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Preface

In 1992 during a period of innovative restructuring of the medical school cur-

riculum at Albany Medical College, Dr. Henry Pohl, then Associate Dean for Aca-

demic Affairs, asked me to develop a course to teach students how to become

lifelong learners and how the health-care system works. This charge became the

focus of a new longitudinal required 4-year course initially called CCCS, or Com-

prehensive Care Case Study. In 2000, the name was changed to Evidence-Based

Medicine.

During the next 15 years, a formidable course was developed. It concentrates

on teaching evidence-based medicine (EBM) and health-care systems opera-

tions to all medical students at Albany Medical College. The first syllabus was

based on a course in critical appraisal of the medical literature intended for inter-

nal medicine residents at Michigan State University. This core has expanded by

incorporating medical decision making and informatics. The basis for the orga-

nization of the book lies in the concept of the educational prescription proposed

by W. Scott Richardson, M.D.

The goal of the text is to allow the reader, whether medical student, resident,

allied health-care provider, or practicing physician, to become a critical con-

sumer of the medical literature. This textbook will teach you to read between

the lines in a research study and apply that information to your patients.

For reasons I do not clearly understand, many physicians are “allergic” to

mathematics. It seems that even the simplest mathematical calculations drive

them to distraction. Medicine is mathematics. Although the math content in

this book is on a pretty basic level, most daily interaction with patients involves

some understanding of mathematical processes. We may want to determine how

much better the patient sitting in our office will do with a particular drug, or how

to interpret a patient’s concern about a new finding on their yearly physical. Far

more commonly, we may need to interpret the information from the Internet

that our patient brought in. Either way, we are dealing in probability. However, I

have endeavored to keep the math as simple as possible.

This book does not require a working knowledge of statistical testing. The math

is limited to simple arithmetic, and a handheld calculator is the only computing

ix



x Preface

instrument that is needed. Online calculators are available to do many of the

calculations needed in the book and accompanying CD-ROM. They will be ref-

erenced and their operations explained.

The need for learning EBM is elucidated in the opening chapters of the book.

The layout of the book is an attempt to follow the process outlined in the edu-

cational prescription. You will be able to practice your skills with the practice

problems on the accompanying CD-ROM. The CD-ROM also contains materials

for “journal clubs” (critical appraisal of specific articles from the literature) and

PowerPoint slides.

A brief word about the CD-ROM

The attached CD-ROM is designed to help you consolidate your knowledge and

apply the material in the book to everyday situations in EBM. There are four types

of problems on the CD:

(1) Multiple choice questions are also called self-assessment learning exercises.

You will be given information about the answer after pressing “submit” if you

get the question wrong. You can then go back and select the correct answer.

If you are right, you can proceed to the next question. A record will be kept of

your answers.

(2) Short essay questions are designed for one- to three-sentence answers.

When you press “submit,” you will be shown the correct or suggested answer

for that question and can proceed to the next question. Your answer will be

saved to a specified location in your computer.

(3) Calculation and graphing questions require you to perform calculations or

draw a graph. These must be done off the program. You will be shown the

correct answers after pressing the “submit” button. Your answer will not be

saved.

(4) Journal clubs require you to analyze a real medical study. You will be asked

to fill in a worksheet with your answers in short essay form. After finishing, a

sample of correct and acceptable answers will be shown for you to compare

with your answers.



Foreword

The impact of evidence-based decision-making on the way in which we work has

had an impact on our understanding of the language that is used to make and

take decisions. Decisions are made by language and the language includes both

words and numbers, but before evidence-based decision-making came along,

relatively little consideration was given to the types of statement or proposi-

tion being made. Hospital Boards and Chief Executives, managers and clinicians,

made statements but it was never clear what type of statement they were mak-

ing. Was it, for example, a proposition based on evidence, or was it a proposition

based on experience, or a proposition based on values? All these different types

of propositions are valid but to a different degree of validity.

This language was hard-packed like Arctic ice, and the criteria of evidence-

based decision-making smash into this hard-packed ice like an icebreaker with,

on one side propositions based on evidence and, on another, propositions based

on experience and values. As with icebreakers, the channel may close up when

the icebreaker has moved through but usually it stays open long enough for a

decision to be made.

We use a simple arrows diagram to illustrate the different components of a

decision, each of which is valid but has a different type of validity.

Patients’ values

and expectations

Baseline risk

EVIDENCE CHOICE DECISION

Patients’ values

and expectations

Baseline risk

EVIDENCE CHOICE DECISION
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xii Foreword

In this book Dan Mayer has demonstrated how to make decisions based on best

current evidence while taking into account the knowledge about the particular

patient or service under consideration. Evidence-based decision-making is what

it says on the tin – it is evidence-based – but it needs to take into account the

needs and values of a particular patient, service or population, and this book

describes very well how to do that.

Sir Muir Gray, CBE

Consultant in Public Health
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1

A brief history of medicine and statistics

History is a pack of lies about events that never happened told by people who weren’t

there. Those who cannot remember the past are condemned to repeat it.

George Santayana (1863–1952)

Learning objectives

In this chapter, you will learn:
� a brief history of medicine and statistics
� the background to the development of modern evidence-based medicine
� how to put evidence-based medicine into perspective

Introduction

The American health-care system is among the best in the world. Certainly we

have the most technologically advanced system. We also spend the most money.

Are we getting our money’s worth? Are our citizens who have adequate access

to health care getting the best possible care? What are the elements of the best

possible health care, and who defines it? These questions can be answered by the

medical research that is published in the medical literature. When you become

an effective and efficient reader of the medical literature, you will be able to

answer these questions. It is this process that we will be discussing in this book.

This chapter will give you a historical perspective for learning how to find and

use the best evidence in the practice of medicine.

Evidence-based medicine (EBM) is a new paradigm for the health-care sys-

tem involving using the current evidence (results of medical research studies)

in the medical literature to provide the best possible care to patients. What fol-

lows is a brief history of medicine and statistics, which will give you the historical

basis and philosophical underpinnings of EBM. This is the beginning of a process

designed to make you a more effective reader of the medical research literature.

1



2 Essential Evidence-Based Medicine

Table 1.1. The basis of healing systems in different civilizations

Civilization Energy Elements

European Humors Earth, air, choler (yellow bile), melancholia (black bile)

East Indian Chakras Spirit, phlegm, bile

Chinese Qi Earth, metal, fire, water, wood

Native American Spirits Earth, air, fire, water

Prehistory and ancient history

Dawn of civilization to about AD 1000

Prehistoric man looked upon illness as a spiritual event. The ill person was seen

as having a spiritual failing or being possessed by demons. Medicine practiced

during this period and for centuries onward focused on removing these demons

and cleansing the body and spirit of the ill person. Trephination, a practice in

which holes were made in the skull to vent evil spirits or vapors, and religious

rituals were the means to heal. With advances in civilization, healers focused

on “treatments” that seemed to work. They used herbal medicines and became

more skilled as surgeons.

About 4000 years ago, the Code of Hammurabi listed penalties for bad out-

comes in surgery. In some instances, the surgeon lost his hand if the patient

died. The prevailing medical theories of this era and the next few millennia

involved manipulation of various forms of energy passing through the body.

Health required a balance of these energies. The energy had different names

depending on where the theory was developed. It was qi in China, chakras in

India, humors in Europe, and natural spirits among Native Americans. The forces

achieving the balance of energy also had different names. Each civilization devel-

oped a healing method predicated on restoring the correct balance of these ener-

gies in the patient, as described in Table 1.1.

The ancient Chinese system of medicine was based upon the duality of the

universe. Yin and yang represented the fundamental forces in a dualistic cosmic

theory that bound the universe together. The Nei Ching, one of the oldest med-

ical textbooks, was written in about the third century BC. According to the Nei

Ching, medical diagnosis was done by means of “pulse diagnosis” that measured

the balance of qi (or energy flow) in the body. In addition to pulse diagnosis,

traditional Chinese medicine incorporated the five elements, five planets, con-

ditions of the weather, colors, and tones. This system included the 12 channels

in which the qi flowed. Anatomic knowledge either corroborated the channels or

was ignored. Acupuncture as a healing art balanced yin and yang by insertion of

needles into the energy channels at different points to manipulate the qi. For the
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Chinese, the first systematic study of human anatomy didn’t occur until the mid

eighteenth century and consisted of the inspection of children who had died of

plague and had been torn apart by dogs.

Medicine in ancient India was also very complex. Medical theory included

seven substances: blood, flesh, fat, bone, marrow, chyle, and semen. From extant

records, we know that surgical operations were performed in India as early as

800 BC, including kidney stone removal and plastic surgery, such as the replace-

ment of amputated noses, which were originally removed as punishment for

adultery. Diet and hygiene were crucial to curing in Indian medicine, and clin-

ical diagnosis was highly developed, depending as much on the nature of the life

of the patient as on his symptoms. Other remedies included herbal medications,

surgery, and the “five procedures”: emetics, purgatives, water enemas, oil ene-

mas, and sneezing powders. Inhalations, bleeding, cupping, and leeches were

also employed. Anatomy was learned from bodies that were soaked in the river

for a week and then pulled apart. Indian physicians knew a lot about bones, mus-

cles, ligaments, and joints, but not much about nerves, blood vessels, or internal

organs.

The Greeks began to systematize medicine about the same time as the Nei

Ching appeared in China. Although Hippocratic medical principles are now con-

sidered archaic, his principles of the doctor–patient relationship are still followed

today. The Greek medical environment consisted of the conflicting schools of the

dogmatists, who believed in medical practice based on the theories of health and

medicine, and the empiricists, who based their medical therapies on the obser-

vation of the effects of their medicines. The dogmatists prevailed and provided

the basis for future development of medical theory. In Rome, Galen created pop-

ular, albeit incorrect, anatomical descriptions of the human body based primar-

ily on the dissection of animals.

The Middle Ages saw the continued practice of Greek and Roman medicine.

Most people turned to folk medicine that was usually performed by village elders

who healed using their experiences with local herbs. Other changes in the Middle

Ages included the introduction of chemical medications, the study of chemistry,

and more extensive surgery by those involved with Arabic medicine.

Renaissance and industrial revolution

The first medical school was started in Salerno, Italy, in the thirteenth century.

The Renaissance led to revolutionary changes in the theory of medicine. In the

fifteenth century, Vesalius repudiated Galen’s incorrect anatomical theories and

Paracelsus advocated the use of chemical instead of herbal medicines. In the six-

teenth century, the microscope was developed by Janssen and Galileo and pop-

ularized by Leeuwenhoek and Hooke. In the seventeenth century, the theory of
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the circulation of blood was proposed by Harvey and scientists learned about the

actual functioning of the human body. The eighteenth century saw the devel-

opment of modern medicines with the isolation of foxglove to make digitalis by

Withering, the use of inoculation against smallpox by Jenner, and the postulation

of the existence of vitamin C and antiscorbutic factor by Lind.

During the eighteenth century, medical theories were undergoing rapid and

chaotic change. In Scotland, Brown theorized that health represented the con-

flict between strong and weak forces in the body. He treated imbalances with

either opium or alcohol. Cullen preached a strict following of the medical ortho-

doxy of the time and recommended complex prescriptions to treat illness. Hah-

nemann was disturbed by the use of strong chemicals to cure, and developed the

theory of homeopathy. Based upon the theory that like cures like, he prescribed

medications in doses that were so minute that current atomic analysis cannot

find even one molecule of the original substance in the solution. Benjamin Rush,

the foremost physician of the century, was a strong proponent of bloodletting, a

popular therapy of the time. He has the distinction of being the first physician in

America who was involved in a malpractice suit, which is a whole other story. He

won the case.

The birth of statistics

Prehistoric peoples had no concept of probability, and the first mention is in

the Talmud, written between AD 300 and 400. This alluded to the probability

of two events being the product of the probability of each, but without explic-

itly using mathematical calculations. Among the ancients, the Greeks believed

that the gods decided all life and, therefore, that probability did not enter into

issues of daily life. The Greek creation myth involved a game of dice between

Zeus, Poseidon, and Hades, but the Greeks themselves turned to oracles and the

stars instead.

The use of Roman numerals made any kind of complex calculation impossible.

Numbers as we know them today, using the decimal system and the zero, prob-

ably originated around AD 500 in the Hindu culture of India. This was probably

the biggest step toward being able to manipulate probabilities and determine

statistics. The Arabic mathematician Khowarizmi defined rules for adding, sub-

tracting, multiplying, and dividing in about AD 800. In 1202, the book of the aba-

cus, Liber abaci by Leonardo Pisano (more commonly known as Fibonacci), first

introduced the numbers discovered by Arabic cultures to European civilization.

In 1494, Luca Paccioli defined basic principles of algebra and multiplication

tables up to 60 × 60 in his book Summa de arithmetica, geometria, proportioni e

proportionalita. He posed the first serious statistical problem of two men play-

ing a game called balla, which is to end when one of them has won six rounds.
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However, when they stop playing A has only won five rounds and B three. How

should they divide the wager? It would be another 200 years before this problem

was solved.

In 1545, Girolamo Cardano wrote the books Ars magna (The Great Art) and

Liber de ludo aleae (Book on Games of Chance). This was the first attempt to use

mathematics to describe statistics and probability, and he accurately described

the probabilities of throwing various numbers with dice. Galileo expanded on

this by calculating probabilities using two dice. In 1619, a puritan minister

named Thomas Gataker, expounded on the meaning of probability by noting

that it was natural laws and not divine providence that governed these outcomes.

Other famous scientists of the seventeenth century included Huygens, Leib-

niz, and Englishman John Graunt, who all wrote further on norms of statistics,

including the relation of personal choice and judgment to statistical probability.

In 1662, a group of Parisian monks at the Port Royal Monastery wrote an early

text on statistics and were the first to use the word probability. Wondering why

people were afraid of lightning even though the probability of being struck is very

small, they stated that the “fear of harm ought to be proportional not merely to

the gravity of the harm but also to the probability of the event.”1 This linked the

severity, perception, and probability of the outcome of the risk for the person

involved.

In 1660, Blaise Pascal refined the theories of statistics and, with help from

Pierre de Fermat, solved the balla problem of Paccioli. All of these theories paved

the way for modern statistics, which essentially began with the use of actuar-

ial tables to determine insurance for merchant ships. Edward Lloyd opened his

coffee shop in London at which merchant ship captains used to gather, trade

their experiences, and announce the arrival of ships from various parts of the

world. One hundred years later, this endeavour led to the foundation of Lloyds of

London, which began its business of naval insurance in the 1770s.

John Graunt, a British merchant, categorized the cause of death of the London

populace using statistical sampling, noting that “considering that it is esteemed

an even lay, whether any man lived 10 years longer, I supposed it was the same,

that one of any 10 might die within one year.” He also noted the reason for doing

this: to “set down how many died of each [notorious disease] . . . those persons

may better understand the hazard they are in.”2 Graunt’s statistics can be com-

pared to recent data from the United States in 1993 in Table 1.2. As a result of

this work, the government of the United Kingdom set up the first government-

sponsored statistical sampling service.

With the rise in statistical thinking, Jacob Bernoulli devised the law of large

numbers, which stated that as the number of observations increased the actual

1 P. L. Bernstein. Against the Gods: the Remarkable Story of Risk. New York, NY: Wiley, 1998. p. 71.
2 Ibid., p. 82.
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Table 1.2. Probability of survival:

1660 and 1993

Percentage survival

to each age

Age, y 1660 1993

0 100% 100%

26 25% 98%

46 10% 95%

76 1% 70%

frequency of an event would approach its theoretical probability. This is the basis

of all modern statistical inference. In the 1730s, Jacob’s nephew Daniel Bernoulli

developed the idea of utility as the mathematical combination of the quantity

and perception of risk.

Modern era

Nineteenth century to today

The nineteenth century saw the development of Claude Bernard’s modern phys-

iology, William Morton’s anesthesia, Joseph Lister and Ignatz Semmelweis’ anti-

sepsis, Wilhelm Roentgen’s x-rays, Louis Pasteur and Robert Koch’s germ the-

ory, and Sigmund Freud’s psychiatric theory. Changes in medical practice were

illustrated by the empirical analysis done in 1838 by Pierre Charles Alexandre

Louis. He showed that blood-letting therapy for typhoid fever was associated

with increased mortality and changed this practice as a result. The growth of san-

itary engineering and public health preceded this in the seventeenth and eigh-

teenth centuries. This improvement had the greatest impact on human health

through improved water supplies, waste removal, and living and working con-

ditions. John Snow performed the first recorded modern epidemiological study

in 1854 during a cholera epidemic in London. He found that a particular water

pump located on Broad Street was the source of the epidemic and was being con-

taminated by sewage dumped into the River Thames. At the same time, Florence

Nightingale was using statistical graphs to show the need to improve sanitation

and hygiene in general for the British troops during the Crimean War. This type

of data gathering in medicine was rare up to that time.

The twentieth century saw an explosion of medical technology. Specifics

include the discovery of modern medicines by Paul Erlich, antibiotics (specif-

ically sulfanilamide by Domagk and penicillin by Fleming), and modern
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chemotherapeutic agents to treat ancient scourges such as diabetes (specifically

the discovery of insulin by Banting, Best, and McLeod), cancer, and hyperten-

sion. The modern era of surgery has led to open-heart surgery, joint replacement,

and organ transplantation. Advances in medicine continue at an ever-increasing

rate.

Why weren’t physicians using statistics in medicine? Before the middle of the

twentieth century, advances in medicine and conclusions about human illness

occurred mainly through the study of anatomy and physiology. The case study

or case series was a common way to prove that a treatment was beneficial or

that a certain etiology was the cause of an illness. The use of statistical sampling

techniques took a while to develop. There were intense battles between those

physicians who wanted to use statistical sampling and those who believed in the

power of inductive reasoning from physiological experiments.

This argument between inductive reasoning and statistical sampling contin-

ued into the nineteenth century. Pierre Simon Laplace (1814) put forward the

idea that essentially all knowledge was uncertain and, therefore, probabilistic in

nature. The work of Pierre Charles Alexandre Louis on typhoid and diphtheria

(1838) debunking the theory of bleeding used probabilistic principles. On the

other side was Francois Double, who felt that treatment of the individual was

more important than knowing what happens to groups of patients. The art of

medicine was defined as deductions from experience and induction from phys-

iologic mechanisms. These were felt to be more important than the “calculus

of probability.” This debate continued for over 100 years in France, Germany,

Britain, and the United States.

The rise of modern biomedical research

Most research done before the twentieth century was more anecdotal than sys-

tematic, consisting of descriptions of patients or pathological findings. James

Lind, a Royal Navy surgeon, carried out the first recorded clinical trial in 1747.

In looking for a cure for scurvy, he fed sailors afflicted with scurvy six different

treatments and determined that a factor in limes and oranges cured the disease

while other foods did not. His study was not blinded, but as a result, 40 years

later limes were stocked on all ships of the Royal Navy, and scurvy among sailors

became a problem of the past.

Research studies of physiology and other basic science research topics began

to appear in large numbers in the nineteenth century. By the start of the twenti-

eth century, medicine had moved from the empirical observation of cases to the

scientific application of basic sciences to determine the best therapies and cat-

alog diagnoses. Although there were some epidemiological studies that looked

at populations, it was uncommon to have any kind of longitudinal study of large
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groups of patients. There was a 200-year gap from Lind’s studies before the con-

trolled clinical trial became the standard study for new medical innovations. It

was only in the 1950s that the randomized clinical trial became the standard for

excellent research.

There are three more British men who made great contributions to the early

development of the current movement in EBM. Sir Ronald Fisher was the father

of statistics. Beginning in the early 1900s, he developed the basis for most the-

ories of modern statistical testing. Austin Bradford Hill was another statistician,

who, in 1937, published a series of articles in the Lancet on the use of statisti-

cal methodology in medical research. In 1947, he published a simple commen-

tary in the British Medical Journal calling for the introduction of statistics in the

medical curriculum.3 He called for physicians to be well versed in basic statistics

and research study design in order to avoid the biases that were then so preva-

lent in what passed for medical research. Bradford Hill went on to direct the first

true modern randomized clinical trial. He showed that streptomycin therapy was

superior to standard therapy for the treatment of pulmonary tuberculosis.

Finally, Archie Cochrane was particularly important in the development of the

current movement to perform systematic reviews of medical topics. He was a

British general practitioner who did a lot of epidemiological work on respira-

tory diseases. In the late 1970s, he published an epic work on the evidence for

medical therapies in perinatal care. This was the first quality-rated systematic

review of the literature on a particular topic in medicine. His book Effective-

ness and Efficiency set out a rational argument for studying and applying EBM

to the clinical situation.4 Subsequently, groups working on systematic reviews

spread through the United Kingdom and now form a network in cyberspace

throughout the world. In his honor, this network has been named the Cochrane

Collaboration.

As Santayana said, it is important to learn from history so as not to repeat

the mistakes that civilization has made in the past. The improper application

of tainted evidence has resulted in poor medicine and increased cost without

improving on human suffering. This book will give physicians the tools to evalu-

ate the medical literature and pave the way for improved health for all. In the next

chapter, we will begin where we left off in our history of medicine and statistics

and enter the current era of evidence-based medicine.

3 A. Bradford Hill. Statistics in the medical curriculum? Br. Med. J. 1947; ii: 366.
4 A. L. Cochrane. Effectiveness & Efficiency: Random Reflections on Health Services. London: Royal Soci-

ety of Medicine, 1971.
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What is evidence-based medicine?

The most savage controversies are those about matters as to which there is no good

evidence either way.

Bertrand Russell (1872–1970)

Learning objectives

In this chapter, you will learn:
� why you need to study evidence-based medicine
� the elements of evidence-based medicine
� how a good clinical question is constructed

The importance of evidence

In the 1980s, there were several studies looking at the utilization of various surg-

eries in the northeastern United States. These studies showed that there were

large variations in the amount of care delivered to similar populations. They

found variations in rates of prostate surgery and hysterectomy of up to 300%

between similar counties. The variation rate in the performance of cataract

surgery was 2000%. The researchers concluded that physicians were using very

different standards to decide which patients required surgery. Why were physi-

cians using such different rules? Weren’t they all reading the same textbooks and

journal articles? In that case, shouldn’t their practice be more uniform?

“Daily, clinicians confront questions about the interpretation of diagnostic

tests, the harm associated with exposure to an agent, the prognosis of dis-

ease in a specific patient, the effectiveness of a preventive or therapeutic

intervention, and the costs and clinical consequences of many other clini-

cal decisions. Both clinicians and policy makers need to know whether the

9
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Best evidence 
Clinical situation 

Clinical experience 

Patient values 

Fig. 2.1 The four elements to
evidence-based health care:
best available evidence, clinical
situation, patient values and
preferences, all bound together
by clinical experience.

conclusions of a systematic review are valid, and whether recommendations

in practice guidelines are sound.”1

This is where Evidence-Based Medicine comes in.

Evidence-based medicine (EBM) has been defined as “the conscien-

tious, explicit, and judicious use of the best evidence in making decisions

about the care of individual patients” (http://ebm.mcmaster.ca/documents/

how to teach ebcp workshop brochure 2009.pdf).2 The EBM stems from the

physician’s need to have proven therapies to offer patients. This is a paradigm

shift that represents both a breakdown of the traditional hierarchical system of

medical practice and the acceptance of the scientific method as the governing

force in advancing the field of medicine. Simply stated, EBM is applying the best

evidence that can be found in the medical literature to the patient with a medi-

cal problem, resulting in the best possible care for each patient. Evidence-based

clinical practice (EBCP) is a definition of an approach to medical practice in

which you the clinician are able to evaluate the strength of that evidence and

use it in the best clinical practice for the patient sitting in your office.

Evidence-based medicine can be seen as a combination of three skills by which

practitioners become aware of, critically analyze, and then apply the best avail-

able evidence from the medical research literature for the care of individual

patients. The first of these is Information Mastery (IM), the skill of searching

the medical literature in the most efficient manner to find the best available evi-

dence. This skill will be the focus of Chapter 5. The majority of the chapters in this

book will focus on the skill of Critical Appraisal (CA) of the literature. This set of

skills will help you to develop critical thinking about the content of the medical

literature. Finally, the results of the information found and critically appraised

must be applied to patient care in the process of Knowledge Translation (KT),

which is the subject of Chapter 17. The application of research results is a blend

of the available evidence, the patient’s preferences, the clinical situation, and the

practitioner’s clinical experience (Fig. 2.1).

1 McMaster University Department of Clinical Epidemiology and Biostatistics. Evidence-based clinical
practice (EBCP) course, 1999.

2 D. L. Sackett, W. M. Rosenberg, J. A. Gray, R. B. Haynes & W. S. Richardson. Evidence based medicine:
what it is and what it isn’t. BMJ 1996; 312: 71–72.
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Medical decision making: expert vs. evidence-based

Because of the scientific basis of medical research, the essence of evidence-based

medical practice has been around for centuries. Its explicit application as EBM

to problem solving in clinical medicine began simultaneously in the late 1980s at

McMaster University in Canada and at Oxford University in the United Kingdom.

In response to the high variability of medical practice and increasing costs and

complexity of medical care, systems were needed to define the best and, if pos-

sible, the cheapest treatments. Individuals trained in both clinical medicine and

epidemiology collaborated to develop strategies to assist in the critical appraisal

of clinical data from the biomedical journals.

In the past, a physician faced with a clinical predicament would turn to an

expert physician for the definitive answer to the problem. This could take the

form of an informal discussion on rounds with the senior attending (or consul-

tant) physician, or the referral of a patient to a specialist. The answer would come

from the more experienced and usually older physician, and would be taken

at face value by the younger and more inexperienced physician. That clinical

answer was usually based upon the many years of experience of the older physi-

cian, but was not necessarily ever empirically tested. Evidence-based medicine

has changed the culture of health-care delivery by encouraging the rapid and

transparent translation of the latest scientific knowledge to improve patient care.

This new knowledge translation begins at the time of its discovery until its gen-

eral acceptance in the care of patients with clinical problems for which that

knowledge is valid, relevant, and crucial.

Health-care workers will practice EBM on several levels. Most practitioners

have to keep up by regularly reading relevant scientific journals and need to

decide whether to accept what they read. This requires having a critical approach

to the science presented in the literature, a process called “doing” EBM and the

activity is done by “doers.” Some of these “doers” are also the people who create

critically appraised sources of evidence and systematic reviews or meta-analyses.

Most health-care workers will spend a greater part of their time functioning as

“users” of the medical evidence. They will have the skills to search for the best

available evidence in the most efficient way. They will be good at looking for pre-

appraised sources of evidence that will help them care for their patients in the

most effective way. Finally, there is one last group of health-care workers that

can be called the “replicators,” who simply accept the word of experts about the

best available evidence for care of their patients. The goal of this book is to teach

you, the clinician, to be a “doer.”

With the rise of EBM, various groups have developed ways to package evidence

to make it more useful to individual practitioners. These sources allow health-

care professionals to practice EBM in a more efficient manner at the point of
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patient care. Information Mastery will help you to expedite your searches for

information when needed during the patient care process. Ideally, you’d like

to find and use critical evaluations of clinically important questions done by

authors other than those who wrote the study. Various online databases around

the world serve as repositories for these summaries of evidence. To date, most

of the major centers for the dissemination of these have been in the United

Kingdom.

The National Health Service sponsors the Centre for Evidence-Based Medicine

based at Oxford University. This center is the home of various EBM resources,

one in particular is called the Bandolier. Bandolier is a summary of recent inter-

esting evidence evaluated by the center and is published monthly. It is found

at www.jr2.ox.ac.uk/bandolier and is a wonderful blend of interesting medical

information and uniquely British humor in an easy-to-read format. It is excellent

for student use and free to browse. The center also has various other free and eas-

ily accessible features on its main site found at www.cebm.net. Other useful EBM

websites are listed in the Bibliography and additional IM sites, and processes will

be discussed in Chapter 6.

Alphabet soup of critical appraisal of the medical literature

Several commonly used forms of critical appraisal are the Critically Appraised

Topic (CAT), Disease Oriented Evidence (DOE), the Patient-Oriented Evidence

that Matters (POEM), and the Journal Club Bank (JCB). The CAT format is devel-

oped by the Centre for Evidence-Based Medicine, and many CATs are available

online at the center’s website. They use the User’s Guide to the Medical Literature

format (see Bibliography) to catalog reviews of clinical studies. In a similar for-

mat DOEs and POEMs are developed for use by family physicians by the Ameri-

can Academy of Family Practice. The JCB is the format for critical appraisal used

by the Evidence-Based Interest Group of the American College of Physicians

(ACP) and the Evidence-Based Emergency Medicine group (www.ebem.org)

working through the New York Academy of Medicine. Other organizations are

beginning to use these formats to disseminate critical reviews on the World Wide

Web.

A DOE is a critical review of a study that shows that there is a change in a par-

ticular disease marker when a particular intervention is applied. However, this

disease-specific outcome may not make a difference to an individual patient.

For example, it is clear that statins lower cholesterol. However, it is not necessar-

ily true that the same drugs reduce mortality from heart disease. This is where

POEMs come in. A POEM would be that the studies for some of these statin

drugs have shown the correlation between statin use and decreased mortality

from heart disease, an outcome that matters to the patient rather than simply
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a disease-oriented outcome. Another example is the prostate-specific antigen

(PSA) test for detecting prostate cancer. There is no question that the test can

detect prostate cancer most of the time at a stage that is earlier than would be

detected by a physician examination, so it is a positive DOE. However, it has yet

to be shown that early detection using the PSA results in a longer life span or an

improved quality of life; thus, it is not a positive POEM.

Other compiled sources of evidence are the American Society of Internal

Medicine and the American College of Physicians’ ACP Journal Club, published

by the journal Annals of Internal Medicine, and the Cochrane Library, sponsored

by the National Health Service in the United Kingdom. Both are available by sub-

scription. The next step for the future use of EBM in the medical decision-making

process is making the evidence easily available at the patient’s bedside. This has

been tried using an “evidence cart” containing a computer loaded with evidence-

based resources during rounds.3 Currently, personal digital assistants (PDAs) and

other handheld devices with evidence-based databases downloaded onto them

are being used at the bedside to fulfil this mission.

How to put EBM into use

For many physicians, the most complex part of the process of EBM is the criti-

cal appraisal of the medical literature. Part of the perceived complexity with this

process is a fear of statistics and consequent lack of understanding of statisti-

cal processes. The book will teach this in several steps. Each step will be rein-

forced on the CD-ROM with a series of practice problems and self-assessment

learning exercises (SALEs) in which examples from the medical literature will

be presented. This will also help you develop your skills of formulating clinical

questions, and in time, you will become a competent evaluator of the medical

literature. This skill will serve you well for the rest of your career.

The clinical question: background vs. foreground

You can classify clinical questions into two basic types. Background questions

are those which have been answered in the past and are now part of the “fiber of

medicine.” Answers to these questions are usually found in medical textbooks.

The learner must beware, since the answers to these questions may be inaccurate

and not based upon any credible evidence. Typical background questions relate

to the nature of a disease or the usual cause, diagnosis, or treatment of illnesses.

3 D. L. Sackett & S. E. Straus. Finding and applying evidence during clinical rounds: the “evidence cart”.
JAMA 1998; 280: 1336–1338.
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% 

Years of experience 

Foreground 

Background 

Fig. 2.2 The relationship
between foreground and
background questions and the
clinician’s experience.

Foreground questions are those usually found at the cutting edge of medicine.

They are questions about the most recent therapies, diagnostic tests, or current

theories of illness causation. These are the questions that are the heart of the

practice of EBM. A four-part clinical question called a PICO question is designed

to easily search for this evidence.

The determination of whether a question is foreground or background

depends upon your level of experience. The experienced clinician will have very

few background questions that need to be researched. On the other hand, the

novice has so many unanswered questions that most are of a background nature.

The graph in Fig. 2.2 shows the relationship between foreground and background

questions and the clinician’s experience.

When do you want to get the most current evidence? How often is access to

EBM needed each day for the average clinician? Most physician work is based

upon knowledge gained by answering background questions. There are some

situations for which current evidence is more helpful. These include questions

that are going to make a major impact for your patient. Will the disease kill them,

and if so, how long will it take and what will their death be like? These are typical

questions that a cancer patient would ask. Other reasons for searching for the

best current evidence include problems that recur commonly in your practice,

those in which you are especially interested, or those for which answers are eas-

ily found. The case in which you are confronted with a patient whose problem

you cannot solve and for which there is no good background information would

lead you to search for the most current foreground evidence.

Steps in practicing EBM

There are six steps in the complete process of EBM. It is best to start learning

EBM by learning and practicing these steps. As you become more familiar with

the process, you can start taking short cuts and limiting the steps. Using a patient

scenario as a starting point, the first step is recognizing that there is an educa-

tional need for more current information. This step leads to the “educational

prescription,”4 which can be prepared by the learner or given to them by the

teacher. The steps then taken are as follows:

(1) Craft a clinical question. Often called the PICO or PICOT formulation, this is

the most important step since it sets the stage for a successful answer to the

clinical predicament. It includes four or sometimes five parts:
� the patient
� the intervention
� the comparison

4 Based on: W. S. Richardson. Educational prescription: the five elements. University of Rochester.
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� the outcome of interest
� the time frame

(2) Search the medical literature for those studies that are most likely to give

the best evidence. This step requires good searching skills using medical

informatics.

(3) Find the study that is most able to answer this question. Determine the mag-

nitude and precision of the final results.

(4) Perform a critical appraisal of the study to determine the validity of the

results. Look for sources of bias that may represent a fatal flaw in the study.

(5) Determine how the results will help you in caring for your patient.

(6) Finally, you should evaluate the results of applying the evidence to your

patient or patient population.

The clinical question: structure of the question

The first and most critical part of the EBM process is to ask the right question.

We are all familiar with the computer analogy, “garbage in, garbage out.” The

clinical question (or query) should have a defined structure. The PICO model has

become the standard for stating a searchable question. A good question involves

Patient, Intervention, Comparison, and Outcome. A fifth element, Time, is often

added to this list. These must be clearly stated in order to search the question

accurately.

The Patient refers to the population group to which you want to apply the

information. This is the patient sitting in your office, clinic, or surgery. If

you are too specific with the population, you will have trouble finding any

evidence for that person. Therefore, you must initially be general in your

specification of this group. If your patient is a middle-aged man with hyper-

tension, there may be many studies of the current best treatment of hyper-

tension in this group. However, if you had a middle-aged African-American

woman in front of you, you may not find studies that are limited to this pop-

ulation. In this case, asking about treatment of hypertension in general will

turn up the most evidence. You can then look through these studies to find

those applicable to that patient.

The Intervention is the therapy, etiology, or diagnostic test that you are inter-

ested in applying to your patient. A therapy could simply be a new drug. If

you are answering a question about the causes of diseases, the exposure to

a potentially harmful process, or risk factors leading to premature mortality,

you will be looking for etiology. We will discuss studies of diagnostic tests in

more detail in Chapters 20–26.

The Comparison is the intervention (therapy, etiology, or diagnostic test)

against which the intervention is measured. A reasonable comparison group
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is one that would be commonly encountered in clinical practice. Testing a

new drug against one that is never used in current practice is not going to

help the practitioner. The comparison group ought to be a real alternative

and not just a “straw man.” Currently, the use of placebo for comparison

in many studies is no longer considered ethical since there are acceptable

treatments for the problem being studied.

The Outcome is the endpoint of interest to you or your patient. The most

important outcomes are the ones that matter to the patient. These are most

often death, disability, or full recovery. Surprisingly, not all outcomes are

important to the patient. One specific type of outcome is referred to as

the surrogate outcome. This refers to disease markers that ought to cause

changes in the disease process. However, the expected changes to the dis-

ease process may not actually happen. Studies of heart-attack patients done

in the 1960s showed that some died suddenly from irregular heart rhythms.

These patients were identified before death by the presence of prema-

ture ventricular contractions (PVCs) on the electrocardiogram. Physicians

thereafter began treating all patients with heart attacks with drugs to sup-

press PVCs and noted that there was a lower rate of death of patients with

PVCs. Physicians thought this would reduce deaths in all patients with heart

attacks, but a large study found that the death rate actually increased when

all patients were given these drugs. While they prevented death in a small

number of patients who had PVCs, they increased death rates in a majority

of patients.

The Time relates to the period over which the intervention is being studied.

This element is usually omitted from the searching process. However, it may

be considered when deciding if the study was carried out for a sufficient

amount of time.

Putting EBM into context in the current practice of medicine: the
science and art of medicine

Evidence-based medicine should be part of the everyday practice of all physi-

cians. It has been only slightly more than 50 years since statistics was first

felt to be an important part of the medical curriculum. In a 1947 commentary

in the British Medical Journal entitled “Statistics in the medical curriculum?”,5

Sir Austin Bradford Hill lamented that most physicians would interpret this as

“What! Statistics in the medical curriculum?” We are now in a more enlightened

era. We recognize the need for physicians to be able to understand the nature

of statistical processes and to be able to interpret these for their patients. This

5 A. Bradford Hill. Statistics in the medical curriculum? Br. Med. J. 1947; ii: 366.
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goes to the heart of the science and art of medicine. The science is in the medical

literature and in the ability of the clinician to interpret that literature. Students

learn the clinical and basic sciences that are the foundation of medicine during

the first 2 years of medical school. These sciences are the building blocks for a

physician’s career. The learning doesn’t stop there. Having a critical understand-

ing of new advances in medicine by using EBM is an important part of medical

practice.

The art of medicine is in determining to which patients the literature will apply

and then communicating the results to the patients. Students learn to perform an

adequate history and physical examination of patients to extract the maximum

amount of evidence to use for good medical decision making. Students must also

learn to give patients information about their illnesses and empower them to

act appropriately to effect a cure or control and moderate the illness. Finally, as

pracitioners, physicians must be able to know when to apply the results of the

most current literature to patients, and when other approaches should be used

for their patients.

Although most practicing physicians these days believe that they practice EBM

all the time, the observed variation in practice suggests otherwise. Evidence-

based medicine can be viewed as an attempt to standardize the practice of

medicine, but at the same time, it is not “cookbook” medicine. The application

of EBM may suggest the best approach to a specific clinical problem. However, it

is still up to the clinician to determine whether the individual patient will benefit

from that approach. If your patient is very different from those for whom there

is evidence, you may be justified in taking another approach to solve the prob-

lem. These decisions ought to be based upon sound clinical evidence, scientific

knowledge, and pathophysiological information.

Evidence-based medicine is not cookbook medicine. Accused of being “micro-

fascist” by some, EBM can be used to create clinical practice guidelines for a

common medical problem that has led to a large variation in practice and has

several best practices that ought to be standardized. Evidence-based medicine

is not a way for managed care (or anyone else) to simply save money. Evidence-

based practices can be more or less expensive than current practices, but they

should be better.

Evidence-based medicine is the application of good science to the practice of

health care, leading to reproducibility and transparency in the science support-

ing health-care practice. Evidence-based medicine is the way to maximize the

benefits of science in the practice of health care.

Finally, Fig. 2.3 is a reprint from the BMJ (the journal formerly known as the

British Medical Journal) and is a humorous look at alternatives to EBM.
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Fig. 2.3 Isaacs, D. & Fitzgerald, D. Seven alternatives to evidence based medicine. BMJ 1999;
319: 1618. Reprinted with permission.
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Causation

Heavier than air flying machines are impossible.

Lord Kelvin, President of the Royal Society, 1895

Learning objectives

In this chapter you will learn:
� cause-and-effect relationships
� Koch’s principles
� the concept of contributory cause
� the relationship of the clinical question to the type of study

The ultimate goal of medical research is to increase our knowledge about the

interaction between a particular agent (cause) and the health or disease in our

patient (effect). Causation is the relationship between an exposure or cause and

an outcome or effect such that the exposure resulted in the outcome. However,

a strong association between an exposure and outcome may not be equivalent

to proving a cause-and-effect relationship. In this chapter, we will discuss the

theories of causation. By the end of this chapter, you will be able to determine

the type of causation in a study.

Cause-and-effect relationships

Most biomedical research studies try to prove a relationship between a partic-

ular cause and a specified effect. The cause may be a risk factor resulting in a

disease, an exposure, a diagnostic test, or a treatment helping alleviate suffer-

ing. The effect is a particular outcome that we want to measure. The stronger the

design of a study, the more likely it is to prove a relationship between cause and

effect. Not all study designs are capable of proving a cause-and-effect relation-

ship, and these study designs will be discussed in a later chapter.

19
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The cause is also called the independent variable and is set by the researcher

or the environment. In some studies relating to the prognosis of disease, time is

the independent variable. The effect is called the dependent variable. It is depen-

dent upon the action of the independent variable. It can be an outcome such as

death or survival, the degree of improvement on a clinical score or the detection

of disease by a diagnostic test. You ought to be able to identify the cause and

effect easily in the study you are evaluating if the structure of the study is of good

quality. If not, there are problems with the study design.

Types of causation

It’s not always easy to establish a link between a disease and its suspected cause.

For example, we think that hyperlipidemia (elevated levels of lipids or fats in the

blood) is a cause of cardiovascular disease. But how can we be sure that this is

a cause and not just a related factor? Perhaps hyperlipidemia is caused by inac-

tivity or a sedentary lifestyle and the lack of exercise actually causes both cardio-

vascular disease and hyperlipidemia.

This may even be true with acute infections. Streptococcus viridans is a bac-

terium that can cause infection of the heart valves. However, it takes more than

the presence of the bacterium in the blood to cause the infection. We cannot

say that the presence of the bacterium in the blood is sufficient to cause this

infection. There must be other factors such as local deformity of the valve or

immunocompromise that make the valve prone to infection.

In a more mundane example, it has been noted that the more churches a town

has, the more robberies occur. Does this mean that clergy are robbing people?

No – it simply means that a third variable, population, explains the number both

of churches and of muggings. The number or churches is a surrogate marker

for population, the true cause. Likewise, we know that Streptococcus viridans is a

cause of subacute endocarditis. But it is neither the only cause, nor does it always

lead to the result of an infected heart valve. How are we to be sure then, of cause-

and-effect?

In medical science, there are two types of cause-and-effect relationships:

Koch’s postulates and contributory cause. Robert Koch, a nineteenth-century

microbiologist, developed his famous postulates as criteria to determine if a cer-

tain microbiologic agent was the cause of an illness. Acute infectious diseases

were the scourge of mankind before the mid twentieth century. As a result of bet-

ter public health measures such as water treatment and sewage disposal, and

antibiotics, these are less of a problem today. Dr. Koch studied the anthrax bacil-

lus as a cause of habitual abortion in cattle. He created the following postulates in

an attempt to determine the relationship between the agent causing the illness

and the illness itself.
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Koch’s postulates stated four basic steps to prove causation. First, the infec-

tious agent must be found in all cases of the illness. Second, when found it must

be able to be isolated from the diseased host and grown in a pure culture. Next,

the agent from the culture when introduced into a healthy host must cause the

illness. Finally, the infectious agent must again be recovered from the new host

and grown in a pure culture. This entire cascade must be met in order to prove

causation.

While this model may work well in the study of acute infectious diseases, most

modern illnesses are chronic and degenerative in nature. Illnesses such as dia-

betes, heart disease, and cancer tend to be multifactorial in their etiology and

usually have multiple treatments that can alleviate the illness. For these diseases,

it is virtually impossible to pinpoint a single cause or the effect of a single treat-

ment from a single research study. Stronger studies of these diseases are more

likely to point to useful clinical information relating one particular cause with an

effect on the illness.

Applying contributory cause helps prove causation in these complex and mul-

tifactorial diseases. The requirements for proof are less stringent than Koch’s

postulates. However, since the disease-related factors are multifactorial, it is

more difficult to prove that any one factor is decisive in either causing or cur-

ing the disease. Contributory cause recognizes that there is a large gray zone in

which some of the many causes and treatments of a disease overlap.

First, the cause and effect must be seen together more often than would be

expected to occur by chance alone. This means that the cause and effect are asso-

ciated more often than would be expected by chance if the concurrence of those

two factors was a random event. Second, the cause must always be noted to pre-

cede the effect. If there were situations for which the effect was noted before the

occurrence of the cause, that would negate this relationship in time. Finally and

ideally, it should be shown that changing the cause changes the effect. This last

factor is the most difficult to prove and requires an intervention study be per-

formed. Overall, contributory cause to prove the nature of a chronic and multi-

factorial illness must minimally show association and temporality. However, to

strengthen the causation, the change of the effect by a changing cause must also

be shown. Table 3.1 compares Koch’s postulates and contributory cause.

Causation and the clinical question

The two main components of causation are also parts of the clinical question.

Since the clinical question is the first step in EBM, it is useful to put the clini-

cal question into the context of causation. The intervention is the cause that is

being investigated. In most studies, this is compared to another cause, named

the comparison. The outcome of interest is the effect. You will learn to use good
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Table 3.1. Koch’s postulates vs. contributory cause

Koch’s postulates (most stringent)

(1) Sufficient: if the agent (cause) is present, the disease (effect) is present

(2) Necessary: if the agent (cause) is absent, the disease (effect) is absent

(3) Specific: the agent (cause) is associated with only one disease (effect)

Contributory cause (most clinically relevant)

(1) Not all patients with the particular cause will develop the effect (disease): the

cause is not sufficient

(2) Not all patients with the specific effect (disease) were exposed to the particular

cause: the cause is not necessary

(3) The cause may be associated with several diseases (effects) and is therefore

non-specific

Table 3.2. Cause and effect relationship for most common types of studies

Type of study Cause Effect

Etiology, harm, or risk Medication, environmental,

or genetic agent

Disease, complication, or

mortality

Therapy or prevention Medication, other therapy, or

preventive modality

Improvement of symptoms

or mortality

Prognosis Disease or therapy Time to outcome

Diagnosis Diagnostic test Accuracy of diagnosis

searching techniques so that you find the study that answers this query in the

best manner possible. The intervention, comparison, and outcome all relate to

the patient population being studied.

Primary clinical research studies can be roughly divided into four main types,

determined by the elements of cause and effect. They are studies of etiology (or

harm or risk), therapy, prognosis, and diagnosis. There are numerous secondary

study types that will be covered later in the book. The nomenclature used for

describing the cause and effect in these studies can be somewhat confusing and

is shown in Table 3.2.
� Studies of etiology, harm, or risk compare groups of patients that do or don’t

have the outcome of interest and look to see if they do or don’t have the risk

factor. They can also go in the other direction, starting from the presence or

absence of the risk factor and finding out who went on to have or not have the

outcome. Also, the direction of the study can be either forward or backward

in time. Useful ways of looking at this category of studies is to look for cohort,
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case–control, or cross-sectional studies. These will be defined in more detail

in Chapter 6. In studies of etiology, the risk factor for a disease is the cause and

the presence of disease is the outcome. In other studies, the cause could be a

therapy for a disease and the effect could be the improvement in disease.
� Studies of therapy or prevention tend to be randomized clinical trials, in which

some patients get the therapy or preventive modality being tested and others

do not. The outcome is compared between the two groups.
� Studies of prognosis look at disease progression over time. They can be either

cohort studies or randomized clinical trials. There are special elements to

studies of prognosis that will be discussed in Chapter 33.
� Studies of diagnosis are unique in that we are looking for some diagnostic

maneuver that will separate those with a disease from those who may have a

similar presentation and yet do not have the disease. Usually these are cohort,

case–control, or cross-sectional studies. These will be discussed in more detail

in Chapter 28.

There is a relationship between the clinical question and the study type. In

general the clinical question can be written as: among patients with a particular

disease (population), does the presence of a therapy or risk factor (intervention),

compared with no presence of the therapy or risk factor (comparison), change

the probability of an adverse event (outcome)? For a study of risk or harm, we

can write this as: among patients with a disease, does the presence of a risk fac-

tor, compared with the absence of a risk factor, worsen the outcome? We can

also write it as: among patients with exposure or non-exposure to a risk factor,

are they more likely to have the outcome of interest? For therapy, the question

is: among patients with a disease, does the presence of an exposure to therapy,

compared with the use of placebo or standard therapy, improve the outcome?

The form of the question can help you perform better searches, as we will see in

Chapter 5. Through regular practice, you will learn to write better questions and

in turn, find better answers.
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The medical literature: an overview

It is astonishing with how little reading a doctor can practice medicine, but it is not

astonishing how badly he may do it.

Sir William Osler (1849–1919)

Learning objectives

In this chapter you will learn:
� the scope and function of the articles you will find in the medical literature
� the function of the main parts of a research article

The medical literature is the source of most of our current information on the

best medical practices. This literature consists of many types of articles, the most

important of which for our purposes are research studies. In order to evaluate the

results of a research study, you must understand what clinical research articles

are designed to do and what they are capable of accomplishing. Each part of a

study contributes to the final results of the published research. To be an intelli-

gent reader of the medical literature, you then must understand which types of

articles will provide the information you are seeking.

Where is clinical research found?

In your medical career, you will read and perhaps also write, many research

papers. All medical specialties have at least one primary peer-reviewed journal

and most have several. There are also many general-interest medical journals.

One important observation you will make is that not all journals are created

equal. For example, peer-reviewed journals are “better” than non–peer-reviewed

journals since their articles are more carefully screened and contain fewer “prob-

lems.” Many of these peer-reviewed journals have a statistician on staff to ensure

that the statistical tests used are correct. This is just one example of differences

between journals and journal quality.

24
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The New England Journal of Medicine and the Journal of the American Medi-

cal Association (JAMA) are the most widely read and prestigious general medical

journals in the United States. The Lancet and the British Medical Journal (BMJ)

are the other top English-language journals in the world. However, even these

excellent journals print imperfect studies. As the consumer of this literature, you

are responsible for determining how to use the results of clinical research. You

will also have to translate the results of these research studies to your patients.

Many patients these days will read about medical studies in the lay press or hear

about them on television, and may even base their decisions about health care

upon what the magazine writers or journalists say. Your job as a physician is to

help your patient make a more informed medical decision rather than just taking

the media’s word for it. In order to do this, you will need to have a healthy skep-

ticism of the content of the medical literature as well as a working knowledge of

critical appraisal. Other physicians, journal reviewers, and even editors may not

be as well trained as you.

Non–peer-reviewed and minor journals may still have articles and studies that

give good information. Many of the articles in these journals tend to be expert

reviews or case reports. All studies have some degree of useful information, and

the aforementioned articles are useful for reviewing and relearning background

information. Bear in mind that no matter how prestigious the journal, no study

is perfect. But, all studies have some degree of useful information. A partial list

of common and important medical journals is included in the Bibliography.

What are the important types of articles?

Usually, when asked about articles in the medical literature, one thinks of clini-

cal research studies. These include such epidemiological studies as case–control,

cohort or cross-sectional studies, and randomized clinical trials. These are not

the only types of articles that are important for the reader of the medical liter-

ature. There are several other broad types of articles with which you should be

familiar, and each has its own strengths and weaknesses. We will discuss studies

other than clinical research in this chapter, and will address the common types

of clinical research studies in Chapter 6.

Basic science research

Animal or basic science research studies are usually considered pure research.

They may be of questionable usefulness in your patients since people clearly are

not laboratory rats and in vitro does not always equal in vivo. Because of this,

they may not pass the “so what?” test. However, they are useful preliminary stud-

ies, and they may justify human clinical studies. It is only through these types
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of studies that medicine will continue to push the envelope of our knowledge of

physiological and biochemical mechanisms of disease.

Animal or other bench research is sometimes used to rationalize certain treat-

ments. This leap of faith may result in unhelpful, and potentially harmful, treat-

ments being given to patients. An example of potentially useful basic science

research is the discovery of angiostatin, a chemical that stops the growth of blood

vessels into tumors. The publication of research done in mice showing that infu-

sion of this chemical caused regression of tumors resulted in a sudden increase

in inquiries to physicians from family members of cancer patients. These fam-

ily members were hoping that they would be able to obtain the drug and get a

cure for their loved ones. Unfortunately, this was not going to happen. When the

drug was given to patients in a clinical trial, the results were much less dramatic.

This is not the only clinical trial that diplayed less dramatic results in humans.

In another example, there were similar outcomes when bone-marrow transplant

therapy was used to treat breast cancer.

The discovery of two forms of the enzyme cyclo-oxygenase (COX 1 and 2)

occurred in animal research and subsequently was identified using research in

humans. Cyclo-oxygenase 2 is the primary enzyme in the inflammatory process,

while COX 1 is the primary enzyme in the maintenance of the mucosal protec-

tion of the stomach. Inhibition of both enzymes is the primary action of most

non-steroidal anti-inflammatory drugs (NSAIDs). With the discovery of these

two enzymes, drugs selective for inhibition of the COX 2 enzyme were developed.

These had anti-inflammatory action without causing gastric mucosal irritation

and gastrointestinal bleeding. At first glance, this development appeared to be a

real advance in medicine. However, extending the use of this class of drug to rou-

tine pain management was not warranted. Clinical studies have since demon-

strated equivalence in pain control with other NSAIDs with only modest reduc-

tions in side effects at a very large increase in cost. Finally, more recently, the

drugs were found to actually increase the rate of heart attacks.

Basic science research is important for increasing the content of biomedical

knowledge. For instance, recent basic science research has demonstrated the

plasticity of the nervous system. Prior to this discovery, it was standard teach-

ing that nervous system cells were permanent and not able to regenerate. Cur-

rent research now shows that new brain and nerve cells can be grown, in both

animals and in humans. While not clinically useful at this time, it is promis-

ing research for the future treatment of degenerative nerve disorders such as

Alzheimer’s disease.

Because these basic science studies seem to be more reliable given that they

measure basic physiologic processes, the results of these studies are sometimes

accepted without question. Doing this could be an error. A recent study by

Bogardus et al. found that there were significant methodological problems in

many clinical studies of molecular genetics. These studies used basic science
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techniques in clinical settings.1 Thus, while this book focuses on clinical

studies, the principles discussed also apply to your critical appraisal of basic sci-

ence research studies.

Editorials

Editorials are opinion pieces written by a recognized expert on a given topic.

Most often they are published in response to a study in the same journal issue.

Editorials are the vehicle that puts a study into perspective and shows its use-

fulness in clinical practice. They give contextual commentary to the study, but,

because they are written by an expert who is giving an opinion, the piece incor-

porates that expert’s biases. Editorials should be well referenced and they should

be read with a skeptical eye and not be the only article that you use to form your

opinion.

Clinical review

A clinical review article seeks to review all the important studies on a given sub-

ject to date. It is written by an expert or someone with a special interest in the

topic and is more up to date than a textbook. Clinical reviews are most useful for

new learners updating their background information. Because a clinical review

is written by a single author, it is subject to the writer’s biases in reporting the

results of the referenced studies. Due to this, it should not be accepted uncriti-

cally. However, if you are familiar with the background literature and can deter-

mine the accuracy of the citations and subsequent recommendations, a review

can help to put clinical problems into perspective. The overall strength of the

review depends upon the strength (validity and impact) of each individual study.

Meta-analysis or systematic review

Meta-analysis or systematic review is a relatively new technique to provide a

comprehensive and objective analysis of all clinical studies on a given topic. It

attempts to combine many studies and is more objective in reviewing these stud-

ies than a clinical review. The authors apply statistical techniques to quantita-

tively combine the results of the selected studies. We will discuss the details on

evaluating these types of article in Chapter 33.

Components of a clinical research study

Clinical studies should be reported upon in a standardized manner. The most

important reporting style is referred to as the IMRAD style. This stands for

1 S. T. Bogardus, Jr., J. Concato & A. R. Feinstein. Clinical epidemiological quality in molecular genetic
research: the need for methodological standards. JAMA 1999; 281: 1919–1926.
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Table 4.1. Components of reported

clinical studies

(1) Abstract

(2) Introduction

(3) Methods

(4) Results

(5) Discussion

(6) Conclusion

(7) References/bibliography

Introduction, Methods, Results, and Discussion. First proposed by Day in 1989,

it is now the standard for all clinical studies reported in the English-language

literature.2 Structured abstracts proposed by the SORT (Standards of Reporting

Trials) group are now required by most medical journals. The structure of the

abstract follows the structure of the full article (Table 4.1).

Abstract

The abstract is a summary of the study. It should accurately reflect what actually

happened in the study. Its purpose is to give you an overview of the research

and let you decide if you want to read the full article. The abstract includes

a sentence or two on each of the elements of the article. These include the

introduction, study design, population studied, interventions and comparisons,

outcomes measured, primary or most important results, and conclusions. The

abstract may not completely or accurately represent the actual findings of the

article and often does not contain important information found only in the arti-

cle. Therefore it should never be used as the sole source of information about the

study.

Introduction

The introduction is a brief statement of the problem to be solved and the pur-

pose of the research. It describes the importance of the study by either giving the

reader a brief overview of previous research on the same or related topics or giv-

ing the scientific justification for doing the study. The hypotheses being tested

should be explicitly stated. Too often, the hypothesis is only implied, potentially

leaving the study open to misinterpretation. As we will learn later, only the null

hypothesis can be directly tested. Therefore, the null hypothesis should either

be explicitly stated or obvious from the statement of the expected outcome of

the research, which is also called the alternative hypothesis.

2 R. A. Day. The origins of the scientific paper: the IMRAD format. AMWAJ 1989; 4: 16–18.
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Methods

The methods section is the most important part of a research study and should

be the first part of a study that you read. Unfortunately, in practice, it is often

the least frequently read. It includes a detailed description of the research

design, the population sample, the process of the research, and the statistical

methods. There should be enough details to allow anyone reading the study to

replicate the experiment. Careful reading of this section will suggest potential

biases and threats to the validity of the study.

(1) The sample is the population being studied. It should also be the population

to which the study is intended to pertain. The processes of sample selec-

tion and/or assignment must be adequately described. This includes the eli-

gibility requirements or inclusion criteria (who could be entered into the

experiment) and exclusion criteria (who is not allowed to be in the study

and why). It also includes a description of the setting in which the study

is being done. The site of research such as a community outpatient clinic,

specialty practice, hospital, or others may influence the types of patients

enrolled in the study thus these settings should be stated in the methods

section.

(2) The procedure describes both the experimental processes and the outcome

measures. It includes data acquisition, randomization, and blinding con-

ditions. Randomization refers to how the research subjects were allocated

to different groups. The blinding information should include whether the

treating professionals, observers, or participants were aware of the nature

of the study and if the study is single-, double-, or triple-blinded. All of

the important outcome measures should be examined and the process by

which they are measured and the quality of these measures should all

be explicitly described. These are known as the instruments and mea-

surements of a study. In studies that depend on patient record review,

the process by which that review was carried out should be explicitly

described.

(3) The statistical analysis section includes types of data such as nominal,

ordinal, interval, ratio, continuous, or dichotomous data; how the data are

described, including the measures of central tendency and dispersion of

data; and what analytic statistical tests will be used to assess statistical rela-

tionships between two or more variables. It should also note the levels of α

and β error and the power.

Results

The results section should summarize all the data pertinent to the purpose

of the study. It should also give an explanation of the statistical signifi-

cance of the data. This part of the article is not a place for commentary or
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opinions – “just the facts!”3 All important sample and subgroup characteristics,

and the results of all important research outcomes, should be included. The

description of the measurements should include the measures of central ten-

dency and dispersion (e.g., standard deviations or standard error of the mean)

and the P values or confidence intervals. These values should be given so that

readers may determine for themselves if the results are statistically and/or clin-

ically significant. In addition, the tables and graphs should be clearly and accu-

rately labeled.

Discussion

The discussion includes an interpretation of the data and a discussion of the

clinical importance of the results. It should flow logically from the data shown

and incorporate other research about the topic, explaining why this study did

or did not corroborate the results of those studies. Unfortunately, this section is

often used to spin the results of a study in a particular direction and will over-

or under-emphasize certain results. This is why the reader’s critical appraisal is

so important. The discussion section should include a discussion of the statis-

tical and clinical significance of the results, the non-significant results, and the

potential biases in the study.

(1) The statistical significance is a mathematical phenomenon depending only

on the sample size, the precision of the data, and the magnitude of the dif-

ference found between groups, also known as effect size. As the sample size

increases, the power of the study will increase, and a smaller effect size will

become statistically significant.

(2) The clinical significance means that the results are important and will be

useful in clinical practice. If a small effect size is found, that treatment may

not be clinically important. Also, a study with enough subjects may find sta-

tistical significance if even a tiny difference in outcomes of the groups is

found. In these cases, the study result may make no clinical difference for

your patient. What is important is a change in disease status that matters to

the patient sitting in your office.

(3) Interpretation of results that are not statistically significant must be included

in the discussion section. A study result that is not statistically significant

does not conclusively mean that no relationship or association exists. It is

possible that the study may not have had adequate power to find those

results to be statistically significant. This is often true in studies with small

sample sizes. On the whole, absence of evidence of an effect is not the same

thing as evidence of absence of an effect.

3 Sargent Friday (played by Jack Webb) in the 1960s television show Dragnet.
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(4) Finally, the discussion should address all potential biases in the study and

hypothesize on their effects on the study conclusions. The directions for

future research in this area should then be addressed.

Conclusion

The study results should be accurately reflected in the conclusion section, a

one-paragraph summary of the final outcome. There are numerous points that

should be addressed in this section. Notably, important sources of bias should be

mentioned as disclaimers. The reader should be aware that pitfalls in the inter-

pretations of study conclusions include the use of biased language and incorrect

interpretation of results not supported by the data. Studies sponsored by drug

companies or written by authors with other conflicts of interest may be more

prone to these biases and should be regarded with caution. All sources of con-

flict of interest should be listed either at the start or at the end of the article.

Bibliography

The references/bibliography section demonstrates how much work from other

writers the author has acknowledged. This includes a comprehensive reference

list including all important studies of the same or similar problem. You will

be better at interpreting the completeness of the bibliography when you have

immersed yourself in a specialty area for some time and are able to evaluate this

author’s use of the literature. Be wary if there are multiple citations of works by

just one or two authors, especially if by the author(s) of the current study.

How can you get started?

You have to decide which journals to read. The New England Journal of Medicine

is a great place for medical students to start. It publishes important and high

quality studies and includes a lot of correlation with basic sciences. There are

also excellent case discussions, review articles, and basic-science articles. In gen-

eral, begin by reading the abstract. This will tell you if you really want to read this

study in the first place. If you don’t care about this topic, go on to the next arti-

cle. Remember, that what you read in the abstract should not be used to apply

the results of the study to a clinical scenario. You still need to read and evaluate

the article, especially the methods section. JAMA (Journal of the American Medi-

cal Association) is another excellent journal with many studies regarding medical

education and the operation of the health-care system. For readers in the United

Kingdom, the Lancet and the BMJ (British Medical Journal) are equivalent jour-

nals for the student to begin reading.
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The rest of this book will present a set of useful skills that will assist you in eval-

uating clinical research studies. Initially, we will focus on learning how to criti-

cally evaluate the most common clinical studies. Specifically, these are studies of

therapy, risk, harm, and etiology. These skills will help you to grade the quality of

the studies using a schema outlined in Appendix 1. Appendix 2 is a useful outline

of steps to help you to do this. Later the book will focus on studies of diagnostic

tests, clinical decision making, cost analyses, prognosis, and meta-analyses or

systematic reviews.
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Searching the medical literature

Sandi Pirozzo, B.Sc., M.P.H.

Updated by Elizabeth Irish, M.L.S.

Through seeking we may learn and know things better. But as for certain truth, no man

has known it, for all is but a woven web of guesses.

Xenophanes (sixth century BC)

Learning objectives

In this chapter you will learn how to:
� use a clinical question to initiate a medical literature search
� formulate an effective search strategy to answer specific clinical questions
� select the most appropriate database to use to answer a specific clinical

question
� use Boolean operators in developing a search strategy
� identify the types and uses of various evidence-based review databases

To become a lifelong learner, the physician must be a competent searcher of the

medical literature. This requires one to develop an effective search strategy for

a clinical question. By the end of this chapter you will understand how to write

a clinical question and formulate a search of the literature. Once an answerable

clinical question is written and the best study design that could answer the ques-

tion is decided upon, the next task is to search the literature to find the best avail-

able evidence. This might appear an easy task, but, unless one is sure of which

database to use and has good searching skills, it can be time-consuming, frus-

trating, and wholly unproductive. This chapter will go through some common

databases and provide the information to make the search for evidence both effi-

cient and rewarding.

Introduction

Finding all relevant studies that have addressed a single question is not an

easy task. The exponential growth of medical literature necessitates a systematic

33
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searching approach in order to identify the best evidence available to answer a

clinical question. While many people have a favorite database or website, it is

important to consult more than one resource to ensure that all relevant informa-

tion is retrieved.

Use of different databases

Of all the databases that index medical and health-related literature, MEDLINE

is probably the best known. Developed by the National Library of Medicine at

the National Institutes of Health in the United States, it is the world’s largest gen-

eral biomedical database and indexes approximately one-third of all biomedi-

cal articles. Since it was the first medical literature database available for elec-

tronic searching, most clinicians are familiar with its use. Due to its size and

breadth, it is sometimes a challenge to get exactly what one wants from it. This

will be the first database discussed, after a discussion of some basic principles of

searching.

In addition to MEDLINE, there are other, more specialized databases that may

yield more clinically useful information, depending on the nature of the clini-

cal query. The database selected depends on the content area and the type of

question being asked. The database for nursing and allied health studies is called

CINAHL, and the one for psychological studies is called PsycINFO. If search-

ing for the answer to a question of therapy or intervention, then the Cochrane

Library might be a particularly useful resource. It provides systematic reviews

of trials of health-care interventions and a registry of controlled clinical trials.

The TRIP database will do a systematic search of over 100 critically appraised

evidence-based websites and databases, including MEDLINE via PubMed and

the Cochrane Library, to provide a synopsis of results in one place. It is free and

can be found at www.tripdatabase.com.

