R e e) S S S =

1_,LD
— O AE SLUEGCDH . Y T Ri = F7p) _O
w (@) flJ AH ICu\iN,d i) “H-_a , AE ﬂNx“R ,I_: u.l
A Sib=m A eSS S
g h = w, Q SR mT\UD\JwJ Al

3 =T
e AB,M W. e
K(A.‘ S (o=

J & —I.\\UBw
L] . \ 4
LS | — S

o= (=)
2O /nn_lw nmRU — \LLLI
OO DGR =3

S ,m/MJ Oﬂ o _r =\ =\G
O @y,ﬂkﬁ E5F m aUm I

..lﬁt.ﬂJIa\uﬂﬂ D)oy

M\. qk.r\ugﬂ»g o3 -
=S5 9
: +ﬁu& — ljﬂl:quJ,__ OvlSUL

Fheec Lr@ e

i _
qJ;rzﬂl__ u\/| OWU:.nuﬂn\ﬁ
MAU . %,%J ﬁ)LWlALWJﬂ

;_ @ ___[erv . 1

The Importance of Being Fuzzy

*

The Importance of Being Fuzzy
and Other Insights from the Border between
Math and Computers

*

ARTURO SANGALLI

PRINCETON UNIVERSITY PRESS

PRINCETON, NEW JERSEY

Copyright © 1998 by Princeton University Press
Published by Princeton University Press, 41 William Street,
Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press,
Chichester, West Sussex

All Rights Reserved
Library of Congress Cataloging-in-Publication Data

Sangalli, Arturo, 1940—
The importance of being fuzzy : and other insights from the border
between math and computers / Arturo Sangalli.
p. cm.
Includes bibliographical references and index.
ISBN 0-691-00144-8 (cl : alk. paper)
1. Soft computing. 2. Fuzzy systems. 1. Title.
QA76.9.563526 1998 98-3818
006.3--dc21 CIpP

This book has been composed in Palatino

The paper used in this publication meets the minimum requirements of
ANSI/NISO Z739.48-1992 (R1997) (Permanence of Paper)

http:/ /pup.princeton.edu
Printed in the United States of America

13579108642
(Pbk.)

http://pup.princeton.edu

x Contents =

Preface ix
Problems ix
Recipes That Work xi
Soft Solutions xiii
About the Book XV
Notes xvi

Acknowledgments xvii

To the Reader Xix

PART ONE

BLURRED VISIONS 1

CHAPTER ONE

Classes with Uncertain Borders 3
A Mathematics of Cloudy Quantities 3
Sets, Logic, and Boolean Algebras 3
Fuzzy Sets 7
Operations on Fuzzy Sets 11
Fuzziness as Multi-Valued Logic 13
Precision 14
What Is Fuzzy Logic? 16
Notes 18

CHAPTER TwO

Fuzzy Does It 19
A Simple Control Problem 19
Origins of Fuzzy Control 21
Computing with Words 23
A Balancing Act of Control 24
The Magic of Fuzzy Inference 29
Fuzzy Logic Goes Commercial 33
Fuzzy Inputs 36
Fuzzy Engineering Comes to LIFE 38
Speculating on Fuzzy Decisions 39

The Fuzzy Chopper 40

CONTENTS

AfterLIFE
A Personal Perspective
Notes

PART TWO
LIMITS

CHAPTER THREE
The Limits of Classical Computing

An Old Dream Becomes a Reality

Can Machines Compute Everything?

Turing and His Machines

Computable Functions

Uncomputable Functions

An Unsolvable Problem

The Ant, the Bulldozer, and the Limits of Computability
Lifting the Veil over Uncomputable Functions
Complexity

Optimization Problems

Problem Size

Polynomial Time

The NP Class

Will a Real Hard Problem in NP Please Stand Up?
NP-Completeness

Solution to the Riddle

Notes

CHAPTER FOUR
The Limits of Formal Reasoning

In the Beginning There Were Axioms
Probing the Foundations

Formal Languages

Mechanical Mathematics

Mechanical Logic

The Limits of Formal Reasoning
From One Unsolvable Problem to Another (and Back)
Games That Machines Cannot Play
A Coloring Problem

The Computer’s Revenge

Notes

Vi

42
43
44

47

49

49
51
52
55
57
59
60
61
63
63
65
66
70
72
73
74
75

76

76
77
79
80
81
82
84
85
86
88
90

CONTENTS

PART THREE
NATURAL SOLUTIONS

CHAPTER FIVE
Net Gains

What Is a Neural Network?

From the Biological to the Artificial Neuron
Networks as Open Algorithms

Pattern Recognizers

Of Viruses and Men

The Virus Hunters

Artificial Neurons vs. Artificial Viruses
Searching for the Ideal Weights

The Importance of Being Numerous
Net Dynamics

Developing a Taste for Real Raspberries
Have Problem, Will Travel

The Neural Path to Optimization
Notes

CHAPTER SIX
Solutions via Evolution

Genetics

Populations and Natural Selection
Modeling Evolution

Lessons and Questions

The Mathematical Framework

Space Search

Schemata

Prisoner’s Dilemma

Playing the Game

The Evolution of Strategies

Teaching Machines to Learn

IQ and Fitness

If You Can’t Solve Them, Approximate Them
Local Traps

Genetic Algorithms and the TSP

The Mating Game

An Idea Whose Time Has Come Back
A Genetic Solution for the TSP
Notes

vii

93

95

95

98
100
101
104
105
106
107
111
113
116
118
120
124

126

126
127
129
133
135
136
137
139
140
143
144
145
147
148
149
151
152
153
155

AFTERWORD

APPENDIX 1
Fuzzy Inferences

APPENDIX 2

The Functions of Natural Numbers Cannot Be Enumerated

APPENDIX 3

CONTENTS

The Halting Problem Is Unsolvable

APPENDIX 4

Learning with the Back-Propagation Algorithm

Index

viii

157

159

162

164

166

171

* Preface

PROBLEMS

It looks as though the Germans are winning the war,”
I remarked.
“They will win, unless we can stop these losses—and stop
them soon,” replied Admiral Jellicoe, commander of the British
Navy. (He was referring to the British and neutral shipping
losses of the last months: 536,000 tons in February 1917,
603,000 tons in March, and a predicted 900,000 tons in April.)
"“Is there no solution for the problem?”” I asked.
““ Absolutely none that we can see now.”
(A.]. Marder, in his historical account *From the
Dreadnought to Scapa Flow")!

From our point of view, we are aware of it and we’re looking
at it and we're assessing whether or not we have a problem
and, if we do, what we should do about it.

(An Ontario Hydro spokesman, confirming, in January 1997,
that a corrosion problem might be afflicting the utility’s
nuclear reactors)?

Houston, we have a problem. ..
(Commander Jim Lovell [Tom Hanksl, in the MCA-Universal
film Apollo 13)

HUMANS and other living beings have been confronted with prob-
lems ever since the dawn of life, beginning with the most pressing of
all: staying alive. In the course of time, problems have grown in
variety and sophistication and have spread over the entire range of

PREFACE

human activities, from simple, everyday problems, to complex, far-
reaching ones, threatening the welfare and even the survival of
millions of people. But if problems are everywhere, so are solutions,
which too often are taken for granted. Living organisms themselves,
in their rich diversity, are multiple solutions to the difficult problem
of surviving in a changing and often hostile environment.

The quality of life in developed societies is directly related to the
ingenuity and resourcefulness of their problem-solving elites: scien-
tists, engineers, managers, and other experts. Finding those often
elusive solutions involves in many cases the use of mathematics and
computers, sometimes to a significant degree. This is not only true in
the physical sciences and engineering, but also in domains as diverse
as administration, medicine, economics, or the social sciences. Con-
sider, for instance, the current concern with the consequences of
global warming, a problem that is not likely to be solved or go away
in the near future. Climate experts have detected a rise of about 0.5
degree centigrade in the average surface temperature of our planet
during the past hundred years. And scientists studying this phe-
nomenon forecast a further rise of up to 3.5 degrees by the year 2100
if nothing is done to reduce emissions of the so-called greenhouse
gases, which trap heat in the atmosphere. These forecasts were
obtained by running computer simulations based on mathematical
models of our ecosystem. Mathematics and computers in this particu-
lar case were not used to solve a problem but merely to warn us that
we have one.

We live in the information age, which is rapidly becoming the era
of information overload. The multiple problems arising from the need
to handle vast quantities of data would be untractable without the
help of mathematics and computing. Information can only be stored,
processed, and retrieved if it is coded in one form or another. Before
the computer can display a page of text such as this one, for instance,
the letters of the alphabet, the punctuation marks, and so on must be
coded as strings of binary digits. In the field of high-resolution TV,
the enormous amount of information involved requires the encoding
to be as economical as possible. The relevant techniques, known as
data compression, are initially mathematical concepts before becom-
ing electromagnetic signals and finally a picture on your television
screen. The study and the design of codes is a branch of mathematics
known as coding theory. Its general aim is to provide solutions to a

X

PREFACE

problem posed by Claude Shannon, the father of the theory of
information. ““The fundamental problem of communication,” wrote
Shannon in 1948, ““is that of reproducing at one point, either exactly
or approximately, a message selected at another point.”

Computers and mathematics also help to ensure the confidentiality
of the information transmitted over telephone lines, computer net-
works, or other communication channels. One way to protect a
message from undesired eyes or ears is to encode it so that, hope-
fully, only those for whom it is intended can understand it. The
problem of devising secure encoding/decoding procedures (and of
breaking them) belongs to the field of cryptography, which makes
heavy use of mathematical ideas and techniques. As is the case with
most problems, this one has many possible solutions, some better
than others—more difficult to crack or easier to implement, for
example. The encoding and decoding operations will likely require
massive computation, making the use of computers essential if these
operations are to be performed efficiently and fast. Once the message
has been coded, its security may hinge on the practical impossibility
of solving a mathematical riddle: that of finding the prime factors of
very large numbers (over 200 numerals long, when written in deci-
mal notation).

REecIPES THAT WORK

Mathematics, commonly (but incompletely) described as the science
of size and number, provides us with tools for solving general
problems, along with a language for formulating them precisely.
Mathematicians thrive on problems and keep inventing new ones all
the time, often for the simple pleasure of being able to solve them.
Finding a complete solution may take years, and require the joint
efforts of many of them. The search stops if someone discovers that
no solution exists. But if the problem is finally solved, it immediately
becomes history as far as the mathematician is concerned. For practi-
cally minded people, however, it is the solution that counts and how
it can be exploited to help solve other, more mundane problems.
These pragmatists usually care little about the elegance of the mathe-

X1

PREFACE

matical argument as long as the expected payoff is commensurate
with the resources required (in time, money, etc.) to implement the
solution.

Occasionally, solutions may create bigger problems than the ones
they were supposed to solve. A recent book by historian Edward
Tenner (Why Things Bite Back: Technology and the Revenge of Unintended
Consequences) is a catalogue of solutions that backfired and technolog-
ical plans gone thoroughly awry. Among these, the pesticides that
were dispersed in the Southern United States during the 1950s and
1960s to eradicate the South American fire ant and ended up wiping
out their predators, actually increasing the feared ant population.

Over the last few decades, our problem-solving ability has been
considerably enhanced by the prodigious increase in the computing
power available. This is not to say that theory has lagged behind or
that it only plays a secondary part in the quest for solutions. Scratch
the surface of a practical problem and you will often find another one
that is mathematical in nature. In order to solve the former, you may
well have to solve the latter first, usually by brain power alone.
Nonetheless, as machines become smarter, their role in the solution
process is gradually changing from that of mere assistants to one of
active partners of the human expert. And it is not too far-fetched to
imagine a reversal of roles in the future, with humans becoming the
accessories. In a very real sense, as computing power tends to infinity
the need for human ingenuity (in the design of efficient algorithms,
for example) may approach zero. This is certainly true for many
optimization problems: given enough computing speed, a dumb,
case-by-case search for the optimal solution becomes a feasible op-
tion, even if there is an astronomical number of possibilities.

In a recent essay, the French mathematician René Thom denounced
the failure of scientific theories to explain reality. “’Scientists wanted
to rid the ancients” universe of its magical and metaphysical entities,”
he wrote, “but they have themselves gradually introduced a myriad
of objects and structures which cannot be observed, are increasingly
difficult to imagine and practically no one understands.”? In Thom'’s
view, technological progress only masks the stagnation of our global
understanding of the world. “Instead of helping us to understand,
scientists are busy calculating, keeping their computers running,”
complained the 1958 winner of the prestigious Fields Medal—the

xii

PREFACE

mathematicians’ Nobel Prize. ““Science has become a huge collection
of recipes that work.”

It may be all right for philosophers, in their perpetual search for
explanations and ultimate causes, to spurn the merely pragmatic
products of science and technology. But people whose main business
is to solve practical problems are quite comfortable with “recipes”
that get the job done.

SOFT SOLUTIONS

Whether machines could one day take over problem-solving alto-
gether is not the question, for computer output per se is meaningless
without humans to make sense of the answers—and to ask the
questions in the first place. What we are witnessing is rather the
emergence of some original ways of circumventing the shortcomings
of classical computation. Digital computers operate in a sequential,
exact, and deterministic way on binary code. But such a mode of
operation has its limits, both theoretical and practical, and so there
are problems that digital computers cannot solve. Another limitation
of conventional computers is the requirement that they be provided
with a program. Some of the new computing paradigms, on the other
hand, make room for devices that do not have to be programmed in
the traditional sense but can “learn” by experience, much as our own
brain does.

Interest in the new ideas also stems from a desire to build ““intelli-
gent” machines, with humanlike capabilities of cognition and deci-
sion making. (Unfortunately, the qualifier “intelligent”” has been so
abused lately that it has become practically meaningless. We have
intelligent chips, intelligent doors, intelligent cars, etc. What label will
be used for the next generation of gadgets?) In this respect, digital
computers may fail miserably. Even if the computer can play chess
and beat the best human players, its strategy is far from clever. It is
essentially a brute force technique based on decision trees represent-
ing millions of possibilities, and from which the optimal move is
chosen. The human player takes a more “intelligent” —if inscrutable

xiii

PREFACE

—approach, since the brain cannot anticipate the consequences of
more than a few moves at a time.

For Lotfi Zadeh, who invented fuzzy sets (the subject of chapter 1),
the difference between human and machine intelligence lies in the
ability of the human brain to think and reason in imprecise, nonquan-
titative terms, an ability that present-day digital computers do not
possess. According to Zadeh, ““It is this ability that makes it possible
for humans to decipher sloppy hand-writing, understand distorted
speech, and focus on that information that is relevant to a decision. It
is the lack of this ability that makes even the most sophisticated
large-scale computer incapable of communicating with humans in
natural—rather than artificially constructed—languages.”* If we are
to build machines that “reason’”” more like humans, we must look
beyond the classical Von Neumann computer.

Fuzzy logic, neural networks, and genetic algorithms are among
the most successful novel approaches to computation and problem-
solving. Neural networks can recognize ill-defined patterns without
an explicit set of rules; fuzzy logic controls systems from a partial and
imprecise description of their behavior; and genetic algorithms can
solve complex problems by an “evolutionary” process in which
chance plays a fundamental role. These techniques, which should be
seen as complementary rather than competitive, are at the core of the
“soft computing” approach to machine intelligence. Some of its
principal traits are uncertain, ambiguous, or incomplete data; mas-
sive parallelism; randomness; approximate solutions, and self-
modifying programs.

Even more profound mutations may be in store. In 1994, Leonard
Adleman demonstrated the feasibility of carrying out computations
at the molecular level. “One can imagine,” he wrote at the end of his
paper,” ““the eventual emergence of a general purpose computer
consisting of nothing more than a single macromolecule conjugated
to a ribosomelike collection of enzymes that act on it.”” Although still
only a theoretical possibility, quantum computers (devices that use
the polarization of photons to encode information) might force us one
day to redefine what we mean by a computation.

It must be emphasized, though, that digital computers, which are
extremely fast and precise for executing certain tasks—performing
sequences of arithmetical operations, for instance—will not soon
become a thing of the past. The new technology tends to complement

Xiv

PREFACE

rather than replace them. Furthermore, the novel modes of computa-
tion—fuzzy, neural, genetic—are for now mostly implemented on
conventional computers.

ABOUT THE BOOK

Where computers race for faster calculations,
mathematics races for more clever algorithms. An idea
that cuts in half the number of steps is as good as a chip
that doubles the speed.

(MIT mathematician Gilbert Strang)®

This book presents the principles of soft computing in a short, direct
fashion. I have tried to make the basic concepts accessible to a broad
audience, without the technical clutter but beyond the simple
metaphors, occasionally also casting a critical eye on the subject
matter. My chief goal has been to expose, in an entertaining though
rigorous way, the (mostly mathematical) ideas behind fuzzy logic,
neural networks, and genetic algorithms, too often obscured by the
suggestive terminology (neurons, learning, chromosomes, etc.) used
by the practitioners in these fields. This is done in parts 1 and 3.

The new ideas can only be fully appreciated against the back-
ground of traditional—"“hard”—computing and its mathematical un-
derpinning. From Turing machines to NP-complete problems, chapter
3 is a tour of the concepts at the heart of classical computing designed
to give the reader a proper perspective, with an emphasis on the
limitations of the traditional modes of calculation. Chapter 4 focuses
on the foundations of mathematics, in particular on the role of
computers in the search for mathematical truth. After retelling an old
but always captivating story (Godel’s Incompleteness Theorem), I
explore the somewhat humbling prospect that some mathematical
truths might not be verifiable by the human mind without the
assistance of the computer.

Mathematics and computers complement each other; software/
hardware are two sides of the same coin. But too often people only
marvel at the body of the machine—the magic of its chips and optical
scanners, the dazzle of its animated 3D images—and forget (or never

XV

PREFACE

know) that its soul is mathematical. One of the aims of this book is to
counterbalance that one-sided perception by giving proper credit to
the invisible hand of mathematics.

NOTES

1. A.]. Marder, From the Dreadnought to Scapa Flow, OUP, Oxford, 1961-70,
5 vols.

2. Ted Gruetzner, as quoted in ““Problem in Reactor May Be Widespread,”
The Globe and Mail, 10 January 1997.

3. René Thom, in La Magie Contemporaine. L'Echec du savoir moderne,
pp- 19-35, Yvon Johannisse ed., Québec/Amérique, 1994.

4. Fuzzy Sets: Theory and Applications to Policy Analysis and Information
Systems, Paul P. Wang and S. K. Chang, eds., Plenum Press, New York and
London, p. 196 (1980).

5. Leonard M. Adleman, “Molecular Computation of Solutions to Combi-
natorial Problems,” Science, vol. 266, 11 November 1994, pp. 1021-24.

6. Gilbert Strang, “Wavelets,”” American Scientist, vol. 82, May—June 1994,
p. 255.

Xvi

* Acknowledgments

I WISH to express my recognition to several people who read parts of
the manuscript and whose tactful criticism and/or (overstated?)
praise helped me produce a better book: Peter Géczy, Toyohashi
University of Technology, Japan; Michel Grabisch, Thomson-CSF
Central Research Laboratory, Orsay, France; Kazuo Nakamura, Labo-
ratory For International Fuzzy Engineering Research, Yokohama,
Japan; Andrew Watson, Institute of Food Research, Norwich, UK,;
and Doron Zeilberger, Temple University, Philadelphia. Thank you
Peter, Michel, Kazuo, Andrew, and Doron.

I am also indebted to the people at Princeton University Press who
were involved in the production of this book, in particular to Bill
Laznovsky, for his excellent copyediting and his attention to detail.
Special thanks go to my editor, Trevor Lipscombe, for his patience,
for his abundant and valuable comments, and for making it all
happen.

ARTURO SANGALLI
Sherbrooke, Quebec
June 1998

x To the Reader

THE THREE PARTS are largely independent entities, and could be
read in a different order without loss of continuity. Some mathemati-
cal proofs and technical details have been relegated to the appen-
dices.

I have written this book with a large public in mind, ranging from
the layperson to the expert, and assuming only a knowledge of
elementary mathematical concepts. Familiarity with more advanced
mathematics (such as vector algebra and differential calculus) might
occasionally help, but a curious mind is really the only prerequisite
for appreciating most of the text.

PART ONE

BLURRED VISIONS

*

* CHAPTER ONE *

Classes with Uncertain Borders

A MATHEMATICS OF CLOUDY QUANTITIES

Theoretical physics demands the highest possible standard of
rigorous precision in the description of relations, such as only
the use of mathematical language can give.

(Albert Einstein, on the structure of theoretical physics)'

IN THE OPENING sentence of a paper published in 1965, Lotfi Zadeh
made a basic observation: most collections of objects we encounter in
the real world are not precisely defined. Zadeh, a professor of
electrical engineering at the University of California, cited as an
example the class of animals. Clearly, any dog, horse, or bird is in this
class, while rocks, fluids, and plants are not. But objects such as
starfish and bacteria have an ambiguous status; the contradictory
terms “animal” and ““not animal” both seem to describe them to
some degree. Likewise, “round shapes,” “old cars,” and “low tem-
peratures,” do not admit a precise definition.

And yet, classes with uncertain borders pervade human language
and thinking and play an important role in the communication of
information. Zadeh’s idea was to quantify this uncertainty, which is
due not to chance but to the absence of sharply defined criteria of
class membership. The resulting concept—that of a fuzzy set—uses
the rigorous precision of mathematics to manage the imprecision of
human expression and thought. If Zadeh’s paper had begun by
stating the obvious, what followed was ground-breaking. This open-
ing chapter is a guided tour of fuzzy sets and their offspring (fuzzy
logic).

SETS, LOGIC, AND BOOLEAN ALGEBRAS

Before we get to the notion of a fuzzy set, it is wise to spend some
time with ordinary sets. The two concepts are directly connected: the
familiar sets are special cases of fuzzy ones.

ONE: BLURRED VISIONS

Once studied only by mathematicians and philosophers interested
in the foundations of mathematics, sets are now taught in elementary
school and even to toddlers in kindergarten—a relic of the “new
math” revolution of the 1970s. But it is questionable whether such an
early (and superficial) acquaintance with sets heightens the mathe-
matical or logical skills of the student.

A set is usually conceived as ““a collection of objects,” but this
description is not very enlightening. What matters is to be able to tell
which objects are in the set and which ones are not. For instance, if Z
denotes the set of all winners of the Nobel Prize in chemistry, then
Ernest Rutherford, Marie Curie, and Ilya Prigogine are all in Z (they
won the prestigious prize in 1908, 1911, and 1977, respectively). On
the other hand, Frank Sinatra and Margaret Thatcher are not in Z—as
of this writing. For a mathematical example, let P be the set of all
prime numbers. Then 2, 7, and 13 are definitely in (or belong to, are
elements /members of) P, while 10, 22, and 63 are out. For very large
numbers the classification may take a while, but it is nonetheless
clear-cut: n is in P if it is not divisible by any number smaller than
itself—except, of course, the number 1.

P is a subset of the larger set N of all natural numbers—the
numbers 0, 1, 2, 3,...and so on that we use for counting. We can
conveniently represent membership in a subset as a binary digit: 1 for
a member and 0 for a nonmember. The symbol P(x) denotes the
grade of membership of the natural number x in the subset P. For
example, P(7) = 1, P(15) = 0, P2¥*%) = 0 and PQ2%°*® — 1) = 1.
(According to the 1995 Guinness Book of Records, the number 2%943
— 1 is prime—but do not waste your time trying to check it out. It
was found to be prime with the help of a supercomputer in January
1994 and at the time it was the largest known prime number. Just for
the record, there is no such thing as the largest prime number.)

Sets may be combined in various ways to form other sets. Given
two sets A and B, their union is the set A U B consisting of those
objects that are in either A or B. For example, if A is the set of
divisors of 10 (i.e., A ={1,2,5,10}) and B the set of divisors of 15
(B=1{1,3,5,15}), then A U B ={1,2,5,10, 3, 15}—the set of numbers
that divide either 10 or 15 (or both). The intersection A N B is formed
by the objects in both A and B. Referring to the above example,
A N B = {1,5}—the common divisors of 10 and 15.

Union and intersection may be visualized with the help of so-called
Venn diagrams, in which sets are drawn as circles or other closed

4

CLASSES WITH UNCERTAIN BORDERS

curves. John Venn, a nineteenth-century English logician, is chiefly
remembered for his use of such geometric diagrams to depict rela-
tions among sets. If for each set we draw a circle, then their union is
represented by the region inside the circles, and their intersection by
the region common to both circles (the shaded parts of figure L.1).

When we agree on the kind of objects we wish to talk about, we
have a “universe of discourse” or universal set U. Then each set A
has a complement A, made up of the objects in U that are not
members of A. For example, if we are discussing the natural num-
bers and A is the set of all even numbers {0,2,4, ...}, then A is the
set of all odd numbers {1,3,5,...}. Venn’s treatment of U was
criticized by C. L. Dodgson, a.k.a. Lewis Carroll. The author of Alice
in Wonderland, better known for his literary than for his mathematical
achievements, insisted on the need to enclose the circles by a rectan-
gle, thus delimiting the universe of discourse. In this way, the
complement of A is represented by the region outside the circle but
inside the rectangle (fig. 1.2).

The three operations introduced above are particular ways of
combining subsets (of a given set) to form other subsets. Repeated
combinations, represented by expressions such as (A N B) U (A U C)
give rise to an “algebra” first studied by the British mathematician
George Boole and later named after him. The structure of this Boolean
algebra of classes mirrors that of the algebra of logic that Boole
invented in the 1850s. His idea was to replace the usual process of

FIGURE L.1. Venn diagrams representing the union (left) and the intersec-
tion (right) of sets A and B.

ONE: BLURRED VISIONS

FIGURE 1.2. A Venn diagram of the
complement of the set A.

logical deduction by the algebraic manipulation of formal expres-
sions. In Boole’s propositional calculus, letters represent statements
that can be combined using the connectives “or,” “&,” and ““not”—
the linguistic counterparts of the set-operations of union, intersection,
and complement, respectively.

Technical applications of Boole’s algebra of logic had to wait
almost a century. In 1938, Claude E. Shannon, who would later
become famous for his mathematical theory of communication, was a
graduate student at the Massachusetts Institute of Technology. In his
Master’s thesis, Shannon showed how Boolean algebras could be
used in the analysis and design of electrical circuits.”> Made up of
relay contacts and switches connected in series or in parallel, these
circuits occurred in automatic telephone exchanges and in the control
of industrial motors. Similar circuits, built from elements called logic
gates, perform operations on binary signals and constitute today the
central nervous system of electronic digital computers.

Underlying the practical applications of Boolean algebras—to
propositional logic, circuits, digital computers, and so on—there is an
elegant mathematical theory: the symbolic calculus of binary func-
tions of n binary variables. Modern scientists and engineers could
take this theoretical tool for granted thanks to Boole’s genial demon-
stration that reasoning could be performed by “calculating” or, to put
it bluntly, that logic could be reduced to algebra.

6

CLASSES WITH UNCERTAIN BORDERS

Fuzzy SETS

What characterizes a set is the necessity, for any given object, to be or
not to be in the set. While this dichotomy 4 la Hamlet works well for
mathematical objects such as numbers, when we try to apply it to the
real world we realize that there is a problem. Surely, some objects can
be classified without hesitation: a dog is an animal and a banana is
not. Pianist Artur Rubinstein was definitely old when he died in 1982
(he was 95), and Mozart, a child prodigy, was certainly not old when
he composed his first sonata (at age 7). But was the colorful Picasso
old when he painted Portrait of Dora Maar (he was 56)? Are sponges
animals?

The class of aquatic animals and the class of old persons are not
sets in the ordinary sense because neither ““aquatic animal”” nor ““old
person” are well-defined concepts. To deal with such ill-defined
classes, Zadeh's idea was to allow the grade of membership to be any
number between 0 and 1. He called these classes fuzzy sets. Zadeh
expected this new concept, which generalized that of an ordinary set,
to have applications in the fields of pattern recognition and the
communication of information. The future would prove him right,
but it would also prove that he had largely underestimated the
potential of his creation.

Unlike the borders of ordinary sets, those of fuzzy sets are not
sharp but, well...fuzzy. And because fuzzy sets make room for
partial membership, that is, for objects that are neither totally in nor
totally out, they can accommodate better than ordinary sets the
ambiguity of human language. Take the class of old persons, for
instance. At age 5, a person is definitely not old (grade of member-
ship 0) and at age 95, the person is clearly old (grade of membership
1). But somewhere between 5 and 95 there is a gray zone, represented
numerically by membership grades greater than 0 and less than 1. For
example, a 40-year-old person may have grade of membership 0.30 in
the fuzzy set of old persons (intuitively: the description of such a
person as “old” is 30 percent accurate). At age 58, the membership
grade may attain 0.70 or 0.75, and it will be 1 by the time the person
has reached age 85.

The important point here is that there is no sharp borderline, no
magic age ¢ such that you become old (and stay so) the moment you
reach it—but you were not old the previous day. This situation is not

7

ONE: BLURRED VISIONS

due to our incomplete knowledge or to our inability to calculate g. It
is due to the fact that “old” cannot be captured in one precise
definition the way “‘prime number” or “Nobel laureate” can. Of
course, one can always proclaim that “old person” means ““age equal
to or greater than 65 years.” While such an arbitrary definition may
be convenient for some purposes, the class it characterizes is funda-
mentally different from the class of old persons: the former is an
ordinary set, the latter is not.

Another example of a fuzzy set is the class P of poor people. We
shall see that treating P as a well-defined set leads to an absurdity.
For if someone with a certain annual income X ($2,000, say) is a
member of P, then so is a person whose annual income is X + 1
(certainly one more dollar per year cannot prevent indigence). For the
same reason, those with incomes of X + 2, X + 3, and so on, are also
poor. But then, by repeating this argument enough times we would
eventually conclude that an individual making $100,000 a year is
poor! This paradox can be explained by assuming the existence of a
“poverty line,” so dear to government statisticians, for in that case
the dollar that allows you to cross the line does make a difference—
which only confirms what common sense suggests: that the official
notion of poor is different from the natural one.

It is important to realize that the concept of a fuzzy set is not
statistical in nature, that there is a difference between fuzziness and
randomness. Fuzziness in Zadeh's sense represents vagueness due to
human intuition, not probability. Probability has to do with the
occurrence of events, and when all the facts are in, a given event
either has occurred or it has not. The sum of the two dice we rolled is
or is not 7; when the roulette wheel stops, the compartment contain-
ing the ball is black or not. But questions such as: Was the talk long?
Was the speaker short? Was the conference room big? cannot always
be answered by yes or no, even after all the facts (the length of the
talk, the speaker’s height, and the dimensions of the room) are in.

Certain fuzzy sets, especially fuzzy subsets of numbers, can be
visualized by depicting them as in figure 1.3. In mathematical terms,
these are simply the usual graphs of the membership functions
y = A(x) in a Cartesian coordinate system. These graphs are fre-
quently either triangular or trapezoidal and, occasionally, bell-shaped
or of some other form. The simpler shapes are preferred because they
make number crunching easier.

1.0

0.22

12 10 12 (minutes)

(deg. F)

A

Wk - - = - ==

157 0 190 (cm)

—

FIGURE 1.3. Membership functions of fuzzy sets. Top: Fuzzy set of average
washing times for a washing machine. For example: 10 (minutes) has a
grade of membership of 0.22 in this fuzzy set. Center: Fuzzy set of cool
temperatures. Bottom: Fuzzy set of tall persons.

ONE: BLURRED VISIONS

It must be emphasized that it is one thing to conceive a given class
A as a fuzzy set and another, quite different thing, to be able to
specify its membership function A(x). Just as there is no “poverty
line,” sharply separating the poor from the nonpoor, there is no such
thing as the true membership function for the fuzzy set of poor
people, or for any other fuzzy set. This is not to say that the choice of
the membership grades is completely arbitrary. Both theoretical and
empirical considerations intervene in the selection, as do the context
and the particular situation to be modeled. The increasing use of
learning and optimization techniques, such as neural networks and
genetic algorithms, is gradually rendering the selection of member-
ship functions less of an art and more of a science. But regardless of
the method employed (educated guess or algorithm), in the practical
applications of fuzzy sets the main reason for choosing a particular
membership function is ultimately “because it works.”

Graphs such as those in figure 1.3 are a convenient way of repre-
senting single fuzzy subsets. To get a picture of the totality of fuzzy
subsets (of some universal set X), there is a better technique. It was
Bart Kosko’s idea to represent each fuzzy subset of X by a point in a
Cartesian coordinate system.* Suppose, for simplicity, that the uni-
verse X consists of only two elements, X = {x;, x,}. Then, the fuzzy
subset S of X in which x, has grade of membership 0.2 and x, has
grade of membership 0.7, is represented by the point with coordi-
nates (0.2,0.7) (figure 1.4). In general, the fuzzy subset A of X is
represented as the point with coordinates (A(x,), A(x,)).

Notice that this universe X has four ordinary subsets (which are of
course special cases of fuzzy ones): {x;, x,}, {x;}, {x,} and the empty
subset { }. The four vertices of the square then correspond to the
ordinary subsets of X (e.g., (0, 1) corresponds to {x,} and (0,0) to the
empty subset). Going from the ordinary subsets to all the fuzzy
subsets of X amounts to “filling up the square.” It also means
moving from the discrete (four points) to the continuum (the full
square)—a vivid illustration of the abundance of fuzzy subsets.

The sets-as-points representation can be extended to higher dimen-
sions. If X = {x,, x,, x5}, the ordinary subsets of X are represented
by the eight vertices of a cube in a three-dimensional Cartesian
coordinate system, and the collection of all fuzzy subsets of X fills
up the entire cube. The fuzzy subsets of an infinite X may be
pictured as the points of an infinite-dimensional ““hypercube.”

10

CLASSES WITH UNCERTAIN BORDERS

A
X9
{x2} X1 X2}
le-—-—-"-"-"-"-"-"=-"-"---=-=-== °
1
:
[}
0.7¢ - - _.|S :
| }
| 1
| I
| 1
| 1
\ 1
| 1
\]
\ 1
| I
1
YL G
0.2 1 X

FIGURE 1.4. Fuzzy subsets of X = {x;, x,} as
points of the unit square. The vertices of the
square correspond to the four ordinary sub-
sets of X. The point (0.2,0.7) represents a
fuzzy subset S. The membership grades of x,
and x, in S are 0.2 and 0.7, respectively.

OPERATIONS ON Fuzzy SETS

Let us go back briefly to ordinary sets. If A and B are such (ordinary)
sets, A is said to be included in B if every element of A is also an
element of B. In symbols: A c B. For instance, the set of prime
numbers greater than 2 is included in the set of odd numbers—this is
the translation into set jargon of the fact that all primes greater than 2
are odd. The notion of set inclusion can be expressed using member-
ship functions, for we have A C B precisely if

for all x in the universal set, A(x) < B(x). ¢))

In other words, A C B means that given any x, its grade of
membership in A cannot exceed its grade of membership in B—in
crude terms, A C B if no x can be in A “more” than it is in B. Since
statement (1) is couched in the language of membership functions, it
makes sense for all—fuzzy as well as ordinary—subsets of X. Thus,

11

ONE: BLURRED VISIONS

we will say that the fuzzy subset A is included in the fuzzy subset B
if (1) holds.

A similar approach can be used to extend the set operations (union,
intersection, etc.) to fuzzy sets in a natural way. We first notice that
the grade of membership of x in A U B is the greatest (or maximum)
of the two grades A(x), B(x). In symbols

(A U B)(x) = max{ A(x), B(x)}. 2

Likewise, the grade of membership of x in A N B, being the
smallest (or minimum) of A(x), B(x), is given by the formula

(A N B)(x) = min{ A(x), B(x)}. 3)

As for the membership grade of x in the complement A, it follows
from the equation

A(x) =1 - A(x) 4)

(if xisin A, A(x) = 0; if x is notin A, then A(x) = 1).

The above three equations still make sense when A(x) and B(x)
are numbers between 0 and 1, so they can be used to define “fuzzy”
operations on fuzzy subsets. Equation (2), for instance, stipulates that
the membership grade of x in the (fuzzy) union A U B should be the
largest of the two grades A(x), B(x). Figure L5 illustrates the effect
of these fuzzy operations on the graphs of membership functions.

Because the same rules of combination are used, the fuzzy union
(or intersection) of two ordinary sets coincides with their usual union
(intersection). In technical jargon, this fact is expressed by saying that
the fuzzy operations are extensions of the familiar ones to the larger
domain of all fuzzy subsets of X. But so are infinitely many other
possible combinations of fuzzy subsets. For example, one can con-
struct a new fuzzy subset C out of A and B by stipulating that

C(x) = A(x) + B(x) — A(x)B(x). (5)

Then, a simple calculation confirms that if A and B are ordinary
sets (i.e.,, A(x) and B(x) are restricted to being either 0 or 1), then C
is their usual union. Although many other ways of combining two or
more fuzzy subsets have been proposed, only a handful of them
proved to have more than a purely theoretical interest.

12

CLASSES WITH UNCERTAIN BORDERS

@ ()

© (@

pa A o —

FIGURE 1.5. Operations on fuzzy subsets. (1) Membership functions of
the fuzzy subsets A and B. (b) Membership function of their union; (¢)
of their intersection; and (d) of the complement of B.

FuzzINESs AS MULTI-VALUED LOGIC

The membership grade A(x) of x in the fuzzy set A is usually seen
as measuring “to what extent” x is in A. But A(x) may also be
interpreted as the degree of truth of the statement ““x is in A.” For an
ordinary set, A(x) is either 1 or 0, depending on whether the
statement “x is in A” is true or false. But if A is fuzzy, the
truth-value of “x is in A” can be any number between 0 and 1. Take
A to be the fuzzy set of expensive cars, for instance. If ¢ is a given
car, then A(c) represents the degree to which the statement “car ¢ is
expensive” is true. Such “fuzzy” statements extend the traditional,
two-valued logic by allowing for a continuum of shades of truth.
Here is another example. In 1991, Hitachi built a prototype of a
security device (actually a neural network) that can be trained to
recognize signatures. You have first to provide three samples of your
signature by signing with a special pen on an electronic pad. Interest-

13

ONE: BLURRED VISIONS

ingly, the machine will record not only your signature as a graphical
object, but also the pace at which you traced it out (more precisely,
the vertical and horizontal components of the velocity vector associ-
ated with the tip of the pen). Anyone trying to fool the machine
would then have to forge your signature by writing it out at the same
speed as you normally do. To have your signature validated, you
sign again on the pad, this time with the machine on “verify”” mode.
After a short interval, the screen will display a number between 0
and 1. If this number is, say, 0.93, then the match between your
present sample and the original signature is 93 percent. This might be
interpreted as meaning that the statement “the person who has just
signed is Sandra Smith” has a truth value equal to 0.93—not abso-
lutely true but probably close enough to authorize the withdrawal of
$100,000 from Ms. Smith’s bank account.

