ), for ζ ∈ S There is a uniquely determined horosphere σ(ζ )
based at n(ζ ) that is tangent to S at ζ .

If we reverse the orientation of S we get another Gauss map n−(ζ ) that sends ζ to
the “other” side of �2. When S is smoothly embedded and its principal curvatures
satisfy k1, k2 < 1, the maps n+, n− are diffeomorphisms to disjoint open sets in �2.
The composition n− ◦ (n+)−1 is a kind of “reflection” in ∂S ⊂ �2. The situation is
studied in detail in [Epstein 1986].

1-39. Fricke’s Lemma (see [Magnus 1980] for the history and a proof). Let A1, A2, A3

be Möbius transformations. With Magnus introduce the notation

xν = tr Aν, yνμ = tr Aν Aμ, zνμσ = tr Aν AμAσ ,

P = x1 y23+ x2 y13+ x3 y12− x1x2x3,

Q = x2
1 + x2

2 + x2
3 + y2

12+ y2
13+ y2

23+ y12 y13 y23− x1x2 y12− x1x3 y13− x2x3 y23− 4.

Prove Fricke’s Lemma, namely the formula

P = z123+ z132, Q = z123z132.

In other terms, z123 and z132 are the roots of the equation z2− Pz+ Q = 0.

1-40. Finer properties of isometric circles. The following properties have proved very
useful in Jørgensen’s hands in analyzing one and two generator groups.

Lemma 1.6.2. Let A and B be Möbius transformations on S2 and let I, B be as in
Section 1.5.

(i) B(B) covers a set σ on the isometric plane or circle I(A) if and only if B(B A−1)

covers A(σ ) on the isometric plane or circle I(A−1).
(ii) If the circle I(B) is internally tangent to I(A) at the point x , then I(B A−1) is

externally tangent to I(A−1) at A(x).
(iii) I(A), I(AB), I(B) have a common point x if and only if I(A), I(AB−1), I(B−1)

have a common point B(x).
(iv) Suppose I(B1), . . . , I(Bn), n ≥ 3, go through a point x , and that

⋃n
1 B(Bi )

covers a neighborhood of x . Then for each k, the circle I(B−1
k ) and every circle

I(Bi B−1
k ), for i 
= k, pass through Bk(x), and the union of their interiors covers

a neighborhood of Bk(x).
(v) The sum of the excesses (see below) of the three pairs of isometric circles (A, B),

(A−1, B A−1) and (B−1, AB−1) is 12π − 2(λ1+ λ2+ λ3), where λ1, λ2, λ3 are
the exterior angles of intersection of each of the three pairs of circles.

If two circles bound overlapping open disks, the overlap is bounded by an arc of
each one. The excess of the pair is defined as the sum of the (euclidean) central angles
subtended at the center of the two circles by the complements of the arcs. If the circles
do not intersect at all, the excess is defined as 4π .
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Proof. Properties (1)–(4) follow from the chain rule,

(B A−1)′(Az)= B ′(z)
A′(z)

.

For z ∈ σ we have |A′(z)| = 1 and |B ′(z)| > 1, so |(B A−1)′(Az)| > 1. Conversely,
if |(B A−1)′(Az)| > 1 and |A′(z)| = 1, then A(z) ∈ I(a) and necessarily |B ′(z)| > 1.
Assertions (3) and (4) are consequences and (2) is a limiting case.

For (5), the key step here is to remember a theorem from high school geometry.
Consider a closed arc σ on a circle. Draw the rays from the center to its end points.
Let 2θ denote the angle they subtend. Choose a point ζ on the circle, but not on σ
and draw the lines from ζ to the end points of σ . Then the lines from ζ subtend the
angle θ with σ . In the limiting case that one of the end points of σ approaches ζ , the
angle θ approaches the angle between the remaining line from ζ and the tangent to
the circle at ζ .

Next, suppose B(A) ∩ B(B) 
= ∅. Let σA denote the arc I(A) ∩ B(B) and σB

the arc I(B) ∩ B(A). Let θ1 denote the angle subtended at the center c(A) by the
complementary arc I(A) \ σA and θ2 subtended at c(B) by I(B) \ σB . The excess at
this intersection is, by definition, θ1+ θ2.

Draw the straight line l through the two points I(A)∩ I(B). For ease of reference
assume l is a vertical line. Choose one of the points of intersection ζ and draw there
the tangent lines to the two circles. Let λ3 denote the exterior angle of intersection
of the two circles, that is, the angle between the two tangents that lies exterior to
both circles. We claim that the angle between l and the tangent line to I(A) is θ1/2
and correspondingly that between l and I(B) is θ2/2. This is a consequence of the
limiting case of the high school theorem presented above.

Summing the angles at ζ shows that 1
2θ1+ 1

2θ2+ λ3 = 2π .
Now pass on to the next pair of intersecting circles, I(A−1) and I(B A−1). Let σA−1

and σB A−1 denote the arcs I(A−1) ∩B(B A−1) and I(B A−1) ∩B(A−1). Recall that
I(A) has the same radius as I(A−1) and that A is a euclidean isometry from the former
to the latter. This means that the angle subtended at c(A−1) by the complementary
arc I(A−1) \ σA−1 is again θ1. Let θ3 denote the angle subtended at c(B A−1) by the
complementary arc I(B A−1)\σB A−1 . Denote the exterior angle of intersection of the
two circles by λ2. Again we find that 1

2θ1+ 1
2θ3+ λ2 = 2π .

Once more, carry out this construction for the intersecting circles I(B−1) and
I(AB−1). The angle subtended at c(B−1) is now θ2 while the angle at c(AB−1)

is θ3. If λ1 denotes the exterior angle of intersection of the circles, we find as before
that 1

2θ2+ 1
2θ3+ λ1 = 2π .

Putting the three calculations together we conclude that the total excess is

2(θ1+ θ2+ θ3)= 12π − 2(λ1+ λ2+ λ3).

In the limiting case that the circles do not cross each other, the total excess is 3×4π .
�
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Discrete groups

This chapter introduces the related notions of discreteness and discontinuity, limit
set and ordinary set. We establish the connection between discrete groups of Möbius
transformations and hyperbolic manifolds and orbifolds. Some classical special cases
of discrete groups are presented: elementary groups (which we classify), fuchsian
and Schottky groups. The chapter includes crash courses on covering manifolds,
Riemann surfaces, and quasiconformal mappings. The first two of these topics help
us understand the boundaries of the 3-manifolds, while the latter shows us how to
make controlled deformations of them.

We start by recalling some notions from group theory. Two groups G, H of Möbius
transformations are said to be conjugate if there is a Möbius transformation T such
that G = T H T−1; in other words G is the group consisting of the elements T hT−1,
for h ∈ H . As we did with single Möbius transformations in Chapter 1, we will
often find it convenient to “normalize” a group of transformations, replacing it by a
representative of its conjugacy class for which we stipulate some propitious property.

If A, B are Möbius transformations, 〈A, B〉 denotes the group generated by A and
B and 〈A〉 the cyclic group generated by A.

A group is torsion-free if no element apart from the identity has finite order. Thus
a torsion-free group of Möbius transformations is one that has no elliptic elements.

If a group G acts on a set X , the stabilizer of a subset 	 ⊂ X under G is the set

Stab(	)= StabG(	)= {g ∈ G : g(	)=	}.
The case that interests us is where G is a group of Möbius transformations and 	 is
a subset of �2.

2.1 Convergence of Möbius transformations

Lemma 2.1.1 (Convergence of Möbius transformations). Suppose {Tn} is an infinite
sequence of distinct Möbius transformations such that the corresponding fixed points
pn, qn converge to p, q ∈ �2; here either pn = qn , or Tn is elliptic, or pn is the
repelling and qn the attracting fixed point of Tn . There is a subsequence {Tk} with one
of the following properties.

49
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(i) There exists a Möbius transformation T such that lim Tk(z) = T (z) uniformly
on �3 ∪�2 (considered with the euclidean metric), or equivalently, Tk → T for
suitable choices of the associated matrices.

(ii) lim Tk(z)=q for all z 
= p, uniformly on compact subsets of �3∪(�2\{p}). Also
lim T−1

k (z) = p for all z 
= q, uniformly on compact subsets of �3 ∪ (�2 \ {q}).
Possibly p = q.

Examples: {z+ n}, {kn z}, {ei/n z}, {a2z+ n(1− a2)}.
Before proving the lemma, we state as a corollary a stronger form of Montel’s

famous theorem on “normal families” (the original version requires three omitted
values).

Corollary 2.1.2. Suppose {Tn} is an infinite sequence of distinct Möbius transfor-
mations and U ⊂ �2 is a connected open set. Suppose there are two distinct points
ζ1, ζ2 in �2 such that Tn(U ) avoids ζ1 and ζ2, for all n. Then there is an infinite
subsequence {Tm} which converges on U , uniformly on compact subsets, to a Möbius
transformation or to a constant.

Proof of Lemma 2.1.1. Assume that {Tn} is a sequence whose fixed points converge
as described in Lemma 2.1.1, and assume it has no subsequence which converges to
a Möbius transformation.

Case 1: p 
= q. Choose ζ ∈ � distinct from p, q, pn, qn for all n. Set Rn(z) =
(z, ζ, pn, qn) so that lim Rn(z)= R(z)= (z, ζ, p, q), uniformly on �2.

The transformation Sn(z)= RnTn R−1
n (z) fixes 0,∞ and has the same convergence

properties as {Tn}. We have for large indices Sn(z) = anz with |an| ≥ 1. If |an|
is bounded for infinitely many indices then a subsequence converges to a Möbius
transformation. Otherwise there exists a subsequence {Sm} for which lim am =∞. In
this case, {Sm} converges uniformly to∞ outside any given neighborhood of z = 0.

Case 2: p = q. Choose ζ1, ζ2 
= qn, q and ζ1 
= ζ2. Set Rn(z)= (z, ζ1, ζ2, qn). Again
lim Rn(z)= R(z)= (z, ζ1, ζ2, q). Set Sn(z)= RnTn R−1

n (z). This fixes∞ and has the
same convergence properties as {Tn}. So Sn(z) = anz + bn; the other fixed point of
Sn is −bn/(an − 1). If for a subsequence lim bm = b 
= ∞, then lim am = 1. In this
case lim Sm(z)= z+ b. If instead lim bm =∞, rewrite Sm as

Sm(z)= bm

(
(am − 1)z

bm
+ 1

)
+ z.

Since lim(am − 1)/bm = 0, we have lim Sm(z)=∞ for all z. As for the inverse,

S−1
m (z)= bm

am

(
z

bm
− 1

)
.

Because

lim
am − 1

bm
= lim

(
am

bm
− 1

bm

)
= 0
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and lim bm =∞, we find lim am/bm = 0. Therefore lim S−1
m (z) =∞ as well, for all

z ∈ �. �

Proof of Corollary 2.1.2. Let {Tm} be a convergent sequence as in Lemma 2.1.1.
Suppose the limit is not a Möbius transformation. Then lim Tm(z) = q uniformly
outside any given neighborhood of p.

Case 1: p 
= q. We may assume that p= 0, q =∞. If 0 /∈U , Corollary 2.1.2 is true.
If 0 ∈ U then pm ∈ U for all large indices. We show that then, for all large indices,
the equation Tm(z)= 0 has a solution in U . For choose a disk D ⊂ U centered at 0.
Given a smaller concentric disk D0, the fixed points {pm} are contained in D0 for all
large indices, while the {qm} are in the exterior of D. The image disk Tm(D) contains
pm but not qm . And limm→∞ Tm(∂D) =∞. Therefore Tm(D) covers 0, and in fact
any given point ζ ∈ �, for all large indices.

In sum, if p ∈U , then p 
= ζ1, ζ2. Furthermore, if ζi 
=∞, Tm(D) covers {ζi } for all
large indices, in contradiction to our assumption. We conclude that p /∈ U , in which
case there is a subsequence converging uniformly on compact subsets to q.

Case 2: p=q. We may assume that p=q=∞. Choose a disk D centered at∞ so that
at least one of the points ζi does not lie in D. Since lim T−1

m (z)=∞, uniformly in the
complement of D, we have in particular T−1

m (ζi ) ∈ D for all large indices. Therefore
Tm(D) covers ζi for all large indices. Once again we conclude that p = ∞ /∈ U so
that {Tm} converges uniformly to∞ on compact subsets of U . �

The example of the powers of a loxodromic transformation acting on the comple-
ment U of its attracting fixed point shows that the hypotheses of Corollary 2.1.2 are
best possible.

We also include in this section the following elementary fact.

Lemma 2.1.3. If g is loxodromic and h exchanges the fixed points of g, then h2 = id
(tr(h)= 0).

Proof. In any case h2 fixes the fixed points of g. But h has its own fixed point or
points which h2 fixes as well. �

2.2 Discreteness

In this section we begin our study of groups of Möbius transformations. A group G of
Möbius transformation is discrete if there is no infinite sequence of distinct elements
in the group that converges to the identity. Using Lemma 2.1.1 we see that each of
the following conditions is equivalent to discreteness.

(i) No infinite sequence of distinct elements of G converges to a Möbius transfor-
mation.

(ii) G acts properly discontinuously in �3: Given any closed ball B ⊂ �3, the set
{g ∈ G : g(B)∩ B 
=∅} is finite.
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(iii) G has no limit points in �3: Given �x ∈ �3, there is no point �y ∈ �3 with an
infinite sequence of distinct elements {gn} in G such that lim gn(�y)= �x .

Proper discontinuity implies that discrete groups have at most a countable number
of elements. To see this, exhaust �3 by a countably many closed balls V1 ⊂ V2 ⊂ · · ·
centered at some point O ∈ �3. For each i , enumerate the at most finitely many
elements g ∈ G for which g(O) ∈ Vi .

A group G is called elementary if and only if it preserves one point or a pair of
points on �2, or a point in �3. An equivalent definition is that a group is elementary if
and only if any two elements of infinite order have a common fixed point; see Exercise
2-1.

It is difficult to determine whether the group generated by a given set of elements is
discrete. An algorithm for deciding discreteness of two-generator groups in PSL(2,�)

is presented in [Gilman 1995]. The best general result is the following necessary
condition.

Jørgensen’s Inequality [Jørgensen 1974b]. If G = 〈A, B〉 is discrete then∣∣tr2 (A)− 4
∣∣+ ∣∣tr (AB A−1 B−1)− 2

∣∣≥ 1, (2.1)

except in the following three cases, which are elementary groups:

(i) G cyclic or a finite abelian extension of a cyclic group and |tr2(A)− 4|< 1.
(ii) A is loxodromic or elliptic with |tr2(A)− 4| < 1

2 while B interchanges the fixed
points of A.

(iii) A is parabolic while B is parabolic or elliptic of order 2, 3, 4 or 6 and fixes the
fixed point of A.

Note that the left side of (2.1) depends continuously on the Möbius entries.
The inequality is often applied to show the impossibility of a situation that 〈An, Bn〉

remains nonelementary while lim An = id.
Jørgensen went on to draw the following conclusion [1977b].

Corollary 2.2.1. A nonelementary group G is discrete if and only if every two-
generator subgroup is discrete.

If G preserves a disk in �2, then G is discrete if and only if every one-generator
subgroup is discrete, that is, if and only if there are no elliptic transformations of
infinite order.

In contrast, if a nonelementary group H is not discrete, Leon Greenberg [1962]
proved that its closure in PSL(2,�), that is the set of all Möbius transformations
which are limits of elements of H , is either the full group PSL(2,�) or it is the group
of all Möbius transformations which preserve some round disk in �2.

Proof of Corollary 2.2.1. Assume G is nonelementary. We will see below (Corollary
4.1.5) that if all elements in G are elliptic, then G is elementary with a common
fixed point in �3. Assuming this, there is a loxodromic or parabolic element B1 in
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G and an element C which neither shares a fixed point with B1 nor interchanges
the fixed points p, q of B1, if loxodromic. Then the fixed points C(p),C(q) of the
loxodromic or parabolic B2 = C B1C−1 are distinct from p, q. For all n we have
Bn

1 (C(p)) 
= C(p) and Bn
1 (C(q)) 
= C(q), yet these points are as close as we please

to one of p, q. Therefore for some n the fixed points of B3 = Bn
1 B2 B−n

1 are distinct
from those of both B1, B2. That is, the three loxodromic or parabolic transformations
B1, B2, B3 have mutually distinct fixed points.

We claim that B1, B2, B3 can be replaced if necessary by three other transforma-
tions with distinct fixed points, so that all of them are loxodromic. To confirm the
claim, it is enough to show that B1 and B2 can be chosen not to be parabolic. This is
a consequence of the following argument.

If X, Y are parabolic without a common fixed point we may assume X = (1
0

1
1

)
and

Y = (a
c

b
d

)
in normalized matrices. Then tr(XnY )= a+d+nc, so that Z = XnY will

be loxodromic for all large n and will not share a fixed point with Y . Consequently
Y ZY−1 is loxodromic as well and does not share a fixed point with Z .

Now assume that G is not discrete. We will show the existence of a two-generator
subgroup that is not discrete. This will show that if every two-generator subgroup of
a group is discrete, the group itself must be discrete.

So assume that there is an infinite sequence {An} of distinct elements of G with
lim An = id. For n sufficiently large,

∣∣tr2(An)− 4
∣∣+ ∣∣tr(An Bi A−1

n B−1
i )− 2

∣∣< 1,

for i = 1, 2, 3. For each n, at least one element of B1, B2, B3 does not share a fixed
point with An . Passing to a subsequence if necessary we may assume say B1 does
not share a fixed point with any An . The group 〈An, B1〉 is not elementary provided
that An does not exchange the fixed points of B1. Since lim An = id, the order of An ,
if finite must increase to ∞. For large enough n, An, B1 do not satisfy Jørgensen’s
inequality; therefore 〈An, B1〉 cannot be discrete.

Now assume that G is a nonelementary group preserving the unit disk �. Suppose
G is not discrete. We claim that G then contains an elliptic element of infinite order.

By the previous result we may assume that G is a two-generator group. By Sel-
berg’s lemma below (page 68), there is a finitely generated subgroup G0 of finite
index without elliptic transformations of finite order. This too is nonelementary and
nondiscrete. Now we call on a theorem of C. L. Siegel repeated in [Lehner 1964,
III.3J] and that we will ask the reader to prove in Exercise 2-3, that establishes that
G0 must contain elliptic elements of arbitrarily high order. In fact then, G0 must
contain elliptic elements of infinite order. �

Proof of Jørgensen’s inequality. We will follow the original proof. Assume the in-
equality fails to hold, so that for A, B 
= id generating a discrete group,

μ = ∣∣tr2(A)− 4
∣∣+ ∣∣tr(AB A−1 B−1)− 2

∣∣ < 1.
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We study the sequence obtained by setting T0 = B and define inductively

Tn = Tn−1 ATn−1
−1 =

(
an bn

cn dn

)
, andn − bncn = 1.

Case 1: A = (1
0

1
1

)
is parabolic. Write

B =
(

a0 b0

c0 d0

)
,

where a0d0−b0c0= 1. We may assume B does not fix∞— otherwise 〈A, B〉 would
be elementary and to be discrete, B would have to be parabolic or be elliptic of order
2, 3, 4 or 6 by Lemma 2.3.1(iii). Therefore c0 
= 0. Furthermore,

AB A−1 B−1 =
(

1+ a0c0+ c0
2 1− a0c0− a0

2

c0
2 1− a0c0

)
, tr(AB A−1 B−1)− 2= c2

0.

Therefore μ= |c2
0|< 1. We find for the sequence of conjugates {Tn} that(

an bn

cn dn

)
=
(

1− an−1cn−1 an−1
2

−cn−1
2 1+ an−1cn−1

)
.

From this we deduce that

cn = −c0
2n
, |cn| = μ2n−1

< 1,

|an+1− 1| ≤ |cn|(n+ |a0|), |dn+1− 1| ≤ |cn|(n+ |a0|), |bn+1− 1| = |an
2− 1|.

So lim cn = 0, lim an = lim dn = lim bn = 1, and hence lim Tn = A. Since 0< |c0|< 1
we see from cn =−c0

2n
that the elements of the sequence {cn}, hence of the sequence

of transformations {Tn}, are distinct. Therefore 〈A, B〉 is not discrete, a contradiction.

Case 2: A = (ρ0 0
1/ρ

)
, with |ρ| ≥ 1. Take B as before. We find that

tr(AB A−1 B−1)− 2=−b0c0(ρ− ρ−1)2, (ρ− ρ−1)2 = tr2(A)− 4.

Note in particular that |ρ− ρ−1|2 ≤ μ < 1.
Now

Tn+1 =
(

andnρ− bncnρ
−1 anbn(ρ

−1− ρ)
cndn(ρ− ρ−1) andnρ

−1− bncnρ

)
.

Consequently,

bn+1cn+1 =−anbncndn(ρ− ρ−1)2 =−bncn(1+ bncn)(ρ− ρ−1)2.

Inserting the formula for tr(AB A−1 B−1),

|b1c1| = |b0c0| |(1+ b0c0)(ρ− ρ−1)2|
= |b0c0|

∣∣tr2(A)− 4− tr(AB A−1 B−1)+ 2
∣∣≤ |b0c0|μ≤ |b0c0|,

since we are assuming μ < 1. Using induction starting with the case n = 1 we
just investigated, we find that |bncn| ≤ |b0c0|μn . Moreover the analysis shows that
sequence {|bncn|} strictly decreases to 0, unless it equals zero after some point.



2.3 Elementary discrete groups 55

Note that bn+1/bn = an(ρ
−1 − ρ) and cn+1/cn = dn(ρ − ρ−1). Consequently if

bn+1 = cn+1 = 0 while bn 
= 0 and cn 
= 0, necessarily an = dn = 0 at tr(Tn)= 0.

Case 2a: bncn 
= 0, for all n. Since the sequence {bncn} is strictly decreasing, the
elements {Tn} are distinct. Because lim andn = 1, from the formula for Tn+1 we see
that lim an = ρ and lim dn = ρ−1. Again using the formula for Tn+1 we find that
lim(bn+1/bn)= ρ(ρ−1− ρ) and lim cn+1/cn = ρ−1(ρ− ρ−1).

If A is elliptic, that is if |ρ| = 1, the ratios |bn+1|/|bn| and |cn+1|/|cn| are approx-
imately |ρ − ρ−1| < 1 and therefore lim bn = lim cn = 0. Consequently lim Tn = A,
contradicting discreteness.

Consider more generally the transformations

Sn = A−nT2n An =
(

a2n ρ−2nb2n

ρ2nc2n d2n

)
.

Again from the formula for Tn+1, the ratios |b2n|/|b2n−2| and |c2n|/|c2n−2| are approx-
imately |ρ− ρ−1|2 < 1. Therefore lim Sn = A, again a contradiction to discreteness.

Case 2b: bncn = 0, n ≥ N . For n ≥ N , A and Tn share a fixed point.
If A is elliptic, its order exceeds 6. This is because μ < 1 implies sin θ < 1

2 since
since tr2(A)− 4 = 4 sin2 θ and A has the form z �→ e2iθ z. If A and Tn share exactly
one fixed point, then by Lemma 2.3.1 G is not discrete, a contradiction.

If A is loxodromic and shares exactly one fixed point with Tn then 〈A, Tn〉 cannot
be discrete.

Therefore A and Tn , n ≥ N , have the same pair of fixed points 0,∞.
If N = 0, G = 〈A, B〉 is a discrete elementary group.
If N = 1, then a0 = d0 = 0 and G is elementary.
Suppose N ≥ 2 so that TN−1 is conjugate to A. Then tr(TN−1) = tr(A) = 0. But

then μ≥ 4, contrary to our assumption.
Further analysis yields the itemization of elementary groups for Jørgensen’s in-

equality. �

In particular the group
〈(1

0
1
1

)
,
(a

c
b
d

)〉
, where ad − bc = 1, is not discrete when

0< |c|< 1.

2.3 Elementary discrete groups

A loxodromic or elliptic element g in a discrete group G is called primitive if g is a
generator of the cyclic subgroup consisting of all loxodromic or elliptic elements in
G having the same fixed points (and axis) as g.

The purpose of this section is to present the classical classification [Ford 1929] of
the elementary discrete groups. We will see that a discrete group is elementary if and
only if it is either finite, abelian or it contains an abelian subgroup of finite index.
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Finite groups

If G is a finite group, it consists only of elliptic transformations and there is a common
fixed point in �3 (Corollary 4.1.8). If the group is not cyclic there is exactly one
fixed point. The common fixed point may be taken as the origin of the ball model
so that G becomes a group of rotations of �2. Thus G is the group of orientation
preserving symmetries of a regular figure inscribed in �2: one of the platonic solids,
or else an equatorial regular polygon. More specifically, we have the following cases:
the tetrahedral group of order 12, which preserves (collectively) the set of vertices
of a tetrahedron; the octahedral group of order 24, which preserves the vertices of
an octahedron, or those of its dual cube; the icosahedral group of order 60, which
preserves the vertices of an icosahedron or dodecahedron; and the dihedral group of
order 2n, for n ≥ 2, which preserves the dihedron, the degenerate “solid” consisting
of two coincident faces in the shape of an n-sided regular polygon inscribed in the
equator. The dihedral group contains, in addition to rotations by 2π i/n about the
center, rotations of order two about any diameter from a vertex or the midpoint of a
side. Each of these groups is generated by two elements.

For any finite G, the sphere �2 is a branched covering of �2/G∼=�2 with branching
orders ri ≥ 2. If G is cyclic, there are two branch points, the fixed points of G. If G is
not cyclic, the branching is over three points having the following orders (r1, r2, r3):
(2, 3, 3) for the tetrahedral group, (2, 3, 4) for the octahedral group, (2, 3, 5) for the
icosahedral group, and (2, 2, n) for the dihedral group. See 3-1, 2-26.

More generally, we will show in Lemma 4.1.5 that if H is an arbitrary group con-
sisting entirely of elliptic transformations, then H is conjugate to a group of rotations
of �2.

Infinite elementary discrete groups

An elementary discrete group G that is not finite has one of two additional properties:
(1) G fixes a single point ζ on �2; or (2) G fixes a pair of points on �2.

(1) One fixed point. Here G contains only parabolic transformations and elliptic trans-
formations all sharing the same fixed point, say ∞. The parabolic subgroup G0 is
either cyclic and conjugate to 〈z �→ z + 1〉, or it is a free abelian group of rank two
and conjugate to 〈z �→ z+1, z �→ z+τ 〉, for some τ ∈� with Im τ > 0. See Exercise
2-4.

In the cyclic case G itself can be the finite extension by an elliptic of order two.
In the rank-two case, G is a finite extension of G0 by elliptics fixing∞, of order

not exceeding six by Lemma 2.3.1(iii). The possibilities are (2, 2, 2, 2) and (3, 3, 3),
(2, 3, 6), (2, 4, 4), meaning these are the orders of primitive elliptic elements, non-
conjugate under G0, which generate the four possible extensions. For each of the
triples to arise, G0 must have a special choice of τ . For details see [Ford 1929] and
Exercise 2-27.

(2) Two fixed points. Here G is a finite extension of a cyclic loxodromic group with
axis �. It can be extended by an elliptic of finite order with rotation axis � and extended
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once again by an elliptic of order two which exchanges the endpoints. All these groups
preserve �.

Lemma 2.3.1. Let G be an infinite group of Möbius transformations.

(i) If G is discrete, G is elementary if and only if it is a finite extension of an abelian
group.

(ii) If g ∈ G is loxodromic and h ∈ G has exactly one fixed point in common with g
then G is not discrete.

(iii) If g1 ∈G is elliptic of order exceeding six and g2 ∈G has exactly one fixed point
in common with g1, then G is not discrete.

(iv) If g 
= id is an element of a nonelementary discrete or nondiscrete group G, there
is a loxodromic element in G without a common fixed point with g.

(v) A nonelementary discrete or nondiscrete group contains two loxodromic ele-
ments with no fixed points in common, and hence it contains infinitely many
loxodromic elements with mutually distinct fixed points.

Proof. Item (i) follows from the discussion above.
For (ii), we may assume that g = (ρ0 0

1/ρ

)
and h = (a

0
b

1/a

)
. We find that

gnhg−nh−1 =
(

1 −ab(1− ρ2n)

0 1

)
.

If |ρ|< 1 let n→+∞. If |ρ|> 1, let n→−∞. In either case, G cannot be discrete.
To prove (iii) suppose g1 and g2 have the common fixed point ∞. According to

Lemma 1.5.2, their commutator g1g2g−1
1 g−1

2 is parabolic, also with fixed point ∞.
If G = 〈g1, g2〉 is to be discrete, then the subgroup G∞ of parabolic transformations
fixing∞ has a generator K whose period ω satisfies |ω| ≤ |ω′| in comparison to the
periodsω′ of other elements of G∞ (see [Ahlfors 1978]). Write g1(z)=az+b, |a|=1
and K (z)= z+ω. Then g1K g−1

1 (z)= z+aω. In particular |ω|≤|aω−ω| or 1≤|a−1|.
Now a = eiθ , where θ = 2πk/m for some relatively prime m, k ∈ �, since if G

is to be discrete the elliptic elements have finite order. We may choose g1 so that
θ = 2π/m > 0 and then |a− 1| = 2 sin(π/m). If |a− 1| is to be ≥ 1, then we must
have m ≤ 6, where m = 6 gives equality.

The proof of (iv) involves three cases. We will show later in Corollary 4.1.5 that a
nonelementary group, discrete or not, contains nonelliptic elements.

Case 1. g = (1
0

1
1

)
is parabolic. There exists h ∈ G without a common fixed point

with g: h = (a
c

b
d

)
with c 
= 0. We find that tr(gnh)= (a+ d)+ nc. Thus for all large

|n|, gnh is loxodromic and does not share a fixed point with g.
Case 2. g = (ρ0 0

ρ−1

)
is loxodromic, |ρ| > 1. We have to show there is an element

h ∈ G which does not share one of the fixed points p, q of g. Not all elements of
G can fix say p, but perhaps there is one h p which fixes only p and another hq that
fixes only q. But then h = hqh p fixes neither. In addition h does not exchange p, q.

Since tr(gnh) = aρn + dρ−n , gnh is loxodromic for most n, and does not share a
fixed point with g.
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Case 3. g = (ρ0 0
ρ−1

)
, |ρ| = 1, is elliptic with fixed points p = 0, q =∞. If there is

a loxodromic h ∈ G which does not share a fixed point with g we are done. If there
is a parabolic h ∈ G which does not share a fixed point, then hng is loxodromic for
all large |n|. Moreover it does not share a fixed point with g. Finally if h ∈ G shares
exactly one fixed point with g then either h is parabolic or ghg−1h−1 is parabolic.
So assume h p is parabolic and fixes p while hq is parabolic and fixes p. Then for all
large |n|, hn

phq is loxodromic and fixes neither.
Item (v) follows from (iv). For given g 
= id let h ∈ G be loxodromic without a

common fixed point with g. Then the fixed points of the loxodromic element ghg−1

are g(p), g(q) where p, q are the fixed points of h. Unless g is elliptic of order two
and exchanges p, q, the fixed points of ghg−1 will be distinct. If g exchanges the
fixed points of h the subgroup 〈g, h〉 is elementary. Yet there is some element g1 ∈G
which does not fix or exchange the fixed points of h. Now we can use g1hg−1

1 . Once
we have two, we can keep conjugating so as to get infinitely many. �

2.4 Kleinian groups

Discrete groups of Möbius transformations are called kleinian groups. To avoid spe-
cial cases, a kleinian group is often assumed to be nonelementary as well. A kleinian
group that preserves the interior (hence also the exterior) of a round disk on �2 is
called a fuchsian group. Typically, a fuchsian group is taken to act on the unit disk
�= {z ∈ � : |z|< 1} or on the upper half-plane {z ∈ � : Im z > 0}.

We know that a group is discrete if and only if it is properly discontinuous on �3.
Therefore we focus our attention on �2 and make the following definition.

A point ζ ∈ �2 is a limit point of the discrete group G if there exists ξ ∈ �2 such
that lim Tn(ξ)= ζ , for an infinite sequence of distinct elements {Tn} ∈ G. The set

�(G)= {ζ ∈ �2 : ζ is a limit point}
is called the limit set of G. It contains all loxodromic and parabolic fixed points. It
is automatically invariant under G. If �(G) contains no, one, or two points, G is an
elementary group.

Lemma 2.4.1 (Properties of the limit set). Suppose G is nonelementary, so �(G)
contains at least three points.

(i) The G-orbit of any ζ ∈�(G) is dense in �(G).
(ii) �(G) is the closure of the set of loxodromic fixed points, and if there are

parabolics, it is the closure of the set of parabolic fixed points as well.
(iii) �(G) is a closed set.
(iv) The G-orbit of any point x ∈ �3 ∪�2 accumulates onto �(G).
(v) If D1, D2 ∈ �2 are two open disks with disjoint closures, each of which meets

�(G), there exists a loxodromic element in G with a fixed point in D1 and in
D2.

(vi) �(G) is a perfect set (it has no isolated points).
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(vii) Either �(G)= �2 or its interior is empty.
(viii) If G0 has finite index in G, or if G0 is a normal subgroup of G, then �(G0) =

�(G).

Proof. Suppose ζ ∈�(G) and let D be an open disk centered at ζ . For some w ∈ �2

we have ζ = lim An(w), where {An} ∈ G is an infinite sequence of distinct elements.
Choose ζ1 
= ζ2 in �(G). We claim that the family {G} of Möbius transformations

acting in D cannot omit the two values ζ1, ζ2. Assume otherwise. Then by Montel’s
Theorem (Corollary 2.1.2), {G} is a normal family on D.

However, for some index N , we have An(w) ∈ D for all n ≥ N . Set Bn = An A−1
N

andw′ = AN (w). Since lim Bn(w
′)=ζ and we must have convergence, lim Bn(z)=ζ ,

uniformly on compact subsets of D. In particular, given a subdisk ζ ∈ D′ ⊂ D′ ⊂ D,
for all large indices Bn(D′) is a proper subset of D′. Therefore for each large index
n and k > 1, we have Bk

n (D
′) ⊂ Bk−1

n (D′) ⊂ · · · ⊂ D′. This can only happen for
a loxodromic transformation with attracting fixed point in D′. Thus, for all large
indices, Bn is loxodromic and ζ must be the limit of the attracting fixed points. But
then, for a fixed large n, the sequence {B−k

n }∞k=1 does not converge uniformly on
compact subsets of D because it contains the repelling fixed points. We have found
a contradiction.

Suppose that, for some ξ ∈�(G), ζ is not a limit point of the G-orbit G(ξ). Then
there is a disk D centered at ζ that contains no point of G(ξ); in other terms, the
G-orbit of D does not meet ξ nor any other point of its orbit. We have just shown
that this is impossible. This argument proves (i). It also proves (vi).

Since G is nonelementary, there are infinitely many distinct loxodromic transfor-
mations in G. If ξ is a fixed point of the loxodromic T , any point A(ξ) in its G-orbit
is a fixed point of a loxodromic AT A−1. The same holds if ξ is a parabolic fixed
point.

In addition, the closure of the set of loxodromic fixed points lies in �(G). Indeed,
letting qn be the attracting fixed point of the loxodromic Tn ∈G, we see that the limit
ζ = lim qn is the limit of a subsequence of the set of positive powers {T k

n (w)} for any
w ∈ � distinct from p = lim pn . Therefore (ii) and (iii) hold. This argument also
shows that property (iv) holds.

If�(G) is not all of �2 there is an open set U in its complement. Every loxodromic
fixed point is a limit point of the G-orbit of U , and then so is every point of �(G).
Therefore �(G) can have no interior, as was claimed in (vii).

To prove (v) (after [Beardon 1983, Theorem 5.3.8]), choose loxodromics A1 ∈ G
with attracting fixed point in D1 and A2 ∈ G with attracting fixed point in D2. If the
repelling fixed point of A2 is in D1 we are finished, so assume that it is not. There is
a loxodromic h with fixed points q1, q2 distinct from the fixed points of A1, A2. Its
conjugate B1 = Am

1 h A−m
1 , m > 0 has fixed points Am

1 (q1), Am
1 (q2). For sufficiently

large m these will both lie in D1; fix such an m.
Choose a closed disk D′1 ⊂ D1 containing the repelling p but not the attracting

fixed point q of B1. Fix a large n such that An
2 sends q into D2.
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We claim that we can choose r > 0 so large that T = An
2 Br

1 has the properties

T (D2)⊂ D2, T−1(D′1)⊂ D′1.

For take r large enough that Br
1(D2) is so close to q that application of An

2 then sends
it properly into D2. In the other direction An

2(q) /∈ D′1 says q /∈ A−n
2 (D′1) so we may

increase r as needed so that B−r
1 A−n

2 (D′1) is properly contained inside D′1, close to
the repelling fixed point of B1.

A transformation T with these mapping properties can only be loxodromic with
attracting fixed point in D2 and repelling in D′1.

The proof of (viii) is as follows. If A ∈ G is loxodromic and G0 has finite index in
G, then Ak ∈ G0 for some k > 0. Therefore �(G0) has the same set of loxodromic
fixed points as�(G), so the closures of the sets are the same. Instead, suppose that G0

is a normal subgroup of G so that gG0g−1=G0 for all g ∈G. Then G0 cannot be an
elementary subgroup. The g-image of the fixed points of h ∈ G0 are the fixed points
of ghg−1 ∈ G0. Therefore g�(G0) = �(G0) for all g ∈ G. Since �(G0) ⊂ �(G),
the G-orbit of a fixed point of a loxodromic h ∈ G0 is dense in �(G); therefore the
limit sets are identical. �

Each component of �(G) which is not a circle or a point is a fractal set; see
Exercises 2-14 and 3-20.

The complementary open set,

�(G)= �2 \�(G),
is called the ordinary set or regular set, or set of discontinuity. Like �(G), �(G)
is preserved by G. It is the largest open subset of �2 on which G acts properly
discontinuously.

Lemma 2.4.2 (Properties of the ordinary set). Assume that G is finitely generated
and not elementary, and that �(G) 
=∅.

(i) �(G) has one, two, or infinitely many components.
(ii) Each component of �(G) is either simply or infinitely connected.

(iii) If each of two components �1, �2 of �(G) is preserved by G, then each one is
simply connected and �(G)=�1 ∪�2.

(iv) If one component � of �(G) is preserved by G, all the others are simply con-
nected.

Proof. To prove (ii), assume a component � is finitely but not simply connected. At
this point we have to anticipate the Ahlfors Finiteness Theorem (page 105) to assert
that � is preserved by an element g ∈ G of infinite order (such a g may not exist if
G is not finitely generated). Choose a simple loop σ ⊂� that separates the boundary
components. The simple loops {gk(σ )} ⊂ � converge to the fixed points or point of
g. But each simple loop gk(σ ) separates boundary components of�. Hence the fixed
points are limits of infinitely many boundary components of �, a contradiction.
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To prove (i), suppose there are a finite number of components�1, . . . , �m of�(G);
we may assume that ∞ ∈ �m . There is a subgroup G0 of finite index and with the
same limit set that preserves each of them.

Choose a loxodromic transformation g ∈ G0. Since g in particular preserves �1

and�2, we can find simple arcs σi ∈�i , i =1, 2, such that σ ∗i =
⋃∞

k=−∞ gk(σi ) forms
a simple arc in �i between the two fixed points of g. This is most easily done by
using the quotient surface �i/Stab(�i ). Then σ ∗ = σ ∗1 ∪ σ ∗2 ∪ {p, q} forms a simple
closed curve meeting �(G0) only in �1 and �2. Consider the two components of
�2 \ σ ∗. One of them, say U , contains �m and ∞. The other, U ′, contains points
of �(G0), for otherwise σ ∗1 and σ ∗2 could be connected by an arc that does not meet
�(G0). Therefore we can find a loxodromic element h ∈ G0 with attracting fixed
point in U ′. Connect∞ to h(∞) by an arc τ ⊂ �m and set τ ∗ =⋃+∞k=0 hk(τ ). Now
τ ∗ is an arc in �m connecting∞ ∈ U to the attracting fixed point of h in U ′, so τ ∗
must cross σ ∗, giving a contradiction.

Item (iii) also depends on Ahlfors’ theorem. Using that the simplest proof involves
3-dimensional topology. We will present it in Section 3.8.

Item (iv) is a consequence of the fact that �(G) = ∂�. The analysis in terms of
three-dimensional topology is suggested in Exercise 3-11. �

It is relevant to refer again to L. Greenberg’s theorem [1962], which has the fol-
lowing consequence. Suppose � 
= �2 is a connected open set which is not a round
disk. Then the group of all Möbius transformations which map � onto itself is either
discrete or elementary, as in the case of a horizontal strip. Usually it will consist only
of the identity.

The term function group is usually reserved for a group G with the property that
�(G) has an infinitely connected component � that is invariant under G. The term
arises from the fact that functions invariant under G can be constructed on �. The
finitely generated function groups can be completely classified [Maskit 1988] or by
topology; see [Marden 1977] and Exercise 3-11.

When G is not finitely generated, if two of the components of �(G) are invariant
under G then as before they are both simply connected. Yet there may also be other
components; each of these is also simply connected, but its stabilizer consists only of
the identity (see [Accola 1966] or apply 3-dimensional topology as in Section 3.8). An
example of Accola shows that indeed there can be infinitely many other components,
which he called “atoms”. (The situation is reminiscent of the classical construction
in point set topology known as the lakes of Wada: a family of three — or any number
up to countably infinite — simply connected open sets on �2 each of which has the
same boundary, namely the complement in �2 of the union of the open sets. See
[Hocking and Young 1961, pp. 143–145].) However, when G is finitely generated,
atoms cannot occur, as we will see from the Ahlfors Finiteness Theorem.
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Here is an answer to the question of the ± ambiguity as we go from a group of
Möbius transformations to a set of associated matrices in SL(2,�). In short, for
discrete groups, the signs can be chosen unambiguously, except if there are elements
of order two.

Theorem 2.4.3 [Culler 1986]. A discrete group G can be lifted to an isomorphic
group of matrices in SL(2,�) if and only if G has no elements of order two.

This result is the best that can be hoped for, since the matrices corresponding to
Möbius transformations of order two have order four — for example the normalized
matrix that corresponds to z �→ 1/z has order four. On the other hand, one can ask,
with John Fay, whether any group can be lifted to an unnormalized matrix group in
GL(2,�). (For example, the unnormalized matrix

(0
1

1
0

)
does have order two.) The

answer is not known, to my knowledge.

2.5 Quotient manifolds and orbifolds

A kleinian group G is usually best studied by studying its quotient space:

M(G) = �3 ∪�(G)/G, ∂M(G) = �(G)/G,

namely, the set of equivalence classes

{{x} : x ∈ �3 ∪� with x ≡ x1 if and only x1 = g(x), g ∈ G}.
The projection x→ {x} is denoted by π .

We will often switch between thinking of a situation in �3∪�(G) and thinking of
it in the quotient π : �3 ∪�→M.

If G is torsion-free (no elliptics), then M(G) is an oriented∗ manifold with bound-
ary ∂M(G), which may be empty. The projection π is a local homeomorphism
�3→ �3/G and �→ ∂M(G), because of proper discontinuity of the group action.
The interior M(G)int = �3/G has a complete hyperbolic structure arising from the
projection of the hyperbolic metric in �3. Its fundamental group π1(M) is isomorphic
to G. If we lived inside Mint , then we would see the universal cover �3 as it is the
space of light rays (geodesic rays) of Mint meeting our eye, since light follows the
shortest paths. What we would see standing at a point π(x) ∈Mint is the picture at
x ∈ �3. This is strikingly demonstrated in the video Not Knot [Gunn and Maxwell
1991].

The name “hyperbolic manifold” is reserved for those M(G) arising from groups G
without elliptics.

On the other hand if G contains elliptics, M(G) is called an orbifold. The additional
structure of orbifolds will be described below.

∗ For the record we point out that if G were a group with orientation reversing elements, the subgroup of orientation
preserving elements would form a normal subgroup of index two. The corresponding nonorientable quotient man-
ifold would have a two-sheeted cover which is orientable and an orientation reversing isometry which interchanges
the sheets.
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Manifolds and their coverings

We will briefly review salient aspects of the theory of coverings of oriented surfaces
and 3-manifolds thereby giving more insight to the nature of quotient spaces as well.
Our applications will be to Riemann surfaces (Section 2.6) and hyperbolic manifolds,
so our discussion will be carried out with these cases in mind. In particular the sur-
faces and manifolds will be oriented.

We will start by focusing on surfaces.∗
Associated with a surface S and a given basepoint O ∈ S is the fundamental group

π1(S; O) of homotopy classes of closed paths from O . Choose a subgroup H of
G=π1(S; O). For example, H may be the cyclic group generated by a single loop, or
it may be the identity. A more interesting example is the commutator subgroup, which
is the subgroup generated by commutators of pairs of elements of G (the subgroup
is also called the homology group since it corresponds to the elements in π1(S; O)
which are homologous to zero).

Corresponding to H is the regular† covering surface SH constructed as follows.
Consider equivalence classes of pairs {(z;αz)}, where z ∈ S and αz is a path from
O to z. The pairs associated with paths α1, α2 from O to z are equivalent if the
homotopy class of α−1

2 α1 is in H . In particular (z, αz) ≡ (z, αzγ ) if γ ∈ H . The
surface SH is the set of equivalence classes {(z, αz)} with the topology determined
from S as follows: A neighborhood N ∗ of (z, αz) consists of the pairs {(w, σwαz)},
where w lies in a neighborhood N of z and σw is a path in N from z to w.

The map π : (z, αz)∈ SH �→ z ∈ S, called the projection, is a local homeomorphism
of SH onto S. The points in {π−1(z)} are said to lie over z ∈ S. If H has finite index‡

n in G = π1(S; O), SH is n-sheeted over S — there are exactly n distinct points of
SH lying over each point of S.

The point O∗ ∈ SH determined by the class (O, γ ), γ ∼ 1, is the corresponding
basepoint of SH ; it (and many others) lies over O . The fundamental group π1(SH ; O∗)
is isomorphic to H. If H 
=id is cyclic, so is the fundamental group of SH ; in this
case SH is homeomorphic to an annulus. If H = id, then SH is simply connected and
is called the universal covering surface of S. If H = G then SH = S.

A map f : S→ S that, say, fixes the basepoint O lifts to a map SH → SH if and
only if f induces an automorphism of the subgroup H onto itself.

A deck transformation (also called a cover transformation) is a fixed point free,
orientation preserving homeomorphism τ ∗ of SH onto itself with the property that
π(τ ∗(x))= π(x); that is for each point z ∈ S, τ ∗ interchanges the points lying over z.
The group of deck transformations of M(H) over M(G) is isomorphic to the quotient
group N (H)/H . Here N (H)={g∈G : gHg−1= H} is called the normalizer of H in
G. An element γ 
= id ∈ N (H) induces the cover transformation (z, αz) �→ (z, αzγ ).

∗ Formally a surface is a connected 2-dimensional manifold, that is a Hausdorff space with an open covering of sets
homeomorphic to open sets in �.

† A regular covering S∗ is one with the property that if α ⊂ S is a closed arc, and x∗ ∈ S∗ lies over its initial point,
then α can be lifted in its entirety from x∗.

‡ H has index n in G if there are n distinct cosets {Hgk }, gk ∈G, such that G=⋃k Hgk . In this case
⋂

g∈G gHg−1

=
⋂

k gk Hg−1
k is a normal subgroup of finite index in G.
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If N (H)= G then H is a called a normal subgroup of H and SH is called a normal
covering. In this case the group of deck transformations is isomorphic to G/H : Given
any two points O∗1 , O∗2 over O , in a normal covering SH there is a deck transformation
taking O∗1 → O∗2 . In particular, when H = {id}, the group of deck transformations
of the universal cover is isomorphic to the fundamental group G. Another normal
covering is generated by the commutator subgroup. In this case the group of deck
transformations is isomorphic to G/H and to the first homology group of S, this is a
free abelian group of rank 2g if S is a closed surface.

In general however, there may or may not be deck transformations; for example if
H is cyclic and S is a closed surface of genus exceeding one, then N (H) = H and
there are none, yet SH is infinite-sheeted over S.

We will have need of extending our definition to branched covers S∗ of S. The
difference here is that a discrete set of points {ζi }⊂ S∗ is distinguished. We then have
regular coverings of the punctured surfaces S∗ \ {ζi } → S \ {π(ζi )} on which π is a
local homeomorphism. But in a small neighborhood N of each ζi , π : S∗ → S is not
a homeomorphism, rather it can be taken as the map z �→ zr , where ζi corresponds
to 0: In N the projection is r -to-1. The point ζi ∈ S∗ is referred to as a branch point
and its projection π(ζi ) is the branch value or cone point. The integer r = r(ζi ) ≥ 1
is the order of ramification (r = 1 stands for a regular point). Paths in S lift to S∗
provided they avoid the cone points. That the branched cover has N sheets implies
that if {x∗i } ⊂ S∗ are the distinct points lying over x ∈ S, then

∑
r(x∗i )= N .

In particular, if N = 2, there is at most one branch point over x ; if there is one, its
order is two.

The Euler characteristic of an oriented, compact, triangulated surface of genus g≥0
and b ≥ 0 boundary components is

χ(S)= V − E + T = 2− 2g− b, (2.2)

where V is the number of vertices, E the number of edges and T the number of
triangles.

The precise relationship between the topologies of a surface and its covering is
governed by the Riemann–Hurwitz formula. Suppose S∗ is an N -sheeted cover of
the compact surface S, where S has genus g ≥ 0 and b ≥ 0 boundary compo-
nents. Triangulate S so that all the branch values are vertices, and assume there
are no branch values on the boundary components. Lifting the triangles to S∗, we
can compute χ(S∗) in terms of χ(S). The result is the Riemann–Hurwitz formula,
χ(S∗)= Nχ(S)−∑(r(xi )−1), where the sum is over all branch points on S∗. In a
more useful form,

2g∗ + b∗ = 2(1− N )+ N (2g+ b)+
∑

(r(xi )− 1). (2.3)



2.5 Quotient manifolds and orbifolds 65

Thus, if S=�2, the (finite) coverings are closed surfaces∗ satisfying 2g∗+2N−2=∑
(r(xi ) − 1); a closed surface of any genus can be so constructed. For a torus,

g = 1, b = 0, the corresponding formula is g∗ − 1 = 1
2

∑
(r(xi )− 1). If each ri = 2,

the formula is g∗ − 1+ N = n/2, where there are n branch points.

We now turn to the case of hyperbolic manifolds M(G). Covering manifolds (un-
branched) correspond to subgroups H of G, that is, M(H) is a hyperbolic covering
of M(G). The group of deck transformations is isomorphic to N (H)/H ; the deck
transformations are fixed point free, orientation preserving isometries. On the other
hand, the group of orientation preserving isometries M(G)→M(G) is isomorphic
to N (G)/G. Here N (G) is the normalizer of G in the full group of all Möbius
transformations. Now elements of N (G) can be elliptic. However very often M(G)
has no orientation preserving “symmetries”, that is, N (G)= G.

Two hyperbolic manifolds M(G1),M(G2) are commensurable if G1∩G2 has finite
index in both G1 and G2. In this case M(G1 ∩G2) is a finite-sheeted cover of both
M(G1) and M(G2). Conversely if M(H) is a finite-sheeted cover of both M(G1)

and M(G2) then H is conjugate to a subgroup of finite index in each of G1 and G2.
The term can equally be applied to fuchsian and orbifold groups (see below).

The set of all Möbius transformations g which have the property that gGg−1 is
commensurable with G, is called the commensurator C(G) of G. It is a group as
well since if g1gGg−1g−1

1 has finite index in gGg−1 and gGg−1 has finite index in
G then g1gGg−1g−1

1 also has finite index in G.
Contrast the commensurator C(G) of G with its normalizer N (G) which is a sub-

group of C(G). The normalizer contains all (orientation preserving) isometries of
M(G). The commensurator consists of all orientation preserving isometries of all
finite-sheeted covers of M(G). For if M(H)→ M(G) is a finite cover, then H is
conjugate to a finite index subgroup of G; we may assume H ⊂ G. If the Möbius
transformation T induces an automorphism of M(H), then T H T−1 = H so that
T GT−1 ∩G ⊃ H . Since H also has finite index in T GT−1, T GT−1 ∩G has finite
index in G. For more applications, see Exercise 3-14.

Orbifolds

Consider now the situation when G has elliptic elements. In this case the quotient
M(G) is called an orbifold. The hyperbolic structure of M(G), which is also oriented,
has mild singularities (see Exercise 2-2) along the projection of the totality of rotation
axes of the elliptic elements. This projection is called the singular set or branch locus
of the orbifold.

The projection of an elliptic axis � is usually called a cone axis as it is reminiscent
of the paper-and-scissors construction of a cone by wrapping up a wedge of angle
< 2π ; correspondingly the points on the cone axis are called cone points. Locally
the projection has the form (z, t) �→ (zr , t), where t is a coordinate along the rotation
axis and z is a complex coordinate in a plane orthogonal to the axis. The cone angle

∗ A closed surface or manifold is one which is compact, without boundary.
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2π/r assigned to π(�) is the angle of rotation of a primitive element — a generator
of the cyclic subgroup that has rotation axis �. The Isolation of Cone Axes property
in Theorem 3.3.4 gives additional information about the separation of cone axes in
M(G).

An elliptic rotation axis γ ∗ may also be the axis of a loxodromic in G. In this
case � will project to a simple loop γ in the singular set of the quotient. There may
also be other elliptic axes that intersect γ ∗. If so, the common point of intersection is
stabilized by a finite elliptic group.

To better understand the structure of the singular set, we will start with the case of
a finite group G.

Lemma 2.5.1. For a finite group G associated with a regular solid, M(G) is topo-
logically a closed ball, and there exists a point O ∈ �3/G from which exactly three
cone axes emanate. Each cone axis from O ends at one of three branch points on
∂M(G)= �2/G. The angles at O between the axes are uniquely determined by G.

Conversely given three distinct points on �2 there are conjugates of G whose cone
axes end at those points in any prescribed order.

An elliptic rotation axis either ends at a point of�(G), or at a parabolic fixed point
ζ ∈ ∂�3. In a discrete group, the subgroup of parabolics that fix ζ is either cyclic, or
it is free abelian of rank two, as we found when we examined the elementary groups.
Correspondingly, we will refer to ζ as a rank one or rank two parabolic fixed point.
The conjugacy classes of parabolic fixed points give rise to certain structures in M(G)
called cusps, to be described in detail in Section 3.2. Here it suffices to say that a
geodesic ray in M(G) ends at a rank one or rank two cusp if and only if any lift to
�3 ends at a rank one or rank two parabolic fixed point.

Here is a description of the singular set as a graph in the quotient orbifold:

Proposition 2.5.2. In any kleinian M(H), the singular locus is a graph, and a compo-
nent can be compact in Int(M(G)) or not. Each edge has an order n ≥ 2. Emanating
from each interior vertex are three edges of orders (2, 3, 3), (2, 3, 4), (2, 3, 5), or
(2, 2, n), for n ≥ 2.

If an edge does not end at a vertex, it may end at a point on ∂M(G), or at a rank
one or rank two cusp. If it ends at a rank one cusp, it must have order two. If it ends
at a rank two cusp it may have order two; two or three additional edges can end there
as well, in which case they have orders (3, 3, 3), (2, 3, 6), (2, 4, 4), or (2, 2, 2, 2).

Note that for the various cases, quotient of a small horoball or euclidean ball about
the common fixed point results in a euclidean or spherical orbifold (compare with
Section 3.2 and Exercise 3-1).

For an example, consider three mutually orthogonal lines �1, �2, �3 intersecting at a
point, for example the three coordinate axes at the origin in the ball model. Consider
the group G generated by 180◦ rotations about each line.

Next take a point x 
= 0 on say �1, and take an orthogonal system �∗1, �
′
2, �
′
3 through

x . Let G ′ be the group generated by the 180◦ rotations about the three lines �1, �
′
2, �
′
3.
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Consider the group H = 〈G,G ′〉. Now �1 is the axis of a loxodromic element T
that maps 0 to T (0) which have equal distance from x . The branch lines form a
trivalent graph, three edges hit every vertex. A fundamental set consists of half-lines
�+2 , �

+
3 , �

+
2′ , �

+
3′ and, in addition the segment of �1 from 0 to x . Down in �3/H , the

projection π(�1) is a line segment from π(0) to π(x), and back, a degenerate simple
loop. From each of π(0) and π(x), there are two rays ending at points on the boundary.

The boundary of �3/〈T 〉 is a torus and on it are eight distinguished points, the
endpoints of the projection of �2, �3, �

′
2, �
′
3. There is an automorphism of order two

of the torus, that has no fixed points, that takes four of these points to the other four.
Also acting on the torus is a group of order four generated by two automorphisms of
order two, each with four of the distinguished points as fixed points. The quotient
of the torus with respect to this group of order four is the sphere, and the torus is
a four-sheeted cover, branched over four points on the sphere. The boundary of the
orbifold �3/H is the sphere: The four branch values are the endpoints of the four
singular loci π(�2), π(�3), π(�

′
2), π(�

′
3).

Proof of Proposition 2.5.2. The quotient of �2 under the groups of the regular solids
is again �2 with exactly three branch values. These have orders (2, 3, 3) for the sym-
metries of a regular tetrahedron, (2, 3, 4) for the symmetries of a cube or octahedron,
(2, 3, 5) for the symmetries of a icosahedron or dodecahedron, and (2, 2, n) for a
dihedral group. All of the groups are triangle groups, which have three generators
each of finite order (Exercise 2-5). These statements follow from the formula of
Exercise 3-1 with details given in Exercise 2-26.

As in the example above, a given rotation axis �may be intersected by other rotation
axes at succession of distinct points. Each intersection point is the fixed point of one
of the standard finite groups.

The second statement also follows from our itemization of elementary groups. Ap-
plying Equation 2.3, we see that the torus is a two-sheeted cover of �2 in the case
(2, 2, 2, 2), a three-sheeted cover in the case (3, 3, 3), or a four-sheeted cover in the
cases (2, 4, 4) and (2, 3, 6). �

To distinguish a quotient with the extra structure of cone axes, Thurston coined the
term orbifold. For kleinian groups with elliptics, �3 is a simply connected branched
cover of the orbifold �3/G and�(G)may or may not be branched over ∂M(G). Ac-
tually 3-orbifolds are manifolds too, but new local coordinates need to be introduced
in neighborhoods of the singular edges and vertices that map them to euclidean balls.

We will reserve the term orbifold for the cases that a singular set — cone axes —
exists. Some authors use it to include both manifolds and orbifolds. We have not
considered the case of nonorientable orbifolds. Such an orbifold would result, for
example, from a reflection in a plane in �3.

The conformal boundary

The “boundary” ∂M(G) is infinitely far away from any interior point in the hyperbolic
metric on M(G)int, yet it is intimately related to the interior structure. The isometries
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and the geodesics extend to it. The infinitesimal 3-dimensional coordinate frame at
each point in �(G), with one direction the interior normal to �2, projects to the
corresponding frame in ∂M, also with one direction the interior normal to ∂M. The
boundary ∂M(G) has a conformal structure induced from�(G)⊂�2: it is a union of
Riemann surfaces (see next section). For this reason it is often called the conformal
boundary of M(G).

If G is not elementary, no component of ∂M can be a sphere or a torus. Tori
(without cone points) are excluded because by the Uniformization Theorem (see next
section), they can arise only if a component � of �(G) over the torus is Möbius
equivalent to � if � is simply connected, or Möbius equivalent to � \ {0} if � is not.

2.5.1 Two fundamental algebraic theorems

Using the following purely algebraic fact, the quotient orbifolds can often be analyzed
by analyzing manifolds. For every orbifold obtained from a finitely generated group
has a finite-sheeted cover which is a manifold:

Selberg’s Lemma [1960]. Every finitely generated group of matrices in SL(2,�) has
a finitely generated normal subgroup of finite index which contains no element 
= id
of finite order.

For a proof see [Matsuzaki and Taniguchi 1998] or [Ratcliffe 1994].
To obtain the corresponding result for a finitely generated kleinian group, choose

a set of N generators, and then pass to the matrix group generated by the 2N pairs of
matrices {±Ai }.

Let G be a group generated by elements g1, g2, . . .; we write G = 〈g1, g2, . . .〉. A
word in the chosen generators is a finite sequence (of length ≥ 0) whose elements
are of the form gi or g−1

i ; any such word gives rise, by multiplication, to an element
of G. A word (of length > 0) giving rise to the identity of G is called a relator in
G; it is called a trivial relator if it of the form gi g

−1
i or g−1

i gi for one of the chosen
generators.

Suppose R1, R2, . . . are relators in G. A word W is derivable from the relators {Ri }
if repeated application of the following operations changes W to the empty word in
finitely many steps: Insertion or deletion of one of the words R1, R−1

1 , . . ., or of one
of the trivial relators, between any two consecutive letters of W , or before or after the
word W . If every relator is so derivable from the relators on the list R1, R2, . . . (plus
the empty word), we say that the generators g1, g2, . . . and the relators R1, R2, . . .

constitute a presentation of G, and we write

G = 〈g1, g2, . . . | R1, R2, . . .〉.
A free group is one that has a presentation 〈g1, g2, . . . | 〉; that is, if (for appropriately

chosen generators) there are no nontrivial relators. A group is finitely presented if it
has a presentation where both the generators gi and the relators Ri are finite in number.
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Suppose G is generated by g1, . . . , gN and FN = 〈 f1, . . . , fN | 〉 is a free group in
the same number of generators. The map φ : fi → gi extends to a homomorphism
φ : FN → G, and the elements in the kernel of φ are exactly the relators of G; any
generating set for this kernel is a set of relators for a presentation of G.

The fundamental group of a closed surface of genus g has a presentation
〈
a1, b1, a2, b2, . . . , ag, bg |∏g

i=1[ai , bi ]
〉
,

where the generators come from appropriately chosen loops, as in Figure 2.1, p. 73.
For example, a closed surface of genus g has the single relation �g

i=1[ai , bi ] = 1.
Here [a, b] denotes the commutator aba−1b−1. On the other hand, the fundamental
group of a closed surface with punctures is a free group.

It is a basic property of hyperbolic 3-manifolds (and 3-manifolds more generally)
that finitely generated fundamental groups are automatically finitely presented. The
proof, due to Scott and Shalen, is a formal consequence of the existence of a compact
core in the quotient manifold (see Section 3.9).

For orbifolds, Selberg’s lemma can be applied.

Theorem 2.5.3 (Scott and Shalen). Finitely generated kleinian groups are finitely
presented.

The finite presentation property is automatically true for compact manifolds, as we
will see in Section 3.5.

This is in sharp contrast to the case of 4-manifolds, where any countable group,
finitely presented or not, can be a fundamental group. There even exist finitely pre-
sented groups which have finitely generated subgroups which are not finitely pre-
sented [Scott 1973b].

2.6 Introduction to Riemann surfaces and their uniformization

A Riemann surface is a 1-dimensional complex analytic manifold: It is defined by
coordinate coverings {Uα, φα} (of a connected Hausdorff space), where φα :Uα→�

is such that the transition mappings φβφα−1 associated with overlapping coordinate
neighborhoods are analytic homeomorphisms (conformal mappings).∗ Riemann sur-
faces are orientable and have countable bases. A homeomorphism f : R→ S between
Riemann surfaces is a conformal mapping if φβ f φα−1 is conformal where defined.
Usually one does not distinguish between conformally equivalent surfaces. The clas-
sic reference is [Ahlfors and Sario 1960], while [Farkas and Kra 1980] is excellent
for closed surfaces, and the most elementary is [Springer 1957].

To put it informally, but more to the point, a Riemann surface is an oriented 2-
dimensional surface with a rule (typically coming from a riemannian metric) for
measuring angles; the angles about each point must sum to 2π . Two surfaces are

∗ If the transition mappings are instead required to be the restriction of Möbius transformations, the additional
structure is called a complex projective structure. These structures will be explored in Exercise 6-14.
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conformally equivalent if there is an orientation preserving homeomorphism that pre-
serves angles as measured by the corresponding rules.

The most familiar cases are regions � ⊂ � where the euclidean angles are taken.
Make a new rule for measuring angles by defining the angle between two rays at z ∈�
to be the angle resulting after applying the affine transformation T : (x, y) �→ (x ′, y′)
with x ′ = x , y′ = 2y. This determines a new Riemann surface structure on the same
underlying point set. However �, with its new structure, is conformally equivalent to
T (�) with the natural structure from �.

Another common situation is a smoothly embedded surface in �3 with the “rule”
that is induced by the ambient euclidean metric. So is a polyhedral surface with the
rule given by the euclidean metric in the polygons, except the neighborhood around
each vertex must be flattened out so the angles add to 2π (the vertices can also be
viewed as cone points with ,the cone angle being the sum of the vertex angles of the
triangles sharing the vertex). In this connection, a mention of the following theorem
[Rüedy 1971] is irresistible: Any abstract Riemann surface can be conformally em-
bedded as a C∞ surface, or even a polyhedral surface, in �3. Here the angles on the
embedded surface are to be measured by restricting the ambient euclidean metric. If
the surface is not compact, the ends of the embedded conformal equivalent go off to
∞. A conformal embedding can be found in an arbitrarily small neighborhood of a
smoothly embedded model surface by deforming it in the normal direction.

However for most applications one works with Riemann surfaces that are not nat-
urally embedded in any ambient space. Such an example is given below in terms of
algebraic curves.

A Riemann surface may be of any genus g ≥ 0 (number of “handles”), and with
any number of “ends” (or “ideal boundary components”), countable or uncountable —
like the Riemann surface which is the complement of the Cantor set. A puncture is an
isolated ideal boundary component which has a neighborhood conformally equivalent
to the once punctured unit disk. To put it another way, a puncture is obtained by
removing a point from a Riemann surface. One can also speak of Riemann surfaces
with borders — like the closed unit disk — but we will not be using them here.

A regular (unbranched) covering surface R̃ of a Riemann surface is also a Rie-
mann surface. The local complex structure can just be lifted. Deck transformations
automatically become conformal automorphisms of R̃.

A branched cover R̃ is also a Riemann surface. It has a discrete set of special points
called branch points. If ξ∗ ∈ R̃ is a branch point of order r ≥ 2 and π(ξ∗) = ξ is
its projection in R, then given a small V neighborhood of ξ there is a neighborhood
U of ξ∗ such that π(U ) = V and each point 
= ξ of V is covered exactly r times in
U . If the branch values are removed from R and preimages from R̃, one is left with
a regular covering, that can be described by a subgroup of the fundamental group of
the base surface.

For a survey of recent work on Riemann surfaces with singular conformal metrics
see [Bonk 2002].
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Conversely, if G is a discontinuous group acting on R then R/G is also a Riemann
surface with R a possibly branched cover, depending on whether G has fixed points
in R. A typical example is �2/G.

What is uniformization?

An abstract Riemann surface is described only in terms of local coordinates. Wouldn’t
it be nice if there were a global coordinate system w = φ(t), in terms of a complex
parameter t , that served uniformly at all points? By way of analogy, the unit circle
{w : |w| = 1} is uniformized by the real line via the projection map w = eit , −∞ <

t <∞.
For example, suppose P is an irreducible polynomial of two complex variables.

Then R = {(x, y) ∈�2 : P(x, y)= 0} is a Riemann surface. To suggest why, suppose
m is the degree of P in y. For most x ∈ �2 there will be m distinct values yk(x) that
satisfy P(x, y) = 0; the m points (x, yk(x)) ∈ R lie over x . A small neighborhood
N about such an x determines m disjoint neighborhoods Nk ⊂ R and the map x :
(x, y) �→ x is a homeomorphism of each back down to N . The complex structure can
be extended over the other points as well. As a result, R is a closed Riemann surface.
Conversely, it is a famous classical theorem that every closed Riemann surface can
be generated in this fashion.

A noteworthy class of examples are the Fermat curves xn + yn = 1, n ≥ 2, which
represent closed Riemann surfaces of genus 1

2(n− 1)(n− 2). The world now knows
that when n≥3, there are no solution pairs of nonzero rational numbers. For algebraic
curves more generally, Mordell’s Conjecture is known to be true too: For curves
P(x, y)= 0 of genus at least two, there are at most a finite number of solution pairs
(x, y) where both x and y are rational numbers.

In short, for closed Riemann surfaces in particular, it would be nice if we could find
a single complex parameter t such that x = x(t), y = y(t) for all points (x, y) ∈ R,
that is, for all solution pairs of an associated P = 0.

Uniformization Theorem A. A simply connected Riemann surface can be confor-
mally mapped onto exactly one of : the Riemann sphere �2, the complex plane �, the
unit disk �.

Ahlfors [1973, p. 136] referred to the Uniformization Theorem as “the single most
important theorem in the whole theory of analytic functions of one variable” (a proof
can be found in that same reference). For regions properly embedded in � it reduces to
the Riemann Mapping Theorem. The famous application is to the universal covering
surface R̃ of a Riemann surface R, which as defined is not embedded anywhere.

Uniformization Theorem B. The universal cover R̃ is conformally equivalent to

(i) �2 if and only if R is itself conformally �2,
(ii) � if and only if R is conformally equivalent to �, to � \ {0}, or to a torus,

(iii) � in all other cases.
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The group � of deck (or cover) transformations is isomorphic to the fundamental
group π1(R). Deck transformations are conformal automorphisms of the universal
covering, that is, Möbius transformations when one of the standard models are used.
A deck transformation cannot have a fixed point in the cover, hence cannot be elliptic.
Furthermore, � is properly discontinuous in R̃: N ∩γ (N )=∅ for any γ ∈� distinct
from id, and any small neighborhood N of any point in R̃. So the deck transformations
form a discrete group.

Parabolic deck transformations are associated with punctures on R: recall that a
puncture is an isolated “ideal boundary component” with the property that it has a
“neighborhood” in R conformally equivalent to the once punctured unit disk. The
lift of a small loop surrounding a puncture determines a parabolic transformation,
and conversely, every parabolic transformation is associated with a puncture in this
manner. If R has no punctures then � contains only loxodromic transformations (plus
the identity).

Once we know that the abstract R̃ is conformally equivalent to, say, the concrete
�, we can replace it by (identify it with) �. Likewise, R is conformally equivalent
to — and we can replace it by — the quotient surface �/� with � the group of deck
transformations. The complex structure descends automatically from � to �/�. The
coordinate coverings are just {Uα, z}, where the Uα ⊂ � are small enough to project
injectively, via the identity map, into R. In fact the group � is uniquely determined
up to conjugation: if �/� is conformally equivalent to �/�1, then �1 = T�T−1 for
some �-preserving Möbius transformation T .

The third case of Theorem B is operative in particular whenever R is a closed Rie-
mann surface of genus exceeding one. Such Riemann surfaces are algebraic curves,
nonelliptic ones. Yet uniformization is not an algebraic process. One of the mysteries
concerns the precise relation between an explicit polynomial that generates the surface
and the uniformizing function.

The group of conformal automorphisms of a Riemann surface is discrete if and
only if its fundamental group is nonabelian. For the record, the group of conformal
automorphisms of a closed surface of genus g≥ 2 has at most 84(g−1) elements; see
Exercise 3-1. The lowest genus for which this number can be attained is g= 3 and the
surface that attains it is the Klein surface. In � it can be represented by fitting together
24 isometric regular hyperbolic heptagons with interior angles 2π/3 (and area π/3);
see Figure 2-5, on p. 87. After making the appropriate pairwise identification of the
consequent free edges, the configuration “rolls up” to form a closed surface composed
of 24 regular heptagons arranged in triples around 56 vertices. A model was sculpted
by Helaman Ferguson and is on the terrace at the Mathematical Sciences Research
Institute in Berkeley. The Klein surface as an algebraic curve is x3 y+ y3+ x = 0.

Even though it does not include the cases of simply and doubly connected plane
regions, often one proclaims:

Hyperbolization Theorem for Riemann Surfaces. Every Riemann surface with a
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Fig. 2.1. Rolling up a regular octagon: The four transformations mapping edges ai → a−1
i ,

bi → b−1
i and sending the octagon into its exterior generate the fuchsian covering group.

nonabelian fundamental group carries a hyperbolic metric compatible with its com-
plex structure.

The Uniformization/Hyperbolization Theorem expresses the fact that when the uni-
versal cover R̃ can be taken as �, we can bring to bear the dual role of � = �2

having both a complex structure and a hyperbolic structure. The group � of deck
transformations consists of conformal automorphisms of �; therefore the complex
structure of � induces a complex structure on R = �/�. The group � is also a
group of isometries of �2. Therefore the hyperbolic structure on � = �2 induces
a hyperbolic structure on R = �2/�. That is, if z denotes the coordinate in � and
w=π(z) the corresponding coordinate in R, define the hyperbolic metric on R by the
equation λ(w) |dw| = ρ(z) |dz|, where ρ |dz| is the hyperbolic metric in �. Usually it
is not possible to compute λ(w)= ρ(z)/|π ′(z)| with z = π−1(w) explicitly. Notable
exceptions are the once punctured disk {0 < |w| < 1} and annulus {1 < |w| < R}—
see Exercise 2-2.

The surface R has finite hyperbolic area if and only if it is a closed Riemann surface
of genus g ≥ 0 with n ≥ 0 points removed (punctures) satisfying 2g+n ≥ 3. Its area
is 2π(2g+ n− 2). Examples include the n-punctured spheres when n ≥ 3.

On the one hand we can study analytic and meromorphic functions on R, in terms
of its complex structure. On the other hand we can do geometry on R, talking about
geodesics, triangles, etc. It is often easier to study the analysis and geometry in the
universal cover, taking account of the covering group �. As explained in Section
3.5, there is a concrete model of R within � as a convex hyperbolic polygon called
a Dirichlet region. Its sides are organized in pairs; when the polygon is “rolled up”
by identifying the side pairs by �, a surface results and it is conformally equivalent
to R.

There is a generalization of uniformization theory to Riemann surfaces with a dis-
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crete set of points designated as cone points. Assign to each of these points a rational
cone angle of the form 2π/r , where r is a positive integer ≥ 2. The choice r = ∞
means that the point should become a puncture. One requires now a branched simply
connected cover with the following property. If ξ is a cone point with cone angle 2π

r
then at each point ξ∗ over ξ , the stabilizer of ξ∗ in the cover group G is generated
by an elliptic transformation of order r . A branched, simply connected covering
corresponding to the assigned data exists as �2, �, or most commonly �2 according
to the possibilities described in Exercise 3-1.

We emphasize there are two aspects to the consideration of branch points. Consider
the cyclic group H = 〈z �→ e2π i/6z〉. A fundamental region for H in � is the sector
{z : 0 ≤ arg z < 2π/6}. There are two ways to consider the quotient R = �/〈z �→
e2π i/6〉. One way is require R to be a Riemann surface; necessarily then R = � and
� is a branched covering of itself with projection map w = z6. From a different
prospective, R can be viewed as portion of the cone with cone angle 2π/6 obtained
when the fundamental sector {z ∈ � : 0 ≤ arg z ≤ 2π/6} is rolled up to identify the
edges. To make the cone into a Riemann surface at the cone point, it must be flattened
out there. This is what is done by interpreting the map z �→ z6 as a homeomorphism
of the sector of central angle 2π/6 with the edge identifications onto the full disk �.

To a complex analyst, �/H is made into a Riemann surface by defining the complex
structure in �/H in terms of the map w = z6 : �/H → �. On the other hand, a
geometer sees �/H as the cone obtained by rolling up the sector, without bothering
to define a complex structure at the cone point. The point {z = 0} is called a cone
point. The situation is analogous to that encountered by 3-dimensional orbifolds. An
orbifold is actually a manifold, but that involves “flattening out” the cone points which
is not such a natural operation.

The Uniformization Theorem can be divided into a topological part and an analytic
part. The topological part says in particular that every orientable surface with non-
abelian fundamental group has a hyperbolic structure — that is, it is homeomorphic
to �2/G for some fuchsian group G. This can be proven directly by modeling each
surface type by a fuchsian group. The analytic part says that for a Riemann surface,
the hyperbolic metric can be taken to be compatible with the conformal metric. It
is the topological part that has an analogue for 3-manifolds, as is realized in the
Hyperbolization Theorem, page 324. This too is proved by finding geometric models.

2.7 Fuchsian and Schottky groups

Fuchsian groups

Suppose G is a nonelementary, discrete group preserving the upper UHP and lower
half-plane LHP. Each element A∈G is symmetric in �; it satisfies A(z)= A(z̄). Each
elliptic transformation has one fixed point in UHP and the other at the symmetric point
in LHP. The limit set is contained in �. Classically, G is said to be of the first kind if
�(G)= �, otherwise it is said to be of the second kind.
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Fig. 2.2. A Schottky group’s generators (left) and the group’s quotient (right).

Suppose G is of the first kind. Then�(G)=UHP∪LHP and if G is finitely gener-
ated, Rtop=UHP/G is a closed surface with at most a finite number of punctures and
a finite number of branch values (cone points); see [Marden 1967; Casson and Bleiler
1988]. The quotients of the upper and lower half-plane are symmetric surfaces under
reflection z �→ z̄. The 3-manifold M(G)= �3 ∪ (UHP∪LHP) /G is homeomorphic
to Rtop×[0, π]; that is M(G) is an “I-bundle” with top surface Rtop. This can be seen
explicitly as follows. Let Hθ be the euclidean half-plane bordering �, inclined at
angle 0< θ < π to �. G maps each half-plane Hθ onto itself. Their quotients Hθ/G
are the cross sections in the I-bundle. In addition the orientation reversing involution
z �→ z̄ extends to all �3 and projects to an orientation reversing involution of M(G),
interchanging its top and bottom boundary components, pointwise fixing the middle
surface Rπ/2.

Suppose instead G is of the second kind and nonelementary. Its ordinary set �(G)
contains the countable number of open intervals �+ = (� ∪ {∞}) \ �(G) and is
connected and infinitely connected. The quotient Rtop=UHP∪�+/G, if G is finitely
generated, is a compact bordered Riemann surface containing at most a finite number
of punctures and branch values. Its boundary consists of the finite number of simple
closed curves �+/G which are pointwise fixed by the involution of �(G), z �→ z̄.
Equally we have an involution of the surface �(G)/G, which is called the double
of Rtop. The 3-manifold M(G) has a connected boundary and the product structure
Rtop×[0, 1], where the “top” and “bottom” pieces are joined across ∂Rtop.

Schottky groups

This is the simplest class of function groups. Take g ≥ 1 pairs of mutually disjoint
circles in �, {C1,C ′1, . . . ,Cg,C ′g}, with mutually disjoint interiors. For each index,
choose any Möbius transformation Ai that maps Ci to its partner C ′i and sends the
interior of Ci to the exterior of its partner. The group generated by {Ai } is called
a Schottky group of genus g. It is the archetypical free group on g generators. The
G-orbit of the circles nest down on the limit set �(G) which is totally disconnected
(every component of �(G) is a point) as shown in Figure 2.7 (page 76). If G is
not cyclic (which is an exceptionally simple special case), the limit set is a perfect
set. In Mandelbrot’s terminology it is “fractal dust”, since it is known to have a
positive Hausdorff dimension (Exercise 3-20). The ordinary set �(G) is connected
and infinitely connected. The quotient surface R = �(G)/G is a closed surface of
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Fig. 2.3. A 2-generator Schottky group showing the orbit of the Schottky circles nesting to
the limit set.

genus g. From the point of view of R, �(G) is a planar covering surface. There is a
wonderful, thorough discussion of the two-generator case in [Mumford et al. 2002].

In the opposite direction, we have:

Maskit Planarity Theorem [Maskit 1988]. Suppose R is a closed Riemann surface
with at most a finite number of punctures and the covering surface R̂ determined by
a normal subgroup N of π1(R; O) is planar. Then there is a finite set of mutually
disjoint simple loops {αi } in R and a corresponding set of integers {ri ≥ 1} with the
following property: N is the smallest normal subgroup∗ of πi (R; O) determined by
{αi

ri }, or equivalently, R̂ is the highest normal covering surface of R with the property
that all lifts of the curves {αi

ri } are simple loops.

∗ That is, N is generated by {γαi
ri γ−1} for all γ ∈ π1(R; O) with each αi joined to O by an auxiliary path.
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A planar Riemann surface R̂ is one which is conformally equivalent to a region in
�. Because the covering R̂→ R corresponds to a normal subgroup N ⊂ π1(R), the
deck transformations are conformal automorphisms of R̂⊂�. If the result of cutting R
along the simple loops {αi } is itself a planar surface, then the deck transformations of
R̂ are known to consist of the restrictions of Möbius transformations — see [Ahlfors
and Sario 1960, IV.4B, IV.19F]. Otherwise, as shown in [Maskit 1968], there is a
conformal map of R̂ onto another representation R̂′ of the covering for which the
deck transformations become restrictions of Möbius transformations (Exercise 2-16).

Returning to Schottky groups, the quotient manifold M(G) is a handlebody of
genus g. The common exterior of the circles serves as a fundamental region for
�(G). The common exterior of the hyperbolic planes rising from the circles serves
as a fundamental region in �3. For g= 1 it is a solid torus — a bagel! More generally
M(G) is homeomorphic to the result of gluing g bagels together.

A handlebody M of genus g ≥ 1 is characterized by the following property. Its
boundary ∂M is a closed surface of genus g. There exist g mutually disjoint simple
curves on ∂M called compressing curves, each of which bounds a disk within M —
in our construction above these disks can be taken to be the planes rising from the
circles — such that when M is cut along these disks what results is connected and
homeomorphic to a ball. If the handlebody M is embedded in �3, its exterior in �3 is
either a handlebody, with its own, distinct, collection of compressing curves on ∂M ,
or it is knotted.

Suppose X1 and X2 are two handlebodies of the same genus and� : ∂X1→ ∂X2 is
a homeomorphism. Attach X1 to X2 by identifying each point x ∈∂X1 to�(x)∈∂X2.
The result is a closed orientable 3-manifold M . Conversely it has long been known
that in every closed, orientable 3-manifold M3, one can find embedded surfaces S with
the property that M3\S is the union of two handlebodies; see [Hempel 1976] or [Jaco
1980]. Such a decomposition is called Heegaard splitting. For example a Heegaard
splitting of a closed manifold can be obtained by taking a tubular neighborhood about
the union of 1-simplices of a triangulation. There are two sets of simple loops S1, S2

on S such that each loop in S1 bounds a disk in one component of M3\S and each loop
in S2 bounds a disk in the other. There is an orientation reversing homeomorphism
between the two components that interchanges the two sets. The seeming simplicity
of the splitting is very deceptive; all efforts to decipher the topology of the resulting
manifold from the homeomorphism� and its interplay with compressing curves have
failed.

It is a conjecture of Agol that every 2-generator, closed kleinian manifold is home-
omorphic to the result of so gluing two genus-2 handlebodies.

The Schottky construction works equally well if we replace the circle pairs by
pairs of Jordan curves that are known to be associated with Möbius transformations
sending the interior of one to the exterior of its partner. To reflect this distinction the
Schottky groups generated by circles are known to aficionados as classical Schottky
groups, whereas groups with the less restrictive requirement are known merely as
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Schottky groups. The more general situations arise naturally in planar uniformizations
of surfaces. It is known [Marden 1974c] that not every Schottky group in the general
sense can be generated by circles, no matter how the generators are chosen — for
examples see [Gilman and Waterman 2003]. In any case Schottky groups form that
class of kleinian groups for which M(G) is a handlebody. The handlebodies of genus
g obtained from classical groups are characterized by the property of containing g
mutual disjoint hyperbolic planes that are bounded by simple loops which are not
retractable to points in the boundary.

Conversely, a discrete, finitely generated, purely loxodromic group with�(G) 
=∅

that is a free group is automatically a Schottky group [Maskit 1988, X.H.6]. A special
case is a finitely generated fuchsian group of the second kind, without elliptics or
parabolics. In fact this is a classical Schottky group; it is an illuminating exercise to
verify this fact directly. See Exercise 2-18.

2.8 Riemannian metrics and quasiconformal mappings

In terms of local coordinates, a smooth, nonsingular riemannian metric ds2= E dx2+
2 F dx dy+G dy2 on surface element (or a region �⊂�) can be written in complex
form in terms of z= x+iy, z̄= x−iy as ds2=λ(z)| dz+μ(z) dz̄|2, where λ(z)>0 and
0≤|μ(z)|≤ k< 1. In the special case μ= 0, it is a conformal metric |dw|=λ(z)|dz|;
this means that a tiny circle |z|= ε will become a tiny circle |w|=λ(0)ε and the angle
measure is the same as in the z-coordinate.

Given the riemannian metric, we can introduce new local coordinates — we can
change the rule for measuring angles — on the surface in terms of which the metric
becomes conformal. This is a classical procedure called introducing isothermal coor-
dinates. Put another way, changing to isothermal coordinates makes the surface into
a Riemann surface. Or, if we start with a Riemann surface and a riemannian metric,
the metric determines a new Riemann surface structure on the underlying pointset.

To find the new structure, we must solve in each coordinate patch the Beltrami
equation

∂F

∂ z̄
= μ(z)∂F

∂z
. (2.4)

Ifμ=0, (2.4) reduces to the Cauchy–Riemann equations for analyticity. A solution F
will satisfy the infinitesimal equation |d F |= |Fz̄| |dz+μ(z) dz̄|. It is the solutionw=
F(z) that is used to introduce a new complex structure — a new rule for measuring
angles — on the same underlying pointset.

For example, consider the metric ds2 = |dz + kdz|2 in �. The map w = F(z) =
z+kz̄, z∈�, 0< k<1, solves the Beltrami equation with μ= k. This is an orientation
preserving (since k < 1), nonsingular (since k 
= 1), homeomorphism sending circles
about z = 0 to ellipses with major and minor axes in the ratio K = (1+ k)/(1− k).
Introduce a new angle measure at z = 0 by defining the angle between two rays to be
the angle between the image of the rays. This is the angle measure determined by the
riemannian metric |dz+ k dz̄|2. In this case the new Riemann surface is also �.



2.8 Riemannian metrics and quasiconformal mappings 79

In the general theory, μ(z) needs only to be measurable on its domain, say � ⊂
� with essential supremum ‖μ‖∞ = k < 1. The Beltrami equation has a solution
F which is a K -quasiconformal mapping.∗† Near a point, say z = 0, where F
is differentiable (which it is almost everywhere), F is approximated by an affine
map z �→ az+ bz̄. A solution F is uniquely determined up to postcomposition with
conformal mappings of its range. Indeed, if g is a conformal mapping of the range,
then both F and g ◦ F satisfy the same Beltrami equation. The number K = (1+
k)/(1−k), where k =‖μ‖∞, is called the maximal dilatation of F , and μ= Fz̄/Fz is
called its complex dilatation. The maximal dilatation measures the maximal distortion
of the mapping in the sense that infinitesimal circles are sent to infinitesimal ellipses
with ratio of major to minor axis uniformly bounded by K ; K = 1 if and only if F is
conformal.

The inverse of a K -quasiconformal mapping is also a K -quasiconformal mapping.
It is often better to define the complex dilatationμ on all � — which can be regarded

as �2 as the values of μ at isolated points do not matter. For example, set μ = 0 on
the complement of �. When μ is defined on �2, except perhaps for a set of zero
spherical area, and satisfies ‖μ‖∞ < 1 then there is a unique solution of the Beltrami
equation up to postcomposition by Möbius transformations. It is a homeomorphism
�2→�2. Consequently the easiest way of normalizing the solution is to require that
it fix three prescribed points.

Now suppose � ⊂ � is preserved by a kleinian group G. We want to consider
mappings F that project to map �/G onto itself or onto another Riemann surface.
For this to happen, μmust be a Beltrami differential with respect to G, that is, μmust
imply, for any g ∈ G, that both F and F ◦ g satisfy the same Beltrami equation. The
condition that this be the case is

μ(g(z))
g′(z)
g′(z)

= μ(z) for all g ∈ G and (almost) all z ∈�. (2.5)

Often we will extend μ to � by setting it equal to zero in the complement of �, so
μ will automatically become a Beltrami equation for G in �2. Any solution F will a
quasiconformal map when restricted to � and a conformal mapping when restricted
to the complement of �.

If we know that �(G) has zero area, it suffices to require μ to be a Beltrami
differential on �(G) = �2 \ �(G).∗ If μ satisfies (2.5) on �, then both F and
F ◦ g are solutions of (2.4) for any g ∈ G. Therefore, if F has been normalized,
there exists a uniquely determined Möbius transformation ϕ(g) with the property that
F ◦ g(z) = ϕ(g) ◦ F(z) for all z ∈ �2. Consequently F induces an isomorphism

∗ F is an orientation preserving homeomorphism with locally integrable distributional derivatives Fz , Fz̄ .
† The equivalent geometric definition that generalizes to arbitrary metric spaces is that a homeomorphism F of �

is quasiconformal if there is some constant H <∞ such that for every z ∈�,

lim sup
r→0

sup|w−z|=r | f (w)− f (z)|
inf|w−z|=r | f (w)− f (z)| ≤ H.

∗ Actually we do not have to worry about �(G) at all, only about the ordinary set, by Sullivan’s Theorem (p. 158).
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ϕ : G → ϕ(G) = H onto another kleinian group H . The group H = FG F−1 is
called a quasiconformal deformation of G. It is a trivial deformation, really not a
deformation at all, if for some Möbius U , ϕ(g) = UgU−1 for all g ∈ G, that is, if ϕ
is a conjugation.

Suppose G is a fuchsian group acting in the upper half-plane UHP and μ is a
Beltrami differential for G. There is a way of arranging things so that the quasicon-
formal deformation is fuchsian as well. This is done by extending μ by symmetry
to the lower half-plane LHP: μ(z) = μ(z̄). It will remain a Beltrami differential for
G. Normalize F so as to fix, for example, (0, 1,∞). Then F maps each of UHP and
LHP onto itself. The quasiconformal deformation H = FG F−1 is fuchsian.

Another example is a Schottky group G. Take a Beltrami differential μ in its
ordinary set �(G). We don’t need to bother with the limit set because it has zero
area. A normalized solution F of the Beltrami equation will induce an isomorphism
ϕ onto another Schottky group H . Even if G is a classical Schottky group it is unlikely
that the F-images of the Schottky circles are round circles. But the pairing geometry
of these F-images will remain the same.

Return to the case that � is simply connected. At the quotient level: F induces a
quasiconformal mapping f∗ : R = �/G → S = F(�)/H . In each homotopy class
[ f ] of a quasiconformal map between the two surfaces, there will be uncountably
many quasiconformal mappings. One of them may even be conformal. If so, the
deformation, or deformation class [ f ], is said to be trivial — there has been no real
deformation at all. One of Teichmüller’s basic contributions is a characterization of
trivial classes.

Many people have tried to resolve the Ehrenpreis–Siegel conjecture: given any two
closed Riemann surfaces R1, R2 and ε>0, does there exist finite-sheeted, unbranched
covers R∗1 of R1 and R∗2 of R∗ which are homeomorphic and are close to each other
in the sense that there is a quasiconformal map F : R∗1→ R∗2 with complex dilatation
‖μ‖∞ < ε?

Teichmüller spaces of Riemann surfaces

Suppose R=�2/G is a closed Riemann surface of genus g≥ 0 with n ≥ 0 punctures
such that 3g+ n− 3> 0. The Teichmüller space Teich(R) is defined as the quotient
space

Teich(R)= {(S, f ) | f : R→ S is quasiconformal}/≡,
with the equivalence

(S, f )≡ (S′, f ′) if and only if f ′ ◦ f −1 : S→ S′ is homotopic to a conformal map.

If R is a closed surface, we can use the term “orientation preserving homeomorphism”
rather than “quasiconformal”. The latter is needed only to insure that the punctures
are not opened up to holes. We emphasize that Teich(R) is the space of “marked”
Riemann surfaces: each equivalence class is associated with a particular homotopy
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class of maps R→ S, or an isomorphism π1(R)→ π1(S), that relates each point to
the basepoint (R, id).

A lift F to �2 of a quasiconformal mapping f : R = �2/G → S = �2/H has a
homeomorphic extension to ∂�2. It induces an isomorphism θ :G→H . If �⊂�2 is a
geodesic, the endpoints of F(�), which in general is not a geodesic, are the F-images
of the endpoints of �. In other words, F determines a injection between geodesics on
R and S.

Another definition is as the space of hyperbolic metrics (curvature −1) on a fixed
say C∞-surface R; instead of changing surfaces, change metrics: A hyperbolic metric
is associated with each riemannian metric on R via isothermal coordinates and the
uniformization theorem. An orientation preserving C∞-diffeomorphism h : R→ R
sends the hyperbolic metric to another (set z = h(w) in |dz|/y, for example). Let
Diff0 denote the group of those diffeomorphisms which are homotopic (and hence
isotopic) to the identity.

Teich(R)= {g : g is a hyperbolic metric on R}/Diff0.

That is, two metrics are identified if they differ by a diffeomorphism homotopic to
identity.

A third definition is as the deformation space of fuchsian groups:

Teich(G)= {θ | θ : G→ G ′ is a type preserving isomorphism to a fuchsianG ′}/≡ .
(Type preserving here means that parabolics correspond to parabolics.) Here θ cor-
responds to a homotopy class of quasiconformal maps �2/G → �2/G ′, and θ, θ ′
represent the same point if and only if they are conjugate: θ(g)=U ◦θ ′(g)◦U−1 for
some U and all g ∈ G.

Teichmüller’s famous theorem tells us that among all the quasiconformal maps in
the homotopy class of a quasiconformal map g : S→ S1 there is a unique extremal
mapping, called a Teichmüller mapping, that minimizes the maximal dilatation K
among all quasiconformal mappings in the homotopy class. The Teichmüller distance
between two points (S, f ), (S1, f1) ∈ Teich(R) is defined as log K , where K = (1+
k)/(1− k) is the minimal maximal dilatation of all quasiconformal mappings in the
homotopy class [ f1 ◦ f −1 : S → S1]: There is exactly one such mapping whose
maximal dilatation achieves the value K . The theory [Strebel 1984] shows that each
such extremal mapping F corresponds to a Beltrami equation of the following form:
Corresponding to F is is a uniquely determined (up to positive constant multiple)
holomorphic quadratic differential ϕF (z) dz2 on S such that F and ϕ=ϕF are related
by the Beltrami equation Fz̄ = k(ϕ/|ϕ|)Fz .

With this as metric, Teich(R) turns into a metric space, homeomorphic to �6g+2n−6.
Each point lies on a uniquely determined geodesic ray from a given point S determined
by the solution to a Beltrami equation Fz̄ = t (ϕ/|ϕ|)Fz , for some 0≤ t < 1 on S. See
also Exercise 5-23.

If α : R → R is a quasiconformal automorphism, then α— or rather its homo-
topy class — determines an automorphism, also denoted by α, of Teich(R) defined
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on equivalence classes by α : (S, f ) �→ (S, f ◦ α). The totality of homotopy classes
of such automorphisms [α] form the mapping class group (or Teichmüller modular
group) M(R)∗. In the case of the deformation space of tori, this corresponds to the
classical modular group (Exercise 2-5). It is a celebrated theorem of Royden [1971]
that M(R) constitutes the full group of isometries of Teich(R).

A point (S, f ) is fixed by [α] ∈M(R) if and only if f α f −1 : S→ S is homotopic
to a conformal map, that is if S has a conformal symmetry in the homotopy class of
f α f −1. If α has a fixed point it has finite order — it can be thought of as an “elliptic”
element. It is a famous theorem of Kerckhoff [1983], resolving a longstanding conjec-
ture called the Nielsen Realization Problem: Corresponding to every finite subgroup
F ⊂M(R), there exists (S, f ) ∈ Teich(R) such F corresponds to a finite group of
conformal automorphisms of S; that is, F has a common fixed point in Teich(R).

Besides the elements of finite order, M has elements analogous to the parabolics
and loxodromics of kleinian groups. We will return to these matters in Exercise 5-6.

Rather than bothering with homotopy classes, one might wonder if M(R) is iso-
morphic to an actual group of homeomorphisms of R, as it is in the case of a torus or
in the case of a finite subgroup. The answer is negative for closed surfaces of genus
exceeding five [Markovic 2005].

For closed surfaces of genus exceeding two, the mapping class group is generated
by six elements, each of order two [Brendle and Farb 2004]. The mapping class group
is also known to be finitely presented.

The mapping class group acts discontinuously on Teich(R). The quotient orbifold
Teich(R)/M(R) is called the moduli space. It comprises all Riemann surfaces which
are quasiconformally equivalent to R; two such surfaces determine the same point
if and only if they are conformally equivalent, no matter what homotopy class the
conformal mapping is in. Unlike Teich(R), the moduli space is an algebraic object.

It is an interesting fact that in parallel to Selberg’s Lemma for Möbius transfor-
mations, there is a torsion free subgroup M0 ⊂M(G) of finite index, see [Ivanov
1992].

Teich(R) is also a complex analytic manifold of dimension (3g + b − 3), where
g is the genus of R and b ≥ 0 is the number of punctures.∗ With respect to the
analytic structure, the modular group constitutes the full group of biholomorphic au-
tomorphisms of Teich [Earle and Kra 1974]. Thus Teich(G)/M(G) is an analytic
orbifold and its finite sheeting covering Teich(G)/M0(R) is an analytic manifold.
Unlike Teich(R), these quotients are open subsets of (compact) algebraic varieties.

We will present a “concrete” realization of Teich(R) in Section 5.6 in which its
complex structure is more apparent.

For excellent introductions to the theory of quasiconformal mappings and Teich-

∗ As defined here, M(R) consists of orientation preserving mappings; one can also consider the extended mapping
class group which consists in addition of orientation reversing mappings.
∗ In contrast fuchsian representations of π1(R) depend on 6g+2b−6 real numbers, including one relation costing

3 real numbers and normalization costing another 3.
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müller spaces, we cite [Ahlfors 1966; Lehto 1987; Imayoshi and Taniguchi 1992].

2.9 Exercises and explorations

2-1. Elementary and reducible groups.

(i) Prove that a (not necessarily discrete) group G is elementary if and only if any
two elements of infinite order have a common fixed point.

Hint: Clearly the definition given in Section 2.2 implies this one. If all elements
are elliptic, we must appeal to the fact, to be proven in Corollary 4.1.5, that either the
group is cyclic, or it has a common fixed point in �3. All the parabolic elements of
G must share the same fixed point. If A and B share the fixed point ζ and at least
one of them is not parabolic, then their commutator [A, B] = AB A−1 B−1 is either
parabolic or the identity; it is the identity if and only if A and B have the same set
of fixed points. Thus for B ∈ G with two fixed points, there cannot exist two other
transformations, A,C such that A, B share one fixed point of B and C, B share the
other. In particular all parabolic and loxodromic elements of G must have a common
fixed point ζ . Then any elliptic element must fix ζ as well, unless all the loxodromic
elements have the same pair of fixed points and the elliptic element interchanges the
two fixed points.

Conclude as in Lemma 2.3.1(v) that every nonelementary group contains two lox-
odromic elements without a common fixed point.

(ii) A Möbius group H is called reducible if there is a fixed point common to all
elements of H . A reducible group is, in particular, elementary.

Suppose that H is not reducible. Show that there exist two elements without a
common fixed point. As a consequence show that a nonabelian group is reducible if
and only if the trace of every commutator is +2 (Lemma 1.5.1).

Hint: Assume that H is not reducible. Choose an element h 
= id. If h is parabolic,
there is an element which does not fix the fixed point of h. Instead suppose h is
loxodromic or elliptic with fixed points ζ1, ζ2 ∈�2. If there is an element with distinct
fixed points we are finished. Otherwise there is an element h1 which fixes ζ1 but not
ζ2, and h2 which fixes ζ2 but not ζ1. If h1 and h2 have distinct fixed points we are
done. Otherwise h1 and h2 have a common fixed point ζ3 
= ζ1, ζ2. But h2 ◦ h1 fixes
neither ζ1 nor ζ2.

2-2. Show that w = e2π i z is a conformal mapping of the quotient space

�2/〈z �→ z+ 1〉

onto the punctured disk 0< |w|< 1. Find a corresponding mapping from

�2/〈z �→ kz〉,
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where k > 1, to some annulus 1 < |w| < R. Then show that the hyperbolic metrics
λ(w)|dw| in the punctured disk and annulus are given by

λ(w)= 1

|w| log
1

|w|
, λ(w)=

( π

log R

) 1

|w| sin
π log |w|

log R

.

In the annulus, the geodesic is the circle {|w| = √R}, it is fixed by the involution,
and its hyperbolic length is 2π2

log R .
In contrast, verify the following formula for the mildly singular metric that results

from pulling the hyperbolic metric down to �2/〈E〉, where E is elliptic of order n:

λ(w)= 2

n|w|(n−1)/n(1− |w|2/n)
.

Hint: use the disk model and the map w = zn .

2-3. Prove the result of C. L. Siegel repeated in [Lehner 1964, Theorem III.J] that
a nonelementary group that preserves the upper half-plane and which is not discrete
contains an elliptic element of arbitrarily high order.

Hint: Suppose A = (
λ
0

0
1/λ

)
is an element of G and there is a sequence {Bn} with

lim Bn = id. Compute the trace of the commutators Cn = ABn A−1 B−1
n and Dn =

ACn A−1C−1
n . Writing the normalized matrix Bn=

(an
cn

bn
dn

)
, show first that lim bncn=0

so that lim andn = 1 and andn > 0 for large indices. Conclude that for infinitely many
indices either tr2(Cn) < 4, so that Cn is elliptic, or tr2(Dn) < 4.

2-4. Suppose {Tn} is a sequence of loxodromic or elliptic transformations such that
(tr Tn)

2 has limit 4. Show that for a subsequence, there is a sequence of conjugates
{Uk TkU−1

k } such that lim Uk TkU−1
k is a parabolic transformation. One example is

the sequence {z �→ e2π i/nz}. (For an application, see the video Not Knot [Gunn and
Maxwell 1991].)

2-5. The modular group. For this exercise it may be helpful to refer, for example, to
[Ahlfors 1978]. The group M of normalized matrices with integer entries is called
the modular group and is often denoted by Mod = PSL(2,�). This is an object of
fundamental importance in number theory, in particular in the proof of Fermat’s Last
Theorem by Wiles. It is also involved in the theory of quadratic forms: if an integer N
can be represented as N = ax2+2bxy+cy2, where a, b, c are given integers and x, y
are integer variables, then replacing x, y by mx + ny, px + qy, where

(m
p

n
q

) ∈Mod,
gives a new representation of N .

Show that is generated by z �→ z + 1 and z �→ −1/z. It can also be expressed as
the free product �2 ∗ �3, that is, it is generated by elliptics of order two and three
with parabolic commutator. Confirm that the following is a fundamental polygon F
for the action of Mod in the upper half-plane: {z : −1

2 < Re z ≤ 1
2 , |z| > 1} with the

boundary segment {|z| = 1, 0≤ Re z ≤ 1
2}.
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Fig. 2.4. Tessellations of the upper half-plane and disk by the orbits of the standard funda-
mental polygon under the modular group.

Fig. 2.5. Tessellation of the upper half-plane and disk by the orbit of an ideal quadrilateral, the
union of two adjacent ideal triangles, under the 3-punctured sphere group. The ideal vertices
are labeled by the Farey sequence (Exercise 2-9), which are their coordinates on �. If the
endpoints of the outer edge of an ideal triangle are p/q < r/s, then ps − qr = ±1 and the
coordinate of the third vertex is (p+ r)/(q + s).
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For later use also note that the intersection F1 of the region in the upper half-plane
{|z−n| ≥ 1 : n ∈�} with the strip {0<Re z< 1} also serves as a fundamental polygon
for M (with due consideration for boundary arcs).

Denote by M2 the subgroup of the modular group M , called the level 2 congruence
subgroup of M , consisting of normalized matrices which satisfy(

a b
c d

)
≡±

(
1 0
0 1

)
mod 2.

Show that M2 is generated by z �→ z + 2 and z �→ z/(2z + 1). Furthermore M2 has
index 6 in M ; show this by showing that the ideal quadrilateral

F2 =
{
z : −1< Re z ≤ 1, |z+ 1

2 |> 1
2 , |z− 1

2 | ≥ 1
2

}
is a fundamental polygon for M2 and that it contains 6 copies of F . The quotient
surface �2/M2 is conformally equivalent to the triply punctured sphere.

Conversely suppose all three transformations A, B,C = AB are parabolic with
distinct fixed points. Prove that 〈A, B〉 is a discrete group preserving some round
disk in �2. In fact, it is conjugate to M2. In short, there is only one triply punctured
sphere, up to Möbius equivalence.

More generally, a fuchsian group � is called a (hyperbolic) triangle group of signa-
ture (p, q, r), 2≤ p, q, r ≤∞, if it is generated by elements A, B such that A, B,C=
B A are elliptic of orders p, q, r — or parabolic if the corresponding order is infinite.
Providing 1

p+ 1
q+ 1

r <1, there exists such a fuchsian group (Exercise 3-1). The triangle
group arises from a hyperbolic triangle with vertex angles (π/p, π/q, π/r) by first
taking the group 〈a, b, c〉 generated by the reflections in the sides and then passing to
the index two, orientation preserving, subgroup generated by A=ab, B=bc,C= ca.
The presentation is � = 〈A, B,C : Ap = Bq = Cr = ABC = 1〉.

The modular group has signature (2, 3,∞) and M2 has signature (∞,∞,∞).
Prove that up to Möbius equivalence there is only one group for each such signa-
ture. In fact, show using the trace identities that a triangle group must necessarily be
fuchsian.

While we are dealing with the fundamental polygon for M2 we will take the op-
portunity of pointing out the following phenomenon. If we move the fundamental
polygon to the unit disk �, it is bounded by a chain of four circular arcs orthogonal to
∂� and mutually tangent at their points of intersection. The group M2 is generated by
pairing successive arcs, sending the exterior of one to the interior of its partner. The
four points of tangency correspond to the three punctures on the quotient 3-punctured
sphere. But we can equally pair the opposite arcs instead of the adjacent ones. Show
that this results in a quotient which is a once punctured torus!

In particular we have shown that the same fundamental polygon can serve for two
entirely different groups.

SL(2,�) itself is generated by A = (0
1
−1

0

)
and B = (0

1
−1

1

)
, and also by

( 1
0

1
1

)
and

V = (1
1

0
1

)
. It has the presentation 〈A, B | A2 = B3, A4 = id〉. See [Magnus 1974,

p. 108].
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Fig. 2.6. Tessellation by the (2,3,7) group. Two adjacent triangles form a fundamental poly-
gon. A single triangle is a fundamental polygon for the reflection group. A fundamental
polygon for the subgroup associated with the Klein surface (page 72) is also indicated.

2-6. A crash course on tori. Take ω1, ω2 ∈� with Im(ω2/ω1) > 0. Consider the rank
two parabolic group

G = 〈z �→ z+ω1, z �→ z+ω2〉,

associated with the lattice in � of the points {mω1+nω2}, m, n∈�. The parallelogram
with vertices (0, ω1, ω2, ω1+ω2) is a fundamental parallelogram: its G-orbit covers
� without overlap. The quotient T = �/G is a torus. The euclidean metric in �

projects to T and the sides [0, ω1], [0, ω2] project to a pair of simple loops which
cross each other only at the projection of 0.

Set ω′2 = aω2 + bω1, ω
′
1 = cω2 + dω1, where a, b, c, d are integers satisfying

ad − bc = 1 (so that ω1, ω2 likewise can be expressed as an integral combination of
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ω′1, ω
′
2). Thus {ω′1, ω′2} is a new basis of the lattice. Every change of basis arises in

this manner.
The only conformal mappings of � are the affine mappings z �→ az+b. An affine

mapping takes one lattice (ω1, ω2) to another; it projects to a conformal mapping of
one quotient torus to the other, sending one pair of loops to the other. Since we do
not want to distinguish two lattices so related, we can normalize by focusing instead
on ratios τ = ω2/ω1, with Im τ 
= 0, and lattices {m+ ni}.

In this convention τ ′ =ω′2/ω′1 determines the same lattice if and only if there exists
a normalized Möbius transformation with integer entries a, b, c, d such that

τ ′ = A(τ )= aτ + b

cτ + d
, τ = ω2

ω1
.

Such a transformation A is called a modular transformation. It sends each torus
to a conformally equivalent one: Instead of the parallelogram (1, τ ) there is a new
fundamental parallelogram (1, τ ′) for the same lattice. The group of modular trans-
formations is of course the modular group of Exercise 2-5.

We can subject τ to the following additional normalization: Im τ > 0, |τ | ≥ 1,
−1

2 < Re τ ≤ 1
2 but Re τ > 0 if |τ | = 1 [Ahlfors 1978, §6.2.3]. This choice uniquely

determines τ amidst its orbit under the modular group (Exercise 2-5).
The space T of all tori can thus be taken to be the upper half-plane {τ : Im τ > 0}.

Two points τ, τ ′ represent conformally equivalent tori if and only if they differ by a
modular transformation. The modular transformations are of course isometries of T.

A fundamental parallelogram “rolls up” to give the quotient torus T . The specific
choice of fundamental parallelogram gives a marking of the torus, in that the two
pairs of edges project to an specific ordered pair of simple loops on the quotient torus.
(The two loops are geodesics in the euclidean metric of the torus and cross each other
exactly once.) Different choices for the fundamental parallelogram correspond to
different choices for this pair of simple loops and different choices in the orbit of the
initial τ under the modular group.

The change of marking arising from changing τ to τ ′ is induced by a conformal
automorphism of the underlying torus if and only if τ ′ = τ is a fixed point of A, which
is then necessarily elliptic. This can happen only for special lattices — special values
of τ , namely for τ = i (square), τ = e2π i/3, or τ = e2π i/6. The modular transformation
that fixes the point τ = i is τ ′ = −1/τ .

There is a continuous group that maps every torus unto itself, without fixed points.
There is a unique element that maps a given point to any other. This group is the
projection to the torus of the group {z �→ z+c : c ∈�} of translations of �. By fixing
say z = 0 as a lattice point, we prevent this group from acting on the quotients.

In addition the map z �→ −z projects to every torus T . It becomes a conformal
automorphism of order two with exactly four fixed points. The quotient T/〈z �→−z〉
is conformally equivalent to �∪∞. and T is branched of order two over four distinct
points. Apart from the group of translations above, this is the only affine map that
induces a conformal automorphism of all tori. Since it has order two, it is called the
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hyperelliptic involution. All closed surfaces of genus 2 also have such an conformal
involution which by necessity has six fixed points (see Exercise 2-13), but relatively
few closed Riemann surfaces of each g > 2 support such an automorphism.

The euclidean line segment from 0 to p+qτ , with (p, q) relatively prime integers,
projects to a simple loop, and conversely every simple loop on T from the projection of
0 is determined in such a fashion. In other words, there is a one-to-one correspondence
between rational numbers q/p and unoriented simple loops from a given point 0∈ T .
The fraction 0/1 corresponds to α and 1/0 corresponds to β.

Actually it is quite artificial to choose the base point 0. Given a slope p/q with p, q
relatively prime, consider the family of all parallel euclidean lines with this slope. The
projection to T is a family of parallel, mutually disjoint simple loops (geodesics in the
euclidean metric) that fills up T . Conversely, each simple loop is freely homotopic to
such a family. In short, given any torus T and a basis α, β the set of free homotopy
or homology classes of simple closed curves on T is in one-to-one correspondence
with the rational numbers.

Let T be the square torus τ = i and α ∈ T be the simple geodesic loop coming from
a line with slope p/q. If (p, q) are relatively prime, which of course we will always
assume, there are relatively prime positive integers (r, s) for which ps − qr = ±1.
Choose β ∈ T to be the simple loop coming from a line with slope r/s. Show that
the number of times that α crosses β on T is exactly

i(α, β) = ∣∣det
( p

q
r
s

)∣∣.
Here i(α, β) is called the geometric intersection number of the loops α, β. It is the
least number of intersections any pair of curves α′ in the free homotopy class of
α and β ′ in the free homotopy class of β can have. Therefore if h : T → T is a
homeomorphism, i(α, β)= i( f (α), f (β)).

Let p, q be relatively prime integers, 0< p<q and consider the line L : y= (p/q)x
in the (x, y)-plane. It projects to a simple loop α on the quotient torus T . On T , there
is a shortest distance d from one side of α to the other side. Remembering that there
is a pair of integers (p′, q ′) with pp′ − qq ′ = ±1, show that

d = 1√
p2+ q2

.

Hint: minimize the distance of the lattice point m + ni to the line L . Show that the
line L ′ : y= (p/q)x+1/2q is as close as possible to L while projecting to the simple
geodesic on T parallel to α and halfway between its two sides.