For information at the point of care, DynaMed Essential Evidence Plus and

Ganfyd at www.ganfyd.org are designed to provide quick synopses of topics that

are meant to be accessed at the bedside using a hand-held device, such as a

PDA or Smart Phone. Many would consider these to be essentially on-line text-

books and only provide background information. They may have explicit lev-

els of evidence and the most current evidence, but are works in progress. To

broaden your search to the life sciences as well as conference information and

cited articles, the search engines Scopus or Web of Science should be consulted.

It is easy to surmise that not only is the medical literature growing exponen-

tially, but that the available databases and websites to retrieve this literature are

also increasing. In addition to the resources covered in this chapter, an addi-

tional list of relevant databases and other online resources is provided in the

Bibliography.



Searching the medical literature 35
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Fig. 5.1 Venn diagram for
colorectal screening search.
Comparison is frequently
omitted in search strategies.

Developing effective information retrieval strategies

Having selected the most appropriate database one must develop an effective

search strategy to retrieve the best available evidence on the topic of interest.

This section will give a general searching framework that can be applied to any

database. Databases often vary in terms of software used, internal structure,

indexing terms, and amount of information that they give. However, the prin-

ciples behind developing a search strategy remain the same.

The first step is to identify the key words or concepts in the study question. This

leads to a systematic approach of breaking down the question into its individual

components. The most useful way of dividing a question into its components is

to use the PICO format that was introduced in Chapter 2. To review: P stands

for the population of interest; I is the intervention, whether a therapy, diagnostic

test, or risk factor; C is the comparison to the intervention; and O is the outcome

of interest.

A PICO question can be represented pictorially using a Venn diagram. As an

example, we will use the following question: What is the mortality reduction in

colorectal cancer as a result of performing hemoccult testing of the stool (fecal

occult blood test, FOBT) screening in well-appearing adults? Using the PICO for-

mat, we recognize that mortality is the outcome, screening with the hemoccult

is the intervention, not screening is the comparison, and adults who appear well

but do and don’t have colorectal neoplasms is the population. The Venn diagram

for that question is shown in Fig. 5.1.

Once the study question has been broken into its components, they can be

combined using Boolean logic. This consists of using the terms AND, OR, and

NOT as part of the search. The AND operator is used when you wish to retrieve

those records containing both terms. Using the AND operator serves to narrow

your search and reduces the number of citations recovered. The OR operator

is used when at least one of the terms must appear in the record. It broadens

the search, should be used to connect synonyms or related concepts, and will

increase the number of citations recovered. Finally, the NOT operator is used to
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AND operator OR operator NOT operator

A AB B
A AND B

A NOT B
A OR B

BA

Fig. 5.2 Boolean operators (AND,
OR, and NOT). Blue areas
represent the search results in
each case.

retrieve records containing one term and not the other. This also reduces the

number of citations recovered and is useful to eliminate documents relating to

potentially irrelevant topics. Be careful using this operator as it can eliminate

useful references too. It can be used to narrow initially wide-ranging searches or

to remove duplicate records from a previously viewed set. The use of these oper-

ators is illustrated in Fig. 5.2.

Using the example of the question about the effect of hemoccult screening

on colon cancer mortality, the combination of the initial search terms colorectal

neoplasms AND screening represents the overlap between these two terms and

retrieves only articles that use both terms. This will give us a larger number of

articles from our search than if we used all three terms in one search: screening

AND colorectal neoplasms AND mortality. That combination represents a smaller

area, the one where all three terms overlap, and will retrieve only articles with all

three terms.

Although the overlap of all three parts may have the highest concentration of

relevant articles, the other areas may still contain many relevant and important

articles. We call this a high-specificity search. The set we retrieve will contain a

high proportion of articles that are useful, but many others may be missed. This

means that the search lacks sensitivity in that it will not identify some studies that

are relevant to the question being asked. Hence, if the disease AND study factor

combination (colorectal neoplasms AND screening) yields a manageable number

of citations, it is best to work with this and not further restrict the search by using

the outcomes (screening AND colorectal neoplasms AND mortality).

Everyone searches differently! Most people will start big (most hits possible)

and then begin limiting the results. Look at these results along the way to make

sure you are on the right track. My preference is to start with the smallest number

of search terms that gives a reasonable number of citations and then add others

(in a Boolean fashion) as a means of either increasing (OR operator) or limit-

ing (AND or NOT operators) the search. Usually, for most searches, anything less

than about 50 to 100 citations to look through by hand is reasonable. Remember

that these terms are entered into the database by hand and errors of classification

will occur. The more that searches are limited, the more likely they are to miss

important citations. In general, both the outcome and study design terms are

options usually needed only when the search results are very large and unman-

ageable.
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You can use nested Boolean search to form more complex combinations that

will capture all the overlap areas between all three circles. For our search, these

are: (mortality AND screening) OR (mortality AND colorectal neoplasms) OR

(screening AND colorectal neoplasms). This strategy will yield a higher number

of hits, but will still find less than all three terms with OR function connecting

them. However, it may not be appropriate if you are looking for a quick answer

to a clinical question since you will then have to hand-search more citations.

Whatever strategy you choose to start with, try it. You never know a priori what

results you are going to get.

Use of synonyms and wildcard symbol

When the general structure of the question is developed and only a small num-

ber of citations are recovered, it may be worthwhile to look for synonyms for

each component of the search. For our question about mortality reduction in

colorectal cancer due to fecal occult blood screening in adults, we can use sev-

eral synonyms. Screening can be screen or early detection, colorectal cancer can

be bowel cancer, and mortality can be death or survival. Since these terms are

entered into the database by coders they may vary greatly from study to study for

the same ultimate question. What you miss with one synonym, you may pick up

with another.

Truncation or the “wildcard” symbol can be used to find all the words with the

same stem in order to increase the scope of successful searching. Thus our search

string can become (screen∗ OR early detection) AND (colorectal cancer OR bowel

cancer) AND (mortality OR death∗ OR survival). The term screen∗ is shorthand for

words beginning with “screen.” It will turn up screen, screened, screening, etc.

The wildcard is extremely useful but should be used with caution. If you were

searching for information about hearing problems and you used hear∗ as one of

your search terms you would retrieve not only articles with the word “hear” and

“hearing” but also all those articles with the word “heart.” Note that the wild-

card symbol varies between systems but, most commonly it will be an asterisk

(∗) or dollar sign ($). It is important to check the database’s help documentation

to determine not only the correct symbol, but to also ensure that the database

supports truncation. For instance, if a database automatically truncates then the

use of a wildcard symbol could inadvertently result in a smaller retrieval rather

than a broader one.

MEDLINE via PubMed

MEDLINE is available online for free using the PubMed website at www.pubmed.

gov. It is often assumed that MEDLINE and PubMed are one and the same.
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But, PubMed is actually a very user-friendly interface for searching MEDLINE

as well as several other data bases. These are: OLDMEDLINE, in-process cita-

tions that are not yet included in MEDLINE, selected life science journals beyond

the scope of MEDLINE, and citations to author manuscripts for NIH-funded

researchers’ publications. PubMed also provides time-saving search services

such as Clinical Queries and the MeSH database, which help the user to search

more efficiently. The best way to get to know PubMed is to use it, explore its

capabilities, and experiment with some searches. Rather than provide a com-

prehensive tutorial on searching PubMed, this chapter will focus on a few of

the features that are most helpful in the context of EBM. Remember that all

databases are continually being updated and upgraded, so that it is important to

consult the help documentation or your health sciences librarian for searching

guidance.

PUBMED Clinical Queries: searching using methodological filters

Within PubMed there is a special feature called Clinical Queries, which can be

found in the left-hand side bar of the PubMed home page. It uses a set of built-

in search filters that are based on methodological search techniques developed

by Haynes in 1994 and which search for the best evidence on clinical questions

in four study categories: diagnosis, therapy, etiology, and prognosis. In turn each

of these categories may be searched with an emphasis on specificity for which

most of the articles retrieved will be relevant, but many articles may be missed or

sensitivity for which, the proportion of relevant articles will decrease, but many

more articles will be retrieved and fewer missed. It is also possible to limit the

search to a systematic review of the search topic by clicking on the “systematic

review” option. Figure 5.3 shows the PubMed clinical queries page. In order to

continue searching in clinical queries, click on the “clinical queries” link in the

left-hand side bar each time a search is conducted. If this is not done, searches

will be conducted in general PubMed. Clicking on the “filter table” option within

clinical queries shows how each filter is interpreted in PubMed query language.

It is best to start with the specificity emphasis when initiating a new search

and then add terms to the search if not enough articles are found. Once search

terms are entered into the query box on PubMed and “go” is clicked, the search

engine will display your search results. This search is then displayed with the

search terms that were entered combined with the methodological filter terms

that were applied by the search engine. Below the query box is the features bar,

which provides access to additional search options. The PubMed query box and

features bar are available from every screen except the Clinical Queries home

page. Return to the Clinical Queries homepage each time a new Clinical Queries

search is desired.
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Fig. 5.3 PubMed “clinical
queries.” (National Library of
Medicine. Used with
permission.)

Entering search terms can be done in a few ways. Terms are searched in vari-

ous fields of the record when one or more terms are entered (e.g., vitamin c AND

common cold) in the query box. The Boolean operators AND, OR, NOT must be

in upper-case (e.g., vitamin c OR zinc). The truncation or wildcard symbol (∗)

tells PubMed to search for the first 600 variations of the truncated term. If a trun-

cated term (e.g., staph∗) produces more than 600 variations, PubMed displays

a warning message such as “Wildcard search for ‘staph∗’ used only the first 600

variations. Lengthen the root word to search for all endings”. Use caution when

applying truncation in PubMed, because it turns off the automatic term mapping

and the automatic explosion of a MeSH term features, resulting in an incomplete

search retrieval. As a rule of thumb, it is better to use the wildcard symbol as a last

resort in PubMed.

Limits

The features bar consists of limits, preview/index, history, clipboard, and

details. To limit a search, click “limits” from the features bar, which opens the
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Fig. 5.4 The “limits” window in
PubMed. (National Library of
Medicine. Used with
permission.)

Limits window shown in Fig. 5.4. This offers a number of useful ways of reduc-

ing the number of retrieved articles. A search can be restricted to words in a

particular field within a citation, a specific age group or gender, human or ani-

mal studies, articles published with abstracts or in a specific language, or a spe-

cific publication type (e.g., meta-analysis or RCT). Limiting by publication type is

especially useful when searching for evidence-based studies.

Another method of limiting searches is by either the Entrez or publication date

of a study. The “Entrez date” is the date that the citation was entered into the

Medline system and the publication date is the month and year it was published.

Finally, the subset pull-down menu allows retrieval to be limited to a specific sub-

set of citations within PubMed, such as AIDS-related or other citations. Applying

limits to a search results in a check-box next to the “limits” space and a listing of

the limit selections will be displayed. To turn off the existing limits remove the

check before running the next search.
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Fig. 5.5 The history of a search
in PubMed. (National Library of
Medicine. Used with
permission.)

History

PubMed will retain an entire search strategy with the results, which can be

viewed by clicking on “history” function on the features bar. This is only avail-

able after running a search and it will list and number the searches in the order

in which they were run. As shown in Fig. 5.5, the history displays the search num-

ber, search query, the time of search, and the number of citations in the results.

Searches can be combined or additional terms added to an existing search by

using the number (#) sign before the search number: e.g., #1 AND #2, or #1 AND

(drug therapy OR diet therapy). Once a revised search strategy has been entered

in the query box, clicking “go” will view the search results. Clicking “clear his-

tory” will remove all searches from the history and preview/index screens. The

maximum number of queries held in the history is 100 and once that number is

reached, PubMed will remove the oldest search from the history to add the most

recent search. The search history will be lost after 1 hour of inactivity on PubMed.

PubMed will move a search statement number to the top of the history if that new

search is the same as a previous search. The preview/index allows search terms

to be entered one at a time using pre-selected search fields, making it useful for

finding specific references.
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Clipboard

The clipboard is a place to collect selected citations from one or several searches

to print or save for future use. Up to 500 items can be placed in the clipboard at

any time. After adding items to the clipboard, click on “clipboard” from the fea-

tures bar to view the saved selections. Citations in the clipboard are displayed in

the order they were added. To place an item in the clipboard, click on the check-

box to the left of the citation, go to the send menu and select “clipboard,” and

then click “send.” Once a citation has been added to the clipboard, the record-

number color will change to green. By sending to the clipboard without selecting

citations, PubMed will add up to 500 citations of the search results to the clip-

board. Clipboard items are automatically removed after eight hours of inactivity.

Printing and saving

When ready to save or print clipboard items it is best to change them to ordinary

text to simplify the printout and save paper so it will not print all the PubMed

motifs and icons. To do this, click on “clipboard” on the features bar, which will

show only the articles placed on the clipboard. From the send menu select “text”

and a new page will be displayed which resembles an ordinary text document

for printing. This “send to text” option can also be used for single references and

will omit all the graphics. To save the entire set of search results click the display

pull-down menu to select the desired format and then select “send to file” from

the send menu. To save specific citations click on the check-box to the left of

each citation, including other pages in the retrieval process, and when finished

making all of the desired selections, select “send to file.”

To save the entire search to review or update at a later time, it is best to cre-

ate a free, “My NCBI account.” “My NCBI” is a place where current searches

can be saved, reviewed, and updated. It can also be used to send e-mail alerts,

apply filters, and other customization features. Unlike the Clipboard, searches

on “My NCBI” are permanently saved and will not be removed unless chosen to

be deleted.

General searching in PubMed

The general search page in PubMed is useful to find evidence that is not coming

up on the Clinical Queries search, or when looking for multiple papers by a single

author who has written extensively in a single area of interest. Begin by clicking

on the PubMed symbol in the top left-hand corner of the screen to display the

general search screen (Fig. 5.6). Simply type the search terms in the query box

and your search results will be displayed as before. If there are too many articles

found, apply limits and if too few, add other search terms using the OR function.
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Fig. 5.6 General search screen in
PubMed. (National Library of
Medicine. Used with
permission.)

MeSH terms to assist in searching

In looking for synonyms to broaden or improve a search consider using both

text words and keywords (index terms) in the database. One of MEDLINE’s great

strengths is its MeSH (Medical Subject Headings) system. By default, PubMed

automatically “maps” the search terms to the appropriate MeSH terms. A spe-

cific MeSH search can also be performed by clicking on the “MeSH database”

link in the left-hand side bar. Typing in “colorectal cancer” will lead to the MeSH

term colorectal neoplasms (Fig. 5.7). The search can then be refined by clicking

on the term to bring up the detailed display (Fig. 5.8). This allows the selection of

subheadings (diagnosis, etiology, therapy, etc.) to narrow the search, and also get

access to the MeSH tree structure.

The “explode” (exp) feature will capture an entire subtree of MeSH terms with

a single word. For the search term colorectal neoplasms, the “explode” incorpo-

rates the entire MeSH tree below colorectal neoplasms (Table 5.1). Click on any

specific terms in the tree to search that term and the program will get all the

descriptors for that MeSH term and all those under it. Select the appropriate

MeSH term, with or without subheadings, and with or without explosion, and

use the send menu to “send to search box.” These search terms will appear in
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Table 5.1. A MeSH tree containing the term colorectal neoplasms

Neoplasms

Neoplasms by Site

Digestive System Neoplasms

Gastrointestinal Neoplasms

Intestinal Neoplasms

Colorectal Neoplasms

Colonic Neoplasms

Colonic Polyps +
Sigmoid Neoplasms

Colorectal Neoplasms, Hereditary

Nonpolyposis

Rectal Neoplasms

Anus Neoplasms +

Fig. 5.7 PubMed MeSH database. (National Library of Medicine. Used with permission.)
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Fig. 5.8 PubMed MeSH database with subheadings. (National Library of Medicine. Used with
permission.)

the query box at the top of the screen. Clicking “search PubMed” will execute the

search, which will automatically explode the term unless restricted by selecting

the “do not explode this term” box. Every article has been indexed by at least

one of the MeSH keywords from the tree. To see the difference that exploding a

MeSH term makes, repeat the search using the term colorectal neoplasms in the

search window without exploding. This will probably result in retrieval of about

one-quarter of the articles retrieved in the previous search.

Novice users of PubMed often ask “how do I find out the MeSH keywords that

have been used to categorize a paper?” Knowing the relevant MeSH keywords

will help to focus and/or refine the search. A simple way to do this is that once a

relevant citation has been found, click on the author link to view the abstract and

then go to the “display” box and open it as shown in Fig. 5.9. Select MEDLINE and

click “display.” The record is now displayed as it is indexed and by scrolling down

the MeSH terms for this paper will be listed. The initials MH precede each of the

MeSH terms. Linking to “related articles” will find other relevant citations, but

the selected limits are not applied to this retrieval. If there was a search limited
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Fig. 5.9 The “display” menu in
PubMed. (National Library of
Medicine. Used with
permission.)

to English language only then selecting the related articles link will get articles

that appear in other languages.

While the MeSH system is useful, it should supplement rather than usurp the

use of textwords so that incompletely coded articles are not missed. PubMed is

a compilation of a number of databases not just MEDLINE and includes newer

articles that have not been indexed for MEDLINE yet.

Methodological terms and filters

MeSH terms cover not only subject content but also a number of useful terms on

study methodology. For example, looking for the answer to a question of therapy,

many randomized trials are tagged in MEDLINE by the specific methodological

term randomized controlled trial or clinical trial. These can be selected by lim-

iting the search to one study design type in PubMed under the limit feature for

publication types in the pull-down menu.

An appropriate methodological filter may help confine the retrieved studies

to primary research. For example, if searching whether a screening intervention

reduces mortality from colorectal cancer, confine the retrieved studies to con-

trolled trials. The idea of methodological terms as filters may be extended to
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multiple terms that attempt to identify particular study types. Such terms are

used extensively in the Clinical Queries search functions.

Note that many studies do not have the appropriate methodological tag. The

Cochrane Collaboration and the US National Library of Medicine (NLM) are

working on correctly retagging all the controlled trials, but this is not being

done for other study types.

Field searching

It is possible to shorten the search time by searching in a specific field. This works

well if there is a recent article by a particular author renowned for work in the

area of interest or if a relevant study in a particular journal in the library has

recently been published on the same topic. Searching in specific fields will prove

to be invaluable in these circumstances. To search for an article with “colorectal

cancer” in the title using PubMed, select the title field in the limits option using

the fields pull-down menu in the “Tag Term” default tag for the selected search

term. Another option is to simply type “colorectal cancer[ti]” in the query box.

As with truncation this turns off the automatic mapping and exploding features

and will not get articles with the words “colorectal neoplasms” in the article title.

The field-label abbreviations can be found by accessing the help menu. The

most commonly used field labels are abstract (ab), title (ti), source (so), journal

(jn), and author (au). The difference between source and journal is that “source”

is the abbreviated version of the journal title, while “journal” is the full journal

title. In PubMed the journal or the author can be selected simply by using the

journals database located on the left-hand side bar or by typing in the author’s

last name and initials in the query box. Remember, when searching using “text

words,” the program searches for those words in any of the available fields. For

example, if “death” is one search term then articles where “death” is an author’s

name as well as those in which it occurs in the title or abstract will be retrieved.

Normally this isn’t a problem but once again could be a problem when using

“wildcard” searches.

The Cochrane Library

The Cochrane Library owes it genesis to an astute British epidemiologist and

doctor, Archie Cochrane, who is best known for his influential book Effectiveness

and Efficiency: Random Reflections on Health Services, published in 1971. In the

book, he suggested that because resources would always be limited they should

be used to provide equitably those forms of health care which had been shown

in properly designed evaluations to be effective. In particular, he stressed the

importance of using evidence from randomized controlled trials (RCTs) because
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these were likely to provide much more reliable information than other sources

of evidence. Cochrane’s simple propositions were soon widely recognized as

seminally important – by lay people as well as by health professionals. In his 1971

book he wrote: “It is surely a great criticism of our profession that we have not

organized a critical summary, by specialty or subspecialty, adapted periodically,

of all relevant randomised controlled trials.”1

His challenge led to the establishment of an international collaboration

to develop the Oxford Database of Perinatal Trials. In 1987, the year before

Cochrane died, he referred to a systematic review of randomized controlled trials

(RCTs) of care during pregnancy and childbirth as “a real milestone in the history

of randomized trials and in the evaluation of care” and suggested that other spe-

cialties should copy the methods used.

The Cochrane Collaboration was developed in response to Archie Cochrane’s

call for systematic and up-to-date reviews of all health care-related RCTs. His

suggestion that the methods used to prepare and maintain reviews of con-

trolled trials in pregnancy and childbirth should be applied more widely was

taken up by the Research and Development Programme, initiated to support the

United Kingdom’s National Health Service. Funds were provided to establish a

“Cochrane Centre,” to collaborate with others, in the United Kingdom and else-

where, to facilitate systematic reviews of randomized controlled trials across all

areas of health care. When the Cochrane Centre was opened in Oxford in Octo-

ber 1992, those involved expressed the hope that there would be a collabora-

tive international response to Cochrane’s agenda. This idea was outlined at a

meeting organized six months later by the New York Academy of Sciences. In

October 1993 – at what was to become the first in a series of annual Cochrane

Colloquia – 77 people from 11 countries co-founded the Cochrane Collabora-

tion. It is an international organization that aims to help people make well-

informed decisions about health care by preparing, maintaining, and ensuring

the accessibility of systematic reviews of the effects of health-care interventions.

The Cochrane Library comprises several databases. Each database focuses on

a specific type of information and can be searched individually or as a whole.

Current databases are:

The Cochrane Database of Systematic Reviews (CDSR) contains systematic

reviews of the effects of health care prepared by the Cochrane Collaboration.

In addition to complete reviews, the database contains protocols for reviews

currently being prepared.

The Database of Abstracts of Reviews of Effects (DARE) includes struc-

tured abstracts of systematic reviews which have been critically appraised

1 A. L. Cochrane. Effectiveness & Efficiency: Random Reflections on Health Services. London: Royal Soci-
ety of Medicine, 1971.
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Fig. 5.10 The opening page of
the Cochrane Collaboration.by reviewers at the NHS Centre for Reviews and Dissemination in York and

by other people. DARE is meant to complement the CDSR.

The Cochrane Central Register of Controlled Trials (CENTRAL) is a bib-

liographic database of controlled trials identified by contributors to the

Cochrane Collaboration and others.

Cochrane Methodology Register focuses on articles, books, and conference

proceedings that report on methods used in controlled trials. Bibliographic

in nature, the register’s contents is culled from both MEDLINE and hand

searches.

Health Technology Assessment Database is a centralized location to find com-

pleted and ongoing health technology assessments that study the implica-

tions of health-care interventions around the world. Medical, social, ethical,

and economic factors are considered for inclusion.

NHS Economic Evaluation Database identifies and summarizes economic

evaluations throughout the world that impact health care decision making.

As with MEDLINE, there are various interfaces for searching the Cochrane

Library. The interface that is linked directly from the Cochrane Collabora-

tions homepage (http://www.cochrane.org) is the Wiley InterScience interface

(Fig. 5.10). While it is subscription based, it is possible to view the abstracts
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without a subscription. Some countries or regions have subsidized full-text

access to the Cochrane Library for their health-care professionals. Consult the

homepage to see if you live in one of these areas.

The Cochrane Library supports various search techniques. The searcher can

opt to search all text or just the record title, author, abstract, keywords, tables,

or publication type. The default for a quick search is a combination of title,

abstract, or keyword. The advanced search feature allows you to search multiple

fields using Boolean operators. You can also restrict by product, record status,

or date. You can also opt to search using MeSH terms since MeSH descriptors

and qualifiers are supported by the search engine as the explode feature. The

Cochrane Library also supports wildcard searching using the asterisk∗. Once a

search is complete, you can opt to save your searches. The “My Profile” feature

is similar to “My NCBI” as it allows you to store titles, articles, and searches and

to set up journal and search e-mail update alerts. There is no cost to register,

although some services are fee-based, such as purchasing individual documents

online through Pay-Per-View. Always check with your health sciences library first

prior to purchasing any information to ensure that it’s not available by another

method.

TRIP database

Sometimes when conducting a search, it is helpful to start in a database with

an interface that can search numerous resources at once from one search query

while at the same time providing the results in one convenient location. The TRIP

database (http://www.tripdatabase.com) was created in 1997 with the intended

purpose of providing an evidence-based method of answering clinical questions

in a quick and timely manner by reducing the amount of search time needed.

Freely available on the Web since 2004, TRIP had developed a systematic, feder-

ated searching approach to retrieving information from such resources as vari-

ous clinical practice guideline databases, Bandolier, InfoPOEMS, Cochrane, Clin-

ical Evidence, and core medical journals. Additionally, each search is performed

within PubMed’s Clinical Queries service. All potential information sources are

reviewed by an in-house team of information experts and clinicians and external

experts to assess quality and clinical usefulness prior to being included.

The TRIP database has a very straightforward searching interface that sup-

ports both basic and advanced techniques. For basic searching the search terms

are entered into a search box. TRIP supports Boolean searching as well as the

asterisk∗ for truncation. Phrase searching is supported by using quotation marks,

such as, “myocardial infarction.” There is also a mis-spelling function that will

automatically activate if no results are found. The advance search allows for title

or title and text searching. These results are assigned search numbers (#1) and
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can be combined using Boolean operators (#1 AND #2). Results can be sorted

by relevance or year prior to conducting the search. Once the search has been

run, the results can further be sorted by selecting more specialized filters such as

systematic reviews, evidenced-based synopses, core primary research, and sub-

ject specialty. The PubMed Clinical Query results are also provided separately

by therapy, diagnosis, etiology, prognosis, and systematic reviews. With a “My

Trip” account, a keyword auto-search function can be set up that will provide

one with regular clinical updates. These will automatically be e-mailed with any

new records that have the selected keyword in the title.

The advantage of the TRIP database is that more than one evidence-based

resource can be searched at a time. The main disadvantage is that although Trip

uses carefully selected filters to ensure quality retrievals, you lose some of the

searching control that you would have searching the original database. However,

in many cases the time saved outweighs this consideration.

Specific point of care databases

For information at the point of care, DynaMed, Clinical Evidence, and Essential

Evidence Plus are fee-based databases designed to be provide quick, evidence-

based answers to clinical questions that commonly arise at the bedside. The

information is delivered in a compact format that highlights the pertinent infor-

mation while at the same time providing enough background information for

further research if required.

Developed by a family physician, DynaMed (http://www.ebscohost.com/

dynamed/) has grown to provide clinically organized summaries for nearly 2000

medical topics covering basic information such as etiology, diagnosis and his-

tory, complications, prognosis, treatment, prevention and screening, references

and guidelines, and patient information. DynaMed uses a seven-step evidence-

based methodology to create topic summaries that are organized both alpha-

betically and by category. The selection process includes daily monitoring of

the content of over 500 medical journals and systematic review databases. This

includes a systematic search using such resources as PubMed’s Clinical Queries

feature, the Cochrane Library databases, and the National Guidelines Clearing-

house. Once this step is complete, relevance and validity are determined and the

information is critically appraised. DynaMed uses the Users’ Guides to Evidence-

Based Practice from the Evidence-Based Medicine Working Group, Centre for

Health Evidence as a basis for determining the level of evidence. DynaMed ranks

information into three levels: Level 1 (likely reliable), Level 2 (mid-level), and

Level 3 (lacking direction). All authors and reviewers of DynaMed topics are

required to have some clinical practice experience.
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Formally known as InfoPOEMS with InfoRetriever, Essential Evidence Plus

(http://essentialevidenceplus.com/) provides filtered, synopsized, evidence-

based information, including EBM guidelines, topic reviews, POEMs, Derm

Expert, decision support tools and calculators, and ICD-9 codes, that has also

been developed by physicians. Individual topics can be searched or can be

browsed by subject, database, and tools. At the bed side POEMS can be invalu-

able as they summarize articles by beginning with the “clinical question,” fol-

lowed by the “bottom line” and rounded out with the complete reference, the

study design, the setting, and the article synopsis. The bottom line provides the

conclusion arrived at to answer the clinical question and provides a level of evi-

dence ranking based on the five levels of evidence ranking from the Centre for

Evidence-Based Medicine in Oxford. Sources used to find information for Essen-

tial Evidence Plus include EBM Guidelines and Abstracts of Cochrane Systematic

Reviews.

Clinical Evidence, published by the British Medical Journal is available on their

website at www.clinicalevidence.org. Clinical Evidence is a decision-support tool

sponsored by the British Medical Journal, the BMJ. An international group of peer

reviewers publish summaries of systematic reviews of important clinical ques-

tions. These are regularly updated and integrated with various EBM resources to

summarize the current state of knowledge and uncertainty about various clin-

ical conditions. It is primarily focused on conditions in internal medicine and

surgery and does cover many newer technologies. The evidence provided is rated

as definitely beneficial, probably beneficial, uncertain, probably not beneficial,

or definitely not beneficial.

Created in 1999, it has been redesigned and revised by an international advi-

sory board, clinicians, patient support groups, and contributors. They aim for

sources that have high relevance and validity and require low time and effort by

the user. Their reviews are transparent and explicit. Their reviews try to show

when uncertainty stems from gaps in the best available evidence. Clinical Evi-

dence is currently available in print, using a PDA interface and online. It is free in

the UK National Health Services in Scotland and Wales, to most clinicians in the

United States through the United Health Foundation and in several other coun-

tries. The complete list is available on their website. It has been translated into

Italian, Spanish, Russian, German, Hungarian, and Portuguese. It is available for

free to people in developing countries through an initiative sponsored by the BMJ

and the World Health Organization.

Efficient searching at the point of care databases

The searching techniques described in this chapter are designed to find pri-

mary studies of medical research. These comprehensive searching processes will
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Systems – Computerized decision support

GuidelinesGuidelines

Syntheses – Systematic reviews or meta-analyses

Cochrane CollaborationCochrane Collaboration

Summaries – Evidence-based textbooks

Dyna-MedDyna-Med

Synopses – Evidence-based journal abstracts of
single articles ACP Journal ClubACP Journal Club

Studies – Original journal articles, clinical research
Find them in PubMed

Fig. 5.11 The Haynes 5S
knowledge acquisition pyramid

best serve the doer in answering clinical questions for the purpose of critically

reviewing the most current available evidence for that question. The practice-

based learner must find primary sources at the point of care and will not per-

form comprehensive PubMed searches on a regular basis. They will be looking

for pre-appraised sources and well done meta-analyses such as those done by

the Cochrane Collaboration. Most clinicians will want to do the most efficient

searching at the point of care possible to aid the patient sitting in front of them.

An increasing number of sites on the Internet are available for doing this point of

care searching.

David Slawson and Allen Shaughnessy proposed an equation to determine the

usefulness of evidence (or information) to practicing clinicians. They described

the usefulness as equal to the relevance times validity divided by effort (to

obtain). Always turning to primary sources of evidence whenever a clinical ques-

tion comes up is very inefficient at best and impossible for most busy practi-

tioners. The busy clinician in need of rapid access to the most current literature

requires quick access to high quality pre-appraised and summarized sources of

evidence that can be accessed during a patient visit.

For the “users,” the 5S schema of Haynes is a construct to help focus the skills

of Information Mastery. This is a process of helping to find the best evidence

at the point of care. The sources that are higher up on the appraisal pyramid

(Fig. 5.11) are the ones easiest to use and needing the least amount of critical

appraisal by the user.

The highest level is that of systems, which are decision support tools inte-

grated into the daily practice of medicine through mechanisms such as com-

puterized order entry systems or electronic medical records. The system links

directly to the high quality information needed at the point of care and seam-

lessly integrated into the care process. There are very few systems that have been
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developed and most of the current ones are standalone applications set up by an

institution within its electronic medical record or IT system.

The next level is synthesis, which are critically appraised topics and guidelines.

Many of these are through publishing enterprises such as Clinical Evidence pub-

lished by the British Medical Journal. This print-based resource summarizes the

best available evidence of prevention and treatment interventions for commonly

eoncountered clinical problems in internal medicine. Evidence is presented as

being beneficial, equivocal, or not beneficial.

The third level is synopses of critically appraised individual studies. These

might be found in CAT banks such as Best Bets and Evidence Based On Call.

Finding your answer here is a matter of trial and error.

The fourth level is summaries, which is synonymous with systematic reviews.

The primary ones in the category are from the Cochrane Database of System-

atic Reviews, described earlier in the book as a database of systematic reviews

authored and updated by the worldwide Cochrane Collaboration. The Database

of Abstracts of Reviews of Effects (DARE) is a database of non-Cochrane system-

atic reviews catalogued by the Centre for Reviews and Dissemination at the Uni-

versity of York in the United Kingdom and presented with critical reviews.

The fifth level is individual studies, which are original research studies found

through Ovid MEDLINE or PubMed. The Cochrane Central Register of Con-

trolled Trials repository of randomized controlled trials is a more comprehen-

sive source for RCTs than MEDLINE, including meeting abstracts and unique

EMBASE records. Finally, the lowest level is “Expert Opinion” or Replication level,

which is not considered bona fide evidence, but only anecdote or unsubstanti-

ated evidence. Included in this level are textbooks that are not explicitly evidence

based.

Final thoughts

Conducting a thorough search can be a daunting task. The process of identify-

ing papers is an iterative one. It is best initially to devise a strategy on paper.

No matter how thorough a search strategy is, inevitably some resources will be

missed and the process will need to be repeated and refined. Use the results of

an initial search to retrieve relevant papers which can then be used to further

refine the searches by searching the bibliographies of the relevant papers for arti-

cles missed by the initial search and by performing a citation search using either

Scopus or Web of Science databases. These identify papers that have cited the

identified relevant studies, some of which may be subsequent primary research.

These “missed” papers are invaluable and provide clues on how the search may

be broadened to capture further papers by studying the MeSH terms that have

been used. Google, Google Scholar, and PogoFrog (www.pogofrog.com) can also
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be used as a resource to not only find information but to help design a strategy to

use in other databases such as PubMed and Cochrane. These records can be used

to design a strategy that can be executed within a more specialized database. The

whole procedure may then be repeated using the new terms identified. This iter-

ative process is sometimes referred to as “snowballing.”

Searching for EBM can be time consuming, but more and more database

providers are developing search engines and features that are designed to find

reliable, valid, and relevant information quickly and efficiently. Podcasts, RSS

feeds, and alerts are just a few of the advances that demonstrate how technol-

ogy is continually advancing to improve access and delivery of information to

the office as well as the bedside. Always remember that, if the information isn’t

found in the first source consulted, there are a myriad of options available to the

searcher. Finally, the new reliance on electronic searching methods has increased

the role of the health sciences librarian who can provide guidance and assis-

tance in the searching process and should be consulted early in the process.

Databases and websites are updated frequently and it is the librarian’s role to

maintain a competency in expert searching techniques to help with the most

difficult searching challenge.
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Study design and strength of evidence

Louis Pasteur’s theory of germs is ridiculous fiction.

Pierre Pachet, Professor of Physiology, Toulouse University, 1872

Learning objectives

In this chapter you will learn:
� the unique characteristics, strengths, and weaknesses of common clinical

research study designs
� descriptive – cross-sectional, case reports, case series
� timed – prospective, retrospective
� longitudinal – observational (case–control, cohort, non-concurrent

cohort), interventional (clinical trial)
� the levels of evidence and how study design affects the strength of evidence.

There are many types of research studies. Since various research study designs

can accomplish different goals, not all studies will be able to show the same

thing. Therefore, the first step in assessing the validity of a research study is to

determine the study design. Each study design has inherent strengths and weak-

nesses. The ability to prove causation and expected potential biases will largely

be determined by the design of the study.

Identify the study design

When critically appraising a research study, you must first understand what dif-

ferent research study designs are able to accomplish. The design of the study will

suggest potential biases you can expect. There are two basic categories of studies

that are easily recognizable. These are descriptive and longitudinal studies. We

will discuss each type and its subtypes.

56
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One classification commonly used to characterize longitudinal clinical

research studies is by the direction of the study in time. Characterizations in this

manner, or so-called timed studies, have traditionally been divided into prospec-

tive and retrospective study designs. Prospective studies begin at a time in the

past and subjects are followed to the present time. Retrospective studies begin at

the present time and look back on the behavior or other characteristics of those

subjects in the past. These are terms which can easily be used incorrectly and

misapplied, and because of this, they should not be referred to except as gener-

alizations. As we will see later in this chapter, “retrospective” studies can be of

several types and should be identified by the specific type of study rather than

the general term.

Descriptive studies

Descriptive studies are records of events which include studies that look at a

series of cases or a cross-section of a population to look for particular charac-

teristics. These are often used after several cases are reported in which a novel

treatment of several patients yields promising results, and the authors publishing

the data want other physicians to know about the therapy. Case reports describe

individual patients and case series describe accounts of an illness or treatment

in a small group of patients. In cross-sectional studies the interesting aspects of

a group of patients, including potential causes and effects, are all observed at the

same time.

Case reports and case series

Case reports or small numbers of cases are often the first description of a new

disease, clinical sign, symptom, treatment, or diagnostic test. They can also be

a description of a curriculum, operation, patient-care strategy, or other health-

care process. Some case reports can alert physicians to a new disease that is

about to become very important. For example, AIDS was initially identified

when the first cases were reported in two case series in 1981. One series con-

sisted of two groups of previously healthy homosexual men with Pneumocystis

carinii pneumonia, a rare type of pneumonia. The other was a series of men

with Kaposi’s sarcoma, a rare cancer. These diseases had previously only been

reported in people who were known to be immunocompromised. This was the

start of the AIDS epidemic, a fact that was not evident from these first two

reports. It quickly became evident as more clinicians noticed cases of these rare

diseases.

Since most case reports are descriptions of rare diseases or rare presenta-

tions of common diseases, they are unlikely to occur again very soon, if ever.
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A recent case series reported on two cases of stroke in young people related to

illicit methamphetamine use. To date, physicians have not been deluged with a

rash of young methamphetamine users with strokes. Although it makes patho-

physiological sense, the association may only be a fluke. Therefore, case reports

are a useful venue to report unusual symptoms of a common illness, but have

limited value. New treatments or tests described in a study without any control

group also fall under this category of case reports and case series. At best, these

descriptive studies can suggest future directions for research on the treatment or

test being reported.

Case studies and cross-sectional studies have certain strengths. They are

cheap, relatively easy to do with existing medical records, and potential clini-

cal material is plentiful. If you see new presentations of disease or interesting

cases, you can easily write a case report. However, their weaknesses outweigh

their strengths. These studies do not provide explanations and cannot show asso-

ciation between cause and effect. Therefore, they do not provide much useful

evidence! Since no comparison is made to any control group, contributory cause

cannot be proven. A good general rule for case studies is to “take them seriously

and then ignore them.” By this it is meant that you should never change your

practice based solely on a single case study or series since the probability of see-

ing the same rare presentation or rare disease is quite remote.

There is one situation in which a case series may be useful. Called the “all-or-

none case series,” this occurs when there is a very dramatic change in the out-

come of patients reported in a case series. There are two ways this can occur.

First, all patients died before the treatment became available and some in the

case series with the treatment survive. Second, some patients died before the

treatment became available, but none in the case series with the treatment die.

This all-or-none idea is roughly what happened when penicillin was first intro-

duced. Prior to this time, most patients with pneumonia died of their illness.

When penicillin was first given to patients with pneumonia, most of them lived.

The credibility of these all-or-none case reports depends on the numbers of cases

reported, the relative severity of the illness, and the accuracy and detail of the

case descriptions given in the report.

The case series can be abused. It can be likened to a popular commercial for

Life cereal from the 1970s. In the scene, two children are unsure if they will like

the new cereal Life, so they ask their little brother, Mikey, to try it. He liked it and

they both decided that since “Mikey liked it!” they would like it too. Too often, a

series of cases is presented showing apparent improvement in the condition of

several patients that is then attributed to a particular therapy. The authors con-

clude that this means it should be used as a new standard of care. The fact that

everyone got better is not proof that the therapy or intervention in question is

causative. This is called the “Mikey liked it” phenomenon.1

1 This construct is attributed to J. Hoffman, Emergency Medical Abstracts, 2000.



Study design and strength of evidence 59

Cross-sectional studies

Cross-sectional studies are descriptive studies that look at a sample of a popula-

tion to see how many people in that population are afflicted with a particular dis-

ease and how many have a particular risk factor. Cross-sectional studies record

events and observations and describe diseases, causes, outcomes, effects, or risk

factors in a single population at a single instant in time.

The strengths of cross-sectional studies are that they are relatively cheap, easy,

and quick to do. The data are usually available through medical records or sta-

tistical databases. They are useful initial exploratory studies especially to screen

or classify aspects of disease. They are only capable of demonstrating an asso-

ciation between the cause and effect. They have no ability to determine the

other elements of contributory cause. In order to draw conclusions from this

study, patient exposure to the risk factor being studied must continue until the

outcome occurs. If the exposure began long before the outcome occurs and

is intermittent, it will be more difficult to associate the two. If done properly,

cross-sectional studies are capable of calculating the prevalence of disease in

the population. Prevalence is the percentage of people in the population with

the outcome of interest at any point in time. Since all the cases are looked at in

one instant of time, cross-sectional studies cannot calculate incidence, the rate

of appearance of new cases over time. Another strength of cross-sectional stud-

ies is that they are ideal study designs for studying the operating characteristics

of diagnostic tests. We compare the test being studied to the “gold standard” test

in a cross-section of patients for whom the test might be used.

The trade-off to the ease of this type of study is that the rules of cause and effect

for contributory cause cannot be fulfilled. Since the risk factor and outcome are

measured at the same time, you cannot be certain which is the cause and which

the effect. A cross-sectional study found that teenagers who smoked early in life

were more likely to become anxious and depressed as adults than those who

began smoking at a later age. Does teenage smoking cause anxiety and depres-

sion in later years, or are those who have subclinical anxiety or depression more

likely to smoke at an early age? It is impossible to tell if the cause preceded the

effect, the effect was responsible for the cause, or both are related to an unknown

third factor called a confounding or surrogate variable. Confounding or surro-

gate variables are more likely to apply if the time from the cause to the effect is

short. For example, it is very common for people to visit their doctor just before

their death. The visit to the doctor is not a risk factor for death but is a “surro-

gate” marker for severe and potentially life-threatening illness. These patients

visit their doctors for symptoms associated with their impending deaths.

Cross-sectional studies are subject to prevalence–incidence bias. Prevalence–

incidence bias is defined as a situation when the element that seems to cause

an outcome is really an effect of or associated with that cause. This occurs when

a risk factor is strongly associated with a disease and is thought to occur before



60 Essential Evidence-Based Medicine

the disease occurs. Thus the risk factor appears to cause the disease when in

reality it simply affects the duration or prognosis of the disease. An associa-

tion was noted between HLA-A2 antigen and the presence of acute lymphocytic

leukemia in children in a cross-sectional study. It was assumed to be a risk fac-

tor for occurrence of the disease. Subsequent studies found that long-term sur-

vivors had the HLA-A2 antigen and its absence was associated with early mor-

tality. The antigen was not a risk factor for the disease but an indicator of good

prognosis.

Longitudinal studies

Longitudinal study is a catchall term describing either observations or interven-

tions made over a given period of time. There are three basic longitudinal study

designs: case–control studies, cohort studies, and clinical trials. These are ana-

lytic or inferential studies, meaning that they look for a statistical association

between risk factors and outcomes.

Case–control studies

These studies were previously called retrospective studies, but looking at data

in hindsight is not the only attribute of a case–control study. There is another

unique feature that should be used to identify a case–control study. The sub-

jects are initially selected because they either have the outcome of interest –

cases – or do not have the outcome of interest – controls. They are grouped at the

start of the study by the presence or absence of the outcome, or in other words,

are grouped as either cases or controls. This type of study is good to screen for

potential risk factors of disease by reviewing elements that occurred in the past

and comparing the outcomes. The ratio between cases and controls is arbitrar-

ily set rather than reflecting their true ratio in the general population.. The study

then examines the odds of exposure to the risk factor among the cases and com-

pares this to the odds of exposure among the controls. Figure 6.1 is a schematic

description of a case–control study.

The strengths of case–control studies are that they are relatively easy, cheap,

and quick to do from previously available data. They can be done using current

patients and asking them about events that occurred in the past. They are well

suited for studying rare diseases since the study begins with subjects who already

have the outcome. Each case patient may then be matched up with one or more

suitable control patients. Ideally the controls are as similar to the cases as pos-

sible except for the outcome and then their degree of exposure to the risk fac-

tor of interest can be calculated. Case–controls are good exploratory studies and

can look at many risk factors for one outcome. The results can then be used to
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Fig. 6.1 Schematic diagram of a
case–control study.

suggest new hypotheses for a later study with stronger research study design,

such as a cohort study or clinical trial.

Unfortunately, there are many potentially serious weaknesses in case–control

studies, which in general, make them only fair sources of evidence. Since the data

are collected retrospectively, data quality may be poor. Data often come from a

careful search of the medical records of the cases and controls. The advantage

of these records being easily available is counteracted by their questionable reli-

ability. These studies rely on subjective descriptions to determine exposure and

outcome, and the subjective standards of the record reviewers to determine the

presence of the cause and effect. This is called implicit review of the medical

records. Implicit review of charts introduces the researcher’s bias in interpreting

the measurements or outcomes. Stronger case–control studies will use explicit

reviews. An explicit review only uses clearly objective measures in reviews of

medical charts, or the chart material is reviewed in a blinded manner using pre-

viously determined outcome descriptors. These chart reviews are better but are

more difficult to perform.

When a patient is asked to remember something about a medical condi-

tion that occurred in the past, their memory is subject to recall or reporting

bias. Recall or reporting bias occurs because those with the disease are more

likely to recall exposure to many risk factors simply because they have the dis-

ease. Another problem is that subjects in the sample may not be representative

of all patients with the outcome. This is called sampling or referral bias and
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commonly occurs in studies done at specialized referral centers. These referred

patients may be different from those seen in a primary-care practice and often in

referral centers, only the most severe cases of a given disorder will be seen, thus

limiting the generalizability of the findings.

When determining which of many potential risk factors is associated with

an outcome using a case–control study a derivation set is developed. A deriva-

tion set is the initial series of results of a study. The results of the derivation set

should be used cautiously since any association discovered may have turned up

by chance alone. The study can then be repeated using a cohort study design to

look at those factors that have the highest correlation with the outcome in ques-

tion to see if the association still holds. This is called a validation set and has

greater generalizability to the population.

Other factors to be aware of when dealing with case–control studies are that

case–controls can only study one disease or outcome at a given time. Also, preva-

lence or incidence cannot be calculated since the ratio of cases to controls is pre-

selected by the researchers. In addition, they cannot prove contributory cause

since they cannot show that altering the cause will alter the effect and the study

itself cannot show that the cause preceded the effect. Often times, researchers

and clinicians can extrapolate the cause and effect from knowledge of biology or

physiology.

Cohort studies

These were previously called prospective studies since they are usually done

from past to present in time. The name comes from the Latin cohors, meaning a

tenth of a legion marching together in time. However, they can be and are now as

frequently done retrospectively and called non-concurrent cohort studies. The

cohort is a group of patients who are selected based on the presence or absence

of the risk factor (Fig. 6.2). They are followed in time to determine which of them

will develop the outcome or disease. The probability of developing the outcome

is the incidence or risk, and can be calculated for each group. The degree of risk

can then be compared between the two groups.

The cohort study can be one of the strongest research study designs. They can

be powerful studies that can determine the incidence of disease and are able to

show that the cause is associated with the effect more often than by chance alone.

They can also show that the cause preceded the effect. They do not attempt to

manipulate the cause and cannot prove that altering the cause alters the effect.

Cohort studies are an ideal study design for answering questions of etiology,

harm, or prognosis as they collect the data in an objective and uniform fashion.

The investigators can predetermine the entry criteria, what measurements are to

be made, and how they are best made. As a result, there is usually no recall bias,
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Fig. 6.2 Schematic diagram of a
cohort study.

except as a possibility in non-concurrent cohort studies where the researchers

are asking for subjective information from the study subjects.

The main weakness of cohort studies is that they are expensive in time and

money. The startup and ongoing monitoring costs may be prohibitive. This is a

greater problem when studying rare or uncommon diseases as it may be diffi-

cult to get enough patients to find clinically or statistically significant differences

between the patients who are exposed and those not exposed to the risk factor.

Since the cohort must be set up prospectively by the presence or absence of the

risk factor, they are not good studies to uncover new risk factors.

Confounding variables are factors affecting both the risk factor and the out-

come. They may affect the exposed and unexposed groups differently and lead

to a bias in the conclusions. There are often reasons why patients are exposed to

the risk factor that may lead to differences in the outcome. For example, patients

may be selected for a particular therapy, the risk factor in this case, because they

are sicker or less sick, which then cause differences in outcomes that result.

Patients who leave the study, called patient attrition, can cause loss of data

about the outcomes. The cause of their attrition from the study may be directly

related to some conditions of the study. Therefore, it is imperative for researchers

to account for all patients. In practice an acceptable level of attrition is less than

20%. However, this should be used as a guide rather than an absolute value. A

value of attrition lower than 20% may bias the study if the reason patients were

lost from the study is related to the risk factor. In long-running studies, patients
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may change some aspect of their behavior or exposure to the risk factor after the

initial grouping of subjects, leading to misclassification bias. Safeguards to pre-

vent these issues should be clearly outlined in the methods section of the study.

A special case of the cohort study, the non-concurrent cohort study is also

called a database study. It is essentially a cohort study that begins in the present

and utilizes data on events that took place in the past. The cohort is still sepa-

rated by the presence or absence of the risk factor that is being studied, although

this risk factor is usually not the original reason that patients were entered into

the study. Non-concurrent cohort studies are not retrospective studies, but have

been called “retrospective cohort studies” in the past. They have essentially the

same strengths and weaknesses as cohort studies, but are more dependent on

the quality of the recorded data from the past.

In a typical non-concurrent cohort study design, a cohort is put together in the

past and many baseline measurements are made. The follow-up measurements

and determination of the original outcomes are made when the data are finally

analyzed at the end of the study. The data will then be used for another, later

study and analyzed for a new risk factor other than the one for which the original

study was done. For example, a cohort of patients with trauma due to motor-

vehicle-accident is collected to look at the relationship of wearing seat belts to

death. After the data are collected, the same group of patients is looked at to see

if there is any relationship between severe head injury and the wearing of seat

belts. Both data elements were collected as part of the original study.

In general, for a non-concurrent cohort study, the data are available from

databases that have already been set up. The data should be gathered in an objec-

tive manner or at least without regard for the association which is being sought.

Data gatherers are ideally blinded to the outcomes. Since non-concurrent cohort

studies rely on historical data, they may suffer some of the weaknesses associ-

ated with case–control studies regarding recall bias, the lack of uniformity of data

recorded in the data base, and subjective interpretation of records.

To review

Subjects in case–control studies are initially grouped according to the pres-

ence or absence of the outcome and the ratio between cases and controls is

arbitrary and not reflective of their true ratio in the population.

Subjects in cohort studies are initially grouped according to the presence or

absence of risk factors regardless of whether the group was assembled in the

past or the present.

Clinical trials

A clinical trial is a cohort study in which the investigator intervenes by manipu-

lating the presence or absence of the risk factor, usually a therapeutic maneuver.
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Fig. 6.3 Schematic diagram of a
randomized clinical trial.

Clinical trials are human experiments, also called interventional studies. Tradi-

tional cohort and case–control studies are observational studies in which there

is no intentional intervention. An example of a clinical trial is a study in which a

high-soy-protein diet and a normal diet were given to middle-aged male smok-

ers to determine if it reduced their risk of developing diabetes. The diet is the

intervention. A cohort study of the same ‘risk factor’ would look at a group of

middle-aged male smokers and see which of them ate a high-soy-protein diet

and then follow them for a period of time to determine their rates of developing

diabetes. Figure 6.3 is a schematic diagram of a randomized clinical trial.

Clinical trials are characterized by the presence of a control group identical

to the experimental patients in every way except for their exposure to the inter-

vention being studied. Patients entering controlled clinical trials should be ran-

domized, meaning that all patients signed up for the trial should have an equal

chance of being placed in either the control group (also called the comparison

group, placebo group, or standardized therapy group) or the experimental group,

which gets the intervention being tested. Subjects and experimenters should ide-

ally be blinded to the therapy and group assignment during the study, such that

the experimenters and subjects are unaware if the patient is in the control or

experimental group, and are thus unaware whether they are receiving the exper-

imental treatment or the comparison treatment.
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Clinical trials are the only study design that can fulfill all the rules of contrib-

utory cause. They can show that the cause and effect are associated more than

by chance alone, that the cause precedes the effect, and that altering the cause

alters the effect. When properly carried out they will have fewer methodological

biases than any other study design.

However, they are far from perfect. The most common weakness of controlled

clinical trials is that they are very expensive. Because of the high costs, multi-

center trials that utilize cooperation between many research centers and are

funded by industry or government are becoming more common. Unfortunately,

the high cost of these studies has resulted in more of them being paid for by

large biomedical (pharmaceutical or technology) companies and as a result, the

design of these studies could favor the outcome that is desired by the sponsoring

agency. This could represent a conflict of interest for the researcher, whose salary

and research support is dependent on the largess of the company providing the

money. Other factors that may compromise the research results are patient attri-

tion and patient compliance.

There may be ethical problems when the study involves giving potentially

harmful, or withholding potentially beneficial, therapy. The Institutional Review

Boards (IRB) of the institutions doing the research should address these. A

poorly designed study should not be considered ethical by the IRB. However, just

because the IRB approves the study doesn’t mean that the reader should not crit-

cally read the study. It is still the reader’s responsibility to determine how valid a

study is based upon the methodology. In addition, the fact that a study is a ran-

domized controlled trial does not in itself guarantee validity, and there can still

be serious methodological problems that will bias the results.
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Instruments and measurements: precision and validity

Not everything that can be counted counts, and not everything that counts can be

counted.

Albert Einstein (1879–1955)

Learning objectives

In this chapter you will learn:
� different types of data as basic elements of descriptive statistics
� instrumentation and measurement
� precision, accuracy, reliability, and validity
� how researchers should optimize these factors

All clinical research studies involve observations and measurements of the phe-

nomena of interest. Observations and measurements are the desired output of a

study. The instruments used to make them are subject to error, which may bias

the results of a study. The first thing we will discuss is the type of data that can

be generated from clinical research. This chapter will then introduce concepts

related to instruments and measurements.

Types of data and variables

There are several different ways of classifying data. They can be classified by their

function as independent or dependent variables, their nature as nominal, ordi-

nal, interval, or ratio variables, and whether they are continuous, discrete, or

dichotomous variables.

When classifying variables by function we want to know what the variable does

in the experiment. Is it the cause or the effect? In most clinical trials one variable

is held constant relative to the other. The independent variable is under the con-

trol of or can be manipulated by the investigator. Generally this is the cause we

67
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are interested in, such as a drug, a treatment, a risk factor, or a diagnostic test.

The dependent variable changes as a result of or as an effect of the action of the

independent variable. It is usually the outcome of exposure to the treatment or

risk factor, or the presence of a particular diagnosis. We want to find out if chang-

ing the independent variable will produce a change in the dependent variable.

The nature of each variable should be evident from the study design or there is a

serious problem in the way the study was conducted.

When classifying variables by their nature, we mean the hierarchy that

describes the mathematical characteristics of the value generated for that vari-

able. The choice of variables becomes very important in the application of statis-

tical tests to the data. Nominal data are simply named categories. One can assign

a number to each of these categories, but it would have no intrinsic significance

and cannot be used to compare one piece of the data set to another. Changing

the number assignment has no effect on the interpretation of the data. Exam-

ples of nominal data are classification of physicians by specialty or of patients

by the type of cancer from which they suffer. There is no relationship between

the various types of specialty physicians except that they are all physicians and

went to medical school. There is certainly no mathematical relationship between

them.

Ordinal data are nominal data for which the order of the variables has impor-

tance and intrinsic meaning. However, there is still no mathematical relation-

ship between data points. Typical examples of ordinal data include certain pain

scores that are measured by scales called Likert scales, severity of injury scores

as reflected in a score such as the Trauma Score where lower numbers are pre-

dictive of worse survival than higher ones, or the grading and staging of a tumor

where higher number stages are worse than lower ones. Common questionnaires

asking the participant to state whether they agree, are neutral, or disagree with

a statement are also examples of an ordinal scale. Although there is a directional

value to each of these answers, there is no numerical or mathematical relation-

ship between them.

Interval data are ordinal data for which the interval between each number is

also a meaningful real number. However, interval data have only an arbitrary zero

point and, therefore, there is no proportionality ratio relationship between two

points. One example is temperature in degrees Celsius where 64◦C is 32◦C hotter

than 32◦C but not twice as hot. Another example is the common IQ score where

100 is average, but someone with a score of 200 is not twice as smart since a score

of 200 is super-genius, and less than 0.01% the population has a score this high.

Ratio data are interval data that have an absolute zero value. This makes

the results take on meaning for both absolute and relative changes in the vari-

able. Examples of ratio variables are the temperature in degrees Kelvin where

100◦ Kelvin is 50◦K hotter than 50◦K and is twice as hot, age where a 10-year-

old is twice as old as a 5-year-old, and common biological measurements such
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as pulse, blood pressure, respiratory rate, blood chemistry measurements, and

weight.

Data can also be described as either having or lacking continuity. Continuous

data may take any value within a defined range. For most purposes we choose

to round off to an easily usable number of digits. This is called the number of

significant places, which is taught in high school and college, although it is often

forgotten by students quickly thereafter. Height is an example of a continuous

measure since a person can be 172 cm or 173 cm or 172.58763248 . . . cm tall. The

practical useful value would be 172.6 or 173 cm.

Values for discrete data can only be represented by whole numbers. For exam-

ple, a piano is an instrument with only discrete values in that there are only 88

keys, therefore, only 88 possible notes. Scoring systems like the Glasgow Coma

Score for measuring neurological deficits, the Likert scales mentioned above, and

other ordinal scales contain only discrete variables and mathematically can have

only integer values.

We commonly use dichotomous data to describe binomial outcomes, which

are those variables that can have only two possible values. Obvious examples

are alive or dead, yes or no, normal or abnormal, and better or worse. Some-

times researchers convert continuous variables to dichotomous ones. Select-

ing a single cutoff as the division between two states does this. For example,

serum sodium is defined as normal if between 135 and 145 mEq/dL. Values over

145 define hypernatremia, and values below this don’t. This has the effect of

dichotomizing the value of the serum sodium into either hypernatremic or not

hypernatremic.

Measurement in clinical research

All natural phenomena can be measured, but it is important to realize that errors

may occur in the process. These errors can be classified into two categories: ran-

dom and systematic. Random error is characteristically unpredictable in direc-

tion or amount. Random error leads to a lack of precision due to the innate

variability of the biological or sociological system being studied. This biologi-

cal variation occurs for most bodily functions. For example, in a given popula-

tion, there will be a more or less random variation in the pulse or blood pres-

sure. Many of these random events can be described by the normal distribution,

which we will discuss in Chapter 9. Random error can also be due to a lack of

precision of the measuring instrument. An imprecise instrument will get slightly

different results each time the same event is measured. In addition, certain mea-

surements are inherently more precise than others. For example, serum sodium

measured inside rat muscle cells will show less random error than the degree

of depression in humans. There can also be innate variability in the way that
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different researchers or practicing physicians interpret various data on certain

patients.

Systematic error represents a consistent distortion in direction or magni-

tude of the results. Systematic or systemic error is a function of the person

making the measurement or the calibration of the instrument. For example,

researchers could consistently measure blood pressure using a blood-pressure

cuff that always reads high by 10 mmHg. More commonly, a measurement can

be influenced by knowledge of other aspects of the patient’s situation lead-

ing to researchers responding differently to some patients in the study. In a

study of asthma, the researcher may consistently coach some research sub-

jects differently in performing the peak expiratory flow rate (PEFR), an effort-

dependent test. Another source of systematic error can occur when there is non-

random assignment of subjects to one group in a study. For instance, researchers

could preferentially assign patients with bronchitis to the placebo group when

studying the effect of antibiotics on bronchitis and pneumonia. This would be

problematic since bronchitis almost always gets better on its own and pneu-

monia sometimes gets better on its own, but it is less likely and occurs more

slowly. Then, if the patients assigned to placebo get better as often as those tak-

ing antibiotics, the cause of the improvement is uncertain since it may have

occurred because the placebo patients were going to get better more quickly

anyway.

Both types of errors may lead to incorrect results. The researcher’s job is to

minimize the error in the study to minimize the bias in the study. Researchers are

usually more successful at reducing systematic error than random error. Overall,

it is the reader’s job to determine if bias exists, and if so to what extent and in

what direction that bias is likely to change the study results.

Instruments and how they are chosen

Common instruments include objective instruments like the thermometer

or sphygmomanometer (blood-pressure cuff and manometer) and subjective

instruments such as questionnaires or pain scales. By their nature, objective

measurements made by physical instruments such as automated blood-cell

counters tend to be very precise. However, these instruments may also be

affected by random variation of biological systems in the body. An example of

this is hemodynamic pressure measurements such as arterial or venous pres-

sure, oxygen saturation, and airway pressures taken by transducers. The actual

measurement may be very precise, but there can be lots of random variation

around the true measurement result. Subjective instruments include questions

that must be answered either yes or no or with an ordinal scale (0, 1, 2, 3, 4, or

5) or by placing an x on a pre-measured line. Measures of pain or anxiety are
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common examples and these are commonly known to be unreliable, inaccurate,

and often imprecise.

Overall, measurements, the data that instruments give us, are the final goals

of research. They are the result of applying an instrument to the process of sys-

tematically collecting data. Common instruments used in medicine measure the

temperature, blood pressure, number of yes or no answers, or level of pain. The

quality of the measurements is only as good as the quality of the instrument used

to make them.

Good instrument selection is a vital part of the research study design. The

researcher must select instruments that will measure the phenomena of inter-

est. If the researcher wishes to measure blood pressure accurately and precisely,

a standard blood-pressure cuff would be a reasonable tool. The researcher could

also measure blood pressure using an intra-arterial catheter attached to a pres-

sure transducer. This will give a more precise result, but the additional precision

may not help in the ultimate care of the patient. If survival is the desired out-

come, a simple record of the presence or absence of death is the best measure.

For measuring the cause of death, the death certificate can also be the instru-

ment of choice but has been shown to be inaccurate.

When subjective outcomes like pain, anxiety, quality of life, or patient satis-

faction are measured, the selection of an instrument becomes more difficult.

Pain, a very subjective measure, is appreciated differently by different people.

Some patients will react more strongly and show more emotion than others in

response to the same levels of pain. There are standardized pain scores available

that have been validated in research trials. The most commonly used pain scale is

the Visual Analog Scale (VAS). A 10-cm line is placed on the paper with one end

labeled “no pain at all,” and the other end “worst pain ever.” The patient puts

a mark on the scale corresponding to the pain level. If this exercise is repeated

and the patient reports the same level of pain, then the scale is validated. The

best outcome measure when using this scale becomes the change in the pain

score and not the absolute score. Since pain is quantified differently in differ-

ent patients, it is only the difference in scores that is likely to be similar between

patients. In fact, when this was studied, it was found that patients would use con-

sistently similar differences for the same degree of pain difference.1 This study

found that a difference in pain scores of 1.5 cm is a clinically important differ-

ence in degree of pain.

Another type of pain score is the Likert Scale, which is a five- or six-point ordi-

nal scale in which each of the points represents a different level of pain. A sample

Likert Scale begins with 0 = no pain, continues with 1 = minimal pain, and ends

1 K. H. Todd & J. P. Funk. The minimum clinically important difference in physician-assigned visual
analog pain scores. Acad. Emerg. Med. 1996; 3: 142–146; and K. H. Todd, K. G. Funk, J. P. Funk & R.
Bonacci. Clinical significance of reported changes in pain severity. Ann. Emerg. Med. 1996; 27: 485–
489.
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with 5 = worst pain ever. The reader must be careful when interpreting stud-

ies using this type of scoring system. Like the VAS for pain, personal differences

in the quantification may result in large differences in the score. A patient who

puts a 3 for their pain is counted very differently from a patient who puts a 4

for the same level of pain. The differences in pain level have not been quantified

in the same way as the VAS, and as it is an ordinal scale, the results may not be

used the same way. The VAS score behaves like a continuous variable while Lik-

ert scales should be treated as ordinal variables. Because of this, Likert scales are

very useful for measuring opinions about a given question. For example, when

evaluating a course, you are given several graded choices such as strongly agree,

agree, neutral, disagree, or strongly disagree.

Similar problems will result with other questionnaires and scales. The reader

must become familiar with the commonly used survey instruments in their spe-

cialty. Commonly used scores in studies of depression are the Beck Depression

Inventory or the Hamilton Depression Scale. In the study of alcoholism, the com-

monly used scores are the CAGE score, Michigan Alcohol Screening Test (MAST),

and the Alcohol Use Disorders Identification Test (AUDIT). The reader is respon-

sible for understanding the limitations of each of these scores when reviewing

the literature. This will require the reader to look further into the use of these

tests when first reviewing the medical literature. Be aware that sometimes scores

are developed specifically for a study, and in that case, they should be indepen-

dently validated before use.

A common problem in selecting instruments is the practice of measuring sur-

rogate markers. These are markers that may or may not be related to or be pre-

dictive of the outcome of interest. For example, the degree of blood flow through

a coronary artery as measured by “TIMI grade” of flow is a good measure of the

flow of blood through the artery. But, it may not predict the ultimate survival

of a patient. The measure of TIMI grade flow is called a disease-oriented out-

come while overall survival is a patient-oriented outcome. Composite outcomes

are multiple outcomes put together in the hope that the combination will more

often achieve statistical significance. This is done when each individual outcome

is too infrequent to expect that it will demonstrate statistical significance. Only

consider using composite outcomes if all the outcomes are more or less equally

important to your patient. One example is the use of death and recurrent tran-

sient ischemic attack (TIA) as an outcome. Death is important to all patients,

but recurrent TIA may not have the same level of importance, and should not

be considered equal when measuring outcome events. We’ll discuss composite

outcomes and how to evaluate them in a future chapter.