PRECISION

All traditional logic assumes that precise symbols are
being employed. It is therefore not applicable to this
terrestrial life, but only to an imaginary celestial existence.
(Bertrand Russell)®

In the ideal realm of mathematics, things are certain and precise. But
in the real world, absolute precision and certitude are very rare
commodities. The ratio of the circumference of the circle to its
diameter is exactly 7, but in our practical calculations we must do
with a decimal approximation. The heights of a perfect triangle meet
at precisely one point—but real triangles are never perfect and points
exist only in our imagination. While mathematical statements are
either true or false, such strict dichotomy fails for assertions in our
everyday life, which is seldom—if ever—black or white.

Digital clocks, speedometers, and pocket calculators flash out nu-
merals with liquid-crystal clarity. But how significant are those fig-
ures and how much precision do we really need in our daily life?
Imprecise concepts (love, justice, bad, nice, big, funny) pervade our
thoughts and our speech. The jurors’” interpretation of such a nebu-

14

CLASSES WITH UNCERTAIN BORDERS

lous notion as “reasonable doubt”’ can be, for some, a matter of life or
death.

Philosophy’s eternal quest for knowledge and wisdom is couched
in human—hence, inexact—language. Massachusetts Institute of
Technology mathematician Gian-Carlo Rota condemns contemporary
philosophers who, in their attempts to imitate mathematics, approach
philosophical questions with what he calls ““the myth of precision.””®
He notes that a concept need not be rigorously precise to be meaning-
ful. “Our everyday reasoning is not precise,” says Rota, ““but it is
nevertheless efficient. Nature itself, from galaxies to genes, is approxi-
mate and inexact.” And he adds, “Philosophical concepts are among
the least precise. Terms such as ‘mind,” ‘perception,” “‘memory,” and
‘knowledge” do not have either a fixed nor a clear meaning but they
make sense just the same.”

Quantifying a phenomenon in a seemingly accurate way makes it
appear to be exact and well understood. During a lecture in Japan,
Lotfi Zadeh once quoted a newspaper article according to which the
probability of a tremor of degree 6 on the seismic scale occurring
within two months was 11 percent. “Readers of this article,” he
observed, “would gain the wrong impression that the figure of 11
percent, instead of 10 or 12 percent, is concluded because of sufficient
knowledge about earthquakes.”

According to Zadeh, complexity and precision bear an inverse
relation to each other, for as the complexity of a problem increases,
the possibility of analyzing it in precise terms diminishes. And so,
some “fuzzy thinking’”” may be legitimate, if it makes possible the
solution of problems which are much too complex for accurate
analysis.

In many situations, precision may be costly or take too much time.
Zadeh gives as a simple example the ordinary task of parking a car.
“Usually, a driver can park a car without too much difficulty,
because the final position of the car is not specified exactly. If it were
specified with high precision, it would take days and perhaps months
to park the car.”” A more sophisticated example is the coding of
(digitized) television images by data compression techniques. The
loss of some precision in the reconstructed image, hardly perceptible
to the human eye, is largely compensated by the increased speed of
transmission. It is this tolerance for imprecision that fuzzy logic
exploits in many of its applications.

15

ONE: BLURRED VISIONS

WHAT Is Fuzzy LoGic?

Consumers generally blame themselves for their inability to use
machines, from VCRs and electronic ovens to personal computers.
But is it their fault if they cannot think like the machine—a talent that
most designers of machines seem to take for granted? A general goal
of fuzzy logic is to help build machines that reason more like
humans, so that humans should not need to think like machines.

The expression ““fuzzy logic” sounds like a contradiction in terms,
and it would hardly be taken as a compliment to be told that one’s
logic is ““fuzzy.” In its original and technical sense, fuzzy logic is a
mathematical method, based on the theory of fuzzy sets, that helps
machines to “reason” more like humans. Fuzzy logic is usually
implemented by an algorithm, or program, for a conventional digital
computer and, as such, it is exact. But the method has also a
subjective component—hence, essentially empirical and inexact—for
it presupposes the translation in numerical form of the vagueness of
human language and knowledge.

This duality—exact/inexact—of fuzzy logic, which I believe is one
of its strengths, is also a source of misunderstanding. Many critics,
bona fide or otherwise, of fuzzy logic focus on only one of the
aspects. “Fuzzy logic is claimed to use vague concepts and imprecise
data. This is false,”” wrote an unhappy reader of one of my popular-
ization articles.® And he or she—I could not tell from the initials—
went on: “Fuzzy logic takes precise, analogue inputs, does some
fancy processing, then produces precise analogue outputs. I call this
analogue signal processing.” The reader is basically right, but he or
she omits to acknowledge the role of fuzzy logic in devising that
““fancy processing.”

At the other extreme there are those who criticize the imprecise
side of fuzzy logic. Here is an excerpt from another letter: “Of course,
simplistic thinking may be adequate in simple cases, and fuzzy logic
may indeed be capable of scheduling elevators and washing ma-
chines. But so are probabilistic arguments. The real danger with
inconsistent, faddish reasoning would come if it were ever applied to
important matters like air safety or reactor control. Fuzzy thinking
about such matters would be dangerous as well as deplorable.”

16

CLASSES WITH UNCERTAIN BORDERS

Such a reaction is typical of people who regard fuzzy logic, not just
as a specific method (algorithm) but as a general attitude or philoso-
phy. This philosophy of fuzziness has both its detractors and its
followers. When applied to the solution of practical problems, the
fuzzy approach is, for its detractors, at best redundant and at worst
irresponsible and dangerous. “If it's fuzzy, it can’t be serious” could
well be their motto.

For the believers, on the other hand, fuzzy thinking is a powerful
way to understand human reasoning and to deal with the complexity
of the real world. Nowhere has this fascination with fuzziness been
more manifest than in Japan. “Fuzziness is inherent in the Japanese
culture,” says Toshiro Terano, director of the Laboratory for Fuzzy
Engineering Research (LIFE) in Yokohama. And so it may not be
accidental that Japanese scientists and engineers should play such a
key role in developing the practical applications that made fuzzy
logic popular. Terano sees fuzzy logic both as a tool and as a new
paradigm for solving problems for which exact mathematical models
are difficult or impossible to obtain. “As a tool, fuzzy logic can
capture the uncertain meaning of words and treat the subjectivity
and intuition of the human thinking process,” he observes.

The final word goes to Lotfi Zadeh, the creator of the concept. In
the spring of 1994, Zadeh wrote: “The term fuzzy logic is actually
used in two different senses. In a narrow sense, fuzzy logic is a
logical system which is an extension of multivalued logic and is
intended to serve as a logic of approximate reasoning. But in a wider
sense, fuzzy logic is more or less synonymous with the theory of
fuzzy sets, that is, a theory of classes with unsharp boundaries. What
is important to recognize is that today the term fuzzy logic is used
predominantly in its wider sense.””’

However, Zadeh himself recently admitted that the term fuzzy
logic may be misleading. Addressing an international meeting of
experts at the University of California at Berkeley in the spring of
1996, he said: “In the things we are doing today [in fuzzy logic] we
are not really dealing with logic. We are using mathematics, function
manipulation and evaluation; strictly speaking, no logic, merely com-
putation.”’® Such a clarification might help readers with a question
most of them are likely to ask themselves sooner or later: This is
fuzzy all right, but is it logic?

17

ONE: BLURRED VISIONS

NOTES

1. A. Einstein, “Prinzipien der Forschung, Rede zur 60. Geburstag
von Max Planck” (1918), in Mein Weltbild, Ullstein Verlag, 1977, pp.
108-9, trans. Ideas and Opinions (New York: Crown, 1954), pp. 225-26. As
quoted in Order Out of Chaos, 1. Prigogine and Isabelle Stengers, Flamingo
(Fontana Paperbacks), 1985, pp. 52-53.

2. L. A. Zadeh, ““Fuzzy Sets,” Information and Control 8, 338-56 (1965).

3. Claude E. Shannon, “A Symbolic Analysis of Relay and Switching
Circuits,”” AIEE Transactions, vol. 57, pp. 713-23, 1938.

4. B. Kosko, “Fuzziness vs. Probability,” International Journal of Gen-
eral Systems, vol. 17, nos. 2-3, Gordon and Breach Science Publishers,
1990.

5. B. Russell, “Vagueness,” Australian . Phil. 1, 84-92 (1923).

6. G.-C. Rota, ““The Pernicious Influence of Mathematics upon Philos-
ophy,” Synthese 88, 1991.

7. L. A. Zadeh, “The Calculus of Fuzzy If /Then Rules,” AI Expert,
vol. 7, no. 3, March 1992, 23-27.

8. A. Sangalli, ““Fuzzy Logic Goes to Market,” New Scientist, vol. 133,
no. 1807, 8 February 1992, pp. 36—39.

9. L. A. Zadeh, “Fuzzy Logic and Soft Computing: Issues, Con-
tentions and Perspectives,” Proceedings of the 3rd International Conference
on Fuzzy Logic, Neural Nets and Soft Computing (lizuka, Japan, August
1-7,1994), pp. 1-2.

10. 1996 Biennial Conference of the North American Fuzzy Informa-
tion Processing Association NAFIPS (University of California at Berkeley,
June 19-22, 1996), plenary talk.

18

* CHAPTER TWO *

Fuzzy Does It

A SIMPLE CONTROL PROBLEM

It is not always necessary to understand a system in order to
control it. Is there a better example of this principle’s
plausibility than our own brain? After all, human beings
have used it for thousands of years without having the
slightest idea of how it worked.

SUPPOSE you are driving on the highway. Realizing that the gap
between your car and the vehicle ahead is closing, you put on the
brakes. The amount of pressure you apply on the pedal depends on
several factors: the speed of your car, the distance separating the two
vehicles, how fast is this distance decreasing, road conditions, and so
on. But you do not need to know the numerical values of these
quantities in order to ““deduce” the adequate braking pressure. As an
experienced driver, you put the right pressure on the brake pedal
instinctively, you have developed a feeling for it. Fuzzy logic is a
method for transmitting that same ““feeling” to a machine, a proce-
dure that allows the easy encoding of human know-how in a form
computers can understand and use.

In technical jargon, the above highway situation translates as fol-
lows. Your car and the vehicle ahead of you form a system. Your
brain is acting as a controller of the distance between the two
vehicles. The goal of the control actions is to avoid collision by
keeping a safe distance. This analysis is useful if we are contemplat-
ing designing a machine to control the brakes automatically. The
device we have in mind would be fed all the relevant data (or input):
the speed of your car, the distance separating the two vehicles, and so
forth. From this information, it will be expected to calculate the
appropriate braking (output). Since the input data is continually
changing, the input/output cycle should take place at regular inter-
vals (perhaps many times per second) to ensure proper control.

ONE: BLURRED VISIONS

We have here what engineers call a control problem: from the
values of some input variables (speed, distance, etc.) calculate the
value of the output variable (pressure on the brake pedal) that
guarantees a satisfactory performance of the system (safe driving
distance).

The classical approach for solving this problem requires a mathe-
matical model of the system. This is typically a set of differential
equations relating the numerical quantities involved and their rates
of change. The appropriate braking pressure then results from solving
the equations. Summing up, our control problem will be solved, in
theory at least, if we can come up with: (2) a mathematical descrip-
tion of the system and (b) a method for solving the equations arising
in part (a) in real time (this last condition is crucial, for the controller
should be able to take action before it is too late to avoid a collision).
This is the conventional solution scheme.

Some twenty years ago a different approach was tried for the first
time. Based on the theory of fuzzy sets, the new technique bypasses
requirement (a)—the need for a mathematical model. Instead, its
central idea is to encode a linguistic version of the operations re-
quired to control the system.

To apply the new method to our braking problem, we must begin
with an analysis of the actions the driver takes, that is, how the driver
responds, by braking, to the various speed and distance conditions.
This human expertise is then put in the form of conditional rules:

If (PRESENT CONDITIONS), then (ACTION TO BE TAKEN).

The charm of it is that these rules may be phrased using the
“fuzzy’’ notions of everyday language. For example: “If your speed
is medium and the distance to the vehicle ahead is safe and it is
decreasing rather fast, then apply a moderate pressure on the brake.”

In order to treat this information numerically, the imprecise expres-
sions “‘safe distance,” ““moderate pressure,” and so forth are repre-
sented mathematically as fuzzy sets. Then, the operating rules are
encoded into a program for the computer or fuzzy controller. While
you drive on the highway, sensors will measure the input data
(speed, distance, etc.) and pass this information on to the fuzzy
controller. Using an algorithm known as fuzzy inference, the con-
troller will then calculate the correct pressure on the brake. If all goes
well, your car (and yourself) will reach its destination in one piece.

20

FUZZY DOES IT

This example, although somewhat artificial, serves to illustrate the
concepts involved in a control problem and the general idea of a
fuzzy logic solution. A fuzzy controller based essentially on the same
principles has been tested by the French automobile manufacturer
Peugeot.! The experimental car is equipped with a safety feature
capable of taking over braking in case the driver is suddenly dis-
tracted or disabled. Using four input variables and twenty operating
rules, the controller calculates the braking pressure in an emergency.

Commercial applications of fuzzy control by the car industry are
already available to consumers—who will not necessarily notice it.
Several Japanese manufacturers use fuzzy logic to control the auto-
matic transmission of their models. The cruise control system of the
1994 Mazda Sentia employs fuzzy logic to prevent shifting to a higher
gear during uphill driving,* and in the 1998 Volkswagen New Beetle
fuzzy logic adapts the automatic transmission to the driver’s style.

ORIGINS OF Fuzzy CONTROL

Retracing the origins of an idea (who did what and—especially—
when) is always a delicate question, but it seems safe to give credit to
Abe Mamdani for the first demonstration of the practical possibilities
of fuzzy set theory. Mamdani was a lecturer in the Department of
Electrical Engineering at Queen Mary College (now Queen Mary and
Westfield), in London, in the early 1970s, when he and his student
Seto Assilian used fuzzy logic to control the operation of a small
steam engine.’> Fuzzy process control was born.

In retrospect, it was the implementation of a simple idea: automat-
ing the decisions a human expert makes to control a process. One of
the earliest works in this direction uses the expert’s knowledge put in
the form of linguistic rules. It is due to D. A. Watermann, who
investigated automatic learning in connection with the game of poker.*
Mamdani acknowledges its influence on the development of the new
technique. “In fact,” he writes it should be remarked that the work
on process control using fuzzy logic was inspired as much by Water-
mann and his approach to rule-based decision making as by Zadeh
and his novel theory of fuzzy subsets.”

Conventional control engineering is based on explicit mathematical
models. This approach is successful when the models can be given as

21

ONE: BLURRED VISIONS

simple (in general, linear) differential equations relating a small
number of input and output variables. But many processes, such as
complex chemical reactions or the operation of an industrial plant, do
not yield to such an approach because nobody actually understands
how they work. The number of variables involved in those processes
makes it impossible to specify all their complex interrelations with
mathematical precision. In such cases, resorting to fuzzy logic is
appealing because the design of a “fuzzy’” controller does not require
an exact theoretical model. It is enough to have a general strategy for
controlling the process, such as the knowledge of an experienced
operator.

Once the efficiency of Mamdani’s method had been experimentally
established, many others took up the idea of using fuzzy logic in
process control; from industrial processes, such as cement manufac-
ture, water purification, and the automatic operation of a subway
train, to household appliances.

In 1980, the Danish cement manufacturer F. L. Smidth & Co. A/S
used a fuzzy controller to regulate the operation of a cement kiln.
This was the world’s first industrial implementation of fuzzy logic
techniques. A cement kiln is a rotating chamber where limestone,
clay, sand, and iron ore are burned at high temperatures. The small
nuts of minerals formed in the process are later ground down into
cement. The process is controlled by varying the kiln rotational
speed, the fuel rate, and the speed of the induction fan that sucks the
hot combustion gases. An exact model is not feasible because the kiln
is subject to random disturbances which cannot be quantified and its
response to the operator’s actions is extremely variable.

Three years later, in 1983, the water purification plant of Akita City
in Japan employed fuzzy techniques developed by Fuji Electric Co.
Ltd. to control the injection of chemicals. The decade’s most spectacu-
lar application of fuzzy logic was the fuzzy predictive system that to
this day operates the automated subway trains in the Japanese city of
Sendai.® Braking and acceleration are reportedly smoother than in
manually operated trains, making for a more comfortable and safer
ride for passengers. The system, designed by Hitachi’s engineers, has
reduced energy consumption by 10 percent. It has also lowered the
margin of error in stopping the trains at specified targets in stations
to less than 10 cm—better than most veteran drivers, according to an
official of the Municipal Transportation Bureau.

22

FUZZY DOES IT

Similar techniques would later be incorporated in expert systems
and spread to fields as diverse as medical diagnosis, image under-
standing by robots, and the forecasting of currency exchange rates.
We shall discuss applications in a later section. For now, let us take a
closer look at the technique itself.

COMPUTING WITH WORDS

For the famous astronomer Galileo and many of his successors, the
Book of Nature was written in the language of mathematics, “and its
characters are triangles, circles and other geometric figures.” We
know today that such an idealistic expectation, based more on faith
than on fact, is only partially true, even if mathematics has consider-
ably grown since Galileo’s time. Of course, many observed or theoret-
ical relationships can be condensed in a precise mathematical for-
mula. A famous example is Einstein’s E = mc?, relating energy,
mass, and the speed of light. But other relationships are imperfectly
known, and can at best be described in the vague terms of natural
language

if x is small and y is average, then z is large.

In cases like this we say that x, y, and z are “linguistic’” variables,
because their values are not numbers but words (small, large, etc.).
Using fuzzy sets, we can turn these words into numerical relations on
which calculations can be performed. Such is the power of fuzzy
logic, which Lotfi Zadeh once called “a method for computing with
words.”

The values of a linguistic variable x are actually fuzzy subsets of
some set X of numbers. For example, let x represent the speed of a
car (in kilometers per hour) and let its linguistic values be ““small,”
“average,” and “high.” Then X could be the set of numbers from 0
to 200, and each of those three words would then name some fuzzy
subset of X.

A fuzzy inference rule has the general form

if xis Aand yis B then z is C (6)

23

ONE: BLURRED VISIONS

where A, B, and C are words naming fuzzy subsets. In practical
applications to control, (6) describes a relationship between the input
variables (x and y) and the required control action (the output
variable z). For example, ““if temperature (x) is high (A) and image
density (y) is low (B), then charge (z) is high (C),” is one of the nine
rules that control the amount of electrical charge that should be
imparted to the drum of a photocopying machine. The charge (z)
depends on the temperature (x) and on the density, or black/white
ratio (y) of the image being copied.

A BALANCING ACT OF CONTROL

To balance a stick on the palm of one hand is almost child’s play. But
how do we teach a robot to do the trick? The story of Takeshi
Yamakawa’s answer to this question provides a remarkable insight
into the methodology and the power of fuzzy control. At the time, in
1987, he was in the Department of Electrical Engineering and Com-
puter Science at Kumamoto University, but shortly after he joined the
newly founded Kyushu Institute of Technology in lizuka. Both insti-
tutions are located in the Western Japanese island of Kyushu.

Yamakawa’s system” consists of a small vehicle (the “‘robot’s hand”’)
with a rigid pole (the “stick”’) joined to it by a pivot, as shown in
figure 1.6. The vehicle, driven by a servo motor, can move back and
forth along a rectilinear track. To balance the pole, this motion must
take place at an appropriate speed that is constantly changing.

We can derive a mathematical model of the problem from the laws
of physics. The relevant time-dependent variables are the position of
the vehicle along the track (y); the angle formed by the pole with the
vertical (#) and their rates of change with respect to time or, in
mathematical terms, their derivatives: i’ (velocity of the vehicle), y”
(its acceleration), ' (angular velocity of the pole), and 6" (angular
acceleration); the horizontal force H at the pivot; and so forth. Apart
from these variable quantities, certain constants are also involved: the
length of the pole (L), and the masses of the pole () and the vehicle
(M).

The mathematical model then consists of a system of four nonlinear
differential equations. As an example, one of them is

H=my" + m(L/2)(6" cos 6 — 6 sin 6).

24

FUZZY DOES IT

D

< y
FIGURE L1.6. A small vehicle (“the robot’s hand”)
with a rigid pole (“the stick”) joined to it by a
pivot. It can move back and forth along a
rectilinear track.

The correct velocity, that is, how fast and in which direction the
vehicle must move to balance the pole, results from solving these
equations. Practical methods to solve the system of equations using a
digital computer are available. But to prevent the pole from falling,
especially a short and light one, the answer must be calculated almost
instantly. In other words, the equations need to be solved in real
time, a feat beyond the power of present-day computers. So much for
exact mathematical models. Enter fuzzy logic.

Instead of using differential equations, Yamakawa based his ap-
proach on a linguistic model of the system. This model has two input
variables: the angle 6 and its derivative 6’ (in simple terms, 6’
measures how fast the pole is falling or rising). The output or control
variable is the velocity of the vehicle (y').

25

ONE: BLURRED VISIONS

The values of these variables are signed numbers, that is, they can
be positive, negative, or zero. The sign of 0, for example, tells in
which direction the pole is tilted: forward (+), backward (—), or
neither (0), that is, it is vertical; the sign of y' indicates whether the
vehicle should move forward (+), backward (—), or stand still (0);
and the sign of 6" depends on which sense (i.e., clockwise or counter-
clockwise) the pole is rotating.

As a first step in constructing the linguistic model, the actions
taken instinctively by a human to balance the pole are analyzed and
expressed in the form of operating rules. In effect, we tell the robot
how to move its hand depending on the “error” (i.e., the angle 6
with the vertical) and on its rate of change (6'). The beauty of it is
that we can put the instructions in everyday language. For example:

“If the pole is balanced, do not move your hand.” (7)

Next, the intuitive relationships among the variables are encoded
in terms of fuzzy sets. These are labeled negative large (NL), negative
medium (NM), negative small (NS), zero (ZR), positive small (PS),
positive medium (PM), and positive large (PL). Thus, (7) becomes
the fuzzy inference rule:

If 6 is ZR and 6’ is ZR then y' is ZR. (8)

(A balanced pole is vertical (6 = 0) and it is not moving (8’ = 0);
since the “hand”” should not move, its velocity (y') must be zero.)

Another rule of thumb is: “If the pole is slightly tilted away from
you and falling slowly, move your hand forward but not too quickly,”
which is translated as:

If 6 is PS and 60" is PS then y' is PS. 9

Besides (8) and (9), Yamakawa'’s linguistic model of the control
actions comprises five other rules; all of them are listed in table 1.

Unlike the mathematical model previously discussed, the linguistic
model does not explicitly involve any equations or numerical values.
Another difference between the two models concerns their a priori
performance. While we can demonstrate theoretically that the solu-
tion of the differential equations does balance the pole, no such proof
seems possible regarding the linguistic model. In other words, no one
can tell in advance whether or not the fuzzy inference algorithm

26

FUZZY DOES IT

TABLE 1
Seven linguistic rules to balance an inverted pendulum.
For example, Rule 4: If the angle is positive small and
the angular velocity is negative small, then the
velocity of the vehicle is zero.

Angular Velocity of

Rule Angle Velocity Vehicle
No. (9) (0') (')

1 ZR ZR ZR

2 PS PS PS

3 PM ZR PM

4 PS NS ZR

5 NM ZR NM

6 NS NS NS

7 NS PS ZR

Notes:

NS = negative small
NM = negative medium
PS = positive small
PM = positive medium
ZR = zero

based on the seven linguistic rules of table 1—or some other similar
set of rules—will achieve its goal of balancing the pole. Success—or
failure—is only established experimentally: run the system and see
what happens.

If a given set of inference rules fails to do the job, try a new set (it is
easier to produce control rules than to solve nonlinear differential
equations). Notice that if we were to tell the robot what to do for each
possible input condition, we would end up with 49 rules (since each
one of 6, ' can take on seven linguistic values). It is one of the
realities of the fuzzy method that a relatively small number of rules
usually suffices to achieve control. An alternative to this trial-and-
error approach is the automatic search for an optimal set of rules. The
most popular such techniques are based on neural networks and
genetic algorithms (the subject of part 3).

But identifying a correct set of control rules is not enough. If
effective control is to be accomplished, the performance of the fuzzy
inference algorithm must be extremely fast. In order to achieve

27

ONE: BLURRED VISIONS

almost instantaneous execution, Yamakawa designed the world’s first
high-speed fuzzy controller. By rotating switches, the controller can
be programmed to execute any desired set of up to fifteen rules
involving the seven fuzzy labels from NS (negative small) to PL
(positive large). The membership function of each fuzzy set is imple-
mented by a circuit. The output signal of this circuit, ranging from 0
to 5 volts, corresponds to the membership grades from 0.0 to 1.0.
Fifteen “rule” chips perform the fuzzy inferences and one “defuzzi-
fier” chip converts their conclusions into an analogue numerical
value (the fuzzy inference algorithm and defuzzification are ex-
plained in the next section). Thanks to its parallel architecture, the
controller can respond to a change in input in less than a microsec-
ond. This corresponds to a ““deduction” speed of a million fuzzy
decisions per second.

To demonstrate the efficiency of his controller, Yamakawa applied
it to the stabilization of the pole, the so-called inverted pendulum
control problem. Here is how his balancing-act system operates. A
sensor measures the angle 6 of the pole with the vertical, calculates
its derivative 6’, and feeds this information to the controller. From
this data, the rule chips perform the seven fuzzy inferences specified
in table 1 and the defuzzifier chip calculates the (nonfuzzy) output.
This numerical value determines the rotating speed of the servo
motor that moves the small vehicle back and forth.

The high-speed fuzzy controller successfully balanced short and
long pendulums. The short one was 5 millimeters in diameter,
15 centimeters in length, and had a weight of 3.5 grams; the other
was twice as thick, 50 cm in length, and weighed 50 grams. The same
set of control rules worked in both cases, even though the poles had
different length and weight. This suggests the suitability of fuzzy
control to handle systems with time-variant parameters such as trains
or tanks, which can be more or less full. Moreover, the controller
proved it can tolerate some hardware malfunction or defect as well as
slight programming mistakes. For even after deleting one of the rules
or making a minor change in a fuzzy value (from positive large to
positive medium, say), the system performed well, although it was
less stable.

Yamakawa’s fuzzy logic controller and pole-balancing system was
manufactured by the electronics company Omron for demonstration
at the Second World Congress of the International Fuzzy Systems
Association (IFSA). The meeting, which took place in Tokyo in the

28

FUZZY DOES IT

summer of 1987, served as a showcase for the practical applications of
fuzzy logic. It also foreshadowed the ““fuzzy boom” of consumer
goods of the late 1980s and early 1990s, by making Japanese industry
aware of the commercial potential of the new technique. From video
cameras to air conditioners and washing machines, “fuzzy’” products,
featuring technology based on fuzzy logic, will soon inundate the
Japanese market.

THE MAGIC OF Fuzzy INFERENCE

If we only seek to gain power over things, we can resign
ourselves to incomprehension, for we can act effectively
without understanding the reasons of our success.
(René Thom)®

The crucial step in the implementation of a fuzzy inference rule is to
give it a mathematical form. This is usually done by interpreting

if xis Aand y is B then zis C

as describing a procedure that generates a new fuzzy subset C' (the
“conclusion”) from given fuzzy subsets A" and B’ (the data). The
procedure is often presented in the form of a phony logical deduction
or ““fuzzy” inference:

Rule: if x is A and y is B then z is C
Premises: x is A, y is B’
Conclusion: z is C'.

In most applications, the values of x and y are numbers x, and y,
resulting from measuring speed, angle, voltage, or some other
(numerical) variable. Then, the premises “x is A'” and “y is B'”
become “x is (equal to) x,” and “y is (equal to) y,,”” and the
membership function of the fuzzy subset C’ is defined by the equa-
tion

C'(z) = min{ A(x,), B(y,),C(z)}. (10)

That is, the grade of membership in C' of the number z is the
smallest, or minimum, of the grades A(x,), B(y,), C(2).

29

ONE: BLURRED VISIONS

Applications of fuzzy logic to real-life problems generally require
more than one inference rule—Mamdani used fifteen linguistic rules
to control the operation of his steam engine. For given input values
x, and y,, each rule will yield a fuzzy subset (calculated as in (10)
above) which may be seen as the contribution of that particular rule
to the final decision. These fuzzy subsets, or partial conclusions, are
then combined into a single final conclusion D using the fuzzy union
operation (see Operations on Fuzzy Sets):

D=CjucC,uU--C, (11D

where Cj is the conclusion of rule 1, C, is the conclusion of rule 2,
and so on. Since the control action generally consists in the appropri-
ate setting of pressure, temperature, charge, etc., the value of the
output variable z must be a single number z, (“fuzzy” control is
really exact control calculated from fuzzy rules). The number z, is
computed from the above fuzzy set D by a “defuzzification” proce-
dure. One of the most widely used is the so-called center of gravity
method: If the fuzzy subset D is represented by its membership
function (see figure 1.7), its center of gravity is the number z, such
that the vertical line through z, divides the graph into two regions of
equal area.

The above scheme for calculating an output value z, from input
values x, and y, is called the fuzzy inference algorithm. To illustrate

£

f

Zy

FIGURE 1.7. Defuzzification. The ver-
tical line through the point z, (the
center of gravity) divides the graph
of D into two regions of equal area.

30

FUZZY DOES IT

it in a very simple case (for a more detailed analysis, see Appen-
dix 1), we consider a fictitious system with input variables x and y,
output variable z, and two fuzzy sets: “approximately zero” and
“small positive” whose membership functions appear in figure L.8.
The relationships between the three variables are described by two
linguistic rules:

Rule 1: If x is approximately zero and y is small positive, then z is
approximately zero;

Rule 2: If x is small positive and y is approximately zero, then z is
small positive.

What is the optimal value of z if x = 0.8 and y = 0.4 (as measured
by some sensors, say)? The conclusion of the fuzzy inference is the
fuzzy set D on the far right of the figure, and its center of gravity is
the number 0.7. The fuzzy inference algorithm has therefore allowed
us to “deduce” that if x is 0.8 and y is 0.4, then z should be 0.7.

(If at this point the reader is trying to understand why this
algorithm manages to effectively control certain real systems, then he
or she has plenty of company: A well-kept secret is that practically no
one really understands why the algorithm works.)

A fuzzy control algorithm is generally highly “robust.” This means
that it can tolerate certain changes (in the operations, the membership
functions, or system parameters) without significantly affecting the
overall performance of the controller.

Many other algorithms that incorporate fuzzy set theoretic ideas
and techniques have worked well in practice. For instance, the fuzzy
algorithm that controls the speed of the automatic trains’ in the
Japanese city of Sendai employs twelve rules of the type

if (u = c implies x is A and y is B) then u = ¢

where A and B are fuzzy sets that evaluate the performance of the
system and c is a nonfuzzy control command. From the input data
(time, position, velocity, etc.) the algorithm assigns to each rule a
number between 0 and 1—the rule’s “likelihood.” Then, the control
command c¢ of the most likely rule is executed (for example, the

31

'so[nI Azzny usAIS oM} 9y} WO Z JO /() dNJeA
rewmndo ay3 ,,seonpap,, unpiode ayy ‘F'0 = %4 pue g0 = Ox sanfea 104 ‘W LIoS[e dUAIUI AZZny Y[, ‘§T TANOI]

[0 I- C
ro=0¢

1 0 I-
“wdnok

{20 (%g (9} arus (g 1oy
ﬂl
1 ‘oanisod [ews sz uoy) o010z Apejewrxoxdde st A4 pue aansod [fews ST X JT
Zomyg
4 1 0 I- 4 ! 0 I- [I-
! | v.ono\ﬁ | 1
T T T T
|
1
“O0)g (0 \ (%,

UoISNPU0)) Azznj

N\ o

‘019z Ajorewxoxdde s1 z uay)

aamsod [jews st A pue

o010z Ajorewxoxdde st x JI

Tomnyg

FUZZY DOES IT

brake is set at notch no. 9). The program that implements the
algorithm on a microcomputer calculates a control command every
100 milliseconds.

Fuzzy Locic Goes COMMERCIAL

By the end of 1990, the number of practical applications of fuzzy logic
in Japan was estimated at between two and three hundred. An
important number of these were consumer goods, which at the same
time contributed to make “fuzzy’” a household word in Japan. “The
fuzzy age has begun!” proclaimed a commercial for the Aisaigo Day
Fuzzy washing machine, manufactured by Matsushita. It is interest-
ing to note that commercial ads used the English word “fuzzy,”
instead of the Japanese equivalent ‘“aimai.’” This proved to be a
successful marketing ploy and soon any product that called itself
fuzzy was a hit.

But the notion of a fuzzy product is itself fuzzy. For the most part,
these are electronic devices that incorporate some degree of fuzzy
control—although it is not always clear how much: 10 percent,
50 percent, or 1 percent? Their main features are simplicity of opera-
tion and “smart” behavior. The user has only to turn on the machine,
after which it will literally control itself and respond with human
common sense to changing conditions, in most cases outperforming
conventional models.

When it is time to do the laundry, for instance, you can trust the
fuzzy chip to decide the best way to do it. Just load the National
washing machine and push the button. An optical sensor will detect
the type and the degree of dirt from the muddiness of the water.
Other sensors will ascertain the size of the load and the kind of
detergent being used. On this information, the fuzzy inference rules
will select the water level and other settings for the best and most
economical cycle. The manufacturer promises a perfect wash with
substantial savings on electricity. (Unfortunately, the machine will
not warn you if you happen to mix items that should not be washed
together, in which case be prepared for some fuzzy colors at the end
of the wash...)

The automatic iris of a Sanyo camcorder responds more effectively
to complex lighting conditions by exploiting the flexibility of fuzzy
sets. In conventional systems there are only two degrees of “bright-

33

ONE: BLURRED VISIONS

ness’’: 0, if the illuminance is less than 1000 lux, and 1 if it equals or
exceeds 1000. Thus, illuminance levels that are close to each other,
but on different sides of the dividing line, result in degrees of
brightness which are far apart. With a fuzzy membership function the
degrees increase smoothly from 0 to 1, so such jumps do not occur.
Overall brightness is evaluated using rules that determine the prior-
ity of different areas of the image under various conditions. These
inference rules involve fuzzy concepts such as “small” brightness or
two degrees of brightness being ““close” to each other. The camera
can therefore compensate for backlight or excess frontlight better than
those based on all-or-nothing brightness estimation.

In September 1989, Toshiba Corporation announced a scheduling
system for elevators based on a fuzzy controller supported by a
conventional expert system. Designed to manage up to eight cars, the
Command-Al system promised to reduce waiting time in a high-rise
building by optimally assigning an elevator in response to each call.
“With this new fuzzy system,” the information brochure claimed,
“the possibility of having to wait more than 60 seconds is reduced by
30 percent [compared to their standard system].”

The photocopying process that most users take for granted (how
did they ever manage in the Dark Ages before photocopying ma-
chines?) is a delicate one. The electrical and optical processes taking
place are influenced, among other factors, by the temperature, the
condition of the toner, and the image density (the black /white ratio)
of the document to be copied. If these variables are not properly
controlled, the copy may be of inferior or even very poor quality. In
conventional machines, the necessary adjustments must be done
manually by a qualified technician. In a model released by Canon in
October 1990, a fuzzy logic system performs the appropriate settings,
to insure that the transfer of the toner to the photocopying paper by
static electricity is done under optimal conditions. A sensor measures
the temperature while a potentiometer picks up the image density of
the document. Nine fuzzy inference rules are then used to ““deduce”
the right charge (potential) of the photoconductor drum. For instance,
“if temperature is low and image density is high, then charge is
medium.” The manufacturer claimed that the resulting system not
only eliminated the need for manual adjustment but that it also
reduced the number of paper jams, while maintaining a uniform copy
quality.

34

FUZZY DOES IT

The fuzzy frenzy covered the whole spectrum of consumer goods,
including television sets that adjust volume according to noise level
and viewer’s distance, fuzzy microwave ovens and vacuum cleaners;
and video cameras capable of bringing the subject into focus no
matter where it appears in the picture frame (the wonders of fuzzy
focusing).

Many other practical uses of fuzzy logic were being tested during
that period, from helping the motion of a robot' to controlling the
tracking of a VCR."' A number of these were prototypes and it is hard
to tell whether they ever got past the experimental stage. At any rate,
by one expert’s estimate'? the number of fuzzy products marketed in
Japan during the period 1989-93 exceeded six hundred. This claim
brings us back to the tricky question of evaluating the fuzzy compo-
nent of a self-proclaimed ““fuzzy’” product, and to the most basic one
of what constitutes an “application” of a given theory. If digital
computers are used to schedule oil production, should we count this
as an industrial application of binary arithmetic and Boolean algebra
or as an application of transistors and electronic circuits?

For all the wonders of the theory of fuzzy sets, most so-called
applications of fuzzy logic would simply not exist without the ad-
vanced technology of sensors, chips, and high-speed computing. But
whatever the merit of the theory in making so many smart and
easy-to-use products a reality, Japanese engineers are rightly proud
of having set new standards of design and performance. “As far as
fuzzy is concerned,” says Masato Nakayashiki, managing director of
the Laboratory for International Fuzzy Engineering Research (LIFE)
in Yokohama, “no one can claim that Japan is imitating foreign
technology.”

Like all booms that deserve the name, the fuzzy boom eventually
subsided, at least as far as media attention was concerned. Given the
extensive coverage that the new technology had received, in Japan
and elsewhere, it was predictable that ““fuzzy” would no longer be
news by the end of 1991.

Nakayashiki reflects on the social dimension of the phenomenon:
“The fuzzy boom was supported by highly emotional elements.
These may have included excessive expectations or bona fide misun-
derstandings that view fuzzy technology as magic. Nevertheless, in
this reaction one detects people’s desire for simplicity, friendliness
and humanity in technology.”"

35

ONE: BLURRED VISIONS

From the larger perspective of all human beings—and not just
well-off consumers—improving the performance of home appliances,
elevators, and automobiles which were already among the world’s
most advanced appears as a rather frivolous application of the theory.
Nonetheless, it was through these down-to-earth uses that ordinary
people became aware of the existence and practical implications of a
mathematical idea: the notion of a fuzzy set.

Fuzzy INPUTS

The inputs x, and y, to the fuzzy inference algorithm are typically
numbers that measure certain scalar quantities, such as temperature
or voltage. In control applications, these numbers are obtained with-
out direct human intervention using sensors or other automatic
devices. The first stage of the algorithm then ““fuzzifies” the crisp
data x, and y, by calculating their membership grades in various
fuzzy sets. There are cases, however, in which the input data are
already fuzzy. This situation occurs, for example, when a human
expert must estimate to what degree, from 0 to 1, a certain character-
istic or feature is present, as in the following application of fuzzy
inference to medical diagnosis.