What happens if τ → p/q, τ ∈ A(F), for some A ∈ Mod? The torus becomes
pinched along its (p, q) curve. What happens if τ → ζ ∈ � with ζ irrational? Then
τ runs through a sequence of polygons {A j (F)} with A j ∈Mod and lim A j = ζ . The
sequence of tori, which may be taken to be conformally all the same, collapse to the
lines of slope ζ , which is the “ending lamination” for the sequence. We will formally
study this idea in a more general context in Chapter 5.
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Again work with the square torus T . It is known that any (orientation preserving)
automorphism 
= id of T is homotopic to the projection of an affine map f described
in terms of column vectors by(

x
y

)
�→

(
a b
c d

)(
x
y

)
,

where a, b, c, d are integers satisfying ad−bc= 1. Let λ, λ−1 denote the eigenvalues
of the coefficient matrix (which therefore is conjugate to

(
λ
0

0
λ−1

)
). If λ > 1 show that

limn→∞ i( f n(α), β))=∞. Such a map on a torus, which is area preserving, is called
an Anosov mapping. It preserves two lines through z= 0, �a and �r , both at irrational
angles with respect to π . It stretches one by a factor of λ and compresses the other by
a factor λ−1. The projection of each line to T is a geodesic of infinite length, never
intersecting itself and dense on T . In contrast, if |λ| = 1, λ 
= ±1, then f has finite
order ( f n = id for some n). If λ=±1, f satisfies f (α)=α for some simple geodesic
loop α on T . The map f is what we will later call a Dehn twist.

An affine map A(z) = αz + β maps the lattice � = (1, τ ) onto itself if and only
if α ∈ � and ατ ∈ �. Of course this is satisfied if α ∈ �. For particular values of
τ it can be that α /∈ �. For these cases show that τ and likewise α satisfy quadratic
equations with integer coefficients.

The jacobian of the mapping is |α|2. That means the fundamental parallelogram
P = (1, τ ) is sent to a parallelogram of |α|2-times the area of P; the image covers the
torus T |α|2-times, which is necessarily an integer. Alternately P can be subdivided
into |α|2 subparallelograms so that the image of each covers the torus once. The
induced (analytic) mapping A∗ of the torus onto itself has degree |α|2.

How many fixed points does A∗ have? How many distinct solutions mod(�) does
(α − 1)z = 0 have? Well |α − 1|2 is the jacobian of the map z �→ (α − 1)z so it
induces a map of the torus that covers itself |α − 1|2-times, and by necessity this
too is an integer. So A∗ has exactly |α − 1|2-fixed points. Likewise the n-th iterate
An(z)= αnz+βn has |αn−1|2 fixed points. These become dense in T as n→∞, if
|α| 
= 1, that is, if A∗ is a n ≥ 2 to 1 analytic mapping of T onto itself.

For example, if α = i then we must have τ = i . The map A∗ has degree one and
two fixed points, namely the points on T corresponding to z = 0 and z = (1+ i)/2.

2-7. Suppose G is a noncyclic discrete group all of whose elements fix∞. Suppose
the subgroup G0 of parabolic transformations is a rank two parabolic group. Then G is
the extension of G0 by at least one of the following: an element of order two (possible
in all cases), an element of order four (possible only if a fundamental parallelogram
P for G0 is a square), or an element of order three or six (P is a rhombus with a π/3
vertex angle).

2-8. Suppose G is discrete. Take all the matrices corresponding to G and replace
them by their complex conjugates. Show that the resulting group G ′ is also discrete
and �(G ′)= J (�(G)), �(G ′)= J�(G), where J (z)= z̄. In fact G ′ = J G J .
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If two elements A, B in a discrete group without elliptics satisfy Ap = B Aq B−1,
p, q 
=0, then B preserves the fixed point set of A. Furthermore p=q and either A, B
lie in a one or two generator parabolic subgroup or both are powers of a loxodromic
element C .

2-9. Punctured tori and the Farey sequence. A once punctured torus has a hyperbolic
metric but a torus has only a euclidean metric. Yet topologically and analytically there
is a close relationship as a once punctured torus corresponds to a choice of basepoint
on the torus.

A group G representing a once-punctured torus in �2 is given by two loxodromic
generators X, Y without common fixed point and with parabolic commutator K =
XY X−1Y−1. Prove that XY cannot fix ∞. Hint: If XY fixes ∞ show that Y X
also fixes ∞ and must be parabolic. Then show that X and Y must fix ∞ (hint:
Y X = X−1(XY )X ).

A once-punctured torus is called square if it has two simple geodesics α, β which
have the same length and cross each other exactly once. Show that these curves are
the systoles for the surface — the geodesics that have the minimum length among all
geodesics on the surface. Automatically αβα−1β−1 is freely homotopic to a simple
loop that is retractable to the puncture.

Show that the matrices

A =
(−1+√2 0

0 1+√2

)
, B =

( √
2 1+√2

−1+√2
√

2

)

determine a square torus. Find a fundamental polygon in UHP.
Find the matrix generators for the once-punctured torus that corresponds to a reg-

ular euclidean hexagon with puncture at the center. What are its symmetries?
The Farey sequence F is very useful in studying once punctured tori. It is based

on the modular diagram. The Farey sequence is the orbit of the boundary ∂F2 of
the fundamental polygon for M2 presented in Exercise 2-5. What is interesting is its
labeling.

Note that the orbit of the ideal vertex {∞} under Mod is the set of all rational
numbers 
 (plus∞). Prove:

(i) The rational numbers m/n and p/q are ideal vertices of the tile g(F2), g ∈ M2

if and only if mq − np =±1.

(ii) The ideal vertex x/y of a tile g(F2) separates the other two ideal vertices m/n<
p/q of g(F2) if and only if

x

y
= m+ p

n+ q
.

Each irrational number ζ is the limit of a nested sequence of geodesics in the orbit of
∂F2. For example the sequence

. . . , [p/q,m/n], [p/q, (p+m)/(q + n)], [(2p+m)/(2q + n)], . . .
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The sequence can be described in terms of a left-right pattern in the edges of the
tessellation {M2(F2)}. There is a wonderful description of the Farey sequence in
[Mumford et al. 2002].

What we want to point out here is that the geodesic with endpoints m/n, p/q
represents a pair of simple closed geodesics α, β on the punctured torus with the
property that α crosses β exactly once. Here α has slope m/n and β has slope p/q —
see Exercise 2-6.

2-10. Here are some volumes and areas to compute. G is a nonelementary kleinian
group.

(i) Consider the group P2 = 〈z �→ z+1, z �→ z+ τ 〉, where Im τ > 0. The horoball
H = {(z, t) ∈ �3 : t > a > 0} is invariant under P2. Assume that its projection
C(τ ) to M(G) is embedded; this is a solid cusp torus. Using the hyperbolic
volume form dV = dx dy dt/t3 show that for θ = arg τ ,

Vol(C(τ ))= |τ | sin θ

2a2
, Area(∂C(τ ))= |τ | sin θ

a2
,

Vol(C(τ ))

Area(∂C(τ ))
= 1

2
.

For the universal horoball, a = 1. By Exercise 2-5 a fundamental parallelogram
for P2 can be chosen so that |τ | ≥ 1 and π

3 ≤ θ ≤ 2π
3 . Thus the volume of the

solid cusp torus is not less than
√

3
4 .

(ii) Likewise assume that the equidistant tube T (r) of hyperbolic radius r about a
closed geodesic of length L is embedded in M(G). Show by working in the
upper half-space model that

Vol T (r)= πL sinh2 r, Area ∂T (r)= 2πL sinh r cosh r,

Vol T (r)

Area ∂T (r)
= 1

2 tanh r ↗ 1
2 as r ↗∞,

Vol T (r)= 1
2 Area ∂T (r)+ 1

2πL(e−2r − 1).

(iii) In the case that M(G) has finite volume, borrowing terminology from Section
3.4, deduce that

Vol(M(G))≤ Vol(M(G)thick)+ 1
2 Area(∂M(G)thick). (2.6)

In fact M(G)thick is a compact submanifold whose complement consists of a
finite number of cusp tori and tubes about short geodesics.

(iv) Suppose M(G) is a closed manifold (compact, without boundary). Show that
there is a shortest closed geodesic γ . If γ has length L , show that it has an
embedded tubular neighborhood of radius L/4. Hint: expand the tubular neigh-
borhood until at radius r it first touches itself at a point p. The two orthogonals
of length r from p to γ , with a segment of γ of length ≤ L/2, form a closed
loop. Its length must be ≥ L .

2-11. A gaussian integer is a number of the form p + iq, where p, q are integers.
The group � of normalized matrices whose entries are gaussian integers is called the
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Picard group. Show that it is a discrete group but its limit set is the whole sphere.
Hint: It is generated by the four parabolic transformations,

S(z)= z+ 1, T (z)= z

−z+ 1
, U (z)= z+ i, V (z)= z

i z+ 1
.

However note that T = AS A, V = AU A, where A(z)=−1/z. Furthermore, if B(z)=
−z, A = T ST and B = U AU−1 AU A. Therefore the Picard group is generated by
three elements 〈S, T, A〉. For details, including an explicit fundamental polyhedron
see [Wielenberg 1978].

The same reference discusses a variety of subgroups of finite index without elliptic
elements of �. These interesting subgroups give rise to quotient spaces which are
homeomorphic to a variety of knot and link complements, including the Borromean
rings.

2-12. Equality in Jørgensen’s inequality. There are continuous families of geo-
metrically finite groups (Section 3.6) as well as uncountably many nonconjugate,
nonelementary, geometrically infinite 2-generator discrete groups that give equality
in Jørgensen’s inequality [Jørgensen et al. 1992]. In these cases A must be elliptic or
parabolic [Jørgensen 1976]. The examples are typically extensions of the modular or
other triangle groups. The Picard group is one such extreme group.

However in the class of fuchsian groups, only the triangle groups G (Exercise 2-5)
with signature (2, 3, q) with 7 ≤ q ≤∞ give equality [Jørgensen and Kiikka 1975].
Confirm that this is the case for the first few examples.

Prove that if 〈A, B〉 gives equality, then 〈A, B1= B AB−1〉 is also a nonelementary,
discrete group which gives equality in Jørgensen’s inequality. Hint: You will need the
identity,

tr(AB1 A−1 B1
−1)= [tr(AB A−1 B−1)− 2][tr(AB A−1 B−1)− tr2(A)+ 2],

and its consequence,∣∣tr(AB1 A−1 B1
−1)− 2

∣∣≤ ∣∣tr(AB A−1 B−1)− 2
∣∣.

See also Lemma 1.5.6.
Using the property proved in the preceding paragraph, prove that if 〈A, B〉 gives

equality, then A is either elliptic of order at least 7 or is parabolic.

Prove that if two Möbius transformations A, B with equal traces generate a nonele-
mentary discrete group, then [Jørgensen 1981]∣∣tr(AB A−1 B−1)− 2

∣∣> 1
8 .

2-13. Genus-two surfaces. In the disk model find a regular hyperbolic octagon with
vertex angles π/4. Hint: start with a tiny octagon centered at z = 0. It is nearly a
regular euclidean octagon with vertex angles 3π/4. Now increase the distance of the
vertices from the origin; the vertex angles strictly decrease to zero, as they become
ideal vertices.
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Next, in the positive direction label the sides of the octagon P as a1, b1, a−1
1 , b−1

1 ,

a2, b2, a−1
2 , b−1

2 , as in Figure 2.1 on p. 73. Find an isometry Ai that maps ai onto a−1
i

but sends the positive direction along ai to the negative direction along a−1
i , that is

Ai (P) is adjacent to P along the exterior side of a−1
i . Similarly find Bi . By starting

with a vertex p of side a1, show that the commutator product (starting from the right)
satisfies B−1

2 A−1
2 B2 A2 B−1

1 A−1
1 B1 A1= id. This is called a vertex relation; it says that

in the orbit of P, successive images of P are arranged in the indicated cyclic order
about a vertex. Show that the orbit of P under the group 〈A1, A2, B1, B2〉 covers
�2 without overlap. Show that the quotient surface R is a genus 2 surface, the eight
vertices project to a single point O , each side projects to a simple loop from O , the
loops are mutually disjoint except at O , and they bound a simply connected region

 on R. The vertex relation is a consequence of the fact that if you make a complete
circuit of ∂
, the resulting loop is contractible to a point.

Does the rotation by π/4 of the octagon induce a conformal mapping of R onto
itself? How about rotation by π? How about reflection about the geodesic between
two opposite vertices. What fixed points on R do the induced mappings have?

Instead of the above pattern, label the edges in the sequence a1, b1, a2, b2, a−1
1 , b−1

1 ,

a−1
2 , b−1

2 and repeat the process, pairing the opposite sides of P as before. Find the
vertex relation. The quotient gives another surface of genus 2 but for which the simple
loops are arranged in a different pattern. Consider the rotation of P by π . Confirm
that on the quotient, it maps each simple loop to its inverse, and has exactly six fixed
points. This involution is called the hyperelliptic involution J ; every closed surface
of genus two has one. The quotient R/〈J 〉 is a sphere with six branch values of order
two, that is, R is a two-sheeted cover of �2, branched over six points.

Conversely, given six distinct points in �2, the two-sheeted cover branched over
the six points is a closed surface of genus two. The covering surface is determined by
a normal subgroup of index two in the fundamental group of the 6-punctured sphere;
can you find the subgroup?

Show using fuchsian groups that every closed genus-2 surface has a hyperelliptic
involution. Hint (following Jørgensen): Express the basic relation

AB A−1 B−1C DC−1 D−1 = 1

as AB A−1 B−1 = DC D−1C−1. Set U = A−1 B−1C and V = DC−1 B A. Conclude
that ABU V = V U B A. Think then of a double bagel with A, B simple loops around
the holes and U, V through the holes. Skewer the double bagel, puncturing it at 6
points, and then rotate by 180◦. The involution is given by A → A−1, B → B−1,
C→ C−1, D→ D−1. See also the example of Section 7.2.

2-14. No tangents at loxodromic fixed points. Show that a limit set�(G) cannot have
a tangent line at a fixed point of a loxodromic g ∈ G with tr(G) /∈ � unless �(G) is
Möbius equivalent to a circle. Therefore there are no smooth limit sets except circles
and euclidean lines. See also Exercise 3-21.
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Outline of proof. [Lehto 1987, Lemma 4.2]. Assume � = �(G) is not Möbius
equivalent to a circle. Suppose to the contrary that � is the tangent line to � at z = 0
and there is a loxodromic g ∈ G of the form z �→ keiϕz, 0< k < 1, 0≤ ϕ < 2π .

If ϕ = 0, find z ∈�, Im z 
= 0. Then for all n, arg gn(z)= arg z 
= 0, π . There is a
contradiction as n→∞. If instead ϕ = π , upon working with g2 we likewise get a
contradiction.

More generally set φ = min{ϕ, |π−ϕ|, 2π−ϕ} so that 0 < φ ≤ π/2. Construct
the symmetric wedges of angle φ centered along �: V = {reiθ : θ ∈ (−φ/2, φ/2)},
V ′ = {reiθ : θ ∈ (π − φ/2, π + φ/2)}. Thus if z lies in V ∪ V ′, then g(z) /∈ V ∪ V ′.
Choose a sufficiently small disk D about 0 so that � ∩ D ⊂ (V ∪ V ′) ∩ D. Then
choose z 
= 0 in �∩D sufficiently small so that g(z) ∈ D. But then g(z) ∈�∩D yet
g(z) /∈ V ∪ V ′, a contradiction.

2-15. Prove a Möbius transformation of the form A = (a
b

b
d

)
, ad − b2 = 1, satisfies

J AJ = A−1, where J (z) =−z. Conclude that if a discrete group G is generated by
elements of this form, then �(G) is invariant under J .

2-16. Modeling conformal groups by Möbius groups. Suppose G is a group of Möbius
transformations preserving � ⊂ � and φ : G → H is an isomorphism onto a group
of conformal automorphisms H that map another region �′ onto itself. Suppose
� : �→ �′ is a quasiconformal mapping such that �g�−1 = φ(g) for all g ∈ G.
Prove that there is a conformal mapping � :�′ →�∗ such that �h�−1 is a Möbius
transformation for all h ∈ H . Thus if the action of H on �′ can be modeled by the
action of a group of Möbius transformations, we can find a region �∗, conformally
equivalent to �′, where the group H actually becomes a group of Möbius transfor-
mations [Maskit 1968].

Hint: Confirm that the Beltrami differential μ= (∂�/∂ z̄)
/
(∂�/∂z) satisfies

μ(gz)
g′(z)
g′(z)

= μ(z)for all g ∈ G.

Extend μ to �2 by setting it equal to zero in the complement of �. Then solve the
corresponding Beltrami equation on �2; the solution� :�→�(�)=�∗ is uniquely
determined if we require it to fix three prescribed points. Show that ψ : g �→�g�−1

is an isomorphism of G to a group of Möbius transformations H∗ preserving �∗.
Show that � ◦�−1 : �′ → �∗ is a conformal mapping inducing the isomorphism
ψ ◦φ−1 : H → H∗.

2-17. Geometric group theory. An abstract finitely generated group H can be investi-
gated geometrically by analyzing its action on the Cayley graph �(H). The graph is
constructed as follows. Select a generating set G= {g1, g2, . . . , gr }. We will assume
that if gk ∈ G then also g−1

k ∈ G; the identity is not put in G. The vertices of the graph
H are the distinct elements of H . An (oriented) edge is a triple E = (h1, h2; gk

ε),
where h1, h2 ∈ G, h2 = h1gk

ε, and ε =±1. The initial point of E is h1, the terminal
point is h2 and the inverse of E is E−1= (h2, h1; gk

−ε). There is a special case when
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the element gk has order two: then the edge E can be regarded as unoriented. If O
is the vertex that corresponds to id ∈ H , then any word in the designated generators
is uniquely represented by a path of oriented edges starting from O . The word is the
identity if and only if the corresponding path is a closed loop.

For example the word g1g2g1
−1 reading from the left corresponds to the path com-

posed of the successive edges from O:

(id, g1; g1), (g1, g1g2; g2), (g1g2, g1g2g1
−1; g1

−1).

If g1g2g1
−1 = id then the third edge is the inverse of (id, g1; g1).

Two graphs are called isomorphic if there is a one-one mapping of the vertices and
edges of one onto the vertices and edges of the other which preserves orientations.

To embed H in a particular space, for example in �2,�2 or �3, we have to represent
its vertices by distinct points and its edges by smooth arcs or geodesic arcs which are
mutually disjoint except for common endpoints.

The Cayley graph �(H) is connected (why?). If there are no (nontrivial) closed
loops the graph is called a tree. A closed loop is trivial if it is a succession of edges
followed by the succession of edges with the opposite orientations.

Show that for a free group H on one generator with generating set {g, g−1},�(H) is
isomorphic to the graph on � whose vertices are integers and whose edges are directed
segments between them. Show that graph of the free group on two generators with
a generating set G of four elements is a tree and draw an embedding in �2. Use the
model of a n-generator Schottky group to embed the Cayley graph of an n-generator
free group in �.

A Cayley graph can be made into a metric space by mapping each edge with distinct
endpoints onto the unit interval thereby assigning it unit length and proportionally
giving smaller lengths to each segment of the edge. If both endpoints of the edge are
the same, map it onto the circle of unit length. There is at least one geodesic between
any two vertices; its length is the number of edges in a shortest chain in the graph
that connects them. This metric determines a topology on the graph.

The ends of the graph are defined as follows. For any compact subset K , count
the number of unbounded components of � \ K . The number of ends of �(G) is
defined to be the supremum of the number of such components over all K . Show that
the number of ends does not depend on the generating set. It is known that a Cayley
graph has either zero, one, or an infinity of ends.

The Cayley graph allows “visualization” of the group H , generalizing the follow-
ing classical representations: To construct the Cayley graph of a fuchsian group or
kleinian group we can use the tiling by a fundamental polygon or polyhedron centered
at a point O , which is not an elliptic fixed point (Section 3.5). Use the generating
set determined by the face pairing transformations. Show that the Cayley graph is
represented by drawing geodesic segments from O the successive points in the orbit
of O under words in the face pairing transformations. The graph then appears as
“dual” to the tiling by the orbit of the fundamental region and combinatorially reflects
that tiling — see Section 3.4. As the graph gets closer to the boundary, more and more
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it looks like hyperbolic space itself, especially if you are very farsighted an cannot see
the edges clearly. Analogy with this concrete situation often inspires the intuition for
finding “geometry” in abstract Cayley graphs and looking for a “sphere at infinity”.
The Cayley graph has turned out to be a powerful tool to study particular classes of
abstract groups.

The group H acts on its Cayley graph. Each f ∈ H sends a vertex v to f v and an
edge E = (h1, h2; gk

ε) to f E = ( f h1, f h2; gk
ε f ). The group action is an isometry in

the path metric. In the classical cases at least, we can find a connected finite subgraph
that serves as a fundamental set for the action.

Even the family of finitely presented groups is too general to deal with; for example,
the question of deciding whether a given element of the group is the identity is known
to be undecidable; such groups do not seem amenable to a geometric approach. It was
Thurston’s work that brought modern combinatorial group theory back to its historic,
geometrical roots. In his famous 1987 paper, Gromov presented a condition on the
groups that would make possible an effective geometric theory. His definition models
a certain property of isometry groups of hyperbolic space.

An abstract, infinite, finitely generated group H is said to be negatively curved or
δ-hyperbolic or word-hyperbolic or simply hyperbolic if it has the following property:
There exists a universal constant δ > 0 such that for any geodesic triangle∗ 
 in the
Cayley graph �(H), a point on one side of 
 lies within distance δ of the union of
the other two sides, however long the sides are. This property is called δ-thinness
or the Rips thin triangle property. We know it holds for hyperbolic triangles. The
thinness property is independent on the chosen generating set of H . (What does
“zero thinness” mean?)

The condition of thinness is a global condition that suggests that the Cayley graph
in the large “looks” like hyperbolic space. The theory was first outlined in [Gromov
1987]. It now occupies a large place in combinatorial group theory (see the wonderful
expositions [Cannon et al. 1997], [Cannon 2002], which has many explicit examples,
[Cannon 1991] or [Ohshika 2002]). The study of hyperbolic groups involves a kind
of discrete hyperbolic geometry in the large. A word-hyperbolic group has an “space
at infinity”, which for kleinian groups is �2, and which serves a fundamental role in
analyzing the group. Within the theory a major question is how to determine whether
a hyperbolic group is isomorphic to a kleinian group, more specifically ,

Cannon’s Conjecture. A hyperbolic group with boundary homeomorphic to �2 is
isomorphic to a kleinian group representing a closed manifold.

The boundary ∂H of a hyperbolic group H is defined as equivalence classes of
geodesic rays with a “natural topology” in terms of the action on the rays by H (as
is to be expected from knowledge of hyperbolic space).

According to Gromov, randomly chosen groups are hyperbolic. Measure the com-
plexity of a group given by n generators and a finite number of relations in the gen-
erators {rk} by N = n +∑k length(rk). Let AN denote the number of groups with

∗ A geodesic triangle consists of three vertices and three geodesic segments connecting them.
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complexity ≤ N and let HN be the number of hyperbolic groups with complexity
≤ N . It is a theorem [Ol’shanskiı̆ 1992] that limN→∞ HN/AN = 1!

Word hyperbolic groups include all finite groups, finitely generated free groups,
fundamental groups of closed hyperbolic n-manifolds. Yet not all groups are hyper-
bolic, for example, a 2-generator abelian group. Its Cayley graph is a square lattice in
�. In turn, hyperbolic groups are a special class of automatic groups as in finite state
automata. This is the class of groups that can be effectively analyzed by computer, see
[Epstein et al. 1992; Ohshika 2002]. The theory originated with a paper of Cannon as
distilled by Thurston, and was extensively developed in The Geometry Center (1988–
1994). Automatic groups are finitely presented, and have a solvable word problem.
An extension to the theory admits the fundamental groups of finite volume hyperbolic
manifolds which are not closed. A finitely presented group is hyperbolic if and only
if its Cayley graph satisfies a linear isoparametric inequality, while if it is automatic
it satisfies a quadratic isoparametric inequality.

Actually the notion of “hyperbolic” is not restricted to graphs. Any metric space
with the property that there is a geodesic between any two points can be considered
from the point of view of hyperbolicity — see [Ohshika 2002].

Hyperbolic groups have a certain “negative curvature” while abelian groups have
more of a zero curvature (think tori!). Interesting groups may have a negative-like
structure yet may also include some special abelian subgroups. An example is the
mapping class group, that is, the group of homotopy classes of orientation preserving
homeomorphisms of a surface onto itself. To remedy this situation in many cases,
Farb [1998] introduced the concept of relatively hyperbolic groups.

Here is the definition in the simplest situation. Suppose H is a finitely generated
group and �(H) is its Cayley graph. Let G ⊂ H be a finitely generated subgroup.
Form a new graph �̂ as follows. For each h ∈ H identify all the vertices of �(H)
that correspond to elements lying in the left coset hG.

H is said to be relatively hyperbolic with respect to G if �̂ is Gromov hyperbolic.
One can extend this definition to a finite number of finitely generated subgroups Gi .
For example if M(H) has finite volume with one cusp then H is hyperbolic relative
to the maximal parabolic subgroup associated with the cusp.

With this new definition, the mapping class group and Teichmüller space itself
become relatively hyperbolic [Masur and Minsky 1999].

2-18. More on Schottky groups. Prove that a freely generated, purely loxodromic
fuchsian group G (which is necessarily a group of the second kind) acting in the
upper and lower half-planes, normalized so that ∞ is a limit point, is a classical
Schottky group, where the Schottky circles are orthogonal to �. Hint: Start with the
simplest case that UHP/G is a torus with one boundary component so that G has
2-generators. There are four circles, and the opposite, not adjacent, circles are paired.
(If instead the adjacent circles are paired the quotient is a 2-holed disk.) When does
the converse hold?
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What happens when the 4-Schottky circles form a chain of mutually tangent circles
with respect to �2? (Answer: When the pairing is again opposite there results a once
punctured torus and the group becomes fuchsian of the first kind; the fractal dust of
a Schottky groups congeals to �.)

Really, in talking about Schottky groups, to a large degree it makes little matter,
in describing the construction, if there are tangencies of circles, so long as they are
arranged in pairs such that the pairing elements are loxodromic or parabolic sending
the exterior of one circle onto the interior of its partner. When a point of tangency
is fixed by a parabolic it becomes a puncture, however if the point is not so fixed
it does not necessarily become a puncture — see [Gilman and Waterman 2003]. In
particular, any finitely generated fuchsian group such that the quotient is a finitely
punctured (≥ 1) closed surface is such a limiting case of a circle-Schottky group.

Of course the conditions can be weakened further so that the Schottky circles be-
come Jordan curves. Such will be the case we take general quasiconformal deforma-
tions of these fuchsian groups. There are explicit examples given in [Mumford et al.
2002].

Using Ahlfors’ Finiteness Theorem (Section 3.1) and Maskit’s Planarity Theorem,
prove that any finitely generated, free, purely loxodromic kleinian group G with
�(G) 
=∅ is a Schottky group [Maskit 1967]. A much shorter proof makes use of the
convex core to be introduced in Section 3.10: A Schottky group G is characterized
by the fact that the convex core of M(G) is a handlebody (in the case G is fuchsian,
we have to take an ε-neighborhood of the convex core). This must be the case for a
geometrically finite group that is free and purely loxodromic.

Bringing in the notions of ends and tameness from Section 5.3 for M(G), together
with the Covering Theorem (5.6.1), we can state the following which is particularly
interesting when �(G)=∅ [Canary 1996, Corollary D]:

Theorem 2.9.1. Assume G is a finitely generated kleinian group such that �3/G has
infinite volume. Suppose H ⊂ G is a finitely generated subgroup of infinite index
which is purely loxodromic and free. Then H is a Schottky group.

Given a set of Schottky circles, consider the group generated by reflections in them.
How is this group related to the Schottky group?

Given a set of Schottky circles (mutually disjoint) let U denote their common exte-
rior in �2. Show that any conformal automorphism of U is the restriction of a Möbius
transformation. (Hint: Consider the group of reflections in the circles and correspond-
ingly reflect each automorphism g to get a conformal map on the complement of the
limit set �; the map also extends to be an automorphism of �. You will need to use
the fact that this set has area zero so that the functions are analytic on this set as well.)
Go on to prove that this group of automorphisms is finite — if there are more than two
circles. (Hint: erect the hyperbolic plane in �3 on each circle and consider the set of
hyperbolic distances between every two of them.) What is the effect of the group of
automorphism on the quotient surface �(G)/G?
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2-19. If g, h generate a discrete group without elliptics, prove that at least one of the
four transformations is loxodromic: g, h, gh, gh−1.

2-20. Rational billiards. Here is a Riemann surface construction that has been used
extensively to study the dynamics of “rational” billiards on a euclidean polygon P ⊂
�, that is not necessarily convex or even simply connected.

Corresponding to each side ei of P , place a parallel line e′i , through the origin.
Denote the reflection in e′i by σi . By definition, a rational billiard table is one with the
property that the group � generated by the reflections {σi } is finite; denote the identity
by σ0. If ∂P is connected, this condition is satisfied if and only if each interior vertex
angle is a rational fraction of 2π . If ∂P is not connected, this requirement is only a
necessary condition for a rational table.

We will also use the notation σi to denote the reflection of P in the edge ei .
Under the assumption that P is a rational table, here is how to glue copies of P

together to get a closed Riemann surface.
Let N be the number of distinct elements {γk} of �. Take N copies of P each with

the labeled edges; denote the copies by {Pγk }, 1≤ k ≤ N .
Suppose γ j = γiσm for some index m. Then identify the edge em of Pγ j with the

edge em of the reflection σm(Pγi ): attach the reflected polygon σm(Pγi ) to the polygon
Pγ j along the common edge em .

Show that with this rule for attachment, an abstract polygon S can be built up from
the N tiles. The end result will have no free edges. The vertex angles will be integer
multiples of 2π .

Another description of gluing is as follows. Consider the normal subgroup �0

of even index 2M in � consisting of even numbers of reflections in the lines e′i .
Interpreted as the product of reflections in the edges of P , �0 consists orientation
preserving euclidean motions z �→ eiϕz + c. The cosets of �0 ⊂ � are {�0σ j }, 0 ≤
j ≤ m. Now take the polygon P , and the reflected copies of P , σ1(P), σ2(P), . . .,
and glue the edges together using the elements of �0.

The complex structure on S is given by the euclidean coordinates on the polygons,

but the vertices must be flattened out by use of z
1
p at a vertex with angle sum 2πp.

When P is a rectangle, the group has order 4 and the Riemann surface is a torus;
when P is an equilateral triangle, the group has order 10 and the Riemann surface is
also a torus. For the theory, see [Masur and Tabachnikov 2002]. The point is that on
the surface, a ball starting at a point of P , instead of bouncing off the edges of P runs
in a straight line on S, except a billiard path that hits a vertex must end since there is
no unique continuation.

2-21. Starting with the finite group of a euclidean polyhedron, can you adjoin other
such finite polyhedral groups to obtain a nonelementary kleinian group with singu-
lar set forming a specified trivalent graph with the properties specified by Proposi-
tion 2.5.2?
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2-22. Homology and simple loops. Confirm the following folk theorem: Suppose S is
a closed, oriented surface of genus g ≥ 1. Fix a “canonical homology basis” Ai , Bi ,
1 ≤ i ≤ g. This means {Ai , Bi } are simple loops generating the first homology, and
Ai crosses Bi once but is disjoint from A j , B j for j 
= i , that is, each pair (Ai , Bi )

corresponds to a “handle”. An element γ of the first integral homology group can be
written, γ ∼∑(ai Ai + bi Bi ), where each ai , bi is an integer.

Prove that the homology class of γ contains a simple closed curve if and only if the
greatest common denominator of {a1 . . . ag, b1 . . . bg} is one. For a proof see [Schafer
1976].

2-23. Belyı̌ functions on Riemann surfaces. A Belyı̌ function on the closed Rie-
mann surface R is a meromorphic (rational) function f : R → �2 such that each
of its critical values is at one of the points 0, 1,∞. Here a critical point is a point x
where the derivative vanishes, and the corresponding critical value is f (x). Not every
closed surface supports such a function; not every Riemann surface can be realized
as the branched cover of �2 with all branch values in {0, 1,∞} (for the topological
possibilities see page 63).

Each of the following conditions is necessary and sufficient for R to support a Belyı̌
function:

(i) There exists a finite set of points {xi } ⊂ R such that the Riemann surface R′ =
R\{xi } is uniformized by a finite index subgroup � of the modular group Mod=
PSL(2,�): R′ = �2/�.

(ii) R′ carries a horocycle packing: a collection of mutually disjoint horodisks such
that the complement is a union of triangular regions.

(iii) Belyı̌’s Theorem. R is the Riemann surface determined by an irreducible poly-
nomial equation P(x, y)= 0 whose coefficients are algebraic numbers.

A horodisk on R′ is the projection of a horodisk at a parabolic fixed point of �.
For example for the Riemann surface given by xm + yn = 1, the projection f :

(x, y) �→ x has critical values in {1,∞} and so is a Belyı̌ function.
In particular Riemann surfaces carrying Belyı̌ functions are dense in all Riemann

surfaces. Markovic asks: In the moduli space of a closed Riemann surface R, could
it be that corresponding to any two Belyı̌ surfaces, there a Riemann surface which is
an unbranched cover of each?

The proof of the first item is simplest. Let π : �2 → �2/M2 be the projection
to the thrice punctured sphere S3 = �2 \ {0, 1,∞} as in Exercise 2-5. If a Belyı̌
function f exists on R then R\ f −1{0, 1,∞} is a covering surface of S3 and therefore
corresponds to a finite index subgroup of Mod. Conversely suppose R=�2/�. Then
R is a covering surface of S=�2/Mod, which is the sphere punctured at∞ with two
branch values. Let f : R→ S be the projection. Let R′ denote the result of removing
from R inverse images of the branch values on S, and let S′ be the sphere punctured
at the two branch values and at∞. Then f : R′ → S′ is an unbranched covering. The
points on R that we removed are the critical points of f .
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For thorough studies of this subject and its relation to oriented trivalent graphs and
Grothendieck’s “dessins d’enfants”, see the beautiful papers [Jones and Singerman
1978; 1996], and also [Brooks 1999].

2-24. A group is determined by its traces. Suppose A, B,C are loxodromic without
both fixed points in common. Show that the two-generator group 〈A, B〉 is determined
up to conjugacy by the traces of A, B,C = B A. Then show that any finitely generated
irreducible group (Exercise 2-1) is determined up to conjugacy by the traces of its
elements. Hint: Normalize A to have fixed points 0,∞ and B to have 1 as a fixed
point. If the group is generated by A, B, D, E, . . . work in turn with A, D, D A,
by temporarily conjugating so that D has fixed point 1, etc. Two parabolics A, B
without a common fixed point can be conjugated so that A is the unit translation and
B has fixed point at 0. Work out the precise requirements to carry out your argument.
Discreteness is not needed for your proof.

2-25. Subgroups of finite index. Suppose G is a fuchsian group representing a closed
surface R = �2/G. Show that there are subgroups of finite index k (not necessarily
normal subgroups) for any k ≥ 2. In other words, show that there are k-sheeted,
unbranched covering surfaces of R. If H has index k in G, the subgroup H∗ ⊃ H
generated by {ghg−1 : g ∈ G, h ∈ H} is a normal subgroup of G, of index at most k.

The topological possibilities are described by the Riemann–Hurwitz relation

g∗ − 1= k(g− 1),

where g∗ is the genus of the k-sheeted cover. (Hint: If you can topologically find
finite-sheeted cover S′ of R, you can lift the hyperbolic metric from R to S′ to get
a conformal cover of R. To find a topological cover, cut R along a simple geodesic,
and join two copies of the cut surface by cross identifying along the cuts.) In fact
there are only a finite number of index-n subgroups (why?).

Let G∗n be the intersection of all subgroups {Gk} of G of index k ≤ n. Show that
G∗n also has finite index; �2/G∗n is at most a finite-sheeted cover of R and of any
other k-sheeted cover of R, where k ≤ n. (Hint: The intersection Gk ∩G ′k has index
at most n2.) Show that Gn+1 ⊂ Gn .

Define a metric ρ(·, ·) on G as follows. Given two elements A, B ∈ G set

ρ(A, B)=min
{1

n
: AB−1 lies in a subgroup of index n

}
.

Thus ρ(A, B) ≤ 1 and ρ(An, id)→ 0 if and only if An ∈ Gn with n → ∞. The
completion of G with respect to the metric ρ (called the profinite completion) is a
compact topological group Ĝ homeomorphic to a Cantor set. One then works with
the space �×Ĝ. The action of G on this space is T (z, t)= (T z, tT−1), where T ∈G,
t ∈ Ĝ. For an exposition and further development of this subject, which leads to an
infinite-dimensional Teichmüller-like space called the universal hyperbolic solenoid,
see [Markovic and Sarić 2004].
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2-26. The groups of regular polyhedra: spherical orbifolds. Here we will follow
the treatment of [Ford 1929]. Let P be a regular euclidean polyhedron inscribed in
the unit sphere �2. Denote the number of its faces, edges and vertices by F, E, V
respectively. By Euler’s formula, F − E + V = 2. Let ν denote the number of faces
at each vertex. When ∂P is projected on �2 there results a tessellation of �2 by F
regular spherical polygons of vertex angles 2π/ν. Let μ denote the number of edges
bounding each face.

We are interested in the group G of symmetries of P. This is a group of rotations
of �2. There are 2E of them: for given an edge [a0, b0] and another [a, b], there is a
symmetry that sends [a0, b0] to [a, b] and to [b, a] in either order.

Here is how to construct a fundamental domain for the action of G on �2. It will
be a spherical triangle (with one exceptional case to be included below).

Choose an edge, to be called the outer edge, and an adjacent face. Join the ends of
the edge to the midpoint of the face by two lines we will call inner edges. We have
then a euclidean triangle with central angle 2π/μ.

Project the triangle to �2, for example by stereographic projection from the plane.
We have an spherical triangle σ of central angle 2π/mu and angle π/ν at the other
two vertices.

Let S be the elliptic of order μ that fixes the inner vertex of σ . Locate the midpoint
of the outer edge and let T be the elliptic of order two that fixes it. The axes of S and
T pass through the center of the ball; S and T rotate P onto itself.

Prove that G = 〈S, T 〉 with (T ◦ S)ν = id, and that σ is a fundamental region for
its action on �2.

All the groups in this class are 2-generator groups. The rays from the origin of the
ball to the fixed point of S, T, T S on the boundary of σ are pointwise fixed by these
three elliptics, and their G-orbit gives the complete set of rotation axes for G.

The possibilities are listed in the following table from [Ford 1929]:

F V E μ ν Order(G)

Tetrahedron 4 4 6 3 3 12

Cube 6 8 12 4 3 24

Octahedron 8 6 12 3 4 24

Dodecahedron 12 20 30 5 3 60

Icosahedron 20 12 30 3 5 60

Dihedron 2 n n n 2 2n

The dihedron is special in that it has zero volume and two faces which are regular
n ≥ 2 sided polygons inscribed in the equatorial plane.
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2-27. Euclidean orbifolds. Show that any rank two parabolic group G0 is a subgroup
of a group generated by four elliptics of order two (whose fundamental domain is half
a fundamental parallelogram of G0. This is the (2, 2, 2, 2)-group.

Show that the rank two group of the square torus can be generated by two elliptics
of order four and one of order two (its fundamental domain is 1/4 of the fundamental
square of the rank two parabolic subgroup. This is the (2, 4, 4)-group.

Consider the rank two group G0 whose fundamental parallelogram P is spanned
by the vectors 1 and eπ i/3. Show that G0 is a subgroup of (i) the group generated by
two elliptics of order three, fixed points at the two centers of the equilateral triangles
T1, T2 formed by the diagonal [1, eπ i/3], and (ii) the group generated by an elliptic
of order two with fixed point the midpoint of [1, eπ i/3], and an elliptic of order three
with fixed point the center of T1. These are the (3, 3, 3)-group and (2, 3, 6)-group. A
fundamental domain of (i) is the equal sided 60◦ parallelogram with vertices 1, eπ i/3

and the centers of T1, T2, and of (ii) is the 30◦ isosceles triangle formed by the diagonal
and the center of T1.
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Properties of hyperbolic manifolds

In this chapter we gather together basic properties of hyperbolic 3-manifolds. We
start with a characterization of their (conformal) boundaries. Then we study the uni-
versality of key elements of their internal geometry and the thick/thin decomposition.
After that, we study the global structure as revealed by their fundamental polyhedra,
and by their convex and compact cores. We introduce the class of manifolds which
are essentially compact (geometrically finite); this class is at the core of our studies.
Along the way, we describe the class of quasifuchsian groups and digress to take crash
courses in 3-manifold surgery and the theory of geodesic laminations. The chapter
ends with a description of the rigidity of manifolds of finite volume.

3.1 The Ahlfors Finiteness Theorem

The beginning of the modern theory of hyperbolic manifolds can be pinpointed at the
appearance in 1964 of a fundamental result:

Ahlfors Finiteness Theorem [Ahlfors 1964]. If G is a finitely generated kleinian
group, ∂M(G) = �(G)/G is the union of a finite number of surfaces. Each of them
is a closed surface with at most a finite number of punctures and elliptic cone points.

Punctures arise from rank one parabolic fixed points, and cone (branch) points from
elliptic fixed points.

The hyperbolic area formula (Exercise 3-1) implies that a Riemann surface R of
genus g ≥ 0 with m ≥ 0 cone points of (finite) orders r1, . . . , rm ≥ 2 and n ≥ 0
punctures appears as a boundary component of ∂M(G), for finitely generated, nonele-
mentary G, only if

2g+ n− 2+
∑

i

(
1− 1

ri

)
> 0.

In fact the inequality is a necessary and sufficient condition for R to be represented
as R =�2/H for some fuchsian group H .

Good estimates can be found for the genus and number of punctures of the boundary
of kleinian manifolds M(G) in terms of the number N of generators, and the number
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of rank one and rank two parabolic conjugacy classes. In particular
∑

gi ≤ N where
gi is the genus of the i-th component of ∂M(G). If G is purely loxodromic, then
∂M(G) has at most N/2 components. This calculation is made using the homology
considerations of Remark 3.7.2.

The deepest part of Ahlfors’ theorem is the assertion that the ideal boundary of a
component of ∂M(G) consists only of punctures — that, in particular, there are no
simply connected components. The proof is based on the following idea. The group
G, being finitely generated, depends on the finite number of complex parameters in its
generating matrices. On the other hand, if a boundary surface R were not of the “finite
analytic type” indicated above, then that surface would have an infinite dimensional
space of distinct deformations. This results in a contradiction. Recent proofs (see
[Kapovich 2001, §4.9] or [Marden 2006], for example) are much easier than Ahlfors’
original; in particular, the finiteness assertions on total genus, number of punctures
and cone points can be deduced by topological methods. The Ahlfors theorem also
follows from the solution of the tameness conjecture (Section 5.4); see Exercise 5-11.

Conjugacy classes of parabolic and elliptic subgroups are not necessarily repre-
sented by punctures and cone points in ∂M(G). Yet these classes are finite too
(Exercise 3-15), rounding out Ahlfors’ theorem.

3.2 Tubes and horoballs

Consider the axis γ ∗ of a primitive loxodromic element g ∈ G (g is a generator of
the cyclic loxodromic group fixing γ ∗). Suppose first that γ ∗ is not also the rotation
axis of an elliptic element, and that there is no elliptic element (of order two) that
interchanges its endpoints. Then γ ∗ projects to a closed geodesic γ in Mint; the
full collection of lifts of γ is the orbit {G(γ ∗)}. The length of γ is the length of
any segment [x, gx] of γ ∗. The loop γ is a simple loop if and only if the orbit of
γ ∗ consists of mutually disjoint geodesics. Conversely, every closed geodesic is the
projection of a loxodromic axis γ ∗.

Suppose γ ∗ is taken as the vertical axis from 0 ∈ � in the upper half-space model.
Given r consider the tubular neighborhood of radius r about γ ∗,

Nr (γ
∗)= {�x ∈ �3 : d(�x, γ ∗) < r}.

This appears as a euclidean cone with central angle 2θ given by the equation r =
log(sec θ + tan θ). Alternate expressions of the equation are

tanh r = sin θ, cosh r = sec θ, sinh r = tan θ. (3.1)

The image of Nr under a Möbius transformation A such that A(0), A(∞) 
=∞ looks
like a banana (Exercise 1-4).

If it is embedded, the projection Nr (γ ) = π(Nr (γ
∗)) ⊂ M is called the tubular

neighborhood of radius r about γ . The volume and surface area of tubular neighbor-
hoods in M(G) are presented in Exercise 2-10.
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If γ ∗ is also the axis of rotation of an elliptic element, the projection γ is a closed
curve and a cone axis. If there is an elliptic element that interchanges the endpoints of
γ ∗, then γ ∗ projects to a finite geodesic segment of length [x, g(x)]/2 with endpoints
on cone axes, the degenerate case of a closed curve as we go forth and return along
the segment.

We now turn to the structure at a parabolic fixed point ζ ∈ �2 of G. Let σ denote
any horosphere at ζ . The horosphere has an intrinsic euclidean metric dσ ( · , · ). There
is a parabolic pair T±1 ∈ G for which

dσ (x, T±1(x))≤ dσ (x, T1(x))

for all parabolic T1 ∈ Stabζ and all x ∈ σ . The same inequality is true for T±1

on any horosphere at ζ . We will refer to either T±1 as a least (translation) length
parabolic in Stabζ . For the parabolic x �→ x+1, dσ (x, x+1)=1/h on the horosphere
σ = {(z, t) : t = h}.

We can replace G by a conjugate so that ζ =∞∈ �2 and that z �→ z+ 1 is a least
length parabolic. Suppose for simplicity, ζ is not also fixed by an elliptic element.
Then Stabζ is either a cyclic parabolic group or a free abelian parabolic group of rank
two; we may assume that Stabζ is either 〈z �→ z + 1〉 or 〈z �→ z + 1, z �→ z + τ 〉,
where Im τ > 0 and |τ | ≥ 1.

In the former case, the doubly infinite strip {z : 0< Re z ≤ 1} forms a fundamental
domain for its action in �. In the upper half-space model, the slab rising vertically
from the strip is a fundamental region for its action in �3. We see that �/ Stabζ can
be viewed as a doubly infinite cylinder; w = e2π i z conformally maps it onto � \ {0}.
The quotient �3/ Stabζ is homeomorphic to {z : 0 < |z| < 1} × (−∞,∞), since the
quotient of each vertical slice of the slab is conformally equivalent to the punctured
disk.

In the latter case, the parallelogram with vertices {0, 1, τ, τ +1} with two adjacent
sides included is a fundamental parallelogram for the action of Stabζ on �. The
quotient is a torus. The vertical chimney rising from the parallelogram is a funda-
mental region for the action in the upper half-space model of �3. The quotient is
homeomorphic to {z : 0 < |z| < 1} × {z : |z| = 1}, where the first factor comes as
before from the quotient of vertical slices.

The projection of the horoball Hs = {(z, t) ∈ �3 : t ≥ s} may or may not be
embedded in M(G). Once it is embedded for some t = s it will be embedded for all
larger values of t . If Stabζ is cyclic and π(Hs) is embedded, it is homeomorphic to
{0 < |z| ≤ 1} × �. We refer to this as a solid cusp tube, a curtain rod with its axis
removed. It has infinite volume and surface area. Its boundary, π(∂Hs) is called a
cusp cylinder.

If Stabζ has rank two and π(Hs) is embedded, it is homeomorphic to the product
{0< |z| ≤ 1}×�1 and is called a solid cusp torus. Its boundary is called a cusp torus.
It has finite volume and surface area by Exercise 2-10. We have defined the solid
objects to be closed sets, but we will not always be fastidious in distinguishing one
from its interior.
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3.3 Universal properties

We will record some important internal properties of the quotient. While the prop-
erties are stated for hyperbolic 3-manifolds and orbifolds, they have analogues for
hyperbolic surfaces. During the proof we will often rely on the characterization of
limits of nonelementary groups to be presented in Theorem 4.1.1. For our use here
we will draw from it the following special case.

Lemma 3.3.1. Suppose {〈An, Bn〉} is a sequence of nonelementary, discrete groups
such that lim An = A, lim Bn = B. Then 〈A, B〉 is also a nonelementary, discrete
group. The corresponding conclusion holds as well for a sequence of three generator
nonelementary, discrete groups.

We begin with some notations and definitions.
Given a discrete group G and x ∈ �3, for r > 0 set

δx(r)= {A 
= id ∈ G : d(x, Ax)≤ 2r}.
Define the injectivity radius at x as

rx = Inj(x)= Inj(G; x) = inf{r : δx(r) 
=∅}.
Thus d(x, Ax)≥ 2rx , for any A 
= id∈G; that is, the G-orbit of the ball {y : d(x, y)<
rx} has no overlaps. Interpreted at the projection π(x)∈M(G), Inj(π(x)) is the radius
of the largest embedded open ball centered at π(x). On the other hand there exists
A ∈ δx(rx) such that the points A±1(x) lie on the boundary of the ball of radius 2rx

about x .
The injectivity radius is infinite for all points x ∈�3 only when G = {id}. As long

as x is not on a rotation axis, the radius is positive by the discreteness of G. As π(x)
approaches a cusp, Inj(π(x))→ 0.

Lemma 3.3.2. Given δ > 0 there exists M = M(δ) such that for any x ∈ �3 and for
any kleinian group G with rx = Inj(G; x) < δ, the set δx(rx) has at most M elements.

Proof. If A, B ∈ δx(rx), A 
= B, then d(Ax, Bx)= d(x, A−1 Bx)≥ 2rx . Therefore the
points Ax, Bx on the sphere of radius 2rx about x are of distance≥2rx apart. For fixed
r = rx , only finitely many such points are possible. As r → 0, it is approximately
the same number as in the euclidean case and this number is uniformly bounded,
independent of x ∈ �3. �

In the same vein:

Lemma 3.3.3. Suppose M is a hyperbolic surface or manifold with the property that
there is a constant δ > 0 such that all geodesics have length at least 2δ (and there are
no punctures or cusps). Then M can be covered by embedded δ-balls.

Given V > 0, there exists N (V ) such that all M with area or volume not exceeding
V can be covered by N (V ) embedded δ-balls.
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Theorem 3.3.4 (Universal properties of kleinian groups). There exist universal con-
stants in terms of which any nonelementary kleinian group G has the following prop-
erties.

Universal ball. There exists δ>0 such that M(G)\{cone axes} contains an embedded
hyperbolic ball of radius δ.

Universal horoball. Suppose ζ = ∞ is a parabolic fixed point and z �→ z + 1 ∈ G
is a least length parabolic. Then the horoball H = {(z.t) ∈ �3 : t > 1},
called the universal horoball, satisfies A(H)∩H=∅ for all A ∈G such that
A(∞) 
= ∞. If A = (∗c ∗∗) ∈ G, with c 
= 0, then |c| ≥ 1.

If H′ is the universal horoball at a parabolic fixed point ζ ′ 
= ∞ of G, then
H′ ∩H =∅.

Tubular neighborhoods about short geodesics. There exist r > 0 and L0 > 0 such
that in any M(G):

(i) The radius r tubular neighborhood about any closed geodesic of length
≤ L0 is embedded; any geodesic of length < L0 is simple.

(ii) The r-tubular neighborhoods about different geodesics of length < L0

are mutually disjoint.
(iii) The r-tubular neighborhoods about geodesics of length < L0 do not

intersect the universal horoballs.

Universal elementary neighborhood. There exists δ > 0 such that for any x ∈ �3,
the subgroup generated by {A ∈ G : d(x, Ax) < 2δ} is elementary; if the
generator A is loxodromic, it represents a simple geodesic.

Isolated cone (rotation) axes. There exists δ > 0 such that the distance between any
nonintersecting rotation axes in M(G) is at least δ, except if they have a
common endpoint at a rank two cusp, or perhaps if they are axes of order
two.

Proof: The universal horoball.. The universal horoball corresponding to a parabolic
T is invariantly defined as that horoball bounded by the horosphere σ = ∂H such
that for x ∈ ∂H , dσ (x, T (x)) = 1 in the intrinsic flat metric on σ . The existence
of the universal constant is an immediate consequence of Jørgensen’s inequality: If
X = ( 1

0
1
1

)
and Y = (a

c
b
d

)
, ad − bc = 1, then we find that tr(XY X−1Y−1) = 2+ c2.

Jørgensen’s inequality with A = X implies that |c| ≥ 1, if c 
= 0.
The formula for extension of Y to upper half-space (z, t) �→ (z′, t ′) says that

t ′ = t

|cz+ d|2+ |c|2t2
≤ t

|c|2t2
≤ 1

t
.

Hence when t > 1, we have t ′ < 1 so that Y (H)∩H =∅.
If there is another parabolic S with fixed point ζ ′ 
=∞ we may conjugate the group

by a translation so that the fixed point of S is moved to (0, 0). The parabolic then has
the form S′ : z �→ z/(cz+1). We know that |c| ≥ 1. To see that the universal horoball
at 0 is disjoint from the one at∞ note that z �→ 1/z conjugates S′ to z �→ z+c and its
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universal horoball there is (z, t) : t > |c| ≥ 1. Returning to S′ we see that the boundary
of the horoball at 0 meets the vertical axis at 1/|c| ≤ 1.

It is possible that a parabolic fixed point, say ζ =∞, is also fixed by elliptics E ∈G.
Such elliptics have the form E(z)= e2iθ z+a and clearly preserve the horoballs at∞
as well.

Note that if the least length parabolic at ∞ is instead z �→ z + a, the universal
horoball is given by {z : Im z > 1/|a|}.

A similar argument applies in �2. See also Exercise 3-3 on page 164. �

Corollary 3.5.3 presents a version of the horodisk theorem that applies in certain
simply connected regions �⊂ � rather than just �2.

Tubular neighborhoods about short geodesics. If the property (i) does not hold, there
are sequences rn → 0, Ln → 0 and a corresponding sequence of groups Gn and
geodesics γn such that the radius rn-tube about γn of length ≤ Ln is not embedded.

Let � denote the vertical half-line rising from z = 0 in the upper half-space model.
We may replace each Gn by a conjugate so that γn is the projection of � and the
corresponding primitive transformation is An : z �→ anz, |an|> 1 where log |an|→ 0
is the length of γn .

Our hypothesis insures that there is no elliptic of order two in Gn that interchanges
the fixed points of An . However our proof will still work if we allow elliptics with the
same axis as An , although the tubular neighborhood will then have a singular axis.

Let Cn denote the euclidean cone about �, which is the radius-rn tubular neighbor-
hood of �. Let Fn = {�x ∈ Cn : 1 ≤ |�x | ≤ |an|} be a fundamental chunk of Cn . There
is an element B∗n ∈ Gn , which does not preserve �, with B∗n (Cn)∩Cn 
=∅. For some
p, q , Bn = Aq

n B∗n Ap
n ∈Gn has the property that Bn(Fn)∩Fn 
=∅. Therefore for some

xn ∈ Fn , Bn(xn) ∈ Fn . Furthermore 〈An, Bn〉 is not elementary.
After passing to a subsequence if necessary, lim An = A and lim Bn = B exist. But

A, B fix the point p ∈ � with |p| = 1 so that 〈A, B〉 is elementary, a contradiction to
Lemma 3.3.1.

Exactly the same proof shows that there cannot be a sequence of groups {Gn} in
which there are two loxodromics An, Bn with translation lengths satisfying Ln → 0,
such that the closure of their rn-tubes intersect, rn→ 0.

To prove (iii), suppose that A : z �→ z+1 is an element of G and T ∈G is loxodromic
with translation length L , which is the length of the corresponding geodesic in M(G).
Conjugate the group by a translation so that the fixed points of T are symmetric about
z = 0. Then a normalized matrix for T has the form T = ( a

d/b
bd
a

)
, a2 − d2 = 1,

tr(T )= 2a, and its fixed points are ±b. Therefore the r -tube about the axis of T will
not intersect the horoball H = {(z, t) : t > 1}, provided that |b| ≤ e−r .

We claim that for all sufficiently small L > 0, it will be true that |b| ≤ e−r . For
otherwise, there is a sequence of groups Gn containing A and a loxodromic Tn with
fixed points ±bn symmetric to z = 0 such that lim Ln = 0, while lim bn = b∗ ≥
e−r . If b∗ = ∞, then a long segment of the axis of Tn penetrates H in which case
Tn(H)∩H 
=∅ in contradiction to the universal horoball property. On the other hand,
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since b∗ 
= 0, lim Tn = T exists with T either elliptic or the identity. This violates
Lemma 3.3.1. We conclude that there exists L ′ ≤ L for which the r -tube about any
geodesic in any M(G) of length ≤ L ′ does not intersect any universal solid cusp torus
or cusp tube.

With the proper interpretation, the case that the loxodromic axis is also the rotation
axis of an elliptic in G, or is preserved by an element of order two, is included in our
analysis. �

For the record we also point out the following interesting inequality [Meyerhoff
1987]. By the universal horoball property |b|≤ |d| so that 4|b|2≤ 4|d|2=|tr2(T )−4|.
Now T is conjugate to

( k
0

0
k−1

)
, where k=e

L
2 eiϕ , 0≤ϕ<π , and tr2(T )−4= (k−k−1)2.

Consequently

|b|2 ≤ sinh2 L

2
+ sin2 ϕ. (3.2)

With the help of a sophisticated computer search, D. Gabai, R. Meyerhoff, and N.
Thurston [Gabai et al. 2003] proved that with a few exceptions, if G has no parabolic
or elliptic transformations, there is a geodesic in M(G) with an embedded tubular
neighborhood of radius r = (log 3)/2.

Isolated rotation axes. Confirmation of this property runs along the same lines. In a
sequence of groups {Gn}, suppose that {dn, dn > 0} is a sequence with lim dn = 0,
that En ∈ Gn is an elliptic with rotation axis �, and that Fn ∈ Gn is an elliptic whose
axis �n does not intersect � but comes within distance dn of �. We may replace Gn

by a conjugate so that for some pn ∈ �n , lim pn = p ∈ �.
For all large n we may assume that either 〈En, Fn〉 is nonelementary, it is an infinite

dihedral group, that is, each of En, Fn is of order two and En Fn is loxodromic with
axis orthogonal to the axes of En and Fn , or �, �n have a common endpoint at a
rank two cusp at∞ with 〈En, Fn〉 a subgroup of Stabn(∞). In the former case for a
subsequence, both lim En = E, lim Fn = F are Möbius transformations fixing p. But
then 〈E, F〉 is elementary, again a violation of Lemma 3.3.1. �

The universal elementary neighborhood. Denote by Gx(r) the subgroup of G gener-
ated by the set δx(r), that is by the elements A for which d(x, Ax)≤2r . We claim that
there exists r > 0 such that, for any x ∈ �3, and any kleinian group G, the subgroup
Gx(r) is elementary. In other words, for the ball Bx(r), the subgroup generated by
the elements {g} for which g(Bx (r))∩ Bx(r) 
=∅ is elementary.

For a fixed G and x ∈�3, there must be some r > 0 for which Gx(r) is elementary.
For as r = rn → 0, any infinite sequence of distinct elements An ∈ δx(rn) converges
either to an elliptic transformation fixing x or to the identity. No such sequence can
exist! So for all sufficiently small r , the set of elements δx(r) is independent of r and
either contains no elements or consists of elliptic transformations fixing x .

Now assume that for some x ∈�3, there is no universal elementary neighborhood.
Then there is a sequence of kleinian groups {Gn} and a sequence rn → 0 such that
Gn,x(rn) is not elementary. On the other hand, for fixed n, Gn,x(ρ) is elementary for
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some ρ with 0 < ρ < rn . As ρ increases to rn , the elementary groups Gn,x(ρ) are
nested. There is a first number τn < rn for which Gn,x(ρ) = Gn,x(τn) for τn ≤ ρ <
r ′n ≤ rn , and is elementary but Gn,x(r ′n) not. We may take rn = r ′n .

If Gn,x(τn) is finite but not cyclic, there are elements An, Bn ∈ δx(τn) with distinct,
yet intersecting, axes of rotation. The set δx(rn) must contain an element Xn which
does not fix the common fixed point of An, Bn . Hence 〈An, Bn, Xn〉 is not elementary.

If Gn,x(τn) is finite cyclic, let An ∈δx(τn) be a generator. We can find an Xn ∈δx(rn)

that does not fix the axis of An . If Xn is elliptic with axis intersecting that of An , there
must be another element Yn ∈ δx(rn) that does not fix this common point. Thus one
of 〈An, Xn〉 and 〈An, Bn, Xn〉 is not elementary.

Next suppose Gn,x(τn) is an infinite group that keeps invariant a line �⊂�3. Either
δx(τn) contains a loxodromic An , or it contains two elliptics An, Bn of order two that
interchange the endpoints of �. There must be an element Xn ∈ δx(rn) which does
not leave � invariant. Again, 〈An, Xn〉 or 〈An, Xn, Yn〉 is not elementary.

Finally, suppose Gn,x(τn) fixes a point ζ ∈ �2, but does not fall into one of the
previous cases. Then δx(τn) contains a parabolic transformation An or two elliptics
An, Bn such that Bn An is parabolic (e.g., z �→ −z, z �→ −z + 1). The set δx(rn)

contains an element Xn that does not fix ζ . Hence 〈An, Xn〉 or 〈An, Bn, Xn〉 is not
elementary.

In all cases we have found a nonelementary two- or three-generator subgroup gen-
erated by elements of δx(rn). As n → ∞, convergent subsequences converge to
elements which fix x and are therefore elliptic or the identity. Once again we draw
on Lemma 3.3.1 to reach the contradiction.

To complete the argument we claim that, if A ∈ Gx(r) is loxodromic, it represents
a simple geodesic in the quotient. Otherwise the projection of [x, Ax] into M(G)
would contain two simple subloops of shorter length. (The projection π([x, Ax]) is a
closed loop which is a geodesic except for a likely corner at π(x).) We could find two
other loxodromics A1, A2 with different axes, and satisfying d(x, Ai x) < 2r . Both
elements would be in Gx(r) which then could not be elementary. �

The universal ball. Given an x ∈ �3 that is not an elliptic fixed point of G, denote
by Gx the subgroup of G generated by the set δx(rx), where rx = Inj(G; x); in other
terms, δx(rx)= {A ∈ G : d(x, Ax)= 2rx}.

Given any nonelementary, discrete group G we will find somewhere in �3 a ball of
radius δ, where δ is the universal elementary neighborhood constant, with the property
that there is no overlapping in its G-orbit. To do this we will find a point x ∈ �3 for
which Gx is not elementary. The universal elementary neighborhood property then
assures us that rx ≥ δ, and as a consequence g(Bx (δ))∩Bx(δ)=∅ for all g 
= id ∈G,
for the δ-ball about x . In searching for such a point, we may restrict our attention to
groups whose injectivity radii are uniformly bounded above (no elementary discrete
groups have this property).

Start with a point x ∈�3 which is not a fixed point. Suppose Gx is elementary. We
will find a polygonal line along which the injectivity radius strictly increases until the
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terminal point y where G y is nonelementary. To find this line we have to examine
various classes of elementary groups separately.

Case 1: The elements of Gx have a single common fixed point ξ ∈ ∂�3. We may
take ξ = ∞ in the upper half-space model. Then Gx is a finite extension of a rank
one or rank two parabolic group. For each A ∈ Stab∞(G), A 
= id, the perpendicular
bisectors of the segments [x, A±1x] are vertical half-planes. If A ∈ δx(rx), they are
tangent to the ball Dx of radius rx about x . For A /∈ δx(rx), the perpendicular bisectors
are uniformly bounded away from Dx .

Let the point y move down the vertical line � through x . For a certain open interval
near x , Inj(y) = ry is determined by the same vertical planes that determine Inj(x).
However ry is strictly increasing since y is moving closer to ∂�3, away from ∞.
Since we are assuming ry is uniformly bounded there must be a first point w with
the following property. For some B ∈ δw(rw), B /∈ δx(rx), the perpendicular bisector
of [w, Bw] is tangent to the ball Dw of radius rw about w. This cannot be a vertical
plane since B /∈ Stab∞. Because 〈Gx , B〉 ⊂ Gw, the group Gw is not elementary.

Case 2: Gx is a finite group but not a cyclic group nor a �2 extension of a cyclic
group. We now use the ball model and take the common fixed point of Gx to be the
origin. Then Gx is a subgroup of the finite group Stab0 ⊂ G of euclidean rotations.
The ball Dx of radius rx centered at x is inscribed in a convex cone with flat faces
and vertex at the origin; its faces are contained in the perpendicular bisecting planes
of [x, A±1x], for A ∈ δx(rx). These are equatorial planes of the ball model �3.

Let now the point y move away from x along the ray from the origin through
x . There is a first point w for which the ball Dy of radius ry hits a new plane, the
perpendicular bisector of some [w, Bw], B /∈ δx(rx). This new plane does not pass
through the origin so that B /∈ Stab0. Therefore 〈Gx , B〉 ⊂ Gw is not elementary.

Case 3: Gx is cyclic loxodromic or a finite extension of a cyclic loxodromic group.
In preparation for the analysis of this case, we take note of the following situation.
Suppose, say in the ball model, we have a closed ball B with center on the positive
radius of �3 that does not contain 0. Let P denote the equatorial plane through 0 and
orthogonal to the vertical diameter of �3; it contains the center of B. Let ρ denote
the diameter of B that lies in P and is orthogonal to the positive radius. Consider two
planes β1, β2 tangent to B at the ends of ρ. Compare these two planes with two planes
X1, X2 containing the vertical diameter of �3 that are tangent to B, as the pages of
a book with spine the vertical diameter. Necessarily the planes X1, X2 intersect the
planes β1, β2 in two lines. Consequently we see that the pages of the book grow apart
more quickly than do β1, β2, as we head toward ∂�3 along the positive radius.

Now we can deal with Case 3. Let � denote the axis of a primitive loxodromic
element T ∈ δx(rx); we may assume that it is the vertical diameter. The ball Bx(rx)

of radius rx about x is tangent to two planes β± orthogonal to �, namely, the perpen-
dicular bisectors of the segments [x, T±1(x)].

If δx(rx) contains a rotation z �→ e2iθ z with axis � then Bx(rx) is also supported by
two planes passing through � and opened at angle 2θ .
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If δx(rx) has an element of order two that interchanges the endpoints of �, then
T = E2 E1, where each Ei is such a half-rotation. There are two other planes β ′±
orthogonal to � and tangent to Bx(Rx). One contains the axis of E1 and the other the
axis of its conjugate E2 E1 E2.

Construct the ray ρ orthogonal to � and passing through x . Follow a point y ∈ ρ
as y moves from x towards ∂�3. The thrust of our initial observation is that By(ry)

will eventually no longer be supported by the pages of the open book whose spine
is � and G y will be either cyclic or an infinite dihedral group. As y continues to move
out, there will be a first point w such that δw(rw) contains an element S /∈ δx(rx). The
perpendicular bisecting plane of [w, S(w)] cannot contain �, nor can it be orthogonal
to �. Consequently 〈Gw, S〉 is not elementary.

Case 4: Gx is a finite cyclic group or the extension of one by an elliptic of order two
that exchanges the fixed points. Once again in the ball model, we can assume the
vertical diameter � is the axis of rotation. If Gx is cyclic the ball Bx(rx) of radius rx

about x is supported by two vertical planes containing �, as between the pages of an
open book. If in addition if there is an elliptic of order two E ∈ Gx exchanging the
north and south poles, then E ∈ δx(rx) and we can assume in addition that Bx(rx) is
also tangent to the horizontal equatorial plane.

In the latter case, let the point y, as before, move toward ∂�3 from x along the ray
orthogonal to � passing through x . There is a first point w at which the ball Bw(rw)
hits the perpendicular bisecting plane P of [w, Sw] for S /∈ δx(rx). The new plane P
does not contain �. If 〈Gw, S〉 is still elementary, we must return to Cases 1–3.

If Gx is cyclic, follow the same procedure. There is a first point w at which the ball
Bw(rw) hits the perpendicular bisecting plane of [w, Sw] for S /∈ δx(rx). The group
〈Gw, S〉 is not cyclic but may fall into any of the cases 1–4. �

In the case of fuchsian groups, the tubular neighborhood property is called the
collar lemma. The first paper on it was by Linda Keen. The sharp statement is
this: On a Riemann surface, the length of any nonsimple closed geodesic must exceed
4 sinh 1. If α is a simple closed geodesic of length L , then it has a collar neighborhood
of width 2 arcsinh((sinh L/2)−1) (see Exercise 8-7); for a complete discussion see
[Buser 1992, Chapter 4].

There has been much recent work studying tubular neighborhoods, especially as a
way of better understanding the volume of manifolds [Meyerhoff 1987; Gabai et al.
2001; Przeworski 2003]. The radius ρ of the tube about a closed geodesic γ can
be chosen as a function of the length so that as the length of γ shrinks to 0 (in a
sequence of groups), and a primitive loxodromic generator converges to a parabolic
transformation, N (γ ∗) converges to the corresponding universal horoball. Explicit
estimates are given in [Meyerhoff 1987].

Historical remarks

The universal horoball property seems to have been discovered by Fatou [1930, p. 159]
though, as pointed out by Alan Beardon, his proof was incomplete. Apparently the
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first complete proof in the literature is in [Shimizu 1963] and in some papers the
property is referred to as “Shimizu’s lemma”.

The universal elementary constant is today usually called the Margulis constant.
For the case without elliptics, it appears in [Kazhdan and Margulis 1968]. The gen-
eral case appears in [Wang 1969]. These early results were proved in the context of
general Lie groups. Following an entirely different track, in the context of hyperbolic
geometry in �3, the property was discovered in 1973 in discussion with Jørgensen.
It was one of a number of universal properties that followed from Jørgensen’s in-
equality. This discovery was motivated by the fuchsian analogue in [Marden 1974d],
and independently [Sturm and Shinnar 1974]. Jørgensen’s lemma brings the analysis
closer to the actual phenomena allowing, in principle, estimates for the optimal value.

In this book we have chosen to call the universal constants by descriptive names.

3.4 The thick/thin decomposition of a manifold

Assume that G has no elliptics; the only elementary subgroups of G are then rank
one and two parabolic groups, and cyclic loxodromic groups.

The ε-thin part Mthin(G) of M(G) is defined as

{x ∈ Int M(G) : Inj(x) < ε}.
Here Int M denotes the interior of M.

For example, if a geodesic γ has length s < 2ε, then it lies in the ε-thin part (the
diameter of the ball of radius ε is 2ε). There is number r such that the r -tube about γ
has the property that the length of the shortest curve on its boundary, freely homotopic
to γ , has hyperbolic length 2ε. So the r tube is the maximal tube about γ with the
property that all points in it have injectivity radius < ε.

Also lying in the ε-thin part are the projection of horoballs corresponding to para-
bolic rank one or rank two groups P . Assuming T : z �→ z+ 1 lies in P , choose the
horoball bounded by the horosphere σ with the property that the hyperbolic distance
satisfies d(x, T (x))= 2ε, x ∈ σ .∗

Let ε = δ denote the universal elementary constant. Given x ∈ M(G), the set
{g ∈ G : d(x, g(x)) < 2ε} either consists only of the identity, or generates either a
cyclic loxodromic or a parabolic subgroup. In the latter cases, x lies in a ε tubu-
lar neighborhood about a short geodesic or in a solid cusp tube or cusp torus, the
projection of a horoball as described above.

These tubes and cusp tori are necessarily disjoint. For if a point x ∈�3 is common
to two of them, there are two elements g1, g2 ∈ δx(ε) which together do not generate
an elementary group, a contradiction to our choice of ε.

We summarize our discussion as follows.

∗ The intrinsic distance and the hyperbolic distance d between (−1/2, a) and (1/2, a) on the horosphere {(z, t) :
t = a > 0} are 1/a and d = 2 log((1+

√
4a2+ 1)/(2a)). To have d = 2ε, we must have a = 1/(2 sinh ε).
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Proposition 3.4.1. Let G be a kleinian group without elliptics. For the universal
elementary constant ε > 0, the ε-thin part Mthin(G) is the union of mutually disjoint
components consisting of :

(i) The ε-tube about a geodesic of length < 2ε,
(ii) The ε-solid cusp tube corresponding to a rank one parabolic subgroup,

(iii) The ε-solid cusp torus corresponding to a rank two parabolic subgroup.

It is shown in [Meyerhoff 1987] that one can choose ε = 0.052.
The complement of Mthin is called the thick part and denoted by Mthick:

Mthick = {x ∈ Int M(G) : Inj(x)≥ ε}.

3.5 Fundamental polyhedra

Fundamental polyhedra provide “concrete” models of the manifolds M. Suppose we
are standing at an interior point π(O) ∈ M(G) and blow up a balloon. If it keeps
growing without ever touching itself, we must be living in �3 itself. Otherwise at
some point the balloon will meet itself. We blow some more, and keep blowing until
the balloon fills the whole manifold (ignoring the fact that this may require an infinite
volume of air). The balloon will then be the projection of the Dirichlet region centered
at O; the faces comprise the balloon surface and form a spine for the manifold.

The Dirichlet regions, or Poincaré fundamental polyhedra (Poincaré first used them
to study kleinian groups), are constructed as follows. Given a kleinian group G,
choose a base point O ∈�3 which is not a fixed point of G. For each element g ∈ G,
g 
= id, construct the hyperbolic plane which is the perpendicular bisector Pg of the
geodesic segment [O, g−1(O)]. Denote by Hg the relatively closed half-space which
is bounded by Pg and contains O. The labeling is such that g(Pg)= Pg−1 and g(Hg)

is complementary to Hg−1 but shares with it the bounding plane Pg−1 . This notation is
used because it is consistent with what is forced in the construction of the isometric
polyhedron where the isometric plane for g in the ball model is the perpendicular
bisector of [0, g−1(0)].

The Dirichlet region or Dirichlet fundamental polyhedron PO with center O is
defined as the closed, convex hyperbolic polyhedron

PO= PO(G)=
⋂

g

Hg ⊂ �3.

(The use of the word “region”, and also “domain”, is traditional in this context al-
though the set in question is not open.)

If h ∈ G, Ph(O) = h(PO).
The relative boundary of PO is the union of possibly an infinite number of faces { f }

(a face is a polygonal region in some Pg), edges {e} (an edge is a geodesic segment that
lies in the boundary of two adjacent faces), and vertices {v}. At most a finite number
of faces, edges, and vertices meet any given compact subset of �3. Moreover, since
PO is convex, its intersection with any hyperbolic plane is connected.
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Proposition 3.5.1. PO has the following properties:

(i) The faces are arranged in pairs (σ, σ ′). To each pair corresponds an element
g ∈ G, called a face pairing transformation, such that

g(σ )= σ ′ and g(PO)∩PO= σ ′.
(ii) If a face pairing transformation is elliptic, there is an edge contained in its rota-

tion axis.
(iii) To each edge e corresponds an edge relation: g1g2 . . . gn = ge where either ge is

elliptic with rotation axis containing e and gm
e = id for some m > 1, or ge = id.

Each gi is a face pairing transformation. The polyhedra

PO, g1(PO), g1g2(PO), . . . , g1g2 · · · ge(PO)

are arranged cyclically about e, each sharing a face with the previous and the
succeeding. If ge = id then g1g2 · · · ge(PO) = PO. Otherwise the full cycle is
completed by applying in succession ge, g2

e , . . . , gm
e = id to the union of the listed

polyhedra.
(iv) The orbit of PO under G fills �3 without overlap on interiors.
(v) The face pairing transformations generate G; the edge relations generate the

relations in G.
(vi) PO ∩ �(G) is a fundamental region for the action of G on �(G). Here PO

denotes the closure of PO in �(G)∪�3.
(vii) Let BR(O) be the closed ball of radius R centered at O. Then the intersection

PO∩ BR(O) projects to a compact submanifold of M(G) bounded by the pro-
jection of PO∩ ∂BR(O).

Proof. (a) The polyhedron PO is characterized by the property that a point y ∈�3 lies
in its interior if and only if d(O, y) < d(y, h−1(O))= d(O, h(y)) for all h 
= id ∈ G.
Thus Int(PO))∩ h(PO)=∅ since y is closer to O than any h(O).

In particular, g maps Pg to Pg−1 and Hg into the closure of �3 \ Hg−1 . For x ∈ Pg,
d(O, x)= d(x, g−1(O))= d(g(x),O).

The argument shows that the interior of PO cannot contain points of a rotation axis
of G; also that there cannot be any overlap in the interiors in the G-orbit of PO.

(b) If x is an interior point of a face f ′ ⊂ Pg, we have d(g(x),O) = d(x,O) <
d(x, g−1h(O)), so long as h 
= id. Thus g(x) ∈ Pg−1 also lies in a face.

On the other hand, no conjugate hgh−1 can also be a face pairing transformation.
Instead, hgh−1 is a face pairing transformation of P1 = h(PO).

(c) There cannot be different faces f1, f2 with the property that g1( f1)= g2( f2)= f .
For g1(PO) is exterior to PO but adjacent to f . The transformation g−1

2 maps f to f2

and necessarily sends g1(PO) back to PO. Thus h = g−1
2 g1 maps PO onto itself so

g1 = g2 and hence f1 = f2.
We conclude that the faces of PO are arranged in mutually disjoint (except for

perhaps a common edge) isometric pairs.
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(d) The edge relations. Choose an edge e1 and then one of the two faces sharing e1,
say f1. A face pairing transformation g1 sends the partner face f ′1 to f1 = g1( f ′1)
and g1(PO) is adjacent to PO along f1. An edge e2 of f ′1 is sent by g1 to e1. A
special case is when g1 is elliptic and e1 is contained in its axis of rotation. Then the
partner face f ′1 and f1 both share the edge e1. If g1 has order m, the m polyhedra
PO, g1(PO), · · · , g1

m−1(PO) form a complete cycle of polyhedra, sharing the edge
e1, each sharing a face with the adjacent polyhedra. In this case the edge relation
determined by e1 is simply g1

m = id.
Otherwise there is a face f2 
= f1 that shares with f ′1 the edge e2. Its partner face f ′2

is sent by some g′2 to f2 = g2( f ′2). There is an edge e3 of f ′2 that g2 sends to e2. Note
that the three polyhedra PO, g1(PO), g1g2(PO) are arranged in cyclic order about the
edge e1. Successive polyhedra share a face.

Next take the face f3 
= f ′2 that also shares e3 and find its partner and the face
pairing map g3( f ′3) = f3. To our cyclic arrangement about e1 we can add one more,
g1g2g3(PO). Keep going. The process will necessarily end after a finite number of
steps. We will arrive at fk with the property that f ′k shares e1 with f1. At this point
the polyhedra PO, g1(PO), . . . , g1g2 . . . , gk(PO) are arranged in cyclic order about
e1. Furthermore the transformation h = g1g2 . . . , gk fixes the edge e1. There are two
possibilities.

The first is that g1 · · · gk = id, that is, the final polyhedron in the cycle, namely
g1g2 . . . , gk(PO), coincides with PO. The edge relation determined by e1 is h = id.
The sequence of edges e1, . . . , ek = e1, is called an edge cycle. Had we started instead
with a different edge e j in the cycle, its edge relation is conjugate to that for e1. The
dihedral angles corresponding to the edges in the cycle sum to 2π .

The second possibility is that h = g1 · · · gk is an elliptic transformation fixing the
edge e1, and k ≥ 1 is the smallest number with this property. If h has order m then for
P∗ = PO∪ g1(PO) ∪ · · · ∪ g1g2 · · · gk(PO), the collection P∗, h(P∗), . . . , hm−1(P∗)
is a nonoverlapping cyclic ordering of km polyhedra about e1. The edge relation
associated with e1 is hm = id. The sequence of edges e1, e2, . . . , ek = e1 forms
an elliptic edge cycle. Each edge in the cycle is contained in the rotation axis of
an elliptic element conjugate to h. The sum of the dihedral angles about e1 of the
polyhedra PO, g1(PO), . . . , gk(PO) must be 2π/m.

By adjoining to PO the polyhedra which share a face with PO , and then those that
share just an edge, we can completely surround PO by other polyhedra of its orbit.
A vertex v of PO will be shared exactly by those polyhedra that are part of the edge
cycles about the edges of PO that end at v.

(e) The G-orbit of PO covers �3. For suppose to the contrary that the orbit does not
cover y ∈ �3. Consider the geodesic segment [O, y]. At most a finite number of
elements in the orbit can intersect this segment. There is a point w ∈ [O, y] such that
w lies on the boundary of some element of the orbit, but no point closer to y does.
But we know we can completely surround any element h(PO) of the orbit by other
neighbors sharing a face or edge. Therefore w = y and y is covered, after all.
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(f) As a consequence we can assert that the rotation axis of each elliptic in G contains
a segment which is conjugate to an edge of PO. For if not, the rotation axis of some
conjugate g would meet the interior of PO. But then g could not send PO into its
exterior, a contradiction.

The rotation axis of an elliptic g is the line of intersection of the two planes Pg±1 .
If the rotation axis of a primitive elliptic contains an edge e of PO, the two faces
sharing e must necessarily be contained in the planes Pg±1 . Therefore g is a face
pairing transformation, and no conjugate can also be face pairing.

It is time to bring up a special case: Suppose f ′ is contained in Pg−1 for g elliptic
of order two. Then g(Pg−1) = Pg = Pg−1 , and g( f ′) = f ′. The face f ′ is divided in
two parts by the rotation axis of g and application of g interchanges the two parts. To
incorporate this special case into our general theory, we must allow any segment of
the rotation axis that meets PO to be counted as an edge of PO, and regard f ′ itself
as the union of two adjacent faces.

(g) The presentation of G. In the G-orbit of PO, the first generation of polyhedra
consists of those that share an edge with PO. The second generation consists of
those which share an edge with a member of the first generation. The n-th generation
consists of polyhedra that share an edge with the (n − 1) generation but not with a
member of an earlier generation. It is clear that any given compact subset of �3 is
covered by the polyhedra in a sufficiently high generation. This shows that the face
pairing transformations of PO generate G: any g ∈G can be written as a composition
of face pairing transformations by following a connected union of polyhedra in the
orbit, beginning with PO and ending with g(PO).

A small sphere about a vertex v is subdivided into circular polygons by its inter-
section with the polyhedra sharing v.

Consider the graph �e formed by the union of the edges of the polyhedra in the
orbit of PO. This may or may not be connected. But any simple loop in �3 \ �e is
homotopic to a finite product of tiny circles about edges, connected by an arc to the
base point of the fundamental group. Furthermore each edge is conjugate to an edge
of PO. This translates into the statement that all relations in G are generated by the
edge relations of PO. For any relation in the generators g1g2 · · · gk = id corresponds
to a loop in the complement of �e.

(h) If �(G) 
=∅, set P∗ = P∩�(G). We claim that the G-orbit of P∗ covers �(G)
without overlap on the interiors. But this is clear from the fact the orbit of PO covers
�3 without overlap. In general P∗ is not connected. The sides of P∗ are outer edges
of faces of PO, and the vertices of P∗ are endpoints of edges. Thus the sides of P∗
are arranged in pairs where the side pairing transformations also generate G.

(i) Finally if PO is truncated by intersection with BR(O), the ball of radius R about
O, the truncated faces of PO are still arranged in pairs, with the same pairing trans-
formations as before. This is because if a point x in a face σ is distance R from O

and g : σ → σ ′ is the face pairing transformation, then g(x) ∈ σ ′, being equidistant
from O and g(O), is also distance R from O. �
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Fig. 3.1. A regular hyperbolic dodecahedron with 72◦ dihedral angles (right). There is a
Möbius transformation that maps each face to the opposite face with a 3

10 clockwise twist.
These generate a kleinian group. The quotient manifold is called the Seifert–Weber dodecahe-
dral space. Its first homology group vanishes. The combinatorial pattern of the identifications
is shown on the left.

The Ford fundamental region and polyhedron

In this section we will work with the upper half-space model. For the basic facts
about isometric circles and planes we refer back to Section 1.7. They are defined for
all elements 
= id in a group provided∞ is not a limit point. So long as �(G) 
=∅,
we can replace G by a conjugate if necessary so that∞∈�(G). Then every element
has a well defined isometric circle and isometric plane which is the hemisphere that
rises from the isometric circle.

For g ∈ G, let E(g) and E∗(g) denote the closure of the exterior of the isometric
circle for g and the isometric hemisphere rising from that circle, respectively. In
line with our penchant to define “fundamental regions” as relatively closed sets, we
define the Ford region or isometric fundamental region F and the Ford polyhedron or
isometric fundamental polyhedron F as the following relatively closed sets:

F = (⋂g∈G E(g)
)∩�(G), F =⋂g∈G E∗(g).

The isometric polyhedron is a limiting case of Dirichlet polyhedra. For if g does not
fix∞, as O→∞∈∂�3, Hg converges to the complement of the isometric hemisphere
for g (see Exercise 3-4). From this we see that PO converges to F uniformly on
compact subsets of �3.

The polyhedron F (as well as F) has all the properties listed in Proposition 3.5.1:

Lemma 3.5.2. If∞ ∈ �(G), the isometric fundamental polyhedron P∞(G) = F in
the upper half-space model is well defined and is the limit of the Dirichlet polyhedra
PO as O→∞.



3.5 Fundamental polyhedra 121

If instead O=∞ is a parabolic fixed point of G, the convex polyhedron P̃∞ exterior
to the isometric planes of all g ∈ G, g(∞) 
= ∞, is periodic with respect to the
stabilizer Stab(∞), while the elements of the G-orbit of P̃∞ correspond to the G-
cosets of Stab∞.

The second statement follows from Proposition 1.5.5(7). It is sometimes a very
useful object to consider, in spite of the periodicity. This is especially true when there
is only one cusp.

The intersection with �(G) of the euclidean closure P∞ is the isometric region
F =P∞∩�(G). It may have isolated points, as a church steeple rising toward �(G)
from P∞. This subtlety is of concern only if one desires precise information about
F itself because a neighborhood of an isolated point is covered by a finite number of
elements in the orbit of F . The Ford region itself is not necessarily connected and
its intersection with a component of �(G) may not be connected. Certainly it is not
connected if �(G) is not connected. In any case the orbit of F tiles the region of
discontinuity �(G) without interior overlap.

The interior of F is characterized by the property that for any g 
= id∈G, |g′(z)|<1
for z ∈ F . Therefore among all tiles in the orbit of F , it is F itself that is largest, in
view of the formula∫ ∫

g(F)
du dv =

∫ ∫
F
|g′(z)|2dx dy <

∫ ∫
F

dx dy =∞.

Since |g′(z)|2=O(|z|−2) as |z|→∞, the intermediate integral is automatically finite.
The inequality becomes more meaningful if �(G) has a bounded component � and
we replace F by F ∩� and G by Stab(�).

We can now prove the following extended form of the universal horodisk theorem.

Corollary 3.5.3. Suppose�⊂� is invariant under a nonelementary group G without
elliptics and containing the translation T (z) = z + 1. Assume that T is determined
by a puncture in �/G. Then there exists M ≥ 0 such that � contains one of the two
half-planes {z : | Im z|>M}. Its image under any g ∈G that does not fix∞ is disjoint.

Proof. The isometric circle of any g ∈ G that does not fix∞ has its center g−1(∞)
on ∂�. As a consequence of the universal horoball property, its isometric circle has
radius not exceeding one. Any g ∈ G that does not fix ∞ sends the exterior of its
isometric circle onto the interior of that of g−1.

The assumption on the quotient insures there is a horodisk σ at +i∞ in the hyper-
bolic metric on � and ∂σ is an open analytic arc of period one. In the fundamental
strip S = {z : 0≤ Re z < 1}, the set ∂σ ∩ S is uniformly bounded above. Therefore σ
contains a half-plane.

Without the assumption on the quotient, the conclusion would be false, as we will
well understand when we discuss deformations and pinching: If T is not determined
by a puncture in the quotient, it acts in � as if it were loxodromic. �



122 Properties of hyperbolic manifolds

Poincaré’s Theorem

A particular consequence of Proposition 3.5.1 is the local finiteness of the G-orbits
of PO in �3 and PO∩�(G) in �(G): Any neighborhood of a point intersects only
a finite number of elements of the orbit.

It is possible to have a polygon or polyhedron that seems to have the properties of a
fundamental region, yet it does not have the local finiteness property. A nice example
is presented in [Mumford et al. 2002, Project 7.1] (another example is [Beardon 1983,
9.2.5]): Consider the group generated by the two parabolics A(z)= z+3 and B(z)=
2z/(3z+ 2), which acts in the upper and lower half-plane. The element A maps the
circle C1={|z+1/2|= 1/2} onto C2={|z−1|= 1}, sending the inside of C1 onto the
outside of C2. The element B maps the line C3 = {Re z =−1} onto C4 = {Re z = 2}
sending the right side of C3 onto the right side of C4. The group G = 〈A, B〉 is
discrete and preserves the upper and lower half-planes. In fact G is a variation on
the modular group M2 of Exercise 2-9. The element A−1 B is loxodromic with fixed
points −2,−1. Therefore limn→+∞(A−1 B)n(C3) is the circle {|z + 3/2| = 1/2}.
The quotient �2/G is conformally equivalent to a twice punctured disk. The region
exterior to C1,C2 and between C3 and C4 has the properties of a fundamental region,
except it is not locally finite. It has an edge which ends at a fixed point of a loxodromic
element but which is not itself preserved by that element; the projection of the edge
to the quotient spirals into the corresponding geodesic without meeting it.

It is also possible to have a polyhedron that seems to be a fundamental polyhedron
but the face pairing transformations do not generate a discrete group. Take a convex
euclidean quadrilateral Q with no two sides parallel. Find the two affine mappings
Ai (z) = ai z + bi that map one side to its opposite side and send Q to a polygon
Ai (Q) that does not overlap Q except along a side. The two elements generate a
nondiscrete group in �. In the upper half-space model, above Q rises a chimney Q∗.
The transformations Ai act in �3 and are hyperbolic isometries pairing opposite faces
of Q∗, as required of face pairing transformations. Yet the group they generate is not
discrete. What went wrong? This example is from [Epstein and Petronio 1994].

Still, if we start with a convex polyhedron Q∗ with the properties (1), (3) of Propo-
sition 3.5.1, the face pairing transformations will in general generate a discrete group
for which Q∗ is a (locally finite) fundamental region. This is called Poincaré’s The-
orem. One must be particularly careful in understanding the orbit of the ends of the
polyhedron on ∂�3. While this is often self-evident if there are a finite number of
faces, in the presence of infinitely many faces special care must be taken. For the
definitive analysis, valid in all dimensions, see [Epstein and Petronio 1994].

Note that there are perfectly good fundamental regions that are neither Dirichlet
nor isometric fundamental regions. Simple examples are most fundamental parallel-
ograms for discrete, rank two groups of translations. Another example is the modular
group M2 of Exercise 2-6; there one pair of circles are isometric circles, but the other
pair are not. However one might think of the fundamental region as a truncated Ford
polygon because∞ is a parabolic fixed point.
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The Cayley graph corresponding to a Dirichlet polyhedron

The dual graph� associated with PO is constructed as follows. Draw a geodesic from
O to each point g(O) where g(PO) shares a face with PO. Then draw geodesics to the
centers of the polyhedra of the G-orbit that share faces with the first generation, and
so on. We get an infinite connected graph �, embedded in �3. If each edge cycle has
length 3, which is true in the generic case, then there is a geodesic triangle transverse
to each edge. These geodesic triangles are the 2-simplices of the graph.

The graph� is equivariant under G. Its projection is therefore a graph�∗ ⊂M(G).
The edges of the graph project to simple loops from π(O). These loops generate the
fundamental group π1(M(G);O). The 2-cells generate the relations in π1(M(G);O).

For the general definition of Cayley graphs see Exercise 2-17. If PO has an infinite
number of faces, � is perhaps not useful. In contrast, the abstract Cayley graph for
G does not suffer under the same handicap.

Additional remarks

Wielenberg [1981] has given examples showing that a polyhedron may be the funda-
mental polyhedron for more than one group; different pairings of faces give rise to
different groups. An example of this phenomenon for fuchsian groups is in Exercise
2-13.

R. Riley over many years developed a computer program to test whether a group
given by generating matrices is discrete [Riley 1983]. In effect, it tests for discreteness
using Jørgensen’s inequality and the universal horoball property, and then it tries to
construct an isometric fundamental polyhedron. If successful, the program can read
off the presentation of the group.

Jørgensen [1973] has completely analyzed the isometric fundamental polyhedron
for cyclic loxodromic groups 〈T 〉 in terms of the trace parameter, using the normaliza-
tion of Exercise 1-34. The polyhedron can have an arbitrarily large number of faces;
large numbers of faces arise when the trace with |tr(T )|< 2 tangentially approaches
2. (When |tr(T )| > 2, the isometric circles of T±1 are disjoint.) The combinatorial
arrangement of faces is completely described in terms of tr(T ). Moreover, either F
is the region bounded by the isometric circles of T±1 (when |tr(T )| ≥ 2) or it is the
closure of a simply connected domain with either four or six sides. Wada [≥ 2007a]
wrote a computer program showing the structure of the isometric fundamental poly-
hedron as a function of the trace.

Jørgensen also analyzed the Ford fundamental polyhedra of once-punctured torus
groups G in terms of the combinatorics of the faces. He shows how, starting with the
side pairing transformations of the Ford regions (typically bounded by six circular
arcs) on the two components of�(G), the sequence of face pairing transformations of
the Ford polyhedron can be read off. This study has been important to this day because
this class is the simplest nontrivial class of groups, depending on only two complex
parameters. Besides important applications in its own right, especially to two-bridge
knots [Akiyoshi et al. 1999], it serves as a test bed for more general situations. For
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details of Jørgensen’s analysis see [Jørgensen 2003; Akiyoshi et al. 2003], [Akiyoshi
et al. 2005].

3.6 Geometric finiteness

The importance of the class of geometrically finite groups lies in the fact that the
class corresponds to the manifolds M(G) which are “essentially” compact [Marden
1974a]. The longstanding conjecture that geometrically finite groups are dense in all
finitely generated kleinian groups has recently been proved. (This will be discussed
in some detail in Sections 5.4–5.6.) The precise definition and characterization is as
follows (“pairs of punctures” and “solid pairing tubes” will be explained below):

Assume G is nonelementary and, unless stated otherwise, has no elliptics.

Theorem 3.6.1 [Marden 1974a; 1977]. Given a base point O ∈ �3, PO(G) has a
finite number of faces if and only if the quotient manifold M(G) is compact except
perhaps for a finite number of rank one and rank two cusps, and the rank one cusps
correspond to pairs of punctures on ∂M(G).

If the condition holds for one base point O, it holds for any choice of base point.

Corollary 3.6.2. A manifold M(G) is geometrically finite if and only if (i) the punc-
tures on ∂M(G) are arranged in pairs such that each pair determines a solid pairing
tube, and (ii) the result of removing the interiors of all solid pairing tubes and solid
cusp tori is a compact manifold M0(G).

A group that has a finite sided Dirichlet polyhedron is called geometrically finite.
Correspondingly, a geometrically finite manifold is one that is the quotient of such a
group. The term also applies to orbifolds.

Schottky groups and finitely generated fuchsian groups (Section 2.7) are examples
of geometrically finite groups with �(G) 
= ∅. Alternate characterizations of geo-
metric finiteness are given in terms of the convex core in Section 3.10.3, the conical
limit points in Exercise 3-18, and the Hausdorff dimension of the limit set in Exercise
3-20.

The term was coined by Leon Greenberg. After Ahlfors’ announcement of his
finiteness theorem, the next thought was that a Dirichlet region in �3 for a finitely
generated kleinian group had to have a finite number of faces, as is the analogous case
in �2 for fuchsian groups. This hope was decisively dashed when Greenberg pointed
out that this is not the case for the “degenerate” groups (Chapter 5) discovered by
Bers on the boundary of Teichmüller space [Greenberg 1966; Marden 1974a]. This
was the first indication that �3 really matters.

In contrast, consider the following interesting fact, a consequence of the Ahlfors
Finiteness Theorem. For proofs see [Beardon and Jørgensen 1975], [Greenberg 1977],
and Exercise 3-31 below.

The boundary PO ∩ �(G) “at ∞” of a Dirichlet polyhedron PO(G), or the Ford
fundamental region F(G), where G is finitely generated, has a finite number of sides.
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Fig. 3.2. Solid pairing tube for a rank one cusp.

The special role of parabolics. Let ζ ∈ ∂�3 be a parabolic fixed point of G and
Stabζ the parabolic subgroup fixing ζ . We have called ζ a rank one or rank two cusp
if Stabζ has one or two generators respectively. Associated with ζ is its universal
horoball H, whose “size” depends only on a least length generator (Section 3.2). For
T /∈ Stabζ , T (H)∩H =∅ while T (H)=H for T ∈ Stabζ .

The geometric structure associated with a rank two cusp is the same for all hyper-
bolic manifolds, even those with nonfinitely generated fundamental groups. Embed-
ded in M is a one-parameter family of solid cusp tori (Section 3.2) for every conjugacy
class of rank two parabolic subgroups. The universal horoball property assures us
that if we choose the solid cusp tori to come from horoballs properly contained in the
universal horoballs, those corresponding to different conjugacy classes have mutually
disjoint closures.

If the interiors of the solid cusp tori interiors are removed from M(G), there results
a manifold with the same fundamental group but with a number of torus boundary
components. These are in addition to the components of ∂M(G), none of which can
be tori. Every noncyclic abelian subgroup of π1(M) ∼= G arises by an injection into
π1(M) of the fundamental group of a cusp torus. A particular horoball associated
with a rank two cusp can be chosen to be of maximal size in that its boundary torus is
just tangent to itself; this is not necessarily true of the universal horoball. The set of
volumes of these maximal solid cusp tori is an invariant of the particular hyperbolic
structure.

If there are elliptics sharing the fixed point ζ then instead of the solid cusp torus
there will be an object homeomorphic to S′ × [0,∞) where S′ is a sphere with three
or four cone points.

Rank one cusps in a geometrically finite group are associated with a very particular
geometric structure that may not appear in a general group. The geometric structure
is much stronger than the mere existence of a horosphere and solid cusp tube (Section
3.2); the solid cusp tube must be directly related to two punctures on the boundary of
the manifold. In a geometrically finite group, there corresponds a pair of punctures
p1, p2 on ∂M(G), uniquely associated with the conjugacy class of the cusp: If c1, c2

are small circles in ∂M(G) retractable to p1, p2, there is a pairing cylinder C in
M(G), which is a cylinder, closed in M(G), and bounded by c1 and c2. It bounds a
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Fig. 3.3. Solid cusp torus for a rank two cusp.

subregion of M(G), called a solid pairing tube, which is homeomorphic to C×(0, 1]
(and retractable to a cusp). The solid pairing tubes corresponding to the different
conjugacy classes of rank one cusps can be chosen to be mutually disjoint in the
geometrically finite manifold M(G).

Let T be a parabolic generator of an element of the conjugacy class that represents
the cusp. The circles c1, c2 can be chosen so that the pair lifts to round circles in
�(G) mutually tangent at the fixed point ζ of T ; see Corollary 3.5.3. Such a pair of
circles is called a double horocycle at ζ , even though this is an abuse of terminology
if the components of �(G) containing them are not round disks on �2.

Suppose the fixed point ζ is shared by an order two elliptic. then instead of the
solid pairing cylinder there will be an object of the form D∗ × [0,∞). The subset
D∗ × {0} of Int(M(G)) is a disk with one puncture or cone point.

Consider a fuchsian manifold M(G) with G acting on the upper and lower half-
planes; every puncture on one component of ∂M is paired with a puncture on the other.
Suppose T : z �→ z+1 is a least length generator of a rank one parabolic subgroup. For
b> 1, {z ∈� : Im z =±b} is a pair of horocycles at the fixed point∞. These project
to “circles” about a pair of punctures. Let P± ⊂ �3 denote the vertical planes rising
from them and consider the vertical slab Q = {(z, t) ∈ �3 : −b ≤ Im z ≤ b, t > 0}
they bound. Truncate Q by the half-space K = {(z, t) : t ≥ a > 1}. The relative
boundary in �3 of the resulting tunnel Q \ K projects to a pairing tube. This explicit
construction suggests how solid pairing tubes can be created in general — there does
not seem to be a canonical construction.

Proof of Theorem 3.6.1. We continue to assume that G has no elliptics — elliptics will
be dealt with at the end of the proof. Assume that PO has a finite number of faces.
The set F = PO∩�2 consists of a finite number of finite sided circular polygons and
perhaps a finite number of isolated points. By a vertex of F we mean a point which
is on the edge of at least two different faces of PO; either the circles bounding two
faces cross at v, or they are tangent at v.

We claim that if a point x ∈ F is contained in the closure of only finitely many
elements P1 = PO,P2, . . . ,Pk of the orbit G(PO), then x ∈ �(G). To verify this
statement (as in [Greenberg 1966]), construct a horosphere Hx at x so small in
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Fig. 3.4. Schematics of a geometrically finite manifold. Each gray line joining a pair of ×’s
indicates a pairing tube; the gray closed curve indicates a rank two cusp.

spherical diameter that it intersects only the polyhedra {P j }. This means that Hx

is partitioned into sectors, each of which lies in some P j . A neighborhood of x on
�2 is likewise partitioned. Therefore x /∈�(G).

If there are no parabolics, each vertex of F is completely surrounded by a finite
number of elements of the orbit of F ; no vertex cycle can result in a parabolic while
a loxodromic cannot fix a point on closure of PO. Likewise the edges in �3 are also
completely surrounded. Therefore M(G) is compact.

Now consider an ideal point x ∈ F ∩�(G). Because there are only a finite num-
ber of faces, x lies in the boundary of infinitely many elements {P j } of the G-orbit
G(PO). Of the infinitely many faces of the {P j } that contain x on their boundary,
infinitely many are images of the same face of PO by elements of Stabx ⊂ G. All
these transformations must be parabolic. For if T ∈ Stabx were loxodromic, and if P
were a plane with x in its boundary, than the limit points of P under the cyclic group
〈T 〉 is the axis of T . This is impossible for a plane containing a face in the G orbit of
PO. So x is the common fixed point of a rank one or two parabolic subgroup and the
Dirichlet region Px =PO(Stabx) contains PO. If Stabx has rank one, Px is the region
bounded by two hyperbolic planes which are tangent at x . If Stabx has rank two, Px

is a chimney of four or six faces rising to x .

We have to consider in more detail the case where Stabx is rank one. In �2, choose
two circles tangent at x that bound a strip Sx whose Stabx -orbit is all �. For example,
if x = ∞ and Stabx is generated by z �→ z + 1, we can choose the strip Sx = {0 ≤
Re z ≤ 1}. The intersection with Sx of a small neighborhood of x must lie in F since
boundaries of faces of P0 cannot accumulate to x within Sx . This shows that there is
a double horocycle at x with respect to Stabx . In other words with respect to ∂M(G),
x supports a pair of punctures.

We conclude that M(G) is compact except for a finite number of solid cusp tori
and solid cusp tubes with respect to pairs of punctures.

Conversely, if M(G) has the “essential compactness” just described, we claim that
PO has a finite number of faces. Otherwise, where in M(G)would the projection of an
infinite number of faces {π( f j )} accumulate? We know there can be no accumulation
point within M(G).
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Suppose infinitely many π( f j ) were in the interior C of a solid cusp torus. A face
π( fi )⊂C does not separate C . Therefore there is a simple loop in C , not retractable
to a point, joining one side to the other. This loop determines an element of the
fundamental group π1(C), which is a rank two abelian group. Because not more than
one pair of faces can be paired by elements of a cyclic subgroup, the projection of at
most two faces can lie inside C , a contradiction. The same argument applies to the
interior of a solid pairing tube. We conclude that PO has a finite number of faces.

Corollary 3.6.2 follows from our argument.

We will indicate how the corresponding theorem for orbifolds can be derived from
the theorem for manifolds. By Selberg’s Lemma (page 68), there is a torsion free nor-
mal subgroup H of finite index. Let G =⋃N

i=1 gi H =⋃N
i=1 Hgi be a decomposition

by distinct cosets. Then P∗ =⋃N
i=1 gi (PO(G)) serves as a fundamental domain for H .

Although it may not be connected, it has the properties of PO, in particular the faces
are arranged in pairs with respect to H . For example, if ( f, g( f )) is a pair of faces
of PO(G) then the 2N faces {gi ( f ), gi g( f )} are arranged in N pairs under H . Now
gi g= hg j for some j and h ∈ H — because G=Gg=⋃ gi Hg=⋃ gi gH =⋃ Hgi .
Therefore the faces gi ( f ) and g j ( f ) are paired by h ∈ H . Also we know that
h1g j 
= h2gk for k 
= j, h1, h2 ∈ H . In effect, PO(H) is made up of N copies
of PO(G). We conclude that G is geometrically finite if and only if H is as well.
(The picture at orbifold cusps is more complicated if there are elliptics that share the
parabolic fixed points.) �

Lemma 3.6.3 [Thurston 1986b]. If G is geometrically finite and �(G) is nonempty,
every finitely generated subgroup is also geometrically finite.

A proof is indicated in Exercise 3-7. Without the assumption that �(G) 
= ∅, the
statement would be false in general, as we will later see in Section 6.1.

Finite volume

Lemma 3.6.4 [Wielenberg 1977]. If Vol(M(G)) <∞, then G is geometrically finite.

Proof. Again we may assume that G has no elliptics. Consider the ε-thick part
M(G)thick (with ε chosen as in Proposition 3.4.1). The surface area of a cusp cylinder
coming from a rank one cusp is infinite. Therefore a small neighborhood in the thick
part would have infinite volume. So G cannot have any rank one cusps. On the other
hand the volume of each ε-solid cusp torus is not less than 2ε2|τ | sin θ ≥ √3ε2 by
Exercise 2-10, so there are at most a finite number of them. If the thick part were
not compact there would be an infinite sequence xn ∈M(G)thick which are centers of
mutually disjoint ε balls. Therefore the volume of M(G) would have to be infinite,
which is not the case. �
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3.7 Three-manifold surgery

In this section we will present what is needed from 3-manifold topology for direct ap-
plication to hyperbolic manifolds. For a rigorous treatment of the aspects of topology
that we are using, we refer to [Hempel 1976] or [Jaco 1980].

Dehn’s Lemma and the Loop Theorem. Let S be a boundary component of an
orientable 3-manifold M3. Suppose γ ⊂ S is a simple loop homotopic to a point
within M3 but not within S. Then γ is the boundary of an essential disk.

Suppose a nonsimple loop γ ⊂ S is homotopic to a point in M3 but not in S. Given
a neighborhood Nγ ⊂ S of γ , there a simple loop γ0 ⊂ Nγ that bounds an essential
disk D ∈M(G).

An essential disk is an embedded closed disk D ⊂ M3 such that D ∩ ∂M3 = ∂D,
where ∂D is not homotopic to a point in ∂M3. We call a loop γ ⊂ S nontrivial if it is
not homotopic to a point within S. When obtaining a disk from application of Dehn’s
Lemma and the Loop Theorem, we will automatically choose one that is essential. A
boundary component that supports an essential disk is called compressible.

The equivariant version is also useful:

Equivariant Dehn’s Lemma and the Loop Theorem [Meeks and Yau 1981]. Sup-
pose X is a finite group of automorphisms of some M(H) with compressible bound-
ary. Then there is a set of mutually disjoint compressing disks whose members are
permuted by G and project injectively to M(H)/X .

In our applications M3 is a smooth, oriented manifold, and γ can also be chosen
to be smooth. There is an important generalization:

Cylinder Theorem. Suppose γ1, γ2 ⊂ ∂M3 are disjoint nontrivial simple loops that
are freely homotopic in M3 but not within ∂M3. There is an essential cylinder em-
bedded in M3 bounded by γ1 and γ2.

Suppose instead that the freely homotopic loops are not simple but γi ⊂ Ni ⊂ ∂M3,
where the neighborhoods N1 and N2 are disjoint. There are simple loops γ ′i ⊂ Ni that
bound an essential cylinder in M3.

That two loops are freely homotopic means that there is a continuous mapping of an
annulus A into M3 sending the boundary components of A to the two loops. Another
way of describing free homotopy is as follows: γ1 is freely homotopic to γ2 if and
only if there is an arc α from any given point O1 ∈ γ1 to any given point O2 ∈ γ2 such
that γ1 is homotopic to α−1γ2α (here we are composing curves from right to left).

Two disjoint simple loops that are freely homotopic in ∂M3, but neither is homo-
topic to a point in ∂M3, bound a (topological) annulus in ∂M3.

An essential cylinder is a closed cylinder C ⊂ M3 such that C ∩ ∂M3 = ∂C , the
boundary components of C are not homotopic to points in M3, and C cannot be
homotoped (relative to ∂M(G), that it is allowed to slide along ∂M3) to an annulus
in ∂M3. When obtaining a cylinder from application of the Cylinder Theorem, we
will automatically choose one that is essential.
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Fig. 3.5. Cutting a solid torus along a compressing disk results in a topological ball.

In the case of a kleinian manifold M(G) we will add the following requirement to
the definition: For C to be called an essential cylinder, it cannot bound a solid pairing
tube. Here we are regarding a pairing cylinder as homotopic into the boundary.

It is possible that a simple loop γ ∈ ∂M(G) may be a boundary component of
two or more homotopically distinct essential cylinders which are disjoint, except for
sharing the common boundary γ . On the other hand,

A simple nontrivial loop on a cusp cylinder or cusp torus cannot be freely homotopic
to a loop either on a cusp cylinder or cusp torus corresponding to a different cusp.

Application of Dehn’s Lemma and the Loop Theorem

If a component � of �(G) is not simply connected, there is a simple loop γ ∗ ∈ �
which separates its boundary components. Of course γ ∗ is homotopic to a point if
we move it into �3. Its projection γ ⊂ R =�/ Stab(�) is a closed loop, perhaps not
a simple loop, which is not homotopic to a point in R, but is homotopic to a point in
M(G). Dehn’s Lemma and the Loop Theorem say that there is a simple loop γ ′ ∈ R
which bounds an essential disk in M(G).

A component R of ∂M(G) is incompressible if the inclusion π1(R) ↪→ π1(M(G))
is injective. Our argument shows that R is incompressible if and only if all the
components of �(G) which lie over R are simply connected. Otherwise R is called
compressible. If all the boundary components are incompressible, the manifold M(G)
is called boundary incompressible.

More generally, an orientable surface S embedded in M(G) is called incompress-
ible if it is not a topological disk and if the inclusion π1(S) ↪→π1(M(G)) is injective.
This means that every loop in S which is homotopic to a point in M(G) is already
homotopic to a point in S. Otherwise there is a simple loop in S bounding an essential
disk whose interior lies in M(G)\S [Jaco 1980, III.8]. The surface S is incompressible
if and only if each lift over it in �3 is simply connected.

An essential disk D in M(G), ∂D⊂ ∂M(G), is called a compressing disk. It either
divides M(G) into pieces M1,M2 or M1 =M(G) \ D is connected. In the first case
the fundamental group of M(G) splits into a free product: π1(M)=π1(M1)∗π1(M2)

and correspondingly G splits: G = G1 ∗G2 (van Kampen’s Theorem). In the second
case let γ be a simple loop from an origin O ∈ M1 that crosses D once. Then
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π1(M(G)) = 〈π1(M1), γ 〉 or G = 〈G1, T 〉 where T G1T−1 = G1, T /∈ G1 (G is an
HNN-extension of G1).

The subgroup π1(Mi ) corresponds to a conjugacy class of subgroups of G — take
a lift M∗i of Mi to �3 and let Gi denote its stabilizer. There are one or more copies
of the compressing disk D in the relative boundary of M∗i in �3. These lifted disks
bound a topological half-space of �3 not containing M∗i . Adding these half-spaces
to M∗i gives back all �3. Moreover the half-spaces project injectively into M(Gi ).

Now starting with some manifold M(G), the process of repeated insertion of com-
pressing disks, which we can take to be mutually disjoint, terminates after a finite
number of steps. We end up with a union of manifolds that are either balls or are
boundary incompressible (see [Hempel 1976] or [Jaco 1980]). For example, if we
start with a handlebody of genus g coming from a Schottky group, after cutting it
along g mutually disjoint disks none of which divide the handlebody we will end up
with a topological ball. See Exercise 3-11.

Here is a way of reversing the process of cutting M(G) by an essential disk: Choose
disjoint, closed, round disks D1, D2 in �(G). Choose them small enough that each
projects injectively into ∂M(G) and they remain disjoint there. Let σ1, σ2 denote the
hyperbolic planes rising from the circles ∂D1, ∂D2. Let σ−i denote the half-space
adjacent to Di and σ+i the other half-space. Choose any Möbius transformation T
which has the property that T (σ1)= σ2 and T (σ+1 )= σ−2 . We see that G∗ = 〈G, T 〉
is a discrete group: T conjugates all the action of G in σ+1 to the action of T GT−1 in
σ−2 . Of course the operation is duplicated over the full orbit G(Di ). The associated
manifold M(G∗) is obtained from M(G) as follows. Down in M(G)we have the disks
Di ⊂ ∂M(G), and the planes σi which lie in the interior of M(G) except for their
boundaries and bound balls (here we are using the same notation for the projections).
Let M denote the result of removing from M(G) the two half-spaces σ−i . The action
by T forms a new hyperbolic manifold M(G∗) from M by gluing σ1 to σ2. In M(G∗),
σ1 ≡ σ2 is an essential disk which does not separate.