Attributes of measurements

Measurements should be precise, reliable, accurate, and valid. Precision simply

means that the measurement is nearly the same value each time it is measured.
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This is a measure of random variation, noise, or random error. Statistically it

states that for a precise measurement, there is only a small amount of variation

around the true value of the variable being measured. In statistical terminology

this is equivalent to a small standard deviation or range around the central value

of multiple measurements. For example, if each time a physician takes a blood

pressure, the same measurement is obtained, then we can say that the measure-

ment is precise. The same measurement can become imprecise if not repeated

the same way, for example if different blood-pressure cuffs are used.

Reliability has been used loosely as a synonym of precision but it also incor-

porates durability or reproducibility of the measurement in its definition. It tells

you that no matter how often you repeat the measurement you will get the same

or similar result. It can be precise, in which case the results of repeated measure-

ments are almost exactly the same. We are looking for instruments that will give

precise, consistent, reproducible, and dependable data.

Accuracy is a measure of the trueness of the result. This tells you how close

the measured value is to the actual value. Statistically, it is equivalent to saying

that the mean or arithmetic average of all measurements taken is the actual and

true value of the thing being measured. For example, if indirect blood-pressure

measurements use a manometer and blood-pressure cuff that correlate closely

to direct intra-arterial measurements in healthy, young volunteers using a pres-

sure transducer, it means that the blood pressure measured using the manome-

ter and blood-pressure cuff is accurate. The measurement will be inaccurate if

the manometer is not calibrated properly or if an incorrect cuff size is used. Accu-

racy doesn’t mean the same thing as precision. It is possible for a measurement

to be accurate but not precise if the average measured result is the true value of

the thing being measured but the spread around that measure is very great.

Precision and accuracy are direct functions of the instruments chosen to make

a particular measurement. Validity tells us that the measurement actually rep-

resents what we want to measure. We may have accurate and precise measure-

ments that are not valid. For example, weight is a less valid measure for obe-

sity than skin fold thickness or body mass index. Blood pressure measured with

a standard blood-pressure cuff is a valid measure of the intra-arterial pressure.

However, a single blood-sugar measurement is not a valid measure of overall

diabetic control. A test called glycosylated hemoglobin is a valid measure of

this.

Types of validity

There are several definitions of validity. The first set of definitions defines validity

by the process with which it is determined. This includes criterion-based, predic-

tive, and face validity. The second definition defines where validity is found in a

clinical study and includes internal and external validity.
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Criterion-based or construct validity is a description of how close the mea-

surement of the phenomenon of interest is to other measurements of the

same thing using different instruments. This means that there is a study show-

ing that the measurement of interest agrees with other accepted measures of the

same thing. For example, the score of patients on the CAGE questionnaire for

alcoholism screening correlates with the results on the more complex and pre-

viously validated Michigan Alcohol Screening Test (MAST) for the diagnosis of

alcoholism. Similarly, blood-pressure cuff readings correlate with intra-arterial

blood pressure as recorded by an electrical pressure transducer.

Predictive validity is a type of criterion-based validity that describes how well

the measurement predicts an outcome event. This could be the result of another

measurement or the presence or absence of a particular outcome. For example,

lack of fever in an elderly patient with pneumonia predicts a higher mortality

than in the same group of patients with fever. This was determined from studies

of factors related to the specific outcome of mortality in elderly patients with

pneumonia. We would say that lack of fever in elderly pneumonia patients gives

predictive validity to the outcome of increased mortality.

Finally, face validity is how much common sense the measurement has. It is a

statement of the fact that the instrument measures the phenomenon of interest

and that it makes sense. For example, the measured performance of a student

on one multiple-choice examination should predict that student’s performance

on another multiple-choice examination. Performance on an observed exam-

ination of a standardized patient accurately measures the student’s ability to

accurately perform a history and physical examination on any patient. However,

having face validity doesn’t mean that the measure can be accepted without ver-

ification. In this example, it must be validated because the testing situation may

cause some students to freeze up, which they wouldn’t do when face-to-face with

a real patient, thus decreasing its face validity.

Validity can also be classified by the potential effect of bias or error on the

results of a study. Internal and external validity are the terms used to describe

this and are the most common ways to classify validity. You should use this

schema when you assess any research study. Internal validity exists when preci-

sion and accuracy are not distorted by bias introduced into a study. An internally

valid study precisely and accurately measures what is intended. Internal valid-

ity is threatened by problems in the way a study is designed or carried out, or

with the instruments used to make the measurements. External validity exists

when the measurement can be generalized and the results extrapolated to other

clinical situations or populations. External validity is threatened when the pop-

ulation studied is too restrictive and you cannot apply the results to another and

usually larger, population.

Schematically, truth in the study is a function of internal validity. The results

of an internally valid study are true if there is no serious source of bias that can
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produce a fatal flaw and invalidate the study. Truth in the universe relating to all

other patients with this problem is only present if the study is externally valid.

The process by which this occurs will be discussed in a later chapter.

Improving precision and accuracy

In the process of designing a study, the researcher should maximize precision,

accuracy, and validity. The methods section detailing the protocol used in the

study should enable the reader to determine if enough safeguards have been

taken to ensure a valid study. The protocol should be explicit and given in enough

detail to be reproduced easily by anyone reading the study.

There are four possible error patterns that can occur in the process of measur-

ing data.

(1) Both precision and accuracy can be good: the result is equal to the true value

and there is only a small degree of variation around that true value, or the

standard deviation is small.

(2) The results may be precise but not accurate: the result is not equal to the true

value, but there is only a small degree of variation around that value; this

pattern is characteristic of systematic error or bias.

(3) Results that are accurate but not precise: the result is equal to the true value

but there is a large amount of variation around that value, or the standard

deviation is large. This is typical of random error, a statistical phenomenon.

(4) The result may be neither accurate nor precise: this is due to both ran-

dom and systematic error and in this case the result of the study is not

equal to the true value and there is a large amount of variability around that

value.

Look for these patterns of error or potential error when reviewing a study.

Using exactly reproducible and objective measurements, standardizing the

performance of the measurements and intensively training the observers will

increase precision. Automated instruments can give more reliable measure-

ments, assuming that they are regularly calibrated. The number of trained

observers should be kept to a minimum to increase precision, since having more

observers increases the likelihood that one will make a serious error.

Making unobtrusive measurements reduces subject bias. Unobtrusive mea-

surements are those which cannot be detected by the subject. For example, tak-

ing a blood pressure is obtrusive while simply observing a patient for an out-

come like death or living is usually non-obtrusive. Watching someone work and

recording his or her efficiency is obtrusive since it could result in a change in

behavior, called the Hawthorne effect. Therefore, unobtrusive measurements

are best made in a blinded manner. If the observer is unaware of the group to

which the patient is assigned, there is less risk that the measurement will be
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biased. Blinding creates the climate for consistency and fairness in the measure-

ments, and results in reduced systematic error. Non-blinded measurements can

lead to differential treatment being given to one of the groups being studied.

This can lead to contamination or confounding of the results. In single blind-

ing, either the researcher or the patient doesn’t know who is in each group.

In double blinding, neither the researchers nor subject knows who is in each

group. Triple blinding occurs if the patient, person treating the patient, and

the researcher measuring the outcome are all blind to the treatment being

rendered.

Tests of inter- and intra-rater reliability

Different observers can obtain different results when they make a measurement.

Several observers may measure the temperature of a child using slightly different

techniques when using the thermometer like varying the time the thermometer

is left in the patient or reading the mercury level in different ways.

Precision is improved when inter- or intra-observer variation is minimized.

The researcher should account for variability between observers and between

measurements made by the same observer. Variability between two observers

or between multiple observations by a single observer can introduce bias into

the results. Therefore a subset of all the measurements should be repeated

and the variability of the results measured. This is referred to as inter-observer

and intra-observer variability. Inter-observer variability occurs when two or

more observers obtain different results when measuring the same phenomenon.

Intra-observer variability occurs when the same observer obtains different

results when measuring the same phenomenon on two or more occasions. Tests

for inter-observer and intra-observer variability should be done before any study

is completed.

Both the inter-observer and intra-observer reliability are measured by the

kappa statistic. The kappa statistic is a quantitative measure of the degree

of agreement between measurements. It measures the degree of agreement

beyond chance between two observers, called the inter-rater agreement, or

between multiple measurements made by a single observer, called the intra-rater

agreement.

The kappa statistic applies because physicians and researchers often assume

that all diagnostic tests are precise. However, many studies have demonstrated

that most non-automated tests have a degree of subjectivity in their interpre-

tation. This has been seen in commonly used radiologic tests such as CT scan,

mammography, and angiography. It is also present in tests commonly consid-

ered to be the gold standard such as the interpretation of tissue samples from

autopsy, biopsy, or surgery.
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Resident 1
Normal Abnormal

Resident 2
       Normal 90 0 90

   Abnormal 10 0 10

 100       0

Fig. 7.1 Observed agreement
between two residents when
one (no. 1) reads them all as
normal and the other (no. 2)
reads 90 as normal and 10 as
abnormal.

Here is a clinical example of how the kappa statistic applies. One morning,

two radiology residents were reading mammograms. There were 100 mammo-

grams to be read. The first resident, Number 1, had been on night call and was

pretty tired. He didn’t really feel like reading these and knew that all of his read-

ings would be reviewed by the attending. He also reasoned that since this was a

screening clinic for young women with an average age of 32, there would be very

few positive studies. This particular radiology department had a computerized

reading system where the resident pushes either the “normal” or the “cancer”

button on a console and that reading would be entered into the file. After read-

ing the first three as negative, he fell asleep on the “negative” button, making all

one hundred readings negative.

The second resident, Number 2, was really interested in mammography and

had slept all night, since she was not on call. She carefully read each study and

pushed the appropriate button. She read 90 films as normal and 10 as suspicious

for early breast cancer. The two residents’ readings are tabulated in the 2 × 2

table in Fig. 7.1.

The level of agreement that was observed was 90/100 or 90%. Is this agreement

of 90% very good? What would the agreement be if they read the mammograms

by chance alone? Assuming that there are 90% normals and 10% abnormals, we

can assume that each read their films with that proportion of each result and do

the same 2 × 2 table (Fig. 7.2). Agreement by chance would be (81 + 1)/100 or

82%.

Kappa is the ratio of the actual agreement beyond chance and the potential

agreement beyond chance. The actual agreement beyond chance is the differ-

ence between the actual agreement found and that expected by chance. In our

example it is 90 – 82 = 8% (0.08). The potential agreement beyond chance is the

difference between the highest possible agreement (100%) and that expected by

chance alone. In our example, 100 – 82 = 18% (0.18). This makes Kappa = (0.90 –

0.82)/(1.00 – 0.82) = 0.08/0.18 = 0.44.
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Table 7.1. Interpretation of the kappa statistic

Actual agreement between measurements beyond chance
Kappa =

Potential agreement between measurements beyond chance

Range: 0–1 (0 = no agreement; 1 = complete agreement)

Numerical level of kappa Qualitative significance

0.0–0.2 slight

0.2–0.4 fair

0.4–0.6 moderate

0.6–0.8 substantial

0.8–1.0 almost perfect

Resident 1
Normal Abnormal

Resident 2
       Normal 81 9 90

   Abnormal 9 1 10

90 10

Fig. 7.2 Observed agreement
between two residents when
both (no. 1 and no. 2) read 90 as
normal and 10 as abnormal, but
there is no relationship between
their readings. The 90% read
normal by no. 1 are not the
same as the 90% read as normal
by no. 2.

Resident 1
Normal Abnormal

Resident 2
        Normal   25 25 50

    Abnormal   25       25 50

  50 50 A

Resident 1
Normal Abnormal

Resident 2
       Normal    50       0 50

   Abnormal      0            50 50

   50   50 B

Fig. 7.3 Kappa for chance
agreement only (A, κ = 0.0) and
for perfect agreement (B, κ =
1.0).

Overview of kappa statistic

You should use the kappa statistic when you want to know the precision of a

measurement or the inter-observer or intra-observer consistency. This gives a

reasonable estimate of how “easily” the measurement is made. The “easier” it is

to make a measurement, the more likely that two different observers will agree

on the result and that agreement is not just due to chance. Some experts have
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related the value of kappa to qualitative descriptors, which are given in Table 7.1.

In general, look for a kappa higher than 0.6 before you consider the agreement to

be reasonably acceptable.

Kappa ranges from 0 to 1 where 0 means that there is no agreement and 1

means there is complete agreement beyond that expected by chance alone. You

can see from making a 2 × 2 table that if there is an equal number in each cell the

agreement occurs purely by chance (Fig. 7.3). Similarly if there is perfect agree-

ment, it is very unlikely that the agreement occurred completely by chance. How-

ever, it is still possible: if there are only a few readings in each cell, 100% agree-

ment could occur by chance, even though the chance of this happening is very

small. Confidence intervals, which we will discuss later in the book, should be

calculated to determine the statistically feasible range within which 95% of pos-

sible kappa values will be found.

There are other statistics that more or less measure the same thing as the kappa

statistic. These are the standard deviation of repeated measurements, coefficient

of variation, correlation coefficient of paired measurements, intraclass correla-

tion coefficient and Cronbach’s alpha.2

2 A more detailed discussion of kappa can be found in D. L. Sackett, R. B. Haynes, P. Tugwell & G. H.
Guyatt Clinical Epidemiology: a Basic Science for Clinical Medicine. 2nd edn. Boston: Little Brown,
1991.



8

Sources of bias

Of all the causes which conspire to blind

Man’s erring judgment, and misguide the mind;

What the weak head with strongest bias rules, –

Is pride, the never-failing vice of fools.

Alexander Pope (1688–1744): Essay on Criticism

Learning objectives

In this chapter you will learn:
� sources of bias
� threats to internal and external validity
� how to tell when bias threatens the conclusions of a study

All studies involve observations and measurements of phenomena of interest,

but the observations and instruments used to make these measurements are

subject to error. Bias introduced into a study can result in systematic error which

may then affect the results of the study and could invalidate the conclusions.

Since there is no such thing as a perfect study, in reading the medical litera-

ture you should be familiar with common sources of bias in clinical studies. By

understanding how these biases could affect the results of the study, it is possible

to detect bias and predict the potential effect on the conclusions. You can then

determine if this will invalidate the study conclusions enough to deter you from

using the results in your patients’ care. This chapter will give you a schema for

looking for bias, and present some common sources of bias.

Overview of bias in clinical studies

Bias was a semilegendary Greek statesman who tried to make peace between

two city-states by lying about the warlike intention of the enemy state. His ploy

80
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failed and ultimately he told the truth, allowing his city to win the war. His name

became forever associated with slanting the truth as a means to accomplish an

end.

Bias is defined as the systematic introduction of error into a study that can

distort the results in a non-random way. It is almost impossible to eliminate all

sources of bias, even in the most carefully designed study. It is the job of the

researcher to attempt to remove as much bias as possible and to identify poten-

tial sources of bias for the reader. It is the job of the reader to find any sources of

bias and assess the importance and potential effects of bias on the results of the

study. Virtually no study is 100% bias-free and not all bias will result in an invalid

study and in fact, some bias may actually increase the validity of a study.

After identifying a source of bias, you must determine the likely effect of that

bias on the results of the study. If this effect is likely to be great and potentially

decrease the results found by the research, internal validity and the conclusions

of the study are threatened. If it could completely reverse the results of the study,

it is called a “fatal” flaw. The results of a study with a fatal flaw should generally

not be applied to your current patients. If the bias could have only small potential

effects, then the results of these studies can be accepted and used with caution.

Bias can be broken down into three areas according to its source: the population

being studied, the measurement of the outcome, and miscellaneous sources.

Bias in the population being studied

Selection bias

Selection bias or sampling bias occurs when patients are selected in a man-

ner that will systematically influence the outcome of the study. There are several

ways that this type of bias can occur. Subjects who are volunteers or paid to be

in the study may have different characteristics than the “average person” with

the disease in question. Another form of selection bias occurs when patients are

chosen to be in a study based upon certain physical or social characteristics.

These characteristics may then change the outcome of the study. Commonly,

selection bias exists in studies of therapy when patients chosen to be one arm

of the study are ‘selected’ by some characteristics determined by the physicians

enrolling them in the study. A few examples will help demonstrate the effects of

this bias.

An investigator offered free psychiatric counseling to women who had just

had an abortion if they took a free psychological test. He found the incidence of

depression was higher in these women than in the general population. He con-

cluded that having an abortion caused depression. It is very likely that women

who had an abortion and were depressed, therefore needing counseling, would
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preferentially sign up to be in the study. Women who had an abortion and were

not depressed would be less likely to sign up for the study and take the free psy-

chological test. This is a potentially fatal flaw of this study, and therefore, the

conclusion is very likely to be biased.

Patients with suspected pulmonary embolism (PE, blood clot in the lung), were

studied with angiograms, an x-ray of the blood vessels in the lung capable of

showing a blood clot. It was found that those patients with an angiogram posi-

tive for pulmonary embolus were less likely to have a deep vein thrombosis (DVT,

blood clot in a leg vein) than those patients with an angiogram negative for pul-

monary embolus. The authors concluded that DVT was not a risk factor for PE.

This study did not include all patients in whom a physician would suspect a pos-

sible PE but instead only included those with a high enough clinical suspicion of

a PE to be referred for an angiogram. This is a form of selection bias. The pres-

ence of a DVT is a well known risk factor for a PE, and if diagnosed, could lead to

direct treatment for a PE rather than an angiogram to make the diagnosis more

certain. Therefore, patients suspected of having PE and who didn’t have clini-

cal signs of a DVT were more likely to be selected for the angiogram. Similarly,

those DVT patients with no signs or symptoms of PE who were entered into the

study only because they had a DVT wouldn’t have a PE. This is a fatal flaw and

would seriously skew the results, so the results of this study should not change a

physician’s approach to these patients.

Referral bias

Referral bias is a special form of selection bias. Studies performed in tertiary care

or referral centers often use only patients referred for specialty care as subjects.

This eliminates cases that are milder and more easily treated or those diagnosed

at an earlier stage and who are more likely to be seen in a primary care provider’s

office. Overall, the subjects in the study are not like those patients with similar

complaints seen in the primary care office, who will be much less likely to have

unusual causes for their symptoms. This limits the external validity of the study

and the results should not be generalized to all patients with the same complaint.

An example will help to understand referral bias. Patients presenting to a neu-

rology clinic with headaches occurring days to weeks after apparently minor

head traumas were given a battery of tests: CT scan of the head, EEG, MRI of

the brain, and various psychological tests. Most of these tests were normal, but

some of the MRIs showed minor abnormalities. Most of the patients with the

abnormalities on the MRI had a brief loss of consciousness at the time of injury.

The authors concluded that all patients with any loss of consciousness after

minor head trauma should have immediate MRI scans done. This is an incor-

rect conclusion. The study patients reflected only those who were referred to the

neurologist, who therefore had persistent problems from their head injury. The
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researchers did not measure the percentage of all patients with head injuries who

had loss of consciousness for a brief period of time and who had the reported

MRI abnormalities. The results, even if significant in this selected population,

would not apply to the general population of all head-injured patients.

Spectrum bias

Spectrum bias occurs when only patients with classical or severe symptoms are

selected for a study. This makes the expected outcomes more or less likely than

for the population as a whole. For example, patients with definite subarachnoid

hemorrhages (bleeding in or around the brain) who have the worst headache

of their life and present with coma or a severe alteration of their mental sta-

tus will almost all have a positive CT of their head showing the bleed. Those

patients who have similar headaches but no neurological symptoms are much

less likely to have a positive CT of the head. Selecting only those patients with

severe symptoms will bias the study and make the results inapplicable to those

with less severe symptoms.

Detection bias

Detection bias is a form of selection bias that preferentially includes patients in

a study if they have been exposed to a particular risk factor. In these cases, expo-

sure causes a sign or symptom that precipitates a search for the disease and then

is blamed for causing the disease. Estrogen therapy was thought to be a risk fac-

tor for the development of endometrial cancer. Patients in a tumor registry who

had cancer were compared to a similar group of women who were referred for

dilatation and curettage (D&C) (diagnostic scraping of the uterine lining) or hys-

terectomy (removal of the uterus). The proportion of women taking estrogen was

the same in both groups, suggesting no relationship between estrogen use and

cancer of the uterus. However, many of the women in the D&C or hysterectomy

group who were taking estrogen turned out to have uterine cancer. Did estrogen

cause cancer? Estrogen caused the bleeding, which led to a search for a cause of

the bleeding. This led to the use of a D&C, which subsequently detected uterine

cancer in these patients. This and subsequent studies showed that there was a

relationship between postmenopausal estrogen therapy and the development of

this cancer.

Recall bias

Recall or reporting bias occurs most often in a retrospective study, either a case–

control or non-concurrent cohort study. When asked about certain exposures,

subjects with the outcome in the study are more likely than controls to recall
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the factors to which they were exposed. It is human nature to search for a reason

for an illness, and patients with an illness will be much more aware of their expo-

sures than those without an illness. This is a potential problem whenever subjec-

tive information is used to determine exposure and is less likely to occur when

objective information is used. This is illustrated by a study that was performed

looking for the connection of childhood leukemia to living under high-tension

wires. Mothers of children with leukemia were more likely to remember living

anywhere near a high-tension power line than were mothers who did not have a

leukemic child. Exposure suspicion bias is a type of recall bias that occurs on the

part of the researcher. When asking subject patients about exposure, researchers

might phrase the question in ways that encourage recall bias in the study sub-

jects. The control subjects similarly might be asked in subtly different ways that

could make them less likely to recall the exposure.

Non-respondent bias

Non-respondent bias is a bias in the results of a study because of patients who

don’t respond to a survey or who drop out of a study. It occurs because those

people who don’t respond to a survey may be different in some fundamental

way from those who do respond. The reasons for not responding are numer-

ous, but may be related to the study. Past studies have noted that smokers are

less likely than non-smokers to respond to a survey when it contains questions

about smoking. This will lead to bias in the results of such a survey. It is also true

that healthy people are more likely to participate in these surveys than unhealthy

ones. In this case, the bias of having more healthy people in the study group will

underestimate the apparent ill effects of smoking.

Membership bias

Membership bias occurs because the health of some group members differs in a

systematic way from the general population. This is obvious when one group of

subjects is chosen from members of a health club, has higher average education,

or is from other groups that might intrinsically be more health-conscious than

the average person. It is a problem with studies that look at nurses or physicians

and attempt to extrapolate the results to the general population. Higher socio-

economic status and generally more healthy living are factors that may distin-

guish these groups and limit generalizability to others in the population.

A recent review of all studies of thrombolytic therapy, the use of clot-dissolving

medication to treat acute myocardial infarction, AMI or heart attacks, was con-

ducted. The reviewers found that on average, patients who were eligible for the

studies were younger and healthier than patients who either were ineligible for
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inclusion or not enrolled in the study but treated with these drugs anyway. Over-

all, study patients got more intensive therapy for their AMI in many ways. The

mortality for study patients was less than half that of ineligible patients and

about two thirds that of non-study patients.

Berkerson’s bias is a specific bias that occurs when patients in the control

group are selected because they are patients in a selected ward of the hospi-

tal. These patients may share group characteristics that separate them from the

normal population. This difference in baseline characteristics will affect the out-

come of the study.

Bias in the measurements of the outcome

Subject bias

Subject bias is a constant distortion of the measurement by the subject. In

general, patients try to please their doctors and will tell them what they think

the doctor wants to hear. They also may consciously change their behavior or

responses in order to please their physicians. They may not report some side

effects, may overestimate the amount of medications taken and may report more

improvement if they know they were given a therapy approved of by their doc-

tor rather than the placebo or control therapy. Only effective blinding of subjects

and ideally, also of observers, can prevent this bias from occurring.

Observer bias

Observer bias is the conscious or unconscious distortion in perception of report-

ing the measurement by an observer. It may occur when physicians treat patients

differently because of the group to which they are assigned. Physicians in a study

may give more intensive adjunctive treatment to the patients who are assigned

to the intervention group rather than to the placebo or comparison group. They

may interpret the answers to questions on a survey differently in patients known

to be in the active treatment rather than control group. An observer not blinded

to patient selection may report the results of one group of patients differently

from those of the other group. One form of this bias occurs when patients who

are the sickest may be either preferentially included or excluded from the sample

because of bias on the part of the observer making the assignment to each group.

This is known as filtering and is a form of selection bias.

Data collected retrospectively by reviewing the medical records may have

poor data quality. The records used to collect data may contain inadequate

detail and possess questionable reliability. They may also use varying and sub-

jective standards to judge symptoms, signs of disease severity, or outcomes.
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This is a common occurrence in chart review or retrospective case–control or

non-concurrent cohort studies. The implicit review of charts introduces the

researcher’s bias in interpreting both measurements and outcomes. If there are

no objective and explicit criteria for evaluating the medical records, the infor-

mation contained in them is open to misinterpretation from the observer. It has

been shown that when performing implicit chart reviews, researchers subcon-

sciously fit the response that best matched their hypothesis. Researchers came

up with different results if they performed a blinded chart review as opposed to

an unblinded review. Explicit reviews are better and can occur when only clearly

objective outcome measures are reviewed. Even when the outcomes are more

objective it is better to have the chart material reviewed in a blinded manner.

The Hawthorne effect was first noticed during a study of work habits of

employees in a light bulb factory in Illinois during the 1920s. It occurs because

being observed during the process of making measurements changes the behav-

ior of the subject. In the physical sciences, this is known as the Heisenberg Uncer-

tainty Principle. If subjects change their behavior when being observed, the out-

come will be biased. One study was done to see if physicians would prescribe

less expensive antibiotics more often than expensive new ones for strep throat.

In this case, the physicians knew that they were being studied and in fact, they

prescribed many more of the low-price antibiotics during the course of the study.

After the study was over, their behavior returned to baseline, thus they acted

differently and changed their clinical practices when being observed. This and

other observer biases can be prevented through the use of unobtrusive, blinded,

or objective measurements.

Misclassification bias

Misclassification bias occurs when the status of patients or their outcomes is

incorrectly classified. If a subject is given an inaccurate diagnosis, they will be

counted with the wrong group, and may even be treated inappropriately due to

their misclassifaction. This bias could then change the outcome of the study. For

instance, in a study of antibiotic treatment of pneumonia, patients with bronchi-

tis were misclassified as having pneumonia. Those patients were more likely to

get better with or without antibiotics, making it harder to find a difference in the

outcomes of the two treatment groups. Patients may also change their behaviors

or risk factors after the initial grouping of subjects, resulting in misclassification

bias on the basis of exposure. This bias is common in cohort studies.

Misclassification of outcomes in case control studies can result in failure to

correctly distinguish cases from controls and lead to a biased conclusion. One

must know how accurately the cases and controls are being identified in order to

avoid this bias. If the disorder is relatively common, some of the control patients

may be affected but not have the symptoms yet. One way of compensating for
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this bias is to dilute the control group with extra patients. This will reduce the

extent to which misclassification of cases incorrectly counted as controls will

affect the data.

Let’s say that a researcher wanted to find out if people who killed themselves by

playing Russian Roulette were more likely to have used alcohol than those who

committed suicide by shooting themselves in the head. The researcher would

look at death investigations and find those that were classified as suicides and

those that were classified as Russian Roulette. However, the researcher suspects

that some of the Russian Roulette cases may have been misclassified as suicides

to “protect the victim.” To compensate for this, or dilute the effect of the bias,

the researcher decides that the control group will include three suicide deaths

for every one Russian Roulette death. Obviously if Russian Roulette deaths are

routinely misclassified, this strategy will not result in any change in the bias. This

is called outcome misclassification. Outcome classification based upon subjec-

tive data including death certificates, is more likely to exhibit this misclassifica-

tion. This will most likely result in an outcome that is of smaller size than the

actual effect. This bias can be prevented with objective standards for classifica-

tion of patients, which should be clearly outlined in the methods section of a

study.

Miscellaneous sources of bias

Confounding

Confounding refers to the presence of several variables that could explain the

apparent connection between the cause and effect. If a particular variable is

present more often in one group of patients than in another, it may be respon-

sible for causing a significant effect. For example, a study was done to look for

the effect of antioxidant vitamin E intake on the outcome of cardiovascular dis-

ease. It turned out that the group with high vitamin E intake also had a lower rate

of smoking, a higher socioeconomic status, and higher educational level than

the groups with lower vitamin E intake. It is much more likely that those other

variables are responsible for all or part of the decrease in observed cases of car-

diovascular disease. There are statistical ways of dealing with confounding vari-

ables called multivariate analyses. The rules governing the application of these

types of analyses are somewhat complex and will be discussed in greater detail

in Chapter 14. When looking at studies always look for the potential presence of

confounding variables and at least make certain that the authors have adjusted

for those variables. However, no matter how well the authors have adjusted, it

can be very difficult to completely remove the effects of confounding from a

study.
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Contamination and cointervention

Contamination occurs when the control group receives the same therapy as the

experimental group. Contimination is more commonly seen in randomized clin-

ical trials, but can also exist in observational studies. In an observational study,

it occurs if the control group is exposed to the same risk factor as the study

group. However, there may be an environmental situation by which those classi-

fied as not exposed to the risk factor are actually exposed. For example, a study

is done to look at the effect of living near high-tension wires on the incidence

of leukemia. Those patients who live within 30 miles of a high-tension wire are

considered the exposed group and those who live more than 30 miles away are

considered the unexposed control group. Those people who live 30 to 35 miles

from high-tension wires could be misclassified as unexposed although they may

truly have a similar degree of exposure as those within 30 miles. In fact, families

living 60 miles from the wires may be equally affected by the electrical field if the

wires have four times the amount of current.

Cointervention occurs when one group or the other receives different medical

care based partly or totally upon their group assignment. This occurs more often

in randomized trials, but could be present in an observational study when the

group exposed to one particular treatment also receives different therapy than

the unexposed group. This can easily occur in studies with historical controls,

since patients in the past may not have had access to the same advances in med-

ical care as the patients who are currently being treated. The end results of the

historical comparison would be different if both groups had received the same

level of medical care.

Patient attrition

Patient attrition occurs when patients drop out of a study or are lost to follow-

up, leading to a loss of valuable information. Patients who drop out may do so

because a treatment or placebo is ineffective or there are too many unwanted

side effects. Therefore, it is imperative for researchers to account for all patients

enrolled in the study. In practice a drop-out rate less than 20% is an acceptable

level of attrition. However, even a lower rate of attrition may bias the study if the

reason patients were lost from the study is directly related to one of the study

variables. If there is a differential rate of attrition between the intervention and

comparison groups, an even lower rate of attrition may be very important.

How the authors dealt with outcome measurements of subjects who dropped

out, were lost to follow-up, or for whom the outcome is unknown is extremely

important. These study participants cannot be ignored and left out of final

data calculations; this will certainly introduce bias into the final results. In

this instance, the data can be analyzed using a best case/worst case strategy,
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assuming that missing patients all had a poor outcome in one analysis and

a good outcome in the other. The researcher can then compare the results

obtained from each group and see if the loss of patients could have made a big

difference.

For subjects who switch groups or don’t complete therapy and for whom the

outcome is known, an intention-to-treat strategy should be used. The final out-

come of those patients who changed groups or dropped out of the study is ana-

lyzed with the group to which they were originally assigned. We will discuss the

issues of attrition and intention to treat further in the chapter on the randomized

clinical trial (Chapter 15).

External validity and surrogate markers

External validity refers to all problems in applying the study results to a larger

or different population. External validity can be called into question when the

subjects of a study are from only one small subgroup of the general population.

Age, gender, ethnic or racial groups, socioeconomic groups, and cultural groups

are examples of variables that can affect external validity. Simply having a clearly

identified group of patients in a study does not automatically mean there will

be lack of external validity. There ought to be an a-priori reason that the results

could be different in other groups. For example, we know that women respond

differently than men to various drugs. Therefore, a study of a particular drug per-

formed only on men could lack external validity when it comes to recommend-

ing the drug to women. Overall, each study must be looked at separately and the

reader must determine whether external validity exists.

Poor external validity can lead to inappropriate extrapolation or generalization

of the results of a study to groups to which they do not apply. In a study of patients

with myocardial infarction (MI), those who had frequent premature ventricular

contractions (PVCs) had increased mortality in the hospital. This led to the rec-

ommendation that antiarrhythmic drugs to suppress the PVCs should be given to

all patients with MI. Later studies found an increased number of deaths among

patients on long-term antiarrhythmic drug therapy. Subsequent recommenda-

tions were that these drugs only be used to treat immediately life-threatening

PVCs. The original study patients all had acute ischemia (lack of oxygen going to

the heart muscle) while the long-term patients did not, making extrapolation to

that population inappropriate.

The outcome chosen to be measured should be one that matters to the patient.

Ideally it is a measure of faster resolution of the problem such as reduction of

pain or death rate due to the illness. In these cases, all patients would agree that

the particular outcome is important. However, there are studies that look at other

outcomes. These may be important in the overall increase in medical knowledge,
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but not immediately important to an individual patient. In fact, these results,

called surrogate endpoints, may not translate into improved health at all.

Suppose that a researcher wanted to see if there was any relationship between

the timing of students’ taking of Step I of the USMLE and their final score. The

researcher would look at all of the scores and correlate them with the date the test

is taken. The researcher finds that there is a strong association between board

scores and date, with the higher scores occurring among students taking the

boards at earlier dates. The study would conclude that medical students should

be taking the boards as early as possible in the cycle. What the researcher might

be missing is that the timing of taking the exam and the score are both depen-

dent on another factor, class rank. Therefore the variable of timing of the USMLE

is a surrogate marker for overall class rank.

Final concerns

There are a few more miscellaneous concerns for validity when evaluating out-

come measurements. Are the measured outcomes those that are important

to patients? Were all of the important outcomes included and reported upon

or were only certain main outcomes of the research project included? If cer-

tain outcomes were measured to the exclusion of others, suspect foul play. A

study may find a significant improvement in one outcome, for instance disease-

free survival, while the outcome of importance for patients is overall survival,

which shows no improvement. The problems associated with subgroup analy-

sis and composite endpoints will be discussed in the chapter on Type I errors

(Chapter 11).

There is a definite publication bias toward the publication of studies that show

a positive result. Studies that show no effect or a negative result are more difficult

to get published or may never be submitted for publication. Authors are aware of

the decreased publication of negative studies, and as a result, it takes longer for

negative studies to be written.

Chance can also lead to errors in the study conclusions. The action of chance

error causes distortion of the study results in a random way. Researchers can

account for this problem with the appropriate use of statistical tests, which will

be addressed in the next several chapters.

Studies supported by or run by drug companies or other proprietary inter-

ests are inherently biased. Since these companies want their products to do

well in clinical trials, the methods used to bias these studies can be quite sub-

tle. Drug-company sponsorship should be a red flag to look more carefully for

sources of bias in the study. In general, all potential conflicts of interest should be

clearly stated in any medical study article. Many journals now have mandatory
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Table 8.1. Looking for sources of bias: a checklist

Check the methods section for the following

(1) The methods for making all the measurements were fully described with a clearly

defined protocol for making these measurements.

(2) The observers were trained to make the measurements and this training was

adequately described and standardized.

(3) All measurements were made unobtrusively, the subjects were blinded to the

measurement being made, and the observers (either the ones providing care or the

ones making the measurements or interpreting the results) were blinded.

(4) Paired measurements were made (test–retest reliability) or averaged and

intra-observer or inter-observer reliability of repeated measurements was

measured.

(5) The measurements were checked against a known “gold standard” (the

measurement accepted as being the truth) and checked for their validity either

through citations from the literature or by a demonstration project in the current

study. Readers may have to decide for themselves if a measurement has face

validity. You will know more about this as you learn more background material

about the subject.

(6) The reasons for inclusion and exclusion must be spelled out and appropriate.

(7) Patients who drop out or cross over must be clearly identified and the results

appropriately adjusted for this behavior.

(8) The most appropriate outcome measure should be selected. Be suspicious of

composite or surrogate outcome measures.

requirements that this be included and prominently displayed. However, as the

examples below illustrate, there are still some problems with this policy.

In one case, Boots Pharmaceuticals, the maker of Synthroid, a brand of

levothyroxine, a thyroid hormone commonly taken to replace low thyroid levels,

sponsored a study of their thyroid hormone against generic thyroid replacement

medication. The study was done at Harvard and when the researchers found that

the two drugs were equivalent, they submitted their findings to JAMA. The com-

pany notified both Harvard and JAMA that they would sue them in court if the

study were printed. Harvard and JAMA both stepped down and pulled the article.

That news was leaked to the Wall Street Journal, which published an account of

the study. Finally, Boots relented and allowed the study to be published in JAMA.

In the second case, a researcher at the Hospital for Sick Children in Toronto

was the principal investigator in a study of a new drug to prevent the side

effect of iron accumulation in children who needed to receive multiple trans-

fusions. The drug appeared to be associated with severe side effects. When the

researcher attempted to make this information known to authorities at the uni-

versity, the company threatened legal action and the researcher was removed
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from the project. When other scientists at the university stood up to support the

researcher, the researcher was fired. When the situation became public and the

government stepped in, the researcher was rehired by the university, but in a

lower position. The issues of conflict of interest in clinical research will be dis-

cussed in more detail in Chapter 16.

This chapter was an introduction to common sources of bias. Students must

evaluate each study on its own merits. If readers think bias exists, one must be

able to demonstrate how that bias could have affected the study results. For

more information, there is an excellent article by Dr. David Sackett on sources of

bias.1 The accompanying checklist (Table 8.1) will help the novice reader identify

potential sources of bias.

1 D. L. Sackett. Bias in analytic research. J. Chronic Dis. 1979; 32: 51–63.
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Review of basic statistics

There are three kinds of lies: lies, damned lies, and statistics.

Benjamin Disraeli, Earl of Beaconsfield (1804–1881)

Learning objectives

In this chapter you will learn:
� evaluation of graphing techniques
� measures of central tendency and dispersion
� populations and samples
� the normal distribution
� use and abuse of percentages
� simple and conditional probabilities
� basic epidemiological definitions

Clinical decisions ought to be based on valid scientific research from the medical

literature. Useful studies consist of both epidemiological and clinical research.

The competent interpreter of these studies must understand basic epidemiolog-

ical and statistical concepts. Critical appraisal of the literature and good medical

decision making require an understanding of the basic tools of probability.

What are statistics and why are they useful in medicine?

Nature is a random process. It is virtually impossible to describe the operations

of a given biological system with a single, simple formula. Since we cannot mea-

sure all the parameters of every biological system we are interested in, we make

approximations and deduce how often they are true. Because of the innate vari-

ation in biological organisms it is hard to tell real differences in a system from

random variation or noise. Statistics seek to describe this randomness by telling

us how much noise there is in the measurements we make of a system. By filter-

ing out this noise, statistics allow us to approach a correct value of the underlying

facts of interest.

93
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Descriptive and inferential statistics

Descriptive statistics are concerned with the presentation, summarization,

and utilization of data. These include techniques for graphically displaying the

results of a study and mathematical indices that summarize the data with a few

key numbers. These key numbers are measures of central tendency such as the

mean, median, and mode and measures of dispersion such as standard devia-

tion, standard error of the mean, range, percentile, and quartile.

In medicine, researchers usually study a small number of patients with a given

disease, a sample. What researchers are actually interested in finding out is how

the entire population of patients with that disease will respond. Researchers

often compare two samples for different characteristics such as use of certain

therapies or exposure to a risk factor to determine if these changes will be present

in the population. Inferential statistics are used to determine whether or not

any differences between the research samples are due to chance or if there is a

true difference present. Also inferential statistics are used to determine if the data

gathered can be generalized from the sample to a larger group of subjects or the

entire population.

Visual display of data

The purpose of a graph is to visually display the data in a form that allows the

observer to draw conclusions about the data. Although graphs seem straightfor-

ward, they can be deceptive. The reader is responsible for evaluating the accu-

racy and truthfulness of graphic representations of the data. There are several

common features that should be present in a proper graph. Lack of these items

can lead to deception.

First, there must be a well-defined zero point. Lack of zero point (Fig. 9.1) is

always improper. A lack of a well-defined zero point makes small differences look

bigger by emphasizing only the upper portion of the scale. It is proper to start at

zero, break the line up with two diagonal hash marks just above the zero point,

and then continue from a higher value (as in Fig. 9.2). This still exaggerates the

changes in the graph, but now the reader is warned and will consider the results

accordingly.

The axes of the graph should be relatively equally proportioned. Lack of pro-

portionality, a much more subtle technique than lack of a well-defined zero, is

also improper. It serves to emphasize the drawn-out axis relative to the other

less drawn-out axis. This visually exaggerates smaller changes in the axis that is

drawn to the larger scale (Fig. 9.3). Therefore, both axes should have their vari-

ables drawn to roughly the same scale (Fig. 9.4).
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Fig. 9.1 Improper graph due to
the lack of a defined zero point.
This makes the change in mean
final exam scores appear to be
much greater (relatively) than
they truly are.
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Fig. 9.2 Proper version of the
graph in Figure 9.1 created by
putting in a defined zero point.
Although the change in mean
final exam scores still appears to
be relatively greater than they
truly are, the reader is notified
that this distortion is occurring.

Another deceptive graphing technique can be seen in some pharmaceutical

advertisements. This consists of the use of three-dimensional shapes to demon-

strate the difference between two groups, usually the effect of a drug on a patient

outcome. One example uses cones of different heights to demonstrate the dif-

ference between the endpoint of therapy for the drug produced by the company

and its closest competitor. The height of each cone is the percentage of patients

responding in each group. Visually, the cones represent a larger volume than sim-

ple bars or even triangles, making the drug being advertised look like it caused

a much larger effect. For more information on deceptive graphing techniques,

please refer to E.R. Tufte’s classic book on graphing.1

1 E. R. Tufte. The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press, 1983.
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Fig. 9.3 Improper graph due to
the lack of proportionality of the
x and y axes. This makes it
appear as if the change in mean
final exam scores occurred over
a much shorter time period than
in reality.
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Fig. 9.4 Proper graph with
proportioned x and y axes,
giving a true representation of
the rise in exam scores gradually
over time.

Types of graph

Stem-and-leaf plots

Stem-and-leaf plots are shortcuts used as preliminary plots for graphs called

simple histograms. The stem is made up of the digits on the left side of each

value (tens, hundreds, or higher) and the leaves are the digits on the right side

(units, or lower) of each number. Let’s take, for example, the following grades on

a hypothetical statistics exam:
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5       87

6       5685676

 Reorder these as: 5       78

6       5566678 

7       5514688688  7       1455668888 

8       47886794 8       44677889 

9       630908  9       003689 

Stem            Leaves 

Fig. 9.5 Stem-and-leaf plot of
grades in a hypothetical
statistics exam.
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Fig. 9.6 Bar graph of the data in
Fig. 9.5.

96 93 84 75 75 71 65 74 58 87 66 90 76 68 65 78 78 66 76 88 99 88 78

90 86 98 67 66 87 57 89 84 78

In this example, the first digit forms the stem and the second digit, the leaves.

In creating the stem-and-leaf plot, first list the tens digits, and then next to them

all the units digits which have that ‘tens’ digit in common. Our example becomes

the stem-and-leaf plot in Fig. 9.5.

This can be rotated 90◦ counterclockwise and redrawn as a bar graph or his-

togram. The x-axis shows the categories, the tens digits in our example, and the

y-axis shows the number of observations in each category. The y-axis can also

show the percentages of the total that each observation occurs in each category.

This shows the relationship between the independent variable, in this case the

exam scores, and the dependent variable, in this instance the number of students

with a score in each 10% increment of grades.
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Fig. 9.7 Histogram of the data in
Fig. 9.5.

Bar graphs, histograms, and frequency polygons

The most common types of graphs used in the medical articles are bar graphs,

histograms, and frequency polygons. The bar graph (Fig. 9.6) that would repre-

sent the data in our previous stem-and-leaf plot is drawn by replacing the num-

bers with bars. A histogram is a bar graph in which the bars touch each other

(Fig. 9.7). As a rule, the author should attempt to make the contrast between

bars on a histogram as clear as possible. A frequency polygon shows how often

each observation occurs (Fig. 9.8 is a frequency polygon of the data in Fig. 9.5). A

cumulative frequency polygon (Fig. 9.9) shows how the number of accumulated

events is distributed. Here the y-axis is usually the percentage of the total events.

Box-and-whisker plots

Box-and-whisker plots (Fig. 9.10) are common ways to represent the range of

values for a single variable. The central line in the box is the median, the middle

value of the data as will be described below. The box edges are the 25th and 75th

percentile values and the lines on either side represent the limits of 95% of the

data. The stars represent extreme outliers.

Measures of central tendency and dispersion

There are two numerical measures that describe a data set, the central tendency

and the dispersion. There are three measures of central tendency, describing the

center of a set of variables: the mean, median, and mode.
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Fig. 9.8 Frequency polygon of
the data in Fig. 9.5.
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Fig. 9.9 Cumulative frequency
polygon of the data in Fig. 9.5.

The mean (μ or x̄ ) is the arithmetical center, commonly called the arithmetic

average. It is the sum of all measurements divided by the number of mea-

surements. Mathematically, μ = (�xi)/n. In this equation, xi is the numeri-

cal value of the i th data point and n is the total number of data points. The

mean is strongly effected by outliers. These are extreme numbers on either

the high or low end of the distribution that will produce a high degree of

skew. There will not be a truly representative central value if the data are

highly skewed and the mean can misstate the data. It makes more sense to
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Fig. 9.10 Box-and-whisker plot
of scores on the statistics test by
student height.

use the median if this is the case. The mean should not be used for ordi-

nal data and is meaningless in that setting unless the ordinal data has been

shown to behave like continuous data in a symmetrical distribution. This is

a common error and may invalidate the results of the experiment or portray

them in a misleading manner.

The median (M) is the middle value of a set of data points. There are the same

number of data points above and below M. For an even number of data

points, M, is the average of the two middle values. The median is less affected

by outliers and by data that are highly skewed. It should be used when deal-

ing with ordinal variables or when the data are highly skewed. There are spe-

cial statistical tests for dealing with these types of data.

The mode is the most common value or the one value with the largest number

of data points. It is used for describing nominal and ordinal data and is rarely

used in clinical studies.

There are several ways to describe the degree of dispersion of the data. The com-

mon ones are the range, percentiles, variance, and standard deviation. The stan-

dard error of the mean is a measure that describes the dispersion of a group of

samples.

The range is simply the highest value to the lowest value. It gives an overview

of the data spread around a central value. It should be given whenever there

is either a large spread of data values with many outliers or when the range

is asymmetrical about the value of central tendency. It also should be given

with ordinal data.

Quartiles divide the data into fourths, and percentiles into hundredths. The

lowest quarter of values lie below the lower quartile or 25th percentile, the
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lower half below the 50th percentile, and the lowest three-quarters below

the upper quartile or 75th percentile. The interquartile range is the range of

values from the 25th to the 75th percentile values.

The variance (σ 2 or s2) is a statistical measure of variation. It is the average of

the squares of the difference between each value and the mean or the sum

of the squares of the difference between each value and the mean divided by

n (the number of data points in the sample). It is often divided by n − 1, and

either method is correct. This assumes a normal distribution of the variables

(see below). Mathematically, s2 = (� (xi – μ)2)/(n − 1). The standard devia-

tion (SD, s, or σ ) is simply the square root of the variance.

The standard error of the mean (SEM) is the standard deviation of the means

of multiple samples that are all drawn from the same population. If the pop-

ulation size is greater than 30 and the distribution is normal, the SEM is esti-

mated by the equation SEM = SD/
√

n, (where n is sample size).

Populations and samples

A population is the set of all possible members of the group being studied. The

members of the population have various attributes in common and the more

characteristics they have in common, the more homogeneous and therefore

restrictive the population. An example of a fairly restricitive population would

be all white males between 40 and 65 years of age. With a restrictive population,

the generalizability of the population is often a problem. The less the members

of the sample have in common, the more generalizable the results of data gath-

ered for that population. For example, a population that included all males is

more generalizable than one that only includes white males between 40 and 65

years of age. The population size is symbolized by capital N.

A sample is a subset of the population chosen for a specific reason. An example

could be all white males available to the researcher on a given day for a study.

Reasons to use a sample rather than the entire population include convenience,

time, cost, and logistics. The sample may or may not be representative of the

entire population, an issue which has been discussed in the chapter on sources

of bias (Chapter 8). The sample size is symbolized by lower-case n.

Histograms or frequency polygons show how many subjects in a sample or

population (the y-axis) have a certain characteristic value (the x-axis). When

plotted in this manner, we call the graph a distribution of values for the given

sample. Distributions can be symmetrical or skewed. By definition, a symmet-

rical distribution is one for which the mean, median, and mode are identical.

Many curves or distributions of variables are asymmetrical. Skew describes the

degree to which the curve is asymmetrical. Figures 9.11 and 9.12 show symmet-

rical and skewed distributions. They are said to be skewed to the right (positive
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Mean = median = mode
Fig. 9.11 Symmetrical curve.
Mean, median, and mode are
the same.

Mode < median < mean
Fig. 9.12 Skewed curve (to the
right). Mode<median<mean.

Fig. 9.13 Curve with skew to the
right (positive skew).

skew, Fig. 9.13) when the outlier values are to the right side or positive side of

the bulk of the data. Those skewed left or with negative skew (Fig. 9.14) have

the extreme values to the left of, or negative relative to, the majority of the data

points. Skew should be discussed when presenting and evaluating data and the

range of the data given in addition to the standard measures of central tendency

and dispersion. One clue to the presence of skewed data is if twice the standard

deviation is larger than the mean. The mathematical measures used to describe

data are different for skewed distributions than for symmetrical ones.
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Fig. 9.14 Curve with skew to the
left (negative skew).

Area under each segment of the curve  
13.6%   34.1%    34.1%   13.6%   2.2%   0.1%

−4 −3 −2 −1 μ +1               +2              +3         +4   

Number of standard deviations from the mean (μ)

0.1% 2.2%

Fig. 9.15 The normal
distribution.

The normal distribution

The Gaussian or normal distribution (Fig. 9.15) is also called the bell-shaped

curve. It is named after Carl Frederick Gauss, a German mathematician. How-

ever, he did not discover the bell-shaped curve. Abraham de Moivre, a French

mathematician, discovered it about 50 years before Gauss published his thesis. It

is a special case of a symmetrical distribution, and it describes the frequency of

occurrence of many naturally occurring phenomena. For the purposes of most

statistical tests, we assume normality in the distribution of a variable. It is better

defined by giving its properties:

(1) The mean, median, and mode are equal so that we can say that the curve is

symmetric around the mean and not skewed or has a skew = 0.
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Table 9.1. Properties of the normal distribution

(1) One standard deviation (± 1 SD) on either side of the mean encompasses 68.2% of

the population

(2) Two standard deviations (± 2 SD) is an additional 27.2% (95.4% of total)

(3) Three (± 3 SD) is an additional 4.4% (99.8% of total)

(4) Four (± 4 SD) is an additional 0.2% (99.99% of total)

(5) Five (± 5 SD) includes (essentially) everyone (99.9999% of total)

(2) The tails of the curve approach the x-axis asymptotically, that is they get

closer and closer to the x-axis as you move away from the mean and they

never quite reach it no matter how far you go.

There are specific numerical equivalents to the standard deviations of the nor-

mal distribution, as shown in Table 9.1. For all practical purposes 68% of the pop-

ulation are within one standard deviation of the mean (± 1 SD), 95% are within

two standard deviations of the mean (± 2 SD), and 99% are within three standard

deviations of the mean (± 3 SD). The 95% interval (± 2 SD) is a range commonly

referred to as the normal range or the Gaussian definition of the normal range.

The normal distribution is the basis of most statistical tests and concepts we will

use in critical interpretation of the statistics used in the medical literature.

Percentages

Percentages are commonly used in reporting results in the medical literature.

Percentage improvement or percentage of patients who achieve one of two

dichotomous endpoints are the preferred method of reporting the results. These

are commonly called event rates. A percentage is a ratio or fraction, the numer-

ator divided by the denominator, multiplied by 100 to create a whole number.

Obviously, inaccuracies in either the numerator or denominator will result in

inaccuracy of the percentage.

Percentages can be misleading in two important ways. Percent of a percent

will usually show a very large result, even when there is only a small absolute

change in the variables. Consider two drugs, we’ll call them t-PA and SK, which

have different mortality rates. In a particular study, the mortality rate for patients

given t-PA was 7%, which is referred to as the experimental event rate (EER) while

the mortality for SK was 8%, which is the control event rate (CER). The absolute

difference, called the absolute risk reduction, is calculated as ARR = |EER – CER|
and is 1% in this example. The relative improvement in mortality, referred to as

the relative risk reduction, is calculated by RRR = |EER – CER|/CER) is (1/8 ×
100% = 12.5%, a much larger and more impressive number than the 1% ARR.
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Using the latter without prominently acknowledging the former is misleading

and is a commonly used technique in pharmaceutical advertisements.

The second misleading technique is called the percentages of small num-

bers, and can be misleading in a more subtle way. In this case, the percent-

age is most likely to be simply inaccurate. Twenty percent of ten subjects seems

like a large number, yet represents only two subjects. For example, the fact that

those two subjects had an adverse reaction to a drug could have occurred simply

by chance and the percentage could be much lower (< 1%) or higher (> 50%)

when the same intervention is studied in a larger sample of the population. To

display these results properly when there are only a small number of subjects

in a study, the percentage may be given as long as the overall numbers are also

given with equal prominence. The best way to deal with this is through the use

of confidence intervals, which will be discussed in the next chapter.

Probability

Probability tells you the likelihood that a certain event will or will not occur rel-

ative to all possible related events of interest. Mathematically it is expressed as

the number of times the event of interest occurs divided by the number of times

all possible related events occur. This can be written as P(x) = nx/N where P(x) is

the probability of an event x occurring in a total of N possible outcome events. In

this equation, nx is the number of times x occurs. The letter P (or p) symbolizes

probability. For flipping a coin once, the probability of a head is P(head). This

is calculated as P(head) = 1/2, or the outcome of interest (one head)/the total

number of possible outcomes of the coin toss (one head plus one tail).

Two events are said to be independent, not to be confused with the indepen-

dent variable of an experiment, when the occurrence of one of the events does

not depend on the occurrence of the other event. In other words, the two events

occur by independent mechanisms. The toss of a coin is a perfect example. Each

toss is an independent event. The previous toss has no influence on the next one.

Since the probability of a head on one toss is 1/2, if the same coin is tossed again,

the probability of flipping a head does not change. It is still 1/2. The probability

will continue to be 1/2 no matter how many heads or tails are thrown, unless of

course, the coin is rigged.

Similarly, events are said to be dependent, not to be confused with the depen-

dent variable of an experiment, if the probability of one event affects the out-

come of the other. An example would be the probability of first drawing a red

ball and then a yellow ball from a jar of colored balls, without replacing the one

you drew out first. This means that the probabilities of selecting one or another

colored ball will change each time one is selected and removed from the jar.
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Events are said to be mutually exclusive if the occurrence of one absolutely

precludes the occurrence of the other. For example, gender in humans is a mutu-

ally exclusive property. If someone is a biological male they cannot also be a bio-

logical female. Another example is a coin flip. Heads or tails obtained on the flip

of a coin are mutually exclusive events as a coin will only land on the head or tail.

Conditional probability allows us to calculate complex probabilities, such as

the probability that one event occurs given that another event has occurred. If

the two events are a and b, the notation for this is P(a | b). This is read as “the

probability of event a if event b occurs.” The vertical line means “conditional

upon.” This construct can be used to calculate otherwise complex probabilities

in a very simple manner.

If two events are mutually exclusive, the probability that either event occurs

can be easily calculated. The probability that event a or event b occurs is simply

the sum of the two probabilities. P(a or b) = P(a) + P(b). The probability of

a head or a tail occurring when a coin is flipped is P(head) + P (tail), which is

1/2 + 1/2 = 1, or a certain event. Similarly, the probability that event a and event

b occurs is the product of the two probabilities. P(a and b) = P(a) × P(b). The

probability of getting two heads on two flips of a coin is P(head on 1st flip) ×
P(head on 2nd flip) which is 1/2 × 1/2 = 1/4.

Determining the probability that at least one of several mutually exclusive

events will occur is a bit more complex, but the above rules allow us to make

this a simple calculation: P(at least one event will occur) = 1 – P(none of the

events will occur). We can calculate P(none of the events occurring) = P(not a) ×
P(not b) × P(not c) × · · · For example, if we want to know the probability of get-

ting at least one head in three flips of a coin, we could calculate the probability

of getting one head, two heads, and three heads and add them up, then subtract

the probabilities of events that overlap, in this case getting two heads and one tail

can be done three ways with three coins. Using the above rule, the probability of

at least one head is 1 – P(no heads). The probability of no heads is the probabil-

ity of three tails (1/2)3 = 1/2 × 1/2 × 1/2 = 1/8, thus making the probability of

at least one head 1 – 1/8 = 7/8. This is an important concept in the evaluation

of the statistical significance of the results of studies and the interpretation of

simple lab tests.

Many lab tests use the Gaussian distribution to define the normal values. This

considers ± 2 SD as the cutoff point for normal vs. abnormal results. This means

that 95% of the population will have a normal result and 5% will have an abnor-

mal result. Physicians routinely do a number of tests at once, such as a Complete

Metabolic Profile, SMA-C, or SMA-20. What is the significance of one abnormal

result out of the 20 tests ordered in these panels? We want to know the proba-

bility that a normal person will have at least one abnormal lab test in a panel

of 20 tests by chance alone. The probability that each test will be normal is 95%.

Therefore, the probability that all the tests are normal is (0.95)20 = 0.36. Then, the
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Table 9.2. Commonly used probabilities in epidemiology

Prevalence Probability of the presence of disease: number of existing

cases of a disease/total population

Incidence Probability of the occurrence of new disease: number of

new cases of a disease/total population

Attack rate A specialized form of incidence relating to a particular

epidemic, expressed as a percentage: the number of

new cases of a disease/number of persons exposed in

the outbreak under surveillance

Crude mortality rate Number of deaths for a given time period and

place/mid-period population during the same time

period and at the same place

Age-specific mortality rate Number of deaths in a particular age group/total

population of the same age group in the same period of

time, using the mid-period population

Infant mortality rate Deaths in infants under 1 year of age/total number of live

births

Neonatal mortality rate Deaths in infants under 28 days of age/total number of

live births

Perinatal mortality rate (Stillbirths + deaths in infants under 7 days of age)/(total

number of live births + total number of stillbirths)

Maternal mortality rate All pregnancy related deaths/total number of live births.

probability that at least one test is abnormal becomes 1 – 0.36 = 0.64. This means

that there is a 64% chance that a normal person will have at least one abnormal

test result that occurred purely by chance alone, when in reality that person is

normal.

Basic epidemiology

Epidemiology is literally the study of epidemics, but is commonly used to

describe the study of disease in populations. Many of the studies that medi-

cal students will learn how to evaluate are epidemiological studies. On a very

simplistic level, epidemiology describes the probability of certain events occur-

ring in a population (Table 9.2). These probabilities are described in terms of

rates. This could be a rate of exposure to a toxin, disease, disability, death, or any

other important outcome. In medicine, rates are usually expressed as number

of cases per unit of population. The unit of population most commonly used is

100 000, although other numbers can be used. The rates can also be expressed as

percentages.
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The prevalence of disease is the percentage of the population that has existing

cases of the disease at a given time. It is the probability that a given person

in this population has the disease of interest. It is calculated as the number

of cases of a disease divided by the total population at risk for the disease.

The number of new cases and the resolution of existing cases affect preva-

lence. Prevalence increases as the number of new cases increases and as the

mortality rate decreases.

The incidence of a disease is the number of new cases of the disease for a given

unit of population in a given unit of time. It is the probability of the occur-

rence of a new patient with that disease. It is the number of new cases in a

given time period divided by the total population. Incidence is only affected

by the occurrence of new cases of disease. The occurrence of new cases can

be influenced by factors such as mass exposure to a new infectious agent or

a change in the diet of the society.

The mortality rate is the incidence or probability of death in a certain time

period. It is the number of people who die within a certain time divided by

the entire population at risk of death during that time.

An excellent resource for learning more statistics is a CD-ROM called

ActivStats,2 a review of basic statistics and probability. There is also an electronic

textbook called StatSoft,3 which includes some good summaries of basic statisti-

cal information.

2 P. Velleman. ActivStats 3.0. Ithaca, NY: Data Description, 2006.
3 StatSoft. www.statsoftinc.com/textbook/stathome.html.
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Hypothesis testing

Medicine is the science of uncertainty and the art of probability.

Sir William Osler (1849–1919)

Learning objectives

In this chapter you will learn:
� steps in hypothesis testing
� potential errors of hypothesis testing
� how to calculate and describe the usage of control event rates (CER), exper-

imental event rates (EER), relative rate reduction (RRR), and absolute rate

reduction (ARR)
� the concepts underlying statistical testing

Interpretation of the results of clinical trials requires an understanding of the sta-

tistical processes used to analyze data. Intelligent readers of the medical litera-

ture must be able to interpret these results and determine for themselves if they

are important enough to use for their patients.

Introduction

Hypothesis testing is the foundation of the scientific method. Roger Bacon sug-

gested the beginnings of this process in the thirteenth century. Sir Francis Bacon

further defined it in the fifteenth century, and it was first regularly used in scien-

tific research in the eighteenth and nineteenth centuries. It is a process by which

new scientific information is added to previously discovered facts and processes.

Previously held beliefs can be tested to determine their validity, and expected

outcomes of a proposed new intervention can be tested against a previously

used intervention. If the result of the experiment shows that the newly thought-

up hypothesis is true, then researchers can design a new experiment to further

109
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Table 10.1. Steps in hypothesis testing

(1) Gather background information

(2) State hypothesis

(3) Formulate null hypothesis (H0)

(4) Design a study

(5) Decide on a significance level (α)

(6) Collect data on a sample

(7) Calculate the sample statistic (P)

(8) Reject or accept the null hypothesis (by comparing P to α)

(9) Begin all over again, step 1

increase our knowledge. If the hypothesis being tested is false, it is “back to the

drawing board” to come up with a new hypothesis (Table 10.1).

The hypothesis

A hypothesis is a statement about how the study will relate the predictors, cause

or independent variable, and outcomes, effect or dependent variable. For exam-

ple, a study is done to see if taking aspirin reduces the rate of death among

patients with myocardial infarction (heart attack). The hypothesis is that there

is a relationship between daily intake of aspirin and a reduction in the risk of

death caused by myocardial infarction. Another way to state this hypothesis is

that there is a reduced death rate among myocardial infarction patients who are

taking aspirin. This is a statement of what is called the alternative hypothesis (Ha

or H1). The alternative hypothesis states that a difference does exist between two

groups or there is an association between the predictor and outcome variables.

The alternative hypothesis cannot be tested directly by using statistical methods.

The null hypothesis (H0) states that no difference exists between groups or

there is no association between predictor and outcome variables. In our exam-

ple, the null hypothesis states that there is no difference in death rate due to

myocardial infarction between those patients who took aspirin daily and those

who did not. The null hypothesis is the basis for formal testing of statistical sig-

nificance. By starting with the proposition that there is no association, statis-

tical tests estimate the probability that an observed association occurred due

to chance alone. The customary scientific approach is to accept or reject the

null hypothesis. Rejecting the null hypothesis is a vote in favor of the alternative

hypothesis, which is then accepted by default.

The only knowledge that can be derived from statistical testing is the proba-

bility that the null hypothesis was falsely rejected. Therefore the validity of the
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alternative hypothesis is accepted by exclusion if the test of statistical signifi-

cance rejects the null hypothesis. For statisticians, the reference point for signifi-

cance of the results is the probability that the null hypothesis is rejected when in

fact the null hypothesis is true and there really is no difference between groups.

This appears to be a lot of double talk, but is actually the way statisticians talk.

The goal is for this to occur less than 5% of the time (P < 0.05) which is the basis to

the usual definition of statistical significance, P < 0.05. The letter P stands for the

probability of obtaining the observed difference or effect size between groups by

chance if in reality the null hypothesis is true and there is no difference between

the groups. In other words, the probability of falsely rejecting the null hypothesis.

Where did this 5% notion come from and what does it mean statistically? Sir

Ronald Fisher, a twentieth-century British mathematician and founder of mod-

ern statistics one day said it, and since he was the expert it stuck. He reasoned

that “if the probability of such an event (falsely rejecting the null hypothesis) were

sufficiently small – say, 1 chance in 20, then one might regard the result as signifi-

cant.” Prior to this, a level of P = 0.0047 (or one chance in 212) had been accepted

as the level of significance.

His reasoning was actually pretty sound, as the following experiment shows.

How much would you bet on the toss of a coin? You pay $1.00, or £1.00 in Sir

Ronnie’s experiment, if tails come up and you get paid the same amount if it’s

heads. How many tails in a row would you tolerate before beginning to sus-

pect that the coin is rigged? Sir Ronald reasoned that in most cases the answer

would be about four or five tosses. The probability of four tails in a row is (1/2)4

or 1 in 16, and for five tails in a row (1/2)5 or 1 in 32. One in 20 (5%) is about

halfway between.1 Is it coincidental that 95% of the population corresponds

almost exactly to ± 2 SD of the normal distribution? It is sobering to realize that in

experimental physics, the usual P value is 0.0001 as physicists want to be really

sure where a particular subatomic particle is or what it’s mass or momentum

are before telling the press. There is always talk in biomedical research circles,

usually by pharmaceutical or biotech companies, that the level of significance of

0.05 is too low and should be increased to 0.1. This means that we would accept

one chance in ten that the difference found was not true and only occurred by

chance! This would be a poor decision, and the reasoning why will be evident by

the end of this book.