For the initial screening of prostatic cancer, doctors may use both a
rectal examination and the images obtained by ultrasonic techniques.
But the clinical assessment of ultrasonic images, even if done by a
qualified physician, remains highly subjective. To allow for a more
objective appraisal, a team of Japanese doctors developed a diagnos-
tic system based on fuzzy logic which can be implemented on a
personal computer.'

A rectal probe with a scanner is used to transmit transverse images
of the prostate. The physician then estimates certain features of the
image, for example whether the shape is smooth (membership grade
¢ = 0), disrupted (g = 1), or somewhere in between (0 < g < 1). The
appraised fuzzy value is entered by moving a pointer along the
computer image of a line segment representing the interval [0, 1], and
clicking at the appropriate point. Based on the general rules for
ultrasonic diagnosis used by expert urologists, the algorithm calcu-
lates a numerical output. Depending on this number, the patient is

36

FUZZY DOES IT

declared healthy, suffering from prostatic cancer, or a “fuzzy case,”
that is, too close to call, if the test was inconclusive.

Clinical trials of the system are reportedly very encouraging. For
example, the computer verdict resulted in only one false negative
case and two cases in the fuzzy zone, when tried on thirty patients
with confirmed prostatic cancer. The quantification of vagueness and
subjectivity, which lie at the heart of the fuzzy approach, proved once
again an efficient way of automating the making of a decision.

Opinion polls is another field which could benefit from the flexibil-
ity of fuzzy inputs. When people are consulted about a particular
issue—the death penalty, say—they are usually asked to choose
among a small number of answers: strongly in favor, somewhat in
favor, strongly opposed, and so forth. In the extreme case of referen-
dums there are only two possible choices, yes or no. It is either all or
nothing, black or white, while in reality many people stand some-
where in between the two extremes.

By permitting the answer to be a number between 0 (= No) and 1
(= Yes), undecided voters could express their uncertainty and hesita-
tions (“yes but,” “rather not,” etc.). Such split votes would be
counted as giving a fraction of support to each of the options, such as
0.75 Yes /0.25 No. By way of example of what might happen, suppose
that the outcome of a conventional referendum was 54 percent to
46 percent in favor of Yes. If one-third of those who voted Yes could
have given a less categorical answer, say 0.75 Yes /0.25 No (instead of
1 Yes/0 No), then the outcome would have been reversed, with the
No side winning by 50.5 to 49.5 percent. Many other distributions of
the uncertainty are of course possible. By quantifying the degree of
conviction of each ballot, the will of the people should be better
gauged and democracy better served."”

Profit also might be better served by allowing people to express
gradations of preferences. Consumer’s Edge, a California software
developer, hopes to offer “deep interviews” on the Internet—exten-
sive questions-and-answers to match consumers to products. If you
are in the market for, say, an automobile, the program informs you
that there are 746 possible cars. Then it starts asking how much you
want to spend, how important is air conditioning, power steering,
anti-lock brakes, and so forth. The answers are not just yes or no; you
can express partial preference by sliding a dial to the left or right with
your mouse.'®

37

ONE: BLURRED VISIONS

Fuzzy ENGINEERING COMES TO LIFE

As science and technology progress, we expect to be able to
instill into machines some of the good human qualities.
Besides being smart, we would like them to be friendly,

thoughtful, tolerant, perhaps even to show sympathy and

understanding. But what if, as machines become more like us
in some respects, it turns out to be impossible to filter out the
darker side of human nature: selfishness, intolerance,
wickedness—the list is long.

At the beginning of 1989, as the industrial and commercial applica-
tions of fuzzy logic were spreading, the Japanese government per-
suaded a vast consortium of international companies to create a new
center for research and development on fuzzy computing. And so the
Laboratory for International Fuzzy Engineering Research (LIFE) was
established in March 1989 as a private corporation with special tax
exemptions. Its forty-nine industrial members included most major
Japanese companies (Matsushita, Canon, Hitachi, Mitsubishi, etc.).

The early successes of fuzzy methods were seen as a prelude to
even more dramatic achievements. The new center would coordinate
the efforts of government, industry, and academic institutions to
realize those expectations—and cash in on the results. Located in the
port city of Yokohama, on the west side of Tokyo Bay, LIFE was to
develop applications of fuzzy theory to engineering, from basic re-
search to experimental production and evaluation. The laboratory
sought to promote interest in fuzzy methods through technological
exchange with Japanese and foreign companies. To fulfill its mission,
it was given six years and a $50-million budget.

Toshiro Terano, who was the director of research during LIFE’s life
span, calls “fuzzy engineering’ the combination of fuzzy logic, used
as a tool, and systems engineering, a methodology for dealing glob-
ally with complex problems. Fuzzy engineering favors a qualitative
representation of the main aspects of a problem, followed by a
“fuzzy” solution strategy, similar to human reasoning, which can
subsequently be coded as an algorithm or in some other mathemati-
cal form. “The necessity of fuzzy engineering,” Terano says, “de-
pends on how much the human factor is taken into account by the
engineer designing a system.”

38

FUZZY DOES IT

This preoccupation with the human element persisted throughout
LIFE’s existence and might have been intended by the choice of the
acronym—attributed to Michio Sugeno, a professor at the Tokyo
Institute of Technology, who must also be credited with the idea of
creating the laboratory. Indeed, LIFE’s primary concern has been to
place the human being at the center of an information-oriented
society. Its main research projects aimed at developing systems that
support a person’s decisions or actions through two-way communica-
tion in everyday language between human and machine. This per-
spective raises the problem of processing the ambiguity inherent in
natural language, the questions of meaning and subjectivity, and
even the role of emotions. One of LIFE’s postulates was the belief that
fuzzy methods hold the key to the design of intelligent machines,
artificial brains whose capabilities would be similar in some respects
to those of the human mind. While other approaches to machine
intelligence seek to model the physiological aspects of the brain,
fuzzy engineering focuses on its psychological function.

SPECULATING ON Fuzzy DECISIONS

LIFE initially concentrated its research efforts in three areas: decision
support systems (which included fuzzy control), the development of
intelligent robots, and the design of a fuzzy computer which could
execute fuzzy operations (such as fuzzy set operations or fuzzy
arithmetic) at high speed. Research was oriented toward solving
concrete problems, rather than elaborating abstract theories.

Among the specific projects in the first area, LIFE’s researchers
developed a decision system for foreign exchange trading. The fore-
casting of exchange rates is typical of a real-world complex problem
not amenable to mathematical modeling. Apart from numerical data
(interest rates, trade balances, etc.), fluctuations in rates are also
influenced by non-numerical information. The latter includes remarks
made by financial authorities, real or apprehended political decisions,
and international news. Psychological factors, such as the exchange
dealer’s perception of the market, must be taken into account as well.

The resulting fuzzy expert system incorporated the complex rela-
tionships of some three hundred variables expressed in the form of
fuzzy inference rules. For instance: “If the U.S. Federal Reserve Bank
rates are high and the official discount rate is low, then American

39

ONE: BLURRED VISIONS

short-term interest rates become very high.” The expertise of foreign
exchange dealers and other market officials, mathematical models of
economic theories, and the analysis of case studies all intervened in
the formulation of the five thousand fuzzy rules. Trial runs of the
system gave satisfactory results—if one excludes computation time
as a performance factor.'”” But even if the technology developed is not
yet ready to be used in actual situations, people at LIFE believe that
no other approach would have produced a system with comparable
performance.

THE Fuzzy CHOPPER

During its second period of existence, from 1992 to 1995, the labora-
tory’s research projects focused on the general theme of developing
human-friendly information systems. Efforts were split on two some-
what overlapping fronts: making smart machines and enhancing the
communication between human and computer.

One of the intelligent robots developed jointly at LIFE and at the
Tokyo Institute of Technology took the form of a small helicopter that
can execute verbal commands given in natural language, like ““hover”
or “fly forward a short distance.” The ultimate goal of this long-term
project is to develop an automatic flight controller which would be
able to handle qualitative as well as quantitative information. Guided
by such a device, the helicopter would possess a large degree of
autonomy, allowing it to perform critical tasks in bad weather and
other environmental conditions too dangerous for a human pilot.
And since the robot would “understand’” natural language, it could
be directed by someone with little experience—a definite advantage
over standard radio-controlled models, whose successful operation
requires months of training.

A helicopter is intrinsically an unstable system—not just up in the
air, for its own vibrations can be fed back to it when it is on the
ground. In order to stabilize it and steer it, the pilot must adjust both
the speed and the pitch of the rotor blades according to the desired
flight mode (hover, forward, leftward, etc.). This is achieved through
the skillful use of sticks, pedals, and levers. Helicopter flying dynam-
ics is extremely difficult to describe analytically due to the strong

40

FUZZY DOES IT

interrelation (or, cross-coupling, in technical jargon) of the various
flight modes—for example, flying forward may affect the lateral
stability. The fuzzy approach, which bypasses an explicit mathemati-
cal description of the system’s dynamics, becomes then a natural
choice for the control strategy. After all, a human pilot succeeds
without any mathematical model of the process.

The linguistic rules that form the knowledge base of the fuzzy
controller were first formulated with the help of operation manuals
and interviews with experienced pilots. ““If the body rolls right, then
move the lateral stick leftward” and “If the body pitches forward,
then move the longitudinal stick backwards” are typical rules for
hovering. These rules were then tested and refined using a helicopter
flight simulator, and the numerical parameters adjusted as a result of
actual field experiments. The whole design process was also guided
by a knowledge of the physical laws governing the motion of rigid
bodies.

A set of onboard sensors measure angles, velocities, accelerations,
and other relevant variables. Based on these data, the fuzzy controller
performs the actions of a human pilot in response to voice com-
mands. “The” controller is in fact a combination of several fuzzy
controllers organized in a hierarchical fashion. For example, one of
these controllers governs yawing, or the angle off the right course,
which a human pilot can adjust by depressing a pedal. During
automatic operation, the input data are the error—the difference
between the sensor reading and the correct angle—and the rate of
change of this error. The pedal is then regulated by the fuzzy
controller depending on the output of a fuzzy inference involving
nine linguistic rules. ““If error is zero and rate of change is positive
then pedal is negative medium” is one of them. Other sets of rules
control altitude, rolling angle, velocity, and so forth. A fuzzy flight
manager integrates the outputs of the various fuzzy inferences and
helps to smooth the transitions between flight modes.

The small helicopter—3.5 meters long and with a payload of only
20 kilograms—is still in the experimental stages. Several flight modes
(hover, forward, circle, and stop) have already been tested, while
additional modes, such as takeoff and landing, have yet to be imple-
mented. But in the end, the true significance of projects like this does
not necessarily lie in their practical realization. They rather serve as
prototypes of complex systems on which to explore the possibilities

41

ONE: BLURRED VISIONS

—and the limits—of fuzzy techniques. As the authors themselves put
it in the conclusion of one of their progress reports: ““What we have
learned thus far is that a fuzzy hierarchical controller design can
successfully control a highly coupled system with only qualitative
information of the plant and without an explicit mathematical expres-
sion of the model.”"®

AFTERLIFE

In early 1995, as originally planned, LIFE ceased to exist. Its most
important legacy may be to have demonstrated the potential of the
fuzzy approach in the development of systems with a high level of
intelligence. Building on the methods and ideas developed during the
laboratory’s six short years of existence, many challenging concep-
tions might become a reality in the not-so-distant future. Smart
wheelchairs, voice navigation systems to guide the blind, and other
intelligent devices for the handicapped; the generation of images
using natural language to assist the creative process in design, com-
puter graphics, and virtual reality; software that can automatically
summarize the contents of news stories, articles, and reports by
extracting certain features, and robots that are able to act on simple
instructions by inferring the human’s intentions are just a few of the
projects envisaged by LIFE’s researchers.”

Toshiro Terano’s twenty years’ experience with the success of
fuzzy methods in solving concrete problems have convinced him of
their usefulness. But he admits that they still lack widespread recog-
nition. “The attempts, in fuzzy engineering, to introduce and actively
utilize fuzziness in a system have never been accepted by main-
stream science,” he says. No matter. His faith in the power of fuzzy
techniques remains as strong as ever. In the future, he expects
computers to assist humans by providing information that is not just
correct but also meaningful; information that will stimulate the mind
and increase knowledge and creativity. This will be accomplished
through a user-machine dialogue in everyday language similar to the
one that occurs naturally between humans. And LIFE’s former Direc-
tor of Research believes that fuzzy engineering has a unique contribu-
tion to make toward the achievement of such an ambitious goal. LIFE
is dead, long live fuzzy engineering!

42

FUZZY DOES IT

A PERSONAL PERSPECTIVE

In the spring of 1996, addressing a meeting of experts at the Berkeley
campus of the University of California, Lotfi Zadeh reflected on the
evolution of fuzzy logic from his privileged personal perspective. As
early as 1962, three years before the publication of his seminal paper
on fuzzy sets, he had called attention to the need for a radically
different kind of mathematics: ““the mathematics of fuzzy or cloudy
quantities.”” This new mathematics would be used to study what he
called animate systems, especially situations involving human lan-
guage, decisions, and reasoning. Some thirty years later, he was
pleased with the progress made but recognized that ““we are merely
scratching the surface.” And he added, “By restricting ourselves to
classical techniques we simply cannot bridge the gap. We can do
more today thanks to fuzzy logic, neural networks, genetic algo-
rithms and so forth, but we need to do much more.”

Zadeh offered a practical example of a problem that might be
impossible to solve with classical techniques alone: the fraudulent
call problem. An unauthorized person places a telephone call using
the password of a customer C, who is then billed for the call. Given a
record of C’s telephone calls, how can the telephone company detect
that the call was ““abnormal”’? By observing that “abnormality”” is a
fuzzy concept, Zadeh predicted that only a neuro-fuzzy system might
be able to solve this problem.

There is much experimentation going on with various kinds of
“hybrid”” systems, which combine the advantages of two or more soft
techniques. The marriage of fuzzy logic and neural networks, or
neuro-fuzzy, is one of the most popular unions. For example, neural
networks can be used to ““learn” the fuzzy membership functions that
result in the best performance of the system. But we are jumping the
gun here. Neural networks will be properly introduced in part 3. For
now, we shall take a look at the limits of digital computers.

NOTES

1. J. P. Aurrand-Lions, L. Fournier, P. Jarri, M. de Saint Blancard, and
E. Sanchez, “Application of Fuzzy Control for ISIS Vehicle Braking,”

43

ONE: BLURRED VISIONS

Proceedings of the Fourth World Congress of the International Fuzzy Systems
Association IFSA '91, Engineering Volume, pp. 9-12, R. Lowen and M.
Roubens, eds., Brussels, 1991.

2. Andreas Bastian, “Fuzzy Logic in Automatic Transmission Con-
trol,” Vehicle Systems Dynamics 24 (1995), pp. 389-400.

3. E. H. Mamdani and S. Assilian, “An Experiment in Linguistic
Synthesis with a Fuzzy Logic Controller,” Int. |. Man-Machine Studies
(1975), 7, 1-13.

4. D. A. Watermann, “Generalisation Learning Techniques for Au-
tomating the Learning of Heuristics,” Artificial Intelligence, vol. 1 (1970),
pp- 121-70.

5. E. H. Mamdani, “Process Control Using Fuzzy Logic,” in Fuzzy
Sets: Theory and Applications to Policy Analysis and Information Systems,
Paul P. Wang and S. K. Chang, eds., Plenum Press, New York and
London (1980), pp. 240-65.

6. S. Yasunobu, S. Miyamoto, and H. Ihara, “Fuzzy Control for
Automatic Train Operation System,” IFAC Control in Transportation
Systems, pp. 33-39, Baden-Baden, Federal Republic of Germany, 1983.

7. Takeshi Yamakawa, ““Stabilization of an inverted pendulum by a
high-speed fuzzy logic controller hardware system,” Fuzzy Sets and
Systems 32 (1989), 161-80.

8. René Thom, ““La magie contemporaine,” in La magie contempo-
raine—I1"échec du savoir moderne, Y. Johannisse, ed., Québec/Amérique,
1994.

9. S. Yasunobu and S. Miyamoto, “Automatic Train Operation by
Predictive Fuzzy Control.” In M. Sugeno, ed., Industrial Applications of
Fuzzy Control, pp. 1-18. North-Holland, Amsterdam, 1985.

10. R. Tanscheit and E. M. Scharf, “Experiments with the Use of a
Rule-Based Self-Organising Controller for Robotics Applications,” Fuzzy
Sets and Systems 26 (1988), 195-214.

11. Tadafusa Tomitaka, ““Tracking Control for VCRs,” Proceedings of
the Fourth World Congress of the International Fuzzy Systems Association
IFSA ’91, Engineering Volume, pp. 227-30, R. Lowen and M. Roubens,
eds., Brussels, 1991.

12. Masato Nakayashiki, ““On Fuzzy,” LIFE Technical News, November
1993, vol. 4, no. 1, Laboratory for International Fuzzy Engineering Re-
search, Yokohama, Japan, p. 13.

13. Ibid.

14. Tomoaki Fujioka, Seizaburo Arita, Taiichi Saito et al., “Transrectal
Ultrasonography of Prostatic Cancer: Application of a New Diagnostic
Item and Fuzzy Inference,” Jpn. J. Med. Ultrasonics 17(suppl.), 1990,
165-66.

7

44

FUZZY DOES IT

15. Arturo Sangalli, “Vote, Vote, Vote for Fuzzy Logic,” New Scientist,
vol. 144, no. 1951, November 12, 1994.

16. “The Web’s Middleman,” Time magazine, February 17, 1997, p. 51.

17. A. Ralescu, ed., Applied Research in Fuzzy Technology, Kluwer Aca-
demic Publishers, 1994.

18. M. Sugeno, M. F. Griffin, and A. Bastian, “Fuzzy Hierarchical
Control of An Unmanned Helicopter,” Proceedings of the Fifth World
Congress of the International Fuzzy Systems Association (IFSA),
pp. 179-82, Seoul, South Korea, 1993.

19. Toshiro Terano, “Fuzzy Engineering—Its Progress at LIFE and
Future Prospects,” IEEE /IFES 95 Conference, Yokohama, Japan, March
1995.

45

PART TWO

LIMITS

*

* CHAPTER THREE =*

The Limits of Classical Computing

AN OLD DREAM BECOMES A REALITY

IN 1936, the British mathematician Alan Turing and the American
logician Alonzo Church came up, independently and almost simulta-
neously, with mathematical definitions of what is meant by a numeri-
cal function to be “computable.” Although different in form, both
definitions turned out to have the same meaning, suggesting that
they had managed to capture some fundamental concept whose time
had come. Turing’s and Church’s breakthrough opened the way to a
rigorous study of computability, a theory that is still very much alive
today.

The idea of building a machine to execute arithmetic operations
occurred to many scientists, engineers, and philosophers at various
places and times in human history. One of the first to put this idea
into practice appears to have been the German astronomer Wilhem
Schickard. A contemporary of Kepler, Schickard built in 1623 what he
called a Computing Clock, capable of performing addition, subtrac-
tion, multiplication, and division by entirely mechanical means. But
Schickard’s invention had a short life: a fire destroyed it barely one
year later. In his Histoire universelle des chiffres, Georges Ifrah' specu-
lates that the fire might not have been an unfortunate accident but
the deliberate work of a human hand in a futile attempt to prevent a
machine from calculating—a faculty that was seen by the forces of
obscurantism as the exclusive prerogative of the human mind. Shortly
afterward, in 1642, the French mathematician and philosopher Blaise
Pascal, then only nineteen, constructed an adding machine made up
of a series of gears—the Pascaline—to help with his father’s book-
keeping. The main purpose of these and similar automata was to
liberate the astronomer, the bookkeeper, or the engineer from the
tedious (and error-prone) task of carrying out by hand lengthy
numerical manipulations. In time, these machines would also permit
ordinary people to practice the art of arithmetic without having to
learn complicated rules of operation with numbers.

TWO: LIMITS

Many other attempts at realizing the dream of mechanical calcula-
tion followed, but the title of father of artificial computing is gener-
ally reserved for the English mathematician Charles Babbage, who
early in the nineteenth century conceived the theoretical and practical
principles of an automatic computing device—a true forerunner of
present-day computers. He then spent the remaining fifty years of his
life trying without success to actually construct one.

If Babbage’s ingenious creations were never viable, some blame it
on the technical limitations of Victorian mechanical engineering,
especially on the lack of machinery precise enough to manufacture
the components at the heart of his elaborate “engines”—as he called
them. Babbage’s Difference Engine, for instance, would have weighed
several tons when completed, and its estimated twenty-five thousand
parts, once assembled into a precise system of gears, racks, cams, and
levers, would have stood eight feet high, seven feet long, and three
feet deep. The original purpose of the machine, a precursor of his
more advanced Analytical Engine, was to compute navigational and
other arithmetical tables. These were in growing demand from engi-
neers, bankers, and merchants in the rapidly developing worlds of
commerce and industry. In fact, Babbage’s initial motivation for
automating the calculations was not so much to improve the effi-
ciency of the process as to guarantee its accuracy. His machine was
supposed to supply a mold in which stereotype plates of the com-
puted tables could be cast, in order to prevent the printing errors so
frequent in manually typeset tables. Less than twenty years after the
French Revolution, the idea of automatic typesetting had already
been born.

Over the course of time, from one unfinished prototype to another,
Babbage incorporated in his creations the major ideas upon which all
modern digital computers are constructed, notably the five basic
units of a computer: the store, containing the data, instructions, and
intermediate calculations; the processor (or mill), “into which,” in
Babbage’s own words, ‘“the quantities to be operated upon are
always brought”; a unit which controls the whole operation (by
means of a Jacquard loom system); the input (by means of punched
cards); and the output, which automatically prints results. These
fundamental principles were subsequently forgotten, only to be redis-
covered in the middle of the twentieth century. In January 1943, more
than one hundred years after Babbage first dreamed of an automatic,

50

THE LIMITS OF CLASSICAL COMPUTING

multipurpose computing device, a real machine featuring those char-
acteristics was finally a reality. Conceived by Howard Aiken, a
professor of physics at Harvard University, and built with the help of
IBM engineers, the Harvard Mark I worked on principles inspired by
those of Babbage’s Analytical Engine.

“Charles Babbage always sought to provide a mathematical ap-
proach to each of the many and varied problems which he tackled,”
writes J. M. Dubbey in The Mathematical Works of Charles Babbage. And
he adds, “Whether discussing miracles, pin-making, postal services,
geology, economics, politics or even his private life, he always at-
tempted to formulate a problem in as mathematical a way as possi-
ble.”

A man of vision as well as a practical genius, Babbage propheti-
cally predicted the tremendous success of computing machines—
someone else’s, if not his own. “If I survive some few years longer,”
he wrote seven years before his death in 1871, ““the Analytical Engine
will exist, and its works will afterwards be spread over the world.”

CAN MACHINES COMPUTE EVERYTHING?

Computers can do some amazing things, but from a mathematical
point of view we are only interested in the functions they calculate.
By a function f we mean a pairing of each number n with a unique
number f(n)—called the value of f at n—usually specified by an
algebraic formula (for simplicity, all our numbers will be natural
numbers). For example, f(1n) = n* + n + 41 defines a function which
pairs off 1 with 43 (= 12 + 1 + 41), 2 with 47 (= 2% + 2 + 41), and so
on. (Actually, the first thirty-nine values of this function are prime
numbers, but this is beside the point.)

We may also define a function using words, and stipulate for
example that p(n) is the number of primes smaller than or equal to n.
We then have p(7) = 4—as can be easily checked—and p(4 X 10')
= 1,075,292,778,753,150—as may be less easily verified. The calcula-
tion of both f(n) and p(n) can certainly be carried out on a computer,
and since these machines were invented to help scientists with
number-crunching, it is hardly surprising that they can also calculate
much more complex functions. But can they compute any function
whatsoever? This question is not just academic, because the

51

TWO: LIMITS

problem-solving capability of computers depends on the class of
functions they can actually calculate.

It was Alan Turing who answered the above question in 1936,
almost ten years before the birth of the world’s first electronic
computer—the Electronic Integrator and Calculator (ENIAC)—at the
Moore School of Engineering in Philadelphia. At the time, Turing was
not really concerned with practical devices such as computing ma-
chines, although after the war he worked on the development of an
electronic computer. His paper on “‘computable numbers”? was
intended as a solution to a mathematical problem posed by one of the
most respected mathematicians of the century. But Turing’s paper
also showed that there are limits to automatic calculation, a kind of
“natural law”” which not even the most powerful present-day digital
computers can escape.

Each time we solve a problem on a computer, the machine trans-
forms the problem’s data into the solution by executing a set of
instructions or program. In the final analysis, both the data and the
solution are strings of Os and 1s that we may interpret as encoding
natural numbers—possibly very large ones. Thus, from a conceptual
point of view, computer programs are recipes for computing func-
tions, since their execution transforms natural numbers (the input)
into other natural numbers (the output). It is in this sense that
questions about which problems computers can solve depend ulti-
mately on the kind of functions they can compute.

TURING AND His MACHINES

Let us imagine the operations performed by the
computer to be split up into “’simple operations” which
are so elementary that it is not easy to imagine them
further divided.

(Alan Turing, analyzing the way a human computer carries
out a calculation)®

In the summer of 1935, Alan Turing, then a young Cambridge
graduate, was reflecting on a question in the foundations of mathe-
matics that had been raised a few years earlier by the eminent
German mathematician David Hilbert. Is there a mechanical test or
process which, applied to an arbitrary mathematical statement, would

52

THE LIMITS OF CLASSICAL COMPUTING

permit one to discover whether the statement is true or false? Anyone
attempting to answer this question had first to elucidate the hazy but
fundamental notion of ““mechanical process.” This led Turing to ask
himself what would be the most general kind of ““machine” that
could deal with symbols used by a person calculating with paper and
pencil, but without the characteristically human faculties: cleverness,
insight, imagination, and so forth—and also without the not less
human weaknesses such as fatigue, hunger, or boredom.

“Computing is normally done by writing certain symbols on
paper,” wrote Turing.* “We may suppose this paper is divided into
squares like a child’s arithmetic book. In elementary arithmetic the
two-dimensional character of the paper is sometimes used. But such a
use is always avoidable, and I think that it will be agreed that the
two-dimensional character of paper is no essential of computation. I
assume then that the computation is carried out on one-dimensional
paper, ie., on a tape divided into squares. I shall also suppose that
the number of symbols which may be printed is finite.”

Turing had in mind an ideal device which could manipulate
certain symbols (recognize them, write them down, erase them, etc.)
and whose behavior would be automatic, that is, completely deter-
mined in advance. A few months later he came up with the idea of a
simple theoretical model of a computer, known today as a Turing
machine. He had also found the answer to Hilbert’s question, but that
is part of a different story, whose thread we shall pick up later.

Unlike actual computers, Turing’s ideal machines can work unhin-
dered by limitations of either time or memory space. They provide a
standard (and precise) test for the intuitive notion of “’computability””:
a function f will be called computable if each of its values f(n) can
be generated by the “mechanical” operations of some Turing ma-
chine.

We may imagine a Turing machine (TM) as composed of a
read /write head and a two-dimensional tape that it uses as a writing
pad (see fig. IL.1). The tape extends indefinitely in both directions and
is divided up into cells which may contain one of the two symbols 0
or 1 (it is convenient to think of 0 as representing a blank, or empty,
cell). At any given stage in the computation, the head is scanning one
of the cells and can do only one of the following four things: write a 1
(or a 0) on the cell (thus erasing the cell’s former contents); move to
the next cell on the right; or move to the next cell on the left. Which
one of these actions takes place will depend on the machine’s “pro-

53

TWO: LIMITS

/— Read/Write Head

FIGURE II.1. A crude representation of a Turing machine.

gram’”’—the set of instructions the TM comes equipped with. These
instructions must be written in a standard format. The following is an
example:

#788: "'If the symbol being scanned is 1, then move (one cell) to the left and
then execute instruction #559.”

The above instruction may be succinctly coded as (#788, 1, L, #559).
In general, the format of a coded instruction is

(instruction no., [scanned] symbol, action, [next] instruction no.).

A program for a Turing machine is any set of instructions coded in
this way (the order in which the instructions are listed is irrelevant).
As a simple example, suppose that the program consists of the
following five instructions:

(#1,1,R, #2)
(#2,0,1, #2)
(#2,1,L, #3)
(#3,0,1, #1)
(#1,0,1, #3).
When the machine is “turned on,” there is a certain binary string

(the data) written on its tape, and the head is scanning one of the
cells. Let us assume that the machine is turned on scanning a 1, while

54

THE LIMITS OF CLASSICAL COMPUTING

the rest of the tape is blank. Then the following sequence of opera-
tions takes place. The first instruction to be executed is instruction
#1. Notice that there are two instructions #1, but only one of them
corresponds to the case where the symbol being scanned is 1. So this
instruction—(#1, 1, R, #2)—is executed, causing the head to move
one cell to the right and then to “go to #2,” that is, execute
(#2,0, 1, #2), since the symbol now being scanned is 0. The execution
of this instruction results in the 0 being replaced by 1 and then—
again—"going to #2.” The instruction matching the current situation
is now (#2,1,L, #3), so the head moves to the next cell on the left
(which contains the initial 1) and then looks for instruction #3. But no
instruction begins with (#3,1,...), so the computation stops.

Of course, all this activity takes place only in a figurative sense.
The whole process could have been phrased in mathematical lan-
guage, but it is easier to imagine it in terms of a machine executing
instructions. The final tape now contains two consecutive 1s—the rest
of it has remained blank. Different tape configurations at the begin-
ning of the computation will generally result in different tapes at the
end. For instance, had the initial tape been totally blank, the head
would have written a single 1 and then stopped.

In the course of a computation, a TM has an unlimited amount of
cells to read, write, and store information. Digital computers, on the
other hand, have only a fixed number of memory bits at their
disposal for all their operations. And while real computers must
deliver an output within a reasonable period of time, a Turing
machine has no such time limit for giving its answer. Notice, how-
ever, that this answer—if answer there is—will come after some
finite interval of time (T units of time, say, if the unit is chosen as the
time required to execute one instruction), during which the head will
have read (or written on) only a finite number (N) of cells. Both T
and N can be arbitrary large numbers, but not infinity. Although
ideal machines such as TMs could never be actually built, their study
is important because it provides a kind of upper bound on the
computing power of real ones.

COMPUTABLE FUNCTIONS

The reader should not be misled by the trivial example of a Turing
machine given above, whose sole purpose was to illustrate the

55

TWO: LIMITS

operations. Compared to present-day computers, TMs may appear
very primitive indeed, so much so that even a modest PC seems
considerably more powerful. However, as we shall soon see, there is
much more to these ““machines” than meets the eye of the mind. In
particular, they are amazingly good at computing functions. How
they do this is explained in the following paragraphs.

Suppose that each time we start up a particular TM with a number
n written (in some conventional format) on its tape, the machine
eventually halts, and when it does, the tape contains the number f(1)
(encoded in the conventional format). In that case we say that the
Turing machine in question computes the function f(n). For instance,
if a TM takes as input a block of n consecutive 1s and doubles
it—that is, its output tape contains a block of 27 consecutive 1s—we
may say that the machine computes the function f(n) =2n. Any
function that can be computed by some Turing machine will be called
computable. This is such an important definition that it is worth
stating again:

A function of natural numbers is said to be computable if it can be
computed by some Turing machine.

In order to make this definition totally unambiguous we ought to
specify several things: how to encode the input data on the tape,
which cell the head should be scanning when the computation
begins, and so on. There are many sensible ways of doing all this, but
the actual choice of a computation protocol is unimportant because it
turns out that exactly the same functions are computable whichever
(reasonable) scheme is adopted. What is important is to realize that
once a particular protocol is chosen, every Turing machine computes
a unique function.

It is quite possible that for certain inputs a given TM may never
terminate its computation, and even if it does, more often than not
there will be a meaningless string of symbols written on its final tape.
In either case, we say that the function computed by the machine is
not defined for the given input data. Hence, the functions computed
by Turing machines are in general partial functions—functions f that
do not assign any value f(n) to some numbers n.

It can be argued, as Turing himself did, that the notion of a Turing
machine captures the essential features of our intuitive idea of
““mechanical procedure” or “algorithm.” If we accept this fact, then
to show that a function f is computable it is enough to describe a

56

THE LIMITS OF CLASSICAL COMPUTING

procedure for calculating f(n) that is “mechanical” in an intuitive
sense—since such a method could then be coded as the set of
instructions for a TM. Here is an example. In any circle, the ratio of
the circumference to the diameter is the famous number 7 (= pi =
3.14159...). Let f(n) be the nth decimal of =, that is, f(1) =1,
f(2) =4, f(5) =9, and so forth. Now, 7 is an irrational number,
which means that its decimals do not obey any discernible pattern.
There are, however, several algorithms which systematically calculate
the decimals of 7, one after the other. Then, to compute, say,
£(1,000,000), we can run one of these algorithms until it prints out the
one-millionth decimal. Since such a procedure ““mechanically” calcu-
lates f(n) for an arbitrary n, f is computable.

Now consider another function, g, which is a partial function
because it is defined only for n ranging from 1 to 9. By definition,
g(n) = 1 if there is a block of n consecutive digits “n”" in the decimal
part of ; if no such block exists, then g(n) = 0. For example, it is
obvious that g(1) = 1—there is one “1” (actually, the first decimal);
¢(2) is either 1 or 0; it is 1 if somewhere in the decimal part of 7 there
is a block of two consecutive ““2"’s, that is, if = = 3,14159...22... But
if no 22" block exists, then g(2) = 0.

Is ¢ computable or not? We might try to compute g by running
the algorithm that calculates f, but there is a problem. To compute,
say, g(4), we must find out whether or not the block “4444” appears
in the decimal part of 7. Now, if there is such a block, we will
eventually know it, for the algorithm will print it out sooner or later;
but if no “4444” block exists, the algorithm will be searching forever
and the computation of g¢(4) will never be completed. Hence, we
cannot a priori guarantee that our method will calculate g(n) for
every n in a finite period of time, so we are unable to settle the question
of the computability of g with the above approach. It turns out that g
is computable after all, and we challenge the interested reader to
prove it. As for the impatient reader, he or she can turn right away to
the section Solution to the Riddle.

UNCOMPUTABLE FUNCTIONS

All functions defined by an explicit formula involving the operations
of addition, multiplication, and exponentiation are computable, for
example f(n) = n® + 4n* + 1 and g(n) = (n + 10)". (There are some

57

TWO: LIMITS

technical problems with subtraction and division, since we are re-
stricting ourselves to natural numbers, but these problems can be
overcome.) Functions specified by recursion schemes, which use
previously calculated values to compute the new value f(n), also
turn out to be computable. A famous example is the sequence
1,1,2,3,5,8,13,... which the thirteenth-century Italian mathemati-
cian Leonardo Fibonacci introduced while studying the way rabbits
breed. The Fibonacci sequence starts off with two consecutive 1s, and
then each successive entry is the sum of the two preceding ones. In
symbols:

fM =1, f2)=1 and f(n)=f(n—-1)+f(n—-2), forn=>3.

Thus, f(3) = f(2) + f(1) = 2; f(4) = f(3) + f(2) = 3, and so forth.

As a matter of fact, every function a non-mathematician might ever
come across is likely to be computable. But are all functions com-
putable? Is “computable function” a pleonasm? A simple logical
argument will show the answer to these questions to be negative.

Remember that each TM comes with its own program, that is, it is
wired up once and for all to obey a certain set of instructions. If we
wish to run a different program we need a new machine (this is
nothing more than a convention and it is certainly not a waste of
“machines”). A consequence of this convention is that each Turing
machine computes a single function. But is every function computed
by some Turing machine?

Even though there are infinitely many TMs, we can arrange them
all on a (virtual) list. For instance, since a TM is completely specified
by a finite string of symbols—its program—we could (at least in
principle) list all TMs by systematically enumerating all possible
programs P,, P,, P,, ... in some kind of alphabetical order. (If A is a
finite set of symbols, say A = {4, b,c}, then the finite strings of
symbols from A can be arranged ““alphabetically” on an infinite list:
a,b,c,aa,ab, ac, ba, bb, be, ca, cb, cc, aaa, aab, ... etc.)

On the other hand, the functions of natural numbers cannot be all
written down on a list, not even in principle. This impossibility may
be proved by an ingenious mathematical argument. The gist of the
argument goes like this: You give me a list of functions and I show
you a function that is not on your list; hence, your list is incomplete
(for the full argument, see Appendix 2). The bottom line is that there

58

THE LIMITS OF CLASSICAL COMPUTING

are more functions than Turing machines to compute them or, in
short, that there exist uncomputable functions.

The reader might be mystified by our having resorted to indirect
evidence in order to establish the existence of uncomputable func-
tions. Wouldn't it have been easier—and certainly much more illumi-
nating—to exhibit one such function? The problem is, uncomputable
functions are not easy to either define or discover. And even if we
should happen to meet one, it might be hard to prove that the
function is not computable, just as hard as proving that certain
problems have no solution. In fact, the two questions are intimately
related.

AN UNSOLVABLE PROBLEM

Since there exist uncomputable functions, we should expect that
Turing machines would be unable to solve certain problems. It is of
course possible that all such unsolvable problems be merely theoreti-
cal curiosities, of no practical interest whatsoever. In reality, one of
the questions that TMs cannot answer is very practical indeed be-
cause it concerns the automatic checking of computer software: it is
the question of deciding whether the execution of an arbitrary com-
puter program will eventually terminate or is doomed to run forever.

As we have already pointed out, certain Turing machines may
never stop computing. For a trivial example, consider the TM whose
only instruction is (#1,0,R, #1). If the initial tape is blank, this
machine will keep executing its single instruction forever, thus per-
petually moving its head to the next cell on the right along its infinite
tape (someone once called it a ““touring’” machine). Imagine now an
arbitrary Turing machine, controlled perhaps by thousands of in-
structions. Would it be possible to predict whether or not its compu-
tation will ever halt? This puzzle is known as the halting problem. It
consists in finding a way of (correctly) answering yes or no to the
following question: Will Turing machine T, if started on a given
input tape, eventually terminate its computation?

In concrete terms, suppose we were looking for a “device”” (mac-
hine, crystal ball, oracle, or what have you) capable of giving the
correct answer to the above question for all Turing machines T. While
such a thing might well exist, it cannot be a Turing machine. In other
words, it is impossible to write a program for a Turing machine—H,

59

TWO: LIMITS

say—that would perform as follows: H accepts as input the set of
instructions of an arbitrary Turing machine T together with the
contents of its initial tape (all these data encoded in some convenient
way) and it produces as output “yes” if T will eventually halt and
“no” if T will keep running forever. That is, H is capable of
predicting whether or not any given Turing machine would ever stop
computing.