The procedure works equally well if we have two manifolds M(Gi ) and take a
disk in each boundary. In this case the new essential disk will divide the manifold.
This process we have described is an example of Klein–Maskit combination theory,
developed by Klein and refined and extended by Maskit [1988]; see [Marden 1974a]
for the manifold interpretation. See also Exercise 3-8.

For the following result, see for example [Waldhausen 1968].

Proposition 3.7.1. Suppose M3 is a compact, orientable and irreducible 3-manifold.
If π1(M3)= A∗B, A, B 
= id, is a free product of subgroups, there exists a compress-
ing disk bounded by a simple loop in ∂M3.

Remark 3.7.2. In calculating the genus of the boundary of a 3-manifold in terms of
its fundamental group the following simple fact is very useful. Suppose α, β ∈ ∂M3

are two 1-cycles with nonzero intersection number. Then at most one of them can
be homologous to zero, or, in particular, homotopic to a point in M3. Thus if the
fundamental group has N generators so that its first homology group has at most
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N generators, the total genus of the boundary is at most N . In particular, if G has
no parabolics, ∂M(G) has at most N/2 components. Similar arguments give useful
estimates for the topology of the boundary [Marden 1971; 1974a]. For example, if
G is a g-generator free group (g ≥ 2) and M(G) is compact with ∂M(G) a closed
surface of genus g, then M(G) is a handlebody.

Equivariant extensions ∂M→M

Often we will be in the position of having a group G and a quasiconformal defor-
mation F : �(G)→ �(H) that induces an isomorphism ϕ : G → H . Such a map
is called equivariant; it is the lift of a quasiconformal map f : ∂M(G)→ ∂M(H)
which (i) sends puncture pairs to puncture pairs, and (ii) sends compression loops to
compression loops.

We will spell out in terms of given basepoints how the boundary map f respects the
isomorphism ϕ :π1(M(G); O)→π1(M(H); O ′). On each boundary component R of
∂M(G), choose a basepoint p, and then choose the basepoint f (p) ∈ f (R). To each
loop α ⊂ R with basepoint p corresponds a loop f (α)⊂ f (R) with basepoint f (p).
Upon joining the loops to the basepoints O, O ′ by auxiliary arcs, we get inclusion
homomorphisms π1(R; p) ↪→π1(M(G); O) and π1( f (R); f (p)) ↪→π1(M(H); O ′)
with kernels K = πc(R), K ′ = πc( f (R)). There are a finite number of mutually
disjoint simple compression loops on R such that the kernel K is the least normal sub-
group πc(R)⊂ π1(R) generated by these (see the Maskit Planarity Theorem, p. 76).
In turn the map f induces an isomorphism between the images of the inclusions.

We want to find a quasiconformal extension to f :M(G)→M(H). Although no
“canonical” method seems available, the extension can be done by topological means
(extension is not always possible in the geometrically infinite case).

Suppose first that M(G) is compact. According to [Hempel 1976, Theorem 13.9
and Corollary 13.7], f is homotopic on ∂M(G) to a homeomorphism f1 which has
an extension to a homeomorphism between the manifolds f1 :M(G)→M(H). In
turn f1 is homotopic to a diffeomorphism f2 :M(G)→M(H), [Munkres 1960]; f2

is automatically quasiconformal. We can choose a lift F2 of the new f2 to �3∪�(G)
so that its restriction to �(G) induces ϕ and is homotopic to F . But now, applying
[Gehring 1962], F2 has an ϕ-equivariant quasiconformal extension to all of �2.

If there are parabolics we have to replace the manifolds by the compact manifolds
resulting from the removal of the solid pairing tubes and the solid cusp tori and extend
the extension back to the original manifolds.

For applications it suffices to replace (F, f ) by (F2, f2). However it is nicer to
apply the stronger result Theorem 3.7.3 below.

It is shown in Exercise 3-34 that the original F itself has a homeomorphic extension
to �2 satisfying F(ζ ) = F2(ζ ) for all ζ ∈ �(G). In fact, the extension of F is
quasiconformal on all �2 by Theorem 3.14.6. This puts us in a position to apply
Theorem 3.7.4(iii) below. We end up with a most satisfying result as follows:
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Theorem 3.7.3. Assume that G is geometrically finite and F is a quasiconformal
mapping �(G) onto �(H) that induces an isomorphism ϕ : G→ H . Then F is the
restriction of an equivariant quasiconformal map of �2 which extends to an equivari-
ant quasiconformal mapping F : �3 ∪�2→ �3 ∪�2. The mapping F then projects
to a quasiconformal mapping f :M(G)→M(H).

Now suppose M(G) is not necessarily geometrically finite. We start afresh with
a quasiconformal mapping F : �2 → �2 that induces an isomorphism ϕ : G → H
satisfying F(g(z)) = ϕ(g)F(z) for all g ∈ G, z ∈ �2. If the restriction of F is
conformal �(G)→ �(H), or if �(G) = ∅, F is is Möbius and the two groups are
conjugate. Here we are applying Theorem 5.6.6 or, if �(G)=∅, Corollary 3.13.4.

One general approach is the following. It is based on a canonical method of Douady
and Earle to extend a quasiconformal automorphism F of the (n−1)-sphere (when
n=2 such a map is called quasisymmetric) to a surjective mapping of n-ball for n≥2.
The extension is equivariant if F is so. That is, if F satisfies F ◦ g(z)= ϕ(g) ◦ F(z)
for all z ∈ �n−1 and g ∈ G for any Möbius group G and an isomorphism to another
group ϕ :G→ H , then its extension is also equivariant with the same ϕ. On the other
hand the extension is guaranteed to be a homeomorphism only when n = 2, or when
the complex dilatation of the boundary mapping is sufficiently small (see [McMullen
1996, p. 231]). Fortunately in the case n= 3 a modification suggested by Pekka Tukia
(personal communication) allows one to get a homeomorphism of the ball without
any restrictions. This modification is based on the fact [Ahlfors 1966, p. 100] that
in dimension 2, given ε > 0, a quasiconformal mapping can be factored into the
composition F = Fn ◦Fn−1◦· · ·◦F1 of a finite number of equivariant quasiconformal
mappings each of whose complex dilatations satisfies ‖μk‖∞ < ε. This is done by
taking μk = (k/n)μ for sufficiently large n, where μ is the complex dilatation of
F . In consistent normalizations, denote the solution of the corresponding Beltrami
equation by gk . Then set Fk = gk ◦g−1

k−1. The Douady-Earle extension is then applied
to each factor Fk resulting in an extension to a equivariant homeomorphism of �3.

The weakness of this approach is that the extension is not known to be quasicon-
formal or even bilipschitz. There is an alternate approach by integrating an extension
of a vector field on �2. This method is suggested in in [Thurston 1979, Chapter 11;
Reimann 1985] and carried out in [McMullen 1996, Corollary B.23]. The possibilities
are itemized below.

Theorem 3.7.4 (Basic Extension Theorems). Suppose G, H are arbitrary kleinian
groups and F :�2→�2 is a K -quasiconformal mapping that induces an isomorphism
ϕ : G→ H . Then:

(i) [Douady and Earle 1986; Tukia 2005] The map F has an equivariant extension
to �3 that is a homeomorphism which also induces ϕ; its projection f :M(G)→
M(H) is an orientation preserving homeomorphism.
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(ii) [Tukia 1985c] The map F has an equivariant (L , a)-quasiisometric extension
for some L = L(K ), a = a(K ); its projection f :M(G)→M(H) is a (L , a)-
quasiisometric mapping.

(iii) [McMullen 1996, Corollary B.23] The map F has an equivariant extension to a
K 3/2-bilipschitz diffeomorphism of �3; its projection f :M(G)→M(H) is a
K 3/2-bilipschitz diffeomorphism (and hence quasiconformal).

A mapping f of �3 is (L , a)-quasiisometric if there exist finite constants 1 ≤ L
and a ≥ 0 such that in the hyperbolic metric

1

L
d(x, y)− a ≤ d( f (x), f (y))≤ Ld(x, y)+ a.

Thus a quasiisometric map need not be continuous but at long range it is essentially
bilipschitz. Like quasiconformal maps of �3 [Gehring 1962], quasiisometric maps
can be extended to ∂�3 ≡ �2 and the extension is a quasiconformal map of �2.
If in addition it is a homeomorphism, it will automatically be quasiconformal (but
quasiconformal maps are not automatically bilipschitz). See Exercise 3-19.

3.8 Quasifuchsian groups

A quasifuchsian group G is the quasiconformal deformation (page 80) of a fuchsian
group �. The purpose of this section is to characterize this class of groups by the
topology of M(G).

Assume first we have a finitely generated kleinian group G with �(G)=�1∪�2

such that G preserves �1, �2. We will show that G is quasifuchsian. By the Ahlfors
Finiteness Theorem, the quotients�i/G= Ri are closed surfaces with at most a finite
number of punctures and branch points.

Each component must be simply connected. Otherwise there would a simple loop
α in �1, say, that separates its boundary. This would force �2 to make a choice of
which component of �2 \ α to lie in. Whichever it chose, its boundary could not be
the full limit set, a contradiction.

Choose a fuchsian group � and quasiconformal mappings f1 : UHP/� → R1,
f2 : LHP → R2 that lift to F1 : UHP → �1, F2 : LHP → �2. We also need the
reflection J : z �→ z̄. We must choose these maps so that the orientation reversing
map H = F2 ◦ J ◦ F1

−1 : �1 → �2 satisfies H ◦ g = g ◦ H for all g ∈ G. Once f1

is chosen, the homotopy type of f2 is determined by this requirement. In particular
there is an isomorphism φ :�→G for which Fi ◦γ =φ(γ )◦Fi , i =1, 2, for all γ ∈�.
The complex dilation μ of F1, F2 is a Beltrami differential on UHP∪LHP. Define μ
to vanish on �∪ {∞}. Solve the Beltrami equation. There results a quasiconformal
map F of �2 that conjugates � to a quasifuchsian group G ′. Because they solve
the same Beltrami equation, F ◦ F−1

i is conformal on �i , i = 1, 2 and induces an
isomorphism φ′ :G→G ′. Anticipating Theorem 3.13.3, φ′ is a conjugation. So after
renormalizing F , we may assume F restricts to F1 and F2.
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We will now show that if �(G) has two invariant components �1, �2 then �(G)
has only the two components �1, �2 as claimed in Lemma 2.4.2(iii).

From the perspective of ∂M(G) = R1 ∪ R2 there is an “identity” isomorphism
j : π1(R1)→ π1(R2) that comes from identification of the action of g ∈ G on �1

with its action on �2: Fix basepoints O∗i ∈�i and a geodesic τ ∗ in �3 that connects
them. Given g ∈G, a simple arc γ ∗i ⊂�i from O∗i to g(O∗i ) projects to a loop γi ∈ Ri

from the point Oi = π(O∗i ), i = 1, 2. Then γ ∗1 ∼ g(τ ∗)γ ∗2 τ
∗−1 and the projections

to M(G) satisfy γ1 ∼ τγ2τ
−1; γ1 is freely homotopic to γ2 in M(G). This gives

the isomorphism j . A change of basepoints will give the same isomorphism j if the
connecting arc τ ∗ is correspondingly adjusted.

Applying the Cylinder Theorem, given a simple loop γ1⊂ R1 there is a simple loop
γ2 ⊂ R2 that bounds an essential cylinder within M(G).

A very similar situation arises for punctures and cone points. If g ∈G is parabolic,
since each �i is simply connected, its fixed point corresponds to a puncture in each
of Ri . According to Corollary 3.5.3, its fixed point supports a horocycle in both �1

and �2. From this, we can construct a solid pairing tube in M(G) pairing the two
punctures. Also each elliptic transformation has one fixed point in each component
and its axis of rotation extends from one to the other, analogous to the situation for a
parabolic.

The argument proceeds as follows. Suppose first that there are no elliptics or
parabolics. Consider a simple closed geodesic c in the hyperbolic metric on R1. There
is a corresponding geodesic c′ in R2 such that c, c′ are the boundary components of
a cylinder in M. If d is a simple geodesic in R1 crossing c exactly once and d ′ ⊂ R2

corresponds to d, the two cylinders can be adjusted so that they are transverse to each
other within M(G)— they intersect in a single arc.

Now take a chain of 2g simple geodesics {ci } in R1, where g is the genus, such that
ci crosses ci−1 and ci+1 while c2g crosses c2g−1 and c1, but otherwise the geodesics
are mutually disjoint. The complement of their union in R1 is simply connected.
Insert cylinders so that within M(G) each is transverse to its neighbors but disjoint
from the others. Let M denote the complement in M(G) of the union of the cylinders.
The interior of M can only be a ball because it is bounded by a topological 2-sphere.
This establishes the product structure for this case.

In the general case, choose mutually disjoint solid cusp pairing tubes for the pairs of
punctures and solid tubes about the rotation axes. Connect the union of the geodesics
{ci }with the circles about the punctures and branch points in R1 so the result bounds a
simply connected region. Then extend this to connect within M the union of the cylin-
ders with the cylinders about punctures and branch points to once again get a comple-
mentary region M bounded by a topological 2-sphere. The argument is completed as
before. So there is an (orientation preserving) homeomorphism M(G)→ R1×[0, 1].

Appealing in addition to Theorem 3.7.3, we conclude that there is a quasiconformal
mapping F : �2→ �2, taking UHP∪LHP to �1 ∪�2, such that:
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(i) there is an isomorphism ϕ : �→ G such that (F ◦ γ )(z)= (ϕ(γ ) ◦ F)(z) for all
z ∈ �2 and γ ∈ �.

(ii) F ◦ J ◦ F−1 is an involution of G.
(iii) F projects and extends to a quasiconformal map f :M(�)→M(G).

Simultaneous uniformization

Suppose � is a fuchsian group acting again in the upper and lower half-planes and
then in upper half-space. The orientation reversing involution J0 : (z, t)∈�3 �→ (z̄, t)
interchanges the upper and lower half-planes, UHP and LHP, and pointwise fixes
the vertical plane P rising from �. It satisfies J0 ◦ γ = γ ◦ J0 for all γ ∈ �. The
projection J0∗ to M(�) is an anticonformal mapping that exchanges the two boundary
components, and pointwise fixes P/�.

A quasifuchsian deformation G of � is induced by a quasiconformal map (see
Section 3.6.3) f : �3 ∪ ∂�3 → �3 ∪ ∂�3 that satisfies f ◦ γ (x) = θ(γ ) ◦ f (x)
for all x ∈ �3 ∪ ∂�3, for an isomorphism θ : � → G. The map f projects to a
homeomorphism f∗ : M(�)→ M(G). Hence J∗ = f∗ ◦ J0∗ f∗−1 is an orientation
reversing involution of M(G), exchanging its two boundary components and inducing
the identity automorphism of π1(G).

It is customary to refer to the boundary component UHP/� as the top boundary
component of M(�) and LHP/� as the bottom and correspondingly for any quasi-
fuchsian deformation of �. The following generative result is due to Bers.

Simultaneous uniformization. Suppose Rbot, Rtop are two Riemann surfaces of finite
hyperbolic area and J : Rbot ↔ Rtop is an orientation reversing involution. There
exists a quasifuchsian group G, uniquely determined up to Möbius equivalence, such
that the top boundary component of M(G) is conformally equivalent to Rtop, the
bottom conformally equivalent to Rbot, and such that J is homotopic to the restriction
of J∗ to ∂M(G).

3.9 Geodesic and measured geodesic laminations

In this section we will introduce the notions of geodesic and measured geodesic lam-
inations in �2 which are needed to understand the internal structure of hyperbolic
manifolds. General references are [Fathi et al. 1979], [Canary et al. 1987], [Bonahon
2001].

It is helpful to think in terms of the disk model of �2. Let G be a fuchsian group
such that �2/G = R is a surface of finite hyperbolic area (no elliptics).

Draw any simple closed curve γ from a basepoint O ∈ R which is not homotopic
to a point or a puncture. Choose O∗ ∈ �2 over O . A lift γ ∗0 of γ beginning at O∗
terminates at g(O∗) for some g 
= id ∈ G. The orbit γ ∗ of γ ∗0 under the cyclic group
〈g〉 is a simple arc in �2 with end points at the fixed points of g. Since γ ∗ projects to
a simple loop, it will have the property that its orbit under the full group G consists
of mutually disjoint arcs.
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Fig. 3.6. A discrete geodesic lamination consisting of the lifts of a long simple geodesic on a
once punctured torus. A fundamental polygon is shaded.

Now consider the axis α∗ of g, namely the hyperbolic line between the endpoints
of γ ∗; α∗ projects to a closed loop α on R which is necessarily a simple loop and a
geodesic. Furthermore, γ is freely homotopic to α. In Exercise 3-3 we will find that
α∗ does not penetrate the universal horoballs at parabolic fixed points.

Fix a fundamental polygon P for G (for an explicit example, see Exercise 2-13).
Consider a sequence of closed geodesics {αn} that are getting longer and longer, say
in terms of a fixed set of generators for π1(R; O). Choose a point pn ∈ αn and a lift
so that p∗n ∈ α∗n lies in P; the corresponding axes α∗n all intersect P . What happens
as n →∞? Since all the axes intersect P (but do not enter the universal horoballs
at the cusps of P) we can find a subsequence that converges to a geodesic σ ∗ in
�2. Necessarily neither endpoint of σ ∗ is a parabolic fixed point. What about the
projection σ to R?
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First of all σ , can have no self-intersections, since the orbit of σ ∗ under G consists
of mutually disjoint geodesics. Second, it cannot be a closed geodesic, for lim gn

cannot exist as a proper Möbius transformation. Therefore σ is a simple geodesic of
infinite length on R. As such it has limit points in R — that is there are sequences of
points {p∗n}∈σ ∗ which converge to an endpoint so that the projections {pn=π(p∗n)}∈
R converge to a point p ∈ R. Such a geodesic σ is called recurrent; it keeps returning
to a compact set in R.

However we cannot say that in R, {αn} “converges” to σ . For if a different point
p′n ∈ αn , increasingly far away along αn from pn , was lifted to P , the sequence of
lifts will not necessarily converge to σ ∗, or even to a leaf in the G-orbit of σ ∗.

A geodesic lamination�∗ ⊂�2 is a closed set of mutually disjoint geodesics. Two
leaves are allowed to have a common endpoint on ∂�2. Each component of �∗ is
called a leaf. The components of �2\�∗ are called gaps. The gaps are ideal polygons,
possibly infinite sided, possibly bounded by arcs of ∂�2.

The space GL of all geodesic laminations on �2 is given the topology of Hausdorff
convergence: A sequence converges �∗n→�∗ if every neighborhood of �∗ contains
all but a finite number of �∗n , and if U ∈ �2 is an open set containing all but a finite
number of �∗n then �∗ ⊂ U . With this topology GL becomes a compact Hausdorff
space. Simple closed geodesics are dense in the subspace GL0(R) of those geodesic
laminations without leaves ending at a puncture (recall that simple closed geodesics
cannot penetrate the universal horodisks); see [Canary et al. 1987].

In fact, there is a natural topology on the space of geodesics in �2 so that it becomes
a Möbius band (Exercises 1-3 and 4-15). An individual geodesic becomes a point in
the Möbius band while a geodesic lamination becomes a closed pointset.

Assume now that �∗ is G-invariant. The projection � to R = �2/G is a closed
set of mutually disjoint simple geodesics in R which cover a set of zero area. A leaf
�⊂� is isolated if every point z ∈ � has a neighborhood whose intersection with �
consists of a segment of � through z. For example, suppose α, β are disjoint simple
closed geodesics on R. There is an isolated geodesic � one end of which spirals
infinitely often around one side of α and the other end infinitely often around β. A
lift of γ in �2 will connect one fixed point of a loxodromic over α to a fixed point of
a loxodromic over β. Yet � is not a lamination since it is not closed in the space of
geodesics. The lamination is γ ∪α ∪β.

A well known result of Birman and Series [1985] is that the set of all simple (but not
necessarily closed) geodesics on a finite surface R form a set of Hausdorff dimension
one — see Exercise 3-20. An interesting consequence is that almost every geodesic
arc [a, b] ⊂ R is generic with respect to simple geodesics in the sense that it is
transverse to every simple closed geodesic on R [Bonahon 2001, p. 19].

Another consequence is that if � has no isolated leaves, then � has uncountably
many leaves: For any transverse segment τ , τ ∩� is totally disconnected; τ ∩� is a
Cantor set [Bonahon 2001, Prop. 7].

(Mirzakhani [2004] recently established the precise growth of the number SX (L)
of simple closed geodesics of length ≤ L on a hyperbolic surface X of genus g and
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n punctures:

SX (L)∼ nL6g+2n−6, as L→∞,
where n = n(X) is a constant depending on X .)

Any lamination can be augmented by additional leaves if necessary so that the
gaps are ideal triangles. The projection of gap in �2 near an ideal vertex either ends
at a puncture, or spirals around R without intersecting itself or other gap projections.
Since each ideal triangle has area π , there are exactly 2(2g+n−2) different gaps
(Exercise 3-1).

A given� can be covered with open sets {Ui } with continuous maps φi :Ui ∩�→
Xi×(0, 1)⊂�2 taking leaves to vertical line segments indexed by Xi ⊂� and so that
φ j ◦φ−1

i (x, y)= ( f (x), g(x, y)) preserves verticality for overlapping neighborhoods.
A lamination� is called minimal if it has no closed sublaminations. Each geodesic

lamination can be decomposed into (i) the union of finitely many infinite isolated
leaves whose ends spiral to a minimal sublamination or end at a cusp, and (ii) the
union of finitely many minimal sublaminations with the property that every half-leaf
is dense in the sublamination. A closed geodesic is in the second category, and a
geodesic whose ends are at punctures is in the first.

Measured laminations

The geodesic lamination � ⊂ R (and hence its lift �∗ ⊂ �2) is called a measured
lamination if there is a Borel measure μ with support contained in (usually we will
assume equal to) �. More precisely, each transverse segment τ , with endpoints in
gaps, has finite, positive measure μ(τ) where the measure depends only on the equiv-
alence class of τ—τ1 ≡ τ if the endpoints of τ1 are in the same gaps as the endpoints
of τ .

We will always require that the measure be uniformly bounded in the sense that
there is a constant C such that μ(τ)<C for all transversals τ of unit length. For such
a measure to exist with support in� on a punctured surface, no leaves of� can end at
punctures. For up in �2, if there is one leaf ending at the fixed point ζ of a parabolic
g ∈ G, all the leaves in its 〈g〉-orbit also end at ζ and are zero asymptotic distance
apart. Thus a transverse segment of unit length ultimately crosses infinitely many
leaves, forcing any transverse measure to be infinite. Likewise no leaf of� can spiral
in to a closed geodesic. This would occur if up in �2, a leaf shares an endpoint with the
axis of a loxodromic representing a simple closed geodesic. For this reason, the only
isolated leaves of a measured lamination are simple closed geodesics. The minimal
gaps are ideal triangles, ideal bigons containing one puncture, and ideal monogons
containing one puncture∗. An ideal bigon is the union of two ideal triangles and an
ideal monogon one, after it is slit from the puncture to the ideal point. Each ideal
triangle has area π , each ideal bigon has area 2π and each monogon has area π . An

∗ A bigon B (monogon M) on S is a annular region about a puncture whose boundary in S consists of two (one)
infinite geodesics whose ends are asymptotic to each other “at∞”. Each lift of B or M is an infinite sided ideal
polygon invariant under a cyclic parabolic subgroup.
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n sided ideal polygon made up of n−2 ideal triangles, or n triangles if it contains one
puncture, can also serve as a gap.

Every geodesic lamination � has a transverse measure whose support consists of
all the minimal sublaminations of � [Bonahon 2001, Prop. 9].

The set ML(R) of uniformly (locally) bounded, measured laminations on a finite
area surface R of genus g and b punctures is topologized as follows: (�n, μn)→
(�,μ) if and only if (i)�n→� in the Hausdorff topology, and (ii) limμn(τ )=μ(τ)
for all transversals of �. However we have to allow the possibility that the support
of μ is a proper sublamination of the Hausdorff limit �. We also have to allow the
zero-lamination with no leaves and zero measure.

If [α], [β] are two free homotopy classes of simple loops, their geometric inter-
section number ι([α], [β]) is defined to be the minimum number of crossings ι(α, β)
of simple loops α, β in their respective free homotopy classes. This minimum is
achieved by the geodesics αg, βg in the classes. For this reason we will usually use
the geodesics to calculate intersection numbers. We set ι(α, α)= 0 so that ι(α, β)= 0
implies that either the geodesics α, β are disjoint, or they coincide. Equally we can
define the geometric intersection number of two collections of mutually disjoint sim-
ple geodesics. And also the intersection number of a geodesic arc with endpoints in
gaps and a finite lamination. (see Exercise 2-5 for the torus case).

The most general transverse measure on a finite system of mutually disjoint closed
geodesics is obtained by assigning an atomic measure α(�) to each leaf. Then for the
measured lamination μ we define by linearity

μ(τ)= ι(τ, μ)=
∑
�∈�

α(�)ι(τ, �). (3.3)

Thurston proved that the measured laminations with support on a simple closed
geodesic are dense in ML(R) [Thurston 1988; Fathi et al. 1979]. In other words,
given (�,μ)∈ML(R) there exists a sequence of simple closed geodesics {αn} and a
corresponding sequence {an} of strictly positive numbers such that αn →� and, for
any simple loop or arc σ transverse to �,

μ(σ)= lim
n→∞

ι(σ, αn)

an
=
∫
σ

dμ. (3.4)

Conversely, given a sequence {αm} of simple closed geodesics on a closed surface
(or contained in a compact part of a punctured surface), there exists a subsequence
{αm} with associated positive numbers {an} that converges to a nonzero element
(�,μ) ∈ ML(R). Typically, good choices are an = Len(αn) (Exercise 3-35) or
an = ι(σ0, αn) if σ0 is a fixed geodesic transverse to all αn . Here 1/an is the atomic
measure assigned to αn .

The sequence {an} is uniquely determined asymptotically, up to a positive multi-
plicative constant. Namely if {a′n} is another sequence, there exists a constant C 
= 0
such that lim an/a′n = C . To see why, set C(σ ) = lim ι(σ, αn)/an and C ′(σ ) =



3.9 Geodesic and measured geodesic laminations 141

lim ι(σ, αn)/a′n . For some σ , C(σ ) 
= 0 and for some σ ′, C ′(σ ′) 
= 0. Therefore

lim an/a
′
n = C ′(σ ′)/C(σ ′)= C ′(σ )/C(σ ) 
= 0,∞.

We emphasize that the support of μ may not be the whole Hausdorff limit �
To illustrate what can happen, take the lamination consisting of two disjoint sim-
ple geodesics α1, α2 with assigned integer multiplicities m1,m2. We can construct
an sequence of simple geodesics {αn} that go nm1 times around α1, and nm2 times
around α2. The Hausdorff limit �= limαn is a union α1 ∪α2 ∪ �1 ∪ �2 where �1, �2

are infinite length geodesics each spiraling around one side of α1 and of α2. Up in �2,
each end point of a lift of �i is a fixed point of a transformation determined by one of
the closed leaves. If σ is a simple loop transverse to α1 but not α2, ι(σ, αn)/n→m1

and similarly the limit is m2 if it is transverse to α2 but not α1. If it is transverse to a
geodesic cutting �1 ∪ �2 but not α1 ∪α2, the limit is zero.

The bottom line is that every geodesic lamination� has a transverse measure whose
support consists of all the minimal sublaminations of � [Bonahon 2001; Otal 1996].
Two minimal laminations with the same (nonzero) transverse measure are identical.
In the above example the minimal laminations are α1 and α2. The spiraling geodesic
cannot be in the support of μ.

The sequence of geodesic lengths {Len(αn)} also has a limit if it is scaled by the
same {an} as determines μ, namely

Lenμ(�)= lim
n→∞

Len(αn)

an
, (3.5)

which exists and is 
= 0. It is called the length of the measured lamination (�,μ).
Unlike intersection numbers, the value of Lμ depends on the particular hyperbolic
surface R where the measurement is made; it is known to change continuously as
the underlying surface is deformed [Kerckhoff 1985]. An intrinsic expression for the
length is

Lenμ(�)=
∫ ∫

R
d�× dμ, (3.6)

where d� is the hyperbolic length along the leaves of � and dμ is the transverse
measure. Thus if � is a single simple closed geodesic, and μ is the atomic measure
of unit weight, Lenμ(�) is just the geodesic length on R. The integral is obtained
from the local product structure of the lamination determined by an open cover, using
a partition of unity.

Using a (quasiconformal) homeomorphism f from one finite area surface R to
another S, the space ML(R) can be transferred to ML(S). Namely let f ∗ be a lift
of f to �2 ≡�. The homeomorphism extends to a homeomorphism also denoted f ∗
on ∂�. By taking images of endpoints, f ∗ induces a map of the (lifted) measured
lamination over one surface to the other. Then project back to R and S. For this
reason, if you have seen ML on one surface, you have seen it on all surfaces in the
deformation space. However metric properties will differ, one surface to the other.
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Another way of looking at the length is to take a finite number of transverse arcs {τi }
that cut� into (generally uncountably many) segments of finite length: �\�∩(∪τi ).
Associate each arc of � with one of the segments τi that contains an endpoint. Then
integrate the lengths of the finite arcs of � with respect to dμ along the τi , From this
point of view the continuity of the length function on ML(R) in terms of change of
hyperbolic metric on R follows [Bonahon 2001, p. 21]. Thurston showed that the
arcs can be chosen so that the map from the set of simple closed geodesics to �n

given by μ �→ (μ(τ1), . . . , μ(τn), induces a homeomorphism to a piecewise linear
submanifold of �n of real dimension 6g+2b−6). The manifold is constructed from
the set of simple closed geodesics, as Bonahon remarked, by a process akin to the
passage from a lattice �2 in �2 to a torus.

Start with ι(σ, μ) defined for an atomic measure on a simple closed geodesic and
a transverse geodesic τ . The intersection number can be extended by continuity to
any measured lamination (�,μ) ∈ ML. It can be extended again by continuity to
ι(μ, ν) for any pair of measured laminations [Rees 1981]. Specifically, if we write
(�,μ), (�′, ν) as limits of simple closed geodesics μ = limαn/an , ν = limβn/bn ,
then

ι(μ, ν)= lim
ι(αn, βn)

anbn
;

see [Bonahon 1986]. If ι(μ, ν) = 0, any component of the support of μ is either
identical to a component of the support of ν or disjoint from all of its components.

This generalization of the geometric intersection number remains a topological
entity, independent of any particular complex structure the underlying surface R may
have.

With an eye on the fact that the sequences {an} are asymptotically uniquely deter-
mined only up to positive constants, it is usually better to use instead the space of
projective measured laminations

PML(R)= (ML(R) \ 0)/multiplication by scalars.

For then we do not distinguish between measures that are positive multiples of each
other. The space PML(R) is homeomorphic to the sphere �6g−7 (or �6g+2b−7 if there
are also b punctures).

There is a theory of measured foliations which is the topological version of mea-
sured laminations. Roughly, a measured foliation is a (necessarily singular) foliation
with a measure of distances between leaves. Measured foliations are modeled by
quadratic differentials; see Exercise 5-24. Every measured foliation comes from a
measured lamination by lifting to �2, showing (noncritical) leaves have endpoints on
∂�2, and replace the leaves by geodesics with the same endpoints. The converse is
also true. The quantitative results depend on taking a pants decomposition of R and
classifying the intersection of a measured foliation with each pants (for a taste, see
Exercise 3-35). One way of getting lots of nontrivial examples of measured foliations
is by means of interval exchange maps, see Exercise 3-36.
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Formal introduction to this beautiful and essential subject can be found, for ex-
ample, in [Thurston 1988; Fathi et al. 1979; Canary et al. 1987; Casson and Bleiler
1988; Bonahon 2001; Otal 1996, Appendix; Marden and Strebel 1984; Matsuzaki
and Taniguchi 1998].

Remarks 3.9.1. (i) Each infinite length leaf � ⊂ R of a lamination (with compact
support) is recurrent: there is a sequence of points {ζn}⊂ � such that along �, ζn→∞
yet there exists ζ ∈ � such that in a neighborhood of ζ in R, lim ζn = ζ . Up in �2,
this says that given a lift �∗, there is a sequence of (mutually disjoint) lifts �∗n which
converge to �∗ as euclidean circular arcs.

(ii) Two measured laminations in �2 whose set of leaves have the same combinatorics
and the same transverse measures are usually not Möbius equivalent. For example,
they may be lifts of finite laminations on two different surfaces where the distances
between leaves differ (compare with Theorem 3.11.3).

(iii) We have seen how a lamination consisting of two or more mutually disjoint
simple geodesics has many projectively inequivalent transverse measures. Yet there
are geodesic laminations which support only one projective class of measures [Masur
1982]; such measured laminations are called uniquely ergodic. Uniquely ergodic
laminations� have the minimality property that� is not the union of proper sublam-
inations. Uniquely ergodic laminations are dense in all measured laminations. Yet it is
a subtle business to determine if a particular lamination is uniquely ergodic. The pair
of laminations fixed by a pseudo-Anosov automorphism of a surface (see Exercise
5-6) does have this property [Thurston 1988]. The analogous result on a square torus
is a famous theorem of Hopf, which says that the projection to the quotient torus of
a line of irrational slope in the square lattice in � is equally distributed on the torus.

A measured lamination (�,μ) on a finite area surface S is called arational if each
complementary component of � is an ideal polygon, possibly containing a single
puncture [Otal 1996]. Consequently there are at most 4g+2n−4 gaps for an arational
lamination, where n ≥ 0 is the number of punctures. An arational lamination is cut
by every simple closed geodesic; more generally, if ν is any measured lamination
on R with support different than �, then the geometric intersection number satisfies
ι(μ, ν) 
= 0. Arational laminations � also have the property that every half-leaf is
dense; in particular � is minimal. Uniquely ergodic laminations are arational.

(iv) The discussion works as well on compact surfaces with boundary. However the
simple geodesics one works with are not allowed to be parallel to boundary compo-
nents.

We summarize by listing the following adjectives attached to geodesic � or mea-
sured geodesic laminations (�,μ) on a finite area hyperbolic surface R:

arational measured lamination Each component of R \� is an ideal polygon pos-
sibly containing one puncture of R. � has positive intersection number with
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every closed geodesic; in particular it has no closed leaves. An arational
measured lamination is minimal.

maximal or filling lamination � is not a proper subset of another lamination; each
component of R \� is an ideal polygon, possibly containing a puncture.

minimal or connected lamination The support � has no sublaminations; either �
consists of a single closed geodesic, or every leaf λ has infinite length and
each half-leaf is dense in �. Every lamination is the union of finitely many
minimal sublaminations and, if � is not measured, possibly finitely many
isolated∗ leaves whose ends spiral in to the minimal laminations or end at a
cusp.

filling or binding pair Two laminations �1 and �2 form a filling pair, and �1 and
�2 fill up R, if every component of R \ (�1 ∪�2) is a (simply connected)
polygon or is a polygon containing a puncture of R. A filling pair satisfies
ι(γ,�1)+ ι(γ,�2) > 0 for every simple closed geodesic γ .

uniquely ergodic lamination There is one and only one measure μ with support
�, up to positive multiples. The support of a uniquely ergodic measured
lamination is minimal, but not necessarily maximal.

3.10 The convex hull of the limit set

Fenchel had long advocated using the convex core construction in �3 to study kleinian
groups, since in his work with Nielsen he had found the corresponding construction in
�2 for fuchsian groups very useful. However the difficulty was not in the construction,
but in the analysis of the convex hull boundary. It was Thurston who taught us how to
use the convex hull as an effective tool. The application required prior development
of the theory of measured laminations.

In describing the theory, we will stick with the upper half-space model. We start
with a closed set � ⊂ �∪∞≡ �2, with a nonempty complement � = �2 \�. The
hyperbolic convex hull of � is defined as follows.

Let C ⊂ � be a round circle in �2 that bounds an open disk 
 ⊂ �. If � is
connected so that each component of � is simply connected, any circle in � will
determine such a disk. The circle C in turn determines a hyperbolic plane C∗ ∈ �3.
Denote by H(C) the relatively closed half-space bounded by C∗ that abuts the exterior
of 
. The (hyperbolic) convex hull of � is the relatively closed set

Ĉ(�) =
⋂

C⊂�
H(C). (3.7)

In constructing Ĉ(�) it suffices to restrict attention to maximal disks 
— those that
are not proper subsets of larger disks in�. The circle bounding a maximal disk meets
∂� in at least two points.

Since Ĉ(�) is convex, the (hyperbolic) line segment joining any two of its points
lies in the set. In fact any geodesic with endpoints in ∂�=� is contained in Ĉ. With

∗ A leaf λ is isolated if every point p ∈ λ has a neighborhood U with U ∩ λ an arc through p.
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Peter Storm one can define Ĉ(�) as the package obtained by shrink wrapping the set
of all geodesics with endpoints in �.

The relative boundary ∂Ĉ(�)⊂ �3 is the union of flat pieces and bending lines.
A flat piece is a noncompact hyperbolic polygon contained in one of the hyperbolic

planes C∗ used to form the convex hull. It lies in the plane determined by a maximal
disk that is bounded by a circle that meets ∂� in at least three points.

The complement in ∂Ĉ(�) of the union of open flat pieces is the closed set of
bending lines. A bending line � is a geodesic whose endpoints lie in ∂�. Distinct
bending lines are disjoint but they possibly have a common end point. There are in
general an uncountable number of them. The limit of a sequence of bending lines is
either a bending line or a point in the common boundary ∂Ĉ = ∂�. A flat piece, if
not a whole plane, is bounded by bending lines.

An isolated bending line � is the common boundary of adjacent flat pieces. The
bending angle at � is taken to be the exterior bending angle α so that α=0 corresponds
to no bending at all and α = π corresponds to one flat piece folded over the other.

Each component S of the relative boundary ∂Ĉ(�) ∩ �3 faces a component �S

of �. It helps to keep in mind the picture of a domed stadium, such as one finds in
Minneapolis. The floor of the stadium is �S and the dome is S.

There is a continuous map r : �S → S called the nearest point retraction. This is
defined as follows: Given z ∈�S examine the family of horospheres tangent to ∂�3 at
z. This family depends on a parameter, for example the euclidean diameter. Exactly
one of these spheres just touches S, necessarily at a single point, without crossing
S. This point of first touching is called the nearest point and is denoted by r(z). If
r(z) is in a flat piece, then there is a geodesic ray from r(z), where it is orthogonal to
∂Ĉ(�), ending at z. An isolated bending line � ∈ S with bending angle α will be the
image under r of a crescent C� ∈�S with vertices in ∂�S .

The crescent C� is constructed as follows. There are two planes C∗1 ,C∗2 rising from
maximal circles C1,C2 and intersecting with exterior angle α. The angle interior to
Ĉ(�) is π−α. The sides of C� are orthogonal to C1,C2. Therefore the interior vertex
angles of C� are

α = 2π −
(
π

2
+ (π−α)+ π

2

)
.

In particular, C� is not the crescent formed by C1∩C2 unless C1 and C2 are orthogonal.
Distinct isolated bending lines correspond to nonoverlapping crescents in �S . If

there are no isolated bending lines, r is a homeomorphism.
The nearest point retraction r fixes the points on the common boundary ∂�S = ∂S.

Convex hulls are studied in detail in [Epstein et al. 2004].

Examples

In the degenerate case that � has exactly two points, the convex hull is simply the
geodesic between the two points.

If � is the half infinite line [0,+∞] the convex hull is the vertical wall arising
from the line. Like the above example, this is a degenerate case in that the interior of
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the convex hull is empty. However in this case, its boundary is regarded as the union
of the two sides of the wall, with exterior bending angle π .

The dome over a round disk 
, is the plane rising from the circle ∂
. How about
two round disks with angle of intersection α measured exterior to one disk and interior
to the other? The dome over the union consists of two flat pieces meeting with exterior
bending angle α. There are two flat pieces and one bending line.

The dome over the region bounded by an ellipse is a half-ellipsoid. There is a
continuous family of bending lines which sweep out the dome which is a smooth
surface. There are no flat pieces and the dome is a smooth, ruled surface.

Next consider a wedge W = {z ∈ �, 0 ≤ arg z < α ≤ π}. If � = W , the convex
hull boundary consists of the two flat pieces rising from the edges of W and one
bending line. The exterior bending angle is π − α. If instead � is the closure of the
complement of W , then the dome over W is a half cone. Again it is swept out by the
bending lines; there are no flat pieces.

The dome over a convex euclidean triangle contains one flat piece which is con-
tained in the plane rising from the maximal inscribed circle, and parts of three cones
near the vertices. The dome is a smooth C1-surface. In fact the dome over any
euclidean convex region is a smooth surface [Epstein et al. 2006; 2004].

The bending measure

Each component S=Dome(�S)which is not a whole plane carries a nonzero bending
measure. At an isolated bending line, it is just the atomic measure with support on
the line given by the exterior bending angle. In general, the bending measure is
constructed by a process akin to Riemann integration, that is, by approximating the
dome by a sequence of finitely bent surfaces. The basic result is the following theorem
of Thurston; the detailed proof appears in [Epstein and Marden 1987].

Theorem 3.10.1. Suppose � is a simply connected region whose complement � in
�2 has at least three points.

(i) The hyperbolic metric in �3 restricts to give a path metric on Dome(�) referred
to as its hyperbolic metric.

(ii) There is an isometry in the respective hyperbolic metrics ϒ : Dome(�)→ �2.
(iii) Underϒ , the set of bending lines is carried to a geodesic lamination� in �2 and

the bending measure on Dome(�) is carried to a (bounded) transverse measure
on �.

(iv) If� is invariant under a kleinian group G, then Dome(�) and the set of bending
lines are also G-invariant. The corresponding measured lamination in �2 is
invariant under the fuchsian group ϒGϒ−1.

The hyperbolic metric on the simply connected region � is carried over from �2

by a Riemann mapping. In terms of the hyperbolic metrics on � and its dome, the
nearest point retraction r :�→ Dome(�) satisfies d(r(z1), r(z2))≤ 2d(z1, z2); that
is, r is 2-Lipschitz [Epstein et al. 2004]. If Dome(�) is instead infinitely connected,
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one can pass to its universal cover and map that and its measured bending lamination
to �2.

Now suppose �(G) is the limit set of a kleinian group G. Its convex hull Ĉ(G)
is G-invariant. Each relative boundary component S of Ĉ(G) is the dome over a
component �S of �(G) and is invariant under Stab(�S).

The convex hull Ĉ(G) necessarily contains the axes of all loxodromics of G since
these have endpoints in the limit set. Can the axis of a g ∈G be a bending line? Only
if the trace of g is real with |tr g|> 2. Otherwise the angular part of the trace would
force a rotation about the axis, and therefore could not preserve the convex hull.

The section cannot be closed without mentioning the following remarkable fact
described by Dennis Sullivan. For a full discussion and proof see [Epstein and Marden
1987] or [Epstein et al. 2004].

Theorem 3.10.2 (Sullivan Convex Hull Theorem). There exists a universal constant
1 < K < 14 with the following property. Given any simply connected region � ⊂ �,
� 
= �, there exists a K -quasiconformal mapping F : �→ Dome(�) which extends
to pointwise fix every point on the common boundary ∂�.

If � is invariant under a group � of Möbius transformations, F can be chosen to
satisfy additionally F ◦ γ = γ ◦ F for all γ ∈ �.

Pleated surfaces

We have spoken of the structure of a convex hull boundary component, especially the
dome over a simply connected region. Now consider the reverse process. That is,
given a measured lamination (�,μ) in �2, can we construct a surface in �3 whose
bending measure is μ?

Let’s start with the simplest cases. Take the equatorial plane �2 (the unit disk) in
the ball model and fix a diameter �. Bend �2 along � with exterior bending angle
0 < θ < π . Here θ = 0 corresponds to no bending at all. The other extreme θ = π
corresponds to two situations: (i) folding �2 in half along �, or (more commonly)
(ii) pushing � out to∞ to become a single point ξ thereby forcing �2 in the limit to
become two hyperbolic planes whose boundaries are tangent at ξ so that one plane is
the image of the other under a designated parabolic with fixed point ξ .

To normalize the direction of bending, bend so that the result lies in the upper half
of the ball. The resulting “pleated surface” S bounds on one side a convex region
whose floor is bounded by two circular arcs with interior bending angle π − θ . The
dome has only one bending line.

The construction is easily generalized to a finite system of ordered, mutually dis-
joint hyperbolic lines, possibly with common endpoints, �1, . . . , �k ⊂ �2. Assign an
exterior bending angle 0 < θi < π to each line. Then systematically bend the plane
�2. For example we may assume that first bend along �1 results in P1= P constructed
above. Then in P1 locate the copy of �2, say it lies to the right of �1. Then bend the
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Fig. 3.7. A section of the dome over a component of a quasifuchsian ordinary set.

half-plane in P1 lying to the right of �1 along �2 with exterior angle θ2. And so on for
all the lines. We end up with what is called a pleated surface Pk . It is locally convex
but is not necessarily embedded in �3 — it may well have self-intersections. It has
k bending lines, the images of the {�i }. In any case there is a hyperbolic isometry
ϒ : �2→ Pk — such that ϒ−1 is just unbending. The finite measured lamination is
carried to the bending lines and bending measure on Pk .

The same construction can be carried out given a general lamination � in �2 and
a positive transverse Borel measure by using finite approximations. In fact it equally
works for a real valued transverse Borel measure. In the general case the pleated
surface has both positive and negative bending. It may not be locally embedded and
may even be dense in all �3. The construction is such that if (�,μ) is invariant under
a fuchsian group G, a deformation of G to a homomorphic image H is automatically
determined. H is a group of Möbius transformations acting in �3 that map the pleated
surface onto itself in a manner reflecting the action of G in �2, but H is unlikely to
be discrete. The details are carried out in [Epstein and Marden 1987].

Another way of constructing a pleated surface from a geodesic lamination � ⊂
�2 is as follows. Suppose � is such that all gaps are ideal triangles; this is the
generic case. If there is an injection f : ∂�2 → ∂�3 (for example, the restriction
of a quasiconformal deformation of a fuchsian group) then each leaf � ⊂ � can
be mapped to the line determined by the f -images of the endpoints of � and the
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ideal triangles can then be filled in. If in addition � is invariant under a fuch-
sian group G and f conjugates G to a quasifuchsian group H then the lamination
�/G gives rise to a pleated surface in �3/H . For an example, see Exercise 6-
3.

Since the convex hull contains all geodesics, a flat piece of a pleated surface that is
bounded by two or more geodesics lies in the convex hull. Thus most pleated surfaces
lie entirely in the convex hull.

Formally, a pleated surface is determined by a pleating map f : S → M of a
hyperbolic surface S into a hyperbolic 3-manifold M with these properties:

(i) f takes any rectifiable path in S to a path in M of the same length.
(ii) Every z ∈ S lies in an open geodesic arc which f maps to a geodesic arc in M.

(iii) f sends cusps to cusps: it sends a small neighborhood of a cusp of S into a small
neighborhood of a cusp of M; the homomorphism f∗ : π1(S)→ π1(M) sends
parabolics to parabolics.

Assumption (i) can replaced by (i’): geodesic paths in S are sent to rectifiable paths
of the same length in M. The apparently stronger definition is equivalent [Canary et al.
1987, II.5.2.6]. We may equally work with a lift of f to the universal covers.

The pleated surface is called incompressible if f∗ : π1(S)→ π1(M) is injective.
The pleating locus is the set � ⊂ S consisting of those points z ∈ S with the

following property. There is one and only one open geodesic arc (up to inclusion)
through z which f maps onto a geodesic arc in M. The pleating locus � is a closed
subset of S and is in fact a geodesic lamination. The image f (�) is often referred to
as the pleating locus as well, or as the bending lines. The map f is an isometry of
the complementary gaps onto polygons in M that in general are infinitely sided.

Given such a general pleated surface, there is likely to be a great deal of positive
and negative bending. Yet by associating a transverse segment τ to the set of positive
endpoints on ∂�3 of the oriented leaves through τ and then a continuum in ∂�3, it
is possible to construct a kind of bending measure which however is only finitely
additive. This measure and the pleating locus characterize the pleated surface. For
the details see [Bonahon 2001; 1996].

Given a lamination �⊂ S and a hyperbolic manifold M, the lamination � is said
to be realizable in M if there is a pleating map f : S → M whose pleating locus
contains �.

Suppose � is a finite geodesic lamination on S and h : S → M is a map such
that h∗ : π1(S) → π1(M) is injective and cusps correspond to cusps. Assume in
addition h is homotopic to a map h′ : S → M whose restriction to each leaf � of
� is a homeomorphism of � onto a geodesic of M. Then the conformal structure
on S can be changed so that in the new structure, h is homotopic to a pleating map
into M, with pleating locus �. If � is maximal lamination and M is geometrically
finite, the new hyperbolic structure needed on S is uniquely determined [Canary et al.
1987, II.5.3.11]. In these results, S need only be a surface of finite topological type.
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However in normal practice, S is always a finite area surface. Such maps h will
arise when we take earthquakes (Exercise 3-32) followed by bending. In this case the
bending determines a pleated surface on the new hyperbolic structure resulting from
the earthquake.

Proposition 3.10.3 [Thurston 1986b, Proposition 5.3]. Given an ε>0 that determines
the thick/thin decomposition of M and given a constant A > 0, there exists C > 0
with the following property. Any incompressible pleated surface f : S → M with
Area(S)≤ A satisfies

InjM( f (x))≤ InjS(x)≤ C InjM( f (x)),

provided the distance of f (x) from any closed geodesic in M of length not exceeding
ε is at least 1.

That the injectivity radius is r = InjM( f (x)) means there is a hyperbolic ball in M

of radius r , centered at f (x), whose interior is embedded in M, and no larger ball has
this property. The uniform injectivity property guarantees that the injectivity radius in
M at f (x) is not substantially different from the injectivity radius on S at x , provided
that f (x) is not too close to a short geodesic in M. The proof uses the fact that there
is an upper bound for the injectivity radii on S in terms of A.

Consider now for simplicity the case of a closed hyperbolic surface S. The pleated
surface f : S → f (S) ⊂M is called doubly incompressible if, in addition to being
incompressible, (i) two loops on f (S) which are freely homotopic in M come from
loops which are already freely homotopic in S, and (ii) under f∗, maximal cyclic
subgroups of π1(S) are sent to maximal subgroups of π1(M) (primitive elements
are preserved). There is an important injectivity property for such pleated surfaces
as follows (see [Minsky 2000] for the statement when there are parabolics and the
application to the proof of the ending lamination conjecture).

Theorem 3.10.4 (Uniform injectivity of pleated surfaces ([Thurston 1986b, Theorem
5.2])). Fix a closed hyperbolic surface S and a constant ε∗ > 0. Given ε > 0 there
exists δ > 0 such that the following property holds for any doubly incompressible
pleated surface f : S→M: Let�⊂ S denote the lamination representing the pleating
locus f (�). Then if x, y ∈� are in the ε∗-thick part of S,

dT (M)(vx , vy)≤ δ implies d(x, y)≤ ε.
Here vx and vy denote the unit tangent vectors to the leaves of f (�) containing

f (x) and f (y), respectively. Their distance apart is measured in the projectivized
tangent bundle T (M). The theorem says that when the tangent vectors are not too far
from being parallel, the initial points x, y (and the leaves of � containing them) are
ε-close in S. In particular the bit of f (S) bounded by the lines containing f (x), f (y)
is not wildly oscillating.

It is tough to give conditions on a measured lamination (�,μ) with μ a posi-
tive measure, so that the corresponding pleated surface is the dome over a simply
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connected region. The best result is in terms of the norm ‖μ‖ = supσμ(σ), where
σ ranges over all transverse segments of unit length. In [Epstein et al. 2004] it is
shown that there exists a constant 0< c≤ 2 arcsin tanh( 1

2)
∼= 0.96, with the following

property. If ‖μ‖< c then (�,μ) is the bending measure of Dome(�) for some simply
connected region �. It is conjectured that the upper bound given is best possible; in
any case it is known that it cannot be larger. On the other hand it is known that if the
pleated surface is a dome, then ‖μ‖< 4.88 [Bridgeman 2003].

3.11 The convex core

The quotient

Ĉ(�)/G = C(G)⊂M(G)int

is hyperbolically convex and is called the convex core of M(G). Every closed geodesic
in M(G) lies in C(G). Indeed the convex core can be defined to be the smallest
convex set with this property. The inclusion C ↪→M(G) is an isomorphism between
fundamental groups. Thus the convex core is representative of the full manifold. At
one extreme, for fuchsian groups the convex core is flat without interior. At the other
extreme, if �(G) is empty then the convex core is the full manifold M(G).

Here are two additional facts about convex cores.

(1) The nearest point retraction projects to the quotient and is a continuous map
from each component of ∂M(G) to the component of ∂C(G) that it faces.

(2) If G is not fuchsian, then G is geometrically finite if and only if C(G) has finite
volume.

The reason fuchsian groups are excluded is that their three-dimensional convex core
always has zero volume, even if the group is not finitely generated. The exclusion
could be avoided by requiring that an ε-neighborhood of the core be of finite volume.
Instead we will simply exclude fuchsian groups from the statement. For fuchsian
groups, Fenchel and Nielsen made good use of the fact that the group is finitely
generated if and only if its convex core with respect to �2 has finite area.

Proof of item (2). We begin with a lemma.

Lemma 3.11.1. Suppose G is nonelementary, has no elliptics and ζ ∈ ∂�3 is a
parabolic fixed point.

(i) If Stabζ is a rank two parabolic group, then Ĉ(�) contains a horoball Hζ at ζ .
(ii) Suppose Stabζ is rank one and supports a double horocycle σ1, σ2 at ζ . For some

horoball Hζ , Ĉ(�) contains Hζ ∩(H1∩H2). Here Hi is the half-space, bounded
by the plane rising from the horocycle σi = ∂
i , which abuts the exterior of its
horodisk 
i .

Proof. We may assume that in the upper half-space model ζ =∞ and T1(z)= z+ 1
is a generator of Stabζ .
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In the rank two case, there is another generator T2(z)= z+ a and we may assume
that |a| ≥ 1. We claim there is a maximal diameter d for circles C ⊂�(G) that bound
disks in�(G). Suppose otherwise. When C has a sufficiently large diameter the disk

 that it bounds will have the property that 
∗ = 
∪ T1(
)∪ T2(
)∪ T1T2(
) is
simply connected. But then the orbit of 
∗ under Stabζ covers �. This means that
�(G) = � which is impossible if G is not Stabζ itself. Consequently the horoball
{(z, t) : t > d/2} is contained in Ĉ(�).

In the rank-one case, because there is a double horodisk at∞, �(G) is contained
inside a minimal width strip S = {z : b1 ≤ Im z ≤ b2} where both horizontal lines
Im z = b1, b2 contain limit points. In fact their intersection with the vertical strip
V = {z : 0 ≤ Re z ≤ 1} also contains limit points. We see that there is a maximal
diameter d <∞ for circles C ⊂�(G) centered in V that bound disks in �(G). Now
the maximal horocycles σ1, σ2 are bounded by Im z= b1, b2. These two observations
translate into the second statement. �

We continue our proof of item (2). If M(G) is geometrically finite, parallel to
each component of ∂M(G) is a component of ∂C(G). Each cusp is taken care of by
Lemma 3.11.1. The convex hull has finite volume.

Conversely assume the convex hull has finite volume. There are at most a finite
number of solid cusp tori in C(G), according to Lemma 3.11.1. Ahlfors’ Finiteness
Theorem implies that M(G) has a finite number of boundary components and each is
a closed surface with at most a finite number of punctures. Each component is parallel
to a boundary component of the convex hull with the same property. Consequently
C(G) has a finite number of boundary components.

Let Cε denote the ε-neighborhood of C(G) in M(G)— the set of points of distance
<ε from the convex hull. The volume of Cε is also finite because each ε-ball is either
contained in the interior or it intersects a boundary component. The thick part of the
core is covered by a finite number of these ε-balls and is therefore compact.

The boundary of the thick part of the core contains a compact piece of ∂C(G),
the boundaries of tubes about short geodesics, pairing cylinders, and cusp tori. The
core cannot contain entire cusp cylinders — the projection of horospheres at rank one
cusps — because these are not compact. Instead it is their intersections with C(G)
that are compact. We conclude that each truncated cusp cylinder pairs two punctures
on ∂C(G), and there are a finite number of them. So M(G) itself has the essential
compactness of a geometrically finite manifold. �

Length estimates

Suppose Ŝ is a simply connected boundary component of Ĉ(�), and S is the corre-
sponding boundary component of the convex core C(G) of M(G). The surface S
faces a component R of ∂M(G). If γS is a closed geodesic in S, there is a uniquely
determined geodesic γR in the hyperbolic metric on R which is freely homotopic
to γS . In the following theorem, the lower bound is obtained from the best current
estimate for the equivariant “K” in Theorem 3.10.2 and the fact that the minimal
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Lipschitz constant in the same homotopy class does not exceed this “K”. The upper
bound follows directly from the fact that the Lipschitz constant of the nearest point
retraction does not exceed 2. The inequality shows that the hyperbolic geometry of
the two surfaces is tightly bound together.

Theorem 3.11.2 [Epstein et al. 2004]. In the respective hyperbolic metrics,

1

14
<
�(γS)

�(γR)
≤ 2.

The same bounds hold for the lengths of corresponding measured laminations.

The length of the geodesic γM in the interior of M(G) freely homotopic to γR is
likewise bounded by 2�(γR) as shown in Exercise 5-2 — γM will be identical to γS if
γS is a bending line.

According to [Bridgeman 1998], there exists a universal constant B with the fol-
lowing property. If S is a component of ∂C(G) as above, then

�(βS)≤ Bπ2|χ(S)|, (3.8)

where �(βS) is the length on S of the bending lamination βS and χ(S) is the Euler
characteristic. In particular if βS is supported on a single geodesic of length Lβ with
bending angle θ , �(βS)= Lβ · θ is bounded; the longer Lβ is, the smaller θ must be.

Existence of bending measures

There is a beautiful recent result of Bonahon and Otal [2004], completed by Lecuire
[2003], characterizing geometrically finite groups by the bending laminations of their
convex core boundaries. See [Lecuire 2004a; 2004b] for further applications of this
subject.

Start with an orientable, compact manifold M3 other than a solid torus T 2 or a
thickened torus T 2× [0, 1], and whose interior has a hyperbolic structure. Thus M3

is a model for a geometrically finite manifold with solid cusp tubes and cusp tori
removed. We assume that ∂M3 has some nontorus components, which may or may
not be incompressible, and we may as well assume each has a hyperbolic structure.
Let (�,μ) be a measured lamination on the nontorus components of ∂M3. We allow
that on some boundary components, (�,μ) may be the zero lamination (no leaves).

On a closed leaf γ of �, μ has atomic measure μ(γ ) > 0 which we will think of
as a bending angle. Let D and C be an essential disk and cylinder in M3. As we
know, the geometric intersection number ι(∂D,�) or ι(∂C,�) is the generalization
of the case that� consists of a finite number of closed leaves and μ is the unit atomic
measure on each. In the finite case, ι(∂D,�) or ι(∂C,�) the minimum number of
times that simple loops freely homotopic to ∂D cross the leaves of� or the minimum
number of times simple loops freely homotopic to the components of ∂C cross the
leaves of �. We are assuming that � has at least one leaf, yet it is possible that one
or more nontorus components of ∂M carry no leaves.
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Theorem 3.11.3 (Existence of bending measures [Bonahon and Otal 2004; Lecuire
2003]). Given the measured lamination (�,μ) on ∂M3, there exists a geometrically
finite, nonfuchsian, M(Gμ) whose convex core boundary has the bending lamination
(�,μ) if and only if the following conditions are satisfied:

(i) On each closed leaf α, μ(α) satisfies 0< μ(α)≤ π .
(ii) For each essential disk D ⊂ M3, ι(∂D,�) > 2π .

(iii) There exists η > 0 such that ι(∂C,�)≥ η for each essential cylinder C ⊂ M3.

If� consists of a finite number of closed leaves then the kleinian group Gμ is uniquely
determined up to Möbius equivalence.

The closed leaves γ with μ(γ ) = π will correspond to the rank one cusps of
M(Gμ). Of course the torus boundary components of ∂M3 will correspond to the rank
two cusps of M(Gμ). The proof of uniqueness is outlined in Exercise 6-
3. Uniqueness for all laminations is known for the once-punctured torus quasifuchsian
case [Series 2004] and conjectured for the general case.

Suppose in addition that M3 is compact, boundary incompressible, and has no
essential cylinders (see Exercise 3-17). Assume we are given a maximal finite lam-
ination of

∑
(3gi − 3) simple closed geodesics � = ∪β j on ∂M3, gi the genus of

the i-th component of ∂M3, and an atomic measure 0 < μ(β j ) < π for each index.
According to Theorem 3.11.3, there exists a uniquely determined (up to isometry)
hyperbolic structure M(Gμ) on M3 whose convex core C(G) has exactly the bending
lamination (�,μ). In [Choi and Series 2006] it is shown that the

∑
(3gi−3)-complex

lengths in M(Gμ) (see Section 7.4) of the geodesics {β j } serve as local coordinates
for the local deformations of M(Gμ) in the representation variety R(Gμ) (see Section
5.1).

If the lamination is finite, condition (ii) on the geometric intersection number ι
requires that the boundary of each essential disk has at least three essential crossings
with �. Condition (iii) insures that if one boundary curve of C is a leaf of � then the
other must be transverse to �.

If a nontorus component of ∂M3 carries no leaves, Theorem 3.11.3 provides that the
corresponding component R of ∂M(Gμ) is totally geodesic. This means that every
component �R of �(Gμ) lying over R is a round disk; the convex hull boundary
component that faces R is a hyperbolic plane. A compressible boundary component
cannot become totally geodesic; in line with this fact condition (ii) requires compress-
ible components to contain leaves of �.

To understand why condition (ii) is necessary, suppose we have a compact con-
vex core with bending lines as simple loops {σi } with exterior bending angles {βi }.
Consider a compressing disk D with ∂D ⊂ ∂C(G). We may assume ∂D is piecewise
geodesic and D is piecewise flat. The Gauss–Bonnet formula (1.3) tells us that

∑
βi ι(∂D, σi )= Area(D)+ 2π > 2π.
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For (iii) suppose C with ∂C⊂ ∂C(G) is an essential cylinder, also piecewise geodesic.
We find that

∑
βi ι(∂C, σi )= Area(C) so that we must have ι

(
C,
⋃
σi
)
> 0.

The proof in the finite case starts by showing that there exists a geometrically finite
M(G) homeomorphic to M3 whose convex core is bent along σ =⋃

σi . Then the
manifold and bending angles are continuously deformed until they match the assigned
angles. To establish existence the following argument is used. Remove half-tubular
neighborhoods of the {σi } and double the resulting manifold. This gives a compact
manifold with tori boundary components. Make assumptions on {σi } so the manifold
is irreducible and atoroidal. As a consequence it has a complete hyperbolic structure
of finite volume. One then uses the theory of cone manifolds (Exercises 4-7 and 6-
3) to deform the rank two cusps to get a symmetric cone manifold with small cone
angles. Undoubling results in the required convex hull.

A typical application is the following. Consider quasifuchsian groups representing
a pair of surfaces of genus 2, say. For �, take a simple loop γbot on the “bottom”
component and a finite number of mutually disjoint, nonparallel, simple loops {βi }
on the top. To fulfill condition (iii) of Theorem 3.11.3 we must assume that every βi

is freely homotopic to a loop on the bottom component which is transverse to γbot.
Assign positive atomic measures each less than π to all the simple loops. According to
Theorem 3.11.3 there is a unique quasifuchsian group representing genus 2 surfaces
whose convex hull boundary has the prescribed bending measure. By varying the
measure on γbot while leaving the measures on {βi } fixed, we obtain a “slice” of the
deformation space.

Parker and Series [1995] have an explicit construction for bending along one geo-
desic in the case of once-punctured torus quasifuchsian groups; see their bending
formulas (8.39), (8.41).

3.12 The compact and relative compact core

There is another important “core” in a hyperbolic manifold, and this one is always
compact but is not hyperbolic. It was discovered by Peter Scott [1973a] and indepen-
dently by Peter Shalen:

In the interior of any hyperbolic manifold M(G) with G finitely generated there is a
compact, connected, submanifold C=C(G) such that (i) inclusion of the fundamental
group π1(C) ↪→ π1(M) is an isomorphism, and (ii) each component of ∂C bounds a
noncompact component of Int(M(G)) \C.

Property (ii) follows from (i). For if a complementary component were bounded by
two components S1, S2 of ∂C , there would exist a simple loop in M(G) that crossed
each of S1, S2 exactly once. Such a loop cannot be homotopic to a curve within C .

If M(G) is geometrically finite without parabolics, each component of ∂C is par-
allel to a component of ∂M(G). In the general case of no parabolics, each comple-
mentary component E of the core C is a neighborhood of exactly one end (see §5.5)
of M(G).
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The submanifold C is called a compact core of M(G). A core is uniquely de-
termined up to homeomorphism: Two cores C1,C2 of M(G) are homeomorphic
[McCullough et al. 1985]. An immediate consequence of its existence is that π1(M)

is finitely presented, as stated in Theorem 2.5.3. Cores are a fundamental structure
in studying geometrically infinite manifolds. According to [Bonahon 1986] (see also
Exercise 3-11), each core can be cut along incompressible surfaces to result in a finite
union of compression bodies and submanifolds with incompressible boundaries.

When there are parabolics, there is a useful refinement that incorporates the cusps.
Namely, McCullough [1986] chooses a system of mutually disjoint horoballs in �3,
associated with the parabolic fixed points, having the property that the union H is
invariant under the action of G and the “parabolic locus” P =H/G is embedded in
M(G). The components of P are solid cusp tubes and solid cusp tori. Then Mp =
M(G)\P has the property that each component of the relative boundary ∂Mp is either
a component of M(G), a cusp cylinder, or a cusp torus.

There exists a compact, connected, submanifold Crel ⊂Mp ∩ Int(M(G)) such that

(i) The inclusion π1(Crel) ↪→ π1(M(G)) is an isomorphism,
(ii) Each torus component of ∂P is a component of ∂Crel,

(iii) Each cylinder component of ∂P intersects ∂Crel in a closed annular region, and
(iv) Each component of ∂Crel\Crel∩∂P is the boundary of a noncompact component

of Int(Mp) \Crel.

The submanifold Crel is called a relative compact core.
If M(G) is geometrically finite, each component of ∂Crel \Crel ∩ ∂P is parallel to

a component of ∂M(G).
Note that in the presence of rank one parabolics, ∂M(G) might be incompressible

at the same time the boundary of the relative core is compressible. A simple example
is a fuchsian group G representing a surface with punctures. When the interior of
the solid pairing tubes are removed from M(G), the result is a handlebody. The
compact core and relative compact cores are also handlebodies, but the relative core
incorporates information about the punctures.

3.13 Rigidity

As mentioned in Chapter 1, hyperbolic polygons or convex polyhedra tend to be
rigid — uniquely determined up to isometry by their angles. In dimensions larger than
two, the same is true of finite volume hyperbolic manifolds.∗ Yet finite area surfaces
are not rigid, except for the thrice punctured sphere. For this reason it caused a big stir
in the kleinian world when Mostow first came up with his rigidity theorem for closed,
hyperbolic n-manifolds, later extended to cusped manifolds in [Marden 1974a] (for
n = 3), and independently in [Prasad 1973] for n dimensions. This was before the
Thurston era, when we knew a lot less than we thought we did.

∗ In fact �3 itself is rigid in the sense that there is no nonconstant harmonic map of �3 into any riemannian 3-
manifold of nonpositive sectional curvature [Leung and Wan 2001].
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Mostow Rigidity Theorem [Mostow 1973]. Suppose we have a hyperbolic manifold
or orbifold M(G) of finite volume, with dimension n≥3, and an isomorphism φ :G→
H onto another kleinian group H . Then φ is determined by an isometry M(G)→
M(H).

In other words, M(G) is uniquely determined in the isomorphism class of G, up
to orientation preserving or reversing Möbius equivalence. As already pointed out,
rigidity does not hold in the hyperbolic plane: all surfaces with the same genus and
the same number of punctures have the same (finite) area but are not usually isometric
to each other. Surprisingly, the reason behind this state of affairs is that the limit set
of a fuchsian group of finite area is �1, while for n ≥ 3 the limit set is �n−1.

There is a homotopy analogue of Mostow’s theorem as follows. This is a deep
result by Gabai, Meyerhoff and N. Thurston that required a sophisticated computer
program to complete. Later we will restate and discuss this theorem from a different
point of view (page 247).

Theorem 3.13.1 [Gabai et al. 2003]. Suppose M3 is a closed, irreducible manifold
(for this notion see Section 6.3) and M(G) a closed hyperbolic manifold. Assume
there is an isomorphism φ : π1(M3) → π1(M(G)) ∼= G. Then φ is induced by a
homeomorphism � : M3→M(G).

If �1,�2 are homotopic homeomorphisms, then �1 is isotopic to �2.

Of course if M3 is also hyperbolic, the first statement is just Mostow’s theorem
with � an isometry. Even in this case the second statement is new. A homotopy is a
continuous map F :M3×[0, 1]→M(G) such that F( · , 0)=�1, F( · , 1)=�2. For it
to be an isotopy, each intermediate map F( · , t) must also be a homeomorphism. For
example, a homotopy can send a geodesic α to a simple loop α′ whose intersection
with a tiny ball is knotted there. An isotopy cannot cause this effect. There is a subtle
but important distinction between homotopy and isotopy. See Exercise 3-24.

For a further discussion of topological rigidity see Section 5.3.

Corollary 3.13.2. If M(G) has finite volume, every orientation preserving (and ori-
entation reversing) homeomorphism σ of M(G) onto itself is homotopic (isotopic if
M(G) is closed) to an isometry.

Unlike the case for finite area surfaces, the mapping class group of a finite volume
hyperbolic 3-manifold is finite! We are implicitly assuming that a homotopy class
contains at most one isometry, see Exercise 3-25.

In our study of quasifuchsian manifolds we have already made use of an analogue
of Mostow rigidity for manifolds with boundary; in recent literature this is referred
to as Marden’s isomorphism (or rigidity) theorem [1974a]. See also [Tukia 1985b,
Theorems 4.2, 4.7].

Theorem 3.13.3. Suppose G is a geometrically finite group without elliptics and
� :�(G)→�(H) is a conformal mapping that induces an isomorphism φ :G→ H
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by the correspondence φ(g)(z)=�◦g◦�−1(z), z ∈�(H). Then� is the restriction
to �(G) of a Möbius transformation A and φ(g)= Ag A−1 for all g ∈ G.

Thus M(G) is uniquely determined up to isometry by the isomorphism type of its
fundamental group and the conformal structure of its boundary. In a sense, Mostow’s
theorem is a special case.

Sullivan [1981] established the most general form of rigidity that does not require
geometric finiteness at all:

Sullivan Rigidity Theorem. Suppose μ(z), z ∈ �2, is a Beltrami differential with
respect to a finitely generated kleinian group G. Then μ(z)= 0 for a.e. z ∈�(G).
Corollary 3.13.4. Geometrically infinite (as well as geometrically finite) manifolds
M(G) with ∂M(G)=∅ are rigid under quasiconformal deformation.

This result does not require any knowledge of the area of the limit set, nor does it
give any information about its area. It says that the limit set can only support the zero
Beltrami differential so that from the point of view of quasiconformal deformations,
its area has no consequence. In the case that �(G) 
= ∅, we now know that �(G)
has zero area — Ahlfors’ conjecture is confirmed! (See Section 5.5.1.) So Sullivan’s
theorem for this case follows from the fact that a Beltrami differential needs only to
be defined up to a set of zero measure for the Beltrami equation to have a solution
(Section 2.8), uniquely determined up to postcomposition with a Möbius transfor-
mation. On the other hand when �(G) = �2, Sullivan’s theorem still comes to the
fore:

If f : �2 → �2 is quasiconformal, induces an isomorphism φ : G → H, and,
if �(G) 
= ∅, restricts to a conformal map �(G) → �(H), then f is a Möbius
transformation.

Outline of the proof of the Mostow Rigidity Theorem. The theorem holds in n-
dimensional hyperbolic space but here we will stick to three.

The orbifold case of the theorem can be reduced to the manifold case by Selberg’s
lemma. Namely, given G, there is a torsion-free, normal subgroup H ⊂ G of finite
index; thus M(H) has finite volume, being finite-sheeted over M(G). The isomor-
phism φ restricts to the isomorphism H→ φ(H)= H1 ⊂ φ(G)= G1. Assuming the
manifold case, φ : H→ H1 is a conjugation h ∈ H �→ Ah A−1, where we can assume
A to be Möbius, rather than anti-Möbius, by replacing H if necessary with the group
H ′ = J H J , where J is a reflection in some hyperbolic plane. (The isomorphism
G→ H ′ is then given by φ(g)= AJg J A−1, for g ∈ G.)

Now the deck transformations form a finite group C of isometries of M(H) and
likewise the deck transformations of M(H1) over M(G1). We conclude that G1 itself
is A-conjugate to G.

We will base our argument on the following beautiful theorem of Tukia:

Theorem 3.13.5 [Tukia 1985a]. Suppose G is any nonelementary kleinian group,
ζ ∈ �(G) is a conical limit point, and f : �2 → �2 is a homeomorphism which is
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differentiable at ζ with nonzero derivative. Assume φ : G → H is a homomorphism
to another kleinian group given by f ◦g(z)= φ(g)◦ f (z) for all g ∈G, z ∈�2. Then
f is a Möbius transformation!

Proof. We will give the proof reported in [Kapovich 2001, Theorem 8.34]. We will
assume the homeomorphism is orientation preserving, although this is not necessary.

The limit point ζ ∈�(G) is a conical limit point or point of approximation if it has
the following property. Let γ (t), 0 ≤ t <∞, be a geodesic ray ending at ζ . Given
a point O ∈ �3, there exists r > 0 such that there is an infinite subsequence of the
orbit G(O) that lies in the r -tubular neighborhood about γ (and hence converges to
ζ ). In the quotient manifold, the condition means that the projection of the ray γ (t)
is recurrent in the sense that it meets a ball of radius r about the projection of O for a
sequence {tn}, tn→∞. A loxodromic fixed point is always a conical limit point but a
parabolic fixed point is not. Beardon and Maskit [1974] proved that a kleinian group
is geometrically finite if and only if all limit points, except parabolic fixed points, are
conical limit points; see Exercise 3-18.

We may assume that ζ = 0= f (0) and that O lies on the vertical axis rising from
z = 0 in the upper half-space model. Let γ be the vertical segment descending from
O ∈ �3 to z = 0. There is an infinite sequence gn ∈ G such that for some r > 0
and each large index n, the (hyperbolic) distance d(gn(O), γ ) < r . Find the point
yn ∈ γ that is closest to gn(O); it is within distance r . Then find an > 0 such that
the transformation An : �x �→ an �x takes O to yn; further, lim an = 0. Passing to a
subsequence if necessary we may also assume that lim g−1

n An = B exists as a Möbius
transformation (because the distance of g−1

n An(O) to O is uniformly bounded by r ).
Set

fn(z) = an
−1 f (anz) = A−1

n ◦ f ◦ An(z), z ∈ �.

That the complex valued function f (z) is differentiable at z = 0 with nonzero
derivative means that there is a linear transformation L : �2→ �2 (i.e., a 2× 2 real
matrix operating on z ∈ � as a vector), with nonzero determinant, such that

f (
z) = L(
z)+ ε(
z)
z, lim

z→0

ε(
z)= 0.

(Alternatively L(z, z̄)= az+ bz̄, for some a, b ∈ C , |a|2− |b|2 > 0.) Treating An as
a linear transformation on vectors z ∈ �2 and setting 
z = An(z), we obtain for fn

that

fn(z) = L(z)+ ε(An(z))z.

We have used that the real diagonal matrix An commutes with L . Consequently

lim
n→∞ fn(z)= lim A−1

n f An(z)= L(z) uniformly on compact subsets of �.

In short, L is nothing but the “blow-up” of f at z = 0.
It now follows that

lim A−1
n G An = lim A−1

n gnGg−1
n An = B−1G B.
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This implies that the sequence of groups {A−1
n G An} converges geometrically. In

the next chapter, we will study this notion in detail; suffice it to say that every
B−1gB is the limit of elements of the approximants {A−1

n G An}, namely B−1gB =
lim(A−1

n gn)g(g−1
n An). Conversely, the limit of any convergent sequence of elements

of {A−1
n G An} lies in B−1G B, namely,

h := lim A−1
n hn An = lim A−1

n gn(g
−1
n hngn)g

−1
n An = B−1(lim g−1

n hngn)B.

Recall that for any g ∈ G, f ◦ g = φ(g) ◦ f . Given g ∈ G,

L ◦ B−1gB ◦ L−1 = lim
n→∞ A−1

n f ◦ gngg−1
n ◦ f −1 An

= lim
n→∞ A−1

n φ(gngg−1
n ) ◦ f ◦ f −1 An = lim

n→∞ A−1
n φ(gngg−1

n )An.

The element on the left is therefore a Möbius transformation. We have established
that L ◦ h ◦ L−1 is a Möbius transformation for any h ∈ B−1G B.

Since not all elements of G fix B(∞), there exists h ∈ B−1G B with h(∞) 
= ∞.
We now know that LhL−1 is a Möbius transformation. We claim that this forces L
itself to be a Möbius transformation, necessarily fixing 0 and∞.

For let � be a euclidean line in �. Then L−1(�) is again a straight line. Choose
� such that L−1(�) does not go through h−1(∞). Then h ◦ L−1(�) = C is a proper
circle. Therefore LhL−1(�)= L(C) is a circle as well, since on the one hand L maps
bounded sets to bounded sets, and on the other, LhL−1 is Möbius. But an affine
mapping L that by definition fixes 0 and∞ cannot send a circle onto a circle unless it
can be expressed as z �→ az (or z �→ az̄, if we allowed f and hence L to be orientation
reversing). So L is a Möbius transformation, as claimed, and it has the simple form
z �→ az.

Pick three distinct points p1, p2, p3 ∈ �2. For any homeomorphism F : �2→ �2

set N (F) = F% ◦ F where the Möbius transformation F% is uniquely chosen so that
N (F) fixes each pi . Upon setting un = g−1

n An so that lim un = B,

N ( fn)= N (A−1
n f An)= N ( f An)= N ( f gnun)= N (φ(gn) f un)= N ( f un).

Going to the limit,

N (L) = lim
n→∞ N ( fn) = N ( f B).

Since L and B are Möbius transformations, f must be one as well. �

Mostow’s Rigidity Theorem follows from this result. We have to construct, given
the isomorphism φ : G→ H , a quasiconformal automorphism of �2 that induces it.
If M(G) has finite volume, results of Waldhausen [1968, Lemma 6.3, Theorem 6.1]
applied and extended to the noncompact case in [Marden 1974a], or of Tukia [1985b,
Theorem 4.7] show that there is an orientation preserving or reversing quasiconformal
mapping �∗ between the manifolds, inducing φ on the fundamental group, so that
M(H) has finite volume as well. By replacing H by J H J if necessary we may
assume it is an ordinary quasiconformal mapping. A lift � to �3 is a quasiconformal
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mapping, and quasiconformal mappings of, say, upper half-space extend to be qua-
siconformal on � ∪∞ [Gehring 1962]. Also �G�−1 = H . Quasiconformal maps
of �2 are differentiable with nonzero derivative almost everywhere [Ahlfors 1966].
Since G is geometrically finite and ∂M(G) = ∅, every point on �2 is a limit point,
and all those except the countable number of parabolic fixed points are conical limit
points. All that remains is to apply Tukia’s result at one point of differentiability
which is not a parabolic fixed point.

If M(G) is a closed manifold the following alternate argument can be used: It
follows from topology that there is a homotopy equivalence (see the discussion in
Section 5.1) between the manifolds: continuous maps f1 :M(G)→M(H) and f2 :
M(H)→M(G) such that f1 ◦ f2 and f2 ◦ f1 are homotopic to the identity. Working
in terms of a piecewise linear structure (subdividing into hyperbolic tetrahedra) on
the manifolds, the mappings can be taken to be Lipschitz. It turns out [Mostow 1973,
Lemma 9.2; Thurston 1979, p. 5.39] that their lifts F1, F2 to �3 are quasiisometries;
see Exercise 3-19. Consequently each one extends to ∂�3 and is quasiconformal
there. Using the cusp tori, this approach too extends to the finite volume case; see
[Prasad 1973; Thurston 1979, p. 5.39; Tukia 1985b, Lemma 3.4]. �

It is interesting to compare the situation we just considered to the case of a qua-
siconformal map f : �2 → �2. Likewise f can be extended to �1 and is again
a homeomorphism there, necessarily having a derivative almost everywhere. The
extension to ∂�2 is either the restriction of a Möbius transformation, or its derivative
is zero wherever it exists. Now one knows in advance that most fuchsian groups
have nontrivial deformations. The corresponding homeomorphisms of the circle ∂�2

are therefore examples of totally singular functions: their derivatives are zero almost
everywhere. This seems to be the simplest construction of singular functions.

3.14 Exercises and explorations

3-1. (a) Prove the area formula for a surface S of constant gaussian curvature K =
0,±1, the area being given in the euclidean, spherical, or hyperbolic metric.
Here S is a closed surface of genus g ≥ 0, with n ≥ 0 punctures and m ≥ 0 cone
points of orders {2≤ ri <∞}.

K Area(S)= 2π

(
2− 2g− n−

m∑
i=1

(
1− 1

ri

))
. (3.9)

Hint: The Euler characteristic formula for a triangulated closed surface is χ(S)=
T −E+V = 2−2g, where T is the number of triangles, E the number of edges,
V the number of vertices and g the genus. Thus if S is a closed surface of genus
g ≥ 0, the Euler characteristic is χ(S)= 2−2g, while if S is a closed surface of
genus g with n punctures, χ(S)= 2− 2g− n (the punctures are not counted as
vertices).
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Now we will compute the area. Cut the surface into small geodesic triangles.
Each puncture and cone point should be a vertex. Think of how the neighbor-
hood on each arises by projection from the branched universal cover. Since
each triangle has three edges each of which is shared by the adjacent triangle,
2E = 3T . The area of each triangle satisfies K Area(
) = θ1 + θ2 + θ3 − π .
If there are no punctures or cone points, summing the triangles we find that
K Area(S) = 2πV − πT = 2πχ(S). If there are cusps (cone points of order
∞ on a negatively curved surface) the area is too great because the angle sum
about a cusp is 0 instead of 2π , so 2πn must be subtracted. At a cone point the
angle sum is instead 2π/ri rather than 2π , so we must subtract the difference
2π(1− 1/ri ).
Thus if S is a closed surface of genus g with n-punctures, and K =−1, we have

Area(S)≥ 2π |χ(S)|. (3.10)

(b) Conversely, prove that every possibility S allowed by (3.9) can be realized as
S = P/G where P is exactly one of �2, �, �2 and G is a group of Möbius
transformations acting on P (if there are no cone points, this is a consequence
of the Uniformization Theorem, Section 2.6).
Hint: To simplify notation, consider the case of �2 with n cone points {ζi } of
corresponding orders {ri }. Fix a point O and take n simple loops {γi } from O ,
each surrounding exactly one cone point, and mutually disjoint except at O . Let
H be the normal subgroup of the fundamental group of S = �2 \ cone points
generated by the loops {γ ri

i }. Let S̃ denote the normal covering Riemann surface
determined by H . Each lift of each γ ri

i is a simple loop retractable to a puncture.
The group of cover transformations is isomorphic to π1(S)/H . In particular each
lift of γi determines an element of order ri that necessarily extends to and fixes
the corresponding puncture. There are a countable number of such lifts. When
the punctures are added to S̃ we obtain a simply connected Riemann surface S̃∗.
Now apply the Uniformization Theorem to S̃∗. In general S̃∗ is noncompact and
conformally equivalent to �2: there are only a finite number of configurations
that lead to the plane or sphere.

(c) For a closed, oriented surface S of genus g with riemannian metric h and Gaus-
sian curvature K (h) the Gauss–Bonnet formula reads

2πχ(S)= 2π(2− 2g)=
∫ ∫

S
K (h) d Ah,

where χ(S) is the Euler characteristic and d Ah is the element of surface area.
In the hyperbolic case K (h) = −1 and the surface area is 4π(g − 1), g ≥ 2.
Hyperbolic metrics are best: If K (h)≥−1 (resp.≤−1), then Areah(S)≥Areahyp

(resp.≤), with equality only when h is the hyperbolic metric. For generalizations
to 3-manifolds, see [Besson et al. 1999; Storm 2002a; 2002b].
Equation (3.9) is sometimes applied to cone manifolds with arbitrary cone an-
gles. It holds for cone angles 2π/ri ≤2π . If all the cone points on an n-punctured
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surface S of genus g have angles instead satisfying 2π/ri ≥ 2π , Equation (3.10)
becomes

Area(S)≤ 2π |χ(S)|.
A common application of the area formula is to find the possibilities that a closed
surface of genus g and n punctures with designated cone points carries the spher-
ical metric K =+1, euclidean metric (K = 0), or hyperbolic (K =−1). In other
words, the surface is covered by �2,� or �2. This gives rise to three inequalities:

2g+ n+
m∑

i=1

(
1− 1

ri

)
< 2 spherical case, (3.11)

2g+ n+
m∑

i=1

(
1− 1

ri

)
= 2 euclidean case, (3.12)

2g+ n+
m∑

i=1

(
1− 1

ri

)
> 2 hyperbolic case. (3.13)

Inequality (3.11) requires g=0 and n=0, 1. If n=1 then m=1 and 2≤ r1<∞.
For n = 0, if m = 3 the possibilities for the cone points are (2, 3, 5), (2, 3, 4),
(2, 3, 3), (2, 2, n); if m = 2 then 2≤ r1, r2 <∞; if m = 1, then 2≤ r1 <∞.
Equality (3.12) requires g = 0, 1. If g = 1 then m, n = 0. For g = 0, we can
have n = 2 and m = 0; otherwise if n = 1, then m = 2 and r1 = r2 = 2; if n = 0,
the cone points are given by (2, 2, 2, 2), (3, 3, 3), (2, 3, 6), or (2, 4, 4).
Inequality (3.13) is satisfied by all combinations except those listed already.

(d) Show that as � ⊂ PSL(2,�) ranges over all fuchsian groups (that may have
elliptics and/or parabolics), the area of �2/� achieves its minimum value π

21
uniquely for the (2, 3, 7)-triangle group. Conclude that for a group R represent-
ing a closed surface R of genus g≥ 2, the order of the group C(R) of conformal
automorphisms of R cannot exceed 4π(g− 1)/(π/21) = 84(g− 1). (Note that
C(R) is isomorphic to N (G)/G, where N (G) is the normalizer of G, and the
area of �2/N (G) is not less than π/21.)
Show that if the fuchsian group G is of finite index n in the fuchsian group
H , the area of �2/H is n times that of (�2/G). Because n cannot become
too large, conclude that every fuchsian group of finite area is contained in a
maximal fuchsian group, one that has finite area and is not a subgroup of any
other fuchsian group.
Does the same argument work for finite volume kleinian groups (Section 4.11.1)?

3-2. If A is loxodromic prove that in the hyperbolic metric min�x∈�3 d(�x, A(�x)) is
achieved only when �x lies on the axis of A.

Exercise 1-4 showed that the set V = {�x ∈ �3 : d(�x, A(�x)) < ε}, if nonempty, is a
radius ε tube about the axis of A.

Show that if A is parabolic, the set {�x ∈ �3 : d(�x, A(�x)) < ε} is a horoball at the
fixed point of A.
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3-3. Prove that for a fuchsian group G, the universal horodisk at a parabolic fixed
point is not penetrated by the axis of any loxodromic element that represents a simple
geodesic on �2/G. Is the same statement true for the universal horoball in a kleinian
group? (Hint: apply z �→ z+ 1 to the axis).

Prove that a discrete group with all real traces is conjugate to a fuchsian group.

3-4. Show that if x ∈ �3 approaches z ∈ ∂�3, then the limit of the half-space Hg is
the half-space determined as follows. There is a unique horosphere σ at z such that
σ is tangent to the horosphere g−1σ at g−1(z). Take the hyperbolic plane tangent
to both horospheres at their point of tangency; it is orthogonal to the geodesic with
endpoints z, g−1(z). Choose the half-space determined by this plane that is adjacent
to z. If z =∞, this half-space is the exterior of the isometric hemisphere for g. Also
see Lemma 1.5.4.

3-5. Figure-8 knot. Find a Dirichlet region for the rank-two parabolic group

G = 〈z �→ z+ 1, z �→ z+ τ ; Im τ > 0〉.
Show that it has generically six edges, but in some situations it has only four. The
square and the regular hexagon provide the associated torus with symmetries of order
four and order six.

Compute the hyperbolic volume of the part of the polyhedron lying above a horo-
sphere (a horizontal plane, in the present situation). Show that the quotient �3∪�/G
is homeomorphic to {0< |z| ≤ 1, z ∈ �}×�1, that is, the complement of the central
circle in the solid torus. This is the prototype of the local structure about a knot when
the knot complement has a hyperbolic structure — as all of them do, except torus
knots and satellite knots (Section 6.3). The parabolic fixed point is “stretched” into
the knot.

For example, the figure-8 knot can be formed as follows. In the upper half-space
model, choose an ideal tetrahedron with one vertex at∞, as in Exercise 1-22. Each of
the four faces is an ideal triangle. The ideal vertices of each face lie on a circle in �2.

Fig. 3.8. The figure-8 knot.
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The circles corresponding to adjacent faces intersect, and their angle of intersection
is the dihedral angle between the faces. Arrange it so that the six dihedral angles are
all 60◦ so as to become the regular ideal tetrahedron (compare Exercise 1-23). In fact
the dihedral angles of any ideal tetrahedron add up to 360◦.

Line up two such ideal tetrahedra T1 and T2, one next to the other so they share a
face and the ideal vertex∞. There are six free faces on the union of the two tetrahedra.
The faces can be paired and the face identification via isometries precisely given so
that the tetrahedral union is a fundamental polyhedron for the group G generated by
the face pairing transformations and �3/G is homeomorphic to the complement of
the figure-8 knot in �3. The five ideal vertices become parabolic fixed points which
are in the single parabolic conjugacy class of G. For details see [Thurston 1997,
pp. 39–42], [Ratcliffe 1994, §10.5], or [Neumann 1999].

The figure-8 knot complement is �3/G, where G can be taken to be generated by
(

1 0
1 1

)
,

(
1 eπ i/3

0 1

)
.

For a discussion of hyperbolic knots see Section 6.3.

3-6. Volume of maximal solid cusp tori [Adams 1987]. We will use the fact that the
densest circle packing in the plane with circles of the same radius is the hexagonal
packing: each circle is surrounded by six others. This is applied as follows.

Suppose P is a parallelogram. Place a disk of radius r centered at each of the four
vertices. Assume that the interiors of the disks are mutually disjoint. If |P| denotes
the area of P , then |P| ≥ 2r2

√
3. Equality occurs if and only if all the sides of P

have the length 2r . If the sides of P have length ≥ 1, then r ≥ 1/2. If one side has
length one, r = 1/2.

Now consider a hyperbolic 3-manifold M(G) such that G has a rank two parabolic
subgroup. We can conjugate so that G∞=〈z �→ z+1, z �→ z+τ 〉with τ =u+iv, −1

2≤
u ≤ 1

2 , y ≥√3/2 (Exercise 2-5). A maximal horoball at the fixed point z =∞ is the
largest horoball H∞ with the property that g(H∞)∩H∞ =∅ for all g ∈G, g /∈G∞.
In our setup with∞ the fixed point, this means that H∞ = {(z, t) ∈ �3 : t > s} with
the smallest possible 1≥ s > 0.

Let σ denote the horosphere {(z, t) : t = s}. Because this bounds the maximal
horoball at∞ there will be an element g ∈G, g /∈G∞ such that the euclidean sphere
g(σ ) is tangent to σ . We may assume that g(σ ) is based at z = 0= g(∞).

Prove that g−1(∞) cannot lie in the orbit G∞(0). Hint: suppose otherwise so that
for some h ∈ G∞, h−1g−1(∞)= 0. Also h−1g−1(0)=∞. Therefore h−1g−1 fixes a
point on the vertical half line, a contradiction since G has no elliptic elements.

In �, choose the fundamental parallelogram P for G∞ to have vertices at 0, 1, τ ,
and 1+ τ . The horoball g(H∞) is tangent to � at z = 0 and its G∞-orbit contains
horoballs tangent to � at all the vertices of P . Its G∞-orbit is also disjoint from the
G∞-orbit of the horoball g−1(H∞). There will be at least one point ζ ∈ P which is
a tangent point of the latter G∞-orbit.
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All these horoballs tangent to � have the same euclidean radius r = 1/(2s). The
vertices of P have distance at least 2r = 1 apart, and also must be distance at least
1 from ζ . Place disks of radius 1/2 centered at the vertices of P and at ζ . Consider
their G∞-orbit. Their interiors are mutually disjoint and P has to be covered by the
equivalent of two disks. Deduce that |P| ≥ √3.

The volume of H∞/G∞ is |P|/2s2.
Conclude that the volume of the maximal solid cusp torus is at least

√
3/2 in any

hyperbolic manifold M(G) with nonelementary G.
Compare with Exercise 2-10.
Now show that the number of primitive lattice points of the orbit G∞(0) whose

distance from z = 0 is less than 2π is ≤ 48 [Bleiler and Hodgson 1996]; there are
at most 24 simple closed geodesics in the quotient torus of length < 2π . Primitive
means that the ray from 0 to the lattice point does not pass through any other lattice
points.

3-7. Subgroups of geometrically finite groups [Thurston 1986b]. Suppose M(G) is a
geometrically finite hyperbolic 3-manifold such that its convex hull C(G) 
=M(G).
Prove that for every finitely generated subgroup G1 of G, M(G1) is also geometrically
finite.

Hint: Consider first the case that G has no parabolics. Then C(G) is compact. There
exists d such that every point x ∈C(G) has distance at most d from ∂C(G). Let Ĉ(G)
denote the lift to �3. Every point in Ĉ(G) has distance at most d from ∂Ĉ(G). The
quotient Ĉ(G)/G1 is a convex submanifold of M(G1) and hence it contains C(G1).
Each point x ∈ C(G1) therefore has distance at most d from ∂Ĉ(G)/G1 and then
also from ∂C(G1). Now the Ahlfors Finiteness Theorem implies that ∂C(G1) has
a finite number of components and each component is a compact surface without
boundary (there are no parabolics in G1). Consequently C(G1), being covered by
a finite number of d-balls with centers on ∂C(G1), is compact. Therefore G1 is
geometrically finite.

The proof in the general case also uses the thick/thin decomposition of C(G).

3-8. Klein–Maskit combination theory. Here we will display only the classical situa-
tions. In [Maskit 1988] the reader will find extensive generalizations.

(i) Suppose G is a kleinian group. Select two mutually disjoint closed disks D1, D2

in �(G) such g(Di )∩ D j = ∅ for i, j = 1, 2 and for all g 
= id ∈ G. Let T be any
Möbius transformation that maps the exterior of D1 onto the interior of D2. Prove
that G∗ = 〈G, T 〉 is also discrete, as claimed in Section 3.7.

Topologically show that what you have done is the following. The projection π :
Di →
i to the quotient M(G) is a homeomorphism. Remove 
1, 
2 from ∂M(G)
and identify the resulting boundaries ∂
1 and ∂
2. If the two disks lie on the same
component of ∂M(G) what you have done is create a new handle. If they lie in
different boundary components, you have connected the two components. Otherwise



3.14 Exercises and explorations 167

∂M(G∗) is the same as ∂M(G). In either case, the simple loop ∂
1 = ∂
2 on
∂M(G∗) bounds a disk within M(G∗). This disk does not divide the 3-manifold.

Exactly the same process can be used to connect two manifolds M(G1) and M(G2).
In this case G∗ = G1 ∗G2 is a free product since the new disk divides.

Show that you can adjoin a solid torus and/or a solid cusp torus to M(G).
What happens if you make the following alternative combination? Given a small

closed disk D ⊂ �(G), let J denote reflection in the circle ∂D, and equally in the
plane in �3 rising from ∂D. Form the new group G∗ = 〈G, J G J 〉. This too will be
discrete. Describe M(G∗).

(ii) Suppose ζ1, ζ2 are two parabolic fixed points of G. Suppose 
1 ∈ �(G) is a
closed horodisk associated with ζ1 and 
2 is a closed horodisk associated with ζ2 so
that g(
i )∩
i =∅, i = 1, 2, unless g ∈ Stabζi . Possibly ζ1 = ζ2 and then the disks
are externally tangent at the fixed point. Let B be any Möbius transformation that
maps the exterior of 
1 onto the interior of 
2 and conjugates Stab(ζ1) to Stab(ζ2).
Prove that G∗ = 〈G, B〉 is discrete. Topologically what has happened is this: We have
chosen two circles c1, c2 about two distinct punctures on ∂M(G), the projections of
the two horocycles. Remove the once punctured disks bounded by these two circles
from ∂M(G) and identify the two circles. If the two circles are on the same boundary
component of M(G), that component loses two punctures but gains a handle. If
they are on different components, the two components become connected and lose a
puncture each. In G∗ the two cyclic parabolic groups become conjugate; if ζ1 = ζ2

the cyclic parabolic group becomes a rank two parabolic group. See also Exercise
4-18.

Algebraically G∗ is the free product with amalgamation of the two cyclic parabolic
groups. Likewise the construction can be carried out to join two different manifolds.

It was originally hoped that with the two classical combination techniques, (i) and
(ii), all kleinian groups could be constructed. Peter Scott, in the mid 1970s, showed
(personal communication) that this cannot be the case. It is a key part of the Thurston
theory, specifically the skinning lemma (Section 6.2), that allows general forms of
combination to be effectively and generally applied — it shows that the group can
be deformed so that there exist Möbius transformations that do the job required of
hyperbolic gluing. Armed with the skinning lemma, most kleinian groups can be
formed from simpler ones using hyperbolic gluing — the combination theorems.

3-9. Extended quasifuchsian groups. Let G be a fuchsian or quasifuchsian group
with �(G)=�1 ∪�2 the components of the regular set. Suppose there is a Möbius
transformation T that maps �1 onto �2 and such that if g ∈G then also T gT−1 ∈G.
Show that the extended group G∗ = 〈G, T 〉 is discrete. Describe the topology of
M(G∗) (it has only one boundary component).

The group G∗ is called an extended fuchsian or extended quasifuchsian group. It has
the same limit set as G and an index two subgroup which is fuchsian or quasifuchsian.
Construct an extended fuchsian group by adjoining z �→ −z to the modular group.
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3-10. Suppose G is a finitely generated kleinian group and � is a simply connected
component of �(G) with the following properties:

(i) � is invariant under G and is a proper subset of �(G).
(ii) Every simple loop in S = �/G that determines a parabolic element of G is

retractable in S to a puncture.

Apply the Ahlfors Finiteness Theorem and the Cylinder Theorem to prove that G is
a fuchsian or quasifuchsian group.

3-11. Function and Schottky groups; compression bodies. Assume that a component
� of �(G) is invariant under G. Traditionally, complex analysts have called such a
group a function group because by using Poincaré series, differentials and functions
can be constructed on it. We will however reserve the name to the cases that � is not
simply connected. Here we will assume that G is finitely generated without elliptics.

An orientable, compact, irreducible 3-manifold M3 is called a compression body
by the topologists if it has a boundary component S ⊂ ∂M3 for which the inclusion
π1(S) ↪→ π1(M3) is surjective. It is referred to as a trivial compression body if
M3 = S×[0, 1]; we will not use the term for this case.

If M(G) is compact, it can be described topologically as the result of taking a
3-ball B, cutting n ≥ 2 holes in ∂B and attaching to the boundary of the holes, the
boundary curves of the following collection: solid tori, each with one hole cut out the
boundary, and closed surface bundles Sk×[0, 1], with the genus of Sk exceeding one,
each with a hole taken out of a boundary component. In the opposite direction, on
the compressible boundary component S there is a finite system of nontrivial simple
loops that bound disks in M(G). Cut M(G) along these disks to get one or more
pieces Mi . Here we are using Dehn’s Lemma and the Loop Theorem. If there is only
one piece, then it is a ball and M(G) is a handlebody. Otherwise each Mi

∼= Si×[0, 1]
where Si is an incompressible boundary component of M(G).

When there are parabolics and G is geometrically finite, compactify M(G) by
removing solid cusp tori and solid pairing tubes. Then the analysis is the same. Note
that in this case some of the components may be essentially solid cusp tori themselves.
Algebraically, G is the free product of closed surface groups and cyclic groups. If
G is an N -generator function group, find estimates for the number of pieces, and the
genus and punctures of each [Marden 1974a].

Prove that a general geometrically finite manifold M(G) can be decomposed along
incompressible surfaces into finitely many compression bodies and submanifolds with
incompressible boundary. This is a result of Bonahon [1986], who also showed that
the decomposition is unique up to isotopy. Two compact compression bodies with
isomorphic fundamental groups are homeomorphic [McCullough and Miller 1986].

The simplest example is a (not necessarily classical) Schottky group representing
a handlebody M(G) of genus g ≥ 1. Equally important for a Schottky group are the
simple loops which are not compressing. Show that there exist simple noncompress-
ing loops that divide the surface into two parts; see Exercise 5-16.
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In [McCullough and Miller 1986] it is proved after a long argument that given a
compressible boundary component S of a geometrically finite M(G)without parabol-
ics, there is a submanifold X ⊂M(G) with the following properties: (i) S is a bound-
ary component of X , (ii) ∂X \ S is incompressible in M(G), and (iii) the image of the
inclusion π1(S) ↪→ π1(M(G)) is precisely π1(X), that is, X is a compression body
with S its compressible boundary component.

Suppose M(G) is compact with an incompressible boundary component S. Show
that π1(S) either has index at most two in G (Exercise 3-9), or it has infinite index in
G [Hempel 1976, Theorem 10.5].

3-12. Assume that∞∈�(G) and � is a component of �(G) with∞ 
=�. Suppose
there exists a relatively compact fundamental set F for the action of Stab(�) (recall
that this is the group {g ∈ G : g(�)=�}). Prove that

Diam(�)2 ≤
∑

g∈Stab(�)

Diam(g(F))2.

Prove further that if {gi (Stab(�))} is the set of left cosets of Stab(�) in G, then∑
Diam(gi (�))

2 < ∞.
Here Diam is the euclidean diameter of the set. There is a one-to-one correspondence
between left or right cosets of Stab(�) in G and components of the orbit G(�).

3-13. Boundary fixed points [Maskit 1974]. Suppose H is such that the quotient
�(H)/H has a finite number of components each of which is a closed surface. Prove
that if∞ is not a limit point, ∑

h∈H

|ch|4 <∞,

where |ch|−1 is the radius of the isometric circle of h 
= id. Hint: the orbit of a
fundamental region has finite spherical area since there is no overlap.

Now suppose G is a kleinian group, ∞ is not a fixed point, and � ⊂ �(G) is a
component of the regular set. Consider Stab(�)= {g ∈ G : g(�)=�}. Assume that
the quotient �/ Stab(�) is a closed surface. Let {�i } denote the components of the
G-orbit of �; that is, if G =⋃

gi Stab(�) is the coset decomposition, then we can
take �i = gi (�). Prove for the spherical diameters that

∑
Diam4(�i ) <∞. Hint:

Diam(gi (�i ))≤ |ci |−2d−1
i where di is the spherical distance between g−1

i (∞) and�.
Deduce that if a loxodromic g ∈ G has a fixed point on ∂� then gk(�) = � for

some k. Hint: If no power gk preserves � then
∑

Diam(gk(�))=∞.
The same conclusion holds in the more general case that�/ Stab(�) has in addition

a finite number of punctures.

More generally, prove the following result from [Anderson 1994]. Suppose G is a
not necessarily finitely generated group but G1 ⊂ G is a finitely generated subgroup.
Assume the loxodromic γ ∈ G has a fixed point in �(G1). Prove that γ k ∈ G1 for
some k ≥ 1.
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Analyze the following case. Suppose � is a component of the regular set of the
nonelementary, torsion-free finitely generated kleinian group G. Assume the loxo-
dromic A ∈ Stab(�) represents a simple closed curve c on �/ Stab(�). Suppose
A = Bn, n ≥ 2, where B ∈ G preserves �1 
=� and also represents a simple closed
curve c′. Suppose c and c′ are disjoint in the quotient. Now Bn preserves both �
and �1. In M(G), c is freely homotopic to c′n . Since c and c′ are disjoint curves, by
the cylinder theorem there is a simple curve c∗ near c′ that is freely homotopic to c.
When can you conclude that n =±1?

3-14. Commensurability. Two subgroups groups �1, �2 of a larger group G∗ (which
will usually be PSL(2,�) or PSL(2,�)) are said to be commensurable (�2 ∼ �1) if
the subgroup of common elements �2∩�1 is of finite index in both �1 and �2. Prove
that if �1 is geometrically finite, �2 is as well [Greenberg 1977].

In the context of kleinian groups, �2 ∼ �1 if and only if M(�1 ∩ �2) is a finite-
sheeted cover of both M(�1) and M(�2).

The commensurability group or commensurator C(�) of a kleinian group � is the
group C(�)= {g ∈ PSL(2,�) : g�g−1 ∼ �}.

Prove the following special case of [Greenberg 1974, Theorem 2(4)]. If � is a
finitely generated, nonelementary group whose limit set �(�) is not a round circle
on �2 nor is all �2, then the index [C(�) : �] is finite.

To establish this, show that C(�) is discrete. Then show it has the same limit
set as �. Therefore if F is a fundamental region for C(�), and {gi } is a set of coset
representatives for � in C(�), show that

⋃
gi (F) is a fundamental set for � on�(�).

Applying the Ahlfors Finiteness Theorem, {gi } is a finite set and therefore [C(�) :
�]<∞. Alternatively use the fact that the group K of elements that map �(G) onto
itself is discrete: As a closed subgroup of PSL(2,�), the identity component of K
is a connected Lie subgroup. Since it is not PSL(2,�) or conjugate to PSL(2,�) it
either has a common fixed point in �3 ∪ ∂�3, or it is the identity [Greenberg 1977],
implying that K is discrete.

Prove that C(�) contains any group H with the same limit set as �. That is C(�)
is the group of all Möbius transformations that map the ordinary set �(G) onto itself
(or equivalently, map�(G) onto itself). Therefore, if H contains �, � has finite index
in H .

If M(G1),M(G2) have finite volume, show that G1,G2 are commensurable if and
only if there are isomorphic subgroups of finite index H1 ⊂ G1 and H2 ⊂ G2.

What do your results say about the normalizer N (�) of � in PSL(2,�)?
In contrast to our analysis, if � = PSL(2,�) and G∗ = PSL(2,�), then C(�)

contains PSL(2,
) so that [C(�) : �] =∞ and C(�) is dense in G∗.

3-15. Finiteness theorems. Suppose that G is a finitely generated kleinian group.
Prove:

(i) G has at most a finite number of conjugacy classes of rank one and rank two
parabolic subgroups (Sullivan; see [Feighn and McCullough 1987]).
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(ii) G has at most a finite number of conjugacy classes of finite subgroups [Feighn
and Mess 1991].

Hint: For (i), use the compact core or the relative compact core and the fact that,
corresponding to the rank one and rank two cusps, there are mutually disjoint cusp
cylinders and cusp tori with the property that a simple nontrivial loop on one is not
freely homotopic to one on another [Kulkarni and Shalen 1989]. For the second, first
apply Selberg’s Lemma (page 68) to get a torsion-free, normal subgroup of finite
index H . The finite group F = G/H is isomorphic to a group of automorphisms of
M(H). It is shown in [Feighn and Mess 1991] that one can choose a compact core C
of M(H) to be invariant under F ; for this, C/F is compact.

3-16. Retractions. [Epstein and Marden 1987]Let K be a hyperbolically convex set
in �3. The retraction map r :�3 \K→ K is defined as follows. For each �x ∈�3 \K ,
r(�x) is to be that point of K closest, in the hyperbolic metric, to �x . This closed point is
uniquely attained. In the hyperbolic metric d( · , · ), show that the map r is Lipschitz:
d(r(�x), r(�y)) < d(�x, �y).

Hint: Normalize so that the geodesic from r(�x) to r(�y) lies on the vertical axis � in
the upper half-space model. Draw the planes orthogonal to � through r(�x) and r(�y).
The geodesic segment between r(�x) and r(�y) lies in K . The points �x, �y cannot lie in
the open set bounded by the two planes.

3-17. Cylindrical manifolds. Suppose G is geometrically finite and ∂M(G) is in-
compressible. Let C ⊂ M(G) be an essential cylinder; M(G) \ C has one or two
components M1,M2. Choose one of these, say M1, and consider a lift M∗1 ⊂ �3.
Set G1 = Stab(M∗1 ). Describe �(G1) in terms of �(G) and the topological type of
∂M(G1) in terms of ∂M(G). In turn cut M(G1) along an essential cylinder, if it
has one. Show that this process must end after a finite number of steps. Classify the
different possibilities you can end up with.

A parabolic T ∈G is called accidental if there is a component�⊂�(G) such that
T (�)=� in which T has the three (equivalent) properties: (i) T has no horodisk in
�; (ii) T corresponds to a loxodromic transformation in the Riemann map image or
the universal cover �2 of �; (iii) the fixed point of T lies in the impression of two
distinct prime ends of ∂�. The simplest example is the transformation z �→ z + 1
acting in the strip S = {z : 0< Im z <π}. The Riemann map z �→ ez maps S unto the
upper half-plane. The parabolic T is transferred to the loxodromic w �→ ew. In truth
the attribute “accidental” is singularly inappropriate, as there is nothing accidental
about the appearance of an accidental parabolic.

From the three-dimensional point of view, it is possible that an “essential cylinder”
just bounds a solid cusp tube for a rank one cusp. Then the result of cutting as
proposed above does not change the group and indeed we have decided that such a
cylinder is not officially called an essential cylinder. However it is entirely possible
that one of the boundary components of an essential cylinder be retractable to a punc-
ture, and the other not. This is exactly the situation of an “accidental” parabolic in
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a geometrically finite manifold. Suppose you only cut the manifold along essential
cylinders associated with such parabolics. Show that after a finite number of steps
you will end up with a group or groups that no longer have such any such parabolics:
every cyclic parabolic group pairs exactly two punctures and is not represented by
any homotopically different simple loop in the boundary; see [Abikoff and Maskit
1977].

There is no reason to believe that a core curve c of an essential cylinder C is
primitive; if A ∈ G is determined by c, is it possible that A = Bn for B ∈ G and
n > 1?

3-18. Conical limit points. If G is a nonelementary kleinian group, a point ζ ∈�(G)
is called a conical limit point if the following is true. Let γ (t), 0 ≤ t < ∞, be a
geodesic ray ending at ζ . Given O ∈ �3, there exists r > 0 such that there is an
infinite subsequence of the orbit G(O) that lies in the r -tubular neighborhood about
γ (and hence converges to ζ ).

In the quotient manifold, the condition means that the projection of the ray γ (t) is
recurrent in the sense that given any point π(O)∈�3/G there is an infinite sequence
tn→∞ such that each π(γ (tn)) is within distance r of π(O). Put another way, there
exists a compact subset K ⊂ �3/G such that π(γ (t)) intersects K infinitely many
times. A loxodromic fixed point is always a conical limit point, and a parabolic fixed
point is never one.

If M(G) is geometrically finite, and ζ is not a parabolic fixed point, then π(γ (t))
will lie in a compact set because it cannot asymptotically penetrate the universal
horoballs.

Prove that G is geometrically finite if and only if all limit points except parabolic
fixed points are conical limit points [Beardon and Maskit 1974]. Hint: All geodesics
lie in the convex hull of �(G).

3-19. Quasiisometries. A quasiisometry of �3 (or of any �n) is a map f : �3→ �3

that satisfies

1

L
d(x, y)− a ≤ d( f (x), f (y)) ≤ Ld(x, y)+ a (3.14)

for some L ≥ 1 and a ≥ 0. The map f need not be a homeomorphism nor even
continuous, just asymptotically Lipschitz. It is called a Lipschitz map if the right
inequality holds for a = 0. The minimum factor L is called the Lipschitz constant
for f . Initially Mostow used “pseudo-isometries”, which satisfy (3.14) except on
the right side a = 0 so the map is Lipschitz; the long range properties are the same
whether or not a= 0. A homeomorphism f is L-bilipschitz if (3.14) holds with a= 0.
An L-bilipschitz map on �2 or �3 is L2-quasiconformal. The converse is not true in
general (for an example, consider the radial stretch �x �→ |�x |α �x , −1< α < 0).