Errors in hypothesis testing

The results of a clinical study are tested by application of a statistical test to the

experimental results. The researcher asks the question “what is the probability

that the difference between groups that I found was obtained purely by chance,

1 From G. R. Norman & D. L. Streiner. Biostatistics: The Bare Essentials. St Louis: Mosby, 1994.
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Is the study actually valid?
Actually is a positive

result (absolute truth)−
H0 actually false

Actually is a negative
result (absolute truth)−

H0 actually true

Type I error
α

Correct conclusion
(Power = 1 − β)

Experiment found positive
results − H0 found to be false

Experiment found negative
results − H0 found to be true

Correct
conclusion

Type II error
β

Fig. 10.1 Possible outcomes of a
study.

and that there is actually no difference between the two groups?” Statistical tests

are able to calculate this probability.

In general there are four possible outcomes of a study. These are shown in

Fig. 10.1. They compare the result found in the study with the actual state of

things. The universal truth cannot always be determined, and this is what’s

referred to as clinical uncertainty. Researchers can only determine how closely

they are approaching this universal truth by using statistical tests.

A Type I error occurs when the null hypothesis is rejected even though it is

really true. In other words, concluding that there is a difference or association

when in actuality there is not. This is also called a false positive study result.

There are many ways in which a Type I error can occur in a study, and the reader

must be aware of these since the writer will rarely point them out. Often the

researcher will spin the results to make them appear more important and sig-

nificant than the study actually supports. Manipulation of variables using tech-

niques such as data dredging, snooping or mining, one-tailed testing, subgroup

analysis, especially if done post hoc, and composite-outcome endpoints may

result in the occurrence of this type of error.

A Type II error occurs when the null hypothesis is not rejected even though it

is really false. In other words, the researcher concludes that there is not a differ-

ence when in reality there is. This is also called a false negative study result. An

example would be concluding there is no relationship between hyperlipidemia

and coronary artery disease when there truly is a relationship. Power represents

the ability of the study to detect a difference when it exists. By convention the

power of a study should be greater than 80% to be considered adequate. Think of

an analogy to the microscope. As the power of the microscope increases, smaller

differences between cells can be detected.

A Type II error can only be made in negative clinical trials or those trials

that report no statistically significant difference between groups or no associa-

tion between cause and effect. Therefore, when reading negative clinical trials,

one needs to assess the chance that a Type II error occurred. This is important
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because a negative result may not be due to the lack of an effect but simply

because of low power or the inability to detect the effect. From an interpreta-

tion perspective, the question one asks is “for a given Type II error level and

an effect difference that I consider clinically important, did the researcher use

a large enough sample size”? Both of these concepts will be discussed in more

detail in the next two chapters.

Type III and IV errors are not usually found in biostatistical or epidemiological

textbooks and yet are extremely common. Type III errors are those that compare

the intervention to the wrong comparator, such as a drug that is not usually used

for the problem or the incorrect dose of a drug. This is fairly common in the liter-

ature and includes studies of new drugs against placebo instead of older drugs.

Studies of drugs for acute treatment of migraine headaches may be done against

drugs that are useful for that indication, but in doses that are inadequate for the

management of the pain. The reader must have a working knowledge of the stan-

dard therapy and determine if the new intervention is being tried against the best

current therapy. Studies of new antibiotics are often done against an older antibi-

otic that is no longer used as standard therapy.

Type IV errors are those in which the wrong study was done. For example, a

new antiviral drug for influenza is tested against placebo. The drug should at

least have been tested against an old antiviral drug previously shown to be effec-

tive, and not against placebo, which is a Type III error. But, since the current

standard is prevention in the form of influenza vaccine, the correct study should

in fact have been comparing the new drug against the strategy of prevention

with vaccine. This is a much more complex study, but would really answer the

question posed about the drugs. Any study of a new treatment should be com-

pared to the effect of both currently available standard therapies and prevention

programs.

Effect size

The actual results of the measurements showing a difference between groups

are given in the results section of a scientific paper. There are many different

ways to express the results of a study. The effect size, commonly called δ, is the

magnitude of the outcome, association, or difference between groups that one

observes. This result can be given either as an absolute or as a relative number.

It often can be expressed as either an absolute difference or the percentage with

the outcome in each group or the event rate.

The expression of the results will be different for different types of data. The

effect size for outcomes that are dichotomous can be expressed as percentages

that achieved the result of interest in each of the groups. When continuous out-

comes are evaluated, the mean and standard deviations of two or more groups
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can be compared. If the distribution of values is skewed, the range should also be

given. A statistical test will then calculate the P value for the difference between

the two mean values, and will show the probability that the difference found

occurred by chance alone. If the measure is an ordinal number, the median is

the measure that should be compared. In that case, special statistical methods

can be used to determine the P value for the difference found.

The clinically significant effect size is the difference that is estimated to be

important in clinical practice. It is statistically easier to detect a large effect like

one representing a 90% change than a small effect like one representing a 2%

change. Therefore, it should be easier to detect a difference which is likely to

be clinically important. However, if the sample size is very large, even a small

effect size may be detected. This effect size may not be clinically important even

though it is statistically significant. This concept will be addressed in more detail

later.

Event rates

In any study, researchers are interested in how many events of interest happen

within each of two treatment groups. The outcome of interest must be a dichoto-

mous variable for this set of calculations. The most common varilables are sur-

vival, admission to the hospital, patients who had relief of pain, or patients who

were cured of infection. Usually a positive outcome such as survival or cure is

used. However, a negative outcome such as death can also be used. The reader

ought to be able to clearly determine the outcome being measured and the dif-

ferences between the groups are usually expressed as percentages. The control

group consists of those subjects treated with placebo, comparison, or the cur-

rent standard therapy. The experimental group consists of those subjects treated

with the experimental therapy. For studies of risk, the control group is those not

exposed to the risk factor, while the experimental group is those exposed to the

risk factor being studied.

The rate of success or failure can be calculated for each group. The control

event rate (CER) is the percentage of control patients who have the outcome

of interest. Similarly, the experimental event rate (EER) is the percentage of

experimental patients who have the outcome of interest. The absolute differ-

ence between the two is the absolute rate reduction (ARR). Similarly, the rela-

tive rate reduction (RRR) is the percentage of the difference between the groups.

This is the difference between the two outcome rates as a percentage of one of

the event rates, usually by convention, the CER. This is, in fact, a percentage of

a percentage and the reader must be careful when interpreting this result. The

RRR always overestimates the effect of therapy when compared with the ARR

(Fig. 10.2).
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Events of 
interest

 Other events   Totals 
   

Control or placebo group      A    B CE = Control group events

Experimental group  C    D EE = Experimental group 
events 

Formulas  
CER = control patients with outcome of interest / total control patients = A/CE

EER  = experimental patients with outcome of interest / total experimental patients = C/EE 

ARR = |CER − EER| RRR = |CER − EER|/CER

Fig. 10.2 Event rates.

Confidence = √n × (signal / noise) 

Where the signal is the event rate, the noise is the standard deviation, and n is the sample size

SEM = σ/√n 

where n is the sample size and σ is the standard deviation

Fig. 10.3 Confidence and
standard error of the mean
(SEM).

Signal-to-noise ratio

Nearly all commonly used statistical tests are based on the concept of the signal-

to-noise ratio. The signal is the relationship the researcher is interested in and

the noise represents random error. Statistical tests determine how much of the

difference between two groups is likely due to random noise and how much is

likely due to systematic or real differences in the results of interest. The statistical

measure of noise for continuous variables is the standard deviation or standard

error of the mean (Fig. 10.3).

The confidence of the statistical results of a study can be expressed as pro-

portional to the signal times the square root of the sample size (n) divided by the

noise. Confidence is analogous to the power of a study. The signal is the effect size

and the noise is the standard deviation of the effect size. Confidence in a particu-

lar result increases when the strength of the signal or effect size increases. It also

increases as the noise level or standard deviation decreases. Finally, it increases

as the sample size increases, but only in proportion to the square root of the sam-

ple size. To double the confidence, you must quadruple the sample size. Remem-

ber this relationship when evaluating study results.

Standard deviation tells the reader how close individual scores cluster around

their mean value. A related number, the standard error of the mean (SEM) tells

the reader how close the mean scores from repeated samples will be to the true
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95% CI = μ ± Z95% (σ/√n) 

Where Z95% = 1.96 (the number of standard deviations which defines 95% of the data), 
σ/√n = SEM, and μ = mean

Therefore, 95% CI = μ ± 1.96(SEM)

Fig. 10.4 The 95% confidence
intervals (95% CI).

population mean. This is the mathematical basis for many statistical tests. There

are some limitations on the use of SEM. It should not be used to describe the

dispersion of data in a sample. The standard deviation does this and using SEM

is dishonest since it under-represents differences between groups. The SEM is a

measure of the variability of the sample means if the study were repeated. For

all practical purposes, the SEM is the standard deviation of the means of all the

possible samples taken from the population. The 95% confidence interval may

be calculated from the SEM and the clearest way to report variation in a study

would be simply to show the 95% confidence intervals. A more detailed explana-

tion of standard deviation and SEM can be found in an excellent article by David

Streiner.2

Confidence intervals

Confidence intervals (CI) are another way to represent the level of significance

and are the preferred way to do this. The actual definition is that 95% of such

intervals calculated from the same experiment repeated multiple times contain

the true value of the variable for that population. For all practical purposes in

plain English, the 95% CI means that 95% of the time we expect the true mean

to be between the upper and lower limits of the confidence interval. This means

that if we were to repeat the experiment 20 times, in 19 of those repeated experi-

ments the value of the effect size would lie within the stated CI range. This gives

more information than a simple P value, since one can see a range of poten-

tially likely values. If the data assume a normal distribution and we are measuring

independent events, the SEM can be used to calculate 95% confidence intervals

(Fig. 10.4).

Statistical tests

The central limit theorem is the theoretical basis for most statistical tests. It

states that if we select equally sized samples of a variable from a population with

2 D. L. Streiner. Maintaining standards: differences between the standard deviation and standard error,
and when to use each. Can. J. Psychiatry 1996; 41: 498–502.



Hypothesis testing 117

P < 0.05  Frequency of 
observations  

P > 0.05  

Increasing value 

of  the variable  95% CI  
95% CI  

95% CI  
95% CI  

Fig. 10.5 The relationship
between the overlap of 95% of
possible variable values and the
level of statistical significance.

a non-normal distribution the distribution of the means of these samples will be

a normal distribution. This is true as long as the samples are large enough. For

most statistical tests, the sample size considered large enough is 30. For smaller

sample sizes, other more complex statistical approximations can be used.

Statistical tests calculate the probability that a difference between two groups

obtained in a study occurred by chance. It is easier to visualize how statistical

tests work if we assume that the distribution of each of two sample variables is

two normal distributions graphed on the same axis. Very simplistically and for

visual effectiveness, we can represent two sample means with their 95% con-

fidence intervals as bell-shaped curves. There are two tails at the ends of the

curves, each representing half of the remaining 5% of the confidence interval.

If there is only some overlap of the areas on the tails or if the two curves are

totally separate with no overlap, the results are statistically significant. If there is

more overlap such that the value central tendency of one distribution is inside

the 95% confidence interval of the other, the results are not statistically signif-

icant (Fig. 10.5). While this is a good way to visualize the process, it cannot be

translated into simple overlap of the two 95% confidence intervals, as statistical

significance depends on multiple other factors.

Statistical tests are based upon the principle that there is an expected outcome

(E) that can be compared to the observed outcome (O). Determining the value of

E is problematic since we don’t actually know what value to expect in most cases.

One estimate of the expected value is that found in the control group. Actually,

there are complex calculations for determining the expected value that are part

of the statistical test. Statistical tests calculate the probability that O is differ-

ent from E or that the absolute difference between O and E is greater than zero

and occurred by chance alone. This is done using a variety of formulas, is the

meat of statistics, and is what statisticians get paid for. They also get paid to help

researchers decide what to measure and how to ensure that the measure of inter-

est is what is actually being measured. To quote Sir Ronnie Fisher again: “To call

in the statistician after the experiment is done may be no more than asking him
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to perform a postmortem examination: he may be able to say what the experi-

ment died of.”3

One does not need to be a trained statistician to know which statistical test

to use, but it helps. What is the average physician to do? The list in Appendix 3

is one place to start. It is an abbreviated list of the specific statistical tests that

the reader should look for in evaluating the statistics of a study. As one becomes

more familiar with the literature, one will be able to identify the correct statistical

tests more often. If the test used in the article is not on this list, the reader ought

to be a bit suspicious that perhaps the authors found a statistician who could

save the study and generate statistically significant results, but only by using an

obscure test.

The placebo effect

There is an urban myth that the placebo effect occurs at an average rate of about

35% in any study. The apparent placebo effect is actually more complex and

made up of several other effects. These other effects, which can be confused

with the true placebo effect, are the natural course of the illness, regression to

the mean, other timed effects, and unidentified parallel interventions. The true

placebo effect is the total perceived placebo effect minus these other effects.

The natural course of the disease may result in some patients getting better

regardless of the treatment given while others get worse. In some cases, it will

appear that patients got better because of the treatment, when really the patients

got better because of the disease process. This was demonstrated in a previous

example when patients with bronchitis appeared to get better with antibiotic

treatment, when in reality, the natural course of bronchitis is clinical improve-

ment. This concept is true with almost all illnesses including serious infections

and advanced cancers.

Regression to the mean is the natural tendency for a variable to change with

time and return toward the population mean. If endpoints are re-measured

they are likely to be closer to the mean than an initial extreme value. This is a

commonly seen phenomenon with blood pressure values. Many people initially

found to have an elevated blood pressure will have a reduction in their blood

pressure over time. This is partly due to their relaxing after the initial pressure

reading and partly to regression to the mean.

Other timed effects that may affect the outcome measurements include the

learning curve. A person gets better at a task each time it is performed. Simi-

larly, a patient becomes more relaxed as the clinical encounter progresses. This

explains the effect known as white coat hypertension, the phenomenon by which

3 Indian Statistical Congress, Sankhya, 1938. Sir Ronald Fisher, 1890–1962.
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a person’s blood pressure will be higher when the doctor takes it and lower when

taken later by a machine, a non-physician, or repeatedly by their own physician.

Some of this effect is due to the stress engendered by the presence of the doctor;

as a patient becomes more used to having the doctor take their blood pressure,

the blood pressure decreases.

Unidentified parallel interventions may occur on the part of the physician,

health-care giver, investigator, or patient. This includes things such as uncon-

scious or conscious changes in lifestyle instituted as a result of the patient’s med-

ical problem. For example, patients who are diagnosed with elevated cholesterol

may increase their exercise while they also began taking a new drug to help lower

their cholesterol. This can result in a greater-than-expected rate of improvement

in outcomes both in those assigned to the drug and in the control or placebo

group.

The reader’s goal is to differentiate the true treatment effect from the per-

ceived treatment effect. The true treatment effect is the difference between the

perceived treatment effect and the various types of placebo effect as described

above. Studies should be able to differentiate the true treatment effect from the

perceived effect by the appropriate use of a control group. The control group is

given the placebo or a standard therapy that is equivalent to the placebo since

the standard therapy would be given regardless of the patients’ participation in

the study.

A recent meta-analysis combined the results of multiple studies that had

placebo and no-treatment arms. They compared the results obtained by all the

patients in these two groups and found that the overall effect size for these two

groups was the same. The only exception was in studies for pain where an overall

positive effect favored the placebo group by the amount of 6.5 mm on a 100-mm

pain scale.4 As demonstrated by previous pain studies, this difference is not clin-

ically significant.

4 A. Hróbjartsson & P. C. Gøtzsche. Is the placebo powerless? An analysis of clinical trials comparing
placebo with no treatment N. Engl. J. Med. 2001; 344: 1594–1602.
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Type I errors and number needed to treat

If this be error, and upon me prov’d,

I never writ, nor no man ever lov’d.

William Shakespeare (1564–1616): Sonnet 116

Learning objectives

In this chapter you will learn:
� how to recognize Type I errors in a study
� the concept of data dredging or data snooping
� the meaning of number needed to treat to benefit (NNTB) and number

needed to treat to harm (NNTH)
� how to differentiate statistical from clinical significance
� other sources of Type I errors

Interpreting the results of a clinical trial requires an understanding of the statis-

tical processes that are used to analyze these results. Studies that suffer from a

Type I error may show statistical significance when the groups are not actually

different. Intelligent readers of the medical literature must be able to interpret

these results and determine for themselves if these results are important enough

to use for their patients.

Type I error

This occurs when the null hypothesis is rejected even though it is really true.

In other words, studies that have a Type I error conclude that there is a positive

effect size or difference between groups when in reality there is not. This is a false

positive study result. Alpha (α), known as the level of significance, is defined as

the maximum probability of making a Type I error that the researcher is willing

to accept. Alpha is the probability of rejecting the null hypothesis when it is really

120
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α = 0.05 
P > 0.05 

α = 0.05 
P < 0.05 

Two-tailed tests  One-tailed tests

95% CI  95% CI

δ δ

Mean outside 
95% CI 

Mean inside
95% CI 

Fig. 11.1 One- and two-tailed
tests for the same effect size δ.

true and is predetermined before conducting a statistical test. The probability of

obtaining the actual difference or effect size by chance if the null hypothesis is

true is P. This is calculated by performing a statistical test.

The researcher minimizes the risk of a Type I error by setting the level of sig-

nificance (α) very low. By convention, the alpha level is usually set at 0.05 or 0.01.

In other words, with α = 0.05 the researcher expects to make a Type I error in

one of 20 trials. The researcher then calculates P using a statistical test. He or she

compares P to α. If α = 0.05, P must be less than 0.05 (P < 0.05) to show statistical

significance. There are two situations for which this must be modified: two-tailed

testing and multiple variables.

One-tailed vs. two-tailed tests

If researchers have an a-priori reason to believe that one group is clearly going to

be different from the other and they know the direction of that difference, they

can use a one-tailed statistical test. It is important to note that the researcher

must hypothesize either an increase or a decrease in the effect, not just a differ-

ence. This means that the normal distribution of one result is only likely to over-

lap the normal distribution of the other result on one side or in one direction.

This is demonstrated in Fig. 11.1.

One-tailed tests specify the direction that researchers think the result will be.

When asking the question “is drug A better than drug B?” the alternative hypoth-

esis, Ha is that drug A is better than drug B. The null hypothesis, H0 is that either

there is no difference or drug A is worse than drug B. This states that we are only

interested in drug A if it is better and we have good a-priori reason to think that it

really is better. It removes from direct experimentation the possibility that drug

A may actually be worse that drug B.
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It is best to do a two-tailed test in almost all circumstances. The use of a one-

tailed test can only be justified if previous research demonstrated that drug A

actually appears to be better and certainly is no worse than drug B. When doing

a two-tailed test, there is no a-priori assumption about the direction of the result.

A two-tailed test asks the question “is there any difference between groups?” In

this case, the alternative hypothesis Ha is that drug A is different from drug B.

This can mean that drug A is either better or worse, but not equivalent to drug B.

The null hypothesis H0 states that there is no difference between the two drugs

or that they are equivalent.

For α = 0.05, P must only be < 0.10 for statistical significance with the one-

tailed test. It must be < 0.05 for the two-tailed test. This means that we will accept

a Type I error one in 10 trials with a one-tailed test rather than one in 20 with a

two-tailed test. Conceptually this means that for a total probability of a randomly

occurring error of 0.05, each tail of the normal distribution contributes 0.025 of

alpha. For a one-tailed test, each tail contributes 0.05 of alpha. This requirement

for α = 0.05 is less stringent if a one-tailed test is used.

Multiple outcomes

The probability of making a Type I error is α for each outcome being measured.

If two variables are measured, the probability of a Type I error or a false positive

result is α for each variable. The probability that at least one of these two vari-

ables is a false positive is one minus the probability that neither of them is a false

positive. The probability that neither is a false positive is the probability that the

first variable is not a false positive (1 – α) and that the second variable is not a

false positive (1 – α). This makes the probability that neither variable is a false

positive (1 – α) × (1 – α), or (1 – α)2. The probability that at least one of the two

is falsely positive then becomes 1 – (1 – α)2. Therefore, the probability that one

positive and incorrect outcome will occur only by chance if n variables are tested

is 1 – (1 − α)n.

This probability becomes sizable as n gets very large. Data dredging, mining,

or snooping is a technique by which the researcher looks at multiple variables

in the hope that at least one will show statistical significance. This result is then

emphasized as the most important positive result in the study. This is a com-

mon example of a Type I error. Suspect this when there are many variables being

tested, but only a few of them show statistical significance. This can be substan-

tial in studies of DNA sequences looking for genetic markers of disease. Typi-

cally the researcher will look at hundreds or thousands of DNA sequences and

see if any are related to phenotypic signs of disease. A few of these may be posi-

tively associated by chance alone if α of 0.05 is used as the standard for statistical

significance.
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For example, if a researcher does a study that looks at 20 clinical signs of a

given disease, it is possible that any one of them will be statistically significantly

associated with the disease. For one variable, the probability that this association

occurred by chance only is 0.05. Therefore the probability that no association

occurred by chance is 1 – 0.05 = 0.95. The probability that at least one of the 20

variables tested will be positively associated with the disease by chance alone is

1 minus the probability of no association. Since this is 0.95 for each variable, the

probability that at least one occurred by chance becomes 1 – 0.9520 or 1 – 0.36 =
0.64. Therefore, there is a 64% likelihood of coming up with one association that

is falsely positive and occurred only by chance. If there are two values that show

an association, one cannot know if both occurred by chance alone or if one result

is truly statistically significant. Then the question becomes which result is the

significant value and which result is a false positive.

One way to get around this problem is by applying the Bonferroni correction.

First we must create a new level of α, which will be α/n. This is the previous

α divided by n, the number of variables being compared, not the sample size.

Therefore, P must be < α/n for the result to be statistically significant. The Bon-

ferroni correction is used when the variables being tested are independent of

each other and there are only 10 or fewer variables being measured. This cor-

rection is not a true assumption in most cases and other means of estimating α′

must be used.

Data dredging is a proper device if the study is a derivation set. The variables

that came up statistically significant will then be measured in another study

using only those variables and a new sample called the validation set to see if

this relationship still holds. One clue to data dredging is the absence of an explicit

hypothesis. This allows the researcher to find a statistically significant relation-

ship that exists only by chance and claim it as the reason for the study. This tech-

nique is only legitimate if the variable that comes up statistically significant in the

derivation set can then become the explicit hypothesis of a validation set. This is

the correct way that studies of DNA sequences as markers of disease ought to be

done.

Confidence intervals

Confidence intervals (CI) are used more frequently now to represent the level of

significance (Table 11.1). As mentioned earlier, the true definition of the 95% CI is

that 95% of such intervals calculated by repeating the same experiment contain

the true value of the variable for that population. For all practical purposes the

95% CI is a range of values within which we would expect the true value to lie

95% of the time, or with 95% certainty. If one repeats the experiment 20 times,

19 of those times the true value will be within the stated CI range. This gives
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Table 11.1. Rules of thumb for 95% confidence intervals

(1) If the point value for one (experimental) group is within the 95% CI for the other

(control) group, there is likely to be no statistical significance for the difference

between values.

(2) If the point value for one (experimental) group is outside the 95% CI for the other

(control) group, there is likely to be statistical significance for the difference

between values.

(3) If the 95% CI for a difference includes 0, the difference found is not statistically

significant.

(4) If the 95% CI for a ratio includes 1, the ratio is not statistically significant.

more information than a simple P < 0.05 value since one can see a statistically

plausible range of values.

The limits of the 95% CI display the precision of the results. If the CI is very

wide, the results are not very precise. This means that there is a great deal of

random variation in the result and a very large or small value could be the true

effect size. Similarly if the CI is very narrow, the results are very precise and we

are more certain of the true result.

If the 95% confidence interval around the difference between two groups in

studies of the therapy includes the zero point, P > 0.05. The zero point is the

point at which there is no difference between the two groups or the null hypoth-

esis is true. If one limit of the CI is just near, and the interval does not cross the

zero point, the result may only be slightly statistically significant. The addition of

a few more subjects could make the result more statistically significant. However,

the true effect may be very small and not clinically important.

Statistical significance vs. clinical significance

A study of a population with a very large sample size can show statistical sig-

nificance at the α = 0.05 level when the actual clinical difference between the

two groups is very small. For example, if a study measuring the level of pain per-

ception using a visual analog scale showed a statistically significant difference

in pain scores of 6.5 points on a scale 0–100, one might think this was impor-

tant. But, another study found that patients could not actually discriminate a

difference on this scale of less than 13 points. Therefore, although statistically

significant, a difference of 6.5 points would not be clinically important.

Clinicians must decide for themselves whether a result has reasonable clinical

significance. They must then help their patients decide how much benefit will

accrue from the therapy and how much risk they are willing to accept as a result
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Standard therapy Experimental therapy

patient died patient survived

CER = 0.5 EER = 0.8 ARR = |0.8 − 0.5| = 0.3

NNTB = 1/0.3 = 3.33 ≈ 4

Fig. 11.2 Number needed to
treat to benefit. For every 10
patients treated with the
experimental treatment, there
are three additional survivors.
The number needed to treat is
10/3 = 3.33 ≈ (rounded up to)
4. Therefore we must treat four
patients to get one additional
survivor.

of potential side effects or failure of the treatment. If a difference in effect size of

the magnitude found in the study will not change the clinical situation of a given

patient, then that is not an important result. Clinicians must look at the overall

impact of small effect size on patient care. This may include issues of ultimate

survival, potential side effects and toxicities, quality of life, adverse outcomes,

and costs to the patient and society. We will cover formal decision analysis in

Chapter 30 and cost-effectiveness analysis in Chapter 31.

Number needed to treat

A useful numerical measure of clinical significance is the number needed to treat

to benefit (NNTB). The NNTB is the number of patients that must be treated

with the proposed therapy in order to have one additional successful result.

To calculate NNTB one must first calculate the absolute risk reduction (ARR).

This requires that the study outcomes are dichotomous and one can calculate

the experimental (EER) and control (CER) event rates. The ARR is the absolute

difference of the event rates of the two groups being compared (|EER – CER|).

The NNTB is one divided by the ARR. By convention, NNTB is given as 1/ARR

rounded up to the nearest integer. Figure 11.2 is a pictorial description of NNTB.

It is ideal to see small NNTBs in studies of treatment as this means that the new

and experimental treatment is a lot better than the standard, control, or placebo

treatment. One can compare the NNTB to the risk of untreated disease and the

risks of side effects of treatment. The related concept, the number needed to

treat to harm (NNTH), is the number of patients that one would need to expose

to a risk factor before an additional patient is harmed by side effects of the treat-

ment. The concepts of NNTB and NNTH help physicians balance the benefit and
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risk of therapy. The NNTH is usually calculated from studies of risk, and will be

discussed in the chapter on risk assessment (Chapter 13).

For studies of prevention, NNTB tends to be much larger than for studies of

therapy. This difference is fine if the intervention is relatively cheap and not

dangerous. For example, one aspirin taken daily can prevent death after a heart

attack. The NNTB to prevent one death in the first 5 weeks after a heart attack

is 40. Since aspirin is very cheap and has relatively few side effects, this is a

reasonable number. The following two examples will demonstrate the use of

NNTB.

(1) A study of treatment for migraine headache tested a new drug sumatriptan

against placebo. In the sumatriptan group, 1067 out of 1854 patients had mild

or no pain at 2 hours. In the placebo group, 256 out of 1036 patients had mild

or no pain at 2 hours. First the event rates are calculated, then the ARR and

RRR, and finally the NNTB:

EER = 1067/1854 = 58% = 0.58 and CER = 256/1036 = 25% = 0.25.

ARR = 0.58 – 0.25 = 0.33. In this case we ought to say absolute rate increase

(ARI) since this is the absolute increase in well-being due to the drug. This

means that 33% more patients taking sumatriptan for headache will have

clinical improvement compared to patients taking placebo.

RRR = 0.33/0.25 = 1.33. This is the relative risk reduction or in this case

relative rate increase (RRI) and means that patients treated with sumatrip-

tan are one-and-a-third times more likely to show improvement in their

headache compared with patients treated with placebo therapy. The RRR

always makes the improvement look better than the ARR.

NNTB = 1/0.33 = 3. You must treat three patients with sumatriptan to

reduce pain of migraine headaches in one additional patient. This looks

like a very reasonable number for NNTB. However, bear in mind that clini-

cians would never recommend placebo, and it is likely that the NNTB would

not be nearly this low if sumatriptan were compared against other migraine

medications. This is an example of a false comparison, very common in the

medical literature, especially among studies sponsored by pharmaceutical

companies.

(2) Streptokinase (SK) and tissue plasminogen activator (t-PA) are two drugs that

can dissolve blood clots in the coronary arteries and can treat myocardial

infarction (MI). A recent study called GUSTO compared the two in the treat-

ment of MI. In the most positive study comparing the use of these in treating

MI, the SK group had a mortality of 7% (CER) and the t-PA group had a mor-

tality of 6% (EER). This difference was statistically significant (P < 0.05).

ARR = |6% – 7%| or 1%. This means that there is a 1% absolute improve-

ment in survival when t-PA is used rather than SK.

RRR = (|6 – 7|)/6 or 16%. This means that there is a relative increase in sur-

vival of 16% when t-PA is used rather than SK. This is the figure that was used
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in advertisements for the drug that were sent out to cardiologists, family-

medicine, emergency-medicine, and critical-care physicians.

NNTB = 1/1% = 1/0.01 = 100. This means that you must treat 100 patients

with the experimental therapy to save one additional life. This may not be

reasonable especially if there is a large cost difference or significantly more

side effects. In this case, SK costs $200 per dose while t-PA costs $2000 per

dose. There was also an increase in the number of symptomatic intracra-

nial bleeds with t-PA. The ARR for symptomatic intracranial bleeds was about

0.3%, giving an NNTH of about 300. That means for every 300 patients who

get t-PA rather than streptokinase, one additional patient will have a symp-

tomatic intracranial bleed.

The number needed to screen to benefit (NNSB) is a related concept that looks at

how many people need to be screened for a disease in order to prevent one addi-

tional death. For example, to prevent one additional death from breast cancer

one must screen 1200 women beginning at age 50. Since the potential outcome

of not detecting breast cancer is very bad and the screening test is not invasive

with very rare side effects, it is a reasonable screening test. We will discuss screen-

ing tests in Chapter 28.

The number needed to expose to harm (NNEH) is the number of patients that

must be exposed to a risk factor in order for one additional person to have the

outcome of interest. This can be a negative outcome such as lung cancer from

exposure to secondhand smoke or a positive one such as reduction in dental

caries from exposure to fluoride in the water. The NNEH to secondhand smoke to

cause one additional case of lung cancer in a non-smoking spouse after 14 years

of exposure is 1300. This NNEH is very high, meaning that very few of the people

who are at risk will develop the outcome. However, the baseline exposure rate is

high, with 25% of the population being smokers and the cost of intervention is

very low, thus making reduction of secondhand smoke very desirable.

For all values of NNTB and other similar numbers, confidence intervals should

be given in studies that calculate these statistics. The formulas for these are very

complex and are given in Appendix 4. There are several convenient NNTB calcu-

lators on the Web. Two recommended sites are those of the University of British

Columbia1 and the Centre for Evidence-Based Medicine at Oxford University.

Other sources of Type I error

There are three other common sources of Type I error that are seen in research

studies and may be difficult to spot. Authors with a particular bias will do

many things to make their preferred treatment seem better than the comparison

1 www.spph.ubc.ca/sites/healthcare/files/calc/clinsig.html
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treatment. Authors may do this because of a conflict of interest, or simply

because they are zealous in defense of their original hypothesis.

An increasingly common device for reporting results uses composite end-

points. A composite endpoint is the combination of two or more endpoints or

outcome events into one combined event. These are most commonly seen when

a single important endpoint such as a difference in death rates shows results that

are small and not statistically significant. The researcher then looks at other end-

points such as reduction in recurrence of adverse clinical events. The combina-

tion of both decreased death rates and reduced adverse events may be decreased

enough to make the study results statistically significant. A recent study looked at

the anticoagulant low-molecular-weight heparin (LMWH) for the prevention of

death in certain types of cardiac events such as unstable angina and non-Q-wave

myocardial infarctions. The final results were that death, heart attack, urgent

surgery, or angioplasty revascularization occurred in fewer of the LMWH group

than in the standard heparin group. However, there was no difference between

groups for death. It was only when all the outcomes were put together that the

difference achieved statistical significance. In addition, the LMWH group had

more intracranial bleeds and the NNTB for the composite endpoint was almost

equal to the NNTH for the bleeds.

Sometimes a study will show a non-significant difference between the inter-

vention and comparison treatment for the overall sample group being studied.

In some cases, the authors will then look at subgroups of the study population to

find one that demonstrates a statistically significant association. This post-hoc

subgroup analysis is not an appropriate way to look for significance and is a form

of data dredging. The more subgroups that are examined, the more likely it is that

a statistically significant outcome will be found – and that it will have occurred

by chance. This can determine a hypothesis for the next study of the same inter-

vention. In that subsequent study, only that subgroup will be the selected study

population and improvement looked for in that group only.

A recent study of stroke found that patients treated with thrombolytic therapy

within 3 hours did better than those treated later than 3 hours. The authors con-

cluded that this was the optimal time to begin treatment and the manufacturer

began heavily marketing these very expensive and possibly dangerous drugs.

Subsequent studies of patients within this time frame have not found the same

degree of reduction in neurological deficit found in the original study. It turns

out that the determination of the 3-hour mark was a post-hoc subgroup analysis

performed after the data were obtained. The authors looked for some statisti-

cally significant time period in which the drug was effective, and came to rest on

3 hours. To obtain the true answer to this 3-hour mark question, a randomized

controlled clinical trial explicitly looking at this time window should be done to

determine if the results are reproducible.
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Finally, there can be a serious problem if a clinical trial is stopped early because

of apparently excellent results early in the study. The researchers may feel that it

is unethical to continue the trial when the results are so dramatic that they have

achieved statistical significance even before the required number of patients

have been enrolled. This is becoming more common, having more than dou-

bled in the past 20 years. One problem is that there may be an apparently large

treatment effect size initially, when in reality only a few outcome events have

occurred in a small study population. The reader can tell if this is likely to

have happened by looking at the 95% confidence intervals and seeing that they

are very wide, and often barely statistically significant. When a trial is stopped

early, there is also a danger that the trial won’t discover adverse effects of ther-

apy and the trial will not determine if the side effects are more or less likely to

occur than the beneficial events. One proposed solution to this problem is that

there be prespecified stopping rules. These might include a minimum number of

patients to be enrolled and also a more stringent statistical threshold for stopping

the study. It has been suggested that an α level of 0.001 be set as the statistically

significant level that must be met if the study is stopped early. Even this may not

prevent overly optimistic results from being published, and all research must be

reviewed in the context of other studies of the same problem. If these other stud-

ies are congruent with the results of the study stopped early, it is very likely that

the results are valid. However, if the results seem too good to be true, be careful,

they probably are.
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Negative studies and Type II errors

If I had thought about it, I wouldn’t have done the experiment. The literature was full of

examples that said you can’t do this.

Spencer Silver on the work that led to the unique adhesives

for 3M Post-It R© Notepads

Learning objectives

In this chapter you will learn:
� how to recognize Type II errors in a study
� how to interpret negative clinical trials using 95% confidence intervals
� how to use a nomogram to determine the appropriate sample size and

interpret a Type II error

Interpretation of the results of negative clinical trials requires an understanding

of the statistical processes that can account for these results. Intelligent readers

of the medical literature must be able to interpret these results and determine

for themselves if they are important enough to ignore in clinical practice.

The problem with evaluating negative studies

Negative studies are those that conclude that there is no statistically significant

association between the cause and effect variables or no difference between the

two groups being compared. This may occur because there really is no asso-

ciation or difference between groups, a true negative result, or it can occur

because the study was unable to determine that the association or difference

was statistically significant. If there really is a difference or association, the latter

finding would be a false negative result and this is a critical problem in medical

research.

In a college psychology class, an interesting experiment was done. There were

two sections of students in the lab portion of the class and each section did the

130
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same experiment. On separate days, each student was given a cup of coffee, one

day they got real Java and the next day decaf. After drinking the coffee, they were

given a simple test of math problems that had to be completed in a specified

time and each of the students’ scores was then calculated. For both groups, the

scores under the influence of caffeine were highest. However, when a statistical

test was applied to the results, they were not statistically significant, meaning

that the results could have occurred by chance greater than 5% of the time. Does

caffeine improve scores on a simple math test? Are the results really no different

or was the study falsely negative?

Type II error

This type of error occurs when the null hypothesis H0, is accepted and no differ-

ence is found between the groups even though the groups truly are different. In

other words, the researcher concludes that there isn’t a difference, when in fact

there is a difference. An example would be concluding there is no relationship

between familial hyperlipidemia and the occurrence of coronary artery disease

when there truly is a relationship. Another would be concluding that caffeine

intake does not increase the math scores of college psychology students when in

fact it does. This is called a β or Type II error.

The researcher should define beta (β) as the maximum probability of mak-

ing a Type II error or failing to reject the null hypothesis when it is actually

false. This is a convoluted way of saying that it finds the alternative hypothesis

to be false, when it ain’t! Beta is the probability of the occurrence of this wrong

conclusion that an investigator must be willing to accept. The researcher does

not set β directly. It can be calculated from the expected study results before a

study is done. Practically, the value of β is estimated from the conditions of the

experiment.

Power is the ability to detect a statistically significant difference when it actu-

ally exists. Power is one minus the probability that a type II error is made and is

equal to 1 – β. The researcher can reduce β, and thereby increase the power, by

selecting a sufficiently large sample size (n). Other changes that can be made to

lower the probability of making a Type II or β error include increasing the dif-

ference one wants to detect, using a one-tailed rather than a two-tailed test, and

increasing the level of α from 0.05 to 0.1 or even higher.

Determining power

In statistical terminology, power means that the study will reject the null hypoth-

esis when it really is false. By convention one sets up the experiment so that β
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is no greater than 0.20. Equivalently, power should be more than 0.80 to be con-

sidered adequate for most studies. Remember, that a microscope with greater

power will be able to detect smaller differences between cells.

Power depends on several factors. These include the type of variable, statisti-

cal test, degree of variability, effect size, and the sample size. The type of variable

can be dichotomous, ordinal, or continuous, and for a high power, continuous

variables are best. For the statistical test, a one-tailed test has more power than a

two-tailed test. The degree of variability is based on the standard deviation, and

in general, the smaller the standard deviation, the greater the power. The bigger

the better is the basic principle when using the effect size and the sample size

to increase a study’s power. These concepts are directly related to the concept

of confidence discussed in Chapter 10. The confidence formula (confidence =
(signal/noise) ×

√
n) can be written as confidence = (effect size/standard devia-

tion) ×
√

n. According to this formula, as effect size or sample size increases, con-

fidence increases, thus the power increases. As the standard deviation increases,

confidence decreases and the power decreases.

Effect of sample size on power

Sample size (n) has the most obvious effect on the power of a study with power

increasing in proportion to the square root of the sample size. If the sample size

is very large, an experiment is more likely to show statistical significance even if

there is a small effect size. This is a purely mathematical issue. The smaller the

sample size, the harder it is to find statistical significance even if one is look-

ing for a large effect size. Remember the two groups of college psychology stu-

dents at the start of this chapter. It turns out, when the scores for the two groups

were combined, the results were statistically significant. Figure 12.1 demon-

strates the effect of increasing sample size to obtain a statistically significant

result.

For example, one does a study to find out if ibuprofen is good for relieving the

pain of osteoarthritis. The results were that patients taking ibuprofen had 50%

less pain than those taking placebo. However, in this case. there were only five

patients in each group and the result, although very large in terms of effect size,

was not statistically significant. If one then repeats the study and gets exactly

the same results with 25 patients in each group, then the result turns out to be

statistically significant. This change in statistical significance occurred because

of an increase in power.

In the extreme, studies of tens of thousands of patients will often find very tiny

effect sizes, such as 1% difference or less, to be statistically significant. This is

the most important reason to use the number needed to treat instead of only

P < 0.05 as the best indicator of the clinical significance of a study result. In
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95% CI
95% CI

δ

P < 0.05

95% CI 95% CI

δ

P > 0.05

Fig. 12.1 Effect of changing
sample size. Two variables with
different sample sizes and the
same effect size (δ). The area
under the curves is proportional
to the sample size (n). The
samples on the left with a small
sample size are not statistically
significantly different (p >

0.05). The ones on the right with
a larger sample size have an
effect size that is statistically
significant (p< 0.05).

cases like this, although the results are statistically significant, the patient will

most likely have minimal, if any, benefit from the treatment. In terms of con-

fidence intervals, a larger sample size will lead to narrower 95% confidence

intervals.

Effect of effect size on power

Before an experiment is done, effect size is estimated as the difference between

groups that will be clinically important. The sample size needed to detect the

predetermined effect size can then be calculated. Overall, it is easier to detect

a large effect such as a 90% change rather than a small one like a 2% change

(Fig. 12.2). However, as discussed above, if the sample size is large enough, even a

very small effect size may be statistically significant but not clinically important.

Another technique to be aware of is that the conditions of the experiment can be

manipulated to show a large effect size, but this is usually at the cost of making a

Type III or IV error.

Effect of level of significance on power

The magnitude of the level of significance, α, tells the reader how willing the

researchers are to have a result that occurred only by chance. If α is large, the

study will have more power to find a statistically significant difference between
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95% CI95% CI 95% CI
95% CI

δ 1
δ 2  

P > 0.05 P < 0.05

Fig. 12.2 Effect of changing effect size. Two variables with different effect sizes and the same
sample size. The results of the group on the left with a small effect size are not statistically
significantly different (p > 0.05). The ones on the right with a larger effect size have a result
that is statistically significant (p < 0.05).

δδ

P > 0.05

95% CI 95% CI

P < 0.10

90% CI
90% CI

Fig. 12.3 Effect of changing alpha. Two variables with different levels of α. The samples on
the left with a small α (= 0.05) are not statistically significantly different (p > 0.05). The
ones on the right with a larger α (= 0.1) have an effect size that is statistically significant
(p < 0.10).

groups. If α is very small, researchers are willing to accept only a tiny likelihood

that the effect size found occurred by chance alone. In general, as the level of α

increases, we are willing to have a greater likelihood that the effect size occurred

by chance alone (Fig. 12.3). We are more likely to find the difference to be sta-

tistically significant if the level of α is larger rather than smaller. In medicine, we

generally set α at 0.05, while in physics α may be set at 0.0001 or lower. Those

in medicine today who believe that 0.05 is too stringent and we should go to

an α level of 0.1 might not be comfortable knowing that the treatment they were
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δ

95% CI 95% CI

P > 0.05

SD 1

95% CI
95% CI

P < 0.05 

SD 2 

δ 

Fig. 12.4 Effect of changing
precision (standard deviation).
Two variables with the same
sample size and effect size. In
the case on the left there is a
large standard deviation, while
on the right there is a small
standard deviation. The situation
on the right will be statistically
significant (p < 0.05) while
the one on the left will not
(p > 0.05).

receiving was better than something cheaper, less toxic, or more commonly used

by a chance factor of 10%.

Effect of standard deviation on power

The smaller the standard deviation of the data-sets, the better the power of the

study. If two samples each have small standard deviations, a statistical test is

more likely to find them different than if they have large standard deviations.

Think of the standard deviation as defining the width of a normal distribution

around the mean value found in the study. When the two normal distributions

are compared, the one with the smallest spread will have the most likelihood of

being found statistically significant (Fig. 12.4).

Negative studies

A Type II error can only be made in a negative clinical trial. These are trials

reporting no statistically significant difference or association. Therefore, when

reading negative clinical trials, one needs to assess the chance that a Type II

error occurred. This is important because a negative result may not be due to

the lack of an important effect, but simply because of the inability to detect that

effect statistically. This is called a study with low power. From an interpretation

perspective, the question one asks is, “For a given β level and a difference that

I consider clinically important, did the researcher use a large enough sample

size?”

Since the possibility of a Type II error is a non-trivial problem, one must per-

form his or her own interpretation of a negative clinical trial. The three common

ways of doing this are through the interpretation of the confidence intervals, by
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using sample size nomograms, and with published power tables. We will discuss

the first two methods since they can be done most simply without specialized

references.

Evaluating negative studies using confidence intervals

Confidence intervals (CI) can be used to represent the level of significance. There

are several rules of thumb that must be remembered before using CIs to deter-

mine the potential of a Type II error. First, if the point estimate value of one

variable is within the 95% CI range of the other variable, there is no statisti-

cal significance to the difference between the two groups. Second, if the 95%

CI for a difference includes 0, the difference found is not statistically signifi-

cant. Last, if the 95% CI for a ratio includes 1, the ratio found is not statistically

significant.

Unlike P values, which are only a single number, 95% CIs allow the reader to

actually see a range of possible values that includes the true value with 95% cer-

tainty. For the difference between two groups, it gives the range of the most likely

difference between the two groups under consideration. For a given effect size,

one can look at the relationship between the limits of the CI and the null point,

the point at which there is no difference or association. A 95% CI that is skewed

in one direction and where one end of the interval is very near the null point can

have occurred as a result of low power. In that case, a larger sample size might

show a statistically significant effect.

For example, in a study of the effect of two drugs on pain, the change in the

visual analog score (VAS) was found to be 25mm with a 95% CI from –5mm to

55mm. This suggests that a larger study could find a difference that was statisti-

cally significant, although maybe not as large as 25mm. If one added a few more

patients, the CI would be narrower and would most likely not include the null

point, 0 in this case. If there were no other evidence available, it might be rea-

sonable to use the better drug until either a more powerful study or a well-done

meta-analysis showed a clear-cut superiority of one treatment over the other,

or showed equivalence of the two drugs. On the other hand, if the 95% CI were

–15mm to 60mm, it would be unlikely that adding even a large number of addi-

tional patients would change the results. There is approximately the same degree

of the 95% CI on either side of the null point, suggesting that the true values are

most likely to be near the null point and less likely to be near either extreme.

In this case, consider the study to be negative, at least until another and much

larger study comes along.

The 95% CI can also be used to evaluate positive studies. If the absolute

risk reduction (ARR) for an intervention is 0.05 with a 95% CI of 0.01 to 0.08,

the intervention achieves statistical significance, but barely achieves clinical
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Begin with the 
sample size that 
was used in the 
study

Use the nomogram 
to determine the 
effect size (δ) that 
could be found 
with this sample

Potential δ < clinically 
important δ  
Ignore results (lacks 
power) 

Potential δ > clinically 
important δ  
Accept results 

Fig. 12.5 Sequence of events for
analyzing negative studies using
sample size.

significance. In this case, if the intervention is extremely expensive or dan-

gerous, its use should be strongly debated based upon such a small effect

size.

Evaluating negative studies using a nomogram

There are two ways to analyze the results of a negative study using published

nomograms from an article by Young and others.1 These begin either with the

sample size or with the effect size. Either method will show, for a study with suf-

ficient power, what sample size was necessary or what effect size could be found

to produce statistical significance.

In the first method, use the nomogram to determine the effect size that the

sample size of the study had the power to find. Begin with the sample size and

work backward to find the effect size. If the effect size that could potentially have

been found with this sample size was larger than the effect size that a clinician

or patient would consider clinically important, accept the study as negative. In

other words, in this study, the clinically important difference could have been

found and was not. On the other hand, if the clinically important effect size could

not have been found with the sample size that was enrolled, the study was too

small. Ignore the study and consider the result a Type II error. Wait for confirma-

tory studies before using the information (Fig. 12.5).

The second way of analyzing a negative study is to determine the sample size

needed to get a clinically important effect size. Use the nomograms starting from

the effect size that one considers clinically important and determine the sample

size that would be needed to find this effect size. This clinically important effect

size will most likely be larger than the actual difference found in the study. If the

actual sample size is greater than the sample size required to find a clinically

important difference, accept the results as negative. The study had the power

1 M. J. Young, E. A. Bresnitz & B. L. Strom. Sample size nomograms for interpreting negative clinical
studies. Ann. Intern. Med. 1983; 99: 248–251.
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Decide on a 
clinically 
important 
difference

Use the nomogram 
to determine the 
sample size (n) 
needed to find this 
difference

Actual n < required n  
Ignore results (lacks 
power)

Actual n > required n  
Accept results

Fig. 12.6 Schematic of sequence
of events for analyzing negative
studies using effect size.

to find a clinically important effect size and did not. If the actual study sample

size is less than the required sample size to find a clinically important difference,

ignore the results with the caveats listed below. The study didn’t have the power

to find a difference that is clinically important (Fig. 12.6).

There are some caveats which must be considered in using this method to

evaluate negative studies. If the needed sample size is huge, it is unlikely that

a group that large can ever be studied, so accept the results as a negative study.

If the needed sample size is within about one order of magnitude greater than

the actual sample size, wait for the bigger study to come along before using the

information. This process is illustrated in Fig. 12.7 (dichotomos variables) and

Fig. 12.8 (continuous variables). The CD-ROM has some sample problems that

will help you understand this process.

Using a nomogram for dichotomous variables

Dichotomous variables are those for which there are only two possible values

(e.g., cured or not cured).

(1) Identify one group as the control group and the other as the experimental

group, which should be evident from the study design.

(2) Decide what relative rate reduction (RRR) would be clinically important.

(3) RRR = (CER – EER)/CER, where CER = control event rate and EER = experi-

mental event rate.

(4) Locate this % change on the horizontal axis.

(5) Extend a vertical line to intersect with the diagonal line representing the per-

centage response rate of the control group (CER).

(6) Extend a horizontal line from the intersection point to the vertical axis and

read the required sample size (n) for each group.

Using a nomogram for continuous variables

Continuous variables are those for which multiple possible values can exist and

which have proportional intervals.
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α = 0.05 (two-
sided) and
β = 0.20

Sample size,
n

Percentage
responding in
control group

Relative rate reduction (or increase one wants to find, RRR) (%)
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Fig. 12.7 Nomogram for
dichotomous variables. If a study
found a 20% relative risk
reduction and there was a 60%
response rate in the control
group (vertical line), you would
find this effect size statistically
significant only if there was a
sample size of more than 200 in
each group (horizontal line). If
the actual study had only 100
patients in each group and
found a 20% relative risk
reduction, which was not
statistically significant, you
should wait until a slightly larger
study (200 per group) is done.
After M. J. Young, E. A. Bresnitz &
B. L. Strom. Sample size
nomograms for interpreting
negative clinical studies. Ann.
Intern. Med. 1983; 99: 248–251
(used with permission.)

α = 0.05 (two-
sided) and
β = 0.20
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Fig. 12.8 Nomogram for
continuous variables. If a study
found a difference of 1 unit and
the control group had a standard
deviation of 2 (vertical line), you
would find this effect size
statistically significant only if
there was a sample size of more
than 70 per group (horizontal
line). If the actual study found
an effect size of only 0.5, and
you thought that was clinically
but not statistically significant,
you would need to wait for a
larger study (about 250 in each
group) to be done before
accepting that this was a
negative study. After M. J.
Young, E. A. Bresnitz & B. L.
Strom. Sample size nomograms
for interpreting negative clinical
studies. Ann. Intern. Med. 1983;
99: 248–251 (used with
permission.)
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(1) Decide what difference (absolute effect size) is clinically important.

(2) Locate this difference on the horizontal axis.

(3) Extend a vertical line to the diagonal line representing the standard deviation

of the data being measured. You can use the SD for either group.

(4) Extend a horizontal line to the vertical axis and read the required sample size

(n) for each group.

Non-inferiority studies and equivalence studies

Sometimes a goal of a research study can be to determine that the experi-

mental treatment is no worse than the standard treatment or placebo. In that

case, an approach has been suggested that only seeks to show non-inferiority

of the experimental therapy to the comparison. In these studies, the alternative

hypothesis is that the experimental therapy is inferior to the standard therapy.

This comes from a null hyopothesis that states that the experimental treatment

is equal to or better than the placebo or control treatment. In order for this study

to be done, there must have been previous research studies showing that when

compared to standard therapy or placebo, there is either no difference or the

results were not statistically significant. It is also possible that there was a dif-

ference but the studies were of very poor quality, possibly lacking correct ran-

domization and blinding so that the majority of physicians would not accept the

results.

It is important for the reader to recognize that what the authors are essentially

saying is that they are willing to do a one-tailed test for showing that the treat-

ment is equal to or better than the control or placebo group. This leads to a value

of P for statistical significance on one tail that should be less than 0.05 rather

than the traditional 0.025. The standard two-tailed statistical tests should not be

done as they are more likelty to lead to a failure to find statistical significance,

which in this case would be most likely a Type II error. In other words, they will

most likely find that there is no difference in the groups when in fact there is a

difference. Non-inferiority studies are most often seen in drug studies used by

manufacturers to demonstrate that a new drug is at least as good as the standard

drugs that are available. Of course, common sense would dictate that if a new

drug is more expensive than a standard one and if it does not have a track record

of safety, there ought to be no reason to use the new drug simply because it is not

inferior.
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Risk assessment

We saw the risk we took in doing good,

But dared not spare to do the best we could.

Robert Frost (1874–1963): The Exposed Nest

Learning objectives

In this chapter you will learn:
� the basic concept and measures of risk
� the meanings, calculations, uses, and limitations of:

� absolute risk
� relative risk
� odds ratios
� attributable risk and number needed to harm
� attributable risk percent

� the use of confidence intervals in risk
� how to interpret the concept of “zero risk”

Risk is present in all human activities. What is the risk of getting breast cancer if

a woman lives on Long Island and is exposed to organochlorines? What is the

risk of getting lung cancer because there is a smoke residue on a co-worker’s

sweater? What is the risk of getting paralyzed as a result of spinal surgery? How

about the risk of getting diarrhea from amoxicillin? Some of these risks are real

and others are, at best, minimally increased risks of modern life. Risks may be

those associated with a disease, with therapy, or with common environmental

factors. Physicians must be able to interpret levels of risk for better care of their

patients.

141
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Measures of risk

First one must understand that risk is the probability that an event, disease, or

outcome will occur in a particular population. The absolute risk of an event,

disease, or outcome in exposed subjects is defined as the ratio of patients who

are exposed to the risk factor and develop the outcome of interest to all those

patients exposed to the risk. For example, if we study 1000 people who drink

more than two cups of coffee a day and 60 of them develop pancreatic cancer,

the risk of developing pancreatic cancer among people drinking more than two

cups of coffee a day is 60/1000 or 6%. This can also be written as a conditional

probability, P outcome | risk = probability of the outcome if exposed to the risk

factor. The same calculation can be done for people who are not exposed to the

risk and who nevertheless get the outcome of interest. Their absolute risk is the

ratio of those not exposed to the risk factor and who have the outcome of interest

to all those not exposed to the risk factor.

Risk calculations can help us in many clinical situations. They can help asso-

ciate an etiology such as smoking to an outcome such as lung cancer. Risk cal-

culations can estimate the probability of developing an outcome such as the

increased risk of endometrial cancer because of exposure to estrogen therapy.

They can demonstrate the effectiveness of an intervention on an outcome such

as showing a decreased mortality from measles in children who have been vac-

cinated against the disease. Finally, they can target interventions that are most

likely to be of benefit. For example, they can measure the effect of aspirin as

opposed to stronger blood thinners like heparin or low-molecular-weight hep-

arin on mortality from heart attacks.

The data used to estimate risk come from research studies. The best estimates

of risk come from randomized clinical trials (RCTs) or well done cohort studies.

These studies can separate groups by the exposure and then measure the risk

of the outcome. They can also be set up so that the exposure precedes the out-

come, thus showing a cause and effect relationship. The measure of risk calcu-

lated from these studies is called the relative risk, which will be defined shortly.

Relative risk can also be measured from a cross-sectional study, but the cause

and effect cannot be shown from that study design. Less reliable estimates of

risk may still be useful and can come from case–control studies, which start with

the assumption that there are equal numbers of subjects with and without the

outcome of interest. The estimates of risk from these studies approximate the

relative risk calculated from cohort studies using a calculation known as an odds

ratio, which will also be defined shortly.

There are several measures associated with any clinical or epidemiological

study of risk. The study design determines which way the data are gathered and

this determines the type of risk measures that can be calculated from a given
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Disease     Disease

present (D+)     absent (D−)

a b a + b 
Direction of sampling

Direction of sampling (case−control study)

 

(Cohort study or RCT)

Risk absent (R−)

Risk present (R+)

         c    

 

 d c + d

     a + c           b + d n 
(a + b + c + d)
Population

A

B

Fig. 13.1 A pictorial way to look
at studies of risk. Note the
difference in sampling direction
for different types of studies.

study. Patients are initially identified either by exposure to the risk factor as in

cohort studies or RCTs, by their outcome as in case–control studies, or by both as

in cross-sectional studies. These are summarized in Fig. 13.1.

Absolute risk

Absolute risk is the probability of the outcome of interest in those exposed or

not exposed to the risk factor. It compares those with the outcome of interest

and the risk factor (a) to all subjects in the population exposed to the risk factor

(a + b). In probabilistic terms, it is the probability of the outcome if exposed to

the risk factor, also written as P outcome | risk = P (O+ | R+). One can also do

this for patients with the outcome of interest who are not exposed to the risk fac-

tor (c) and compare them to all of those who are not exposed to the risk factor

[c/(c + d)]. Probabilistically it is written as P outcome | no risk = P (O+ | R−).

Absolute risk only gives information about the risk of one group, either those

exposed to the risk factor or those not exposed to the risk factor. It can only be

calculated from cross-sectional studies, cohort studies, or randomized clinical

trials, because in these study designs, you can calculate the incidence of a par-

ticular outcome for those exposed or not exposed to the risk factor. One must

know the relative proportions of the factors in the total population in order to

calculate this number, as demonstrated in the rows of the 2 × 2 table in Fig. 13.1.
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Absolute risk (if exposed to risk factor) 

 

= number exposed and with outcome / number exposed 

 = a/(a + b) = P{outcome | risk present}

 

 

Absolute risk (if not exposed to risk factor) 

 

= number not exposed and with outcome / number not exposed  
 

= c /(c + d) = P{outcome | risk absent} 
 

           Disease Disease 
   absent (D−)present (D+)  
 
Risk present (R+)       a b          a + b 
     
Risk absent (R−)  c         d          c + d 

 a + c b + d               n  Cohort study or RCT  
Direction of sampling  

Fig. 13.2 Absolute risk.

The absolute risk is the probability that someone with the risk factor has the

outcome of interest. In the 2 × 2 diagram (Fig. 13.2), patients labeled a are those

with the risk factor who have the outcome and those labeled a + b are all patients

with the risk factor. The ratio a/(a + b) is the probability that one will have the

outcome if exposed to the risk factor. This is a statement of conditional proba-

bility. The same can be done for the row of patients who were not exposed to the

risk factor. The absolute risk for them can be written as c/(c + d). These absolute

risks are the same as the incidence of disease in the cohort being studied.

Relative risk

Relative risk (RR) is the ratio of the two absolute risks. This is the absolute risk

of the outcome in subjects exposed to the risk factor divided by the absolute risk

of the outcome in subjects not exposed to the risk factor. It shows whether that

risk factor increases or decreases the outcome of interest. In other words, it is the

ratio of the probability of the outcome if exposed to the probability of the out-

come if not exposed. Relative risk can only be calculated from cross-sectional

studies, cohort studies or randomized clinical trials. The larger or smaller

the relative risk, the stronger the association between the risk factor and the

outcome.

If the RR is greater than 1, the risk factor is associated with an increase in the

rate of the outcome. If the RR is less than 1, the risk factor is associated with a

reduction in the rate of the outcome. If it is 1, there is no change in risk from the

baseline risk level and it is said that the risk factor has no effect on the outcome.

The higher the relative risk, the stronger the association that is discovered. A rela-

tive risk greater than 4 is usually considered very strong. Values below this could

have been obtained because of systematic flaws in the study. This is especially

true for observational studies like cross-sectional and cohort studies where there

may be many confounding variables that could be responsible for the results. In



Risk assessment 145

Relative risk 

= (incidence of outcome in exposed group)/
       (incidence of outcome in non-exposed group)

= P{outcome | risk} ÷ P{outcome | no risk} 
 

= [a/(a + b)]/[c/(c + d)]

 

Disease
present (D+) 

Disease
absent (D−)

 
 

Risk present (R+)       a b a + b 
    

Risk absent (R−)  c         d          c + d

a + c b + d n Cohort study or RCT  
Direction of sampling 

Fig. 13.3 Relative risk.

studies showing a reduction in risk, look for RR to be less than 0.25 for it to be

considered a strong result.

A high relative risk does not prove that the risk factor is responsible for out-

come: it merely quantifies the strength of association of the two. It is always pos-

sible that a third unrecognized factor, a surrogate or confounding variable, is

the cause of the association because it equally affects both the risk factor and the

outcome. The calculation of relative risk is pictured in Fig. 13.3.

Data collected for relative-risk calculations come from cross-sectional stud-

ies, cohort studies, non-concurrent cohort studies, and randomized clinical

trials. These studies are used because they are the only ones capable of cal-

culating incidence. Importantly, cohort studies should demonstrate complete

follow-up of all study subjects, as a large drop-out rate may lead to invalid

results. The researchers should allow for an adequate length of follow-up in order

to ensure that all possible outcome events have occurred. This could be years

or even decades for cancer while it is usually weeks or days for certain infec-

tious diseases. This follow-up cannot be done in cross-sectional studies, which

can only show the strength of association but not that the cause preceded the

effect.

Odds ratio

An odds ratio is the calculation used to estimate the relative risk or the associa-

tion of risk and outcome for case–control studies. In case–control studies, sub-

jects are selected based upon the presence or absence of the outcome of interest.

This study design is used when the outcome is relatively rare in the population

and calculating relative risk would require a cohort study with a huge number of

subjects in order to find enough patients with the outcome. In case–control stud-

ies, the number of subjects selected with and without the outcome of interest are

independent of the true ratio of these in the population. Therefore the incidence,

the rate of occurrence of new cases of each outcome associated with and without



146 Essential Evidence-Based Medicine

Odds of having risk factor if outcome is present = a/c   

Odds of having risk factor if outcome is not present = b/d 

Odds ratio = (a/c) /(b/d ) = ad/bc. 

This is also called the “cross product”.

           Disease
present (D+)

Disease
 absent (D−) 

 
   
 
Risk present (R+)       a b a + b 

    
Risk absent (R−)   c             d         c + d 

a + c b + d n  

Case−control study 
Direction of sampling  

Fig. 13.4 Odds ratio.

the risk factor, cannot be calculated. Relative risk cannot be calculated from this

study design.

Odds are a different way of saying the same thing as probabilities. Odds tell

someone the number of times an event will happen divided by the number of

times it won’t happen. Although they are different ways of expressing the same

number, odds and probability are mathematically related. In case–control stud-

ies, one measures the individual odds of exposure in subjects with the outcome

as the ratio of subjects with and without the risk factor among all subjects with

that outcome. The same odds can be calculated for exposure to the risk factor

among those without the outcome.

The odds ratio compares the odds of having the risk factor present in the sub-

jects with and without the outcome under study. This is the odds of having the

risk factor if a person has the outcome divided by the odds of having the risk fac-

tor if a person does not have the outcome. Overall, it is an estimate of the relative

risk for case–control studies (Fig. 13.4).

Using the odds ratio to estimate the relative risk

The odds ratio best estimates the relative risk when the disease is very rare. The

rationale for this is not intuitively obvious. Cohort-study patients are evaluated

on the basis of exposure and then outcome is determined. Therefore, one can

calculate the absolute risk or the incidence of disease if the patient is or is not

exposed to the risk factor and subsequently the relative risk can be calculated.

Case–control study patients are evaluated on the basis of outcome and expo-

sure is then determined. The true ratio of patients with and without the outcome

in the general population cannot be known from the study, but is an arbitrary

ratio set by the researcher. One can only look at the ratio of the odds of risk in

the diseased and non-diseased groups, hence the odds ratio. In the case–control
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In the cohort study, the relative risk (RR) is [a/(a+b)]/[c/(c+d )].  If the disease or 

outcome is very rare, a <<< b and c <<< d, making (a+b) → b and (c+d) → d and RR ≈ (a/b)/(c/d) = ad/bc  

RR approximates odds ratio = (a/c)/(b/d ) = ad/bc   

 

   Disease
present (D+)

Disease
absent (D−)

 
    
 
Risk present (R+) a b a + b  
     
Risk absent (R−) c         d            c + d

a + c b + d n 

Fig. 13.5 Odds ratio as estimate
of relative risk. From S. B. Hulley
& S. R. Cummings. Designing
Clinical Research. Baltimore, MD,
Williams & Wilkins, 1988.

study, we are looking at the disease as if it were present in a preset ratio, usually

half of the population or an equal number of cases and controls. In reality, this

preset ratio is not true and there are actually many fewer patients with known

disease than people without known disease in the population. This fact allows

the odds ratio to approximate the relative risk. We can prove this mathematically

using two hypothetical studies of the same risk and outcomes (Fig. 13.5).

We assume that the true incidence of disease is represented by the results of

the cohort study. In the case–control study, groups with and without outcome

are equal. The ratios a/b and c/d approximate the incidence with and without

exposure to the risk factor when the number of cases of the outcome of interest

(a and c) is much smaller than the number of cases of no outcome (b and d). Then

the value of the ratio a/(a + b) approaches a/b and that of c/(c + d) approaches

c/d.

A word of caution is needed here. In order for the above to be absolutely true,

the sample must be representative of the population, the outcome of disease

must be much rarer than non-disease, and the systematic and random sam-

pling error must be small. When the incidence of disease is high, the odds ratios

and relative risk values diverge dramatically. This becomes greater as the value of

RR and OR increases above 1 or decreases below 1. The differences are minimal

when the RR or OR is equal to 1 regardless of the actual incidence of the outcome.