Alas, H cannot exist. If it did, it would lead to a logical contradic-
tion (see Appendix 3 for details). And so, whatever it takes to tell
apart the TMs that terminate their computation from those that don't,
this cannot be done on a Turing machine. In a nutshell: The halting
problem is unsolvable on any Turing machine.

THE ANT, THE BULLDOZER, AND THE LIMITS OF COMPUTABILITY

Computers are formidable calculators, with their superfast parallel
processors, random-access memories, and so forth. By comparison,
Turing machines, chugging along one cell at a time, appear as models
of inefficiency (they can afford to be inefficient, disposing as they do
of inexhaustible resources—time, paper, ink, etc.). Consequently, the
fact that some functions cannot be computed by Turing machines
may not seem to be a serious limitation, for it is conceivable that
those functions could be computed by other, more powerful calculat-
ing devices.

Perhaps so, but whatever these “devices” might be, they cannot
resemble our familiar computers. For all their imposing power and
speed, digital computers are in fact glorified Turing machines—with
the added disadvantage of space and time constraints. The reason for
this humbling of digital computers is quite simple: since their work-
ings fit the description of “mechanical procedure,” they can be
simulated on a Turing machine. To be sure, the modest TM may have
to execute thousands of very elementary operations to perform even
a simple multiplication. In the end, however, the output will be the
same, whether efficiently computed by the real machine or labori-
ously calculated by the ideal one. It’s like moving a pile of sand from
one place to another. A single ant, carrying one grain at a time, can in
principle accomplish the task as surely as a mighty bulldozer. Thus,
everything a computer can do could also be done on a TM. Which
leads to an inescapable conclusion: those functions that no Turing

60

THE LIMITS OF CLASSICAL COMPUTING

machine can compute remain uncomputable on any real digital
computer—present or future.

Besides Turing’s, other definitions have been proposed seeking to
render mathematically precise the intuitive idea of a computation. It
turns out, however, that they are all equivalent, that is, regardless of
which one we adopted the set of computable functions would be
exactly the same. This state of affairs prompted the American logician
Alonzo Church to state what is known as Church’s Thesis: All
functions computable in an intuitive sense are computable on a
Turing machine.

Church, a professor at Princeton University, had been working on
Hilbert’s question at about the same time as the solitary Turing.
Using quite different methods, and each ignoring the other’s efforts,
both mathematicians arrived at the answer almost simultaneously on
opposite sides of the Atlantic. What Church called “effectively calcu-
lable” corresponded to Turing’s notion of “computable” —that is,
anything that can be computed by a Turing machine. Some years
later though, the former “rivals” were to work together at Princeton.

To this day, Church’s Thesis stands, for no one has found a
function that can be reasonably called “computable” and which
demonstrably cannot be computed by any Turing machine. If Church’s
conjecture is correct—and the evidence so far suggests that it is—then
the functions no Turing machine can compute are also uncomputable
in an absolute sense.

LIFTING THE VEIL OVER UNCOMPUTABLE FUNCTIONS

Uncomputable functions are not something occult, too mysterious for
the uninitiated to contemplate. It is rather a question of knowing
where to find them. A sure way of bumping into one is by trying to
“compute” the solution of some problem no Turing machine can
solve. We already know one puzzle of this kind: that of testing
whether an arbitrary Turing machine will ever stop computing (the
halting problem). It is now simply a matter of translating the halting
question into the language of functions.

Present-day communication technology is based on the digitaliza-
tion of information, the encoding of text, images, and sounds as
strings of Os and 1s on some suitable support (diskette, CD, etc.). The
process is of course reversible, for we can recover the text or sound

61

TWO: LIMITS

from its coded form (by reading the diskette or playing the CD). In
addition, the encoding/decoding is totally automatic, since it is
performed by machines.

In a similar fashion, it is in principle possible to automatically
encode the program of any given Turing machine as a single natural
number. This can be done, for example, by first converting each of the
symbols needed to write Turing machine programs into a two-
numeral code. Here is a possible conversion table:

0 = 00 L=10
1=01 R=11
2=02 (=12
) =13
9 =09 #=14
,=15.

Then, given a program P for a Turing machine, we can obtain a
natural number by replacing the symbols (in the order they appear in
P) by their two-numeral codes and finally reading the resulting string
as a decimal number. Thus, the one-instruction program (#1, 0, R, #1)
becomes the number 1,214,011,500,151,115,140,113. (We are not claim-
ing that the above encoding scheme is the most efficient one.)

It should be clear that the original program can be recovered from
its code number by an appropriate (automatic) decoding. Notice that
while every TM has a corresponding number (its program’s code
number), some natural numbers k may not encode any program—that
is, decoding k would either yield a meaningless string of symbols or
no string at all, anything but the program of a Turing machine. For
instance, 1,110,071,212 decodes as RL7(((meaningless), while
789,999,555,333 does not decode at all. If a number m does happen to
be the code number of a Turing machine, we shall designate this
machine by T(m).

We now define the function h of two variables as follows: for a
given pair (m, n) of natural numbers, h(m, n) = 1, if m is the code of
a Turing machine and this machine—T(m)—eventually halts after
being started with the number 7 on its input tape. In all other cases
—that is, if either m is not the code of a Turing machine or T(m) does
exist but it will never stop computing on input n—we set h(m, n) = 0.

62

THE LIMITS OF CLASSICAL COMPUTING

Once again: h(m, n) = 1 if T(m) exists and would eventually stop if
started on input n, and h(m, n) = 0 otherwise.

How can we be sure that no Turing machine computes /? Because,
as we show in Appendix 3, the assumption that a Turing machine
does compute & leads straight to a logical contradiction. This method
of proof by reductio ad absurdum (the reduction of a supposition to an
absurdity) is one of the mathematician’s best allies.

COMPLEXITY

Turing’s results put a theoretical limit on what his ideal machines—
and, a fortiori, real computers—can calculate. But, as extensive exper-
imental evidence has shown, within those limits there is ample room
for computing the solutions to all kinds of problems. The real ques-
tion is rather how to actually get done, in an efficient way, the many
things that digital computers are capable of doing. Unlike real com-
puters, Turing machines have an unlimited amount of both time and
memory space to compute their answers. And so, even if a problem is
solvable on some Turing machine, there is no guarantee that the
problem can be actually solved on a computer—if, for instance, the
answer should take thousands of years to work out.

Mathematicians and computer scientists studying the practical as-
pects of computing have accumulated a rich body of theoretical and
empirical results, loosely known as the theory of computational
complexity. In particular, they have attempted to elucidate just what
makes some problems harder to solve than others. To illustrate the
main concepts of this field we shall employ a famous puzzle that has
been called—arguably, with some exaggeration—the mother of all
optimization problems.

OPTIMIZATION PROBLEMS

Anyone wishing to find the most efficient way of doing something
may be facing what mathematicians call an optimization problem.
Often, this means having to decide which is the best of a large
number of strategies or alternatives. In a typical commercial or
industrial situation, for example, the “best” option is usually the
most economical one. Formally, for each alternative x there is an

63

TWO: LIMITS

associated cost c¢(x), and the problem then consists in finding an x
for which c(x) is as small as possible, that is, an optimal solution.
Setting up itineraries for delivering goods and planning the produc-
tion of a manufacturing plant are examples of large-scale optimiza-
tion problems. In such cases, poor optimization can have devastating
economic effects, hence the practical interest in the development of
efficient solution methods. Some of these techniques proceed to
calculate the optimal solution directly from the data (e.g., using
differential calculus); other methods try to construct it step by step,
beginning with some approximate solution and gradually improving
it.

Solution techniques based on new computing paradigms offer
some promising alternatives. For instance, genetic algorithms, which
we shall introduce in chapter 6, work with a pool, or “population,” of
potential solutions whose composition is periodically updated by a
mechanism that involves an element of chance. The long-term goal of
this “evolutionary” process, which resembles natural selection, is to
improve the average quality of future “generations” of solutions. If
the updating operations are suitably chosen, there is a high probabil-
ity that an exceptional individual—an optimal or near-optimal solu-
tion—will eventually appear.

One particular optimization problem has baffled some of the best
mathematicians and computer scientists for a long time, and it is
further evidence that an innocent-looking question can give rise to a
very hard problem. In its original version, the question is about a
sales representative who has to visit a number of cities. Beginning at
some city, the sales rep must travel to each of the others once before
returning to the starting point. In which order should the salesman
visit the various cities so that the tour is as short as possible? Such is
the puzzle known as the traveling salesman problem.

It sounds simple. All the traveling rep has to do is add the intercity
distances for each possible tour and then choose the circuit with the
smallest length. For example, a tour of six cities can be scheduled in
120 ways. This is the number 5 X 4 X 3 X 2 X 1 of the different
orderings, or permutations, of five objects. (Why five and not six?
Because all tours must begin at the city where the sales rep lives, so
this city need not be counted.) A computer will take only a fraction of
a second to calculate the different tour lengths and pick out the
shortest. Such is indeed a solution method, but one which is useless if
the number of cities is, say, a mere fifty. For then an exhaustive,

64

THE LIMITS OF CLASSICAL COMPUTING

case-by-case calculation of each tour’s length would involve so many
operations that even the world’s fastest supercomputer would take
billions of years to work out the answer.

Not many real sales reps may have to visit fifty cities, but the
problem also arises in industry and management, where good solu-
tions might translate into considerable savings. In the manufacture of
circuit boards, for example, lasers must drill tens of thousands of
holes. The board ““travels” around a fixed laser beam, and finding the
sequence which takes the least time to drill is the traveling salesman
problem in disguise. Other industrial applications—to VLSI chip
fabrication, for instance—may involve millions of “cities.”

Manfred Padberg, of the Leonard N. Stern School of Business at
New York University is an expert in the sales rep puzzle. He ob-
served that most of the techniques for the solution of hard combinato-
rial problems have been thought of, developed for, and tried out on
the traveling salesman problem. According to AT & T Laboratories’
David Johnson, another traveling salesman buff, the problem’s appeal
may be explained by its simplicity and applicability, or perhaps
simply because of its intriguing name.

But the fascination with the traveling salesman may also stem from
the fact that it is typical of a large class of hard problems that are
computationally equivalent. This means that any efficient solution
method for one particular problem in the class could be used to
construct efficient algorithms for each of the others. Here “efficient”
has a precise meaning, to be explained shortly.

PROBLEM SIZE

There is a distinction to be made between the general problem and
the instances of the problem. Every time we specify a set of cities and
the distances between them we have an instance of the traveling
salesman problem. We may well succeed in finding the shortest tour
for that particular instance, but to solve the problem we need a
method that would lead to the solution of every instance, and do so
in a reasonable time. The time condition is crucial for obvious
practical reasons (who can wait thousands of years for the answer?).
Naturally, we should expect the computation time to increase with
the number of cities involved, that is, with the ““size”” of the instance.

65

TWO: LIMITS

The notions of problem size and reasonable running time need
clarification.

The size of (a given instance of) a problem is the amount of
computer memory needed to specify the data (measured in some
appropriate unit such as bytes). For a traveling salesman problem, the
data are the distances between each pair of cities, but for simplicity
we shall take its size to be the number n of cities. Thus, a problem
involving 48 cities has size 48. In general, the larger the size, the
longer any given solution algorithm will take to give an answer—al-
though computation time may also depend on other factors, such as
the distribution of the cities.

The reason why the straightforward approach (computing all possi-
ble tour lengths) is unworkable may be understood with a simple
example. For n = 5 cities, there are 24 possible tours; if the number of
cities is increased 10 times to n = 50, the number of tours explodes to
approximately 6 X 10%, that is, an increase by a factor exceeding one
quintillion times one quintillion (= 1 followed by 60 zeros)! Since the
number of possibilities grows extremely fast with respect to problem
size, the systematic checking of all tours in search of the optimal one
soon becomes impossible. For a solution method to be feasible, the
computational demands should not increase too rapidly with the size
of the instance. Experts who studied the performance of algorithms
have devised a classification of problems based on the mathematical
relationship between, on the one hand, the size of the problem and,
on the other, the number of computer operations needed to find a
solution. The most popular class is known as P, or, more familiarly,
as the class of easy problems.

PoLynoMiAL TIME

To estimate the efficiency of an algorithm it is customary to use either
its running time on a computer or the number of elementary machine
operations needed to execute it. But a satisfactory measure of effi-
ciency should not depend on the particular computer chosen to run
the algorithm. One way to obtain a uniform measure is to require that
the algorithm be written as a program for a Turing machine. The
notion of “operation” would then be perfectly clear—remember that
a TM performs only three types of operation: move right, move left,

66

THE LIMITS OF CLASSICAL COMPUTING

and write a symbol. Moreover, by stipulating that the execution of an
operation should take one unit of machine time, the same number
would evaluate the number of operations and the running time.
While such a theoretical detour via Turing machines would render
our definitions totally precise, it would be extremely awkward to
actually carry it out. Fortunately, there exist certain practical short-
cuts. But first we must make a detour through college algebra.

The polynomials (in one variable x) are the functions obtained by
performing the operations of addition and multiplication on x and on
certain (constant) numbers a,,4,_;,..., 4y, 4,. Consider, for example,
the following sequence of operations: multiply x by itself (this gives
x?), then multiply by 3 (we now have 3x?), add x [3x* + x],
multiply by 2 [(3x? + x)2], multiply by x [(3x% 4+ x)2x], and finally
add —5 to get the polynomial function p(x) = (3x* + x)2x — 5.
Polynomials are the simplest type of function because their calcula-
tion involves only the simplest operations: addition and multiplica-
tion. Using properties of these two operations one can then show that
a polynomial function may always be written in the standard form
p(x) =a,x" +a,_;x"~' + - +a,x + a,, with a, not equal to zero.
The positive integer n is called the degree of the polynomial. The
standard form of the polynomial in our example is p(x) = 6x° + 2x?
+ 0x — 5, and so this polynomial has degree 3. The class of polyno-
mial functions has many pleasant algebraic properties. Not the least,
the fact that another polynomial results from the addition or the
multiplication of two polynomials, and also from taking the polyno-
mial of a polynomial (obtained by replacing throughout the “x” in
p(x) with another polynomial g(x)).

In general, it is not possible to calculate exactly how many opera-
tions an algorithm necessitates to solve a given problem of size n. The
best we can usually do is estimate an upper bound u(n) on the
number of operations required to solve an arbitrary instance of size n
—that is, we can guarantee that the number of operations will not
exceed u(n). This function u(n), which normally increases with n,
then becomes an approximate measure of how rapidly running time
grows with problem size. If u(#n) is a polynomial function, we say
that the given algorithm solves the problem “in polynomial time”
(the algorithm itself is informally referred to as a polynomial time
algorithm). In the hierarchy of rates of growth, polynomial occupies

67

TWO: LIMITS

B

E D

FIGURE I1.2. A figure that can be drawn
without lifting the pencil or tracing the
same line twice.

the lowest level, just below exponential, which is the typical growth
rate of bacterial cultures and outstanding debts.

A problem is in class P (as in Polynomial) if there is an algorithm
which can solve it in polynomial time, or, more explicitly, if there is a
polynomial p(x) and an algorithm that can solve any instance of size
n in less than p(n) operations. One example is the Eulerian path
problem, named after the eighteenth-century Swiss mathematical
genius Leonhard Euler. In a popular version of the problem, a person
is challenged to draw a certain figure without lifting the pencil or
tracing the same line twice. For the picture in figure IL.2, the follow-
ing sequence of segments is one solution to the problem: EA, AB,
BC,CD, DE, EC,CA, AD. But if the figure does not satisfy a certain
condition (to be explained soon), the person may spend hours trying
unsuccessfully to meet the challenge. The moral of the story: when
solving a problem, keep in mind that it might not have a solution.

Mathematically, the Eulerian path problem consists in deciding
whether or not a given graph has a path that visits each “edge”
exactly once (a Eulerian path). A graph with m “vertices” may be
represented as an m X m binary matrix, or square array of Os and 1s.
If we number the vertices from 1 to m, then the entry in the i-th row
and j-th column will be 1 in case vertices i and j are joined by an
edge, and it will be 0 if they are not. Labeling the vertices of the

68

THE LIMITS OF CLASSICAL COMPUTING

graph in figure 1.2 with numbers 1,2,...,5, instead of the letters
A, B,..., E, results in the following matrix:

L =)
S O = O =
_ Rk, O Rk =
= O = O
S = B o~

Under this representation, the size of the problem is m?* (the
number of entries in the matrix). How can we decide, based solely on
the above binary matrix, whether or not there is a Eulerian path?
Mathematics comes to our rescue. Let us call “degree” of a vertex the
number of edges that meet at that vertex. For example, in the above
graph, A has degree 4 and E has degree 3. Notice that the degree of
vertex i is equal to the number of 1s in the i-th row of the matrix.
Now, as Euler showed, a graph G has a Eulerian path precisely if the
number of its vertices of odd degree is either 0 or 2. In the first case,
G has a Eulerian closed path (one that begins and ends at the same
vertex); in the second, the Eulerian path begins at one odd degree
vertex and ends at the other. The proof of Euler’s theorem is not
really difficult, but it is not necessary for our purposes.

One algorithm to decide the Eulerian path question checks the
parity of each row of the matrix—that is, whether the number of 1s is
even or odd—and keeps a record of the number of rows with odd
parity. If the final count is either 0 or 2, then the answer (to the
decision question) will be yes, otherwise, it will be no. A rough
estimate reveals that the procedure just outlined involves less than
2m?* + 3 computational steps. Thus, the polynomial p(n) = 2n + 3 in
the size n (= m?) of the instance is an upper bound on the number of
operations required to solve the problem, and so it is a polynomial
time computation.

Another class P problem is that of finding the shortest routes from
a given city to each of n other cities, because it can be shown that a
particular algorithm for solving this problem requires less than p(n)
= n® operations. Assuming a modest computational speed of 1,024
(= 2'%) operations per second, this algorithm would take less than

69

TWO: LIMITS

half an hour to solve any problem involving 128 cities (n = 128). Let
us compare this performance with that of an exponential time algo-
rithm, one that delivers a solution of the shortest routes problem after
2" (instead of n*) operations. For the same number (128) of cities,
such an algorithm would require a mind-boggling 10" billion years
to work out the answer. And even with a speed of computation one
billion times faster, the solution would still take a prohibitive 10"
billion years to calculate.

The above example may help explain why exponential time algo-
rithms are, save some notable exceptions, useless for all practical
purposes. And also why problems whose solutions depend on such
algorithms are generally considered to be intractable, and will remain
so in the foreseeable future—even allowing for the (realistic) devel-
opment of faster computers. By contrast, class P problems are usually
tractable, and their polynomial time algorithms (which are normally
of low degree) have been nicknamed “efficient” algorithms. Is the
traveling salesman a class P problem? The simple truth is, we don’t
know. No one has yet found an “efficient” solution, that is, an
algorithm that computes the shortest tour of n cities in polynomial
time—Dbut neither has anyone shown that such an algorithm does not
exist.

THE NP CLaAss

A second class of problems is known by the inelegant name of
nondeterministic polynomial time verifiable—NP for short. Strictly
speaking, the label NP only applies to decision problems, or problems
requiring a yes or no answer. But since almost any problem may be
cast as a closely related decision problem, the distinction is often
blurred. In the case of the traveling salesman, instead of asking for
the shortest tour we could ask: Is there a tour whose length is K or
less? (where K is some positive integer). There is no more a known
polynomial time algorithm to solve this problem than there is one to
solve the original version, but formulating it as a decision problem
allows us to separate the search for a solution into two stages. In the
first stage, a possible solution (a particular list S of cities) is “guessed,”
while the second stage “verifies” whether or not S is indeed a
solution—a tour of length K or less.

70

THE LIMITS OF CLASSICAL COMPUTING

The (decision) problems in NP may be roughly described as those
whose solutions might be difficult to find but are easy to check. More
precisely, a problem is in NP if the verification of any solution
candidate can be done in polynomial time (on the problem size). It is
precisely this idea of polynomial time “verifiability’” that the class of
NP problems is intended to capture.

What about the “nondeterministic’” bit, that is, the N in NP? A
precise definition of the NP class involves the notion of a nondeter-
ministic Turing machine (NDTM), whose role is to do the ““guessing”
of potential solutions. We may imagine a NDTM as composed of a
write-only head. When turned on, the head writes an arbitrary binary
string on its tape. At each stage of the operation, the machine
“chooses’” in a nondeterministic (i.e., in a random) manner whether
to write a 0, a 1, or to stop writing altogether. When—and if—the
head chooses to stop, the binary string on its tape is passed on to an
ordinary Turing machine which then begins the verification process
in the usual (deterministic) way. This ordinary TM has been provided
beforehand with the relevant data concerning the particular instance
of the decision problem being solved (the intercity distances, in the
case of a traveling salesman problem). Thus, instead of carrying out
just one computation per instance, the tandem NDTM-TM performs
an infinite number of them, one for each possible guess. If for every
yes-instance of the problem there is a correct guess and a computa-
tion that verifies it in polynomial time, we then say that the problem
is in class NP. The decision problems in NP may therefore be
informally defined as those that a nondeterministic Turing machine
can solve in polynomial time.

As Michael Garey and David Johnson observe in Computers and
Intractability,” the use of the term ““solve” in this informal definition
should be taken with a grain of salt, since “a "polynomial time
nondeterministic algorithm” is basically a definitional device for cap-
turing the notion of polynomial time verifiability, rather than a
realistic method for solving decision problems.”

For a traveling salesman problem, the verification of a “guess” G
begins by checking that G encodes a permutation, or tour T, of the
cities, followed (in case G does encode a tour) by the calculation of
the length L of T and finally by comparing L with the bound K. It
should be clear that this ““verification” stage could be specified as a

71

TWO: LIMITS

polynomial time algorithm, and hence that the (decision version of
the) traveling salesman puzzle is in NP.

WILL A REAL HARD PROBLEM IN NP PLEASE STAND UP?

Every decision problem in P is automatically in NP. The reason is
simply that any deterministic polynomial time algorithm (or Turing
machine) qualifies as a nondeterministic one—for, in effect, it can
afford to bypass the guessing stage and move right on to answering
(yes or no) the decision question. It seems reasonable to expect that
the NP class, having a different name and a more involved definition,
should be distinct from (and therefore larger than) the class P. In
other words, that there are problems in NP which are not already in
P. But is it actually the case that P # NP?

It will perhaps comfort the reader to learn that he or she is no more
ignorant on this matter than the army of experts who have been
pondering the question for decades. All efforts at proving P # NP
have so far failed, but no one has shown that P = NP either. Some
fairly reputable computer scientists have thought to have settled the
question, only to retract when errors in their proposed proofs were
discovered. There is a widespread belief among complexity special-
ists that P is smaller than NP. Consequently, they have long been
operating under the assumption that there exist problems in NP that
are not in P—""hard” problems. Those working in complexity theory,
not unlike theologians, cannot be blamed for having faith in the
existence of their prime object of study.

To render the situation even more intriguing, the empirical evi-
dence for and against P # NP appears to cancel out. On the one
hand, the failure of a considerable amount of effort to prove P # NP
would strongly suggest that the result is false. But then, how come no
one has yet found a polynomial time solution (so sought after, for
practical reasons) of any famous problem in NP, including the travel-
ing salesman? So, appropriately, life is not simple in the universe of
complexity. But computer theorists are very resourceful, and, short of
showing the existence of hard NP problems, they have devised a test
to establish that some problems in NP are the “hardest” to solve.

72

THE LIMITS OF CLASSICAL COMPUTING

NP-COMPLETENESS

The term ““NP-complete’”” has come to symbolize the
abyss of inherent intractability that algorithm designers
increasingly face as they seek to solve larger and more
complex problems.

(Michael R. Garey and David S. Johnson)®

In 1971, Stephen Cook, a professor at the University of Toronto,
showed that a particular decision problem in formal logic could
qualify as the “hardest”” problem in NP. Cook also identified for the
first time the classes P and NP, although the idea of a polynomial
time algorithm can be traced back to Edmonds in the mid 1960s, who
informally called them “good algorithms.” Edmonds” also introduced
a notion analogous to NP, that of problems having solutions that
admit “proofs” verifiable in polynomial time.

Cook’s problem is known as the satisfiability problem, or SAT. An
instance of SAT is a logical formula, or Boolean expression, such as

[x; or x5 or x;] and [x, or x; or (not x5)] and [(not x,) or (not x,)
or (not x,)],

where x;, x,,..., x5 represent Boolean variables which may take one
of the two truth values: 0 (= false) or 1 (= true). The (decision)
question to be answered is whether there exists an assignment of
truth values to the variables that makes the expression true (“satis-
fies” it). We remind the reader that “x ory” is true if one of x, y is
true; “x andy” is true if both x, y are true; and “not x” is true if x
is false. Then, for the following assignment, the above expression is
true: x; = x; =x, = x; = 1; x, = 0. And so, in this particular case,
we can easily answer the decision question—but then, very small
instances of hard problems always seem deceivingly simple to solve.

A general instance of SAT consists of a finite set D of disjunctions,
each of these involving three variables and/or their negations. A
simple example of a set D with four disjunctions is:

[x; or (not x;) or x:], [x, or x; or x5], [(not x,) or (not x,) or (not
x3)l, [x, or x5 or (not x,)].

73

TWO: LIMITS

The question is then whether or not there exist an assignment of
truth values to the variables appearing in D (there may be thousands
of them) which simultaneously satisfies (i.e., makes true) all the
disjunctions in the set.

Checking whether a given assignment of truth values satisfies a
finite set of disjunctions is clearly a task that can be accomplished in
polynomial time. Therefore, SAT is an NP problem. What Cook
showed in his seminal theorem® (whose proof is rather complicated)
is that SAT possesses the following additional ““completeness” prop-
erty: any instance of a problem in NP can be transformed, in polyno-
mial time, into an instance of SAT; moreover, the answer to the
decision question is the same for both of these instances. The bottom
line is that if (a big if) SAT could somehow be “efficiently’” solved
(i.e., solved in polynomial time) then so could every problem in NP,
and the distinction between “hard” and “easy”’—between NP and P
problems—would collapse, because NP would then be identical to P!

Problems having the above “completeness’” property form a sub-
class of NP known as the NP-complete class. They include a wide
variety of commonly encountered problems from mathematics and
operations research, notably our famous traveling salesman. Deter-
mining the most probable arrangement of cloned fragments of a DNA
sequence is an NP-complete problem in molecular biology. There are
also NP-complete problems in practically every area of computer
science, from sorting and searching to multiprocessor scheduling.

All the NP-complete problems share the property of being “‘the
hardest problem in NP.” This may be just an illusion: if P = NP, then
all the NP problems believed to be “hard” could be solved in
polynomial time and would not merit that label. But from a practical
standpoint, knowing that a problem is NP-complete is a valuable
piece of information, because it means that the chances of developing
an efficient solution algorithm are next to nil. Unless, of course, two
generations of computer scientists have been fooled by a mirage.

SOLUTION TO THE RIDDLE

We have already met (in the section Computable Functions) the
function g, which was defined as g(n) = 1 if there is a block of n

consecutive digits “n” in the decimal part of 7, and g(n) = 0, if no
such block exists. There we challenged the reader to prove that g is

74

THE LIMITS OF CLASSICAL COMPUTING

computable by some Turing machine. Here is the solution—or rather,
one solution—to the riddle.

Notice that g takes either the value 0 or the value 1 for n =
1,2,...,9 and it is undefined for all other natural numbers. There are
exactly 512 (= 2°) functions with those properties, and for each of
them we could easily write the program of a Turing machine that
computes it. Since g is computed by one of those 512 TMs, it is
therefore computable. The peculiar thing about g is that we may not
be able to tell which Turing machine computes it—I, for one, certainly
can’t. All we know for sure is that there is one Turing machine that
computes g, which is all that is required by the definition of com-
putable function.

NOTES

1. Georges Ifrah, Histoire universelle des chiffres, Laffont, 1994, vol. 2,
p. 495.

2. A. M. Turing, “On Computable Numbers, with an Application to
the Entscheidungsproblem,” Proc. of the London Mathematical Society, ser.
2, vol. 42 (1936-37), pp. 230-65.

3. Ibid.

4. Ibid.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman, San Francisco, 1979.

6. Ibid., preface.

7. J. Edmonds [1965], ““Minimum Partition of a Matroid into Indepen-
dent Subsets,” |. Res. Nat. Bur. Standards Sect. B 69, 67-72.

8. S. A. Cook [1971], “The Complexity of Theorem-Proving Proce-
dures,” Proc. 3rd. Ann. ACM Symp. on Theory of Computing, Association
for Computing Machinery, New York, 151-58.

75

* CHAPTER FOUR *k

The Limits of Formal Reasoning

IN THE BEGINNING THERE WERE AXIOMS

THE PROBLEM of deciding whether the execution of an arbitrary
computer program will eventually terminate cannot be solved on any
Turing machine, as we have seen in the previous chapter. Although
on the surface this result appears to concern only the theory of
computing, it has unexpected implications reaching deep into the
nature of mathematics itself. Such fundamental questions as “Can all
mathematical problems be solved?”” and “Is there a “mechanical’ test
for mathematical truth?”” are intimately related to the halting prob-
lem.

The search for mathematical wisdom begins with certain initial
assumptions, or axioms, whose truth is taken for granted. Then,
armed solely with pure logic and guided by their intuition, mathe-
maticians proceed to derive other truths—the theorems. The great
edifice of mathematics is thus constructed, theorem by theorem.
Assuming a flawless logic, the soundness of the whole building is
then a necessary consequence of the solidity of its foundations: if the
axioms are true, so are the theorems. The Greek mathematician
Euclid was the first to use this axiomatic approach some 2,300 years
ago to develop geometry in a systematic way. Until recently, high
school students could get a glimpse of this powerful method, most
revealing of the deductive nature of mathematics, through the study
of geometry from textbooks based on Euclid’s masterpiece—the Ele-
ments. But geometry 4 la Euclid (and most of geometry itself) did not
survive the sweeping changes in mathematics education of the 1970s.
Ironically, those who designed the new math curricula had learned
their mathematics the old-fashioned way, presumably with success.

The study of the natural numbers, or arithmetic, is perhaps the
quintessential mathematical theory. Several axiom systems for arith-
metic circulated at the beginning of this century, when questions
about the foundations of mathematics were very popular among
mathematicians and logicians. Typically, the axioms merely state

THE LIMITS OF FORMAL REASONING

certain obvious truths about the natural numbers, such as: each 7 has
a successor (n + 1), different numbers have different successors, and
so on. Other systems may include as axioms the basic laws governing
the familiar operations of addition and multiplication. Among these
laws we find the commutative properties: n + m = m + n and nm =
mn, for all natural numbers n, m; the distributivity of multiplication
over addition: n(m + k) = nm + nk, and so forth.

Every property of the natural numbers that can be logically in-
ferred from the axioms is a theorem, and the totality of all (proven)
theorems constitutes the reservoir of our present arithmetical knowl-
edge.

PROBING THE FOUNDATIONS

The instrument which brings about the adjustment of
differences between theory and practice, between
thought and experiment, is mathematics. It builds the
connecting bridge and continually strengthens it. Thus
it happens that our entire present culture, insofar as it is
concerned with the intellectual understanding and
conquest of nature, rests upon mathematics!
(David Hilbert)"

Regardless of which statements we choose as axioms, two natural (for
a logician) questions will insinuate themselves: Can a contradiction
ever be deduced from the axioms?—this is known as the consistency
question. And the question of completeness: Can all (arithmetical)
truths be proved from the axioms? A particular axiom system (for
arithmetic, or for some other branch of mathematics) is said to be
consistent and complete if the answers to the above questions are,
respectively, no and yes. To paraphrase the courtroom formula: the
axioms are consistent and complete if we can logically deduce from
them the whole truth (completeness) and nothing but the truth
(consistency).

The question of consistency has haunted mathematicians and
philosophers for a long time, and to this day there is no conclusive
answer.”> Of course, mathematicians feel deep in their hearts that

77

TWO: LIMITS

arithmetic is consistent. In 1924, the distinguished German geometer
Felix Klein presented the typical case for consistency: “‘Intuition
shows us,” he wrote, ““the existence of numbers for which these laws
hold [i.e., commutativity, distributivity, etc.] and it is consequently
impossible for contradictions to lurk in these laws.”?

But Klein’s argument will not persuade the so-called formalists,
who mistrust intuition and do not believe in the existence of the
natural numbers, or of any other mathematical entities, for that
matter. In the formalists” universe, the only reality is that of marks on
paper—the expressions in a formal language—that can be manipu-
lated according to specific rules. Since these formal expressions are
not supposed to have any meaning, they are neither true nor false.
On the altar of pure formalism, not just meaning but also the notion
of truth is sacrificed.

Formalism is usually associated with the name of David Hilbert,
who made capital contributions to mathematics and its foundations.
But the famous German mathematician was in fact a firm believer in
classical mathematics. The formal approach was for him only a
strategical device to establish the soundness of the traditional meth-
ods of proof—especially those involving the concept of infinity
—which were under attack by a dissident group known as the intu-
itionists. In 1928, Hilbert addressed the International Congress of
Mathematicians in Bologna. He presented as central open questions
the consistency and completeness of arithmetic, and also of larger
systems such as classical mathematical analysis. There is little doubt
that Hilbert expected these formal systems to be both consistent and
complete.

A proof of consistency would have persuaded the skeptics that
number theory and analysis, those pillars of the mathematical temple,
were free from internal contradictions, thus guaranteeing that no
incongruous proposition such as 2 + 2 = 5 could ever be deduced.
And establishing completeness would have confirmed, in Hilbert’s
words, “the conviction which every mathematician shares, although
it has not yet been supported by proof” that every mathematical
problem can be solved.* Hilbert was also convinced that our under-
standing and eventual conquest of nature rested upon mathematics;
hence the importance he attached to validating its foundations. At the
peak of his glory, even if retirement was nearing, how could he have
suspected that his optimistic agenda would soon be bitterly frus-
trated?

78

THE LIMITS OF FORMAL REASONING

FORMAL LANGUAGES

In order to better understand what is at stake here, let us go back to
Euclid and his axiomatic method. When he wrote his famous Ele-
ments around 300 B.C., Euclid employed a natural language—
Greek—to describe relations among geometrical objects (points, lines,
etc.). But if we expect to answer questions about mathematics itself,
such as “Is statement S a theorem?”” we need to specify exactly what
constitutes a mathematical statement. One way of doing this is by
using a formal language. Examples of such languages are the pro-
gramming languages used to write the instructions for a computer. A
major difference between natural and formal languages is that the
latter have very precise grammatical rules, allowing us (or a machine)
to determine unambiguously which expressions in the language are
meaningful statements.

A formal language suitable for writing about the natural numbers
is the so-called language of arithmetic. Its alphabet consists of several
types of symbols: The numerals 0 and 1; the letters 4, b, ..., x, y, z—
which represent arbitrary natural numbers; the operation symbols +
(for addition) and - (multiplication); the equality symbol (=), and the
logical symbols — (not), V (or), & (and), = (f...then), 3 (for
some), and V (for all). The meaningful expressions of the language
are strings of symbols from this alphabet formed according to certain
precise rules of syntax—which would be too wearisome to specify
here. Every (meaningful) expression “‘says something” about the
natural numbers. For example,

Vx(x+x=x-x=>(x=0vx=1+1)) 1)

reads, when translated into English: “If a number added to itself
equals its square, then the number is either 0 or 2,” while

Vx((=3z(=(z=D & = (z=x)&3Ay(y -z =x))
=sJw(w+1+1+1=x)) 2

means: “Every prime number is greater than or equal to 3.”
Familiarity with the formal language’s syntactic rules is of course

necessary to effect the translation. A literal translation of (2) would

be: “For all (natural numbers) x, if it does not exist z such that z is

79

TWO: LIMITS

not equal to 1 and z is not equal to x and, for some y, y-z = x [in
other words, if no number other than 1 and x itself divides x—which
is equivalent to ‘if x is prime’] then there exists w such that
w + 3 = x [another way of saying ‘then x is greater than or equal to
3’].” This example illustrates one of the disadvantages of formal
languages as a means of communication: sentences soon become
much too long and hardly comprehensible.

A great deal of number theory can be couched in this formal
language. Some statements, such as (1) above, are true (as can be
easily checked by solving the equation 2x = x?), while others are
false. Statement (2) is obviously false, for 2 is a prime number smaller
than 3. To declare these two statements true and false, respectively,
we have used our knowledge of the natural numbers and their
operations. For most formal statements, however, a decision as to
whether they are true or not would be much harder to come by. The
jury is still out on such innocent-looking propositions as “’Every even
number greater than 2 is the sum of two primes,” the so-called
Goldbach conjecture. The assertion is true, for example, of the num-
bers 4 (=2 + 2), 20 (= 17 + 3), 66 (=59 + 7), and of many others.
Actually, no one has yet found an even number that is not the sum of
two primes; but nor has anyone demonstrated that such a number
cannot exist, so the question is still unsettled. If we fail in our
attempts to discover whether a given statement is true or false,
someone more knowledgeable or more ingenious may succeed. Could
this ““someone” be a machine?

MECHANICAL MATHEMATICS

In his famous 1928 address to the mathematical community, David
Hilbert had also asked whether mathematics was decidable. By this
he understood: Is there a definite method, akin to a ““mechanical”
procedure, which when applied to an arbitrary mathematical state-
ment could tell whether it is true or false? A few years later, Alan
Turing made precise the notion of ““mechanical procedure’” with his
definition of a Turing machine, so the question may now be put: Is
there a Turing machine which, after reading a mathematical assertion
presented to it, eventually writes a (correct) verdict as to whether it is
true or not?

80

THE LIMITS OF FORMAL REASONING

If such a machine existed (we shall call it DM, or decision Turing
machine), we could use it to solve the halting problem. Here’s how.
Suppose that we wished to know whether Turing machine T would
eventually halt, after being started scanning an input tape with only
zeros on it. It can be shown—but the technical details are long and
tedious—that we can write a statement H in the formal language of
arithmetic which, translated into English, says, “Turing machine T
will eventually halt after being started scanning an input tape with
only zeros on it.”” We could then ask the question, “Is H true?” to
DM which, sooner or later, would oblige with an answer. At that
moment we would know that T will ultimately stop (if DM’s answer
is yes) or keep running forever (if it is no).

Since the halting problem cannot be solved, DM cannot exist either.
In short, there is no mechanical test for truths about the natural
numbers—much less for mathematical truths in general. If mathe-
maticians want to discover truth, they must do it the hard way: by
proving theorems—they cannot expect a machine to do the job for
them.