3.14 Exercises and explorations 173

An equivalent definition is perhaps more illuminating: there exists constants K ≥ 1
and d0 ≥ 0 such that

K−1d(x, y)≤ d( f (x), f (y)) for all x, y ∈ �3 with d(x, y)≥ d0,

K d(x, y)≥ d( f (x), f (y)) for all x, y ∈ �3.

For example, �2 and �3 are quasiisometric to the Cayley graph dual to the tessella-
tion by a fundamental polygon or polyhedron for a fuchsian group or a kleinian group
whose respective quotients are closed [Cannon and Cooper 1992]: The graphs look
like �2 and �3 if you look at them from afar. In fact, a hyperbolic group (Exercise
2-17) is quasiisometric to �2 or �3 if and only if it is a fuchsian group representing
a closed surface [Boileau et al. 2003, Theorem 6.18] or a kleinian group representing
a closed manifold [Cannon and Cooper 1992].

Using Equation (8.27) of Exercise 8-9, prove that quasiisometries have the follow-
ing properties [Efremovič and Tihomirova 1964; Thurston 1979, p. 5.39]:

(i) If γ is a geodesic ray to a point ζ ∈ ∂�3, then f (γ ) has a well defined end point
on ∂�3. Denote the end point by f (ζ ).

(ii) There exists a constant M <∞, such that for any x ∈ γ , d( f (x), γ ′)<M , where
γ ′ denotes a geodesic ray ending at f (ζ ).

(iii) The extension of f to ∂�3 is a homeomorphism.
(iv) If f (ζ )= ζ for all ζ ∈ ∂�3, then supx∈�3 d(x, f (x)) <∞.
(v) More generally, if f1, f2 are quasiisometries with the same boundary values,

there exists a constant B <∞ such that d( f1(x), f2(x)) < B for all x ∈ �3.

An additional important property is that the extension to ∂�3 is quasiconformal
[De-Spiller 1970]. To prove this it is necessary to show the metric definition of
quasiconformality is verified: Let τ denote the spherical metric on ∂�3. Set

L( f, r)(ζ )= sup
τ(ζ ′,ζ )=r

τ( f (ζ ′), f (ζ )),

l( f, r)(ζ )= inf
τ(ζ ′,ζ )=r

τ( f (ζ ′), f (ζ )),

H( f, ζ )= limr→0
L( f, r)(ζ )

l( f, r)(ζ )
.

The restriction of f to ∂�3 is quasiconformal if there exists K ∗ < ∞ such that
H( f, ζ ) < K ∗ for all ζ ∈ ∂�3.

The use of this theory to prove Mostow’s Rigidity Theorem is indicated at the
end of Section 3.12. It is perhaps interesting to digress to summarize the history of
Mostow’s result. His original announcement and proof had the hypothesis that there
is a quasiconformal mapping between closed manifolds f :M(G)→M(H) (actually
in n-dimensions). Most of his 1968 paper was devoted to the proof, following earlier
work of Gehring, that f , when lifted to �n , can be extended to ∂�n and is there
a quasiconformal mapping. He then used properties of quasiconformal mappings
together with some ergodic theory to prove rigidity. Ahlfors immediately recognized
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the importance of Mostow’s result and worked to make the proof more transparent to
complex analysts. In a short unpublished manuscript, which assumed the boundary
extension property which was known to him, Ahlfors simplified Mostow’s proof,
using fewer properties of quasiconformal mappings and less ergodic theory. The book
[Mostow 1973] contains an entirely new proof of a more general theorem. There
Mostow introduced the notion of a pseudo-isometry (now called a quasiisometry)
and developed its properties. While Mostow was working on his generalization, G.
A. Margulis independently published in 1970 a page-and-a-half “plan of a proof”
of a less encompassing generalization of Mostow’s original theorem. He too used a
method akin to quasiisometries. The key feature that extension to the boundary is
quasiconformal which was published in its own right in [De-Spiller 1970] was thus
apparently independently discovered by Mostow and Margulis in the course of their
application.

3-20. Hausdorff dimension. The notion of Hausdorff dimension is used to measure
the “size” of point sets with smooth curves having dimension one and isolated points
having dimension zero. The α-dimensional Hausdorff measure of a closed set X ⊂�

(or more generally, of a Borel set) is defined in terms of

�α(X)= lim
ε→0

(
inf{Dk}

∑
k

Diam(Dk)
α

)
,

where the infimum is taken over all covers {Dk} of X by euclidean disks of diameters
at most ε. The Hausdorff dimension is defined as

dim X = inf{α :�α(X)= 0}.
The inequality ∑

k

(Diam Dk)
β ≤ εβ−α

∑
k

(Diam Dk)
α,

which implies that �β(X)≤ εβ−α�α(X), shows that �α(X)= 0 if α > dim X while
�α(X)=∞ if α < dim X .

If f is an L-bilipschitz map of X , we have

L−α�α(X)≤�α( f (X))≤ Lα�α(X).

For sets X ⊂ �, 0 ≤ dim X ≤ 2. A connected closed set without interior which
has Hausdorff dimension > 1 is called a fractal. Upper estimates of the Hausdorff
dimension are often found by using a special covering and by the following estimate.
Assume X is a bounded set. Let N (ε) denote the minimum number of round disks of
diameter ε needed to cover X . Then

dim X ≤ lim infε→0
log N (ε)

− log ε
.

In this estimate, a square grid of side length ε covering X and such that each square
intersects X can replace the minimal cover by disks. For a careful development of
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the theory for plane point sets from the point of view of conformal mapping see
[Pommerenke 1992].

Thanks to the fundamental paper [Bishop and Jones 1997], added to earlier results
(see the discussion in [Canary and Taylor 1994]), we can assert:

Theorem 3.14.1. Suppose G is a finitely generated kleinian group.

(i) dim(�(G)) > 0 if and only if G is nonelementary.
(ii) dim(�(G)) < 2 if and only if G is geometrically finite.

(iii) dim(�(G)) > 1 if �(G) ⊂ �2 is connected but is not a circle (in which case
dim(�(G))= 1).

(iv) If dim(�(G)) < 1 then �(G) is totally disconnected.

In particular for a Schottky group G, �(G) has zero area but positive Hausdorff
dimension, in Mandelbrot’s terminology, it is “fractal dust”. At the other extreme, for
the singly degenerate groups of Section 5.8, in which �(G) is connected and simply
connected, we have dim �(G)= 2. For further information see the excellent survey
[Matsuzaki and Taniguchi 1998].

Another measure for a kleinian group G acting on the ball model of �3 is its critical
exponent which is defined as

δ(G)= inf

{
s :
∑
g∈G

e−sd(0,g(0)) <∞
}
= inf

{
s :
∑
g∈G

(
1− |g(0)|
1+ |g(0)|

)s

<∞
}
,

where 0 is the center of the ball and d( · , · ) is hyperbolic distance. Use Exercise 1-14
to show that

δ(G)= inf

{
s :
∑
g∈G

(1− |g(0)|)s <∞
}
= inf{s :

∑
g∈G

|g′(0)|s <∞}.

We will see in Exercise 3-22 that δ(G)≤ 2. Moreover

δ(G)= dim�c(G)≤ dim �(G),

where �c(G) denotes the set of conical limit points (see Exercise 3-18).
It is amazing that to know the critical exponent is to know the Hausdorff dimension.

Combining the solution of Ahlfors’ conjecture with a result in [Bishop and Jones
1997] yields:

Theorem 3.14.2. If G is a finitely generated group with �(G) 
=∅, then

δ(G)= dim(�(G)).

If �(G)=∅, both sides have the value 2.

3-21. This problem and the next are the first steps into the study of the ergodic theory
of kleinian groups. See [Nicholls 1989] for an introduction to the theory, especially
the construction of invariant measures on the limit set. Also see [Patterson 1987].
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Let G be a discrete group acting in the ball model. Define the orbital counting
function to be

N (r; �x, �y)= card{g ∈ G : d(�x, g(�y)) < r}.
Prove that there is a constant C depending on G and �y, such that for any point �x ,

N (r, �x, �y) < Ce2r .

If in addition G has a fundamental polyhedron of finite volume, show that there is a
constant C0 = C0(G, �x, �y) such that

N (r; �x, �y) > C0e2r for all large r.

Hint: Prove first that

Vol({�x : d(0, �x) < r})= 2π
∫ r

0
sinh2(t)dt,

where t = |�x | and d(0, �x) = log 1+t
1−t . Find ε > 0 such that no two elements of the

G-orbit of the ball Bε(�y) of radius ε centered at �y overlap. However if �y is an elliptic
fixed point of order m, then for each element of the orbit, m-images will coincide.
Assuming �y is not a fixed point, show that

Vol(Bε(�y))N (r; �x, �y) < Vol(Br+ε(�x))= 2π
∫ r+ε

0
sinh2(t)dt <

1

4

∫ r+ε

0
e2t dt.

Determine the corresponding statements for the action of a fuchsian group in the
unit disk model of �2.

3-22. Suppose G is a discrete group. Refer back to Exercise 1-14 and prove that∑
g∈G

e−αd(0,g(0)) <∞ for all α > 2.

Hint: Consider Exercise 3-21 and
∑

g∈G:d(0,g(0))<r

e−αd(0,g(0)) =
∫ r

0
e−αt d N (t; 0, 0)

= N (r; 0, 0)e−αr +α
∫ r

0
N (t; 0, 0)e−αt dt.

The same expression for the disk model of �2 converges for α > 1.
Let δ(G) be the critical exponent for G as defined in Exercise 3-20. We know from

Exercise 3-20 that δ(G)≤ 2 for groups acting in the ball model and that δ(G)≤ 1 for
fuchsian groups acting in the unit disk. The group is said to be of convergence type if∑

g∈G

e−δ(G)d(0,g(0)) < ∞;

otherwise G is said to be of divergence type.
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Prove that if G has a fundamental polyhedron of finite volume in the ball model, or
a fundamental polygon of finite area in the disk model, then G is of divergence type.
If however the limit set �(G) 
=�2 in the ball model or 
=�1 in the disk model, then
G is of convergence type.

Hint: Let D be a closed disk in the ordinary set �(G). We can assume that the
elements of its G-orbit are mutually disjoint. Let dσ denote the area form on �2: in
spherical coordinates, dσ = sinϕ dϕ dθ . Then

4π >
∑
g∈G

Area(g(D))=
∑
g∈G

∫ ∫
D
|g′(w)|2 dσ.

To finish, deduce from Exercise 1-12 that when |w| = |g(w)| = 1,

|g′(w)||g(w)− g(0)|2 = 1− |g(0)|2, 1− |g(0)|< 4|g′(w)|.
On the other hand, if G has a polyhedron with finite volume, write again

∑
g∈G:d(0,g(0))<r

e−2d(0,g(0)) =
∫ r

0
e−2t d N (t; 0, 0)

= N (r; 0, 0)e−2r + 2
∫ r

0
N (t; 0, 0)e−2t dt.

Apply Exercise 3-21 to finish the job.
The following result appears as [Matsuzaki and Taniguchi 1998, Theorem 5.15]

and incorporates results from [Ahlfors 1981] and [Sullivan 1981]. For the proof, see
[Nicholls 1989].

Theorem 3.14.3. The following statements about a kleinian group G are equivalent:

(i) The conical limit set �c(G) has Lebesgue measure 4π on �2.
(ii) G is of divergence type.

(iii) M(G) does not support a hyperbolic Green’s function.
(iv) G acts ergodically on �2×�2.
(v) The geodesic flow on the unit tangent bundle of Int(M(G)) is ergodic.

The group G is said to act ergodically on �2, or on �2×�2, if and only if the fol-
lowing holds: Given a measurable set X invariant under the action of G, the Lebesgue
measure of either X or of the complement of X vanishes. Here the action of g ∈G on
�2×�2 is (x, y) �→ (g(x), g(y)). Thus ergodic action on the product implies ergodic
action on �2 itself. For a discussion of hyperbolically harmonic functions and their
boundary values see Exercise 5-1.

3-23. Poincaré series. Suppose G is a fuchsian group of convergence type acting in
the unit disk �. Suppose f (z) is a bounded analytic function in �. Prove that the
Poincaré series

�(z)=
∑
g∈G

f (g(z))g′(z)
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is an analytic function in � that satisfies the functional relation

�(g(z))g′(z)=�(z) for all g ∈ G, z ∈�.

That is,�(z) dz is an invariant form under G. It projects to a holomorphic differential
on the quotient Riemann surface �/G.

Now suppose instead that G is of divergence type. Prove that the Poincaré series

�(z)=
∑
g∈G

f (g(z))(A′)2(z)

is analytic in � and satisfies

�(g(z))(g′)2(z)=�(z) for all g ∈ G, z ∈ �.

The invariant form �(z) dz2 projects to an holomorphic quadratic differential on
�/G.

3-24. Isotopy. Two mappings between manifolds f, g : M→ N are said to be homo-
topic if there is a continuous flow Ft : M→ N , 0 ≤ t ≤ 1 such that F0 = f, F1 = g.
In contrast f, g are isotopic if f, g are homeomorphisms and at time t, 0 ≤ t ≤ 1,
Ft is a homeomorphism. Show that a homeomorphism of a 3-manifold onto itself
can be homotopic but not isotopic to the identity. (Hint: S × [0, 1] flipped over. A
homeomorphism which on the boundary is a Dehn twist (Example 5-11) about the
boundary of a compressing disk.) In contrast, on a surface, homeomorphisms which
are homotopic are also isotopic.

Two simple curves γ1, γ2 in a surface S are said to be isotopic if there is a continuous
map Ft : �1× [0, 1] → S such that for each t . Ft is a homeomorphism of �1 into S
such that F0 gives γ1 and F1 gives γ2. Two simple curves that are freely homotopic
in S are also isotopic.

On the other hand, the study of knots in �3 rests on the difference between isotopy
and homotopy: Any knot is homotopic to an embedded circle, but is isotopic to one
if and only if its complement is homeomorphic to the complement of an embedded
circle.

3-25. Homotopic isometries. Prove that homotopic isometries of a hyperbolic mani-
fold are identical, provided the fundamental group is nonabelian. Hint: lift to �3.

3-26. Voronoi diagrams, Delaunay triangulations, and polyhedra. Given a discrete
set of points X in �3 (or �n), make the following construction. Given x ∈ X construct
the cell Cx with center x consisting of all points closer to x than to any other point
in X . It is the intersection of all half-spaces containing x which are bounded by the
planes orthogonal to the line segments between x and the other points of X . The
Voronoi diagram consists of the totality of cells built around elements of X . It is a
subdivision of �3. Each face is shared by two cells, and each vertex is shared by at
least three cells. If v is a vertex, then there is a sphere σv about v which contains the
centers of all those cells sharing the vertex v. Moreover the ball bounded by σv lies
in the union of the cells sharing v and its interior contains no points of X .
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The Delaunay triangulation is dual to the Voronoi diagram. Given x ∈ X draw a
geodesic segment from x to the points of X whose cells share a face with Cx , and
continue this process for all elements of X . We obtain a decomposition of space into
polyhedra. There is one polyhedron Pv for each vertex v; the edges of Pv are the
line segments between the centers of the cells that share the vertex v. The vertices of
Pv are the centers x of these cells. The totality of polyhedra {Pv} are the Delaunay
“triangles” (the term comes from the 2-dimensional case).

Efficient ways of numerically finding Voronoi diagrams and Delaunay triangula-
tions is an important issue in computer science.

If X consists of the orbit of x under a discrete group G without a fixed point at x ,
Cx is precisely the Dirichlet region with basepoint x . The dual Delaunay “triangles”
give a dual G-invariant decomposition of �3 by polyhedra.

There is an interesting limiting case. Suppose M(G) is a geometrically finite man-
ifold of finite volume. In the upper half-space model, say, assume ∞ is a parabolic
fixed point. Construct the Ford “polyhedron” F with “center” ∞. As we have seen
on page 120, F is invariant under the stabilizer Stab∞ of ∞. Its orbit under the
cosets of Stab∞, is a Voronoi diagram. To obtain the Delaunay triangulation, draw
the geodesics between ∞ and the centers of the polyhedra with share faces with F,
and so on. Show that there results a tessellation of �3 by ideal polyhedra centered
on the interior vertices ζ of F and its orbit. Down below, there is a decomposition of
M(G) into a finite number of ideal polyhedra. For more discussion see [Weeks 1993;
Petronio and Weeks 2000].

3-27. What is the maximum and minimum number of sides that a Dirichlet region
can have for a closed hyperbolic surface of genus g ≥ 0 with b ≥ 0 punctures?

The square once-punctured torus is defined by the property that there are two
geodesics of equal length that cross once. The hexagonal once-punctured torus has the
property that there are three distinct geodesics of equal length that intersect at a point.
Is it true that the hexagonal torus has the longest shortest geodesic in its deformation
space? Construct the corresponding symmetric Dirichlet regions and determine the
generating matrices.

3-28. (V. Markovic) In the ball model, suppose � ⊂ �2 is a simply connected com-
ponent of �(G), for some nonelementary group G. Take the Dirichlet region Pp

centered at a point p∈Dome(�). Then let p approach a point on ∂Dome(�)⊂�(G).
Show that the euclidean diameter of Pp tends to zero. In fact if the euclidean distance
of p from �2 is ε, then the euclidean diameter of Pp is ≤√ε.
3-29. Isomorphisms that determine homeomorphisms [Tukia 1985b]. Suppose that
ϕ : G → H is an isomorphism between geometrically finite, nonelementary groups
without elliptics such that ϕ(G) is parabolic if and only if g ∈ G is so. The problem
is to determine when ϕ is induced by a homeomorphism. Start by showing that there
is a uniquely determined homeomorphism fϕ between the respective limit sets which
induces ϕ. The map fϕ sends the attracting loxodromic fixed point of g ∈ G to the
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attracting fixed point of ϕ(g). There is also need for [Tukia 1985b, Lemma 3.4],
which says there is a quasiisometry F of the convex hull F : C(G) into C(H) which
induces ϕ and with the property that in the hyperbolic distance, d(x, F(C(G))) is
uniformly bounded for x ∈ C(H). This is akin to one of the techniques used for
Mostow’s theorem.

There is a celebrated theorem of Fenchel and Nielsen concerning isomorphisms
ϕ :�→�′ between two fuchsian groups. Namely ϕ is induced by an orientation pre-
serving or reversing homeomorphism �2→�2 if and only if the following property
holds: The axes of loxodromics g, h ∈ � intersect in �2 if and only if the images
ϕ(g), ϕ(h) are also loxodromic and have intersecting axes.

To generalize this we say that a loxodromic g ∈ G and a quasifuchsian subgroup
� ⊂ G intersect provided the fixed points of g lie in �(�), one in each component.
Suppose ϕ :G→ H is an isomorphism between two geometrically finite groups with-
out parabolics or elliptics, and ϕ preserves intersection in the sense that a loxodromic
g ∈G and quasifuchsian �⊂G intersect if and only if ϕ(g) and ϕ(�) intersect. Here
ϕ(�) is necessarily quasifuchsian because fϕ(�(�)) is a topological circle.

Suppose G is geometrically finite but not quasifuchsian. Prove that if � is a
component of �(G) there is a uniquely determined component �′ of �(H) such
that fϕ(∂�) = ∂(�′) and ϕ(Stab�) = Stab�′ . The intersection property comes in to
establish that if σ ⊂ �(G) is a the limit set of a quasifuchsian subgroup of G, then
x, y ∈�(G) \σ lie in different components of �2 \σ if and only if fϕ(x), fϕ(y) are
in different components of �2 \ fϕ(σ ). The bottom line is:

Theorem 3.14.4 [Tukia 1985b, Theorem 4.7]. Suppose ϕ :G→ H is an isomorphism
between nonelementary, geometrically finite groups without elliptics such that ϕ(g)
is parabolic if and only if g ∈ G is so. If �(G) is connected, assume that ϕ preserves
intersections. If �(G) is not connected, certain orientability conditions must be sat-
isfied for quasifuchsian subgroups and rank two parabolics. Then ϕ is induced by a
quasiconformal homeomorphism � of �3 ∪�2.

The orientability condition for a quasifuchsian subgroup H ⊂ G is that the map
fϕ restricted to �(H) can be extended to an orientation preserving map of �2 which
sends attracting fixed points of loxodromics in H to attracting fixed points of their
ϕ-images. For a rank two parabolic subgroup, ϕ needs to be induced by an orientation
preserving map of �2.

3-30. Intersections. If G1,G2 are finitely generated fuchsian groups, prove that the
intersection G1 ∩G2 is also finitely generated.

If H is a finitely generated subgroup of the fuchsian group G and the limit sets are
the same, then H has finite index in G.

Both these results can be found in [Greenberg 1960].
If G1 and G2 are finitely generated subgroups of the not necessarily finitely gen-

erated H with �(H) 
=∅, then

�(G1)∩�(G2)=�(G1 ∩G2).
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This is proved in [Anderson 1996].

3-31. [Greenberg 1977, Theorem 2.5.8] Suppose α : z �→ z + 1 is a generator of a
rank one parabolic subgroup of the finitely generated kleinian group G. Note that for
any g ∈ G, O ∈ �3, the perpendicular bisector of [g(O), αg(O)] is a vertical plane.
Show that the fundamental polyhedron PO lies in a slab {(z = x + iy, t) : a ≤ x ≤
a + 1}. There is a universal horoball at ∞. Suppose further that α has a horodisk
H = {z : y > b} ⊂ �(G). If for the euclidean closure H = PO∩H 
= ∅, show that
H = {z : a ≤ c1 ≤ x ≤ c2 ≤ a + 1} for some c1, c2. From this prove MacMillan’s
theorem that PO∩�(G) has a finite number of sides.

3-32. Earthquakes. This is to introduce Thurston’s theory of earthquakes [1986a].
For this purpose let � be the positive imaginary axis in the upper half-plane model
UHP of �2. Denote the left and right quarter planes determined by � by A and B;
A and B have orientations inherited from �. From the point of view of A, a left
earthquake with fracture line � is a discontinuous map which fixes A pointwise, and
in B is an isometry moving B to the left with respect to A; that is, it moves B in the
positive direction with respect to the positive orientation of ∂A. Therefore in B it has
the form z �→ kz, for k > 1. It is uniquely determined once the displacement along �
is dictated.

If instead we require that B be fixed, the left earthquake along � moves A to the
left from the point of view of a person standing in B. In A it has the form z �→ k−1z.

Next suppose we have a finite lamination. Fix a gap σ as the base of operations.
Suppose μ is a positive transverse measure — that is, to each leaf of the lamination
is assigned a positive number as atomic measure. The earthquake will be the identity
on sigma. A transverse geodesic based in σ will cross a number of leaves. Carry
out a sequence of left earthquakes in sequence along the various leaves, using the
displacement assigned by μ.

Here is a more formal definition. Suppose � ⊂ �2 is a geodesic lamination. A
left earthquake is a possibly discontinuous injective and surjective map E :�2→�2

which is an isometry on each leaf of� and on each complementary component. Given
two gaps and/or leaves X 
=Y , a line � is said to be weakly separating if any path from
a point of X to a point of Y intersects �. Let EX , EY denote the respective isometric
restrictions of E . We require that the comparison isometry E−1

X ◦ EY be loxodromic,
that its axis � weakly separate X and Y , and that it translate to the left, when viewed
from X . This last requirement means that the direction of translation along � agrees
with the orientation induced from X ⊂ �2 \ �. The case that one of X, Y is a line in
the boundary of the other is exceptional in that the comparison map is the identity.

The earthquake maps � to another lamination �′. The inverse of a left earthquake
is a right one.

If � has a finite number of leaves, left earthquakes are constructed as illustrated
above. Thurston proves that these finite earthquakes are dense in all left earthquakes,
in the topology of uniform convergence on compact sets.
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A left earthquake between two Riemann surfaces is an injective, surjective map
which lifts to a left earthquake of �2. In particular � is invariant under the deck
transformations. However if one or more leaves of� project to simple geodesics, lifts
are determined only up to “twists” along the geodesics. To avoid this ambiguity one
can associate the earthquake with the homotopy type of a homeomorphism between
the surfaces. A more common way, is to start with both an invariant lamination in
�2, and an invariant transverse measure (more of this below).

Earthquake Theorem [Thurston 1986a]. Every continuous orientation preserving
map ∂�2→ ∂�2 is the boundary values of a left earthquake E of �2. The lamination
� is uniquely determined. On �, E is uniquely determined except along those leaves
� on which it is discontinuous. For each such �, there is a range of choices of transla-
tions ranging between the limiting values of E on the two sides; all the choices have
the same image in �2.

Suppose Ri=�2/Gi , i=1, 2, are arbitrary Riemann surfaces with possible bound-
ary contours ∂Ri coming from the action of Gi on maximal open intervals of discon-
tinuity on ∂�2. Assume h : R1→ R2 is an (orientation preserving) homeomorphism
which extends to a continuous map ∂R1→ ∂R2. Then the boundary values on ∂�2 of
a lift of h are the boundary values of a left earthquake of �2 which projects back to a
left earthquake E :�1→ R2. Moreover, E has the same uniqueness indicated above.

This is a very general theorem. The second statement (which includes the first)
follows from the first as lifts of h extend to continuous maps of ∂�2. Punctures on
R2 do not necessarily come from punctures on R1.

Associated to any left earthquake is a nonnegative transverse Borel measureμ. Two
earthquakes corresponding to the same (�,μ) have isometric images. The measure
is constructed by a process akin to Riemann integration (see [Epstein and Marden
1987]).

Normally one only works with the restricted class of uniformly (locally) bounded
earthquakes. These are the class of earthquakes whose transverse measures have the
property that for some K <∞, μ(τ) < K for all transverse geodesic segments τ of
unit length.

The boundary values on ∂�2 of uniformly locally bounded earthquakes are qua-
sisymmetric (that is, 1-quasiconformal) homeomorphisms, which means their bound-
ary values have quasiconformal extensions to �2 (and which are equivariant if (�,μ)
is invariant under deck transformations). In the other direction, the boundary values
of a quasiconformal mapping �2 → �2 (say the lift of a map between surfaces)
are also the boundary values of a uniformly bounded left earthquake as described
in the Earthquake Theorem. In particular this is true for bounded earthquakes and
quasiconformal mappings between Riemann surfaces of finite area. For the details,
consult [Thurston 1986a].

Given (�,μ), an earthquake flow is the earthquake Et associated with (�, tμ)with
0 ≤ t . For an application of this technique to the solution of the Nielsen Realization
Problem, see [Kerckhoff 1983].
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In summary, in the dictionary entry relating geometry to complex analysis, earth-
quakes are the analogue of quasiconformal mappings used to deform conformal struc-
ture.

3-33. The Nielsen kernel. Suppose G is a fuchsian group in the unit disk � with
R = �/G the interior of a compact, bordered Riemann surface R of genus g ≥ 0,
n≥ 0 punctures and m ≥ 1 boundary contours. There is a set C1, . . . ,Cm of mutually
disjoint simple geodesics such that Ci bounds an annular region Ai with the boundary
contour γi . Let X1 denote the convex core of R. This is constructed as follows. Let
Ii be a component over γi ⊂ ∂�; it is stabilized by an element ai ∈ G. The axis C∗i
of ai ends at the endpoints of Ii and lies over Ci . Cut out of � the region bounded
by C∗i

⋃
Ii . When this is done for all boundary contours and their lifts to �, what is

left is the lift of X1.
The convex core X1 is itself a compact bordered Riemann surface with the same

genus, number of punctures, and number of boundary contours as R. Introduce on
the interior of X1 its complete hyperbolic metric. Repeat the process; that is, let X2

be the convex core of X1. There results a nested sequence of subsets of �:

�⊃ X1 ⊃ X2 ⊃ · · · .
Set Z =⋂∞

i=1 Xi . Bers first raised the problem: Describe Z . Following the insight
provided by the special cases in [Earle 1993], Jianguo Cao [1994] proved that Z has
no interior, and that Z is the Hausdorff limit of souls S(Xi ).

Cao defines the soul S(R) of R (or of any bordered surface) to be the set of points
z ∈ R such that there are at least two distinct shortest geodesic segments from z to⋃

Ci . It contains
⋃

Ci . If there are no punctures, the soul is compact.
The soul is a union of geodesic arcs and is a deformation retract of R.
Explore this situation with the goal of gaining more precise information about Z ,

and finding a purely geometric proof of Cao’s results. What about 3D?

3-34. Extension from �(G) to �2. Suppose as in Section 3.7.2 that F2 is a qua-
siconformal map of �2, with F2 : �(G) → �(H), that induces the isomorphism
ϕ : G → H between geometrically finite groups. Suppose that F : �(G)→ �(H)
is quasiconformal, homotopic on �(G) to the restriction of F2, and also induces ϕ.
Using the density of the loxodromic fixed points in �(G) show that

Lemma 3.14.5. F has a continuous extension to a homeomorphism of �2 that satisfies
F(ζ )= F2(ζ ) for all ζ ∈�(G).

Set H = F2
−1 ◦ F : �(G) → �(G). The map H is homotopic to the identity

on each component of �(G), induces the identity automorphism of G, and is equal
to the identity on �(G). Let γz be a shortest geodesic from z to H(z). There is a
constant C1 < ∞ such that Lh(z) = dh(z, H(z)) < C1 for all z ∈ �(G) (lift from
the quotient). Here dh( · , · ) denotes the shortest hyperbolic distance on �(G). From
this it follows if z→ ζ ∈�(G) in the spherical metric, then lim γz = ζ uniformly on
γz . That is, there exists a constant C2 such that d(γz,�(G)) < C2 for all z ∈ �(G),
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where d( · , · ) denotes spherical distance. Hence d(w,�(G)) <C2d(z,�(G)) for all
w ∈ γz and some C2 <∞. (Actually we only need these estimates for z ∈�(G) near
a point ζ ∈�(G).)

I am grateful to Vlad Markovic for allowing inclusion of his unpublished result as
follows.

Proposition 3.14.6 (Markovic). H is quasiconformal on �2; hence F itself is the
restriction to �(G) of an equivariant quasiconformal map of �2.

Proof. Markovic’s proof is as follows. Set X = �(G). From [Pommerenke 1984]
we know that X has the property of uniform perfectness, see Exercise 1-30. That is,
for the hyperbolic metric ρ(w)|dw| in each component of �(G) and some constant
C3 > 0,

C3|dw|
d(w, X)

< ρ(w)|dw|< 2|dw|
d(w, X)

.

Upon integrating over a shortest geodesic γz of hyperbolic length Lh(z) from z to
H(z), we find that C3d(z, H(z) ≤ Lh(z) supw∈γz

d(w, X) < LhC2d(z, X). In other
terms, d(z, H(z))<C4d(z, ζ ) for any ζ ∈ X . Now d(H(z), ζ )≤d(H(z), z)+d(z, ζ ).
Consequently for some constant C5, d(H(z), ζ ) < C5d(z, ζ ). The same holds if we
replace z by H(z). We conclude that

d(H(z), ζ )

C5
≤ d(z, ζ )≤ C5d(H(z), ζ ).

So the ratio of distances to ζ is uniformly bounded between 0 and ∞ as z → ζ .
We are now in position to apply the geometric definition §2.8 of quasiconformality
to show that H(ζ ) is quasiconformal at ζ . Since ζ was arbitrarily chosen this proves
H is quasiconformal on �(G). �

3-35. Intersection number estimates [Fathi et al. 1979, pp. 58–59]. Let R0 denote the
result of removing the universal horodisks from R. Prove:

• There is a constant C > 0 such that for any two simple closed geodesics α, β
their intersection number satisfies

ι(α, β) < C Len(α)Len(β).

• Let {τi } be a finite system of simple closed geodesics and simple arcs that cut
R0 into simply connected regions. There exists a constant c = c(∪τi ) such that
for any simple closed geodesic α in R0,∑

ι(α, τi )≥ c Len(α).

Hints: For the first, cover α and β by ε-disks thereby dividing them into short
geodesic segments. Each segment intersects another at most at one point. Show that

ι(α, β) < (
Len(α)

ε
+ 1)(

Len(β)

ε
+ 1).
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For the second, let c = 1/L where L is the length of the longest simple arc in the
simply connected regions.

3-36. Interval exchange transformations [Masur 1982; Bonahon 2001]. Let I ⊂� be
the interval (0,1]. Write I± for its upper and lower edges. Suppose {I+i } is a partition
of I+ into n half-closed intervals {[ai−1, ai )} of various lengths, with a0 = 0, an = 1.
Take the same sequence of intervals on I− but then permute them in any way. Label
the result by the notation {I−i }where I−i has the same length as I+i . The corresponding
internal exchange transformation J is the piecewise euclidean isometry that maps I+i
onto I−i , 1 ≤ i ≤ n. The map is one-to-one, except two-to-one at the endpoints of
the closures of the intervals. We must chose the permutation so the interval exchange
does not reduce to an exchange of fewer intervals, that is, so that J is not continuous
at any interval endpoint.

There is a naturally associated closed Riemann surface R: View the complement
of I in �2 as a polygon with n-pairs of edges I±i . Identify each pair of edges by
the direction preserving isometry; akin to what we did by “rolling up” fundamental
regions by their edge identifications. The resulting surface will have singular points
coming from the endpoints of the intervals. But there will be a natural complex
structure at these points as well which maps the local neighborhoods into �.

The vertical euclidean lines give rise to a measured foliation of R. Namely, except
for a countable number of points, given x ∈ I the forward and backward orbit J±n(x)
will not hit an interval endpoint. These generic points will lie on a leaf of a foliation
of R by vertical lines. The differential dx is the local vertical measure of the foliation.

The foliation is turned into a measured lamination by showing in the universal
cover, the leaves have endpoints on ∂�2 and replacing each leaf by a geodesic.

By adjusting the interval lengths one can obtain minimal laminations, and uniquely
ergodic ones as well. See [Masur 1982] for more details and further references.

3-37. Horocyclic foliations. Assume we have a closed surface S, a hyperbolic metric
g on S, and a maximal geodesic lamination � such that all complementary regions
are ideal triangles. From this data we will construct a measure foliation called a
horocyclic foliation.

First foliate each ideal triangle as follows. Model the triangle by an ideal triangle in
the disk model � whose sides have equal euclidean lengths. Foliate a neighborhood
of each vertex vi by a family of arcs contained in concentric circles with center at vi .
Do this symmetrically about all three vertices. We are left with a small central curved
triangle that is not foliated.

Using our model example, foliate S \�. The leaves joint together to form a family
of mutually disjoint open arcs of infinite length in S, each orthogonal to the leaves
of �. Collapse the finitely many central triangles to points. This results in a singular
foliation of a new surface S0 equivalent to S with singular points at the collapsed
triangles. Replace S by S0.
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The hyperbolic metric g determines a transverse measure μg by measuring vertical
distances along the leaves of �. Thurston [1998] proved that the map g �→ (�g, μg)

is a homeomorphism of Teich(S) onto its image in measure foliation space.
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Algebraic and geometric convergence

The focus of this chapter is on sequences of kleinian groups, typically sequences
that are becoming degenerate in some way. For these, it is necessary to carefully
distinguish between convergence of groups and convergence of quotient manifolds.
The former has to do with sequences of groups whose generators converge, the latter
with sequences of groups whose fundamental polyhedra converge. Our work in this
chapter will enable us to describe the set of volumes of finite volume hyperbolic 3-
manifolds. In preparation for this discussion, we will introduce the operation called
Dehn surgery.

4.1 Algebraic convergence

In this section we will prove the two theorems which provide the basis for working
with sequences of groups.

Let � be an abstract group and {ϕn : �→ Gn} be a sequence of homomorphisms
(also called representations) {ϕn} of � to groups Gn of Möbius transformations. Sup-
pose for each γ ∈ �, limn→∞ ϕn(γ )= ϕ(γ ) exists as a Möbius transformation. Then
the sequence {ϕn} is said to converge algebraically and its algebraic limit is the group
G∞ = {ϕ(γ ) : γ ∈ �}; ϕ : �→ G∞ is a homomorphism. When we say a sequence
of groups converges algebraically, we are assuming that behind the statement is a
sequence of homomorphisms generating the sequence.

In particular, a sequence of r -generator groups Gn = 〈A1,n A2,n . . . Ar,n〉 is said
to converge algebraically if Ak = limn→∞ Ak,n exists as a Möbius transformation,
1 ≤ k ≤ r . Its algebraic limit is the group G = 〈A1, A2, . . . Ar 〉. To make this
terminology consistent with that used above, refer to the free group Fr on r -generators
and express Gn as the sequence of representations ϕn : Fr → Gn determined by
sending the k-th generator of Fr to Ak,n .

If the sequence {Gn} consists of elementary groups, the limit may or may not be
discrete. However in most interesting cases, the sequence consists of nonelementary
groups. For nonelementary groups, the convergence is controlled as spelled out by
the following fundamental results.

187



188 Algebraic and geometric convergence

Theorem 4.1.1 [Jørgensen 1976; Jørgensen and Klein 1982]. Let {Gn} be a sequence
of r-generator nonelementary kleinian groups converging algebraically to the group
G. Then G is also a nonelementary kleinian group, and the map Ak→ Ak,n , 1≤ k≤r ,
determines a homomorphism φn : G→ Gn for all large indices n.

In general φn will not be an isomorphism. For example, a sequence of elliptic
transformations {Ak,n}may converge to a parabolic transformation Ak . In the opposite
direction, Theorem 4.1.1 implies that if some Ak is elliptic of order r , then so is Ak,n

for all large n.
In contrast to Theorem 4.1.1, in applications we frequently work with isomor-

phisms from a fixed group:

Theorem 4.1.2 [Jørgensen 1976]. Suppose G is a nonelementary kleinian group and
{θn : G→ Gn} is a sequence of isomorphisms onto kleinian groups Gn . Assume that
for each element g ∈ G, limn→∞ θn(g) = θ(g) exists as a Möbius transformation.
Then G∞ = {θ(g) : g ∈ G} is a nonelementary kleinian group and θ : G→ G∞ is an
isomorphism.

In Theorem 4.1.2, we do not need to require that G be finitely generated.
These two theorems are consequences of Jørgensen’s inequality.

Proof of Theorem 4.1.2. First we will show θ : G → θ(G) is an isomorphism. If
it is not, θ(g) is the identity for some g 
= id ∈ G. Since θn is an isomorphism, if
g ∈ G has finite order, θn(g) and in the limit θ(g) must have exactly the same order.
Therefore if θ(g) = id, g must have infinite order. Since G is not elementary, there
is an element h ∈ G also of infinite order but without a common fixed point with
g. Each group 〈θn(g), θn(h)〉 is also nonelementary, since a nonelementary discrete
group cannot be isomorphic to an elementary discrete group. But then we are in
violation of Jørgensen’s inequality (2.1) for all large n.

Next we will show that θ(G) is discrete. If not, there is a sequence {gk 
= id ∈ G}
such that limk→∞ θ(gk)= id. There is a sequence n=n(k) so that limk→∞ θn(gk)= id.
We may assume that either all gk lie in the same cyclic subgroup or else their fixed
points are mutually disjoint. In either case we can find an element h ∈ G of infinite
order whose fixed points are distinct from those of all but a finite number of the
elements gk . The sequence of nonelementary groups 〈θn(h), θn(gk)〉 for large k is in
violation of Jørgensen’s inequality.

Finally we have to show that θ(G) is nonelementary. That is now easy because an
elementary discrete group is a finite extension of an abelian group. �

Proof of Theorem 4.1.1. We start with a sequence of lemmas:

Lemma 4.1.3. If each of the four Möbius transformations A, B, AB, AB A−1 B−1 is
elliptic or the identity, then they have a common fixed point in �3.

Proof. If A and B commute, then according to Lemma 1.5.2, they either have the
same axes, or each is of order two and their axes are orthogonal at a common point



4.1 Algebraic convergence 189

of intersection. In either case the conclusion is obvious. So assume they do not
commute. Find U so that the conjugates U AU−1,U BU−1 are such that the former
has fixed points 0,∞. Then conjugate both by V = (√c

0
0

1/
√

c

)
, where c is the lower

left entry of U BU−1. Rename the results by A, B so as to end up with the following:

A =
(

eiθ 0
0 e−iθ

)
, B =

(
a b
1 d

)
, 2θ 
≡ 0, ad − b = 1.

Now tr(B) = a + d = r1 and tr(AB) = eiθa + e−iθd = r2 are real while e2iθ 
= 1.
Solving the two equations for a and d we find that a = d. Since B is elliptic, its trace
satisfies−2< tr(B)<2. Hence the fixed points of B, namely 1

2

(
a−d±√tr2(B)− 4

)
,

are purely imaginary. Further the product of the fixed points is 1− ad =−b.
Next we find for the commutator that tr(AB A−1 B−1)− 2 = 4b sin2 θ . Since this

is elliptic as well, we must have b < 0. Since the product of the fixed points of B is
positive, they lie on opposite sides of z = 0. That is, in the upper half-space model of
�3, the axes of A and B intersect. The point of intersection is fixed by both, and by
the group they generate. �

Lemma 4.1.4. Suppose that A, B are elliptic and that their axes intersect properly in
�3. Then the plane P containing their axes does not contain the axis of AB.

Proof. [Gallo et al. 2000, Lemma 3.4.3] Fix a point x on the axis of the elliptic AB
which does not lie on the axis of B. Set y = B(x) so that A(y) = x . Let P ′ denote
the plane which is the perpendicular bisector of the segment [x, y] so that x and y are
equidistant from P ′ in the hyperbolic metric. But x and y are also equidistant from
each point on the axis of B, since B is a rotation about its axis. All points equidistant
from x and y lie in P ′ so that the axis of B lies in P ′. But x and y are also equidistant
from the axis of A so that lies in P ′ as well. Therefore P ′ = P . But x , which lies in
the axis of AB, does not lie in P ′. �

We will digress from the proof of Theorem 4.1.1 to draw the following important
corollary:

Corollary 4.1.5. A group G, discrete or not, composed only of elliptic elements either
has a common axis or it has a unique common fixed point in �3.

Proof. Suppose A, B ∈ G have distinct axes �A, �B . Lemma 4.1.3 shows that they
intersect in a point x ∈ �3. Let P be the plane they span. Consider a third element
C ∈ G with axis �C distinct from �A, �B . If x /∈ �C , then �C ⊂ P . So all other axes
from G either pass through x or lie in P . On the other hand by Lemma 4.1.4, the
axis �AB of AB, which intersects �A at x , does not lie in P . So the plane P ′ spanned
by �A, �AB does not coincide with P . But repetition of our argument shows that �C

lies in P ′ as well, a contradiction. We have shown that either all elements of G have
the same axis, or the set of axes of elements of G have a single common point of
intersection in �3. �
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Lemma 4.1.6. If 〈A, B〉 is nonelementary, then at most one of the three elements
A, B, AB is elliptic of order two.

Proof. An element of order two is conjugate to z �→−z whose axis in the upper half-
space model is the half-line rising from z = 0. If both A and B are elliptic of order
two and their axes do not coincide, there is a unique common perpendicular line � to
the two axes. Since A and B are rotations by π about their axes, each maps � onto
itself by rotating it by π about the crossing point with its axis. The cyclic subgroup
〈AB〉 which maps � onto itself without reversing direction has index two. The bottom
line is that the group 〈A, B〉 is elementary, a contradiction. �

Lemma 4.1.7. Suppose A1, . . . , Ar generate an infinite, discrete group G. The set

{Ai , Ai A j , Ai A j Ak, (Ai A j )Ak(Ai A j )
−1 A−1

k : i, j, k = 1, . . . , r}
contains an element of infinite order.

Proof. The assertion is true for r = 1. For r ≥ 2, assume the assertion is false so
that all the listed elements have finite order. We will show that this implies they have
a common fixed point in �3. This in turn will imply that G is a finite group, in
contradiction to the hypothesis.

Use our current hypothesis and apply Lemma 4.1.3 to A= Ai A j , B = Ai . We see
that Ai A j , Ai have a common fixed point x in �3 and therefore A j fixes x as well.
Consequently the axes of the generators {Ai } pairwise intersect.

Choose a point x ∈ �3 at which a maximal number of generator axes intersect,
say the axes of A1, . . . , Am , 2 ≤ m ≤ r . If m = r we are finished. If m < r , then
the axis � of Am+1 does not pass through the common point x of its predecessors.
We may assume that the axes of A1 and A2 meet � at different points. Let P be the
plane spanned by the axes of A1, A2; necessarily P contains x and �. According to
Lemma 4.1.4, the axis of A1 A2, which goes through x , does not lie in P . So the axis
of A1 A2 is disjoint from �, in contradiction to Lemma 4.1.3. �

Incidentally we have confirmed the following:

Corollary 4.1.8. A discrete group in which every element is elliptic is a finite group.

Lemma 4.1.9. Suppose that A1, . . . , Ar generate a nonelementary, discrete group G
and that g ∈ G is loxodromic or parabolic. Then Hi = 〈Ai , g〉 is nonelementary for
at least one index i .

Proof. Suppose to the contrary that for each index, Hi is elementary. If g is loxo-
dromic, each Ai must fix or interchange the fixed points of g. Thus G itself must be
elementary since it fixes the set of two fixed points of g. If g is parabolic, each Ai

fixes the fixed point of g and again G is elementary. �

Lemma 4.1.10. Suppose that A = lim An , B = lim Bn for two sequences of Möbius
transformations where each group Gn = 〈An, Bn〉 is discrete. Then:

(a) If Gn is nonelementary for all indices, A 
= id.
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(b) If Gn is nonelementary for all indices and A is elliptic, its order is finite.
(c) If neither A nor B has order two, then A and B have a common fixed point on

�2 if and only if An and Bn also do so for all large indices.

Proof. We will first prove part (c). The hypothesis implies that for all large n, An, Bn

are not elliptic of order two. First assume that An and Bn have a common fixed point
on �2 for all large indices. The trace of their commutator is +2 by Lemma 1.5.1.
Thus by continuity the commutator of A and B also has trace+2 and therefore A and
B have a common fixed point as well.

Conversely, suppose A and B have a common fixed point so that the trace of their
commutator K = AB A−1 B−1 is +2. Also K = lim Kn = lim An Bn A−1

n B−1
n . For all

large indices, either An and Bn have a common fixed point or Kn is not parabolic,
since the trace 
= −2. If the former case occurs we are finished. So assume that for
all large n, Kn is not parabolic.

Since A, B, K all share a fixed point,

tr2(K )− 4= tr(K AK−1 A−1)− 2= tr(K BK−1 B−1)− 2= 0.

For all large indices then,∣∣tr2(Kn)− 4
∣∣+ ∣∣tr(Kn An K−1

n A−1
n )− 2

∣∣< 1,∣∣tr2(Kn)− 4
∣∣+ ∣∣tr(Kn Bn K−1

n B−1
n )− 2

∣∣< 1.

Since Kn is not parabolic and An and Bn are not of order two, according to Theo-
rem 2.1(i), Gn is cyclic or a finite abelian extension of a cyclic group. Now Kn has
two fixed points and neither An nor Bn exchange them. The remaining possibility is
that An and Bn share the fixed points of Kn . This completes the proof of (c).

Part (a) is a direct consequence of Jørgensen’s inequality. To prove (b), assume
A is elliptic. If A is elliptic of infinite order then for some q, Aq is close to id. If
Aq

n 
= id, it is elliptic or loxodromic. For some q and all large indices,∣∣tr2(Aq
n)− 4

∣∣+ ∣∣tr(Aq
n Bn A−q

n B−1
n )− 2

∣∣< 1.

Either part (i) or (ii) of Theorem 2.1 applies. If it is (i), then Gn is elementary. If it
is (ii), then Bn is elliptic of order two and interchanges the fixed points of Aq

n , and
hence of An . Therefore 〈An, Bn〉 is elementary, a contradiction. �

We can now continue with the proof of Theorem 4.1.1. The hardest part is to prove
that G is not elementary. The case r ≥ 3 can be reduced to the case r = 2. For if
r ≥ 3, according to Lemma 4.1.7, there exists a loxodromic or parabolic gn ∈ Gn

whose length as a word in the generators {Ai,n}, 1 ≤ i ≤ r , is uniformly bounded in
n. Applying Lemma 4.1.9, for each n there is a nonelementary subgroup Hn of Gn

generated by gn and some generator Ai,n . Since the word length of gn is uniformly
bounded terms of the given generators, a subsequence of the two generator groups
Hn converges algebraically to a subgroup H of G. If H is nonelementary, so is G.

So we may assume that r = 2 and Gn = 〈A1,n, A2,n〉 converges algebraically to
G = 〈A1, A2〉. In view of Lemma 4.1.6 after rearranging some more if necessary,
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we may assume that for all n, neither A1,n nor A2,n has order two. Then neither A1

or A2 can have order two, for if say A2
1 = id, replace Gn by 〈A2

1,n, A2,n〉 to get a
contradiction to Lemma 4.1.10(a).

Since Gn is nonelementary, A1,n and A2,n have distinct fixed points. By Lemma
4.1.10(c), A1 and A2 have distinct fixed points as well.

Among the four elements A1, A2, A1 A2, A1 A2 A−1
1 A−1

2 of G, there is an element
X of infinite order. Otherwise these elements would be elliptic of finite order, and
the same would hold for the corresponding elements of Gn for large indices. But by
Lemma 4.1.3, Gn would be a finite group. By Lemma 4.1.10(b), X cannot be elliptic.

If X is parabolic, then at least one of the parabolic elements A1 X A−1
1 , A2 X A−1

2
has no common fixed point with X . For otherwise A1 and A2 have a common fixed
point. This makes G nonelementary.

If X is loxodromic, we claim that there exists Y ∈G such that X and Y XY−1 have
no fixed points in common.

To establish this claim, we will first investigate what happens if for Y ∈ G, X and
Y XY−1 do have a common fixed point. Applying again Lemma 4.1.10(c), we see
that the corresponding elements in Gn also have a common fixed point, for all large
indices. These approximants are loxodromic. Since Gn is discrete, two loxodromic
elements cannot have exactly one fixed point in common by Lemma 2.3.1(ii),(iii).
Therefore X and Y XY−1 have both fixed points in common. Unless Y has order
two and interchanges the fixed points of X , X and Y have the same fixed points too.
Consequently by choosing Y as either A1 or A2 we obtain the desired result that X
and Y XY−1 have no fixed points in common. We conclude that G is not elementary.

Now return to the hypothesis of Theorem 4.1.1. We are given a sequence Gn =
〈A1,n, . . . , Ar,n〉 such that limn→∞ Ak,n = Ak with G = 〈A1, . . . , Ar 〉. We will use
the correspondence φ : G→ Gn generated by φn : Ak → Ak,n .

We are ready to prove that G is discrete. Suppose otherwise. Then there exists a
sequence of elements Bk ∈ G with lim Bk = id. We may assume that no Bn has order
two. Since G is nonelementary, according to Exercise 2-1 there are two loxodromic
elements g1, g2 ∈ G without a common fixed point. By Lemma 4.1.10(c), gi and
Bk have a common fixed point if and only if φn(gi ) and φn(Bk) also do, for large n.
Since Gn is discrete, this can occur only if the elements have the same fixed points,
for neither is of order two. In this case gi and Bk also have the same fixed points.
The bottom line is that we can pick an infinite subsequence so that g1, say, has no
fixed point in common with {Bm}. Likewise φn(g1) and φn(Bm) have no fixed points
in common so generate a nonelementary subgroup. Now {〈φn(g1), φn(Bm)〉} violates
Jørgensen’s inequality. Hence G is discrete.

The last step is to show that the correspondence φn : Ak→ Ak,n can be extended to
a homomorphism φn :G = 〈A1, . . . , Ar 〉→Gn . A necessary and sufficient condition
that extension of φn to a homomorphism G→Gn is possible is that for each “relation”
R=∏k Amk

ik
= id in G also φn(R)=∏k Amk

ik ,n
= id. First of all, by Theorem 2.5.3, there

are only a finite number of relations in G: more precisely, there are a finite number
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of relations in G such that every other relation is a consequence of those. For if to the
contrary φn(R) 
= id, application of Lemma 4.1.10(a) results in a contradiction. �

There is another interesting corollary. Denote the space of ordered r -tuples of
Möbius transformations which generate nonelementary groups by Vr . Let Dr be the
subset consisting of discrete groups.

Corollary 4.1.11 [Jørgensen 1976]. Each component of Dr consists of mutually iso-
morphic groups.

Proof. Choose a component D and a group G ∈ D. Let X denote the set of all
homomorphic images φ of G in D. By Theorem 4.1.1, X is relatively open in D. It
is also closed in D. Therefore X = D. The same argument holds upon replacing G
by any G1 ∈ D. We conclude that G and G1 are isomorphic. See also Section 5.1. �

4.2 Geometric convergence

Algebraic convergence deals not with geometry but with convergence of group gener-
ators. It is possible that in a sequence of groups {Gn} there are words Wn ∈Gn in the
generators, whose length increases without bound as n→∞, yet which converge to
a Möbius transformation. Such phenomena are not detected by focusing on conver-
gence of generators. Instead the phenomenon impacts the behavior of the sequence
of quotient manifolds. From the point of view of a manifold, the generators of the
fundamental group are rather arbitrarily chosen loops. What is fundamental are the
geometrical quantities that determine its “shape”. If we have a sequence of manifolds,
we need a framework for discussing convergence to a limiting manifold.

If {Gn} is a sequence of groups of Möbius transformations, define its envelope as

Env{Gn} = {g ∈ PSL(2,�) : g = lim gn, gn ∈ Gn}.
It follows that Env{Gn} is itself a group.

Lemma 4.2.1. If each Gn is discrete, then either H = Env{Gn} is elementary, or it is
a nonelementary, discrete group.

Proof. According to Corollary 2.2.1 a group is discrete if and only if every two
generator subgroup is discrete. Assume that H is not elementary. Then given an
element h1 of infinite order there is another h2 without a common fixed point. If the
nonelementary subgroup 〈h1, h2〉 were not discrete, we could find as in the final part
of the proof of Theorem 4.1.1 that h′1, h′2 ∈ 〈h1, h2〉 with h′2 nearly the identity such
that 〈h′1, h′2〉 is nonelementary yet in violation of Jørgensen’s inequality (2.1). Now
h′1, h′2 are each limits of elements in Gn . For large n, the pair of approximants in Gn

will generate a nonelementary subgroup of Gn yet violate Jørgensen’s inequality, a
contradiction. This proves that any two generator nonelementary subgroup of H is
discrete. �
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We say that the sequence of groups {Gn} converges geometrically (to Env{Gn})
if and only if for every subsequence {Gn j } of {Gn}, Env{Gn j } =Env{Gn}. In other
words, {Gn} converges geometrically to H if and only if (i) each h ∈ H is the limit
h= lim gn, gn ∈Gn , and (ii) whenever lim gn j = g exists for a subsequence {n j } then
g ∈ H . Necessarily H = Env{Gn}.

To justify use of the term “geometric convergence”, and to give a precise meaning
to the expression “convergent sequence of hyperbolic manifolds” we introduce the
auxiliary concept of polyhedral convergence.

4.3 Polyhedral convergence

The sequence of discrete groups {Gn} converges polyhedrally to the group H if H is
discrete and for some point O∈�3, the sequence of Dirichlet fundamental polyhedra
{P(Gn)} centered at O converge to P(H) for H , also centered at O, uniformly on
compact subsets of �3.

We need to be more precise about the criterion for polyhedral convergence. Given
r > 0, set

Br = {�x ∈ �3 : d(O, �x) < r},
where d(·, ·) denotes hyperbolic distance. We will work with the truncated polyhedra
Pn,r =P(Gn)∩ Br and Pr =P(H)∩ Br . A truncated polyhedron Pr has the property
that its faces, that is the intersection with Br of the faces of P, are arranged in pairs,
paired by the corresponding face pairing transformations of P. Thus the projection
of Pr into the quotient 3-manifold is a relatively compact submanifold, bounded by
the projection of P∩ ∂Br (Proposition 3.5.1).

The criterion for polyhedral convergence is as follows. Given any r sufficiently
large, there exists N = N (r) > 0 such that (i) to each face pairing transformation
h of Pr , there corresponds a face pairing transformation gn of Pn,r for all n ≥ N
such that limn→∞ gn = h, and (ii) if gn is a face pairing transformation of Pn,r then
the limit h of any convergent subsequence of {gn} is a face, edge or vertex pairing
transformation of Pr ; in particular h 
= id. In short, each pair of faces of Pr is the
limit of a pair of faces of {Pn,r }, and each convergent subsequence of a sequence of
face pairs of {Pn,r }, converges to a pair of faces, edges, or vertices of Pr . We remark
that it is possible that Pn,r = Br for all large n. In this case the sequence of polyhedra
converges to �3 itself.

If a given sequence of discrete groups is to converge polyhedrally, one must be
allowed to conjugate the groups if necessary to find a point O∈�3 that can effectively
serve as center for all the polyhedra. We should be aware of the fact that a group can
be conjugated so that for fixed O, PO collapses. Namely conjugating (az+b)/(cz+d)
by z �→ kz results in k−1(kaz+ b)/(kcz+ d). Its limit as k→∞ is 0, if c 
= 0.

The criterion needed is that there be a small ball about O that lies in the interior
of the polyhedron for every group in the sequence. This is described in the following
lemma.
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Lemma 4.3.1. To any infinite sequence of discrete groups {Gn} corresponds a se-
quence of conjugates {AnGn An

−1} which contains a polyhedrally convergent subse-
quence.

Proof. Given O ∈�3, for each n choose a Möbius transformation An such that G ′n =
AnGn A−1

n has the following property: Each truncated polyhedron P′n,r = P(G ′n)r
centered at O contains the ball Bδ centered at O for r > δ. Here δ > 0 is a fixed
number given by the universal ball property (Proposition 3.3.4). Thus the sequence
of polyhedra centered at O of the conjugate groups cannot collapse to a convex object
without interior. . . which is certainly possible in general.

We claim that for fixed r >δ the number of faces of the truncated polyhedra {P′n,r }
is uniformly bounded as n→∞. The reason for this is that there is an upper bound on
the number of mutually disjoint balls of hyperbolic radius δ that fit inside B3r . There-
fore there is an upper bound, independent of n, on the number of points in the orbit
G ′n(O) that lie in B3r . A face pairing transformation of P′n,r satisfies d(O, gn(O))<2r ,
and the segment [O, gn(O)] pierces a face. Hence there is also a uniform bound M
independent of n on the number of faces.

Consequently given s > 0, there exists a large r = r(s) such that the orbit of P′n,r
under its face pairing transformations covers the ball Bs for all n. This is because there
is a uniform bound on the length of words W in the face pairing transformations of
P(G ′n), and the length of their segments [O,W (O)], required for the images of P(G ′n)
to cover Bs . For sufficiently large r all of the elements W are also words in the face
pairing transformations of the truncated polyhedra. The number of polyhedra meeting
Bs is uniformly bounded in n by some N <∞.

For fixed r and each n make a list of the face pairing transformation {gi,n} of P′n,r ,
1 ≤ i ≤ M (by repetition we may assume there are M faces for each n). Take a
subsequence of {n} and relabel so that for each i , hi = limn→∞ gi,n exists; hi 
= id
because d(O, gi,n(O)) > 2δ. Correspondingly construct the polyhedron

P∗r = {�x ∈ �3 : d(O, �x)≤ d(�x, hi (O)), 1≤ i ≤ M}.

Thus Bδ ⊂ P∗r ∩ Br = lim P′n,r .
Now take a sequence r = rk → ∞ and repeat the process for each rk . We get

a nested sequence of polyhedra Bδ ⊂ P∗r1
⊂ P∗r2

⊂ · · · . Set P∞ = ⋃∞
i=1 P∗ri

. The
successive sets of side pairing transformations of the P∗rk

are nested as well. Let {hi }
denote the union. Let H denote the group they generate.

We claim that H is discrete, and P∞ = PO(H). Possibly H = {id} and P∞ = �3,
the case that the groups {Gn

′} blow up completely.
First we claim that the orbit of P∞ under H covers �3. As we have seen, given

s > 0 there exists r = r(s) such that the G ′n-orbit of P′n,r covers the ball Bs for all
n. For each n we can make a list of N transformations W1,n,W2,n, . . . ,WN ,n such
that

⋃N
i=1 Wi,n(P

′
n,r ) ⊃ Bs . Each Wi,n is a word in the face pairing transformations

of P′n,r , and the lengths are uniformly bounded as a function of s. Passing to a subse-
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quence if necessary, each Wi = limn→∞Wi,n exists; necessarily Wi ∈ H . Therefore
(∪i Wi (P∞))∩ Br covers Bs . Since s is arbitrarily chosen, our claim is established.

Next we claim that no two points in the interior of P∞ are equivalent under H .
For suppose that W (x) = y for x, y ∈ Int(P∞) and W ∈ H . The element W is a
word in the generators {hi }. For each n, let Wn denote the corresponding word in
the approximants {gi,n} so that Wn ∈ G ′n and lim Wn = W , lim Wn(x) = y. Choose
r > max(d(O, x), d(O, y)). Then for all large n, x and Wn(x) lie in Int(P′n,r ). This
is impossible unless Wn =W = id.

We conclude that P∞ is a fundamental polyhedron for H , and that H in turn is
necessarily discrete. �

We can now justify our use of the term “geometric convergence”. But first note
that it is possible for a sequence of nonelementary discrete groups to converge geo-
metrically and polyhedrally to an elementary group: here are two examples:{〈

z �→ −3z−1
z− 3

, z �→ z+ n
〉}
,

{〈
z �→ − 1

n2
3n2z−1
n2z− 3

, z �→ z+ 1
n

〉}
.

This is why in the following fundamental result we have to explicitly assume that the
groups are nonelementary.

Proposition 4.3.2. A sequence {Gn} of kleinian groups converges geometrically to a
nonelementary kleinian group if and only if it converges polyhedrally to a nonelemen-
tary kleinian group. The geometric and polyhedral limits are the same.

Proof. Suppose first the sequence converges polyhedrally to H . If h ∈ H then h is
a word W in the face pairing transformations of P(H) = P∞. As in the proof of
Lemma 4.3.1, the word is the limit of a sequence of words Wn ∈Gn . Next we have to
show that if for a subsequence h = lim gk , gk ∈ Gk , then h ∈ H . Again we return to
the proof of Lemma 4.3.1. Let s = 2d(O, h(O)), where the polyhedra are centered at
O. We showed that Bs ⊂⋃N

i=1 Wi (P∞∩Br ) where Wi = limk→∞Wi,k and Wi,k ∈Gk .
Therefore h = Wi , for some i , and is the limit as k→∞ of the corresponding word
Wi,k . We conclude that H is the geometric limit.

Conversely, suppose H is the geometric limit of {Gn}. By the universal ball prop-
erty of Proposition 3.3.4, there exists O ∈ �3 such that the h(Bδ) ∩ Bδ = ∅ for all
h 
= id ∈ H . We claim that the same property holds for Gn for all large n. Otherwise
there would be a sequence gn ∈ Gn such that gn(Bδ) ∩ Bδ 
= ∅. A subsequence of
{gn} converges to a Möbius transformation g∞. If g∞ 
= id then it would have to lie in
H , a contradiction. If g∞ = id we will find a contradiction to Jørgensen’s inequality
(2.1). Here we have to use the assumption that H is nonelementary. We can find two
loxodromic transformations h1, h2 ∈ H which have mutually disjoint fixed points
(Exercise 2-1). Each is the limit hi = lim hi,n, hi,n ∈ Gn . For large n at least one of
the hi,n , say h1,n , does not share a fixed point with gn . Now we can apply Jørgensen’s
inequality to 〈gn, h1,n〉. The conclusion is that {Gn} converges polyhedrally. �

We remark that the argument also applies in the following elementary situation. A
sequence of cyclic loxodromic groups converges polyhedrally to a discrete parabolic
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group P if and only if it converges geometrically to P and no sequence of distinct
elements converges to the identity. Here P may be of rank one or rank two. See
Section 4.10.

Since geometric convergence makes no reference to a choice of center O for poly-
hedra, we can now remove any sign of dependence of polyhedral convergence on the
choice of center O.

Corollary 4.3.3. If {Gn} converges polyhedrally to the kleinian group H with one
choice of center O for the polyhedra, it converges polyhedrally to H for any choice of
center (which is not an elliptic fixed point of H ).

4.4 The geometric limit

We will need two lemmas. The first is a corollary of Theorem 4.1.1.

Lemma 4.4.1. Suppose that {Gn} is a sequence of nonelementary kleinian groups
converging algebraically to G. There is no sequence of elements gk ∈ Gk , gk 
= id,
with lim gk = id or with lim gk = g with g elliptic of infinite order.

Proof. Present Gn = 〈A1,n, A2,n, . . .〉, where lim Ak,n = Ak and no two generators
have the same set of fixed points.

Case 1. gn is elliptic for all large indices. For all large n, no generator Ak,n can
share exactly one fixed point with gn . Otherwise Ak,n would have to be parabolic
and the order of gn could not exceed six. Nor is it possible that every generator Ak,n

shares its fixed points with gn or is of order two and interchanges the fixed points of
gn . For then Gn would be elementary. The conclusion is that for some k, 〈gn, Ak,n〉
is nonelementary for all large indices, leading to a violation of Theorem 4.1.1.

Case 2. gn is parabolic for all large indices. At most a finite number of elliptics
can share its fixed point and at least one generator, say A1 does not. This again leads
to a violation of Jørgensen’s inequality.

Case 3. gn is loxodromic for all large indices. At most a bounded number of
elliptics share a fixed point or interchange its fixed points, and at least one generator
does neither. One is led to the usual contradiction. �

Lemma 4.4.2. Suppose the sequence of nonelementary kleinian groups Gn converges
algebraically to G. There exists a point O∈�3 and ε>0 such that, for a subsequence
Gk , no element of Gk has a fixed point in the ball Bε(O) of radius ε about O.

Furthermore, there exists δ < ε such that for all large indices, Tk(Bδ(O)) is disjoint
from Bδ(O), for all Tk 
= id ∈ Gk .

Proof. We begin by showing that given x ∈ �3, there exists ε with the following
property. There exists a point xn ∈ Bε(x) such that any axis of Gn which intersects
Bε(x) passes through xn .

If this assertion were false there would be a sequence εn→0 and rotation axes �n, �
′
n

of En, E ′n ∈ Gn which intersect Bεn (x) but don’t have common point of intersection
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in Bε(x). We may assume there is convergence En→ E, E ′n→ E ′ where E, E ′ both
fix x . Also, their rotation axes converge to lines �, �′ through x . By Lemma 4.4.1
E, E ′ are elliptic of finite order with rotation axes �, �′.

According to Theorem 4.1.1, or the Universal Elementary Property, 〈En, E ′n〉 is
necessarily elementary for all large indices.

Now En, E ′n cannot share a fixed point on �2, for their commutator would then
be parabolic and by Lemma 4.4.1 would remain parabolic in the limit. Yet the limit
would have to fix x .

Nor can En, E ′n both be elliptic of order two with disjoint axes, for En E ′n would
then be loxodromic and the limit, which fixes x , could only be the identity, which is
impossible again by Lemma 4.4.1.

The remaining alternative is that for all large indices, 〈En, E ′n〉 is a finite, noncyclic
group with a common fixed point xn ∈ �3. As a noncyclic finite group, the number
of elements (the order) of 〈En, E ′n〉 is uniformly bounded. Therefore it is isomorphic
to 〈E, E ′〉, and xn→ x .

From our argument we conclude that there exists ε > 0 and xn ∈ Bε(x) such that
any rotation axis of Gn that intersects Bε(x) passes through xn , for all large indices.
Moreover, the finite subgroups Stab(xn) ⊂ Gn are isomorphic to the limit group de-
noted by Stab(x) and lim xn = x .

There are only a finite number of possibilities for Stab(x), unless it is cyclic or a �2

extension of a cyclic group. Find O∈ Bε(x) and ε1<ε such that T Bε1(O)∩Bε1(O)=∅

for all T 
= id ∈ Stab(x). This property will persist for Stab(xn), all large n.
Now consider the second assertion of Lemma 4.4.2. If it were false, corresponding

to a sequence δn→ 0 there would be a sequence Tk 
= id ∈ Gk , k = k(n), with

Tk(Bδn (O))∩ Bδn (O) 
=∅.

Take a convergent subsequence, again labeled {Tk}. Its limit T = lim Tk fixes O but
its approximates have no fixed point in Bδn (O). Therefore T = id, again a violation
of Lemma 4.4.1. �

Theorem 4.4.3 [Jørgensen and Marden 1990]. Suppose the nonelementary kleinian
groups Gn converge algebraically to G. Then there is a geometrically convergent sub-
sequence {Gk}. The limit H of any geometrically convergent subsequence contains
G; consequently M(G) is a covering manifold of M(H).

If the geometric limit H is finitely generated, there is a sequence of homomorphisms
to its approximantsψk :H→Gk , for all large k, such that limψk(h)=h for all h∈H .
In addition if G is finitely generated, then ψk(H)= Gk .

Proof. Set Gn = 〈g1,n, g2,n, . . .〉 and G = 〈g1, g2, . . .〉 with gi = limn→∞ gi,n . Ac-
cording to Lemma 4.4.1 there is no subsequence hk ∈ Gk , hk 
= id, with lim hk = id.
Thus if the groups Gn contain no elliptic elements, about any given point O ∈ �3,
there is a small ball Bε which is contained in every polyhedron P(Gn) centered at O.
In this case we can find a polyhedrally convergent subsequence as in Lemma 4.3.1.
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When the groups Gn contain elliptic elements, Lemma 4.4.2 tells us that the ball
Bε(O), for some O ∈ �3, is such that for a subsequence, no element of Gk has a
fixed point in Bε(O). Then Lemma 4.4.2 tells us more strongly that for some δ < ε,
T Bδ(O)∩ Bδ(O)=∅, for all T 
= id ∈ Gk . So Bδ(O) will lie in the Dirichlet region
for each Gk centered at O.

Thus in all cases there is a subsequence {Gk} that converges polyhedrally to a
group H.

Given a compact subset X ⊂ �3, we claim that there exists r > 0 and N with the
following property: X is covered by the images of the truncated polyhedron P(Gk)r

under all words of length ≤ N in the face pairing transformations of P(Gk)r , for all
large k.

To see why, choose a larger compact set X ′ ⊃ X containing X in its interior. For
large enough r, N , the orbit QN of P(H)r under words of length ≤ N in the face
pairing transformations of P(H)r covers X ′. When k is large, P(Gk)r is close to
P(H)r since the faces of P(Gk)r converge to those of P(H)r . The corresponding
orbit Qk,N is close to QN and covers X .

From this we deduce that G is a subgroup of H as follows. Given g ∈ G, take
X so that O, g(O) lie in its interior. We know g = lim gk, gk ∈ Gk , and for large k,
gk(O) ∈ X . Therefore gk is a word of length ≤ N in the face pairing transformations
of P(Gk)r . In the limit, g ∈ H .

Now assume that H has a finite number of generators {h}. By Theorem 2.5.3, H
is finitely presented. Fix a presentation. Each generator h of H is a word in the
face pairing transformations of P(H) (centered at O). For all sufficiently large k, say
k ≥ k0 = k0(h), designate by ψk(h) that element of Gk which is the same word in the
corresponding face pairing transformations P(Gk). Then limψk(h)= h.

The correspondence h �→ ψk(h) determines a homomorphism H → Gk , for large
k. For if R(h) = id is a relation in H , we have limk→∞ ψk(R(h)) = id, and by
Lemma 4.4.1, ψk(R(h)) = id for k ≥ k1, where k1 > k0 is sufficiently large. Every
relation in H is a consequence of the finite number in our presentation so it is only
these we have to worry about. Therefore our argument shows that ψk determines a
homomorphism as claimed.

If in addition G = 〈g1, . . . , gr 〉 is finitely generated, then for each index we have
gi = lim gi,k , with gi,k ∈ Gk . By Theorem 4.1.1, the correspondence φk : gi → gi,k

determines a homomorphism for all large indices. Each generator gi of G is also
a word Wi in the generators {h} of H . We know that limk→∞ g−1

i,k ψk(Wi ) = id.
Therefore for all large indices k, gi,kψk(Wi )= id, that is gi,k=ψk(Wi ) for all 1≤ i≤r .
So the homomorphism ψk : H → Gk is onto Gk ; it restricts to the homomorphism
φk : G→ Gk given by Theorem 4.1.1. �

There are many examples, in particular examples of fuchsian groups, for which
polyhedral convergence does not imply algebraic convergence. Taking this into ac-
count, we note that the existence of the homomorphism ψk : H → Gk a few lines
above did not actually require that {Gk} have an algebraic limit. Thus:
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Corollary 4.4.4. Suppose the sequence of kleinian groups {Gk} converges polyhe-
drally to a finitely generated kleinian group H . Then there is a homomorphism ψk of
H into Gk for all large k such that limψk(h)= h for all h ∈ H .

The following result of Brock, Bromberg, Evans and Souto is a consequence of
Theorems 4.6.3 and 4.6.2(ii).

Theorem 4.4.5 [Brock et al. 2003; Brock and Souto 2006]. Any algebraic limit of
geometrically finite groups is also the geometric limit of geometrically finite groups.

4.5 Convergence of limit sets and regions of discontinuity

Hausdorff and Carathéodory convergence

In a discussion about convergence of sequences of kleinian groups, it is natural to
ask about concomitant convergence of the regions of discontinuity, or of the limit
sets. The precise definitions are as follows. We begin by introducing the notion of
Hausdorff convergence.

The Hausdorff distance between closed sets � and �n in �2 is defined as follows
with respect to balls Br (x)⊂ �2 of radius r about x in the spherical metric:

dH (�,�n) = inf
{
r :�⊂⋃x∈�n

Br (x), and�n ⊂⋃x∈� Br (x)
}
.

We then say that there is Hausdorff convergence lim�n =� if dH (�,�n)→ 0. In
words, lim�n =� if every neighborhood of � contains all but a finite number of �n

and if U is an open set containing all but finitely many �n then �⊂U .
The following is a standard fact about Hausdorff distance:

Lemma 4.5.1. If {�n} is a sequence of closed sets in �2, there is a subsequence {�m}
which converges in the Hausdorff topology to a closed set � ∈ �2.

We will give two definitions of convergence of simply connected regions in �, not
the whole plane. The first assumes that the limiting region is known. In the second,
the limiting region needs to be found as well. The latter is analogous to our criterion
for geometric convergence of manifolds. For more details on this subject see [Duren
1983] or [Pommerenke 1992].

Situation 1. The sequence of regions {�n} is said to converge to the region � 
= �

in the sense of Carathéodory if and only if every compact subset K of � lies in �n

for all large n and one of the following holds:

(i) Each ζ ∈ ∂� is the limit ζ = ζn , ζn ∈ ∂�n .
(ii) Any open set U that lies in all elements of an infinite subsequence {�i j } also

lies in �.

Carathéodory convergence does not imply the Hausdorff convergence of the bound-
aries. For example, the sequence of boundaries may converge to a circle with an
external ray while the regions themselves converge to the enclosed disk.
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However, given a sequence of regions {�n} ⊂�2, there is a subsequence such that
{�2 \�m} Hausdorff converges to a closed set � ∈ �2. Then {�m} converges in the
sense of Carathéodory to �2 \�. And conversely, if {�m} so converges to � then
{�2 \�m} Hausdorff converges to �2 \�.

Or more generally, {∂�n} Hausdorff converges to ∂� if and only if both {�n}
converges to �, and {�2\�n} converges to �2\�, both in the sense of Carathéodory.

Situation 2. Suppose {�k} is a sequence of regions on �2 all of which contain a
point O serving as basepoint. To avoid shrinkage to O , we will assume that a small
disk about O is contained in the members of the sequence. The kernel of the sequence
is defined to be the largest region Y containing O with the property that �k ⊂ Y for
all k with at most a finite number of exceptions. More precisely, let Yn denote the
component of Int

(⋂
k≥n �k

)
that contains O . Then Y = ∪nYn .

A sequence {�n} converges in the sense of Carathéodory to its kernel Y if and only
if every infinite subsequence also has Y as its kernel. If Y has a hyperbolic metric, it is
the limit of hyperbolic metrics on the approximating regions, uniformly on compact
subsets of Y .

The kernel very much depends on the choice of basepoint O . For example, a
sequence of simply connected regions may pinch in half, resulting in convergence,
say, to the union of two disks. Depending on where the basepoint is chosen, the
Carathéodory limit will be one or the other of the disks.

Carathéodory Convergence Theorem 4.5.2. Suppose that {�n} is a sequence of
simply connected regions which converge in the sense of Carathéodory, lim�n = �,
with respect to the basepoint O ∈ ∩�n. Assume that ∂� ⊂ �2 contains at least two
points. Let fn :�→�n be the Riemann map normalized by f (0)=O, f ′(0)>0. Then
the sequence { fn} converges, uniformly on compact subsets of �, to the normalized
Riemann map f :�→�.

As a consequence, the sequence of hyperbolic metrics converges to the hyperbolic
metric on the limiting region �.

Multiply connected regions can also be examined by normalizing the fuchsian
covering groups with respect to O and then examining the groups with respect to
geometric convergence. See Exercise 4-8.

More generally, the curvature of the metrics can be allowed to increase to 0 so
the metric becomes euclidean as degeneration occurs. This results in other kinds of
geometric limits.

Sequences of limit sets and regions of discontinuity

Proposition 4.5.3. Assume that � is finitely generated and ϕn : � → Gn is a se-
quence of homomorphisms onto kleinian groups Gn which converges algebraically to
a kleinian group G with �(G) 
= ∅ and geometrically to H . Suppose that {�(Gn)}
converges to �(G) in the sense that any given compact subset K ⊂ �(G) satisfies
K ⊂ �(Gn) for all large indices. Then �(Gn) converges to �(G) in the sense of
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Carathéodory and�(Gn) converges to �(G) in the sense of Hausdorff . Moreover G
has finite index in H .

If in addition the {ϕn} are isomorphisms, then H = G.

What is meant here is that each component Y of �(G) is the Carathéodory limit
of components Yn of �(Gn), and conversely every sequence of components Yn of
�(Gn) contains a subsequence which converges to a component Y of �(G), in the
sense of Carathéodory. Each of the components is governed by its stabilizer. There
are only a finite number of conjugacy classes of component stabilizers in each Gn,G
(Ahlfors Finiteness Theorem).

Proof. (See [Jørgensen and Marden 1990].) Suppose H properly contains G. Then
there exists h ∈ H, h /∈ G such that h = lim gn, gn ∈ Gn . Select compact sets K and
K ′ such that K ⊂ Int(K ′)⊂ K ′ ⊂�(G). The sequence {gn(K )} converges to h(K ).
We claim that h(K )⊂�(G).

If not, the interior Int h(K ′)= lim gn(Int K ′) contains limit points of G, in particular
fixed points of loxodromic elements of G. It contains a fixed point of a loxodromic
element ϕ(γ )= limϕn(γ ) for some γ ∈�. For all large n, Int gn(K ′) contains a fixed
point of ϕn(γ ), in contradiction to our hypothesis.

Consequently h(K )⊂�(G) for every compact subset K of�(G) and every h ∈H .
Therefore h(�(G))⊂�(G). The same argument can be applied to h−1. We conclude
that each h ∈H maps�(G) onto itself. In particular the fixed points of all loxodromic
and parabolic elements of H lie in the limit set �(G) showing that �(H)=�(G).

In particular every fixed point of H is the limit of fixed points of Gn . Therefore
every limit point of H is the limit of fixed points of Gn . We conclude that �(Gn)

converges in the sense of Carathéodory to �(G).
Furthermore, if an open set U ⊃�(G), then also U ⊃�(Gn) for large n. If instead

U ⊃ �(Gn) for all large indices, then U ⊃ �(G). Therefore the limit sets converge
in the Hausdorff topology.

At this point we bring back [Greenberg 1974] (see Exercise 3-14) which implies
that if �(G) is not a round circle in �2, then G, which we know is contained in H ,
has finite index in H . This holds even when�(G) is a circle. For G is then a fuchsian
group of finite area, or a �2-extension of one (via an order two elliptic), so the larger
discrete group H must contain G as a subgroup of finite index (�2/G is necessarily
a finite-sheeted covering surface of �2/H ).

Now we come to the assumption that each ϕk is an isomorphism. In this case we
claim that H =G. For suppose there were an element h= limϕn(γn), γn ∈�, h /∈G.

Case 1: h is not elliptic. Since G has finite index in H , for some m, hm 
= id ∈G and
hm = ϕ(β), β ∈ �. Therefore limϕn(γ

m
n β
−1)= id. By Lemma 4.4.1, β = γ m

n for all
large n. In a discrete group an element of infinite order has fewer than m m-th roots,
by Lemma 1.5.2. Therefore for a subsequence, we can assume all γn are the same
and h ∈ G, a contradiction.
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Case 2: h is elliptic. Choose a loxodromic element g ∈ G whose fixed points are not
interchanged by h. By a direct computation using a standard form for g, we see that
for some integer m, gmh is not elliptic. Case 1 again applies to show that gmh ∈ G
and hence h ∈ G, a contradiction. �

If {Gn} converges geometrically to H , and H is geometrically finite, that is, if
the fundamental polyhedron P for H at any suitable basepoint has a finite number
of faces, then we can deform P backwards. That is, suppose the face pairing, edge
pairing, and vertex pairing transformations associated with P are moved back to Gn .
Just using this finite set of elements in Gn for large n form the corresponding Dirichlet
region P∗n . One can show that P∗n = Pn , the fundamental polyhedron for Gn . Using
this idea, as in [Jørgensen and Marden 1990], one concludes that {�(Gn)} converges
to�(H) in the sense of Carathéodory. In view of polyhedral convergence Proposition
4.3.2, this argument leads to:

Theorem 4.5.4. Suppose θn : � → Gn is a sequence of isomorphisms of a group
� onto kleinian groups Gn that converges algebraically to θ : � → G. Suppose G
is geometrically finite with �(G) 
= ∅. Then {Gn} converges geometrically to G if
and only if the regions of discontinuity converge, �(Gn)→ �(G), in the sense of
Carathéodory or equivalently, if and only if�(Gn) converges to�(G) in the sense of
Hausdorff .

The definitive statement of limit set convergence is due to R. Evans and is as
follows; its full proof uses Theorem 5.1.2(ii), p. 242, and numerous prior results
(Exercise 4-6). Note that there is no assumption about parabolics.

Theorem 4.5.5 [Evans ≥ 2007; Evans 2006]. Suppose {θn : �→ Gn} is a sequence
of isomorphisms from a geometrically finite group � to groups Gn , not necessarily
geometrically finite. Assume that the sequence converges algebraically to θ : �→ G
and geometrically to H . Then lim�(Gn)=�(H), in Hausdorff convergence.

The sequence converges geometrically to G if and only if lim�(Gn)=�(G).

4.6 New parabolics

In the example of Section 4.9, a sequence of cyclic loxodromic groups converges
algebraically to a cyclic parabolic group and geometrically to a rank two parabolic
group. In particular the algebraic limit acquires a “new” parabolic.

More generally, if θn : �→ Gn is a sequence of isomorphisms converging alge-
braically to the isomorphism θ : �→ G, then we say g ∈ G is a new parabolic if for
all large indices, θnθ

−1(g) is not parabolic. We may assume that the sequence also
has a geometric limit H ⊃ G.

It was conjectured by Troels Jørgensen that if �(G) 
= ∅ then H = G provided
G does not contain new parabolics (the converse is not true). When �(G) = ∅, he
conjectured that always H =G, since there is no “room” for new elements to appear.
Both of these conjectures have been confirmed, as indicated below.
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Here is the description of what happens in the geometrically finite cases.

Theorem 4.6.1 [Jørgensen and Marden 1990]. Suppose that � is a finitely generated
abstract group without elements of finite order and {θn : � → Gn} a sequence of
isomorphisms onto kleinian groups that converges algebraically to θ :�→G. Assume
that {Gn} converges geometrically to a geometrically finite group H with �(H) 
=∅.
Then:

(i) The limit sets converge lim�(Gn)→ �(H) in the Hausdorff topology and the
sets of discontinuity converge, �(Gn)→�(H), in the sense of Carathéodory.

(ii) G is also geometrically finite.
(iii) For all large n, there is a homomorphism ψn : H→ Gn such that limψn(h)= h

for all h ∈ H and for g ∈ G, ψn(g)= θnθ
−1(g).

(iv) Let {Pj }, 1 ≤ j ≤ N , denote the rank two parabolic subgroups of H for which
ψn(Pj ) is cyclic loxodromic, one representative from each conjugacy class in H .
Let Tj,n ∈H denote a generator of the kernel ofψn : Pj→ψn(Pj ). Then Ker(ψn)

is the normal closure in H of the subgroup generated by {Tj,n}, 1≤ j ≤ N .
(v) Assume each Pj contains an element of G. Then there exists Tj ∈ Pj , Tj /∈ G

such that

H = 〈G, T1, T2, . . . , TN 〉.
(vi) H = G if and only if the class {Pj } is empty.

Outline of proof. As a finitely generated subgroup of the geometrically finite group
H with �(H) 
= ∅, G is also geometrically finite (Lemma 3.6.3). Item (i) fol-
lows from the remarks preceding Theorem 4.5.4. The first part of (iii) comes from
Theorem 4.4.3. The second part of (iii) is a consequence of Lemma 4.4.1, namely
θnθ
−1(g)=ψn(g) for all large n, first for a set of generators of G and then for all G.

Item (iv) is proved by working backward from a fundamental polyhedron for H to
fundamental polyhedra for its approximates Gn . We will omit the detailed proof of
this. The proof of (v) begins with the fact that the common fixed point ζ j of Pj is also
a parabolic fixed point of G. Once again this is established by working backwards
from a fundamental polyhedron for H ; ψn(Pj ) represents a simple, short geodesic
in M(Gn) which is associated with a word of uniformly bounded length in the face
pairing transformations for Gn . So let Sj ∈G be a generator of the parabolic subgroup
that fixes ζ j . Then ψn(Sj ) is a generator of ψn(Pj ). Consequently Pj = 〈Sj , Tj,n〉.
Take Tj to be any one of the Tj,n .

Item (vi) requires the elementary fact that the geometric limit of an algebraically
convergent sequence of cyclic parabolic groups (which is again a cyclic parabolic
group) is the same as the algebraic limit. The only way that H can differ from G
is that there exist rank two groups Pj ∈ H that are geometric limits of necessarily
cyclic loxodromic subgroups of {Gk} (while their algebraic limit is a cyclic parabolic
group). �



4.7 Acylindrical manifolds 205

Theorem 4.6.1 has been greatly generalized through the efforts of several authors,
particularly Anderson, Brock, Bromberg, Canary, Evans, Ohshika, and Souto. Here
is a statement of the final result incorporating the Tameness Theorem that confirms
Jørgensen’s Conjecture.

Theorem 4.6.2. Suppose {θn : �→ Gn} is a sequence of isomorphisms converging
algebraically to θ : �→ G. The sequence also converges geometrically to G under
one of the following situations:

(i) [Anderson and Canary 1996b; Evans 2004a] If �(G) 
= ∅ and G has “no new
parabolics”, that is, g ∈ G is parabolic if and only if θnθ

−1(g) is parabolic for
all large indices n.

(ii) [Canary 1996, Theorem 9.2; Agol 2004; Calegari and Gabai 2004] If�(G)=∅.

Theorem 4.6.2 does not require that the approximating groups be geometrically
finite (just finitely generated and torsion free). Of course the converse to (i) does not
hold, convergence to G can be geometric even in the presence of new parabolics.
Condition (ii) was initially established under additional assumptions, in particular
when G is known to be tame. By incorporating the Tameness Theorem, we can make
the general statement given here. In this case, whether or not there are new parabolics
makes no difference.

A sequence is often said to be strongly convergent if it converges both algebraically
and geometrically to the limiting group.

Here is another useful fact (especially in the context of the Density Theorem on
p. 260):

Theorem 4.6.3 [Brock et al. 2003]. If H is the algebraic limit of geometrically finite
groups, then H is also the algebraic limit of geometrically finite groups {θ ′n :�′→G ′n}
with the property that θ ′(g) = lim θ ′n(g) is parabolic if and only if θ ′n(g) is parabolic
for all indices.

By Theorem 4.6.2 H is also the geometric limit of {G ′n}. Of course in general,
the groups �,�′ will not lie in the same quasiconformal deformation space. What is
remarkable about the theorem is that there is no requirement that H be geometrically
finite.

4.7 Acylindrical manifolds

A compact 3-manifold with boundary M3 is called acylindrical (or anannular) if M3

contains no essential cylinders and is boundary incompressible. We recall from Sec-
tion 3.7 that an essential cylinder C in M3 is a cylinder C such that C ∩ ∂M3 = ∂C
and C is not homotopic into ∂M3.

There are two ways to apply this definition in a geometrically finite M(G). The
usual definition, given in Section 3.7, is to call M(G) acylindrical if it is boundary
incompressible and every essential cylinder is homotopic into ∂M(G) or into a pairing
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cylinder. This means that every component of �(G) is simply connected, that a
loxodromic element can preserve at most one component of �(G), while a rank one
parabolic arises only from simple loops on ∂M(G) retractable to its associated pair
of punctures.

The second and less commonly used sense of the term is to define “acylindrical”
with respect to the compact M0(G) =M(G)thick, which results from removing the
interiors of solid pairing tubes and cusp cylinders. Even if M(G) is boundary incom-
pressible, ∂M0(G) may not be so, as removing the totality of the solid pairing tubes
may bring in a new topology to the boundary. Moreover essential cylinders in M0(G)
do not necessarily correspond to essential cylinders in M(G): It is possible that there
is an essential cylinder C in M0(G) with the property that one component of ∂C lies
on a cusp torus (Exercise 4-21).

In any case, in M(G) a simple (nontrivial) loop on a cusp cylinder associated with
a rank one cusp or on a cusp torus cannot be freely homotopic to a simple loop on
a different cusp cylinder or cusp torus, for the corresponding parabolic subgroups
belong to distinct conjugacy classes.

A cyclic subgroup corresponding to an essential cylinder C is either loxodromic or
parabolic. In the parabolic case, since C cannot serve as a pairing cylinder, at most
one component of ∂C can be retractable in the boundary to a puncture (Exercise 4-21).
Consider a component γ of ∂C which is not retractable to a puncture. Examine the
component � ⊂ �(G) that contains a lift γ ∗ of γ . The simple arc γ ∗ has both its
endpoints at a parabolic fixed point. When the fixed point is added, γ ∗ becomes a
Jordan curve, necessarily separating �(G) into two parts. In particular ∂� is not a
Jordan curve. (This is an example of an “accidental parabolic” transformation.)

This is a good place to interject that one way to exclude accidental parabolics is to
require that for each component � ⊂ �(G), the subgroup Stab(�) is quasifuchsian
(Exercise 3-10).

Acylindrical manifolds have compact algebraic deformation spaces. More pre-
cisely:

Thurston Compactness Theorem [Thurston 1986b]. Let G be a geometrically finite
group such that M(G) is acylindrical with nonempty boundary. Then every sequence
of parabolic preserving isomorphisms to kleinian groups θn : G → Gn has an alge-
braically convergent subsequence.

Suppose there were, in a geometrically finite manifold M(G), an essential cylinder
C corresponding to the conjugacy class of a cyclic loxodromic subgroup. Suppose
for example C divides M(G) into two components M,M ′. Focus on M and fix a
lift M∗ ⊂ �3 ∪�(G). Normalize things so that a given point O ∈ �3 lies in a ball
about O in M∗. Set G1 = {g ∈ G : g(M∗) = M∗}. (π1(M(G)) is the free product
of the fundamental groups of M,M ′ amalgamated over the common cyclic subgroup
determined by C .)

Then we should expect that there is a sequence of deformations of M(G1) ∼= M
so that each cyclic loxodromic subgroup determined by C converges to a cyclic para-
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bolic subgroup and C becomes a cusp cylinder in the limit. Here we keep the same
normalization with respect to O .

If the lift (that is, a component of the preimage) M ′∗ of M ′ is adjacent to M∗
and G2 = Stab(M ′∗), then except for the cyclic subgroup of G2 that corresponds to
the common boundary with M∗, the group G2 will simply disappear in the limit —
the Möbius transformations do not converge. This is why the acylindrical condition
is necessary in the Compactness Theorem. Such phenomena appear in particular
for fuchsian groups, see Exercise 4-8. One can start with a fuchsian group � and
the lift of a simple geodesic from �2/�, and “pinch” the geodesic so that in the
limit it corresponds to a parabolic transformation. Thurston’s theorem says that such
degenerations are impossible if there are no essential cylinders to begin with.

Supplementing the Thurston Compactness Theorem we have:

Theorem 4.7.1 [Johannson 1979; Matsuzaki and Taniguchi 1998, Theorem 3.29].
Suppose G is geometrically finite such that M(G) is acylindrical with nonempty

boundary. Let θ : G → G ′ be an isomorphism to a geometrically finite G ′ such that
θ(g) is parabolic if and only if g ∈G is parabolic. Then there exists a quasiconformal
mapping F : �2→ �2 that satisfies F ◦ g ◦ F−1(z) = θ(g)(z) for all g ∈ G, z ∈ �2.
It can be chosen to project and extend to be a (quasiisometric) homeomorphism F∗ :
M(G)→M(G ′).

If an initial mapping F turns out to be orientation reversing, it can be replaced
by J F and G ′ by J G ′ J where J is reflection in a plane in �3. Of special interest
is the fact that θ dictates a bijection between components of �(G ′) and �(G). See
Exercise 4-9.

4.8 Dehn surgery

Dehn surgery is an operation performed one or more incompressible torus boundary
components of a manifold M3. Choose a torus boundary component � and a pair
of simple loops α, β, crossing each other once, so as to generate its homology and
homotopy. Once α, β are chosen, (the homology class of) every simple loop γ on
the torus can be expressed the form γ = mα + nβ where m, n are relatively prime
integers. The ratio 0≤ n/m ≤∞ is called its slope (in terms of the choice of α, β).

Choose such a simple curve γ =mα+ nβ, not homologous to zero, on �. Glue to
M3 along � a solid torus in such a way that γ becomes a meridian, that is, γ bounds a
disk in the new solid torus. This is the process of (m, n)-Dehn surgery; the designation
of a simple loop γ on � as a meridian tells us how to add a solid torus to the boundary
component to result in a larger manifold — with one less boundary component. Dehn
surgery can be applied to any or all of the torus boundary components.

Another way to describe γ is as the image of α under an automorphism φ of �.
Gluings by two automorphisms φ, φ′ determine homeomorphic manifolds if and only
if φ1 ◦φ−1 extends to a homeomorphism between the solid tori.
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A more typical implementation is as follows. Choose a simple loop, or a number of
mutually disjoint simple loops in the interior of a 3-manifold M3, for example a link
in �3. Enclose the loops by mutually disjoint tubular neighborhoods. Unlike the case
for a cusp torus, in this situation each torus boundary has a uniquely determined (up to
free homotopy) meridian α, that bounds a disk in the solid torus tubular neighborhood.
Choose a simple loop β that crosses α exactly once and with α generates the homology
of �. Now choose a simple loop γ = mα + nβ. Remove the tubular neighborhood
bounded by � and replace it by gluing in a new solid torus so that γ becomes its
meridian. This process can be applied to each of the tubular neighborhoods.

For a hyperbolic manifold M(G) with a rank two cusp, the process can be applied
to a cusp torus � and a pair of generators α, β of its homology. If the cusp torus
arises from 〈z �→ z + 1, z �→ z + τ 〉, we may choose α to correspond to the first
generator and β the second. Then choose the simple loop γ corresponding to m+nτ .
Remove the solid cusp torus bounded by � and replace it by a solid torus in terms
of which γ becomes a meridian. This gives a new manifold M3 in which the cusp
torus becomes a tubular neighborhood of a nontrivial simple loop — but the initial
hyperbolic structure is lost.

The latter operation are commonly called Dehn filling.

4.9 The prototypical example

This is an explicit example both of Dehn surgery in the simplest case and of differing
algebraic and geometric limits. We will start with a solid cusp torus — a rank two
parabolic group — and do (1, n)Dehn surgery on it. There results a cyclic loxodromic
group. We will then watch what happens as n→∞. Figure 1.5 (p. 12) and Figure 4.1
(p. 209) show several generations of isometric circles of a cyclic loxodromic group.

Start with the parabolic group � = 〈T1(z) = z + ω1, T2(z) = z + ω2〉. Set τ =
ω2/ω1, Im τ > 0. The quotient �/� = T is a torus. The generating pair (ω1, ω2)

corresponds to a pair of simple loops α, β on T, crossing each other once.
Change the basis by the rule

ω1,n = ω1+ nω2, ω2,n = ω2, ; τn = ω2,n

ω1,n
= τ

1+ nτ
,

so that T1,n(z) = z+ω1,n, T2,n(z) = z+ω2,n also generate �. The pair (ω1,n, ω2,n)

represents the simple loops α+ nβ, β on T.
Map � onto � \ {0} by wn(z) = e−2π i z/ω1,n .
Let Un denote the loxodromic transformation

Un(w) = e−2π iτn w = anw.

We have (wn ◦ T1)(z) = (Un
−n ◦ wn)(z) and (wn ◦ T2)(z) = (Un ◦ wn)(z), while

(wn ◦ T1,n)(z)= wn(z) and (wn ◦ T2,n)(z)= (Un ◦wn)(z).
The map wn determines a conformal mapping

T → Tn = (� \ {0})/〈Un〉
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Fig. 4.1. A cyclic group generated by a loxodromic of approximate trace 1.919354 +
0.029772i near its rank-2 parabolic geometric limit in the right frame. One can see how
the 6-sided Ford polygon outside the outer circles is becoming a fundamental domain on �2

for the geometric limit. See [Jørgensen 1973] for a description of the combinatorics of the
approximates.

in which the image of α+ nβ is a meridian in the solid torus (�3 ∪ (� \ {0}))/〈Un〉.
The image of straight lines with tangent vector ω1,n are taken by wn to concentric
circles about w = 0 which in turn project to parallel meridians in Tn . We have done
Dehn surgery on the original cusp torus M(�) by removing Int(M(�)) and replacing
it by a solid torus so the chosen simple loop α+ nβ becomes a meridian.

As n→∞, lim τn = 0, lim an = 1, and lim Un = id. Renormalize Un to have the
fixed points ω2/(1− an),∞, thus

An(w)= w+ ω2

1− an
, Vn(w)= AnUn A−1

n (w)= anw+ω2.

Therefore lim Vn(w)= w+ω2 and

Vn
k(w) = AnU k

n A−1
n (w) = ak

n w+
ak

n − 1

an − 1
ω2.

Define

fn(z)= ω2

an − 1
(wn(z)− 1).

Thus fn◦T1(z)=Vn
−n◦ fn(z) and fn◦T2(z)=Vn◦ fn(z)while fn◦T1,n(z)= fn(z) and

fn◦T2,n(z)=Vn◦ fn(z). In short, fn induces a conformal mapping to the renormalized
solid torus

T →
(

� \
{
ω2

1− an

})
/〈Vn〉.

in such a way that the image of α+ nβ remains a meridian.
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Uniformly on compact subsets of � we have the following convergences:

(i) lim fn(z)= z.
(ii) lim Vn(w)= w+ω2.

(iii) lim Vn
−n(w)= w+ω1.

To prove (i), we use the estimate ex − 1∼ x when x is small, and (iii) follows.
It is more complicated to show:

Claim. The sequence of cyclic loxodromic groups {〈Vn〉} converges algebraically to
the cyclic parabolic group 〈T2〉 and geometrically to the rank two parabolic group
� = 〈T1, T2〉.
Proof. Suppose for a sequence m→∞ and k = k(m)→∞ that {Vm

k} converges to
a Möbius transformation. We must show the limit lies in �. For the limit to exist the
ratio (am

k − 1)/(am − 1) must remain bounded. Therefore lim am
k = 1.

Write k = pm+ q where p, q are integral functions of m, as is k, and 0 ≤ q < m.
Since am

k = exp(−2π ikτm) and Im τm = Im τ/|1+mτ |2, we must have k(m) =
o(m2). Therefore p(m)= o(m), as m→∞.

Take the subsequence {m} so that lim q(m)/m = c exists, 0≤ c≤ 1. We claim that
either c = 0 or c = 1. For first of all e−2π ikτm = e−2π i(kτm−p) = e−2π i(pmτm−p+qτm).
Also,

lim p(mτm − 1)=− lim
p

1+mτ
= 0, lim qτm = c.

So if c were not an integer, the ratio

ak
m − 1

am − 1
= e−2π ikτm − 1

e−2π iτm − 1
(4.1)

would become infinite.
We have to examine (4.1) in more detail. Write

e−2π ikτm = e−2π i(kτm−p−c)

so that the exponent approaches zero as m →∞. By Taylor’s formula for ex , the
limit of the ratio (4.1) is the limit of

kτm − p− c

τm
= p(mτm − 1)+ qτm − c

τm
= −p+ (q − cm)τ − c

τ
.

Since Im τ > 0, if this is to have a finite limit then limm→∞(q − cm) must exist,
necessarily as an integer. Then limm→∞ p must exist as well, also as an integer. We
conclude that

lim
m→∞ V k

m(w)= w−ω1(c+ lim p)+ω2 lim(q − cm). �

Summing up, the solid tori M(〈Vn〉) converge algebraically to M(〈T2〉), which
represents a solid cusp tube associated with a cyclic parabolic group. The boundary
torus has become “pinched” — has become a doubly infinite cylinder: the hole in the
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bagel has coalesced to a single point since the length of the geodesic has gone to zero.
In contrast, the manifolds M(〈Vn〉) converge geometrically to the solid cusp torus
M(�). The process of degeneration introduces so much twisting along the boundary
torus, that in the limit the solid torus fractures, with the fracture line lying at its core.
All this happens while the conformal type of the torus itself does not change, what
changes is the presentation of its fundamental group.

For a generic choice of center O ∈ �3, the fundamental polyhedron P for � is a
6-sided chimney rising from �. The approximates Pn acquire more and more faces
as n→∞, but all of the faces, save six, collapse to the fixed point in the limit. The
polyhedra truncated by intersection with a ball of radius r about their center Pr,n

converge uniformly to Pr .

Remark 4.9.1. We can now give an example of a sequence of cyclic loxodromic
groups {〈Sm〉} that converge geometrically to a rank two parabolic group, yet which
do not converge algebraically. In fact no subsequence of the generators {Sm} has a
limit.

For an example, take from above Vm(z) = amz + ω2 with lim am = 1. Pick any
sequence of integers n = n(m) which go to infinity with m. Set dm = n

√
am where the

root is chosen in any way so long as no subsequence approaches 1. Set

Sm(z)= dmz+ dm − 1

dn
m − 1

ω2.

Then Sn
m(z)= Vm(z) and Snk

m (z)= V k
m(z) but no subsequence of {Sm} converges since

the constant term→∞.
At the other extreme a sequence of cyclic loxodromic groups 〈z �→ cnz〉with cn>0,

cn → 1 can be conjugated to converge algebraically and geometrically to a cyclic
parabolic group. Only loxodromics whose traces converge “tangentially” to ±2 can
have differing algebraic and geometric limits.

The space of cyclic loxodromic groups is completely described in terms of the
combinatorics of the faces of the Ford polyhedron in [Jørgensen 1973] and visualized
in Wada’s program [≥ 2007a], which allows exploration of the space of normalized
cyclic loxodromic groups as a function of the trace.

4.10 Manifolds of finite volume

Suppose {M(Gn)} is an infinite sequence of mutually nonisometric manifolds whose
volumes {Vn} do not exceed a number V ∗ <∞. We can normalize the groups so that
an ε-ball centered at a point O ∈ �3, projects injectively into all of the manifolds.
After passing to a subsequence, we may assume that the sequence {Gn} converges
geometrically to a group H .

Theorem 4.10.1. Assume that the sequence {Gn} with Vol(M(Gn))= Vn < V ∗ <∞
converges geometrically to H . Then Vol(M(H)) = lim Vn . Consequently the set of
volumes of finite volume manifolds is a closed subset of �.
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Moreover, the number of solid cusp tori in M(H) is strictly greater than the number
in its approximates, for large indices.

Proof. Take a maximal set of points in the ε-thick part M(Gn)
thick such that the dis-

tance between any two of them is not less than ε/2. Then the ε-balls about these points
cover M(Gn)

thick. The fact that Vol(M(Gn) < V ∗ implies that the number of the cov-
ering balls is uniformly bounded in n. In particular there exists d<∞ such that for all
indices, the diameter of M(Gn)

thick does not exceed d. As n→∞, Vol(M(Gn)
thick)

converges to Vol(M(H)thick). Exercise 2-9, especially Equation (2.6), shows that
limε→0 Vol(M(Gn)

thin) = 0, uniformly in n — the thin parts become successively
thinner. This shows that Vol(M(H)) = lim Vol(M(Gn)); in particular M(H) has
finite volume.

Now that we know M(H) has finite volume, the corresponding polyhedra for
Gn must have a uniformly bounded number of faces and hence generators — see
Lemma 3.6.4. The methods of the proof of Theorem 4.6.1 apply to describe the
relation of the nearby polyhedra PO(Gn) to the polyhedron PO(H) for H .

For all large n there is a homomorphism ψn : H→Gn . The ψn-image of each rank
two parabolic subgroup of H is either a rank two subgroup of Gn or it represents the
lift of a short geodesic in M(Gn).

If M(H) had the same number of solid cusp tori as M(Gn) for all large indices,
then ψn would be an isomorphism and M(Gn) would be isometric to M(H), by
Mostow’s Rigidity Theorem, for the same large indices. Our assumption rules out
this possibility. There are always strictly more solid cusp tori in the geometric limit
than in the approximants. A sequence of cyclic loxodromic subgroups has become a
rank two parabolic group in the geometric limit. see Theorem 4.6.1. �

4.11 The Dehn surgery theorems for finite volume manifolds

Suppose M(G) has finite volume and has k ≥ 1 rank two cusps. Denote by M the
compact manifold bounded by k tori {Ti } resulting from removing the interior of k
solid cusp tori. We will discuss the result of doing Dehn surgery on these. (We can
allow additional rank two cusps that will then be unaffected.)

Choose a standard homology basis (γi , δi ) on each Ti , 1≤ i ≤ k.
Let Q⊂�2 the set of coprime vectors {di = (pi , qi )}. Given d= (d1, . . . , dk)∈ Qk ,

denote by Md the manifold resulting from (pi , qi )-Dehn surgery on Ti , 1≤ i≤k. Here
the respective meridians are {piγi + qiδi }. The resulting manifolds Md are closed.

Before stating the theorem, we will present the argument in [Thurston 1979, §5.6]
that the dimension of the local deformation space of M(G) under the Dehn surgeries
is ≥ k. See [Culler and Shalen 1983, Prop. 3.2.1] for an alternate treatment.

For each index i , 1≤ i ≤ k, choose in any way a simple, noncontractible loop {αi }
in the interior of M ⊂M(G) that corresponds to a loxodromic transformation in G.
Fix a basepoint Oi ∈ Ti that is also the basepoint for αi . Remove a thin tube about
each αi and attach it to Ti so as to form a surface Si of genus two. Do this for all
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indices, assuming the αi are mutually disjoint, ending up with a manifold M ′ ⊂ M
bounded by k surfaces of genus two. On each Si chose a simple loop βi that bounds
a compressing disk in M \ M ′. We can regard αi to lie on Si and also that the four
simple loops γi , δi , αi , βi have the common basepoint Oi . The four loops generate
π1(Si ; Oi ), and satisfy the relation [δi , γi ][βi , αi ] = id.

Note that π1(M)∼=G is obtained from π1(M ′) by adding the relations {βi = id}; if
we cut along the compressing disks bounded by the βi , we obtain a manifold home-
omorphic to M .

The elements γi , δi , when lifted from a fixed O∗i over Oi determine generators
γ ∗i , δ∗i of a rank two parabolic subgroup of G. The element αi when lifted from O∗i
determines a loxodromic element α∗i . Under a small deformation, their traces change
slightly, and also the location of the fixed points. Therefore when a homomorphism
ψ is close to id, ψ(α∗i ) remains loxodromic with fixed points distinct from those of
ψ(γ ∗i ), ψ(δ∗i ).

Lemma 4.11.1. Suppose ψ is a homomorphism π1(M ′)→ PSL(2,�) such that (a)
ψ(〈γi , δi 〉) 
= id, (b) ψ(αi ) is loxodromic, and (c) ψ(〈αi , γi , δi 〉) is nonelementary.
Then ψ extends to a homomorphism of π1(M) if and only if for each index i the
following two equations are satisfied:

trψ([αi , βi ])= 2, trψ(βi )= 2. (4.2)

The necessity of the condition is obvious since a homomorphism of π1(M) must
send both the commutator and the element βi to the identity. The sufficiency is Exer-
cise 4-5.

Now the compact 3-manifold M ′ can be triangulated in such a way that there is
only one 0-simplex and the 1-simplices are generators of π1(M). The 2-simplices
then generate the relations among the chosen generators. Since the manifold has a
nonempty boundary, the 2-skeleton of the triangulation is a deformation retract of M ′.
Its Euler characteristic is then

χ(M ′)=+1− h+ r,

where h is the number of generators and r the number of relations.
Moreover χ(M ′)=χ(M)−k because M is obtained from M ′ by adding k relations.

That is,

χ(M)= 1− h+ r + k.

The ψ-image of the h generators of G arising from our construction in M must
satisfy the algebraic equations corresponding to each relation. Each Möbius transfor-
mation in turn depends on 3 complex parameters. In addition Equations (4.2) must
be accounted for; that gives two more equations for each torus boundary. Thus the 3h
parameters for the ψ-image of the generators are subject to constraints and the result
is that ψ has the degree of freedom given by

3h− 3r − 2k =−3χ(M)+ k+ 3.



214 Algebraic and geometric convergence

But if we rule out conjugations of the group G, we are left with the complex dimension
−3χ(M)+ k.

A closed 3-manifold has Euler characteristic zero. Therefore if M̂ denotes the
double of M across its boundary,

0= χ(M̂)= 2χ(M)−χ(∂M).

Since all the components of ∂M are tori, χ(M)= 0 (for a general geometrically finite
kleinian manifold we would have instead χ(∂M) ≤ 0 and then χ(M) ≤ 0). Thus ψ
has k degrees of freedom; each rank two cusp contributes one degree.

For a rigorous study of the deformation variety, see [Kapovich 2001, Theorem
8.44].

The following result shows that there are lots of hyperbolic manifolds, independent
of the criteria of the Hyperbolization Theorem (p. 324). The paper [Petronio and
Porti 2000] is the current standard for a complete, rigorous proof of the first part
of the following theorem. It is quite different from the one suggested in [Thurston
1979], and reflects the computational approach of SnapPea (page 234). For another
approach, see [Hodgson and Kerckhoff 1998, §4].

Dehn Surgery Theorem [Thurston 1979, §5.5–8; Petronio and Porti 2000].

(i) There exists a neighborhood U of∞= (∞, . . . ,∞) ∈ �2× · · · ×�2 such that
for all d ∈U ∩Qk, the surgered manifold Md has a complete hyperbolic metric.

(ii) More precisely, if a finite number of coprimes {(pi , qi )} are excluded for each
{Ti }, 1 ≤ i ≤ k, then all remaining Dehn surgeries on M(G) result in complete
hyperbolic manifolds.

(iii) Suppose lim dn = ∞ in U. The hyperbolic manifolds M(Gn) ≡ Mdn converge
geometrically back to M(G). The corresponding homomorphisms ψn : G→ Gn

converge to the identity.

In particular there are arbitrarily small deformations {H} of G which send any or
all of the rank two parabolic subgroups to cyclic loxodromic groups. The result of
removing from each such M(H) tubular neighborhoods of its new short geodesics is
homeomorphic to M(G).

When the number of initial cusp tori is at least two, it is not true in general that,
with a finite number of possible exceptions, all surgeries on the cusps of an M(G)
result in hyperbolic manifolds. Consider as M(G) the Borromean rings complement
in �3. The (1, 0) surgery on one of the links results in a manifold homeomorphic to
�3 minus two unlinked circles. This is not hyperbolic, nor is the result of any further
surgery — there are noncontractible embedded spheres in the complement. [Thurston
1979, p. 5.38].

A similar process allows the construction of orbifolds where the rank-two parabolic
groups are instead sent to cyclic elliptic groups with designated rotation angles.
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Well ordering of volumes of hyperbolic manifolds

By the universal ball property, there is a uniform positive lower bound for all volumes.
By the uniform horoball property, there is a uniform upper bound on the number of
solid cusp tori in manifolds of volume ≤ V . Here the convergence theorems 4.1.1,
4.1.2 play a central role.

Theorem 4.11.2 [Thurston 1979, Chapter 5-6, Gromov 1981b].