Attributable risk and the number needed to treat to harm (NNTH)

Attributable risk estimates how much of the risk of an outcome in exposed sub-

jects is attributable to the risk factor. There are two numbers that are called

attributable risk. The first is known as the absolute attributable risk (AAR), which

is the same as either the absolute risk reduction (ARR) or the absolute risk

increase (ARI). This is the difference in absolute risks with and without the risk

factor. The second is the attributable risk percent or relative attributable risk. It is

calculated by dividing the absolute risk increase or decrease by the absolute risk
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Attributable risk percent  (ARP) 

= {[a/(a + b)] − [c/(c + d)]}/[c/(c + d)]  

Absolute attributable risk (AAR)

= {[a/(a + b)] − [c/(c + d)]} 

Number needed to harm (NNH) 

treat to T

= 1/AAR

           Disease
present (D+)

Disease
absent (D−)

 
       
 
Risk present (R+)       a          b         a + b
     
Risk absent (R−)  c             d          c + d 

 a + c b + d n  Cohort study or RCT  
Direction of sampling  

Fig. 13.6 Attributable risk and
the number needed to harm. for those not exposed to the risk factor. It can also be reported relative to those

exposed to the risk factor. It tells you how much of the change in risk is due to the

risk factor either absolutely or relative to the risk in the control group. For exam-

ple, 95% of cases of lung cancer can be attributed to smoking. This percentage

is risk of cases of lung cancer relative to people who don’t smoke. The attributable

risk of lung cancer in non smokers would be 5% and is the absolute attributable

risk divided by the absolute risk in smokers. Attributable risk can only be calcu-

lated from cross-sectional studies, cohort studies or randomized clinical trials

that can provide good measurement of the incidence of the outcome. This con-

struct tries to quantify the contribution of other unidentifiable risk factors to the

differences in outcomes between exposed and non-exposed groups.

Attributable risk quantitates the contribution of the risk factor in producing

the outcome in those exposed to the risk factor. It is helpful in calculating the

cost–benefit ratio of eliminating the risk factor from the population. Absolute

attributable risk, also known as the absolute risk increase, is analogous to abso-

lute risk reduction between the control and experimental event rates that was

mentioned in the previous chapters. It allows for the calculation of the number

needed to treat to harm (NNTH = 1/AAR or 1/ARI). This was previously called the

number needed to harm (NNH). It tells us how many people need to be exposed

before one additional person will be harmed or one additional harmful outcome

will occur (Fig. 13.6).

Putting risk into perspective

A large increase in relative risk may represent a clinically unimportant increase in

personal risk. This is especially true if the outcome is relatively rare in the pop-

ulation. For instance, several years ago there was a concern that the influenza

vaccine could cause a serious and potentially fatal neurologic syndrome called

Guillain–Barré syndrome (GBS). This syndrome consists of progressive weakness
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of the muscles of the body in an ascending pattern. It is usually reversible, but

may require a period of time on a ventilator getting artificial respiration. There

were 74 cases of this related to the influenza vaccine in 1993–1994. The odds ratio

for that season was 1.5, meaning a 50% increase in the number of cases. Since

the base incidence of this disease is approximately two in one million, even a 10-

fold increase in risk would have little impact on the general population. This risk

needed to be balanced against the number of lives saved by the influenza vac-

cine. That number is thousands of times greater than the small increased risk of

GBS with the vaccine. Although the news of this possible reaction was alarming

to many patients, it had very little clinical significance.

Similarly, a small increase in relative risk may represent a clinically important

increase in personal risk if the outcome is common in the population. For exam-

ple, if an outcome has an incidence of 12 in 100, increasing the risk even by 1.5,

the same 50% increase as seen in the previous example, will have a significant

impact on the general population. In this case, the examination of all possible

outcome data is necessary to determine if eliminating the risk is associated with

appropriate gains. For example, it is known that the use of conjugated estrogens

in postmenopausal women can reduce the rate of osteoporosis but these estro-

gens are associated with an increased risk of endometrial carcinoma. Would the

decreased morbidity and mortality due to osteoporosis balance the increase in

morbidity and mortality due to endometrial cancer among women using conju-

gated estrogens? Good clinicians must be able to interpret these risks for patients

and help them make an informed decision.

Confidence intervals give an idea of the relative precision of a study result.

They represent the standard error of the relative risk or odds ratio. They should

always be reported whenever relative risk or odds ratios are reported! Small, or

as the statisticians say tight, confidence intervals suggest that the sampling error

due to random events is small, leading to a very precise result. A large confidence

interval is also called loose and suggests that there is a lot of random error lead-

ing to a very imprecise result. For example if the RR is 2 and the CI is 1.01 to 6,

there is indeed an association, but it may be very strong (6) or very weak (1.01).

Remember, if the confidence interval for a relative risk or odds ratio includes the

number 1, there is no statistical association between risk factor and outcome.

Statistically this is equivalent to a study result with P > 0.05.

The confidence interval allows someone to look at the spread of the results,

and interpret the strengths and weaknesses of the results. Loose confidence

intervals should suggest a need for more research. Usually they represent small

samples and the addition of one or two new events could dramatically change

the numbers. Very tight intervals that are close to one suggest a high degree of

precision in the result, but also a low strength of association which may not be

clinically important.



150 Essential Evidence-Based Medicine

Reporting relative risk and odds ratios

Over the past 15 years, more and more epidemiologic cohort and case–control

studies have been reporting their results in terms of relative risk and odds ratios.

The intelligent consumer of the medical literature will be able to determine

whether these resulting measures of risk were used correctly. Sometimes these

measures are not used correctly, as illustrated below.

A recent example of this was a report in the New England Journal of

Medicine about the effect of race and gender on physician referral for cardiac

catheterization.1,2 The original study reported that physicians, when given stan-

dardized scenarios, were more likely to refer white men, white women, and black

men than black women for evaluation of coronary artery disease (CAD). The

newspapers reported that blacks and women were 40% less likely to be referred

for cardiac catheterization than whites and men. The actual study showed that

90.6% of the white men, white women, and black men were referred while

78.8% of the black women were referred. The authors incorrectly calculated

the odds ratios for these numbers and came up with an odds ratio of 0.4. The

actual odds associated with a 90.6% probability are 9.6 to 1 while those asso-

ciated with a 78.8% probability are 3.7 to 1. When the data were recalculated

for men and women or whites and blacks, the results showed that men were

referred more often (90.6%) than women (84.7%) and whites (90.6%) more often

than blacks (84.7%). The odds here were men (9.6), women (5.5), whites (9.6)

and blacks (5.5), making the odds ratio for both of these comparisons equal

to 0.6.

However, there were two problems with these numbers. First, the outcome was

not rare in the diseased group. All of the groups were equal in size and the out-

come was not rare in the general population. This distorts the odds ratio as an

approximation of the relative risk. Second, the study was a clinical trial with the

risk factors of race and gender being the independent variable and the refer-

ral for catheterization, the dependent variable. Therefore, the relative risk and

not the odds ratio should have been calculated. Had this been done, the rela-

tive risk for white vs. black and men vs. women was 0.93 with the 95% CI from

0.89 to 0.99. Not only is the risk much smaller than reported in the news, but it

approaches the null point suggesting lack of clinical significance or the possi-

bility of a type I error. Ultimately, the original report using odds ratios led to a

distortion in reporting of the study by the media.

1 K. A. Schulman, J. A. Berlin, W. Harless, J. F. Kerner, S. Sistrunk, B. J. Gersch, R. Dubé, C. K. Taleghani,
J. E. Burke, S. Williams, J. M. Eisenberg & J. J. Escarce. The effect of race and sex on physicians’ recom-
mendations for cardiac catheterization. N. Engl. J. Med. 1999; 340: 618–626.

2 L. M. Schwartz, S. Woloshin & H. G. Welch. Misunderstandings about the effects of race and sex on
physicians’ referrals for cardiac catheterization. N. Engl. J. Med. 1999; 341: 279–283.
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A user’s guide to the trials of harm or risk

The following standardized set of methodological criteria can be used for the

critical assessment of a trial studying risk, also called harm. It is based upon

the Users’ Guides to the Medical Literature published by JAMA and used with

permission.3 The University of Alberta (www.med.ualberta.ca/ebm) has online

worksheets for evaluating articles of therapy that use this guide and are available

as free use documents.

(1) Was the study valid?

(a) Except for the exposure under study, were the compared groups similar

to each other? Was this an RCT, a cross-sectional, cohort, or case–control

study? Were other known prognostic factors similar or adjusted for?

(b) Were the outcomes and exposures measured in the same way in the com-

pared groups? Was there recall or interviewer bias? Was the exposure

opportunity similar?

(c) Was follow-up sufficiently long and complete? What were the reasons for

incomplete follow-up?

(d) Were risk factors similar in those lost and not lost to follow-up?

(e) Is the temporal relationship correct? Did the exposure precede the out-

come?

(f) Is there a dose–response relationship? Did the risk of the outcome

increase with the quantity or duration of the exposure?

(2) What are the results?

(a) How strong is the association between exposure and outcome? What are

the RR’s or OR’s? Was the correct measure of risk used for the study? RR

used for cross-sectional, cohort, or RCTs and OR for case–control studies.

(b) How precise is the estimate of risk? Were there wide or narrow confidence

intervals?

(c) If the study results were negative, did the study have a sufficiently large

sample size?

(3) Will the results help me in patient care?

(a) Can the results be applied to my patients? Were patients similar for demo-

graphics, severity, co-morbidity, and other prognostic factors?

(b) Are treatments and exposures similar?

(c) What is the magnitude of the risk? What is the absulute increase and its

reciprocal, NNTH?

(d) Should I attempt to stop the exposure? How strong is the evidence? What

is the magnitude of the risk? Are there any adverse effects of reducing

exposure?

3 G. H. Guyatt & D. Rennie (eds.). Users’ Guides to the Medical Literature: a Manual for Evidence-Based
Practice. Chicago: AMA, 2002. See also Bibliography.
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What does a zero numerator mean? Is there ever zero risk?

What if you read a study that found no instances of a particular outcome? A zero

numerator does not mean that there is no risk. One can still infer an estimate of

the potential size of the risk. There is an excellent article by Hanley and Lippman-

Hand that shows how to handle this eventuality.4 Their example is used here.

Suppose a given study shows no adverse events in 14 consecutive patients.

What is the largest number of adverse events we can reasonably expect? What

we are doing here is calculating the upper limit of the 95% CI for this sample.

The rule of three can be used to determine this risk. The maximum number of

events that can be expected to occur when none have been observed is 3/n. For

this study finding no adverse events in a study of 14 patients, the upper limit

of the 95% CI is 3/14 = 21.4%. One could expect to see as many as one adverse

event in every 5 patients and still have come up with no events in the 14 patients

in the initial study.

Assume that the study of 14 patients resulted in no adverse outcomes. What

if in reality there is an adverse outcome rate of 1:1000? The probability of no

adverse events in one patient is 1 minus the probability of at least one adverse

event in one patient. Another way of writing this is p(no adverse event in one

patient) = 1 – p(at least one adverse event in one patient). This makes the prob-

ability of no adverse events = 1 – 0.001 = 0.999. Therefore p(no adverse events in

n patients) is 0.999n. For 14 patients this is 0.986, or there is a 98.6% chance that

in 14 patients we would find no adverse outcome events.

Now suppose that the actual rate of adverse outcomes is 1:100. p(no adverse

outcomes in one patient) = 1 – 0.01 = 0.99. p(no adverse events in 14 patients) =
0.9914. This means that there is a 86.9% chance that we would find no adverse

outcome in these 14 patients. We can continue to reduce the actual adverse

event rate to 1:10, and using the same process we get p(no adverse events in 14

patients) = (0.90)14. Now 22.9% is the chance we would find no adverse outcome

events in these 14 patients.

Similarly, for an actual rate of 1:5 p(no adverse event in 14 patients) = 0.814

or 3.5%, and for an actual rate of 1:6 you get you will get a potential event rate

of 7.7%. Therefore the 95% CI lies between event rates of 1:5 and 1:6. The rate

estimated by our rule of three for adverse events is 3/n = 1/4.7 = 21.4%. When

actually calculated the true number is 1/5.5 = 18.2%.

Mathematically one must solve the equation (1 – maximum risk)n = 0.05 to

find the upper limit of 95% CI. Solving the equation for the maximum risk, 1 –

maximum risk = n
√

0.05, and maximum risk = 1 – n
√

0.05. For n > 30, n
√

0.05 is

close to (n – 3)/n, making the maximum risk = 1 – [(n – 3)/n] = 3/n. The actual

numbers are shown in Table 13.1. One can use a similar process to approximate

4 J. A. Hanley & A. Lippman-Hand. If nothing goes wrong, is everything all right? Interpreting zero
numerators. JAMA 1983; 249: 1743–1745.
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Table 13.1. Actual vs. estimated rates of

adverse events if there is a zero numerator

Rate found in study Exact 95% CI Rule 3/n

0/10 26% 30%

0/20 14% 15%

0/30 10% 10%

0/100 0.3% 0.3%

Table 13.2. Approximate maximum event rate

for small numerators

Number of events Estimate of maximum

in the numerator number of events

0 3/n

1 4/n

2 5/n

3 7/n

4 9/n

the upper limit of the 95% CI if there are 1, 2, 3, or 4 events in the numerator.

Table 13.2 is the estimate of the maximum number of events one might expect if

the actual number of events found is from 0 to 4.

For example, studies of head-injured patients to date have shown that none

of the 2700 low-risk patients, those with laceration only or bump without loss

of consciousness, headache, vomiting, or change in neurological status, had any

intracranial bleeding or swelling. Therefore, the largest risk of intracranial injury

in these low-risk patients would be 3/2700 = 1/900 = 0.11%. This is the upper

limit of the 95% confidence interval.

To find the upper limit of the 99% CI, use rule of 4.6/n, which can be derived in

a similar manner. Table 13.3 gives the 95% CIs for extreme results with a variety

of sample sizes.

General observations on the nature of risk

Most people don’t know how to make reasonable judgments about the nature of

risk, even in terms of risks that they know they are exposed to. This was articu-

lated in 1662 by the Port Royal monks in their treatise about the nature of risk. If

people did have this kind of judgment, very few people would be smoking. There



154 Essential Evidence-Based Medicine

Table 13.3. 95% confidence limits on extreme results

And the % is 0, the true And the % is 100, the true

If the denominator is % could be as high as % could be as low as

10 26% 74%

20 14% 86%

30 10% 90%

40 7% 93%

50 6% 94%

60 5% 95%

70 4% 96%

80 4% 96%

90 3% 97%

100 3% 97%

150 2% 98%

300 1% 99%

are several important biases that come into play when talking about risk. The

physician should be aware of this when discussing risks with their patient.

People are more likely to risk a poor outcome if due to voluntary action rather

than imposed action. They are likely to smoke and accept the associated risks

because they think it is their choice rather than an addiction. Similarly, they will

accept risks that they feel they have control over rather than risks controlled by

others. Because of this, people are much more likely to be very upset when they

find out that their medication causes a very uncommon, but previously known,

side effect.

One only has to read the newspapers to know that there are more stories on

the front page about catastrophic accidents like plane crashes or fatal automo-

bile accidents than minor automobile accidents. This is also true of medical

situations. Patients are more willing to accept the risk of death from cancer or

sudden cardiac death than death due to unforeseen complications of routine

surgery. If there is a clear benefit to avoiding a particular risk, for example that

one shouldn’t drink poison, patients are more likely to accept a bad outcome

if they engage in that risky behavior. A major exception to this rule is cigarette

smoking, because of the social nature of smoking and the addictive nature of

nicotine.

People are democratic about their perception of risk. They are more willing

to accept risk that is distributed to all people rather than risk that is biased to

some people. Natural risks are more acceptable than man-made risks. There is

a perception that man-made objects ought not to fail, while if there is a natu-

ral disaster it is God’s will. Risk that is generated by someone in a position of
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trust such as a doctor is less acceptable than that generated by someone not

in that position like one’s neighbor. We are more accepting of risks that are

likely to affect adults than of those primarily affecting children, risks that are

more familiar over those that are more exotic, and random events like being

struck by lightning rather than catastrophes such as a storm without adequate

warning.
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Adjustment and multivariate analysis

Stocks have reached what looks like a permanently high plateau.

Irving Fisher, Professor of Economics, Yale University, 1929

Learning objectives

In this chapter you will learn:
� the essential features of multivariate analysis
� the different types of multivariate analysis
� the limitations of multivariate analysis
� the concept of propensity scoring
� the Yule–Simpson paradox

Studies of risk often look at situations where there are multiple risk factors asso-

ciated with a single outcome, which makes it hard to determine whether a sin-

gle statistically significant result is a chance occurrence or a true association

between cause and effect. Since most studies of risk are observational rather than

interventional studies, confounding variables are a significant problem. There

are several ways of analyzing the effect of these confounding variables. Multivari-

ate analysis and propensity scores are methods of evaluating data to determine

the strength of any one of multiple associations uncovered in a study. They are

attempts to reduce the influence of confounding variables on the study results.

What is multivariate analysis?

Multivariate analysis answers the question “What is the importance of one risk

factor for the risk of a disease, when controlling for all other risk factors that

could contribute to that disease?” Ideally, we want to quantitate the added risk

for each individual risk factor. For example, in a study of lipid levels and the risk

for coronary-artery disease, it was found that after adjusting for advancing age,

156
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smoking, elevated systolic blood pressure, and other factors, there was a 19%

decrease in coronary heart disease risk for each 8% decrease in total cholesterol

level.

In studies of diseases with multiple etiologies, the dependent variable can

be affected by multiple independent variables. In the example described above,

coronary heart disease is the dependent variable. Smoking, advancing age, ele-

vated systolic blood pressure, other factors, and cholesterol levels are the inde-

pendent variables. The process of multivariate analysis looks at the changes in

magnitude of risk associated with each independent variable when all the other

contributing independent variables are held fixed.

In studies using multivariate analysis, the dependent variable is most often an

outcome variable. Some of the most commonly used outcome variables are inci-

dence of new disease, death, time to death, and disease-free survival. In studies

involving small populations or uncommon outcomes, there may not be enough

outcome endpoints for analysis. In these cases, composite variables are often

used to get enough outcome endpoints to enable a valid statistical analysis to be

done. The independent variables are the risk factors that are suspected of influ-

encing the outcome.

How multivariate analysis works: determining risk

Multivariate analysis looks at the changes in magnitude of the risk of a dependent

variable associated with each suspected risk factor when the other suspected risk

factors are held fixed. A schematic example of how this works can be seen in

Fig. 14.1.1

If more variables are to be adjusted for, further division into even smaller

groups must be done. This is shown in Fig. 14.2. One will notice that as more

and more variables are added, the number of patients in each cell of every 2 × 2

table gets smaller and smaller. This will result in the confidence intervals of each

odds ratio or relative risk getting larger and larger.

What can multivariate analysis do?

Some studies will look at multiple risk factors to determine which are most

important in making a diagnosis or predicting the outcome of a disease. The out-

put of these studies is often the result of a multivariate analysis. Although this can

suggest which variables are most important, those important variables should be

1 Demonstrated to me by Karen Rossnagel from the Institute of Social Medicine, Epidemiology and
Health Economics of the Charité University Medical Center in Berlin, Germany.
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Fig. 14.1 The method of
adjusting for a single variable in
a multivariate analysis. specifically evaluated in more detail in another study. The important variables

are referred to as the derivation set and if the statistical significance found ini-

tially is still present after the multivariate analysis, it is less likely to be due to a

Type I error. The researchers still need to do a follow-up or validation study to

verify that the association did not occur purely by chance. Multivariate analy-

sis can also be used for data dredging to confirm statistically significant results

already found as a result of simple analysis of multiple variables. Finally, multi-

variate analysis can combine variables and measure the magnitude of effect of

different combinations of variables on the outcome.

There are four basic types of multivariate analysis depending on the type of

outcome variable. Multiple linear regression analysis is used when the outcome

variable is continuous. Multiple logistic regression analysis is used when the

outcome variable is a binary event like alive vs dead, or disease-free vs recur-

rent disease. Discriminant function analysis is used when the outcome variable

is categorical such as better, worse, or about the same. Proportional hazards

regression analysis (Cox regression) is used when the outcome variable is the
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Fig. 14.2 Two confounding
variables tested to see if the
relationship between risk and
outcome would still be true.

time to the occurrence of a binary event. An example of this is the time to death

or time to tumor recurrence among treated cancer patients.

Assumptions and limitations

There are several types of problems associated with the interpretation of the

results of multivariate analysis. These include overfitting, underfitting, linerarity,

interaction, concomitance, coding, and outliers. All of these can produce error

during the process of adjustment and should be considered by the author of the

study.

Overfitting occurs when too many independent variables allow the researcher

to find a relationship when in fact none exists. Overfitting leads to a Type I

error. For example, in a cohort of 1000 patients there are 20 deaths due to

cancer. If there are 15 baseline characteristics considered as independent

variables, it is likely that one or two will cause a result which has statistical

significance by chance alone. As a rule of thumb, there should be at least 10,

and some statisticians say at least 20, outcome events per independent vari-

able of importance for statistical tests to be valid. In the example here, with

only 20 outcome events, adjustment for one or at most two independent

variables is all that should be done. Overfitting of variables is characterized

by large confidence intervals for each outcome measure.
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Fig. 14.3 Non-linear curves and
the effect of crossing curves.

Underfitting occurs when there are too few outcome events to find a differ-

ence that actually exists. Underfitting causes a Type II error. For example,

a study of cigarette smokers followed 200 patients of whom two got lung

cancer over 10 years. This may not have been long enough time to fol-

low the cohort and the number of cancer cases is too small to find a rela-

tionship between smoking and lung cancer. Too few cases of the outcome

of interest may make it impossible to find any statistical relationship with

any of the independent variables. Like overfitting, underfitting of variables

is also characterized by large confidence intervals. To minimize the effects

of underfitting, the sample size should be large enough for there to be at

least 10 and preferably 20 outcome events for each independent variable

chosen.

Linearity assumes that a linear relationship exists between the independent

and dependent variables, and this is not always true. Linearity means that

a change in the independent variable always produces the same propor-

tional change in the dependent variable. If this is not true, one cannot use

linear regression analysis. In the Cox method of proportional hazards, the

increased risk due to an independent variable is assumed to be constantly

proportional over time. This means that when the risks of two treatments are

plotted over time, the curves will not cross. If there is a crossover (Fig. 14.3),

the early survival advantage of treatment B may not be noted since the ini-

tial improvement in survival in that group may be cancelled out by the later

reduction in survival.

Interaction between independent variables must be evaluated. For example,

smoking and oral contraceptive (OC) use are both risk factors for pulmonary

embolism in young women. When considering the risk of both of these

factors, it turns out that they interact. The risk of pulmonary embolism is

greater in smokers using OCs than with either risk factor alone. In cases like

this, the study should include enough patients with simultaneous presence

of both risk factors so that the adjustment process can determine the degree

of interaction between the independent variables.
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Concomitance refers to a close relationship between variables. Unless there

is no relationship between two apparently closely related independent vari-

ables being evaluated, only one should be used. If one measures both ven-

tricular ejection fraction and ventricular contractility and correlates them

to cardiovascular mortality, it is possible that one will get redundant results.

In most cases, both independent variables will predict the dependent vari-

able, but it is possible that only one variable would be predictive, when in

fact they both ought to give the same result. This is an example of con-

comitance. Researchers should use the variable that is most important clini-

cally as the primary independent variable. In this example, ventricular ejec-

tion fraction is easier to measure clinically and therefore more useful in a

study.

Coding of the independent variables can affect the final result in unpredictable

ways. For example, if the age is used as an independent variable and is

recorded in 1-year intervals, 10-year intervals or as a dichotomous value

such as less than or greater than 65, the results of a study will likely be differ-

ent. There should always be a clear explanation about how the independent

variables were coded for the analysis and why that method of coding was

chosen. One can suspect that the authors selected the coding scheme that

led to the best possible results and should be skeptical when reading studies

in which this information is not explicitly given. Some authors might partic-

ipate in post-hoc coding as a method of data dredging.

Outliers are influential observations that occur when one data point or a

group of points clearly lie outside the majority of data. These should be

explained during the discussion of the results and an analysis that includes

and excludes these points should be presented. Outliers can be caused by

error in the way the data are measured or by extreme biological variation

in the sample. A technique called stratified analysis can be used to evaluate

outliers.

In evaluation of any study using multivariate analysis, the standard processes

in critical appraisal should be followed. There should be an explicit hypothe-

sis, the data collection should be done in an objective, non-biased and thor-

ough manner, and the software package used should be specified. An excellent

overview on multivariate analysis is by J. Concato and others.2

Finally, it may not be possible to completely identify all of the confounders

present in a study, especially when studying multifactorial chronic illnesses. Any

study that uses multivariate analysis should be followed up with a study that

looks specifically at those factors that are most important.

2 J. Concato, A. R. Feinstein & T. R. Holford. The risk of determining risk with multivariable models. Ann.
Intern. Med. 1993; 118: 201–210.
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Propensity scores

Propensity scores are another mathematical method for adjusting results of

a study to attempt to decrease the effect of confounders. They were devel-

oped specifically to counteract selection bias that can occur in an observational

study. Patients may be selected based upon characteristics that are not explic-

itly described in the methods of the study. They have become a popular tool

for adjustment over the past few years. Standard adjustment is done after the

final results of the study are complete. Propensity scores are used before any

calculations are done and typically use a scoring system to create different lev-

els of likelihood or propensity for placing a particular patient into one or the

other group. Patients with a high propensity score are those most likely to get the

therapy being tested when compared to those with a low propensity score. The

propensity score can then be used to stratify the results and determine whether

one group will actually have a different result than the other groups. Usually the

groups being compared are the ones with the highest or lowest propensity scores.

Patients who are likely to benefit the most from the chosen therapies will have

the highest propensity scores. If a study is done using a large sample including

patients who are less likely to benefit from the therapy, the study results may not

be clinically or statistically important. But if the data are reanalyzed using only

those groups with high propensity scores, it may be possible to show that there

is improvement and justify the use of the drug at least in the group most likely

to respond positively. The main problem with propensity scores is that the exter-

nal validity of the result is limited. Ideally, the treatment should only be used for

groups that have the same propensity scores as the group in the study. Those with

much lower propensity scores should not have the drug used for them unless a

study shows that they would also benefit from the drug.

Another use of propensity scores is to determine the effect of patients who

drop out of a research study. The patients’ propensity to attain the outcome

of interest can be calculated using this score. Be aware, if there are too many

coexisting confounding variables, it is unlikely that these approximations are

reasonable and valid. One downfall of propensity scores is that they are often

used as a means of obtaining statistically significant results, which are then

generalized to all patients who might meet the initial study inclusion criteria.

Propensity scores should be critically evaluated using the same rules applied to

multivariate analysis as described in the start of this chapter.

Yule–Simpson paradox

This statistical anomaly was discovered independently by Yule in 1903 and redis-

covered by Simpson in the 1950s. It states that it is possible for one of two groups
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to be superior overall and for the other group to be superior in multiple sub-

groups. For example, one hospital has a lower overall mortality rate while a sec-

ond competing hospital has a higher overall mortality rate but lower mortality

in the various subgroups such as high risk and low risk patients. This is a purely

mathematical phenomenon that occurs when there are large discrepancies in

the sizes of these two subgroups between the two hospitals. Table 14.1 below

demonstrates how this might occur.

Ideally, adjustment of the data should compensate for the potential for the

Yule–Simpson paradox. However, this is not always possible and it is certainly

reasonable to assume that particular factors may be more important than others

and that these may not be adjusted for in the data. Readers should be careful to

determine that all important factors have been included in the adjustments and

still consider the possibility of the Yule–Simpson paradox if the results are fairly

close together or if discrepant results occur for subgroups.

Table 14.1. Yule–Simpson paradox: mortality of patients with pneumonia in

two hospitalsa

Characteristic High risk patients Low risk patients Total mortality

Hospital A 30/100 = 30% 1/10 = 10% 31/110 = 28%

Hospital B 6/10 = 60% 20/100 = 20% 26/110 = 24%

a Hospital A has lower mortality for each of the subgroups while Hospital B has

lower total mortality.
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Randomized clinical trials

One pill makes you larger,

and one pill makes you small.

And the ones your mother gives you,

don’t do anything at all.

Grace Slick, The Jefferson Airplane: White Rabbit, from Surrealistic Pillow, 1967

Learning objectives

In this chapter you will learn:
� the unique features of randomized clinical trials (RCTs)
� how to undertake critical interpretation of RCTs

The randomized clinical trial (RCT) is the ultimate paradigm of clinical research.

Many consider the RCT to be the most important medical development of the

twentieth century, as their results are used to dictate clinical practice. Although

these trials are often put on a pedestal, it is important to realize that as with all

experiments, there may be flaws in the design, implementation, and interpre-

tation of these trials. The competent reader of the medical literature should be

able to evaluate the results of a clinical trial in the context of the potential biases

introduced into the research experiment, and determine if it contains any fatal

flaws

Introduction

The clinical trial is a relatively recent development in medical research. Prior to

the 1950s, most research was based upon case series or uncontrolled observa-

tions. James Lind, a surgeon in the British Navy, can claim credit for perform-

ing the first recorded clinical trial. In 1747, aboard the ship Salisbury, he took 12

sailors with scurvy and divided them into six groups of two each. He made sure

they were similar in every way except for the treatment they received for scurvy.

164
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Dr. Lind found that the two sailors who were given oranges and lemons got better

while the other ten did not. After that trial, the process of the clinical trial went

relatively unused until it was revived with studies of the efficacy of streptomycin

for the treatment of tuberculosis done in 1948. The randomized clinical trial or

randomized controlled trial has remained the premier source of new knowledge

in medicine since then.

A randomized clinical trial is an experiment. In an RCT, subjects are randomly

assigned to one of two or more therapies and then treated in an identical manner

for all other potential variables. Subjects in an RCT are just as likely or unlikely

to get the therapy of interest as they are to get the comparator therapy. Ideally

the researchers are blinded to the group in which the subjects are allocated. The

randomization code is not broken until the study is finally completed. There are

variations on this theme using blinded safety committees to determine if the

study should be stopped. Sometimes it is warranted to release the results of the

study, which is stopped early because it showed a huge benefit and continuing

the study would not be ethical.

Physician decision making and RCTs

There are several ways that physicians make decisions on the best treatment

for their patients. Induction is the retrospective analysis of uncontrolled clin-

ical experience or extension of the expected mechanism of disease as taught

in pathophysiology. It is doing that which “seems to work,” “worked before,”

or “ought to work.” “Abdication” or seduction is someone doing something

because others tell them that it is the right thing to do. These may be teach-

ers, consultants, colleagues, advertisements, pharmaceutical representatives,

authors of medical textbooks, and others. One accepts their analysis of the med-

ical information on faith and this dictates what one actually does for his or her

patient.

Deduction is the prospective analysis and application of the results of criti-

cal appraisal of formal randomized clinical trials. This method of decision mak-

ing will successfully withstand formal attempts to demonstrate the worthless-

ness of a proven therapy. Therapy proven by well-done RCTs is what physicians

should be doing for their patients, and it is what medical students should inte-

grate into clinical practice for the rest of their professional lives. One note of

caution belongs here. It is not possible to have an RCT for every question about

medicine. Some diseases are so rare or therapies so dangerous that it is unlikely

that a formal large RCT will ever be done to answer that clinical query. For these

types of questions, observational studies or less rigorous forms of evidence may

need to be applied to patients.
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Table 15.1. Schema for randomized clinical trials

Ultimate objective Specific treatment Target disorder

cure drug therapy disease

reduce mortality surgery illness

prevent recurrence other therapies predicament

limit deterioration nutrition

prevention psychological support

relieve distress

deliver reassurance

allow the patient to die comfortably

There are three global issues to identify when evaluating an RCT (Table 15.1).

These are (1) the ultimate objective of treatment, (2) the nature of the specific

treatment, and (3) the treatment target. The ultimate objective of treatment must

be defined before the commencement of the trial. While we want therapy to cure

and eliminate all traces of disease, more often than not other outcomes will be

sought. Therapy can reduce mortality or prevent a treatable death, prevent recur-

rence, limit structural or functional deterioration, prevent later complications,

relieve the current distress of disease including pain in the terminal phase of ill-

ness, or deliver reassurance by confidently estimating the prognosis. These are all

very different goals and any study should specify which ones are being sought.

After deciding on the specific outcome one wishes to achieve, one must then

decide which element of sickness the therapy will most affect. This is not always

the disease or the pathophysiologic derangement itself. It may be the illness

experience of the patient or how that pathophysiologic derangement affects the

patient through the production of certain signs and symptoms. Finally, it could

also be how the illness directly or indirectly affects the patient through disrup-

tion of the social, psychological, and economic function of their lives.

Characteristics of RCTs

The majority of RCTs are drug studies or studies of therapy. Often, researchers

or drug companies are trying to prove that a new drug is better than drugs that

are currently in use for a particular problem. Other researched treatments can

be surgical operations, physical or occupational therapy, procedures, or other

modalities to modify illness. We will use the example of drug trials for most of

this discussion. However, any other medical question can be substituted for the
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subject of an RCT. The basic rules to apply to critically evaluate RCTs are covered

in the following pages.

Hypothesis

The study should contain a hypothesis regarding the use of the drug in the gen-

eral medical population or the specific population tested. There are two basic

types of drug study hypotheses. First, the drug can be tested against placebo, or

second, the drug can be tested against another regularly used active drug for the

same indication. “Does the drug work better than nothing?” looks at how well the

drug performs against a placebo or inert treatment. The placebo effect has been

shown to be relatively consistent over many studies and has been approximated

to account for up to 35% of the treatment effect. A compelling reason to com-

pare the drug against a placebo would be in situations where there is a question

of the efficacy of standard therapies. The use of Complementary and Alterna-

tive Medicines (CAM) is an example of testing against placebo and can often be

justified since the CAM therapy is expected to be less active than standard med-

ical therapy. Testing against placebo would also be justified if the currently used

active drug has never been rigorously tested against active therapy. Otherwise,

the drug being tested should always be compared against an active drug that is

in current use for the same indication and is given in the correct dose for the

indication being tested.

The other possibility is to ask “Does the drug work against another drug which

has been shown to be effective in the treatment of this disease in the past?”

Beware of comparisons of drugs being tested against drugs not commonly used

in clinical practice, with inadequate dosage, or uncommon routes of administra-

tion. These caveats also apply to studies of medical devices, surgical procedures,

or other types of therapy. Blinding is difficult in studies of modalities such as pro-

cedures and medical devices, and should be done by a non-participating outside

evaluation team. Another way to study these modalities is by ‘expert based’ ran-

domization. In this method, various practitioners are selected as the basis of ran-

domization and patients enrolled in the study are randomized to the practitioner

rather than the modality.

When ranking evidence, the well-done RCT with a large sample size is the

highest level of evidence for populations. A subgroup of RCTs called the n-of-

1 trial is stronger evidence in the individual patient and will be discussed later.

An RCT can reduce the uncertainty surrounding conflicting evidence obtained

from lesser quality studies as illustrated in the following example. Over the past

20 years, there were multiple studies that demonstrated decreased mortality if

magnesium was given to patients with acute myocardial infarction (AMI). Most

of these studies were fairly small and showed no statistically significant improve-

ment in survival. However, when they were combined in a single systematic
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review, also called a meta-analysis, there was definite statistical and clinical

improvement. Since then, a single large randomized trial called ISIS-4, enrolled

thousands of patients with AMI and showed no beneficial effect attributable to

giving magnesium. It is therefore very unlikely that magnesium therapy would

benefit AMI patients.

RCTs are the strongest research design capable of proving cause-and-effect

relationships. The cause is often the treatment, preventive medicine, or diagnos-

tic test being studied, and the effect is the outcome of the disease being treated,

disease prevention by early diagnosis or disease diagnosis by a test. The study

design alone does not guarantee a quality study and a poorly designed RCT can

give false results. Thus, just like all other studies, critical evaluation of the com-

ponents is necessary before accepting the results.

The hypothesis is usually found at the end of the introduction. Each study

should contain at least one clearly stated, unambiguous hypothesis. One type

of hypothesis to be aware of is a single hypothesis attempting to prove multi-

ple cause-and-effect relationships. This cannot be analyzed with a single statis-

tical test and will lead to data dredging. Multiple hypotheses can be analyzed

with multivariate analysis and the risks noted in Chapter 14 should be consid-

ered when analyzing these studies. The investigation should be a direct test of

the hypothesis, although occasionally it is easier and cheaper to test a substitute

hypothesis. For example, drug A is studied to determine its effect in reducing

cardiovascular mortality, but what is measured is its effect on exercise-stress-test

performances. In this case, the exercise-stress-test performance is a surrogate

outcome and is not necessarily related to the outcome in which most patients

are interested, mortality.

Inclusion and exclusion criteria

Inclusion and exclusion criteria for subjects should be clearly spelled out so

that anyone reading the study can replicate the selection of patients. These cri-

teria ought to be sufficiently broad to allow generalization of the study results

from the study sample to a large segment of the population. This concept is also

called external validity and was discussed in Chapter 8. The source of patients

recruited into the study should minimize sampling or referral bias. For instance,

patients selected from specialty health-care clinics often are more severely ill or

have more complications than most patients. They are not typical of all patients

with a particular disease so the results of the RCT may not be generalizable to

all patients with the disorder. A full list of the reasons for patients’ exclusion, the

number of patients excluded for each reason, and the methods used to deter-

mine exclusion criteria must be defined in the study. Additionally, these rea-

sons should have face validity. Commonly accepted exclusions are patients with

rapidly fatal diseases that are unrelated to the disease being studied, those with
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absolute or relative contraindications to the therapy, and those likely to be lost

to follow-up. Beware if there are too many subjects excluded without sound rea-

sons, as this may be a sign of bias.

Randomization

Randomization is the key to the success of the RCT. The main purpose of ran-

domization is to create study groups that are equivalent in every way except

for the intervention being studied. Proper randomization means subjects have

an equal chance of inclusion into any of the study groups. By making them

as equal as possible, the researcher seeks to limit potential confounding vari-

ables. If these factors are equally distributed in both groups, bias due to them is

minimized.

Some randomization schemes have the potential for bias. The date of admis-

sion to hospital, location of bed in hospital (Berkerson’s bias), day of birth, and

common physical characteristics such as eye color, all may actually be confound-

ing variables and result in unequal qualities of the groups being studied. The first

table in most research papers is a comparison of baseline variables of the study

and control groups. This documents the adequacy of the randomization process.

In addition, statistical tests should be done to show the absence of statistically

significant differences between groups. Remember that the more characteris-

tics looked at, the higher the likelihood that one of them will show differences

between groups, just by chance alone. The characteristics listed in this first table

should be the most important ones or those most likely to confound the results

of the study.

Allocation of patients to the randomization scheme should be concealed.

This means that the process of randomization itself is completely blinded. If a

researcher knew to which study group the next patient was going to be assigned,

it would be possible to switch their group assignment. This can have profound

effects on the study results, acting as a form of selection bias. Patients who

appeared to be sicker could be assigned to the study group preferred by the

researcher, resulting in better or worse results for that group. Current practice

requires that the researcher states whether allocation was concealed. If this is

not stated, it should be assumed that it was not done and the effect of that bias

assessed.

There are two new randomization schemes that merit consideration as meth-

ods of solving more and more complex questions of efficacy. The first is to allow

all patients requiring a particular therapy to choose whether they will be ran-

domized or be able to freely choose their own therapy. The researchers can then

compare the group that chose randomization with the group that chose to self-

select their therapy. This has an advantage if the outcome of the therapy being
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studied has strong components of quality of life measures. It answers the ques-

tion of whether the patient’s choice of being in a randomized trial has any effect

on the outcome when compared with the possibility of having either of the

therapies being studied as a choice. Another method of randomization is using

expertise as the point of randomization. In this method, the patients are not ran-

domized, but the therapy is randomized by the provider, with one provider or

group of providers using one therapy and another, the comparison therapy. This

is a useful method for studying surgical techniques or complementary and alter-

native medicine therapies.

Blinding

Blinding prevents confounding variables from affecting the results of a study. If

all subjects, treating clinicians, and observers are blinded to the treatment being

given during the course of the research, any subjective effects that could lead to

biased results are minimized. Blinding prevents observer bias, contamination,

and cointervention bias in either group. Lack of blinding can lead to finding an

effect where none exists, or vice versa. No matter how honest, researchers may

subconsciously tend to find what they want to find. Ideally, tests for adequacy of

blinding should be done in any RCT. The simplist test is to ask participants if they

knew which therapy they were getting. If there is no difference in the responses

between the two groups, the blinding was successful and there is not likely to be

any bias in the results due to lack of blinding.

Some types of studies make blinding challenging, athough they can be done.

Studies of different surgical methods or operations can be done with blinding by

using sham operations. This has been successfully performed and in some cases

found that standard therapeutic surgical procedures were not particularly ben-

eficial. A recent series of studies showed that when compared to sham arthro-

scopic surgery for osteoarthritis, actual arthroscopic surgery had no benefit on

outcomes such as pain and disability. Similar use of sham with acupuncture

showed an equal degree of benefit from real acupuncture and sham acupunc-

ture, with both giving better results than patients treated with no acupuncture.

A recent review of studies of acupuncture for low back pain found that there was

a dramatic effect of blinding on the outcomes of the studies. The non-blinded

studies found acupuncture to be relatively useful for the short-term treatment of

low back pain with a very low NNTB. However, when blinded studies were ana-

lyzed, no such effect was found and the results, presented in Table 15.2, were not

statistically significant.1

1 E. Ernst & A. R. White. Acupuncture for back pain: a meta-analysis of randomized controlled trials.
Arch. Intern. Med. 1998; 158: 2235–2241.
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Table 15.2. Effects of acupuncture on short-term outcomes in back pain

Improved with Improved Relative

Type Number acupuncture with control Benefit NNT

of study of trials (%) (%) (95 % CI) (95% CI)

Blinded 4 73/127 (57) 61/123 (50) 1.2 (0.9 to 1.5) 13 (5 to no benefit)

Non-blinded 5 78/117 (67) 33/87 (38) 1.8 (1.3 to 2.4) 3.5 (2.4 to 6.5)

Description of methods

The methods section should be so detailed that the study could be duplicated by

someone uninvolved with the study. The intervention must be well described,

including dose, frequency, route, precautions, and monitoring. The interven-

tion also must be reasonable in terms of current practice since if the inter-

vention being tested is being compared to a non-standard therapy, the results

will not be generalizable. The availability, practicality, cost, invasiveness, and

ease of use of the intervention will also determine the generalizability of the

study. In addition, if the intervention requires special monitoring it may be too

expensive and difficult to carry out and therefore, impractical in most ordinary

situations.

Instruments and measurements should be evaluated using the techniques dis-

cussed in Chapter 7. Appropriate outcome measures should be clearly stated,

and their measurements should be reproducible and free of bias. Observers

should be blinded and should record objective outcomes. If there are subjec-

tive outcomes measured in the study, use caution. Subjective outcomes don’t

automatically invalidate the study and observer blinding can minimize bias from

subjective outcomes. Measurements should be made in a manner that ensures

consistency and maximizes objectivity in the way the results are recorded. For

statistical reasons, beware of composite outcomes, subgroup analysis, and post-

hoc cutoff points, which can all lead to Type I errors.

The study should be clear about the method, frequency, and duration of

patient follow-up. All patients who began the study should be accounted for at

the end of the study. This is important because patients may leave the study for

important reasons such as death, treatment complications, treatment ineffec-

tiveness, or compliance issues, all of which will have implications on the appli-

cation of the study to a physician’s patient population. A study attrition rate of

> 20% is a rough guide to the number that may invalidate the final results. How-

ever, even a smaller percentage of patient drop-outs may affect the results of a

study if not taken into consideration. The results should be analyzed with an

intention-to-treat analysis or using a best case/worst case analysis.
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Analysis of results

The preferred method of analysis of all subjects when there has been a significant

drop-out or crossover rate is to use an intention-to-treat methodology. In this

method, all patient outcomes are counted with the group to which the patient

was originally assigned even if the patient dropped out or switched groups. This

approximates real life where some patients drop out or are non-compliant for

various reasons. Patients who dropped out or switched therapies must still be

accounted for at the end of the trial since if their fates are unknown, it is impos-

sible to accurately determine their outcomes. Some studies will attempt to use

statistical models to estimate the outcomes that those patients should have had

if they had completed the study, but the accuracy of this depends on the ability

of the model to mimic reality.

A good example of intention-to-treat analysis was in a study of survival after

treatment with surgery or radiation for prostate cancer. The group randomized

to radical prostatectomy surgery or complete removal of the prostate gland, did

much better than the group randomized to either radiation therapy or watchful

waiting with no treatment. Some patients who were initially randomized to the

surgery arm of the trial were switched to the radiation or watchful waiting arm

of the trial when, during the surgery, it was discovered that they had advanced

and inoperable disease. These patients should have been kept in their original

surgery group even though their cancerous prostates were not removed. When

the study was re-analyzed using an intention-to-treat analysis, the survival in all

three groups was identical. Removing those patients biased the original study

results since patients with similarly advanced cancer spread were not removed

from the other two groups.

Another biased technique involves removing patients from the study. Remov-

ing patients after randomization for reasons associated with the outcome is

patently biased and grounds to invalidate the study. Leaving them in the analysis

as an intention-to-treat is honest and will not inflate the results. However, if the

outcomes of patients who left the study are not known, a best case/worst case

scenario should be applied and clearly described so that the reader can deter-

mine the range of effects applicable to the therapy.

In the best case/worst case analysis, the results are re-analyzed considering

that all patients who dropped out or crossed over had the best outcome possible

or worst outcome possible. This should be done by adding the drop-outs of the

intervention group to the successful patients in the intervention group and at the

same time subtracting the drop-outs of the comparison group from the success-

ful patients in that group. The opposite process, subtracting drop out patients

from the intervention group and adding them to the comparison group, should

then be done. This will give a range of possible values of the final effect size. If

this range is very large, we say that the results are sensitive to small changes that
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could result from drop-outs or crossovers. If the range is very small, we call the

results robust, as they are not likely to change drastically because of drop-outs

or crossovers.

Compliance with the intervention should be measured and noted. Lack of

compliance may influence outcomes since the reason for non-compliance may

be directly related to the intervention. High compliance rates in studies may

not be duplicated in clinical practice. Other clinically important outcomes

that should be measured include adverse effects, direct and indirect costs,

invasiveness, and monitoring of an intervention. A blinded and independent

observer should measure these outcomes, since if the outcome is not objectively

measured, it may limit the usefulness of the therapy. Remember, no adverse

effects among n patients could signify as many as 3/n adverse events in actual

practice.

Results should be interpreted using the techniques discussed in the sections

on statistical significance (Chapters 9–12). Look for both statistical and clinical

significance. Look at confidence intervals and assess the precision of the results.

Remember, narrow CIs are indicative of precise results while wide CIs are impre-

cise. Determine if any positive results could be due to Type I errors. For negative

studies determine the relative likelihood of a Type II error.

Discussion and conclusions

The discussion and conclusions should be based upon the study data and lim-

ited to settings and subjects with characteristics similar to the study setting and

subjects. Good studies will also list weaknesses of the current research and offer

directions for future research in the discussion section. Also, the author should

compare the current study to other studies done on the same intervention or

with the same disease.

In summary, no study is perfect, all studies have flaws, but not all flaws are

fatal. After evaluating a study using the standardized format presented in this

chapter, the reader must decide if the merits of a study outweigh the flaws before

accepting the conclusions as valid.

Further problems

A study published in JAMA in February 1995 reviewed several systematic reviews

of clinical trials, and found that if the trials were not blinded or the results were

incompletely reported there was a trend of showing better results.2 This high-

lights the need for the reader to be careful in evaluating these types of trials.

2 K. F. Schulz, I. Chalmers, R. J. Hayes & D. G. Altman. Empirical evidence of bias. Dimensions of
methodological quality associated with estimates of treatment effects in controlled trials. JAMA 1995;
273: 408–412.
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Fig. 15.1 Effect of blinding and
sample size on results in trials of
acupuncture for low back pain.
From E. Ernst & A. R. White. Arch.
Intern. Med. 1998; 158:
2235–2241.

Always look for complete randomization, total double blinding, and reporting

of all potentially important outcomes. An example of this phenomenon can be

seen in the systematic review of studies of acupuncture for back pain that was

described earlier.

L’Abbé plots are a graphic technique for presenting the results of many indi-

vidual clinical trials.3 The plot provides a simple visual representation of all the

studies of a particular clinical question. It is a way of looking for the presence

of bias in the studies done on a single question. The plot shows the propor-

tion of patients in each study who improved taking the control therapy against

the proportion who improved taking the active treatment. Each study is repre-

sented by one point and the size of the circle around that point is proportional

to the sample size of the study. The studies closest to the diagonal show the least

effect of therapy, and farther from the diagonal show a greater effect. In addi-

tion to getting an idea of the strength of the difference between the two groups,

one can also look for the effects of blinding, sample size, or any other factor on

the study results. Figure 15.1 shows the results of studies of the effectiveness of

acupuncture on short-term improvements in back pain. The studies are divided

by blinded vs. non-blinded and by size of sample. One can clearly see that the

results of the blinded trials were less spectacular than the unblinded ones.

3 K. A. L’Abbé, A. S. Detsky & K. O’Rourke. Meta-analysis in clinical research. Ann. Intern. Med. 1987;
107: 224–233.
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The n-of-1 trial

An n-of-1 trial is done like any other experiment, but with only one patient as a

subject. Some have called this the highest level of evidence available. However, it

is only useful in the one patient to whom it is applied. It is a useful technique to

determine optimal therapy in a single patient when there appears to be no signif-

icant advantage of one therapy over another based on reported clinical trials. In

order to justify the trial, the effectiveness of therapy must really be in doubt, the

treatment should be continued long-term if it is effective, and the patient must

be highly motivated to allow the researcher to do an experiment on them. It is

helpful if there is a rapid onset of action of the treatment in question and rapid

cessation when treatment is discontinued. There should be easily measurable

and clinically relevant outcome measures and sensible criteria for stopping the

trial.

Additionally, the patient should give informed consent before beginning the

trial. The researcher must have a willing pharmacist and pharmacy that can dis-

pense identical, unlabeled active and placebo or comparison medications. End-

points must be measurable with as much objectivity as possible. Also, the patient

should be asked if they knew which of the two treatments they were taking and a

statistician should be available to help evaluate the results.4

A user’s guide to the randomized clinical trial
of therapy or prevention

The following is a standardized set of methodological criteria for the critical

assessment of a randomized clinical trial article looking for the best therapy

which can be used in practice. It is based, with permission, upon the Users’

Guides to the Medical Literature published by JAMA.5 The University of Alberta

(www.med.ualberta.ca.ebm) has online worksheets for evaluating articles of

therapy that use this guide.

(1) Was the study valid?

(a) Was the assignment of patients to treatments really randomized?

(i) Was similarity between groups documented?

(ii) Was prognostic stratification used in allocation?

(iii) Was there allocation concealment?

(iv) Were both groups of patients similar at the start of the study?

(b) Were all patients who entered the study accounted for at its conclusion?

4 For more information on the n-of-1 RCT, consult D. L. Sackett, R. B. Haynes, P. Tugwell & G. H. Guyatt.
Clinical Epidemiology: a Basic Science for Clinical Medicine. 2nd edn. Boston: Little Brown, 1991, pp.
225–238.

5 G. H. Guyatt & D. Rennie (eds.). Users’ Guides to the Medical Literature: A Manual for Evidence-Based
Practice. Chicago: AMA, 2002. See also Bibliography.
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(i) Was there complete follow-up of all patients?

(ii) Were drop-outs, withdrawals, non-compliers, and those who

crossed over handled appropriately in the analysis?

(c) Were the patients, their clinicians, and the study personnel including

recorders or measurers of outcomes blind to the assigned treatment?

(d) Were the baseline factors the same in both groups at the start of the trial?

(e) Aside from the intervention being tested, were the two groups of patients

treated in an identical manner?

(i) Was there any contamination?

(ii) Were there any cointerventions?

(iii) Was the compliance the same in both groups?

(2) What are the results?

(a) How large was the effect size and were both statistical and clinical signif-

icance considered? How large is the treatment effect?

(i) If statistically significant, was the difference clinically important?

(ii) If not statistically significant, was the study big enough to show a

clinically important difference if it should occur?

(iii) Was appropriate adjustment made for confounding variables?

(b) How precise are the results? What is the size of the 95% confidence inter-

vals?

(3) Will the results help me care for my patient?

(a) Were the study patients recognizably similar to my own?

(i) Are reproducibly defined exclusion criteria stated?

(ii) Was the setting primary or tertiary care?

(b) Were all clinically relevant outcomes reported or at least considered?

(i) Was mortality as well as morbidity reported?

(ii) Were deaths from all causes reported?

(iii) Were quality-of-life assessments conducted?

(iv) Was outcome assessment blind?

(c) Is the therapeutic maneuver feasible in my practice?

(i) Is it available, affordable, and sensible?

(ii) Was the maneuver administered in an adequately blinded manner?

(iii) Was compliance measured?

(d) Are the benefits worth the costs?

(i) Can I identify all the benefits and costs, including non-economic

ones?

(ii) Were all potential harms considered?

The CONSORT statement

Beginning in 1993, the Consolidated Standards of Reporting Trials Group, known

as the CONSORT group began their attempt to standardize and improve the
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Table 15.3. Template for the CONSORT format of an RCT showing the flow of

participants through each stage of the study

1. Assessed for eligibility (n = . . .)

2. Enrollment: Excluded (n = . . .) Not meeting inclusion criteria (n = . . .), Refused to

participate (n = . . .), Other reasons (n = . . .)

3. Randomized (n = . . .)

4. Allocation: Allocated to intervention (n = . . .), Received allocated intervention

(n = . . .), Did not receive allocated intervention (n = . . .) (give reasons)

5. Follow-up: Lost to follow up (n = . . .) (give reasons), Discontinued intervention

(n = . . .) (give reasons)

6. Analysis: Analyzed (n = . . .), Excluded from analysis (n = . . .) (give reasons)

reporting of the process of randomized clinical trials. This was as a result of laxity

of reporting of the results of these trials. Currently most medical journals require

that the CONSORT requirements be followed in order for an RCT to be published.

Look for the CONSORT flow diagram at the start of any RCT and be suspicious

that there are serious problems if there is no flow diagram for the study. The

CONSORT flow diagram is outlined in Table 15.3.

Ethical issues

Finally, there are always ethical issues that must be considered in the evalua-

tion of any study. Informed consent must be obtained from all subjects. This is

a problem in some resuscitation studies, where other forms of consent such as

substituted or implied consent may be used. Look for Institutional Review Board

(IRB) approval of all studies. If it is not present, it may be an unethical study. It is

the responsibility of the journal to publish only ethical studies. Therefore most

journals will not publish studies without IRB approval. Decisions about whether

or not to use the results of unethical studies are very difficult and beyond the

scope of this book. As always, in the end, readers must make their own ethical

judgment about the research.

All the major medical journals now require authors to list potential conflicts

of interest with their submissions. These are important to let the reader know

that there may be a greater potential for bias in these studies. However, there are

always potential reasons to suspect bias based upon other issues that may not

be so apparent. These include the author’s need to “publish or perish,” desire to

gain fame, and belief in the correctness of a particular hypothesis. A recent study

on the use of bone-marrow transplantation in the treatment of stage 3 breast

cancers showed a positive effect of this therapy. However, some time after publi-

cation, it was discovered that the author had fabricated some of his results, mak-

ing the therapy look better than it actually was.
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All RCTs should be described, before initiation of the research, in a registry

of clinical trials. This can be seen on the ClinicalTrials.gov website, a project of

the National Institutes of Health in the United States. This is a registry of clinical

trials conducted around the world. The site gives information about the purpose

of the clinical trial, who may participate, locations, and phone numbers for more

details. These details should be adequate for anyone else to duplicate the trial.

The purpose of the registry is to get the details of the trial published on-line prior

to initiation of the trial itself. This way, the researchers cannot spin the results

to look better by reporting different outcomes than were originally specified or

by using different methods than originally planned. Most journals will no longer

publish trials that are not registered in this or a similar international registry.

The question of placebo controls is one ethical issue which is constantly being

discussed. Since there are therapies for almost all diseases, is it ever ethical to

have a placebo control group? This is still a contentious area with strong opin-

ions on both sides. One test for the suitability of placebo use is clinical equipoise.

This occurs when the clinician is unsure about the suitability of a therapy and

there is no other therapy that works reasonably well to treat the condition. Here

placebo therapy can be used. Both the researcher and the patient must be sim-

ilarly inclined to choose either the experimental or a standard therapy. If this is

not true, placebo ought not to be used.
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Scientific integrity and the responsible
conduct of research

John E. Kaplan, Ph.D.

Integrity without knowledge is weak and useless, and knowledge without integrity is

dangerous and dreadful.

Samuel Johnson (1709–1784)

Learning objectives

In this chapter you will learn:
� what is meant by responsible conduct of research
� how to be a responsible consumer of research
� how to define research misconduct and how to deal with it
� how conflicts of interest may compromise research, and how they are man-

aged
� why and how human participants in research studies are protected
� what constitutes responsible reporting of research findings
� how peer review works

The responsible conduct of research

The conduct and ethics of biomedical researchers began to receive increased

attention after World War II. This occurred in part as a response to the atroc-

ities of Nazi medicine and in part because of the increasing rate of techno-

logical advances in medicine. This interest intensified in the United States in

response to the publicity surrounding improper research practices, particularly

the Tuskeegee syphilis studies, studies of the effects of LSD on unsuspecting sub-

jects, and studies of radiation exposure. While these issues triggered important

reforms, the focus was largely restricted to protection of human experimental

subjects.

The conduct of scientists again became an area of intense interest in the 1980s

after a series of high-profile cases of scientific misconduct attracted the attention
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both of the US public and of the US Congress, which conducted a series of inves-

tigations into the matter. These included the misconduct cases regarding Robert

Gallo, a prominent AIDS researcher, and Nobel Laureate David Baltimore. Even

cases that were not found to be misconduct increased public and political inter-

est in the behavior of researchers. This interest resulted in the development of

federally prescribed definitions of scientific misconduct. Now there are require-

ments that federally funded institutions adopt policies for responding to allega-

tions of research fraud and for protecting the whistle-blowers. This was followed

by the current requirement that certain researchers be given ethics training with

funding from federal research training grants.

This initial regulation was scandal-driven and was focused on preventing

wrong or improper behavior. As these policies were implemented, it became

apparent that this approach was not encouraging proper behavior. This new

focus on fostering proper conduct by researchers led to the emergence of the

field now generally referred to as the responsible conduct of research. This devel-

opment is not the invention of the concept of scientific integrity, but it has sig-

nificantly increased the attention bestowed on adherence to existing rules, reg-

ulations, guidelines, and commonly accepted professional codes for the proper

conduct of research. It has been noted that much of what constitutes responsi-

ble conduct of research would be achieved if we all adhered to the basic code of

conduct we learned in kindergarten: play fair, share, and tidy up.

The practice of evidence-based medicine requires high quality evidence. A pri-

mary source of such evidence is from scientifically based clinical research. To be

able to use this evidence, one must be able to believe what one reads. For this

reason it is absolutely necessary that the research be trustworthy. Research must

be proposed, conducted, reported, and reviewed responsibly and with integrity.

Research, and the entire scientific enterprise, are based upon trust. In order for

that trust to exist, the consumer of the biomedical literature must be able to

assume that the researcher has acted responsibly and conducted the research

honestly and objectively.

The process of science and proper conduct of evidence-based medicine are

equally dependent on the consumption and application of research findings

being conducted with responsibility and integrity. This requires readers to be

knowledgeable and open-minded in reading the literature. They must know the

factual base and understand the techniques of experimental design, research,

and statistical analysis. It is as important that the reader consumes and applies

research without bias as it is that the research is conducted and reported without

bias. Responsible use of the literature requires that the reader be conscientious

in obtaining a broad and representative, if not complete, view of that segment.

Building one’s knowledge-base on reading a selected part of that literature, such

as abstracts alone, risks incorporating incomplete or wrong information into

clinical practice and may lead to bias in the interpretation of the work. Worse



Scientific integrity and the responsible conduct of research 181

would be to act on pre-existing bias and selectively seek out only those studies

in the literature that one agrees with or that support one’s point of view, and to

ignore those parts that disagree. In addition, it is essential that when one uses or

refers to the work of others their contribution be appropriately referenced and

credited.

Scientists conducting research with responsiblity and integrity constitutes the

first line of defense in ensuring the truth and accuracy of biomedical research. It

is important to recognize that the accuracy of scientific research does not depend

upon the integrity of any single scientist or study, but instead depends on science

as a whole. It relies on findings being reproduced and reinforced by other scien-

tists, which is a mechanism that protects against a single finding or study being

uncritically accepted as fact. In addition, the process of peer review further pro-

tects the integrity of the scientific record.

Research misconduct

Research or scientific misconduct represents events in which error is introduced

into the body of scientific knowledge knowingly, through deception and misrep-

resentation. Research misconduct does not mean honest error or differences in

opinion. Errors occurring as the result of negligence in the way the experiment

is conducted are also not generally considered research misconduct. However,

negligence in the experiment does fall outside the scope of responsible conduct

of science guidelines.

In many respects, research misconduct is a very tangible concept. This con-

trasts to other areas within the broad scope of responsible conduct of research.

Both the agencies sponsoring research and the institutions conducting research

develop policies to deal with research misconduct. These policies require that

a specific definition of research misconduct be developed. This effort has been

fraught with controversy and resulted in a proliferation of similar, but not identi-

cal, definitions from various government agencies that sponsor research. Nearly

all definitions agree that three basic concepts underlie scientific misconduct.

These include fabrication, falsification, and plagiarism. In a nutshell, defini-

tions agree that scientists should not lie, cheat, or steal. These ideas have now

been included in a new single federal definition (Federal Register: November 2,

2005 [Volume 70, Number 211]).

The previous definition of research misconduct from the National Institutes

of Health, the agency sponsoring most US government funded biomedical

research, also included a statement prohibiting “other serious deviations from

accepted research practices.” This statement is difficult to define specifically but

reflects the belief that there are other behaviors besides fabrication, falsification,
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and plagiarism that constitute research misconduct. A government-wide defini-

tion has been developed and approved. According to this policy “research mis-

conduct is defined as fabrication, falsification, or plagiarism in proposing, per-

forming, or reviewing research, or in reporting research results.” (Federal Regis-

ter: November 2, 2005 (Volume 70, Number 211]).

These three types of misconduct are defined as follows:

Fabrication is making up data and recording or reporting them.

Falsification is manipulating research materials, equipment, or processes, or

changing or omitting data such that the research is not accurately repre-

sented in the research record.

Plagiarism is the appropriation of another person’s ideas, processes, results,

or words without giving appropriate credit.

It is likely that the vast majority of scientists, and people in general, know that

it is wrong to lie, cheat, or steal. This probably includes those who engage in such

behavior. There are clearly numerous motivations that lead people to engage in

such practices. These may include, but are not limited to, acting on personal or

political biases, having personal financial incentives, personal and professional

ambition, and fear of failure. In our system of research, the need for financial

support and desire for academic advancement as measures of financial and pro-

fessional success are dependent upon the productivity of a research program.

Until there are some fundamental changes in the way research is funded, these

questionable incentives are likely to remain in place.

Many people believe that a substantial amount of research misconduct goes

unreported because of concerns that there will be consequences to the whistle-

blower. All institutions in the United States that engage in federally supported

research must now have in place formal policies to prevent retaliation against

whistle-blowers. Unfortunately, it is unlikely that someone will be able to recog-

nize scientific misconduct simply by reading a research study unless the miscon-

duct is plagiarism of work they did or is very familiar to them. Usually such mis-

conduct, if found at all, is discovered locally or during the review process prior to

publication and may never be disclosed to the general scientific community.

Conflict of interest

Conflicts of interest may provide the motivation for researchers to act outside of

the boundaries of responsible conduct of research. Webster’s dictionary defines

conflict of interest as “A conflict between the private interests and professional

responsibilities of a person in a position of trust.” A useful definition in the con-

text of biomedical research and patient care was stated by D. F. Thompson who

stated that “a conflict of interest is a set of conditions in which professional

judgement concerning a primary interest (such as patient welfare or the validity
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of research) tends to be unduly influenced by secondary interest (such as finan-

cial gain).”1 These relationships are diagrammed in Fig. 16.1. It is very impor-

tant to recognize that conflicts of interest per se are common among people with

complex professional careers. Simply having conflict of interest is not necessar-

ily wrong and is often unavoidable. What is wrong is when one is inappropri-

ately making decisions founded on these conflicts or when one accepts a new

responsibility over a previous professional interest. An example of this would be

a physician becoming a part owner of a lab, to which he or she sends patients for

bloodwork, at the cost of the physician’s previous priority of patient care. Deci-

sions that are made based upon the bias produced by these interests are espe-

cially insidious when they result in the compromise of patient care or in research

misconduct.

Many of the rules regarding conflict of interest focus on financial gain, not

because it is the worst consequence, but because it is more objective and reg-

ulable. There is substantial reason for concern that financially based conflicts

of interest have affected research outcomes. Recent studies of calcium channel

blockers,2 non-steroidal anti-inflammatory drugs,3 and health effects of second-

hand smoke4 each found that physicians with financial ties to manufacturers

were significantly less likely to criticize safety or efficacy. A study of clinical-trial

publications5 determined a significant association between positive results and

pharmaceutical company funding. Analysis of the cost-effectiveness of six oncol-

ogy drugs6 found that pharmaceutical company sponsorship of economic anal-

yses led to a reduced likelihood of reporting unfavorable results.