MEcCHANICAL LOGIC

One of the things a Turing machine can do is check the validity of
certain mathematical proofs. For the purpose of machine-checking, an
alleged proof of S, say, must be written as a sequence E,;, E,, E;,..., S
of formal expressions—the last one being S—such that every expres-
sion in the sequence either is an axiom or it can be logically deduced
from expressions preceding it. Notice that this is a condensed and
formal version of our intuitive idea of a proof, namely, a chain of
facts, which are either unquestionably true (the axioms) or logical
consequences of previously established facts.

The Proof-Checking Turing machine (let us call it PC) takes as
input a sequence E;, E,, E;,..., S and gives as output yes, if the
sequence is a proof (of S) and no if it isn’t. Writing PC’s program is
fairly straightforward except for one detail: We must be able to tell
the machine, using finitely many instructions, how to recognize an
axiom when it sees one. This can be easily accomplished if there is
only a finite number of axioms—for example, by giving the machine
the complete list, appropriately encoded. But if there are infinitely

81

TWO: LIMITS

many of them, then the existence of PC will depend on our ability to
pack the information for detecting an axiom into a finite set of
instructions.

We also have to instruct PC how to check whether E; logically
follows from some of the expressions E,, E,, E,, ..., E,_; preceding
it. Fortunately, logicians solved this problem for us long ago by
reducing logical inference to the application of a few, very explicit,
formal rules. These rules are so ““mechanical” that a Turing machine
can understand them. And so, by sequentially testing E,, E,, E;, ...,
for axiom or logical consequence, PC can tell us whether or not the
input is a proof.

To sum up, a Turing machine can check the logic of a proof all
right, but it may have trouble recognizing axioms. When the proofs
concern arithmetical propositions, this deficiency will turn out to be
an insurmountable obstacle.

THE LiMITS OF FORMAL REASONING

We are now ready to answer one of David Hilbert’s questions: Is
arithmetic complete? Or, more explicitly: Is there a set of axioms from
which all truths about the natural numbers can be logically deduced?
The short answer is no. It was a young Austrian logician who broke
the bad news in 1930, barely three years after Hilbert had so confi-
dently raised the question in Bologna. In a paper presented to the
Vienna Academy of Sciences, Kurt Godel made public his result, now
known as Godel’s First Incompleteness Theorem: No formal system
of axioms is strong enough to prove from them all true arithmetical
statements if we require that the notion of proof be itself formal, that
is, verifiable by some ““mechanical test”—a computer program, for
instance. (There is a Second Incompleteness Theorem, dealing with
the consistency question.)

Since its publication in 1931, Godel’s result has been the subject of
countless technical and popular accounts; articles, essays, and books
by the most competent mathematicians and philosophers. Why try
again? Because, as Ivar Ekeland wrote in the introduction to his
superb Mathematics and the Unexpected, “’1 believe that there is still
something to be said, and that the same old story can be told another
way.”’

82

THE LIMITS OF FORMAL REASONING

Let us allow young Godel himself (he was only twenty-five) to
introduce us to his discovery: “The development of mathematics
toward greater precision has led, as is well known, to the formaliza-
tion of large tracts of it, so that one can prove any theorem using
nothing but a few mechanical rules. The most comprehensive formal
systems that have been set up hitherto are the system of Principia
Mathematica [due to Alfred Whitehead and Bertrand Russell, in 1925]
on the one hand, and the Zermelo-Fraenkel axiom system of set
theory [further developed by J. von Neumann] on the other. These
two systems are so comprehensive that in them all methods of proof
today used in mathematics are formalized, that is, reduced to a few
axioms and rules of inference. One might therefore conjecture that
these axioms and rules of inference are sufficient to decide any
mathematical question that can at all be formally expressed in these
systems. It will be shown below that this is not the case, that on the
contrary there are in the two systems mentioned relatively simple
problems in the theory of integers that cannot be decided on the basis
of the axioms.””®

The last sentence means that there are undecidable propositions S
that cannot be proved or disproved, that is, neither S nor its negation
can be deduced from the axioms—although one of the two is neces-
sarily true. It is in this sense that the axiom systems Godel refers to
are “incomplete”’—since not all arithmetical truths can be logically
derived from them.

Here are the bare bones of Godel’s argument. Using a clever
encoding method later called Godel numbering, each formal expres-
sion can be assigned a natural number. Then, some formal expres-
sions, ostensibly saying something about the natural numbers, can
also be interpreted as saying something about other formal expres-
sions. In particular, Godel shows by an ingenious argument the
existence of an expression G that asserts something about itself,
roughly equivalent to “I am not formally provable.” Now, if G is
false, then a false statement—G—would be deducible from the ax-
ioms. We must clearly rule out this possibility if our formalization is
to be consistent. So, G must be true: an arithmetical truth that cannot
be logically deduced from the axioms.

And so, contrary to a widespread belief, truth and deducibility are
different things—a conclusion rich in implications for those inter-

83

TWO: LIMITS

ested in the philosophy of mathematics. From a formalist’s perspec-
tive, however, mathematical statements are merely strings of symbols
with no interpretation, and therefore they are neither true nor false.
The assertion that truth is not the same thing as deducibility then
becomes meaningless; for there is no truth, only deducibility.

FroM ONE UNSOLVABLE PROBLEM TO ANOTHER (AND BACK)

In a certain sense, it is the unsolvability of the halting problem that
prevents arithmetic from being complete. But we could also put it the
other way around and say that the incompleteness of arithmetic is
responsible for the halting problem having no solution. In fact, the
completeness and the halting questions are equivalent problems. By
this we mean that a solution for any one of them could be used to
solve the other, so that either both are solvable or none of them
is—they sink or swim together.

In showing their interdependence we shall outline an alternative
proof of Godel’s theorem. Our argument may be summed up as
follows: the completeness of arithmetic would imply the existence of
DM (the decision Turing machine); but then, as we have already
shown, we could construct another Turing machine that would solve
the halting problem—a machine that cannot exist. In just one sen-
tence: if arithmetic were complete, the halting problem could be
solved; but since the latter can’t, we must conclude that the former
isn’t.

Suppose that A is a set of axioms from which all arithmetical
truths can be derived using the (formal) rules of inference. Here is a
recipe to construct DM. To decide whether the statement S in the
language of arithmetic is true or false, we feed PC (the Proof-Check-
ing machine), one after the other, all possible finite sequences
E,, E,, E;, ..., E, of meaningful expressions. (Surely there is an infi-
nite number of such sequences, but a standard argument shows that
they can be systematically generated by a Turing machine.) Remem-
ber that PC will answer “yes” if the input sequence is a proof (of the
last expression E, in the sequence), and “no” if it isn’t. Now, either S
is true or its negation, not-S, is—that much we already knew, of
course. Since all truths can be derived from A, there is either a

84

THE LIMITS OF FORMAL REASONING

formal proof of S or a formal proof of not-S. Whichever the case, this
proof will sooner or later input PC and elicit an output. At that point
we will know that S is true—if PC has found a proof of S—or that S
is false—if PC has discovered a proof of not-S.

GAMES THAT MACHINES CANNOT PLAY

It is only the very unsophisticated outsider who
imagines that mathematicians make discoveries by
turning the handle of some miraculous machine.
(Godfrey H. Hardy)

There certainly exist sets of axioms from which all arithmetical truths
can be derived. For instance, we could take as axioms the set of all
true statements. Then all arithmetical truths would be (trivially)
provable: a proof of a truth S would simply be S itself. But such
complete sets are not recognizable by Turing machines, and so proofs
based on them cannot be formalized. In short, no axiomatic system
for arithmetic can be both formal and complete. For Aubert
Daigneault, a mathematician at the University of Montreal, Godel
proved that when we speak of “natural numbers,” we cannot say
precisely what we are talking about—that is, we cannot describe the
natural numbers by an explicit, “mechanically’” verifiable set of
axioms.

To truly appreciate the finality of Godel’s blow to Hilbert’s episte-
mological dream (that of proving all mathematical truths from a
single set of axioms) one must comprehend the full import of the
Incompleteness Theorem. For the young Austrian logician showed
not only the incompleteness of some particular systems, but also that
every formal system for arithmetic would turn out to be incomplete:
there will always be arithmetical truths, expressible in the formal
language, which cannot be formally proved. It is therefore impossible
to confine number theory—much less all of mathematics—within the
framework of a formal system. Mathematicians ought to feel relieved
at the news that their science cannot be reduced, even in principle, to
a formal game that machines can play.

85

TWO: LIMITS

A COLORING PROBLEM

For all its depth and finality, Godel’s Incompleteness Theorem re-
mains a theoretical result about the limitations of a particular enter-
prise: the formalization of mathematical proofs. A result, after all,
with more philosophical than practical implications. It was for some
the end of a dream, reminiscent of another broken dream: the belief
of eighteenth-century scientists in the universe as a clock; a transpar-
ent and exactly describable universe, predictably ticking away ac-
cording to Newton’s laws.

But the end of a dream often marks the beginning of a better
appreciation of reality. Not every mathematical problem may have a
solution but the vast majority do,” and truth may still be discovered
outside the rigidity of a formal system. Mathematics may well be free
from contradictions, despite the absence of a consistency proof. And
even if a contradiction did turn up, the steel and concrete bridges
which were built using mathematical principles will not necessarily
fall down, as Stanislaw Ulam once noted. Ulam was a Polish-born
mathematician who worked with the top scientists of his time at Los
Alamos, during the Second World War.

We have already seen the shortcomings of (even ideal) digital
computers for discovering mathematical truth. Computers cannot be
programmed to prove all theorems, but as tools for helping mathe-
maticians with certain proofs they are not only valuable but may
even be essential.

The mathematical puzzle known as the four-color problem has a
long and colorful history.® Schoolchildren have for centuries been
coloring maps drawn on sheets of paper, using different colors to
paint neighboring countries, and probably without ever caring about
how many colors they really needed. A quick glance at a map of
South America would reveal that Paraguay, Bolivia, Brazil, and
Argentina are painted in different colors—as they should, since each
country shares a border with the other three. So we need at least four
colors. In 1852, Francis Guthrie, a student at London University
College, observed that a four-color palette seemed to be enough to
color any map. Then he asked whether his conjecture could be
proved mathematically (it takes a student to ask a thing like that).

86

THE LIMITS OF FORMAL REASONING

The question appeared to have been settled in 1879 when Alfred
Kempe, a barrister, came up with just such a mathematical proof. But
eleven years later mathematicians discovered a flaw in his argument.
The four-color conjecture was once again an open problem. To make
a long story short, let us just say that the problem was finally solved
in 1976 by Kenneth Appel and Wolfgang Haken,” two mathemati-
cians at the University of Illinois. But theirs was not a traditional
paper-and-pencil proof, that is, one that another mathematician could
verify. For not only parts of the proof were carried out by a machine,
but its correctness cannot be checked without the aid of the com-
puter.

The search for a rigorous proof begins with a translation of the
problem into mathematical language. First, we represent each coun-
try as a dot; then we join with a line each pair of dots representing
neighboring countries. (A clarification is in order here: neighboring
countries must share a border that is not just a single point, for
otherwise there would be no limit to the number of necessary colors.
To see this, think of the countries as the slices of a pie which has been
cut up but not yet served. Without the above convention, any two
slices would be neighbors [their tips touch] and therefore we would
need as many colors as there are slices.) The original map is thus
replaced by a certain graph (fig. I1.3), and the coloring of countries by
the ““coloring” of vertices. The requirement that adjacent countries
should not share the same color will then be satisfied if vertices
joined by an edge are ““painted” in different colors.

We shall call a graph five-chromatic if it cannot be painted with
fewer than five colors. Guthrie’s famous conjecture about map color-
ing can now be put in the following abstract terms: five-chromatic
graphs do not exist. Now, we do not know whether five-chromatic
graphs exist, but let us assume they do. Then, there must be one of
them, M, say, with the smallest number of vertices—that is, no other
five-chromatic graph has fewer vertices than M. To solve the four-
color problem it suffices to prove that M cannot exist.

In the first part of their proof, Appel and Haken constructed a list
of 1,834 small graphs called configurations and proved, in the tradi-
tional sense, that at least one of these must appear as part of any
graph. Then their computer program checked that each one of these
“unavoidable” configurations possessed a certain property that the
minimal five-chromatic graph M cannot possess. Putting together the

87

TWO: LIMITS

FiGURE I1.3. A map of South America and its graph.
Each country is represented by a dot; two dots are
joined by a line if the corresponding countries share
a border.

mathematicians” argument with the computer’s output we get a proof
of Guthrie’s conjecture: four colors suffice.

THE COMPUTER’S REVENGE

Appel and Haken’s solution was the first famous example of a
computer-assisted proof. These are proofs of some mathematical
proposition which include evidence produced by a computer that
cannot be checked “by hand,” the way mathematicians check tradi-
tional proofs. In 1989, Herbert Wilf and Doron Zeilberger, both then
at the University of Pennsylvania, wrote a computer program that
proves certain combinatorial identities.' These identities are essen-

88

THE LIMITS OF FORMAL REASONING

tially equations asserting that two different ways of counting the
objects in a set—one complicated, the other simple—are in fact equal.
But Wilf and Zeilberger’s proofs do not really depend on the com-
puter because the machine’s output can be converted into an ordi-
nary proof. A truly computer-assisted proof, on the other hand,
leaves us no choice but to believe the computer. Naturally, such
dependence on machines to settle a purely mathematical question—
the four-color conjecture—made many people uneasy. Mathemati-
cians are not used to relying on secondhand evidence when it comes
to proving theorems.

A few years later, in 1988, another controversial result was an-
nounced. A Cray-1A supercomputer had solved a long-standing
mathematical problem: Does a projective plane of order 10 exist? A
projective plane is made up of “points” and certain sets of points
known as “lines.” The plane has order n if it contains exactly
n* + n + 1 points and as many lines, and the following four axioms
hold: every line is made up of n + 1 points; every point lies in 7 + 1
lines; any two (distinct) lines have exactly one point in common; any
two (distinct) points lie on exactly one line.

Certain conditions on n guarantee the existence of a projective
plane of that order. For example, if n = p™, for some prime number p
and exponent m = 1,2,3,..., there is always a projective plane of
order n. Other conditions, if failed to be met by #, imply that there
are no planes of order n. It was long known that there are projective
planes of every order n <9, except n = 6. The smallest order n for
which the existence or nonexistence of a projective plane remained an
open problem was n = 10.

What makes the computer particularly suited to hunting for projec-
tive planes is the fact that a projective plane can be concretely
represented as a binary matrix (this “incidence” matrix has a 1 in the
i-th line and j-th column precisely if the j-th point lies on the i-th
line). In this way, the search for the hypothetical plane of order 10
becomes a chase for a lattice of Os and 1s with 111 (= 10% + 10 + 1)
rows and as many columns that satisfies certain conditions. For
instance, every row is to contain 11 ones and 100 zeros, to reflect the
fact that each line is made up of 11 points; there must also be exactly
11 ones in any given column (since each point must lie in 11 lines).

A quick calculation shows that a straightforward, case-by-case
computer inspection of all 111-by-111 binary matrices is to be ruled
out because there are far too many of them. Even on a supercomputer

89

TWO: LIMITS

capable of performing one trillion (10'?) operations per second, the
job would take around 10*°*° years to be completed. The enormity of
such a number is hard to grasp. In decimal form, 10*%*° is written 1
followed by 3,680 zeros, while a generous estimate of the age of the
universe is a “mere” 20 billion (2 X 10'°) years, or 2 followed by 10
zeros. Clement Lam, Larry Thiel, and Stanley Swiercz of Concordia
University in Montreal managed, by theoretical arguments, to reduce
the number of matrices to a more reasonable (but still astronomical)
size. They then wrote a series of programs for the computer to take
over the search. When the machine completed its calculation without
finding a matrix with the required characteristics, the three re-
searchers concluded that no projective plane of order 10 could exist. If
there was one, the computer would have found it, summarizes their
argument."’ But a “manual” check of the computer’s unsuccessful
search was of course out of the question. No wonder such a “proof”
left many experts unconvinced and the general public perplexed.
Even the New York Times joined the debate: ““Is a math proof a proof
if no one can check it?”” asked the title of a December 20, 1988, article
on the subject.

The use of computers in proofs introduces an element of uncer-
tainty to which mathematicians, unlike experimental scientists, are
not used and may be reluctant to accept. In this context, the computer
is in effect an extension of the mathematician’s mind, just as the
microscope and the radiotelescope are extensions of the physicist’s
senses. As the above examples seem to suggest, certain propositions
may only be proved with the help of this extension, and in such cases
the machine becomes an indispensable partner of the mathematician.
And so, despite their theoretical limitations, the practical necessity of
digital computers in the search for mathematical truth may still be
vindicated.

NOTES

1. Constance Reid, Hilbert, p. 195, Springer-Verlag Berlin-Heidelberg,
1970.

2. Edward Nelson, “Taking Formalism Seriously,” The Mathematical
Intelligencer 15, no. 3 (1993), 8-11.

3. Felix Klein, Elementary Mathematics from an Advanced Standpoint,
The Macmillan Company, New York, 1932.

90

THE LIMITS OF FORMAL REASONING

4. Reid, Hilbert, p. 174.

5. Mathematics and the Unexpected, Ivar Ekeland, University of Chicago
Press, 1988.

6. Kurt Godel, “On formally undecidable propositions of Principia
Mathematica and related systems I’ (English translation), in From Frege to
Gddel, a Source Book in Mathematical Logic, 1879-1931, a collection of
original articles edited by Jean Van Heijenoort, Harvard University Press,
Cambridge, MA, 1967.

7. Regarding the existence of unsolvable problems, it has been known
since Godel’s time that there exist undecidable propositions in ordinary
arithmetic. However, most of them are formal constructs, without any
mathematical meaning. Since 1931 mathematicians have been looking for
a strict mathematical example of an undecidable proposition, one which
is mathematically simple and interesting and does not require the numer-
ical coding of notions from logic. The first such examples were only
found in 1977. The most striking of them was a reasonably natural
theorem of finitary combinatorics, a simple extension of the Finite Ram-
sey Theorem (see Jeff Paris and Leo Harrington, ““A Mathematical Incom-
pleteness in Peano Arithmetic,” in Handbook of Mathematical Logic,].
Barwise, ed., North-Holland, 1977). In a much more recent paper it is
shown that, from a certain topological point of view, the set of proposi-
tions that cannot be proved as true within an axiomatic system is the vast
majority (C. Calude, H. Juergensen, and M. Zimand, ““Is independence an
exception?” Applied Math. Comput. 66 (1994), 63-76).

8. The rest of this section and the following one are based on the
author’s article ““The burden of proof is on the computer,” New Scientist,
vol. 129, no. 1757, 23 February 1991, pp. 38—40.

9. K. Appel and W. Haken, “Every planar map is four-colorable,”
Bull. Amer. Math. Soc., vol. 82 (1976), pp. 711-12.

10. Herbert S. Wilf and Doron Zeilberger, ““Rational functions certify
combinatorial identities,” Journal of the American Mathematical Society,
January 1989.

11. CW.H. Lam, L. Thiel, and S. Swiercz, ““The non-existence of finite
projective planes of order 10,” Canadian Journal of Mathematics, vol. XLI,
no. 6, December 1989, pp. 1117-23.

91

PART THREE

NATURAL SOLUTIONS

*

* CHAPTER FIVE 3k

Net Gains

WHAT Is A NEURAL NETWORK?

Soft computing, real-world computing, etc., are
common names for certain forms of natural information
processing that have their original forms in biology.
Fuzzy and probabilistic logic, neural nets, genetic
algorithms, etc., on the other hand, mean alternative
theoretical formalisms by which computing schemes
and algorithms for such tasks can be defined.
(Teuvo Kohonen)*

WHEN WE MENTIONED neural networks earlier, we were not refer-
ring to the biological arrangements of nerve cells found in living
organisms. These natural networks perform many complex tasks,
from the recognition of sounds and images to memorization and
decision making. The example par excellence is the human brain—al-
though our brain is certainly much more than just a network, or even
a network of networks.

Since biological networks store and process information, they exe-
cute a computation of sorts, its most distinctive features being the
massive interconnection of simple computing elements—the neurons
—and the faculty of the network to modify itself by a process similar
to learning. It is this computing ability that the artificial models seek
to capture.

An artificial neural network first appears as a kind of graph, a
convenient notation for certain operations on numerical data. Nodes,
symbolizing the basic computing units, are joined by lines represent-
ing the flow of information or data (fig. III.1). From a mathematical
point of view, a given neural network computes a certain mapping or
function f; that is, it associates to “input” data, usually a vector
(xy, x5,..., x,) of numbers, an “output” f(x,, x,,..., x,,) which is
also numerical. Thus, the network may be seen as a way of defining

THREE: NATURAL SOLUTIONS

fl(xl’ x2, X3, X4)

’
/
(

X SED XA
V‘Vw* ' A’A’A f, 2(x1, X, X3, x4)

\\4
¢

£3(x3, x5, X3, Xy)

»’
A
OQO

Ficure III.1. A neural network on paper.

the mapping f when we do not know how to specify it in any other
way—or, to paraphrase Marshall McLuhan, the network is the map-
ping. And so, at the outset, neural networks are mathematical objects.
If they are implemented as algorithms on a computer, as electronic
circuits or as physical networks consisting of interconnected cells,
such systems are also referred to as neural networks. But since these
“real” networks are concrete realizations of the ideal ones, the latter
are the proper object of investigation.

The inspiration of artificial neural networks may come from nature,
but their performance is still far from approaching that of the real
thing. Nevertheless, the artificial models have provided an alternative
to classical computing methods for solving certain types of problems,
especially in cases when an exact solution procedure is unknown or
impossible to encode as a program. A typical example of such
problems is the classification of patterns. This includes the recogni-
tion of sounds and images, but since a “pattern” is a very general
concept, many other situations also fall into this category. A com-
puter file may be seen as a pattern, and the classification may consist
in deciding whether the file is “clean” or it has been attacked by a
computer virus. Once the neural network has been “trained” (as
explained later) to recognize the infested files among those in a
training set, it can then be expected to detect new contaminated files
presented to it. This feat would have been achieved without us
having had to specify precisely what a computer virus is. Such an
approach is not unlike the training of dogs to detect concealed drugs.
The dog eventually learns to recognize a scent as “drug” without
ever being provided with an exact definition. This faculty to learn by

96

NET GAINS

examples is also present in neural networks when they are used as
classifiers.

Just as there are many sorts of automobiles or clocks, there also
exist many different kinds of neural networks. Any attempt to clas-
sify them begins with some arbitrary choices. Of the many possibili-
ties, we have chosen to distinguish between feedforward, or ordinary,
networks and feedback networks. The former act on a given input
and, after performing a series of operations, produce an output; in the
latter, neuron responses are connected—fed back—to the network.
Feedback networks are best described as dynamical systems, in terms
of “states’” and “transitions.” For a given input, the network goes
through a sequence of states, in either discrete or continuous time
transitions. When—and if—the network reaches some stable state,
this final configuration is considered to be the network’s response. In
what follows, we will mostly analyze the feedforward kind and
relegate feedback networks to a separate section.

Both types of networks are composed of interconnected computing
units called (artificial) neurons which imitate the behavior of biologi-
cal neurons—or at least pretend to do so. The first attempt to give a
formal definition of a synthetic neuron goes back to 1943. In their
famous paper “A logical calculus of the ideas immanent in nervous
activities”? (much quoted and often misquoted, with “immanent”
replaced by the more familiar “imminent”), W. S. McCulloch and W.
Pitts gave an elegant mathematical definition of a neuron with
multiple binary inputs and a single binary output. Organized into
networks, these basic elements could compute simple logical (i.e.,
Boolean) functions.

More than a decade later, F. Rosenblatt introduced the percep’cron,3
a precursor of many of the present neural network models. Rosen-
blatt’s main motivation for developing the perceptron was to provide
a model for certain functions of biological systems. In particular, the
way in which such systems store and retrieve information, and how
the stored information influences recognition and behavior. He was
convinced that (real) neural networks, with their myriad of random
interconnections, could not be properly represented by symbolic logic
and Boolean algebra. His is therefore a probabilistic model, aimed at
providing a mathematical analysis of the overall organization of the
nerve net. Rosenblatt was well aware, though, that his model repre-
sented only extreme simplifications of the central nervous system.

97

THREE: NATURAL SOLUTIONS

it

.- - - -weighted sum
S =W X1+ WXy +W3X3

VL]
Xy e
Output
\ . . .
' - - activation function
X3 Weights et)
£ - summing node

Inputs

FIGURE III1.2. The artificial neuron model.

FrROM THE BIOLOGICAL TO THE ARTIFICIAL NEURON

There are two kinds of artificial neurons from which most networks
are built. The two models differ mainly in the type of data they can
handle, which may be either binary or continuous. In the first case,
several binary numbers—ux,;, x, and x,;, say—enter the artificial
neuron as inputs (see fig. II1.2). Using the biological nerve cell as a
guide, these numbers may be interpreted as the signals sent to the
neuron from other neurons. After a short interval, the biological
neuron will respond to the aggregation of its inputs by firing a neural
pulse. In our mathematical model, the aggregation of inputs is repre-
sented by the weighted sum

S =W Xy + Wy X, + Wy

where the “weights” w,, w,, and w;, which can be any real numbers,
measure the strength of the connection of each input to the neuron
body. These numbers are also known as synaptic weights—from
synapse, the name of the contact organ in the biological case.

For the firing of the biological neuron to take place, the combined
inputs must exceed a certain threshold value. In the artificial neuron,
a typical threshold value is zero, and so it ““fires,” that is, it produces
the output value f(s) = 1, if s is greater than zero; otherwise, it does

98

NET GAINS

(@ 16) 4
1
s:
1,if >0
fs) =
0,if s<0
®
f5) 4

//

flg=—1

1+ e

hv

FIGURE II1.3. Neural activation functions. (a) Binary; (b) Continuous.

not fire (f(s) = 0). The function f is called the neuron’s activation
function (fig. I11.3 (a)).

A continuous neuron accepts any real numbers as inputs and it can
respond with any number between 0 and 1 as output—a continuous
range of values, or graded response. The activation f(s) of the
continuous neuron is also a function of the weighted sum s. Its graph
(fig. M1.3 (b)) is a kind of smoothed-out version of the graph of fig.

99

THREE: NATURAL SOLUTIONS

I11.3 (a). One popular choice for f is

f(s) = 1

+e°

known as the sigmoid, but essentially any continuous, monotonically
increasing function that takes values between 0 and 1 may serve as
an activation function.

To sum up, both the binary and the continuous neuron compute
the function y = f(w, x; + w,x, + - +w, x,) for input (x,, x,,...,
x,), a rather modest accomplishment after all. But then consider a
single nerve cell in isolation—not very impressive either. Would you
have imagined what can be achieved when millions of these primi-
tive cells are interconnected? Likewise, the elementary artificial neu-
ron by itself may not amount to much. It is only when many of these
basic computing units are put together that totally unexpected and
potentially useful new properties may develop. This point was well
made by John Hopfield, a pioneer of neural computation, in his 1982
seminal paper? (to which we shall return later): ““Much of the archi-
tecture of regions of the brains of higher animals must be made from
a proliferation of simple local circuits with well-defined functions.
The bridge between simple circuits and the complex computational
properties of higher nervous systems may be the spontaneous emer-
gence of new computational capabilities from the collective behavior
of large numbers of simple processing elements.”

NETWORKS AS OPEN ALGORITHMS

If we want to solve a problem on a digital computer we must provide
it with a solution strategy in the form of precise instructions—a
program. One of the distinctive features of neural computation is the
absence of such a fixed set of commands. A neural network may
rather be viewed as an incomplete program, or “open” algorithm, in
the sense that certain numerical parameters—the weights—are not
specified by the programmer. The weights are calculated during a
“training phase,” a gradual procedure that requires some data (the
training set) and another program (the learning algorithm). During
the training phase the network “learns” to respond in a certain way
to the data presented to it. Terms such as ““training” and “learning”

100

NET GAINS

may suggest that a process similar to animal or human learning takes
place, but they are merely convenient (if not misleading) analogies.
What neural network practitioners call “learning” is in fact ““calcula-
tion,” and it is as removed from actual human learning as is a
mathematical neuron from a biological one.

The reason why the weights cannot be specified up front is simply
that one has normally no clue as to the relation from cause to effect,
that is, how different weight values affect the computation of the
network. This state of affairs results from the very essence of neural
networks, which are basically “’black boxes” whose behavior is largely
unpredictable. The user can select the network “architecture” —the
number and type of neurons, the way they are interconnected, and so
on—but weights cannot in general be rationally set or even guessed,
they can only be “learned” (a notable exception is the Hopfield
feedback net—the subject of an upcoming section—whose weights
are set up front).

There are disadvantages to this black-box approach to problem
solving, for it is nearly impossible to use our intuition the way we do
when writing or modifying a computer program—in order to fix a
bug, for instance. The obvious advantage, on the other hand, is that
the network can be made to perform tasks we would not know how
to spell out in an explicit, algorithmic form.

Boiled down to the essentials, a neural network maps input data to
output data, and in this respect it is a computing device. Both the
input and the output data are typically finite strings [x;, x,,..., x,]
of numbers called n-dimensional vectors. The numbers x; may range
over a certain interval, for instance —1 < x; < 1, in which case we
speak of continuous data, or they may take on only two values, such
as 0 and 1 (binary data). The type of data used depends on the
purpose of the computation, which brings us to the practical question
of what can actually be achieved with a neural network.

PATTERN RECOGNIZERS

Neural networks are very good at pattern recognition and classifica-
tion tasks. A pattern is a very general concept that includes images,
sounds, and forms such as printed characters (letters, numerals, or
punctuation marks). To be specific, let us assume that there are 95
characters. Each of these may be physically represented as a rectangu-

101

THREE: NATURAL SOLUTIONS

lar grid called a pixel grid. If a 7 X 10 grid is used, then each of its 70
positions may be either black or white (fig. IIL.4). This affords an
astronomical number of possible dot configurations, but we need
only 95 of them to represent our printed characters. For the purpose
of network processing, a character is encoded as a string of 70 bits—a
binary vector. A 1 (respectively a 0) in a given position meaning that
the corresponding dot in the pixel grid is black (white). The neural
network then has 70 input neurons, one for each bit (or pixel) position
and 95 output neurons, corresponding to the 95 “classes”” of charac-
ters. (This is a rather special situation; in most classification problems
a class will be composed of more than just one pattern.) The remain-
ing neurons in the network, the so-called ““hidden”” neurons, are used
for computation purposes only.

When a character, encoded as a 70-dimensional binary vector, is
presented to the neural network, the latter will respond by setting to
1 exactly one of its 95 output neurons, thus signaling the result of the
classification. In this way the network associates—correctly or incor-
rectly—each printed character with a ““class.” During the training
phase, the neural network ““learns” the correct associations in much
the same way an infant recognizes flash cards (it’s a dog, it’s a cat,
etc.) under the supervision of a teacher. The 95 characters (the
training set) are fed to the network one at a time. The network
responds by returning a class number for each one of them. When-
ever a character is misclassified, the learning algorithm will adjust
the weights in such a way as to increase the likelihood of a correct
classification the next time around (this involves the clever use of

FIGURE IIL.4. Pixel grids. Dot-matrix printer characters
(7-column by 10-row) as defined by Apple Computer in
1986.

102

NET GAINS

mathematical techniques, as will be explained in later sections). The
training cycle continues until the network correctly recognizes all
characters. This may require presenting the training set to the net-
work hundreds, if not thousands, of times. The values of the weights
at the end of the training phase are adopted as final, and the network
will then be ready for operation.

Notice that at the most abstract level there are no pixels, characters,
or classes involved here. The network merely computes a function;
that is, to each 70-dimensional binary vector (the input), it associates
a particular 95-dimensional binary vector (the output). It is our
interpretation that gives the computation its meaning. Thus, we see,
or interpret, each input as a black or white pixel and the input vector
(i.e., all the 70 pixels considered in a given order) as a printed
character. Similarly, the output neuron that is “turned on” (with
value 1), indicates to us which input character the network has—ac-
curately or not—recognized. Finally, it is we who view this particular
computation as a classification process.

In the above example (which is based on an actual application®),
the network eventually learns to classify every input pattern cor-
rectly. This is perhaps not surprising, given that the members of each
class can be exactly defined as certain configurations of dots. In a
more typical situation there will be patterns whose class might be
very difficult—or impossible—to determine, even for a human classi-
fier. Such is the case when the patterns are the handwritten numerals
that appear on zip codes. Even if these numerals can somehow be
represented as pixel grids, it is impossible to tell precisely which dot
configurations correspond to the different ways people write the
numeral /5, for instance. Under those circumstances, no neural
network—or any other classifier, for that matter—can be expected to
perform the classification with a success rate of 100 percent. Fortu-
nately, another useful feature of neural computation comes into play
here: the ability of a neural network to ““generalize.” This roughly
means that if a neural network has learned to classify a large number
of sample patterns that are in some sense typical, it can then be
expected to correctly classify new, unknown patterns—at least most
of the time.

Our next example involves a task that baffles even human experts:
after examining a computer program, decide whether or not it has
been infected by a computer virus.

103

THREE: NATURAL SOLUTIONS

OF VIRUSES AND MEN

The metaphor is one of the scientific writer’s best friends. When used
wisely, it can serve to enhance the understanding of a difficult
concept and to make in the reader’s mind an impression he or she
will not soon forget. But the writer’s friend may easily turn into an
insidious enemy. Metaphors will cause more harm than good if they
are ill-chosen, abused, or stretched too far by the author—or mis-
taken for the real thing by the reader.

On the topic of a particular type of computer malfunction, the
distinction between metaphor and reality is usually blurred in the
extreme—for better or worse. When tragedy strikes, a hard-drive or
computer memory are no longer inanimate objects but become living
organisms that have been “infected” by a “virus.” A similarly
“infected” diskette may spread the “pathogen agent’” around, caus-
ing hitherto “healthy” software to “catch the disease.” The “viral
attack,” which may reach “epidemic” proportions, can be stopped
only after the virus has been “isolated” and “dissected” for study,
and a “cure” for it finally found. The so-called Jerusalem virus,
which appeared in Israel at the end of 1987, was referred to in the
press as a “killer” virus.

A computer virus (a term coined by Adleman in the early 1980s°)
is in fact a section of a program that contains instructions for self-
replication, and capable of attaching copies of itself to other programs
or regions of a disk. The famous Jerusalem virus first copies itself to
memory when a program where it “lives’” is executed, and from
there it infects any program later executed by the host system. These
infected programs can themselves propagate in the same fashion,
eventually contaminating other computer systems. The unpleasant
consequences of a viral attack may range from a scrolling screen to
the loss of the entire contents of a hard disk, resulting in the
temporary—or, if nothing is done, permanent—crippling of the vic-
tim’s system.

It is true that the similarities between a biological virus and its
electronic counterpart are striking. Both attach themselves to an
individual (organism or computer) and, in the process of replicating
themselves, play havoc with some vital functions of their hosts:
destruction of cells, or even life, in the one case; loss of data,
programs, and the ability to operate properly, in the other. While

104

NET GAINS

most viruses are specific to some population (monkeys or DOS files),
others might have the ability to jump species (from monkey to
human—as was the case with the AIDS virus—or from DOS to
Macintosh software). The most damaging computer viruses are (for-
tunately) the least likely to spread, just as deadly strains of viruses
are rare while relatively innocuous ones—the common cold virus, for
instance—are widespread. Another common feature is the indiscrimi-
nate nature of their attacks: once unleashed, both biological and
electronic viruses strike at any potential victim that gets in their way.

The analogy comes apart on the motivation behind such a destruc-
tive behavior. For all their devastating effects, biological viruses
cannot be accused of being intrinsically evil. Computer viruses, on
the other hand, are consciously created and disseminated by some
human who is well aware of their wicked design.

THE VIRUS HUNTERS

Scattered all over the world, from California to Iceland, a small army
of dedicated men and women works around the clock to counteract
the effects of a human-made electronic plague. They are the virus
fighters, an informal, international community united in their strug-
gle to detect and remove computer viruses. This is done mostly
through the use of traditional methods, which rely upon analysis of
each new virus by human experts. But a few years from now, this
case-by-case approach will be too slow to cope with new viruses
spreading rapidly through global networks such as the Internet.
Then, a much faster, automatic, and generic response to an outbreak
will be required.

In their search for the virus-protection techniques of the future, a
team at the High Integrity Computing Laboratory of IBM’s Thomas]J.
Watson Research Center turned to nature for inspiration. Since com-
puter viruses resemble real ones in many ways, the experts looked
for clues in the defense mechanisms that living organisms have
evolved against disease. Using this “’biological” approach, the team
headed by Steve White and Jeffrey Kephart developed a virus detec-
tor based on a neural network. The technique was later incorporated
into a commercial product—IBM’s AntiVirus software.

In order to get back to normal, infected computers need specialized
assistance just as very sick humans do. A virus-fighting expert must

105

THREE: NATURAL SOLUTIONS

first disassemble the virus code to discover how it works and pre-
cisely what it does. The expert then selects a ““signature,” or short
sequence of code (from 16 to 32 bytes long), representing a portion of
the virus operations (instructions for self-replication or some other
suspicious activity, for example) that are characteristic of the intruder
but unlikely to be found in an ordinary computer program. This
information can then be encoded into virus scanners—programs that
search files, memory, and other locations for the presence of viruses.

The detection of a virus in a system is normally followed by a
disinfection process to restore infected programs to their original
state. A serious drawback of scanning and repair mechanisms is that
they can be applied only to known viruses, or variants of them.
Present scanners and disinfectors therefore require frequent updates,
as new viruses are discovered. Once detected, each individual virus
strain must be analyzed in order to extract the information that will
neutralize it, an operation that may take several days.

The IBM team recognizes that the idea of using biological analogies
to defend computers from viruses is not new (W. H. Murray pro-
posed a similar approach in 1988”), but they claim to be the first ones
to have taken the analogy seriously, to the point of having actually
created antivirus technology that is inspired by biology.?

ARTIFICIAL NEURONS VS. ARTIFICIAL VIRUSES

The problem of deciding whether any given computer program is
viral or not is algorithmically unsolvable. In simpler terms, the
perfect virus detector cannot be built. The reasons for this negative
result are not merely practical but more fundamental: a universal
virus detector program could be used to decide whether an arbitrary
Turing machine will eventually terminate its computation. But, as we
have seen in chapter 3, no algorithm can solve this halting problem,’
so no universal virus detector can exist either. Of course, it is always
possible to devise efficient, if less sweeping, virus catchers that work
well in practice.