(i) The set of hyperbolic 3-manifolds with a given volume V is finite.
(ii) If M(G) of finite volume is homeomorphic to M(H) \ α, where α ⊂M(H) is a

simple geodesic, then Vol(M(G)) > Vol(M(H)).
(iii) If {M(Gk)} is a sequence of manifolds whose volumes are nonincreasing,

· · · ≥ Vol(M(Gk))≥ Vol(M(Gk+1))≥ · · · ,
then VolM(Gk)= VolM(Gm) for some m and all k > m.

(iv) For each constant V let MV denote the set of hyperbolic 3-manifolds with vol-
ume ≤ V . There is a finite subset Mmoms ⊂MV such that any M(H) ∈MV \
Mmoms contains a link L such that M(H)\L is homeomorphic to some M(G)∈
Mmoms and is obtained by Dehn surgery on M(G); moreover Vol(M(H)) <
Vol(M(G)).

In fact according to [Thurston 1979, Theorem 5.11.2], there is a link LV ⊂�3 such
that all manifolds in MV can be obtained by Dehn surgery along LV (the limiting
case of simply deleting components of LV is allowed).

Heuristic discussion. The first item stems from the following argument. If there is an
infinite sequence of nonisometric manifolds of volume exactly V there is a geometric
limit of a subsequence. It must have at least one additional cusp which raises the
volume by (ii).

We refer to [1979, Chapter 6] for the proof of (ii), that is, Vol(M(H))<Vol(M(G))
when M(H)\∪γi is homeomorphic to M(G) for a union of mutually disjoint nontriv-
ial simple loops γi . The proof is based on the analysis of the volumes of hyperbolic
manifolds which are the images under degree d ≥ 1 maps of a given finite volume
manifold.

The most problematical issue in the background is to prove that the number of
homeomorphism types for ε-thick parts M of hyperbolic manifolds of volume at
most V is finite. Here is Thurston’s argument. Take a maximal set of points of M
with the property that no two of the points have distance ≤ ε/2; maximality insures
that the ε/2-balls cover the thick part. The ε/4 balls about such points are mutually
disjoint. The total volume of the ε/4-balls cannot exceed V so there are a finite
number. The combinatorial pattern of intersections of the ε/2-balls determines the
homeomorphism type of M ; there are only a finite number of possibilities.

Unfortunately, as pointed out in [Benedetti and Petronio 1992, pp. 195-6] it is pos-
sible that a ε-tube may bore though an ε/2-ball, leaving one or more worm holes. This
increases the possibilities for the topological type of M , beyond what is accounted for
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above. For this reason subsequent authors have to find lengthy alternate treatments to
avoid this difficulty among others; see [Petronio and Porti 2000].

The finiteness of topological types is coupled with the fact that two manifolds
of finite volume which have homeomorphic ε-thick parts can be obtained from one
another by Dehn surgery. As a consequence, given V , all manifolds of volume ≤ V
are obtained by Dehn surgery on the cusp tori of a finite number of manifolds.

To analyze (iii), suppose a sequence of volumes is strictly decreasing. After passing
to another subsequence if necessary, we may assume the groups Gn have a geometric
limit H . Then VolM(H) = lim VolM(Gn). By Theorem 4.10.1 the geometric limit
has at least one more rank two cusp than its close approximates. By Theorem 4.6.1,
the close approximates arise from Dehn surgery on the rank two cusps of the geometric
limit. By item (ii), the close approximates have lower volume.

On the one hand the volume of M(H) is greater than the volume of its close ap-
proximates, and on the other, the volume of its approximates is strictly decreasing.
This contradiction proves that the volumes of the sequence must stabilize at a certain
point, as claimed.

Item (iv) holds because there are only a finite number of homeomorphism types of
the solid cusp tori complements of elements of MV . �

The well ordering

Suppose there is at least one noncompact manifold of volume V . The set of manifolds
with volume V serves as the “mothers” of the manifolds {M(G)} of volume < V
with the following property. There are a finite number of mutually disjoint nontrivial
simple loops, which one can think of as forming a link L = ⋃

i γi ⊂ M(G), for
which M(G)\⋃i γi is homeomorphic to a mother M(H). Each mother M(H) is the
geometric limit of the manifolds M(Gn) obtained by Dehn surgeries on its cusp tori.

If we start with the set of noncompact manifolds of lowest possible volume V , then
their set of children comprise all closed hyperbolic manifolds of volume < V .

Theorem 4.10.1 leads to the conclusion that the set of volumes is well ordered
(every subset has a least element):

v1 < v2 < · · · −→ vω < vω+1 < vω+2 < · · · −→ v2ω < · · · −→ vω2 < · · · .
Here vω is the lowest volume for 1-cusped manifolds: v1 is the lowest volume for
closed hyperbolic manifolds, v2 the second lowest, and so on, so that vω is the least
accumulation point of volumes of closed manifolds obtained by Dehn surgery on
the least volume 1-cusped manifolds. Here ω is the ordinal of the positive integers.
Then v2ω is the next lowest volume of 1-cusped manifolds and is the accumulation
point of volumes vω+1, vω+2, . . . obtained by Dehn surgery on these. And so on
until reaching the first accumulation point vω2 of volumes vkω of 1-cusped manifolds;
vω2 is the lowest volume for 2-cusped manifolds. This spawns the volume sequence
v2ω2, v3ω2, . . . of 2-cusped manifolds which in turn accumulates at the least volume
vω3 for 3-cusped manifolds. Here ω stands for the cardinal number of the integers.
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The index t of a general element vt of the volume sequence is an ordinal number
of the form

mnω
n +mn−1ω

n−1+ · · ·+m0,

where m j is a nonnegative integer. For example the index 2ω2+4ω+6 corresponds
to the volume of a manifold obtained first by Dehn surgery on the 2nd lowest volume
2-cusped manifold resulting in a 1-cusped manifold of the 4th lowest volume followed
by surgery resulting in a closed manifold with 6th lowest volume.

Thus the set of volumes form successive intervals on � of the form [0, ω], [0, ω2],
. . . , [0, ωω). The order type of the set of all volumes is the ordinal ωω.

In [Cao and Meyerhoff 2001] it is shown that vω = 2v ∼= 2.03, where v is the
volume of the regular ideal tetrahedron, and that among the cusped manifolds, only
the complement of the figure-8 knot Figure 3.8 (p. 164) and its sibling in �3 achieve
it (see Exercise 3-5). Among all (orientable) manifolds, the minimum volume can
be attained only by a closed manifold. It is conjectured that the minimum is v1 =
0.9427 . . . , that value being attained by the Weeks manifold obtained by (5, 1), (5, 2)
Dehn surgery on the two components of the Whitehead link. Several people, such as
I. Agol [2004] are currently working to find the minimum volume manifold; the best
result to date is that of A. Przeworski: v1 > 0.3325.

For a report on the cusped hyperbolic manifolds composed of at most seven ideal
tetrahedra and their Dehn surgery daughters, see [Callahan et al. 1999].

The discovery of the minimal volume orientable orbifold has recently been an-
nounced by Marshall and Martin [≥ 2007]. It comes from an order two extension
of the orientation preserving subgroup of the reflection group of the following hy-
perbolic tetrahedron: Two faces form a π/5-dihedral angle and each of these faces
form a π/3-dihedral angle with another; the remaining three dihedral angles are π/2.
The minimum volume orbifold is uniquely determined and has volume 0.03905 . . . .
Its discovery allows the investigation of maximal automorphism groups of closed
manifolds; see [Conder et al. 2005]. Earlier Meyerhoff [1987] had shown that the
group H of orientation preserving symmetries of the tessellation of �3 by regular
ideal tetrahedra gives the smallest volume orientable orbifold with one cusp.

The well ordering of volumes of finite volume hyperbolic orbifolds is shown in
[Dunbar and Meyerhoff 1994].

Volumes of higher-dimensional manifolds

It is interesting to contrast the situation of 3-dimensional finite volume manifolds
with other dimensions. The areas of finite area 2-dimensional hyperbolic manifolds
are integral multiples of 2π (Exercise 3-1). For a finite volume even dimensional
hyperbolic manifold M2n , the formula also comes from the Gauss-Bonnet formula,
for example see [Kellerhals and Zehrt 2001].

Vol(M2n)= (−1)n
V2n

2
χ(M2n),
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where V2n is the surface area of the unit (2n−1)-dimensional sphere ∗ in �2n and χ
denotes the Euler characteristic. The formula holds for orientable and nonorientable
manifolds; in the former case the Euler characteristic is even for a closed manifold.
The paper [Ratcliffe and Tschantz 2000] explicitly constructs the finite volume cusped
(noncompact) hyperbolic 4-manifolds. Exactly 1171 of them have the minimum vol-
ume.

For odd-dimensional finite volume hyperbolic manifolds, the Euler characteristic is
zero. However for cusped manifolds, using ball packing methods, good lower bounds
can be found [Adams 1987; Kellerhals 1998].

It is known that in every dimension n ≥ 4 the number of nonisometric manifolds
with volume less than any prescribed number is finite [Wang 1972]; thus the set
of volumes is a discrete set on �. Furthermore, the number N (V ) of nonisometric
manifolds of volume ≤ V grows to +∞ with V ; in fact, it is shown in [Burger et al.
2002] that there are constants a = a(n) > 0, b = b(n) > 0 such that for all large V ,

eaV log V ≤ N (V )≤ ebV log V .

4.12 Exercises and explorations

4-1. Prove that if 〈U, V 〉 is discrete and nonelementary, the subgroup 〈U, [U, V ]〉 is
also nonelementary provided U is not elliptic of order ≤ 60.

4-2. Suppose that the sequence of kleinian groups {Gk} converges polyhedrally to a
geometrically finite group H . Prove that there is a homomorphism ψk of H into Gk ,
for all large k, such that limψk(h)= h, h ∈ H .

4-3. [Mumford 1971] Prove that the collection of all closed Riemann surfaces (com-
pact surfaces without boundary) of genus g ≥ 2 that have the property that the length
of any closed geodesic exceeds some ε > 0 is compact: Every infinite sequence of
such surfaces, or infinite sequence of normalized fuchsian covering groups, has a
geometrically convergent subsequence to a group which represents a surface of the
same type.

4-4. In contrast to the example of Section 4.10, verify the following claim. A sequence
of cyclic loxodromic groups {〈Sn〉} with real traces which converges algebraically to
the cyclic parabolic group 〈S〉 also converges to it geometrically.

Show that the conclusion remains the same if the hypothesis is weakened to the
assumption that there exists δ > 0 such that for all indices,

−π
2
+ δ ≤ arg(tr Sn)≤ π

2
− δ.

Looking at the quotients, the sequence of solid tori converge geometrically to a
solid cusp tube.

∗ The volume Vk of �k−1 ⊂ �k is 2πn/2�(n/2).



4.12 Exercises and explorations 219

4-5. We will follow [Thurston 1979, Lemma 5.6.1] in outlining the sufficiency of
Equation 4.2 for the extension of ψ from a homomorphism of π1(M ′) to one of
π1(M) (compare Lemma 4.11.1). The proof proceeds by considering each boundary
torus separately. For simplicity of notation, we may therefore assume there is only
one.

We have chosen generators of the genus two surface S so that [γ, δ][α, β] = id.
We are assuming that tr(ψ([α, β]) = 2, and trψ(β) = 2. We are also assuming that
ψ(〈γ, δ〉) 
= id, ψ(α) is loxodromic (does elliptic and parabolic also work?), and
ψ(〈α, γ, δ〉) is nonelementary. According to Lemma 1.5.2, ψ(α) and ψ(β) have a
common fixed point, say∞.

Take ψ(α) = (
λ
0

0
λ−1

)
. Then ψ(β) = (a

0
b

a−1

)
. If ψ([α, β]) is not the identity,

then since ψ([γ, δ]) = ψ([α, β]−1), all four of ψ(α), ψ(β), ψ(γ ), ψ(δ) have∞ as
a fixed point, a contradiction. Finally if ψ(β) 
= id, then ψ(β) is parabolic. This too
is impossible for then it could not commute with ψ(α).

4-6. Convergence of limit sets. [McMullen 1996, Prop. 2.4] Suppose {Gn} is a
sequence of kleinian groups normalized so that the respective convex hulls C̃(Gn)

contain a fixed ball about a point O ∈�3 that projects injectively to the quotients. We
may then assume that the sequence converges geometrically to a kleinian group H .

A point z lies in lim inf�(Gn) when every neighborhood U of z contains points
of �(Gn) for all n, with at most a finite number of exceptions. In contrast z ∈
lim sup�(Gn) when every neighborhood U of z contains points of infinitely many
�(Gn). The sequence {�(Gn)} converges when the two limits agree.

Because every loxodromic fixed point of H is the limit of loxodromic fixed points
of Gn , conclude that �(H)⊂ lim inf�(Gn).

There is not always equality in the two limits. For example, there is a sequence
of fuchsian groups of the first kind whose geometrical limit is just {id}— which has
empty limit set. One such is the sequence of level-n subgroups {Mn} of the modular
group (Exercise 2-9: Mn = {g ∈Mod : g ≡ I mod n}).

But suppose that there exists ρ <∞ such that Ĩnjn(x) < ρ for all x ∈ C̃(Gn) and
all n. Prove that lim�(Gn)=�(H) in the Hausdorff topology.

Hint: For a kleinian group G and r <∞ set M(r) = {x ∈ �3 : Ĩnj(x) ≤ r}. First
show that M(r)∩�2 ⊂ �(G), where M(r) denotes closure in the spherical metric.
To see this descend to M(G). Suppose that Inj(π(x)) ≤ r for π(x) ∈M(G). Then
there is a noncontractible closed loop c of length ≤ 2r through π(x). Shrink it so
that it either becomes a geodesic γ ⊂ C(G) of length ≤ 2r or a simple loop γ on the
boundary of a thin part at a finite distance from c. Back upstairs, in the former case,
the G-orbit of x accumulates to �(G). In the latter case, the orbit of x under a cyclic
parabolic group accumulates to a parabolic fixed point.

Returning to our geometrically convergent sequence, show that {Ĩnjn(x)} for {Gn}
converges to Ĩnj(x) for H , uniformly on compact subsets of �3. That is, lim sup
Mn(r) ⊂ M(r) with respect to Hausdorff convergence, for any r > 0. When r = ρ,
C̃(Gn)⊂ Mn(ρ), so lim sup C̃(Gn)⊂ M(ρ). Since all rays from O ∈ C̃(Gn) to points
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on�(Gn) lie in C̃(Gn), the limiting rays lie in M(ρ). Conclude that lim sup�(Gn)⊂
M(ρ)⊂�(H).

4-7. Hyperbolic cone manifolds and orbifolds We will start with the simplest of
examples. Set α = 2π/n and consider the action of the elliptic Eα(z) = eiαz on �3.
The quotient M(〈Eα〉) is an (oriented) orbifold. The cone angle at the set 	 of cone
points, which is just the projection of the rotation axis, is 2π/n. The elliptic Eα may
be conjugated so that as n → ∞, it converges to a parabolic (Exercise 2-4). The
quotient MO = �3 \ cone axis/〈Eα〉 has a hyperbolic metric but it is not complete.
It does have a metric completion which is topologically a ball B and is called the
underlying space of the orbifold. In B, the projection of the rotation axis is called the
singular locus 	O.

What about letting α be an irrational multiple of 2π? On the one hand it is perfectly
reasonable for a cone to have an irrational cone angle. On the other hand the group is
no longer discrete. Still we can use the model MO for it. Again the underlying space
is B and MO

∼= B \	O. The singular set 	O has cone angle α. We have no covering
map π−1 to use, instead we have a more general map called a developing map that
operates in the same way. The developing map d is a local isometry, unrolling MO

in �3: Given a closed loop γ encircling 	O, and a point O∗ that projects to its initial
point, the developing map “lifts” γ , starting at O∗ and terminating at Ek

α(O
∗) for some

k. The developing map is coupled with a homomorphism ϕ, called the holonomy map.
The holonomy map sends π1(MO) to the group of Möbius transformations generated
in this case by Eα.

A 3-manifold MC is called a hyperbolic cone manifold if there is a link 	⊂MC (a
union of simple loops not isotopic in MC \	 to a point) with the following properties.

(i) MC \	 has an incomplete hyperbolic structure.
(ii) Its metric completion in MC is a singular metric with cone type singularities

along 	.
(iii) To each component σ of 	 corresponds a cone angle 0 < α < ∞. In a thin

tubular neighborhood Nr (σ ) of radius r about σ the metric can be expressed in
cylindrical coordinates (see Exercise 8-8) as

dr2+ sinh2 r dθ + cosh2 r dh2,

where H is the distance along σ and θ (mod α) is the angular measure about σ .

In other words there is a developing map D : MC \	→�3 which is a local isometry
that unrolls MC \	 in �3. The meridian on ∂Nr (σ ) lifts to an elliptic transformation
E . Any longitude lifts to a loxodromic transformation with the same axis as E . The
lift D∗ to the universal cover of MC \	 induces a homomorphism from π1(MC \	)
to PSL(2,�).

A cone manifold with rational cone angles 2π/n is an orbifold — but in general
the singular set of an orbifold is not a link (Proposition 2.5.2). The limiting cases of
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cone angle zero corresponds to a rank two cusp while cone angle 2π signifies that
there is no singularity at σ .

Assume that MC \	 has finite volume and the cone angles along 	 are at most
2π . The fundamental local rigidity theorem of Hodgson and Kerckhoff [1998] asserts
that the set of cone angles provides a local parameterization of the hyperbolic cone
structures near the given one. In particular there are no infinitesimal deformations of
the hyperbolic structure that keep the cone angles fixed. In fact MC \	 has a complete
hyperbolic structure of finite volume [Kojima 1996]. If in addition the angles are at
most π , there is a continuous, angle-decreasing family of deformations converging to
the complete structure [Kojima 1998]. He also showed that if cone manifolds MC \	,
M ′C \	′ are homeomorphic with corresponding cone angles the same (and all at most
π), the two manifolds are isometric.

One natural source of cone manifolds, used for example in Theorem 3.11.3, is the
reflection in its boundary of a convex core for which the bending locus consists of
simple geodesics. The bending lines become the singular locus and the cone angles
are twice the interior bending angles. In this case the cone angles are less than 2π so
the Hodgson-Kerckhoff deformation theory is operative.

For a recent study of cone manifolds with singular locus the union of circles and
trivalent graphs (as with orbifolds), with cone angles ≤ π , see [Weiss 2002].

For more discussion see Exercise 6-3.

4-8. Geometric limits of fuchsian groups. In the surface R = �/G let γ be a simple
loop cutting R in two components R1, R2. Let R∗1⊂� be a lift of R1 and let R∗2 be a lift
(a component of the preimage) of R2 such that R∗2 is adjacent to R∗1 along a lift γ ∗ of
γ . Let Gi ⊂G denote the stabilizer of Ri , i = 1, 2 and g∗ a generator of the stabilizer
of γ ∗. Show that G = 〈G1,G2〉 (in the language of combinatorial group theory, G
is the free product of G1 and G2 with amalgamation over the cyclic subgroup that
stabilizes γ ∗). There is a general way to find a sequence of isomorphisms θn :G→ Hn

to other fuchsian groups {Hn} such that lim θn(g∗) is parabolic and lim θn(g) exists as
a Möbius transformation for all g∈G1. On the other hand for g∈G2 with g(γ ∗) 
=γ ∗,
no subsequence of θn(g) converges to a Möbius transformation, that is, the regions
{R∗2,n} shrink to the fixed point of lim θn(g∗).

This can be done as follows. First note that a sequence of increasingly thick annuli
can always be normalized to converge to a once punctured disk, for example the
sequence {1/n < |z| < 1}. Cut R along γ and sew back in increasingly thick annuli
thereby getting new surfaces Rn = R1,n∪R2,n . Apply the Uniformization Theorem to
get a new fuchsian group Hn and an isomorphism θn :G→ Hn . We are free to replace
Hn by a conjugate; do so that for all n the lift R∗1,n contains a fixed small disk about
0 that embeds in the quotient. The element θn(g∗) ∈ Hn and all its conjugates with
respect to H1,n converge to parabolic transformations. The groups θn(G1) converge
algebraically to a fuchsian group representing a surface homeomorphic to R1 but with
a puncture in place of the boundary component γ . The subgroup of Hn that preserves
any lift of Rn

2 , or any lift of Rn
1 other than Rn

1
∗, degenerates.
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a puncture in place of the boundary component γ . The subgroup of Hn that preserves
any lift of Rn

2 , or any lift of Rn
1 other than Rn

1
∗, degenerates.

The geometric limit of {Hn} is the algebraic limit of {H1,n}. Note the role of the
choice of basepoint as the focus of conjugation. One could have chosen it so that
the convergent sequence was instead {H2,n}. This is only one example in a complete
description of all geometric limits of sequences of fuchsian groups. This process was
first described by Bill Harvey [1977]. Can you formulate a general theorem describing
all possible geometric limits?

Now consider the kleinian case. On the boundary of a geometrically finite M(G),
suppose S is a set of mutually disjoint, noncompressing simple loops with the property
that no two are freely homotopic within M(G).

Deformation theory allows the deformation of the group so that all the curves of
the set S become “pinched”; the corresponding elements of G become parabolic. The
example of the two surfaces resulting from a fuchsian group shows why the homotopy
property is a necessary condition to carry this out. There results a new geometrically
finite group H in various interesting combinatorial arrangements depending on S.
Show that a genus two Schottky group can be so pinched as to become a pair of once
punctured tori. See the Pinching Theorem (page 286) and Exercise 5-3. Each once
punctured torus can be pinched at most once again in countably many ways so as to
become a thrice punctured sphere. For an elementary and detailed presentation of the
two generator Schottky case, see [Mumford et al. 2002].

4-9. Isomorphisms determining homeomorphisms. Suppose G is a geometrically
finite group without parabolics and M(G) is acylindrical. If �1, �2 are distinct com-
ponents of�(G) and Gi =Stab(�i ), prove that�(G1)∩�(G2)=∅ (see [Matsuzaki
and Taniguchi 1998, §3.2.1, Theorem 3.29]). Conclude that if ϕ : G → H is an
isomorphism to another geometrically finite group without parabolics then M(H) is
also acylindrical and there is a bijection between the components of �(G) and �(H)
(see Exercise 3-29).

Hint: Assume to the contrary that �(G1)∩�(G2) 
=∅. Take a ray � in the convex
hull Ĉ(G2) of �(G2) ending at ζ ∈ �(G1) ∩ �(G2). Given O ∈ �3 there exists
{gn ∈G1} such that {gn(O)} lies in a conical neighborhood of �. Project the sequence
into M(G2). It is contained in a finite distance neighborhood of the convex core
C(G2) of M(G2). Therefore there is a sequence hn ∈G2 such that (for a subsequence)
lim hngn(O) = O ′ ∈ �3. Discreteness requires that hngn = id for all large indices.
Therefore hn ∈ G1 ∩G2, a contradiction.

4-10. Alternate definitions of geometric convergence. A quantitative version of the
definition of Section 4.2 goes as follows. Suppose we have a sequence {Gn} and a
point O ∈ �3 such that the corresponding fundamental polyhedra {Pn} with origins
at O all contain small ball Bε about O with gn(Bε)∩ Bε = ∅ for all gn 
= id ∈ Gn

and all indices n.
The sequence converges geometrically to the group H if and only if the following

holds: There exists a sequence of Kn-bilipschitz maps Fn : �3 → �3, Fn(O) = O ,
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with lim Kn = 1, which have the following two properties. (i) On every compact
subset of �3, lim Fn(x) = x . (ii) Choose a sequence rn > 0, lim rn =∞. Set Mn =
(Pn ∩ Brn )/Gn , where Brn is the ball of radius rn about O . Then Fn projects to a
Kn-bilipschitz map fn of Mn into �3/H , see [Canary and Minsky 1996, Lem. 3.1].

From a more general perspective, Gromov presented the following definition of
geometric convergence [Gromov 1981b].

We are given two metric spaces X, Y and a map f : X → Y . Using the respective
metrics set

L( f )= sup
x1 
=x2∈X

∣∣∣∣log
d(x1, x2)

d( f (x1), f (x2))

∣∣∣∣ .
A sequence of metric spaces {(Xn; On)} with basepoints On is said to converge to

the metric space with basepoint (Y ; O) if the following holds. Given any r > 0 and
ε > 0, there exists N such that for each n≥ N , there exists a map fn from the radius-r
ball Br (On)⊂ Xn into Y such that

(i) fn(On)= O ,
(ii) fn(Br (On))⊂ Y contains the ball Br−ε(O)⊂ Y , and

(iii) L( fn)≤ ε, computed on Br (On).

For an application to our situation, set Xn =PO(Gn)∩ Br (O)/Gn and Y =�3/H .

4-11. �-trees. Another way of representing the degeneration of hyperbolic manifolds
is by �-trees. This point of view was pioneered by Morgan and Shalen [1984; 1988a;
1988b]. (See also references in [Bestvina 1988; Ohshika 1998b; Otal 1996]). Here
we will define �-trees and in the next exercise show how they arise in degenerations
of kleinian groups.

A metric space T = (X, d) is called a real tree or �-tree if there is a unique arc
(up to parameter change) connecting any two points x, y ∈ X and that arc has length
d(x, y).

Thus if [a, b, c] ⊂ X is a triangle, each side is contained in the union of the other
two. This is called the tripod property. The center of the tripod is the unique point
[a, b] ∩ [b, c] ∩ [c, a]. Conversely suppose a metric space (Y, d) has the properties
that (i) there is an arc of length d(x, y) between any two points x, y ∈ X , and (ii) the
tripod property holds for any geodesic triangle. Then there is a unique arc between
any two points, and (Y, d) is an �-tree.

Fig. 4.2. A tripod.

For example, let X ⊂ � be the union of three rays from the origin and let d be the
metric on X induced from �. Then X is an �-tree.
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Another example comes from taking the “dual graph” of a measured lamination
(�,μ) in �2, the lift of one on a closed surface S of genus exceeding one [Otal 1996,
§2.3]. For simplicity we will assume that � is minimal without closed leaves.

The points of T will be of two types: (i) the closure of a component (gap) of
�2\�, and (ii) a leaf λ⊂� that is not in such a closure. Define the distance between
the points as follows. Suppose x, y ∈ T are points that correspond to two gaps.
Choose points, also denoted x, y, in each gap and consider the geodesic segment
[x, y] between them. Then the positive number μ[x, y] is the transverse measure of
the segment. “Integration” of this measure determines a distance between the closed
subsets that intersect [x, y]. This definition is independent of the choice of x, y in
their gaps. Given any two points of T, there exist gaps that separate them. Thus the
distance d( · , · ) can be defined between any pair of points of T.

With this distance, T is an �-tree. If (�,μ) is invariant under the action of a
fuchsian group G, the action of G determines a fixed point free isometry of T. The
action is also minimal. Conversely, we have the following basic theorem of Skóra
(see [Otal 1996, Theorem 2.3.5]):

Theorem 4.12.1. Suppose G×Y→ Y is a nontrivial isometric, minimal action of the
fuchsian group G on the �-tree Y . Assume that every subgroup of G that fixes an arc
of Y has a finite index abelian subgroup, and that the action of parabolic elements of
G have translation distance zero in Y . Then the action of G on Y is isometric to the
action of G on the tree T determined by a measured geodesic lamination in �2.

4-12. �-trees and the degeneration of manifolds. Because of its significance in the
general theory of group deformations, we will provide a somewhat lengthy outline
of the approach in [Bestvina 1988] to showing how degeneration results in an �-
tree. This approach has proved useful in establishing hyperbolization for fibered 3-
manifolds [Otal 1996; Kapovich 2001].

Suppose G is a (nonelementary, finitely generated) kleinian group. Fix a set of
generators {g1, g2, . . . , gr } of G. Let {θn : G→ Gn} be a sequence of isomorphisms
to discrete groups. Renormalize if necessary so that a given basepoint point O ∈ �3

is moved least by these generators in the sense that

dn = d(Gn)=max1≤i≤r {d(O, θn(gi )(O))} ≤max1≤i≤r {d(�x, θn(gi )(�x))}
for all �x ∈ �3. Here d( · , · ) denotes hyperbolic distance. Show that if the sequence
{dn} is uniformly bounded, a subsequence can be chosen so that {θk} converges to an
isomorphism θ .

Since we want to study degenerations, assume that lim dn =∞.
Let Wk denote the set of words in the given generators of G which have length
≤ k. Let Fk

n denote the convex hull in �3 of the point set {θn(g)(O) : g ∈Wk}.
Now rescale Fk

n: let Xk
n denote the abstract metric space whose set of points is Fk

n

but the distance between two points is rescaled as ρn(x, y)=d(x, y)/dn , for x, y∈Fk
n .

Thus ρn(x, y)≤ 2.
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A sequence {Yn} of compact, connected metric spaces is said to converge in the
Gromov sense to the metric space Y if the following holds. There is a compact metric
space Z and isometric embeddings Yn ↪→ Z and Y ↪→ Z so that as subsets of Z ,
{Yn} converges to Y in the Hausdorff topology. That is, in terms of the images in Z ,
given any ε > 0 there exists n(ε) so that when n > n(ε), Y is contained in the ε-
neighborhood of Yn and Yn is contained in the ε-neighborhood of Y . Gromov showed
that the limit is uniquely determined up to isometry.

Gromov [1981a, §7] proved that a necessary condition on the metric spaces for
there to exist a Gromov convergent subsequence is that to every ε > 0, there is an
integer N (ε) such that every Yn can be covered by N (ε) ε-balls.

It is interesting to see Gromov’s construction of Z . Set εi = 2−i . For each i there
exists an integer Ni so that every Yn is covered by Ni εi -balls. For each i , introduce
the i-tuple of integers Ai = {(n1, n2, . . . , ni ) : 1 ≤ n j ≤ N j , 1 ≤ j ≤ i}. For fixed n
define inductively a sequence of maps of A1, A2, . . . , Ak, . . . into Yn as follows:

(1) Cover Yn by N1 ε1-balls; choose any one-to-one map I 1
n from the set of N1-

integers A1 = {n1} to the N1 centers of the ε1-balls.
(2) Cover each ε1-ball from the N2 ε2-balls; I 2

n is the map of the set A2 to the set of
centers of the ε2-balls such that (n1, n2) goes to the center of an ε2-ball used to
cover the ε1-ball centered at I 1

n (n1).
(3) Cover each ε2-ball from the N3 ε3-balls; I 3

n is the map of A3 onto the centers of
the ε3-balls such that (n1, n2, n3) goes to the center of a ball in the cover of the
ε2-ball centered at I 2

n (n1, n2). And so on.

Set A = ⋃∞
1 Ak and let In : A→ Yn denote the corresponding map. Consider the

metric space of maps B = { f : A → � : f is bounded} with metric determined by
the norm ‖ f ‖ = supa∈A | f (a)|. Let Z ⊂ B be the compact metric subspace of those
functions satisfying

if a ∈ A1, then 0≤ f (a)≤ supn {DiamYn};
if a ∈ Ak, k > 1, then | f (a)− f (pk−1(a))| ≤ 2εk−1,

where pk : Ak+1 → Ak is the natural projection. The construction is such that for
each a ∈ Ak , I k

n (a) is contained in the 2εk−1-ball centered at I k−1
n (pk−1(a)).

Define hn : Yn→ B by

(hn(x))(a)= dist(x, In(a)), x ∈ Yn, a ∈ A;
here “dist” is the metric in Yn . Verify that the image of hn is contained in Z and that
hn gives an isometric embedding of Yn .

Finally, the space of all compact subsets of a compact set is itself compact with
respect to the Hausdorff topology, so there is a convergent subsequence of {Yn}.

Applying Gromov’s construction to our situation, we get:

Theorem 4.12.2. For each k, there is a subsequence of {Xk
n} which in the Gromov

sense converges to a compact metric space T k .
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Proof. Given ε > 0 we will verify that there exists N (ε) such that each Xk
n can be

covered by N (ε) ε-balls, or equivalently, Fk
n can be covered by N (ε) dnε-balls. If

Wk has W (k) elements, then Fk
n has W (k) vertices and 1

2 W (k)(W (k)− 1) diagonals
(geodesic segments between distinct vertices). The length of each diagonal cannot
exceed 2kdn . Cover the diagonals by εdn-balls centered at points on the diagonals
spaced at distance ≤ εdn . This requires at most

W (k)(W (k)− 1)

2

([
2kdn

εdn

]
+ 1

)
= W (k)(W (k)− 1)

2

([
2k

ε

]
+ 1

)

balls.
Now, by Exercise 1-24, there exists a constant C > 0 such that for each �x in any

triangle or in any tetrahedron in �3, the shortest distance of �x to the edges does not
exceed C . Therefore the collection of balls covers Fk

n if εdn ≥ 2C , since each point
of Fk

n lies in a tetrahedron whose vertices are among the vertices of Fk
n .

Therefore, after passing to a subsequence if necessary and taking a diagonal sub-
sequence, we can arrange matters so that (1) Xk

n → T k in the Gromov sense, (2)
· · · ⊂ T k−1 ⊂ T k ⊂ T k+1 ⊂ · · · , and (3) for g ∈Wk , limn→∞ φn(g) = x∗(g) ∈ T k

exists. �

In short, the rescaled diagonals of Fk
n converge to segments or points in an ambi-

ent compact metric space and the rescaled convex hulls collapse upon them. More
precisely:

Theorem 4.12.3. T k is a finite �-tree, meaning that:

(1) Any two points of T k can be joined by a segment, that is, a subspace isometric to
a closed interval or a point. The segments can be chosen with endpoints in the
set {x∗(g) : g ∈Wk}.

(2) The intersection of any two nondisjoint segments in T k is a segment or point.
(3) The union of two segments with a common endpoint is again a segment.

That T k is finite means it is the union of finitely many segments.
The diagonals in Fk

n give rise to segments in Xk
n that converge to segments or points

in T k ; the endpoints converge to points x∗(e)∈T k, e∈Wk . We claim that the limiting
segments and points cover T k . If not, for some x ∈ T k and some ε, the ε-ball about x
does not intersect any of the limiting segments or points. Suppose xn ∈Xk

n converges
to x . For large n the Xk

n-distance between xn and the rescaled diagonals exceeds
> ε/2. In Fk

n , this distance exceeds εdn/2. Since we have taken ε so that εdn ≥ 2C ,
the corresponding point xn ∈Fk

n lies in an εdn-ball centered at a point on the diagonal,
a contradiction.

For the remainder of the proof see [Bestvina 1988].

Now set T = ⋃
k T k . Then T is a metric space with the three properties of the

theorem above. Therefore it is an �-tree. The theory continues by studying the action
of G on T . The basic result is that it acts by isometries so that gz(h) = z(gh) for
z ∈ T and g, h ∈ G, where z(g) = lim θn(g)(zn) and z = lim zn . Deeper study
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leads to a compactification of the space of algebraic limits and a proof of Thurston’s
compactness theorem (page 206).

4-13. The isoparametric inequality for �3. This states [Chavel 1993, §6.4] that if
X ⊂ �3 is a compact set with piecewise smooth boundary and volume Vol(X), then
the surface area of ∂X strictly exceeds the surface area of the hyperbolic ball of
volume Vol(X), unless X itself is a ball. Referring back to the formulas on page 16,
we find that the area of ∂X exceeds 2Vol(X).

A variation of an argument of [Cooper 1999] yields the following interesting fact.

Suppose M(G) is a closed manifold. There is a presentation of G consisting of m
generators and 2

5(m+ 1) relations for which Vol(M(G)) < 2
5π(m+ 1).

Proof. Choose a generic polyhedron PO such that each vertex is shared by three edges
and each edge relation has length three, that is, three polyhedra in the orbit share the
edge.

Construct the dual graph � to the orbit of PO. Recall this is done by connecting
the center O to the centers of the polyhedra of the orbit that share a face with PO, and
so on. The vertices of � are the points of the orbit G(O).

Each piecewise geodesic loop in � that surrounds a single edge is a geodesic trian-
gle transverse to faces of the orbit of PO. If two edges e, e′ of PO are related e′ = g(e)
for g ∈ G then the triangle about e′ is the g-image of the triangle about e.

The number of triangles in � with vertex O is equal to the number s of edges of
PO. The number of triangles which are inequivalent under G is s/3. Corresponding
to each vertex of PO is a cone in PO with vertex O and with its three sides contained
in the geodesic triangles.

The union of all these triangles {
} separates �3 into simply connected polyhedra
{X} each of which contains exactly one vertex in the orbit of the vertices of PO. Each
component X projects injectively into M(G).

Since PO is a compact convex polyhedron, its boundary is a topological sphere.
Euler’s formula for the boundary is E−F+V =2. The number of vertices V is related
to the number of edges E by V = 2E/3. The face pairing transformations generate
the group and there are F/2 = m of these. Therefore E = 6(m + 1)/5. There are E
edge relations, but the edge cycles all have length three leaving E/3 = 2(m + 1)/5
independent relations.

Now we bring in the fact that the surface area of each component X exceeds twice
its volume. Each geodesic triangle lies in the boundary of exactly two polyhedra X .
Down in M(G) count the distinct projections {π(X)}, which fill up M(G). There
are N = E/3 distinct triangles {π(
)}. The sum of the area of the distinct {π(
)}
exceeds the volume of M(G), since each π(
) borders two of the components {X}
and is counted twice when totaling up the volume. The sum of the areas of the distinct
triangles is bounded above by πN , where N = 2

5(m+1) is the number of independent
edge relations of P0. �
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4-14. The Gromov norm. Let M be a closed hyperbolic 3-manifold. Gromov showed
that its volume can be obtained as the limit of a process of approximation by 3-chains:

We consider all continuous maps {σ } of a standard euclidean regular tetrahedron

into M. The theory allows us to assume that σ(
) is a hyperbolic tetrahedron. These
maps are a basis of the vector space of singular real chain complexes {∑ aiσi } in M,
ai ∈ �. The most natural source of 3-chains are triangulations of M by tetrahedra
(these are easily constructed from a fundamental polyhedron).

Recall from Exercise 1-23 that among all tetrahedra, the regular ideal tetrahedron
has the maximum volume.

Gromov’s norm is a seminorm on the real singular homology H3(M;�) (here we
are only considering the 3-homology). Let [M] denote the third homology class of
the whole manifold (the fundamental class). Consider all singular 3-cycles c that
represent this class, for example, the cycles coming from triangulations. We can
express c as c =∑ aiσi . Define |c| =∑ |ai |. Then define the Gromov norm of M

‖M‖ = inf{|c| : c is a singular cycle representing [M]}.
(See [Thurston 1979, §6.1] or [Benedetti and Petronio 1992, §C.3].) The Gromov
norm has the property that for any continuous map f :M→M1,

‖M‖ ≥ |deg f |‖M1‖.
Gromov’s Theorem says that

‖M‖ = Vol(M)

V3
,

where V3 = 1.01294 · · · is the volume of the regular ideal tetrahedron.
This is an remarkable formula. One can view it as showing that the volume of M a

topological invariant, or as giving a topological interpretation of the volume of closed
hyperbolic manifolds. The same formula holds for hyperbolic n-manifolds, n ≥ 2.
(Prove it for n = 2, when the volume is 4π(g− 1) and V2 = π .)

For an orientable, closed manifold M3, not necessarily hyperbolic, the number
V3 ‖M3‖ is called the simplicial volume of M3. The Gromov norm has the property
that for any continuous map, say f :M→M1,

‖M‖ ≥ |deg f | ‖M1‖.
Can the theory be extended to cusped manifolds of finite volume?

4-15. The space of geodesics. Show that the space of geodesics in �2, in the topology
coming from the Hausdorff metric, is homeomorphic to the quotient (�1×�1\δ)/〈J 〉,
where J is the involution (ζ1, ζ2)→ (ζ2, ζ1) and δ = {(ζ, ζ ), ζ ∈�1} is the diagonal.

Show that the quotient space is in turn homeomorphic to an open Möbius band.
Hint: Represent �1 × �1 \ δ as a square torus less a simple loop representing the
diagonal: take the torus to be the quotient of a square lattice, and in a fundamental
square represent δ as a diagonal. Let 
1,
2 denote the resulting triangles and J
the reflection J :
1↔
2 in δ. Note that 
1 is a fundamental domain for the torus
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Fig. 4.3. Computation of the modulus of a marked quadrilateral.

group augmented by J . Label the sides s1, s2 of
1 and s ′1, s ′2 of
2 where J : si↔ s ′i .
Under the augmented group a pair of points on side s1 is equivalent to a pair on s2,
in the opposite order. Using this correspondence, glue the side s1 to s2. This forms a
Möbius band.

4-16. Circle packings I. In this problem we will report on Bob Brooks’ important
papers [1985; 1986]. We start by noting that three circles each externally tangent
to the other two, bound a circular triangle — an ideal triangle (actually two of them,
one containing∞). In �2 such a configuration is uniquely determined up to Möbius
equivalence.

Next consider four circles, each externally tangent to exactly two others. They
bound a circular quadrilateral Q. Two such configurations are generally not Möbius
equivalent. Recall that two rectangles of widths a, a′ and heights b, b′ are Möbius
equivalent in such a way that the horizontal sides and vertical sides correspond if and
only if a/b = a′/b′. Brooks discovered an analogous modulus for circular quadrilat-
erals:

Designate one pair of opposite sides of Q as horizontal and the other as vertical.
Order the sides as top, bottom, right and left. This makes Q into a marked quadri-
lateral. A circle bounding a disk in Q will be called horizontal if it is tangent to the
left vertical side and the two horizontal sides; it will be called vertical if it is tangent
to the top horizontal side and to the right and left vertical sides.

Suppose, for example, we can insert a horizontal circle. Its exterior in Q consists of
two circular triangles and perhaps another quadrilateral Q1. Insert another horizontal
circle in Q1, if possible. Continue the process of inserting horizontal circles until
after n1≥ 1 steps we can no longer do so (this process must stop after a finite number
of times). Then with the remaining quadrilateral Qn1 , start inserting vertical circles
until that is no longer possible. Say the number of vertical circles is n2 ≥ 1. Then
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again start inserting horizontal ones. And so on. Form the continued fraction

r(Q)= n1+ 1

n2+ 1
n3+ · · ·

;

it converges to a positive real number r(Q)which is rational if and only if the sequence
{ni } terminates after a finite number of terms.

Theorem 4.12.4. Two marked quadrilaterals Q, Q′ are Möbius equivalent consistent
with the marking if and only if r(Q)= r(Q′).

The set of marked Q with finitely many circles is dense in the configuration space
of all marked quadrilaterals Q.

Next consider the case of a geometrically finite group G without parabolics. By
a circle packing in � we will mean a G-invariant collection of round circles with
mutually disjoint interiors which projects to ∂M(G)=�(G)/G to give a finite pack-
ing by simple curves, which we will again call circles, bounding mutually disjoint
regions. Add additional circles so as to arrive at a G-invariant packing in�(G), finite
in ∂M(G) with the property that all interstices are either triangles or quadrilaterals.
This will now be our definition of circle packings.

Each circle packing has a nerve which is the graph obtained by associating each
circle with a vertex and each pair of tangent circles with an edge.

From the point of view of ∂M(G) there are a finite number of quadrilaterals. Mark
the quadrilaterals and compute their moduli {r(Q)}.
Theorem 4.12.5. Suppose G, G ′ are geometrically finite (torsion free) groups without
parabolics. Assume there is an isomorphism θ between nerves of circle packings on
∂M(G) and ∂M(G ′) such that corresponding marked quadrilaterals have the same
moduli. Then G and G ′ are conjugate; M(G) and M(G ′) are isometric.

The group G may be quasiconformally deformed an arbitrarily small amount to a
new group Gε which has an isomorphic circle packing such that the moduli of the
corresponding quadrilaterals on ∂M(Gε) are rational. Therefore Gε has a finite
circle packing such that all interstices are triangles.

There exists a geometrically finite group �∗∗ε ⊃Gε with M(�∗∗ε ) a closed manifold.

Here are some remarks concerning the proofs. Given a circle packing of�(G), the
group � generated by G plus the reflections in the hyperbolic planes supported by the
circles is geometrically finite. (It suffices to consider the orientation preserving index
two subgroup.) The deformation space of � depends on one real parameter for each
quadrilateral. Small changes in the parameter can be realized by a quasiconformal
map with small dilatation that maps the circle packing onto a combinatorially identical
one close by.

Once we get a circle packing such that the moduli of all quadrilaterals is rational,
we can add circles to get a larger packing such that all interstices are triangles. Denote
by �ε the group generated by Gε and reflection in all the planes supported by circles.
�ε too is geometrically finite.
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In �ε , put a new circle through the three vertices of each interstitial triangle. It
is orthogonal to the three forming the triangle. Then form the even larger group �∗ε
generated by �ε and reflections in the hyperbolic planes supported by the new circles.
Again we may consider the orientation preserving subgroup, which is of index two.
It too is geometrically finite. There are only a finite number of points which, mod �∗ε ,
are not contained in the interior of any disk; these become rank two parabolic fixed
points. The corresponding manifold has finite volume.

So far the proof can be adapted to apply when there are parabolics in G.
Now we outline the proof of the third statement of the theorem. We have the finite

volume group �∗ε , where we have replaced the original by its orientation preserving
subgroup, now of index four in the group with all the circle reflections. The only
parabolics are those associated with the rank two subgroups. Next do Dehn surgery
on the rank two cusps to get a group �∗∗ε whose quotient manifold is closed. Our
original deformation Gε is a subgroup of �∗∗ε without any parabolics. Because �∗∗ε
can be taken arbitrarily close to �∗ε , a small quasiconformal deformation G ′ε of Gε

appears as a subgroup of �∗∗ε . This completes the argument.

4-17. Circle packings II. There is an important technique based on circle pack-
ings, motivated by results of Koebe, Andreev, and Thurston and by a conjecture of
Thurston (confirmed in [Rodin and Sullivan 1987]), and extensively developed into a
tool in pure and applied mathematics, especially by Ken Stephenson and colleagues
[Stephenson 2005]. We will base our report here on [Beardon and Stephenson 1990];
see also the expositions [Stephenson 1999; 2003].

Suppose S is an abstract orientable, closed polyhedral surface, composed of tri-
angles (actually one can begin with a topologically triangulated surface or even an
abstract 2-complex). The prototypical example is a topological 2-sphere. There are
likely to be vertices of both positive and negative discrete curvature. Denote the graph
of edges and vertices by �. The basic theorem asserts that there exists a homeomor-
phic closed Riemann surface R — a sphere, a torus, or a hyperbolic surface — such
that � is combinatorially isomorphic to the nerve of a circle packing of R. That is,
there is a circle packing of R (in the spherical, euclidean or hyperbolic metric) such
that the graph (nerve) formed by taking vertices to be the centers of the circles, and
edges the geodesic segments between centers of circles, is isomorphic to �. Further-
more, R is uniquely determined by the combinatorics of the packing, up to conformal
equivalence. For the case g≥ 2, the set of Riemann surfaces that can be circle packed
is dense in the Teichmüller space [Bowers and Stephenson 1992].

If the original surface S is a region in �, say with fractal boundary, one typically
proceeds as follows. Restrict the regular hexagonal packing of � with radii δ to S,
and select the connected component containing a prescribed basepoint O . Form the
nerve of the resulting configuration in S and join the boundary vertices to∞ by arcs,
thereby creating a graph on �2. Construct the corresponding circle packing of �2.
Matters can be normalized so that∞ corresponds to∞ and the disk in the packing
with center∞ is the exterior of the unit disk. In effect, the packing of S becomes a
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Fig. 4.4. Top: a triangulation of �2 (right) taken from an owl (left) by drawing edges between
the centers of tangent circles and lines to∞ from boundary circles. Bottom: its realization as
a circle packing in the unit disk.

packing of the unit disk �. The euclidean circles are equally hyperbolic circles, or
horocycles, if they are tangent to ∂�. It is proved in [Rodin and Sullivan 1987] that
as the radius δ→ 0, the quasiconformal simplicial map set up by mapping the nerve
of the packing of S to that in � converges uniformly on compact subsets of S to a
Riemann mapping (there needs to be another normalization to account for rotation
about O). Many other investigations have followed from this pioneering result.

If S is a surface with boundary, there is a commonly used intrinsic method of as-
signing boundary values. Start a finite triangulation of S. One method is to assign the
value one to each boundary edge, and require that the nerve of the circle packing have
the same property. This gives a different shape to the circle packing of a plane region
than the process above. Another method is to assign a “radius” to each boundary
vertex and require the boundary circles in the resulting packing to have the assigned
radii. This can be done in hyperbolic geometry where the packing is done in � and
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radius ∞ corresponds to a horocycle. In either case the circle packing is uniquely
determined up to Möbius equivalence.

The circle packing method can be described as a process to change combinatorics
into geometry! For example, experimental work in neurology uses this method in an
attempt to set up a universal coordinate system for the cortex surface of the human
brain. The surface of the cerebral cortex is highly convoluted and varies from person
to person. Using MRI scans it can be triangulated into many tiny triangles. The circle
packing method can be used to replace the triangulated cortex by a circle packing
of a plane region. The hope is that this “flattening” of the cortex will make those of
different individuals more easily comparable.

There is a theory of packings where the circles have prescribed intersection angles
given by a function on the edges of the triangulation [Bobenko and Springborn 2004;
Rivin 1996; Thurston 1979, Chapter 13]. ,It is closely tied up with the study of
hyperbolic polyhedra in �3.

4-18. Ideal triangulations; spinning. Start with a closed hyperbolic surface S of
genus g. Take a family P of 3g − 3 mutually disjoint simple geodesics forming a
pants decomposition of 2g − 2 triply connected regions (see Section 5.3). On each
geodesic of P fix one point. Draw 3 mutually disjoint geodesic arcs between the
pairs of points, dividing each pants into two simply connected regions. Now “spin”
the “triangulation” by applying Dehn twists (Exercise 5-6) of higher and higher order
about the simple loops of P . At each stage realize the edges of the auxiliary arcs by
geodesic segments. In the limit there will result a geodesic lamination � of S. The
leaves of � will consist of the geodesics of P , plus a finite number of infinite length
leaves spiraling about these, three in each P . Up in the universal cover, say �, the
lifts will give a tessellation by ideal triangles. Each ideal triangle will project to a
complementary component of �; a finite number will cover S, except for a set of
measure zero. In fact there will be exactly 2(2g− 2) triangles.

Return again to S with the geodesics giving a pants decomposition P . Suppose
θ : π1(S)→ π1(M) is an injection to some hyperbolic manifold, parabolics corre-
sponding to parabolics. Each geodesic of P corresponds to a uniquely determined
geodesic of M. Even more, each geodesic of � corresponds to a unique geodesic of
M. Now fill in the spaces with (immersed) ideal triangles. This results in a pleated
surface in M. It is easiest to carry out this construction in �3 directly — there the ideal
triangles are embedded. In visualizing the result in M, recall the uniform injectivity
property (page 150).

It is much easier to find ideal triangulations when there are punctures. Designate
a point v on S. We can divide S into 4g− 2 triangles were all the vertices are at v.
The triangulation has 6g − 3 edges. Now puncture S at v. In the hyperbolic metric
on the punctured surface, in the same combinatorics we can take all the edges to
be geodesics, dividing the surface into 4g− 3 ideal triangles. (Correspondingly, the
universal cover will be tessellated by ideal triangles.) We can talk about the space
C(S) of all possible ideal triangulations based on v.
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Once an ideal triangulation is specified on S it is specified at all points of Teich(S).

Return now to the ideal triangulation on the once punctured surface S. It is deter-
mined by a real vector �x ∈ �

6g−3
+ as follows. To each edge ek associate a positive

number: Focus on the two ideal triangles that share ek and take the orthogonal pro-
jection of the third ideal vertex of each onto ek . Take the k-th component of �x to be
exk where xk ≥ 0 is the distance between the two projections. In fact, once we fix a
basepoint, there is a unique left earthquake (Exercise 3-31) that realizes the described
motion. The vectors {�x} give a coordinate system for C(S) over Teich(S). It is no
accident that (6g − 3) is the real dimension of Teich(R) up to normalization. It is
shown in [Bonahon 1996] how to get real analytic coordinates of Teich(R) by using
these numbers.

According to Jeff Weeks (personal communication) it is “almost surely true” that
every finite volume hyperbolic manifold with cusps can be decomposed into positively
oriented ideal tetrahedra, but at this writing this remains a conjecture. However it is
true that every such manifold has a decomposition into ideal polyhedra (Exercise 3-
25). Even so, there is no proof that one can subdivide the polyhedra into ideal tetrahe-
dra so that the subdivisions agree on the common faces of adjacent polyhedra [Weeks
1993; 2005; Petronio and Weeks 2000].

On the other hand, the decomposition can be achieved if the “positively oriented”
requirement is dropped to allow some flattened tetrahedra; the flattened tetrahedra
appear where the polyhedral subdivisions do not agree on a common face. Here a
flattened tetrahedron is a planar quadrilateral whose four ideal vertices lie on a circle
in �2. SnapPea [Weeks n.d.] uses such decompositions to numerically approximate
the volumes of cusped manifolds, using the formulas recorded in Exercise 1-23. More
generally, the program computes hyperbolic structures on manifolds, if such exist. It
is a fundamental and productive tool in experimental work on the subject. The process
SnapPea searches for a hyperbolic structure is as follows [Weeks 2005]. Start with a
topological ideal triangulation τ of n simplices of a cusped manifold, for example, a
knot complement. Using the combinatorial data implicit in τ , write down a system of
equations expressing the fact that a solution allows τ to be homotoped to a (geodesic)
ideal triangulation that is compatible with the given hyperbolic structure.

In more detail, a (geodesic) ideal tetrahedron is uniquely determined up to isometry
by the cross ratio of its ideal vertices (Exercise 1-22). To form the manifold, the ideal
tetrahedra need to be put together by a sequence of face identifications. The total
angle about each edge of the complex needs to be 2π . At the cusps there must be
horosphere cross sections so as to become rank two cusps (in more general cases,
there is a condition that in effect says that a Dehn surgery must be undertaken). The
bottom line is that there results a finite number of algebraic conditions to be satisfied
by the tetrahedra if the required identification can be accomplished (in �3). If SnapPea
finds a solution, it is shown to be mathematically correct using Snap [Goodman n.d.],
another software tool that uses exact arithmetic. See [Neumann 1999; Coulson et al.
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2000; Neumann and Reid 1992] for more details. As indicated above, there may be
some complications in the construction. See also Exercise 3-5.

There is a more complicated procedure used for closed hyperbolic manifolds.

4-19. Prove that Int(M(G)) has finite volume if and only if the injectivity radius
Inj(x)→ 0 as any x ∈ Int(M(G)) approaches the ideal boundary.

4-20. Simple loops in M(G); primitive curves. What should it mean that γ ⊂M(G)
is a simple loop, assuming γ is not retractable to a point or a cusp? On one level
the answer is obvious: Every closed curve can be deformed in space so it becomes
a simple loop. But on a deeper level we may want to use the criterion that arises
as follows: Given a closed curve γ let g ∈ G be an element determined by γ ; that
is, the lift of γ from a point O ∈ �3 over its origin terminates at g(O). Here g is
necessarily loxodromic. The stabilizers of the pair of fixed points of g determine a
cyclic subgroup. Is g a generator of this cyclic group? Or, is there another element
g1 of it such that g = gn

1 with n ≥ 2? If g is indeed a generator, the curve γ is called
primitive. Even if γ is freely homotopic to a simple loop on ∂M(G), it may not be
primitive. Of course, for a surface itself, all nontrivial simple loops are primitive.

Here is an example. In Exercise 4-24 we will show that there is a M(G) with a
single rank two cusp and an essential cylinder C with one boundary component on
a cusp torus and the other in ∂M(G). Let c ⊂ C be a central curve. Let c′ denote
the freely homotopic curve on the solid torus. Let d be a simple loop on the cusp
torus with is transverse to c′. Do (1, 2) Dehn surgery on the cusp so that in the new
manifold which has no rank two cusps, c′ ∼ d2. In the new manifold, c remains freely
homotopic to a simple loop on the boundary, but it is not primitive.

In the original manifold there is also an essential cylinder C∗ with both boundary
components on ∂M(G) and whose central curve is freely homotopic to c. In the new
manifold, C∗ remains an essential cylinder, and its core curve is not primitive.

On the other hand, a simple closed geodesic in M(G) is automatically primitive!

4-21. Geometric limits by renormalization. Suppose {γn} is a collection of closed
geodesics with the property that only a finite number meet any given compact set
K ∈ M(G) and that their lengths are uniformly bounded by L < ∞. Fix origins
On ∈ γn . Consider the sequence {TnGT−1

n } where Tn maps On to the origin O in
say the ball model. Prove that there is a geometrically convergent subsequence to a
limit H . Show that in M(H), the renormalized geodesics {γ ′m} converge to a closed
geodesic γ .

4-22. Every surface has a decomposition by pants of medium size. Consider the
Teichmüller space Teichg of closed surfaces of genus g. Prove with Bers [1985] that
there exists a number Lg such that every surface S ∈Teichg has a pants decomposition
(see Exercise 4-18 and Section 5.3) in which no boundary curve of a pants has length
exceeding Lg.
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4-23. If � is not uniformly perfect (Exercise 1-30), prove that there is a sequence of
Möbius transformations {An} such that {An} converges in the Hausdorff topology to
a closed set that contains an isolated point. Conversely, if there is such a sequence
{An}, � is not uniformly perfect.

4-24. Joining unpaired or paired punctures. Here are two related constructions.

Construction 1. Suppose h1, h2 are horodisks at different parabolic fixed points cor-
responding to two rank one parabolic subgroups of a group G (or of two different
groups G1,G2).

Take any Möbius transformation T that sends the exterior of h2 onto the interior of
h1 and conjugates the parabolic subgroups. Form the augmented group G∗ = 〈G, T 〉.

Down in the quotient, there is a horocycle bounding a once punctured disk about
each of the punctures. Join the manifold to itself by pasting together these two punc-
tured disks. The punctured disk appears in the interior of the new manifold M(G∗),
which is geometrically finite if the original manifold is. A single rank one parabolic
conjugacy class arises from the conjugation of the two possibly different original
classes. See Figure 4.5.

Construction 2. Suppose h1, h2 are disjoint horodisks at a rank one parabolic fixed
point.

Take any Möbius transformation T that sends the exterior of h2 onto the interior of
h1 and conjugates the rank one parabolic group to itself. Form the augmented group
G∗ = 〈G, T 〉.

Down in the quotient, the horocycles about two punctured disks form the boundary
of a cusp pairing cylinder C . The effect of adjoining T is to paste together the two
punctured disks and the horocycles bounding them. This creates a solid cusp torus
in M(G∗) which corresponds to the rank two group that has been created. The new
manifold is geometrically finite if the initial one is.

The simplest application of Construction 2 is to the modular group M2 of Exer-
cise 2-9, which acts in the upper and lower half-planes. The new parabolic has the
form T z = z + τ where Im τ 
= 0. The process gives us a 4-punctured sphere with

Fig. 4.5. Two unpaired punctures determine a handle. The gray curves represent solid pairing
tubes.
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complex parameter τ . For this case we can take τ so that |Im τ |≥1+2ε. The resulting
group has infinitely many regions of discontinuity, each of which is simply connected.
The manifold M(G∗) is bounded by a 4-punctured sphere with the punctures arranged
in two pairs. In addition M(G∗) has a rank two cusp which is hidden from the viewer
looking only at �2. A simple loop that separates the two punctures of each pair on
∂M(G∗) is freely homotopic to a simple loop on the cusp torus.

Construction 2 can be used to give an explicit example of the following situation
referred to in Exercise 4-20: Suppose M(G) has a rank two cusp and let M0 be the
result of removing a corresponding solid cusp torus from M(G). It is possible that
there are two nontrivial, nonparallel simple loops α1, α2 in ∂M(G) and a simple loop
αc in the cusp torus of M0, such that the pairs (αc, α1), and (αc, α2) both bound
essential cylinders in M0. Of course, (α1, α2) then bound an essential cylinder in
M(G).

To obtain such an example, start with the algebraic limit of a quasifuchsian group,
say closed surface group, that has a surface of genus g on the bottom, and a pinched
surface — say a single pinched surface — on top. There is a simple loop α2 in the
bottom surface that bounds an essential cylinder with a loop about either of the punc-
tures on top. Now apply Construction 2 to replace the top pinched surface by a closed
surface S of genus g and a rank two cusp. The simple loops about the punctures de-
termine a simple loop α1 on S, which is freely homotopic to α2. The two simple loops
about the punctures also determine the meridian αc on a cusp torus corresponding to
the new rank two cusp. These three simple loops fulfill the requirements.

Figure 4.6 is an implementation of Construction 2. The starting point is the thrice
punctured sphere fuchsian group. The 6 punctures are arranged in 3 pairs, each pair
supports two horodisks. The first picture shows the result of joining one pair of
horodisks resulting in the quotient manifold M1 with one rank two cusp and ∂M1

a 4-punctured sphere. For the second picture, another pair of horodisks are joined

Fig. 4.6. Earle–Marden coordinates for 4-punctured spheres and 2-punctured tori.
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Fig. 4.7. Earle–Marden coordinates for genus-2 surfaces.

resulting in M2 with two rank two cusps and ∂M2 a 2-punctured torus. The final
step gives Figure 4.7. Here the final pair of horodisks are joined resulting in M3 with
three rank two cusps and ∂M3 a genus-two closed surface. There is one free complex
parameter for each rank-2 cusp. These extend to become holomorphic coordinates
of the Teichmüller spaces of the respective surfaces and are called the Earle–Marden
coordinates. In this sequence of figures, the parameters are chosen so that each group
is a subgroup of the next.
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Deformation spaces and the ends of manifolds

Our work in the earlier chapters, especially our understanding of the structure of
geometrically finite manifolds, has prepared the ground for understanding the results
that will be discussed here, without most proofs. At center stage are the three funda-
mental conjectures, now theorems, concerning the structure of hyperbolic manifolds
with finitely generated fundamental groups but which are not geometrically finite: the
Tameness Theorem, Ending Lamination Theorem and Density Theorem. The chapter
begins with a study of the representation variety. We go on to present the quasi-
conformal deformation spaces of geometrically finite groups and their boundaries,
in particular the quasifuchsian spaces and their Bers slices. To understand generic
boundary points of these spaces we are confronted with the need to understand geo-
metrically infinite ends. These are the ends with “missing” Riemann surface boundary
components. However tameness tells us that these ends have product neighborhoods.
And instead of boundary components there are “ending laminations”. Then density
tells us that indeed every finitely generated kleinian group is the algebraic limit of
geometrically finite groups.

5.1 The representation variety

Suppose G=〈g1, g2, . . . , gr 〉 is a finitely generated kleinian group (without elliptics),
that is G is isomorphic to the fundamental group of M(G). By the Scott–Shalen
theorem, there are a finite number of relations {Rk(g1, . . . , gr ) = id}, each of which
is a word in the generators, such that any relation in the group is a consequence of
these.

If we vary the entries in the generating matrices {gi } we will get a new set of
Möbius transformations. The group generated by the new set will be a homomorphic
image of G if and only if the new set of generators {g′i } satisfy the same relations
{Rk(g′1, . . . , g′r ) = id}. These are algebraic equations in the matrix entries. In this
book, a representation of G is a homomorphism into PSL(2,�) or into PSL(2,�).

A representation is called elementary if the image group is elementary and called
reducible if the image group has a common fixed point (Exercise 2-1).

239
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We will not want to distinguish between conjugate representations. Therefore,
for our purposes, we define the representation variety R(G) as the quotient of the
set of nonelementary representations under the conjugation equivalence relation ≡:
two representations satisfy ϕ1 ≡ ϕ2 if there is a Möbius transformation T such that
ϕ2(g)= T ◦ϕ1(g) ◦ T−1, for all g ∈ G. Thus

R(G)=
{ϕ | ϕ : G→ H is a type preserving homomorphism to a nonelementary group}/≡.

By type preserving we will mean that if g ∈ G is parabolic, so is ϕ(g). This means
that rank one and rank two parabolic groups are preserved, but it does not prevent
new parabolics (or elliptics) appearing in the target groups.

We have to admit that we are taking certain liberties in our use of the term “repre-
sentation variety”. Actually R is the quotient of an open subset of the affine algebraic
variety of type preserving representations into SL(2,�). For a discussion of repre-
sentation varieties see [Culler and Shalen 1983] or [Kapovich 2001].

We emphasize that R(G) is not just a space of groups, but a space of marked groups.
A group H which the target of nonconjugate homomorphisms ϕ1, ϕ2, G → H , is
represented by distinct points of R(G).

Each (normalized) matrix depends on 3 complex parameters; the set of generators
depends on 3r complex parameters. That s relations must be satisfied costs 3s condi-
tions giving a dimension of at most 3r − 3s. But then we do not distinguish between
two groups that are conjugate. Conjugacy depends again on 3 complex parameters,
so the dimension of the quotient is now at most 3r − 3s− 3.

The parabolicity condition further reduces the dimension of R(G). Each cyclic
parabolic conjugacy class gives rise to a relation of the form tr2(R′k(g1, . . . , gr ))= 4.
If there are b1 rank one classes, and b2 rank two classes, R(G) has complex dimension
3r − 3s − b1− 2b2− 3. So if G is a fuchsian group representing a closed surface of
genus g, the �-dimension of R(G) is 3 ·2g−3−3= 6g−6. If G represents a finite
area surface of genus g and b punctures the dimension count is 3(2g+b−1)−b−3=
6g+2b−6. Also see Exercise 4-13. For rigorous computations see [Culler and Shalen
1983], or the discussion of T(G) below.

The groups represented by points of R(G) are in general not discrete and perhaps
not even finitely presented. Furthermore, R(G) is typically not connected. For exam-
ple if X is an orientation reversing Möbius transformation and there is no orientation
preserving map that induces a representation from G to XG X−1, then G and XG X−1

are in different components.

We have removed the elementary groups. Of these, the most significant are sub-
groups conjugate into SO(3), rotations of the ball. For example there is an isomor-
phism of a closed surface group of any genus ≥ 2 to a subgroup of SO(3) [Greenberg
1981]. Besides fitting better into our theory, a big advantage of removing them is that
the quotient is then Hausdorff: disjoint points have disjoint neighborhoods. Not only
for nonelementary groups, but more generally for irreducible groups, the Hausdorff
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property holds, as shown by the following Lemma. Denote the space of irreducible
representations by Homir(G; PSL(2,�)).

In all these spaces, the topology used is the topology of algebraic convergence.

Lemma 5.1.1. Assume that for ϕ1, ϕ2 ∈Homir(G; PSL(2,�)) the target groups H1=
ϕ1(G) and H2 = ϕ2(G) are not conjugate. There exist neighborhoods N1 of H1 and
N2 of H2 in Homir(G; PSL(2,�)) such that no conjugate of φ ∈ N1 is in N2.

Proof. Given a neighborhood N1 ⊂ Homir(G; PSL(2,�)) of H1 with H2 /∈ N1, we
claim that there exists a neighborhood N2 of H2 with the property that no representa-
tion φ ∈ N1 is conjugate to a representation in N2. If we can prove this, by reversing
the roles of H1 and H2, both neighborhoods can be taken sufficiently small to meet
the requirements.

Assume our claim is false. Then there is a sequence φn ∈ Homir(G; PSL(2,�)

in N1 and a corresponding sequence of Möbius transformations {Tn} such that the
representations

φ′n(G)= Tn ◦φn(G) ◦ T−1
n ,

satisfy limφ′n(G)= ϕ2(G)= H2.
By Lemma 2.1.1 we may assume the fixed point(s) (pn, qn) of Tn converge to

(p, q) ∈ �2, and that for all indices Tn is loxodromic with qn the attracting fixed
point, parabolic pn = qn , or elliptic. By hypothesis, no subsequence of {Tn} can
converge to a proper Möbius transformation.

By Exercise 2-1 there exist h1=ϕ1(g1), h2=ϕ1(g2)∈H1 with distinct fixed points.
We may assume that it is h1 that does not fix p the limit of the repelling fixed points
of {Tn}, assuming that the Tn are loxodromic — the other cases are handled similarly.

Choose a small enough neighborhood Np of p so that φn(g1)(Np)∩Np =∅ for all
large indices. Choose z /∈ Np. Then choose a small neighborhood Nq of q. If p = q
take Nq ⊂ Np.

For all large indices, T−1
n (z) ∈ Np. So φn(g1)(T−1

n (z)) /∈ Np. In fact for all large
indices Tnφn(g1)T−1

n (z) ∈ Nq . Since Nq can be taken arbitrarily small, we conclude
that lim Tnφn(g1)T−1

n (z)= q, and then that this holds for all z 
= p. We have reached
a contradiction to our assumption that limφ′n(G)= H2. �

For more on representation varieties see Exercises 5-19 and 5-20.

The discreteness locus

The discreteness locus of a geometrically finite G is the following closed subset:

Rdisc(G)=
{θ ∈R(G) | θ : G→ H is a (type preserving) isomorphism to a discrete group H}.

The target group θ(G) may be a quasiconformal deformation of G, but the isomor-
phism θ itself might not be induced by a quasiconformal map of �2. Thus the interior
of the discreteness locus may have many components.
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In the literature the commonly used notation for Rdisc(G) is ��(G), where �

stands for homotopy equivalence and � reminds us that the topology is that of alge-
braic convergence.

Curiously, the convex cores of groups in Rdisc(G) are of a uniform “size”, as indi-
cated below.

Theorem 5.1.2.
(i) [Canary 1996] The injectivity radius about points in the convex core of any given

manifold M(H) is bounded above.
(ii) [Evans 2006] There exists K = K (G) such that the radii of balls embedded in

the convex core C(M(H)) of every H ∈Rdisc(G) do not exceed K (G).
(iii) [Evans ≥ 2007] Suppose M(G) has incompressible boundary. There exists K =

K (G) <∞ such that the injectivity radius of points in the convex core of M(H)
is bounded by K for every H ∈Rdisc(G).

In the statement of (i), we are incorporating the Tameness Theorem. Note that the
largest embedded balls about points of the convex core are not necessarily contained
in the core. That the results are true was expected since there are pleated surfaces of
fixed finite genus that exit each end. That the embedded balls are uniformly bounded
prevents the manifolds from flying apart at the ends. The recently announced (ii) was
a conjecture of McMullen. When M(H) is totally degenerated, the convex core coin-
cides with M(H) itself. Statement (iii) does not hold for manifolds with compressible
boundary. A counterexample is constructed in [Evans 2006] using a connected sum
of surfaces.

On the other hand another conjecture of McMullen is still open: The rank of a group
is the minimal number of generators. Given k, does there exist R= R(k) such that for
any closed manifold M(G) of rank k, every point x ∈ Int M(G) has injectivity radius
≤ R(k)? Note that if this were to fail, there would be a sequence whose geometric
limit is �3; see [Souto 2006].

The quasiconformal deformation space

The group H is a quasiconformal deformation of the geometrically finite (nonele-
mentary) group G if there is a quasiconformal map F : �2 → �2 that induces an
isomorphism θ : G → H for which F ◦ g(z) = θ(g) ◦ F(z), for all g ∈ G, z ∈ �2.
Such a group H is necessarily discrete and nonelementary. In particular, g ∈ G
is parabolic if and only if θ(g) ∈ H is parabolic. The map F in turn is uniquely
determined up to normalization by its Beltrami differential defined on �(G) with the
invariance property given by Equation (2.5). When we explicitly normalize, we will
normally arrange things so that (0, 1,∞)⊂�(G) and F fixes these points.

The quasiconformal deformation space of G is defined as the following open, con-
nected subset of the interior of Rdisc(G):

T(G)= {θ ∈R(G) | ϕ is induced by a quasiconformal deformation of G}.
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Thus two normalized deformations F1 ∼ F2 are taken to be equivalent if they induce
the same isomorphism θ . Another way of putting this is that if f1, f2 denote their
projections to ∂M(G)→ ∂M(ϕ(G)), then f2 ◦ f −1

1 extends to M(G)→M(G) and
is homotopic to the identity on Int M(G)— see Theorem 3.7.4. It is not necessarily
true that f2 ◦ f −1

1 is then homotopic to the identity on ∂M(G); see Exercise 5-25.
For a geometrically finite group G, one can follow its deformations by changes in a

fundamental polyhedron PO(G) [Marden 1974a]. Along with any small deformation
of G (or of any other point of T(G)) PO(G) is correspondingly deformed. When
parabolics are preserved, no essential change occurs at the cusps. It follows that para-
bolic preserving homomorphisms of G close to the identity are actually isomorphisms
induced by quasiconformal deformations of maximal dilatation close to one (strong
stability: see [Marden 1974a]). Therefore T(G) is an open subset of Int Rdisc(G). It
is a connected subset containing the identity because if μ is a Beltrami differential
so is tμ for any t ∈ �, |t | < 1. (If G is geometrically infinite, T(G) is not open as
nearby groups are nondiscrete.) When G is fuchsian, T(G)= Int Rdisc(G).

If all components of �(G) are simply connected, that is, if ∂M(G) is incompress-
ible, then T(G) is a complex manifold biholomorphically equivalent to the product
of the Teichmüller spaces of the individual components of ∂M(G). For then each
component serves as the universal cover of the associated quotient.

On the other hand, if the components {�i } over some Si are not simply connected,
there is a little problem because a conformal change of Si may not cause a deformation
in G. A simple loop γ around a handle of Si may be compressible so a deformation in
itself of the element of π1(Si ) corresponding to γ may result in no change to G. For
an example, apply a Dehn twist (Exercise 5-6) to a compressing loop on the boundary
of a handlebody.

The way out of this conundrum is given by Theorem 5.1.3. It was originally proved
at the level of Beltrami differentials using “strong stability” [Marden 1974a] by Bers
[1970b], Maskit [1971], and Kra [1972], with a three-dimensional interpretation in
[Marden ≥ 2007]. Details of the proof are in Exercise 5-25.

Theorem 5.1.3. Suppose G is geometrically finite. Denote the components of ∂M(G)
by {Si }. Then

T(G)= Teich(S1)/Mod0(S1)× · · ·×Teich(Sk)/Mod0(Sk).

Here Mod0(Si ) is the fixed point free subgroup of biholomorphic automorphisms of
Teich(Si ) generated by automorphisms of Si that have an extension homotopic to the
identity in the interior of M(G).

The product Teich(S1)× · · ·×Teich(Sk) is the universal cover of T(G); the prod-
uct equals T(G) if and only if ∂M(G) is incompressible. The spaces T(G) and
Teich(Si )/Mod0(Si ) are complex analytic manifolds; T(G) has dimension

m∑
i=1

(3gi + ni − 3),
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where gi is the genus of the i-th component of ∂M(G) and ni is the number of its
punctures.

If M(G) is geometrically infinite and boundary incompressible, Theorem 5.1.3 still
holds; in this case Mod0(Ri ) = id. For example, if �(G) is connected and simply
connected (a singly degenerate group in ∂B(G), see Section 6.1), then T(G) has
dimension (3g + n − 3). In contrast if G1 is fuchsian with �2/G1 conformal to
�(G)/G then T(G1) has dimension (6g+ 2n − 6). If all components Ri are triply
punctured spheres, G is quasiconformally rigid, geometrically finite or not.

5.2 Homotopy equivalence

Understanding of isomorphisms to discrete groups in R(G) involves the notion of
homotopy equivalence. A homotopy equivalence between two manifolds M1,M2 is a
pair of continuous mappings f1 :M1→M2 and f2 :M2→M1 such that f2 ◦ f1 :M1→
M1 is homotopic to the identity and f1 ◦ f2 : M2→ M2 is homotopic to the identity.
In particular M1 and M2 have isomorphic fundamental groups.∗ For example, the
3-manifold S× (0, 1) is homotopy equivalent to the surface S; the one-holed torus is
homotopy equivalent to the three-holed sphere. A hyperbolic manifold is homotopy
equivalent to its compact or relative compact core. For a general development see
[Johannson 1979].

Conversely, it is well known in topology [Whitehead 1978, Theorems 3.5, 7.1] that
two manifolds whose higher homotopy groups vanish (as is the case for hyperbolic
manifolds) are homotopy equivalent if (and only if) they have isomorphic fundamental
groups.

Theorem 5.2.1 [Swarup 1980]. Suppose M(G) is geometrically finite and M0(G) the
compactification resulting from removing solid pairing tubes and solid cusp cylinders.
If ∂M0(G) is not empty, there are only a finite number of compact manifolds M0(H)
that are homotopy equivalent where the homotopy equivalence cannot be replaced by
a homeomorphism to M0(G).

Swarup’s theorem does not prevent there being many homotopy equivalences be-
tween homeomorphic manifolds. A homotopy equivalence is not, in general, homo-
topic to a homeomorphism.

If M1,M2 are compact, orientable, irreducible, boundary incompressible 3-mani-
folds and f : M1→ M2 is a homotopy equivalence, then f is homotopic to a (orien-
tation preserving or reversing) homeomorphism provided it preserves the peripheral
structure. The map f is said to preserve the peripheral structure if the isomorphism f∗
of the fundamental group induced by f is such that the f∗-image of the fundamental

∗ There is a stronger notion of proper homotopy equivalence where the mappings f1, f2 are required to be proper:
the preimage of each compact set is compact. Proper homotopy equivalence has to do with mapping the boundary
of one manifold to that of the other, a much stronger requirement. This condition will not be met for the situation
of Exercise 5-13.
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group of each boundary component is conjugate to the fundamental group of a com-
ponent of ∂M2 [Waldhausen 1968]. If the manifold is not boundary incompressible,
the statement is still true if we require instead that f restricts to a homeomorphism
between the boundaries. In fact f is then homotopic to a diffeomorphism extending
its boundary values; see [Waldhausen 1968; Hempel 1976, Theorem 13.6; Bonahon
2002, Theorem 3.11].

If M1,M2
∼= S×[0, 1]where S is a closed surface, then every homotopy equivalence

f : M1→ M2 is homotopic to a homeomorphism.

Rigidity of hyperbolic manifolds under homotopy equivalences

Recent work completed with much computer assistance has substantially extended the
scope of earlier results to show that homotopy equivalences between closed manifolds
have a certain topological rigidity:

Theorem 5.2.2 [Gabai et al. 2003]. Assume M(G) is a closed hyperbolic manifold.

(i) If f : M3 → M(G) is a homotopy equivalence from a closed, irreducible 3-
manifold M3, then f is homotopic to a homeomorphism.

(ii) If f, f1 : M3 →M(G) are homotopic homeomorphisms, then f1 is isotopic to
f : there is a homotopy F(t, x) : M3→M(G), 0 ≤ t ≤ 1 with F(0, x)= f (x),
F(1, x)= f1(x), such that for each t , F(t, x) is a homeomorphism.

(iii) The space of hyperbolic metrics on M(G) is path connected.

In short, while Mostow’s Rigidity Theorem (page 157) states that hyperbolic struc-
tures are unique up to homotopy, Theorem 5.2.2 states that hyperbolic structures are
unique up to isotopy.

If M3 is itself hyperbolic, part (i) follows from Mostow’s rigidity theorem. If in
addition M(G) is Haken (Section 6.3), then (iii) follows from [Waldhausen 1968] and
Mostow’s theorem. If in (i) and (ii) M3 is replaced by a not necessarily hyperbolic
Haken manifold M3

1 , the statements follow from [Waldhausen 1968]. Yet the remain-
ing cases involving non-Haken manifolds require a very deep study of the hyperbolic
geometry of M(G).

To help understand (ii), think of a closed manifold M3 with two hyperbolic met-
rics ρ1, ρ2 on it. By Mostow’s theorem, there is a diffeomorphism F : M3 → M3,
homotopic to the identity, taking the geodesic α in a free homotopy class in metric ρ2

to the geodesic α′ in the same free homotopy class in metric ρ2. Statement (ii) says
that α′ is not just homotopic but is isotopic to α, a subtle but nontrivial distinction!
It is this that implies that the space of hyperbolic metrics on M3 is path connected:
given two hyperbolic metrics there is a diffeomorphism F such that F∗(ρ1)= ρ2.

Property (ii) implies that homotopy classes of automorphisms of a closed M(G)
are the same as isotopy classes. Consequently the group of automorphisms of M(G),
modulo the subgroup of those isotopic to the identity, is isomorphic to the outer auto-
morphism group of π1(M(G))=G. By Mostow’s theorem, the outer automorphisms
of π1(M(G)) are isometries.
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Components of the discreteness locus

Every geometrically finite group G can be “opened up” to a group G∗ so that M(G∗)
is homeomorphic to the result of removing the interior of the solid pairing tubes
from M(G). Jørgensen first studied this operation [1974a], but today we can apply
the Hyperbolization Theorem (page 324). In other words, G∗ has the property that
g ∈ G∗ is parabolic if and only if g lies in a rank two parabolic subgroup — there are
no rank one parabolic subgroups.

Define a minimally parabolic group to be one that is geometrically finite and has
no rank-one parabolic subgroups. (Contrast minimally parabolic with its opposite in
Theorem 4.6.3.) As the basepoint for our study, we will fix a minimally parabolic
group G∗. Then (see [Anderson et al. 2000] and Theorem 5.10.12)

Int Rdisc(G
∗)= {H ∈Rdisc(G

∗) : H is minimally parabolic}.
The Density Theorem (page 260) then implies that Rdisc(G∗)= Int Rdisc(G∗).

Denote by M0(G∗) the compact manifold resulting from removing the interiors of
the cusp tori; if G∗ has no rank two parabolics, M0(G∗)=M(G∗).

Via the compact cores, and invoking the Hyperbolization Theorem (page 324), the
elements of Rdisc(G∗) are “marked” by the equivalence classes of homotopy equiva-
lences of M0,

��(M0)= {(M, h) : h is a homotopy equivalence h :M0→ M/≡}.
Here M is another compact manifold with hyperbolizable interior. The equivalence
≡ is as follows: for two homotopy equivalences of M0, we have (M1, h1)≡ (M2, h2)

if and only if there is an orientation preserving homeomorphism f : M1→ M2 such
that f ◦ h1 is homotopic to h2.

Within each component of Int Rdisc(G∗), the marked groups are quasiconformally
equivalent; two elements are the same if the equivalence f can be taken to be con-
formal on the boundary.

In view of the Ending Lamination Theorem (page 258), we can declare that each
point of Rdisc(G∗) is determined by an element of ��(M0(G∗)), and the ending
laminations of its ends.

The case of a fuchsian closed surface group G is special in the following regard.
There is a reflection, for example j : z �→ z̄, that induces the identity automorphism
of G. Thus an orientation reversing map h :M0→ M that induces an isomorphism
θ : π1(M0) → π1(M) can be replaced by the orientation preserving jh that also
induces θ . In short, for fuchsian G, we may consider ��(M0)= {id}.

The prototypical example is the shuffle of a rolodex or pages of a book discovered
by Jim Anderson and Dick Canary [1996a]. Start with a solid torus T and its core
curve c. Fix a finite system of mutually disjoint, parallel simple loops {γk} on ∂T
which are not contractible in T . Correspondingly fix a collection of surfaces {Sk},
each of some genus gk ≥ 1 and with a single boundary component. For greater effect
assume the genera gi are all different. Slightly thicken each Sk to obtain the compact
manifolds {Sk×[−ε,+ε]}. The boundary of each contains the annulus ∂Sk×[−ε, ε].
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Attach Sk ×[−ε, ε] by gluing ∂Sk ×[−ε, ε] to a thin neighborhood of γk . The re-
sulting manifold M is orientable and compact. By “rearranging the pages” — taking a
noncyclic permutation of {Sk}, we get another manifold Mτ which is homotopy equiv-
alent but not homeomorphic to M . The manifolds Mτ have a hyperbolic structure.
When the core curve of T is removed, the corresponding hyperbolic manifolds gain a
rank two cusp for which ∂T becomes a cusp torus. For more details see Exercise 5-13.

Operations akin to the shuffles just described operate in a general compact mani-
folds M3 with incompressible boundary. Suppose the internal structure of M3 con-
tains one or more embedded solid tori T such that the components of ∂M3 ∩ T are
annuli each of whose central curves generate the homotopy of T ; such a T is called
“primitive”. The above example has such a structure. A homotopy equivalence
h : M1

3 → M2
3 is called a primitive shuffle if there exists finite sets of primitive

tori T1 ⊂ M1
3 and T2 ⊂ M2

3 such that h restricts to an orientation preserving home-
omorphism h : M1

3 \ T1 → M2
3 \ T2. For details see [Anderson et al. 2000, §2].

The following compilation of results reveal much about the structure of Rdisc(G∗).
As before, M0(G∗) denotes the compact manifold resulting from removing any solid
cusp tori from M(G∗).

Theorem 5.2.3 [Anderson et al. 2000; Canary and McCullough 2004]. Assume that
G∗ is minimally parabolic, and M0 = M0(G∗) is boundary incompressible with
∂M0 
=∅.

(i) The union of the closures of the components of Int Rdisc(G∗) is Rdisc(G∗) itself —
the closures cannot accumulate to an interior point.

(ii) If G∗ contains no parabolics at all, then Rdisc(G∗) has a finite number of com-
ponents, that is, ��(M0) is finite.

(iii) Rdisc(G∗) has infinitely many components if and only if M0 has the following
structure: ∂M0 contains a torus T and there exist simple, mutually disjoint loops
αt , α1, α2 ∈ ∂M0 such that (a) αt ⊂ T , (b) α1, α2 ⊂ ∂M0 \ T and are not freely
homotopic in ∂M0, but (c) αt , α1 and αt , α2 bound essential cylinders in M0.

(iv) The components of Rdisc(G∗) are in one-to-one correspondence with the finite
quotient �̂�(M0) = ��(M0)/{primitive shuffles} that identifies two elements
differing by a primitive shuffle.

(v) The closures of two components X1, X2 of Int Rdisc(G∗) have nonempty inter-
section if and only if they correspond to two elements of ��(M0) which are
primitive shuffle equivalent, that is, if and only if they correspond to the same
point in �̂�(M0).

Manifolds with the properties of (ii) are constructed in Exercise 4-21. The two
components X1, X2 of (iv) are said to bump. If ζ ∈ X1∩ X2 then every neighborhood
of ζ in R(G∗) intersects both X1 and X2. When there is bumping, Rdisc(G∗) is
definitely not a manifold.
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Holt [2003] has shown, more generally, that if X1, . . . , Xn are components of
Int Rdisc(G∗) such that each pair Xi , X j bumps, then for any K ≥ 1, there exists a ge-
ometrically finite element of Rdisc(G∗) such that any K -quasiconformal deformation
of it is an element of

⋂
i X i . In particular, whenever a collection of components {Xi }

is “primitive shuffle equivalent”, there exists a geometrically finite point ζ ∈⋂ Xi .

Theorem 5.2.4 [Canary and McCullough 2004]. If the boundary ∂M0 is compress-
ible, then ��(M0) is infinite, with the following exceptions: G is a free group, the
free product of two closed surface groups, or of a closed surface group with a cyclic
group, or of a cyclic group with rank-2 parabolic group.

Using the Ending Lamination Theorem (page 258), Theorem 5.2.3 can be extended
to manifolds which are not geometrically finite; see the new foreword to [Canary et al.
1987] in [Canary et al. 2006].

To see why in most cases a compressible boundary leads to an infinite number
of homotopy equivalences consider the following example [Canary and McCullough
2004, p. 7]. Suppose M0 has compressible boundary but is not a compression body.
Then it contains a geodesic α which is not homotopic into the boundary. Let D⊂M0

be a compressing disk and let N ∼=D×[−ε, ε] be a neighborhood. Take α′ with origin
in D0 = D×{0} to be freely homotopic to α. Cut N along D0; drag the right side of
D0 once around α′ and glue the two sides back together. A homotopy equivalence h
can be constructed which is the identity outside N and inside N is the map resulting
from the dragging. A loop in ∂M0 with nonzero intersection number with ∂D will
be sent to a loop which can no longer be homotoped into ∂M0. Therefore h is not
homotopic to a homeomorphism. If there are infinitely many free homotopy classes
that contain such a curve α, then ��(M0) is infinite.

5.3 The quasiconformal deformation space boundary

It is an interesting fact (Exercise 5-20) that T(G) is the interior of its closure T(G)⊂
Rdisc(G)— it is not like a open ball with a slit to the boundary removed.

Denote the boundary of T(G) by ∂T(G); it is contained in Rdisc(G). The study
of this boundary is one of the most fascinating aspects of the subject. Every group
H ∈∂T(G) is the limit of an algebraically convergent sequence from T(G). Therefore
it is discrete and corresponds to an isomorphism ϕ : G→ H , by Theorem 4.1.2. Yet
a boundary group is no longer a quasiconformal deformation of G; some kind of
degeneration must occur as we approach it from inside T(G).

A boundary group H corresponding to ϕ ∈ ∂T(G) is called a cusp if it is geomet-
rically finite. It is called a maximal cusp if in addition all components of ∂M(H) are
triply punctured spheres. Thus, for a maximal cusp H , all components of �(H) are
round disks (Exercise 2-6). The limit sets of such groups are particularly attractive,
as seen in the pictures in [Mumford et al. 2002] and in Figures 5.1 and 5.7.

Here is how maximal cusps arise by pinching in the case that M(G) is a geometri-
cally finite, acylindrical manifold. (For more general cases see the Pinching Theorem
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in Exercise 5-3.) Choose a maximal system S of mutually disjoint, simple geodesics
in the hyperbolic metric on ∂M(G). The geodesics in S have the property that no two
are parallel in ∂M(G), and of course none can be homotoped to a puncture or a point.
The system S divides ∂M(G) into a union of triply connected regions — Bers coined
the term pants decomposition because each component is homeomorphic to a pair of
pants. On a surface of genus g with b punctures a pants decomposition S consists of
3g + b− 3 simple loops; these divide the surface into 2g + b− 2 pants. There are
countably many homotopically different pants decompositions.

Fix an annular neighborhood Ai about each αi ∈ S; choose these to be mutually
disjoint. Set Bn = {z ∈ � : 1/n < |z| < 1}. There is a quasiconformal map fi,n :
Ai → Bn . On ∂M(G) take the Beltrami differential which is ( fi,n)z̄/( fi,n)z in Ai

and zero in the complement of
⋃

Ai . This defines a quasiconformal deformation
Fn : G → Gn . By Thurston’s Compactness Theorem there is a subsequence {Gm}
which converges algebraically. The limit group H is a kleinian group isomorphic to
G which necessarily lies on ∂T(G). Furthermore H is a geometrically finite group
with ∂M(H) homeomorphic to ∂M(G) \ S.

The proof involves showing that the length of the geodesics on {∂M(Gm)} in the
free homotopy classes of S go to zero by the pinching estimate (5.5). In the comple-
mentary components ∂M(G)\⋃ Ai , lifted into�(G)→�(Gm), the conformal maps
{Fm} converge to conformal maps. Concurrently, the elements of {Gm} corresponding
to the curves of S converge to parabolic transformations of H .

The following result uses McMullen’s technique [1991] also used to prove Theorem
5.8.4.

Theorem 5.3.1 (Cusps are dense [Canary et al. 2003; Canary and Hersonsky 2004]).
Cusps are dense on ∂T(G) for any geometrically finite group G with ∂M(G) 
=∅.

If ∂M(G) is connected, maximal cusps are dense on ∂T(G).

In particular, maximal cusps are dense on the boundary of the deformation space
of a Schottky group. However in general maximal cusps are not dense (Exercise 5-8).

Theorem 5.3.2 [Bromberg and Holt 2001]. Suppose G is geometrically finite without
rank one cusps. Assume the result M0 of cutting out the solid cusp tori contains
an essential cylinder C such that a central loop c on C is primitive and not freely
homotopic to a loop in a torus boundary component. Then there exists a point ζ ∈
∂T(G) such that U ∩ T(G) is not connected for all small enough neighborhoods
U ⊂R(G) of ζ . Moreover T(G) is not a manifold.

The property of T(G) at ζ is called self-bumping.
For information about the primitiveness hypothesis see Exercise 4-20. The bound-

ary point ζ will be a cusp resulting from pinching a component of ∂C . The same
statement holds at the boundary of any component of Int Rdisc(G). The condition on
loops in C assures us that they do not determine parabolics in G. The prototype of
theorems of this type is presented in Exercise 6-9, Theorem 6.6.10. Compare with
Theorems 5.2.3 and 5.2.4.
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Fig. 5.1. A maximal cusp on the boundary of 3-generator Schottky space. The limiting Schot-
tky curves are indicated.

5.4 The three great conjectures

Once geometrically finite manifolds were understood and the existence of geometri-
cally infinite manifolds established, there emerged the daunting task of classifying the
structure of these manifolds. Where are the “missing” components of ∂M(G)? Have
they left any geometric trace behind? Are the ends “wild” without a local product
structure? Once the hyperbolization theorem was firmly nailed down, the following
conjectures come to the fore.

The Tameness Conjecture. The interior of every hyperbolic manifold M(G) with
finitely generated G is homeomorphic to the interior of a compact 3-manifold.

In the literature, this is called the Marden Conjecture. It was first raised as a ques-
tion as there was little evidence for it, beyond geometrically finite groups. It is the
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most fundamental of the conjectures just discussed; the other two would not have
been confirmed in full generality without the knowledge of tameness.

The Density Conjecture. Every finitely generated kleinian G group is the algebraic
limit of geometrically finite groups isomorphic to G.

Groups on ∂T(G) have this property. But how do we know that every group with
the appropriate structure actually appears on the boundary? This enigma appeared in
the context of the Bers–Maskit discovery of geometrically infinite groups on the Bers
boundary. For this reason it is called the Bers conjecture.

The Ending Lamination Conjecture. Hyperbolic manifolds M(G) with finitely gen-
erated fundamental group are completely determined by the conformal structure of
∂M(G) and the “ending laminations” of the geometrically infinite ends of M(G).

This was proposed by Thurston when he discovered the phenomenon of ending
laminations. Its solution involves an amazing bilipschitz model of hyperbolic mani-
folds, introduced by Minsky, that is built on the combinatorics of the closed geodesics.
The proof requires the deepest analysis of the three conjectures.

It is a tribute to the power of the researchers who have entered the field in the
past 20 years or so that all three conjectures have now been solved. We can now say
that the main structural features of geometrically infinite hyperbolic manifolds with
finitely generated fundamental groups are understood. The formal statements will
come in Section 5.6.

5.5 Ends of hyperbolic manifolds

Here is a precise definition of an end, or “ideal boundary component”, of an open
manifold M . Exhaust M by a strictly increasing sequence of connected, compact
submanifolds (with boundary) Ui :

· · · ⊂Ui−1 ⊂Ui ⊂Ui+1 ⊂ · · · , ⋃
i Ui = M.

Insist that no component of M \Ui be compact in M (this is called a regular exhaus-
tion). Correspondingly consider a nested sequence {Vi } of open subsets of M ,

· · · ⊃ Vi−1 ⊃ Vi ⊃ Vi+1 ⊃ · · · ,
where each Vi is a connected component of M \Ui . Then

⋂
Vi = ∅. The sequence

{Vi } defines an end or ideal boundary component of M .
Another such sequence {V ′k}, perhaps coming from a different exhaustion of M ,

defines the same end if for each large j , Vj lies in some V ′k and for each large k, V ′k
lies in some Vj ; an end is formally an equivalence class of such nested sequences.
The simplest example is that the end of the manifold � is defined by the equivalence
class of the nested sequence Vn = {z : |z|> n}.

For a hyperbolic manifold M(G), by an “end” we will mean an end of the interior
�3/G. The ends are in one-to-one correspondence with the boundary components
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of the compact core C — this is independent of the particular choice of core C .
Consequently there are only a finite number of ends (we are always assuming G
is finitely generated). The appropriate complement of the compact core serves as a
neighborhood of the end, as does any Vj that lies in it.

Thus for a finitely generated quasifuchsian group G without parabolics, M(G) has
two ends. On the other hand if G has parabolics, M(G) has one end and the compact
core C is a handlebody.

In the presence of parabolics the above definition of end is not the one we will
normally work with for it does not account for the fact that rank one cusps correspond
to what in effect are extra parts of the boundary, namely cusp cylinders. Instead we
will use the refined notion of relative compact core C = Crel introduced in Section
3.11. There we chose P to be a G-invariant union of (open) horoballs at the cusps. The
relative boundary in �3/G of (�3 \ P)/G consists of cusp tori and cusp cylinders.
The boundary of the relative compact core Cpar contains the cusp tori, and it also
intersects each cusp cylinder in a closed essential annulus. Let Mp denote the closed
submanifold (�3 \P)/G of �3/G.

A relative end Erel of M(G) corresponds to a relative boundary component S ⊂
M(G) \P/G of the relative compact core. The complementary component V of the
relative compact core with relative boundary S= ∂V is a neighborhood of Erel. Thus
for a quasifuchsian group with parabolics, M(G) has two relative ends.

An end E or relative end Erel of M(G) is called geometrically finite if it has a
neighborhood which does not intersect the convex core of M(G). Geometrically finite
relative ends correspond to the components of ∂M(G), or equally, to the boundary
components of the convex hull. It is appropriate to declare ends that correspond to
cusp tori to be geometrically finite as well. If there are no parabolics, E = Erel.

Our concern now lies with geometrically infinite ends: those which are not geo-
metrically finite.

5.6 Tame manifolds

A hyperbolic manifold is called (topologically) tame if it is homeomorphic to the
interior of a compact manifold.

An end E or relative end Erel is called tame if it has a neighborhood V in (�3\P)/G
with relative boundary ∂V = S such that V is homeomorphic to S× [0, 1). Here V
may be taken so that S is a boundary component of a compact core or relative core.

The end E or relative end Erel is said to be compressible if S= ∂V is compressible.
Otherwise, E or Erel is called incompressible.

Each compressible end corresponds to a compressible boundary component of the
compact or relative compact core which in turn corresponds to the compressible
boundary component of a compression body resulting from cutting the core along
incompressible surfaces (see Exercise 3-11). However note that there is more than one
way to represent the end as a product. Suppose f : S→ S is an orientation preserving
homeomorphism, not homotopic to the identity, but extending to a homeomorphism
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of V which is homotopic to the identity in V . Then V is also homeomorphic to
f (S)×[0, 1).

The manifold M(G) itself is said to be tame if each of its ends or relative ends is
tame. Actually before the fundamental paper [Canary 1993], Thurston had worked
with two notions: topologically tame (as we have defined it) and geometrically tame
which requires in addition that each end be exhaustible by pleated surfaces. An ex-
plicit example of this latter phenomenon arises from manifolds fibered over the circle
to be explained in Section 6.1. Canary proved that the two notions are equivalent.

From the point of view of projections from covering manifolds, geometrically in-
finite ends behave as if the missing surface were actually present. This is the import
of the main case of the important Covering Theorem, which we have here modified
by incorporating the Tameness Theorem:

Theorem 5.6.1 (Covering Theorem [Thurston 1979, Theorem 9.2.2; Canary 1996,
Corollary B]). Suppose M(H) has infinite volume and G ⊂ H is a finitely generated
subgroup such that the covering M(G) of M(H) has a geometrically infinite relative
end Êrel. Then there exists a neighborhood V̂ ∼= S × [0, 1) of Êrel such that the
projection π : V̂ →M(H) is k-to-one for some 1≤ k <∞.

This would apply for example to a geometric limit H at an algebraic limit G. The
geometric limit M(H) has a geometrically infinite end if M(G) does. Even though G
may have infinite index in H , each infinite end of M(G) behaves as a finite-sheeted
cover over an end of M(H). This is consistent with Lemma 3.6.3.

The Tameness Theorem

Each of the following sufficient conditions of Bonahon has been a fundamental tool
in dealing with the tameness question:

Bonahon’s Tameness Criteria. Either of the following conditions implies that M(G)
is tame.

A. G cannot be split as a free product G = A ∗ B with A, B 
= {id}.
B. In any splitting G = A∗B of G with A, B 
= {id} there is a parabolic g ∈G none

of whose conjugates is contained in A or in B.

A group G satisfying the hypothesis of Condition A is called freely indecompos-
able. Free product decompositions arise (for compact manifolds) from compression
disks. Condition B says in effect that any compression disk must cut through at
least one cusp cylinder. That is, while ∂M(G) is incompressible, the boundary of
the manifold resulting after removing the solid cusp tubes is compressible. Under the
splitting of G in Condition B, the two subgroups are not truly independent, rather they
are tied together by a parabolic. Bonahon’s conditions are satisfied in the following
important cases. For the definition of compact and relative core see Section 3.11.
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Corollary 5.6.2. Suppose M(G) is geometrically finite and boundary incompressible.
Assume there is an isomorphism G→ H sending parabolics to parabolics (i.e., type
preserving). Then M(H) is tame.

In particular, all points on the boundary of the quasiconformal deformation space
of a geometrically finite group with incompressible boundary correspond to tame
manifolds.

Proof. Condition A holds for H if and only if it holds for G even though H may have
new parabolics. Alternatively, it may happen that once the solid pairing tubes are
removed from M(G) the resulting manifold is no longer boundary incompressible.
In these cases Condition B comes into play, and the condition will be maintained in
H . A boundary point of a quasiconformal deformation space T(G) is the algebraic
limit θ :G→ H of a sequence of isomorphisms {θn :G→Gn} to geometrically finite
groups in the space. �

There had been a steady advance in understanding tameness before the complete
answer was found. Partial results had been obtained by Thurston, Brock, Bromberg,
Canary, Evans, Minsky, Ohshika, individually and in collaboration; for example see
[Brock et al. 2003; Ohshika 2005]. Here we record two of the notable results (compare
with Theorem 4.6.2).

Theorem 5.6.3 [Canary and Minsky 1996; Evans 2004b]. Suppose {θn : G→ Gn} is
a type preserving sequence of isomorphisms where each M(Gn) is known to be tame.
Suppose the sequence converges algebraically and geometrically to a group H which
has no new parabolics. Then H is tame as well.

Theorem 5.6.4 [Brock and Souto 2006]. The algebraic limit of any sequence of
geometrically finite groups is tame.

This implies:

Corollary 5.6.5. If the density conjecture is true, all hyperbolic manifolds M(G) with
finitely generated G are tame.

The resolution of the tameness conjecture was first announced by Ian Agol. A
different proof was being developed independently by Danny Calegari and David
Gabai. Both sets of authors credit discussions with Mike Freedman.

The Tameness Theorem [Agol 2004; Calegari and Gabai 2004]. Every hyperbolic
manifold M(G) with finitely generated G is tame.

In view of Bonahon’s Condition A, it suffices to restrict consideration to the com-
pressible ends.

Agol’s proof makes heavy use of manifolds of pinched negative curvature. In
particular this allows him to remove the rank one and rank two cusps. He then uses
Canary’s trick of finding a “diskbusting” curve to construct a two-sheeted cover which
also has finitely generated fundamental group but a given end is now incompressible.
More of the details are outlined in Exercises 5-17 and 5-18.
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The Calegari–Gabai proof is instead centered on the existence of “shrinkwrapped
surfaces”. Namely, suppose � is a finite collection of mutually disjoint, simple closed
geodesics in M(G) where G has no parabolics. Let S be a closed, incompressible
surface in M =M(G) \�. Then S can be shrinkwrapped in M : there is an isotopy
F : S×[0, 1]→ M with F( · , 0)= S, F( · , t) is an embedding of S in M , 0≤ t ≤ 1,
and T = F( · , 1) is a CAT(−1) surface (this is a hyperbolic-like metric property; see
[Ohshika 2002]), which is a minimum for hyperbolic area among all surfaces in the
homotopy class. The minimizers are likely to abut upon � so the actual structure
may be more complicated, although it will remain a CAT(−1). Using a sequence
of geodesics which exit a geometrically infinite end, the authors find a sequence of
shrinkwrapped surfaces trapped between the successive geodesics. By establishing
a uniform bound on their diameters, they show the shrinkwrapped surfaces exit the
end. Recently their proof has been simplified in [Soma 2005].

Earlier it was shown in [Canary 1993] that for an end to be tame there must exist
a neighborhood V of the end, and a sequence of (not necessarily embedded) pleated
surfaces in V , each homotopic within V to ∂V = S, that exit the end or relative end.
This has turned out to be an important ingredient in the tameness proofs.

Souto [2005] had proved that M(G) is tame if its interior can be exhausted by a
nested union of compact cores. It is not enough to find a sequence of mutually disjoint
surfaces {Sn} of the same topological type exiting each end. It is necessary to know
that each pair (Sn, Sn+1) bounds a region homeomorphic to Sn × [0, 1]; that is, Sn+1

is homotopic to Sn in such a way that given any compact set, the homotopy does not
meet it for all large indices. It would be nice to be able to study the ends using only
a fundamental polyhedron!

As an example, if G is a free group of rank two, Int M(G) is homeomorphic to the
interior of a handlebody, even if ∂M(G)=∅!

Building on earlier results of Thurston and Bonahon, Canary [1993] proved the
forty-year old Ahlfors’ Conjecture for tame manifolds. Canary’s result, coupled with
Theorem 5.6.4, guarantees that any algebraic limit of geometrically finite groups sat-
isfies Ahlfors’ conjecture. Ahlfors himself had proved it for geometrically finite man-
ifolds. A prior special case was treated in [Ohshika 2005]. Adding in the Tameness
Theorem, we now have:

Theorem 5.6.6 (Ahlfors Conjecture). For any finitely generated group G, either
�(G)=�2, or�(G) has 2-dimensional Lebesgue measure zero. Moreover if�(G)=
�2 the action of G is ergodic: There does not exist a pair of disjoint G-invariant sets
each of positive measure.

The Ending Lamination Theorem

It is easier to characterize ending laminations in the case of an incompressible relative
end Erel of M(G)— if there are no parabolics than Erel is just an end E . Since
we now know that infinite ends are tame, it has a neighborhood V (with ∂V = S)
homeomorphic to S × [0, 1) with injective inclusion φ : π1(S)→ G. We can take
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S as an embedded pleated surface in M(G). The surface S can be represented as a
finite area surface group S∗ =�2/� whose punctures correspond to simple loops on
cusp cylinders. However it is still possible that a loxodromic in � corresponds to a
parabolic in G.

The isomorphism φ∗ : � → π1(S) ↪→ G determines a one-to-one map from the
ordered fixed point pairs (ua, ur )∈ ∂�2 of the loxodromic elements γ ∈� to the fixed
point pairs (u′a, u′r ) of the φ(γ ) in the limit set �(G), provided φ(γ ) is loxodromic.
The image of a sequence of loxodromic axes which converge to a geodesic in �2 will
converge to a geodesic in �3 oraa point in �3.

A geodesic lamination � ⊂ �2/� = S∗ is said to be realizable in M(G) if there
is a pleated surface f : S∗ → S ⊂M(G) whose bending lamination contains f (�)
[Canary et al. 1987, Theorem 5.3.9]. In particular, each leaf corresponds to a geodesic
in M(G). A measured lamination is said to be realizable in M(G) if and only if its
support is realizable.

For compressible ends, lots of geodesics on S are not realizable — the compressible
ones for example. Only in the case that Erel is geometrically finite and incompressible
are all laminations of S realizable.

Suppose �= lim γk where γk ⊂ S∗ are simple geodesics. Then φ(�)= limφ(γk)

exists as a lamination in M(G) if and only if the sequence {φ(γk)} lies in a compact
subset of M(G).

The simplest example of a nonrealizable lamination occurs when V is a neighbor-
hood of a pinched surface in ∂M(G). Then the geodesic on S that represents the
pinching is not realizable. Of course we have excluded this by use of the relative
ends.

Here is a useful estimate. Suppose γ ⊂M(G) is a closed geodesic, and γ ∗ ⊂M(G)
is a simple loop freely homotopic to γ such that the closest distance of γ ∗ to γ is r .
Then

Len(γ )≤ Len(γ ∗)
cosh r

. (5.1)

Proof. Consider the tubular neighborhood Cr of radius r about γ . The shortest simple
loop on ∂Cr freely homotopic to γ has length cosh r Len(γ ) (see Exercise 1-4). �

Suppose S is an incompressible pleated surface inside M(G) that faces a geometri-
cally infinite, incompressible relative end Erel

∼= S×[0, 1). A sequence of geodesics
in Erel is said to exit Erel if, given any compact subset K = S×[0, r ] ⊂ V , at most a
finite number of elements of the sequence have nonempty intersection with K .

Lemma 5.6.7 [Thurston 1979, §9.3; Bonahon 1986]. (i) Assume {γn} is a sequence
of closed geodesics exiting E or Erel. Assume each γn is freely homotopic within
U to a simple loop γ ∗n ⊂ S which is a geodesic in the hyperbolic metric on S.
Then LenS(γ

∗
n )→∞.

(ii) Suppose α, β are closed geodesics freely homotopic within U to simple geodesics
α∗, β∗ ⊂ S, and are both of distance exceeding r from S. Given ε > 0, assume
that each of α, β is either disjoint from the ε-thin part of M(G) or is the core
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of an ε-tubular neighborhood about itself . Then on S, there exists a constant
C = C(ε)

ι(α∗, β∗)≤ Ce−r LenS(α
∗)LenS(β

∗)+ 2. (5.2)

(iii) Suppose {αn}, {βn} are exiting sequences such that their realizations in S con-
verge to measured laminations: α∗n/cn → (�1, μ), β∗n/dn → (�2, ν). Then
ι(μ, ν) = 0, so that no leaf of �1 crosses a leaf of �2 and �1 ∪�2 is also a
lamination; possibly �1 =�2.

Outline of proof. Statement (i) has an elementary proof depending only on the fact
that S has finite topological type. For if, for an infinite subsequence LenS(γ

∗
k ) <

M < ∞ then for all except at most a finite number of indices, the geodesics {γ ∗k }
would coincide with a fixed closed geodesic γ ∗. The corresponding {γk} would also
coincide.

The proof of (ii) is based on a detailed study of the interaction of the free homo-
topy cylinders between each pair of geodesics (α, α∗), (β, β∗). The cylinders can be
assumed to be transverse to each other (if ι(α∗, β∗) = 0, (ii) is vacuous). Also used
is Equation (8.32).

Property (iii) follows directly from Equation (5.2). That is why (5.2) plays a key
role in the existence theory. Compare with Exercise 3-35. �

The following theorem was initiated by Thurston [1979], then filled out by Bonahon
[1986] and Canary [1993]. A good overview can be found in [Minsky 1994a]. It was
originally proved under the assumption of tameness; here we complete their theorem
by taking account of that. Canary’s paper dealt with compressible ends, reducing
them to incompressible ends as described in Exercise 5-17, and clearing the path to
their analysis.

Theorem 5.6.8 (Existence of ending laminations). (i) Suppose Erel is an incom-
pressible relative end with neighborhood V = Erel ⊂M(G)∼= S×[0, 1), where
S = ∂V is a finite area pleated surface. The end Erel is geometrically infinite if
and only if there is a sequence of closed geodesics {γn} which exit Erel with each
γn freely homotopic in V to a simple geodesic γS,n ⊂ S.
There is a uniquely determined measurable lamination �(Erel) ⊂ S such that
�(Erel)= lim γS,n , for any such exiting sequence.

(ii) Suppose instead that Erel is a compressible end with a neighborhood

V ⊂M(G)∼= S×[0, 1),

where S = ∂V is a finite area pleated surface. It is geometrically infinite if and
only if there is an sequence of closed geodesics {γn} which exit Erel with each γn

freely homotopic in V to an incompressible simple geodesic γS,n ⊂ S.
Once the product structure of the neighborhood V is fixed, there is a uniquely
determined measurable lamination �(Erel)⊂ S such that �(Erel)= lim γS,n for
any such exiting sequence.
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It needs to be emphasized that in the compressible case, there are countably many
possibilities for expressing the end as a product. Without a specific specification,
then �(Erel) is determined only up to the action by the group of automorphisms of
S which are homotopic to the identity in M(G)— but not in S itself. Here S may be
taken as the boundary component of a compact core that faces Erel.

The lamination �(Erel) is called the ending lamination of the end Erel. It is con-
structed in [Thurston 1979, Theorem 9.3.2] in terms of limits of measured lamina-
tions, supported by simple geodesics in S, for which the corresponding geodesics in
M(G) exit Erel. The key point is that if �1,�2 ⊂ S are two limiting laminations, as
a consequence of Lemma 5.6.7 their leaves do not cross. Therefore �(Erel) can be
defined as the union of all the limits.

An ending lamination does not come with it any particular measure and may support
projectively a number of measures, or may be uniquely ergodic and support only one.

The ending lamination �(Erel) of an incompressible relative end is a maximal,
arational geodesic measurable lamination. In particular:

• Each simple geodesic on S is transverse to �(Erel). In fact if ν is any mea-
sured lamination on S with support different than �(Erel), then the geometric
intersection number (Section 3.9) satisfies ι(μ, ν) 
= 0, where μ is a measure on
�(Erel).
• Each half-leaf in �(Erel) is dense in �(Erel).
• �(Erel) is not a proper sublamination of any measurable lamination; each com-

ponent of S \�(Erel) is an ideal polygon, possibly containing a puncture. (A
geodesic that divides an ideal polygon is isolated and hence cannot support a
measure.)