1 D. F. Thompson. Understanding financial conflicts of interest. N. Engl. J. Med. 1993; 329: 573–576.
2 H. T. Stelfox, G. Chua, K. O’Rourke & A. S. Detsky. Conflict of interest in the debate over calcium-

channel antagonists. N. Engl. J. Med. 1998; 338: 101–106.
3 P. A. Rochon, J. H. Gurwitz, R. W. Simms, P. R. Fortin, D. T. Felson, K. L. Minaker & T. C. Chalmers. A

study of manufacturer-supported trials of nonsteroidal anti-inflammatory drugs in the treatment of
arthritis. Arch. Intern. Med. 1994; 154: 157–163.

4 R. M. Werner & T. A. Pearson. What’s so passive about passive smoking? Secondhand smoke as a cause
of atherosclerotic disease. JAMA 1998; 279: 157–158.

5 R. A. Davidson. Source of funding and outcome of clinical trials. J. Gen. Intern. Med. 1986; 1: 155–158.
6 M. Friedberg, B. Saffran, T. J. Stinson, W. Nelson & C. L. Bennett. Evaluation of conflict of interest in

economic analyses of new drugs used in oncology. JAMA 1999; 282: 1453–1457.
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Most academic institutions attempt to manage researcher’s potential conflict

of interest. This is justified as an attempt to limit the influence of those con-

flicts and protect the integrity of research outcomes and patient-care decisions.

Surprisingly, some academicians have argued against such management on the

grounds that it impugns the integrity of honest physicians and scientists. Some

institutions have decided that limiting the opportunity for outside interests pre-

vents recruitment and retention of the best faculty. The degree to which these

activities are conflicts of interests remains an ongoing debate in the academic

community.

Nearly all academic institutions engaging in research currently have policies

to manage and/or limit conflicts of interest. Most of these focus exclusively on

financial conflicts and are designed primarily to protect the institutions finan-

cially. Increased awareness of the consequences of conflict of interest will hope-

fully result in the development of policies that offer protection to research sub-

jects and preserve the integrity of the research record.

There are several ways that institutions choose to manage conflict of interest.

The most common is requiring disclosure of conflicts of interest with the ratio-

nale that individuals are less likely to act on conflicts if they are known. Other

methods include limitations on the value of outside interests such as limiting

the equity a researcher could have in a company with whom they work or limit-

ing the amount of consultation fees they can collect. Recently some professional

organizations have suggested that the only effective management for potential

conflicts of interest is their complete elimination.

Some of the most difficult conflicts occur when physicians conduct clinical

studies where they enroll their own patients as research subjects. This can place

the performance of the research and patient care in direct conflict. Another com-

mon area of conflict is in studies funded by pharmaceutical companies. Often

they desire a veto in all decisions affecting the conduct and publication of the

results.

Research with human participants

In order to obtain definitive information on the pathophysiologic sequelae of

human disease, as well as to assess risk factors, diagnostic modalities, and ther-

apeutic interventions, it is necessary to use people as research subjects. After

several instances of questionable practices in studies using human subjects, the

US Congress passed the National Research Act in 1974. One outcome of this leg-

islation was the publication of the Belmont Report that laid the foundation of

ethical principles which govern the conduct of human studies and provide pro-

tection for human participants. These principles are respect for personal auton-

omy, beneficence, and justice.
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The principle of respect for persons manifests itself in the practice of informed

consent. Informed consent requires that individuals be made fully aware of the

risks and benefits of the experimental protocol and that they be fully able to

evaluate this information. Consent must be fully informed and entirely free of

coercion.

The principle of beneficence manifests itself in the assessment of risk and

benefit. The aim of research involving human subjects is to produce benefits

to either the research subject, society at large, or both. At the same time, the

magnitude of the risks must be considered. The nature of experimental pro-

cedures generally dictates that everything about them is not known and so

risks, including some that are unforeseen, may occur. Research on human sub-

jects should only take place when the potential benefits outweigh the poten-

tial risks. Another way of looking at this is the doctrine of clinical equipoise.

At the onset of a study, the research aims, treatment and control, are equally

likely to result in the best outcome. At the very least, the comparison group

must be receiving a treatment consistent with the current standard of care.

The application of this principle could render some placebo-controlled studies

unethical.

The principle of justice manifests itself in the selection of research sub-

jects. This principle dictates that the benefits and the risks of research be dis-

tributed fairly within the population. There should be no favoritism shown when

enrolling patients into a study. For example, groups should be selected for inclu-

sion into the research study based on characteristics of patients who would ben-

efit from the therapy, and not because they are poor or uneducated.

The responsibilities for ensuring that these principles are applied rest with

Institutional Review Boards (IRBs). These must include members of varying

background, both scientific and non-scientific, who are knowledgeable of the

institution’s commitments and regulations, applicable law and ethics, and stan-

dards of professional conduct and practice. The IRB must approve both the ini-

tiation and continuation of each study involving human participants. The IRB

seeks to ensure that risk is minimal and reasonable in relation to the anticipated

benefit of the knowledge gained. The IRB evaluates whether selection of research

subjects is equitable and ensures that consent is informed and documented, that

provisions are included to monitor patient safety, and that privacy and confiden-

tiality are protected.

One of the most difficult roles for the physician is the potential conflict

between patient care responsibilities and the objectivity required of a researcher.

Part of the duty of the IRB ought to be an evaluation of the methodology of

the research study. Some researchers disagree with this role. But, it ensures

that subjects, our patients, are not subjected to useless or incompetently done

research.
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Peer review and the responsible reporting of research

Peer review and the responsible reporting of research are two important and

related subjects that impact directly on the integrity of the biomedical research

record. Peer review is the mechanism used to judge the quality of research and

is applied in several contexts. This review mechanism is founded on the premise

that a proposal or manuscript is best judged by individuals with experience and

expertise in the field.

The two primary contexts are the evaluation of research proposals and

manuscript reviews for journals. This mechanism is used by the National Insti-

tutes of Health and nearly every other non-profit sponsor of biomedical research

(e.g., American Heart Association, American Cancer Society, etc.) to evaluate

research proposals. Almost all journals also use this mechanism. In general, read-

ers should be able to assume that journal articles are peer-reviewed although it

is important to be aware of those that are not. Readers should have a lower level

of confidence in research reported in journals that are not peer-reviewed. In gen-

eral, society-sponsored and high-profile journals are peer-reviewed. If there are

doubts, check the information for authors section, which should describe the

review process.

To be a responsible peer reviewer, one must be knowledgeable, impartial, and

objective. It is not as easy as it might seem to meet all of these criteria. The more

knowledgeable a reviewer is in the field of a proposal, the more likely they are to

be a collaborator, competitor, or friend of the investigators. These factors, as well

as potential conflicts of interest, may compromise their objectivity. Prior to pub-

lication or funding, proposals and manuscripts are considered privileged con-

fidential communications that should not be shared. It is the responsibility of

the reviewer to honor this confidentiality. It is similarly the responsibility of the

reviewer not to appropriate any information gained from peer review into his or

her own work.

As consumers and, perhaps, contributors to the biomedical literature, we

need research to be reported responsibly. Responsible reporting of research also

includes making each study a complete and meaningful contribution as opposed

to breaking it up to achieve as many publications as possible. Additionally, it is

important to make responsible conclusions and issue appropriate caveats on the

limitations of the work. It is necessary to offer full and complete credit to all those

who have contributed to the research, including references to earlier works. It is

essential to always provide all information that would be essential to others who

would repeat or extend the work.
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Applicability and strength of evidence

Find out the cause of this effect, Or rather say, the cause of this defect, For this effect

defective comes by cause.

William Shakespeare (1564–1616): Hamlet

Learning objectives

In this chapter you will learn:
� the different levels of evidence
� the principles of applying the results of a study to a patient

The final step in the EBM process is the application of the evidence found in clin-

ical studies to an individual patient. In order to do this, the reader of the medical

literature must understand that all evidence is not created equal and that some

forms of evidence are stronger than others. Once a cause-and-effect relationship

is discovered, can it always be applied to the patient? What if the patient is of a

different gender, socioeconomic, ethnic, or racial group than the study patients?

This chapter will summarize these levels of evidence and help to put the appli-

cability of the evidence into perspective. It will also help physicians decide how

to apply lower levels of evidence to everyday clinical practice.

Applicability of results

The application of the results of a study is often difficult and frustrating for

the clinician. Overall, one must consider the generalizability of study results to

patients. A sample question would be; “Is a study of the risk of heart attack that

was done in men applicable to a woman in your practice?” Answering this ques-

tion involves inducing the strength of a presumed cause-and-effect relationship

in that patient based upon uncertain evidence. This is the essence of the art of
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Table 17.1. Criteria for application of results

(in decreasing order of importance)

Strength of research design

Strength of result

Consistency of studies

Specificity (confounders)

Temporality (time–related)

Dose–response relationship

Biological plausibility

Coherence (consistency in time)

Analogous studies

Common sense

Source: After Sir Austin Bradford Hill. A Short

Textbook of Medical Statistics. Oxford: Oxford

University Press, 1977, pp. 309–323.

Best evidence 
Clinical situation 

Clinical experience 

Patient values 

Fig. 17.1 The application of
evidence to a particular clinical
situation (from Chapter 2).

medicine and is a blend of the available evidence, clinical experience, the clinical

situation, and the patient’s preferences (Fig. 17.1).

One must consider the strength of the evidence for a particular intervention or

risk factor. The stronger the study, the more likely it is that those results will be

borne out in practice. A well-done RCT with a large sample size is the strongest

evidence for the efficacy of a practice in a defined population. However, these

are very expensive and difficult to perform, and physicians often must make vital

clinical decisions based upon less stringent evidence.

Sir Austin Bradford Hill, the father of modern biostatistics and epidemiology,

developed a useful set of rules to determine the strength of causation based upon

the results of a clinical study. These are summarized in Table 17.1.

Levels of evidence

Strength of the research design

The strongest design for evaluation of a clinical question is a systematic review

(SR) of multiple randomized clinical trials. Ideally, the studies in these reviews
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will be homogeneous and done with carefully controlled methodology. The pro-

cess of data analysis of these meta-analyses is complex, and is the basis of

the Cochrane Collaboration, a loose network of physicians who systematically

review various topics and publish the results of their reviews. We will discuss

these further in Chapter 33.

The randomized clinical trial (RCT) with human subjects is the strongest single

research design capable of proving causation. It is least likely to have method-

ological confounders and is the only study design that can show that altering

the cause alters the effect. Confounding variables both recognized and unrec-

ognized, can and should be evenly distributed between control and experimen-

tal groups through adequate randomization, minimizing the likelihood of bias

due to these differences. Ideally, the study should be double-blinded. In studies

with strong results, those results should be accompanied by narrow confidence

intervals. Clearly, the strongest evidence is the RCT carried out in the exact pop-

ulation that fits the patient in question. However, such a study is rarely available

and physicians must use what evidence they can find, combined with their pre-

vious knowledge, to determine how the evidence produced by the study should

be used. The n-of-1 RCT is another way of obtaining high quality evidence for a

patient, but is difficult to perform and usually outside the scope of most medical

practices at this time.

The next best level of evidence comes from observational studies. The

results of such studies may only represent association and can never prove

that changes in a cause can change the effect. The strongest observational-

study research design supporting causation is a cohort study, which can be

done with either a prospective or a non-concurrent design. Cohort studies

can show that cause precedes effect but not that altering the cause alters the

effect. Bias due to unrecognized confounding variables between the two groups

might be present and should be sought and controlled for using multivariate

analysis.

A case–control study is a weaker research design that can still support cau-

sation. The results of these studies can prove an association between the cause

and the effect. Sometimes, the cause can be shown to precede the effect. How-

ever, altering the cause cannot be shown to alter the effect. A downside to these

studies is that they are subject to many methodological problems that may bias

the outcome. But, for uncommon and rare diseases, this may be the strongest

evidence possible and can provide high-quality evidence if the study is done cor-

rectly.

Finally, case reports and descriptive studies including case series and cross-

sectional studies have the lowest strength of evidence. These studies cannot

prove cause and effect, they can only suggest an association between two vari-

ables and point the way toward further directions of research. For very rare con-

ditions they can be the only, and therefore the best, source of evidence. This is
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true when they are the first studies to call attention to a particular disorder or

when they are of the “all-or-none” type.

Hierarchies of research studies

There are several published hierarchies of classification for research studies. A

system published by the Centre for Evidence-Based Medicine of Oxford Uni-

versity grades studies into levels from 1 through 5 and is an excellent grading

scheme for clinical studies. This system grades studies by their overall quality

and design. Level 1 studies are very large RCTs or systematic reviews. Level 2

studies are smaller RCTs with less than 50 subjects, RCTs with lower quality, or

large high-quality cohort studies. Level 3 studies are smaller cohort or case–

control studies. Level 4 evidence comes from case reports and low-level case–

control and cohort studies. Finally, Level 5 is expert opinion or consensus based

upon experience, physiology, or biological principles. Evidence-based medicine

resources such as critically appraised topics (CATs) or Journal Club Banks must

be evaluated on their own merits and should be peer-reviewed.

These levels of evidence are cataloged for articles of therapy or prevention,

etiology or harm, prognosis, diagnosis, decision and economic analyses. This

scheme, developed at the Centre for Evidence-Based Medicine at Oxford Uni-

versity is shown in Appendix 1.

Another classification scheme uses levels A through D to designate the

strength of recommendations based upon the available evidence. Grade A is the

strongest evidence and D the weakest. For studies of therapy or prevention, the

following is a brief description of this classification of recommendations.

Grade A is a recommendation based on the strongest study design and consists

of sublevels 1a to 1c. 1a is systematic reviews with homogeneity, free of wor-

risome variations, also known as heterogeneity, in the direction and degree

of the results between individual studies. Heterogeneity, whether statisti-

cally significant or not, does not necessarily disqualify a study and should

be addressed on an individual basis. Sublevel 1b is an individual random-

ized clinical trial with narrow confidence intervals. Studies with wide confi-

dence intervals should be viewed with care and would not qualify as 1b level

of evidence. Finally, the inclusion of the all-or-none case series as 1c evi-

dence is somewhat controversial. These studies may be helpful for studying

new, uniformly fatal, or very rare disorders, but should be viewed with care

as they are incapable of proving any elements of contributory cause and are

only considered preliminary findings.

Grade B is a recommendation based on the next level of strength of design and

includes 2a, systematic reviews of homogeneous cohort studies; 2b, strong

individual cohort studies or weak RCTs with less than 80% follow-up; and
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2c, outcomes research. Also included are 3a, systematic reviews of homoge-

neous case–control studies, and 3b, individual case–control studies.

Grade C is a recommendation based on the weakest study designs and

includes level 4, case series and lower-quality cohort and case–control stud-

ies. These studies fail to clearly define comparison groups, to measure expo-

sures and outcomes in the same objective way in both groups, to identify

or appropriately control known confounding variables, or carry out a suffi-

ciently long and complete follow-up of patients.

Finally, grade D recommendations are not based upon any scientific studies

and are therefore the lowest level of evidence. Also called level 5, they con-

sist of expert opinion without explicit critical appraisal of studies. It is based

solely upon personal experience, applied physiology, or the results of bench

research.

These strength-of-evidence recommendations apply to average patients. Indi-

vidual practitioners can modify them in light of a patient’s unique characteris-

tics, risk factors, responsiveness, and preferences about the care they receive.

A level that fail to provide a conclusive answer can be preceded by a minus

sign –. This may occur because of wide confidence intervals that result in a lack of

statistical significance but fails to exclude a clinically important benefit or harm.

This also may occur as a result of a systematic review with serious and statisti-

cally significant heterogeneity. Evidence with these problems is inconclusive and

can only generate Grade C recommendations.

A new proposal for grading evidence is in the recently published GRADE

scheme. This stands for the Grading of Recommendations Assessment, Develop-

ment and Evaluation Working Group. Established in 2000, it consists of a group

of EBM researchers and practitioners, many of whom had other quality of evi-

dence schemes that they regularly used and which were often in conflict with

each other. This group has created a uniform schema for classifying the quality

of research studies based on the ability to prove the cause and effect relationship.

The scheme is outlined in Table 17.2.1 Software for the GRADE process is avail-

able as shareware on their website: www.gradeworkinggroup.org and through

the Cochrane Collaboration.

Strength of results

The actual strength of association is the next important issue to consider. This

refers to the clinical and statistical significance of the results. It is reflected in

1 D. Atkins, D. Best, P. A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp, G. H. Guyatt, R. T. Harbour, M.C.
Haugh, D. Henry, S. Hill, R. Jaeschke, G. Leng, A. Liberati, N. Magrini, J. Mason, P. Middleton, J.
Mrukowicz, D. O’Connell, A. D. Oxman, B. Phillips, H. J. Schunemann, T. T. Edejer, H. Varonen,
G. E. Vist, W. R. Williams Jr. & S. Zaza; Grade Working Group. Grading quality of evidence and strength
of recommendations. BMJ. 2004; 328: 1490.
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Table 17.2. GRADE recommendations

High Randomized Clinical Trial – Further research is unlikely to change our

confidence in the estimate of the effects

Moderate Further research is likely to have an important impact on our confidence

in our estimate of the effects and may change the estimate

Low Cohort studies – Further research is likely to have an important impact on

our confidence in our estimate of the effects and is likely to change the

estimate

Very low Any other evidence – Any estimate of effect is uncertain

Decrease grade if:

1. Serious (−1) or very serious (−2) limitations to study quality

2. Important inconsistency

3. Some (−1) or major (−2) uncertainty about directness

4. Imprecise or sparse data (–1)

5. High probability of reporting bias (−1)

Increase grade if:

1. Strong evidence of association – significant relative risk >2 (< 0.5) based on

consistent evidence from two or more observational studies with no plausible

confounders (+1)

2. Very strong evidence of association – significant relative risk >5 (< 0.2) based on

direct evidence with no major threats to validity (+1)

3. Evidence of a dose response gradient (+1)

4. All plausible confounders would have reduced the effect (+1)

the magnitude of the effect size or the difference found between the two groups

studied. The larger the effect size and lower the P value, the more likely that the

results did not occur by chance alone and there is a real difference between the

groups. Other common measures of association are odds ratios and relative risk:

the larger they are, the stronger the association. A relative risk or odds ratio over

5 or over 2 with very narrow confidence intervals should be considered strong.

Confidence intervals (CI) quantify the precision of the result and give the poten-

tial range of this strength of association. Confidence intervals should be routinely

given in any study.

Even if the effect size, odds ratio (OR), or relative risk (RR) is statistically signif-

icant, one must decide if this result is clinically important. There are a number

of factors to consider when assessing clinical importance. First, lower levels of

RR or OR may be important in situations where the baseline risk level is fairly

high. However, if the CI for these measures is overly wide, the results are less

precise and therefore less meaningful. Second, finding no effect size or one that

was not statistically significant may have occurred because of lack of power. The

skew of the CI may give a subjective sense of the power of a negative study. Last,
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other measures of strength of association include the number needed to treat to

get benefit (NNTB), obtained from randomized clinical trials, and the number

needed to screen to get benefit (NNSB) and number needed to treat to get harm

(NNTH), obtained from cohort or case–control studies.

John Snow performed what is acknowledged as the first modern recorded epi-

demiologic study in 1854. Known as the Broad Street Pump study, he proved that

the cause of a cholera outbreak in London was the pump on Broad Street. This

pump was supplied by water from one company and was associated with a high

rate of cholera infection in the houses it fed, while a different company’s pump

had a much lower rate of infection. The relative risk of death was 14, suggesting

a very strong association between consumption of water from the tainted pump

and death due to cholera. A modern-day example is the high strength of associ-

ation in the connection between smoking and lung cancer. Here the relative risk

in heavy smokers is about 20. With such high association, competing hypotheses

for the cause of lung cancer are unlikely and the course for the clinician should

be obvious.

Consistency of evidence

The next feature to consider when looking at levels of evidence is the consistency

of the results. Overall, it is critical that different researchers in different settings

and at different times should have done research on the same topic. The results

of these comparable studies should be consistent, and if the effect size is similar

in these studies, the evidence is stronger. Be aware that less consistency exists in

those studies that use different research designs, clinical settings, or study pop-

ulations. A good example of the consistency of evidence occurred with studies

looking at smoking and lung cancer. For this association, prior to the 1965 Sur-

geon General’s report, there were 29 retrospective and 7 prospective studies, all

of which showed an association between smoking and lung cancer.

A single study that shows results that are discordant from many other stud-

ies suggests the presence of bias in that particular study. However, sometimes

a single large study will show a discordant result compared with multiple small

studies. This may be due to lack of power of the small studies and if this occurs,

the reader must carefully evaluate the methodology of all the studies and use

those studies with the best and least-biased methodology. In general, large stud-

ies result in more believable results. If a study is small, a change in the outcome

status of one or two patients could change the entire study conclusion from pos-

itive to negative.

Specificity

The next characteristic to consider is the specificity of the results. This means

making sure that the cause in the study is the actual factor associated with the
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effect. Often, the putative risk factor is confused with a confounding factor or a

surrogate marker may produce both cause and effect.

Specificity can be a problematic feature of generalization as there are usually

multiple sources of causation in chronic illness and multiple effects from one

type of cause. For example, before the advent of milk pasteurization, there were

multiple diverse diseases associated with the consumption of milk. A few of these

were tuberculosis, undulant fever, typhoid, and diphtheria. To attribute the cause

of all these diseases to the milk ignores the fact that what they have in common

is that they are all caused by bacteria. The milk is simply the vehicle and once the

presence of bacteria and their role in human diseases were determined, it could

be seen that ridding milk of all bacteria was the solution to preventing milkborne

transmission of these diseases. Then the next step was inspecting the cows for

those same diseases and eradicating them from the herd.

We can relate this concept to cancer of the lung in smokers. Overall, the death

rate in smokers is higher than in non-smokers. For most causes of death, the

increase in death rate in smokers is about double (200%) that of nonsmokers.

However, for lung cancer specifically, the increase in the death rate in smokers

is almost 2000%, an increase of 20 times. This lung cancer death rate is more

specific than the increased death rate for other diseases. In those other diseases,

smoking is a less significant risk factor, since there are multiple other factors that

contribute to the death rate for those diseases. However, it is still a factor! In lung

cancer, smoking is a much more significant factor in the death rate.

Temporal relationship

The next characteristic that should be considered is the temporal relationship

between the purported cause and effect. In order to have a temporal relationship,

there should be an appropriate chronological sequence of events found by the

study. The disease progression should follow a predictable path from risk-factor

exposure to the outcome and that pattern should be reproducible from study to

study. Be aware that it is also possible that the effect may produce the cause. For

example, some smokers quit smoking just prior to getting sick with lung cancer.

While they may attribute their illness to quitting, the illness was present long

before they finally decided to quit. Is quitting smoking the cause and lung cancer

the effect? In this case, the cancer may appear to be the cause and the cessation

of smoking the effect. The causality may be difficult to determine in many cases,

especially with slowly progressive and chronic diseases.

Dose–response

The dose–response gradient can help define cause and effect if there are varying

concentrations of the cause and varying degrees of association with the effect.

Usually, the association becomes stronger with increasing amounts of exposure
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to the cause. However, some cause-and-effect relationships show the opposite

correlation, with increasing strength of association when exposure decreases. An

example of this inverse relationship is the connection between vitamin intake

and birth defects. As the consumption of folic acid increases in a population, the

incidence of neural tube birth defects decreases. The direction and magnitude

of the effect should also show a consistent dose–response gradient. This gradient

can be demonstrated in randomized clinical trials and cohort studies but not in

case–control or descriptive studies.

In general, we would expect that an increased dose or duration of the cause

would produce an increased risk or severity of the effect. The more cigarettes

smoked, the higher the risk of lung cancer. The risk of lung cancer decreases

among former smokers as the time from giving up smoking increases. Some phe-

nomena produce a J-shaped curve relating exposure to outcome. In these cases,

the risk is highest at both increased and decreased rates of exposure while it is

lowest in the middle. For example, a recent study of the effect of obesity on mor-

tality showed a higher mortality among patients with the highest and lowest body

mass index with the lowest mortality among people with the mid-range levels of

body mass index.

Biological plausibility

When trying to decide on applicability of study results, biological plausibility

should be considered. The results of the study should be consistent with what we

know about the biology of the body, cells, tissues, and organs, and with data from

various branches of biological sciences. There should be some basic science in-

vitro bench or animal studies to support the conclusions and previously known

biologic mechanisms should be able to explain the results. Is there a reason in

biology that men and women smokers will have different rates of lung cancer?

For some medical issues, gender, ethnicity, or cultural background has a huge

influence while for other medical issues the influence is very little. To determine

which areas fall into each category, more studies of gender and other differences

for medical interventions are required.

Coherence of the evidence over time

In order to have strong evidence, there should be consistency of the evidence

over varying types of studies. The results of a cohort study should be similar to

those of case–control or cross-sectional studies done on the same cause-and-

effect relationship. Studies that show consistency with previously known epi-

demiological data are said to evidence epidemiological consistency. Also, results

should agree with previously discovered relationships between the presumed

cause and effect in studies done on other populations around the world. An
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association of high cholesterol with increased deaths due to myocardial infarc-

tion was noted in several epidemiological studies in Scandinavian countries.

A prospective study in the United States found similar results. As an aside, a

potential confounding factor in this is the increase in cigarette smoking and

related diseases in men after World War I and women following World War II.

Analogy

Reasoning by analogy is one of the weakest criteria allowing generalization.

Knowing that a certain vitamin deficiency predisposes women to deliver babies

with certain birth defects will marginally strengthen the evidence that another

vitamin or nutritional factor has a similar effect. When using analogy, the pro-

posed cause-and-effect relationship is supported by findings from studies using

the same methods but different variables. For example, multiple studies using

the same methodology have demonstrated that aspirin is an effective agent

for the secondary prevention of myocardial infarction (MI). From this, one could

infer that a potent anticoagulant like warfarin ought to have the same effect.

However, warfarin may increase mortality because of the side effect of causing

increased bleeding. How about suggesting that warfarin use decreases the risk of

stroke in patients who have had transient ischemic attacks, or MI in patients with

unstable angina? Again, although it is suggested by an initial study, the proposed

new intervention may not prove beneficial when studied alone.

Common sense

Finally, in order to consider applying a study result to a patient, the association

should make sense and competing explanations associating risk and outcome

should be ruled out. For instance, very sick patients are likely to have a poor out-

come even if given a very good drug, thus making the drug look less efficacious

than it truly is. Conversely, if most patients with a disease do well without any

therapy, it may be very difficult to prove that one drug is better than another

for that disease. This is referred to as the Pollyanna effect. When dealing with

this effect, an inordinately large number of patients would be necessary to prove

a beneficial effect of a medication. There are a few consequences of not using

common sense. It may lead to the overselling of potent drugs, and may result

in clinical researchers neglecting more common, cheaper, and better forms of

therapy. Similarly, patients thinking that a new wonder drug will cure them may

delay seeking care at a time when a potentially serious problem is easily treated

and complications averted.

Finally, it is up to the individual physician to determine how a particular piece

of evidence should be used in a particular patient. As stated earlier, this is the art
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of medicine. There are many people that decry the slavish use of EBM in patient-

care decisions. There are also those who demand that we use only the highest

evidence. There must be a middle ground. We must learn to use the best evi-

dence in the most appropriate situations and communicate this effectively to

our patients. There is a real need for more high-quality evidence for the practice

of medicine, however, we must treat our patients now with the highest-quality

evidence available.

Pathman’s Pipeline

The Pathman ‘leaky’ pipeline is a model of knowledge transfer, taking the best

evidence from the research arena into everyday practice. This model considers

the ways that evidence will be lost in the process of diffusion into the everyday

practice of medicine. It was developed by D.E. Pathman, a family physician in

the 1970s, to model the reasons why physicians did not vaccinate children with

routine vaccinations. It has been expanded to model the reasons that physicians

don’t use the best evidence (Fig. 17.2). Any model of EBM must consider the con-

sequences of the constructs in this model on the behavior of practicing physi-

cians and acceptability of evidence by patients.

Providers must be aware of the evidence through reading journals or getting

notification through list services or other on-line resources or Continuing Med-

ical Education (CME). They must then accept the evidence as being legitimate
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and useful. This follows a bell-shaped curve with the innovators followed by the

early adopters, early majority, late majority, and finally the laggards. Providers

must believe that the evidence is applicable to their patients, specifically the one

in their clinic at that time. They must then be able to perform the intervention.

This can be a problem in rural areas or less developed countries. Finally, the

providers must act upon the evidence and apply it to their patients. However,

it is still up to the patient to agree to accept the evidence and finally be com-

pliant and adhere to the evidence. The next chapter will discuss the process of

communication of the best evidence to patients.
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Communicating evidence to patients

Laura J. Zakowski, M.D., Shobhina G. Chheda, M.D., M.P.H., and

Christine S. Seibert, M.D.

Think like a wise man but communicate in the language of the people.

William Butler Yeats (1865–1939)

Learning objectives

In this chapter you will learn:
� when to communicate evidence with a patient
� five steps to communicating evidence
� how health literacy affects the communication of evidence
� common pitfalls to communicating evidence and their solutions

When a patient asks a question, the health-care provider may need to review

evidence or evidence-based recommendations to best answer that question.

Once familiar with study results or clinical recommendations directed at the

patient’s question, communicating evidence to a patient occurs through a vari-

ety of methods. Only when the patient’s perspective is known, can this advice be

tailored to the individual patient. This chapter addresses both the patient’s and

the health-care provider’s role in the communication of evidence.

Patient scenario

To highlight the communication challenges for evidence-based medicine, we

will start with a clinical case. A patient in clinic asks whether she should take

aspirin to prevent strokes and heart attacks. She is a 59-year-old woman who

has high cholesterol (total cholesterol 231 mg/dL, triglycerides 74 mg/dL, HDL

cholesterol 52 mg/dL, and LDL cholesterol 164 mg/dL), BMI 35 kg/m2 and

sedentary lifestyle. She has worked for at least a year on weight loss and choles-

terol reduction through diet and is frustrated by her lack of results. She is other-

wise healthy. Her family history is significant for stroke in her mother at age 75

199
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Table 18.1. Steps for communicating evidence with

patients

1. Understand the patient’s experience and expectations

2. Build partnerships

3. Provide evidence, including uncertainties

4. Present recommendations

5. Check for understanding and agreement

From: R. M. Epstein, B. S. Alper & T. E. Quill. Communi-

cating evidence for participatory decision making. JAMA.

2004; 291: 2359–2366.

and heart attack in her father at age 60. She is hesitant to take medication, how-

ever, she wants to know if she should take aspirin to prevent strokes and heart

attacks. Throughout the chapter, we will refer to this case and the dilemma that

this patient presents.

Steps to communicating evidence

Questions like this do not have a simple yes or no answer; therefore more dis-

cussion between the provider and the patient is often needed. This discussion

provides an opportunity for the provider to encourage the patient to be involved

in the decision. Shared or participatory decision making is part of a larger effort

toward patient-centered care, where neither the patient nor the provider makes

the decision about what to do, rather both parties participate. The provider is

responsible for getting the best available evidence to the patient, who must then

be assisted in interpreting this evidence and putting it into the context of their

life.

Very little evidence exists as to the best approach to communicate evidence to

patients in either shared or physician-driven decision-making models. However,

Epstein and colleagues have proposed a step-wise approach to this discussion

using a shared decision model of communication that we have found helpful

(Table 18.1). We use these steps as a basis for discussion about communication

of evidence.

Step 1: Understand the patient’s experience and expectations

Using the patient’s query about aspirin as an example, first determine why the

patient is asking, using a simple question such as “What do you know about
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how aspirin affects heart attacks and strokes?” This will help the provider under-

stand if the patient has a rudimentary or more advanced understanding of the

question. When communicating evidence, knowing the patient’s baseline under-

standing of the question avoids reviewing information of which the patient is

already aware. Finding the level of understanding is a sure way to acknowledge

that the process of care is truly patient-centered.

This first step helps determine if it is necessary to communicate evidence. A

patient with a question does not automatically trigger the need for a discussion

of the evidence, since a patient may have already decided the course of action

and asks the question as a means of validation of her knowledge. A patient may

also ask a question that does not require a review of the evidence. For exam-

ple, a patient may ask her physician’s opinion about continuing her bisphos-

phonate for osteoporosis. When asking her further about her perspective, she

tells you that she is concerned about the cost of the treatment. In this case,

communication of the benefits of bisphosphonates will not answer her ques-

tion directly. Rather, understanding her financial limitations is more appropri-

ate. For some questions about therapy, there may be no need to discuss evidence,

because the patient and the provider may be in clear agreement about the treat-

ment. Our patient’s question of aspirin as a preventive treatment against stroke

and heart attacks is one that seems to require a discussion of the best available

evidence.

Though typical office visits are short, taking time to understand the patient’s

perspective may help avoid cultural assumptions. For example, when seeing

a patient who is culturally different from you, one might assume that the

patient’s values are different as well. On the other hand, it is easy to make false

assumptions of shared values based on misperceived similarities of backgrounds

between the provider and the patient. Understanding the patient’s perspective

comes from active questioning of the patient to determine their values and per-

spectives and avoids assumptions about similarities and differences.

Patients have varying levels of understanding of health-care issues, some with

vast and others with limited previous health-care experience and levels of under-

standing. The patient’s level of health literacy clearly affects her perspective on

the question and how she will interpret any discussion of results and recom-

mendations. During the initial phases of the discussion about her question, it is

important to understand her health literacy and general literacy level. Asking the

patient what she knows about the problem can provide an impression of health

literacy. This may be adequate, but asking a question such as: “How comfortable

are you with the way you read?” can provide an impression of general literacy.

This initial step also helps to frame a benefit and risk discussion. For example,

if a patient wishes to avoid taking a medication because he or she is more con-

cerned about the side effects of treatment than the benefits of treatment, focus

the discussion on the evidence in this area.
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Pitfalls to understanding the patient’s experience and expectations

Some of the most well-designed studies, which have the highest potential to

affect practice, are often time-limited and do not always address long-term

effects, about which patients frequently have an interest. Also, many studies

report major morbidity and mortality of treatment, yet, patients may be more

concerned about the quality-of-life effects of treatment over many years. In other

studies, the use of composite outcomes can make it difficult to directly answer

a patient’s question since some of these are more important to the patient than

others. The patient in our example wishes to know whether aspirin reduces the

risk of heart attack. Although one may find a study that shows a statistically

significant reduction of myocardial infarction, if the result is only reported as

a composite outcome along with other outcomes such as reduced incidence of

angina and heart failure, the result will not directly address your patient’s ques-

tion. Since this type of presentation of data is used by authors when an individ-

ual outcome is not itself statistically significant, the combination of outcomes

is used to achieve statistical significance and get the study published. But, the

composite is often made up of various outcomes not all of which have the same

value to the patient. The goal of a discussion with the patient is to explain the

results of each of the composite components so that she can make up her mind

about which of the outcomes are important to her.

Recommendations for understanding the patient’s experience
and expectations

The patient’s perspective on the problem as well as the available evidence deter-

mines the true need to proceed with further steps to communicate evidence. It

is possible that the patient’s questions relate only to background information,

which is clearly defined in the science of medicine and not dependent on your

interpretation of the most recent research evidence for an answer. Then, if evi-

dence is needed to answer a patient’s question, first check to see whether it truly

addresses the patients query about her desired outcomes rather than outcomes

that are not important to the patient.

Step 2: Build partnerships

Taking time for this step is a way to build rapport with the patient. After dis-

cussing the patient’s perspective, an impression will have developed of whether

one generally agrees or disagrees with the patient. At this point in the discussion,
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it should be clear what, if any, existing evidence may be of interest to the patient.

The physician will also have a good understanding of whether to spend a major-

ity of their time discussing basic or more advanced information. Using phrases

such as “Let me summarize what you told me so far” or “It sounds like you are

not sure what to do next” can help to build partnership that will allow a transition

to the third step in the process of communicating evidence. In the example, the

patient who is interested in aspirin for prevention of strokes and heart attacks is

frustrated by her lack of reduction of weight or cholesterol after implementing

some lifestyle changes. Expressing empathy for her struggles will likely help the

patient see you as partner in her care.

Step 3: Provide evidence

As health-care providers, numbers are an important consideration in our

decision-making process. While some may want the results this way, many

patients do not want results to be that specific or in numerical form. As a general

rule, patients tend to want few specific numbers, although patients’ preferences

range from not wanting to know more than a brief statement or the “bottom line”

of what the evidence shows to wanting to know as much as is available about

the actual study results. Check the patient’s preference for information by ask-

ing: “Do you want to hear specific numbers or only general information?” Many

patients aren’t sure about this, and many providers don’t ask. Another way to

start is by giving minimal information and allowing the patient to ask for more, or

follow this basic information by asking the patient whether more specific infor-

mation is desired. Previous experiences with the patient can also assist in deter-

mining how much information to discuss.

Presenting the information

There are a number of ways to communicate information to patients and under-

standing the patient’s desires can help determine the best way to do this. The first

approach is to use conceptual terms, such as “most patients” or “almost every

patient” or “very few patients.” This approach avoids the use of numbers when

presenting results. A second approach is to use general numerical terms, such as

“half the patients” or “1 in 100 patients.” The use of numerical terms is more pre-

cise than conceptual terms, but can be more confusing to patients. While these

are the most common verbal approaches, both conceptual and numerical rep-

resentations can be graphed, either with rough sketches or stick figures. In a few

clinical situations, more refined means of communicating evidence have been
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developed, such as decision aid programs available for prostate cancer screen-

ing. The patient answers questions at a computer about his preferences regard-

ing prostate cancer screening and treatment. These preferences then determine

a recommendation for that patient about prostate cancer screening using a

decision tree similar to the ones that will be discussed in Chapter 30. Unfortu-

nately, these types of programs are not yet widely developed for most decision

making.

The quality of the evidence also needs to be communicated in addition to a

discussion of the risks and benefits of treatment. For example, if the highest level

of evidence found was an evidence-based review from a trusted source, the qual-

ity of the evidence being communicated is higher and discussions can be done

with more confidence. If there is only poor quality of evidence, such as would be

available only from a case series, the provider will be less confident in the quality

of the evidence and should convey more uncertainty.

Pitfalls to providing the evidence

The most common pitfall when providing evidence is giving the patient more

information than she wants or needs although often the most noteworthy pit-

falls are related to the misleading nature of words and numbers. Consider this

example: A patient who has a headache asks about the cause. The answer given

to the patient is: “Usually headaches like yours are caused by stress. Only in

extremely rare circumstances is a headache like yours caused by a brain tumor.”

How frequently is this type of headache caused by stress? How frequently is

this type of headache caused by a brain tumor? In this example, expressing the

common nature of stress headaches as “usually” can be very vague. When res-

idents and interns in medicine and surgery were asked to quantify this term,

they chose a range of percents between 50–95%. In this example stating that

headaches due to a brain tumor occurred only in “extremely rare” circum-

stances is also imprecise. When asked to quantify “extremely rare” residents and

interns chose a range of percents between 1–10%. Knowing that the disease is

rare or extremely rare may be consoling, but if there is a 1 to 10% chance that

it is present, this may not be very satisfactory for the patient. It is clear that

there is a great potential for misunderstanding when converting numbers to

words.

Unfortunately, using actual numbers to provide evidence is not necessarily

clearer than words. Results of studies of therapy can be expressed in a variety

of ways. For example in a study where the outcomes are reported in binary terms

such as life or death, or heart attack or no heart attack, a physician can describe

the results numerically as a relative risk reduction, an absolute risk reduction,

a number needed to treat to benefit, length of survival or disease-free interval.

When describing outcomes, results have the potential to sound quite different
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to a patient. The following example describes the same outcome in different

ways:
� Relative risk reduction: This medication reduces heart attacks by 34% when

compared to placebo.
� Absolute risk reduction: When patients take this medication, 1.4% fewer

patients taking it experienced heart attacks compared to placebo.
� Number needed to treat to benefit (NNTB): For every 71 patients treated with

this medication, one additional patient will benefit. This also means that

for every 71 patients treated, 70 get no additional benefit from taking the

medication.
� Calculated length of disease-free interval: Patients who take this medication

for 5 years will live approximately 2 months longer before they get a heart

attack.

When treatment benefits are described in relative terms such as a relative risk

reduction, patients are more likely to think that the treatment is helpful. The

description of outcomes in absolute terms such as absolute risk reduction, leads

patients to perceive less benefit from the medications. This occurs because the

relative changes sound bigger than absolute changes and are, therefore, more

attractive. When the NNTB and length of disease-free survival are compared, a

recent study showed that patients preferred treatment outcomes to be expressed

as NNTB. The authors of this study suggested that patients saw the NNTB as an

avoidance of a heart attack or as a gamble, thinking that “maybe I will be the one

who won’t have the heart attack,” as opposed to a postponement of an inevitable

event.

A patient’s ability to understand study results for diagnostic tests may be ham-

pered by using percentages instead of frequencies to describe those outcomes.

Gigerenzer has demonstrated that for most people, describing results as 2%

instead of 1 in 50 will more likely be confusing (see the Bibliography). Using these

“natural frequencies” to describe statistical results can make it much easier to

understand fairly complex statistics. When describing a diagnostic test using nat-

ural frequencies, give the sensitivity and specificity as the number who have dis-

ease and will be detected (True Positive Rate) and the number who don’t have the

disease and will be detected as having it (False Positive Rate). Then you can give

the numbers who have the disease and a positive or negative test as a propor-

tion of those with a positive or negative test. The concept of natural frequencies

has been described in much more detail by Gerd Gigerenzer in his book about

describing risk.

Patients’ interpretations of study results are frequently affected by how the

results of the study are presented, or framed. For example, if a study evaluated an

outcome such as life or death, this can be presented in either a positive way by

saying that 4 out of 5 patients lived or a negative way, that 1 out of 5 patients died.

The use of positive or negative terms to describe study outcomes does influence

a patient’s decision and is described as framing bias.
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A study of patients, radiologists, and business students illustrated this point.

They were asked to imagine they had lung cancer and to choose between surgery

and radiation therapy. When the same results were presented first in terms of

death and then in terms of life, about one quarter of the study subjects changed

their mind about their preference. To avoid confusion associated with use of

either percentages or framing biases, using comparisons can be helpful. For

example, if a patient is considering whether to proceed with a mammogram,

using a statement such as “The effect of yearly screening is about the same as

driving 300 fewer miles per year” is helpful, if known. This puts the risk into per-

spective with a common daily risk of living and helps the patient put it into per-

spective. We will discuss this further when talking about quantifying patient val-

ues in Chapter 30.

Recommendations about providing the evidence

The most important recommendation is to avoid overwhelming the patient with

too much information. The key to avoiding this pitfall is to repeatedly check with

the patient before and during delivery of the information to find out how much

she understands. Using verbal terms such as “usually” instead of numbers is less

precise, and may give unintended meaning to the information. If use of num-

bers is acceptable to the patient, we recommend using them. When numbers are

used as part of the discussion present them in natural frequencies rather than

percents. If familiar comparisons are available, this can be additionally helpful.

To avoid the framing bias, results should be presented in both positive and neg-

ative terms.

Another recommendation is to use a variety of examples to communicate evi-

dence. For our example patient who is interested in aspirin to prevent heart

attacks and strokes, it may be most practical to use multiple modalities for pre-

senting information including verbal and pictorial presentations, presenting the

evidence in this way: “In a large study of women like you who took aspirin for

10 years, there was no difference in number of heart attacks between patients

who took aspirin and those who didn’t. Two out of 1000 fewer women who took

aspirin had strokes. In that study, 1 out of 1000 women experienced excessive

bleeding from the aspirin.”

Step 4: Present recommendations

If a number of options exist and one is not clearly superior, the choices should

be presented objectively. If one has a strong belief that one option is the best for

the patient, state that with an explicit discussion of the evidence and how the
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option best fits with the patient’s values. This step is closely connected to the

strength of the evidence. When the evidence is less than robust from weak study

designs or because there are no known studies available, you cannot give strong

evidence-based recommendations and must mitigate this by presenting options.

When the evidence is stronger, present a recommendation and explain how that

recommendation may meet the patient’s goals. In all cases, the physician has

to be careful about differentiating evidence-based recommendations from those

generated from personal experiences or biases regarding treatment.

For our patient interested in aspirin for prevention of strokes and heart attacks,

we might say: “While I understand it has been hard to lose weight and reduce

your cholesterol, taking an aspirin won’t help you prevent heart attacks and is

only very minimally helpful in preventing strokes. I do not recommend that you

take aspirin.”

Step 5: Check for understanding and agreement

Bringing the interview to a close should include checking for understanding by

using questions such as “Have I explained that clearly?”. This may not be enough.

Instead ask the patient “How would you summarize what I said?” This is more

likely to indicate whether the patient understands the evidence and your recom-

mendations. Another important part of this step is to allow the patient time to

ask questions. When the physician and the patient are both in agreement that

the information has been successfully transmitted and all questions have been

answered, then a good decision can be made.
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Critical appraisal of qualitative research studies

Steven R. Simon, M.D., M.P.H.

You cannot acquire experience by making experiments. You cannot create experience. You

must undergo it.

Albert Camus (1913–1960)

Learning objectives

In this chapter you will learn:
� the basic concepts of qualitative research
� process for critical appraisal of qualitative research
� goals and limitations of qualitative research

While the evidence-based medicine movement has espoused the critical

appraisal and clinical application of controlled trials and observational studies

to guide medical decision making, much of medicine and health care revolves

around issues and complexities not ideally suited to quantitative research. Qual-

itative research is a field dedicated to characterizing and illuminating the knowl-

edge, attitudes, and behaviors of individuals in the context of health care and

clinical medicine. Whereas quantitative research is interested in testing hypothe-

ses and estimating effect sizes with precision, qualitative research attempts to

describe the breadth of issues surrounding a problem or issue, frequently yield-

ing questions and generating hypotheses to be tested. Qualitative research in

medicine frequently draws on expertise from anthropology, psychology, and

sociology, fields steeped in a tradition of careful observation of human behavior.

Unfortunately, some in medicine have an attitude that qualitative research is not

particularly worthwhile for informing patient care. But, you will see that qual-

itative studies can be powerful tools to expose psychosocial issues in medicine

and as hypothesis-generating studies about personal preferences of patients and

health-care workers.

208
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Types of qualitative research studies

Qualitative research studies usually involve the collection of a body of informa-

tion, through direct observation, interviews, or existing documents. Researchers

then apply one or more analytic approaches to sift through the available

data to identify the main themes and the range of emotions, concerns, or

approaches. In the medical literature, in-depth interviews with individuals such

as patients or health-care providers and focus-group interviews and discus-

sions among patients with a particular condition are the most common study

designs encountered. Observations of clinical behavior and analyses of nar-

ratives found in medical documents (e.g., medical records) also appear with

some frequency. Examples of the qualitative research studies are described in

Table 19.1.

When is it appropriate to use qualitative research?

Qualitative research is an appropriate approach to answering research questions

about the social, attitudinal, behavioral, and emotional dimensions of health

care. When the spectrum of perspectives needs to be known for the develop-

ment of interventions such as educational programs or technological implemen-

tations, qualitative research can characterize the barriers to and facilitators of

change toward the desired practice. This can be the initial research to deter-

mine the barriers to adoption of new research results in general practice. When

the research question is, “Why do patients behave in a certain way?” or “What

issues drive a health-care organization to establish certain policies?”, qualitative

research methods offer a rigorous approach to data collection and analysis that

can reduce the need to rely on isolated anecdote or opinion.

What are the methods of qualitative research?

Although qualitative research studies have more methodological latitude to

accommodate the wide range of data used for analysis, readers of qualitative

research reports can nevertheless expect to find a clear statement of the study

objectives, an account of how subjects were selected to participate and the ratio-

nale behind that selection process, a description of the data elements and how

they were collected, and an explanation of the analytic approach. Readers of

qualitative studies should be able to critically appraise all of these components

of the research methods.
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Table 19.1. Examples of Qualitative Research Studies

In-depth interviews

In developing an intervention to improve the use of acid-reducing medications in an

HMO, researchers carried out in-depth interviews with 10 full-time primary care

physicians about their knowledge, attitudes, and practice regarding dyspepsia; the use

of chronic acid-suppressing drugs; approaches to diagnosing and treating Helicobacter

pylori infection; and the feasibility and acceptability of various potential interventions

that might be used in a quality improvement program to explore the rationale

underlying various medication decisions and the barriers to prescribing consistent

with evidence-based guidelines. (Reference: S. R. Majumdar, S. B. Soumerai, M. Lee &

D. Ross-Degnan. Designing an intervention to improve the management of

Helicobacter pylori infection. Jt. Comm. J. Qual. Improv. 2001; 27:405–414.)

Focus-group interviews

To investigate the role of secrets in medicine, researchers conducted a series of eight

focus groups among 61 primary care physicians in Israel with a wide variety of

seniority, ethnic, religious, and immigration backgrounds. The authors’ analysis

revealed insights about definitions, prevalence, process, and content of secrets in

primary care. (Reference: S. Reis, A. Biderman, R. Mitki & J. M. Borkan. Secrets in

primary care: A qualitative exploration and conceptual model. J. Gen. Intern. Med.

2007; 22: 1246–1253.)

Observation of clinical encounters

In a study of patient–physician communication about colorectal cancer screening,

researchers drew from an existing data set of videotaped primary care encounters to

explore the extent to which colorectal cancer screening discussions occur in everyday

clinical practice. The researchers transcribed the videotaped discussions and reviewed

both the videotapes and the transcriptions, coding content related to the specific types

of screening discussed, messages conveyed, and time spent. (Reference: M. S. Wolf, D.

W. Baker & G. Makoul. Physician-patient communication about colorectal cancer

screening. J. Gen. Intern. Med. 2007; 22: 1493–1499.)

Study objective

The study objective should be explicitly stated, usually in the Introduction sec-

tion of the article. This objective is often framed as a research question and is

the alternative or research hypothesis for the study. Unlike quantitative research

studies, where the study objective is generally very specific and outcome-based,

the objective or research question in qualitative studies frequently has a non-

specific or general flavor. In fact, it is one of the strengths of qualitative research

that the specific details surrounding the study objective often emerge through

the data collection and the analytic processes can actually change the direction
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of the research. Nevertheless, it is important for readers to be able to assess what

the researchers originally set out to accomplish.

Sampling

While quantitative research studies generally recruit participants through ran-

dom selection or other similar approaches to minimize the potential for selec-

tion bias, qualitative research studies are not concerned with accruing a pool

of individuals that resemble the larger population. Instead, qualitative studies

use purposive sampling, the intentional recruitment of individuals with spe-

cific characteristics to encompass the broadest possible range of perspectives

on the issue being studied. In qualitative research, a sample size is generally

not pre-specified. Instead, researchers identify and recruit participants until it

becomes apparent that all salient attitudes or perspectives have been identi-

fied. This approach is known variously as theoretical saturation or sampling to

redundancy. Readers should assess the researchers’ rationale for selecting and

sampling the set of study participants, and that rationale should be consistent

with the study objectives.

Data Collection

In assessing the validity of the results of quantitative studies, the reader can con-

sider whether and how all relevant variables were measured, whether adequate

numbers of study participants were included, and whether the data were mea-

sured and collected in an unbiased fashion. Similarly, in qualitative research

studies, the reader should expect to find a credible description of how the

researchers obtained the data and be able to assess whether the data collec-

tion approach likely yielded all relevant perspectives or behaviors being stud-

ied. This criterion is tricky for both researchers and readers, since determining

the spectrum of relevant concepts likely comprises part of the study’s objective.

Researchers should describe the iterative process by which they collected infor-

mation and used the data to inform continued data collection. The approach

chosen for data collection should combine feasibility and validity. Readers

should ask, and authors should articulate, whether alternative approaches were

considered and, if so, why they were not taken.

Authors should also detail the efforts undertaken to ascertain information that

may be sensitive for a variety of reasons. For example, there may be issues of

privacy or social standing which could prevent individuals from revealing infor-

mation relevant to the study questions. Researchers and readers must always

be concerned about social desirability bias when considering the responses
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or comments that participants may provide when they know they are being

observed. The extent to which researchers attempt to collect richly detailed per-

spectives from study subjects can help to reassure the reader that subjects at least

had ample opportunity to express their knowledge, attitudes, or concerns.

Analysis

There is no single correct approach to analyzing qualitative data. The approach

that researchers take will reflect the study question, the nature of the available

data, and the preferences of the researchers themselves. This flexibility can be

daunting for researcher and reader alike. Nevertheless, several key principles

should guide all qualitative analyses, and readers should be able to assess how

well the study adhered to these principles.

All data should be considered in the analysis. This point may seem obvious,

but it is important that readers feel reasonably confident that the data collection

not only captured all relevant perspectives but that the analysis did not disregard

or overlook elements of data that should be considered. There is no sure-fire way

to determine whether all data were included in the analysis, but readers can rea-

sonably expect study authors to report that they used a systematic method for

cataloguing all data elements. While not essential, many studies use computer

software to manage data. Consider whether multiple observers participated in

the analysis and whether the data were reviewed multiple times. The agreement

between observers, also known as the inter-rater reliability, should be measured

and reported.

The results of interviews or open-ended questions can be analyzed using an

iterative technique of identification of common themes. First the answers to

questions given by an initial group are reviewed and the important themes are

selected by one observer. The responses are catalogued into these themes. A sec-

ond researcher goes over those same responses with the list of themes and cat-

alogues the responses, blinded from the results of the first researcher. Following

this process, inter-rater reliability is assessed and quantified using a test such as

the Kappa statistic. If the degree of agreement is substantial, one reviewer can

categorize and analyze the remaining responses.

Studies of human subjects’ attitudes or perspectives rarely yield a set of obser-

vations that unanimously signal a common theme or perspective. It is common

in qualitative studies for investigators to come upon observations or sentiments

that do not seem to fit what the preponderance of their data seem to be signaling.

These discrepancies are to be expected in qualitative research and, in fact, are

an important part of characterizing the range of emotions or behaviors among

the study participants. Readers should be suspicious of the study’s findings if the

results of a qualitative study all seem to fall neatly in line with one salient emerg-

ing theory or conclusion.
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Researchers should triangulate their observations. Triangulation refers to the

process by which key findings are verified or corroborated through multiple

sources. For example, researchers will frequently have subjective reactions to

qualitative data, and these reactions help them to formulate conclusions and

should lead to further data collection. Having multiple researchers indepen-

dently analyzing the primary data helps to ensure that the findings are not

unduly influenced by the subjective reactions of a single researcher. Another

form of triangulation involves comparing the results of the analysis with exter-

nal information, either from or about the study participants or from other stud-

ies. Theories or conclusions from one study may not be consistent with existing

theories in similar fields, but when such similarities are observed, or when the

results would seem to fit broader social science theories or models, researchers

and readers may be more confident about the validity of the analysis.

Researchers frequently perform another form of triangulation known as

member-checking. This approach involves taking the study findings back to the

study participants and verifying the conclusions with them. Frequently, this pro-

cess of member-checking will lead to additional data and further illumination of

the conclusions. Since the purpose of qualitative research is, in large measure, to

describe or understand the phenomena of interest from the perspective of the

participants, member-checking is useful, because the participants are the only

ones who can legitimately judge the credibility of the results.

Readers of qualitative articles will encounter a few analytic approaches and

principles that are commonly employed and deserve mention by name. A con-

tent analysis generally examines words or phrases within a wide range of texts

and analyzes them as they are used in context and in relationship with other lan-

guage. An example of a content analytic strategy is immersion-crystallization.

Using this approach, researchers immerse themselves repeatedly in the collected

data, usually in the form of transcripts or audio or video recordings, and through

iterative review and interaction in investigator meetings, coupled with reflection

and intuitive insight, clear, consistent, and reportable observations emerge and

crystallize.

Grounded theory is another important qualitative approach that readers will

encounter. The self-defined purpose of grounded theory is to develop theory

about phenomena of interest, but this theory must be grounded in the reality

of observation. The methods of grounded theory research include coding, mem-

oing, and integrating. Coding involves naming and labeling sentences, phrases,

words, or even body language into distinct categories; memoing means that the

researchers keep written notes about their observations during data analysis and

during the coding process; and integration, in short, involves bringing the coded

information and memos together, through reflection and discussion, to form

a theory that accounts for all the coded information and researchers’ observa-

tions. For grounded theory, as for any other qualitative approach, triangulation,

member-checking and other approaches to ensuring validity remain relevant.
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Applying the results of qualitative research

How do I apply the results?

Judging the validity of qualitative research is no easy task, but determining

when and how to apply the results is even murkier. When qualitative research

is intended to generate hypotheses for future research or to test the feasibility

and acceptability of interventions, then applying the results is relatively straight-

forward. Whatever is learned from the qualitative studies can be incorporated in

the design of future studies, typically quantitative, to test hypotheses. For exam-

ple, if a qualitative research study suggests that patients prefer full and timely

disclosure when medical errors occur, survey research can determine whether

this preference applies broadly and whether there are subsets of the population

for whom it does not apply. Moreover, intervention studies can test whether edu-

cating clinicians about disclosure results in greater levels of patient satisfaction

or other important outcomes.

But when can the results of qualitative research be applied directly to the day-

to-day delivery of patient care? The answer to this question is, as for quantitative

research, that readers must ask, “Were the study participants similar to those in

my own environment?” If the qualitative study under review included patients

or community members, were they similar in demographic and clinical charac-

teristics to patients in my own practice or community? If the study participants

were clinicians, were their clinical and professional situations similar to my own?

If the answers to these questions are “yes,” or even “maybe,” then the reader

can use the results of the study to reflect on his or her own practice situation. If

the qualitative research study explored patients’ perceived barriers to obtaining

preventive health care, for example, and if the study population seems similar

enough to one’s own, then the clinician can justifiably consider these poten-

tial barriers among his or her own patients, and ask about them. Considering

another example, if a qualitative study exploring patient–doctor interactions at

the end of life revealed evidence of physicians distancing themselves from rela-

tionships with their patients, clinicians should reflect and ask themselves – and

their patients – how they can improve in this area.

Qualitative research studies rarely result in landmark findings that, in and of

themselves, transform the practice of medicine or the delivery of health care.

Nevertheless, qualitative studies increasingly form the foundation for quantita-

tive research, intervention studies, and reflection on the humanistic components

of health care.
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An overview of decision making in medicine

Nothing is more difficult, and therefore more precious, than to be able to decide.

Napoleon I (1769–1821)

Learning objectives

In this chapter you will learn:
� how to describe the decision making strategies commonly used in

medicine
� the process of formulating a differential diagnosis
� how to define pretest probability of disease
� the common modes of thought that can aid or hinder good decision making
� the problem associated with premature closure of the differential diagnosis

and some tactics to avoid that problem

Chapters 21 to 31 teach the process involved in making a diagnosis and thereby

determining the best course of management for one’s patient. First, we will

address the principles of how to use diagnostic tests efficiently and effectively.

Then, we will present some mathematical techniques that can help the health-

care practitioner and the health-care system policy maker come to the most

appropriate medical decisions for both individuals and populations of patients.

Medical decision making

Medical decision making is more complex now than ever before. The way one

uses clinical information will affect the accuracy of diagnoses and ultimately the

outcome for one’s patient. Incorrect use of data will lead the physician away from

the correct diagnosis, may result in pain, suffering, and expense for the patient,

and may increase cost and decrease the efficiency of the health-care system.

215
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Clinical diagnosis requires early hypothesis generation called the differential

diagnosis. This is a list of plausible diseases from which the patient may be suf-

fering, based upon the information gathered in the history and physical exami-

nation. Gathering more clinical data, usually obtained by performing diagnostic

tests, refines this list. However, using diagnostic tests without paying attention

to their reliability and validity can lead to poor decision making and ineffective

care of the patient. Overall, we are trying to measure the ability of each element

of the history, physical examination, and laboratory testing to accurately distin-

guish patients who have a given disease from those without that disease. The

quantitative measure of this is expressed mathematically as the likelihood ratios

of a positive or negative test. This tells us how much more likely it is that a patient

has the disease if the test is positive or how much less likely the disease is if the

test is negative.

Diagnostic-test characteristics are relatively stable characteristics of a test and

must be considered in the overall process of diagnosis and management of a

disease. The most commonly measured diagnostic-test characteristics are the

sensitivity, which is the ability of a test to find disease when it is present, and

specificity, defined as the ability of a test to find a patient without disease among

people who are not diseased. A positive test’s ability to predict disease when it

is positive is the positive predictive value. Similarly, a negative predictive value

is the test’s ability to predict lack of disease when it is negative. These values

both depend on the disease prevalence in a population, which is also called the

pre-test probability. The likelihood ratios can then be used to revise the original

diagnostic impression to calculate the statistical likelihood of the final diagno-

sis, the post-test probability. This can be calculated using a simple equation or

nomogram.

The characteristics of tests can be used to find treatment and testing thresh-

olds. The treatment threshold is the pretest probability above which we would

treat without testing. The testing threshold is the pretest probability below which

we would neither treat nor test for a particular disease. Finally, the receiver

operating characteristic (ROC) curves are graphs that summarize sensitivity and

specificity over a series of cutoff values. They are used to determine the overall

value of a test, the best cutoff point for a test, and the best test when comparing

two diagnostic tests.

More advanced mathematical constructs for making medical decisions involve

the use of decision trees, which quantify diagnostic and treatment pathways

using branch points to help choose between treatment options. Ideally, they will

show the most effective care process. This is heavily influenced by patient values,

which can be quantified for this process. Finally, the cost-effectiveness of a given

treatment can be determined and it will help choose between treatment options

when making decisions for a population.
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Variation in medical practice and the justification for the use of
practice guidelines

More than ever in the current health-care debate, physician decisions are being

challenged. One major reason is that not all physician decisions are correct or

even consistent. A recent study of managed care organization (MCO) physicians

showed that only half of the physicians in the study treated their diabetic and

heart-attack patients with proven lifesaving drugs. A recent estimate of medical

errors suggested that up to 98 000 deaths per year in the United States were due

to preventable medical errors. This leads to the perception that many physician

decisions are arbitrary and highly variable.

Several studies done in the 1970s showed a marked geographic variation in

the rate of common surgeries. In Maine, hysterectomy rates varied from less

than 20% in one county to greater than 70% in another. This variation was true

despite similar demographic patterns and physician manpower in the two coun-

ties. Studies looking at prostate surgery, heart bypass, and thyroid surgery show

variation in rates of up to 300% in different counties in New England. Among

Medicare patients, rates for many procedures in 13 large metropolitan areas var-

ied by greater than 300%. Rates for knee replacement varied by 700% and for

carotid endarterectomies by greater than 2000%.

How well do physicians agree among themselves about treatment or diagno-

sis? In one study, cardiologists reviewing angiograms could not reliably agree

upon whether there was an arterial blockage. Sixty percent disagreed on whether

the blockage was at a proximal or distal location. There was a 40% disagreement

on whether the blockage was greater or less than 50%. In another study, the same

cardiologists disagreed with themselves from 8% to 37% of the time when re-

reading the same angiograms. Given a hypothetical patient and asked to give

a second opinion about the need for surgery, half of the surgeons asked gave

the opinion that no surgery was indicated. When asked about the same patient

2 years later, 40% had changed their mind.

Physicians routinely treat high intraocular pressure because if intraocular

pressure is high it could lead to glaucoma and blindness. How high must the

intraocular pressure be in order to justify treatment? In 1961, the ophthalmo-

logic textbooks said 24 mmHg. In 1976, it was noted to be 30 mmHg without any

explanation for this change based upon clinical trials.

There are numerous other examples of physician disagreement. Physician

experts asked to give their estimate of the effect on mortality of screening for

colon cancer varied from 5% to 95%. Heart surgeons asked to estimate the 10-

year failure rates of implanted heart valves varied from 3% to 95%. All of these

examples suggest that physician decision making is not standardized. Evidence-

based decision making in health care, the conscientious application of the best
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possible evidence to each clinical encounter, can help us regain the confidence

of the public and the integrity of the profession.

More standardized practice can help reduce second-guessing of physician

decisions. This questioning commonly occurs with utilization review of physi-

cian decisions by managed care organizations or government payors. It can lead

to rejection of coverage for “extra” hospital days or refusal of payment for rec-

ommended surgery or other therapies. This questioning also occurs in medical

malpractice cases where an expert reviews care through a retrospective review of

medical records. Second-guessing, as well as the marked variation in physician

practices, can be reduced through the use of practice guidelines for the diagnosis

and treatment of common disorders. When used to improve diagnosis, we refer

to these guidelines as diagnostic clinical prediction rules.

A primary cause of physician variability lies in the complexity of clinical prob-

lems. Clinical decision making is both multifaceted and practiced on highly

individualized patients. Some factors to consider with clinical decision making

include patient expectations, changing reimbursement policies, competition,

malpractice threat, peer pressure, and incomplete information. Overall, physi-

cians are well-meaning and confront not only biological but also sociological

and political variability. We can’t know the outcomes of our decisions before-

hand, but must act anyway.

There are some barriers to the process of using best evidence in medical deci-

sion making. The quality of evidence that one is looking for is often only fair or

poor. Some physicians believe that if there is no evidence from well-done ran-

domized control trials, then the treatment in questions should not be used. Be

aware that lack of evidence is not equal to evidence of lack of effect. Most physi-

cians gladly accept much weaker evidence, yet don’t have the clinical expertise to

put that evidence into perspective for a particular clinical encounter. They also

may not be able to discern well-done RCTs or even observational studies from

those that are heavily biased. This goes to show that there is a need for clinical

expertise as part of the EBM process.