The detection of computer viruses may be viewed as a problem in
pattern classification with only two possible classes: “infected” and
“noninfected.” A simpler but important subproblem is the classifica-
tion of boot sector viruses, which account for about 80 percent of the
most common viruses. To ““boot” a computer is to “instruct itself to

106

NET GAINS

get going”” or ““to pick itself up by its bootstraps.” A boot sector is a
small sequence of code (512 bytes long in IBM-compatible PCs) that
tells the computer how to do precisely that.

Guided by both practical and theoretical considerations, the IBM
team extracted about fifty 3-byte strings, called features, that appear
frequently in viral boot sectors but infrequently in legitimate ones.
Given an arbitrary 512-byte boot sector, the presence (1) or absence
(0) of each feature defines a binary vector. This vector becomes the
input to a single-layer network with a continuous activation function.
The network weights were computed by back-propagation (see next
section) using some 100 training samples, of which about three-
quarters were viral. A network output value greater than zero would
indicate the presence of a virus; otherwise the boot sector would be
declared healthy.

Since in this case there are only two classes, “infected” and
“healthy,” two types of classification errors are possible: false-posi-
tives (a healthy file erroneously declared infected) and false-negatives
(a contaminated file slipping through undetected). For this particular
application, avoiding false positives is crucial. Frequent false alarms
on thousands of computers would leave users worse-off than they
would have been without virus protection.

Test runs of the system resulted in a false-negative rate of 10 to 15
percent and a false positive rate of 0.02 percent. Commenting on this
performance, the team predicted that 85 percent of new boot sector
viruses will be detected, with a tiny chance of false positives on
legitimate boot sectors. The neural network classifier has in fact
already caught several new viruses, displaying one of antivirus
software’s most desirable qualities: the ability to deal with new
viruses on its own.

SEARCHING FOR THE IDEAL WEIGHTS

The example we give below, although extremely simple, illustrates
well how geometric intuition coupled with the efficiency of linear
algebra may be used to “train” a neural network. By ““training” we
understand finding a set of weights which would result in the
network performing a specific task. In the present case we would like
the network—actually a single neuron—to separate the sheep from

107

THREE: NATURAL SOLUTIONS

the goat, or, in specialist’s jargon, to classify the elements of a given
set into two disjoint classes.

Suppose that we have five numbers, x;, x,,..., x5, divided into
two classes: x; and x; are in class A, and the rest in class A;. We
wish to teach an artificial neuron to classify these numbers correctly,
that is, to respond by 0 or 1 depending on the class containing the
number x; presented to it. For technical reasons, we encode the
numbers as 2-dimensional vectors y; = [x;, 1], whose second coordi-
nate is always 1. Consequently, our neuron will have two inputs, one
for each coordinate, and one output to give its answer. Training the
neuron then amounts to finding the weights w;, and w, that induce
the correct classification. In other words, the neuron must ““learn” to
compute the function

0,if x;isin A,
flw,x; + w,) =
1,if x, isin A,.

If we use a neuron with the activation function pictured in figure
1.3 (a)—that is, f(s) =1 or 0, according to whether s is positive or
not—then our problem may be stated as follows:

Find w, and w, such that

wyx; +w, <0,fori=1or5;

and €Y)
wyx; + w, > 0,fori=2,3,or4.

It is not hard to see that there are many—in fact infinitely many—
possible solutions for w, and w,, and that these solutions may be
computed by mathematical reasoning alone; that is, we could bypass
the training procedure altogether. However, in more complex situa-
tions training might be the most efficient—if not the only—way to
determine the appropriate weights.

The possible weights may be seen here as the coordinates of weight
vectors W = [w,, w,]. These vectors are graphically represented as
points in the 2-dimensional space E? (the coordinate plane) or,
alternatively, as directed segments, the way vectors are pictured in
linear algebra textbooks. By a simple geometrical argument it can be
shown that the weight vectors W satisfying the above condition (1) of

108

NET GAINS

correct classification all lie in a region S of E? that is the intersection
of five half-planes.

The training algorithm begins with an initial weight vector W, =
[w,,, wy,] that may be arbitrarily chosen (any vector except [0, 0]
would do). Using the five given numbers and their respective classes
as data, the algorithm must lead us from W, to some W, in S by a
succession of computation steps—ideally, in the most direct way.
Presented with the first number x, (encoded as [x;, 1]), the algorithm
simulates the computation of the neuron by calculating f(w;, x; +
wy,) and thus responds with a 0 or a 1. If this answer correctly
classifies x;, then no weight adjustment needs to take place. But if
the classification is incorrect, the current weight vector W, is replaced
by a new one, W,, so as to increase the likelihood of a correct
classification the next time x; will be examined by the neuron (the
calculation of W, is explained below). The procedure is then repeated
using as input each of the other numbers x,,..., x5, and starting all
over again with x;, x,,... until a weight vector W, which correctly
classifies all five numbers is obtained. By a mathematical argument, it
can be shown that the following rule for weight adjustment will
produce such a W, in a finite number of steps.

Weight adjustment rule:

Suppose that x; has been incorrectly classified using the weight
vector W, = [w,, w,]. Then, the new weight vector should be

Wipq = [w, £ x;,w, £ 1],

that is, W, ,, is obtained by adding or subtracting the vector y; to
W,. The plus sign applies when the misclassified number x; is in
class A, and the minus sign when it is in class A,.

Figure IIL5 illustrates the geometry behind the adjustment rule. If,
say, x, = 3—which is encoded as the vector y, = [3, 1]—then 3w, +
w, = 0 is the equation of a straight line L perpendicular to y,. This
line divides the coordinate plane into the two half-planes H, and H,,
whose equations are:

3w, + w, < 0(H,) and 3w, + w, > 0 (H,).

Since x, belongs to the class A, its correct classification requires
that 3w, + w, > 0 (for the neuron’s output to be 1). Therefore, any
weight vector [w,, w,] in H, will effect the proper classification,

109

THREE: NATURAL SOLUTIONS

Correct classification
HyBw twy>0)

line 3wy + wy= 0oL)

FIGURE IIL.5. The geometry behind the weight-adjustment rule.

while all weight vectors in H, will result in a classification error.
Suppose that the current weight vector is W, = [-5, 1.5]. Now, 3(—5)
+ 1.5 = —-135 <0, so W, is in H;, and we have a misclassification.
To rectify this mistake, we must move W, over to H,. The shortest
path toward H; is in the direction of the perpendicular to L, and this
is precisely the direction of y, = [3,1]. By adding v, to W, we move
the weight vector toward H,—and in the most efficient way. Should
we encounter the other kind of misclassification (i.e., the current
weight vector is in H;, while the correct weights are those in H,)
then subtracting y, would move W, in the opposite direction, since
Yy, always points toward the “positive” half-plane (H,).

In a more general (and realistic) situation the inputs will be
n-dimensional vectors (x;, x,,..., x,,) or “patterns” (the inputs of a
network are usually called patterns, regardless of their particular
nature) and the trained neuron will be expected to do more than just
classify the patterns in the training set: it should also be able to class
correctly new, unknown patterns presented to it, at least most of the
time. For this to happen, certain conditions on the distribution of the
patterns must be satisfied—for example, the set of all patterns should

110

NET GAINS

be roughly disposed in clusters around the ““sample” patterns used
for training.

Performing more sophisticated tasks would require the combined
power of many interconnected neurons. These are usually arranged
in layers, in such a way that the outputs from the neurons in one
layer become the inputs to the neurons in the next one. Their learning
algorithms are consequently much more sophisticated than the sim-
ple one just presented.

The mathematical framework for the training of layered networks
was laid down by the American mathematician Paul Werbos in his
1974 doctoral dissertation.’® One of the most popular—and most
effective—training methods is the so-called error back-propagation
algorithm (discussed in Appendix 4), which systematically modifies
the weights so that the output of the network increasingly approaches
the desired response.

Most learning algorithms have basically the same format: A set of
patterns—the training set—is submitted to the network many times
in succession. If the response of the network to a given pattern is
incorrect, the algorithm adjusts the weights so that a certain “error”
is reduced. Because the correct answers are known and they are used
to gradually improve the network’s performance, this type of training
is called supervised learning. The comparison between desired and
actual responses—and the weight adjustments, when necessary—
continue until all patterns in the training set have been ““learned”
with an acceptable overall error. This global error is usually com-
puted by adding the individual errors over the entire training set (it
is unrealistic to expect a perfect response record, that is, an error
equal to zero). The whole process boils down to trying to solve an
optimization problem: that of minimizing the global error, which is
usually a hopelessly complex function of a large number of variables.

THE IMPORTANCE OF BEING NUMEROUS

Computational properties, of use to biological
organisms or to the construction of computers, can
emerge as collective properties of systems having a

large number of simple equivalent components.
(John J. Hopfield)"'

111

THREE: NATURAL SOLUTIONS

During the 1970s, the limitations of simple networks based on Rosen-
blatt’s perceptrons had led to a decline of the initial enthusiasm for
neural models. But in 1982, after a lull of a decade or so, interest in
neural networks was rekindled following the publication of a paper
by a distinguished physicist. In a seminal article,'* John J. Hopfield
brought together a number of ideas, most of which were perhaps not
totally new, with a clear and powerful mathematical analysis. We
already knew that computations produce numbers. Hopfield argued
that number could spontaneously generate computation or, more
exactly, that “computation” can emerge as a collective property of
systems having a large number of simple components that interact
with each other.

According to Hopfield, thanks to our understanding of basic elec-
tronic circuits we can plan the complex circuits that are essential to
large computers. “Because evolution has no such plan,” he wrote, ““it
becomes relevant to ask whether the ability of large collections of
neurons to perform ‘computational’ tasks may in part be a sponta-
neous collective consequence of having a large number of interacting
simple neurons.” He then proposed a mathematical model—after-
wards known as a Hopfield net—in which computational properties
arise due to the interaction of many elementary cells rather than to
circuitry. The collective properties of the model produce a “’content-
addressable” memory that can restore missing information.

Consider the reference “T. Denoeux and R. Lengelle, ‘Initializing
Back-Propagation Networks with Prototypes,” Neural Networks 6, no.
3, pp. 351-63 (1993).” This information may be ““corrupted” and
become, say, “Denueux and Lenjel, Neural Networks (1993).” A
content-addressable memory should then be capable of retrieving the
complete reference on the basis of the corrupted data. From a dynam-
ical system point of view, information that is incomplete or contains
errors may be seen as an unstable point in a state space, while the
correct entry would correspond to a stable point (or attractor). The
complete, original information might be retrieved by forcing the state
of the system (the information being processed) to flow toward a
stable point from anywhere within regions around it.

Hopfield observed that if the dynamics of a physical system is
dominated by a substantial number of stable states to which it is
attracted, we can then regard the system as a content-addressable
memory. He conjectured that the stability of memories may sponta-
neously arise in systems made up of a large number of simple

112

NET GAINS

interacting elements. If, in addition, we can choose any set of states
and readily force them to be the stable states, then the system
becomes a potentially useful memory device.

NET DYNAMICS

A Hopfield net can be used to retrieve patterns, such as black-and-
white images, that might contain errors or have suffered loss of
information. The original patterns are called prototypes. We shall
give a simple example of a Hopfield net in which the prototypes are
the ten digits 0,1,2,...,9.

Using a 10 X 12 dot-matrix representation, each digit can be de-
scribed by a binary word, that is, by a vector of 120 binary numbers:
+1, to represent a black dot, and —1, a white one. By an appropriate
choice of connection weights (as explained below), these prototypes
can be ““stored” in the net’s “memory.” During its operation phase
(or recall), the network will try to associate a given input pattern (i.e.,
a 120-dimensional binary vector) with a prototype—ideally, the one
that most closely matches the input. Unlike the weights of the
networks we have discussed so far, those of a Hopfield net are not
“learned” but set by the user up front. As we mentioned above,
setting the weights may be seen as storing the prototype patterns in
the network’s memory. Here is the basic idea guiding the choice of
the weights.

Suppose that in each of the 10 prototypes the 15th and the 78th bits
are identical, that is, they are either both +1 or both —1. In trying to
restore a partially corrupted input pattern C, the network will gradu-
ally modify C in order to bring it in line with one of the prototypes
(P, say). If C is to converge toward P, neuron 15 should strongly
urge neuron 78 to match its current state, since in P these two bits
must be the same. If the bits at the two positions happen to agree
only in 8 prototypes, then neuron 15 should send neuron 78 a
somewhat weaker signal to copy its state. In general, the bits at
positions i and j will agree in some prototypes and disagree in
others. The measure of signal strength will be the difference between
agreements and disagreements. For instance, if the i-th and j-th bits
agree in 8 prototype patterns and disagree in the other 2, then w;
will be set at 8 — 2 = 6; if they agree (disagree) in all 10 prototypes,

113

THREE: NATURAL SOLUTIONS

then w;; = 10 — 0 = 10 (w;; = 0 — 10 = —10); if they agree in exactly
half of the prototypes, then w;; =5 — 5 = 0.

Denoting by P; the i-th bit of prototype pattern P, the product P;P;
will be equal to 1 if bits 7 and j of P are identical, and it will be equal
to —1 if they are different. Then, the strength of the connection from
neuron j to neuron i is captured by the following formula:

w; = 2 PP, (2)

where the summation ranges over all the prototypes P. (The formula
adds 1 if the i-th and j-th bits of a prototype are the same, and it
subtracts 1 if they are different.) Weights w;; are set equal to zero,
that is, no connection is allowed from a neuron back to itself.

What happens during the operation of the network? At time ¢t = 0,
an input pattern C (a 120-dimensional binary vector) is imposed on
the network. The i-th bit of C becomes the initial state of neuron i, so
that, at time zero, the network merely records the input pattern C. At
subsequent time steps, t = 1,2,3,..., the neurons will undergo state
changes which correspond to gradual modifications (one bit at a
time) of the original input pattern C.

It is important to emphasize that only one neuron per time step is
allowed to ““fire,”” that is, to look at its input and (possibly) change its
state. Which neuron is allowed to fire is determined randomly, with
the average firing rate being the same for all neurons. This ““asynch-
ronous” updating mode intends to model the random propagation
delays of nerve signals found in biological systems.

The state of the firing neuron—the i-th neuron, say—at time t + 1
is decided on the information it receives from all the other neurons at
time f. For example, if w;; is —8 and j is in state +1, then the input
signal coming to i from j will be the product (—8)(+1) = —8.
Similar signals, +4, 0, +10, —2, and so forth, arriving from the other
neurons may be interpreted as “votes” on the decision the i-th
neuron should make regarding its next state: positive votes urge i to
fire (i.e., to assume state +1) while negative ones favor the nonfiring
state —1. The neuron’s own state does not influence its decision,
since there is no feedback from a neuron to itself. Neuron i will then
fire (state +1) if the sum of the votes is positive, otherwise it will not
fire (state —1).

114

NET GAINS

To sum up, here is the formula used by the i-th neuron to compute
its next state:

w(t+1) =f[Y wy 1,(H)
j=1

where u;(t) denotes the state of neuron j at time t and f is the
threshold (activation) function:

f(s) = +1,if s is greater than 0; f(s) = —1, otherwise.

The vector u(t) = (u, (1), uo (1), ..., u,(t)) represents the state of a
network of n neurons at time t. It is convenient to visualize the
possible states of the network as vertices of a “hypercube” in a space
of n dimensions. For n = 3, the eight 3-dimensional vectors with
components +1 or —1 are the vertices of an ordinary cube. For n
greater than 3, it is no longer possible to draw the hypercube, but we
can still imagine it. As time changes from f to t + 1, the state of the
network travels from one vertex to an adjacent one (since a single
neuron is allowed to fire at time t, only one coordinate of the state
vector can change at any given time step). The network is considered
to have converged when (and if) this journey from vertex to vertex
ceases, that is, when the network’s state becomes stable.

The equilibrium state S represents the network’s response or re-
stored memory, which is generally the prototype that most closely
resembles the input pattern. Given its nondeterministic nature, the
network may converge to a spurious pattern—one not present in the
prototype set—or exhibit a chaotic behavior and keep wandering in a
small region of the state space.

In one of Hopfield’s computer simulations, m patterns (for various
values of m) were randomly generated and stored according to
equation (2). Each of these m “prototypes” was then used as input
and the network was allowed to evolve until it became stable.
Hopfield’s rationale for choosing random prototypes was that the
information preprocessed by a nervous system for efficient storage
would appear random, and he cited as an example the random
character of sequences of DNA. “The random memory vectors thus
simulate efficiently encoded real information, as well as representing

our ignorance.”"

115

THREE: NATURAL SOLUTIONS

Results of the simulations suggested that the number of prototypes
should be small compared to the number of neurons, or else error in
recall might be severe. Hopfield concluded—and experience con-
firmed—that, for reasonably accurate recall, a rate of 15 prototypes
per 100 neurons should not be exceeded. Thus, recalling 10 proto-
types would necessitate about 70 neurons and close to 5,000 weights.

When the neurons are allowed to have continuous activation func-
tions (fig. II1.3 (b)), state changes of the network no longer occur at
discrete time steps but take place continuously. Such systems gener-
ally possess a rather complex dynamics, and the analysis of their
behavior requires sophisticated mathematical tools.

The initial enthusiasm generated by Hopfield’s work in the mid-
1980s was followed by more sober expectations. Even if as early as
1987 AT & T Bell Laboratories had announced the development of
neural chips largely based on the Hopfield network,' the applica-
tions of Hopfield’s model remain limited. In 1992, Jacek M. Zurada,
an active researcher in the field, assessed the situation in these terms:
“The solutions offered by the networks are hard to track back or to
explain and are often due to random factors. [. ..] However, it should
be stressed that the dynamical systems approach to cognitive tasks is
still in an early development stage. The application of the dynamical
models to real-size optimization or association problems beyond their
present scope will require a great deal of further scientific develop-
ment.”" In short, the technique might be promising but don’t get too
excited too soon.

DEVELOPING A TASTE FOR REAL RASPBERRIES

Anyone can recognize a fresh raspberry, but it is quite a different
matter to tell whether a sample of fruit pulp is 100 percent raspberry,
especially if it is frozen or in sulphited form. This is a problem
commercial manufacturers of fruit preserves must face when they use
fruit pulps to prepare those delicious, homemade-style jams and
marmalades. How to be sure that the supplier has not added some
sugar or cheaper fruits to the raspberry, to stretch the pulp as well as
the profit margin?

A novel method for detecting adulteration of raspberry pulps,
based on spectroscopic techniques and the Fourier transform (a pow-
erful mathematical tool), was developed by a team of researchers at

116

NET GAINS

the Institute of Food Research in Norwich, UK. The method identifies
samples using sections of the mid-infrared spectrum, a kind of
molecular “fingerprint” highly sensitive to the precise chemical com-
position of the sample."® But since different fruit pulps may have
very similar spectra, changes occurring in the spectrum due to the
adulteration with another fruit might not always be obvious to the
eye. J. K. Holland, E. K. Kemsley, and R. H. Wilson, three IFR
researchers, decided to train a neural network to help them distin-
guish between the spectra of pure raspberry and that of other
(cheaper) pulps, especially adulterated raspberry.

They began by collecting a database of some 900 mid-infrared
spectra of different types of fruit pulp as well as raspberry pulps that
had been mixed with sucrose, apple, or plum, all potential adulterant
materials. The database was then separated into three roughly equal
groups: a training set for developing the network model; a tuning set
for adjusting the model’s parameters, and a test set to validate the
performance of the network. About two-thirds of the samples in each
set came from fruits other than raspberry; the remaining third was
equally divided between pure and adulterated raspberry spectra. For
the purpose of data analysis, each spectrum is represented by 50
so-called principal component scores.

The network has a first layer of 8 neurons, each of which receives
as input the 50 principal component scores of a sample. The outputs
from this input layer are then passed on to a single neuron that
produces as final output a number between 0 and 1. In order to
obtain the desired network response—1 for raspberry, and 0 for
non-raspberry—the values of the 408 synaptic weights were adjusted
by back-propagation. At the end of each training cycle, the tuning set
was used to compute the prediction errors (the difference between
the desired value and the network’s output). When the sum of the
squared errors over the entire tuning set reached a minimum-—more
precisely, when it increased for 10 successive cycles—the learning
was terminated. This kind of stopping criterion has proved effective
in practice to prevent the overtraining of a network.

The ability of the network to generalize—that is, to classify cor-
rectly new, unknown pulp spectra—was tested on samples that had
not been involved in the training (the test set). A network output
greater than 0.5 was considered to indicate a pure raspberry pulp,
while one below 0.5 was interpreted as non-raspberry. The trained
network correctly classified 97 percent of the 280 samples in the test

117

THREE: NATURAL SOLUTIONS

O RASPBERRY ¢ NON-RASPBERRY

1.0 L .
L g
08 o
0.6 OO Qe
0.4 ‘
2 2

02) a ‘ * :

O m

0 50 100 150 200 250 300

SAMPLE NUMBER

FIGURE IIL6. Output of a neural network that recognizes pure
raspberry pulp. A given sample is considered “pure raspberry’” by
the network if the output is greater than 0.5. Reprinted from Food
Testing and Analysis, vol. 3, no. 3, June/July 1997, p. 24. Copyright ©
Target Group, Inc. Used with permission.

set. Figure III.6 shows the results of the classification. The output of
the network is plotted against the sample code number (the symbols
plotted represent the correct sample type)."”

The power of the combination infrared spectroscopy/neural net-
work lies in its expeditiousness: the mid-infrared spectrum of a fruit
pulp sample can be collected in less than five minutes, and the
network requires only a few seconds to deliver a prediction. A similar
method had already been used to check the authenticity of coffee
extracts.'® (Rumors that the IFR team might have been approached by
a drug cartel interested in their services are completely unfounded.)

Neural networks are not the only effective way to analyze spectra.
Says Kate Kemsley, a member of the team that developed the new
technique: “It was fun to try the neural approach, but I have to say, it
wasn’t essential in either case [raspberry or coffee] to use neural
networks, as linear algebra methods worked just as well.”

118

NET GAINS

Have PROBLEM, WILL TRAVEL

The traveling salesman problem appeared in the United States during
the 1930s, in connection with some practical questions coming from
industry and management. In those post-depression years, the use of
mathematical models to help make quantitative decisions was emerg-
ing as an independent branch of applied mathematics, later to be
called operations research. Quite independently, the British devel-
oped their own operational research techniques during the Second
World War, and applied them to the solution of a variety of problems
concerning tactics, such as the efficient use of radar to track enemy
aircraft.

Nobody seems to know precisely how the traveling salesman
problem got its original name. Predictably, in the 1970s some at-
tempted to rename it the traveling salesperson problem. But since the
puzzle is now commonly referred to as the TSP, the sales rep’s
gender is conveniently no longer an issue.

What mathematicians currently call the TSP is a more general
problem: given a set {1,2,3, ..., n} of n “cities”” and the ““costs” c(i, j)
of traveling from city i to city j, find an ordering of the cities—that
is, a tour—with minimum cost that visits each city exactly once (the
cost of a tour is of course the sum of the costs of traveling from city to
city in the given order). This relaxed version allows many variants.
For example, intercity costs may not be the same in both directions; if
they are, that is, if

c(i, j) =c(j, 1),
we have a symmetric problem. Also, the so-called triangle inequality:
c(i, k) < c(i, j) + c(j, k),

which holds automatically when “costs” are real distances, may no
longer be assumed. This means that the cost of going directly from
city i to city k may exceed that of making a detour through city j.
The distances between the vertices of any triangle satisfy the above
inequality, hence its name. In what follows, we shall assume that the
TSP refers to the original problem (a sales rep traveling from city to

119

THREE: NATURAL SOLUTIONS

city), so the “costs” ¢(i, j) are actual distances and the most economi-
cal tour is the shortest one.

In 1954, three mathematicians at RAND Corporation solved the
first large-scale TSP borrowing methods from linear programming—a
technique for solving certain optimization problems using a geomet-
ric approach. The problem was a “pure” TSP, for it involved real
cities (Washington and 48 other large American cities). George
Dantzig, Delbert Fulkerson, and Selmer Johnson represented each
possible tour as a different vertex of a polyhedron in a “space” of
more than 2,000 dimensions. With such a geometrical representation
at hand, finding the shortest tour then becomes a standard linear
programming problem.

The search for exact solutions of larger and larger TSPs soon
developed into a kind of unofficial contest among researchers in the
field. Needless to say, only nontrivial problems are accepted, typi-
cally those coming from printed circuit boards or other real-life
applications. Over the years, the combined effect of improved algo-
rithms and increased computing power resulted in one record after
another being broken. The current world title has been claimed by a
team of four American computer scientists' who in 1994 found the
shortest tour of a 7,397-city problem.” Admittedly, their record-set-
ting performance involved considerable computing resources: the
algorithm needed an estimated three to four years of machine time on
a network of computers to find the solution. But since the team ran
their programs late at night, when the computers would have other-
wise been idle, the actual cost was probably almost negligible. What-
ever the case, in this particular contest speed or cost do not count as
much as size—the number of cities involved. In real applications,
however, computing time is a major factor, as is the requirement that
the solution method should work for many instances of the problem
and not just for one particular case.

THE NEURAL PATH TO OPTIMIZATION

How good are neural networks at solving optimization problems? As
far as the indefatigable traveling rep is concerned, none of the
existing neural solutions appears to be a match for more classical
techniques. The famous traveling salesman puzzle is a natural choice

120

NET GAINS

for testing an optimization method, but it is also a tricky one. Let us
take a closer look.

The neural approach to the TSP was first proposed by Hopfield and
D. W. Tank in 1985.* To solve an n-city problem, their method
requires n? continuous neurons, each connected to all the others. We
imagine the neurons disposed as an n-by-n square grid or matrix.
Each neuron has a two-number label (i, j) indicating its position on
the matrix: i-th row and j-th column. The state of neuron (i, j) is a
variable x;; that can take any value between 0 (nonfiring) and 1
(firing at maximum rate).

The state of the network at a given time t is completely described
by the n* numbers x;;. A value for x;; between 0 and 1 represents
the strength in the belief that city i is in position j of the tour.
Possible solutions of the problem—that is, tours visiting each city
once—are represented by certain binary matrices: a 1 in row i,
column j, and Os in the other positions of the row signify that city i is
the j-th city to be visited. For example, a row 5 looking like this

indicates that city 5 is the third in the tour. The matrix below encodes
a tour that visits five cities in the order 2,1,5, 3,4

o © O = O
O © O O =
= O O O O
o o = O O
o = O ©o O

The length of a tour can be expressed as a function L (actually, a
polynomial) of the n? variables x; j To guarantee that each city
occurs only once in the tour, there should be exactly one firing
neuron per row. This condition can be neatly written as the equation,
or constraint:

n

X = 1,foreachi=1,2,...,n.
=1

]

121

THREE: NATURAL SOLUTIONS

The additional condition that each position j in the tour must be
occupied by a single city leads to the second constraint

=

X = 1,foreach j =1,2,...,n.
1

i

The traveling salesman problem can now be formulated as a
so-called integer programming problem: Find integers x;; satisfying
the above constraints for which the value of the function L is a
minimum. Hopfield and Tank’s feedback network of continuous
neurons—implemented as an analog circuit or simulated on a digital
computer—attempts to solve precisely this problem. Its final (stable)
state is the network’s response which, once decoded into a tour,
corresponds (hopefully) to the solution. Figure IIL7 illustrates this
neural solution for a 10-city problem.

To justify their use of continuous neurons, Hopfield and Tank
invoke a need for flexible or “fuzzy’” logical operations. “During an
analog convergence,” they write,” ““several conflicting solutions or
propositions can be simultaneously considered through the continu-
ous variables. It is as though the logical operations of a calculation
could be given continuous values between ‘true’ and ‘false’” and
evolve toward certainty only near the end of the calculation. This is
evident during the TSP convergence process (fig. IIL7). [...] This use
of a continuous variable between true and false is similar to the
theory of fuzzy sets. Two-state neurons do not capture this computa-
tional feature.”

An obvious drawback of the above approach is the magnitude of
the computational demands: solving a 1,000-city problem requires
one million neurons, each connected to all the others—one trillion
connection weights! In a recent book,”® David Johnson, of AT & T
Labs and Lyle McGeoch, of Amherst College, evaluate and compare
the various techniques for solving the TSP, including genetic algo-
rithms and neural networks. They observe that although Hopfield
and Tank regularly found optimal tours for 10-city instances, their
networks “often failed to converge to feasible solutions [i.e., to a tour]
when n = 30, and the best solutions they ever found on such an
instance was still more than 17 percent above optimal.”

A different approach, where neurons are viewed as points in the
plane, can handle significantly larger instances. During the computa-
tion, the neurons (nicknamed “ants’) gradually move toward the

122

NET GAINS

@

= = m m B B M = = =& g\ = = = = = "= B = = =
B = = s = = s EN (b). = = » s =« = EA N
" B ¢« = = = = u B N] -------.
(R N | RO |
"= = m m n B = m = & = » B = B EEm s &=
s s s mffum
s s mmn-..-
H B " = = = = B E BN l..-----..
" B = m s s =EEN [N | R R
" = m 2 = = EE = BRI Y
lllIIl.llI lIllll.lll A
(C).Illllll.. (d)lll------.B
--------.. --------.- C
.--------. .----i---- D
= = m ®m « B m = = & = = = == " = = = E
Ill...llll n--.-.---- F'ClTY
----.l---- -.-..----. G
-.l------- ---------- H
lI-lIIIIll --.-----.- |
Y R " s s omom s PRI |
12345678910

POSITIOI‘i IN PATH
PATH = DHIFGEAJCB

FIGURE IIL.7. The convergence of a 10-city neural network to a
tour. The linear dimension of each square is proportional to
the value of x;;. (a to c) Intermediate times. (d) The final
state. Indices illustrate how the final state is decoded into a
tour (solution of the TSP). Reprinted with permission from
“Computing with Neural Circuits: A Model,” by John J.
Hopfield and David W. Tank, Science, vol. 223, no. 4764, 8
August 1986, pp. 625-33. Copyright 1986 American Associa-
tion for the Advancement of Science.

cities as if connected by a long loop of string. They eventually form a
polygon that looks like a physical tour, each city being “occupied” by
one neuron. Using such a “‘geometric’” network, Shara Amin and José
Luis Fernandez, of British Telecom, solved (with 4 percent accuracy)
a randomly generated 30,000-city instance**—the largest solution
ever found with this method at the time (1994).

The mathematics behind these geometric networks derives from
ideas of Teuvo Kohonen, of the Helsinki University of Technology. In
particular, his self-organizing maps® and the learning algorithm that
goes with them, known as winner-take-all.* Kohonen'’s most original

123

THREE: NATURAL SOLUTIONS

contributions to neural computing found successful applications in
many fields, from speech recognition to robot control.

Johnson and McGeoch conclude their analysis of neural solutions
for the TSP by questioning their practical value. But they do not
pronounce themselves on the potential of neural optimization at
large: “If the large body of research into refining these [neural]
algorithms is to have any practical consequences, it will most likely
have to be in other domains, where the lessons learned in the TSP
domain might bear more useful fruit.”*

NOTES

1. T. Kohonen, Proceedings of the 3rd International Conference on Fuzzy
Logic, Neural Nets and Soft Computing, lizuka, Japan, 1994, p. xiii.

2. W. S. McCulloch and W. Pitts, “A Logical Calculus of the Ideas
Immanent in Nervous Activity,” Bull. Math. Biophys. 5, 115-33 (1943).

3. F. Rosenblatt, “The Perceptron: A Probabilistic Model for Informa-
tion Storage and Organisation in the Brain,” Psych. Rev. 65, 386—408
(1958).

4.]. J. Hopfield, “Neural Networks and Physical Systems with Emer-
gent Collective Computational Abilities,” Proc. Nat. Academy of Sci. 79:
2554-58, 1982.

5. J. Zurada, D. M. Zigoris, P. B. Aronhime, and M. Desai, ““Multi-
Layer Feedforward Networks for Printed Character Classification,” Proc.
34th Midwest Symp. on Circuits and Systems, Monterey, CA, May 14-16,
1991.

6. Fred Cohen, “Computer Viruses, Theory and Experiments.” Com-
puters and Security, vol. 6, pp. 22-35, 1987.

7. W. H. Murray, “The Application of Epidemiology to Computer
Viruses.” Computers and Security, vol. 7, pp. 130-50, 1988.

8. J. O. Kephart et al., ““Biologically Inspired Defenses Against Com-
puter Viruses.” International Conference on Artificial Intelligence, 1995, pp.
985-96.

9. Fred Cohen, “Computer Viruses, Theory and Experiments.” Com-
puters and Security, vol. 6, pp. 22—35, 1987.

10. P. J. Werbos, “Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences,” Doctoral Dissertation, Appl. Math.,
Harvard University, Mass., 1974.

11. J. J. Hopfield, ““Neural Networks and Physical Systems with Emer-
gent Collective Computational Abilities,” Proc. Natl. Acad. Sci. USA, vol.
79, pp. 2554-58, April 1982, Biophysics.

124

NET GAINS

12. Ibid.

13. Ibid.

14. R. E. Howard, L. D. Jackel, and H. P. Graf, 1988, ““Electronic Neural
Networks,” AT & T Tech.]. (May): 58—64.

15. Jacek M. Zurada, Introduction to Artificial Neural Systems, West
Publishing Co., 1992, p. 254.

16. M. Defernez, E. K. Kemsley, and R. H. Wilson, “Use of Infrared
Spectroscopy and Chemometrics for the Authentification of Fruit Purees.”
J. Agric. Food Chem. 43, 109—13, 1995.

17. J. K. Holland, R. H. Wilson, and E. K. Kemsley, “Detecting Adul-
teration of Raspberry Pulps,” Food Testing and Analysis, vol. 3, no. 3, 1997,
pp. 2022, 44.

18. R. Briandet, E. K. Kemsley, and R. H. Wilson, ““Approaches to
Adulteration Detection in Instant Coffees Using Infrared Spectroscopy
and Chemometrics,” J. of the Science of Food & Agriculture 71 (1996),
359-66.

19. David Applegate of AT & T Bell Labs, Robert Bixby of Rice Univer-
sity, Vasek Chvatal of Rutgers University, and William Cook of Bellcore.

20. David S. Johnson and Lyle A. McGeoch, “The Traveling Salesman
Problem: A Case Study in Local Optimization,” in Local Search in Combi-
natorial Optimisation, EH.L. Aarts and J. K. Lenstra, eds., John Wiley &
Sons, New York, 1997.

21. J.J. Hopfield and D. W. Tank, “ “Neural” Computation of Decisions
in Optimization Problems,” Biol. Cybern. 52 (1985), 141-52.

22. John]J. Hopfield and David W. Tank, “Computing with Neural
Circuits: A Model,” Science, vol. 233, 8 Aug. 1986, pp. 625-33.

23. David S. Johnson and Lyle A. McGeoch, “The Traveling Salesman
Problem: A Case Study in Local Optimization,” in Local Search in Combi-
natorial Optimisation, EH.L. Aarts and J. K. Lenstra, eds., John Wiley &
Sons, New York, 1997, pp. 215-310.

24. S. Amin, “A Self-Organized Travelling Salesman,” Neural Comput-
ing and Applications 2 (1994), 129-33.

25. T. Kohonen, ““Self-Organization and Associative Memory.”” Berlin:
Springer-Verlag, 1984.

26. T. Kohonen, “The ‘Neural’” Phonetic Typewriter,” IEEE Computer
27(3): 11-22 (1988).

27. Johnson and McGeoch, “The TSP: A Case Study,” note 20.

125

* CHAPTER SIX *

Solutions via Evolution

GENETICS

WHEN living organisms reproduce, offspring inherit their parents’
characteristic features. Humans have babies, flies lay eggs which
mature to become other flies, and apple seeds grow into apple trees.
The specific traits that groups of organisms have in common deter-
mine a species. The term has a precise meaning for biologists, who
have named and described over three million of them. But infor-
mally, a species is a group of individuals (plants, animals, insects,
etc.) with very similar structure and behavior and able to breed with
each other.

Species were once thought to be immutable, that is, each species of
animal or plant could be seen in the present exactly as it had always
been in the past. But some 150 years ago, in On the Origin of Species by
Means of Natural Selection, the English naturalist Charles Darwin
argued that all living organisms are the descendants of a few forms of
life that appeared on Earth in the very distant past. (Darwin’s theory,
published in 1859, carried a subtitle more suggestive of a socially
incorrect essay than a piece on natural science: “The Preservation of
Favoured Races in the Struggle for Life.”) Following Darwin’s revolu-
tionary theory, a species is now considered as a dynamically chang-
ing population of varying individuals, some of which may eventually
evolve into a new species. The major mechanisms by which this
evolution takes place are natural selection and mutation, both inti-
mately connected with the process that enables the parents’ character-
istics to be passed on to their descendants.

The scientific study of how hereditary traits are transmitted from
parents to offspring is known as genetics. The indisputable father of
this branch of biology is the Austrian monk Gregor Mendel, who
discovered its basic laws after observing garden pea plants repro-
duce. In the purest scientific spirit, he set up a series of clever
experiments to test his hypotheses, and he was also one of the first to
use mathematical concepts in biological inquiries. Mendel’s ideas

SOLUTIONS VIA EVOLUTION

were definitely ahead of his time. His fundamental contribution was
not recognized until 1900, sixteen years after his death and more than
thirty years after the publication of his findings in a scientific journal.
But if Mendel failed to convince his contemporaries, he remained
persuaded that his conjectures were correct. “My time will come,” he
reportedly said shortly before his death.

And come it did. We know today that hereditary traits such as eye
color in animals or the shape of a plant’s leaves, are passed on to the
next generation as discrete “units’”” or genes—Mendel’s original idea.
Genes are arranged in a precise order on certain parts of the nucleus
of a cell called chromosomes, the physical carriers of hereditary
information. The total number of genes in the cell varies from 5 or 10
(virus) to 100,000 (human cell). Each of these hereditary units con-
tains biological information coded upon it—how to produce a spe-
cific protein, for example. The position of a gene in the chromosome
is generally related to a particular function or feature of the organism,
such as eye color. Uncommonly high blood pressure in some people
has recently been linked to certain genes that researchers are trying to
isolate.

The alternative forms of a same gene are its alleles. For instance,
red and white are names for two alleles of the gene determining the
eye color of fruit flies. Complex plant and animal life rely on a
diploid or double-stranded genetic structure in which chromosomes
occur in pairs. Each of the two homologous chromosomes in the pair
contains information for the same functions. In a human cell there are
23 such pairs.