The recently announced blockbuster proof of the Ending Lamination Conjecture is
built on the pioneering work of Yair Minsky [2003a] in constructing a Lipschitz model
of M(G). The model is organized around the set of simple closed geodesics and its
combinatorics as dictated by the curve complex on surfaces representing the ends
with its metric (Exercise 5-15), as worked out jointly with Masur [1999; 2000]. The
proof was completed by the team of Brock, Canary, and Minsky [Brock et al. 2004,
≥ 2007]. They completed the Minsky–Masur work by showing there is a bilipschitz
map� :Model→ Int M(G) depending essentially on the ending laminations (exiting
geodesics). The coup de grâce was delivered by the Tameness Theorem [Agol 2004;
Calegari and Gabai 2004].

Minsky [2003b] describes the combinatorial basis of the proof. Earlier [1999] he
had solved the ending lamination conjecture for the once-punctured torus case —
which satisfies Bonahon’s Condition B.

Ending Lamination Theorem. Suppose φ :G1→G2 is isomorphism between finitely
generated groups so that φ(g) is parabolic if and only if g is so. Assume φ is induced
by a homeomorphism � : M(G1) → M(G2) such that � : ∂M(G1) → ∂M(G2)



5.6 Tame manifolds 259

is homotopic to a conformal mapping, and that corresponding geometrically infinite
ends Erel and �(Erel) have the same ending laminations. Then φ : G1 → G2 is
realized by a conjugation.

In short, a hyperbolic manifold is determined uniquely up to isometry by its topo-
logical structure and its ending invariants.

A proof that all possibilities for ending laminations actually occur appears (for the
parabolic free case) in [Ohshika 2003], using [Kleineidam and Souto 2002]. See also
the Double Limit Theorem (page 314).

The end invariants are not continuous in R(G). For a simple example consider a
cusp on ∂Rdisc(G). As we make a “tangential” approach to the cusp from within the
deformation space, or approach the cusp along its boundary, the geometric limit (as
we may assume) is larger than the algebraic; the limit sets of the approximates will
look more and more like the limit set of the geometric limit. For a full discussion see
[Brock 2000; 2001a].

The following assertion follows from Theorem 5.6.8 and Formula (5.1); see also
Exercise 5-22.

Corollary 5.6.9. Suppose {Gn} is a sequence of quasifuchsian groups converging
algebraically and geometrically to a singly degenerate group H . Let (�n, βn) denote
the bending lamination of the boundary component Cn of the convex core of M(Gn)

that is approaching the infinite end E of H . Then {(�n, βn)} converges to a measured
lamination (�, β) in the reference surface S such that � is not realizable in M(H).
That is, � is the ending lamination of E .

When applied more generally to algebraic and geometric limits of geometrically
finite manifolds, this gives a “natural” way of finding the ending laminations.

Alternately, instead of bringing in the bending laminations, the process can be
described in terms of the hyperbolic metrics gn on the degenerating component or
components of ∂M(Gn). These metrics are obtained from pulling over the metric in
�2 to the degenerating component or components of �(Gn) by the Riemann maps.
The one or two sequences {gn} converge to measured laminations whose support(s)
are the ending lamination(s) in the sense of Thurston (page 280); see the Double Limit
Theorem (page 314). Theorem 3.11.2 displays how the geometry of the convex core
boundary and the geometry of the surface facing it “at infinity” are related.

The Ending Lamination Theorem has the following consequence proved in [Brock
et al. 2004] under the assumption of tameness; a prior version (including compress-
ible ends) was given by [Ohshika 1998b]. The second statement is an application of
Sullivan’s Theorem (page 158). It was first proved in [Brock et al. 2004] for tame
manifolds. Once again we have applied tameness to complete the original statements.

Theorem 5.6.10 (Topological rigidity). Suppose M(G), M(H) have incompressible
ends. Assume there is an orientation preserving homeomorphism � :�2→�2 which
induces an isomorphism ψ :G→ H so that� ◦g(z)=ψ(g)◦�(z) for all z ∈�2 and
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g ∈ G. Then there is a quasiconformal mapping F : �2→ �2 that likewise satisfies
F ◦ g(z)= ψ(g) ◦ F(z) for all z ∈ �2 and all g ∈ G.

If � is conformal on �(G), or if �(G)=∅, then F is a Möbius transformation.

The essence of the proof is to show M(G) and M(H) have the same ending lami-
nations.

Before the Ending Lamination Theorem was announced, the ending lamination
conjecture was proved in [Minsky 2001] under the following assumption: There exists
a positive lower bound δ >0 for the length of all closed geodesics in the interior of the
manifold. This condition forces a certain uniformity in how pleated surfaces converge
to the ends. Yet in general for geometrically infinite manifolds, in fact at a dense set
of points in the boundary of the deformation spaces of any geometrically finite group,
the uniform lower bound condition is not satisfied [McMullen 1991, Corollary 1.6;
Canary et al. 2003; Canary and Hersonsky 2004].

A manifold M(G) satisfying the uniform lower bound condition is said to have
bounded geometry. Geometrically finite manifolds automatically have bounded ge-
ometry. For a geometrically infinite example, see §6.1.3.

The Density Theorem

The solution of the thirty-year old density conjecture in the tame case was proved
by Ohshika [1990; 2004], assuming the Tameness and Ending Lamination Theorems.
Density for manifolds with incompressible ends without cusps was proved using cone
manifold techniques in [Bromberg 2004; Brock and Bromberg 2003; 2004]. Also
pertinent in the compressible case are [Kleineidam and Souto 2002; 2003; Lecuire
2004c]. These results show that every ending lamination of a kleinian manifold can
be achieved by an algebraically convergent sequence of geometrically finite groups.
The Double Limit Theorem (page 314) was the first of this type of result. Also see
[Brock et al. 2004; ≥ 2007].

Density Theorem. Every finitely generated kleinian group is the algebraic limit of
geometrically finite groups.

In more detail, suppose G is geometrically finite and θ :G→ H is an isomorphism
to a group H ∈ Rdisc(G). There exists a sequence of isomorphisms {θn : G→ Hn ∈
Int Rdisc(G)} to geometrically finite groups which converges algebraically to θ . That
is, the closure Int Rdisc equals Rdisc(G).

Recall from Theorem 4.6.3 that the sequence can be chosen so that θnθ
−1 also

preserves parabolics, but then θn(G) will not be in the same deformation space if H
has new parabolics.

Density implies tameness by Corollary 5.6.5. That tameness implies density is a
consequence of the Ending Lamination Theorem, as described above. Thus we have
a complete answer to what was suspected earlier:

Corollary 5.6.11. The tameness conjecture holds if and only if the density conjecture
holds.
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Untame manifolds

Lest one think that tameness is self-evident, it is worth pondering an example of
Fox and Artin [1948]: There exists a wild embedding of �2 into �3 such that both
complementary components are simply connected, and neither component is homeo-
morphic to the (open) 3-ball �3. That σ is a wild embedding means that there is no
homomorphism of S3 that carries σ to S2. In contrast, wild embeddings of �1 in �2

do not exist; the closure of each complementary component of a simple closed curve
is homeomorphic to the closed ball.

The same example of Fox and Artin shows that there exists a polyhedral plane in �3

such that the closure of neither complementary region is homeomorphic to a closed
half-space �2× [0,∞). We are grateful to Tom Tucker for the reassurance that this
awful possibility does not arise in our analysis:

Theorem 5.6.12 [Tucker 1975]. Suppose S ⊂ M(G) is an incompressible surface
embedded in Int M(G) with nontrivial fundamental group. Let S∗ be a component of
{π−1(S)} in �3. Then the closure of each complementary component of S∗ in �3 is
homeomorphic to a closed half-space.

A cornucopia of other weird examples are presented in [Scott and Tucker 1989],
including one of Peter Scott already mentioned in [Marden 1974b]: Given a closed
surface S of genus ≥ 1 there is a 3-manifold M3 with the properties (i) ∂M3 = S,
(ii) the injection π1(S) ↪→ π1(M3) is an isomorphism, (iii) the universal cover of
M3 is the closed upper half-space H , (iv) for any deck transformation T , H/〈T 〉 ∼=
(�1 ×�)× [0, 1), but (v) M3 
= S × [0, 1)! Singly degenerate groups have the first
four properties.

Tucker [1974] gave the following example. Let T ′0 be a solid torus �×�1. Embed
T ′0 in a larger solid torus T0 ⊂ T1 so that T0 is knotted, and homotopy equivalent to
T1. Take an infinite sequence of nested solid tori T2 ⊂ T3 ⊂ T4 ⊂ . . . so that there is
a homeomorphism of Tk+1 \ Tk onto T1 \ T0. Set M =⋃k Tk . Then π1(M) is infinite
cyclic and covered by �3, but M cannot be embedded in any compact manifold. Also
π1(M \ T0) is not finitely generated.

A necessary condition that a noncompact irreducible manifold M3 be homeomor-
phic to the interior of a compact manifold is that for every compact submanifold
K ⊂ M3, π1(M3 \ K ) is finitely generated. It is not so far from being sufficient; see
[Tucker 1974].

5.7 Quasifuchsian spaces

We will start this section with a fuchsian group G acting in the upper and lower half-
planes such that R = LHP/G is a surface of genus g with b ≥ 0 punctures satisfying
3g+ b− 3> 0. The reflected surface R′ = UHP/G is anticonformally equivalent to
R under reflection J0(z)= z̄ in �.

The simplest deformation spaces are the quasifuchsian spaces T(G). By the prin-
ciple of simultaneous uniformization (Section 3.8), the points of this space can be
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Fig. 5.2. A genus-2 quasifuchsian group. J is an orientation reversing homeomorphism pair-
ing the curves.

described by the triples

T(G)= {(Sbot, Stop; J ), F}.
Here Sbot, Stop are Riemann surfaces quasiconformally equivalent to R, R′ respec-
tively and J is an orientation reversing involution Sbot↔ Stop. The marking is fixed
by the homotopy class [F] of a quasiconformal mapping R → Sbot. Each triple is
associated with a quasifuchsian group H with M(H)∼= Sbot×[0, 1] in the following
manner:

(i) H itself is uniquely determined by the triple (Sbot, Stop; J ), up to conjugation.
(ii) ∂M(H)= Sbot∪ Stop and J extends to an orientation reversing, fiber preserving

involution J :M(H)→M(H).
(iii) There exists a quasiconformal map F :M(G)→M(H) such that F(R)= Sbot,

F(R′)= Stop and F J0 F−1 is homotopic to J .
(iv) F is the projection of the restriction to �(G)=LHP∪UHP of a quasiconformal

map F∗ : �2→ �2. F∗ determines an isomorphism ϕ : G→ H .

We will write ∂botM(H)= Sbot and ∂ topM(H)= Stop.

Bers slices

The Bers slice B(R)≡B(G)⊂T(G) determined by the Riemann surface R=LHP/G
is defined as the subset of triples

B(R)= {((Sbot, Stop; J ), F
) ∈ T(G)

∣∣F : R→ Sbot is conformal}.
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Fig. 5.3. A once-punctured torus quasifuchsian group near the boundary of the quasifuchsian
space.

Fig. 5.4. Slightly opening the cusp of Figure 5.3 results in this Schottky group. The limit set
is totally disconnected but very close to a quasicircle.

In the deformations, the bottom surface remains conformally equivalent to R; the
mapping F is quasiconformal on R′ and conformal on R. A lifted map F∗ is a
Riemann map of the LHP onto the component F∗(LHP)=�bot of �(H). Of course
F∗ satisfies the relations F∗ ◦ g(z) = ϕ(g) ◦ F∗(z) for all g ∈ G, z ∈ LHP. So the
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image group H is determined, up to normalization, by the conformal mapping F∗ on
LHP.

A Bers slice is perhaps the most useful realization of the Teichmüller space (Sec-
tion 2.8) of the Riemann surface R′; Stop runs through all possible quasiconformal
deformations of R′, all the while Sbot remaining conformally fixed as R. The initial
discovery by Bers thrilled all in the field because in its realization as a slice within a
space of complex matrices, the complex structure on Teich(R) becomes more acces-
sible [Ahlfors 1966].

The slice B(R) is a complex analytic manifold of �-dimension 3g + b− 3. It is
also a metric space in the Teichmüller metric (page 81). The whole quasifuchsian
space T(G) as a holomorphic submanifold of the representation variety has twice the
dimension.

At least in the case that R is a closed surface, there is an extension B∗(R) of the
Bers slice, called the extended Bers slice, which is a properly embedded submanifold
of R(G) [Gallo et al. 2000, Theorem 11.4.1]. It is the space of projective structures
on the Riemann surface R (see Exercise 6-8).

Each choice of complex structure on R determines a different Bers slice.
Masaaki Wada’s program OPTi [≥ 2007b; 2006] allows the interactive exploration

of the limit sets of quasifuchsian once-punctured torus groups. The groups are param-
etrized by Jørgensen complex probabilities Exercise 1-34.

The team of Y. Komori, T. Sugawa, M. Wada, and Y. Yamashita was the first to
succeed in visualizing the complex 1-dimensional Bers slice of once-punctured torus
space — based on the square torus. The method is explained in [Komori and Sugawa
2004]. Their work has recently been augmented by studies of David Dumas [2004],
who analyzes the slice as an island in the archipelago which is the discreteness locus
of B∗(R), lying in the sea of indiscreteness. Dumas’ picture is the frontispiece of
this book, with a closeup of the Bers slice in Figure 5.5 on the next page. This shows
the Bers slice in the once-punctured torus space that is based on the hexagonal torus.
The combinatorics of the Ford polyhedron give a tiling of the quasifuchsian space
(Jørgensen). This tiling, restricted to the slice, gives the tiling by triangular regions
you see here — this is a special property of the hexagonal slice. The boundary of the
slice is a Jordan curve [Minsky 1999] and the cusps you see are dense on it [McMullen
1991]. These are indeed geometric cusps [Miyachi 2003].

There is a natural action of the Teichmüller modular group or mapping class group
(see page 81 and Exercise 5-6) by isometries (and biholomorphic mappings) on B(R)
akin to the action of a fuchsian group on �2. If τ is an orientation preserving auto-
morphism of the surface R= Sbot, realized as a quasiconformal automorphism if there
are punctures, then τ induces the following action:

τ : (Sbot, Stop, J ) �→ (Sbot, Stop, J ◦ τ).
In this action the conformal types of the surfaces do not change, what changes is the
topological relationship between the bottom and the top. The action of the iterates
{τ n} is described in Theorem 5.9.1 and Exercise 5-11.
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Fig. 5.5. Bers slice based on the hexagonal torus, inside the once-punctured torus space.

Bers slices are not the only (3g+b−3)-dimensional slices of quasifuchsian space.
There are oodles of others. One can take a slice based on any boundary group of
quasifuchsian space, except a doubly degenerate group. The bottom component Sbot

might be a cusp, especially a maximal cusp (composed of triply punctured spheres).
Such a slice is called a Maskit slice. One could as well take Sbot to be a singly
degenerate end (in view of Sullivan’s Theorem). Or one could require that Sbot =
Stop but that J match each γ ∈ π1(Stop) with α(γ ) ∈ π1(Sbot) where α is a fixed
automorphism taken on all surfaces in the Teichmüller space. For example one could
start with a reflection in the top surface of a fuchsian group arranged so that the
positive imaginary axis is fixed, followed by the reflection in the real axis. Such
submanifolds are called Earle slices.

5.8 The quasifuchsian space boundary

In this section we consider the closure T(G) of a quasifuchsian space T(G). This is
contained in Rdisc(G). As usual, denote its boundary by ∂T(G).
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The groups on ∂T(G), referred to as boundary groups, or in this quasifuchsian
context as B-groups, are classified as cusps (geometrically finite groups), singly de-
generate or doubly degenerate groups, or partially degenerate groups.

We can approach a boundary cusp from T(G) most directly by a process of pinch-
ing, as in Section 5.3 and Exercise 5-3.

In contrast, a singly or doubly degenerate group is a group H isomorphic to G
such that either �(H) is connected or �(H)=∅. By Bonahon’s criteria (page 253),
M(H) is homeomorphic to R×(0, 1] in the singly degenerate case, or to R×(0, 1) in
the doubly degenerate case. Either one component or the whole boundary has become
degenerated. By the Density Theorem, all manifolds with this topological structure lie
on ∂T(G). By Sullivan’s Theorem, a doubly generate group has no quasiconformal
deformations (other than Möbius conjugations).

Doubly degenerate groups were discovered by Jørgensen on the boundary of once-
punctured torus quasifuchsian space. His doubly degenerate groups H are periodic:
there is a Möbius transformation T /∈H satisfying T H T−1=H such that the manifold
M(H∗) corresponding to the augmented group H∗ = 〈H, T 〉 has finite volume. The
the limit set of a doubly degenerate group is all �2. Yet any fiber R×{s}, 0< s<1, lifts
to a planar object P in �3 on which H acts as a surface group. Even so, ∂P is dense
in �2. For more details see the Double Limit Theorem (page 314) and the discussion
following it. A doubly degenerate group might well contain new parabolics.

The cases of singly and partially degenerate groups will be discussed on page 270,
again in the context of the Bers boundary.

The boundary has a lot of self-bumping as described in Theorem 5.3.2 because
there are a lot of independent essential cylinders. The self-bumping occurs at most
cusps. However there can be no self-bumping at maximal cusps (see Exercise 6-9).
Nor (per Bromberg and Holt) is there any bumping at singly or doubly degenerate
groups, with or without parabolics — geometric limits agree with algebraic at such
points.

Collapsing mappings

The story here is based on [Minsky 1994a; 1994b]. We start with a fuchsian group G
group acting in UHP and LHP and an isomorphism θ :G→ H to a discrete group H.

Consider the following test case. Take a simple closed geodesic γ ∈ R′ =UHP/G,
and the set of lifts {γ ∗n } ∈UHP. Suppose H is the cusp arising from R′ by pinching
γ . There is a continuous equivariant map h : �1 ≡ �∪∞→�(H) which sends the
endpoints of each γ ∗n to a single point but is otherwise one-one.

Now let �+ and �− be the ending laminations for M(H) as represented in UHP
and LHP, respectively. We allow that one but not both laminations are empty if H is
quasifuchsian. If both are nonempty, the leaves of �− have no endpoints in common
with the leaves of �+ (Double Limit Theorem, page 314).

Theorem 5.8.1 [Minsky 1994a]. Assume that G is a closed surface group and H has
bounded geometry. There exists a continuous map h : �2→ �2 which is equivariant:
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Fig. 5.6. The limit set of a 2-generator quasifuchsian group with commutator elliptic of order
3 and no parabolics.

h ◦ g(z) = θ(G) ◦ h(z) for all g ∈ G and z ∈ �2. It collapses the leaves to points
(h(u) = h(v) with u 
= v) if and only if u and v lie on the closure of the same leaf of
�+, or of �−. If say �− =∅ then h is a homeomorphism of LHP.

Thus if a component P of UHP\�+ is an ideal polygon, then h(P) is a single
point. See also Exercise 5-9.

As the limit set in the singly degenerate case is the continuous image of �1, we
conclude at once from [Pommerenke 1992, Theorem 2.1]:

Corollary 5.8.2 [Minsky 1994a]. Under the same hypotheses, if H is singly degener-
ate, �(H) is locally connected.

Minsky conjectured that Theorem 5.8.1 holds without the requirement of bounded
geometry. McMullen [2001] proved that indeed, this is true for once-punctured tori.
His argument makes heavy use of Minsky’s model manifolds.
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Fig. 5.7. A double cusp on the boundary of the quasifuchsian space of Figure 5.6. The stabi-
lizer of each disk is a (3,∞,∞) triangle group. Compare with Figure 5.9.

It is unknown whether all limit sets 
=�2 of kleinian groups are locally connected,
although it is known in various special cases. This appears to be a very hard problem.

Predating Minsky’s work is an amazing theorem of Cannon and Thurston showing
how Peano curves (curves dense in �2) arise in the context of closed hyperbolic
manifolds which fiber over the circle.

First consider the case that both ends of M(H) are infinite. We now have to assume
that the ending laminations are those associated with the attracting and repelling fixed
points of a pseudo-Anosov automorphism of �2/G (see Exercise 5-6 and page 314).
Take the closure of the lifts �∗− ⊂ LHP and �∗+ ∈ UHP. Construct a new space S

from �2 as follows.
The points of S are (i) the components of UHP\�∗+ and the components of LHP\

�∗−, (ii) the leaves of �∗+ and the leaves of �∗−, and (iii) the points on �2 that are
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not in (i) or (ii). In forming the identification space S we have used the fact that the
subsets of �2 we have used form a “cellular decomposition” because of the special
nature of the ending laminations. The celebrated cellular decomposition theorem of
R.L. Moore says that S is homeomorphic to �2 itself! We thus get a continuous map
f : �2 → �2 by projecting from �2 to the identification space S and then onto �2.
The map f conjugates G to H , that is f ◦ g(x)= θ(g)◦ f (x) for some isomorphism
θ . Therefore f (�1) is an H -invariant Peano curve. We think of this curve as resulting
from the collapse of the two laminations.

On other hand suppose the bottom end of M(H) is homeomorphic to �2/G while
�+, the ending lamination of the top, corresponds to the attracting or the repelling
fixed point for a pseudo-Anosov map. Form the space S using (i) and (ii) in UHP but
replace (iii) by (iii’) points in LHP which are not in (i) or (ii). Again the identification
space S is homeomorphic to �2 resulting in a continuous map f : �2 → �2 that
conjugates G to H and is a homeomorphism on LHP. In this case f (�1) is the limit
set of H ; the limit set results from collapsing the ending lamination.

A less specific collapsing theorem that parallels the geometrically finite case was
proved by Erica Klarreich (her original statement required tameness):

Theorem 5.8.3 [Klarreich 1999]. Assume G is freely indecomposable and M(G) is
geometrically finite. Suppose there is a homeomorphism f : �3/G→ �3/H , where
�3/H has bounded geometry. Then there is a homotopic homeomorphism h ∼ f
whose lift to �3 extends to be a continuous, surjective, equivariant map �2→ �2.

For simply or doubly degenerate groups without new parabolics, bounded geometry
is determined by a property of the ending laminations [Minsky 2001].

The Bers boundary

The Bers slice B(R)≡Teich(R) has a boundary ∂B(R)≡ ∂T(G)⊂R(G), called the
Bers boundary or analytic boundary. Unlike the boundary of the full quasifuchsian
space, B(R)∪∂B(R) is compact. This is because the family of normalized conformal
maps of LHP that conjugate G to another group H is compact. Therefore for every
boundary group H , exactly one component �bot of �(G) is invariant under the full
group H . The theory of the boundary was first worked out in the pioneering papers
[Bers 1970a] and [Maskit 1970].

In the case that G represents a once-punctured torus so that B(R) has complex
dimension one, it is known [Minsky 1999] that ∂B(R) is a Jordan curve (in a planar
embedding), and hence locally connected. Also see [McMullen 1998].

If a boundary group H = θ(G) is geometrically finite, that is if H is a cusp, M(H)
has the following structure. There are a finite number of mutually disjoint simple
closed geodesics {αi } on Sbot = ∂botM(H)=�/H , which determine parabolic trans-
formations in H . These divide Sbot into one or more components {Si }. Each Si is
parallel in M(H) to a component S′i of ∂ topM(H) which is a finitely punctured closed
surface homeomorphic to Si . The stabilizing subgroup of a component �′i over S′i is
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Fig. 5.8. This beautifully crafted limit set of Hausdorff dimension two belongs to a singly
degenerate once-punctured torus group on the boundary of a Bers slice. The complement
is connected (can you find your way out of the maze?) The “holes” in the picture contain
horodisks at the parabolic fixed points and are an artifact of the algorithm: extremely long
words in the generators would be required to fill them in.

quasifuchsian. The configuration
⋃

S′i results from pinching the top surface in the
free homotopy classes of the geodesics in Sbot.

In�top, as a loxodromic element of G becomes parabolic in H , its two fixed points
coalesce into one, pinching �top into two simply connected pieces. This happens
simultaneously in the conjugacy class of g so that �top becomes pinched off into
countably many simply connected regions lying over the punctured surfaces {S′i }. If
we focus on the geodesics in the original manifold M(G) that are in the free homotopy
classes of {αi } then as we approach M(H) these and only these “exit” ∂ topM(H) in
the sense that they are “becoming” parabolic fixed points.

For more details see [Maskit 1970; 1988; Marden 1974a; 1977] and Exercise 5-3.
Recall that a maximal cusp on the Bers boundary is a cusp for which ∂Mtop is a

union of triply punctured spheres. It corresponds to a set of pinching loops which
form a pants decomposition of Sbot — each complementary component is a 3-holed
sphere.

One or all of the top surfaces S′i can themselves be degenerated so long as they are
not triply punctured spheres. When not all are degenerated, the group is referred to as
a partially degenerated group. Even if all become degenerated, one may be left with
parabolic transformations which on �bot act as hyperbolic transformations. If Stop is
entirely degenerated with or without any such pinchings, the resulting boundary group
is singly degenerate. Singly degenerate groups are characterized by the property that
�(G) is connected and simply connected. Such groups are constructed in Section
6.1.1.

Suppose G has no parabolics. There exist boundary groups H without any parabol-
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ics either, in fact there are lots of boundary groups which have no parabolics. For as
pointed out by Bers [1970a], since G has a countable number of elements, the set of

H = θ(G) ∈ ∂B(R)
for which θ(g) is parabolic for some g has positive codimension in ∂B(G). Most
boundary groups H are without parabolics, and therefore singly degenerate.

By Bonahon’s criteria (page 253), the interior of the manifold coming from a
boundary group is, like all other manifolds of the deformation space, homeomorphic
to Sbot× (0, 1). The long standing question as to whether, conversely, every kleinian
group with the structure of a singly degenerate group is a boundary group of some
Bers slice was first answered affirmatively as a special case of the density conjecture:

Bromberg’s Theorem. Suppose � has no parabolics, is isomorphic to the funda-
mental group of a closed surface, and M(�) has exactly one geometrically finite end.
Then � is a boundary point of the Bers slice determined by its geometrically finite
end. Moreover, � is the algebraic limit of a sequence of quasifuchsian groups lying
in this Bers slice.

This was extended to all quasifuchsian spaces by Brock and Bromberg, and finally
incorporated into the framework of the Density Theorem (p. 260).

McMullen [1991] proved the strongest form of a longstanding conjecture of Bers
and introduced ideas that have been used for the more general Theorem 5.3.1.

Theorem 5.8.4 (Maximal cusps are dense, I). In the topology of algebraic conver-
gence, maximal cusps are dense on the boundary of any Bers slice B(R) in quasi-
fuchsian space, where R is a Riemann surface of finite hyperbolic area.

It was established in [Kerckhoff and Thurston 1990] that when the genus of R
exceeds one, the natural (biholomorphic) map from one Bers slice to another does not
have a continuous extension to a map between the corresponding Bers boundaries. For
the once punctured torus case, on the other hand, the map does extend continuously
to the boundaries.

5.9 Geometric limits at boundary points

We ask, if a sequence converges algebraically to a boundary point H of a quasifuch-
sian deformation space, what are its possible geometric limits?

We know from Theorem 4.6.2 that if�(H)=∅, then any geometric limit coincides
with the algebraic limit. This is also true when �(H) 
= ∅, provided the algebraic
limit has no new parabolics.

Suppose X ∈ ∂�(G) is a maximal cusp. It is also true that for any geometric limit
X∗ at X , the convex core of �(X) is embedded in �(X∗); see [Anderson et al. 1996,
Prop. 32].
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Fig. 5.9. The limit set of a maximal cusp (double cusp) on the boundary of the once-punctured
torus quasifuchsian space. The limit set can alternatively be constructed by the iterative pro-
cess of inscribing the maximal circle in each triangular interstice. It is called the apollonian
gasket, because it was first constructed in the third century B.C. by the Greek mathematician
Apollonius [Mumford et al. 2002]. The tangencies are at parabolic fixed points.

The Jørgensen picture of the once punctured torus case

It is illuminating to consider the case of the once-punctured torus quasifuchsian space,
where the possibilities were enumerated by Jørgensen in unpublished work. There,
an end of the manifold corresponding to a boundary group is either degenerated, or it
is a thrice punctured sphere. Only in the latter case can a geometric limit be strictly
larger than the algebraic.

It is easiest to understand Jørgensen’s description if we start with a cusp group H =
θ(G) such that ∂M(H) consists of two thrice punctured spheres; we will refer to this
as a double cusp group. Of the three punctures on each component, one corresponds
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Fig. 5.10. A geometric limit at the group of Figure 5.9. The shaded disks are paired by
generators of the rank two conjugacy classes. The alternate view at the bottom results from
placing a rank two cusp at∞.
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to the puncture on the original two once-punctured boundary tori; the original pair of
punctures and its pairing tube serves as a kind of backbone for M(H).

Corresponding to each triply punctured sphere boundary component S1, S2, there is
a generator pair Ai , Bi of H with the following properties. Each commutator [Ai , Bi ]
generates a rank one parabolic subgroup whose conjugacy class forms the backbone.
The elements Ai are parabolic, corresponding to the pair of new parabolics on Si ,
i = 1, 2, and generate nonconjugate subgroups. The elements Bi are loxodromic.
Such generator pairs can be found by inserting the solid pairing tube associated with
the two new punctures on each component so forming again a once-punctured torus.
The generator pairs so associated with the two boundary components are related by
Nielsen transformations as in Exercise 5-10. A double cusp group is uniquely deter-
mined by nonconjugate generator pairs 〈A1, B1〉, 〈A2, B2〉.

According to Jørgensen, all geometric limits � ⊃ H correspond to manifolds
M(�) which are fibered, fibered either over �, or over the half open or closed inter-
vals [0,+∞), (−∞, 1], [0, 1] depending on which end or ends are thrice punctured
spheres. In explaining the picture let’s concentrate on the doubly infinite case.

In this case there is a countably infinite number of “singular” fibers in M(�) rep-
resenting thrice punctured spheres, while all the other fibers are once-punctured tori.
All the fibers of M(�) connect to the backbone.

The singular fibers divide M(�) into chunks fibered by nonsingular fibers. A chunk
corresponds to a double cusp subgroup 〈A, B〉 ⊂ � that represents a once-punctured
torus and has the following property. The result of pinching A gives the singular fiber
at one end of the chunk, and pinching B gives the singular fiber at the other end.
The groups {〈A, B〉} corresponding to different chunks are not conjugate in �. In
particular, � is not finitely generated.

Each singular fiber S has two new punctures. The are joined by a solid pairing
tube τ1 in the chunk on one side, and τ2 in the chunk on the other. The two tubes join
together to form a rank two solid cusp torus in the union of the two adjacent chunks.

For an explicit construction of groups of this type see Exercise 5-12. The analogue
for general quasifuchsian groups is presented in [Thurston 1986c, Theorem 7.2].

It is relevant to cite [Anderson et al. 1996, Prop. 3.2] wherein the following is
observed for a geometrically finite G: Assume X ∈ T(G) is the algebraic limit of
a sequence in T(G). Suppose X is a maximal cusp. Then for any geometric limit
X∗ ⊃ X of a subsequence, the convex core of M(X) is embedded in M(X∗).

Geometric limits at the Bers boundary

We have already indicated in the context of the Jørgensen picture one class of geomet-
ric limits. More generally, suppose the group H represents a cusp on a ∂B(G). The
Jørgensen picture suggests that if H is approached “radially” from within B(G), the
geometric and algebraic limits coincide. To get a larger geometric limit, it is necessary
to approach the cusp “tangentially” or even “ultratangentially”. By analogy, in the
modular group contrast the radially approach zn→ ζ to the fixed point of a parabolic
T with the tangential approach zn = T n(z)→ ζ .
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Fig. 5.11. The algebraic (left) and geometric (right) limits at a cusp on the boundary of the
quasifuchsian space of a closed, genus-2 surface obtained as the limit of the iteration of a point
O in a Bers slice by powers of the Dehn twist about γ . The top surface of the algebraic limit
is the result of pinching γ ⊂ Rtop of O while the top surface of the geometric is conformally
equivalent to Rtop. See Exercises 4-20, 5-6, 5-11.

Brock [2001a] has given a complete description of the geometric limits resulting
from the iteration {τ n(O)} of a point O ∈B(G) by a reducible automorphism τ . This
generalizes the case that τ is a Dehn twist (Exercise 5-5), which was examined in
[Marden 1980; Kerckhoff and Thurston 1990] and is presented in Exercise 5-11.

A reducible automorphism (see Exercise 5-6) is an automorphism τ : R → R
that fixes a set of free homotopy classes represented by mutually disjoint, nontrivial,
simple closed curves {γi } on the surface R, none of which can be homotoped to
a puncture. We may assume the curves themselves are fixed: The complementary
components are neither simply nor doubly connected. Some power τ s fixes each
free homotopy class and consequently each complementary component R \⋃ γi . We
may assume that in each complementary component τ is either (homotopic to) the
identity, a map of finite order, or is pseudo-Anosov — that is no free homotopy classes
of simple curves are fixed, except those of the boundary components. Therefore we
may assume that τ not only preserves the components and the boundary curves, but
in each component it is either homotopic to the identity or is pseudo-Anosov. An
automorphism τ is called a reducible pseudo-Anosov if it is pseudo-Anosov in at
least one complementary component. If τ acts as the identity on both sides of a loop
γ j , then τ is a Dehn twist (Exercise 5-5) about γ j . The once-punctured torus is special
in that there are no reducible pseudo-Anosovs.

Now let τ act on the Bers slice B(R). Choose a point O ∈ B(R) and denote
its top surface by S and bottom, which is constant throughout the slice, by R. Let
{RpA} denote the components of R\⋃ γi on which τ is pseudo-Anosov and {Rid} the
remaining components, if any, on which τ acts as the identity. Denote the subsurfaces
of S parallel to them by {SpA} and {Sid}. In the algebraic limit, the components of
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Fig. 5.12. The limit set of an algebraic limit corresponding to Figure 5.11. The cusp is chosen
so that the pinched components of the manifold are covered by round disks.

Fig. 5.13. The limit set of the geometric limit at the cusp of Figure 5.12. It can be constructed
by reflecting the algebraic limit in the circles.
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{SpA} are headed for degeneration and those of {Sid} are due to have their boundary
components pinched. In fact all of the loops {γ j } will be pinched.

For simplicity of description, assume there is one component of each set, namely
SpA and Sid. Also assume that their common boundary is formed by a single simple
loop γ . The parallel subsurfaces of R, namely RpA and Rid, are bounded by a loop
parallel to γ . Suppose the basepoint O corresponds to the quasifuchsian group G.

Theorem 5.9.1 [Brock 2001a]. The sequence of iterates {τ n(O)} described above
converges algebraically to a group ϕ :G→ H ∈ ∂B(G) and geometrically to a group
H∗ properly containing H . These have the following properties:

(i) The isomorphism ϕ sends the cyclic loxodromic subgroup of G corresponding to
each lift of γ to a rank one parabolic subgroup of H .

(ii) ϕ is associated with a conformal map � between the bottom surfaces R of
∂M(G) and R of ∂M(H). and a homeomorphism � : Sid → ∂M(H) \ R; γ
corresponds to the puncture on �(Sid).

(iii) The H-stabilizer of each lift of Rid to �3 is a quasifuchsian subgroup of H ; the
H-stabilizer of each lift of {RpA} is a singly degenerate subgroup of H .

(iv) ∂M(H∗) has two boundary components, one conformally equivalent to R the
other conformally equivalent to S.

(v) The H∗-stabilizer of each lift of Rid and Sid is a quasifuchsian subgroup of H∗.
The H∗-stabilizer of each lift of RpA and of SpA is a singly degenerate subgroup
of H∗.

(vi) The interior �3/H∗ is homeomorphic to R×(0, 1)\[RpA×{1/2}]. Thus M(H∗)
has two degenerate ends, corresponding to the two sides of RpA×{1/2}.

There is an analogous description for the general case. The only difference occurs
when both sides of a loop γ j belong to Sid, that is either γ j is part of the common
boundary of two components, or is a pinching loop of a single component. In ei-
ther case γ j determines a rank two parabolic subgroup of the geometric limit H∗, as
described in Exercise 5-11.

Brock showed that by applying the techniques of the Skinning Lemma (Section
6.2), groups with the properties of Theorem 5.9.1 can be directly constructed as fol-
lows: Find groups H1, H2 ∈ ∂T(G) with ∂M(H1)= R∪ Sid, ∂M(H2)= S∪ Rid, that
is degenerate SpA, RpA, respectively. Then use the skinning lemma to identify Rid on
the bottom of ∂M(H2) with Sid on the top of ∂M(H1). In the case that τ is a Dehn
twist, this is explained in Exercises 5-7 and 5-11. See Figures 5.14, 5.15, 5.16.

The totality of geometric limits at the quasifuchsian space boundary

Let G denote a fuchsian group representing a closed surface of genus ≥ 2. Teruhiko
Soma recently presented a complete description of the topological possibilities for ge-
ometric limits at boundary points of the full quasiconformal deformation space T(G).
The totality of possible geometric limits contains an amazing richness of structure,
yet each limit is organized in slices parallel to the top and bottom. While they all by
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Fig. 5.14. The algebraic and geometric limit at a boundary point of a genus-2 Bers slice.
In the algebraic limit, half the top surface has degenerated leaving a once-punctured torus.
The geometric limit is homeomorphic to the result of removing a once-punctured torus from
R× (0, 1). It is the result of iterating the right side by a pseudo-Anosov that fixes the left side
pointwise, as in Theorem 5.9.1.

necessity contain new parabolics, our prior examples show that the new parabolics
can appear both in rank one and in rank two parabolic subgroups. It appears that the
Minsky bilipschitz models of hyperbolic manifolds lead to a geometric description of
the geometric limits.

Now M(G)∼= S× I , I = [0, 1]. We will refer to the slices Sy = q−1(y)= S×{y}
corresponding to the projection q : S× I → I and put the hyperbolic metric on each
one.

Theorem 5.9.2 [Soma 2003]. At a boundary point H of T(G) let H∗ be a geometric
limit which is strictly larger than H . There exists a closed set � ⊂ S× I containing
the top and bottom S× {0}, S× {1}, with the property that its complement S× I \�

is homeomorphic to �3/H∗ and contains S×{12}.
Each slice X y =�∩Sy , y ∈�=q(�), is the disjoint union of a compact subsurface

with geodesic boundary components and simple geodesics (either set may be empty).

The set � has additional properties spelled out in [Soma 2003]. The set � ⊂
I = q(�) is not discrete in general and may contain intervals. When � is totally
disconnected (each component is a point) then each connected component of � is
either a subsurface or a simple closed geodesic in some Sy . Yet there still may be
accumulation points — and accumulation points of accumulation points!

To study the accumulation to Sy , define for y ∈ �, and y < 1, y > 0 respectively:

�+y = Sy ∩
(
�∩ S× (y, 1] ), �−y = Sy ∩

(
�∩ S×[0, y)

)
.

For example �±y may be the geodesic lamination arising as the accumulation of a
sequence of simple geodesics in other levels {y}. If the geodesics have positive in-
tersection numbers with each other (upon projection to S0), one cannot slide past
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Fig. 5.15. The limit set of an algebraic limit corresponding to Figure 5.14. The boundary
point is chosen so that the good half of the top is covered by a round disk.

another; in particular the sequence can be prevented from converging to the top or
bottom S0, S1 (unlike the Jørgensen example). One also needs to consider certain
closed subsets of Sy denoted by 
(�±y )⊃�±y . For each ε=±, the relative boundary
∂
(�εy) is to be the disjoint union of simple closed geodesics ∂F ∪ �1 ∪ · · · ∪ �m ,
where F ⊂ Sy is a geodesic subsurface. The simple geodesics in
(�±y ) having a one
sided open annular neighborhood not meeting �±y correspond to parabolic elements
of H∗.

Soma also shows how groups H∗ described in the theorem can be constructed.

The Thurston boundary

The main references for this section are [Thurston 1986c; Fathi et al. 1979, §8; Bona-
hon 1988].
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Fig. 5.16. The limit set of the geometric limit corresponding to Figure 5.14. It can be obtained
by reflecting the algebraic limit set in the round circles.

Fix a hyperbolic (Riemann) surface R as our reference surface. Let γ be a simple
loop on R (not homotopic to a point). Denote by �ρ(γ ) the length of the geodesic
freely homotopic to γ in the hyperbolic metric ρ of R. Thurston expresses the topol-
ogy of Teich(R) as the minimum topology that for any fixed γ , �ρ(γ ) is a continu-
ous function of ρ. Following [Thurston 1988], consider the projectivized functional
L :Teich(R)→PML(R) that sends each γ ⊂ R to �ρ(γ ) modulo positive multiplica-
tive constants. He asserts that the closure of its image is Teich(R)∪PML(R), which
is homeomorphic to the closed ball B6g+2b−6. The boundary is called the Thurston
boundary. We will explain in more detail.

Put a succession of new hyperbolic metrics {ρn}— new complex structures — on
R. We can more generally find the length �ρn (ν) of the ρn-geodesic lamination deter-
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mined by a given geodesic lamination ν ⊂ R, see §3.9.1. For example, ρn may come
from the hyperbolic metric on a pleated surface in some M(G) ∈ T(R).

A sequence of hyperbolic structures {ρn}⊂Teich(R) is said to converge to (�,μ)∈
PML(R) if and only if there is a sequence of positive numbers {cn →∞} such that
for all ν ∈ML(R) with ι(ν, μ) 
= 0,

lim
n→∞

�ρn (ν)

cn
= ι(ν, μ).

It is enough to take the measures ν to be supported on simple closed geodesics. We
can then express the convergence criterion as either of

lim
n→∞

�ρn (a)

cn
= ι(a, μ), lim

n→∞
�ρn (a)

�ρn (b)
= ι(a, μ)
ι(b, μ)

,

for any simple loop a, or pair a, b of simple loops on R with ι(b, μ) 
= 0. Note that
μ is determined only up to a multiplicative constant.

For example, suppose � is a simple loop α and μ is its unit atomic measure, then
�ρn (b)→∞ for all simple loops b with ι(b, α) 
= 0.

Thurston [1986c, Theorem 2.2] proves that {ρn} converges to a lamination (�,μ)∈
PML(R) if and only if there is a sequence of measured laminations {(�n, μn)} con-
verging projectively to (�,μ) such that for all ν ∈ML(R) with ι(ν, μ) 
= 0,

lim
�ρn (ν)

ι(μn, ν)
= 1, �ρ(μn)→∞, �ρn (μn) < C <∞, (5.3)

for some constant C and all indices.
Therefore μ̂n = μn/�ρ(μn) in the projective class of μn is such that �ρn (μ̂n)→ 0.

We can choose μn supported on a simple loop γn . In this case �ρn (γn)/ρ(γn)→ 0.
For a specific example, see Section 6.1.1.

It is not necessarily possible to choose μn in the projective class of the limit μ
to satisfy all conditions of Equation (5.3). As an example let ρn denote the new
hyperbolic metric on R that comes from the n-th iterate τ n of the Dehn twist about
a simple geodesic γ : �ρn (τ

n(b)) = �ρ(b), for all simple geodesics b. In particular,
�ρn (γ )= �ρ(γ ). For some {cn}, {τ n(b)/cn} converges in PML(R) to�= γ for every
b with ι(b, γ ) 
= 0. Equation (5.3) is satisfied for μn = (n�ρ(γ ))γ except �ρn (μn) is
not bounded. However, �ρ(τ n(b))→∞ only when ι(b, γ ) 
= 0.

With the topology suggested above, T(R)∪PML(R) forms a compact metric space
and its (compact) boundary ∂thT(R)= PML(R) is called the Thurston boundary.

A Bers boundary point corresponds to a single Thurston boundary point provided
the space of projective measures with support on the ending lamination has dimension
zero. Thus a maximal cusp on the Bers boundary determined by 3g − 3 pinching
curves corresponds to a (3g − 4)-dimensional subspace on the Thurston boundary.
The result of pinching a single curve gives rise to a (3g− 4) dimensional boundary
space of ∂B(G) but a single point of ∂thTeich(R).

In contrast to the Bers boundary, the modular group extends so as to become a
group of automorphisms (self-homeomorphisms) of T(G) ∪ ∂thT(G). The orbit of
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each point of ∂th is dense. In view of these properties, ∂th is alternately referred to as
the geometric boundary.

5.10 Exercises and explorations

5-1. Hyperbolic Poisson integral formula [Ahlfors 1981, §5.7]. A hyperbolically
harmonic function u :�3→� is a function that vanishes under the Laplace–Beltrami
operator 
hu = 0. The Laplace–Beltrami operator in the ball model with |�x | = r < 1
is


hu = (1− r2)2

4

(

u+ 2r

1− r2

∂u

∂r

)
,

and in the upper half-space model {(z, t), t > 0} is


hu = t2
(

u− 1

t

∂u

∂t

)
.

Here
 denotes the euclidean laplacian. The Laplace–Beltrami operator has the prop-
erty that for any isometry g,


h(u ◦ g)= (
hu) ◦ g.

Thus u and u ◦ g are simultaneously hyperbolically harmonic.
We will use the ball model of �3 and denote spherical measure on �2 ≡ ∂�3 by

dω(ζ ). Suppose f (ζ ) is a measurable function on �2 with
∫∫

�2 | f (ζ )| dω(ζ ) <∞.
The function

u(x)= u f (x)= 1

4π

∫ ∫
�2

(
1− |x |2
|ζ − x |2

)2

f (ζ ) dω(ζ ), x ∈ �3,

has the following properties [Ahlfors 1981, Chapter V].

(i) u(x) is hyperbolically harmonic, and in particular real analytic, for x ∈ �3.
(ii) u(x) has radial limits f (ζ ) a.e.

(iii) If g is a Möbius transformation, then u f ◦ g(x)= u f ◦g(x).
(iv) In particular if f ◦ g(ζ ) = f (ζ ) for a Möbius transformation g and almost all

ζ ∈ �2 then u ◦ g(x)= u(x).

Note that the expression (1− |z|2)/|ζ − z|2 is the Poisson kernel in the unit disk.
In the following theorem G is a kleinian group such that each component �i of

�(G) is a quasidisk with Stab(�i )=Gi and G is not quasifuchsian or a �/2 extension
of one. Suppose the Möbius transformation T has the property that T sends the
exterior of �2 onto the interior of �1.

Theorem 5.10.1 Existence of invariant embedded surfaces. Let χ(ζ ) be the char-
acteristic function of �1, namely with value 1 for ζ ∈ �1 and zero elsewhere. De-
note by u(x) the “harmonic measure” defined by the Poisson integral above with
f (ζ ) = χ(ζ ). Choose r > 1

2 such that the level surface S = {x ∈ �3 : u(x) = r} is
smooth; it is also embedded. Then S ∩ h(S)=∅ for all h ∈ 〈G, T GT−1〉, h /∈ G1.
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Proof. See [Kapovich 2001, Lemma 4.102]. The surface S separates points of �3

with values u(x) > r from points with u(x) < r . It is embedded because the gradient
flow is orthogonal to S at all points. We know already that S is invariant under G1.

Suppose for some g ∈ G, g /∈ G1 we had y ∈ S ∩ g(S). Recall that uχ ◦ g−1(x)=
uχ◦g−1(x) so g(S) is the level surface uχ◦g−1(x) = r for the characteristic function
χ ◦ g−1 of g(�1). Adding the two Poisson integrals evaluated at y,

1< 2r = 1

4π

∫ ∫
�1∪g(�1)

(
1− |y|2
|ζ − y|2

)2

dω(ζ ). (5.4)

But this is impossible since the regions �1, g(�1) are disjoint so the Poisson integral
on the right represents the harmonic measure of their union. Its values must be strictly
between 0 and 1 in �2.

The argument shows that g maps the level-r surface over�1 onto the level-r surface
over g(�1). We have shown the totality of all such surfaces are mutually disjoint.
Likewise the map T maps the level-r surface S2 over �2 to the level r -surface T (S2)

over the complement �′1 of �1. Now T (S2) is the level-(1−r) surface over �1. This
can have no points in common with the level-r surface over�1. Note that T maps the
side of S2 facing �2 to the side of T (S2) facing away from �1. We could take r = 1

2
unless we wanted the surfaces to be smooth, then we can take r arbitrarily close to 1

2 .
There is one more case to check. Take a component �3 ⊂ �′1. Can its level-r

surface intersect T (S2)? If y were an intersection point then the integral on the right
side of Equation (5.4) would have the value 1= r+(1−r). This could happen only if
�3 =�′1 and G were quasifuchsian or an extension of a quasifuchsian by an element
that interchanged the two components. We have assumed that this is not the case.

It follows that the orbit of S under the group 〈G, T GT−1〉 is the union of mutually
disjoint surfaces. �

The bottom of the spectrum of eigenvalues. The bottom of the L2-spectrum of the
hyperbolic laplacian −
h on the hyperbolic manifold M=M(G) is given by

λ0(M)= inf
f ∈C∞c (M)

∫
M |∇ f |2 dV∫
M | f |2 dV

,

where the infimum is taken over all C∞ functions with compact support, and dV is
the volume element. Thus λ0(M) = 0 if M has finite volume (for then the constants
are in the competition).

For any geometrically finite M =M(G) with infinite volume and Area ∂C(M) =
2π |χ(∂C(M))|,

K

(Vol C1(M))2
≤ λ0(M)≤ 4π

Area ∂C(M)

Vol C(M)
.

Here K > 0 is a universal constant and C1(M) denotes the distance-1 neighborhood
of the convex core C(M). The volume Vol C1(M) is finite if Vol C(M) < ∞ and
if for some δ > 0, ∂C(M) contains no compressible curves of length < δ— this
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condition prevents long thin waists with compressible cross section for which the
1-neighborhood will have large volume [Thurston 1979, Proposition 8.12.1]. Also
Vol C1(M) > 0 if G is fuchsian. The right inequality is proved in [Canary 1992] and
the left in [Burger and Canary 1994].

It is amazing that the lowest eigenvalue is precisely determined by the Hausdorff
dimension d(M) of the limit set of G. Making use of the information in Exercise 3-20,
and bringing in the Tameness Theorem, we can state the situation as follows:

Theorem 5.10.2 [Sullivan 1987; Bishop and Jones 1997; Canary 1992]. Suppose
M=M(G) has infinite volume and G is nonelementary.

(i) λ0(M)= 0 and d(M)= 2 if and only if G is geometrically infinite.
(ii) λ0(M)= 1 if and only if G is geometrically finite with d(M)≤ 1.

(iii) 0 < λ0(M) = d(M)(2− d(M)) < 1 if and only if G is geometrically finite with
1< d(M) < 2.

In case (iii) there is an L2 eigenfunction f0 corresponding to λ0(M): −
h f0 =
λ0(M) f0.

There is a global version of (iii). Suppose G is geometrically finite and nonelemen-
tary. Set λ∗0(G)= sup λ0(M), d∗(G)= inf d(M) as M=M(H) ranges over Rdisc(G).
Then λ∗0(G)= d∗(G)(2−d∗(G)), provided M(G) is not a handlebody [Canary et al.
1999]. In addition the cases that λ∗0(G)= 1 or d∗(G)= 1 are identified.

5-2. The pinching estimate [Bers 1970a; McMullen 1999]. The following estimate is
frequently used in situations of pinching.

Theorem 5.10.3. Suppose � is a simply connected component of the ordinary set
�(H) corresponding to an incompressible component S of ∂M(H). Suppose h ∈
Stab(�) is loxodromic and corresponds to the geodesics α in the hyperbolic metric
on S and α∗ ⊂M(H). Then

LenM(H)(α∗) ≤ 2 LenS(α). (5.5)

Suppose instead �1, �2 are the components of a quasifuchsian group H corre-
sponding to the surfaces St = ∂ topM(H), and Sb = ∂botM(H). Denote by α∗, αt , αb

the geodesics in the corresponding hyperbolic metrics. Then

LenM(H)(α∗) ≤ 2 min(LenSb(αb),LenSt (αt )). (5.6)

Proof. The modulus of the annulus A = {z : r < |z|< R} is defined as

MA = log(R/r)

2π
= 1

λ(cA)
,

where λ(cA) is the extremal length of the free homotopy class of curves cA separating
the boundary components; see [Ahlfors 1973, Chapter 4]. The length of the shortest
geodesic in cA with respect to the hyperbolic metric of A is πλ(cA) (Exercise 2-2).
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Suppose first we have a quasifuchsian group G with invariant components �1, �2.
Assume that the loxodromic g : z �→ kz is in G, |k|> 1. Then Ai =�i/〈g〉 is confor-
mally equivalent to an annulus, i = 1, 2. Let Li denote the length of the geodesic in
cAi in the hyperbolic metric in Ai . As above, λ(cAi )= Li/π . These are the same as
the lengths of the geodesics corresponding to g in each of the two surfaces ∂M(G).

On the other hand consider the torus T = �/〈g〉. The annular regions Ai are
embedded in T and are disjoint there. The central curves of both A1 and A2 belong
to the free homotopy class of curves cT in T. A well known inequality, in particular
in [Ahlfors 1973, Theorem 4.2], says that

1

λ(cT )
≥ MA1 +MA2 =

1

λ(cA1)
+ 1

λ(cA2)
= π

L1
+ π

L2
.

In particular, πλ(cT )≤min(L1, L2).
Calculate λ(cT ) as follows. Set ϕ= arg k, 0≤ϕ < 2π , and τ = log k= log |k|+ϕi .

Consider the group X =〈z �→ z+2π i, z �→ z+τ 〉. A fundamental polygon is spanned
by the vectors (2π i, τ ). Its area is 2π |τ | cosφ, where 0≤ φ < π/2 is a vertex angle;
cosφ =± cosϕ.

The map z = ew sends �/X onto the torus T in such a way that [0, 2π] is mapped
to a circle and the line segments parallel to [0, τ ] are mapped into the class cT . The
translation w �→ w+ τ is sent to z �→ kz.

Now ± cosϕ = Re τ/|τ |. The rectangle of length |τ | and height 2π Re τ/|τ | is
foliated by the line segments parallel to [0, τ ]; it serves as a fundamental region for
T . Conclude that λ(cT )= |τ |2/(2π Re τ).

For the quasifuchsian group we end up with

|log k| ≤ 2 min(L1, L2).

Now return to the hypothesis of Theorem 5.10.3. Here we use the annulus A =
�/〈h〉with Len�/H (h)=πλ(cA). If h is conjugate to z �→ kz (we can assume |k|>1)
then

log |k| ≤ |log k| ≤ 2π

MA
= 2πλ(cA)= 2 Len�/Stab(�)(h). �

In particular, suppose M(H) has bounded geometry, that is, LenM(H)(α∗)≥ ε > 0,
for all geodesics α∗ ⊂M(H). In the quasifuchsian case, the lengths of geodesics in
both the top and bottom component are uniformly bounded below. If we can find a
path out to the Bers boundary in a Bers slice, and if all manifolds along this path have
uniformly bounded geometry with geodesic lengths ≥ ε > 0, then no pinching can
occur. The projection of the path to the moduli space lies in a compact set.

Suppose instead that � is a nonsimply connected component of �(H) invariant
under a function group G. Assume there is a positive lower bound for the length of
all closed curves in � in the hyperbolic metric in �. According to [Canary 1991],
there is a constant κ > 0 with the following property. If c ⊂ S = �/G is a closed
geodesic in the hyperbolic metric on S, and c∗ is the geodesic or a point representing
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c in M(H), then in the respective hyperbolic metrics,

LenM(H)(c
∗)≤ κ LenS(c).

5-3. Pinching. Given a geometrically finite, boundary incompressible manifold M(G)
we will say that disjoint simple loops α, β⊂ ∂M(G) are parallel if neither one can be
homotoped to a puncture (or to a point), yet the loops are freely homotopic in M(G).
That is, they bound an annular region on ∂M(G), or they bound an essential cylinder
in M(G). Another way of saying this is that if A ∈ G is a primitive loxodromic
associated with α, and B ∈ G one associated with β then the cyclic groups 〈A〉 and
〈B〉 are conjugate in G. By a primitive loxodromic A we mean that, for some lift
α∗ ∈ �(G), A is a generator of cyclic subgroup that maps α∗ onto itself. We have
often said more simply that A ∈ G is associated with α.

The best general result about pinching is as follows: The setting is a geometrically
finite group G without elliptics. Let α1, . . . , αn be mutually disjoint and nonparallel
simple loops on ∂M(G) that are represented by the loxodromics A1, . . . , AN and their
conjugacy classes in G.

Pinching Theorem [Ohshika 1998a]. The manifold M(G) can be pinched along the
loops {αi } resulting in a geometrically finite manifold M(H).

More precisely there is a sequence of points {θn : G → Gn} in the deformation
space T(G) such that

(i) {Gn} converges algebraically and geometrically to the group H = lim θn(G);
(ii) lim θn(Ai )= A∗i is parabolic for 1 ≤ i ≤ N, and every new parabolic in H is in

the conjugacy class of some 〈A∗i 〉;
(iii) the interior �3/G is homeomorphic to �3/H; and
(iv) if αi1, . . . , αik lie in the component Ri of ∂M(G), the surface Ri \⋃1≤ j≤k αi j

is homeomorphic to a union of components of ∂M(H) such that each αi j deter-
mines a pair of punctures.

The statement has been slightly modified from Ohshika’s. His proof depends on
Thurston’s stronger version of his Compactness Theorem (page 206) and brings in
techniques used in [Maskit 1983] to prove a weaker result. In any case the existence
of the limit group H follows from the Hyperbolization Theorem.

Prove this for quasifuchsian groups by replacing the αi by ever thicker annuli as
in Exercise 4-8. The estimate (5.5) is needed to show that the sequences {θn(Ai )}
converge to parabolics.

Hint: Remove from the original manifold M(G) the geodesics which are parallel
to the initial loops αi . Apply the Hyperbolization Theorem to get a manifold where
these geodesics correspond to rank two cusps. Do Dehn surgery on solid cusp tori.

For a different approach, apply Theorem 3.11.3.

5-4. Anosov mappings of a torus. Show that those automorphisms of a torus onto itself
that preserve the free homotopy class of a simple loop are exactly those elements {A}
of the modular group (see Exercises 2-5 and 2-9) with tr2(A)= 4. So if tr2(A) > 4 no
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simple loops are preserved. In the latter case, the automorphisms are called Anosov
mappings. Prototypical examples of such A are

(1
0

1
1

)
and

(2
1

1
1

)
.

Hint: Work with the square lattice and the quotient torus

�2 = �/〈z �→ z+ 1, z �→ z+ i〉.
Referring back to Exercise 2-5, show that an affine map that sends the square lattice
onto itself has the form A : (x, y) �→ (u, v) where

u = ax + by, y = cx + dy, a, b, c, d ∈ �, ad − bc = 1.

Simple loops on the square torus are those coming from lines through the origin
of rational slope. Show that A preserves a simple loop on the quotient if and only if
tr2(A) = 4, that is if there is only one eigenvalue λ = ±1, or if and only if the fixed
point of A, if 
= ∞, is a rational number. Otherwise the projection to �2 of each of
the lines of given irrational slope is dense and uniformly distributed in the torus by
a famous classical theorem of Weyl. The projection of the family of parallel lines is
called a foliation of �2. Find the eigenvalues and the eigenvectors. Identify the set
of orthogonal lines that are preserved by A. On one set of lines, A is expanding by
a factor exceeding one; these are called the stable leaves. On the orthogonal lines, A
is contracting; these are called the unstable leaves. An Anosov map is characterized
by having such a pair of transverse, invariant foliations.

On tori, the Anosov maps have no singularities, but on hyperbolic surfaces, the
topology forces singularities.

5-5. Dehn twists. A Dehn twist in the round annulus A0 = {z : 1 < |z| < u} is the
following mapping. Positively orient the boundary components a, b of A0. Hold one
fixed and twist A0 by rotating the other by 2π in its positive direction. For example
we can take (Figure 5.17)

τ : reiθ �→ reiθs(r), where 1≤ r ≤ u and s(r)= (u− 2π)+ (2π − 1)r

u− 1
.

Now if A ⊂ R is instead a neighborhood of a simple loop α 
∼ 1 on some surface,
we can bring over the twist from the round annulus to A. Extend the Dehn twist in A
to all R by setting it equal to the identity on R \ A. This is a Dehn twist of R about

Fig. 5.17. A positive Dehn twist in an annulus.
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α— we are only interested in its homotopy class. More precisely this is a Dehn twist
of degree+1. Similarly we can define a Dehn twist of any positive or negative degree
about α. A Dehn twist has no effect on the free homotopy class of a simple loop that
does not make essential crossings with A.

For future use we also point out that a Dehn twist about a compressing curve α on
∂M(G) can be extended to a twist map of M(G), which is isotopic to the identity.
First carry this out in the round model �× [0, 1], via (re2π iθ , t) �→ (re2π i(θ+t), t).
Then thicken to D∗ an essential disk D bounded by α, so that D∗ ∩ ∂M(G) = A.
Bring over the twist to D∗ and set it equal to the identity outside.

In the same vein we can speak of a Dehn twist about an essential cylinder C in
M(G). Thicken C a bit to get the homeomorphic image C∗ of the round A∗0 =
A0× [−δ, δ]. The Dehn twist in A0 can be extended to A∗0 then C∗. Set it equal the
identity outside C∗.

Suppose γ is a simple loop which has essential crossings with α, that is the number
of crossings cannot be reduced within the free homotopy class of γ — this minimal
number of crossings is the geometric intersection number ι(γ, α). In the annular
region A about α, we may assume γ∩A consists of a finite number of mutually disjoint
segments running between the two boundary components. After A is twisted, each
of the segments winds once around A but keeps the same endpoints. The collection
remains mutually disjoint. The twisted segments can then be reattached to the part of
γ outside A to become a new simple loop.

For example, consider the following construction on a genus 2 handlebody M(G)
with boundary surface S. Let γ ⊂ S be a simple dividing loop which in addition
bounds a disk in the handlebody. Let α⊂ S be simple nondividing loop which crosses
γ twice and is not compressible in M(G). Let γ ′ be the result of applying a Dehn
twist about α to γ . Show that γ ′ still divides S into two tori each with one boundary
component but γ ′ is no longer compressible. In one of the components choose two
simple loops A and B crossing each other exactly once. Show that the simple loop
[A, B] is freely homotopic to the boundary γ ′, and neither A or B is compressible.

5-6. Surface automorphisms. Suppose R is a surface of finite topological type. Let
τ be an automorphism of R, that is, an orientation preserving homeomorphism of R
onto itself. We are actually interested not so much in τ itself but in its equivalence
class, also denoted by τ , under the homotopy relation ∼. These homotopy classes of
automorphisms, as we saw on page 82, form the mapping class group M(R). (One
could use the isotopy equivalence relation instead, with the same results.)

Assume τ 
∼ id. Thurston’s classification of the automorphisms parallels the clas-
sification of Möbius transformations:

τ has finite order if for some integer, τm ∼ id;
τ is reducible if there is a set of mutually disjoint, unoriented, nontrivial simple

loops S⊂ R, no two of which are parallel and no one of which is parallel to
a boundary component or puncture, such that τ preserves the set S up to free
homotopy of its elements;
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τ is pseudo-Anosov if it has neither property (i) nor (ii).

Finite order elements. An element of finite order is analogous to an elliptic Möbius
transformation. As mentioned on page 82, there was a longstanding conjecture of
Nielsen that given a finite group (up to homotopy) of automorphisms τ there is a hy-
perbolic structure that can be put on R so that the group becomes a group of isometries
of R onto itself. This was first proved in [Kerckhoff 1983], with different proofs in
[Gabai 1992; Casson and Jungreis 1994].

Reducible mappings. The term “reducible” is used to suggest that if one cuts R
along the curves of S, some power τm (m ≥ 1) maps each of the complementary
regions onto itself and therefore can be analyzed in terms of its action on simpler
surfaces. A Dehn twist is clearly reducible (with m = 1). Dehn twists are analogous
to parabolic Möbius transformations. The “fixed point” of a Dehn twist (as well as
of its inverse) is the geodesic lamination consisting of the geodesic representative of
the simple loop. A set of Dehn twists about mutually disjoint loops generates a free
abelian subgroup of M(R). (The mapping class group itself is generated by 2g+1
Dehn twists — see [Birman 1974].)

Pseudo-Anosov mappings. This is the generic case. For example, on a once-
punctured torus choose simple closed geodesics a, b crossing exactly once. The
composition of the Dehn twist about a with the Dehn twist about b is pseudo-Anosov.

A pseudo-Anosov τ does not preserve the homotopy class of any simple closed
curve on the surface. Rather it preserves a pair of geodesic laminations which, like all
geodesic laminations, are limits of simple closed curves. The situation is as follows:

Given the Riemann surface R on which τ is acting, there is a uniquely determined
holomorphic quadratic differential with the following property: The quadratic differ-
ential determines a singular euclidean structure on R in terms of which τ is an affine
map on neighborhoods of nonsingular points. In analogy to the torus case when
one has eigenvectors, in the geometry of quadratic differentials there is a horizontal
(stable) and vertical (unstable) foliation. These are determined by the horizontal and
vertical trajectories — the pullback of the horizontal and vertical lines in �2 by the
locally conformal map determined by the quadratic differential — which are invariant
under τ . The quadratic differential is associated with the extremal Teichmüller map
in the homotopy class of τ . See Exercise 5-23.

From this one obtains projective measured laminations (�±, μ±), uniquely associ-
ated with “fixed points” of τ , in analogy with the fixed points of a loxodromic. They
are called the attracting and repelling (or stable and unstable) laminations associated
with the pseudo-Anosov τ . We can get �+ as lim τ+n(γ ) and �− as lim τ−n(γ ), for
any simple closed geodesic γ . The measures μ± are obtained as the projectivized
limit of the counting measures. In fact the “eigenvalues” k±1, k > 1, are such that
ι(τ (γ ),�±) = k∓1ι(γ,�±) for any simple closed geodesic γ . The geodesic lami-
nations �± fill up R in the sense that each component of R \ (�+ ∪�−) is either
a relatively compact simply connected region, or an annular region about a puncture
containing its universal horodisk.
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�± are uniquely ergodic in that, up to projective equivalence, there is only one
transverse measure on the underlying geodesic lamination. In fact the corresponding
projective measured laminations are dense in all projective measured laminations.
In particular, �± are arational in that each complementary component is either a
polygon or a polygon containing a single puncture. An arational lamination has the
property that it is crossed by all closed geodesics and every other measured lamination
with distinct support (Section 3.9).

Just like loxodromic Möbius transformations, two pseudo-Anosov automorphisms
τ1, τ2 either have the same pair of fixed points or no common fixed points. In the
latter case the subgroup 〈τm

1 , τ
n
2 〉 ⊂M(R) is a free group, for sufficiently large m, n;

see [Mosher ≥ 2007].
For the details of this theory in the topological case see [Thurston 1988; Fathi

et al. 1979; Mosher ≥ 2007]. For a discussion of the analytic interpretation presented
above, see [Marden and Strebel 1984; 1986].

5-7. Twists and traces. Suppose G is a fuchsian group without elliptics. Let T be a
loxodromic element, and A, B ∈ G any two other elements with fixed points distinct
from those of T . Prove that trace2(AT n B) goes to∞ when n goes to ±∞. Conclude
that the length of the geodesics on the quotient surface determined by the members
of the corresponding sequence become infinite. (Hint: Work in UHP, take T to have
fixed points 0,∞).

Prove that for {AT n BT−n}, the trace becomes infinite as well.
Suppose on the surface R =�2/G, γ is a simple nontrivial loop. Let τ denote the

Dehn twist about γ . First assume that γ separates R. Let δ be a simple loop with
geometric intersection number ι(δ, γ )= 2. The loop δ is homotopic to a composition
αβ where α, β lie in the two complementary components except for a common origin
on γ . The twist τ n sends αβ to, say, αγ nβγ−n . If instead γ does not separate, let
δ be a simple loop with ι(δ, γ ) = 1 and crossing γ once, at its origin. The result
of applying τ n is then to send δ to δγ n . In either case, applied to the corresponding
elements of G, show that the length of the corresponding geodesics becomes infinite
as n→±∞.

5-8. Nondensity of maximal cusps. This is an example of Curt McMullen. Consider
the quasifuchsian space of a geometrically finite group without parabolics. Choose a
boundary group H without parabolics where the bottom end of M(H) is geometrically
infinite and the top end is geometrically finite (a closed surface). This group cannot be
approximated (algebraically) by maximal cusps. For suppose otherwise so that H =
lim Hn . Each maximal cusp Hn has the property that all the components of ∂M(Hn)

are triply punctured spheres. Therefore the convex core of M(Hn) is bounded by a
finite union of totally geodesic 3-punctured spheres, the number of components being
independent of n. In view of Theorem 4.6.2 we know that all sequences that converge
algebraically to H also converge geometrically. In particular this is true of {Hn}. On
the other hand geometric convergence implies convergence of the convex hulls. This
is impossible at the bottom end.
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5-9. More on collapsing mappings (Thurston; see [Minsky 1994b]). Let f :�2→�2

be any continuous map whose restriction to the lower half-plane LHP is a homeo-
morphism. Set σ = f (�∪ {∞}). y ∈ σ corresponds the closed set Cy = { f −1(y)} ⊂
�1 ≡ �∪ {∞}. Let Cy denote the hyperbolic convex hull in LHP of Cy .

Verify that {Cy, y ∈ σ } is a partition of LHP into disjoint closed sets. (Hint: if
Cy ∩Cz 
=∅ there would be two pairs of points in Cy and Cz that separate each other
on �1.)

Each Cy is a polygon with possibly infinitely many edges. The totality of edges
forms a geodesic lamination � in LHP.

Now suppose in addition there is a fuchsian group G such that f ◦ g = θ(g) ◦ f
for all g ∈ G and θ is an isomorphism to a kleinian group θ(G). Then � is invariant
under G and projects to a geodesic lamination on LHP/G.

5-10. Nielsen transformations. Suppose G is a free group on two generators X, Y .
Nielsen proved that every automorphism of G is the composition of a finite number
of automorphisms of the following elementary types.

(i) Interchange the two generators: (X, Y )→ (Y, X).
(ii) Replace one generator by its inverse: (X, Y )→ (X, Y−1).

(iii) Replace one generator by its product with the other: (X, Y )→ (X, XY ).

Thus if we start with a particular generating pair, we can systematically find every
other generating pair.

This is applied to once punctured torus groups, where there is another relation that
has to be maintained. By a generator pair of a once punctured torus group G we mean
elements X, Y ∈ G such that G = 〈X, Y 〉 and [X, Y ] generates a parabolic subgroup.

The commutator requirement is preserved by the Nielsen transformations: Applica-
tion of the first Nielsen transformation sends the commutator [X, Y ] = XY X−1Y−1

to its inverse [Y, X ], the second sends it to [X, Y−1] = Y−1[Y, X ]Y , and the third
sends it to X [X, Y ]X−1. In any case the trace of the commutator remains −2.

Show using a cancellation argument that if both (X, Y ) and (X, Z) are generator
pairs in this sense then Z = XnY , modulo conjugation by some Xk .

For a quasifuchsian once punctured torus group G, set as usual Stop = ∂ topM(G),
and Sbot = ∂botM(G). Suppose 〈X top, Y top〉 is a generator pair for π1(Stop) and the
elements Xbot, Ybot are a generator pair for π1(Sbot). Assume these ordered generating
pairs are not conjugate within G. Then we can pinch Stop and Sbot by requiring X top

and Xbot to become parabolic independently of each other. This results in a manifold
whose boundary is two triply punctured spheres. Still, the two generator pairs are
Nielsen transforms of each other.

Show that the Nielsen transformations generate the mapping class group for a once
punctured torus.

5-11. Geometric limits on the Bers boundary. The point of this exercise is to iden-
tify the limit of a sequence {τ n(O)} in a Bers slice B(R) as n → +∞. Here O =
(R, Sbot, Stop) is a basepoint representing the manifold M(G) with G fuchsian; τ is
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a Dehn twist about a simple loop γ ⊂ Sbot. We will assume that γ divides R into two
subsurfaces Sbot1, Sbot2. Let γt ⊂ Stop be parallel to γ . It divides Stop into subsurfaces
Stop1, Stop2 parallel to Sbot1, Sbot2.

The set of discontinuity �(G) has two components �top = UHP, �bot = LHP.
The totality of lifts γ ∗t of γt divides �top into countably many regions. Consider
two adjacent regions �top1, �top2 where the first listed covers Stop1 and the second
Stop2. Each is preserved by a subgroup G1,G2 of G, and G itself is the free product
of these two subgroups, amalgamated over the common cyclic subgroup generated
by the element preserving their common boundary. If �′top2 is another component
adjacent to �top1 then its stabilizing group is a conjugate of G2.

Denote the sequence of points in the Bers slice corresponding to {τn(O)} by

{(Sn,bot, Sn,top; Jn = J ◦ τ n)}.

Neither the conformal type of the bottom or the top surface changes, but the topo-
logical relationship determined by Jn is causing increasing distortion which in the
end will cause a fracture in the manifold. Each triple corresponds to a quasifuchsian
group Hn which we are free to normalize so that for example 0, 1 are the fixed points
of θn(g1), and ∞ is the repelling fixed point of θn(g2). Here θn : G → Hn is the
isomorphism determined by the conformal map Fn of LHP normalized to fix 0, 1,∞.
Its projection is a conformal map fn : Sbot→ Sn,bot .

We may assume the sequence {Fn} converges to a conformal mapping F of LHP
and so {θn(G) = Hn} converges algebraically to θ : G → H . We may also assume
that there is geometric convergence to some H∗ ⊃ H .

What is happening on the top? For example take a simple loop δ ⊂ Sbot that is
transverse to γ , crossing it exactly twice. We can write δ ∼ αβ, where α, β are
disjoint except for a common basepoint on γ and α lies in Sbot1, β in Sbot2. In Sn,bot

we have δn = fn(δ)∼ αnβn transverse to γn = fn(γ ). With respect to the pairing Jn ,
δn is parallel in M(Hn) to Jn(δn) = αnγn

nβnγn
−n (up to homotopy, also the use of

+n or −n here depends on orientations). From Exercise 5-7 we know that the length
of the corresponding geodesic on Sn,top becomes infinite.

We conclude that the top surface is becoming pinched. That is if g ∈ G is a lox-
odromic that corresponds to γ and γt , g∗ = lim θn(g) is parabolic. The boundary
∂ topM(H) is the union of two surfaces, homeomorphic to Stop1, Stop2 joined by a pair
of punctures.

There exists a conformal map F̂n : UHP→�n,top, but it does not induce θn there.
Instead, we may assume that on �top1 F̂n induces the restriction of θn to its stabilizer
G1. But on �top2, F̂n induces the isomorphism θn(gn)θn(G2)θn(g−n) where g ∈ G
is a loxodromic that corresponds to γt . We may normalize F̂n on �top1 and assume
{F̂n} converges to a conformal map F̂ of UHP. The convergence forces {θn(gn)} to
converge to a Möbius transformation h∗ 
= id, h∗ ∈H∗. That in turn forces the relation
h∗g∗h∗−1 = g∗ to hold. This relation in turn forces both g∗, h∗ to be parabolic since
they cannot both lie in a cyclic subgroup of H∗. Also h∗ has the same fixed point as
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g∗. So 〈g∗, h∗〉 is a rank two parabolic group and determines a solid cusp torus in
M(H∗).

What is going on here? F̂ maps UHP onto a component �∗ of �(H∗) and induces
an isomorphism of G onto the stabilizing subgroup G∗ of �∗. The projection F̂∗
maps Stop conformally onto F̂(UHP)/G∗. The image of �top1 in �(H) is bounded
by “horocycles” associated with the parabolic fixed points coming from a component
over ∂ topM(H). The rest of UHP is mapped into the corresponding “horodisks”. The
extra parabolic h∗, maps the exterior of one “horodisk” onto the interior of its partner.
Thus M(H∗) can be constructed from M(H) by the method of Exercise 4-18.

The geometric limit manifold M(H∗) is geometrically finite with the following
structure. ∂M(H∗) has two boundary components, one conformally equivalent to
R = Sbot, the other to Stop. M(H∗) is homomorphic to (R × [0, 1]) \ {c}. Here
c ⊂ R×{1/2} is a simple loop parallel to γ and γt . In M(H∗) it represents the solid
cusp torus. We will deal with manifolds of this type in the next exercise.

Finally, the algebraic and geometric limits are independent of the subsequences
used to attain them. This is a consequence of the Rigidity (or Isomorphism) Theorem
3.13.3.

The reader is invited to confirm the various assertions made. For another exposition
with application to Riemann surface theory, see [Marden 1980]. Published details
appear in the independent development in [Kerckhoff and Thurston 1990], where the
result is applied to show that the extension of the mapping class group to the Bers
boundary is not necessarily continuous.

Once we have the new groups H, H∗ we can repeat the process with a new simple
loop, and keep going until the loops selected determine a pants decomposition on
∂M(G).

5-12. Piling up double cusps. This construction is simplest for boundary cusps of a
Bers slice in the once-punctured torus quasifuchsian space. For in this quasifuchsian
space, a boundary cusp group H is such that ∂M(H) is the union either of a triply
punctured sphere and a once-punctured torus (which we will here call a single cusp
group), or of two triply punctured spheres (a double cusp group).

We can make an arbitrarily high pile of double cusp groups, where the top and/or
bottom of the pile, if the pile is finite in that direction, is either a double cusp group
or a single cusp group. It should suffice to illustrate the method in the simplest case.

Suppose H1, H2 are single cusp groups. We may arrange things so that the triply
punctured sphere is the top component Stop1 of ∂M(H1) and the bottom Sbot2 of
∂M(H2). This means if we start with a fuchsian once-punctured torus group G, then
there are orientation preserving homeomorphisms �1,�2 of the interiors �3/G →
�3/Hi that take the top and bottom ends of �3/G to the respectively labeled ends of
�3/Hi .

Now Stop1 arises by pinching the top punctured torus along a simple closed curve
and likewise pinching Sbot2. The pinching curves are represented on the other bound-
ary components by simple loops γ1 ⊂ Sbot1 and γ2 ⊂ Stop2 respectively, parallel to
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the pinching curves. For our construction we must require that γ1 and γ2 are in the
�1,�2 images of the same free homotopy class of �3/G.

Now of the three punctures on Stop1 and Sbot2, one is spoken for as the puncture
coming from the paired punctures on ∂M(G). We will refer to these as the basic
punctures. The other two punctures will be called new punctures. If we draw a small
circle about each of them, there is a solid pairing tube T1, T2 in each of M(H1),M(H2)

that pairs them — its boundary is bounded by the two small circles. When we stack
M(H2) on top of M(H1) so that the basic punctures are matched, the two solid pairing
tubes will join up to form a solid cusp torus. . . and to determine a rank two cusp of
the new manifold.

How do we do the construction so that the new manifold is hyperbolic? Represent
Stop1, Sbot2 as totally geodesic surfaces Stop1∗, Sbot2

∗ within the corresponding mani-
folds — just replace a disk in ∂�3 by the hyperbolic plane supported by its boundary
and project. Let P1 ⊂ �3 be a lift of Stop1∗ and �n1 the lift of an inner pointing
normal. We may conjugate H2 so that a lift P2 of Sbot2

∗ coincides with P1 but �n2

points to the opposite side of P1 = P2 as �n1. We must also arrange things so that the
respective subgroups preserving P1 = P2 are identical and the parabolic conjugacy
class associated with the basic punctures coincide. Now 〈H1, H2〉 is discrete. How
does the new rank two cusp arise?

Up in �3, given a lift P1 of Stop1∗, and a new parabolic α acting on P1, there is
another lift P ′1 of Stop1∗ which uniquely determined by the property that α preserves
both — that the fixed point of α is the point of tangency of the boundaries of P1 and
P ′1. Choose an inner normal vector �n′1 to P ′1. Correspondingly for Sbot2

∗ there is
another lift P ′2 that is also preserved by α; here P ′2 
= P ′1. Choose an inner normal
vector �n′2. When H1 and H2 are joined across P1= P2, consider the associated planes
P ′1 and P ′2 which also share the fixed point of α on their boundaries. To complete the
combination of the two groups, we must add another parabolic β that maps the side
of P ′1 containing �n′1 onto the side of P ′2 opposite that determined by �n′2, and satisfying

βαβ−1 = α, β(P ′1)= P ′2, βStab(P ′1)β
−1 = Stab(P ′2).

These conditions uniquely determine β. In essence we are making a construction as
in Exercise 4-19. We end up with the group H = 〈H1, H2, β〉.

Verify that the hyperbolic construction works, and that the resulting manifold M(H)
has the following properties:

(i) ∂M(H) has two components, one conformally equivalent to the bottom compo-
nent of ∂M(H1), the other to the top component of ∂M(H2).

(ii) In the interior of M(H) there is a “singular” totally geodesic surface representing
the thrice punctured sphere.

(iii) M(H) is homeomorphic to (S× [0, 1]) \ c where c is a circle homotopic to the
representative of the pinching curve on each of the two boundary components,
and S is a once-punctured torus.
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Actually we made no essential use of the fact that the bottom component of ∂M(H1)

and top of ∂M(H2) remained a once punctured torus. H1 and H2 could as well have
been double cusp groups. In this case we can continue the process and build an
arbitrarily large pile of manifolds. This is the process required to directly construct the
groups representing geometric limits in quasifuchsian space, as described in Section
5.9.

5-13. Shuffling a rolodex. This and the next exercise is a report on [Anderson and
Canary 1996a]. First we will construct the basic manifold.

Start with a solid torus T and its core curve c. Fix a finite system of mutually
disjoint, parallel simple loops {γk} on ∂T which are not contractible in T . Corre-
spondingly fix a collection of surfaces {Sk}, each of some genus gk ≥ 1 and with a
single boundary component. For greater effect assume the genera gi are all differ-
ent. Slightly thicken each Sk to obtain the compact manifolds {Sk × [−ε,+ε]}. The
boundary of each contains the annulus ∂Sk ×[−ε, ε].

Attach Sk × [−ε, ε] by gluing ∂Sk × [−ε, ε] to a thin neighborhood of γk . The
resulting manifold M is orientable and compact. By “rearranging the pages” — taking
a noncyclic permutation τ of {Sk}, we get another manifold Mτ which is homotopy
equivalent but not homeomorphic to M . The manifolds Mτ have a hyperbolic struc-
ture. For more details see Exercise 5-13.

By the Hyperbolization Theorem (page 324) we can write M = M(G), for a
kleinian group G and likewise Mτ = M(Gτ ). The original solid torus becomes a
tubular neighborhood about the core geodesic c. So this construction results in a mul-
titude (depending on the number of pages chosen) of hyperbolic manifolds homotopy
equivalent but not homeomorphic to M(G) or to each other.

Let M̂ denote the result of removing from M the core curve c of T . Note that
T \ {c} ⊂ M̂ has the structure of a solid cusp torus. By applying the Hyperbolization
Theorem we can assume that M̂ ∼= M(H) for a geometrically finite H with now a
rank two cusp.

To get bumping, do Dehn surgery (Section 4.9) on the rank two cusp of M(H).
Take a cusp torus parallel to ∂T , a meridian α which is contractible in T , and a
longitude β which is parallel to c. Set δn = α + nβ, 0 ≤ n. After Dehn surgery δn

becomes a meridian on the solid torus that replaces the solid cusp torus. The resulting
manifold Mn also has a hyperbolic structure M(Hn) and is homeomorphic to M(G).
We claim that {Hn} converges algebraically to a geometrically finite group G∗ with a
rank one parabolic and geometrically to H ⊃ G∗ in analogy with Section 4.9.

This is seen by considering the sequence of representations ψn : dn ◦ ι of G where
dn is the homeomorphism H → Hn given by Dehn surgery, and ι : π1(M)→ π1(M̂)
is the inclusion. The image group is Hn and ψn is induced by a homeomorphism
between the manifolds M(G) and M(Hn).

In fact we will explicitly construct G∗ and H in the next exercise. It will turn out
that in H the {Sk} are once punctured surfaces and the system T \ (⋃ ∂Sk× (−ε, ε)

)
appears as pairing tubes, pairing successive punctures.
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Next, choose a noncyclic permutation τ of (1, 2, . . . , k). Using the permutation of
indices given by τ , build Mτ on T as M was built. As pointed out earlier, the mani-
folds M,Mτ have isomorphic fundamental groups so they are homotopy equivalent,
but they are not homeomorphic. There is an isomorphism θτ : Gτ → G.

The hardest part is to construct an immersion fτ :Mτ→ M̂ and equally M(Gτ )→
M(H) such that on the level of fundamental groups fτ has the properties (i) it de-
termines an isomorphism of Gτ onto a geometrically finite subgroup of H , i.e.,
π1(Mτ ) → π1(M̂), and (ii) it determines an isomorphism θn,τ : Gτ → Hn , i.e.,
π1(Mτ )→ π1(M̂)→ π1(Mn).

The sequence of isomorphisms {θn,τ } converges algebraically to the isomorphism
θτ : Gτ → G∗ ⊂ H and the sequence of groups geometrically to H itself. Thus the
group G∗ is a boundary group of the deformation space of G and of the deformation
space of Gτ . These groups represent the nonhomeomorphic manifolds M(G) and
M(Gτ ). The two deformation spaces bump at G∗.

Manifolds of the type constructed above exhibit another interesting property (lest
one believes such a phenomenon does not occur!): An example of a hyperbolic man-
ifold which has a simple geodesic γ which is not freely homotopic to curve in the
boundary, yet γ n is freely homotopic to a simple loop in the boundary.

Instead of doing (1, n)-Dehn surgery on M(H) do (n, 1)-Dehn surgery. That results
in a manifold M(H ′n) in which βαn is homotopic to a point. That is, β∼α−n . Now in
M(H ′n), α cannot be homotoped into ∂M(H ′n) (or to a point). Yet β can be homotoped
into the boundary — it is parallel to the central curves of the annuli we used.

5-14. Constructing a rolodex. In this exercise we will explicitly construct the rolodex
used in Exercise 5-13. Again we closely follow [Anderson and Canary 1996a].

We used above k ≥ 3 surfaces {Sk} with one boundary component and distinct
genera {gi ≥ 1}. We will now assume the surfaces are closed Riemann surfaces each
with one puncture.

Uniformize each of the surfaces by a fuchsian group {�k} acting in the upper and
lower half-plane so normalized so that ∞ is a parabolic fixed point and z �→ z + 1
generates the rank one parabolic group at that point. By the universal disk property,
the horizontal strip σ = {z ∈ � : −1− ε < Im z < 1+ ε}, ε > 0, has the following
property. For any element g 
= id of any group �k , g(� \ σ) ⊂ σ , unless g is in the
rank one parabolic group at ∞. Moreover, the vertical slab σ ∗ in upper half-space
over σ has the property that σ ∗/�k

∼= Sk×[0, 1]. Let σ ′ be the result of truncating σ ∗
at height 1+ε. By the Universal Horoball Theorem, we have that g(�∪�3\σ ∗)⊂σ ∗
for any element g of any �i , provided g does not fix∞. Instead of lining the surfaces
up on a solid torus as above, we will line them up in vertical translates of σ .

Next choose μ> 2k(1+ε). Conjugate each � j by a vertical translation z �→ z+a j i
so that the horizontal strips σ j for the resulting groups all lie in {z : 0 < Im z < μ},
with mutually disjoint closures and with the order σ1, σ2, . . . , σk as Im z increases
from Im z = 0 to Im z = μ. Denote the conjugated groups by {�′k}.
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We claim that the group G∗ =〈�′1, �′2, . . . , �′k〉 is a kleinian group such that M(G∗)
with the interior of a solid pairing tube removed is homeomorphic to the complement
of the interior of T in the manifold M constructed above. In G∗ there is only one
parabolic conjugacy class, namely that generated by z �→ z+ 1, while if g(∞) 
= ∞,
g ∈ � j maps the exterior of σ ′j into σ ′j .

Let U (z) = z+μi and set H = 〈G∗,U 〉. We claim that M(H) is homeomorphic
to M̂ constructed above. H is geometrically finite with a rank two parabolic group at
∞.

Finally we construct a hyperbolic structure for Mτ . To do that we have to rearrange
the strips {Si } to have the new ordering dictated by τ . A simple way of doing that is
as follows:

Hτ = 〈U�τ(1)U−1,U 2�τ(2)U
−2, . . . ,U k�τ(k)U

−k〉.
5-15. The curve complex. In the hands of Howard Masur and Yair Minsky [1999;
2000] this has proved to be an essential tool in analyzing the short geodesics near
the ends of hyperbolic manifolds. The definition of the complex was originally given
by Bill Harvey [1981]. Let 	 denote a compact surface of genus g ≥ 0 and n ≥ 0
boundary components.

The simplicial complex C(	) is defined as follows:

(i) The vertices V are the simple closed curves on 	 that cannot be homotoped into
a boundary component or to a point.

(ii) Two vertices v1, v2∈V are joined by an edge e if v1 and v2 correspond to disjoint
simple loops, not in the same free homotopy class.

(iii) More generally, a finite set σ ∈ V will bound a simplex in C(	) if the elements
of σ can be realized by mutually disjoint, nonparallel, simple loops.

Special cases are:

• g = 0, n ≤ 3. Then V =∅; there are no simple closed curves.
• g = 0, n = 4, or g = 1, n = 0, 1. Then C(	)= V ; there are no edges.

In the cases g= 0, n= 4 or g= 1, n= 1 the edges must be defined slightly differently:
Vertices v1, v2 are to be connected by an edge if the simple loops representing the
vertices have intersection number 2 in the first case and 1 in the second case. Then
C(	) is isomorphic to the Farey graph in �2 (Exercise 2-9). For the remainder of the
discussion we will exclude these cases.

The complex C(	) is connected and of dimension (3g+n−4) meaning the largest
simplices have (3g+ n− 3) vertices. For example, if g = 2, n = 0 there are at most
three simple, mutually disjoint, nonparallel, nontrivial simple loops. Thus the largest
simplices in C(	) are triangles.

The curve complex is connected. However it is not locally finite. For suppose α, β
are simple loops which cross once. They cannot be the endpoints of an edge. Rather,
there are infinitely many distinct two-edge paths connecting them.
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The mapping class group of 	, namely the group of homotopy classes of homeo-
morphisms of 	 onto itself, acts on C(	).

The 1-skeleton G(	) of C(	) is a connected graph. With the assignment of length
one to each edge, G(	) becomes a metric space. In [Masur and Minsky 1999] it
is proved that G(	) is a Gromov hyperbolic space! See Exercise 2-17. Moreover
Klarreich (unpublished) proved that the Gromov boundary of the curve complex can
be identified with the space of ending laminations associated with 	.

5-16. The Masur domain. Compressible ends have been the most difficult to analyze.
A principal tool in the analysis is the Masur domain (see [Canary 1993; Kleineidam
and Souto 2003]) first defined for compression bodies. For the extension to all geo-
metrically finite manifolds see [Lecuire 2004c]. For this exercise, all kleinian groups
are assumed to have no parabolics (although rank two parabolics could be allowed
if the interior of solid cusp tori were removed from the manifolds to make them
compact).

First we make some comments about compressible boundary components.
Suppose M(G) is compact (no parabolics). Assume that f is a quasiconformal

automorphism M(G)→ M(G) that fixes a basepoint O ∈ Int M(G). Then the re-
striction of f to Int M(G) induces the identity automorphism of π1(Int M(G) if and
only if f is isotopic in Int M(G) to a composition of Dehn twists about compressing
curves [McCullough and Miller 1986, Theorem 6.2.1] (recall from Exercise 5-5 that
a twist can be extended to M(G) and is isotopic to the identity there). Presumably
some form of this result can be applied if rank one cusps are present as well (rank
two cusps are not involved).

Suppose now F : �(G) → �(H) is a quasiconformal map of a geometrically
finite manifold M(G) that induces an isomorphism ϕ : G→ H . By Theorem 3.7.3,
we may assume that F extends to a quasiconformal mapping of �2 and projects
to a quasiconformal map f : M(G) → M(H) that also induces the isomorphism
ϕ : π1(M(G))→ π1(M(H)). If ϕ = id, necessarily F pointwise fixes �(G).

We will now restrict our attention to a compact compression body (function group)
M(G) and to its one compressible boundary component S ⊂ ∂M(G).

In general, there are infinitely many free homotopy classes of compressible loops —
the exceptions occur when there is essentially only one compressing disk in M(H).
A quasiconformal f : ∂M(G)→M(G), extends to a quasiconformal map of M(G)
if and only if f preserves the set of free homotopy classes of compression curves
[McCullough and Miller 1986]. As mentioned above, an automorphism f of M(G)
that fixes a basepoint O in its interior induces the identity automorphism of the group
π1(M(G); O) if and only if it is isotopic (with O fixed) to a composition of Dehn
twists about compression loops. If f is orientation reversing, M(G) is a handlebody
(Luft’s Theorem: see [McCullough and Miller 1986, Theorem 5.3.1]).

The compression body is called small if there is only one compression loop up to
free homotopy, that is if for a compression disk D, M(G)\D is one or two manifolds
of the form S0×[0, 1] where S0 is an incompressible component of ∂M(G).
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In Section 3.9 we introduced the measured lamination space ML(S) and projective
measured lamination space PML(S), using the hyperbolic metric on S (although that
is not necessary). A finite leaved geodesic lamination is called compressible if each of
its leaves is compressible. Let C(S) be the set of projective classes of compressible
finite leaved measured laminations with atomic measures on the leaves. Let C(S)
denote the closure of C(S) in PML(S).

Suppose the compact compression body M(G) is not small. While � ∈ C(S) if it is
just a compressing curve, the following elements of C(S) are perhaps surprising. The
geodesic lamination� on the compressible boundary component S is the support of a
lamination in C(S) provided one of the following hold (Otal’s thesis; see [Kleineidam
and Souto 2003]):

(i) � is the union of two disjoint, simple loops which are not parallel on S but which
bound an essential cylinder C within M(G), or

(ii) � is a simple loop which homotopic to αk , for a loop α ∈π1(M(G)) and |k| ≥ 2,
or

(iii) � is a simple loop freely homotopic to a simple loop on ∂M(G) \ S.
(iv) [Kleineidam and Souto 2003, Lemma 3.6] � is a minimal lamination for which

S \� is compressible.

The first statement follows from the fact that since M(G) is not “small”, there is a
compressing loop γ ⊂ S which is transverse to both components of C∩S [Kleineidam
and Souto 2003]. Let τ :M(G)→M(G) be the Dehn twist about C (see Exercise 5-6).
The the sequence of compressing loops {τ k(γ )} converge to a measured lamination
with support in �.

If M is not small the Masur domain of the compressible boundary component S is
defined to be

O(S)= {μ ∈ PML : ι(λ, μ) > 0 for all λ ∈ C(S)}.
If instead M is small then O(S) is defined to consist of μ ∈ PML for which

ι(λ, μ)> 0 for all those λ∈PML(S) for which there exists ν ∈C(S) with ι(μ, ν)= 0.
The Masur domain is open in PML. If the support of μ ∈ O(S) is a finite num-

ber of simple geodesics, then every component of S \μ is incompressible and even
acylindrical. When the support of μ is a simple geodesic γ , γ is transverse to every
simple compressing geodesic. Note that two simple compressing geodesics may well
cross each other.

Denote by Mod(S) the group of orientation preserving automorphisms of S that
extend to diffeomorphisms of M(G) and Mod0(S) the subgroup whose extensions are
homotopic to the identity. The group Mod(S) acts on PML(S) and C(S) is its limit
set. Mod(S) also acts properly discontinuously on the Masur domain. Suppose the
supports of both μ1, μ2 ∈O(S) are collections of simple geodesics on S. Then if the
components of the supports are respectively freely homotopic within the compression
body M , there is a element h ∈Mod(S) with h(μ1)= μ2 (Otal; see [Canary 1993]).
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For further details see [Masur 1986; Kerckhoff 1990; Canary 1993; Kleineidam and
Souto 2003].

Regarding compressible ends, we have the following restricted but striking result;
see also [Kleineidam and Souto 2002; Ohshika 2005, Theorem 4.1].

Theorem 5.10.4 [Kleineidam and Souto 2003, Corollary 1.2]. Suppose H has no
parabolics and is not a free group. Then M(H) is tame if and only if for every geo-
metrically infinite, compressible end E of M(H), there is a Masur domain lamination
on ∂E that is not realized in M(H).

Of course we now know every M(H) is tame. Recall that an end can be represented
by a boundary component of the compact core. The case of incompressible ends is
covered by Bonahon’s criteria (page 253).

5-17. Diskbusting curves; Canary’s trick. Here we are only concerned with mani-
folds M(G) that have nontrivial splittings into free products π1(M(G)) = A ∗ B. A
diskbusting curve σ ∈ π1(M(G)) is one that is not contained in either factor of any
free product decomposition of π1(M(G)) ∼= G. Thus if π1(M(G)) = 〈g1, g2 . . . gN 〉
is a free group on N generators, then the element g = g2

1 g2
2 · · · g2

N is diskbusting as
it is the relator of a closed, nonorientable surface with an N -generator fundamental
group.

If G is finitely generated but M(G) is not known to be tame, then π1(M(G) \ σ)
may not be finitely generated. This issue is the root of much trouble.

In the case of compact, hyperbolizable manifolds M3 the algebraic definition we
have just given is equivalent to the geometric definition: A curve σ ∈ π1(M3) is
diskbusting if any curve σ ′ ∈ M3 freely homotopic to σ intersects every compressing
disk in M3. For according to Proposition 3.7.1 every free product decomposition
of M3 is generated by a compressing disk. Thus a simple loop on the boundary of
a compression body M3 such that it, with its counting measure, lies in the Masur
domain is diskbusting [Canary 1993, Proposition 3.4]. In fact, there is a countable
collection of them, no two of which are freely homotopic in M3.

If β is a curve which is not based at the basepoint of π1(M(G)), we will say β
is diskbusting if it is freely homotopic to a diskbusting curve based at the basepoint.
Thus a diskbusting curve is one for which there exists an auxiliary arc x from its
basepoint to the basepoint of π1(M(G)) such that xβx−1 is diskbusting.

The exists an infinite collection of diskbusting curves on the compressible boundary
component S of a compression body M(G), no pair being freely homotopic in M(G).
Moreover, if the support of σ ∈O(S) (Exercise 5-16) is a simple geodesic on S, then
σ is diskbusting [Canary 1993, Proposition 3.4 and Corollary 3.5].

Now a diskbusting curve β, or any curve freely homotopic to it, has the property
that if D is any compressing disk based on the boundary, then β intersects D. Thus
if M(G) is geometrically finite with compressible boundary, or if we are in a relative
compact core C , then M(G)\β or C \β, is incompressible. We can take diskbusting
curves to be geodesics, but we cannot be sure they are simple.
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A union of mutually disjoint simple closed curves is called a diskbusting link if for
every free product decomposition, at least one of the components of the link is not
contained in either factor of the decomposition. We can add simple curves to the link
and its diskbusting role will not change. Such a diskbusting link can be taken to be
composed on geodesics; they will be mutually disjoint but be cannot be sure they are
simple.

Now suppose σ is diskbusting link in the interior of M(G) which is homologous to
zero. For example σ might lie on the boundary of a compact core as in Exercise 5-16.
We can take σ to consist of closed geodesics. Suppose they are all simple. According
to [Canary 1993, Lemma 3.1], σ bounds an embedded oriented surface 	 ⊂M(G).

Next we will construct a new 3-manifold M̂ which is a two sheeted branched cover
of M(G), branched over σ . This is easily effected by cutting open M(G) along 	
and designating the two sides of the cut by 	±. Set M =M(G)\	. Take two copies
of M and identify the ± sides of 	 on one copy to the ∓ copies of 	 on the other.

Lemma 5.10.5 [Canary 1993, 5.2]. ∂ M̂ has incompressible boundary.

This is a great advantage for analyzing ends. The bad news is that we have intro-
duced cone axes. In Exercise 5-17, it is shown how to smooth these out, and also how
to deal with the situation that one or more of the geodesics in the link is not simple.

Diskbusting links are used to deal with compressible ends. In studying the corre-
sponding branched cover, the engulfing property of Brin and Thickstun is used (see
[Agol 2004], [Myers 2005]): Suppose X is a compact, connected submanifold of
an orientable, irreducible 3-manifold M3 (for example, as in Exercise 5-18) with no
compact complementary components. There exists an open (not necessarily properly
embedded) submanifold Y containing X , uniquely determined in M3 up to isotopy
fixing X by the following properties.

(i) Y has no compact complementary components,
(ii) Y has a regular exhaustion {Yn} such that ∂Yn is incompressible in the comple-

ment of X ,
(iii) Given compact submanifold Z with X ⊂ Int Z ⊂ Z ⊂M3 and ∂Z incompressible

in the complement of X , then Z can be isotoped into Y with the isotopy fixing
X .

The submanifold Y is called an end reduction at X .
Most directly applicable is the following:

Theorem 5.10.6 [Myers 2005]. Let α⊂ M3 be an algebraically diskbusting link with
X = N (α) a thin tubular closed neighborhood of α. If V is an end reduction, then the
inclusion ι : π1(V ) ↪→ π1(M3) induces an isomorphism π1(V )→ π1(M3), and the
inclusion π1(V \α) ↪→ π1(M3 \α) is an injection.

5-18. Pinched negative curvature manifolds. It has been quite useful to eliminate
pesky cusps, inconvenient cone singularities, and self-intersections of geodesics by
locally changing the constant negative curvature hyperbolic metric (singular on the
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cone axes) to a complete riemannian metric of pinched negative curvature (PNC): the
sectional curvature lies between two constants −b2 <−a2 < 0. For PNC-manifolds,
many of the qualitative properties of hyperbolic manifolds remain true — see [Canary
1993] and additional references listed there. A general reference is [Ballmann et al.
1985].

The following result is attributed to Gromov and Thurston and proved in [Bleiler
and Hodgson 1996].

Theorem 5.10.7 (The “2π Lemma” or “Theorem A”). Let V be a solid torus with a
hyperbolic metric near ∂V so that ∂V is the quotient of a horosphere. The hyperbolic
metric can be extended to a PNC metric in V provided that the length of the euclidean
geodesic on ∂V serving as meridian has length > 2π .

The necessity of 2π follows from the Gauss–Bonnet formula Equation (1.3) applied
to a geodesic meridian, which inherits curvature +1 from the horosphere Exercise 3-
33, and bounds a disk of negative curvature in V .

Agol [2004] recognized a very useful generalization to be used in the frequent cases
when the 2π condition is not satisfied. I thank Juan Souto for pointing this out.

Theorem 5.10.8 (The “2π/k Lemma” or “Theorem A+”). Let V be a solid torus or
an infinite cylinder with a hyperbolic metric near ∂V so that ∂V is the quotient of a
horosphere. Find k ≥ 1 such that the length of the euclidean geodesic on ∂V serving
as meridian has length ≥ 2π/k. Then the hyperbolic metric near ∂V can be extended
so that the solid torus or cylinder V becomes a PNC 2π/k orbifold (when k ≥ 2).

Consequently rank one or rank two cusps can always be eliminated by the use of
Theorem A or A+ at the cost of locally pinching the hyperbolic metric. For a rank two
cusp, one can instead first do Dehn surgery of high enough order so that the length of
the chosen meridian satisfies Theorem A.

In his tameness proof, in view of Bonahon’s theorem, it suffices to assume that the
relative core C of M(G) is a compression body. Extend C to a compact core C ′ of the
PNC manifold M ′ by adding solid orbifold tori to the cusp tori in the pairing locus and
an orbifold 2-handle �2+×[0, 1] to the annuli, where �2+ denotes a hemisphere. Agol
then applied the Orbifold Theorem to C ′ to get a hyperbolic orbifold structure on M ′.
Then he used Selberg’s Lemma to get a finite cover of M ′. If the cover is tame, M ′
and hence the original M(G) will be tame as well. See [Bleiler and Hodgson 1996],
[Agol 2004] for details.

Now we consider somewhat different situations which also lead, locally, to PNC
manifolds. Suppose the compact core of a some M(G) is a compression body with
compressible boundary component S. There is a diskbusting link {αi } ⊂ S. We may
assume that

∑
αi is homologous to zero. Denote the mutually disjoint geodesics in

M(G) that are freely homotopic to the elements {αi } by {γi }. Unfortunately there
is no way of knowing whether or not these geodesics are simple. This problem is
eliminated as follows:
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Theorem 5.10.9 (“Theorem B” [Canary 1993]). Fix a small tubular neighborhood
Ui about each of the closed geodesics γi . The hyperbolic metric of M(G) can be
changed within each Ui so as to obtain a complete PNC manifold M3 in which each
αi is freely homotopic to a simple geodesic γ ′i ⊂ Ui . The PNC metric may be chosen
so that in addition its restriction to a thin tubular neighborhood U ′i ⊂ Ui about γ ′i is
hyperbolic.

As the
∑
γ ′i of simple geodesics is homologous to zero, an embedded surface

	 ⊂ M3 can be constructed so that ∂	 = ⋃
γi [Canary 1993, Lemma 3.1]. The

surface 	 determines a 2-fold cover M̂ of M3 branched over
⋃
γi : there is a cyclic

group X of order two such that M̂/X = M3. This is constructed by excising 	,
taking two copies of M(G) \ 	 and cross identifying them over 	. For a simple
example consider upper half-space UHS as a 2-sheeted cover of itself under the map
(z, t) �→ (z2, t).

By Lemma 5.10.5, M̂ has incompressible boundary! Although the lifted metric in
M̂ agrees with the original hyperbolic metric near the ends, it is now singular over
the branch lines. After applying Theorem B if necessary to get simple geodesics {γ ′i },
and constructing the cover M̂ , the job is completed by removing the branch locus by
some more local pinching as follows:

Theorem 5.10.10 (“Theorem C” [Gromov and Thurston 1987; Canary 1993]). Given
the small tubular neighborhood ∪U ′i

∗⊂M̂ about the branch locus of simple geodesics⋃
γ ′i
∗, M̂ can be given a complete PNC metric with agrees outside ∪U ′i

∗ with the
lifted metric from M3.

The bottom line is that by the process outlined, and Lemma 5.10.5, compressible
ends can be eliminated at the cost of obtaining a PNC manifold M̂ . There remain
problems with the topology; see Exercise 5-17.

As already suggested, the tameness of the ends of M(G) can be dealt with one
compressible end at a time — the incompressible ends are already known to be tame
(Bonahon’s criteria, page 253). For consider a compact core C ; each compressible
component S of ∂C is the compressible boundary of a compression body CS , a sub-
manifold of C (Exercise 3-11). Take the covering M(HS) of M(G) determined by
the subgroup π1(CS). The compact core of M(HS) can be taken to be the lift of CS .

Finally we cite an immediate consequence of the Tameness Theorem coupled with
the Hyperbolization Theorem (page 324):

Corollary 5.10.11. If M3 is a complete PNC manifold of infinite volume, or a non-
compact PNC manifold of finite volume, then M3 has a complete hyperbolic metric.

For closed PNC manifolds M3, this is a consequence of Perelman’s confirmation
of the Geometrization Conjecture (Section 6.4), since M3 is known to be irreducible,
atoroidal, and not Seifert fibered [Cooper and Lackenby 1998].

5-19. Representation varieties of fuchsian groups. Fix a fuchsian closed surface group
G = 〈A1, B1, . . . , Ag, Bg〉 with

∏[Ai , Bi ] = 1. Normalize so that A1 =
( k

0
0

k−1

)
and
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B1 =
(a

c
c
d

)
, where k > 1, ad − c2 = 1, c 
= 0. Set

Rg = {ϕ : G→ ϕ(G) ∈ PSL(2,�) is a normalized homomorphism}.
Normalized means that ϕ(A1), ϕ(B1) are normalized as A1, B1. Rg is an irreducible
variety of real dimension 6g− 6. Prove that Rg is a real analytic manifold.

Hint: Consider H = ϕ(G) ∈ Rg. For 2 ≤ j ≤ g, choose any X j , Y j close to
ϕ(A j ), ϕ(B j ). Show that there exist normalized X1, Y1 obtained by solving the matrix
equation

[X1, Y1] = Z =
2∏

j=g

[X j , Y j ]−1.

5-20. Holomorphic motions. Suppose B ⊂ �2 is an arbitrary set containing at least
three points. Let { fλ(z) : B→ �2} be a family of functions with parameter λ in the
open unit disk �. The family is called a holomorphic motion of B if the following
hold:

• For each fixed λ ∈ �, the map fλ : z ∈ B �→ fλ(z) ∈ �2 is one-to-one.
• For each fixed z ∈ B, the map λ ∈� �→ fλ(z) ∈ �2 is holomorphic.
• f0(z)= z for each z ∈ B.

The great utility of this notion in complex analysis comes from the λ Lemma discov-
ered by Ricardo Mané, Paulo Sad, and Dennis Sullivan. Its ultimate expression is due
to Slodkowski [1991], to which we refer for history and development; also see [Earle
et al. 1994].

The λ-Lemma. Let G be a Möbius group which maps the set B ⊂ �2 onto itself .
Suppose { fλ} is a holomorphic motion of B. Assume further that, for each λ ∈ �,
there is an isomorphism to another Möbius group φλ : G→ Gλ such that fλ ◦ g(z)=
φλ(g) ◦ fλ(z) for all z ∈ B, g ∈ G. Then

(i) fλ(z) is jointly continuous in λ and z.
(ii) For fixed λ, fλ(z) is the restriction to B of a Kλ quasiconformal mapping f ∗λ :

�2→ �2 which satisfies f ∗λ ◦ g(z)= φλ(g) ◦ f ∗λ (z) for all z ∈ �2, g ∈ G.
(iii) { f ∗λ } is a holomorphic motion of �2.

Explicitly, Kλ = (1+ |λ|)/(1− |λ|). Note that continuity in z is not assumed, it
is a conclusion. A special case is G = id. On reflection, one finds the conclusions
remarkably strong from what at first sight appears as rather weak hypotheses.

Here is the essence of the proof of the λ-Lemma kindly provided by Vlad Markovic.
Assume that fλ(z) is an orientation preserving differentiable mapping of a region
B=�, for each λ∈�. Then the complex dilatation μλ(z) is defined for all z ∈�, and
it is holomorphic in λ for each fixed z. Moreover μλ(0)= 0 and supz∈� |μλ(z)| ≤ 1.
Therefore by the Schwarz Lemma applied as a function of λ, we find that |μλ(z)|≤ |λ|
for all λ ∈ � and z ∈�. In particular fλ(z) is quasiconformal in � for each λ ∈ �.
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An applicable situation might arise as follows. Suppose the generators of the
kleinian group G depend analytically on a parameter λ ∈ � and that there is a cor-
responding family of isomorphisms {φλ : G→ Gλ} onto other kleinian groups such
that φλ(g) is parabolic if and only if g ∈ G is so. For each λ, φλ then determines an
injection fλ of the set B of loxodromic and parabolic fixed points of G to those of
Gλ. We see that { fλ} satisfies the hypothesis of the λ-Lemma. Therefore the family
{Gλ} is continuously quasiconformally conjugate to G.

A striking consequence of the λ-lemma is the following. Compare with Corollary
4.1.11.

Theorem 5.10.12 [Sullivan 1985]. Suppose h : X → R(G) is a holomorphic map
of a complex manifold X into the representation variety of a nonelementary kleinian
group G such that each x ∈ X is sent to a group h(x) isomorphic to G. Then for any
x, y ∈ X , the groups h(x), h(y) are quasiconformally conjugate.

That h is holomorphic means that h can be expressed locally as a representation
ρx(g) which is holomorphic in x for every g ∈ G.

For the quasiconformal deformation space of a geometrically finite group G we
ask, is T(G)= Int T(G)? Or is T(G) like a ball with a radius removed?

According to [Kapovich 2001, Theorem 8.44], there is a complex manifold V with
T(G)⊂ V ⊂R(G). Apply Theorem 5.10.12 to the inclusion map of the submanifold
Int T(G) into V . We deduce that all representations in Int T(G) are quasiconformal
conjugate. Therefore the interior is just T(G) itself (see also [McMullen 1998, ap-
pendix]).

5-21. Confirm that the Tameness Theorem implies the Ahlfors Finiteness Theorem
and the finiteness of the conjugacy classes of parabolics and of finite (elliptic) sub-
groups as well. To do this make use of the convex core boundary and the fact that
there is a sequence of pleated surfaces of uniformly bounded area exiting each geo-
metrically infinite end and relative end; see [Canary 1993, Theorem 8.1].

5-22. Two generator groups. Prove by the Tameness Theorem that a two-generator
nonelementary kleinian group G (without elliptics) for which M(G) has infinite vol-
ume is a free group (Jaco, Shalen, Agol).

5-23. Quadratic differentials and measured laminations. Choose a point O = (R, id)
in Teich(R), where R is a closed Riemann surface of genus g ≥ 2. A Teichmüller
ray from O is determined by a holomorphic quadratic differential ϕ(z) dz2 on R.
The ray consists of the targets of the solutions of the Beltrami equation on R, Fz̄ =
t (ϕ(z)/|ϕ(z)|)Fz for 0 ≤ t < 1 with F(z; 0) = z (see Section 2.8). The solution
Ft : R→ Rt determines a quadratic differential ψ on Rt . The inverse Ft

−1 : Rt → R
is a Teichmüller map associated with the quadratic differential −ψ on Rt and −ϕ
on R.