Some of the reasons for the high degree of uncertainty in physician deci-

sion making are noted in Table 20.1. Physicians want some certainty before

they are willing to use an intervention, yet tend to do what was learned in

medical school or learned from the average practitioner. The rationalization for

this is that if everyone is doing the treatment, it must be appropriate. Some

physician treatment decisions are based on the fact that a disease is common

or severe. If a disease is common, or the outcome severe, they are more will-

ing to use whatever treatment is available. There are even times when physi-

cians feel the need simply to do something, and the proposed treatment is all

they have. There is also a certain amount of fascination with new diagnostic

or treatment modalities that results in wholesale increases in usage of those

methods.
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Table 20.1. Causes of variability in physician performance

(1) Complexity of clinical problem multiple factors influence actions

(2) Uncertainty of outcomes of

decisions

variability of outcomes in studies

(3) Need to act feeling on our part that we have to “do

something”

(4) Large placebo effect spontaneous cures (sometimes doing

nothing but educating is the best thing)

(5) Patient expectations expectation from patients and society that

what we do will work

(6) Political expectations do what is cheapest and best

(7) Malpractice threat don’t make any mistakes

(8) Peer pressure do things the same way that other physicians

are doing them

(9) Technological imperative we have a new technology so let’s use it

Analysis

Physician judgment Patient preferences

Shared
judgment

Best
evidence

Final
decision

Potential outcomes

Fig. 20.1 Anatomy of a decision.
One way physicians can do better is by having better clinical research and

improved quality of evidence for clinical decisions. Physicians must also increase

their ability to use the available evidence through improving individual and col-

lective reasoning and actions. Figure 20.1 shows the anatomy of a clinical deci-

sion, a simplified look at decision making in general and the factors that influ-

ence the process. Reduction of error in the decision-making process requires

better training of physicians in all three parts of EBM: evaluating the evidence,

understanding the clinical situation, and having good patient communications.

Another way to reduce error is by “automating” the decision process. If there is

good evidence for a certain practice, it ought to be done the best way known at all

times. Practice guidelines are one way of automating part of the decision-making

process for physicians.

In 1910, Abraham Flexner asked physicians and medical schools to stop teach-

ing empiricism and rely on solid scientific information. In those days, empiric

facts were usually based on single-case testimonials or poorly documented
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Table 20.2. Components of the H&P (with a clinical example)

Chief complaint Why the patient sought medical care (e.g., coughing up

blood, hemoptysis)

History of present illness Description of symptoms: what, when, where, how

much, etc. (e.g., coughing up spots of bright red blood

four or five times a day for 3 days associated with some

shortness of breath, fever, poor appetite, occasional

chest pain, and fatigue)

Past medical history Previous illness and operations, medications and

allergies, including herbal, vitamin, and supplement

use (e.g., seizure disorder, on phenytoin daily, no

operations or allergies)

Family and social histories Hereditary illness, habits and activities, diet, etc. (e.g., iv

drug abuser, homeless, poor diet, adopted and does

not know about his or her family medical history)

Review of systems Review of all possible symptoms of all bodily systems.

(e.g., recent weight loss and night sweats for the past 3

weeks, occasional indigestion)

Physical examination (e.g., somewhat emaciated male in minimal respiratory

distress, cervical lymphadenopathy, dullness to

percussion at right upper lobe area and few rales in this

area, multiple skin lesions consistent with needle

marks and associated sclerosis of veins, remainder of

examination normal)

case presentations. He proposed teaching and applying the pathophysiological

approach to diagnosis and treatment. The medical establishment endorsed this,

and the modern medical school was born. Currently, we are in the throes of a

paradigm shift. We want to see the empirical data for a particular therapy or diag-

nosis and ought to act only on evidence that is of high quality.

The clinical examination

In most cases in health care, a patient does not walk into the physician’s office

and present with a pre-made diagnosis. They arrive with a series of signs and

symptoms that one must interpret correctly in order to make a diagnosis and

initiate the most appropriate therapy. The process by which this occurs begins

with the clinical examination. Traditionally, this consists of several components

collectively called the history and physical or H&P (Table 20.2).
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Table 20.3. OLDCARTS acronym for history of the present illness

O Onset of symptoms and chronological description of change in the symptoms

L Location of symptoms and radiation to other areas

D Duration of individual episodes or from when symptoms started

C Characteristics of the symptoms

A Associated or aggravating factors

R Relieving factors

T Timing, when is it worse or better

S Severity on a scale from 0 to 10

The chief complaint is the stated reason that the patient comes to medical

attention. It is often a disorder of normal functioning that alarms the patient

and tells the clinician in which systems to look for pathology.

The history of the present illness is a chronological description of the chief

complaint. The clinician seeks to determine the onset of the symptoms,

their quality, frequency, duration, associated symptoms, and exacerbating

and alleviating factors. The acronym OPQRSTAAAA is often used to remind

clinicians of the elements of the history of the present illness. OPQRSTAAAA

stands for Onset, Position, Quality, Radiation, Severity, Timing, Aggravating,

Alleviating, Associated factors, and Attribution. A brief review of the patient’s

symptoms seeks to find dysfunction in any other parts of the body that could

be associated with the potential disease. It is important to include all the

pertinent positives and negatives in reporting the history of the present ill-

ness. Another acronym for the history of the present illness, OLDCARTS is

described in Table 20.3.

The past medical history, past surgical history, family history, social and occu-

pational history, and the medication and allergy history are all designed to

get a picture of the patient’s medical and social background. This puts the

illness into the context of the person’s life and is an integral part of any

medical history. The accuracy and adequacy of this part of the history is

extremely important. Some experts feel that this is the most important part

of the practice of holistic medicine, helping ensure that the physician looks

at the whole patient and the patient’s environment.

The review of systems gives the clinician an overview of the patient’s addi-

tional medical conditions. These may or may not be related to the chief com-

plaint. This aspect of the medical history helps the clinician develop other

hypotheses as to the cause of the patient’s problem. It also gives the clinician

more insight into the patient’s overall well-being, attitudes toward illness,

and comfort level with various symptoms.
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Finally, the physical examination is an attempt to elicit objective signs of dis-

ease in the patient. The physical exam usually helps to confirm or deny the

clinician’s suspicions based upon the history.

An old adage states that in 80% of patients, the final diagnosis comes solely

from the history. In another 15% it comes from the physical examination,

and only in the remaining 5% from additional diagnostic testing. This may

appear to overstate the value of the history and physical, but not by much.

Clinical observation is a powerful tool for deciding what diseases are possible

in a given patient, and most of the time the results of the H&P determine

which additional data to seek. Once the H&P has been exhausted, the clini-

cian must know how to obtain the additional required data in a reliable and

accurate way by using diagnostic tests which can appropriately achieve the

best outcome for the patient. For the health-care system, this must also be

done at a reasonable cost not only in dollars, but also in patient lives, time,

and anxiety if an incorrect diagnosis is made.

Hypothesis generation in the clinical encounter

While performing the H&P, the clinician develops a set of hypotheses about what

diseases could be causing the patient’s problem. This list is called the differen-

tial diagnosis and some diseases on this list are more likely than others to be

present in that patient. When finished with the H&P, the clinician estimates the

probability of each of these diseases and rank-orders this list. The probability of

a patient having a particular disease on that list is referred to as the pretest prob-

ability of disease. It may be equivalent to the prevalence of that disease in the

population of patients with similar results on the medical history and physical

examination.

The numbers for pretest probability come from one’s knowledge of medicine

and from studies of disease prevalence in medical literature. Let’s use the exam-

ple of a 50-year-old North American alcoholic with no history of liver disease,

who presents to an emergency department with black tarry stools that are sug-

gestive of digested blood in the stool. This symptom is most likely caused by

esophageal varices, by gastritis, or by a stomach ulcer. The prevalence of each

of these diseases in this population is 5% for varices, 55% for ulcer, and 40% for

gastritis. In this particular case, the probabilities add up to 100% since there are

virtually no other diagnostic possibilities. This is also knows as sigma p equals

one, and applies when the diseases on the list of differential diagnoses are all

mutually exclusive. Rarely, a person fitting this description will turn out to have

gastric cancer, which occurs in less than 1% of patients presenting like this and

can be left off the list for the time being. If none of the other diseases are diag-

nosed, then one needs to look for this rare disease. In this case, a single diagnostic
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test, the upper gastrointestinal endoscopy, is the test of choice for detecting all

four diagnostic possibilities.

There are other situations when the presenting history and physical are much

more vague. In these cases, it is likely that the total pretest probability can add

up to more than 100%. This occurs because of the desire on the part of the physi-

cian not to miss an important disease. Therefore, each disease should be con-

sidered by itself when determining the probability of its occurrence. This proba-

bility takes into account how much the history and physical examination of the

patient resemble the diseases on the differential diagnosis. The assigned proba-

bility value based on this resemblance is very high, high, moderate, low, or very

low. In our desire not to miss an important disease, probabilities that may be

much greater than the true prevalence of the disease are often assigned to some

diagnoses on the list. We will give an example of this shortly.

Physicians must take the individual patient’s qualities into consideration when

assigning pretest probabilities. For example, a patient with chest pain can have

coronary artery disease, gastroesophageal reflux disease, panic disorder, or a

combination of the three. In general, panic disorder is much more likely in a 20-

year-old, while coronary artery disease is more likely in a 50-year-old. When con-

sidering this aspect of pretest probabilities, it becomes evident that a more real-

istic way of assigning probabilities is to have them reflect the likelihood of that

disease in a single patient rather than the prevalence in a population. This allows

the clinician to consider the unique aspects of a patient’s history and physical

examination when making the differential diagnosis.

Constructing the differential diagnosis

The differential diagnosis begins with diseases that are very likely and for which

the patient has many of the classical symptoms and signs. These are also known

as the leading hypotheses or working diagnoses. Next, diseases that are pos-

sible are included on the list if they are serious and potentially life- or limb-

threatening. These are the active alternatives to the working diagnoses and must

be ruled out of the list. This means that the clinicians must be relatively certain

from the history and physical examination that these alternative diagnoses are

not present. Put another way, the pretest probability of those alternative diseases

is so vanishingly small that it becomes clinically insignificant. If the history and

physical examination do not rule out a diagnosis, then a diagnostic test that can

reliably rule it out must be performed. Diseases that can be easily treated can also

be included in the differential diagnosis and occasionally, the diagnosis is con-

firmed by a trial of therapy, which if successful, confirms the diagnosis. Last to be

included are diseases that are very unlikely and not serious, or are more difficult

and potentially dangerous to treat. These diseases are less possible because they
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Common presentation Rare presentation

Common disease 90% 9%

Rare disease 0.9% 0.09%

Fig. 20.2 A 2 × 2 table view of
pretest probabilities.

have already been ruled out by the history and physical, but ought to be kept in

mind for future consideration if necessary or if any clues to their presence show

themselves during the evaluation. A good example of this would be a patient with

chest pain and no risk factors for pulmonary embolism who has a low transcu-

taneous oxygen saturation. Now one should begin to look more closely for the

diagnosis of pulmonary embolism in this patient.

When considering a diagnosis, it is helpful to have a framework for consid-

ering likelihood of each disease on one’s list. One schema for classifying this is

shown in Fig. 20.2, which describes the overall probability of diseases using a 2 ×
2 table. This only helps to get an overview and does not help one determine the

pretest probability of each disease on the differential diagnosis. In this schema,

each disease is considered as if the total probability of disease adds up to 100%.

One must tailor the probabilities in one’s differential diagnosis to the individ-

ual patient. Bear in mind that a patient is more likely to present with a rare or

unusual presentation of a common disease, than a common presentation of a

rare disease.

As stated earlier, the first step in generating a differential diagnosis is to sys-

tematically make a list of all the possible causes of a patient’s symptoms. This

skill is learned through the intensive study of diseases and reinforced by clinical

experience and practice. When medical students first start doing this, it is useful

to make the list as exhaustive as possible to avoid missing any diseases. Think of

all possible diseases by category that might cause the signs or symptoms. There

are several helpful mnemonics that can help get a differential diagnosis started.

One is VINDICATE (Table 20.4). Initially, list all possible diseases for a chief com-

plaint by category. Then assign a pretest probability for each disease on the dif-

ferential list. The values of pretest probability are relative and can be assigned

according to the scale shown in Table 20.5. Physicians are more likely to agree

with each other on prioritizing diagnoses if using a relative scale like this, rather

than trying to assign a numerical probability to each disease on the list. One must

consider the ramifications of missing a diagnosis. If the disease is immediately

life- or limb-threatening, it needs to be ruled out, regardless of the probability

assigned. If the likelihood of a disease is very very low, the diagnostician should

look for evidence that the disease might be present, such as an abberrent ele-

ment of the history, physical examination or diagnostic tests to suggest that the
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Table 20.4. Mnemonic to remember classification of dis-

ease for a differential diagnosis

V Vascular

I Inflammatory/Infectious

N Neoplastic/Neurologic and psychiatric

D Degenerative/Dietary

I Intoxication/Idiopathic/Iatrogenic

C Congenital

A Allergic/Autoimmune

T Trauma

E Endocrine & metabolic

Table 20.5. Useful schema for assigning pretest (a-priori) probabilities

Pretest probability Action Interpretation

<1% Off the list – for now. But, must

consider if other diseases later are

found not to be present.

Rare disease (rare

presentation)

1% Can’t exclude, but very unlikely

(effectively ruled out)

Rare disease (common

presentation)

Low 10% Should be ruled out Common disease (rare

presentation)

25% Possible

Moderate 50% 50–50 (toss-up)

75% Probable

High 90% Very likely Common disease

(common presentation)

99% Almost certain – ruled in

99.9% Pathognomonic – there is no

other disease which will present

like this. This is a unique

presentation of this disease, and

therefore the patient can only

have this disease.

disease is more likely. We will use this schema for selecting pretest probabilities

for the rest of the book.

For example, if a 21-year-old man came in to the Emergency Department

complaining of chest pain, a physician would first perform a complete his-

tory and physical examination. Following this, one might suspect that anxiety
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or a pectoralis muscle strain are the cause of his pain. These would have very

high pretest probabilities (50–90%). One should also consider slightly less likely

and more serious causes which are easily treatable, such as pericarditis, spon-

taneous pneumothorax, pneumonia, or esophageal spasm secondary to acid

reflux. These would have variably lower pretest probabilities (1–50%). Next, there

are hypotheses that are much less likely, such as myocardial infarction, dissecting

thoracic aortic aneurysm, and pulmonary embolism. The pretest probabilities of

these are all much less than 1%. Finally, one must consider some disorders, such

as lung cancer, that are so rare and not immediately life- or limb-threatening that

they are ruled out because of the patient’s age.

If a 39-year-old man presented with the same complaint of chest pain, but

not the typical sqeezing, pressure-like pain of angina pectoris, one could look

up the pretest probability of coronary artery disease in population studies. This

can be found in an article by Patterson, which states that the probability that this

patient has angina pectoris is about 20%.1 This means that about 1/5 of all 39-

year-old men with this presentation will have significant coronary artery disease.

These data would change one’s list and put myocardial infarction higher up on

the differential. Since this is a potentially dangerous disease, additional testing is

required to rule it out.

Making the differential diagnosis means considering diseases from three per-

spectives: probability of the disease, severity of the disease, and ease of treatment

of the disease. The differential diagnosis is a complex interplay between these

factors and the patient’s signs and symptoms.

Narrowing the differential

Here is a more common, everyday example. A physician is examining a 7-year-

old child who is sick with a sore throat. The pysician suspects that this child

might have strep throat, which is a common illness in children and thus assigns

it a high pretest probability of disease. This is the working diagnosis. The dif-

ferential diagnosis also includes another common disease, viral pharyngitis.

Also included are uncommon diseases like epiglottitis, which is severe and life-

threatening, and mononucleosis. Finally, extremely rare diseases are included

such as diphtheria and gonorrhea. For this patient’s workup, the more serious

and uncommon diseases must be actively ruled out. In this case, that can almost

certainly be done with an accurate history disclosing lack of sexual abuse and

oral–genital contact to rule out gonorrhea. A history of diphtheria immuniza-

tion and a physical examination without the typical pseudomembrane in the

1 R. E. Patterson & S. F. Horowitz. Importance of epidemiology and biostatistics in deciding clinical
strategies for using diagnostic tests: a simplified approach using examples from coronary artery dis-
ease. J. Am. Coll. Cardiol. 1989; 13: 1653–1665.
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Table 20.6. Differential diagnosis of sample patient

Disease Pretest probability of disease

Streptococcal infection 50% Likely, common, and treatable

Viruses 50% Likely, common, and self-limiting

Mononucleosis 1% Unlikely, uncommon, and self-limiting

Epiglottitis <1% Unlikely and uncommon

Gonorrhea <<1% Rare

Diphtheria <<<1% Very rare

hypopharynx can rule out diphtheria. Lack of physical signs of epiglottitis such

as difficulty swallowing, drooling, and stridor would rule out epiglottitis, and lack

of symptoms of fatigue and physical signs like cervical adenopathy would rule

out mononucleosis.

If there are no characteristic signs and symptoms of epiglottitis, mononucle-

osis, gonorrhea, or diphtheria, then the differential diagnosis narrows down to

strep throat and viral pharyngitis. The physician can then apply a published deci-

sion rule to differentiate strep throat from viral pharyngitis. If it is positive, then

treat for strep throat with antibiotics; if negative, then treat symptomatically for

viral pharyngitis. If the rule comes up inconclusive, then the physician must con-

sider doing a diagnostic test. In that case, in order to make a final diagnosis, one

must do a throat culture.

In this case, the physician believes that doing this test will make a difference.

In addition to deciding to perform a diagnostic test, he or she must also decide

what kind of culture to take, since the type of culture that will demonstrate strep

is different from one that will grow gonorrhea. Since we know that gonorrhea is

extremely rare in children, especially when there is no historical evidence of sex-

ual abuse, the physician should decide against culturing the child for gonorrhea

bacteria and do a bacterial culture for strep.

Throughout this example, several decisions were made about this child’s ill-

ness. First, we set up a differential diagnosis in descending order of likelihood

and assigned a pretest probability to each disease on that list (Table 20.6). None

of the diseases on the list had a pretest probability of 100%, so we decided to do

some tests to determine which diagnosis was most likely. The tests vary in their

cost – in dollars, ease of performance, patient discomfort, potential complica-

tions, and many other factors. For our example of a sore throat, these are listed

in Table 20.7.

One must determine which of all these tests is worth doing in order to make the

diagnosis most efficiently. This is determined by the cost of the test, the ability of

the test to accurately identify the clinical disease, and whether identifying with
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Table 20.7. Relative costs of tests

Disease Test Cost Relative ease to treat

Streptococcal infection Rapid strep antigen or $ Easy and safe

throat culture

Viruses Viral culture $$$ Easy and safe

Epiglottitis Neck x-ray $$ Difficult

Mononucleosis Epstein–Barr antigen test $$ Easy

Diphtheria Culture or diphtheria serology $$$$ Difficult

Gonorrhea Gonorrhea culture $$ Difficult

the test will make a difference for the patient. In the previous example, if the

diagnosis of strep throat was in question, a rapid strep antigen would be the test

of choice to rule it in or out. We usually don’t do viral cultures since the treatment

is the same whether the patient is known to have a particular virus or not.

For our 39-year-old man with chest pain, the differential diagnosis would ini-

tially include anxiety, musculoskeletal, coronary artery disease, aneurysm, and

pneumothorax. For anxiety and musculoskeletal causes, the pretest probabil-

ity is high, as these are common in this age group. In fact, as previously dis-

cussed, the most likely cause of chest pain in a 39-year-old is going to be pain

of musculoskeletal origin. For some of the other diseases on the list, their pretest

probabilities would be approximately similar to that of coronary artery disease.

However, because of the potential severity of heart disease and most of the other

diseases on the differential, it is necessary to do some diagnostic testing to rule

out those possibilities. For some of diseases such as pneumothorax, dissect-

ing aortic aneurysm, and pneumonia, a single chest x-ray can rule them out if

the image is normal. For others such as coronary artery disease or pulmonary

embolism, a more complex algorithmic scheme is necessary to rule in or rule out

the diseases.

Strategies for making a medical diagnosis

There are several diagnostic strategies that clinicians employ when using patient

data to make a diagnosis. These are presented here as unique methods even

though most clinicians use a combination of them to make a diagnosis.

Pattern recognition is the spontaneous and instantaneous recognition of a

previously learned pattern. It is usually the starting point for creating a differ-

ential diagnosis and determines those diagnoses that will be at the top of the list.

This method is employed by the seasoned clinician for most patients. Usually, an

experienced clinician will be able to sense when the pattern is not characteristic
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of the disease. This occurs when there is a rare presentation of common disease

or common presentation of a rare disease. An experienced doctor knows when to

look beyond the apparent pattern and to search for clues that the patient is pre-

senting with an unusual disease. Premature closure of the differential diagnosis

is a pitfall of pattern recognition that is more common to neophytes and will be

discussed at the end of this chapter.

The multiple branching strategy is an algorithmic approach to diagnosis using

a preset path with multiple branching nodes that will lead to a correct final

conclusion. Examples of this are diagnostic clinical guidelines or decision rules.

These are tools to assist the clinician in remembering the steps to make a proper

diagnosis. If they are simple and easily memorized, they can be very useful.

More complex diagnostic decision tools can be of greater help when used with a

computer.

The strategy of exhaustion, also called diagnosis by possibility, involves “the

painstaking and invariant search for but paying no immediate attention to the

importance of all the medical facts about the patient.”2 This is followed by care-

fully sifting through the data for a diagnosis. Although, more often than not, this

technique will usually come up with the correct diagnosis, the process is time

consuming and not cost-effective. A good example of this can be found in the

Case Records of the Massachusetts General Hospital feature found in each issue

of the New England Journal of Medicine. This strategy is most helpful in diag-

nosing very uncommon diseases or very uncommon presentations of common

diseases.

The hypothetico-deductive strategy, also called diagnosis by probability,

involves the formulation of a short list of potential diagnoses from the earliest

clues about the patient. Initial hypothesis generation is based on pattern recog-

nition to suggest certain diagnoses. This basic differential diagnosis is followed

by the performance of clinical maneuvers and diagnostic tests that will increase

or decrease the probability of each disease on the list. Further refinement of the

differential results in a shortlist of diagnoses and the further testing or the initi-

ation of treatment will lead to the final diagnosis. This is the best strategy to use

and will lead to a correct diagnosis in most cases. A good example of this can be

found in the Clinical Decision Making feature found frequently and irregularly in

the New England Journal of Medicine.

Heuristics: how we think

Heuristics are cognitive shortcuts used in prioritizing diagnoses. They help to

deal with the magnitude and complexity of clinical data. Heuristics are not

2 D. L. Sackett, R. B. Haynes, P. Tugwell & G. H. Guyatt. Clinical Epidemiology: A Basic Science for Clinical
Medicine. 2nd edn. Boston: Little Brown, 1991.
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always helpful, but physicians should recognize the way they use them in order

to solve problems effectively and prevent mistakes in clinical diagnosis. There

are three important heuristics that are used in medical diagnosis. They are rep-

resentativeness, availability, and competing hypotheses heuristics.

Representativeness heuristic. The probability that a diagnosis is thought of

is based upon how closely its essential features resemble the features of a

typical description of the disease. This is analogous to the process of pattern

recognition and is accurate if a physician has seen many typical and atypical

cases of common diseases. It can lead to erroneous diagnosis if one initially

thinks of rare diseases based upon the patient presentation. For example,

because a child’s sore throat is described as very severe, a physician might

immediately think of gonorrhea, which is particularly painful. The severity

of the pain of the sore throat represents gonorrhea in diagnostic thinking.

To ignore or minimize the more common causes of sore throat, thinking

of a rare disease more often than a common one, is incorrect. Remember

that unusual or rare presentations of common diseases such as strep throat,

occur more often than common presentations of rare diseases such as pha-

ryngeal gonorrhea.

Availability heuristic. The probability of a diagnosis is judged by the ease with

which the diagnosis is remembered. The diagnoses of patients that have

been most recently cared for are the ones that are brought to the forefront

of one’s consciousness. This can be thought of as a form of recall bias. If a

physician recently took care of a patient with a sore throat who had gon-

orrhea, he or she will be more likely to look for that as the cause of sore

throat in the next patient even though this is a very rare cause of sore throat.

The availability heuristic is much more problematic and likely to occur if a

recently missed diagnosis was of a rare and serious disease.

Anchoring and adjustment. This heuristic refers to the reality that special

characteristics of a patient are used to estimate the probability of a given

diagnosis. A differential diagnosis is initially formed and additional infor-

mation is used to increase or decrease the probability of disease. This tech-

nique is the way we think about most diagnoses, and is also called the com-

peting hypotheses heuristic. For example, if a patient presents with a sore

throat, the physician should think of common causes of sore throat and

come up with diagnoses of either a viral pharyngitis or strep throat. These

are the anchors. After getting more history and doing a physical examina-

tion the physician decides that the characteristics of the sore throat are more

like a viral pharyngitis than strep throat. This is the adjustment, and as a

result, the other diagnoses on the differential diagnosis list are considered

extremely unlikely. The adjustment is based on diagnostic information from

the history and physical examination and from diagnostic tests. The process

is shown in Fig. 20.3. Throughout the patient encounter, new information
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Adjust down Adjust up

Pretest probability of disease (Anchor)

0% 100%

Fig. 20.3 Hypothetico-deductive
strategy using anchoring and
adjustment.

is compared against all diagnoses being considered, which subsequently

changes the probability estimates for each diagnosis and reorders the dif-

ferential.

The problem of premature closure of the differential diagnosis

One of the most common problems novices have with diagnosis is that they are

unable to recognize atypical patterns. This common error in diagnostic think-

ing occurs when the novice jumps to the conclusion that a pattern exists when in

reality, it does not. There is a tendency to attribute illness to a common and often

less serious problem rather than search for a less likely, but potentially more seri-

ous illness. This is called premature closure of the differential diagnosis. It rep-

resents removal from consideration of many diseases from the differential diag-

nosis list because the clinician jumped to a too early conclusion on the nature of

the patient’s illness.

Sadly, this phenomena is not limited to neophytes. Even experienced clin-

icians can make this mistake, thinking that a patient has a common illness

when, in fact, it is a more serious but less common one. No one expects the

clinician to always immediately come up with the correct diagnosis of a rare

presentation or a rare disease. However, the key to good diagnosis is recogniz-

ing when a patient’s presentation or response to therapy is not following the

pattern that was expected, and revisiting the differential diagnosis when this

occurs.

Premature closure of the differential diagnosis can be avoided by following two

simple rules. The first is to always include a healthy list of possibilities in the dif-

ferential diagnosis for any patient. Don’t be seduced with an apparently obvious

diagnosis. When one finds oneself commonly diagnosing a patient within the

first few minutes of initiating the history, step back and look for other clues that

could dismiss one diagnosis and add other diagnoses to the list. Then ask one-

self whether those other diseases can be excluded simply through the history
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and physical examination. Since most common diseases do occur commonly,

the disease that was first thought of will often turn out to be correct. However, it

is more likely to miss important clues of the presence of another less common

disease if a physician focuses only on that first diagnosis.

The second step is to avoid modifying the final list until all the relevant infor-

mation has been collected. After completing the history, make a detailed and

objective list of all the diseases for consideration and determine their relative

probabilities. The formal application of such a list will be invaluable for the

novice student and resident, and will be done in a less and less formal way by

the expert.
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Sources of error in the clinical encounter

Here is my secret, it is very simple: it is only with the heart that one can see rightly; what is

essential is invisible to the eye.

Antoine de Saint-Exupéry (1900–1944): The Little Prince

Learning objectives

In this chapter you will learn:
� the measures of precision in clinical decision making
� how to identify potential causes of clinical disagreement and inaccuracy in

the clinical examination
� strategies for preventing error in the clinical encounter

The clinical encounter between doctor and patient is the beginning of the med-

ical decision making process. During the clinical encounter, the physician has

the opportunity to gather the most accurate information about the nature of the

illness and the meaning of that illness to the patient. If there are errors made in

processing this information, the resulting decisions may not be in the patient’s

best interests. This can lead to overuse, underuse, or misuse of therapies and

increased error in medical practice.

Measuring clinical consistency

Precision is the extent to which multiple examinations of the same patient agree

with one another. In addition, each part of the examination should be accurately

reproducible by a second examiner. Accuracy is the proximity of a given clin-

ical observation to the true clinical state. The synthesis of all the clinical find-

ings should represent the actual clinical or pathophysiological derangement pos-

sessed by the patient.

233
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If two people measure the same parameter several times, for instance the tem-

perature of a sick child, we can determine the consistency of this measurement.

In this example, different observers can obtain different results when they mea-

sure the temperature of a child using a thermometer because they use slightly

different techniques such as varying the time that the thermometer is left in the

patient or reading the mercury level differently. The kappa statistic is a statistical

measurement of the precision of a clinical finding and measures inter-observer

consistency between measurements and intra-observer consistency, the abil-

ity of the same observer to reproduce a measurement. The kappa statistic is

described in detail in Chapter 7 and should be calculated and reported in any

study of the usefulness of a diagnostic test.

We often assume that all diagnostic tests are precise. Many studies have

demonstrated that most non-automated tests have some some degree of sub-

jectivity in their interpretation. This has been seen in commonly used x-ray tests

such as CT scan, mammography, and angiography. It is also present in tests com-

monly considered to be the gold standard such as the interpretation of tissue

samples from biopsies or surgery.

There are many potential sources of error and clinical disagreement in the pro-

cess of the clinical examination. If the examiner is not aware of these, they will

lead to inaccurate data. A broad classification of these sources of error includes

the examiner, the examinee, and the environment.

The examiner

Tendencies to record inference rather than evidence

The examiner should record actual findings including both the subjective ones

reported by the patient and objective ones detected by the physician’s senses.

The physician should not make assumptions about the meaning of exam find-

ings prior to creating a complete differential diagnosis. For example, a physician

examining a patient’s abdomen may feel a mass in the right upper quadrant and

record that he or she felt the gall bladder. This may be incorrect, and in fact the

mass could be a liver cancer, aneurysm, or hernia.

Ensnarement by diagnostic classification schemes

Jumping to conclusions about the nature of the diagnosis based on an incorrect

coding scheme can lead to the wrong diagnosis through premature closure of

the differential diagnosis. If a physician hears wheezes in the lungs and assumes

that the patient has asthma when in fact they have congestive heart failure, there
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will be a serious error in diagnosis and lead to incorrect treatment. The diagnosis

of heart failure can be made from other features of the history and clues in the

physical exam.

Entrapment by prior expectation

Jumping to conclusions about the diagnosis based upon a first impression of the

chief complaint can lead to the wrong diagnosis due to lack of consideration of

other diagnoses. This, along with incorrect coding schemes, is called premature

closure of the differential diagnosis, and discussed in Chapter 20. If a physician

examines a patient who presents with a sore throat, fever, aches, nasal conges-

tion, and cough and thinks it is a cold, he or she may miss hearing wheezes in

the lungs by only doing a cursory examination of the chest. This occurs because

the physician didn’t expect the wheezes to be present in a cold, but in fact, the

patient may have acute bronchitis which will present with wheezing. In any case,

the symptoms can be easily and effectively treated, but the therapy will be inef-

fective if the diagnosis is incorrect.

Bias

Everyone brings an internal set of biases with them, which are based upon

upbringing, schooling, training, and experiences. These biases can easily lead to

erroneous diagnoses. If a physician assumes, without further investigation, that

a disabled man with alcohol on his breath is simply a drunk who needs a place

to stay, a significant head injury could easily be missed. Denying pain medica-

tion to someone who may appear to be a drug abuser can result in unnecessary

suffering for the patient, incorrect diagnosis, and incorrect therapy.

Biologic variations in the senses

Hearing, sight, smell, and touch will vary between examiners and will change

with age of the examiner. As one’s hearing decreases, it becomes harder to hear

subtle sounds like heart murmurs or gallop sounds.

Not asking

If you don’t ask, you won’t find out! Many clinicians don’t ask newly diagnosed

cancer patients about the presence of depression, although at least one-third

of cancer patients are depressed and treating the depression may make it eas-

ier to treat the cancer. Treatment for depression will make the patient feel more
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in control, thus less likely to look for other methods of therapy such as alter-

native or complementary medicine to the exclusion of proven chemotherapy.

Other typical examples involve asking difficult questions. Many physicians don’t

ask about sexual history, alcohol use, or domestic violence because they may

be afraid of opening Pandora’s box. On the other hand, most patients are reluc-

tant to give important information spontaneously about these issues, and need

to be asked in a non-threatening way. When asked in an honest and respectful

manner, almost all patients are pleased that these difficult questions are being

asked and will give accurate and detailed information. This is part of the art of

medicine.

Simple ignorance

Physicians have to know what they are doing in order to be able to do it well.

Poor history and physical examination skills will lead to incorrect diagnoses. For

example, if a physician doesn’t know the significance of the straight leg raise test

in the back examination, he or she won’t do it or will do it incorrectly. This can

lead to a missed diagnosis of a herniated lumbar disc and continued pain for the

patient.

Level of risk

Physicians must be aware of their own level of risk taking. This will directly affect

the amount of risk projected onto the patient. If the physician doesn’t personally

like taking risks, then he or she may try to minimize risk for the patient. On the

other hand, if the physician doesn’t mind taking risks, he or she may not try to

minimize risk for the patient. Physicians can be classified by their risk-taking

behavior into risk minimizers or test minimizers. Risk-taking physicians are less

likely to admit patients with chest pain to the hospital than physicians who are

risk averse or risk minimizers.

Risk minimizers tend to order more tests than test minimizers. They may order

more tests than would be necessary in order to reduce the risk of missing the

diagnosis. They are more likely to order tests or recommend treatments even

when the risk of missing a diagnosis or the potential benefit from the therapy

is small. Test minimizers may order fewer tests than might be necessary and

thereby increase the risk of missing a diagnosis in the patient. They are less likely

to recommend certain tests or treatments, thinking that their patient would not

want to take the risk associated with the test or therapy, but will be willing to

take the risk associated with an error of omission in the process of diagnosis

or treatment. The test minimizer projects that the patient is willing to take the

risk of missing an unlikely diagnosis and would not want any additional tests

performed.
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To minimize the bias associated with risk-taking behavior, physicians must ask

themselves what they would do if this patient were their loved one. Then, the

physician should do that for his or her patient. Additionally, use the communica-

tions techniques discussed in Chapter 18 to maximize understanding, informed

consent, and shared decision making with the patient. Scrupulous honesty and

open communications with the patient are a must here.

Know when you are having a bad day

Everyone has off days. If things aren’t working right because of personal issues,

such as a fight with your spouse, kids, or partners, problems paying your bills,

or other issues, don’t take it out on patients. Physicians must learn to overcome

their own feelings and not let them get in the way of good and empathic com-

munications with patients. If this is not possible, it is better to reschedule for a

different day.

The examinee

Biologic variation in the system being examined

The main source of random error in medicine is biologic variation. People are

complex biological organisms and all physiological responses vary from per-

son to person, or from time to time in the same person. For example, some

patients with chronic bronchitis will have audible wheezes and rhonchi while

others won’t have wheezes and will only have a cough on forced expiration. Some

people with heart attacks have typical crushing substantial chest pain while oth-

ers have a fainting spell, weakness, or shortness of breath as their only symptom.

Understanding this will lead to better appreciation of subtle variations in the his-

tory and physical examination.

Effects of illness and medication

Ignoring the effect of medication or illness on the physiologic response of the

patient may result in an inaccurate examination. For instance, patients who take

beta-blocker drugs for hypertension will have a slowing of the pulse, so they may

not have the expected physical exam findings like tachycardia even if they are in

a condition such as shock.

Memory and rumination

Patients may remember their medical history differently at different times,

which results in a form of recall bias. This explains the commonly observed
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phenomenon that the attending seems to obtain the most accurate history. The

intern or medical student will usually obtain the first history from a patient.

When the attending gets the history later, the patient will have had time to recon-

sider their answers to the questions and may give a different and more accurate

history. They may have recalled things they did not remember or thought were

not important during the first questioning. A way to reduce this is by summariz-

ing the history obtained several times during the initial encounter.

Filling in

Sometimes patients will invent parts of the history because they cannot recall

what actually happened. This commonly occurs with dementia patients and

alcoholics during withdrawal. In most of these cases, orientation to time and

place is also lost. In some instances, otherwise oriented patients will be unable

to recall an event because they were briefly impaired and actually don’t know

what happened. This is common in the elderly who fall as a result of a synco-

pal episode. These patients may fill in a plausible explanation for their fall such

as “I must have tripped.” In a case like this, try to get an explicit description of

the entire event step by step before simply attributing their fall to tripping over

something.

Toss-ups

Some questions can be answered correctly in many different ways, and because

of this, the way a question is worded may result in the patient giving apparently

contradictory answers. Descriptors of pain and discomfort are notoriously vague

in their presentation and will change from telling to telling by the patient. Ask-

ing “do you have pain” could be answered no by the patient who describes their

pain as pressure and doesn’t equate that with pain. The examiner will not find

out that this person has chest pain without asking more specific questions using

other common descriptors of chest pain such as aching, burning, pressure, or

discomfort.

Patient ignorance

The patient may not be able to give accurate and correct answers due to lack of

understanding of the examiner’s questions. The average patient understands at

the level of a tenth-grade student, meaning that half of patients are below the

tenth-grade level. They may not understand the meaning of a word as simple as

congestion, and answer no, when they have a cough and stuffed nose. To avoid

this error, avoid using complex medical or non-medical terminology.
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Patient speaks different language

Situations in which the patient and physician cannot understand each other

often lead to misinterpretation of communication. Federal law requires US hos-

pitals to have translators available for any patient who cannot speak or under-

stand spoken English including deaf persons. In situations where a translator

is not immediately available, a translation service sponsored by AT&T is avail-

able by phone. This is especially important because patients who do not speak

English are more likely to be admitted to the hospital from the Emergency

Department, and to have additional and often unnecessary diagnostic testing

performed.

Patient embarrassment

Patients will not usually volunteer sensitive information although they may be

very anxious to discuss these same topics when asked directly. This includes

questions about sexual problems, domestic violence, and alcohol or drug abuse.

For example, even though teenagers are engaged in sexual activity, they may not

know how to ask about protection from pregnancy or sexually transmitted dis-

eases. It is better to assume that most patients will not feel comfortable asking

questions about these awkward subjects, thus the physician should ask about

these issues directly in an empathetic and non-judgmental manner.

Denial

Some patients will minimize certain complaints because they are afraid of find-

ing out they have a bad disease. They may say that their pain is really not so bad

and that the tests or treatments the physician is proposing are not necessary.

The physician’s job is to determine the patient’s fear, educate the patient about

the nature of the illness, and help him or her make an informed decision.

Patient assessment of risk and level of risk taking

Some patients will reject the physician’s interpretation of the nature of their com-

plaint because of their own risk-taking behavior. They may be more willing or less

willing to take a risk than the physician thinks is reasonable. The physician must

follow the precept of patient autonomy here. The physician’s job is to educate the

patient about the nature of their illness and the level of risk they are assuming by

their behavior, and then help them make an informed decision. In the end, if

the patient decides to refuse the physician’s suggestions for evaluation and treat-

ment after being fully informed of the risks and benefits, they have the capacity

to refuse care and should be treated with therapies that they will accept.
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Lying

Finally, there are occasions when a patient will simply lie to the physician. Ques-

tions about alcohol or drug abuse, child abuse, and sexual activity are common

areas where this occurs. The physician may detect inconsistencies in the history

or pick up secondary clues that give an idea that this may be happening. The

best way to handle this situation is to get corroborating evidence from the family,

current and previous physicians, and medical records. Sometimes, the physician

must simply believe them and treat them anyway.

The environment

Disruptive environments for the examination

Excess noise or interruptions, including background noise or children in the

examination room, make it hard to be accurate in examination. This may be

unavoidable in some circumstances like in the Emergency Department with its

chaotic environment and constant noise from disruptive patients. If it is impos-

sible to remove the noise, make sure it is compensated for in some other way. It

may take longer to gather information in these circumstances, but the physician

will be rewarded with increased accuracy.

Disruptive interactions between the examiner and the examined

Patients who are uncooperative, delirious, agitated, or in severe pain, as well as

crying children are in this category. In this circumstance, the physician must sim-

ply try his or her best to do a competent examination over the interruptions.

Providing pain relief for patients with severe pain early in the encounter will usu-

ally help to obtain a better history and more accurate examination. Occasionally

in the Emergency Department, patients have to be sedated in order to examine

them properly.

Reluctant co-workers

As a physician, nurses, residents, and other physicians may disagree with your

evaluation. If you believe that your evaluation is correct and evidence-based,

their opinions should not stand in the way. For instance, if a patient comes to the

Emergency Department with the worst headache of their life, the correct medi-

cal action is to rule out a subarachnoid hemorrhage. This is done with a CT scan

and, if that is negative, a spinal tap. The fact that this occurs at two o’clock in the

morning should not make a difference in the decision to order the CT scan. This
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is true even if the radiologist asks to wait until morning to do the procedure or

if the nurses say that the spinal tap is unnecessary since it takes more nursing

time. The physician must know when to stand his or her ground and stick up for

the patient.

Incomplete function or use of diagnostic tools

Diagnostic instruments and tools should be functioning properly and the exam-

iner should be an expert in their use. One should know how the stethoscope,

blood pressure cuff, ophthalmoscope, otoscope, reflex hammer, and tuning fork

are correctly used and check on them before use. Practice using these tools

before seeing patients. This would also apply to more technological tools such as

x-rays and other imaging devices, electrocardiograms, transcutaneous oxymetry

measuring devices, just to name a few of the common diagnostic tools in com-

mon usage.

Strategies for preventing or minimizing error in the
clinical examination

The following suggestions will help to avoid making errors in the clinical exami-

nation. The examination is a tool for making an accurate final diagnosis. In order

to serve this purpose, the examination must be done in a meticulous and sys-

tematic way.

(1) Match the diagnostic environment to the diagnostic task. It is necessary to

make sure the environment is user friendly to the physician and the patient.

Wherever possible, get rid of noisy distractions.

(2) Repeat key elements of the examination. Physicians should review and

summarize the history with patients to make sure the data are correct. Make

sure the physical examination findings are accurate by repeating them and

observing how they change with time and treatment.

(3) Corroborate important elements of the patient history with documents and

witnesses. Physicians need to ensure that all the information is gathered

personally, without relying on secondhand information. If the patient does

not speak English or is deaf, get a translator. Overall, physicians should not

make clinical decisions based on an incomplete history due to the inability

to accurately understand the patient, or based on secondhand history that

is not corroborated.

(4) Confirm key clinical findings with appropriate tests. The physician should

determine which tests are most useful in order to refine the diagnosis.
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Table 21.1. Problem-oriented medical record: the SOAP format

S Subjective information gathered directly from the patient – the history.

O Objective information gathered during the patient examination and from

diagnostic tests.

A Assessment of the patient’s problem including a differential diagnosis and the

likelihood of each disease on the list, as well as other psycho-social problems that

may affect the diagnostic process or therapeutic relationship. This is where

inference should be noted. Make a determination of the nature of the patient’s

problem and the interpretation of that problem, the diagnosis. Initially this will be

a provisional diagnosis, differential diagnosis, or just a summary statement of the

problem.

P Plan of treatment or further diagnostic testing.

This aspect of medical decision making is the basis of the next several

chapters.

(5) Ask blinded colleagues to examine the patient. Physicians should corrobo-

rate findings to make sure that they are accurate. This will occur more often

during medical school and residency training, and may be difficult to do

in private practice. However, even experienced physicians will occasionally

ask colleagues to check part of their clinical examination when things don’t

quite add up. Obtaining reasonable and timely consultation with a special-

ist is another way of double checking examination findings.

(6) Report evidence as well as inference, making a clear distinction between

the two. Initially, the physician should record the facts only. When this is

done, it is then appropriate to clearly note clinical interpretations in the

record by using the problem-oriented medical record and the SOAP format

(Table 21.1).

(7) Use appropriate technical tools. Physicians need to make sure that physical

examination tools are working properly and that they know how to use them

well.

(8) Blind the assessment of raw diagnostic test data. The physician should look

at the results of diagnostic tests objectively, applying the principles of med-

ical decision making contained in the next several chapters. The physician

should not be overly optimistic or pessimistic about the value of a single lab

test, and should apply rigorous methods of decision making in determining

the meaning of the test results.

(9) Apply social sciences, as well as biologic sciences of medicine. The physi-

cian should remember that the patient is functioning within a social con-

text. Emotional, cultural, and spiritual components of health are important
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in getting an accurate picture of the patient. These can easily affect the inter-

pretation of the information gathered.

(10) Write legibly. Physicians must realize that others will read their notes and

prescriptions. If the handwriting is not legible, mistakes will occur. If this is

a serious problem, individual physicians could consider dictating charts or

using a computer for medical charting.
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The use of diagnostic tests

Science is always simple and always profound. It is only the half-truths that are dangerous.

George Bernard Shaw (1856–1950): The Doctor’s Dilemma, 1911

Learning objectives

In this chapter you will learn:
� the uses and abuses of diagnostic tests
� the hierarchical format to determine the usefulness of a diagnostic test

The Institute of Medicine has determined that error in medicine is due to

overuse, underuse, and misuse of medical resources – resources such as diagnos-

tic tests. In order to understand the best way to use diagnostic tests, it is helpful

to have a hierarchical format within which to view them.

The use of medical tests in making a diagnosis

Before deciding on ordering a diagnostic test, physicians should have a good rea-

son for doing the test. There are four general reasons for ordering a diagnostic

test.

(1) To establish a diagnosis in a patient with signs and symptoms. Examples of

this are a throat culture in a patient with a sore throat to look for hemolytic

group A streptococcus bacteria or a mammogram in a woman with a palpa-

ble breast mass to look for a cancer.

(2) To screen for disease among asymptomatic patients. Examples of this are the

phenylketonuria test in a healthy newborn to detect a rare genetic disorder,

a mammogram in a woman without signs or symptoms of a breast mass, or

the prostate specific antigen test in a healthy asymptomatic man to look for

prostate cancer. Screening tests will not directly benefit the majority of peo-

ple who get them, since they don’t have the disease, but the result can be

244
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reassuring if it is negative. In general there are five criteria that must be met

for a successful screening test – burden of suffering, early detectability, test

validity, acceptability, and improved outcome – and unless all these are met,

the test should not be recommended. We will discuss these in Chapter 28.

(3) To provide prognostic information on patients with established disease.

Examples of this are a CD-4 count or viral load in a patient with HIV infec-

tion to look for susceptibility to opportunistic infection, or a CA-27.29 or 15.3

in a woman with breast cancer to look for disease recurrence.

(4) To monitor ongoing therapy, maximize effectiveness, and minimize side

effects. One example of this is monitoring the prothrombin time in patients

on warfarin therapy. This checks the patient’s level of anticoagulation and

prevents levels from being either too low, thus leading to new clotting, or too

high, and leading to excess bleeding. Another example is therapeutic gen-

tamycin level in patients on this antibiotic to reduce the likelihood of toxic

levels causing renal failure.

Important features to determine the usefulness of a diagnostic test

There are several ways of looking at the usefulness of diagnostic tests. This hier-

archical evaluation uses six possible endpoints to determine a test’s utility. The

more criteria in the schema that are fulfilled, the more potentially useful the test

will be. On the contrary, tests that fulfill fewer criteria have more limited useful-

ness. These criteria are based on an article by Pearl.1

(1) Technical aspects. What are the technical performance characteristics of the

test? How easy and cheap is it to perform and how reliable are the results?

(a) Reliable and precise – results should be reproducible, giving the same

result when the test is repeated on the same individual under the same

conditions. This is usually a function of the instrumentation or operator

reliability of the test. While precision used to be assumed to be present

for all diagnostic tests, many studies have demonstrated that with most

non-automated tests, there is some degree of subjectivity in test inter-

pretation. This has been seen in x-ray tests such as CT scan, mammogra-

phy, and angiography. It is also present in tests commonly considered to

be the “gold standard” such as the interpretation of tissue samples from

autopsies, biopsies, or surgery.

(b) Accurate – the test should produce the correct result or the actual value

of the variable it is seeking to measure all of the time. The determina-

tion of accuracy depends upon the ability of the instrument’s result to

be the same as the result determined using a standardized specimen and

1 W. S. Pearl. A hierarchical outcomes approach to test assessment. Ann. Emerg. Med. 1999; 33: 77–84.
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an instrument that has been specially calibrated to always measure the

same result.

(c) Operator dependence – test results may depend on the skill of the per-

son performing the test. A person with more experience, better train-

ing, or more talent will get more precise and accurate results on many

tests.

(d) Feasibility and acceptability – how easy is it to do the test? Is there a

large and expensive machine that must be bought? Is the test invasive

or uncomfortable to perform? For example, many patients cannot toler-

ate being in an MRI machine because they have claustrophobia. For this

subset of patients, an MRI would be an unacceptable test. If a test is very

expensive and not covered by health insurance, the patient may not be

able to pay for it, making it a useless test for them.

(e) Interference and cross-reactivity – are there any substances such as bod-

ily components, medications, or foods that will interfere with the results?

These substances may create false positive test results. The substances

may also prevent the test from picking up true positives and thereby

make them false negatives. An example of this if a person eats poppy-

seed bagels, they will give a false positive urine test for opiates.

(f) Inter-observer and intra-observer reliability – previously discussed in

the section on the kappa statistic (Chapter 7), this concept is related to

operator dependence.

(2) Diagnostic accuracy. How well does the test help in making the diagnosis

of the disease? This includes the concepts of validity, likelihood ratios, sen-

sitivity, specificity, predictive values, and area under the ROC curve. These

concepts will be discussed in the next several chapters.

(a) Validity – the test should discriminate between individuals with and

without the disorder in question. How does the test result compare to

that obtained using the gold standard? Criterion-based validity describes

how well the measurement agrees with other approaches for measuring

the same characteristic, and is a very important measurement in studies

of diagnostic tests.

(b) The gold standard – this is also known as the reference standard. The

result of a gold-standard test defines the presence or absence of the dis-

ease (i.e., all patients with the disease have a positive test and all patients

without the disease have a negative test). All other diagnostic tests must

be compared to a gold standard for the disease. There are very few true

gold standards in medicine and some are better or scientifically more

pure than others. Some typical gold standards are:

(i) Surgical or pathological specimens. These are traditionally consid-

ered to be the ultimate gold standard, but their interpretations can

vary with different pathologists.
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(ii) Blood culture for bacteremia. Theoretically, all bacteria that are

present in the blood should grow on a suitable culture medium.

Sometimes, for technical reasons, the culture does not grow bacteria

even though they were present in the blood. This can occur because

the technician doesn’t plate the culture properly, it is stored at an

incorrect temperature, or there just happened to be no bacteria in

the particular 10-cc vial of blood that was sampled.

(iii) Jones criteria for rheumatic fever. This is a set of fairly objective cri-

teria for making a diagnosis of rheumatic fever. Factors that could

decrease the accuracy of these criteria are that a component of the

criteria, such as temperature, may be measured incorrectly in some

patients, or another criterion like arthritis may be interpreted incor-

rectly by the observer.

(iv) DSM IV criteria for major depression. These criteria are objective,

yet depend on the clinician’s interpretation of the patient’s descrip-

tion of their symptoms.

(v) X-rays. As mentioned previously, x-rays are open to variation in the

reading, even by experienced radiologists.

(vi) Long-term follow-up. The ultimate fall-back or de-facto gold stan-

dard. If we are ultimately interested in finding out how well a test

works to separate the diseased patients from the healthy patients,

we can follow everyone who received the test for a specified period

of time and see which outcomes they all have. This technique works

as long as the time period is long enough to see all the possible dis-

ease outcomes, yet short enough to study realistically.

(3) Diagnostic thinking. Does the result of the test cause a change in diagno-

sis after testing is complete? This includes concepts of incremental gain and

confidence in the diagnosis. If we are almost certain that a patient has a dis-

ease based upon one test result or the history and physical exam, we don’t

need a second test to confirm that result. Diagnostic thinking only considers

how the test performs in making the diagnosis in a given clinical setting, and

is therefore closely related to diagnostic accuracy. The setting within which

this thinking operates is dependent on the prevalence of the disease in the

patient population being tested.

(4) Therapeutic effectiveness. Is there a change in management as a result of

the outcome of the test? Also, is the test cost-effective in the management of

the particular disease? For example, the venogram is the gold-standard test

in the diagnosis of deep venous thrombosis. It is an expensive and invasive

test that can cause some side effects, although these side effects are rarely

lethal. Is this test worth it if an ultrasound is almost as accurate? Part of the

art of medicine is determining which patients with one negative ultrasound

can safely wait for a confirmatory ultrasound 3 days later, and which patients
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need to have an immediate venogram or initiation of anticoagulant medica-

tion therapy.

(5) Patient outcomes. Does the result of the test mean that the patient will feel

or be better? This considers biophysiological parameters, symptom severity,

functional outcome, patient utility, expected values, morbidity avoided, mor-

tality change, and cost-effectiveness of outcomes. We will discuss some of

these issues in the chapter on decision trees and patient values (Chapter 31).

(6) Societal outcomes. Is the test effective for the society as a whole? Even a

cheap test, if done excessively, may result in prohibitive costs to society. Out-

comes include the additional cost of evaluation or treatment of patients with

false positive test results and the psychosocial cost of these results on the

patient and community. Other outcomes are the risk of missing the correct

diagnosis in patients who are falsely negative and may suffer negative out-

comes as a result of the diagnosis being missed. Again, physicians may need

to also consider a cost analysis for evaluating the test. Interestingly, the per-

spective of the analysis can be the patient, the payor, or society as a whole.

Overall, patient or societal outcomes ultimately determine the usefulness of

a test as a screening tool.
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Utility and characteristics of diagnostic tests:
likelihood ratios, sensitivity, and specificity

It seems to me that science has a much greater likelihood of being true in the main than

any philosophy hitherto advanced.

Bertrand Russell (1872–1970): The Philosophy of Logical Atomism, 1924

Learning objectives

In this chapter you will learn:
� the characteristics and definitions of normal and abnormal diagnostic test

results
� how to define, calculate, and interpret likelihood ratios
� the process by which diagnostic decisions are modified in medicine and

the use of likelihood ratios to choose the most appropriate test for a given

purpose
� how to define, calculate, and use sensitivity and specificity
� how sensitivity and specificity relate to positive and negative likelihood

ratios
� the process by which sensitivity and specificity can be used to make diag-

nostic decisions in medicine and how to choose the most appropriate test

for a given purpose

In this chapter, we will be talking about the utility of a diagnostic test. This is a

mathematical expression of the ability of a test to find persons with disease or

exclude persons without disease. In general, a test’s utility will depend on two

factors. These are the likelihood ratios and the prevalence of disease in the target

population. Additional test characteristics that will be introduced are the sensi-

tivity and specificity. These factors will tell the user how useful the test will be in

the clinical setting. Using a test without knowing these characteristics will result

in problems that include missing correct diagnoses, over-ordering tests, increas-

ing health-care costs, reducing trust in physicians, and increasing discomfort

249
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and side effects for the patient. Once one understands these properties of diag-

nostic tests, one will be able to determine when to best order them.

Why order a diagnostic test?

The indications for ordering a diagnostic test can be distilled into two simple

rules. They are:

(1) When the characteristics of that test give it validity in the clinical setting. Will

a positive or negative test be a true positive or a true negative result? Will

that result help in correctly identifying a diseased patient from one without

disease?

(2) When the test result will change the probability of the disease leading to a

change of clinical strategy. What will a positive or negative test result tell me

about this patient that I don’t already know and that I need to know? Will the

test results change my treatment plan for this patient?

If the test that is being considered does not fall into one of these categories, it

should not be done!

What do diagnostic tests do?

Diagnostic tests are a way of obtaining information that provides a basis for revis-

ing disease probabilities. When a patient presents with a clinical problem, one

first creates a differential diagnosis. One attempts to reduce the number of dis-

eases on this list by ordering diagnostic tests. Ideally, each test will either rule in

or rule out one or more of the diseases on the differential diagnosis list. Diseases

which are common, have serious sequelae such as death or disability, or can be

easily treated are usually the ones which must initially be ruled in or out.

We rule in disease when a positive test for that disease increases the probability

of disease, making its presence so likely that we would treat the patient for that

disease. This should also make all the other diseases on the differential diagnosis

list so unlikely that we would no longer consider them as possible explanations

for the patient’s complaints. We rule out disease when a negative test for that dis-

ease reduces the probability of that disease, making it so unlikely that we would

no longer look for evidence that our patient had that disease.

After setting up a list of possible diseases, we can assign a pretest probabil-

ity to each disease on the differential. This is the estimated likelihood of disease

in the particular patient before any testing is done. As we discussed earlier, it is

based on the history and physical examination as well as on the prevalence of

the disease in the population. It is also called the prior or a-priori probability of

disease in that patient.
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Post-test ∝ Pretest        ×

×

 Test factor
probability          probability     

What we know
after doing 
the test  

What we knew 
before doing 
the test 

How much the test results
change the likelihood of
what we knew before

=

Fig. 23.1 Bayes’ theorem.

After doing a diagnostic test, we are able to calculate the post-test probability

of disease. This is the estimated likelihood of the disease in a patient after testing

is done. This is also called the posterior or a-posteriori probability of disease.

We can do this when the test result is either positive or negative. A positive test

tends to rule in the disease while a negative test tends to rule out the disease. We

normally think of a test as being something done by a lab or radiologist. However,

the test can be an item of history, part of the physical examination, a laboratory

test, a diagnostic x-ray, or any other diagnostic maneuver. Common examples of

this are pulmonary function testing, psychological testing, EEG, or EKG.

Mathematically, the pretest probability of the disease is modified by the appli-

cation of a diagnostic test to yield a post-test probability of the disease. This revi-

sion of the pretest disease probabilities is done using a number called the like-

lihood ratio (LR). Likelihood ratios are stable characteristics of a diagnostic test

and give the strength of that test. The likelihood ratio can be used to revise dis-

ease probabilities using a form of Bayes’ theorem (Fig. 23.1). We will return to

Bayes’ theorem in Chapter 24. Before fully looking at likelihood ratios, it is useful

to look at the definitions of normality in diagnostic tests.

Types of test results

Dichotomous test results can have only two possible values. Typical results are

yes or no, positive or negative, alive or dead, better or not. A common dichoto-

mous result is x-ray results which are read as either normal or abnormal and

showing a particular abnormality. There is also the middle ground, or gray zone,

in these tests as sometimes they will be unreadable because of poor technical

quality. In addition, there are many subtle gradations that can appear on an x-ray

and lead to various readings, but they may not pertain to the disease for which

the patient is being evaluated.

Continuous test results can have more than two possible values. The serum

sodium level or the level of other blood components is an example of a con-

tinuous test. A patient can have any of a theoretically infinite number of values

for the test result. In real life, serum sodium can take any value from about 100
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Abnormal

± 2 SD  

Abnormal

Normal  

Fig. 23.2 Gaussian results of a
diagnostic test.

to 170, although at the extremes the person is near death. In practice, we often

take continuous tests and select a set of values for the variable that will be con-

sidered normal (135–145 mEq/dL for serum sodium) thereby turning this con-

tinuous test into a dichotomous test, which is reported as normal or abnormal.

Values of the serum sodium below 135 mEq/dL, called hyponatremia, or above

145 mEq/dL, called hypernatremia, are both abnormal. Clearly, the farther from

the normal range, the more serious the problem.

Definitions of a normal test result

There are many mathematical ways to describe the results of a diagnostic test

as normal or abnormal. In the method of percentiles, cutoffs are chosen at pre-

set percentiles of the diagnostic test results. These preset percentiles are chosen

as the upper and lower limits of normal. All values above the upper limit or below

the lower limit of the normal percentiles are abnormal. This method assumes

that all diseases have the same prevalence. A special case of this method is the

Gaussian method. In this method, normal is 95%, which is plus or minus two

standard deviations (± 2 SD) of the values observed of all tests done (Fig. 23.2).

Results are only specific to the population being studied and cannot be general-

ized to other populations.

In reality, there are two normal distributions of test results (Fig. 23.3). One is for

patients who are afflicted with the disease and the other is for those free of dis-

ease. There is usually an overlap of the distributions of test values for the sick and

not-sick populations. The goal of the diagnostic test is to differentiate between

the two groups. Some disease-free patients will have abnormal test results while

some diseased patients will have normal results, thus setting any single value of

the test as the cutoff between normal and abnormal will usually misclassify some

patients. The ideal test, the gold standard, will have none of this overlap between

diseased and non-diseased populations and will therefore be able to differentiate

between them perfectly at all times.
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TN
FN FP

Positive
testTest cutoff

Negative
test

Healthy

Diseased

TP

Fig. 23.3 The “real-life” results
of a diagnostic test.

For almost all tests that are not a gold standard, there are four possible out-

comes. True positives (TP) are those patients with disease who have a positive

or abnormal test result. True negatives (TN) are those without the disease who

have a negative or normal test result. False negatives (FN) are those with disease

who have a negative or normal test result. False positives (FP) are those without

disease who have a positive or abnormal test result. We can see this graphically

in Fig. 23.3.

Ideally, when a research study of a diagnostic test is done, patients with and

without the disease are all given both the diagnostic test and the gold-standard

test. The results will show that some patients with a positive gold-standard test,

and who have the disease, will have a positive diagnostic test and some will have

a negative diagnostic test. The ones with a positive test are the true positives and

those with a negative test are false negatives. A similar situation exists among

patients who have a negative gold-standard test and therefore, are all actually

disease-free. Some of them will have a negative diagnostic test result and are

called true negatives and some will have a positive test result and are called false

positives.

Strength of a diagnostic test

The results of a clinical study of a diagnostic test can determine the strength of

the test. The ideal diagnostic test, the gold standard, will always discriminate dis-

eased from non-diseased individuals in a population. This is another way of say-

ing that the test is 100% accurate. The diagnostic test we are comparing to the

gold standard is a test that is easier, cheaper, or safer than the gold standard, and

we want to know its accuracy. That tells us how often it is correct, yielding either

a true positive or true negative result and how often it is incorrect yielding either

a false positive or false negative result.

From the results of this type of study, we can create a 2 × 2 table that divides

a real or hypothetical population into four groups depending on their disease
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D+ Disease present
D− Disease absent
T+ Test positive
T− Test negative

D+ D−

FN

FPTP

TNT−

T+

TP = True positive
FP = False positive
FN = False negative
TN = True negative

Fig. 23.4 Results of a study of a
diagnostic test.

D+ D−
L{T+ if D+} = TP/(TP + FN)
This is also called SENSITIVITY or T+ TP FP
True Positive Rate (TPR).

L{T+ if D−} = FP/(FP + TN) T− FN TN

This is called the False Positive Rate (FPR).
D+ D−

LR+ = L{T+ if D+}/L{T+ if D−}
(Likelihood ratio of a positive test)

LR+ = TPR/FPR = Sensitivity/FPR 
L{T+ if D+}

L{T+ / if D−}

Fig. 23.5 Positive likelihood
ratio (LR+) calculations.

status (D+ or D–) and test results (T+ or T–). Patients are either diseased (D+)

or free of disease (D–) as determined by the gold standard test. The diagnostic

test is applied to the sample, and patients have either a positive (T+) or negative

(T–) diagnostic test. We can then create a 2 × 2 table to evaluate the mathemat-

ical characteristics of this diagnostic test. This 2 × 2 table (Fig. 23.4) is the con-

ceptual basis for almost all calculations made in the next several chapters.

We can calculate the likelihood or probability of finding a positive test result if

a person does or does not have the disease. Similarly, we can calculate the likeli-

hood of finding a negative test result if a person does or does not have the disease.

Comparing these likelihoods can give a ratio that shows the strength of the test.

Likelihoods are calculated for each of the four possible outcomes. They can be

compared in two ratios and are analogous to the relative risk in studies of risk or

harm. These are called the positive and negative likelihood ratios. In studies of

diagnostic tests, we are looking at the probability that a person with the disease

will have a positive test. Compare that to the probability that a person without

the disease has a positive test and the likelihood ratio of a positive test can be

calculated (LR+ in Fig. 23.5).

The LR+ tells us by how much a positive test increases the likelihood of disease

in a person being tested. We start with the likelihood of disease, do the test, and

as a result of a positive test that likelihood increases. The LR+ tells us how much
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D+ D−
L{T− if D+} = FN/(TP + FN)
This is called the False Negative Rate (FNR). T+ TP FP

L{T− if  D−} = TN/(FP + TN)
This is also called SPECIFICITY or the T− FN TN

True Negative Rate (TNR)
D+ D−

LR− = L{T− if  D+}/L{T− if D−}  
(Likelihood ratio of a negative test) 

LR− = FNR/TNR = FNR/Specificity  
L{T− if  D+}

L{T− if D−} 

Fig. 23.6 Negative likelihood
ratio (LR–) calculations.

of an increase in this likelihood we can expect. We can do the same thing for a

negative test. In this case, we are looking at the likelihoods of having a negative

test in people with and without the disease. The LR– or likelihood ratio of a neg-

ative test tells us by how much a negative test decreases the likelihood of disease

in persons who are having the test done. Figure 23.6 describes these calculations.

Likelihood ratios are called stable characteristics of a test. This means that they

do not change with the prevalence of the disease. Their values are determined by

clinical studies against a gold standard, therefore, published reports of likelihood

ratios are only as good as the gold standard against which they are based and the

quality of the study that determined their value.

The likelihood ratios are the strength of the diagnostic test. The larger the

value of LR+, the more a positive test will increase the probability of disease in

a patient to whom the test is given and who then has a positive result. In gen-

eral, one would like the likelihood ratio of a positive test to be very high, ideally

greater than 10, to maximally increase the probability of disease after doing the

test and getting a positive result. Similarly, one would want the likelihood ratio

of a negative test to be very low, ideally less than 0.1 to maximally decrease the

probability of disease after doing the test and getting a negative result. A quali-

tative list of LRs has been devised to show the strength of a test based upon LR

values. These are listed in Table 23.1.