Anticipating the application of genetic ideas to computation, it is
convenient to imagine an abstract ““chromosome” as a finite string of
n symbols representing the “‘genes.” Each gene may appear in several
forms—its alleles. For example, if the alleles are bits (0 or 1) then a
chromosome is a binary word such as

1101100010110100.
Here n = 16; the first gene is 1 and the 15th gene is 0.

POPULATIONS AND NATURAL SELECTION

A population is a group of individuals of the same species, living and
interbreeding in relative isolation from other groups—a colony of

127

THREE: NATURAL SOLUTIONS

wild rabbits on a certain island, say. Because of reproduction and
death, the composition of the group is constantly changing. Each
member of the population possesses both a genotype and a pheno-
type. The former is the particular set of genes that the individual
carries; the latter designates its actual physical appearance or visible
characteristics. The relation between the two is a complex one, an
individual’s phenotype being determined by its inheritance (geno-
type) but also partly by its environment. It may seem obvious that
genes exist for the sole purpose of making possible the reproduction
of phenotypes. But some biologists have argued that nature’s design
is the other way around: birds, cows, and humans are the mecha-
nisms their genes have devised to perpetuate themselves, that is, we
exist for our genes, and not the opposite.

The population interacts with and is affected by its surroundings
—climatic conditions, food supply, predators, other populations, and
so forth. Since organisms vary in their physical characteristics (pheno-
type), some individuals (and their genes) are more likely to survive
than others in a given environment. Thus, the environment implicitly
selects who lives and who dies. To increase its chances of survival,
the population has its own plan: adaptation. The price to pay for the
failure to adapt is extinction.

Adaptation does not proceed in an arbitrary manner, by trying out
phenotypes at random until hitting by chance on the best one. It is
rather a gradual process, whereby good individuals are progressively
modified to produce better individuals. Darwin defined natural selec-
tion as the preservation of favorable variations and the rejection of
injurious ones. Thus, well-adapted organisms survive and reproduce,
passing on valuable genetic information to their descendants, while
poor performers are weeded out. Hence, the survival of the fittest, a
key idea in Darwin’s evolutionary arguments. (Since the ““fitness” of
an individual is measured by its skill to play the survival game, there
is a tautology lurking here: Who survives? Those who are most fit
to...survive.) Over many generations, the relative proportions of
different phenotypes in the population will change in favor of the
best adapted ones.

Since the physical carriers of heredity are the chromosomes, it is at
that level that evolution works in order to modify the characteristics
of individuals. Certain combinations of alleles for different genes can
significantly augment the performance of the phenotype. Adaptation
may thus be seen as a search for “good” allele associations through

128

SOLUTIONS VIA EVOLUTION

changes in the genetic makeup. Such genetic changes come about by
way of processes in which chance plays a fundamental role. This fact
is the guiding principle for the application of evolutionary ideas to
computing.

The totality of chromosomes carried by the members of the popula-
tion constitutes the chromosome (or gene) pool. This is usually an
infinitesimally small fraction of all conceivable chromosomes. In the
case of human chromosomes, to write down the number of possible
varieties in decimal notation would require over two billion figures.
It is convenient to imagine adaptation taking place in discrete time-
steps or “‘generations.” Thus, if C(t) is the chromosome pool at a
given time t, then C(f + 1) is the totality of chromosomes in the
population one generation later. In general, C(t + 1) will contain new
chromosomes as well as others already in C(t), while some of the
C(t) chromosomes may get lost. New chromosomes may be created
out of old ones in various ways: genetic elements may be lost,
rearranged, exchanged, or added.

For the purpose of modeling evolution, the two most relevant
processes of chromosomal variation are crossover and mutation.
During crossover, segments of two different chromosomes switch
places with one another, separating some traits and joining others
into new—and possibly beneficial—associations (see fig. I11.8). Such a
swapping of genetic material happens when sperm and ova fuse.
Mutations are changes in the genetic makeup of a chromosome that
occur spontaneously during the reproduction of cells or are caused by
radiation, chemicals, or other outside agents. Mutations add a touch
of randomness to the variations in the gene pool, and without them
evolution might be limited. The abstract counterparts of crossover
and mutation play a fundamental role in the efficiency of the ““genetic”
algorithms about to be introduced.

MODELING EvOLUTION

Adaptation in natural populations aims at improving the fitness, and
therefore the chances for survival, of the group as a whole. Computer
models of evolution, on the other hand, are mostly concerned with
“breeding”” one exceptional individual, whose ““genetic code”” would
represent the optimal or a near-optimal solution to a problem. But in
order to increase the likelihood of such a desirable event, the model

129

THREE: NATURAL SOLUTIONS

(a) Before crossover (b) Crossover
. @
Chromosome 1: @@ RO ® @,
X RRO® @_@:
Chromosome2: ©ODD @E@ ® | ® i
Crossil'lg point E g i
D,

(c) After crossover
R/XRXIIDD (New chromosome 1)

PODODOR® (New chromosome 2)

FiGURE 1I1.8. Crossover. Segments of two different chromosomes switch
places with one another.

must gradually improve the average quality of entire ““generations”
of potential solutions, just as in the biological case. We give below a
very simple example of this process, leaving a detailed analysis of the
model for later sections.

A problem consists in finding the integer x between 0 and 127 for
which a mysterious function f(x)—to be revealed later—takes on its
maximum value. Each of the numbers 0,1,2,...,126,127 is here a
potential solution. In biological language, they are the possible phe-
notypes of the species. (To keep the example simple, we have re-
stricted the number of solution candidates to just a few dozen. In any
realistic application, their number would be astronomical. Then,
trying to discover the maximum by the systematic calculation of all
function values f(x) would be out of the question.) The function f
may be viewed as measuring the “fitness” of a potential solution x,
that is, how well x fared in the “environment.” The higher the score
f(x), the better the quality of a phenotype x. Our goal is then to find
an x whose fitness is as high as possible.

130

SOLUTIONS VIA EVOLUTION

The graph of f appears in figure IIL9. As with any typical fitness
function, it possesses several peaks and valleys. The highest peaks
correspond to the best individuals—the optimal solutions. The other
peaks are local maxima, or best solutions for values of x restricted to
a certain neighborhood. We can see that there are two optimal
solutions, x = 42 and x = 85. Of course, in any nontrivial problem
the graph of the fitness function would be impossible to draw, let
alone inspect, so we would have no clues regarding the identity of
the fittest, or where to look for them. All we would be allowed to do
is to test individual solutions for fitness and use this information as
best we can to ““breed’”’ better solutions. In what follows, we illustrate
a solution method assuming no knowledge of f other than the
possibility of computing the values f(x) one at a time, whenever we
need them.

The strategy of a genetic algorithm is based on the mechanisms of
natural selection and evolution. Its implementation normally requires
considerable computing resources to store the data, automate the
operations, and speed up the evolutionary clock. After some pre-
liminary steps (coding, selecting the initial solution pool, etc.), the
evolutionary plan proceeds in a cyclic fashion, producing a new
““generation’”” of potential solutions after each cycle. A combination of
chance and controlled “reproduction” will favor the development of
first-rate solutions in the long run, perhaps after thousands of genera-
tions. But there is no guarantee that the model will actually deliver
an optimal or near-optimal solution. The case for the plan’s eventual
success rests on statistical arguments rather than on exact mathemati-
cal proof. Nonetheless, there is ample experimental evidence that,
given the right conditions, the model does work for certain types of
problems. Here are the principal phases of the algorithm.

1. Coding. We first specify a “genetic code” for each potential
solution x. This may be done by writing the number x in base 2.
For example, if x = 13, then its code is the binary string 1101; if
x = 65, its code is 1000001. (Binary coding is based on the powers
of 2. Thus, 13 is represented by the binary string 1101 because
IX2°+1x22+0x2"+1x2°=8+4+0+1=13)

2. Initial Population. A small set of strings is chosen at random from
the solution pool to form the initial population, or generation 0,
and each x on this set has its fitness f(x) evaluated. The compo-
sition of an initial population of six strings is given below.

131

S

O=NWAULR

THREE: NATURAL SOLUTIONS

42 85

FIGURE II1.9. The graph of a mysterious function.

Generation 0 (initial population)

Phenotype Code (genotype) Fitness (= f(x,))
Xy =5 s; = 0000101 3
x, =38 s, = 0100110 4
xy3 =11 s; = 0001011 3
x, =24 s, = 0011000 2
xg =112 55 = 1110000 1
xg =79 s = 1001111 2
Total fitness 15

3. Cloning. Two or more strings from the current population are
chosen at random to “mate.” To favor the reproduction of the
best performing individuals, the probability that a string be
chosen is proportional to its fitness. In the above example, the
fitness of string s, is twice that of string s,. Therefore, s, has
twice as many chances as s, of being selected. Copies, or clones,
of the selected strings are made and all these constitute the
reproduction pool.

4. Reproduction. The mating strings (s; and s,, say) exchange seg-
ments of consecutive genes by crossover to create two children;
e.g., they may swap their last three genes:

Parents Children
0000101 0000110
0100110 0100101

The length and position of the segments to be exchanged is
determined by chance every time a coupling takes place. In the
above example, the strings swapped genes no. 5 to no. 7.

132

SOLUTIONS VIA EVOLUTION

5. Population Updating. The offspring resulting from the mating
replace either low-fitness strings or members of the population
chosen at random, depending on the particular updating schema
chosen. If we suppose that the strings to be replaced are s, and
S¢, then the composition of the next generation is shown below (a
decoding procedure is applied to each string prior to the calcula-
tion of its fitness).

Generation 1

Code (Genotype) Decoded String (x) Fitness (= f(x))
0000110 6 2
0100110 38 4
0001011 11 3
0011000 24 2
1110000 112 1
0100101 37 5

Total fitness 17

Observe that in this new generation a solution of fitness 5 has
appeared (x = 37), the best solution to date. Also, the average fitness
of the population is now 2.83 (= 17/6), better than the 2.50 average
of the previous generation. However, these local improvements after
just one generation are not significant, nor are they any indication
that the model works as intended. It is only after many repetitions of
steps 3 to 5 that the procedure is likely to generate a highly fit string.
We shall analyze later the underlying assumptions and possible
explanations for the expected success of the model.

LESSONS AND QUESTIONS

We now disclose the true nature of the fitness function whose graph
is displayed in figure II1.9. What appears to be an arbitrary function
actually counts the number of times Os and 1s alternate in the genetic
code of x. More precisely, the fitness of x is the number of occur-
rences of the substrings “01”” or /10" in the string representing x. For
instance, f(34) = 4 because in the encoding of 34, namely, 0100100,

133

THREE: NATURAL SOLUTIONS

01" and “10” occur twice each. Therefore, the quality (fitness) of a
phenotype x is conveniently reflected in its genetic code.

Now, this is a rather exceptional situation, due to the artificial
nature of our problem. In a real application—when the strings encode
computer programs, for instance—there would be no simple way to
determine which combinations of alleles correspond to high-quality
solutions. Only time and the environment would tell. If we knew it
from the outset, we could then build the optimal strings right away
and there would be no need to simulate evolution. In other words,
natural selection could be replaced by genetic engineering. In the
above example, had we known that the more 0s and 1s intertwine the
better the string, we would have come up right away with the fittest
strings by alternating at every position: 1010101 (which corresponds
to the phenotype x = 85) and 0101010 (x = 42).

Even in the presence of a favorable coding scheme, there is one
element that may prevent the plan from breeding an optimal solu-
tion: the lack of enough genetic diversity. The above model creates
new genetic combinations by crossover, but if all the strings in the
initial population happen to have the same allele in a certain position,
this genetic trait will persist through all future generations. For
example, if all strings in the initial pool end with 0, then no amount
of crossing-over will ever produce a string ending with 1. In particu-
lar, the optimal solution 1010101 could not be generated. In case the
last two positions of every initial string are 0s, both optimal solutions
would be beyond the evolutionary range. Inspired by nature, evolu-
tionary algorithms generally incorporate a mutation operator as an
insurance against genetic stagnation.

Our simple example has illustrated the highlights of genetic algo-
rithms:

Coding. Potential solutions are represented by their “genetic code,”
e.g., as binary strings.

Solution pool. A small number of strings form a “population” of
potential solutions which the algorithm uses to search for better
solutions.

Performance testing. The quality of a solution is evaluated by a
“fitness” number.

Variation. New genetic combinations are created, e.g., by crossover
“sexual reproduction”).

Selection. Good performers are more likely to reproduce than poor
ones.

/

134

SOLUTIONS VIA EVOLUTION

Evolution. The newly created individuals replace some (or all)
existing strings to form the next generation.

Non-Determinism. Certain operations involve random choices or
rules based on probability.

Mutation. Random (but infrequent) local changes may occur in the
genetic code to increase diversity.

Variation, selection, evolution. An alluring strategy, especially when
we are facing a problem for which no efficient solution method is
known. But many questions linger: What is a suitable coding of
solutions? How can we measure fitness? How long will it take for an
optimal or near-optimal solution to appear and how do we recognize
it? And, particularly, will the scheme work at all? These are very
good questions indeed, so good that the only honest answer we have
for all of them is: in general, we don’t know. This does not mean that
there are no partial answers, or even complete and very satisfactory
answers in some cases, as we shall demonstrate in the coming
sections.

THE MATHEMATICAL FRAMEWORK

Theory should provide us with means of prediction and
control not directly suggested by compilations of data
or simple tinkering.

(John H. Holland)!

Cross-breeding and natural selection occur spontaneously throughout
the living world. Having understood their function, humans have
long artificially replicated these processes to create better crops and
exotic flowers. The mechanism of biological evolution also inspired
an American mathematician, but for a different purpose than to
develop superior organisms. His aim in emulating nature’s plan was
to “breed” efficient solutions to problems, especially some complex
problems that do not generally yield to traditional solution methods.

John Holland may be better described as a polymath, or multidisci-
plinary scientist. He holds degrees in physics, mathematics, and
communication sciences, and is a professor of psychology and of
electrical engineering and computer science at the University of
Michigan. The publication in 1975 of his book Adaptation in Natural
and Artificial Systems® marked the official launching of the genetic

135

THREE: NATURAL SOLUTIONS

algorithm, a technique to simulate evolution on a computer he had
begun developing in the 1960s. Holland’s book set up a mathematical
framework for the theoretical study and practical implementation of
adaptive strategies. These processes play a critical role not only in
biology, but also in domains as diverse as psychology, economics,
computational mathematics, and artificial intelligence.

As it had been the case with the notion of a fuzzy set, it took some
time before the new idea’s potential was fully appreciated. For
several years, research in adaptive systems remained mostly confined
to Holland and his students, until interest in his techniques began to
spread around the mid-1980s. The number of researchers presently
studying genetic algorithms is estimated at several hundred, and an
interdisciplinary consortium, the Santa Fe Institute, is dedicated to
the study of complex adaptive systems ranging from economies to
ecologies. To give the reader some feeling for how genetic algorithms
work we shall resort to some geometric metaphors.

SPACE SEARCH

The use of a genetic algorithm to solve a given problem requires
some preliminary operations, beginning with the encoding of the
potential solutions in a format that resembles the way information is
packed in a chromosome—a popular choice is to represent each
solution candidate as a binary string. It is also necessary to evaluate
in some reasonable sense the “quality” of solutions. This is usually
done by assigning to each possible solution a single number, its
fitness or payoff value, in effect ranking the solutions on a linear
scale. Choosing a suitable coding scheme and fitness function is not
as easy as it may sound, and they are perhaps the most crucial and
most difficult parts of the process.

Let us imagine the collection of all solutions forming a plane
surface, each solution (encoded as a binary string) becoming a point
in this plane. (Although a convenient image, such a representation
presupposes that the set of potential solutions has a rather simple
structure.) This plane surface is called the search space. By searching
through its points we expect to locate the strings with high fitness
that encode the best solutions to our problem (we shall speak of
“points” or “strings’” indifferently). It is worth recalling that the

136

SOLUTIONS VIA EVOLUTION

number of possible solutions is normally so large that a systematic,
string-by-string search is out of the question.

Imagine now a second, irregular surface, resembling a landscape of
peaks and valleys and floating over the search space. Sitting directly
above each string s there is a point on this landscape. The distance
separating the two is proportional to the fitness of s; the higher the
point, the better the quality of the solution encoded by s. Our goal is
to locate the strings above which the fitness surface is as high as
possible. This would be easy if we could actually “see” the land-
scape’s summits. But naturally we can’t, so the search must be
conducted entirely at ground level, that is, through properties of the
strings themselves.

Since the initial “population” of strings is chosen at random, these
strings will be haphazardly distributed throughout the search space.
The genetic algorithm’s design is to force future “generations” to be
mostly composed of strings in the high-fitness regions of the space.
The key to the algorithm’s efficiency is its implicit parallelism, a
property which allows it to explore vast regions of the search space
while manipulating relatively few strings.

SCHEMATA

One of the fundamental assumptions supporting a genetic algorithm
is that the secret of a string’s success is hidden in its genetic code,
although we may never know exactly where. By exploiting the
structural similarities among strings with high fitness, the algorithm
increases the chance for strings with even higher fitness to appear.
And so, patterns of allele combinations, known as schemata (singular,
“schema”), play a central role in the search strategy. The algorithm’s
long-term goal is to foster the proliferation of “good” schemata
among the string population.

A schema is a particular configuration of alleles in certain positions
of a string. For instance, the schema 0 0 * * 1 % * * * 1 stipulates
that the string must begin with two Os and have a 1 in the fifth and
tenth positions; the asterisk () in the remaining places is meant as a
“don’t care” symbol, that is, either allele—0 or 1—may appear there.
Every schema describes a certain region of the search plane, namely,
the set of those strings which match the schema at the specified
positions. The above schema has 6 ““don’t care”” positions; therefore it

137

THREE: NATURAL SOLUTIONS

describes a set of 64 (= 2°) strings, which includes ©000111111 and
0001110001 but not @100111111. (The number 64 was obtained
by the application of a counting principle. Readers not familiar with
these techniques are not missing anything significant here or else-
where in the book—except perhaps the possibility of checking our
calculations by themselves.)

Conversely, a given string of length k is an instance of 2* different
schemata. For example, 1001101000 is described by 2'° (= 1,024)
schemata. These include 1 * # * % *x % % % %, 10 % % % % % % % (),
00 * 101 = = =, and so forth. As Holland observed, in
computing the fitness of a string we are also deriving information on
the 2% schemata that describe the string. In particular, a high-quality
string provides information on the possible location of high-fitness
regions of the search space. This feature of the algorithm—the testing
of many schemata by testing a single string—amounts to having
many computations taking place in parallel.

There is a notion of fitness associated with each schema, namely,
the average fitness value of all strings in the population that match
the schema. In selecting strings for mating with probability propor-
tional to their fitness, the algorithm favors the reproduction of
schemata with high fitness. Thus, behind the scenes of the changing
string population, a concurrent search is taking place in pursuit of the
best performing schemata. Using probabilistic arguments, Holland
has estimated how the number of strings matching a given schema is
expected to change from one generation to the next. In his schemata
theorem, also called the Fundamental Theorem of Genetic Algo-
rithms, he demonstrates that a schema will proliferate all the more
rapidly if, apart from having high fitness, it contains a small number
of specific alleles and these are very close together. For example, * =
1% 01 = % * = contains three specific alleles which spread over four
positions. The small spread reduces the probability of the schema
being disrupted during crossover.

Short sequences of genes with particular values are called building
blocks. “Good” building blocks are those whose presence in a chro-
mosome is a statistical telltale of the chromosome’s high fitness. By
favoring the recombination of the fittest strings, the algorithm in-
creases the probability for good building blocks from different chro-
mosomes to end up in the same one. Assuming that the association of
good building blocks is a good thing, outstanding strings are then
likely to appear given enough time. But since time means computer

138

SOLUTIONS VIA EVOLUTION

time and this commodity comes at a price, there is a practical limit to
how long the algorithm may be allowed to run. If we are to appreci-
ate the margin between theory and practice, it is perhaps time we
meet a real application.

PRISONER’S DILEMMA

Instead of asking a complicated question (as all
psychologically important questions must be) and
coming up with a very simple answer (often in the form
of yes, no, or maybe), one might try asking a very
simple question (such as, “given a choice between two
alternatives what will a person do?”’) and derive a rich
and complex avalanche of answers.
(Mathematician Anatol Rapoport, reflecting on the method of
experimental psychology)®

Prisoner’s Dilemma is the nickname given to a simple two-person
game that has no satisfactory solution, in the sense that the rational
strategy leads to an outcome that is worse for both players than if
they choose their options “irrationally.” The name was inspired by
the hypothetical plight of two suspects of a crime who are being held
in separate cells. The police promises each of them immunity in
exchange for testimony against the other. While it is in the individual
interest of each prisoner to confess, regardless of what the other does,
it is in their collective interest to keep mum.

The rules of the game are simple enough. Each player has two
cards labeled C (for cooperation) and D (as in defection). A trial
consists in both persons playing (simultaneously) one of their two
cards. There is a payoff associated with each trial, which may be a
reward or a penalty, depending on who played what. If both players
play card C, they each receive 8 points; if, instead, they both play D,
each loses 3 points. In case they happen to play different cards, the
D-card player earns 10 points while the one who played C receives a
10-point penalty. Needless to say, the players are not allowed to
communicate with each other in any way. An agreed number of trials
played in succession (one hundred, say) constitutes a game.

The various payoffs may be interpreted in the light of the situation
that inspired the game’s name. If prisoner A, say, yields to tempta-

139

THREE: NATURAL SOLUTIONS

tion and cuts a deal while B refuses to confess, then temptation pays
off and A is released (T = +10 points for A), while B—the ““sucker”
—gets a stiff sentence (S = —10 points for B). If both confess, they
get away with a lighter punishment (P = —3 points each) for collab-
orating with the police. But if neither of the two caves in, the police
does not have a case and must set both of them free. The suspects are
then rewarded by cooperating with each other (R = +8 points each).

Knowledge of the payoff rules does not permit any of the two
players to devise an a priori winning strategy. The consequence of
one player’s choice of card—whether it will result in a reward or a
penalty—depends on the other’s unpredictable move. Nevertheless
—and this is an interesting aspect of the game—the history of past
trials, known to both players, may be used to guide their future
decisions. In the technical jargon of the theory of games, a zero-sum
game is one in which a player may only benefit at the expense of the
other; more precisely, one person’s gain equals the other’s loss, so the
(algebraic) sum of the points allotted to both players on any given
trial is always zero. Prisoner’s Dilemma is therefore not a zero-sum
game, since both players can earn (or lose) points on a given trial.

The number of temptation (T), sucker (S), punishment (P), and
reward (R) points may be allocated in many different ways, and the
playing strategies will vary accordingly. This was confirmed by a
series of experiments conducted at the University of Michigan in the
1960s, with students hired as players. One of the experiments, for
example, showed that when the reward for cooperation was in-
creased from R =1 to R =9 while the other payoffs were kept
constant, the average frequency of playing card C (i.e., cooperating)
increased from 46 to 73 percent of the time.

PLAYING THE GAME

Prisoner’s Dilemma has been used by psychologists to study human
behavior in situations involving cooperation-defection alternatives,
and by political scientists interested in the dynamics of international
conflict. Computer tournaments have pitted different playing strate-
gies against one another. The game plan “tit for tat” is one of the
most effective known strategies, despite its disarming simplicity: it
begins by cooperating on the opening move and thereafter plays
whatever the opponent did on the previous trial, that is, it rewards

140

SOLUTIONS VIA EVOLUTION

cooperation by cooperating and it punishes defection by defecting. Tit
for tat was the overall winner in a computer contest organized in
1979 by Robert Axelrod, a political scientist and conflict resolution
expert at the University of Michigan. The 62 contending strategies,
some of which were quite intricate, were submitted by game theory
experts, computer buffs, and professors in various scientific disci-
plines. For good measure, the leave-it-to-chance strategy—play C or
D at random with equal probability—was also included. They were
all beaten by the unsophisticated tit for tat, proposed by mathemati-
cian Anatol Rapoport.

The success of such a simple playing scheme intrigued Axelrod,
who wondered whether other equally powerful strategies could be
discovered with the help of a genetic algorithm. He began by formu-
lating the possible strategies in the form of decision rules. Each of
these rules stipulates the player’s move based on the outcomes of the
three previous trials. The strategies were then encoded as binary
strings (chromosomes) as is explained below.

Any given trial has four possible outcomes: CC, CD, DC, and DD,
since each person may play either C or D. If we represent these
outcomes by R, S, T, and P, respectively, then a sequence of three
trials becomes a string of three letters. For instance, DC, DC, CC
becomes TTR. Each of these 64 (= 4%) strings may be interpreted as a
number from 0 to 63 written in base 4 arithmetic, with the following
correspondence between letters and numerals: R=0, S=1, T =2,
and P = 3. In this way, each 3-trial sequence is assigned a rank
between 0 and 63. For example, the sequence of trials DC, DC, CC is
first written as the string TTR and then becomes 220 (in base 4),
which in turn decodes (in base 10) as 2 X 4> +2 X 4' + 0 X 1 =
32 + 8 + 0 = 40 (= the sequence’s rank).

For each 3-trial sequence there is a rule dictating the player’s next
move. For instance, TTR — D means: if the sequence TTR has been
played, then play D. A particular strategy is then a set of 64 rules (the
genes) which is coded as a binary word (a chromosome). Each bit
encodes the player’s response, 0 (= C) or 1 (= D), and its position
within the word corresponds to the rank of the 3-trial sequence
previously played. An example will illustrate the coding principle:

Rank: o 1 2 ... 40 ... 62 63

Bit: 1 0 0 ... 1 ... 0 1.

141

THREE: NATURAL SOLUTIONS

The above binary word decodes as the following set of rules
(strategy):

Rank Last 3 Plays Move
0 RRR - D
1 RRS - C
2 RRT - C
40 TTR - D
62 PPT — C
63 PPP — D.

Actually, each binary word also contains six other bits to represent
the assumed behavior of the players at the game’s opening (i.e.,
during the first three trials). Thus, 01 1 0 0 0 would indicate that the
presumed outcomes of the first three trials were CD, DC, and CC in
that order. Each chromosome is therefore a 70-bit word, whose first
six genes (bits) represent opening game moves and the rest encode a
particular strategy. A quick calculation shows that the total number
of chromosomes (i.e., the size of the search space) exceeds 10*, which
is about ten thousand times the estimated age of the universe in
seconds.

Notice that in the present situation chromosomes do not represent
solutions to a problem but encode rules of behavior. In a sense, we
are trying to solve a problem: that of getting a machine to learn how
to play the game (and win). But unlike a typical optimization prob-
lem, machine learning does not have a well-defined optimal solution.
The situation resembles the adaptation of real organisms to a hostile
environment. While some individuals adapt better than others (they
may, for example, run faster), there is no absolute measure of fitness
or a notion of “best” phenotype. Similarly, the fitness of Axelrod’s
chromosomes cannot be evaluated by a precise mathematical for-
mula. The quality of a particular strategy for playing the game can
only be tested by ... playing the game.

142

SOLUTIONS VIA EVOLUTION

THE EVOLUTION OF STRATEGIES

Axelrod set up an “environment” to put strategies, or rather the
strings encoding them, to the test. Eight opponents were chosen from
the computer tournament entries as typical representatives of the 62
contenders. Each of these 8 strategies played a 151-trial game against
the string S to be evaluated. The fitness of S was then calculated as
the weighted average of the points scored by S in each of the 8 games
(the weights were chosen to reflect the opponents’ relative force, as
measured by their ranking in the tournament).

Working with a population of only 20 strings—remember that
there are quintillions of them—and after only 50 generations, the
genetic algorithm was able to learn sets of rules whose average
performance was as successful as tit for tat, the previous title-holder.
And in 11 of the 40 runs (50 generations constitute a run) some
strategies even beat tit for tat. Axelrod himself marveled at the result:
“In these eleven runs, the population evolved strategies that manage
to exploit one of the eight representatives [opponents] at the cost of
achieving somewhat less cooperation with two others. But the net
effect is a gain in effectiveness.” And he goes on: “This is a remark-
able achievement because to be able to get this added effectiveness, a
rule [i.e., a strategy] must be able to do three things. First, it must be
able to discriminate between one representative and another based
upon only the behavior the other player shows spontaneously or is
provoked into showing. Second, it must be able to adjust its own
behavior to exploit a representative that is identified as an exploitable
player. Third, and perhaps most difficult, it must be able to achieve
this discrimination and exploitation without getting into too much
trouble with the other representatives. This is something that none of
the rules originally submitted to the tournament were able to do.”*

But Axelrod also warns that while the genetic algorithm did man-
age to find highly effective rules, these strategies had evolved in a
particular environment (the one made up of the eight strategies
selected from the computer tournament) and may not be as “robust”
as tit for tat in other environments. “In sum,” he concludes, ““the
genetic algorithm is very good at what actual evolution does so well:
developing highly specialized adaptations to specific environmental
settings.”

143

THREE: NATURAL SOLUTIONS

TEACHING MACHINES TO LEARN

The success of a genetic algorithm in finding winning strategies for
Prisoner’s Dilemma should not be entirely surprising. They had
already demonstrated their power in similar circumstances by help-
ing to program some classifier systems. These are sets of rules,
roughly comparable to the more familiar expert systems, for perform-
ing specific tasks such as recognizing patterns. The rules in a classifier
system form a population that evolves on the basis of stimuli and
reinforcement from its environment. The purpose of this evolution is
to “learn” which responses are most appropriate to a given stimulus.

One of the primary reasons for developing the earlier genetic
algorithms was precisely to design machines that could learn how to
do such nonmechanical things as recognize objects, make decisions,
and control processes. Since no one knew how to program a com-
puter to perform any of these tasks, it was a natural step to try to
equip the machine with the ability to learn by itself. This is the
fundamental idea behind the neural networks that we have met in
the previous chapter.

The design of learning systems was also behind the first practical
application of fuzzy logic. In the early 1970s, at London’s Queen
Mary College, Abe Mamdani and his student Seto Assilian were
trying to simulate a simple industrial machine (a steam engine) with
a computer program, while another program would try to learn how
to operate the engine by trial and error. The controlling program, so
the theory went, would do better and better by learning from its
mistakes. Unfortunately (or perhaps fortunately), the scheme did not
work as expected, even after the researchers had replaced the simula-
tion with the actual machine. And so they abandoned the idea of a
learning system and decided to try another approach: they wrote up
a few heuristic rules for controlling the system and then used Zadeh'’s
notion of a fuzzy set to encode the rules into a computer program.
The machine was thus directly provided with the rule-of-thumb,
practical knowledge of a human operator. This technique turned out
to be amazingly effective, paving the way for the numerous future
applications of fuzzy control.

Genetic algorithms and neural networks differ in their approach to
the design of machines that can learn to perform “intelligent” tasks.
While the former favor the emergence of the best strategies through

144

SOLUTIONS VIA EVOLUTION

competition, selection, and evolution, neural networks learn from
examples and experience, with or without human supervision. Fuzzy
systems, on the other hand, generate strategies based not on experi-
ence but on their ability to comprehend instructions; their knowledge
is therefore communicated rather than acquired.

IQ AND FITNESS

What is intelligence? There is no shortage of answers to this fascinat-
ing question, which only proves that philosophers, psychologists, and
scientists in general are still looking for the right one. Geneticist
Daniel Cohen estimates that the word intelligence describes the
faculty of understanding our environment, and so it is a relative
notion because it depends on our upbringing. For Alain Connes,
French mathematician and 1982 Fields medallist (the mathematicians’
Nobel prize), the concept of intelligence defies a general definition.
As for IQ tests, he believes that they only evaluate the subject’s
ability to guess what the test’s authors consider to be expressions of
intelligence.

Whatever it is precisely, intelligence might have to do not just with
the things brains (human or otherwise) can do but also with the way
they do them. Some human calculators can perform complex arith-
metic operations in an incredibly short time; they don’t seem to
follow any scheme, the result just pops up in their mind after a few
seconds. Impressive as it might be, such a skill would not normally
be considered as a proof of “intelligence.” Deep Blue, IBM’s chess-
playing computer, managed to beat the best opposition humankind
had to offer—Russian champion Garry Kasparov. But the manner in
which the machine performed its feat was anything but intelligent.
Before making a move, Deep Blue’s program ponders millions of
possible options, even if at any one game situation there are only a
dozen or so moves really worth considering. Systematically going
through several million maneuvers just to rule them out is not our
idea of cleverness. Not to mention the fact that the computer has to
be told that a queen is more valuable than a knight and other equally
obvious things that it is not “intelligent” enough to discover by itself.

Although Deep Blue did beat Kasparov in the opening game of
their 1996 match, the world champion remained undefeated for the
rest of the match, winning three games and tying the other two. It is

145

THREE: NATURAL SOLUTIONS

not surprising that Kasparov eventually got the upper hand. For all
its portentous memory and speed, the machine was in the end
outsmarted by the human player’s accumulated knowledge of its
mechanical—hence predictable—playing style. Deep Blue’s program
must nonetheless contain some built-in unpredictability. Otherwise,
by repeating the moves which once led to victory, its opponent
would win every future game.

In the 1997 rematch things turned out differently, with the machine
(no doubt helped by a souped-up program) getting the best of
Kasparov. This outcome was variously greeted as a sad day for
humanity, the end of the game of chess, and similar apocalyptic
interpretations. Many had perhaps failed to notice that the match was
really a confrontation between human beings: Kasparov versus the
IBM team, each side disposing of vastly different means (consistent
with this point of view is the fact that a human—not the machine—
made the actual moves on the chessboard).

Not knowing exactly what intelligence is did not deter some people
from trying to measure it. In 1904, the British psychologist Charles
Spearman used statistical techniques to identify a number that he
called the general factor of intelligence. According to Spearman, this
number, known as g, captures a real property in the head and can be
reasonably measured by IQ tests designed for that purpose. Of course
not all psychometricians, let alone social scientists and other thinkers,
support this point of view. The skeptics reject ¢ as a fiction, the
product of a particular mathematical representation of experimental
data.

In The Mismeasure of Man,” the famous biologist Stephen Jay Gould
argues against the fallacy of regarding intelligence as an innate,
single-scaled thing in the head. He closes the chapter on the unreality
of ¢ by quoting John Stuart Mill: “The tendency has always been
strong to believe that whatever received a name must be an entity or
being, having an independent existence of its own. And if no real
entity answering to the name could be found, men did not for that
reason suppose that none existed, but imagined that it was something
particularly abstruse and mysterious.”

The premise that a certain quality can be seized by a single number
underpins the notion of fitness, a central idea of genetic algorithms.
Even if one accepts the principle, precisely how this number may be
calculated remains a major hurdle in many practical situations. Simi-
lar questions arise almost every time mathematical models are con-

146

SOLUTIONS VIA EVOLUTION

structed. Ultimately, the issue of whether or not it makes sense to
measure a complex attribute on a linear scale is decided less by
philosophical considerations than by the performance of the model.

Ir You CAN’T SOLVE THEM, APPROXIMATE THEM

Mathematicians will only consider the traveling salesman problem as
solved the day someone finds an efficient algorithm that could calcu-
late (at least in principle) the shortest tour for instances of arbitrary
large size. But since the problem has been proved to be NP-complete
(a notion explained in chapter 3), most experts are convinced that no
such sweeping solution exists, so they have turned to constructing
algorithms that compute good approximations in a reasonable time.
One of the reasons the solution of the record-breaking 7,397-city
problem required years of computing was that, since the algorithm
had to calculate an optimal tour, most of the running time was
devoted to checking optimality—yet another practical confirmation
that precision is costly. Approximate methods, on the other hand, aim
at calculating a tour that may be somewhat longer than the shortest
one but which can be obtained in relatively little time, even for large
numbers of cities. In most applications, such approximate solutions
are virtually as good as the elusive optimal answer—and certainly
much more cost-effective.

Strategies or sets of rules designed to find near-optimal tours rather
than exact solutions are known as heuristics. A simple example is the
nearest-neighbor heuristic, which is based on the commonsense rule
of always traveling to the nearest city not already called upon: start at
any city; choose as the second city the one closest to the first; choose
as the third city the one closest to the second and not already visited;
and so on. When you have finished visiting every city, complete the
tour by returning to your starting point. The heuristic is usually
accompanied by some sort of analysis that permits the user to
estimate the quality of the approximation. For example, if there are
10" cities, the nearest-neighbor heuristics constructs a tour that is
guaranteed to be no more than (n + 1)/2 times the length of the
optimal tour. For 100 cities, this means an approximate solution that
is, at worst, 50 percent longer than the shortest tour (but in practice it
is usually only around 25 percent off target). The best tour-construc-
tion heuristics, which gradually build a solution by some kind of

147

THREE: NATURAL SOLUTIONS

growth process, can get within roughly 10 to 15 percent of the
optimal tour in a relatively short time.

A still better performance is provided by the so-called local opti-
mization techniques, which consist in repeatedly improving an ap-
proximate solution by making local changes. A classic in this category
is an algorithm invented by Shen Lin and Brian Kernigham of Bell
Labs in the early 1970s.° It—or some of its enhanced versions—can
compute solutions for problems of up to one million cities that are
typically only 1 to 2 percent off the optimal. Another famous, and
more straightforward, example of local optimization is the 2-Opting
heuristic. Starting with a given tour, it constructs a new one by an
inversion or 2-Opt swap, which consists in reversing the order of two
or more consecutive cities. For instance, if 4 5 6 1 2 8 7 3 represents
the initial tour of eight cities, inverting the order of the last four cities
results in the new tour 4 5 6 1 3 7 8 2. The only condition on the
choice of the cities is that the inversion should produce a shorter tour.
Geometrically, a 2-Opt swap first removes two edges from the graph
representing the tour and then reconnects the two pieces in the other
possible way (fig. II1.10). The algorithm continues to perform 2-Opt
swaps on the successively shorter tours until no further swaps can be
made that would decrease the tour’s length.

LocAL TRAPS

The quality of the final solution obtained by the application of the
2-Opt heuristic depends largely on the quality of the starting tour.
This is a common drawback of many optimization techniques (on a
wide range of problems, not just TSP) known as the local minimum
trap. Figure III.11 schematically illustrates the situation. Imagine that
you are exploring, blindfolded, an unknown landscape in search of
the bottom of its lowest valley. A local search technique may be
compared to testing only nearby points and moving in the direction
of the steepest descent. If you happen to start the search at point A,
you would then be lured into descending the slope leading to point
B. Once you reach B, no further improvement is possible, for now
you can only go up. The search would then stop, regardless of
whether lower points, such as C, exist elsewhere. The point B is
called a local minimum because it is the lowest point in a certain
region. The true, or global, minimum is C—the lowest point in the

148

SOLUTIONS VIA EVOLUTION

() ()

-

©

FIGURE II1.10. A 2-Opt swap. (a) Original tour. (b) Edges AB and CD
are removed, leaving two disjoint paths. (¢) The two paths are
reconnected in the other possible way, resulting in a shorter tour.

whole space. The global minimum is also a local minimum, but the
converse is generally false. Complicated “landscapes,” arising from
practical problems, may have thousands of these deceptive local
minima.