A quadratic differential defines a local euclidean metric on R except at its 4g−4
zeros: w = ∫ z√

ϕ dz is a locally univalent map into �. The preimage of horizontal
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line segments can be extended globally. We get as a result the horizontal foliation�h

of R determined by ϕ. Likewise the inverse images of vertical line segments determine
the vertical foliation �v. It is customary to normalize quadratic differentials {ϕ} so
that ‖ϕ‖ = ∫∫R |ϕ| dxdy = 1.

As we have seen, a Teichmüller map F : R → S is associated with uniquely de-
termined normalized quadratic differentials ϕ on R and ψ on S. Each determines a
locally euclidean coordinate system, away from its zeros. In terms of these pairs of
coordinate systems, F is a locally affine mapping of the form w = z �→ z+ t z̄.

The horizontal foliation �h comes with an associated transverse measure, namely
the vertical measure |dv| = |Im dw|. Likewise |du| = |Re dw| gives the transverse
measure for �v.

For an account of the theory of differentials, see for example [Strebel 1984; Masur
1975; Marden and Strebel 1984; 1986; 1993].

Given a pseudo-Anosov automorphism τ (Exercise 5-6) there is a point (S, f ) ∈
Teich(R) with the following property. Denote by ψ the differential associated with
the Teichmüller map τ ∗ : S→ S homotopic to the realization of τ on S. Then −ψ
is associated with τ ∗−1. This means that the Teichmüller geodesic determined by the
Beltrami differentials {tψ/|ψ | : −1 < t < 1} is the “axis” for τ acting in Teich(R):
τ maps its axis onto itself with attracting fixed point ψ and repelling −ψ in the
Thurston boundary, just like the axis of a loxodromic. But we haven’t yet associated
the quadratic differentials with measured laminations.

The leaves of �h which do not have an endpoint at a zero (the noncritical leaves)
have two well determined endpoints when lifted to the universal cover �2. For each
pair of endpoints draw the geodesic with the same end points. Doing this for all
noncritical leaves results in a geodesic lamination we again denote by�h . It is equiv-
ariant under the group of deck transformations and therefore can also be viewed on
R; it has a transverse measure determined by |dv|. Likewise the vertical foliation is
associated with the measured lamination supported on �v.

We know those measured laminations with supports consisting of simple closed
geodesics are dense in ML. What corresponds to closed geodesics are the simple
Jenkins–Strebel differentials: Given the free homotopy class [γ ] of a simple closed
geodesic γ ⊂ R we can ask, what is the thickest annulus A that can be embedded in
the Riemann surface R whose central curves are in [γ ]? In terms of a conformal map
of A onto a proper annulus {1< |w|< M} ⊂ �, the problem is to maximize M over
all such embedded A. There exists a unique solution: There is a uniquely determined
(normalized) quadratic differential ϕ[γ ](z) dz2 on S such that all of its noncritical
horizontal trajectories are simple loops in [γ ]. These horizontal trajectories sweep
out an annulus A∗. The complement of A∗ is the “critical graph” whose edges are
critical trajectories of finite length running between critical points. If A∗ is cut along
a vertical trajectory segment of ϕ[γ ], then w = ∫ z√

ϕ[γ ] dz maps the result onto a
rectangle in �. Denote the length of the rectangle by L[γ ] and the height by H [γ ];
its area is ‖ϕ[γ ]‖ = L[γ ]H [γ ] = 1. The transverse measure to �h = γ associated
with ϕ[γ ] is H [γ ] = 1/L[γ ].
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The Teichmüller ray determined by −ϕ[γ ] consists of surfaces Rt resulting from
successively thickening A∗ so that in the limit, the result is that R becomes pinched
in the class [γ ].

Extremal length theory in complex analysis implies that for all pairs of simple
geodesics on R,

L[α] ≥ ι(α, γ )H [γ ], L[α]L[γ ] ≥ ι(α, γ ),
using the fact that the extremal length of the class [α] is L[α]2 [Strebel 1984].

Now the space of normalized differentials on R is compact, and the simple differ-
entials are dense. From [Kerckhoff 1980] we learn that the functions L[γ ] extend
continuously to all ML, using L[aγ ] = aL[γ ], a > 0.

There exists c > 0 such that in comparison with hyperbolic length �(·)
0< c <

�(γ )

L[γ ] <
√

4π(g− 1) (5.7)

for all simple geodesics and hence measured laminations γ ∈ R; see [Minsky 1992,
§8; Minsky 1993, Lemma 2.1]. The ratio is positive and invariant under scaling by
positive constants. As a positive function on the compact set PML(R), �(γ )

L[γ ] has a
positive maximum and minimum. The constant on the right comes from an extremal
length comparison. Equation (5.7) implies in particular that noncritical horizontal
ϕ-trajectories are quasigeodesics in the hyperbolic metric on S — each lift to �2 has
bounded distance from the hyperbolic geodesic with the same endpoints [Marden and
Strebel 1985].

From [Kerckhoff 1980] or [Marden and Strebel 1984, Theorem 5.9] for example
we learn that limϕ[γn] = ϕg if and only if lim(γn/cn) = (�g, μg) exists. In fact, if
we also have limϕ[αn] = ϕa and lim(αn/an)= (�a, μa), then in the limit

Lϕa (�a)Lϕg(�g)≥ ι(μa, μg);
see [Kerckhoff 1980; Minsky 1993]. Here

Lϕa (�a)= lim
L[αn]

an
,

and correspondingly for Lϕg(�g).
Moreover, the horizontal laminations corresponding to ϕa and ϕg are �a and �g

[Minsky 1994a].
The upshot of these considerations is that a given (projective) measured lamina-

tion on R is associated with a uniquely determined normalized quadratic differential.
Now suppose we are dealing with an sequence of simple geodesics, or a sequence
of pleated surfaces { fn : R → Pn}, exiting an infinite end E of the quasifuchsian
manifold based on R. (Or a sequence of hyperbolic metrics {ρn} converging to a
Thurston boundary point.) Represented on R, the sequence of simple geodesics {γn},
or sequence of bending laminations, is converging to the ending lamination (�E , μ).
Correspondingly the normalized quadratic differentials converge lim ϕ[γm] = ϕ[�E ].
As seen below, we do not need to pass to subsequences.
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Fig. 5.18. The local structure of a train track.

Under the assumption of bounded geometry and incompressible ends, Minsky
[1993; 1994a] proved the following. Suppose we have a sequence of pleated surfaces
fn : R→ Pn exiting E . The hyperbolic structures on {Pm} are of bounded distance
from the Teichmüller rays determined by {−ϕ[γm]}. The horizontal trajectories of
ϕ[�E ] is equivalent to the ending lamination �E . By way of analogy, if γ ⊂ R is
a simple loop then the Teichmüller ray determined by −ϕ[γ ] thickens the annular
region about γ so that the corresponding sequence of Riemann surfaces Rt pinches
along γ . In the quasifuchsian manifold, the corresponding ending lamination is just
the geodesic represented by γ ∈ R.

The Teichmüller ray determined by−ϕ[�E ] in Teich(R) on the other hand projects
to a compact subset of moduli space Teich(R)/M(R), because of the bounded in-
jectivity radius hypothesis. This implies that �E is uniquely ergodic, according to
[Masur 1992, Theorem 1.1]. Therefore the differential ϕ[�E ] is uniquely determined
by �E .

Thus the sequence of pleated surfaces are being “pinched” to the pleating loci — the
horizontal trajectories of ϕ[γn]. Along the sequence, the measure of a given transverse
segment is increasing without bound. For more discussion see Section 6.1.1.

We have touched on the “dictionary” between measured foliations in topology,
measured laminations in geometry, quadratic differentials in complex analysis, and
there are also train tracks in combinatorics, as we will see next.

5-24. Train tracks. Suppose S is a closed hyperbolic surface. A train track τ ∈ S is a
finite 1-dimensional graph such that all vertices are trivalent. The relation of vertices
to edges is to be like a switching point for a train. The three edges e1, e2, e3 at a
vertex v are placed so that a train coming in on either track e1 or e2 must exit on e3,
and conversely, a train coming in on track e3 can exit on either e1 or e2.

Formally, the edges are C1-arcs and the tangent lines have one sided limits at their
end points. At each vertex, the tangent lines of the three edges coincide (thus there is
one line �v at each vertex so that � is the limit of the tangent lines to all three tracks
at v).

It is also assumed that each component of S \ τ is a triangle.
A train track with weights has numbers c > 0 assigned to each edge. The switch

condition is that at a vertex v, the numbers c1, c2, c3 assigned to the three edges must
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satisfy c1 + c2 = c3, using the labeling introduced above. If these are integers we
can interpret the assumption to be that e1 and e2 each carry c1 and c2 parallel tracks
coming in to v, and e3 carries c1+c2 parallel tracks leaving v. Thus if all the assigned
numbers are integers, a particular train can take many possible journeys over the set
of tracks. The journey will be of finite length before the trip repeats itself. If the
weights are not integers, the journey of a train may be infinitely long.

A train track with weights uniquely determines a measured foliation on S: the
leaves run along the branches with transverse measure given by the weights. Con-
versely, by pinching together nearly parallel leaves, every measured foliation is rep-
resented by some track τ . More precisely, a foliation F is mapped onto τ if there is
a map φ of S \ {singularities of F} such that φ is homotopic to the identity in such a
way that tangent lines to leaves of F are sent to tangent lines of τ .

Likewise each measured geodesic lamination can be represented by a weighted
train track, and conversely, each weighted train track uniquely determines a measured
lamination.

The theory of train tracks was created by Thurston [1979, §§8.9, 9.7]. For an
extended exposition of the theory see [Penner and Harer 1992].

5-25. Extension of boundary deformations to M(G). The purpose of this exercise is
to sketch the proof of Theorem 5.1.3. We have to explain the relation of the quasi-
conformal deformation space T(G) to the product of the classical Teichmüller spaces
of the components {Si } of ∂M(G): Teich(S1)× · · ·×Teich(Sk).

We recall that two normalized quasiconformal deformations of G are equivalent
(F1 ∼ F2) if they induce the same isomorphism ϕ : G → H . This means in terms
of their projections f1, f2 : ∂M(G)→M(H), that f −1

2 ◦ f1 extends to M(G) and is
homotopic to the identity on Int M(G); see Section 3.7.2 and Exercise 5-16.

We also have to consider the stronger equivalence, namely

F1 # F2 ⇔ f −1
2 ◦ f1 : ∂M(G)→ ∂M(G) is homotopic to id .

It follows that F1 ∼ F2 in the earlier definition. These two equivalences differ only
when ∂M(G) is compressible.

To mirror the difference in the two equivalence relations we introduce the group
X (G) consisting of normalized quasiconformal deformations that preserve each com-
ponent of �(G) and induce the identity automorphism of G. Here we refer to Theo-
rem 3.7.3.

From the point of view of the manifolds, X (G) consists of equivalence classes of
quasiconformal automorphisms h : ∂M(G)→ ∂M(G) that extend to M(G)→M(G)
and which are homotopic to the identity on the interior Int M(G). Two such maps
h1, h2 are to be identified if and only if h−1

2 ◦h1 is homotopic to the identity on ∂M(G)
too; specifically, h−1

2 ◦h2 maps each component Si onto itself and is homotopic on Si

to the identity.
If M(G) is boundary incompressible, X (G)= id.
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Denote by Mod0(Si ) the group of homotopy classes of quasiconformal mappings
h : Si→ Si which extend to M(G) to be homotopic in Int M(G) to the identity — The-
orem 3.7.3 again. To be more precise, such a map h in particular fixes the punctures
on Si , and the set of compressing loops. Extend h from Si to all ∂M(G) by setting
it equal to the identity on Sm, m 
= i . Then h extends to M(G) and is homotopic
in Int M(G) to the identity. In other terms, h is the projection of a quasiconformal
automorphism h∗ of each component �i, j over Si with the property that h∗ induces
the identity automorphism of Stab(�i, j ) and extends continuously to the identity map
of ∂�i, j . The group Mod0(Si ) is a subgroup of the mapping class group M(Si ).

Therefore the group X (G) splits into a direct product

X (G)=Mod0(S1)×Mod0(S2)× · · ·×Mod0(Sk).

The group Mod0(Si ) acts without fixed points on Teich(Si ). For suppose, for example,
that h ∈ Mod0(Si ) fixes the origin (Si , id) in Teich(Si ). Then h is homotopic to a
conformal map h0 : Si → Si . Now h and then h0 lift to automorphisms h∗ and h∗0
of �i, j over Ri ; we can choose h∗ to be homotopic in �i, j to h∗0. We know that h∗
extends continuously to ∂�i, j and fixes every point, Exercise 3-34. So the same is
true of h∗0 which therefore must be the identity since it is a conformal automorphism.
Consequently h∗ is homotopic in �i, j to the identity and h is homotopic in Si to the
identity.

The classical results obtained by projection from the space of Beltrami differentials
with respect to G on �(G) that imply T(G) is a complex analytic manifold [Ahlfors
1966].

Examine now the quotient Teich(Si )/Mod0(Si ). Here we are identifying those
elements of the Teichmüller space of Si that are related by a mapping that is the
identity with respect to the interior of the 3-manifold.

Since we are taking the quotient of an analytic manifold by a discrete group of fixed
point free biholomorphic automorphisms, Teich(Si )/M0(Si ) is an analytic manifold
of the same dimension as Teich(Si ).

This completes the proof of Theorem 5.1.3.

Remark 5.10.13. Suppose all components �i, j of �(G) are simply connected but
that there may be torsion in their stabilizers Gi, j . Then in addition to the punctures
on each component Si ⊂ ∂M(G) there will be bi ≥ 0 cone points. In this case the
dimension count will be ∑

(3gi + bi + ni − 3).

For it is an interesting fact that Teich(Si ) is biholomorphically equivalent to Teich(S′i )
where S′i is the result of removing the cone points. That is, the dimension is the same
whether you have bi + ni punctures, or ni punctures and bi cone points [Marden
1969], [Bers and Greenberg 1971].

The basis for the equivalence is the following fact: A homeomorphism f : Si→ Si

lifts to a homeomorphism f ∗ of �i, j which induces the identity automorphism of
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Gi, j if and only if f is homotopic in S′i to the identity map. This follows from the
fact that γ is freely homotopic in S′i to f (γ ) for all simple loops γ ⊂ S′i .

Consequently Theorem 5.1.3 remains true at least when the components of �(G)
are simply connected but {Gi, j } contains elliptics and the deformations preserve el-
liptics and their orders. The original papers [Bers 1970b; Maskit 1971; Kra 1972]
include the general case.



6

Hyperbolization

In this chapter we will explain the Hyperbolization Theorem for 3-manifolds, one of
the truly great mathematical discoveries of the twentieth century. This theorem shows
that the interiors of most compact 3-manifolds can be realized as kleinian manifolds.
As a consequence, such 3-manifolds can be described and classified not just in terms
of their topology, but more powerfully, in terms of their geometrical properties —
their shape.

6.1 Hyperbolic manifolds that fiber over a circle

6.1.1 Automorphisms of surfaces

We begin by reviewing some facts about automorphisms of surfaces. We will continue
using as basepoint a fuchsian group G and associated Riemann surfaces R=LHP/G,
R′ =UHP/G, closed with at most a finite number of punctures. Suppose α : R→ R
is an orientation preserving automorphism which is not homotopic to the identity. As
we learned in §5.5.1, the automorphism α, or rather its homotopy (and isotopy) class,
induces an automorphism of the Bers slice B(R) based on R, which we also denote
by α, by the action

α : (Sbot = R, Stop; J ) �→ (Sbot = R, Stop; J ◦α).
The map α does not change the conformal type of either the bottom or the top Rie-
mann surface. Instead the relationship between the two surfaces as dictated by J ◦α
changes (since α is not homotopic to the identity). The group of homotopy classes of
orientation preserving automorphisms α is called the mapping class group or Teich-
müller modular group. It is the group of all isometries of Teichmüller space in the
Teichmüller metric of §2.8.

If instead R is a torus it has a continuous group of automorphisms. After quoti-
enting out this group, in effect fixing a point x on the torus, the Teichmüller space
Teich(R) of a torus can be identified with the upper half-plane and the corresponding
Teichmüller modular group becomes the classical modular group (see Exercises 2-6
and 5-4). In many respects the general mapping class group is analogous to this one.

312



6.1 Hyperbolic manifolds that fiber over a circle 313

Recall from Exercise 5-6 that a pseudo-Anosov mapping is a homeomorphism α

of a surface R onto itself with these properties: (i) No power αn is homotopic to the
identity; and (ii) α does not preserve the set of free homotopy classes of any system
of mutually disjoint, simple loops on R (none of which is homotopic to a point or to
a puncture). Such automorphisms of R are the “generic” automorphisms. For more
information see [Thurston 1988; Fathi et al. 1979] and Exercise 5-6.

The automorphism α acts on simple loops and, by passing to the closure, on the
space of projective measured laminations 	�
(R). It has exactly two fixed points.
Namely for any simple geodesic γ and hyperbolic length �(·) on R,

μattr = lim
n→+∞

αn(γ )

�(αn(γ ))
, μrep = lim

n→−∞
αn(γ )

�(αn(γ ))
.

This situation is seen as analogous to Anosov maps of the torus (Exercise 5-4), es-
pecially as expressed in the context of the theory of quadratic differentials (Exercise
5-23).

From the point of view of B(R) ∪ ∂th, a pseudo-Anosov α has a unique attract-
ing and repelling fixed point, (�attr, μattr), (�rep, μrep) each of which lies on the
Thurston boundary ∂th. There is a unique “axis” of α in B(R): a geodesic in the
Teichmüller metric whose endpoints are the fixed points (see Exercise 5-23). The
axis is left invariant by the action of α. Indeed for any point P ∈ B(R) ≡ Teich(R),
limn→+∞ αn(P)= μattr and limn→−∞ αn(P)= μrep.

In the notation of page 280, start with the hyperbolic structure ρ0 on R. The iterates
{αn} determine a sequence of new hyperbolic structures {ρn} on R, namely αn sends
the point P = (R, id) ∈ Teich(R) to Pn = (R, αn). Let γn denote the geodesic on R
freely homotopic to αn(γ ). In the respective lengths, �ρn (γn)=�ρ0(γ )while ρ0(γn)→
∞. Furthermore as n → +∞, {γn/�ρ0(γn)} converges in PML(R) to (�attr, μattr),
and as n→−∞ to (�rep, μrep) [Otal 1996, §1.5].

These projective measured laminations are the stable and unstable measured lami-
nations for α. By analogy, for the affine map A : x �→ K 1/2x, y �→ K−1/2 y, K >1, the
x-axis is the stable lamination and the y-axis is the unstable — for most points p∈�2,
limm→+∞ Am(p) lies on the x-axis. Also note that the length of a transverse segment
to the x-axis is decreased by the factor K−1/2 while the length of a transverse segment
to the y-axis is increased by K 1/2. This phenomenon equally true for the transverse
measures to the attracting and repelling (stable and unstable) fixed points of α. In fact
if α is a pseudo-Anosov acting on Teich(R)∪ ∂th with fixed points μattr, μrep, there
exists K > 1 such that for any simple closed geodesic γ , the generalized intersection
numbers satisfy

ι(α(γ ), μattr)= K−1ι(γ, μattr) and ι(α(γ ), μrep)= K ι(γ, μrep);
see [Otal 1996, §1.5].

From these relations, one can draw the expected conclusions that any nonzero
power of a pseudo-Anosov is a pseudo-Anosov, and the homotopy class of no loop
γ is fixed by a pseudo-Anosov. In analogy to the case of loxodromic Möbius trans-
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formations, (i) the fixed points of two pseudo-Anosovs are either distinct or identical,
and (ii) if α1, α2 have distinct fixed points on ∂th, then 〈αm

1 , α
n
2 〉 is a free abelian group

for sufficiently large m, n > 0 [Ivanov 1992].
The sequence of groups in B(G) corresponding to the triples {(R, R′; J ◦ αn)}

converges algebraically to a singly degenerate group Hattr ∈ ∂B(R) as n → −∞.
This is because the action of J ◦ αn on the top surface R′ is homotopic to the action
of α−n directly on R′, since J is orientation reversing. The limit�attr of the sequence
{α−n(R′)} is the ending lamination of the top (geometrically infinite) end of M(Hattr).
There are no new parabolics in Hattr so the convergence is not only algebraic but is
also geometric by Theorem 4.6.2.

If instead n→+∞, the corresponding points of B(R) converge algebraically to a
different singly degenerate group Hrep∈ ∂B(R)with ending lamination�rep. The two
laminations�attr,�rep fill up the reference surface R: they have no leaves in common
and each complementary component R \�attr∪�rep is a polygon possibly containing
a single puncture. An alternate description is that ι(ν, μattr)+ ι(ν, μrep) > 0 for any
measured lamination (�, ν) 
= 0.

Return now to the full quasifuchsian deformation space T(G). Consider the se-
quence of quasifuchsian groups given by (αm(R), R′; J ◦α−m−n), m, n→+∞. The
top surface R′ is related to R as before since on R, αm−m = id, but independently
we are applying αm to R. As a consequence of the Double Limit Theorem to follow,
the sequence of groups converges algebraically (and also geometrically) to a doubly
degenerate group H ∈ ∂T(G). The ending laminations for the top and bottom ends
of M(H) are �attr,�rep [Thurston 1986c, §4; McMullen 1996, §§3.3-5]. We are
applying the Ending Lamination Theorem , which obviates the necessity of taking
subsequences.

6.1.2 The Double Limit Theorem

Double Limit Theorem [Thurston 1986c]. Let (�bot, μbot) and (�top, μtop) be points
of ∂thTeich(R), where �bot and �top fill R. Suppose they are, respectively, the limits
of the sequences of hyperbolic structures {pi } and {qi } in Teich(R). Let Hi be a
normalized quasifuchsian group whose bottom surface carries pi and top surface
qi where the natural involution J between the top and the bottom interchanges the
markings on pi and qi . Then {Hi } converges algebraically to a group H ∈ ∂T(G).
The ending laminations of M(H) are �bot and �top, respectively.

In fact from §5.9.4, there are sequences {μm, νn} of measured laminations con-
verging to μbot, μtop such that

lim
m→∞Lenpm (μm)= lim

n→∞Lenqn (νn)= 0.

This reinforces the picture of “pinching” the approximating surfaces along the ending
laminations.

Convergence to a point on the Thurston boundary ∂thTeich(R) is discussed in
§5.9.4. If R has punctures the laminations are of course confined to a compact sub-
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manifold. We have modified the original statement by bringing in the Ending Lam-
ination Theorem , which releases us from the obligation of passing to subsequences.
The limit group H will be doubly degenerate without new parabolics only if both
laminations are arational. If instead �bot,�top are transverse pants decompositions,
the limit group H is a maximal cusp; the two boundary components correspond to
the result of pinching the top and the bottom along the respective pants loops.

Doubly degenerate groups appear as subgroups of hyperbolic 3-manifolds that fiber
over the circle, as we will see below. The first doubly degenerate group appears in
[Jørgensen 1977a], it was given by explicit generating matrices. For other explicitly
constructed degenerate groups see [Jørgensen and Marden 1979]. For a generalization
to compression bodies (function groups) see [Kleineidam and Souto 2002].

6.1.3 Manifolds fibered over the circle

Suppose now G is a fuchsian or quasifuchsian group so that M(G)∼= R×[0, 1]. Let
R, R′ denote the bottom and top components of ∂M(G). Suppose τ : R→ R′ is an
orientation reversing map. The 3-manifold M3 without boundary that results from
identifying the boundary components via τ , namely M3 = M(G)/ ∼ τ , is fibered
over a circle. The fibers are surfaces homeomorphic to R; the “circle” is the image
of a simple arc in M(G) connecting a point x ∈ R to τ(x) ∈ R′. The map τ factors
as τ = J ◦α : R→ R′. Here J is the orientation reversing involution that exchanges
R and R′ and induces the identity on π1(M(G)) while α is an automorphism of R.

For our purposes, a better way of describing M3 is as a mapping torus. Namely let
α : R→ R be a homeomorphism and form the mapping torus

M3 = R×�/〈(x, t) �→ (α(x), t + 1)〉.
In the universal cover R×�, α determines an infinite cyclic group of deck transfor-
mations which are translations taking one lift of R to another.

The first case of the hyperbolization theorem has the following beautifully succinct
statement.

Manifolds Fibered over the Circle [Thurston 1986c; Otal 1996; Kapovich 2001].
Necessary and sufficient for the manifold M(G)/ ∼ τ to have a hyperbolic structure
M(X) is that α : R→ R be pseudo-Anosov. In this case, M(X) has finite volume.

In contrast, consider what happens if α is not pseudo-Anosov. Suppose it fixes the
free homotopy class of a simple geodesic c ∈ R. Then c and τ(c) bound a cylinder
C in M(G). The cylinder C rolls up to form an incompressible torus in M3. This is
possible in a hyperbolic manifold only if the torus comes from a rank two parabolic,
which is the case only when c encircles a puncture.

The lifts of the fibers to �3 are fascinating. Suppose M(X) is fibered over a circle
with fibers homeomorphic to a finitely punctured, closed surface R. Choose a fiber
Y . The lifts — components of the preimage — {Y ∗} of Y to �3 form a discrete set of
mutually disjoint simply connected surfaces. There is a Möbius transformation T ∈ X
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such that if Y ∗ is one lift, the orbit of Y ∗ under 〈T 〉 comprises the complete set. In
fact X = 〈H, T 〉 and T represents the pseudo-Anosov α that determines M(X). Set
H = StabX (Y ∗); then T H T−1 = H .

We claim that �(H) = ∅. Otherwise, choose K ⊂ �(H) compact. Then K ∩
T n(Y ∗) = ∅ for all n. In particular, no fixed point of T lies in K . Therefore K ⊂
�(X), which is impossible. Consequently H is a periodic doubly degenerate group
without parabolics, isomorphic to the fuchsian model G.

The Möbius transformation T projects to an automorphism � of M(H). The
sequence of planes {T n(Y ∗)} ⊂ �3 projects to a discrete �-invariant sequence of
surfaces {Yn}⊂M(H) exiting its two ends. If γ ⊂Y is a simple loop, and γg is its geo-
desic representative in M(H), then the two ending laminations are determined by the
exiting sequences of equal length geodesics limn→+∞�n(γg) and limn→−∞�n(γg);
see [Minsky 2003b]. These are the “fixed points” of the pseudo-Anosov α, as de-
scribed earlier.

We note that M(H) has the property of bounded geometry, see Section 5.6.2.

It is shown in [Cannon and Thurston 1989] (see also [Minsky 1994a; Mitra 1998a;
1998b]) that there exists a quasiisometric map f : �2 → Y ∗, which induces an iso-
morphism G → H and extends continuously to a map �1 → ∂Y ∗ ⊂ �2, which is
therefore a space-filling (Peano) curve. It is the image of a collapsing map of ∂�2

with respect to the two laminations associated with the pseudo-Anosov — placing one
in the upper half-plane, for example, and the other in the lower.

It was originally believed that manifolds fibered over the circle could not be hyper-
bolic because of the strange properties their coverings would have. Thus Jørgensen’s
example of a periodic doubly degenerate groups with fiber the once-punctured torus
was instrumental in inspiring the early development of the subject (see [Thurston
1986c, §0]). An oft cited, closely related example is the hyperbolic manifold, also
fibered over the circle with once-punctured torus fibers, which is homeomorphic to
the complement of the figure-8 knot (p. 164). See also [Jørgensen and Marden 1979].

So, starting with the fuchsian G and pseudo-Anosov α, to find H and T we have to
move through the deformation space T(G) until we find H on its boundary with end-
ing laminations associated with α. H will be “periodic” with respect to a loxodromic
T representing α.

Thurston asked whether every hyperbolic manifold of finite volume is virtually
fibered; that is, whether each has a finite cover that is fibered over the circle. A
necessary condition that a manifold be fibered over the circle is that it has infinite
homology, which is automatically satisfied for cusped manifolds. In [Button 2005]
one finds a list of more than 100 closed manifolds that are themselves not fibered but
which have finite covers which are fibered. This is done by finding fibered manifolds
which are commensurable with nonfibered ones. One of those found has infinite
homology. Earlier it was discovered that over 87% the manifolds in the Callahan–
Hildebrand–Weeks census [Hildebrand and Weeks 1989] of nearly 5000 orientable
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cusped finite volume manifolds are themselves fibered. The question remains wide
open.

6.2 The Skinning Lemma

The key to finding hyperbolic structures on a large class of 3-manifolds lies in being
able to find fixed points of certain mappings of deformation spaces T(G) onto them-
selves. This method does not work in finding hyperbolic structures for manifolds that
fiber over a circle, which is why they are treated separately. In this section we will
give an exposition of the procedure for finding the needed fixed points.

6.2.1 Hyperbolic manifolds with totally geodesic boundary

Suppose M(G) is a geometrically finite, acylindrical (and hence boundary incom-
pressible) manifold. Because of the hypothesis, if � is a component of �(G), the
subgroup G� = Stab(�) is a quasifuchsian group — see Exercise 3-10. Now the
ordinary set of G� has two components one of which is �. Denote the other by
�′ =�2 \�. Since G itself cannot be quasifuchsian, �′ is not a component of �(G).
There is an orientation reversing quasiconformal involution σ :�′ ↔� that induces
the identity automorphism of G�. Its extension pointwise fixes the common boundary.
Its projection is an orientation reversing map σ : S =�/G�↔ S′ =�′/G�.

Choose a fundamental set of components �1, . . . , �r of �(G) in the sense that
no two are equivalent under G yet their G-orbits cover �(G). Label the correspond-
ing Riemann surfaces S1, . . . , Sr ; these are the boundary components of M(G). We
have an associated set of Riemann surfaces and corresponding orientation reversing
quasiconformal involutions which we will write as

σ : (S1, . . . , Sr ) �→ (S′1, . . . , S′r ).

The map σ is called the skinning map since it removes the “skin” that hides the
structures {S′i } below, as skinning an apple exposes the yummy stuff underneath.

Next, define a map ρ that operates on r -tuples of Riemann surfaces by the following
operation:

ρ : (R1, . . . , Rr ) �→ (R1, . . . , Rr ),

Here Ri denotes the Riemann surface obtained from Ri by replacing each local coor-
dinate {z} by its complex conjugate {z̄}. To be more concrete, suppose �i is a fuchsian
group acting in LHP and UHP such that LHP/�i = Ri . Then Ri = UHP/�i .

The question is: Given M(G) and its boundary components S1, . . . , Sr consider
the orientation preserving map

ρ ◦ σ : (S1, . . . , Sr ) �→ (S′1, . . . , S′r ).

We can look at this as a homeomorphism of Teich(S1)× · · · ×Teich(Sr ) onto itself.
Can we deform M(G) by a quasiconformal deformation to get a manifold M(G∗) for
which ρ ◦ σ is the identity? If so, at the fixed point, (S′1, . . . , S′r )≡ (S1, . . . , Sr ).
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For simplicity, assume that r = 1. Consider the situation up in �(G∗). Choose a
component �; all other components are conjugate by an element of G∗. We have the
situation,

�
σ−→ �2 \� ρ−→ �.

Now ρ is an orientation reversing, angle preserving map that commutes with Stab(�)
and pointwise fixes ∂�. Necessarily ∂� is a round circle and ρ is the reflection in
∂�.

The term used is that the boundary ∂M(G∗) is totally geodesic. This is a small
abuse of terminology however. What is really meant is that the convex core of M(G∗)
is bounded by totally geodesic surfaces, each the dome over some Si . A totally geo-
desic surface S∗ embedded in the interior of M(G∗) is one with the property that the
geodesic between any two points on S∗ lies within S∗. This occurs if and only if each
lift of S∗ in �3 is a hyperbolic plane. Cool!

The geodesic boundary of M(G∗) makes it possible to directly construct its hyper-
bolic double. Look at a typical component � of �(G∗). Let J denote the reflection
in the bounding circle ∂�. J is also the reflection of �3 in Dome(�). Consider
the new group 〈G, J G J 〉. J conjugates the action of G in the exterior of � and the
“outside” of its dome to new action in � and “under” the dome. But also Jg J = g
for each element g ∈ Stab(�). Topologically we have attached two copies of M(G∗)
along the common boundary S =�/Stab(�). When this is done for all the boundary
components we will have built a kleinian group representing the double, which is
a manifold of finite volume. Finding a manifold with totally geodesic boundary is
equivalent to finding one whose double has a hyperbolic structure — can be repre-
sented by a kleinian group.

Theorem 6.2.1 [Thurston 1982a; McMullen 1990]. If M(G) is geometrically finite
and acylindrical, there is a unique manifold M(G∗) in its quasiconformal deforma-
tion space T(G) which has totally geodesic boundary.

Without the acylindrical requirement the theorem would be false. For example, in
a quasifuchsian space there are many fuchsian deformations of a fuchsian group.

It is because of Mostow’s Rigidity Theorem applied to the double, that M(G∗) is
unique. The first proof by Thurston [1982a] applied the Hyperbolization Theorem
(see page 324 below) to the topological double of M(G). See also Exercise 6-2.

Recently Peter Storm answered a related conjecture of Bonahon about convex core
volumes when he proved:

Theorem 6.2.2 [Storm 2002b; 2002a]. Suppose M(G) is geometrically finite, acylin-
drical and without rank two cusps. In the quasiconformal deformation space of
M(G), the volume of the convex core C(G) is uniquely minimal for the manifold
M(G∗) with totally geodesic boundary.

An analogous result for surfaces was discussed in Exercise 4-17.
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David Wright’s Figure 6.2.1 is a wonderful illustration of this section. The limit
set is a Sierpiński gasket, that is, it is a closed subset of �2 with empty interior whose
complement is the union of round disks with mutually disjoint closures. The com-
plementary set is called a Sierpiński carpet. The group G has no parabolics and is
constructed by identifying the faces of two adjacent truncated ideal tetrahedra. See
[Thurston 1997, p. 133] or http://www.math.okstate.edu/~wrightd/Marden for details.
It is known that there are exactly eight nonisometric manifolds with genus two geo-
desic boundaries formed from two ideal tetrahedra [Fujii 1990]. Their convex cores
all have the same volume. More generally, there are 151 manifolds with geodesic
boundary constructed from three tetrahedra, and 5,033 ones constructed from four
[Frigerio et al. 2004].

6.2.2 Skinning the manifold (Part II)

We need a theorem for a more general situation. The most general case is of a finite
collection of geometrically finite {M(Gi )}. Suppose τ is an orientation reversing
quasiconformal involution of

⋃
∂M(Gi ) that has the effect of preserving the set of

solid pairing tubes.
⋃

Pi . Form the new 3-manifold Mτ =⋃M(Gi )/∼ τ . Assume
that Mτ is connected. In this generality, the case leading to totally geodesic boundaries
is included.

However for simplicity assume that τ : ∂M(G)→ ∂M(G) is an orientation revers-
ing quasiconformal involution (sending punctures to punctures) that sends Si to Sj

and Sj to Si where j = j (i) 
= i .
Form the topological manifold Mτ = M(G)/ ∼ τ by gluing the boundary com-

ponents as prescribed by τ . We sail through the quasiconformal deformation space
T(G) in search of a point M(G∗) where the required gluing can be done by Möbius
transformations. If we can find such a point, bingo! The corresponding Mτ is a
hyperbolic manifold.

To simplify notation let’s assume that there are just two boundary components
S1, S2 and τ interchanges them. Consider the composed mapping which is an orien-
tation preserving quasiconformal mapping:

σ ◦ τ : (S1, S2)
τ−→(S2, S1)

σ−→(S′2, S′1).

It determines a homeomorphism of Teich(S1)× Teich(S2) onto itself. Suppose we
can find a fixed point M(G∗)∈T(G). At this point σ ◦τ = id and (S′2, S′1)≡ (S1, S2).

Consider the meaning in �(G∗). Choose a component �1 over S1 and �2 over S2.
In terms of lifted maps we have for i = 1, 2,

�i
τ−→ � j

σ−→ �2 \� j .

Since Gi = Stab(�i ) is quasifuchsian, we can assume τ is a quasiconformal mapping
defined on �2 that induces an isomorphism φ : Gi → G j . The skinning map σ then
commutes with G j . Expressed in a different way, we have a quasiconformal map F
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Fig. 6.1. This limit set is a Sierpiński gasket. The boundary of M(G) is a totally geodesic
closed surface of genus two. M(G) itself, explained in [Thurston 1997, p. 133–138], can be
embedded in �3, with complement a handlebody: it is what remains of an apple once a three-
legged wormhole — a knotted Y shape — is eaten out (bottom right). Helaman Ferguson’s
marble Knotted Wye, standing six feet tall, was inspired by this example of Thurston. The
sculpture was commissioned for the Geometry Center at the University of Minnesota, and
now adorns the University’s mathematics library.
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defined on �2 with

F : �1 → �2 \�2, �2 \�1 → �2.

Moreover F induces the isomorphism φ :G1→G2. Under the hypothesis that M(G∗)
is a fixed point, F is in fact conformal and therefore Möbius .

We claim that the augmented group H∗ = 〈G∗, F〉 is discrete and M(H∗) is home-
omorphic to Mτ , the result of identifying the boundary components S1, S2 via τ .
This could be a job for the Klein–Maskit combination theory. Instead, we will apply
Theorem 5.10.1 in Exercise 5-1:

There is a nonsingular surface C∗ ⊂ �3 over �1, which is invariant under G1.
Its orbit under H∗ consists of mutually disjoint surfaces. Its projection C1 = π(C∗)
into M(G∗) is embedded and parallel to the boundary component S1 =�1/G1. The
projection C2 = π(F(C∗)) is likewise embedded and is parallel to S2 =�2/G2. Let
M denote the result of removing from M(G∗) the regions between C1 and S1, C2 and
S2. The Möbius transformation F maps the space outside C∗ onto the space inside
F(C∗); it effects identification of the boundary components C1 and C2 of M .

Assume M is a finite union of geometrically finite manifolds. Let τ : ∂M→ ∂M

be an orientation reversing involution preserving the pairs of punctures on ∂M. Form
the new 3-manifold Mτ =M/ ∼ τ and assume that it is connected. Within M each
puncture is paired with another by a solid pairing cylinder. Under τ the various
boundary components of the pairing cylinders become identified resulting in a number
of mutually disjoint boundary tori {T }⊂Mτ . (Any solid cusp tori in M are left alone.)
In a hyperbolic structure on Mτ these must become cusp tori. To this end, we say Mτ

is atoroidal if every map of a torus into Mτ is homotopic to a map into a component
of {T } (see Section 6.3). In particular, Mτ is atoroidal if M has no essential cylinders
at all, that is, if M is acylindrical.

The key result below is proved by showing τ◦σ is contracting as a homeomorphism
of the relevant product Teichmüller spaces, and uniformly contracting only when Mτ

is atoroidal. In the latter case it has a unique fixed point. The nontrivial proof is a job
for complex analysis. For a quasifuchsian manifold M(G) the skinning method does
not work, since σ is an isometry of the Teichmüller space. This is why a separate
analysis is required. We state the result for a single manifold M(G):

The Skinning Lemma [Thurston 1980; McMullen 1990]. (See also[Kapovich 2001;
Otal 1998].) Assume that M(G) is geometrically finite and boundary incompressible.
The automorphism στ :T(G)→T(G) has a fixed point if M(G) is acylindrical. The
fixed point is unique.

More precisely, the gluing problem required to construct a hyperbolic structure on
Mτ has a (unique) solution if and only if Mτ is atoroidal.

The proof fails precisely when τ matches up the boundary components of an essen-
tial cylinder (not a pairing cylinder) in M(G) resulting in an essential torus. If M(G)
is already acylindrical, this possibility does not occur. The presence or absence of
rank two cusps is immaterial.
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Actually a more general construction is needed to prove the Hyperbolization The-
orem. We have to allow an incompressible subsurface of one component of ∂M(G)
to be identified with an incompressible subsurface of another. This is carried out
using a technique involving the reflection of M(G) over subsurfaces of ∂M(G). It is
explained in Exercise 6-12.

6.3 The Hyperbolization Theorem

We will begin by reviewing our list of definitions and at the same time adding some
new ones. For technical details see [Hempel 1976; Jaco 1980]. Suppose M3 is a
compact, orientable 3-manifold, possibly with boundary. The technical disclaimer
is that we are implicitly working in the piecewise linear or equivalently in the dif-
ferentiable category (see [Hempel 1976, p. 4]). The point is that we do not want to
deal with “wild” embeddings. The following definitions are made with this under-
standing. (Here, as is customary, the terms “2-sphere” and “open or closed 3-ball”
in a 3-manifold mean homeomorphic images of the round versions in �3. By the
Sphere Theorem, the statement that M3 is irreducible is equivalent to the condition
that π2(M3) = 0, since the Poincaré Conjecture is now known to be true (Perel-
man; see [Cao and Zhu 2006]). Also, as elsewhere in this book, we are assuming
that embedded surfaces S are two-sided, hence orientable: There is an embedding
E : S×[−1, 1] ↪→M(G) with E(∂M(G)∩S×[−1, 1])=E(∂S×[−1, 1]), if ∂S 
=∅,
and E(x, 0)= x, x ∈ S. See [Hempel 1976, Chapter 6; Jaco 1980, §III.12].)

Irreducible: Every embedded 2-sphere in M3 bounds a closed 3-ball.

Boundary incompressible: If γ ⊂ ∂M3 is homotopic to a point in M3, it is already
homotopic to a point in ∂M3.

Incompressible surface: A compact, embedded surface S 
=�2⊂M3, S∩∂M3=∂S
if ∂S 
= ∅, such that if γ ⊂ S is homotopic to a point in M3, it is already
homotopic to a point in S. Also no component of ∂S is homotopic to a point
in ∂M3. In particular S may be a disk.

Atoroidal: Every map of a torus into M3 that is injective on its fundamental group
is homotopic to a map to a torus boundary component of M3.

Pared manifold: (M3; P) is pared if P ⊂ ∂M3 is the union of a finite number of
mutually disjoint, incompressible annuli and tori, such that (i) every incom-
pressible cylinder with both boundary components in P can be homotoped
(relative to its boundary) into P , and (ii) every torus component of ∂M3 is
incompressible and included in P .

Acylindrical: (M3; P) has the property that ∂M3 \ P is incompressible and every
incompressible cylinder C⊂M3 bounded by simple loops C∩(∂M3\P)=∂C
can be homotoped (relative to ∂M3) into ∂M3.

Haken: M3 is a Haken manifold if it is compact, orientable, irreducible and contains
an incompressible surface S 
= �2 with ∂S ⊂ ∂M3, if ∂S 
=∅.
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In an atoroidal manifold M3, every embedded, incompressible torus is parallel to
a boundary component. The following example shows that this condition alone does
not suffice: R is a closed surface of genus two or the 3-punctured sphere and α is
a figure-8 loop in R. In the 3-manifold R × �1, the immersed torus α × �1 has
fundamental group �⊕�.

The concept of “pared” manifold arises to characterize the “parabolic loci” in those
hyperbolic manifolds made compact by removing solid cusp tori and solid pairing
tubes. As by paring an apple we remove blemishes on its skin, so by paring a manifold
we mark the places occupied by pesky parabolics.

A compact, orientable, irreducible manifold M3 is Haken if ∂M3 
=∅. If ∂M3=∅,
then M3 is Haken if and only if (i) the cardinality of the first homology group is infinite
and/or (ii) π1(M3) is a free group with amalgamation over a closed surface group or
is an HNN-extension [Waldhausen 1968, Lemma 1.1.6]. Condition (ii) implies that
there is an embedded incompressible surface not parallel to a boundary component;
the converse is true by van Kampen’s theorem. Haken’s original term for the class of
Haken manifolds, “sufficiently large”, is suggestive of what is required of the funda-
mental group, although no precise characterization in terms of this group is known. A
criterion in distinguishing between Haken and non-Haken closed manifolds that has
been useful is the following curious theorem of Hyman Bass:

Theorem 6.3.1 [Bass 1980; Maclachlan and Reid 2003, Corollary 5.2.3]. Suppose
M(G) has finite volume. Either M(G) contains a closed incompressible surface not
homotopic to a cusp torus, or G ⊂ SL(2,�) is conjugate to a subgroup of SL(2,�),
where � is the ring of algebraic integers in the algebraic closure 
.

The importance of the class of Haken manifolds arises from the fact that if M3 is
Haken, it has a “hierarchy”

M3 = M1 ⊃ M2 ⊃ · · · ⊃ Mn = �3(⋃�3
)
.

Here Sk ⊂Mk is an orientable, incompressible, nonseparating (for k> 1) surface, and

Mk+1 = Mk \ Sk .

The surface Sk is not boundary parallel and it is properly embedded. Possibly Sk has
a boundary in which case Sk ∩ ∂Mk = ∂Sk a union of incompressible simple loops.
If M3 is closed, then the first surface may disconnect M3 resulting at the end of the
decomposition in two balls. For details see [Hempel 1976; Jaco 1980].

M3 can be systematically so decomposed by a sequence of incompressible surfaces;
equally it can be systematically composed from one or two 3-balls by successively
forming Mk from Mk+1 by identifying a pair of disjoint incompressible surfaces or
subsurfaces on the boundary of Mk+1 and gluing them together to form Mk . If Mk+1

is hyperbolic, the resulting Mk can be made hyperbolic as well by an application
of the Skinning Lemma (page 321) — if full boundary components are to be joined;
otherwise an elaboration is needed (see Exercise 6-12).
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Hyperbolization of 3-Manifolds. Assume that M3 is compact, orientable, irre-
ducible, atoroidal, and pared (M3; P). (Possibly P =∅; see Exercise 6-1.)

(i) Suppose ∂M3 
= ∅. Then M3 \ P is homeomorphic to M(G) for some geomet-
rically finite group G. M(G) is compact if and only if P = ∅; M(G) has finite
volume if and only if ∂M3 = P consists of incompressible tori.

(ii) If M3 is closed and Haken, it is homeomorphic to a M(G).

For an overview see [Thurston 1980; 1982b; Morgan 1984; Bonahon 2002; Scott
1983]. For proofs see [Otal 1996; 1998; Kapovich 2001].

The classification of manifolds that can be hyperbolized is complete because the
following conjecture is established as part of the Geometrization Conjecture by Perel-
man (see Section 6.4).

Hyperbolization Conjecture. Assume that M3 is closed, orientable, irreducible with
infinite fundamental group π1(M3). Then M3 is homeomorphic to a kleinian manifold
M(G) if and only if one of the following conditions hold:

(i) π1(M3) contains no noncyclic abelian subgroup,
(ii) π1(M3) contains no cyclic normal subgroup.

In view of the Hyperbolization Theorem we can stick to closed manifolds. We know
the conditions listed are necessary. A bridge between the two statements is Scott’s
Strong Torus Theorem [1980] which says, for an orientable, irreducible, compact
M3 for which π1(M3) has a rank two abelian subgroup, that either M3 contains an
embedded incompressible torus or π1(M3) contains a cyclic normal subgroup K . The
Seifert conjecture, confirmed in [Gabai 1992, §8.6] and [Casson and Jungreis 1994],
says that if π1(M3) is infinite, the latter case occurs if and only if M3 is a Seifert
fibered space and then π1(M3)/K is either the fundamental group of a 2-orbifold, or
is fuchsian (with elliptics).

Agol’s proof of tameness also establishes that noncompact, complete, orientable
riemannian 3-manifolds with pinched negative sectional curvatures −∞ < −L <

κ < −l < 0 and finitely generated fundamental groups have tame ends (personal
communication). Therefore they too carry hyperbolic metrics, partially settling a
long standing problem.

An alternate approach to hyperbolization is through the Virtual Haken Conjecture:

If M3 is an irreducible 3-manifold with infinite π1(M3), then M3 has a finite cover
which is Haken.

In [Dunfield and Thurston 2003] this was tested on the Hodgson–Weeks census of
the 10,986 smallest volume closed hyperbolic manifolds, most but not all of which
have finite homology. The fundamental groups all are 2- or 3-generator. In every case
the conjecture was confirmed by showing each had a cover with infinite homology.
The authors also show that every nontrivial Dehn surgery on the figure-8 knot com-
plement results in a virtual Haken manifold. Whether the Haken cover is hyperbolic
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depends on whether it is atoroidal. The affirmation of the conjecture would imply the
solution of the geometrization conjecture for closed irreducible manifolds with infinite
fundamental groups since Haken manifolds are either Seifert fibered or hyperbolic.

6.3.1 Knots and links

We now cite Thurston’s famous theorems for knot and link complements, clearly
displaying the power of his theory.

Hyperbolic Structures on Knot Complements. If K ⊂ �3 is a knot, �3 \ K has a
hyperbolic structure if and only if K is not a torus knot or a satellite knot.

A torus knot is a nontrivial knot that lies on the boundary of a torus neighborhood of
an unknot in �3. A satellite (also called a companion) knot K is one that is embedded
in a small solid torus neighborhood of some knot K0, not the unknot, and K is not
isotopic to K0 nor is contained in a ball inside the solid torus. The torus about K0

is incompressible in �3 \ K , which makes it impossible for K to have a hyperbolic
complement.

By a celebrated theorem of Gordon and Luecke [1989], knots are determined by
their complements: If K1, K2 are two knots, there is a homeomorphism (orientation
preserving or reversing) of �3 taking K1 to K2 if and only if �3\K1 is homeomorphic
to �3 \ K2. (This is not true for link complements). Therefore the volume of the
complement of a hyperbolic knot is an invariant of the knot.

One might think it very rare that a closed manifold with infinite fundamental group
has zero first homology. Yet given a hyperbolic knot K , there are infinitely many
Dehn surgeries on K which result in a closed manifold with exactly this property. To
construct examples, start with tubular neighborhood T of K . On T = ∂T there is a
uniquely defined (up to free homotopy) pair of simple closed curves which cross each
other once: The meridian μ bounds a disk within T and generates the homology of
�3 \T. The longitude λ is parallel to K and is homologous to zero in �3 \T. This is
because there exists a Seifert surface for K — an orientable surface S ⊂ �3 \ K with
∂S = K [Lickorish 1997].

Do (n, 1)-Dehn surgery: replace the inside of the solid torus T by another solid
torus, so that the simple loop λnμ ⊂ T becomes the meridian. This yields a closed
manifold M . In M , both λ and λn are homologous to 0; hence so is μ. Consequently
the first homology group of M is zero. Thurston shows that for all except a finite
number of integers n, the resulting manifold has a hyperbolic structure.

In general, there is no known method to determine whether a particular 1-cusped
manifold is a knot complement in the 3-sphere or in some other manifold.

In [Koundouros 2004] the following interesting conjecture is proposed and ex-
plored: If the injectivity radius of the closed manifold M(G) is sufficiently large, then
M(G) cannot be obtained by Dehn surgery on a knot in �3. The injectivity radius of
a closed manifold is the largest number r such that every point in the manifold is the
center of an embedded ball of radius r .
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A link L ⊂ �3 is called indecomposable if it cannot be separated into two parts
which can be isotoped into disjoint balls. A satellite (or companion) link L is satellite
to another link L0 if one or more components of L is satellite to a component of L0.
Thurston proved the following two theorems. The first is recorded in [Epstein and
Gunn 1991, p. 41]; the second appears in [Thurston 1982b; 1979, p. 5.38].

Hyperbolic Structures on Link complements. Suppose L ⊂ �3 is an indecompos-
able link of m ≥ 2 components. Suppose no component is a torus knot and L is not a
satellite link. Then �3 \ L has a hyperbolic structure.

The hyperbolic structure for the Borromean rings complement is visualized in
[Gunn and Maxwell 1991].

Dehn Surgeries on Hyperbolic Link Complements. Suppose L ⊂ M3 is a link in
the 3-manifold M3, in particular in �3, such that M3 \ L ∼=M(G) has a hyperbolic
structure. For each cusp of M(G) there are a finite number of Dehn surgeries that
must be excluded. The manifolds resulting from all Dehn surgeries on M(G), except
for those excluded, have a hyperbolic structure.

We have earlier stated this for the case of knots; see page 214. It is known that
every closed 3-manifold is obtained by Dehn surgery along some link L ⊂�3 whose
complement is hyperbolic. Most of these Dehn surgeries also give rise to non-Haken
manifolds [Thurston 1982b; 1979]. See also Exercise 6-3.

It is also true that every closed orientable 3-manifold is a cover of �3 branched over
the Borromean rings [Hilden et al. 1985]. For the construction of k-fold unbranched
covers of �3 \ L , see [Rolfsen 1976, §10.F].

The program SnapPea, by Jeff Weeks [2005], allows the computation of the hyper-
bolic structure of knots known to have hyperbolic structure and, for practical reasons,
are not too complicated (see also Exercise 4-18). It turns out that, contrary to prior
assumption, computation is easier in the conformal model than in the hyperboloid
model [Floyd et al. 2002]. The proof that the algorithm underlying SnapPea in prin-
ciple results in the correct structure is contained in an enhancement to SnapPea called
Snap Goodman n.d.; Coulson et al. 2000, which can compute arithmetic invariants,
such as volumes, to very high precision. Using Snap one can confirm the hyperbolic
structure as discovered by SnapPea by finding the exact solutions of the equations
satisfied by the tetrahedral parameters needed to construct the cusped manifold from
ideal tetrahedra (if the degree is not too high). Thus it is possible, in principle, to
decide whether or not a given knot, presented say by over and under crossings, is the
unknot. Likewise the question of whether two hyperbolic knots are the same or not
can be answered in principle when SnapPea can find a hyperbolic structure for each.
See also Exercise 1-23 on computing volumes.

Riley [1975] (see also [Wielenberg 1978]) discovered a variety of kleinian groups
among the Bianchi groups �d = PSL(2,Od) and their finite index subgroups. Here
Od denotes the ring of integers in the quadratic imaginary number field 
(

√−d),
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Fig. 6.2. The Whitehead link and the Borromean rings.

Od denotes the ring of integers in the quadratic imaginary number field 
(
√−d),

where d is a positive integer. Many of these model familiar knots and links. The
ring Od has �-basis {1, ω} where ω = √−d , unless d + 1 is divisible by 4 in which
case ω = 1

2(1+
√−d). So the normalized matrices in the group have entries of this

form. All of the Bianchi groups, together with their finite index subgroups, give rise
to manifolds of finite volume. In many cases, an exact formula can be given for the
volume; see [Milnor 1994, p. 257].

In particular the Picard group of Exercise 2-11 is PSL(2,O1). The Borromean
rings come from the one torsion-free normal subgroup of index 24 in PSL(2,O1)

[Wielenberg 1978; Brunner et al. 1984]. The figure-eight knot complement of see
Exercise 3-5 h has index 12 in PSL(2,O3). The Weeks manifold, the conjectured
lowest volume (orientable) hyperbolic manifold, is obtained from 
(x) with x3 −
x + 1 = 0. The field 
(x) where x4 − x2 + 3x − 2 = 0 spawns a closed manifold
all of whose geodesics are simple — in fact an infinite family of such manifolds has
been found! The definitive reference on this subject of arithmetic kleinian groups
is [Maclachlan and Reid 2003]. There the reader will also find an exhaustive list of
known examples. See also [Riley 1975] and [Thurston 1979, Chapter 7].

There is another approach to knot invariants, namely via the many known knot
polynomials. It is not known how to find these polynomials directly from the hyper-
bolic structure.

In general, there is no known method to determine whether a particular 1-cusped
manifold is a knot complement in the 3-sphere or in some other manifold.

6.4 Geometrization

There is a general conjecture of grand sweep proclaimed in 1977 by William Thurston,
called the geometrization conjecture. It has been the focus of 3-manifold topology
ever since. When he proposed the conjecture, Thurston announced the solution of
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a substantial part of it. If completely proved, it would amount to a complete clas-
sification of compact 3-manifolds, not just a topological classification but in fact a
geometric classification. For many explicit examples of 3-dimensional manifolds and
orbifolds see [Montesinos 1987].

It had been known that there is a process of canonically cutting down a compact,
orientable 3-manifold into compact pieces by embedded spheres and two-sided in-
compressible tori. First cut along an embedded sphere that does not bound a ball and
cap off the resulting two pieces. After a finite number of steps the process will stop.
The summands in the decomposition are unique up to homeomorphisms; see [Hempel
1976; Jaco 1980]. Then for each irreducible piece there is the Johannson–Jaco–Shalen
decomposition by a finite set of mutually disjoint, embedded, incompressible tori with
the following properties: none of the tori is parallel to a boundary component, and
each component resulting from cutting the manifold along the tori is either a Seifert
fiber space or it contains no incompressible torus. A minimal set of tori is uniquely
determined up to isotopy; see [Jaco 1980].

(An example of a Seifert fiber space, or Seifert manifold, is given by M3= R×�1,
with R a compact surface; the boundary components of R, if any, become incom-
pressible boundary tori for M3. Other examples are obtained by replacing a finite
number of circles in M3 with “singular fibers”; a singular fiber has a neighborhood
homeomorphic to the quotient �×�1 of �×� under the action (z, t) �→ (ωz, t+1/q),
where ω is a primitive q-th root of unity and � is the open unit disk centered at z= 0.
Each nonsingular fiber wraps q-times around the singular one. An orientable M3

is called Seifert fibered if it is a union of pairwise disjoint simple loops, each with
a closed neighborhood, a union of fibers, which is fiber-homeomorphic to a fibered
solid torus �×�1 as described above; see [Jaco 1980; Scott 1983]. The only Seifert
fibered manifolds that appear inside hyperbolic manifolds are interiors of solid tori
or solid cusp tori.)

The geometrization conjecture is the statement that the interior of each resulting
submanifold has a uniquely determined geometric structure. Here “geometric struc-
ture” means the following: Assume that X is a simply connected, complete rieman-
nian manifold which is homogeneous — there is an isometry taking any point to any
other. Assuming X is a 3-manifold, it is diffeomorphic to �3 or �3, unless it is
modeled on �2×�. One can say that a complete riemannian manifold M is modeled
on (X, g) if M = X/G, where G is a fixed point free group of isometries.

Thurston conjectured that the interior of each (compact) piece is modeled on one
of eight kinds of geometries (see [Thurston 1997, Thm. 3.8.4]). The most familiar
are the constant sectional-curvature geometries: spherical, euclidean and hyperbolic.
There are five other geometries possible as well: �2×�, �2×� (both of which have

product metrics), ˜SL(2,�) (the universal covering group of SL(2,�), Nil and Sol
[Thurston 1982b; Scott 1983; Boileau et al. 2003]. The formerly unresolved cases
in the geometrization conjecture fall into two types according to the nature of the
fundamental group: (i) π1(M3) is finite; in this case the conjecture is that M3∼=�3/�
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where � is a finite orthogonal group acting in �4 (the Poincaré Conjecture is the
case � = id); (ii) π1(M3) does not contain a cyclic normal subgroup; this is the
Hyperbolization Conjecture.

The confirmation of the Seifert Conjecture by Gabai [1992] and independently by
Casson and Jungreis [1994] settled the issue for manifolds for which π1(M3) does
contain a cyclic normal subgroup. Namely if M3 is compact, orientable, irreducible
with infinite π1(M3), then M3 is a Seifert fibered space if and only if π1(M3) contains
a cyclic normal subgroup. A Seifert fibered space cannot have hyperbolic interior,
unless it is the elementary case of a solid torus or thickened torus (solid torus minus
its core).

As our book nears completion, the mathematical world seems to have confirmed
Grigori Perelman’s announcement of having completed the proof of the Geometriza-
tion Conjecture for closed manifolds, including the Poincaré Conjecture. The first
full proof independently confirming Perelman’s announcement is by H.-D. Cao and
X.-P. Zhu [2006]. The strategy of the ultimately successful proof was set out by
Richard Hamilton some years ago: Allow the Ricci flow to act on a given 3-manifold
and deal with the singularities as they arise, pinching off pieces of the manifold. For
expositions see [Chow and Knopf 2004; Morgan 2005; Milnor 2003].

For interesting comparisons of hyperbolic volumes and volumes of riemannian 3-
manifolds, assuming Perelman’s work, see [Agol et al. 2005].

In the context of the geometrization conjecture, one can proclaim that the “vast
majority” of compact 3-manifolds are hyperbolic, although there is not yet a formal
theorem making matters precise. Compare the manifold case with the case of word-
hyperbolic groups (Exercise 2-17.

6.5 The Orbifold Theorem

As we have discussed in Section 2.5, if the kleinian group G has elliptic elements, its
quotient M(G) is called an (orientable) orbifold. Assume that M(G) is geometrically
finite. We will collect the properties of its singular set σ(G), which is a graph, as
follows — Corollary 2.5.2:

(i) Each edge e is labeled by a positive integer k≥2 which is the order of a primitive
elliptic element that pointwise fixes a lift e∗ ⊂�3.

(ii) Each vertex of σ(G) is the endpoint of three edges. These edges must have
orders (2, 3, 3), (2, 3, 4), (2, 3, 5) or (2, 2, n), n ≥ 2.

(iii) A component of σ(G) is either a simple loop, a full geodesic with each endpoint
in ∂M(G) or at a cusp, or it contains vertices. An edge from a vertex ends either
at another vertex, a point on ∂M(G), or at a cusp.

(iv) If an edge ends at a rank one cusp, there are exactly two such edges and each
has the label 2.

(v) If an edge ends at a rank two cusp, there are three or four such edges with the
labels (3, 3, 3), (2, 3, 6), (2, 4, 4), or (2, 2, 2, 2).
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(vi) There are no euclidean or spherical suborbifolds except as arise automatically
from a cusp or a fixed point of a finite subgroup.

A spherical submanifold means that there is a smooth topological sphere S that is
transverse to σ(G), cuts each edge at most once, and doesn’t intersect the vertices.
Set S∩σ(G)= {pi }. Each point pi has a label ri coming from the edge it lies on. In
view of Equation 3.13, we must have

∑
(1− 1/ri ) > 2.

For a definition of orientable orbifold see Exercise 4-7; for the general definition see
[Cooper et al. 2000; Kapovich 2001, Chapter 6; Thurston 1979, Chapter 13]. Thurston
proclaimed a complete geometrization theory for compact, irreducible, atoroidal orb-
ifolds. Proofs covering many cases have been developed by Boileau, Leeb, and Porti
[Boileau et al. 2005], and independently by Cooper, Hodgson, and Kerckhoff [Cooper
et al. 2000]. A proof when the singular set is a union of circles is in [Boileau and
Porti 2001]. The proofs require analysis of cone manifolds with cone angles ≤ π
when trivalent vertices are present.

Instead of plunging into the general theory we will be more than content to present
a beautiful application to hyperbolic manifolds:

Designated Hyperbolic Orbifolds. Suppose M(G) is a geometrically finite hyper-
bolic manifold, and {γi } is a finite set of mutually disjoint, simple closed geodesics
with assigned integers {2 ≤ ri ≤∞}. There exists a hyperbolic orbifold M(H) such
that the labeled graph σ(H) is homeomorphic to

⋃
γi with the given labeling and

M(H) \ σ(H) is homeomorphic to M(G) \⋃ γi .

Proof. This is a direct consequence of [Boileau et al. 2005, Theorem 2.3]. The
presence of the graph determines orbifold structure O with “base space” M(G). It
is topologically atoroidal, not a Seifert fibered orbifold, nor is there a spherical or
euclidean suborbifold. For more details see Exercise 6-3. �

There are many other possibilities for a hyperbolic orbifold besides the ones stated
above, but the analysis is more complicated. One problem is that a singular set can-
not consist of a “knotted” geodesic. Another is that the underlying manifold to a
hyperbolic orbifold may or may not have a hyperbolic structure. The example of
�2 covering �2 with branch points satisfying Equation 3.11 or 3.12 shows why. It
requires the extensive analysis of [Boileau et al. 2005; Cooper et al. 2000] to explore
all the possibilities.

Suppose M(G) is a closed manifold. We can ask, of all the hyperbolic orbifolds
whose underlying space is M(G), which has the least volume? Peter Storm gave the
following answer, which is consistent with the Dehn Surgery Theorem of page 214
(see also Theorem 6.6.5):

Theorem 6.5.1 [Storm 2002b]. The volume of the closed manifold M(G) is strictly
less than the volume of any hyperbolic orbifold O (or, more generally, any cone man-
ifold O with cone angles ≤ 2π) with the property that the underlying space of O is
homeomorphic to M(G).
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ifold O with cone angles ≤ 2π) with the property that the underlying space of O is
homeomorphic to M(G).

6.6 Exercises and Explorations

6-1. The interior of M3=�2×[0, 1] resulting from thickening the torus �2 with P =
�2×{0}would fall under the aegis of the Hyperbolization Theorem (page 324), except
that it is not pared since there are essential cylinders with one boundary component
on P . Its interior is homeomorphic to �3/�0, where �0 is the group generated by
〈(x, y, t) �→ (x + 1, y, t), (x, y, t) �→ (x, y + 1, t)〉. However its interior does not
have a complete hyperbolic structure of finite volume; this makes it the sole exception
to the rule that (finitely generated) hyperbolic manifolds all of whose ideal boundary
components are tori have finite volume.

Consider instead the orientation and volume preserving group � of euclidean isom-
etries of �3 generated by (x, y, t) �→ (x + 1, y, t), (x, y, t) �→ (−x, y+ 1,−t). The
group � preserves � and �/� is a Klein bottle; the torus �/�0 is its two sheeted
orientable cover. The corresponding manifold �3/� is homeomorphic to the interior
of the compact manifold with torus boundaries N 3 = �2× [0, 1]/(�/2). N 3 itself is
called the twisted I-bundle over the Klein bottle (see [Hempel 1976, Theorem 10.3]).
Confirm that N 3 does not have a pared structure either. Does its interior have a
complete hyperbolic structure? (Answer: No!)

6-2. Doubling a manifold. The following construction leads to another proof of
Theorem 6.2.1. Suppose M = M(X) is geometrically finite, acylindrical, without
cusps, and with b ≥ 1 boundary components.

Here is a process for constructing a closed manifold M̂ that is 2b-sheeted over M
and is orientable, atoroidal, and Haken. In the case b = 1 it is just the double of M .

Order the boundary components of M : (S1, S2, . . . ). Take 2b copies of M . On
each copy, assign to each of its boundary components one of the two symbols + and
−. We do this so that the ordered boundary of each copy is associated with a symbol
sequence and no two copies are assigned the same ordered symbol sequence. Index
the copies as Mi .

Glue Mi to M j along the surface Sk if and only if the symbol sequence for Mi

differs from that of M j only in the k-th position. Think of this operation as M j

being the reflection of Mi across Sk . If we start with a manifold with totally geodesic
boundaries, we can carry out this operation in the universal cover �3.

There is a finite group G of order 2b of automorphisms acting on M̂ . We can see this
by considering the connected b-valent graph G constructed as follows. The vertices
correspond to the copies {Mi }. Two vertices are joined by an edge if one manifold is
glued to the other. Denote by Jk the involution of G determined by replacing the sign
attached to the k-th boundary component of each Mi by the opposite sign. Each Jk

acts on M̂ and is an orientation reversing involution: “reflection” in each Sk . Denote
the group generated by the {Jk} by G. No element of G fixes a vertex of G (other
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than the identity), and for each index i , there is an element wi taking the vertex
corresponding to M1 to that corresponding to Mi . The expression for wi as a word in
the generators is not uniquely determined. Rather what is determined is the parity of
its length, even or odd, orientation preserving or reversing.

The original M appears as the quotient space M̂/G. Hyperbolize M̂ to become the
closed manifold M(Y ). For example by Theorem 3.13.1, there is a homeomorphism
f : M̂ → M(Y ). Moreover each element of f G f −1 is isotopic to an isometry by
Mostow’s theorem and G is isomorphic to a group H of isometries. The boundary
components of M(Y )/H ∼= M are totally geodesic.

6-3. Drilling out simple geodesics. Start with a geometrically finite hyperbolic mani-
fold M(G)with boundary. The result of removing a simple loop which is not primitive
cannot have a hyperbolic structure (Exercise 4-20) but simple geodesics are automat-
ically primitive. The result of removing a finite number of mutually disjoint simple
geodesics is also atoroidal and Haken and consequently has a hyperbolic structure. On
the other hand, if M(G) has finite volume with cusps, a closed hyperbolic manifold
can be obtained by Dehn surgeries. The original manifold can in turn be recovered by
removing the resulting new geodesics and introducing the original hyperbolic struc-
ture on the complement. The general theorem covering this matter is as follows.

Theorem 6.6.1 (Kerckhoff, Kojima, Sakai). If M(G) is geometrically finite and L ⊂
M(G) is a disjoint union of a finite number of simple closed geodesics, then M(G)\L
has a complete hyperbolic structure.

As a consequence of the Dehn Surgery Theorem (p. 214), the volume of M(G), if
it does have finite volume, is less than that of the hyperbolic structure on M(G) \ L .

We will assume that M(G) is closed and indicate the proof as in [Kojima 1988,
Prop. 4]. First, M(G) \ L is irreducible — every embedded 2-sphere bounds a ball.
(Hint: lift to �2.) Nor does it contain an essential embedded torus T which cannot
be homotoped into L . (Hint: Suppose there is an essential embedded torus T . With
respect to M(G), T is compressible so there is a compressing disk D. Choose a lift
T̂ of T to �3. Then T̂ is either a torus or an open cylinder. In the former case, the
region bounded by T̂ could not contain a lift of any of the geodesic components of
γ . Therefore T̂ would be contractible in �3 \ L∗, where L∗ is the totality of lifts
of L . As such T would be contractible in M(G) \ L , a contradiction. If the second
case occurred, T̂ would be invariant under a cover transformation g ∈ G, and hence
its closure would have two ideal points on ∂�3, the fixed points of g. T̂ incloses a
cigar-shaped region which would contain exactly one component of L∗, the lift of
some component L0 of L . In this case T is the boundary of a tubular neighborhood
of L0.)

It remains to show that M ′ =M(G) \ L cannot be a Seifert fiber space (SFS) —
see Section 6.4 or [Scott 1983] for the formal definition. If to the contrary it were
a SFS, M ′ would have the following structure (mandated by the Torus Theorem —
see [Jaco 1980]). There would be a fuchsian group H with possible elliptic elements
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such that S = �2/H is a closed surface and π1(M ′)/K ∼= H , where K is an infinite
cyclic normal subgroup. The singular fibers come from the elliptic fixed points. Since
M(G) is formed from M ′ by adding back L , there would be at most one singular fiber
and that would have to be a meridian of T , because M(G) is not a SFS. Therefore
we would have G ∼= H . Now G is torsion free so H must be as well and hence is
a surface group. This is impossible as the third homology of S is zero while that of
M(G) is not.

The argument presented was kindly provided by Peter Scott.
Can you hyperbolize M(G) \ {γ } where γ is a simple loop in the interior which

does not bound an embedded disk in its complement?
Under some circumstances it may be advantageous not to globally change the hy-

perbolic structure because there is no control of how the geometry changes. Instead
one can replace the hyperbolic metric near γ by a complete PNC metric. What is
needed is the following result, formulated by Souto (see also [Hodgson and Kerckhoff
1998]):

Theorem 6.6.2. Given ε > 0 there exists C > 0 with the following property. If
γ ⊂ M(G) is a simple closed geodesic such that its R-tube V is embedded, then
the hyperbolic metric on M(G) \ V can be extended to a complete PNC metric on
M(G) \ γ which in V has curvature κ satisfying −1− ε < κ <−1+ ε.

It is shown in [Agol 2002] that if a closed geodesic γ is removed from a hyperbolic
3-manifold M(G) of finite volume, and if γ is contained in an embedded tube of radius
r , then the volume of the hyperbolic structure Mγ on M(G) \ γ satisfies

Vol(Mγ )≤ (coth r)5/2(coth 2r)1/2Vol(M(G)).

Compare Theorem 6.6.1 with the following striking result Robert Myers [1982]:

Theorem 6.6.3. Let M be a compact, orientable 3-manifold for which ∂M , if non-
empty, does not contain a 2-sphere. Then M contains a simple closed curve K whose
open tubular neighborhood NK has the following property. The complement M \ NK

is irreducible, boundary incompressible, and atoroidal.

In particular Int(M) \ K has a complete hyperbolic structure. For example if M ∼=
S × [0, 1] for a closed surface S, there is a knot K so that M \ K is acylindrical.
For this to happen the projection of K to S must fill up S in the sense that each
complementary component is simply connected.

Meyers goes on to prove that M is completely determined as a 3-manifold by the
countably infinite set of subgroups {π1(M \ J )} as J runs over all simple loops in M .

Instead of drilling out a geodesic we turn to the following, related situation. Sup-
pose instead of a manifold we have a hyperbolic cone manifold M (Exercise 4-7)
such that the singular locus c is a simple closed curve with cone angle α. Still M
may have a geometrically finite structure and in particular a conformal boundary
as befits geometrically finite hyperbolic manifolds. The following theorem of Ken
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Bromberg [2004], proved using work of Craig Hodgson and Steve Kerckhoff has
been of fundamental importance in applications.

Theorem 6.6.4. Suppose Mα is a geometrically finite hyperbolic cone manifold with-
out rank one cusps with cone angle 0 ≤ α ≤ 4π . Suppose the singular locus c has a
tubular neighborhood of radius at least arcsinh(

√
2). There exists ε = ε(α) such that

if the length of c satisfies Lα(c) < ε then there exists a family of geometrically finite
cone manifolds {Mt } with cone angle t , 0≤ t ≤ α, and conformal boundary fixed.

Thus we can continuously decrease the cone angle, for example from the initial
4π to 2π , at which point M2π is a complete hyperbolic manifold, or to 0 when c
becomes a rank two cusp, which is the case of Theorem 6.6.1. Cone angles of 4π
arise naturally from the construction of Exercise 6-7.

The change in geometry of the manifolds as t varies is controlled by the following
theorem. We fix neighborhoods Ut of the cone axis in Mt by taking the appropriate
component of the ε-thin part for a sufficiently small ε. As t → 0, Ut approaches a
horoball.

Drilling Theorem 6.6.5 [Brock and Bromberg 2003]. Suppose Mα satisfies the hy-
pothesis of Theorem 6.6.1. Given L > 1, there exists ε = ε(α; L) with the following
property. For Lα(c) < ε and 0≤ t ≤ α, there is an L-bilipschitz map

Mα \Uα→ Mt \Ut

that sends ∂Uα→ ∂Ut .

This result is quite strong: it says in quantitative terms that the manifolds {Mt }
remain a bounded distance apart as t → 0; when a simple geodesic is drilled out,
away from the geodesic the hyperbolic structure does not change much. The closer L
is to 1, the closer c must be to a rank two cusp. The two theorems have been applied
in the study of the density of geometrically finite groups, the density of cusps on
boundaries of deformation spaces, the Ending Lamination Conjecture, and tameness
of manifolds. The theorems have full analogues in case of a finite number of mutually
disjoint simple cone axes (Bromberg, personal communication; it seems likely that
the restriction on rank one cusps is not necessary — although one can make it a rank
two cusp by adjoining another parabolic).

One application is to the proof of Theorem 4.6.3. In an approximating sequence one
drills out the short geodesics which are destined to become the rank one parabolics
in the algebraic limit. This does not change the hyperbolic structure away from these
geodesics very much. Consider the covering manifolds determined by the marked
fundamental groups of the sequence of drilled out cores. These covers converge
algebraically to the expected algebraic limit.

Another application is in the uniqueness proof of Bonahon and Otal’s Theorem
3.11.3. If we have a convex core whose bending lamination is finite, we can construct
the double of the convex core across its boundary components. If a particular bending
line � has bending angle α so that the internal bending angle is π −α, then the result
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of doubling gives a cone manifold with cone axis � and cone angle 2(π − θ) and
similarly the other bending lines become cone axes as well. The manifold can be
continuously deformed until all the cone angles become zero. Then Mostow rigidity
can be applied.

6-4. Knottedness. What should it mean that a simple geodesic γ in M(G) be unknot-
ted? In �3, a simple loop is unknotted if it is isotopic to a point in its complement.
We could also define a simple loop to be unknotted if it isotopic to a simple loop in
a sphere.

One definition might be as follows. Consider the countable set in �3 of all lifts
of γ . Call γ unknotted if any geodesic γ ∗ over γ can be isotoped into �2 without
intersecting any other lift. This property is used in [Gabai et al. 2003].

In fact the solid cusp tubes associated with rank one parabolics are “unlinked” in
a similar sense. For they are mutually disjoint, and any one of them can be shrunk
towards a cusp (by using smaller and smaller horoballs) without bumping any other.
Likewise the core curves in the solid tori obtained by Dehn filling on rank two cusps
are unknotted, at least when the resulting manifold is close enough to the cusp.

On the other hand Otal defined unknottedness by a property suggested by the sit-
uation in �3: γ is unknotted if γ lies in an incompressible closed surface S properly
embedded in the interior of M(G). If γ satisfies the latter definition, it also satisfies
the former. For each lift S∗ of S to �3 is a topological plane separating �3 and
different lifts are mutually disjoint. Therefore γ ∗ can be moved slightly off S∗ and
then homotoped into �2 without hitting any lift of S. In particular if γ is a simple
loop in the interior, homotopic to a point but not bounding an embedded disk in its
complement, then γ is a knot in Otal’s sense. Conversely if γ satisfies the former
definition, it is a boundary component of a half-infinite cylinder extending out to an
end. It is likely that γ is then isotopic to a simple loop on the boundary of a relative
core. In this case it would also satisfy Otal’s condition and the two definitions would
be equivalent: for example, by intersecting the cylinder with a pleated surface exiting
the end. In any case Otal’s has been a fruitful definition. He proved the following
beautiful theorem:

Unknottedness Theorem 6.6.6 [Otal 1995]. Suppose there is a diffeomorphism � :
M(G)int→ S×�. There exists a constant 0 < c = c(S) such that any simple closed
geodesic γ ⊂ M(G) of length < c is isotopic to a curve γ ∗ contained in S∗ =
�−1(S × {0}). Moreover the union of all simple closed geodesics {γi } in M(G) of
length < c is isotopic to a union of simple loops in disjoint surfaces in �−1(S×�).

Therefore the collection of short curves is not only unknotted, but also unlinked.
If M(G) is geometrically infinite, an infinite number of distinct short geodesics may
exit one or both ends. (Such a sequence will exist in M(G) if and only if there is no
positive lower bound for the length of the geodesics.)
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Recently, Souto found the following generalization: There exists εg > 0 such that
for all handlebodies M(G) of genus g, or compression bodies with incompressible
surface of genus g, the set of geodesics in M(G) of length < εg is unlinked.

At this point the prudent reader may think that Souto’s result is vacuous because
there is a positive lower bound for the length of a geodesic in a handlebody which
depends only on the length of the shortest geodesic on its boundary. Such a belief
is entirely wrong! Take a simple geodesic in the interior, and do higher and higher
orders of Dehn surgery about it so that the manifolds nearly have rank two cusps. The
length of the core geodesics will become arbitrarily small, independent of the length
of the shortest geodesic on ∂M(G).

In addition, Souto (personal communication) showed that if M(G) is a closed man-
ifold with a Heegaard splitting surface 	g of genus g and γ ⊂ M(G) is a geodesic of
length < εg, there is an embedded surface S isotopic to σg such that γ ⊂ S (personal
communication) . Short geodesics not only are simple, but at least in some cases and
perhaps in all, are also unknotted and unlinked.

6-5. Consider a (finitely generated) quasifuchsian group G without parabolics. Given
a compact submanifold K in the interior of M(G), show there exists L > 0 such that
if γ is a closed geodesic of length not exceeding L , then γ lies in the complement of
K and is parallel to a simple loop in a boundary component of M(G).

Prove that the manifold obtained by putting a hyperbolic structure on the result
of drilling out a Myers curve Theorem 6.6.3 cannot appear as a geometric limit on
∂T(G) [Soma 2003].

6-6. Grafting. This construction was used by Bill Goldman [Goldman 1987] to
describe all real projective structures — those with fuchsian holonomy — over the
deformation (Teichmüller) space Teich(R) of a closed Riemann surface R (see Ex-
ercise 6-8). Let G be a fuchsian group acting on the upper (UHP) and lower (LHP)
half-planes and representing R = LHP/G. Suppose the negative imaginary axis is
the lift ĉ of a simple closed geodesic c ⊂ R of length L .

The element g ∈ G determined by lifting c into ĉ is g : z �→ eL z. The quotient
T = (� \ {0})/〈g〉 is a torus. There is a homeomorphic lift of c into T that we will
also denote by c. Cut T along c to get a cylinder; the size of the cylinder — ratio
of height to circumference — is determined by L , likewise cut R along c to get one
or two subsurfaces. Attach the cylinder T \ c to R \ c; that is pull open the cut of
R and insert the cylinder T \ c in the cut. This is possible because the ends of the
cylinder have length L . We get a new Riemann surface Rc homeomorphic to R with
a different conformal structure. Uniformize to get a representation Rc = LHP/Gc .

We will now carry out this operation in �: Slit �2 along ĉ and denote the result
by �2

cut; the cut has + and − edges. Then slit LHP along ĉ and denote the result
by LHPcut, it has corresponding + and − edges. Attach �2

cut to LHPcut by sewing
the − and + edge of �2

cut to the + and − edge of LHPcut. Likewise sew �2
cut

equivariantly along all lifts of c to LHP. We get an abstract simply connected surface
�̂ lying over �2 and G acts on �̂. The quotient �̂/G conformally equivalent to the



6.6 Exercises and Explorations 337

Riemann surface Rc we obtained by sewing into R a particular cylinder. Let π denote
the projection of �̂ onto �2. Under π , the action of G on �̂ projects to the action of
the original fuchsian group G on �2.

Now the abstract �̂/G is conformally equivalent to Rc so there is a conformal map
F :LHP≡�2→ �̂ which conjugates Gc to G. The composition f =π ◦F :�2→�2

is a locally univalent meromorphic function; G is referred to as its monodromy group.
This is an example of a real projective structure on Rc or on LHP with respect to Gc. It
is called “real” because the monodromy group is a fuchsian group. The components
of f −1(�) consist of mutually disjoint arcs which project to simple loops on Rc

bounding an annulus (earlier called a cylinder) in the homotopy class of c.
The process of cutting a simple geodesic c ⊂ R and inserting an annulus is called

grafting. More particularly we have just done 2π-grafting along c as up in the uni-
versal covering we have wrapped the slit sphere once around.

A multicurve is a finite geodesic lamination λ, that is, it is a mutually disjoint set
of simple geodesics on R. With the assignment of an integral weight 2πm j to each
component � j , where m j is a positive integer, it becomes a measured lamination.
Such measured laminations are denoted by ML� or when considered projectively,
PML�. The example we have just described c was assigned the weight 2π and
we have accordingly grafted R. If the weight were instead 2πm we would have
attached m copies of the cylinder T \ c to c ∈ R and m copies of the slit sphere to
ĉ. Correspondingly, integral grafting can be effected by any element of ML�. In all
cases the construction results in a structure �̂ acted on by G, a new Riemann surface
Rλ =LHP/Gλ, and a locally injective meromorphic function conjugating Gλ to G.

Once the lamination λ ∈ ML� has been fixed, the integral grafting map can be
interpreted as acting on the full deformation (Teichmüller) space, grλ : Teich(R)→
Teich(R).

Theorem 6.6.7 [Tanigawa 1997]. Integral grafting is a real analytic homeomorphism
of Teich(R) onto itself .

Therefore for each λ∈ML�, there is a Riemann surface Sλ such that the λ-grafting
on Sλ=�2/Gλ is realized by a locally univalent function fλ for R =�2/G. We will
pursue this in Exercise 6-8.

Grafting can be defined for nonintegral weights on multicurves, and by continuity
for any measured lamination (�,μ). As a consequence of [Goldman 1987], the more
general graftings do not result in fuchsian holonomy. In general:

Theorem 6.6.8 [Scannell and Wolf 2002]. Grafting is a homeomorphism of Teich(R)
onto itself .

The construction of each convex core boundary can be interpreted as grafting on
the component of ∂M(G) that it faces (see [Epstein et al. 2006] for a discussion).

6-7. Constructing a cone manifold on an unknotted geodesic: Bromberg’s construc-
tion. This process is analogous to Exercise 6-6 but it is harder to implement. Let
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M(G) be a quasifuchsian manifold whose bottom end S = ∂botM(G) is a closed
surface and whose top is geometrically infinite. Minsky’s paper [2001] covers the
case that there is a positive lower bound for the length of all geodesics. So assume
there is a sequence of simple loops exiting the infinite end for which the lengths of the
geodesic realizations {γi ∈M(G)} are Otal-unknotted with lengths approaching 0.

Fix an index i . We can assume that γ = �(σ) lies in S∗ = �(S × {ti }). Assume
for definiteness that γ does not divide S∗. A lift γ̂ of γ to �3 determines a cyclic
loxodromic subgroup 〈g〉 of G. The quotient T = �3/〈g〉 is the interior of a solid
torus, and we can designate its core loop again by γ .

The set C =�(σ×[t, 1)), ti ≤ t < 1 is a half-open cylinder in the interior of M(G)
which is bounded at one end by γ while its other end exits the top of M(G). The
cylinder C lifts homeomorphically to give a half-open cylinder C̃ in the (open) solid
torus T . Cut M(G) along C and T along C̃ . Isometrically glue T \ C̃ to M(G) \C ;
C̃ has two sides in T and likewise C in M(G). This will give a hyperbolic cone
manifold M∗ with cone axis γ and cone angle 4π , like a two-sheeted branched cover
of the plane. Still M∗ is homeomorphic to M(G), but now the hyperbolic structure
is singular along γ .

Bromberg made the striking discovery that the hyperbolic cone manifold M∗ is a
quasifuchsian cone manifold: the bottom end is conformally the same as that of M(G)
but the top end is now geometrically finite as well. An additional interesting fact that
the subgroup G0

∼= π1(M(G) \ C) is a Schottky group. Even if G is degenerate or
doubly degenerate, cutting along A has the profound effect on the limit set of totally
disconnecting it. With Theorem 6.6.4 Bromberg then proved that the cone angle can
be deformed to 2π without changing the conformal structures on the two ends. We
end up with a geometrically finite, hyperbolic quasifuchsian manifold.

By applying the result to the sequence of simple loops {σi ⊂ S × {ti }} for which
the geodesic representatives of �(σi ) shrink to zero, one can complete the proof of
Bromberg’s Theorem, stated on page 271.

6-8. Projective structures. Let R = LHP/G be a closed Riemann surface (the case
with punctures is not so well understood), and G a fuchsian group. We recall that a
Bers slice B(R) is the collection of conformal mappings f : LHP→ �2 that have
a quasiconformal extension to �2. The extension, which will also be denoted by f ,
induces an isomorphism θ to a quasifuchsian group by f (g(z))= θ(g)( f (z)), for all
z ∈ �2, g ∈ G. The closure of the Bers slice is the closure of this space of conformal
maps on LHP (modulo conjugation).

Add to the mix of conformal maps as follows. Take the much larger class of locally
injective meromorphic functions f : LHP→ �2 for which there exists a homomor-
phism ϕ : G → PSL(2,�) satisfying f (g(z)) = ϕ(g)( f (z)) for all z ∈LHP, g ∈ G.
Locally injective meromorphic functions form the solution class of schwarzian dif-
ferential equations on LHP over R (see Exercise 1-37),

Sφ( fφ)(z)=
(

f ′′φ
f ′φ

)′
−1

2

(
f ′′φ
f ′φ

)2

= φ(z), z ∈ LHP.
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Here φ is a lift of a holomorphic quadratic differential on R, namely it satisfies

φ(g(z))g′(z)2 = φ(z), ∀z ∈ LHP, g ∈ G.

Solutions are uniquely determined by φ up to postcomposition with Möbius transfor-
mations so solutions can be appropriately normalized. The schwarzian derivative (the
differential operator) is zero if and only if f is Möbius. A solution will in general
map LHP onto �2.

On a fixed Riemann surface R there is the correspondence,

[ fφ] ↔ φ↔ [ϕφ],
where the brackets indicate PSL(2,�) equivalence.

In current terminology, fφ : R → �2 is called the developing map; it “unrolls”
R over �2. The homomorphism ϕ associated with the differential φ or fφ is called
the holonomy representation. The holonomy groups or monodromy groups {ϕ(G)}
are in general not discrete or even finite presentable, but they are nonelementary.
For a general introduction see for example [Gallo et al. 2000]. For another slant on
projective structures relating to circle packings in �2, see [Kojima et al. 2006].

The collection of all projective structures on the fixed Riemann surface R =�2/G
(for definiteness we continue to think of �2 as LHP) is called the extended Bers slice
B∗(R). It is parameterized by the (3g − 3)-complex dimensional vector space of
quadratic differentials on R. The extended slice B∗(R) is properly embedded in the
representation variety R(G) [Gallo et al. 2000]. We can ask about the components of
its discreteness locus

B∗disc(R)= {ϕφ : ϕφ is an isomorphism to a quasifuchsian group}.
This is an open set in B∗. The component containing the basepoint (R, id) is the Bers
slice.

Suppose we are given an element (λ, μ)∈ML�, that is a multicurve λwith integral
weights. There exists a uniquely determined Riemann surface Sλ =�2/Gλ such that
integral grafting on Sλ results in the Riemann surface R: The grafting map sends
�2 over Sλ onto a simply connected surface �̂ lying over �2 on which Gλ acts with
�̂/Gλ conformally equivalent to R, as we saw in Exercise 6-6. The bottom line is that
for each multicurve λ and assignment of integral weights giving an element of ML�,
there is a projective structure fφ on R such that the homomorphism ϕ corresponding
to fφ =π ◦Fφ is an isomorphism G→Gλ while Fφ is a conformal map of �2 over R
onto �̂, conjugating the action of G to Gλ. The picture is filled out by the following
important result, the second part of which has been studied and visualized by David
Dumas:

Theorem 6.6.9 [Shiga and Tanigawa 1999; Dumas 2004]. Each component of the
discreteness locus of B∗(R) consists of quasifuchsian groups, and is biholomorphi-
cally equivalent to the Bers slice B(R). The component Bλ is indexed by its fuchsian
center {cλ = (R, ϕφ)}. This point is determined by the quadratic differential φ on
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R with fuchsian monodromy group ϕφ(G) = Gλ with Gλ determined by that surface
Rλ = �2/Gλ on which λ-grafting yields R.

Each component of B∗(R)∩T(G) is a “generalized Bers slice” consisting of certain
deformations of a projective structure on R.

The theorem applies to finite area surfaces R more generally. When there are
punctures the projective structures must be taken so that ϕ(g) is parabolic whenever
g ∈ G is so.

In the case of a once-punctured torus, the 1-dimensional space of quadratic differ-
entials for which the holonomy map preserves the parabolics, can be given explicitly.
The first computation and visualization of the resulting Bers slice was carried out by
the Japan team (Komori, Sugawa, Wada, Yamashita) in terms of complex probabili-
ties. The result was dramatic. More recently they have computed the extended Bers
slice. Using his own software, David Dumas has provided slices in addition for the
hexagonal torus and more generally has broadened their explorations. See [Komori
and Sugawa 2004; Wada 2006; Dumas 2004]. The frontispiece consists of one of
Dumas’ pictures which shows the Bers slice in the archipelago of components of
B∗disc with their fuchsian centers indicated.

We can also consider the totality of all projective structures on all Riemann surfaces
in the deformation space Teich(R) ≡ Teich(G), R = �2/G. This is given by the
(6g−6)-complex dimensional bundle of quadratic differentials Q(G) over Teich(G)
(equivalently, we may write Q(R) over Teich(R)). The solution of the schwarzian
equation for φ on R′ = �2/G ′ gives rise to the holonomy representation ϕφ ∈R(G)
onto the holonomy group ϕφ(G) (as usual, quotienting out by conjugations). Ac-
cording to [Gallo et al. 2000] the totality of monodromy groups {ϕφ(G)}, φ ∈Q(G)
comprise the component R+(G) of R(G) consisting of those representations that
lift to SL(2,�): ϕ(G) lifts if each generator can be assigned a matrix so that the
designated matrices satisfy the surface relation satisfied by π1(R); the lifted group
need not be isomorphic of ϕ(G). Representations that so lift comprise one of the two
components of R(G).

The surjective holomorphic map Hol :Q(G)→R+(G) is a local homeomorphism,
but it is not a covering mapping — closed arcs do not necessarily lift in their entirety
[Hejhal 1975]. In Hejhal’s examples this occurs because continuation over the path
leads to a pinching of the underlying Riemann surfaces, which occurs before contin-
uation is complete.

In the present context, the discreteness locus is defined as the closed set

Qdisc(G)= {φ ∈Q(G) : ϕφ is an isomorphism to a discrete group}.

It is analogous to the discreteness locus Rdisc(G) considered in §5.2.2. Its interior
Int(Qdisc(G)) consists of quasifuchsian groups. Hejhal [1975] proved that Hol is
injective on the components.
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The extended Bers slice directly involves (in our setup) only LHP. The action of
nonzero integral grafting sends the extended Bers slice based on R = LHP/G to the
extended slice based on the surface Sλ = LHP/Gλ.

6-9. Self-bumping. Suppose X is a component of Rdisc. We ask, when does X
bump itself? That is, when is there a point ζ ∈ ∂X such that for all small enough
neighborhoods U ⊂R(G) of ζ , U ∩ Int(X) is not connected.

Making use of the technique of [Anderson and Canary 1996a], the prototypical case
of a fuchsian group G representing a closed surface R=�2/G was analyzed by Curt
McMullen. (For a more general case see Theorem 5.3.2.) Because of its importance
in future developments and its intrinsic interest, we will outline the argument.

Theorem 6.6.10 [McMullen 1998, Appendix]. There exists a cusp ζ on the boundary
of quasifuchsian space T(G) such that for all small neighborhoods U ⊂ R(G) of ζ ,
U ∩T(G) is not connected.

The closure T(G)⊂R(G) is not a manifold with boundary.

The theorem does not say that the closure T(G) is not locally connected. However,
Bromberg [2006] has proved that T(G) is not locally connected in the once punc-
tured torus case — for this case the boundary of a Bers slice is known to be locally
connected (Minsky). Bromberg’s clever proof takes advantage of the explicitness of
once-punctured torus groups. This is the only deformation space local connectedness
is known to hold.

The first construction is called wrapping. It results in an immersion of R which
is not homotopic to an embedding. The construction originates in [Anderson and
Canary 1996a] — see Exercise 5-13.

We will start by constructing the target manifold. Let d be a simple geodesic on
say ∂botM(G). Inside M(G) ∼= R × [0, 1], set δ = d × {12}. The manifold M(G) \
{δ} is represented by a geometrically finite M(H). For an explicit construction see
Exercise 4-19. We can take ∂M(H) to be conformally equivalent to the bottom and
top components of ∂M(G).

Suppose for purposes of explaining the wrapping, R=�2/G is a closed surface of
genus two. Let d ⊂ R be a simple loop that divides R into two subsurfaces of genus
one. Let a1, b2; a2, b2 be simple loops about each of the two handles so that,

π1(R)∼= 〈a1, b2, a2, b2
∣∣[a1, b1] = [a2, b2]〉.

Taking a thin torus about δ with simple loops d ′ parallel to d and meridian c, we
find that H has the presentation

H ∼= 〈a1, b2, a2, b2, c, d : d = [a1, b1] = [a2, b2], [c, d] = 1〉.
“Wrap” a closed surface homeomorphic to R about δ as follows. Start with the

surface S0 = R × {3/4}. Take a solid torus in M(G) with core curve δ bounded by
a torus T0 containing d × 3/4 but otherwise disjoint from S0. Slit S0 and T0 along
d × 3/4. Join T0 to S0 by cross identifying over the slits to obtain an immersion
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f : R → f (R) = S. The immersed surface S wraps once around δ. The subgroup
π1(S)⊂ H is generated by (a1, b1, ca2c−1, cb2c−1). The immersion is not homotopic
in M(G) \ {δ} ∼= M(H) to an embedding, for π1(S) is not conjugate in H to the
fundamental group of either component of ∂M(H).

We digress to make two remarks.

(i) The wrapping of R about δ can be done any integral number of times, and can be
done for any collection of mutually disjoint simple loops {d} on R.

(ii) There are intrinsic restrictions on wrapping, which are hidden under our assump-
tion that the top and bottom of M(G) are closed surfaces. Suppose more generally
they are finitely punctured surfaces. First of all, d± on the top and bottom of M(G)
cannot be homotoped on ∂M(G) to a puncture. Secondly, if H is to exist, no loop
which has nonzero geometric intersection with one of d± can determine a parabolic
transformation in H . Thus if M(G) were, for example, a maximal cusp group on
T(G), the construction would be impossible.

Let ϕ : G→ G∗ ⊂ H be the isomorphism induced by the immersion f : R→ S.
We deduce

(i) M(G∗) covers M(H).
(ii) IntM(G∗)∼= R× (0, 1).

(iii) No component of ∂M(G∗) corresponds to a component of ∂M(H) (the funda-
mental groups are not conjugate).

(iv) ϕ : G→ G∗ ∈ ∂T(G).
One component ∂M(G∗) is a closed surface homeomorphic to R and the other is the
union of two surfaces sharing a parabolic resulting from pinching.

The point (ϕ,G∗) is a cusp on the boundary of some Bers slice. As such it is
the limit of quasifuchsian groups in the slice. Specifically, there is a sequence of
isomorphisms {ϕn :G→Gn}∈T(G)which converge algebraically and geometrically
to ϕ : G→ G∗. In particular, lim�(Gn)=�(G∗).

The second construction required is the application of (1, n) Dehn surgery on the
cusp of M(H)where 1 corresponds to the meridian c, and n to the longitude d. Take a
cusp torus, remove its interior, and replace it by a solid torus so that γ = cdn becomes
the meridian, that is, γ = cdn ∼ 1. For all large n there results a hyperbolic manifold
M(Hn) which is a quasifuchsian manifold homeomorphic to M(G). Carried along is
the immersion

Fn : R
f−→ S ⊂M(H)

inclusion−→ M(Hn),

which is homotopic to an embedding now that δ is no longer there. It induces the
algebraically converging isomorphisms

{ρn : G→ Hn}n→∞−→ϕ : G→ G∗.

On the other hand, {M(Hn)} converges geometrically back to M(H) (Exercise 5-11).
According to Theorem 4.5.4, lim�(Hn)=�(H).
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To complete the argument we must draw on the theory of projective structures
Q(R) as outlined in Exercise 6-8.

The representation ϕ : G→ G∗ in ∂T(G) is the holonomy representation of some
φ ∈Qdisc(G). Let U be any small enough neighborhood of φ in Q(G). For U small,
the holonomy representation

Hol :U �→ V = Hol(U )⊂R(G)

is a homeomorphism onto a neighborhood V of (ϕ,G∗)⊂R(G).
Set Ud =U ∩Qdisc(G). There exists {φn} ⊂Ud such that its holonomy is ϕn :G→

Gn . There also exists {φ′n} ⊂ Ud with holonomy ρn : G → Hn . Both sequences
converge to φ. Now lim�(Gn) = �(G∗) while lim�(Hn) = �(H). Because
�(G∗) and �(H) have no component in common it follows from looking at the
corresponding developing mappings that {φn} and {φ′n} cannot lie in the same com-
ponent of Ud . Therefore {(ϕn,Gn)} and {(ρn, Hn)} do not lie in the same component
of Hol(Ud)= V ∩T(G). Yet both sequences converge to (ϕ,G∗) ∈ ∂T(G).

It follows as a consequence of Theorem 5.10.12 that the closure T(G) is not a
manifold.

6-10. Expanding on Theorem 6.6.10, Kentaro Ito [2000a; 2000b] made a detailed
study of the situation and proved (compare with Theorem 6.6.9):

Theorem 6.6.11. The components of Int(Qdisc(G)) are in one-to-one correspondence
with the elements of ML�.

Denote the component of the interior corresponding to λ ∈ ML� by Qλ; Q0 =
T(G). The component Qλ has a uniquely determined fuchsian center cλ: there is a
surface Sλ =�2/Gλ on which λ-grafting determines a projective structure on R with
monodromy group Gλ. Qλ is biholomorphically equivalent to quasifuchsian space
T(G)=Q0.

Choose any λ, μ ∈ML�.

(i) While Hol : Qλ → R(G) is injective [Hejhal 1975], it is not injective on the
closure Qλ unless λ= 0.

(ii) For the closures in Q(G), Qλ ∩Qμ 
=∅; in particular Qλ ∩Q0 
=∅.
(iii) There exists ζ ∈ ∂Q0∩∂Qλ such that for all small neighborhoods U of ζ , U∩Qλ

is not connected; Qλ is not a manifold.
(iv) The closed set Qdisc(G) is connected.

Another way of identifying Qλ is that it contains the fuchsian center cλ.

6-11. Meromorphic functions and laminations. This construction is due to Thurston; a
proof appears in [Kamishima and Tan 1992]. Suppose f :�→�2 is a locally injective
meromorphic function in the unit disk �≡�2. Consider round disks {D ⊂ �2} with
the property that there is a single valued branch of f −1 : D→�. We may assume all
such disks D = {D} are maximal in the sense none is contained in a larger disk on
which f −1 has a branch.
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Consider the set U = {U = f −1(D) : D ∈ D} and set U∞ = U ∩ ∂�; each U∞
contains at least two points. Construct the hyperbolic convex hull C(U∞) in �2. The
following properties hold:

(i) Corresponding to each point z ∈ � is a unique element Uz ∈ U such that z ∈
C(U∞).

(ii) Two hulls C(U∞1 ),C(U
∞
2 ) are either disjoint, or they share a common edge

and/or vertex on ∂�.
(iii) The collection of hulls {C(U∞)} covers � without overlapping interiors.
(iv) If f ◦ g(z) = ϕ(g) ◦ f (z) for a homomorphism ϕ : G → PSL(2,�), for all

elements g of a fuchsian group G and all z ∈ �, then the action of G permutes
the elements of {C(U∞)} while the elements of ϕ(G) permute the maximal disks
in D.

In this analysis, it is helpful to examine for a given z ∈�, the set Wz =⋃z∈U U , the
union of those elements of U that contain z. Then set Wz

∞=W z∩∂�. The image set
f (W∞z )⊂�2 is well defined and we can pass to its convex hull C( f W∞z ), now taken
with respect to �3. There is a “closest” point r( f (z)) ∈ C( f W∞z ) to f (z), where
r denotes the nearest point retraction. Construct the hyperbolic plane Pf (z) which
is orthogonal to the segment [ f (z), r( f (z))] at the point r( f (z)). The boundary of
Pf (z) on ∂�2 is a circle, and one of the disks D f (z) that it bounds on �2 contains
f (z). In fact D f (z) ∈D and f −1(D f (z))∈U. The map � :C(U∞z )⊂�2→C( f W∞z )
sending u to r( f (u)) is an isometry; more generally the map z ∈ �→ r( f (z)) ∈ �3

determines an isometry to a pleated surface in �3.
The set of all edges of the convex hulls in �2 form a geodesic lamination �. It

will be invariant under the group G, if there is one. There is a naturally determined
bending measure on this lamination. Namely if for U1,U2 ∈ U, U1 ∩U2 intersect
with exterior angle 0 < α < π , then so do the image disks in D, since f is locally a
conformal mapping. The corresponding C(U∞1 ), C(U∞2 ) share an edge. We assign
the bending angle α to that. However the geodesics in � are unlikely to be isolated
and then a process akin to Riemann integration is used to obtain the bending measure.

Thurston’s insight was that this construction, disseminated to the world by Bill
Goldman and proved in [Kamishima and Tan 1992], results in a coordinate system
for the projective space Q(G), where the fuchsian group G can represent either a
closed or a finite area surface:

Theorem 6.6.12. The construction described above results in a homeomorphism & :
Q(G)→ T(G)×ML(G).

That the map is surjective is a consequence of the fact that grafting on a Riemann
surface R′ gives rise to a projective structure on another Riemann surface S′, as de-
scribed in Exercise 6-6.

Theorem 6.6.12 shows that corresponding to each Riemann surface R′ ∈ Teich(R)
and projective structure on it is a uniquely determined Riemann surface Sλ and mea-
sured lamination λ on Sλ with the following property: Grafting on Sλ determines the
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given structure on R′. However we can no longer be restricted to integral grafting.
That is, Q(R) ∼= Teich(R) ×ML(R). These are called the Thurston coordinates.
Using the Thurston coordinates, David Dumas [2004] has proved that one can com-
pactify the space so that Q(R)∼= PML(R)×PML(R).

6-12. Hyperbolic manifolds with corners. This exercise was inspired by [Otal 1998,
§§7,8], to which the reader is referred for more detail and for application to the proof
of the Hyperbolization Theorem.

Start with a compact, acylindrical manifold M =M(X) with nonempty boundary.
Let {Ri } be a decomposition of ∂M into compact, (connected) subsurfaces with mu-
tually disjoint interiors. That is, each Ri is a compact bordered surface, or an entire
boundary component of M . But we require that Ri is not a topological annulus or
disk.

Associated with the decomposition is the decomposition graph G: Each vertex
corresponds to an Ri , and two vertices are joined by an edge if the subsurfaces are
adjacent along a common border. We will call the graph an admissible decomposition
graph and the corresponding {Ri } an admissible decomposition, if we can give each
Ri a label + or − in such a way that if Ri and R j share a boundary component, they
have different labels. Thus every simple loop in G is composed of an even number of
edges.

Suppose then we have an admissible decomposition of ∂M . Denote the subsur-
faces with the label + by (	1, 	2, . . .), and the subsurfaces with the − label — the
complementary subsurfaces — by (	′1, 	

′
2, . . .).

Carry out the same “reflection” process as in Exercise 6-2 with respect to the b
subsurfaces {	i }. For example, if 	i is adjacent to 	′j along γ , after reflection J in
	i , the reflected surface J (	′j ) is attached to	′j along γ . There results an orientable,

2b-sheeted covering M̂	′ whose boundary is the union of closed orientable surfaces.
Each of its boundary components is the union of lifts of elements of {	′i } and each
element of {	′i } is represented 2b times in the boundary. Again M̂	′ is an orientable,
irreducible, acylindrical, atoroidal, Haken manifold.

And again there is a group of automorphisms G of order 2b acting on M̂	′ generated
as above by the “reflections” in the elements of {	i }.

Realize M̂	′ as a hyperbolic manifold M(Y ); we may assume that its boundary is
totally geodesic. The “reflections” we introduced in the surfaces {	i } now become
orientation reversing isometries of M(Y ). A “reflection” in 	i corresponds to an
isometry of M(Y ) which pointwise fixes a totally geodesic subsurface, which we will
again label 	i . The boundary of each 	i is contained in ∂M(Y ), which 	i meets
orthogonally.

The quotient M(Z) = M(Y )/G is homeomorphic to the result of cutting M(Y )
along the surfaces {	i } hanging orthogonally from its boundary. Thus it is homeo-
morphic to the original M . In particular ∂M(Z) is the union of compact subsurfaces
which we can again label as {	i } and {	′i }.

Our investigations can be summarized as follows.
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Hyperbolic Manifolds with Corners 6.6.13. Given M as above, there is a uniquely
determined kleinian group Z with the following properties:

(i) M(Z) is compact and ∂M(Z) is the union of two systems of subsurfaces {	i },
and {	′i }. None of the subsurfaces are simply or doubly connected. The totality
of interiors are mutually disjoint. The closures of the members of each system
are mutually disjoint.

(ii) The ordinary set �(Z) is the union of round disks {Di }. Either Di ∩ D j = ∅

for all j 
= i , or Di is orthogonal to D j for some j 
= i . In the former case, Di

covers a boundary component of M(Z) which is a member of one of the systems.
In the latter case, Di and D j contain lifts of subsurfaces of different systems, and
the stabilizer of Di ∩ D j is the cyclic group determined by a common boundary
component.

Note the symmetry in properties between the two systems of subsurfaces. An
interesting special case is when the elements of the systems comprise a pants de-
composition.

6-13. Residual finiteness. A group G is said to be residually finite if for any g 
= id∈G,
there exists a subgroup H of finite index such that g /∈ H . A subgroup of a residually
finite group is also residually finite [Hempel 1976].

Residual finiteness is known to hold for surface groups. Even more strongly, sup-
pose S is a surface of possibly infinite topological type and G ⊂ π1(S) is a finitely
generated proper subgroup. Choose g ∈ π1(S) \ G. There exists a finite sheeted
covering surface S∗ of S such that G ⊂ π1(S∗) with injective inclusion G ↪→ π1(S∗),
but that g /∈ π1(S∗); see [Scott 1978].

On the other hand, for 3-manifolds, Hempel [1987] proved that the fundamen-
tal group of a (compact) Haken manifold is residually finite. In fact every finitely
generated matrix group is residually finite. It follows that the fundamental group of
every geometric 3-manifold proclaimed in the Geometrization Conjecture/Theorem
is residually finite [Thurston 1982b, Theorem 3.3].

6-14. Infinitely generated kleinian groups. Riemann surfaces of infinite genus and/or
an infinite number of ends can be represented by fuchsian groups. Each such fuchsian
group has in turn a quasiconformal deformation space. The elementary combination
theorems can be used to paste together such groups over round disks or horodisks
to construct a range of infinitely generated (non-finitely-generated) groups, just as
in the finitely generated case. Likewise infinitely generated Schottky groups can be
constructed.

Is there a classification of infinitely generated kleinian groups?
Here is an interesting example of Bromberg and Souto (private communication).
Start with a closed hyperbolic manifold M with a nondividing incompressible sur-

face S ⊂ M . Set N = M \ S. Assume that N does not have the form S × (0, 1).
Then π1(S) is a proper subgroup of π1(N ). We may choose the hyperbolic structure
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on N so as to have totally geodesic boundary components S−, S+ ∼= S (it will not be
fuchsian).

Set N0 = N . Form the hyperbolic manifold N1 by reflecting N0 across S+. In
other words take two copies of N0 and glue the top boundary component S+ of N0

to the bottom S− of the copy. Correspondingly we can form N−1. Let Nk denote
the hyperbolic manifold formed from N0 by successively gluing together the 2k + 1
copies of N0: glue to N0 k copies in the positive and in the negative direction.

Nk is a hyperbolic manifold whose two boundary components are conformally
equivalent to S−, S+. We have that π1(Nk) is a proper subgroup of π1(Nk+1). Nor-
malize the representations Nk = M(Gk) so that Gk ⊂ Gk+1, k = 1, 2, . . .. Then
{Gk} converges algebraically and geometrically to a infinitely generated group H
with M(H) 
∼= S×�. Its limit set is all �2.

Bromberg and Souto show as a consequence of the finite area of the boundary
components of the approximates {M(Gk)} that M(H) is quasiconformally rigid: any
quasiconformal conjugation of H to another group is Möbius. They then show that if
M∗ is another hyperbolic manifold that is homeomorphic to M(H), there is a bilip-
schitz map between them. By quasiconformal rigidity the two manifolds are in fact
isometric.

More generally, they conjecture that any manifold M(H) which can be exhausted
by tame manifolds whose boundaries have uniformly bounded areas is either rigid
or it has a tame end. Soma’s work (Theorem 5.9.2) gives a multitude of infinitely
generated examples.

Agol conjectured that any irreducible, atoroidal, orientable 3-manifold with in-
finitely generated fundamental group is hyperbolic provided the covering correspond-
ing to any finitely generated subgroup is tame.
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Line geometry

This chapter describes an elegant method that makes it easier to quantitatively analyze
geometric situations in hyperbolic space that involve lines and planes.

7.1 Half-rotations

We will identify each line � ∈ �3 with the half-rotation about �, that is, the elliptic
transformation of order 2 having � as its axis.

The Cayley–Hamilton identity satisfied by normalized matrices A is

A+ A−1 = τA I, or A2 = τA A− I. (7.1)

As always, τA is the trace and I is the 2× 2 identity matrix. In particular, τ(A2) =
(τA)

2− 2.

Lemma 7.1.1. Half-rotations correspond to normalized matrices A of trace τA = 0
(eigenvalues ±i), or equivalently, matrices A that satisfy

A2 =−I. (7.2)

Consider the half-rotation M = (a
c

b
−a

)
, with −a2 − bc = 1 and c 
= 0. Its fixed

points are P = (a+ i)/c and Q = (a− i)/c. Thus we can write

M = i

(P − Q)

(
P + Q −2P Q

2 −(P + Q)

)
. (7.3)

If P or Q is∞, take the corresponding limit of the expression.
The determinant of the matrix, −(P − Q)2, does not have a uniquely determined

root. Correspondingly, there is no way to distinguish between the two fixed points
P, Q.

We are reminded of the useful Lemma 2.1.3:

Lemma 7.1.2. A Möbius transformation T interchanges two distinct points x, y on �2

if and only if it is a half-rotation. If so, T is the half-rotation about a line � orthogonal
to the line τ between x and y.

348
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Proof. We may assume τ is the vertical axis in the upper half-space model. The map
T maps τ onto itself, interchanging its endpoints. Therefore T has a fixed point p∈ τ .
T 2 fixes the two endpoints and also fixes p so it must be the identity. Let P be the
plane through p orthogonal to τ . T also maps P onto itself, but interchanges its two
sides in �3. Therefore the rotation axis � of T lies in P and is necessarily orthogonal
to τ at p.

Conversely, suppose T is the half-rotation about �. Taking � to be the vertical con-
jugates T to the map z �→−z. It interchanges the opposite points on every concentric
circle about z = 0. �

7.2 The Lie product

The Lie product ϕ of two nonsingular 2× 2 matrices A, B is defined as

ϕ = AB− B A =: {A, B}.
Interchanging A and B changes ϕ to−ϕ but leave the corresponding Möbius transfor-
mation unchanged. Likewise the Möbius transformation corresponding to the matrix
ϕ is independent of the sign chosen for A or B.

We have the relations

U {A, B}U−1 = {U AU−1,U BU−1} (7.4)

and

detϕ = 2− tr(AB A−1 B−1). (7.5)

The second one follows from the identity ϕ = (AB A−1 B−1− I )B A and the formula
det(X − I )= 2− τX . If detϕ 
= 0, since ϕ has zero trace,

ϕ2 =−(detϕ)2 I.

Of course, interpreted as a Möbius transformation, ϕ2 = id.
In preparation for the next result, note that two distinct lines in �3 not having a

common endpoint always have a common perpendicular. This can be seen in the
upper half-space model by taking one of the lines as the vertical axis. If the two lines
intersect in �3, the common perpendicular is the line through the point of intersection
and orthogonal to the plane containing the two lines.

Proposition 7.2.1. The Lie product ϕ = {A, B} has the following properties:

(1) ϕ = 0 if and only if either

• A and/or B is k I for some k ∈ �, or
• A and B correspond to transformations with the same set of fixed points on
∂�3.



350 Line geometry

More generally, ϕ is singular (detϕ = 0) if and only if tr(AB A−1 B−1)=+2. In
other words, ϕ is singular if and only if A and B have at least one fixed point in
common on ∂�3.

(2) ϕA−1 = Aϕ, ϕB−1 = Bϕ. (7.6)

(3) If ϕ is nonsingular, it corresponds to a half-rotation. Its axis is:

• The common perpendicular to the axes of A and B, if neither is parabolic.
• The line between the fixed points if both A and B are parabolic, or, if only

one is parabolic, the line from the parabolic fixed point which is orthogonal
to the axis of the other.
• The line between the diametrically opposite points C± i/c on the isometric

circle of ϕ with center C and radius |c|−1, where c is the lower left term in
the normalized matrix for ϕ.

(4) If τA 
= ±2, then ψ = A− A−1 is the half-rotation about the axis of A.
(5) Suppose A and B are half-rotations. Then AB has the same axis as ϕ. If the axes

of A and B intersect at a point x ∈ �3, then AB is necessarily elliptic and fixes
x as well. If all three A, B, AB are half-rotations, then the three rotation axes
have a common point of intersection in �3 and are mutually orthogonal there.

(6) If only B is a half-rotation, its axis is orthogonal to the axis of A, (or ends at the
fixed point of A if A is parabolic), if and only if AB is a half-rotation. If this is
the case, the axis of AB is also orthogonal to that of A (ends at the fixed point
of A if A is parabolic).

(7) The axes of A, B,C have a common perpendicular if and only if ,

τABC = τC B A. (7.7)

If A, B,C are all half-rotations, the condition for a common perpendicular be-
comes

τABC = 0. (7.8)

(8) If a A + bB + cC = 0 for nonzero scalars a, b, c and matrices representing
nonparabolic elements, then the axes of the transformations corresponding to
A,B, and C have a common perpendicular.

In the special case that A and B preserve the upper half-plane UHP, they also
preserve the vertical half-plane H in �3 based on �. Their axes lie in H . If their
axes intersect, then the axis of ϕ is orthogonal to H , and passes through the point of
intersection; ϕ itself also preserves UHP and H . If instead the axes of A and B are
disjoint, then the axis of ϕ lies in H as well and ϕ interchanges the upper and lower
half-planes.

Example 7.2.2. Let P denote a regular hyperbolic octagon in �2 with vertex angles
π/4. Going around ∂P in its positive direction, label its edges a, b, c, d, a−1, b−1,
c−1, d−1. Let A denote the Möbius transformation that maps a to a−1, sending P
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to the right side of a−1, and similarly find transformations B,C, D. The group G =
〈A, B,C, D〉 is fuchsian and represents a genus 2 surface. Its generators satisfy the
relation ABC D A−1 B−1C−1 D−1 = id, or ABC D = DC B A. Therefore ABC is
conjugate to C B A and BC D to DC B. By property (7), the axes of A, B,C and of
B,C, D have common perpendiculars in �2.

Example 7.2.3. Suppose that at the level of Möbius transformations, W is a word
in the letters A, B with the property that negating the exponents of all the letters
(A �→ A−1, B �→ B−1) changes W to W−1. Then ϕWϕ = W−1, in other words ϕ
interchanges the fixed points of W , if W is loxodromic. The axis of W is orthogonal
to the axis of ϕ. If A, B generate a fuchsian group, then the axes of A, B and W
in �2 necessarily intersect at a fixed point of ϕ. Conclude with [Jørgensen 1978]
that on any hyperbolic Riemann surface, a point x which is at the intersection of two
closed geodesics, or is at the intersection of a closed geodesic with itself, is at the
intersection of infinitely many distinct closed geodesics.

Proof of Proposition 7.2.1. (1) This is verified by a direct matrix computation. One
may assume that A is either a diagonal matrix (elliptic or loxodromic), or one with a
zero in the lower left entry and trace two (parabolic). The second statement follows
from (7.5). See also Lemma 1.5.2.

(2) It follows from (7.1) that

(AB− B A)− (B A−1− A−1 B)= (A+ A−1)B− B(A+ A−1)= 0.

Similarly,

(AB− B A)− (B−1 A− AB−1)= A(B+ B−1)− (B+ B−1)A = 0.

Consequently,

ϕ = AB− B A = B A−1− A−1 B = B−1 A− AB−1.

Since

(AB− B A)A−1 = A(B A−1− A−1 B), (AB− B A)B−1 = B(B−1 A− AB−1),

Equations (7.6) follow.

In the remainder of the proofs, we have to be careful when switching between
matrices and Möbius transformations.

(3) Since its trace is zero, ϕ is a half-rotation. The relations (7.6) show that ϕ inter-
changes the fixed points or fixes the fixed point of A (and B) according to whether
there are two or one. In the former case, the rotation axis of ϕ is orthogonal to the
axis of A. In the latter case, the fixed point is an endpoint of the axis of ϕ. In all cases,
there is only one line in �3 with the properties of the axis of ϕ. The last statement
follows from (7.3).

(4) We have detψ = 4−τ 2
A 
= 0 since A 
= ±I is not parabolic. Now ψ has zero trace

and {ψ, A} = 0.
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(5) If A and B are themselves half-rotations and hence equal to their inverses, (7.6)
implies that {ϕ, AB} = 0. Hence by (1), the fixed points of AB on ∂�3 are the same
as those of ϕ. If the axes of A and B are known to intersect at a point x ∈ �3,
AB necessarily fixes x as well. Thus AB is elliptic with the same rotation axis as
ϕ. If in addition AB is a half rotation, then from (7.1), AB = −B A so ϕ = 2AB.
Correspondingly, {B, AB} = 2A and {AB, A} = 2B. The three axes of A, B, AB
intersect mutually orthogonally at x .

(6) If A is not parabolic, its matrix is conjugate to a diagonal matrix. The matrix for
B has the form (

a b
c −a

)
, with − a2− bc = 1.

The axis of B is orthogonal to that of A if and only if a = 0. This is exactly the
condition that τAB = 0. In this case, the axis of AB is also orthogonal to that of A.

If A is parabolic, then τAB = 0 if and only if the fixed point of A is an endpoint of
the axis of B. In this case AB is a half-rotation fixing the fixed point of A.

(7) From (7.1),

τABC I − τB AC I = (AB− B A)C +C−1(B−1 A−1− A−1 B−1).

Moreover,

τAB I = AB+ B−1 A−1 = τB A = B A+ A−1 B−1,

and therefore,

B−1 A−1− A−1 B−1 = B A− AB =−ϕ.
Consequently,

ϕC −C−1ϕ = (τABC − τC B A)I.

When τABC = τC B A, the axis of ϕ, which is already known to be orthogonal to that
of A and B, is also orthogonal to the axis of C , since ϕCϕ−1 = C−1. Conversely,
the only line orthogonal to the axis of both A and B is the axis of ϕ. If that is also
orthogonal to the axis of C , then ϕCϕ−1 = C−1 and τABC = τC B A.

Equation (7.7) is satisfied if there is a linear relation between A, B,C .
Finally, if all three of A, B,C are half-rotations,

(ABC)−1 = C−1 B−1 A−1 =−C B A.

Therefore,

τABC − τC B A = 2τABC ,

and τABC = τC B A if and only if τABC =0, that is, if and only if ABC is a half-rotation.
�
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7.3 Square roots

The normalized matrix B is a square root of the normalized matrix A if B2 = A. We
will use the notation B =√A or B = A1/2 with the understanding that the roots are
determined only up to the factor ±1.

Lemma 7.3.1. We have:
√

A =± A+ I√
2+ τA

if τA 
= −2,

√−A =± A− I√
2− τA

if τA 
= 2.

The square roots of −I are the normalized matrices with zero trace.
At the level of Möbius transformations, if A 
= id is not parabolic it has two square

roots A+ I and A− I . If
√

A denotes one of them, the other has the form α
√

A where
α is the half-rotation about the axis of A.

If A is parabolic, at the level of Möbius transformations A has one root, namely
either A+ I or A− I depending on whether τA is +2 or −2. It is parabolic as well.

Proof. It follows from (7.1) that (A± I )2= (τA±2)A. It is also true that det(A± I )=
2± trA. In terms of normalized matrices,

(
A+ I√
2+ τA

)2

= A,

(
A− I√
2− τA

)2

=−A,

where one or the other formula holds if τA =±2. If τ = τA 
= ±2, again using (7.1),

A± I√
2± τ =∓

A− A−1

√
4− τ 2

A∓ I√
2∓ τ .

Now interpret the matrices as the corresponding Möbius transformations. In view of
the equation above and Proposition 7.2.1(4), application of the half-rotation ψ about
the axis of A sends one root of A to the other.

Finally suppose B2 = −I . Because tr(B2) = −2 we may conjugate the matrix B
so as to have the form

(a
0

b
d

)
, with ad = 1 and a2 + d2 = −2. These two equations

imply that τB = 0. We already know that any normalized matrix B of zero trace has
the property that B2 =−I . Conversely, any matrix of trace zero is a half-rotation. �

As an application we display the matrix formula

{A, B} =√2− τK
√−K B A, K = AB A−1 B−1. (7.9)

7.4 Complex distance

If T : z �→ keiθ z, k>1, in normalized form, the term complex length L of the resulting
geodesic in �3/〈T 〉 refers to the number

L= log k+ iθ mod(2π i).
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Fig. 7.1. Complex distance. The lines l and l ′ are coplanar. θ is the angle through which one
must rotate l ′ counterclockwise, when looking along direction of the p.

In invariant form the formula is

τT = 2 cosh
L

2
mod(±1).

Let l,m be two oriented (hyperbolic) lines which do not intersect in ∂�3. The two
lines have a unique common perpendicular line p. Orient p. The complex distance
between l and m is the number

χ(l,m)= d(l ∩ p,m∩ p)+ iθ (mod 2π i).

Here d denotes the signed hyperbolic distance between l ∩ p and m∩ p; it is positive
if the segment from l ∩ p to m ∩ p runs in the positive direction with respect to the
positive direction along p.

Thus in the upper half plane model d(i, 2i) = log 2 = −d(2i, i) if the vertical is
oriented toward∞. If the lines l and m are disjoint, the sign of Reχ(l,m) is positive
or negative depending on the orientation of the common perpendicular p. If the lines
intersect, Reχ(l,m)= 0 and the orientation of p has no effect.

The angle θ is determined as follows. In the plane σ spanned by l and p, let l ′ ⊂ σ
denote the line through m∩ p, orthogonal to p, and oriented parallel to l . As sighted
along the ray of p from l ∩ p, let θ be the angle of clockwise rotation necessary to
rotate the positive ray of l ′ onto the positive ray of m.

Changing the order (l,m) to (m, l) changes the angle from θ to 2π − θ . It also
reverses the sign of the distance, the orientation of p being fixed. Therefore

χ(m, l)=−χ(l,m) (mod 2π i)

If l−,m− denote l,m with the opposite orientations,

χ(l−,m)= χ(l,m−)= χ(l,m)+π i (mod 2π i).
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The two lines l,m lie in a plane if and only if θ is 0 or π , mod 2π .
Complex distance can also be expressed in terms of a cross ratio. Let l be oriented

from endpoint r to endpoint s and m from u to v. Then

cosh2
(
χ(l,m)

2

)
= (r, u, v, s).

It suffices to confirm this formula for two lines in the upper half-space model that are
orthogonal to the vertical axis.

We see that expχ(l,m) = keiθ is a continuous function of the triple of oriented
lines (l, p,m), where l and m do not intersect and p is orthogonal to l and m.

7.5 Complex distance and line geometry

From Section 7.2 we know that the common perpendicular p to lines l,m is the axis
of the half-rotation corresponding to the Lie product ϕ= {L ,M} of the half-rotations
L ,M about the lines. The line p is also the axis of M L . In fact, we see that the point
m∩ p is the midpoint of the segment of p between l ∩ p and M L(l)∩ p. Therefore

χ(l,m)= 1

2

(
d(l ∩ p,M L(l ∩ p))+ 2iθ

)= 1

2
χ(l,M L(l)) (mod 2π i),

where d is measured with respect to the positive direction along p.

Lemma 7.5.1. The normalized matrices

M1 = M L + I√
τM L + 2

, M2 = M L − I√
τM L − 2

correspond to the two transformations with axis p, related by a half-rotation, that
send l onto m.

Proof. By Proposition 7.2.1(1), as Möbius transformations, M1 and M2 have the
same pair of fixed points and therefore the same axis. Lemma 7.3.1 shows that M2

1 =
M2

2 =M L . The three transformations M L ,M1,M2 thus share the line p as axis. The
orientation of p toward the attracting fixed point of M L agrees with its orientation
from l ∩ p to m∩ p. Both M1 and M2 send l to m and l ∩ p to m∩ p, but they give
m opposite orientations. �

We also record the following fact.

Lemma 7.5.2. Given the axis p of a loxodromic transformation A and any line m
orthogonal to p, there is a uniquely determined line l also orthogonal to p such that
A = M L .

Proof. Orient p toward the attracting fixed point of A and orient m arbitrarily. Set
y=m∩ p and find x ∈ p such that the distance along p from x to y equals the distance
from y to Ax . Find l orthogonal to p at x and orient it so that χ(l,m)= 1

2χ(l, Al).
Note that A has automatically has the symmetries A−1 = M AM and A−1 = L AL .

�
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Consider next the relation of the complex distance χ(l,m) to the trace of a loxo-
dromic A = M L = ml . Let λ, λ−1 denote the eigenvalues of A with |λ|> |λ−1| and
Re λ ≥ 0. The Möbius transformation corresponding to A is conjugate to z �→ λ2z
and the complex distance along the axis of A, oriented towards the attracting fixed
point, from a point x to M Lx is 2 log |λ| + 2θ i , where θ = arg λ, −π/2 < θ ≤ π/2.
That is,

θ = arg λ, −π/2< θ ≤ π/2,
χ(l,m)= log |λ| + θ i, |λ| ≥ 1,

tr(A)= 2 coshχ(l,m), Re tr(A)≥ 0.

(7.10)

The transformation A as described by (7.10) is independent of the orientations of
l and m.

Conversely, given lines l,m and the orthogonal p from l to m, define λ by log λ=
χ(l,m) (modπ i), which is independent of the orientations of l,m. Then

τM L = (λ+ λ−1)=±2 coshχ(l,m). (7.11)

As a consequence we obtain the two formulas which are independent of the order
and orientations of l,m and the orientation of the axis of M L:

τ 2
M L = 4 cosh2 χ(l,m), (7.12)

det(M L − L M)=−4 sinh2 χ(l,m). (7.13)

7.6 Exercises and explorations

7-1. When does A2 = 0? Is (AB)−1/2 = (B−1 A−1)1/2?

7-2. Suppose C and C ′ are orthogonal circles. Write down the equation of the half-
rotation J that exchanges C and C ′ (for example you may choose the center of C to
be 0 and the points of intersection to be ±ai, a > 0). Suppose C∗ is another circle
orthogonal to C such that it and its interior is disjoint from C ′. Prove that the radius
of J (C∗) is less than that of C∗.

7-3. Ideal tetrahedra. We will apply Equation 7.3 to the ideal tetrahedron with ver-
tices at∞ and 0, P, Q ∈� (see Exercise 1-16). Let M0,∞,MP Q denote half rotations
about the edges [0,∞], [P, Q], respectively. Show that

M0,∞MP Q = 1

(P − Q)

(−(P + Q) 2P Q
2 −(P + Q)

)
,

and denote its trace by τ . Writing τ =λ+λ−1, where λ denotes the larger eigenvalue,
show that

λ=−
√

P ±√Q√
P ∓√Q

.
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The axis of M0,∞MP Q is orthogonal to the two lines [0,∞], [P, Q]. Let λ denote
the larger eigenvalue (|λ|> 1). Then

log λ=± log
−√P −√Q√

P −√Q
(modπ i)

is the complex distance between the lines [0,∞] and [P, Q]; compare 7.11. In terms
of the cross ratio of the endpoints the distance is log(−√P,

√
P,
√

Q,∞) (modπ i).
Find the formulas for the distances between the other two pairs of opposite edges

of the tetrahedron.
Check your formulas (or derive them in the first place using this case) by applying

them to the case both lines are in the upper half plane model of �2 and there, P = 1
and Q = z2. Confirm that the eigenvalue λ= z+1

z−1 ; the complex distance between the
lines is log λ (what is the ambiguity in these formulas?).

7-4. [Jørgensen 2000] For a loxodromic transformation A, (7.1) can be written A+
A−1 = (λ+ λ−1)I , where λ denotes the larger eigenvalue. Show that

Ak =− fk−1(λ)I + fk(λ)A,

where the coefficients are the polynomials

fk(λ)= λ
k − λ−k

λ− λ−1
.

Next show that

P A = lim
k→+∞

(
A

λ

)k

= A− λ−1 I

λ− λ−1

where the right side is a singular matrix. Also,

P(B AB−1)= B(P A)B−1, (P A)2 = P N , P A+ P A−1 = I,

(P A)(P A−1)= 0, A = λP A+ λ−1 P A−1.

In particular P has the properties of a projection.
At the level of Möbius transformations, if p+, p− denote the attracting and re-

pelling fixed points of A, lim Ak(z)/λk= p+ for all z 
= p−. In fact, by first confirming
the formula when p+ =∞, p− = 0, and then using conjugation, P A is the singular
matrix

P A = 1

p+ − p−

(
p+ −p+ p−
1 −p−

)
.

7-5. Prove that the transformation corresponding to the matrix B has the same axis as
that corresponding to A if and only if B = bI + a A for some scalars a, b. Conclude
that all powers B = Ak of A can be so represented.

Suppose the matrices A, B represent half-rotations. Then a matrix C also repre-
senting a half-rotation can be represented as C = a A+ bB for some scalars a, b if
and only if the axis corresponding to C is perpendicular to the common perpendicular
{A, B} of the axes corresponding to A and B.
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7-6. Suppose G = 〈X, Y 〉 is a 2-generator group. Suppose some word W (X, Y ) in
the letters X±1, Y±1 satisfies W (X, Y )= id. Then also W (X−1, Y−1)= id. If X and
Y are conjugate, that is if they have the same trace, then W (Y, X)= id.

Hint: For any Möbius transformation ϕ, W (ϕXϕ−1, ϕYϕ−1)=ϕW (X, Y )ϕ−1. Try
ϕ = {X, Y }. If now X and Y are conjugate and both loxodromic or elliptic, find the
midpoint O of the segment of the axis of ϕ from the point that it crosses the axis of
X to the point it crosses the axis of Y . Draw the line � through O and orthogonal to
the axis of ϕ so that the half-rotation ϕ1 about � interchanges the axes of X and Y
and, if they are loxodromic, sends the attracting fixed point of X to that of Y . Then
ϕ1 Xϕ−1

1 = Y and ϕ1Yϕ−1
1 = X . If both X and Y are parabolic, the axis of ϕ runs

between their fixed point. Find the point O on it such that the half-rotation ϕ1 about
a line � through O and orthogonal to the axis of ϕ interchanges the fixed points of X
and Y . (The point O satisfies d(O, X O)= d(O, Y O).)

Show that every nonelementary two-generator group G = 〈A, B〉 has an involution
A �→ A−1, B �→ B−1. This is determined by the common orthogonal to their axes.
If M(G) is a handlebody, the quotient under the involution is the complement of a
3-bridge knot, the singular set being the knot.

In fact, applying tameness and considering the compact core, show that for every
(nonelementary) 2-generator group G, either M(G) has finite volume, or G is a free
group and Int(M(G)) is homeomorphic to the interior of a handlebody.

7-7. Quaternions again. In addition to the identity matrix I , introduce the three
normalized half-rotation matrices

E =
(

i 0
0 −i

)
, J =

(
0 −i
−i 0

)
, K =

(
0 1
−1 0

)
,

as in Exercise 1-28. These matrices satisfy

E J = K , J K = E, K E = J.

Furthermore their rotation axes are mutually orthogonal at their common point of
intersection in �3.

The four matrices I, E, J, K form a basis of the 4-dimensional complex vector
space of complex 2× 2 matrices. For any such matrix X write X = x1 I + x2 E +
x3 J + x4K and correspondingly for matrices Y and Z . Here is a list of properties
with respect to this linear structure:

(i) τX = 2x1 and det X = x2
1 + x2

2 + x2
3 + x2

4 .

(ii) ϕ = {X, Y } = 2

∣∣∣∣∣∣
I J K
x2 x3 x4

y2 y3 y4

∣∣∣∣∣∣ , tr(ϕZ)=−4

∣∣∣∣∣∣
z2 z3 z4

x2 x3 x4

y2 y3 y4

∣∣∣∣∣∣, and

tr(XY )= 2(x1 y1− x2 y2− x3 y3− x4 y4).

Assume for the following that X, Y, Z are neither degenerate nor a multiple of I .
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(iii) The axes of X and Y are the same if and only if X, Y, I are linearly dependent
or, if τX = τY = 0, if and only if X and Y are dependent. If X is parabolic then
Y is too and with the same fixed point if and only if X, Y, I are dependent.

(iv) Z and the half-rotation Z0= z2 E+z3 J+z4K have the same axis. Z is parabolic
if and only if Z0 is degenerate. If X and Y are half-rotations, then {X, Y } and
XY have the same axis.

(v) The axes of X, Y, Z have a common perpendicular if and only if X, Y, Z , I are
linearly dependent, or, if τX = τY = τZ = 0, if and only if X, Y, Z are linearly
dependent.

Also work out the formulas for XY and Y X in terms of I, E, J, K . What is the
condition for XY = Y X?

7-8. Prove that lines l,m ∈ �3 lie in the same plane if and only if coshχ(l,m) is a
real number.

7-9. Given an ideal tetrahedron (Exercise 1-16) with edges α,β, γ , δ, construct the
three common perpendiculars between opposite edges. A half-rotation about any one
of them maps the tetrahedron onto itself. Consequently the three perpendiculars must
meet at a point; the three half-rotations are the non-zero elements of the tetrahedral
symmetry group �2⊗�2.

7-10. Tubular neighborhood of a systole. [Gabai et al. 2003] In a hyperbolic manifold
suppose there is a shortest geodesic γ of length l > 0. Show that γ is necessarily a
simple geodesic. Prove that there is an embedded tubular neighborhood (see Exer-
cise 1-4) about γ of radius at least l/4. Hint: suppose the assertion is false. Then the
tubular neighborhood of radius l/4 intersects itself at a point p. There at least two
perpendicular segments from p to γ . Construct a shorter curve by taking a segment
of γ together with the two perpendiculars. The tubular neighborhood about γ is the
projection of the tubular neighborhood about any lift � ∈�3 of γ .

7-11. A parametrization of 2-generator groups. Here is a way to parametrize two-
generator groups 〈A, B〉 where A, B are loxodromic without a common fixed point.
Let � denote the axis of A. Assume first the two lines �, B−1(�) do not intersect. Find
a line β, orthogonal to the common perpendicular of �, B−1(�), with the property that
the half-rotation β exchanges � and B−1(�) and sends the attracting fixed point p ∈ �
of A to B−1(p). The transformation T = Bβ maps � onto itself; � is the axis of T
and p is its attracting fixed point.

The aim is to parametrize groups 〈A, B〉 to be uniquely determined up to conju-
gation by the three complex distances with positive real parts: χ = χ(B−1(�), �),
log λA, and log λT , where λA, λT are the larger eigenvalues of A, T , upon arranging
matters so that Reχ > 0.

Show that the parametrization works even if the lines �, B−1(�) intersect in �3

and/or B is elliptic.
This parametrization was used in [Gabai et al. 2003] to computationally explore

hyperbolic manifolds with short geodesics. If 〈A, B〉 is discrete, and A, B arise from
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simple geodesics on the quotient, one can find elements Y ∈ 〈A, B〉 such that for the
pair A, Y , Reχ is as small as possible (but not 0). This means that in the quotient
manifold, the geodesic γ resulting from projecting � is contained in an embedded
tubular neighborhood of radius Reχ and no larger radius. The authors explore the
question: Is Reχ ≥ (ln 3)/2 for all discrete groups 〈A, B〉? They reduce their problem
to a study of short geodesics in discrete groups determined by parameters that lie in a
certain box in six-dimensional euclidean space. This required a massive computation
of about three CPU years.

7-12. Consider half-infinite polygonal arcs L in �3 made up of closed geodesic
segments �0, �1, . . . with the property that each �i meets �i+1 at 90◦. Let αi denote
the complex distance between �i−1 and �i+1, for i = 1, 2, . . ..

Given a sequence of numbers {αi } ⊂ � and a base point O ∈ �3, show that such
a polygonal line L from O can be uniquely constructed. Investigate under what cir-
cumstances depending on L that the sequence {αi } converges. When is the sequence
dense in �3?

7-13. The McShane identity. Greg McShane [1998] made the following remarkable
discovery. On any once punctured torus �,

∑
σ∈S

1

1+ e�(σ )
= 1

2
,

where S is the collection of simple closed geodesics on � and �(σ ) is the length of σ .
There is an interesting generalization in [McShane 1998; Bowditch 1996]. Take a

quasifuchsian representation ρ : π1(�)→ � onto a once-punctured torus group. For
each σ ∈ S, let �(ρ(σ )) now denote the complex length of ρ(σ) modulo 2π i�. Then

∑
σ∈S

1

1+ e�(ρ(σ ))
= 1

2
,

where the sum converges absolutely.

7-14. An orientation reversing isometry J of �3 with J 2 = id uniquely determines
a plane PJ such that J is the reflection in PJ , possibly followed by the half-rotation
in a line in PJ . The latter case does not arise if it is known that J fixes three distinct
points in the circle ∂PJ . In other words, J is conjugate on ∂�3 to z �→ z̄ or to z �→−z̄;
see Exercise 1-39.

As an application, suppose J is an orientation reversing isometry of M(G) with
J 2 = id. Assume that S ⊂M(G) is a properly embedded, compact, orientable, in-
compressible surface, possibly with boundary ∂S⊂ ∂M(G), that is neither a disk nor
a cylinder. Assume that there is an arc τ from O ∈ S to J (O) such that for all loops
γ ∈ π1(S; O), τ−1 J (γ )τ is homotopic to γ . Show that there is a totally geodesic
surface S∗ ⊂M(G) that is pointwise fixed by J . Moreover S∗ is homotopic to S.

7-15. Symmetry lines. There are two notions of symmetry lines that have been impor-
tant in studying the combinatorics of fundamental polyhedra: the first for studying
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cyclic groups [Jørgensen 1973], the second for studying once punctured torus quasi-
fuchsian groups [Jørgensen 2003].

Symmetry lines I. Fix a point O ∈ �3 which we will call the basepoint. Given a
Möbius transformation g which does not fix O, let β denote the line through O which
is orthogonal to the axis of g, if g not parabolic. If g is parabolic, let β be the line
through O to its fixed point. Next construct the plane eg which is the perpendicular
bisector of the line segment [O, g−1(O)]. In particular, if O is the origin in the ball
model or∞ in the upper half-space model, eg = I(g), the isometric plane.

If instead O ∈ ∂�3, and g does not fix O construct eg as follows. There is a unique
horosphere HO at O such that the horosphere g−1HO at g−1O is externally tangent to
HO. The line between O and g−1O necessarily passes through the point of tangency.
(See Lemma 1.5.4.) Take eg to be the plane through the point of tangency orthogonal
to the line between O and g−1(O).

Recall from Lemma 7.3.1 that if tr2(g) 
= 4, the square roots of g±1 are given as
normalized matrices by

g1/2 = g± I√
2± τg

, g−1/2 = g−1± I√
2± τg

.

If tr2(g) = 4 (g 
= id), the roots of g±1 are given by the two expressions above that
have nonvanishing denominators.

Lemma 7.6.1. Set α = g−1/2(β). Then g = βα and the line α ⊂ eg. Furthermore,
eα = eg. Let β∗ denote the line through O orthogonal to α. The plane eg can be
alternately characterized as that plane orthogonal to β∗ at its point of intersection
with α.

Proof. We begin by remarking that when g is not parabolic, the line α is independent
of which square root of g is selected, for β is orthogonal to the axis of g.

Assume first that O ∈ �3. In the ball model of �3, replace g by a conjugate so
that O becomes the origin. Then eg is the isometric plane {�x : |g′(�x)| = 1}. Also
|β ′(�x)| = 1 for all �x ∈ �3 since β is now a euclidean rotation about a diameter. It
suffices to prove Lemma 7.6.1 under this normalization of O.

Suppose first g is not parabolic. Recall from Lemma 7.5.2 and Lemma 7.5.1 that
α can be alternately described as the line orthogonal to the axis of g such that g is the
composition of the half-rotations g = βα; the axis of g is the common perpendicular
of α and β. We claim that the axis of α lies in eg and is orthogonal to the segment
[O, g−1(O)] at its midpoint.

For any �x ∈�3, |g′(�x)| = |α′(�x)|. At any fixed point �x of α, |α′(�x)| = 1. Thus the
axis of α lies in the plane eg. (Another argument is that α maps eg onto itself, and its
action in eg is conjugate to the action z→ z̄ in � so that |α′(�x)| = 1 for all �x ∈ eg.)

Now g−1(O)= αβ(O)= α(O). Since α maps the segment [O, g−1(O)] onto itself
switching the endpoints, it fixes the midpoint �p. Therefore [O, g−1(O)] must be
orthogonal to the axis of α at �p. Since O and g−1/2(O) have the same distance from
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the axis of g, and since α = g−1/2(β), necessarily �p = g−1/2(O). Finally, eα is the
perpendicular bisector of the segment [O,α(O)= g−1(O)] so that eα = eg.

If instead g is parabolic, the line α also goes through the fixed point of g. It is
also true that g = βα. The rest of the argument is the same. Another way to confirm
this is to assume g first is loxodromic but then allow it to converge to a parabolic and
follow the geometry.

Upon reviewing the proof we can confirm that there is no essential difference if
O ∈ ∂�3. In this case however it is an endpoint of α that is g−1/2(O). The line α cuts
the line [O, g−1(O)] at its intersection with eg. �

The line α ⊂ eg is called the symmetry line of the plane eg.
Both the plane eg and its symmetry line α = αg are uniquely determined by g

once O is chosen (and is not a fixed point of g). In the ball model, if O = 0, then
eg is the isometric plane. In the upper half-space model, when O = ∞, eg is the
isometric plane. Therefore using the ball model, if O ∈�3 then g can be replaced by
Ag A−1 where AO = 0 and Aeg is the isometric plane for Ag A−1. Using the upper
half-space model, if O ∈ ∂�3, then g can be replaced by Ag A−1 where AO = ∞.
These observations are important enough to record formally:

Lemma 7.6.2. Let O ∈ �3 ∪ ∂�3 be a basepoint and g a Möbius transformation
that does not fix O. Let O1 = A(O) be a new basepoint, also not fixed by g. Set
g1 = Ag A−1. Then the symmetry line α1 and plane eg1 for g1 with respect to the
basepoint O1 are related to those for g with respect to O as follows: α1 = A(α) and
eg1 = A(eg).

Symmetry lines II. The basis for another notion of symmetry line is the following
fact.

Lemma 7.6.3. Suppose A and B are loxodromic while K = AB−1 A−1 B is parabolic
with fixed point O ∈ ∂�3. At the level of Möbius transformations the following hold.

• The line α = {AB, B−1} = K−1/2 A lies in the plane eA = eα.
• The line β = {B A−1 B, B−1 A} = K−1/2 B lies in the plane eB = eβ .
• The line γ = {B−1 AB, B} = K−1/2 AB lies in the plane eAB = eγ .
• The line γ % = {A, B−1} = K−1/2 AB−1 = K 1/2 B−1 A lies in the plane eAB−1 =

eB−1 A = eγ % .
• The lines α% = {AB−1, A−1 B A−1} = K 1/2 A−1, β% = {A, B−1 A−1} = K 1/2 B−1

are the symmetry lines of eA−1 , eB−1 respectively.
• B = αγ = γ %α, K−1 A = βγ = β%γ %, βγα = αγ %β% = K−1/2.
• The lines α,β, γ , γ %, . . . are mutually disjoint in �3 ∪�2.

Proof. Replace the transformations by conjugates if necessary so that the point O

becomes∞ in the upper half-space model. Necessarily τK = −2, since {A, B−1} is
nonsingular. At the level of transformations and referring to Lemma 7.3.1, K 1/2 =
K − I and K−1/2 = K−1 − I ; they are parabolic transformations fixing ∞. The
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formulas are verified by using K−I = (AB−1−B−1 A)A−1 B= AB−1(A−1 B−B A−1)

and correspondingly expressing K−1 − I . We also use the facts that the any half-
rotation is identical to its inverse and that X , K±1/2 X , and K±1 X all have the same
isometric circle and plane.

Finally if α and γ , or any two distinct symmetry lines, intersected at �x ∈ �3, then
B would fix x and could not be loxodromic. If instead the two half rotations α and
γ had a common fixed point on S2, then the composition αγ would have zero trace,
which is impossible. �

In the situation of Lemma 7.6.3, the lines α,β, γ will be called the symmetry
lines for the planes eA, eB , eAB ,. . . respectively. Correspondingly, α,β%, γ % are the
symmetry lines for I(A), I(B−1), I(AB−1).

Lemma 7.6.2 is worth repeating to cover the present case.

Lemma 7.6.4. Let O ∈�3∪∂�3 be a basepoint not fixed by A, B and set O1 = X (O)
and K1 = X K X−1. Then Lemma 7.6.3 holds with respect to the basepoint O1 with
A, B and the half rotations replaced by their conjugates X AX−1, X B X−1.

7-16. Find the analog of Lemma 7.6.3 in the case that A and B are loxodromic but
their commutator is elliptic.

7-17. Extension of once-punctured torus groups [Wada 2003]. Prove:

(i) Every quasifuchsian once punctured torus group G = 〈A, B〉 with parabolic
commutator K 2= [A, B] has an index two extension G∗ = 〈P, Q, R〉 generated
by three half-rotations P, Q, R satisfying RQ P = K .

(ii) Every quasifuchsian twice punctured torus group G = 〈A, B, L , L ′〉 with L , L ′
both parabolic and [A, B] = L ′L has an index two extension G∗ = 〈P, Q, R, S〉
generated by four half-rotations P, Q, R, S satisfying S RQ P = L .

In the first case the quotient orbifold is (2, 2, 2,∞), while in the second it is
(2, 2, 2, 2,∞). Here we are referring to punctured spheres with the indicated branch-
ing.

Hint: For the first case set Q = AB − B A and define R = AQ, P = B Q. For
the second case define Q, R, P by the same formulas, noting that RQ P = K where
K 2 = [A, B]. Then apply Wada’s lemma (Exercise 1-34) to find a half-rotation S
with SL S = L ′.

7-18. Conformal averaging on �1 [Schwartz 2006]. Let W = {w1, w2, . . . , wn} be
n ≥ 4 distinct, cyclically arranged points on the unit circle ∂�2. The complementary
intervals {(wi , wi+1)} will be subdivided as follows. Construct the common orthog-
onal � to the two lines [wi , wi+1], [wi−1, wi+2]. One of the endpoints w′i of � lies
in the interval (wi , wi+1). When this is carried out for all intervals we end up with
a new cyclically ordered set of distinct points W ′ = {w′1, w′2, . . . , w′n} on the circle.
Set up the interactive process {W (k+1)= (W (k)

)′}. Rich Schwartz proved that {W (2k)}
converges exponentially fast to an ideal regular n-gon as k→∞. He interprets this
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Fig. 7.2. The limit set of a twice punctured torus quasifuchsian group computed using Wada’s
characterization.

process as “conformal averaging”. In the classical situation where w′i is chosen as the
midpoint of (wi , wi+1), the points W (k) become evenly spaced as k→∞.

7-19. [Brooks and Matelski 1981] Suppose T is a loxodromic with complex trans-
lation length δ; that is, if α denotes the axis of T oriented toward its attracting fixed
point and � is a line orthogonal to α then δ = χ(�, T (�)). Show that

tr2(T )= 4 cosh2 χ(�, T (�))

2
,
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and for any Möbius transformation S with β the axis of S1 = ST S−1,

tr(ST S−1T−1)− 2= (1− coshχ(�, T (�))
)(

1− coshχ(α, β)
)
.

Their paper exploits that the group 〈S, T 〉 is discrete only when {cosh(χ(α, βi ))} is
a discrete set. Here βi the axis of the inductively defined Si = Si−1T Si−1

−1. More
extensive investigations generalizing Jørgensen’s inequality are carried out along this
line in [Gehring and Martin 1994].
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Right hexagons and hyperbolic trigonometry

In this chapter we will apply the line geometry developed in Chapter 7 to obtain many
of the formulas of hyperbolic trigonometry. Good references are [Beardon 1983] and
[Fenchel 1989].

Recall that cosh z = (ez + e−z)/2 and sinh z = (ez − e−z)/2.

8.1 Generic right hexagons

Let α,β, γ be lines in �3 no two of which have a common point or endpoint, and not
all three are orthogonal to the same line. We will use the same notation to represent
the half-rotations about these lines. When needed, we will use A, B,C to denote
corresponding normalized matrices of zero trace.

The axis γ ∗ of the loxodromic transformation C∗0 = B A is orthogonal to the lines α

and β, the axis α∗ of A∗0 =C B is orthogonal to β and γ , and the axis β∗ of B∗0 = AC
is orthogonal to γ and α. Note that

C∗0 B∗0 A∗0 = −I, (8.1)

so that C∗0 , say, is automatically determined from A∗0 and B∗0 . The half-rotation ma-
trices that correspond to α∗,β∗, γ ∗ are respectively (see Proposition 7.2.1(4)),

A∗ = A∗0− A∗0
−1√

4− τ 2(A∗0)
, B∗ = B∗0 − B∗0

−1√
4− τ 2(B∗0 )

, C∗ = C∗0 −C∗0
−1√

4− τ 2(C∗0 )
. (8.2)

In terms of Möbius transformations we may write

A∗ = {C, B}, B∗ = {A,C}, C∗ = {B, A}. (8.3)

The rotation axes of A∗, B∗,C∗ are the axes of the loxodromic C B, AC, B A re-
spectively. The intermediate matrices A∗0, B∗0 ,C∗0 are quite useful, irrespective of the
awkward notation.

Lemma 8.1.1. (i) No two of the lines α∗,β∗, γ ∗ have a common endpoint.
(ii) The three lines α∗,β∗, γ ∗ do not have a common perpendicular.

366
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Proof. No two of the lines α∗,β∗, γ ∗ coincide because of our hypothesis that α,β, γ

do not have a common perpendicular.
Consider for example α∗ and β∗. Each one is orthogonal to γ . If α∗ and β∗ had a

common endpoint then a right-angled hyperbolic triangle with two right angles would
be formed. This is impossible since the angle sum must be less than π .

No line � is orthogonal to all three α∗,β∗, γ ∗. For if � were orthogonal to α∗
and β∗, say, then they would have two common orthogonals, � and γ . Because the
common orthogonal is a unique line, �= γ . If �= γ were also orthogonal to γ ∗, then
all of α,β, γ would be orthogonal to γ ∗, a contradiction. �

On the other hand it is possible that two of the lines α∗,β∗, γ ∗ intersect in �3. If
for example β∗ and γ ∗ intersect at p ∈ �3, they span a plane P . The line α is then
orthogonal to P at p. This forces the side of the hexagon which lies on α to reduce to
the single point p, which is a vertex. We will view such a hexagon as “degenerate”.
It is possible to avoid such a degeneration by moving one or more of the lines α,β, γ

slightly. Degenerate hexagons will be discussed in Section 8.3.

A generic right hexagon is one determined by a triple of lines α,β, γ such that

• no pair of lines have a common point or endpoint,
• the three lines do not have a common perpendicular, and
• no two of the dual lines α∗,β∗, γ ∗ intersect in �3.

For generic hexagons, the six segments cut off by pairwise intersections in the order

(α, γ ∗,β,α∗, γ ,β∗)

form a right-angled hexagon Hex(α,β, γ ), which is not planar unless α,β, γ all
lie in a plane. Prescribing the cyclic sequence of intersections in the order indicated
orients each of the six line segments of the hexagon. The orientation is consistent
with the orientation of each line α∗,β∗, γ ∗ toward the attracting fixed point of each
loxodromic transformation γβ,αγ ,βα respectively. Each side s is opposite its dual
side s∗.

We stress that for generic hexagons, the triples of lines (α,β, γ ) and (α∗,β∗, γ ∗)
are interchangeable with each other each other: each triple is dual to the other.

Corollary 8.1.2 (Petersen–Morley Theorem). The three altitudes of a generic right
hexagon in �3 have a common perpendicular.

Proof. In the notation we have been using, the altitudes are contained in the axes of
the three half-rotations hα = {α, γβ}, hβ = {β,αγ }, and hγ = {γ ,βα}. These are
the common perpendiculars to the pairs of opposite lines (α,α∗), (β,β∗), (γ , γ ∗),
respectively. Now compute the three Lie products; their sum is zero. Apply Proposi-
tion 7.2.1(8). �

Let S denote the space of ordered triples (α,β, γ ) of unoriented lines in �3 which
produce generic right hexagons.
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Fig. 8.1. Configuration of sides of the hexagon determined by α,β, γ .

Lemma 8.1.3. The space S is connected. Once an initial choice of half-rotation ma-
trices A, B,C corresponding to (α,β, γ ) is made at one point of S, then by continuity
a choice is uniquely determined at all other points. In particular one generic right
hexagon Hex(α,β, γ ) can be moved continuously through generic right hexagons to
any other.

Proof. A line �∈�3 can be moved into a small neighborhood of a point on ∂�3. Three
lines can be moved close to any three distinct points on ∂�3 without intersecting each
other. The three lines can be adjusted so that the hexagon they determine is generic.
If in the course of the motion the three lines have a common perpendicular �, than
an arbitrarily small change in the position of any one of them (so long as it is not
a rotation about �) will destroy this property. Likewise pairwise intersections of the
dual lines α∗,β∗, γ ∗ can be avoided. To be specific, if γ is taken as the vertical
half-line rising in the upper half space model from from z = 0, then the lines α∗
with endpoints u1, u2 ∈ � and β∗ with endpoints v1, v2 ∈ � have a common point of
intersection with γ if and only if u2 =−u1, v2 =−v1 while |u1| = |v1|. To avoid the
common intersection all that is needed is to move one endpoint slightly.

Thus the movement to the neighborhood of distinct points on ∂�3 can be made so
that the hexagon remains generic at all intermediate points. �

8.2 The sine and cosine laws for generic right hexagons

In Chapter 7 we introduced the notation of complex distance between oriented lines
�1, �2 as

χ(�1, �2) = log ρ+ iθ (mod 2π i), ρ > 0,

where log ρ is the distance from �1∩ p to �2∩ p along the oriented line p orthogonal
to �1 and �2. We will continue to use the notation from Section 8.1 that α,β, γ

are three lines which together with their dual lines α∗,β∗, γ ∗ form a generic right
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hexagon. The lines will be oriented as before by choosing the cyclic order of vertices.
Since sinh(z + π i) = − sinh z and cosh(z + π i) = − cosh z the formulas below are
independent of which orientation is chosen. The laws are:

Law of sines
sinhχ(β, γ )

sinhχ(β∗, γ ∗)
= sinhχ(γ ,α)

sinhχ(γ ∗,α∗)
= sinhχ(α,β)

sinhχ(α∗,β∗)
. (8.4)

Law of cosines coshχ(α,β)= coshχ(β, γ ) coshχ(γ ,α)

+ sinhχ(β, γ ) sinhχ(γ ,α) coshχ(α∗,β∗). (8.5)

These formulas apply to any cyclic permutation of the six sides (α,γ ∗,β,α∗,γ ,β∗).

Proof. For a start, we have to confirm the identity

4(tr(XY X−1Y−1)−2) = (2 tr(XY )− tr(X) tr(Y ))2−(tr2(X)−4)(tr2(Y )−4). (8.6)

This is done by applying Lemma 1.5.6(ii)-(i).
Let C̃ be a normalized matrix corresponding to the loxodromic transformation

β∗α∗. It has axis γ and complex translation length 2χ(α∗,β∗) (7.10). Using (8.3)
and (7.13) we find that

± 4[sinhχ(γ ,α) sinhχ(β, γ )]C̃ = (B∗0 − B∗0
−1
)(A∗0− A∗0

−1
). (8.7)

For later application we will also record the result of using a different formula for
the determinants of the right hand side derived in the proof of Proposition 7.2.1(4),
namely

± ((tr2(B∗0 )− 4)(tr2(A∗0)− 4)
)1/2

C̃ = (B∗0 − B∗0
−1
)(A∗0− A∗0

−1
). (8.8)

Here A, B,C denote the normalized half-rotations corresponding to α,β, γ .
Expanding the right side of (8.7) and bringing in Lemma 1.5.6(i) we find that the

trace of the right side is

2 tr(A∗0 B∗0 )− 2 tr(A∗0 B∗0
−1
) = 4 tr(A∗0 B∗0 )− 2 tr(A∗0) tr(B∗0 ).

Taking the trace of the left side as well,

±8
(
sinhχ(γ ,α) sinhχ(β, γ )

)
coshχ(α∗,β∗) = 4 tr(A∗0 B∗0 )− 2 tr(A∗0) tr(B∗0 ).

Squaring both sides gets rid of the ± ambiguity:

16 sinh2 χ(α, γ ) sinh2 χ(β, γ ) cosh2 χ(α∗,β∗) = (
2 tr(A∗0 B∗0 )− tr(A∗0) tr(B∗0 )

)2
.

Now replace cosh2 by 1+ sinh2. After doing so and after separating the terms on
the left, replace 16 sinh2 χ(α, γ ) sinh2 χ(β, γ ) by the alternative expression for the
determinants of the right hand side of (8.7), as was used in (8.8). In doing so we get
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our chance to apply (8.6). Applying (8.1) in the process and representing the starred
elements in terms of the unstarred ones, the result is:

sinh2 χ(α, γ ) sinh2 χ(β, γ ) sinh2 χ(α∗,β∗) = δ2

4
,

δ2 = tr(A∗0 B∗0 A∗0
−1 B∗0

−1
)− 2 = − tr(C B A)2− 2 = − tr2(C B A).

Note that δ2 is invariant under cyclic permutation of A, B,C .
Define δ by choosing the sign of ±i tr(C B A) so that

sinhχ(α, γ ) sinhχ(β, γ ) sinhχ(α∗,β∗) = δ

2
. (8.9)

We claim the definition of δ for one triple determines it by continuity for all triples
of lines α,β, γ without a common point or end point. Start with an initial choice of
α,β, γ and matrices A, B,C and let these range over the full space S. The claim is
valid simply because at no point can any of the terms in the left side of (8.9) vanish.

The law of sines follows from the identity

sinhχ(α∗,β∗)
sinhχ(α,β)

= δ/2

sinhχ(α,β) sinhχ(β, γ ) sinhχ(γ ,α)
,

since the right side is invariant under cyclic permutation.
We are also ready for the law of cosines. The starting point here is (8.8). Operating

on the left side as before, and on the right side bringing in (7.12) we wind up with

± sinhχ(β, γ ) sinhχ(γ ,α) coshχ(α∗,β∗)
= coshχ(α,β)± coshχ(β, γ ) coshχ(γ ,α).

We have also used the fact that B∗0 A∗0 =−AB, B∗0 = AC and A∗0 = C B.
It remains to settle the matter of signs. Once again we do this by continuity. We

may assume that α,β, γ determine a planar, regular right hexagon. In this case all
the complex distances χ(·, ·) are equal to d+π i (why?) where d is the common side
length. We now have to look at the possibilities for the equation

±(1− cosh2 d) = −1± cosh d.

The only situation for which there is a positive solution for cosh d occurs when the
signs are in the order (+,−). The only solution is cosh d = 2 or d = log(2+√3).
This choice gives the law as stated, and it remains true as stated for the whole space
by continuity.

As we have seen, the triples of lines α,β, γ and α∗,β∗, γ ∗ are interchangeable. �

The case of planar right hexagons is assigned as Exercise 8-6.

8.3 Degenerate right hexagons

A line in �3 is determined by its end points on ∂�3. A single point ζ ∈ ∂�3 can be
regarded as the limit of a sequence of lines, it can be regarded as an ideal line. Upon
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adapting this point of view, it is natural by comparison with (7.3) to represent ζ by
the projective equivalence class of the singular, zero-trace, nonzero matrix(

ζ −ζ 2

1 −ζ
)
, or

(
0 −1
0 0

)
when ζ =∞.

The “common perpendicular” γ ∗ to two distinct lines α and β which have a com-
mon endpoint ζ ∈ ∂�3 can be interpreted to be the ideal line ζ itself. This ideal
line can also be interpreted to be “orthogonal” to the plane spanned by (α,β). This
interpretation agrees with the construction of γ ∗ as a Lie product. Indeed, if Q1, Q2

denote the other endpoints of α, β respectively, we have from (7.3) again

AB− B A = − 16(Q1− Q2)
2

(ζ − Q1)2(ζ − Q2)2

(
ζ −ζ 2

1 −ζ
)
,

where A, B denote half-rotation matrices for α,β.
This latter interpretation is the limiting case of two lines which intersect in �3.

Indeed, suppose α and β intersect in �x ∈ �3. The common perpendicular γ ∗ is the
line through �x and perpendicular to the plane spanned by α and β. However unlike the
case of the common perpendicular between disjoint lines, the ordering α,β no longer
determines an orientation of γ ∗. If we choose a sequence of disjoint lines αn,βn

which converge to α,β, the common perpendicular γ n
∗ of αn and βn converges to

γ ∗. There are two ways to orient γ n
∗ depending on whether αn is regarded as “over”

or “under” βn . The two choices induce opposite orientations on γ ∗.
When α and β have a common end point the asymptotic distance between the lines

is zero. The complex distance χ(α,β) is either 0 or π i depending on the relative
orientations of α and β.

When α and β intersect in �3, they span a plane. We have

χ(α,β) = ±iθ or ± i(π − θ),
where θ is the acute angle formed by α and β with the sign in each term depending
on how γ ∗ is oriented and the choice of term θ or π − θ depending on how α and β

are oriented to each other. The bottom line is that, in all four cases,

cosh2 χ(α,β) = cos2 θ, sinh2 χ(α,β) = − sin2 θ.

This also includes the cases of a common endpoint (θ = 0, π).
In view of this discussion we will take the expression “ common perpendicular” to

include the case that one or both “lines” are ideal lines. The common perpendicular
between two distinct ideal lines is interpreted as the ordinary line with those end
points.

We now return to our construction of right hexagons. Suppose α,β, γ are distinct
oriented lines in �3. We now allow that any two may have a common point or end-
point, but still exclude the possibility that all three have a common perpendicular line
(that case is beyond the pale, as no closed figure results). In particular, not all three
lines have a common point or endpoint.
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Let γ ∗ denote the common perpendicular to α,β, α∗ the common perpendicular to
β, γ , and β∗ the common perpendicular to γ ,α. Any or all of these perpendiculars
may be “ideal lines”. At points of intersection in �3, orient the perpendiculars arbi-
trarily. The collection of the six oriented lines/ideal lines is called a generalized right
hexagon. It is either a generic right hexagon or a it is a degenerate right hexagon.
Degenerated hexagons have three, four, or five sides; the “degenerate sides” become
vertices. If the degenerate side is on ∂�3, the vertex angle there is zero.

We will treat degenerate hexagons as limiting cases of generic right hexagons, and
apply the laws as dictated by continuity.

For example, if (α,β, γ ) form an ideal triangle, (α∗,β∗, γ ∗) represent the ideal
vertices. Conversely if (α,β, γ ) represent three distinct points on ∂�3, (α∗,β∗.γ ∗)
are the edges of the associated ideal triangle.

8.4 Formulas for triangles, quadrilaterals, and pentagons

In this section we will present three typical examples of how the right hexagon formu-
las can be adapted to give formulas for degenerate hexagons, that is, polygons with
less than six sides. The trick is to add “ideal” sides of zero length at some vertices
so the polygon can then be interpreted as a degenerate case of a right hexagon. Other
cases are presented in the exercises.

In each case the edges will be oriented so that the polygonal object lies to the left. In
other words, the sides are labeled and oriented so that the vertices appear in the cyclic
order α ∩ γ ∗, γ ∗ ∩β,β ∩α∗,α∗ ∩ γ , γ ∩β∗,β∗ ∩α, with appropriate interpretation
for degenerate sides.

Right triangles

In (say) the ball model of �3, move α,β, γ to lie in the equatorial plane forming there
a right triangle with the hypotenuse contained in γ , orientation as shown in Figure
8.4. Then α∗,β∗, γ ∗ are orthogonal to the plane, Orient them so they are pointing
toward the lower hemisphere. Denote the side lengths by a, b, c respectively where
c is the hypotenuse. Let α, β denote the vertex angles opposite the side lengths a, b
respectively.

Then χ(α∗,β∗) = c, χ(β∗, γ ∗) = a, and χ(γ ∗,α∗) = b while χ(α,β) = π i/2,
χ(β, γ )= i(π−α), and χ(γ ,β)= i(π−β). To make this last computation, imagine
say γ moved slightly out of the plane but parallel to its original position and orthog-
onal to β∗. Then looking along β∗ in the direction of γ to α we see that a rotation
of angle π −β is required to rotate γ with its orientation onto α with its orientation.
Putting these values in the laws gives

cosh c = cosh a cosh b, sinh c = sinh b

sinβ
= sinh a

sinα
. (8.10)
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Fig. 8.2. A right (planar) triangle indicating the degenerate sides.

The length of two sides determines the length of the third and also determines the
angles. we also find that

tanh b = sinh a tanβ, sech c = tanα tanβ. (8.11)

Some more formulas for right triangles are given in Exercise 8-3. Formulas for the
general triangle are presented in Exercise 8-2.

Planar pentagons with four right angles

Move α and β into a plane and orient γ ∗ by thinking of β slightly lower than α

at their common vertex v so that γ ∗ is oriented so as to point from α to β. Then
χ(α,β) approaches θ i . The resulting right hexagon has its side on γ ∗ degenerated
to the vertex v. We obtain either a convex pentagon or a figure overlapping itself.

Here we will work out the formulas for the convex case; the case of self-intersection
is in Exercise 8-5. Place the sides in order α, [γ ∗],β,α∗, γ ,β∗ where the side on γ ∗
reduces to the vertex v and the interior angle at v is θ . Denote the lengths of the sides
contained in α,β, γ by a, b, c, and in α∗,β∗ by a∗, b∗. Then χ(α∗,β∗) = c+ π i ,
χ(β∗, γ ∗) = a + π i/2, and χ(γ ∗,α∗) = b+ π i/2 while χ(α,β) = (π − θ)i . The
law of cosines becomes

cosh c = sinh a sinh b− cosh a cosh b cos θ,

Fig. 8.3. Planar pentagons with four right angles.
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Fig. 8.4. A quadrilateral with three right angles.

or alternatively,

cos θ = sinh a∗ sinh b∗ cosh c− cosh a∗ cosh b∗, (8.12)

So c is determined by a, b∗ and θ , and θ is determined by a∗, b∗, and c; two convex
right pentagons whose corresponding side lengths are identical are isometric.

The law of sines becomes

cosh a

sinh a∗
= cosh b

sinh b∗
= sinh c

sin θ
. (8.13)

Specialize to the cases θ = 0 (v is an ideal vertex) and θ = π i/2.

Quadrilaterals with three right angles

Here we are not assuming that the quadrilateral is planar. Let v denote the vertex
with angle θ . Label the sides in order as α, γ ∗, β, [α∗], γ , [β∗], where the brackets
indicate the lines associated with degenerate sides — which correspond to vertices —
and [β∗] is associated with v.

The lines α∗ and β∗ are perpendicular to the planes determined by β, γ and γ ,α

respectively. Orient α∗ and β∗ to point into these planes, and interpret β to lie over
γ on α∗ and γ over α on β∗. Then χ(β, γ ) = −π i/2 and χ(γ ,α) = (θ − π)i . In
addition, χ(γ ∗,α∗)=χ(γ ∗, γ )−π i/2. Using this information the law of sines gives

sinhχ(α,β) coshχ(γ ∗, γ ) = sin θ sinhχ(α∗,β∗).

The law of cosines tells us that

coshχ(α,β) = − sin θ coshχ(α∗,β∗).

From the two laws we conclude that

tanhχ(α∗,β∗)=− tanhχ(α,β) coshχ(γ , γ ∗), (8.14)

and

cos θ = sinhχ(α,β) sinhχ(γ ∗, γ ). (8.15)

In particular if the quadrilateral is planar (and necessarily convex) then

cosh c∗ = sin θ cosh c, (8.16)
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Fig. 8.5. A generic triangle.

where c is the length of a side on γ and c∗ the length of the opposite side on γ ∗.
Equation (8.15) becomes

cos θ = sinh b sinh c∗, (8.17)

where b is the length of the side on β. This latter equation is used to confirm that the
sign is correctly chosen when taking square roots to obtain (8.15).

Two planar quadrilaterals with three right angles with corresponding side lengths
identical are isometric. From (8.15) we deduce that 0≤ θ < π/2; there are no hyper-
bolic rectangles, as we already know. On the other hand, regular quadrilaterals with
60◦ angles tessellate the plane.

8.5 Exercises and explorations

8-1. Show how to form a right hexagon from six edges of a hyperbolic cube.

8-2. Law of sines and cosines for triangles.Consider the general hyperbolic triangle
with sides of length a, b, c and opposite angles labeled α, β, γ .

Derive the law of sines and cosines for the triangles, namely:

Law of cosines 8.5.1.

cosh c = cosh a cosh b− sinh a sinh b cos γ, (8.18)

cosh c = cosα cosβ + cos γ

sinα sinβ
. (8.19)

Law of sines 8.5.2.
sinh a

sinα
= sinh b

sinβ
= sinh c

sin γ
. (8.20)

Conclude that two triangles with the same angles are isometric.
Show that the quantity sinh a sin γ is independent of the lengths b, c and the angles

α, β that form the triangle. Here is a nice application of this fact:
Suppose σ = σ(s)⊂ �2 is a geodesic parameterized by hyperbolic arc length and

ζ is a point not on σ . At each point σ(s) there is a geodesic segment from ζ to σ(s);
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Fig. 8.6. Planar quadrilaterals with two right angles.

denote its length by x(s). Let θ(s) be the angle of intersection at σ(s) measured
counterclockwise from σ . Deduce as in [Epstein et al. 2004] the formula

θ ′(s)=− coth x(s) sin θ(s).

Hint: You will need to know that x ′(s) = cos θ(s). This is seen using the fact that
near σ(s) the hyperbolic metric is almost euclidean, therefore 
x ∼
s cos θ .

Finally consider the hyperbolic triangle with vertices x, y, z′. Let z be a point on
the side (x, y). Derive the formula

cosh d(z, z′) sinh d(x, y) = cosh d(x, z′) sinh d(y, z)+ cosh d(y, z′) sinh d(x, z),
(8.21)

where as usual d( · , · ) is the hyperbolic distance.

Prove that if the shortest geodesic γ in a M(G) has length � > 1.353, then the
tube of radius 1

2 log 3 about it is embedded (Gabai–Meyerhoff–Thurston). Hint: Fix
a lift γ ∗. If γ ∗1 is another of distance d away, then by the law of cosines applied to
a right triangle with base along γ ∗1 and sides of lengths, d,≥ �,≤ �/2 and cosh d ≥
(cosh �)/(cosh �/2).

8-3. Right-angled triangles. Return to the case of aright-angled triangle labeled as in
Section 8.4. Verify the additional formulas

cosh c = cotα cotβ,

cosα = tanh b coth c, cosβ = tanh a coth c,

sinh a = cotβ tanhβ, sinh b = cotα tanh a.

Specialize to the case that b = c =∞, α = 0.

8-4. Convex planar quadrilateral with two adjacent right angles. Let c denote the
length of the base which has right angles at its endpoints. Let c′ denote the length of
the opposite side, and a, b the other two sides. Denote the vertex angle facing side b
by β and that facing side a by α; necessarily α+β < π .
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Fig. 8.7. Planar right hexagons.

Verify the formulas

cosh a

sinα
= cosh b

sinβ
= sinh c′

sinh c
,

cosh c′ = − sinh a sinh b+ cosh a cosh b cosh c

cosh c =− cosα cosβ + sinα sinβ cosh c′.

These give the exact formulas for the orthogonal projection in a plane of a line segment
onto a geodesic (see Exercise 8-9 for a simpler version).

8-5. Complete the formulas for planar pentagons with four right angles by considering
the self-intersecting case when the side along β∗ crosses the side along b. The law of
sines remains the same except for some changes of sign. When applying the law of
cosines, for instance χ(β∗, γ ∗) changes to a−π i/2.

8-6. Planar right hexagons. Work out the formulas in the special case that the right
hexagon lies in a plane. Confirm that in the convex case the two laws have the form

sinh a

sinh a∗
= sinh b

sinh b∗
= sinh c

sinh c∗
, (8.22)

cosh c =− cosh a cosh b+ sinh a sinh b cosh c∗. (8.23)

Derive the corresponding formulas in the self-intersecting case, forming two quadri-
laterals each with three right angles.

How many side lengths uniquely determine the hexagon up to isometry, orientation
preserving or reversing?

Show that given any a, b, c > 0 there exists a unique convex right hexagon with
alternating sides of length a, b, c. Equivalently, there exists three mutually disjoint
geodesics in �2 whose respective distances apart are exactly a, b, c.

Specialize to the cases that all sides have the same length, and then that all vertex
angles are zero.
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Fig. 8.8. A pair of pants with a seam.

8-7. Pants. A pair of pants on a surface is a triply connected planar region bounded by
three mutually disjoint closed geodesics. The three common perpendiculars in turn
divide the pants into two right hexagons. Show that there is an orientation reversing
conformal map (a reflection) that pointwise fixes the common perpendiculars, and
interchanges the two hexagons. That is, every pants is preserved by an orientation
reversing involution that maps each boundary component onto itself.

In particular the area of a pants is 2π .
Show that the pants is uniquely determined by the lengths of the three boundary

geodesics.
In fact suppose the lengths of the three boundary curves c1, c2, c3 of a pants are

L1, L2, L3. Denote the length of the seam that is the perpendicular between c1 and
c2 by �. Show that

cosh �= cosh L3+ cosh L1 cosh L2

sinh L1 sinh L2
.

See [Fathi et al. 1979, §8] for a description of pants geometry.
Consider the limiting case that one boundary component shrinks to a single point

(puncture) and the other two have lengths a, b. There is uniquely determined geodesic
whose endpoints are at the puncture and which cuts the pants P into two annular
regions P1, P2, where P1 has the a-length side. Each Pi in turn can be cut into two
quadrilaterals each with one ideal vertex and three right angles. The two quadri-
laterals Q1,i , Q2,i of each Pi are symmetric under reflection. One side of Q1,i has
length a/2, b/2 respectively. Denote the lengths of the other two finite sides by a′, b′,
respectively. Show that

sinh(a/2) sinh a′ = 1, sinh(b/2) sinh b′ = 1.
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It is a fact (a consequence of the Schwarz Lemma [Ahlfors 1978]) a nested pair of
simply connected regions �1 ⊂�2 with corresponding hyperbolic metrics ρ1(z)|dz|
and ρ2(z)|dz| have the following property: ρ1(z) > ρ2(z), z ∈�1. From this, deduce
the following sharp form of the collar lemma (see [Buser 1992, Chapter 4]).

Collar Lemma 8.5.3. On a hyperbolic surface R suppose α, β ⊂ R are mutually
disjoint simple geodesics of lengths a, b. Set

a′ = arcsinh
1

sinh(a/2)
, b′ = arcsinh

1

sinh(b/2)
.

Then the distance-a′ annular neighborhood of width 2a′ about α is disjoint from the
distance-b′ annular neighborhood of width 2b′ of β.

For more computational practice show that the length Lα of each boundary com-
ponent of the collar of distance a′ from the geodesic α of length a is

Lα = a cosh a′ = a

tanh a/2
.

Note that Lα→ 2 as a→ 0.
Prove [Beardon 1983, Theorem 8.3.1], which asserts that if X, Y generate a nonele-

mentary fuchsian group without elliptic elements then

sinh
d(z, X (z))

2
sinh

d(z, Y (z))

2
≥ 1 for all z ∈ �2.

This inequality is best possible.

8-8. Polar, cylindrical, and horocyclic coordinates. Show that for the hyperbolic
metric ds in �2,

ds2 = dρ2+ sinh2 ρ dθ2, (8.24)

ds2 = cosh2 ρ dt2+ dρ2, (8.25)

ds2 = e−2ρ dt2+ dρ2. (8.26)

Equation (8.24) is called the polar representation of the hyperbolic metric ds; ρ
denotes hyperbolic distance from the origin and θ is the angle from the positive axis
to the ray ρ. Equally θ can be interpreted as the angular measure on ∂�2.

Equation (8.25) is the metric representation in terms of geodesic coordinates; t is
arclength along a geodesic α, for example the real diameter in the disk model, and ρ
is the distance of a point from α, along an orthogonal line through t . The equation
can also be regarded as a two dimensional form of cylindrical coordinates.

Equation (8.26) the metric representation in terms of horocyclic coordinates. Here
t is arclength along a horocycle, and ρ is signed distance along a geodesic orthogonal
at t . We choose the sign of ρ so that positive distance is toward the point on ∂�2

determined by the horocycle.
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Fig. 8.9. Cylindrical coordinate approximation.

The first formula is derived from expressing the hyperbolic metric in (euclidean)
polar coordinates,

ds2 = 4(dx2+ dy2)

(1− |z|2)2 =
4(dr2+ r2dθ2)

(1− r2)2
,

together with the fact that

eρ = 1+ r

1− r
.

Equation (8.26) is most easily derived in the upper half-plane model with the horo-
cycle {y = a > 0}. The desired formula results from substituting x = at and y = aeρ

into ds2 = (dx2+ dy2)/y2.
Equation (8.25) is more complicated to derive. Construct two quadrilaterals Q, Q∗

as follows.
The base of Q is on a geodesic; the left endpoint of the base has coordinate t along

the geodesic and the right end point is t +
t , where 
t is a small deformation. The
adjacent vertical sides are at right angles. The left side has length ρ and its top end is
labeled P(t, ρ); its coordinates are (t, ρ). The right side has length w. The top side
of Q is orthogonal to the right side; denote its length by u. Q has three right angles;
the nonright angle is subtended at the vertex P(t, ρ). Now extend Q by taking a
small deformation 
ρ and extending the right side until it has length ρ +
ρ; label
the vertex P(t+
t, ρ+
ρ). Let 
s denote the length of the segment from P(t, ρ)
to P(t +
t, ρ+
ρ). Thus we now have a larger quadrilateral Q∗ whose right side
has length w+ v for some v > 0.

We first work with Q. Insert the diagonal from the upper left to the lower right and
denote its length by d. It divides the right angle at the lower right vertex of Q into
angles α, π/2−α, where we take α to be adjacent to the bottom.

The diagonal forms two right triangles. Therefore

cosh d = cosh
t cosh ρ = cosh u coshw,

and also

tanh ρ = sinh
t tanα; tanh u = sinhw tan(π/2−α).
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Now tanh u ∼ u and sinh
t ∼
t , while cosh
t ∼ 1 and cosh u ∼ 1. Hence w ∼ ρ,
and then

u ∼ cosh ρ
t.

Now examine the right triangle Q∗ \Q. The side of length v satisfies v= ρ+
ρ−
w ∼ 
ρ. For its hypotenuse, 
s2 ∼ u2 + v2, since the sides are very short. From
these calculations Equation (8.25) follows.

The corresponding formulas for �3 are essentially the same:

ds2 = dρ2+ sinh2 ρ dθ2, (8.27)

ds2 = cosh2 ρ dt2+ dρ2+ sinh2 ρ dθ2 ≥ cosh2 ρ dt2+ dρ2, (8.28)

ds2 = e−2ρ ds2
H+ dρ2. (8.29)

Equation ((8.29)) is in terms of horocyclic coordinates about a horosphere H, where
dsH denotes distance in H and ρ is distance along a line orthogonal to H with positive
direction toward the associated point on ∂�3.

Equation ((8.28)) is in terms of cylindrical coordinates about a geodesic α; t denotes
distances along α, ρ > 0 denotes distances from α so that (ρ, θ) are polar coordinates
in the plane orthogonal to α at t . The volume form in these coordinates is

dV = cosh ρ sinh ρ dt dρ dθ. (8.30)

Equation (8.28) invites the following interpretation. Denote the convex core of
M(G) by C(G). If ρ represents the shortest distance of a point exterior to C(G) to
∂C(G), the hyperbolic metric restricted to the exterior of C(G) satisfies

ds2 ≥ cosh2 ρ ds2
∂C+ dρ2 >

1

4
e2ρds2

∂C+ dρ2.

One says that the exterior of C(G) is exponentially flaring.

Boundary length estimates for triangles and cylinders. The hyperbolic area element
in polar coordinates is

d A = sinh ρ dρ dθ. (8.31)

If 
 is a hyperbolic triangle, v is one of its vertices, and α is the opposite side,
Area(
) can be expressed in polar coordinates about v as,

A =
∫ ∫

A
sinh ρ(θ) dρ dθ =

∫
(cosh ρ(θ)− 1) dθ.

The area of the triangular region in 
 outside the distance-r neighborhood of α is∫
(cosh(ρ(θ)− r)− 1) dθ < e−r

∫
sinh ρ(θ) dθ < e−r Len(α).

In particular the area of a triangle is less than the length of its shortest side.
Following on in this vein, let f : S1 × [0, 1] → M(G) be the embedding of a

closed cylinder, that is a free homotopy between the simple loops γ1 = f (�1×{0}),



382 Right hexagons and hyperbolic trigonometry

γ2 = f (�1×{1}). Replace each arc { f (θ}× [0, 1])} by a geodesic arc with the same
endpoints, obtaining as a consequence a ruled cylinder C . The cylinder C can be
approximated by a union of thin quadrilaterals. Each quadrilateral can be divided
into two triangles. One of the triangles abuts γ1, the other abuts γ2. The total area
of the latter triangles is less than the length of γ2. Following [Thurston 1979, §9.3],
prove from the estimate above that

Area(C \ Nr (γ2))≤ e−r Len(γ2)+Len(γ1), (8.32)

where Nr (γ2) is the distance-r annular neighborhood of γ2. In particular, the area
of C is less than the length of ∂C . This finds essential use in the theory of ending
laminations for example in Lemma 5.6.7.

8-9. Orthogonal projection strictly reduces distances.Establish this often used prop-
erty: Let � ∈ �3 be a line and σ be a line segment of finite length which we may
assume is disjoint from �. Let σ ∗ ∈ � denote the orthogonal projection of σ to �.
Show that the length of σ ∗ is strictly less than the length of σ (unless σ is itself a
segment of �).

That is, if x and y in �3 lie on the same side of � and have distance ≥ r from �,
then the orthogonal projection of the two points x, y onto � satisfies

d(π(x), π(y)) < d(x, y). (8.33)

Hint: First verify that in a right triangle, the hypotenuse is strictly longer than either
leg. Then verify that in a planar quadrilateral with three right angles, the length of a
side with one end at the vertex with vertex angle θ 
= π/2 is strictly greater than the
length of the opposite side. Next show that the same property holds for a nonplanar
quadrilateral with three right angles by taking its orthogonal projection to the plane
formed by two orthogonal edges. Finally return to the original problem and drop a
perpendicular from one end of σ to form a quadrilateral with three right angles and a
right triangle.

Deduce from Equation ((8.28)) that it is also true that

d(π(x), π(y)) < 2e−r d(x, y), (8.34)

which is better than Equation (8.33) when r > log 2. More precisely, if x, y are equal
distance r from � and the segment [π(x), π(y)] has length L , then

2 cosh d(x, y)= 1+ cosh L + (cosh L − 1) cosh 2r.

8-10. Riemann surfaces made out of pentagons.Show there exists a unique regular
right-angled pentagon up to isometry; find a formula for the side length s.

Position it so that one side is the “bottom”. We will refer to the sides directly on
its right and its left as the “vertical” sides. Reflect across the bottom giving a 6-sided
right polygon with its two vertical sides of length 2s and the others of length s. Then
reflect this pair across say the right vertical side giving a right angled 8-sided polygon
P , the union of four pentagons, four of whose sides have length 2s. From this you can
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construct a hyperbolic surface of genus two. From now on, P will be the fundamental
unit.

Keep adjoining copies of P to the right side. Each time you attach a unit P , you
will attach four pentagons. You will be subtracting an edge and adding five new edges.
In short, you will be able to construct a closed surface of genus g ≥ 2 out of 4(g−1)
pentagons comprising a 4g sided right polygon. We have proved:

Any closed surface of genus g ≥ 3 is a covering surface of a closed surface of genus
two.

8-11. Riemann surfaces made out of equilateral triangles. Consider a closed topo-
logical surface embedded in �3, say, of genus exceeding one. Triangulate it in any
way. Then based on the combinatorics of your triangulation, build a homeomorphic
surface R made out of euclidean equilateral triangles. It need not be embedded in �3.
Still, R can be given a complex structure by flattening the vertex angles to 2π . What
is remarkable about such a surface are its properties [Jones and Singerman 1996;
Schneps 1994; Stephenson 1999; Bowers and Stephenson 2004; Mulase and Penkava
1998]:

The following properties are equivalent:

(i) R is composed of euclidean equilateral triangles.
(ii) There exists a meromorphic function f : R → �2 such that its critical values,

that is the image of its critical points C , lie in the set {0, 1,∞}. (A critical point
is a point ζ about which f is not a local homeomorphism; the corresponding
critical value is f (ζ ).)

(iii) R \C is a finite cover of the 3-punctured sphere; alternatively, R \C = �2/�

where � has finite index in the modular group.
(iv) R can be represented by an algebraic curve whose coefficients lie in a finite

extension to the field 
 of rational numbers.

The first listed property can be characterized in terms of the existence of a special
meromorphic quadratic differential q dz2 on R whose critical trajectories divide R
into equilateral triangles in the singular euclidean metric associated with q dz2. In
fact the f -preimage of the segments [∞, 0], [0, 1], [1,∞] form a triangular graph
on R. Such graphs were called by Grothendieck dessins d’enfants, although is seems
unlikely a child would come up with one. It has the property that the vertices, the
elements of C , can be labeled + or − so that the two endpoints of each edge have the
opposite sign. On �2, the graph complement can be connected and simply connected,
so it can just be a finite tree. For a wealth of information about dessins see [Schneps
1994].

These Riemann surfaces, called Belyǐ surfaces, can be nicely uniformized by the
circle packing technique.

Since there are infinitely many triangulations possible, it is natural to ask whether
the Belyǐ surfaces are dense in the Teichmüller space. Compare with Exercise 4-17.
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After all, the coefficients of an algebraic curve can be approximated by algebraic
numbers.

In some of the following exercises the term “generator pair (A, B)” of a once
punctured torus group is used. This means that A, B are loxodromic with parabolic
commutator K = [A, B] = AB A−1 B−1 and generate a discrete group acting on �3.
Thus if A, B are represented by matrices, tr(K ) = −2. We can normalize so that
K = (−1

0
−2
−1

)
.

8-12. Here is a construction, from [Parker and Series 1995], associated with a special
generator pair 〈A, B〉 that gives rise to a convex planar pentagon with four right angles
and an ideal vertex.

Let α∗ denote the axis of A oriented toward its attracting fixed point, and β∗ =
B(α∗) the axis of B A−1 B−1 likewise oriented toward its attracting fixed point. We
are going to assume that α∗ and β∗ lie in the same plane P and that P is preserved
by A. Such a situation will arise in Exercise 8-20.

Denote the common perpendicular to α∗ and β∗ by γ . Find the line β, perpen-
dicular to α∗ such that A−1 = γβ. Find the line α perpendicular to β∗ so that
B A−1 B−1 = αγ .

For the sixth line γ ∗ we would like to take the axis of C = A · B A−1 B−1 = K .
But this is parabolic. So we have instead an ideal line at the ideal vertex which is the
fixed point of K .

Now for the side lengths, χ(β, γ )= a∗ +π i and χ(γ ,α)= b∗ +π i , but a∗ = b∗
(why?). Hence, from (8.12), we have

cosh d = 1+ cosh2(L/2)

sinh2(L/2)
,

where d is the distance between the axes of A and B AB−1 and L is the translation
length of A: L = 2 log λ where λ is the larger eigenvalue of A. The transformation A
can be assumed to have real eigenvalues since it preserves the plane P . This equation
can be transformed by introducing the half-angle formula to become

cosh
d

2
= 1

tanh(L/2)
, tanh

d

2
= 1

cosh(L/2)
. (8.35)

8-13. [Minsky 1999] Suppose (A, B) is a generator pair of a once punctured torus
group. Let α,β, γ denote the axes of A, B,C = AB respectively. Prove for the right
hexagon α, γ ∗,β,α∗, γ ,β∗ that

sinh2 χ(β∗, γ ∗) sinh2 χ(γ ∗,α∗) sinh2 χ(α,β) = −1. (8.36)

This equation does not depend on how the sides are oriented. Hint: To the law of
cosines, introduce Lemma 1.5.6(iv) upon recalling Equation (7.12).

8-14. [Minsky 1999] Continuing with the situation of Exercise 8-12, let c∗ denote
the length of the side on γ ∗.
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Consider the ray β∗o of β∗ that extends from the common endpoint of the sides on
α,β∗, runs along the side on β∗, and ends at ζ1 ∈ ∂�2. Let �1 be the ray from ζ1 that
is orthogonal to γ ∗. Let d1 be the length of segment of the side on γ ∗ cut off by �1,
namely the length of the orthogonal projection of β∗o to γ ∗. Correspondingly take the
ray α∗o of α∗ and let d2 denote the projection of α∗o onto γ ∗. Prove that

c∗ ≤ d1+ d2+ log 3. (8.37)

Hint: We have two quadrilaterals each with three right angles and one zero angle.
From Equation (8.14)

sinh2 χ(α, �1) sinh2 χ(γ ∗,β∗)= 1,

sinh2 χ(β, �2) sinh2 χ(γ ∗,α∗)= 1,

and with the help of (8.36) confirm that

sinh2 χ(α,β) = − sinh2 χ(α, �1) sinh2 χ(β, �2).

Now if d = |Re z| then

ed − 1

2
≤ ed − e−d

2
< |sinh z|< ed + e−d

2
< ed .

Applying this to the previous equation gives the desired result.

8-15. [Minsky 1999] Given a loxodromic element X define

coreD(X) = {�x ∈ �3 : d(�x, X �x)≤ L(X)+ D}.
Here L(X) is the translation length 2 log |λ| of X , where λ denotes the larger eigen-
value. Thus CoreD(X) contains the tube of radius D about the axis of X , but it is
larger, especially for small L(X), as X becomes closer to parabolic. In the limit, the
core becomes a horoball at the parabolic fixed point.

Prove that for

D = 4 arcsinh 1+ log 3= log 3(1+√2)4,

any generator pair (A, B) of any once-punctured torus group satisfies

coreD(A)∩ coreD(B) 
= ∅.

Hint: Apply Exercise 8-14 to the two quadrilaterals each with three right angles
formed by the lines from endpoints of β∗ and α∗ orthogonal to γ ∗. For p ∈ c∗ on the
projection of β∗, the distance of p in particular from the side on α does not exceed
2 arcsinh 1 and therefore by triangle inequality d(p, Ap) ≤ 4 arcsinh 1+ L(A) (note
A−1 = β∗γ ∗). Likewise d(p, Bp) ≤ 4 arcsinh 1 + L(B). By Equation (8.37) the
D-cores intersect on the side on γ ∗.

Corollary 8.5.4. Given a generator pair (A, B) there exists a point p∈�3 and ρ<∞
such that both d(p, Ap) < ρ and d(p, Bp) < ρ.
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8-16. Hyperbolic Heron’s formula. The following formula for the area |A| of a
euclidean triangle is attributed to Heron of Alexandria, who lived almost 2000 years
ago. Letting a, b, c denote the side lengths of a euclidean triangle and s= (a+b+c)/2
the half-perimeter,

|A|2 = s(s− a)(s− b)(s− c).

An analogue of sorts for hyperbolic geometry is as follows [Fenchel 1989]. Let
A, B,C = −(B A)−1 be normalized matrices. Fix one of the eigenvalues of each of
the matrices and denote the choices by λA, λB, λC . Set χA = log λA, χB = log λB ,
and C = log λC . Finally set

s = χA+χB +χC

2
.

The formula states that

tr(AB A−1 B−1)− 2 = 16 cosh s cosh(s−χA) cosh(s−χB) cosh(s−χC). (8.38)

Now prove this! (Hint: Start by expressing the left hand side first in terms of the
traces and then in terms of the eigenvalues.)

Confirm that the numerical value of the right side of (8.38) is invariant under action
of the group G of Möbius transformations generated by 〈A, B〉. That is the generators
A, B used in the formula can be replaced by generators ϕ(A) ϕ(B) where ϕ is any
automorphism of G. (Hint: The commutator [A, B] is independent of ϕ)

Assume that none of the eigenvalues is ±1 (the traces are not ±2). Show that there
exist half-rotation matrices A∗, B∗,C∗ with A = C∗B∗, B = A∗C∗, C = B∗A∗ such
that the associated axes form a generalized right hexagon, after assigning orientations.
Confirm that

− tr2(C∗B∗A∗)
16

= cosh s cosh(s−χA) cosh(s−χB) cosh(s−χC).

The next four problems outline the development by John Parker and Caroline Series
of explicit bending formulas for simple bending in once-punctured torus deformation
spaces.

8-17. The Parker–Series bending formula [Parker and Series 1995]. Let’s start with
the following observation. Suppose P is a plane in �3 and � is a given line in P .
Suppose we are also given a Möbius transformation V such that the line V−1(�) also
lies in P and does not have a common endpoint with �. let �⊥ be the line perpendicular
to both � and V−1(�). Set ζ = �⊥ ∩ V−1(�). The map V sends P onto a plane V (P)
which intersects P along �. It sends � to V (�). The line V (�⊥) through V (ζ ) ∈ � is
the line perpendicular to � and V (�).

Find the midpoint ζm ∈ � between �⊥∩� and V (ζ ). Let �m be the line through ζm ,
perpendicular to �, such that half-rotation ιm about �m sends the line �⊥ onto the line
V (�⊥)⊂ V (P). Necessarily ιm exchanges the planes P and V (P). Conclude that ιm
also sends V−1(�) onto V (�).
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Now construct the line �0 orthogonal to P and passing through the midpoint of the
segment [�⊥ ∩ �, �⊥ ∩ V−1(�)] of �⊥. Let ι0 denote the half-rotation about �0. Then

ιmι0(�) = ιm(V
−1(�)) = V (�),

ιmι0(V
−1(�)) = ιm(�) = �.

That is, the transformation X = ιmι0 sends the lines � to V (�) and V−1(�) to �. Show
that this implies that X = V . The axis of V must then be the common perpendicular
to �m and �0.

Next consider �1= V (�0)= ιm(�0) which is orthogonal to V (�⊥) midway between
V (ζ ) and V (�). Then ι1= ιmι0ιm is the corresponding half-rotation and we also have
ι1ιm = ιmι0 = V . Thus �1 is also orthogonal to the axis of V .

With this construction under our belt we can set up the following interesting right
hexagon. Suppose U and V are loxodromic transformations whose axes have no
common endpoint. Assume the axis α∗ of U and V−1(α∗) lie in a plane P . Show
that the following six lines determine a right-angled hexagon:

α∗= Axis(U ),

γ = common perpendicular to α∗ and V−1(α∗) = Axis(V−1U V ),

β∗= line orthogonal to P at midpoint of segment [γ ∩α∗, γ ∩ V−1(α∗)],
α = Axis(V ),

γ ∗= V (β∗),
β = V (γ ).

To prepare for the law of cosines orient the sides of the hexagon in the usual way.
Let d > 0 denote the hyperbolic distance between a∗ and V−1(α∗). Then

χ(α∗,β∗)= χ(β∗γ ∗)= d − iπ

2
.

Also χ(β∗, γ ∗)=L+π i where L= 2 log λ > 0 and λ is the larger eigenvalue of V .
Therefore

cosh L = sinh2 d

2
+ cosh2 d

2
coshχ(β, γ ).

Specialize to the case that (A, B) is a generator pair for a once-punctured torus
group; this means that A, B are loxodromic generators with parabolic commutator
AB A−1 B−1. Set U = A and V = B so that in the formula above d is the distance
between the axes of A and B−1 AB. Assume that A preserves the plane P so the
eigenvalues of A are real; L A will denote the larger eigenvalue. Let LB denote the
larger eigenvalue of B; LB will not in general be real so the translation length of B
is |LB |. However the real part LB is positive. Now we can incorporate (8.35): apply
the double angle formula to cosh LB and substitute for cosh d

2 and sinh d
2 to end up

with the beautiful formula:
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Fig. 8.10. A Parker–Series right hexagon expressing bending.

The Parker–Series Bending Formula 8.5.5.

cosh2 χ(β, γ )

2
= cosh2 L A

2
tanh2 LB

2
. (8.39)

We will digress in order to interpret χ(β, γ ). Consider the vertical half plane Q
based on � in the upper half space model of �3. Suppose a fuchsian once-punctured
torus group is acting in Q. Let α∗ denote the positive vertical axis oriented toward∞
and assume it is the axis a hyperbolic generator X . Now X corresponds to a simple
loop α, not retractable to the puncture, on the quotient punctured torus and α∗ is a lift
of α. Choose a simple loop σ which crosses α exactly once, and from left to right.
Fix a lift σ ∗ which crosses the line α∗ from its left side to its right at a point ζ and
is the axis of a Möbius transformation Y. We may arrange things so that (X, Y ) is a
generator pair.

We will deform the fuchsian group 〈X, Y 〉 by a quakebend, also known as a complex
earthquake, or shearing and bending. We start by giving a complex number of the
form κ = log ρ+φi , with ρ > 0 and −π < φ < π .

Apply the transformation Sρ : z = x+ iy �→ ρz to the right half of P . In particular
the point ζ ∈ α∗ is moved up or down along α∗, depending on whether ρ is > 1 or
< 1, signed hyperbolic distance log ρ. Correspondingly the right half of the line σ ∗
is moved up or down and becomes a half line from ρζ . The point B(ζ ) on the right



8.5 Exercises and explorations 389

half of σ moves to ρY (ζ )∈ P . Actually S is the restriction of Möbius transformation
of �3.

Next rotate the right half of Q about the vertical α∗ by angle φ, measured so that
φ = 0 corresponds to no bending. Denote this elliptic transformation by Eφ . The
point EφY (ζ ) rotates off P to a point ζ̂ ∈ �3.

This process results in the deformation Y �→ Yφ = EφSρY and

G = 〈X, Y 〉 �→ Gφ = 〈X, Yφ〉.
This will be a new punctured torus group provided κ is sufficiently small and that the
deformed generators still satisfy the trace relation. Note that the quakebend depends
on two real parameters; preservation of the commutator trace −2 gives rise to two
real equations.

For the group Gφ , the lines α∗ and Yφ(α∗) lie in the same plane Qφ — the rotated
right half of Q. The angle φ is the dihedral angle between Yφ−1(Qφ) and Qφ .

Return to the situation preceding (8.39). Let X correspond to A and Y to B. In the
Parker–Series equation (8.39),

χ(β, γ ) = κ log ρ+φi,

where log ρ > 0 is the distance along α∗ from α∗ ∩β to α∗ ∩γ , and φ is the dihedral
angle from P to B(P).

Bend the right half-plane abutting α∗ with respect to the left half-plane so that
the two make the dihedral angle φ where φ = 0 corresponds to no bending at all,
−π < φ < π . Let x ∈ � be a given number. The line σ is broken in two parts.
The left part ends at ζ ∈ α∗. From ζ continue for x units along α∗ (in the positive or
negative direction depending on the sign of x) reaching a point ζ1 ∈α∗. Now continue
in the right half plane from ζ1, making the same angle with α∗ as the original σ .

Corollary 8.5.6. Suppose the sequence of generator pairs {(An, Bn)} are the result
of bending along the axis of An . Assume that lim An is a parabolic transformation.
Then on a subsequence either lim |LBn | =∞, or lim ρn = 1 and limφn = π .

Can the second possibility occur?

8-18. Real traces.Suppose (A, B) is the generator pair of a fuchsian once punctured
torus group. Assume that the axis of B is orthogonal to the axis of A. Bend B along
the axis of A getting a new element Bφ . Show that the trace of Bφ is real.

Hint: Assume A, B act in the vertical half plane along � in the upper half space
model and the axis of A is the vertical axis from the origin. Show that Bφ = EφB,
where

Eφ =
(

eiφ 0
0 e−iφ

)
.

8-19. [Parker and Series 1995]Choose loxodromic Möbius transformations A and B
so that the common perpendicular to their axes is the vertical half-line from 0 ∈ �

in the upper half space model of �3. Show that their fixed points are necessarily
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symmetric with respect to 0. Normalize A to have fixed points ±1. Write the fixed
points of B as ±reiθ . Show that if both A and B have real traces, which we may take
to be ≥ 0, then

A =
(

a b
b a

)
, B =

(
u vreiθ

(v/r) e−iθ u

)
,

a2− b2 = u2− v2 = 1, a, b, u, v > 0.

We will require as well that tr[A, B] =−2. Using Proposition 7.2.1, show that neces-
sarily θ 
= 0 and the trace condition is satisfied if and only if either r = 1 or θ = π/2.
We will work only with the case that θ = π/2 which holds if and only if

bv
(

r + 1
r

)
= 2, b, v > 0, r ≥ 1. (8.40)

Then the group G = 〈A, B〉 depends only on the two real numbers b, v > 0. When
r = 1, that is when bv sin θ = 1, show that G is fuchsian, preserving the unit disk.

Show that each of I(A) and I(A−1) is tangent to I(B) and to I(B−1) at a point on the
line segment between the centers. Therefore the common exterior of the four circles
has two components, an inner one containing 0 and an outer one containing∞. Each
circular polygon is bounded by four sides. Show that A and B pair the opposite sides
of both components (see §1.6). Conclude that the points of tangency are parabolic
fixed points of [A, B] and its conjugates. Therefore the quotient consists of two
once punctured tori and (A, B) is a generator pair of a group in our space. In terms
of complex probabilities introduced in Exercise 1-37, what are their coordinates?
Then draw the fundamental region for some parameter values using Wada’s computer
program.

The common exterior of the planes determined by the four circles forms the Ford
fundamental polyhedron, which therefore has only four faces.

8-20. The single bend formula [Parker and Series 1995]. Carry on with the two real
parameter class of once punctured torus groups G = 〈A, B〉 introduced in Exercise 8-
19 above. These represent a two dimensional slice through the four real dimensional
deformation space T. Assume that r > 1 so that G is not fuchsian. We are going to
explicitly describe how each of the two boundary components of the convex hull are
bent. It will turn out that each component arises by bending along a single line and
then its conjugates: the groups are obtained by pure bending along the axis of A, and
automatically, along the axis of B. The two bending angles serve also as parameters
for the class of groups G.

Start by establishing the symmetry with respect to the reflections J in the real axis
and J⊥ in the imaginary axis: J AJ = A, J⊥AJ⊥ = A−1, and J B J = B−1, J⊥B J⊥ =
B. The symmetries preserve 〈A, B〉 as well. Therefore the limit set and the convex
hull are also invariant under these symmetries.

Using symmetry show that �(G) intersects the real and imaginary axes only in the
four fixed points {±1,±ri}. This sets the stage for showing the axes of A and B lie
in the opposite boundary components of the convex hull.
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Let C denote the convex hull of the limit set as in §3.10. First examine the vertical
half plane P resting on �. This plane contains the axis of A, and the axis α of A is
automatically contained in C. If α is not on the boundary ∂C then P ∩ ∂C consists
of two convex arcs σ1, σ2 which are separated in P by α, one on each boundary
component 	1, 	2 of C. By the paragraph above, the end points of these arcs must
be the fixed points of A. If either is a geodesic it must agree with α and α ⊂ ∂C. At
most one can be α. Each of σ1, σ2 which is not a geodesic has bends in it. For such to
occur, there must be a (geodesic) line or lines l1, l2 in the same boundary component
or components of C and which intersect P .

Now J (l1), say, must also be a line in 	1 yet it would cross l1 unless J (l1) = l1.
Hence l1 is orthogonal to the plane P . Show that l1 must in fact lie in the vertical
plane P⊥ resting on the imaginary axis. Once we know this, we can conclude that
l1 = β. Since this cannot also hold for l2 it follows that l1 = α ⊂ 	1. Since the
argument applies to all bending lines l1 ⊂	1 that are transverse to P it shows that β

is the only such line.
Repeating the argument deduce that β ⊂ 	2 and α is the only bending line that is

transverse to P⊥.
Summing up, the axis of A lies in 	1. All its conjugates in G = 〈A, B〉 do as

well since 	1 is invariant under G. These are the totality of the bending lines on 	1,
and all the bending angles are the same. Likewise the axis of B and its conjugates
comprise the bending lines of 	2, all with the same bending angles. The conditions
Equation (8.40) on the 2-real parameter groups 〈A, B〉 are necessary and sufficient
that the corresponding convex hull boundary components are bent along the axes of
A and B.

The endpoints of the bending lines on the two components separate each other on
�(G).

Apply to this case the Parker–Series bending formula. We first point out that the
assumption made in Exercise 8-12 holds, namely that the axis α of A and the axis
B−1(α) of B−1 AB lie in the same plane: For the bending lines in 	1 separate it into
infinitely many components. Each component is contained in the hyperbolic plane
determined by any two of its infinitely many boundary components.

Return to Equation (8.39). In the present case the translation lengths L A, L B =LB

have been taken to be both real and positive. The left side must be positive as well.
Since χ(α,β) = log ρ + iφ, this is possible only if ρ = 1 so that the group G is
obtained by pure bending. Therefore for 	1,

cos
φA

2
= cosh

L A

2
tanh

L B

2
.

Interchanging the roles of A and B for 	2,

cos
φB

2
= cosh

L B

2
tanh

L A

2
.
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Here φA, φB ∈ (0, π) are the bending angles at the axes of A and B. In terms of the
matrix A, L A has the expression

L A = 2 log(a+ b), cosh
L A

2
= a, sinh

L A

2
= b,

and the analogous equations in terms of u, v hold for L B . Show that φA = 0 if and
only if bv = 1, that is, r = 1 and G is fuchsian. In this case also φB = 0.

Solving for L A, L B when r > 1, we end up with

The Parker–Series Single Bend Formula 8.5.7.

b = sinh
L A

2
= sin

φA

2
cot

φB

2
, v = sinh

L B

2
= sin

φB

2
cot

φA

2
. (8.41)

In particular, there is a homeomorphism between pairs of angles φA, φB ∈ (0, π) and
(nonfuchsian) quasifuchsian groups with convex hull boundaries bent along the axes
of A, B at angles φA, φB respectively.
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157, 217, 376, see also under
Gabai, David

Miller, Andrew, 168, 298, see also
under McCullough, Darryl

Milley, Peter, 114
Milnor, John, xvii, 33, 329
minimal lamination, 144
minimally parabolic, 246
Minkowski space, 36
Minsky, Yair, xi, xvi, 98, 150, 251,

254, 257, 258, 264, 266, 269,
291, 297, 307, 316, 337, 341, see
also under Canary, Richard

Mirzakhani, Maryam, 138
Mitra, Mahan, 316
Miyachi, Hideki, 264
Mizushima, Shigeru, see under

Kojima, Sadayoshi
Möbius strip, 228
Möbius transformation, 1

axis, 12, 13, 350, 355, 357
composition, 2
convergence, 49
eigenvalues and eigenvectors, 4
extension to space, 6
formula for, 349
half-rotations, 348
normalized matrix representation, 2
orientation reversing, see anti-

Möbius
quaternion representation, 39
square roots, 353
standard forms, 3

modular group, 84
modular transformation, 88
moduli space, 82
modulus

of annulus, 284

of circular quadrilateral, 229
monodromy group, 339
Montel’s Theorem, 50, 59
Montesinos, José María, 328
Mordell Conjecture, 71
Morgan, John, 223, 324, 329
Morley, see Petersen–Morley
Mosher, Lee, 290
Mostow, George, xiii, 161, 174

Rigidity Theorem, 157, 160, 245,
318

history, 173
Mozes, Shahar, see under Burger,

Marc
MRI, 233
MSRI, 72
multicurve, 337
Mumford, David, xv

with Series and Wright, 46, 76, 92,
99, 122, 222, 248, 272

Munkres, James, 132
Munzner, Tamara, 7, 62, 84
Myers, Robert, 301, 333, 336

navigation, 4
nearest point retraction, 145, 146, 151,

344
negative curvature, see also pinching

and hyperbolic
characterizations, 16
discrete, 16
of groups, 97, 98

nerve, 230
Neumann, Walter, 165, 235
new parabolics, 203
Nicholls, Peter, 175, 177
Nielsen, Jakob, 144, 180

kernel, 183
Realization Problem, 82, 182, 289
transformation, 291

noneuclidean geometry, xvi
normal covering, 64
normal subgroup, 64
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normalized Möbius transformation, 2
normalizer, 63
Not Knot, 62, 84, 326
number theory, 84

octagon, hyperbolic, 350
octahedral group, 56, 103
Ohshika, Ken’ichi, xv, 97, 205, 223,

254, 255, 259, 286
Ol’shanskiı̆, A. Yu., 98
OPTi, 264
orbifold, 62, 65, 329

euclidean, 104
spherical, 103

orbital counting function, 176
ordinary set �(G), 60
oriented lines, 354, 368
orthogonal projection, 382
Otal, Jean-Pierre, 141, 143, 153, 223,

224, 299, 313, 324, 334, 335,
344

outer circles, 12

paired punctures, 124–126
joining, 237
opening up, 246

pairing cylinder, 125
pants, 378

decomposition, 142, 233, 249, 315,
346

medium size, 235
Papakyriakopoulos, Christos, xiii
parabolic group, 87, 164
parabolic transformation, 3

accidental, 171
associated geometric structures, 125
formulas for, 350
horosphere and horoball, 13
least translation length, 107
new (Jørgensen’s conjecture), 203

parallel loops, 286
pared manifold, 322
Parker, John, xi, 155

Parker–Series bending formulas, 387,
392

Patterson, Samuel J., 175
Peano curve, 268
Penner, Howard, xi
pentagon, 373, 377, 382
Perelman, Grigori, xiv, 322, 324, 329
peripheral structure, 244
Petersen–Morley Theorem, 367
Petronio, Carlo, 122, 179, 214, 215,

234
Picard group, 93
Pignataro, Thea, see under Jørgensen,

Troels
pinching

(curvature bounds), 302, 324
(limiting process), 218, 248, 249,

266, 270, 274, 275, 286, 314
estimate, 249, 284
loops, 270, 277, 281
Theorem (Ohshika), 286

Pirolli, Peter, see under Lamping,
John

planar
covering surface, 76
pentagon, 373, 377
quadrilateral, 376
Riemann surface, 77
right hexagon, 377

pleated surface, 148, 150
pleating locus, 149
PNC manifolds, 302, 303
Poenaru, Valentin, see also under

Fathi, Albert
Poincaré, Henri, xiii, xvii, 8, 36, 116

Conjecture, 8, 322, 329
dodecahedral space, 8
Polyhedron Theorem, 122
series, 177

Poisson integral formula, 282
polygon, hyperbolic, 7
polyhedral

convergence, 194
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deformation, 34
group, 56, 100, 103
surface, 16, 70

polyhedron, see also fundamental p.
Dirichlet, 116
Ford, 120
rigidity, 7
volume, 34

Pommerenke, Christian, 175, 184,
200, 267

Porti, Joan, 214, 216, 330, see also
under Boileau, Michel

Prasad, Gopal, 156, 161
presentation, 68
primitive curve, 235
primitive element, 55
profinite completion, 102
projective model, 35
projective structure, 338

by grafting, 339
discreteness locus, 339, 340, 343
extended Bers slice, 340
monodromy (holonomy) group, 339
Thurston coordinates, 344

properly discontinuous, 51, 60, 72
Przeworski, Andrew, 114, 217
pseudo-Anosov, 275, 289, 306, 313

iterated, 278
pseudosphere, 17
puncture, 70, 72
punctured disk metric, 84
punctured torus, 91, 291, 361, 363

group, 91, 124, 270, 272, 361, 363,
384

hexagonal, 91, 179

quadratic differential, 178, 305
quadratic forms, 84
quadrilateral

circular, 229
flattened tetrahedron, 234
marked, 229, 230
planar with two right angles, 376

with three right angles, 374
quasiconformal

deformation, 80
deformation space, 242
extension, 338
mapping, 79, 173

quasifuchsian
deformation space, 314
group, 134, 167, see also punctured

torus, group
illustration, 267, 268

space, 262
quasiisometry, 134, 172, 174
quaternions, 38, 358

�-tree, 223
ramification, see branch
rank of cusp, 125
Rao, Ramana, see under Lamping,

John
Ratcliffe, John, 33, 68, 165, 218
real projective structure, 336
real tree, 223
realizable lamination, 149, 256
recurrent geodesic, 138
recurrent ray, 159, 172
reducible, see also irreducible

automorphism, 275, 288, 289
group, 83
pseudo-Anosov, 275
representation, 239

Rees, Mary, 142
reflection

decomposition into –s, 25
in a point, 41
in a sphere or plane, 1, 23, 27, 40

regular exhaustion, 251
regular set �(G), 60
Reid, Alan, 235, 323, 327
Reimann, Hans Martin, 133
relative compact core, 156, 252
relative end, 252
relatively hyperbolic, 98
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relator, 68
representation variety, 239

discreteness locus, 241, 247, 249,
340

fuchsian groups, 304
local coordinates, 154
quasiconformal deformation space,

242
residually finite, 346
retraction

in hyperbolically convex set, 171
nearest point, 145, 146, 151, 344
of �3 to line, 10

rhumb line, 4
Ricci flow, 329
Riemann Mapping Theorem, 71
Riemann surface, 69

(integral) grafting, 337
compact bordered, 75
from equilateral triangles, 383
from ideal triangles, 233
from interval exchange, 185
from pentagons, 382
genus 2, 94
marked, 80
projective structure, 340

Riemann–Hurwitz formula, 64
right hexagon, 375, 377

degenerate, 367, 371, 372
generic, 366
trigonometry, 368

right triangle, 372, 376
rigidity

of homotopies, 157
of homotopy equivalences, 245
of polyhedra, 7
quasiconformal, 244
theorems, see under Mostow, Mar-

den, Sullivan
topological, 259

Riley, Robert, xiv, 123, 326, 327
Rips, Eliahu, 97
Rivin, Igor, 7, 233

Rodin, Burt, 231
Rolfsen, Dale, 326
rolodex, 246, 295, 296
Royden, Halsey, 82
Rüedy, Reto, 70

Sad, Ricardo, 304
Sakai, Tsuyoshi, 332
Sakuma, Makoto, see under Akiyoshi,

Hirotaka
Sarić, Dragomir, 102
Sario, Leo, 69, 77
satellite knot/link, 325, 326
Schafer, James, 101
Schläfli formula, 34
Schneps, Leila, 383
Schottky boundary cusp, 250
Schottky group, 75, 80, 98, 99, 124,

131, 168, 222
classical, 77
dimension of limit set, 175
illustration, 263

Schroeder, Viktor, see under
Ballmann, Werner

Schwartz, Rick, 363
Schwarz Lemma, 379
schwarzian derivative, 46, 339
schwarzian differential equations, 338
Scott, Peter, xiv, xvi, 69, 155, 167,

261, 324, 328, 332, 346
Scott–Shalen theorem, 239
second kind, group of, 74, 75, 78, 98
sectional curvature, 18, 156

pinched, 302, 324
Seifert Conjecture, 324, 329
Seifert fiber space, 328, 329
Seifert–Weber dodecahedral space,

120
Selberg’s Lemma, 53, 68, 128, 158,

171, 302
self-bumping, 249, 266
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Series, Caroline, xi, xvi, 138, 154,
155, see also under Mumford,
David and Parker–Series

Shalen, Peter, 69, 155, 171, 212, 223,
240, 305, 328, see also under
Canary, Richard and Scott–
Shalen

Shalen–Scott core, see compact core
Shiga, Hiroshige, 339
Shimizu, Hideo, 115
Shinnar, Meir, 115
short geodesics, 109, 152, 360

drilling out, 334
shrinkwrapping, 255
shuffle, 246, 295, 296
Siegel, Carl Ludwig, 53, 84
Sierpiński gasket (carpet), 319, 320
simplicial volume, 228
simultaneous uniformization, 136, 262
Singerman, David, 102
singular fiber, 328
singular set of an orbifold, 65, 329
Skinning Lemma, 277, 317, 321
skinning map, 317
Skóra, Lidia, 224
Slodkowski, Zbigniew, 304
Snap, 326
SnapPea, 234, 326
software, see under computer
solenoid, 102
solid cusp torus, 92, 125
solid pairing tube, 124, 126
solid torus, 77
Soma, Teruhiko, 255, 277, 278, 336,

347
soul, 183
Souto, Juan, xvi, 200, 205, 242, 254,

255, 259, 260, 298–300, 315,
333, 335

spacelike, 34, 36
sphere at infinity, 11
Sphere theorem, 322
spherical manifold, 8

spine, 116
spinning, 233
Springborn, Boris, 7
Springer, George, 69
square root of Möbius t., 353
stabilizer, 49
standard form of Möbius t., 3
Stephenson, Kenneth, xi, 231
stereographic projection, 2, 27, 34
Stillwell, John, xvii
Storm, Peter, 162, 318, 329, 330
Strebel, Kurt, 81, 143, 290, 306, 307
strong convergence, 205
strong stability, 243
Strong Torus Theorem, 324
Struik, Dirk, 16, 18
Sturm, Jacob, 115
Sugawa, Toshiyuki, 264, 340
Sullivan, Dennis, 147, 170, 177, 231,

284, 304, 305
Rigidity Theorem, 79, 158, 259,

265, 266
surface area and volume, 227
Swarup, Ananda, 244, see also under

McCullough, Darryl
switch condition, 308
symmetry lines, 362
systole, 91, 359

tame
end, 252, 324
manifold, 252, 253, 334, 347, see

also Alfors Conjecture, Bona-
hon’s Criteria, untameness

Tameness Conjecture (Theorem), 205,
242, 250, 254, 258, 260, 284,
303, 305

Tan, Ser Peow, 343, 344, see also
under Kojima, Sadayoshi

tangents to limit sets, 95
Tanigawa, Harumi, 339
Taniguchi, Masahiko, 143
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Taylor, Edward, 175, see also under
Canary, Richard

Teichmüller, Oswald, 80
distance, 81
mapping, 81
modular group, see mapping class

group
ray, 305
space, 80, 237, 264

boundary, see under Bers,
Thurston

geodesics, 81
relative hyperbolicity, 98
surface with cone points, 311

tetrahedral group, 56, 103
tetrahedron, flattened, 234
tetrahedron, ideal, 356, 359

volume, 33
Theorem A, A+, 302
Theorem B, 303
Theorema Egregium, 17
thick/thin decomposition, 116, 150,

166
Thickstun, Thomas, 301
thin part, see thick/thin decomposition
Thurston, Nathaniel, 111, 157, 376,

see also under Gabai, David
Thurston, William, xiv, 46, 67, 98,

133, 140, 146, 161, 165, 173,
186, 206, 212, 214, 215, 219,
233, 251, 253–257, 268, 271,
274, 275, 284, 288, 290, 291,
293, 302, 313, 314, 316, 318,
320, 324, 326–330, 343, 346

and convex hull, 144
boundary, 280, 281, 314
Compactness Theorem, 206, 227,

286
coordinates, 344
earthquakes, 181, 182
geometric finiteness, 128, 166
pleated surfaces, 150
thick/thin, 150

Tihomirova, E., 173
timelike, 34, 36
topological rigidity, 157, 245
torsion-free, 49, 62
Torstensson, Anna, see under Conder,

Marston
torus, 87, 164, see also punctured

torus
hexagonal, 164, 264, 265, 340
knot, 325
marked, 88
slope of simple loop, 89, 207
square, 91

Torus Theorem, 332
totally geodesic boundary, 154, 318
trace

–s determine group, 102
and Dehn twist, 290
definition, 3
identities, 22, 30, 44, 47
signed, 22

train tracks, 308
Tranah, David, xvi
triangle, see also right triangle

area, 7, 18, 382
group, 56, 67, 86, 93, 163
uniform thinness, 14

trigonometry, see under hyperbolic
tripod, 223
Tschantz, Steven, 218
tubular neighborhood

of geodesic, 13, 24, 106, 111, 114
volume/area, 92

of systole, 359
universal, 116

Tucker, Thomas, 261
Tukia, Pekka, 133, 134, 157, 158, 160,

179, 180
twisted I-bundle over Klein, Felix

bottle, 331
2π Lemma, 302
type preserving, 81, 240
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UHP, 26, see upper half-plane
uniform injectivity, 150, 233
Uniformization Theorem, 71, 162
uniformization, simultaneous, 136,

262
uniformly perfect set, 40, 236
uniquely ergodic, 143, 258, 290
universal

ball, 109
constants, 109
cover, 63
elementary neighborhood, 109
horoball, 109
horodisk, 164
hyperbolic solenoid, 102
isolation of cone axes, 109
tubular neighborhoods, 109, 116

universe, curvature of, 8
University of Minnesota, xvi, 320
University of Warwick, xvi
unknotted geodesic, 335
Unknottedness Theorem, 335
untameness, 261
upper half-plane model, 8

van Kampen’s Theorem, 131, 323
Van Vleck, Edward, 26
vector space of 2× 2 matrices, 358
virtual Haken conjecture, 324
visual angle, 30
visual sphere, 11
volume

finite, 211
implies geometrically finite, 128

in dimensions ≥ 4, 217
minimum for a 3-manifold, 217
of ball, 16
of convex core, 318
of hyperbolic manifolds, 211, 329
of maximal horoball, 165
of polyhedra, 34
of tetrahedra, 33

of tubes, 92
simplicial (of a manifold), 228

Voronoi diagram, 179
Vuorinen, Matti, 26

Wada, Masaaki, 43, 123, 211,
264, 340, 363, see also under
Akiyoshi, Hirotaka

Wada lakes, 61
Waldhausen, Friedhelm, xiv, 131, 160,

245, 323
Wan, Tom, 156
Wang, Hsien-chung, 115, 218
Warwick University, xvi
Waterman, Peter, 78, 99
Weeks manifold, 327
Weeks, Jeffrey, 8, 38, 179, 234, 316,

324, 326
weighted train tracks, 308
Weiss, Hartmut, 221
Whitehead, George, 244
Whitehead link, 217, 327
Wielenberg, Norbert, 93, 123, 128,

326, see also under Brunner,
Andrew

wild embedding, 261
Wiles, Andrew, 84
WMAP (Wilkinson Microwave An-

isotropy Probe), 8
word-hyperbolic, 97
wormhole, 320
wrapping, 341
wrapping around a loop, 341
Wright, David, xi, xv, 319, see also

under Mumford, David

Yamashita, Yasushi, 264, see also
under Akiyoshi, Hirotaka

Yau, Shing Tung, 129
Young, Gail S., 61

zero first homology, 325
Zhu, Xi-Ping, 322, 329
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