As a way of getting around local traps for the TSP, Shen Lin’
suggested, back in 1965, the simple idea of repeating the local search
many times, starting each time from a randomly chosen tour, until
one was confident that all the locally optimal tours had been found.
When Lin’s idea of repeated local searches is combined with the
genetic operators of selection, crossover, and mutation, one obtains a
computation scheme that has produced some of the best-performing
algorithms for the TSP.

GENETIC ALGORITHMS AND THE TSP
The first serious attempt to use genetic strategies for solving the
traveling salesman problem dates from the mid-1980s, when R. M.

Brady at Cavendish Laboratory in Cambridge, UK, applied what he

149

THREE: NATURAL SOLUTIONS

FIGURE IIL.11. A local trap. The descent from point A ends at the
local minimum B. The global minimum (C) is elsewhere.

termed “optimization strategies gleaned from biological evolution”
to a modest 64-city instance of the problem.® One of Brady’s schemes
consisted in repeatedly improving a starting tour by what amounts to
attempted mutations: a section of the route is chosen at random and
the order of visiting the cities is reversed, but only if this shortens the
tour. Brady obtained a better performance by dividing the computa-
tion time between two independent trial solutions and selecting the
best of the two at the end of the run. In order to evaluate the effect of
competition, he later modified this scheme so that, at regular inter-
vals, the better of the two solutions replaced the weaker one.
“Surprisingly,” he writes ““this competitive strategy was far worse
than the noncompetitive one. Our interpretation is that success at an
early stage in the optimization was not closely correlated with suc-

150

SOLUTIONS VIA EVOLUTION

cess later on, because diversity was reduced.” And he concluded by
observing that “if a strategy is to favor the more successful solution it
should be designed not to severely reduce diversity.” The lesson to
be learned here is that an evolutionary plan that helps weak individ-
uals to survive may have a long-term advantage.

THE MATING GAME

If tours are coded in a straightforward way, that is, as lists of cities,
an ordinary crossover will in general not produce a new—longer or
shorter—tour but rather no tour at all. For example, exchanging the
last two “‘genes” of 12348756 and 76813245, yields 12348745 and
76813256, respectively. In both of the new lists one city is missing and
another one occurs twice, so that neither offspring represents a legal
tour.

Many ways of avoiding the creation of illegal tours as a result of
mating have been proposed. Brady’s solution was first to search
through both parent strings for substrings visiting the same cities in a
different order and varying in length from 8 to 32 (if no such
substrings were found, mating simply did not take place). For exam-
ple, 123465789 and 925436871 both contain substrings involving cities
2,3, 4,5, and 6. Next, the lengths of the paths visiting these cities are
calculated and the substring with the shorter one replaces the other.
Referring to the above example, suppose that the distance 23 + 34 +
46 + 65 is found to be shorter than 25 + 54 + 43 + 36; then the two
offsprings would be 123465789 (unchanged) and 923465871. Mating
was attempted infrequently—once for every 2,000 random mutations
—because of the considerable amount of computing time involved in
searching for possible crossing-over points.

A more sophisticated mating strategy was devised by three com-
puter scientists as part of what has been called “a major leap in
genetic algorithm perforrnance.”9 In 1988, H. Miihlenbein, M.
Georges-Schleuter, and O. Kramer' introduced a new genetic algo-
rithm for the TSP which they used to find an approximate solution of
a 442-city problem—the best solution yet for that particular problem.
Their algorithm was designed for implementation on a parallel com-
puter, with each chromosome (i.e., each tour) in the population being
assigned to a different processor.

151

THREE: NATURAL SOLUTIONS

AN IDEA WHOSE TIME HAs COME BAack

No idea is ever examined in all its ramifications and no
view is ever given all the chances it deserves.
(Philosopher of science Paul Feyerabend)"!

Before describing Miihlenbein’s scheme in more detail, let us go back
to the biological ideas that inspired the original genetic algorithms.
One of the basic principles was that only the information contained in
the parent’s genes can be passed on to their offspring. The character-
istics that an individual, or phenotype, acquires during its existence
are therefore not part of the transmissible traits. A classical example
of an acquired characteristic are the blacksmith’s adapted muscles.
According to modern genetics, the information needed to develop
such muscles cannot be passed along to the blacksmith offspring. If
the children want to take up their father’s trade, they will have to
develop their own muscles from scratch. It is of course debatable
whether such a state of affairs is a good or a bad thing. Big and
strong hands would certainly be an asset for a future blacksmith, but
what if junior decides to be a pianist? Also, too much dependence on
ready-made knowledge might impair an individual’s ability to learn
(and adapt) by himself.

The idea that acquired traits can be inherited was defended by the
French naturalist Jean Baptiste de Monet, Chevalier de Lamarck, who
lived between 1744 and 1829. Lamarck contributed some influential
works on plants and invertebrates, but he is best known for his views
on evolution, referred to as Lamarckism. His theory is based on the
altogether plausible idea that plants and animals evolve by adjusting
to changes in their environment, and that such changes can be passed
on to the next generation. Lamarck’s ideas clash head-on with Dar-
win’s widely accepted theory of evolution, according to which varia-
tions in traits occur randomly at the chromosome level and not in
direct response to changes in the environment.

Many of Lamarck’s conceptions, such as the spontaneous creation
of life, have been proven thoroughly wrong. But he still had followers
well into the twentieth century, notably the Russian agronomist
Trofim Lysenko, who convinced Stalin to denounce genetics as con-
trary to the principles of dialectical materialism and to establish

152

SOLUTIONS VIA EVOLUTION

Lamarckism as an official Soviet doctrine. Leading Soviet geneticists
were dismissed, jailed, or exiled. The result was a serious setback in
genetic research in the USSR, further discrediting Lamarck himself
for having his name associated with such a scientific fiasco.

Lamarckism may not have been part of nature’s evolutionary plan,
but it has a role to play in the adaptation of artificial systems. If
genetic algorithms for solving the TSP are to be competitive, then the
inclusion of some kind of Lamarckian ingredient seems unavoidable.
In such a scheme, selection and crossover take place only after each
individual in the population has “done its best,” that is, it has
computed a local minimum using some local optimization technique
such as 2-Opt. This amounts to allowing the favorable traits that were
acquired as a result of “experience” (local optimization) to be trans-
mitted to the next generation.

A GENETIC SOLUTION FOR THE TSP

Evolution is not destiny, it is opportunity! Its path is not
predictable, but it can be controlled.
(H. Miihlenbein, M. Georges-Schleuter, and O. Kriimer, 12

Miihlenbein et al. described their algorithm as one way of jumping
from local minima to still better local minima. Here are the main
steps.

1. Initial Population. 16 tours are selected at random and assigned to
16 different processors.

2. Improving the Fitness. Each processor computes a locally optimal
solution f' beginning with its present tour t (¢ is the tour of
minimal length that can be obtained from ¢ by repeated applica-
tion of 2-Opt swaps). The new, better solutions t' replace the
original tours f.

3. Selection of Mating Partners. The processors are interconnected in a
gridlike fashion in such a way that each one of them has four
neighbors. At reproduction time, each processor mates its tour
(the receiver) with some other processor’s tour (the donor). The
latter is chosen among the receiver’s four neighbors plus the
shortest tour overall (the “fittest” string in the current popula-

153

THREE: NATURAL SOLUTIONS

tion). These five potential donors have probabilities of 30, 25, 20,
15, and 10 percent of being selected—the shorter the donor tour,
the higher the probability.

4. Crossover. A substring is chosen at random from the donor (the
length of the substring should be between 10 and one-half the
number of cities). The single offspring string begins with the
donor substring followed by the rest of the cities in the order they
appear in the receiver, as illustrated below.

0123456789 (donor) 7109365824 (receiver)
34567109 82 (offspring)

5. Stopping Criterion. The 16 offspring resulting from the 16 matings
form the new generation. If a certain (predetermined) number of
generations have passed without improving the best overall solu-
tion s (the shortest tour), the algorithm stops and returns s as
““the” solution. Otherwise, steps 2 to 5 are repeated.

It is perhaps not surprising that both the quality of the solution and
the speed of evolution increased with the size of the population,
which ranged from 2 to 24 in the different runs. Experiments by other
researchers suggest that for a given amount of computation time, the
quality of the solution can also be improved by using a more
powerful local optimization technique. This factor appears to be more
important than population size, to the point where a recent genetic
algorithm produced high-quality results with a population size of
only one.® In such a scheme, mating is no longer possible, and
variation must be obtained by random mutations alone. Ironically,
such an exclusive reliance on mutation was blamed for the failure of
the early attempts to mesh computer science and evolution. ““In the
late 1950s and early 1960, [these attempts] fared poorly because they
followed the emphasis in biological texts of the time and relied on
mutation rather than mating to generate new gene combinations,”
wrote John Holland in a 1992 article.'*

In the final remarks of their report, Miihlenbein’s team ponders
over the role of natural systems as an inspiration for artificial models.
“In tuning the evolution algorithms,” they write, “we found that
often the best parameter choices are those most similar to the param-
eters we find in nature.” As an example, they observe that their
genetic algorithms work best with two parents, instead of three or

154

SOLUTIONS VIA EVOLUTION

more. “Evolution algorithms can be very easily developed,” they
conclude, “but their behavior is complex. Evolution is not destiny, it
is opportunity! Its path is not predictable, but it can be controlled.”
The last two sentences echo a philosophy that permeates the soft
computing approach: in the absence of an exact theory, we may not
be able to predict the future but we can still control it.

NOTES

1. John H. Holland, Adaptation in Natural and Artificial Systems, MIT
Press, Cambridge, MA, 1992.

2. Ibid.

3. Anatol Rapoport and Albert M. Chammah, Prisoner’s Dilemma,
Univ. of Michigan Press (1965), p. vii.

4. Axelrod, R., “The Evolution of Strategies in the Iterated Prisoner’s
Dilemma,” in Genetic Algorithms and Simulated Annealing, Lawrence Davis,
ed., Pitman, London, 1987, pp. 32—41.

5. Stephen Jay Gould, The Mismeasure of Man, Norton, New York,
1991.

6. S. Lin and B. Kernighan, “An Effective Heuristic Algorithm for the
Traveling Salesman Problem,” Oper. Res. 21, 498 (1973).

7. S. Lin, “Computer Solutions of the Traveling Salesman Problem,”
Bell Syst. Tech.]. 44, 2245 (1965).

8. R. M. Brady, “Optimization Strategies Gleaned from Biological
Evolution,” Nature, vol. 317, 31 Oct. 1985, pp. 804-6.

9. Johnson and McGeoch, “The TSP: A Case Study.”

10. H. Miihlenbein, M. Georges-Schleuter, and O. Kramer, “Evolution
Algorithms in Combinatorial Optimization,” Parallel Computing 7 (1988),
65-68.

11. Paul Feyerabend, Against Method, NLB, London, 1975, p. 49.

12. H. Mihlenbein, M. Georges-Schleuter, and O. Kramer, “Evolution
Algorithms.”

13. Olivier Martin, Steve W. Otto, and Edward W. Felten, ““Large-Step
Markov Chains for the TSP Incorporating Local Search Heuristics,”
Operations Research Letters 11 (1992), 219-24.

14. John H. Holland, “Genetic Algorithms,” Scientific American, July
1992, pp. 66-72.

155

* AFTERWORD *

THE RELEVANCE of a new theory or idea is seldom easy to estimate,
and its long-term consequences always risky to predict. This is true in
every domain, and mathematics or computer science are no excep-
tions. In presenting the principles of soft computing I have therefore
focused on widely accepted concepts and techniques that have been
around for some time, staying away from the latest fad or the claims
(“this may save the world”) that have yet to live up to their promises.

At times I felt overwhelmed by the myriad of articles, books, and
talks given at conferences around the world on the subject: Was I
missing something crucial? But this very abundance served to reas-
sure me. Perhaps the reason there are so many different approaches,
special techniques, partial solutions, new ideas, etc., is that the
definite theory (if such a thing exists) has yet to be found.

When comparing soft and classical computing, the following (par-
tial) table may be useful:

Classical Computing Soft Computing
needs a program up front may learn its own program (NNs)
based on two-valued logic ~ uses many-valued logic (FL)
deterministic incorporates random elements

(GAs, NNs)

handles exact data can handle ambiguous data (FL)
sequential computation parallel computation (NNs, GAs)
precise answers approximate answers (FL)

A characteristic common to fuzzy logic, neural networks, and
genetic algorithms is their dependence on massive and fast calcula-
tions. For all the importance of the underlying mathematical theories,
theory alone would be of little use without high-speed computing to
put it into practice. Also, the role of technological marvels other than
computers (sensors, spectroscopes, etc.) in the implementation of the
theories cannot be overstated.

The three nonclassical approaches to computation I have discussed
here are by no means the only ones being employed or developed.
Genetic algorithms may be seen as a special case of a larger, still

AFTERWORD

ill-defined field known as evolutionary computing. Two other possi-
bilities are biochemical computing, which uses proteins as logical
gates and to store information, and the exploitation of chaos—a very
popular theory merely a decade ago—that is artificially generated.

I do not wish to have given the false impression that traditional
mathematics is not up to the task! A new domain where (crisp, exact)
mathematics is currently being successfully used in computer science
is program construction, where there is a growing interest in formal,
mathematically based methods in the design of algorithms and for
the development and verification of software.

Presently (i.e., in 1997) there is a trend toward so-called hybrid
systems, combining the advantages of two or more methods or
techniques. This is good news. I have met too many researchers who
were convinced that only one approach (theirs, of course) held the
key to the mysteries of the universe. Scientists may be well-advised
to once again imitate nature and take advantage of the opportunities
afforded by diversity, cooperation, and combination if their goal is to
solve the largest number of problems for the benefit of the greatest
number of people.

158

* APPENDIX 1 *

FUZZY INFERENCES

Fuzzy INFERENCES AS M APPINGS

A typical fuzzy inference rule has the form
if xis Aand yis B then zis C

where A, B, and C are fuzzy subsets of the universes X, Y, and Z,
respectively, that is, they are functions

A:X - [0,1]

B:Y - [0,1]

C:Z-1[0,1],
from the universes to the set [0, 1] of real numbers between 0 and 1.
A fuzzy inference rule is interpreted mathematically as defining a
mapping from fuzzy subsets to fuzzy subsets. The fuzzy subset C' of

Z corresponding to the pair A, B’ of fuzzy subsets of X and Y,
respectively, is, by definition,

C(z)=V A(x) AB(y) AA(x) AB(y) AC(z) (1)

xeX,yeY

where V denotes maximum (or supremum, if X or Y is an infinite
set) and A denotes minimum.

DIsGRESSION: Fuzzy DEDUCTIONS AND MODUS PONENS

In classical logic, modus ponens is the name of the deduction rule by
which the truth of the statement Q follows from the truth of both the
conditional statement ““if P then Q" and the statement P. This is
usually written as

if P then Q

APPENDIX 1

A fuzzy inference rule has the form of a conditional statement, so
the temptation is great to see C’ as arising from the conclusion of a
“fuzzy’’ deduction by writing

if xis Aand yis B then zis C
xis A'and yis B

In the particular case A' = A and B’ = B, the above fuzzy deduc-
tion would be formally identical to modus ponens provided C' = C.
Now, if A = A and B = B’ in (1), then

C(z)= WV A(x) AB(y) AC(2)

xe€X,yeEY

and therefore C' is not necessarily equal to C. This fact has been
interpreted by some as meaning that modus ponens breaks down in
fuzzy logic. (Actually, if for some x € X and y € Y we have A(x) =
1 and B(y) = 1, then C' = C. The reader is invited to verify this.)

THE Fuzzy OutpPUT

In the general case, there are n fuzzy inference rules:

if xis A; and y is B, then z is C;
if xis A, and y is B, then z is C,

if xis A, and y is B, then z is C,,.

The mapping defined by this set of rules associates to the input
pair (A, B') of fuzzy subsets the fuzzy subset of Z defined by:

C(z)= 'V AW ABy) AA(x) AB(y) ACi(z). (2)
xe€X,yeY
l<i<n

In fuzzy control applications, a set of fuzzy inference rules may be
interpreted as a function z = f(x, y) that cannot be neatly described
by a mathematical equation. Suppose that the (numerical) input
values are x = x, and y = y,. These numbers are used to define the

160

FUZZY INFERENCES

(ordinary) subsets A" = {x,} and B’ = {y,} as functions in the usual
way: A'(x,) = 1,and A'(x) = 0for x # x,; B'(y,) = 1,and B'(y) =0
for y # y,.

The right-hand side of (2) can now be simplified by observing that
A(x) AB(y))=1A1=1, and A(x) AB(y)=0 for all (x,y)
(xy, Yo), so that (2) reduces to

C'(z) = ‘\n/lAi(xo) A Bi(yy) A Ci(2). (3)
For example, if n = 2, (3) becomes
C'(z) = (A;(xy) A B(yy) A C(2) V(A (xy) A By(y,) A Cy(2)),
or
C'(z) = max{min{ A,(x,), B,(y,), C,(2)},
min{ A,(x,), B,(y,), C,(2)}}.

DEFUZZIFICATION

The procedure that yields a single numerical value z = z, from the
fuzzy output C' is known as defuzzification. The center of gravity
method is one of the most popular. If—as it is often the case—the
universe Z is finite, say Z ={z,, z,,..., z,}, then the center of
gravity z, can be computed with the formula

zy = (2,C'(zy) + 2,C'(z,) + -+ +2,C'(z2,))/
(C'(zy) + - +C'(z,)). 4

Together, equations (3) and (4) define the output z = z, from the
input values x = x;, and y = y,. They constitute one of a number of
sensible definitions of the mathematical function z = f(x, y) de-
scribed by a given set of fuzzy inference rules. Many variants of
either the fuzzy output or the defuzzification method have been used
in particular applications. For instance, defuzzification can also be
achieved by choosing the number z, with the largest membership
grade in C’ (or their arithmetic mean, if there is more than one).

161

* APPENDIX 2 %

THE FUNCTIONS OF NATURAL NUMBERS CANNOT
BE ENUMERATED

We show that there are more functions of natural numbers
than can be written down on an infinite list.

LET N be the set of positive natural numbers: 1,2, 3, Functions
from N to {0, 1} may be represented by infinite strings of 0s and 1s in
a natural way. For example, the function

f(n) =1, if nisodd; f(n) = 0, if n is even,
becomes the string
1 0 1 01 0 1 0

of alternating 1s and 0Os. In general, the function & is represented by
the string whose n-th entry is h(n), that is,

1) k2 hB) ... hn)

We now prove that every infinite list of functions from N to {0, 1}
is incomplete. Suppose that L is such a list of functions. The first
entry on L is a certain function f;, the second entry is a function f,,
and so forth, that is, for each positive natural number # there is an
n-th entry on the list that we denote f,. It is convenient to imagine the
functions written one below the other: first f, (represented by its
binary string), then f,, and so on. We have thus an infinite matrix of
0s and 1s, such as, say

(f) 00 01 0 01 1 0 O
(f) 0 1. 1.0 1.0 0 0 1 1 0
(f)) 1. 1.1 0 1. 1 0 0 0 1 0 O

D L0 £ o fi(n)

FUNCTIONS OF NATURAL NUMBERS

The diagonal of this matrix is the binary string
D L2 3 ..o f,(n) L. (1)
Now let g be the function defined, for each # in N, by

g(n) =0,if f,(n) =1;
g(n) =1,if f,(n) = 0.

In other words, the string corresponding to ¢ is obtained from the
diagonal string (1) by changing 1s into Os and Os into 1s. For instance,
assuming that the first three functions on the list are as illustrated
above, the diagonal string begins 0 1 1 ..., so g begins1 0 0 ...

This function g is not on the list L. For given any f,, on L, by the
definition of g, we have g(m) # f, (m). Since ¢ and f,, take different
values at one natural number, namely m, they cannot be equal. The
function g is therefore missing, so the given list is incomplete. Notice
that it would do no good to try to fix the original list by including g
on it. The argument given above applies to any list, so the new list
would also be incomplete—some function other than g would be
missing.

The functions from N to {0,1} form a proper subset of all the
functions from N to N. Since the functions in the smaller set cannot
all appear on a single list, a fortiori, no complete list of those in the
bigger one can exist either.

163

* APPENDIX 3 *

THE HALTING PROBLEM IS UNSOLVABLE

We show how to derive a logical contradiction from the
assumption that the halting problem can be solved by some
Turing machine.

IT Is in principle possible to automatically encode the program of
any Turing machine as a single natural number. The details are not
important; it is enough to know that it can be done (actually in many
different ways). By selecting one specific encoding, we can assign to
each Turing machine a natural number—its code—from which the
machine’s program can be recovered by an appropriate (automatic)
decoding. If a given natural number m happens to be the code of
some Turing machine, we designate this machine by T(m). In other
words, T(m) is the Turing machine (if there is one) whose code
number is m.

Suppose now that some Turing machine, H, say, solves the halting
problem in the following sense: H accepts as input a pair (m, n) of
natural numbers and it returns as output 1 if m is the code of a
Turing machine and this machine—T(m)—would eventually halt
after being started with the number 7 on its input tape. In any other
circumstances, H’s output is 0. Once again: H writes a 1 at the end
of its computation if T(m) stops on input 7, and it writes a 0 other-
wise—that is, if either m is not the code of a Turing machine, or m is
the code of a Turing machine, but this machine will never stop
computing on input .

It is very easy to write the program of another Turing machine—Ilet
us call it E—which stops immediately if its input is the number 1,
and enters an infinite loop if it started reading the number 0. By
connecting H and E “in series” (i.e., so that H’s output becomes E’s
input) we obtain a third Turing machine, C, which behaves as
follows: for each natural number n,

if T(n)—that is, the Turing machine with code n—does not stop on
input n, then C stops on input #; ¢))

if T(n) does stop on input 1, then—on input n—C goes into an
infinite loop and never halts. 2

THE HALTING PROBLEM IS UNSOLVABLE

Here we go again: on input #n, C first uses H to determine whether
T(n) would halt or not if started on this same input n. Then C acts on
this information to do precisely the opposite of what T(n) would do:
if the latter would eventually stop, C sets itself on a course to run
forever; if, on the contrary, C “learns” that T(n) would never halt,
then C terminates its computation.

It should be clear that if H exists, so does C. Below we show that
the (so far hypothetical) existence of C leads to a logical contradic-
tion. Therefore, there is no such C, and so H cannot exist either.

For suppose that C is built as indicated. The program of C, once
encoded, becomes some natural number, ¢, say—that is, C = T(c).
Now, let us start C on input ¢ and consider what might happen. The
behavior of C being specified by clauses (1) and (2) above, we can
rephrase them with n (the generic input) replaced by the present
input c. These clauses now read:

if T(c) does not stop on input ¢, then C stops on input ¢, and

if T(c) does stop on input ¢, then—on input ¢—C goes into an
infinite loop and never halts.

But C and T(c) are one and the same machine. Therefore, if C
existed, it would have to both eventually stop and run forever at the
same time on one of its inputs—a logical impossibility.

165

% APPENDIX 4 =k

LEARNING WITH THE BACK-PROPAGATION
ALGORITHM

THE back-propagation algorithm is designed to train feedforward
networks composed of two or more layers of neurons, and connected
so that the outputs from one layer become the inputs to the next one.
In addition, the activation functions of the neurons must be continu-
ous (to allow for the use of differential calculus). The algorithm
derives its name from the fact that the weight adjustments dictated
by the learning rules propagate “backwards,” from the output layer
towards the input layer.

To explain the principles of the algorithm we shall employ a
modest network consisting of only two layers (fig. A.1). When the
three neurons in the first (or hidden) layer receive inputs y; and y,,
they respond with intermediate, or hidden, outputs z;, z,, and z,.
These are then passed on to the two neurons in the second (output)
layer, which transform the z; into the final outputs o, and o,
according to the usual formulas

0, =f(s),i=1,2 (D

where f is the neuron’s activation function (assumed to be the same
for all neurons); s; is the weighted sum

S; = Up2zy + Uin2Zy + V324 2)

and v;; is the weight, or strength, of the connection joining the k-th
input to the i-th neuron. The z; are themselves computed in a similar
way, by applying f to the weighted sum of the inputs y, and y,

z;=fQupy, +upyy), j=1,2,3. 3)

After a given input pattern y = [y;, y,] has been processed, the
network responds with an output vector o = [0;, 0,]. The response
error E is then calculated by comparing o with the desired response,
which is another vector d = [d;, d,]. More precisely, E is defined by

E=(d, —o0) + (dy —0,)° (4)

LEARNING WITH THE B-P ALGORITHM

Hidden Hidden Output
Inputs Layer Outputs Layer Outputs
—Z 1
U1y
d LV
N
Uy
- S
U
)
U3y
N
Uz
— Z3

FIGURE A.1

that is, the sum of the squares of the local errors d, — o, at each
output neuron (since squares cannot be negative, adding the squares
(d, — 0,)* prevents negative local errors from off-setting positive
ones).

From equations (1) to (4) follows that, for a given input y, the error
E is a function of the weights only—twelve in this case. In other
words, E assigns to each 12-dimensional weight vector w the number
E(w) specified in (4). In the simplest case, when E is a function of
only two variables, w; and w,, the error can be visualized as a
surface in 3-dimensional space hanging above the 2-dimensional
weight plane. Starting at any given point on this surface, there is one
direction that corresponds to the steepest climb, or, equivalently, to
the fastest rate of increase in error. Mathematically, this is the direc-
tion defined by the so-called gradient of error, a 2-dimensional vector
VE whose components can be calculated using differential calculus
(they are the partial derivatives JE/dw,; and JE/Jw,). The error

167

APPENDIX 4

decreases most rapidly in the direction opposite that of VE, which is
that of the vector —VE. This is the direction of steepest descent.
When the dimension of the weight space is greater than two, such a
neat geometrical interpretation is impossible. But the opposite gradi-
ent vector —VE still “points” in the direction of fastest error reduc-
tion, and so, by analogy, it is customary to always speak of “steepest
descent.”

If we denote by w some initial (perhaps randomly chosen) weight
vector, then E(w) is the error for these particular weights. Now, since
continuous neurons can respond with any number between 0 and 1,
it is very unlikely that the network outputs o,, 0, (for given y and w)
will exactly match the desired ones d; and d,; in other words, E(w)
will almost certainly be different from zero. The algorithm must then
calculate a new weight vector w’, ideally so that the error is reduced
as much as possible. But E is generally a complicated function of
many variables, with many unknown (and possible unknowable)
features. This makes the search for the optimal weights a formidable
task, the path toward the minimum error being most likely long and
plagued with deceptive pseudo-solutions—the feared local minima
already discussed in chapter 6. Given the scant information available
about E, the algorithm’s best move in the circumstances would be to
update the weight vector in the direction of steepest descent...and
hope for the best.

The choice of the new weight vector w' is therefore dictated by the
imperative to reduce the error as rapidly as possible. Thus, a weight
increment Aw that moves the current weight w along the direction of
steepest descent must be computed. Starting with the output layer,
the algorithm calculates the components of Aw layer by layer. A kind
of “error signal” traveling backwards, from output to input, enters
into the calculation of the weight increments—hence the algorithm'’s
name: error back-propagation. After the weights have been updated
(i.e., the old weight vector w replaced by the new one w’, where
w' = w + Aw), the next input pattern is fed to the network and the
weight adjustment process begins all over again. Once the training
cycle has been completed—that is, after all patterns in the training set
have been tested—the errors arising from the individual patterns are
added. If this overall error is smaller than a preset threshold, the
training is complete; otherwise, a new training cycle begins.

168

LEARNING WITH THE B-P ALGORITHM

In a nutshell: back-propagation may be described as an efficient
technique for calculating the gradient error in one sweep through the
network, working with only one input pattern at a time. For all the
talk about training, learning, synapses, signal propagation, and so
forth, it is really differential calculus and vector algebra working
behind the scenes that get the job done.

169

x Index

adaptation, 128, 129, 142
Adleman, Leonard, xv
Aiken, Howard, 51
Amin, Shara, 123
Appel, Kenneth, 87
Assilian, Seto, 21, 144
Axelrod, Robert, 141-43

Babbage, Charles, 50, 51
back-propagation algorithm, 111, 166—69
biochemical computing, 158

Boole, George, 5

Boolean algebra, 5, 6, 35, 97

Brady, R. M., 149-51

Carroll, Lewis, 5
chromosomes, 127-29, 142
Church, Alonzo, 49, 61
Church’s thesis, 61
Cohen, Daniel, 145
completeness, 77, 84
computer-assisted proof, 88—90
computer virus, 104-7
Connes, Alain, 145
consistency, 77; of arithmetic, 78; proof,
86
Cook, Stephen, 73, 74
crossover, 129, 134

Daigneault, Aubert, 85

Danzig, George, 120

Darwin, Charles, 126, 128, 152
decision problem, 70, 71
defuzzification, 30, 161; chip, 28
Dubbey, J. M., 51

Edmonds, J., 73
Ekeland, Ivar, 83
Euclid, 76, 79
Euler, Leonhard, 68

Fernandez, José Luis, 123
Fibonacci, Leonardo, 58

fitness, 128, 130, 137, 146

formal language, 79, 80

formalism, 78, 84

four-color problem, 8689

Fulkerson, Delbert, 120

function; activation, 98; Boolean, 97; com-
putable, 49, 55-57, 61, 75; definition,
51; fitness, 131, 136; membership, 8, 10,
13, 44; partial, 56; polynomial, 67; un-
computable, 57-59, 61-63

fuzzy control, 20, 21, 24, 28, 30, 42, 160,
161

fuzzy controller, 20, 21, 22, 42; high-speed,
28

fuzzy engineering, 39, 43

fuzzy inference, 20, 29; algorithm, 30;
rules, 24, 29, 159-61

fuzzy logic, 16, 17; and classical comput-
ing, 157; commercial applications,
33-36; and learning systems, 144; med-
ical application, 36, 37; and opinion
polls, 37, 38

fuzzy sets; definition, 7; inclusion of, 11,
12; membership functions of, 8, 10, 13,
44; and neural networks, 122, 123; oper-
ations on, 11, 12; representation, 10

Garey, Michael, 71

genes, 127, 128

genetic algorithms, 64, 131-34, 137-39;
and classical computing, 157; funda-
mental theorem, 138; origins, 135, 136,
144

genotype, 128

Georges-Schleuter, M., 151-55

Godel, Kurt, 82-86; Incompleteness Theo-
rem, 82, 85, 86

Goldbach conjecture, 80

Gould, Stephen Jay, 146

gradient of error, 167-69

Guthrie, Francis, 86, 87

INDEX

Haken, Wolfgang, 87

halting problem, 59, 61-63, 76, 81; and
computer virus detection, 106; and
Godel’s Incompleteness Theorem, 84,
85; unsolvability of, 164, 165

Hilbert, David, 52, 78, 80, 82

Holland, James K., 117

Holland, John, 135, 138, 154

Hopfield, John, 100, 112, 120-23

Hopfield net, 112-16

Ifrah, Georges, 49
inverted pendulum control problem, 28
1Q, 145, 146

Johnson, David, 65, 71, 123
Johnson, Selmer, 120

Kasparov, Garry, 145, 146
Kempe, Alfred, 86, 87
Kemsley, E. Kate, 117, 118
Kephart, Jeffrey, 105
Kernigham, Brian, 148
Klein, Felix, 78

Kohonen, Teuvo, 95, 123
Kosko, Bart, 10

Kramer, O., 151-55

Lam, Clement, 90

Lamarck, Chevalier de, 152, 153

Lamarckism, 152, 153

LIFE (Laboratory for International Fuzzy
Engineering Research), 17, 38—43

Lin, Shen, 148, 149

linguistic model, 26, 27

linguistic rules, 27

linguistic variable, 23

local minimum, 148, 149, 168

local optimization, 148, 153, 154

Lysenko, Trofim, 152

Mc Culloch, W. S., 97
Mc Geoch, Lyle, 123
Mamdani, Abe, 21, 144
Mendel, Gregor, 126, 127
Mill, John Stuart, 146
Miihlenbein, H., 151-55

multi-valued logic, 13, 157
Murray, W. H., 106
mutation, 129, 135

Nakayashiki, Masato, 35, 36

natural selection, 128

nearest-neighbor heuristic, 147

neural networks, 95-97; and adulteration
detection, 116—-18; and classical com-
puting, 157, 158; feedback, 97, 121-23;
feedforward, 97, 166; training of, 102,
103, 107-11

neurons, 98, 112; artificial, 95, 97-99; bi-
nary, 98, 100; continuous, 99, 100

NP class, 70-72

NP-completeness, 73, 74

optimization problems, 63, 142; and neu-
ral networks, 120

P class, 66, 72

Padberg, Manfred, 64

Pascal, Blaise, 49

pattern, 101; classification, 102, 106, 107,
110

perceptron, 97, 111

phenotype, 128, 130, 142

Pitts, W., 97

polynomial, 67

polynomial time, 67; examples of, 69, 70;
verifiability, 70, 72

Prisoner’s Dilemma, 139-43

problem size, 66

projective plane, 89; of order ten, 89, 90

Rapoport, Anatol, 139, 141
Rosenblatt, F., 97
Rota, Gian-Carlo, 15

satisfiability problem (SAT), 73, 74
schemata, 137, 138

Schickard, Wilhelm, 49

search space, 136

Shannon, Claude, xii, 6

soft computing, xv, xvi, 155, 157, 158
Spearman, Charles, 146

species, 126

172

INDEX

steepest descent, 168
Sugeno, Michio, 39
Swiercz, Stanley, 90

Tank, D. W., 120-23

Tenner, Edward, xiii

Terano, Toshiro, 17, 39, 43

Thiel, Larry, 90

Thom, René, xiii

Traveling Salesman Problem (TSP); appli-
cations, 64; approximate solutions,
147-51; and class P problems, 70; as a
decision problem, 70-72; definition, 64,
119; and genetic algorithms, 153-55;
neural solutions, 120-23; NP-complete-
ness of, 74; origins, 119-20

Turing, Alan, 49, 52, 53, 81

Turing machine; coding of, 62, 164, 165;
definition, 53-55; and the halting prob-
lem, 59-61; non-deterministic, 71

two-opting (2-Opting), 148, 153

Ulam, Stanislaw, 86
undecidable propositions, 83

Venn, John, 5

Watermann, D. A., 21

weights; adjustment, 166—68; synaptic, 98,
100, 101, 107-11, 113

Werbos, Paul, 111

White, Steve, 105

Wilf, Herbert, 88

Wilson, R. H.,, 117

Yamakawa, Takeshi, 24, 29
Zadeh, Lotfi, xv, 3, 15, 17, 23, 4344

Zeilberger, Doron, 88
Zurada, Jacek M., 116

173

After receiving his Ph.D. in mathematics from the University of
Montreal in 1971, ARTURO SANGALLI has taught and done research at
various colleges and universities in Canada and abroad. His fields of
interest include mathematical logic and the use of novel methods for
the analysis and resolution of conflicts, from labor relations to inter-
national disputes. He is also active in the popularization of mathe-
matics and its applications, and has been for many years a contribu-
tor to the British weekly New Scientist. In 1996, he won the Author of
the Year Award from the French Canadian Association for the Ad-
vancement of Science (ACFAS). He is presently in the Department of
Mathematics at Champlain Regional College, in Lennoxville, Quebec.

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Problems
	Recipes That Work
	Soft Solutions
	About the Book
	Notes

	Acknowledgments
	To the Reader
	PART ONE: BLURRED VISIONS
	CHAPTER ONE: Classes with Uncertain Borders
	A Mathematics of Cloudy Quantities
	Sets, Logic, and Boolean Algebras
	Fuzzy Sets
	Operations on Fuzzy Sets
	Fuzziness as Multi-Valued Logic
	Precision
	What Is Fuzzy Logic?
	Notes

	CHAPTER TWO: Fuzzy Does It
	A Simple Control Problem
	Origins of Fuzzy Control
	Computing with Words
	A Balancing Act of Control
	The Magic of Fuzzy Inference
	Fuzzy Logic Goes Commercial
	Fuzzy Inputs
	Fuzzy Engineering Comes to LIFE
	Speculating on Fuzzy Decisions
	The Fuzzy Chopper
	AfterLIFE
	A Personal Perspective
	Notes

	PART TWO: LIMITS
	CHAPTER THREE: The Limits of Classical Computing
	An Old Dream Becomes a Reality
	Can Machines Compute Everything?
	Turing and His Machines
	Computable Functions
	Uncomputable Functions
	An Unsolvable Problem
	The Ant, the Bulldozer, and the Limits of Computability
	Lifting the Veil over Uncomputable Functions
	Complexity
	Optimization Problems
	Problem Size
	Polynomial Time
	The NP Class
	Will a Real Hard Problem in NP Please Stand Up?
	NP-Completeness
	Solution to the Riddle
	Notes

	CHAPTER FOUR: The Limits of Formal Reasoning
	In the Beginning There Were Axioms
	Probing the Foundations
	Formal Languages
	Mechanical Mathematics
	Mechanical Logic
	The Limits of Formal Reasoning
	From One Unsolvable Problem to Another (and Back)
	Games That Machines Cannot Play
	A Coloring Problem
	The Computer’s Revenge
	Notes

	PART THREE: NATURAL SOLUTIONS
	CHAPTER FIVE: Net Gains
	What Is a Neural Network?
	From the Biological to the Artificial Neuron
	Networks as Open Algorithms
	Pattern Recognizers
	Of Viruses and Men
	The Virus Hunters
	Artificial Neurons vs. Artificial Viruses
	Searching for the Ideal Weights
	The Importance of Being Numerous
	Net Dynamics
	Developing a Taste for Real Raspberries
	Have Problem, Will Travel
	The Neural Path to Optimization
	Notes

	CHAPTER SIX: Solutions via Evolution
	Genetics
	Populations and Natural Selection
	Modeling Evolution
	Lessons and Questions
	The Mathematical Framework
	Space Search
	Schemata
	Prisoner’s Dilemma
	Playing the Game
	The Evolution of Strategies
	Teaching Machines to Learn
	IQ and Fitness
	If You Can’t Solve Them, Approximate Them
	Local Traps
	Genetic Algorithms and the TSP
	The Mating Game
	An Idea Whose Time Has Come Back
	A Genetic Solution for the TSP
	Notes

	AFTERWORD
	APPENDIX 1 Fuzzy Inferences
	APPENDIX 2 The Functions of Natural Numbers Cannot Be Enumerated
	APPENDIX 3 The Halting Problem Is Unsolvable
	APPENDIX 4 Learning with the Back-Propagation Algorithm
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2018-06-10T09:17:42+0000
	Preflight Ticket Signature