Table 23.1. Strength of test by likelihood ratio

Qualitative strength LR+ LR−
Excellent 10 0.1

Very good 5 0.2

Fair 2 0.5

Useless 1 1
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The likelihood that a patient with the disease has a positive test is also known

as the sensitivity or the true positive rate (TPR). This tells the reader how sensitive

the test is for finding those persons with disease when only looking at those with

disease. It displays how often the result is a true positive compared to a false

negative as it is the fraction of people with the disease who test positive. It is

important to note that sensitivity can only be calculated from among people who

have the disease. Probabilistically, it is expressed as P[T+ | D+], the probability of

a positive test if the person has disease.

If the result of a very sensitive test is negative, it tells us that the patient doesn’t

have the disease and the test is Negative in Health (NIH). This is because in a

very sensitive test, there are very few false negatives, therefore virtually all neg-

ative tests must occur in non-diseased people. In addition, if the clinician has

properly reduced the number of diagnostic possibilities, it would be even more

unlikely that the patient has the disease in question. As a general rule, when

two or more tests are available, the most sensitive one should be done to min-

imize the number of false negatives. This is especially true for serious diseases

that are easily treated. An example of a very sensitive test is the thyroid simulat-

ing hormone (TSH) test for hypothyroidism. A normal TSH makes it extremely

unlikely that the patient has hypothyroidism, thus with a normal TSH, hypothy-

roidism is ruled out. A sensitive test rules out disease – and the mnemonic is

SnOut (Sensitive = ruled Out).

Similarly, the likelihood that a patient without disease has a positive test is also

known as the false positive rate (FPR). It is equal to one minus the specificity. It

tells us how often the result is a false positive compared to a true negative. FPR =
FP/(FP + TN). This is the proportion of non-diseased people with a positive

test.

The likelihood that a patient without the disease has a negative test is also

known as the specificity or the true negative rate (TNR). It tells the reader how

specific the test is for finding those persons without disease, when only looking

at those without disease. It demonstrates how often the result is a true negative

compared to a false positive, as it is the fraction of people without the disease

who test negative. It is important to realize that specificity can only be calculated

from among people who do not have the disease. Probabilistically, it is expressed

as P[T− | D−], the probability of a negative test if the person does not have

disease.

If the result of a very specific test is positive, it tells us that the patient has the

disease and the test is Positive in Disease (PID). This is because there are very

few false positives, therefore any positive tests must occur in diseased people. If

the clinician has properly reduced the number of diagnostic possibilities, then

it would be even more likely that the patient does have the disease in question.

When two or more tests are available, the most specific should be done to min-

imize the number of false positives. This is especially true for diseases that are
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Table 23.2. Mnemonics for sensitivity and

specificity

(1) SeNsitive tests are Negative in health (NIH)

SPecific tests are Positive in disease (PID)

(2) Sensitivity: SnOut – sensitive tests rule out disease

Specificity: Spln – specific tests rule in disease

(3) SeNsitivity includes False Negatives

SPecificity includes False Positives

not easily treated or for which the treatment is potentially dangerous. An exam-

ple of a very specific test is the ultrasound for deep venous thrombosis of the leg.

If the ultrasound is positive, it is extremely likely that there is a clot in the vein.

Thus, a deep vein thrombosis is ruled in. A specific test rules in disease – and the

mnemonic is SpIn (Specificity = ruled In).

Similarly, the likelihood that a patient with disease has a negative test is also

known as the false negative rate (FNR). It is equal to one minus the sensitivity. It

tells the reader how often the result is a false negative compared to a true positive.

FNR = FN/(FN + TP). This is the proportion of diseased people with a negative

test.

Using sensitivity and specificity

The sensitivity and specificity are the mathematical components of the like-

lihood ratios. They are the characteristics that are most often measured and

reported in studies of diagnostic tests in the medical literature. Three mnemon-

ics can help to remember the difference between sensitivity and specificity.

These are listed in Table 23.2. Like likelihood ratios, true positive rate, false posi-

tive rate, true negative rate, and false negative rate are also intrinsic characteris-

tics of a diagnostic test. From the study results, we can use our 2 × 2 table (Fig.

23.7) that divided a real or hypothetical population into four groups depending

on their disease status (D+ or D–) and test results (T+ or T–) as a starting point

to evaluate these characteristics of the diagnostic test.

We have previously noted the mathematical relationship between sensitivity

and specificity and the likelihood ratios. Likelihood ratios can be calculated from

sensitivity and specificity. The formulas are as follows:

LR+ = sensitivity/(1 − specificity)

LR− = (1 − sensitivity)/specificity
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Sensitivity = TPR =           TP
           TP + FN

Specificity =  TNR =         TN
           TN + FP

D+ D−

Sensitivity

FPTP

D+

TN

D−

Specificity

T−

T+

FN

Fig. 23.7 Sensitivity and
specificity calculations.

TN

FN FP

Positive
testTest cutoff

Negative
test

Healthy

Diseased

TP

Lower cutoff, more
sensitive but less specific

Raise cutoff, more
specific but less
sensitive

Fig. 23.8 The effect of changing
the cutoff point for a diagnostic
test.

There is also a dynamic relationship between sensitivity and specificity. As the

sensitivity of a test increases, the cutoff point moves to the left in Fig. 23.8. The

number of true positives increases compared to the number of false negatives. At

the same time, the number of false positives will increase compared to the num-

ber of true negatives. This will result in a decrease in the specificity. Notice what

happens to the sensitivity and specificity in Fig. 23.8 when the test cutoff moves

to the right. Now the sensitivity decreases as the specificity increases. We will see

this dynamic relationship better when we discuss receiver operating character-

istic curves in Chapter 25.

Sample problem

Diarrhea in children is usually caused by viral infection. However in some cases,

bacterial infection causes the diarrhea and these cases should be treated with

antibiotics. A study was done in which 156 young children with diarrhea had

stool samples taken. All of them were tested for the presence of white blood

cells in the stool, and a positive test was defined as one in which there were
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D+           D− Totals

T+           23 (TP)         16 (FP)    39

  T−                 4 (FN)        113 (TN)   117

Totals          27                 129   156 (N)

Fig. 23.9 A 2 × 2 table using
data from the study of the use of
fecal leukocytes in the diagnosis
of bacterial diarrhea in children.
The prevalence of disease is
27/156 = 0.17. From: T. G.
DeWitt, K. F. Humphrey & P.
McCarthy. Clinical predictors of
acute bacterial diarrhea in young
children. Pediatrics 1985; 76:
551–556.>5 white blood cells per high power field. All the children had a stool culture

done, which was the gold standard. There were 27 children who had positive cul-

tures and 23 of these had smears that were positive for fecal white blood cells.

Of the 129 who had a negative stool culture, 16 had smears that were positive

for fecal white blood cells. What are the likelihood ratios of the stool leukocyte

test?

First make your 2 × 2 table (Fig. 23.9). From this you can tell that the prevalence

is 27/156 = 0.17.

L{T+ |D+} = sensitivity or TPR = TP/(TP + FN) = 23/(23 + 4) = 0.85

L{T+ |D−} = 1 − specificity = FPR = FP/(TN + FP) = 16/(113 + 16) = 0.12

From these we can calculate the likelihood ratio of a positive test:

LR+ = L{T+ |D+}/L{T + |D−} = 0.85/0.12 = 7.08

Doing the same for a negative test leads to the following results:

L{T− |D+} = 1 − sensitivity = FNR = FN/(TP + FN) = 4/(23 + 4) = 0.15

L{T− |D−} = specificity or TNR = TN/(TN + FP) = 113/(113 + 16) = 0.88

LR− = L{T− |D+}/L{T− |D−} = 0.15/0.88 = 0.17

These likelihood ratios are pretty good and this is a fairly good test since the

LR+ = 7.08 and the LR− = 0.17 are very close to a strong test (LR+ > 10 and

LR− < 0.1). This is a test that will increase the likelihood of disease by a lot if

the test is positive and decrease the likelihood of disease by a lot if the test is neg-

ative. We will talk about applying these numbers in a real clinical situation in a

later chapter.

It is always necessary to be aware of biases in a study, and this example is no

different. The following are the potential biases in this study. It was done on 156

children who presented to an emergency department with severe diarrhea and

were entered into the study. This meant that someone, either the resident or

attending physician on duty at the time, thought that the child had infectious
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or bacterial diarrhea. Therefore, they were already screened before any testing

was done on them and the study is subject to filter or selection bias. This simply

means that the population in the study may not be representative of the pop-

ulation of all children with diarrhea like the ones being seen in a pediatric or

family-practice office. The next chapter will deal with this problem and how to

generalize the results of this study to real patients.
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Bayes’ theorem, predictive values, post-test
probabilities, and interval likelihood ratios

As far as the laws of mathematics refer to reality, they are not certain; and as far as they are

certain, they do not refer to reality.

Albert Einstein (1879–1955)

Learning objectives

In this chapter you will learn:
� how to define predictive values of positive and negative test results and how

they differ from sensitivity and specificity
� the difference between odds and probability and how to use each correctly
� Bayes’ theorem and the use of likelihood ratios to modify the probability of

a disease
� how to define, calculate, and use interval likelihood ratios for a diagnostic

test
� how to calculate and use positive and negative predictive values
� how to use predictive values to choose the appropriate test for a given diag-

nostic dilemma
� how to apply basic test characteristics to solve a clinical diagnostic problem
� the use of interval likelihood ratios in clinical decision making

In this chapter, we will be talking about the application of likelihood ratios, sen-

sitivity, and specificity to a patient.

Introduction

Likelihood ratios, sensitivity, and specificity of a test are derived from studies of

patients with and without disease. They are stable and essential characteristics

of the test that give us the probabilities of a positive or negative test if the patient

261
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does or does not have disease. This is not the information a clinician needs to

know in order to apply the test to a single patient.

What the clinician needs to know is: if a patient has a positive test, what is the

likelihood that patient has the disease? The clinician is interested in how the test

result relates to the patient. For a given patient, how will the probability of dis-

ease change given a positive or negative test result? Applying likelihood ratios or

sensitivity and specificity to a selected pretest probability of disease will give the

post-test probability to answer this question. There are two methods for doing

this calculation. The first uses Bayes’ theorem, while the second calculates the

predictive values of a positive and negative test directly from sensitivity, speci-

ficity, and prevalence using the 2 × 2 table.

Predictive values

The positive predictive value (PPV) is the proportion of patients with the dis-

ease among all those who have a positive test. If the test comes back positive, it

shows the probability that this patient really has the disease. Probabilistically, it

is expressed as P[D+ |T +], the probability of disease if a positive test occurs. It is

also called the post-test or posterior probability of a positive test. A related con-

cept is the false alarm rate (FAR), which is equal to 1 – PPV. That is the proportion

of people with a positive test who do not have disease and will then be falsely

alarmed by a positive test result.

The negative predictive value (NPV) is the proportion of patients without the

disease among all those who have a negative test. If the test comes back negative,

it shows the probability that this patient really does not have the disease. Prob-

abilistically, it is expressed as P[D– | T –], the probability of not having disease if

a negative test occurs. It is also called the post-test or posterior probability of a

negative test. A related concept is the false reassurance rate (FRR), which is equal

to 1 – NPV. That is the proportion of people with a negative test who have disease

and will be falsely reassured by a negative test result.

Bayes’ theorem

Thomas Bayes was an English clergyman with broad talents. His famous theo-

rem was presented posthumously in 1763. In eighteenth-century English, it said:

“The probability of an event is the ratio between the value at which an expec-

tation depending on the happening of the event ought to be computed and the

value of the thing expected upon its happening.” Now, that’s not so easy to under-

stand is it? In simple language, the theorem was an updated way to predict the

odds of an event happening when confronted with new information. In statistics,

this new information is that gained in the research process. In making diagnoses



Bayes’ theorem and predictive values 263

in clinical medicine, this new information is the likelihood ratio. Bayes’ theorem

is a way of using likelihood ratios (LRs) to revise disease probabilities.

Bayes’ theorem was put into mathematical form by Laplace, the discoverer of

his famous law. Its use in statistics was supplanted at the start of the twentieth

century by Sir Ronald Fisher’s ideas of statistical significance, the use of P < 0.05

for statistical significance. It was kept in the dark until revived in the 1980s. We

won’t get into the actual formula in its usual and original form here because it

only involves another very long and useless formula. A derivation and the full

mathematical formula for Bayes’ theorem are given in Appendix 5, if interested.

In it’s simplest and most useful form, it states:

Post-test odds = pretest odds × LR

Odds and probabilities

In order to use Bayes’ theorem and likelihood ratios, one must first convert

the probability of disease to the odds of disease. Odds describe the chance

that something will happen against the chance it will not happen. Probability

describes the chance that something will happen against the chance that it will

or will not happen. The odds of an outcome are the number of people affected

divided by the number of people not affected. In contrast, the probability of an

outcome is the number of people affected divided by the number of people at

risk or those affected plus those not affected. Probability is what we are estimat-

ing when we select a pretest probability of disease for our patient. We next have

to convert this to odds.

Let’s use a simple example to show the relationship between odds and proba-

bility. If we have 5 white blocks and 5 black blocks in a jar, we can calculate the

probability or odds of picking a black block at random and of course, without

looking. The odds of the outcome of interest, picking a black block, are 5/5 =
1. There are equal odds of picking a white and black block. For every one black

block that is picked, on average, one white block will be picked. The probability

of the outcome of interest or picking a black block is 5/10 = 0.5. Half of all the

picks will be a black block. Figure 24.1 shows this relationship.

In our society, odds are usually associated with gambling. In horse racing or

other games of chance, the odds are usually given backward by convention. For

example, the odds against Dr. Disaster winning the fifth race at Saratoga are 7 : 1.

This means that this horse is likely to lose 7 times for every eight races he enters.

In usual medical terminology, these numbers are reversed. We put the outcome

we want on top and the one we don’t want on the bottom. Therefore, the odds of

him winning would be 1 : 7, or 1/7 or 0.14. He will win one time in eight.

The probability of Dr. Disaster winning is different. Here we answer the ques-

tion of how many times will he have to race in order to win once? He will have

to race eight times in order to have one win. The probability of him winning any
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Black and white blocks in a jar Odds Probability 

9/1 = 9 9/10 = 0.9

3/1 = 3 3/4 = 0.75

2/2 = 1 2/4 = 0.5

1/3 = 0.33 1/4 = 0.25

1/9 = 0.11 1/10 = 0.1

Fig. 24.1 Relationship between odds and probability. As the odds and probabilities get
smaller, they also approximate each other. As they get larger, they become more and more
different.

To convert odds to probability:

          Odds = Probability/(1 − Probability)

To convert probability to odds:

Probability = Odds/(1 + Odds)

Fig. 24.2 Converting odds to
probability (and back).

one race is 1 in 8 or 1/8 or 0.125. Since the odds and probabilities are small num-

bers, they are very similar. If he were a better horse and the odds of him winning

were 1 : 1, or one win for every loss, the odds could be expressed as 1/1 or 1.0.

Here the probability would be that he would win one race in every two he starts.

The probability of winning is 1/2 or 0.5.

The language for odds and probabilities differs. Odds are expressed as one

number to another: for example, odds of 1 : 2 are expressed as “one to two” and

equal the fraction 0.5. This is the same as saying the odds are 0.5 to 1. Probabil-

ity is expressed as a fraction. The same 1 : 2 odds would be expressed as “one in

three” = 0.33. These two expressions and numbers are the same way of saying

that for every three attempts, there will be one successful outcome.

There are mathematical formulas for converting odds to probability and vice

versa. They are listed in Fig. 24.2.

Using likelihood ratios to revise pretest probabilities of disease

Likelihood ratios (LRs) can be used to revise disease pretest probabilities when

test results are dichotomous, using Bayes’ theorem. This says post-test odds of
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Pretest
probability 

Multiply by LR

Convert 
to post-test
probability

If+; PPV
if−; FRR

 

Post-test odds

Convert to pretest odds  

Fig. 24.3 Flowchart for Bayes’
theorem.

disease equal pretest odds of disease times the likelihood ratio. We get the pretest

probability of disease from our differential diagnosis list and our estimate of

the possibility of disease in our patient. The pretest probability is converted to

pretest odds and multiplied by the likelihood ratio. This results in the post-test

odds, which are converted back to a probability, the post-test probability.

The end result of using Bayes’ theorem when a positive test occurs is the post-

test probability of disease. This is also called the positive predictive value (PPV).

For a negative test, Bayes’ theorem calculates the probability that the person still

has disease even if a negative test occurs. This is called the false reassurance rate

(FRR). From this, one can calculate the negative predictive value (NPV), which

is the probability that a person with a negative test does not have the disease.

Mathematically it is 1 minus the FRR. The process is represented graphically in

Fig. 24.3.

We will demonstrate this with an example. A study was done to evaluate the

use of the urine dipstick in testing for urinary tract infections (UTI) in children

seen in a pediatric emergency department.1 A positive leukocyte esterase and

nitrite test on a urine dipstick was defined as being diagnostic of a UTI. In this

case, a urine culture was done on all the children and therefore was the gold

standard. A positive test on both indicators, the leukocyte esterase and nitrite,

had a positive likelihood ratio (LR+) of 20 but a negative likelihood ratio (LR–) of

0.61. In the study population, the probability of a urinary tract infection in the

children being evaluated in that setting was 0.09 (9%).

Suppose you are in a practice and estimate that a particular child whom you

are seeing for fever has a pretest probability of 10% of having a UTI. This is

equivalent to a low pretest probability of disease. If you want to find out what

1 From K. N. Shaw, D. Hexter, K. L. McGowan & J. S. Schwartz. Clinical evaluation of a rapid screening
test for urinary tract infections in children. J. Pediatr. 1991; 118: 733–736.
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the post-test probabilities of a urinary tract infection are after using the dipstick

test, use Bayes’ theorem and do the following steps:

(1) Convert probability to odds. Pretest probability = 0.1, therefore, Pretest

odds = 0.1/(1 – 0.1) = 0.11. (Remember, for low values, the same number

could be used and get results that are close enough.)

(2) Apply Bayes’ theorem. Multiply pretest odds by the likelihood ratio for a pos-

itive test (LR+). In this case, LR+ = 20, a very high LR+, so the test is very

powerful if positive. Post-test odds = pretest odds × LR+ = 0.11 × 20 = 2.2.

(3) Convert odds back to probability. Post-test probability = odds/(odds + 1) =
2.2/3.2 = 0.69. (Here we have to do the formal calculation back to probability

to get a reasonable result.)

(4) Interpret the result. Post-test probability or positive predictive value of dis-

ease is 69%. In other words, a positive urine dipstick has increased the prob-

ability of a urinary tract infection from 0.1 to 0.69. This is a big jump! Most

tests have much less ability to jump the patient’s pretest probability.

Using the same example for a negative test:

(1) Pretest probability and odds of disease are unchanged. Pretest odds = 0.11.

(2) LR– = 0.61, and post-test odds = 0.11 × 0.61 = 0.067.

(3) Post-test probability = 0.067/1.067 = 0.063.

In other words, a negative urine dipstick has reduced the probability of uri-

nary tract infection from 0.1 to 0.06. This is the false reassurance rate (FRR), and

tells us how many children we will falsely tell not to worry, in this case 6 out of

100. We can also calculate the negative predictive value, which is 1 – FRR, or

1 – 0.06. The NPV is, therefore, 0.94, or 94% of children with a negative test are

free of disease. Of course, it is important to recognize that the pretest probabil-

ity of not having a urinary tract infection before doing any test was estimated

at 90%.

When we get a negative test result, we have to make a clinical decision. Should

we do the urine culture or gold standard test for all children who have a nega-

tive dipstick test in order to pick up the 6% who actually have an infection? Or,

should we just reassure them and repeat the test if the symptoms persist? This

conundrum must be accurately communicated to the patient, and in this case

the parents, and plans made for all contingencies. Choosing to do the urine cul-

ture on all children with a negative test will result in a huge number of unneces-

sary cultures. They are expensive and will result in a large expenditure of effort

and money for the health-care system. Whether or not to do the urine culture

depends on the consequences of not diagnosing an infection at the time the child

presents with their initial symptoms. In the office, it is not known if these unde-

tected children progress to kidney damage. The available evidence suggests that

there is no significant delayed damage, that the majority of these infections will

spontaneously clear or the child will show up with persistent symptoms and be

treated at a later time.
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Fig. 24.4 Nomogram for Bayes’
theorem. From T. J. Fagan.
[letter.] N. Engl. J. Med. 1975;
293: 257. Used with permission.

The nomogram

A nomogram to calculate post-test probability using likelihood ratios was devel-

oped in 1975 by Fagan (Fig. 24.4). Begin by marking the LR and pretest probabil-

ity on the nomogram. Connect these two points, and continue the line until the

post-test probability is reached. This obviates the need to calculate pretest odds

and post-test probability. For our example of a child with signs and symptoms

of a urinary tract infection, the plot of the post-test probability for this clinical

situation is shown in Fig. 24.5.

Calculating post-test probabilities using sensitivity
and specificity directly

The other way of calculating post-test probabilities uses sensitivity and speci-

ficity directly to calculate the predictive values. Not only are positive and nega-

tive predictive values of the test related to the sensitivity and specificity, but they

are also dependent on the prevalence of disease. The prevalence of disease is the



268 Essential Evidence-Based Medicine

 

 

 

 

 

 

 

 

 

 

 

 

Pretest probability is 10%. Using the 

post-test probability nomogram:

1.  Find 10% on the pretest 

probability scale  

2.  Find the LR value of 20  
3.  Connect these points and 

continue that line until it 

intersects the post-test 

probability line  

4.  Read the post-test probability 

99

95

99

95

1000
500

200
100

50

20
10

5

2
1

.5

.2

.1

.05

.02

.01

.005

.002

.001

90

80

70
60

50
40

30

20

10

5

2

1

.5

.2

.1

% %

Pretest
probability

Posttest
probability

Likelihood
ratio

(69%) off that line  
90

80

70

60
50
40

30

20

10

5

2

1

.5

.2

.1

The line shown here is for
the positive dipstick in a
child with a possible
urinary tract infection.

Fig. 24.5 Using the Bayes’
theorem nomogram in the
example of UTI in children. pretest probability of disease that has been assigned to the patient or the preva-

lence of disease in the population of interest. The history and physical exam give

an estimate of the pretest probability. Simply knowing the sensitivity and speci-

ficity of a test without knowing the prevalence of the disease in the population

from which the patient is drawn will not help to differentiate between disease

and non-disease in your patient. Go back to Table 20.5 in Chapter 20 and look at

the table of pretest probabilities again. This ought to help it make more sense.

Clinicians can use pretest probability for disease and non-disease respectively

along with the test sensitivity and specificity to calculate the post-test probability

that the patient has the disease (post-test probability = predictive value). This is

shown graphically in Fig. 24.6.

Calculating predictive values step by step

(1) Pick a likely pretest probability (P) of disease using the rules we discussed in

Chapter 20. Moderate errors in the selection of this number will not signifi-

cantly affect the results or alter the interpretation of the result.

(2) Set up a cohort of 1000 (N) patients or use a similarly convenient number to

make the math as easy as possible and divide them into diseased (D+ = P

× N) and non-diseased (D– = (1 − P) × N) groups based on the estimated

pretest probability or prevalence (P). Use the 2 × 2 table.
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Fig. 24.6 Predictive values
calculations.

(3) Multiply the D+ and D– by the sensitivity and specificity respectively to get

the contents of the boxes TP and TN:

Sensitivity × D+ = TP

Specificity × D− = TN

(4) Fill in the remaining boxes, FN and FP. FN = (D+) − TP and FP = (D−) −
TN.

(5) Calculate predictive values using the formulas

PPV = TP/(TP + FP)

NPV = TN/(TN + FN).

Let’s go back to the 156 young children with diarrhea whom we met at the end

of Chapter 23.2 Recall that we calculated the sensitivity and specificity of the stool

sample test for fecal white blood cells with > 5 cells/high power field defining a

positive test and got 85% and 88%, respectively. We have already decided that

this study population does not represent all children with diarrhea who present

to a general pediatrician’s office. In this setting, the pediatrician estimates the

prevalence of bacterial diarrhea is closer to 0.02 than 0.17 as it was in the study:

27/156. How does the lower prevalence change the predictive values of the test?

What is the likelihood of disease in a child with a positive or negative test?

(1) First, use 1000 patients (N) to set up the 2 × 2 table using the new estimated

clinical prevalence of bacterial diarrhea of 0.02 or 20 out of 1000 (Fig. 24.7).

2 T. G. Dewitt, K. F. Humphrey & P. McCarthy. Clinical predictors of acute bacterial diarrhea in young
children. Pediatrics 1985; 76: 551–556.
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TP + FP

FN + TN

FP

D−D+

T+

T− FN

TP

TN

  20   980 1000 (N)

Fig. 24.7 Set up the 2 × 2 table
using a population of 1000
patients (N) and an estimated
clinical prevalence (P) of
bacterial diarrhea of 0.02.

D+                D−

T+       20 ×××× 0.85
          = 17

T−   980 × 0.88
= 862

20           980      1000 (N)

FP

FN

Fig. 24.8 Multiply the number
with disease (D+ = P × N) by
the sensitivity and the number
without disease (D– = (1 – P) ×
N) by the specificity to get the
values of TP and TN.

  D+         D−

T+   17         118        135

T−     3          862                 865

             20 (P)          980 (N − P)    1000 (N)

Fig. 24.9 Subtract TP from D+
and TN from D– to get the values
of FP and FN, and add the lines
across.

(2) Next, multiply the number with disease by the sensitivity and without dis-

ease by the specificity to get the values of TP and TN. Round off decimals

(Fig. 24.8).

(3) Fill in the FP and FN boxes and add the lines across (Fig. 24.9).

(4) Calculate PPV, NPV, FAR, and FRR:

PPV = TP/T+ = 17/135 = 0.13

NPV = TN/T− = 862/865 = 0.996

FAR = FP/T+ = 1 − PPV = 0.87

FRR = FN/T− = 1 − NPV = 0.004

(5) Interpret the results and decide how to use them.

Compared to the original population with a prevalence of 17.3%, we can see

that the PPV drops significantly when the prevalence decreases. This is a general

rule of the relationship between PPV and prevalence.
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PPV of 13% means that most positives are not true positives but, in fact, they

are children who do not have bacterial diarrhea. For every seven children treated

with antibiotics thinking they had bacterial diarrhea, only one really needed it.

The others got no benefit from any kind of antibacterial treatment. Clinicians

have to decide whether it is better to treat six children without bacterial diar-

rhea in order to treat the one with the disorder, to treat no one with antibiotics,

or to order another test to further eliminate the false positives. The upside to

antibiotics is that bacterial diarrhea will get better faster with antibiotics. The

downsides of antibiotic use include rare side effects such as allergic reactions and

problems that are removed from the individual like increased bacterial resistance

with high rates of antibiotic usage in the population. So, if a clinician decides this

is not a serious problem and treatment is a reasonable trade-off then he or she

will use antibiotics. If, on the other hand, a clinician decides that antibiotic resis-

tance is a real and significant problem, and treatment will not change the course

of the illness in a dramatic manner and not significantly alleviate much suffer-

ing, then he or she would choose not to treat. In that case, the clinician would

decide to not do the fecal white blood cell test since even with a positive result,

the patient would not be treated with antibiotics.

An NPV of 99.6% means that if the test is negative, only 4 in 1000 children with

true bacterially caused infectious diarrhea will be missed, so the physician can

safely avoid treating the patient with antibiotics. This is especially true since the

result of non-treatment is simply prolonging the diarrhea by a day. The physi-

cian’s treatment would be different if the results of non-treatment were serious,

resulting in prolonged disease with significant morbidity or mortality. In that

case, even 4 out of 1000 could be too many to miss, and the physician should

do the gold standard test on all the children.

Predictive values are the numbers that clinicians need in order to determine

the likelihood of disease in a patient with a positive or negative test result and

a given pretest probability. These numbers will modify the differential diagnosis

and change the pretest probabilities assigned to the patient.

Finally, we can do the same problem with likelihood ratios. The calculations

are as follows:

LR+ = sensitivity/(1 − specificity) = 0.85/0.12 = 7.08

LR – = (1 − sensitivity)/specificity = 0.15/0.88 = 0.17

Using a pretest probability of 2%, the probability and odds are the same:

0.02. Applying Bayes’ theorem, post-test odds = LR+ × 0.02 = 7.08 × 0.02 =
0.14, and post-test probability = 0.124. Compare this to the PPV of 0.13.

Similarly for a negative test: post-test odds = LR− × 0.02 = 0.17 × 0.02 =
0.0034. Compare this to the FRR of 0.004.



272 Essential Evidence-Based Medicine

In summary, we now have two ways of calculating the post-test probability of

disease given the operating characteristics of the tests. One is to use Bayes’ the-

orem and likelihood ratios to modify pretest odds and calculate post-test odds.

The other way is to use prevalence, sensitivity, and specificity in a 2 × 2 table to

calculate predictive values.

Finally, we must think about accuracy. This term has been used more in the

past to designate the strength of a diagnostic test. In this instance, it is the true

positives and true negatives divided by the total population to whom the test

was applied. However, this can be a grossly misleading number. If there are many

people without the disease compared to with disease, a very specific test with few

false positives will be accurate even with poor sensitivity. Thus, this says nothing

about the sensitivity and should not be used as the measure of a test’s perfor-

mance. The same holds true for a population with very high prevalence of dis-

ease and high sensitivity.

(patients with disease and with test result in interval)

(total patients with disease)
 

(patients without disease and with test result in interval)

(total patients without disease)

=       % patients with disease AND results in interval

% patients without disease AND results in interval

iLR =  

Fig. 24.10 Interval likelihood
ratio (iLR).

Interval likelihood ratios (iLR)

Likelihood ratios allow us to calculate post-test probabilities when continuous

rather than just dichotomous test results are used. Single cutoff points of tests

with continuous variable results set potential “traps” for the unwary clinician.

Often in studies where the outcome variable of interest is a continuous vari-

able, a single dichotomous cutoff point is selected as the best single-point cut-

off between normal and abnormal patients. Valuable data are disregarded if the

results of such a test are considered only “positive” or “negative.” We can obviate

this problem using interval likelihood ratios.

The “interval” LR (iLR) is the probability of a test result in the interval under

consideration among diseased subjects, divided by the probability of a test result

within the same interval among non-diseased subjects. Simply put, the interval

likelihood ratio is the percentage of patients with disease who have test results

in the interval divided by the percentage of patients without disease with test

results in the interval (Fig. 24.10). If the iLR associated with an interval is less
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Table 24.1. Distribution of white blood cell count in patients with and without

appendicitis

With appendicitis Without appendicitis iLR+
WBC/μL (% of 59) (% of 145) (95% CI)

4000–7000 1 (2%) 30 (21%) 0.1 (0–0.39)

7000–9000 9 (15%) 42 (29%) 0.52 (0–1.57)

9000–11000 4 (7%) 35 (24%) 0.29 (0–0.62)

11000–13000 22 (37%) 19 (13%) 2.8 (1.2–4.4)

13000–15000 6 (10%) 9 (6%) 1.7 (0–3.6)

15000–17000 8 (14%) 7 (5%) 2.8 (0–6.0)

17000–19000 4 (7%) 3 (2%) 3.5 (0–10)

19000–22000 5 (8%) 0 (0%) Infinite (NA)

Total 59 (100%) 145 (100%)

Example: For WBC from 4000 to 7000, iLR = (1/59)/(30/145) = 2%/21% = 0.1. From

S. Dueholm, P. Bagi & M. Bud. Laboratory aid in the diagnosis of acute appendicitis.

A blinded prospective trial concerning diagnostic value of leukocyte count, neutrophil

differential count, and C-reactive protein. Dis. Colon Rectum 1989; 32: 855–859.

than 1 the probability of disease decreases and if greater than 1 the probability

of disease increases.

When data are gathered for results of a continuous variable, predetermined

cutoff points should be set. Then the number of people with and without disease

in each interval can be determined. Many authorities believe that these results

are more accurate and represent the true state of things better than a single cut-

off point. The following illustration with the white cell count in appendicitis will

illustrate this issue.

A 16-year-old girl comes to the emergency department complaining of right-

lower-quadrant abdominal pain for 14 hours and a decreased appetite. Her

physical examination reveals right-lower-quadrant tenderness and spasm and

the clinician thinks that she might have appendicitis. A white blood count (WBC)

is obtained and the result is a level of 10 200 cells/μL. The “normal” range is

4 500–11 000 cells/μL. Although this test result is “normal,” it is just below the

cutoff for an elevated WBC count. You know that a mildly elevated WBC count

has a different implication than a highly elevated WBC count of 17 000 cells/μL.

Interval likelihood ratios can help attack this question quantitatively.

Table 24.1 represents the distribution of WBC count results among 59 patients

with confirmed appendicitis and 145 patients without appendicitis. For each

interval, the probabilities for results within the interval were used to calculate

an iLR.



274 Essential Evidence-Based Medicine

Note that in this study the interval likelihood ratio is lower for the third inter-

val (9k–11k) than for the second interval (7k–9k), and similarly for the intervals

11k–13k and 13k–15k. The 95% CIs overlap in each case and include the point

estimate of the other group’s iLR. Therefore the iLR differences found for these

intervals are not statistically different. This is the result of the small sample size

in this study, and probably represents a Type II error. This value of LR+ would

more likely be in line and show a positive dose–response relationship if there

were more patients. But the inconsistency of these results points up the need for

more research to be done in this area.

Ideally, 95% CI should always be given for each LR. This allows the reader to

determine the statistical significance of the results. In initial studies, researchers

often “data dredge” by using several different cutoff points to see which gives

the best LR or iLR and which are statistically significant. These results must be

verified in a second study on a different population called a validation study.

Given this girl’s symptoms and physical findings, we estimate that her pretest

probability of appendicitis before obtaining results of WBC count is about 0.50.

This says that we’re not sure and it is a toss-up. What is the probability of appen-

dicitis if our patient had a WBC count of 10 200? We will demonstrate how to

determine this using Bayes’ theorem.

Start with the pretest probability of 50% and calculate the odds. These are

0.5/(1 – 0.5). Pretest odds (appendicitis) = 0.5/0.5 = 1 and iLR = 0.29. Therefore

post-test odds (appendicitis) = 1 × 0.29 = 0.29, and post-test probability (appen-

dicitis) = 0.29/1.29 = 0.22. This is less than before, but not low enough to rule out

the diagnosis. We must therefore decide either to do another test or to observe

the patient.

What happens if her white cell count is 7 500 (iLR = 0.52)? The pretest odds

are unchanged and the post-test odds (appendicitis) = 1 × 0.52 = 0.52. Post-test

probability (appendicitis) = 0.52/1.52 = 0.33, leading to the same problem as

with a white-cell count of 10 200.

What if her white-cell count is 17 500 (iLR = 3.5)? Again, the pretest odds are

unchanged and the post-test odds (appendicitis) = 1 × 3.5 = 3.5. Post-test prob-

ability (appendicitis) = 3.5/4.5 = 0.78. This is much higher, but far from good

enough to immediately treat her for the suspected disease. In this case, treat-

ment requires an operation on the appendix. This is major surgery and although

pretty safe in this day and age, it is still more risky than not operating if the patient

does not have appendicitis. Most surgeons want the probability of appendicitis

to be over 85% before they will operate on the patient. This is called the treatment

threshold.

Therefore, even with the white cell count this high, we have not crossed the

treatment threshold of 85%. This value was adopted based upon previous stud-

ies and prevailing surgical practice when it was considered important to have

a negative operative rate of 15% in order to prevent missing appendicitis and
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 D+  D−

WBC > 9K  T+  49  73

WBC < 9K  T−  10  72

Totals          59 145

Fig. 24.11 The 2 × 2 table for
the use of a white blood cell
count of greater than 9000 as a
cutoff for diagnosing
appendicitis. Data from S.
Dueholm, P. Bagi & M. Bud. Dis.
Colon Rectum 1989; 32:
855–859.

      D+     D−

T+       36                 18                54

T−      54    892           946

    90    910         1000

LR+ = (36/90)/(18/910) = 20

LR− = (54/90)/(892/910) = 0.61

Fig. 24.12 The 2 × 2 table to
calculate the post-test
probability of a urinary tract
infection using the dipstick
results on urine testing for UTI.
Data from K. N. Shaw, D. Hexter,
K. L. McGowan & J. S. Schwartz.
J. Pediatr. 1991; 118: 733–736.

risking rupture of the appendix. Therefore, if the probability of appendicitis is

greater than 0.85, the patient should be operated upon.

Let’s see what will happen if we lump the test results together and consider

a white blood cell count of 9 000 as the upper limit of normal. Now use likeli-

hood ratios to calculate predictive values and apply them to a population with a

prevalence of 50%. For the original study patients, LR+ = 1.66 and LR− = 0.34

(Fig. 24.11). For the patient in our example, post-test odds = 1 × 1.66 = 1.66

and the post-test probability = 1.66/2.66 = 0.62. This is slightly different from

the results using the interval likelihood ratio, but is still below the treatment

threshold.

For the study on the use of urine-dipstick testing for UTI which we discussed

earlier in this chapter, the 2 × 2 table is shown in Fig. 24.12. In the original study,

the prevalence was 0.09. Using the 2 × 2 table allows you to visualize the number

of patients in each cell, and gives an idea of the usefulness of the test.

The probability of disease if a positive test occurs is 36/54 = 0.67, and the prob-

ability of disease if the test is negative is 54/946 = 0.057. These are very similar

to the values calculated using the LRs. Remember, for our population we used a

prevalence of 10% (not 9%).
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Comparing tests and using ROC curves

His work’s a man’s, of course, from sun to sun, But he works when he works as hard as I

do – Though there’s small profit in comparisons. (Women and men will make them all the

same.)

Robert Frost (1874–1963): A Servant to Servants

Learning objectives

In this chapter you will learn:
� the dynamic relationship between sensitivity and specificity
� how to construct and interpret an ROC curve for a diagnostic test

Analysis of diagnostic test performance using ROC curves

ROC is an acronym for Receiver Operating Characteristics. It is a concept that

originated during the early days of World War II when radar was a newly devel-

oped technology. The radar operators had to learn to distinguish true signals,

approaching enemy planes, from noise, usually flocks of birds like geese or

clouds. The ROC curve let them decide which signals were most likely to be

which. In medicine, an ROC curve tells you which test has the best ability to dif-

ferentiate healthy people from ill ones.

The ROC curve plots sensitivity against specificity. The convention has been to

plot the sensitivity, the true positive rate against 1 – specificity, the false positive

rate. This ratio looks like the likelihood ratio, doesn’t it? The ROC curve for a par-

ticular diagnostic test tells which cutoff point maximizes sensitivity, specificity,

and both. ROC curves for two tests can also tell you which test is best.

By convention, when drawing ROC curves the x-axis is the false positive rate,

1 – specificity, going from 0 to 1 or 0% to 100%, and the y- axis is the sensitivity

or true positive rate, also going from 0 to 1 or 0% to 100%. The best cutoff point

for making a diagnosis using a particular test would be the point closest to the

(0,1) point, the point at which there is perfect sensitivity and specificity. It is by

276
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Table 25.1. Sensitivity and specificity for each cutoff point of WBC count in

appendicitis

Sensitivity Specificity 1 – specificity

WBC/μL (95% CI) (95% CI) (95% CI)

>4000 100 (95–100) 0 (0–3) 100 (97–100)

>7000 98 (91–100) 21 (15–29) 79 (71–85)

>9000 83 (71–92) 50 (42–59) 50 (41–58)

>11000 76 (63–86) 74 (62–84) 26 (16–38)

>13000 39 (27–53) 87 (73–98) 13 (2–27)

>15000 29 (18–47) 93 (78–100) 7 (0–22)

>17000 15 (7–27) 98 (80–100) 2 (0–20)

>19000 6 (3–19) 100 (85–100) 0 (0–15)

Source: From S. Dueholm, P. Bagi & M. Bud. Dis. Colon Rectum 1989; 32: 855–859.

definition, the gold standard. This point has 0% false positive rate and 100% true

positive rate, sensitivity.

Look at the data from the study about the usefulness of the white-blood-

cell count in the diagnosis of appendicitis in the example of the girl with

right-lower-quadrant pain (Table 25.1) and draw the ROC curve for the results

(Fig. 25.1). The sensitivity and specificity was calculated for each cutoff point as

a different dichotomous value. This has now created a curve of the sensitivity and

specificity for different cutoff points of the white blood cell count in diagnosing

appendicitis.

Comparing diagnostic tests

ROC curves can help determine which of two tests is better for a given purpose.

First, examine the ROC curves for the two tests. Is one clearly better by virtue of

being closer to the upper left corner than the other? For the hypothetical tests A

and B depicted in Fig. 25.2(a) it is clear that test A outperforms test B over the

entire range of lab values. This means that for any given cutoff point, the sen-

sitivity and specificity of test A will always be better than for the corresponding

point of test B.

Tests can also be compared even if their ROC curves overlap. This is illustrated

in Fig. 25.2(b), where the curves for tests C and D overlap. One option is to chose

a single cutoff value for the point closest to the (0,1) point on the graph, which

will always be the best single cutoff point for making the diagnosis.

Another approach uses the concept of the area under the curve (AUC). A test

whose ROC curve is the diagonal from the upper right (point 1,1) to the lower left
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(point 0,0) is a worthless test. At any given point, it’s sensitivity and false positive

rate are equal, making diagnosis using this test a coin toss for all cutoff points.

Think of the Likelihood Ratio as being one for any point on that curve. The AUC

for this curve is 0.5 and is the same a flipping a coin. Similarly the gold standard

test will be perfect and have an AUC of one (1.0). Ideally, look for an AUC that is

as close to one as possible.

ROC curves that are close to the imaginary diagonal line are poor tests. For

these tests, we can say that the AUC is only slightly greater than 0.5. Obviously,

ROC curves that are under this line are such poor tests that they are worse than

flipping a coin. We can use the AUC to statistically compare the area under two

ROC curves.

The AUC has an understandable meaning. It answers the “two alternative-

forced choice (2AFC) problem.” This means that “given a normal patient chosen

at random from the universe of normal patients, and an abnormal patient, again

chosen at random, from the universe of abnormal patients, the AUC describes

the probability that one can identify the abnormal patient using this test

alone.”1

There are several ways to measure the AUC for an ROC curve. The simplest

is to count the blocks and calculate the percentage under the curve, the medi-

cal student level. A slightly more complex method is to calculate the trapezoidal

area under the curve by approximating each segment as a regular geometric fig-

ure, the high-school-geometry level. The most complex way is to use the tech-

nique known as the “smoothed area using maximum likelihood estimation tech-

niques,” which can be done using a computer. There are programs written to

calculate these areas under the curve.

A study looked at the usefulness of the CAGE questionnaire as a screening

diagnostic tool for identifying alcoholism among adult patients in the outpatient

medical practice of a university teaching hospital. In this population, the sensi-

tivity of an affirmative answer to one or more of the CAGE questions (Table 25.2)

was about 0.9 and the specificity was about 0.8. Although one could consider the

CAGE “positive” if a patient has one or more answers in the affirmative, in reality

the CAGE is more “positive” given more affirmative answers on the four compo-

nent questions. In this test, each answer is given one point to make a total score

from zero to four.

Have you ever felt you should Cut down on your drinking?

Have people Annoyed you by criticizing your drinking?

Have you ever felt bad or Guilty about your drinking?

Have you ever had a drink first thing in the morning to steady your nerves or

get rid of a hangover (Eye-opener)?

1 Michigan State University, Department of Internal Medicine. Power Reading: Critical Appraisal of the
Medical Literature. Lansing, MI: Michigan State University, 1995.
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Table 25.2. Results of CAGE questions using different cutoffs

Numbers of

questions answered Sensitivity 1 – specificity

affirmatively Alcoholic Non-alcoholic (TPR) (FPR)

>3 56/294 56/527 0.19 0.00

>2 130/294 516/327 0.44 0.02

>1 216/294 482/527 0.73 0.09

>0 261/294 428/527 0.89 0.19

Source: Data from D. G. Buchsbaum, R. G. Buchanan, R. M. Centor, S. H. Schnoll &

M. J. Lawton. Screening for alcohol abuse using CAGE scores and likelihood ratios.

Ann. Intern. Med. 1991; 115: 774–777.

True Positive
Rate (TPR =
Sensitivity)

False Positive Rate (FPR = 1 − specificity)
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Fig. 25.3 ROC curve of CAGE
question data from Table 25.2.

One has the choice of considering the CAGE questionnaire “positive” if the

patient answers all four, three or more, two or more, or one or more of the com-

ponent questions in the affirmative. Moving from a more stringent to a less strin-

gent cutoff tends to sacrifice specificity (1 – FPR) for sensitivity (TPR).

By convention the ROC curves start at the FPR = 0 and TPR = 0 point. The

CAGE here is always considered negative regardless of patients’ answers. There

are no false positives, but no alcoholics are detected. The ROC curves end at the
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FPR = 1.0 and TPR = 1.0 point. The CAGE is always considered positive regard-

less of patients’ answers. The test has perfect sensitivity but all non-alcoholics

are falsely identified as positives.

When the ROC is plotted, the area under this curve is 0.89 units with a standard

error of 0.13 units so we’d expect a randomly selected alcoholic patient from the

sample population to have a higher CAGE score than a randomly selected non-

alcoholic patient about 89% of the time. Computers can be used to compare ROC

curves by calculating the AUCs and determining the statistical variance of the

result. Another study of the CAGE questionnaire was done by Mayfield2 on psy-

chiatric inpatients whereas Buchsbaum’s study (Table 25.2 and Fig. 25.3) used

general-medicine outpatients. The Mayfield study had an AUC of 0.9 with a stan-

dard error of 0.17. Using a statistical test, these two study results are not statisti-

cally different, validating the result.

2 D. Mayfield, G. McLeod & P. Hall. The CAGE questionnaire: validation of a new alcoholism screening
instrument. Am. J. Psychiatry 1974; 131: 1121–1123.
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Incremental gain and the threshold approach to
diagnostic testing

Science is the great antidote to the poison of enthusiasm and superstition.

Adam Smith (1723–1790): The Wealth of Nations, 1776

Learning objectives

In this chapter you will learn:
� how to calculate and interpret the incremental diagnostic gain for a given

clinical test result
� the concept of threshold values for testing and treating
� the use of multiple tests and the effect of independent and dependent tests

on predictive values
� how predictive values help make diagnostic decisions in medicine and how

to use predictive values to choose the appropriate test for a given purpose
� how to apply basic test characteristics to solve a clinical diagnostic problem

Revising probabilities with sensitivity and specificity

Remember the child from Chapter 20 with the sore throat? Let’s revisit our dif-

ferential diagnosis list (Table 26.1). Since strep and viruses are the only strong

contenders on this list, it would be hoped that a negative strep test would mean

that the likelihood of viruses as the cause of the sore throat is high enough to

defer antibiotic treatment for this child. One would only need to rule out strep to

do this. Therefore, it would make sense to do a rapid strep test. It comes up posi-

tive. Looking up the sensitivity and specificity of this test shows that they are 0.9

and 0.9, respectively. Now the pretest probability is 0.5 (50%). There are two ways

to solve this problem, either using likelihood ratios or sensitivity and specificity

to get the predictive values.

282
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Table 26.1. Pretest probability: sore throat

Streptococcal infection 50%

Viruses 75%

Mononucleosis 5%

Epiglottitis <1%

Diphtheria <1%

Gonorrhea <1%

D+           D−

T+
TP

T− FN TN

500 (D+)          500 (D−)   1000 (N)

If: Sensitivity = 0.9
Specificity = 0.9

Then:
TP = D+ × sens. = 500 × 0.9 = 450 
TN = D– × spec. = 500 × 0.9 = 450 

FP

Fig. 26.1 Set up the 2 × 2 table
using a population of 1000
patients and an estimated
clinical prevalence of strep
throat infection of 0.5. Calculate
the values of TP and TN as
shown.

D+ D−

T+ 450 50 500 

T− 50 450 500 

500 (D+) 500 (D−)    1000 (N)

PPV = 450/500 = 0.9

NPV = 450/500 = 0.9

FAR = 1 – PPV = 0.1

FRR = 1 – NPV = 0.1

Fig. 26.2 Write the values of TP,
TN, FP, and FN into the 2 × 2
table. Calculate PPV, NPV, FAR,
and FRR as shown.

Using likelihood ratios

LR+ = sensitivity/(1 − specificity) = 0.9/0.1 = 9

LR− = (1 − sensitivity)/specificity = 0.1/0.9 = 0.11

Pretest probability of disease is 50%, so the pretest odds are 1 (50%/50% = 1).

Applying Bayes’ theorem:

For a positive test, post-test odds = LR+ ×1 = 9, so post-test probability =
0.9 (9/10 = 0.9), the positive predictive value.

For a negative test, post-test odds = LR− ×1 = 0.11, so post-test proba-

bility (FRR) = 0.1 (0.11/1.11 ≈ 0.1) and the negative predictive value =
0.9 (1 − 0.1).

Using sensitivity and specificity in a 2 × 2 table

This method is shown in Figs. 26.1 and 26.2. Whichever way the calculations

are done, the positive predictive value is 0.9 and the negative predictive value is
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 90

D−D+

T+

T− 10

90

810

100    900 1000

  180

  820

PPV = 90/180 = 0.5

NPV = 810/820 = 0.987

Fig. 26.3 Results of calculating
the values of the 2 × 2 table for
a population of 1000 patients
(N) and a clinical prevalence of
strep throat infection that is low
or 0.1 (100 out of 1000).
Calculations for PPV and NPV are
shown.

also 0.9. Therefore, with a positive test result, it is reasonable to accept this diag-

nosis and realize that one might have over- or unnecessarily treated one out of

every 10 children who were treated with antibiotics and who would actually not

have strep throat. But the cost of that is low enough that it is reasonable not to

worry. This is also based on the risks of antibiotic treatment causing rare allergy

to antibiotics and occasional gastrointestinal discomfort and diarrhea. This bal-

ances against the benefit of treatment, a 1-day shorter course of symptoms and

some decrease in the very rare sequellae of strep infection, tonsillar abscess, and

acute rheumatic fever.

Similarly, if the test had come up negative, the likelihood of strep is extremely

low and one could accept that there might be 10% or one out of every 10 chil-

dren who would be falsely reassured when they could be treated with antibi-

otics for this type of sore throat. However, looking at the risks of not treating

the patient, one realizes that in this case they are also small. Rheumatic fever,

once a common complication of strep throat, is now extremely rare, with much

less than 1% of strep infections leading to this and the rate is even lower in most

populations.

Bacterial resistance from overuse of antibiotics is the only other problem left

and for now it is reasonable to decide that this will not deter writing a prescrip-

tion for antibiotics. That decision on when to treat in order to decrease overuse

of antibiotics would be deferred to a high-level government policy panel we vow

to try to use antibiotics only when reasonably indicated for a positive strep test

and not for things like a common cold. This simple decision-making process will

do until there is a blue-ribbon panel that will look at all the evidence and make a

clinical guideline, algorithm, or practice guideline on when to treat and when to

test for strep throat.

If the pretest probability of strep based upon signs and symptoms was much

lower (say 10%), this equation will change (Fig. 26.3). Use the likelihood ratios to

get the same results by starting with the pretest probability of disease, which is

now 10%. The pretest odds are 0.11 and applying Bayes’ theorem for a positive

test with LR+, results in post-test odds (= 9 × 0.11) of 0.99. This makes the post-

test probability (0.99/1.99) = 0.497. This is the positive predictive value, which is
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pretty close to the 0.5 that was obtained using the 2 × 2 table. Similarly, for a neg-

ative test, using the LR–, the post-test odds (= 0.11 × 0.11) are 0.0121. Therefore,

the post-test probability if the test is negative, which is equivalent to the false

reassurance rate or FRR is 0.0121 and the negative predictive value (1 – FRR) is

0.988.

The PPV for a positive test is now 50%. With the patient as a partner in shared

decision making, it is now reasonable to decide that since 1 day less of symptoms

is the major benefit of antibiotics, it is not worth the excess antibiotic use to treat

one without strep throat for every one with strep throat, and it is reasonable to

withhold treatment. In the case of a pretest probability of 10%, it is then reason-

able to decide not to do the test in the first place. If practicing in a community

with a high incidence of acute rheumatic fever after strep throat infections, it

may still be reasonable to test since that could make it worthwhile to treat all the

positives to prevent this more serious sequella even though one would overtreat

half of the children. Over-treating one child for every one correctly treated is a

small price to pay for the prevention of a disease as serious as acute rheumatic

fever, which will leave its victims with permanent heart deformities.

Incremental gain

Incremental gain is the expected increase in diagnostic certainty after the appli-

cation of a diagnostic test. It is the change in the pretest estimate of a given

diagnosis. Mathematically it is PPV – P or positive predictive value minus pretest

probability. For a negative test, the incremental gain would be NPV – (1 – P). For

incremental gain of a negative test, begin with the prevalence of no disease (1– P)

and go up to the NPV. The difference simply tells how much the test will increase

the probability of disease or how much “bang for your buck” occurs when using

a particular diagnostic test. This is one measure of the usefulness of a diagnos-

tic test. By convention use absolute values so that all the incremental gains are

positive numbers. They are all improvements on the previous level of probability.

For a given range of pretest probability, what is the diagnostic gain from doing

the test? Using the example of strep throat in a child and beginning with a pretest

probability of 50%, after doing the test the new probability of disease was 90%.

This represents an incremental gain of 40% (90 – 50). For a negative test the incre-

mental gain would also be 40% since the initial probability of no disease was

50% and the post-test probability of no disease was 90% (50 – 90). Doing the

same calculations for a patient with a higher pretest probability of disease, but

in whom there is still some uncertainty of strep on clinical grounds, say that the

pretest probability was estimated to be between a coin toss (50%) and certainty

(100%) so put it at about 75%. How would that change the incremental gain? Fig-

ure 26.4 shows the 2 × 2 table and the calculations based on predictive values.
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D+                  D−

  T+        675           25     700      

  T−    75         225     300 

 750 250           1000       

PPV = 675/700 = 0.964

NPV = 225/300 = 0.750

FAR = 1 − PPV = 0.036

FRR = 1 − NPV = 0.250

Fig. 26.4 Results of calculating
the values of the 2 × 2 table for
a population of 1000 patients
(N) and a clinical prevalence of
strep throat infection that is
moderately high or 0.75 (750
out of 1000). Calculations for
PPV, NPV, FAR, and FRR are
shown.

D+ D−

T+
810 10 820

T−   90 90 180

900           100 1000 

PPV = 810/820 = 0.988

NPV = 90/180 = 0.50

FAR = 1 − PPV = 0.012

FRR  = 1 − NPV = 0.50

Fig. 26.5 Results of calculating
the values of the 2 × 2 table for
a population of 1000 patients
(N) and a clinical prevalence of
strep throat infection that is very
high or 0.9 (900 out of 1000).
Calculations for PPV, NPV, FAR,
and FRR are shown.

Using likelihood ratios we start with the pretest probability of disease, which is

now 75% making the pretest odds equal to 3. Now the post-test odds for a positive

test using LR+ are 9 × 3, which is 27 making the post-test probability (27/28) =
0.964. Similarly, for a negative test, use the LR– to calculate the post-test odds of

0.11 × 3, which is 0.33. Therefore, the post-test probability if the test is negative

is the FRR, which is 0.25 and the negative predictive value 1 – FRR, which is 0.75.

Now the post-test probability of disease is more certain (96.4%), but if the test

is negative it will be wrong more often (25%). The incremental gain is now only

21.4% for a positive test (96.4 – 75) and up to 50% for a negative test (75 – 25).

Now do the same for a pretest probability of 90%. This represents almost

certainty based on signs and symptoms (Fig. 26.5). Using likelihood ratios, the

pretest probability of disease is now 90%, so the pretest odds are 9 and multi-

ply that by the likelihood ration LR+ to get the post-test odds for a positive test.

This is 9 × 9 = 81. The post-test probability is therefore 0.987 (81/82). For a neg-

ative test, the post-test odds are calculated using LR–, which is 0.11 × 9 = 1, so

the post-test probability, the FRR, is 0.5 and the negative predictive value is 1 –

FRR = 0.5.

The incremental gains are now:

Positive test: 98.8 − 90 = 8.8

Negative test: 50 − 10 = 40

So little (8.8%) is gained if the test is positive and a lot (40%) is gained if

the test is negative. In order to avoid the false negatives it would probably be

best to choose not to do the test if one was this certain and gave a high pretest
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Table 26.2. Incremental gains for rapid strep throat tests

Pretest probability Incremental gain T+ FN Incremental gain T– FP

10% 40 (10 to 50) 10/1000 8.8 (90 to 98.8) 90/1000

50% 40 (50 to 90) 50/1000 40 (50 to 90) 50/1000

75% 21.4 (75 to 96.4) 75/1000 50 (25 to 75) 25/1000

90% 8.8 (90 to 98.8) 90/1000 40 (10 to 50) 10/1000

probability that the child had strep throat. Putting all of these results in a table

(Table 26.2) makes it easy to compare the results.

In general, the greatest incremental gain occurs when the pretest probability is

in an intermediate range, usually between 20% and 70%. Notice also that as the

pretest probability increased the number of false negatives also increased and

the number of false positives decreased. The opposite happens when the pretest

probability is very low and there will be an increased number of false positives

and lower number of false negatives. This last situation occurs when working

with a screening test.

The question that must then be asked is at what level of clinical certainty or

pretest probability should a given test be done? This depends on the situation

and the test. The use of threshold values can assist the clinician in making this

judgment.

Threshold values

Incremental gain tells how much a diagnostic test increases the value of the

pretest probability assigned based upon the history and physical and modified

by the characteristics of the test and the prevalence of disease in the popula-

tion from which the patient is drawn. This simply tells the amount of certainty

gained by doing the test. One can decide not to do the test if the incremental gain

is very small since very little is gained clinically. The midrange of pretest proba-

bility yields the highest incremental gain, which is lost at the extremes of pretest

probability range.

Another way to look at the process of deciding whether to do a test is using

the method of threshold values. In this process find the probability of disease

above which one should treat no matter what, and conversely the level below

which one would never treat, and therefore shouldn’t even do the test. These are

determined using the test characteristics and incremental gain to decide if it will

be worthwhile to do a particular diagnostic test.
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Determine threshold values by calculating PPV and NPV for many different

levels of pretest probability. At each step ask if one still wanted to treat based

upon a positive result or would be willing to rule out based on a negative test

result. Decision trees can also be used to determine the threshold values and

these will be covered in Chapter 30. An alternative method uses a simple balance

sheet to approximate the threshold values. An explanation for this can be found

in Appendix 6.

In practice, clinicians use their clinical judgment to determine the threshold

values for each clinical situation. This is part of the “art of medicine” or that part

of EBM based upon clinical experience. Clinicians ask themselves “will I gain

any additional useful clinical information by doing this test?” If the answer to

this question is no, they shouldn’t do the test. They already know enough about

the patient and should either treat or not treat regardless of the test result, since

no useful additional information is gained by performing the test.

The treatment threshold is the value at which the clinician asks “do I know

enough about the patient to begin treatment and would treat regardless of the

results of the test?” If the answer to this question is yes, the test shouldn’t be

done. This occurs at high values of pretest probability. If a test is done, it ought to

be one with high specificity, which can be used to rule in disease. But if a negative

test result is obtained a confirmatory test or the gold-standard test must be done

to avoid missing a person with a false negative test. If a test with high specificity

only is chosen, a positive test will rule in disease, but there are too many false

negatives, which must be confirmed with a second or gold standard test.

The testing threshold is the value at which the clinician asks “is the likelihood

of disease so low that even if I got a positive test I would still not treat the patient?”

If the answer to this question is yes, the test shouldn’t be done. This occurs at low

values of pretest probability. If a test is done it ought to be one with high sensitiv-

ity, which can be used to rule out disease. But, if a positive test result is obtained

a confirmatory test or the gold-standard test must be done to avoid over-treating

a person with a false positive test. If a test with high sensitivity only is chosen, a

negative test will rule out disease, but there are too many false positives, which

must be confirmed with a second or gold standard test.

Both of these threshold levels depend not only on the test characteristic, the

sensitivity and specificity, and prevalence of disease, but also on the risks and

benefits associated with treatment or non-treatment. The values of probability

of disease for the treatment and testing thresholds should be established before

doing the test. The clinician selects a pretest probability of disease, and deter-

mines whether performing the test will result in placing the patient above the

treatment threshold or below the testing threshold. If it won’t, the test would not

be worth doing.

At pretest probabilities above the treatment threshold, testing may produce an

unacceptable number of false negatives in spite of a high PPV. Some patients
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testing
threshold

test and treat
on the basis of 
the test result

do not test
get on with treatment

no test
no treat

0 .1 .2 .3

Prior probability of disease

.4 .5 .6 .7 .8 .9 1

treatment
threshold

Fig. 26.6 Thresholds for strep
throat example.

would be denied the benefits of treatment, perhaps more than would benefit

from discovery of the disease and subsequent treatment. The pretest probabil-

ity of disease is so great that treatment should proceed regardless of the results

of the test. This is because if the test results are negative they are more likely

to be a false negative and could miss someone with the disease. In that set-

ting one must be ready to do a confirmatory test, possibly the gold standard

test. In other words, one should be more willing to treat someone who does not

have the disease and has a false positive test result, than to miss treating some-

one who is a false negative. This may not be true if treatment involves a lot of

risk and suffering such as needing a major operation or taking potentially toxic

medication.

At pretest probabilities below the testing threshold, testing would lead to an

unacceptable number of false positives or a high FAR. Patients would be unnec-

essarily exposed to the side effects of further testing or treatment with very little

benefit. The likelihood of disease in someone with a positive test is so small that

treatment should not be done even if the test is positive since it is too likely that a

positive test will be a false positive. Again one must be ready to do a confirmatory

test. This approach is summarized in Fig. 26.6.

For the child in our example with a sore throat, this testing threshold is a

pretest probability of strep throat below 10%. Below this level, applying the rapid

strep antigen test and getting a positive result would still not increase the prob-

ability of disease enough to treat the patient and one can be certain enough that

disease is not present that the benefit of treating is extremely small. Similarly, the

treatment threshold is a pretest probability of strep throat above 50%. Above this

level, applying the rapid strep antigen test and getting a negative result would

still not decrease the probability of disease enough to refrain from treating the

patient and one can be certain enough that disease is present so that the ben-

efit of treatment is reasonably great. Between these values of pretest probabil-

ity (from 10–50%) do the test first and treat only if the test is positive, since the

post-test probability then increases above the treatment threshold. If the test is

negative, the post-test probability is now below the testing threshold.

In this example of the child with a sore throat, almost all clinicians agree that

if the pretest probability is 90% as would be present in a child with a severe sore
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throat, large lymph nodes, pus on the tonsils, bright red tonsils, fever, and no

signs of a cold, the child ought to be treated without doing a test. There would

still be a likelihood of incorrectly diagnosing about 10% of viral sore throats as

strep throats with this estimate of disease. In general, as the probability of dis-

ease increases, the absolute number of missed strep throats will increase. In fact,

most clinicians agree that if the post-test probability is greater than 50%, the

child ought to be treated. This is the treatment threshold.

Similarly, if the probability of strep throat was 10% or less in a child with mild

sore throat, slight redness, minimal enlargement of the tonsils, no pus, minimally

swollen and non-tender lymph nodes, no fever, and signs of a cold, half of all pos-

itives will be false positives and too many children would be overtreated. There

won’t be much gain from a negative test, since almost all children are negative

before we do the test. For a pretest probability of 10%, the PPV (as calculated

before) is 50%, which is not above the treatment threshold value of 50%. The

addition of the test is not going to help in differentiating the diagnosis of strep

throat from that of viral pharyngitis. Therefore one should not do the test if this

is the pretest probability of disease. This is the testing threshold.

If the pretest probability is between 10% and 50%, choose to do a test, probably

the rapid strep antigen test that can be done quickly in the office and will give an

immediate result. Choose to treat all children with a positive test result. Then

decide what to do with a negative test. The options here are not to treat or to do

the gold-standard test on all those children with a negative rapid strep test and

with a moderately high pretest probability of about 50%. In this case one should

do the throat-culture test. It is about five times more expensive and takes 2 days

as opposed to 10 minutes for the rapid strep antigen test. However, there will

still be a savings by having to do the gold-standard test on less than half of the

patients, including all those with low pretest probability and negative tests and

those with high pretest probability who have been treated without any testing.

In the example of strep throat, the “costs” of doing the relatively inexpensive

test, of missing a case of uncommon complications and of treatment reactions

such as allergies and side effects are all relatively low. Therefore the threshold for

treatment would be pretty low, as will the threshold for testing.

This method is more important and becomes more complex in more serious

clinical situations. Consider a patient complaining of shortness of breath. If one

suspects a pulmonary embolism or a blood clot in the lungs, should an expen-

sive and potentially dangerous test in which dye is injected into the pulmonary

arteries, called a pulmonary angiogram and the gold standard for this disease,

be done in order to be certain of the diagnosis? The test itself is very uncomfort-

able, has some serious complications of about 10% major bleeding at the site of

injection and can cause death in less than 1% of patients.

Should one begin treatment based upon history, physical examination, and an

“imperfect” diagnostic test such as a chest CT or ventilation–perfusion lung scan
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that came up positive? There are problems with treatment. Treating with antico-

agulants or “blood thinners” can cause excess bleeding in an increasing number

of patients as time on the drug increases and the patient will be falsely labeled

as having a serious disease, which could affect their future employability and

insurability. These are difficult decisions and must be made considering all the

options and the patient’s values. They are the ultimate combination of medical

science and the physician’s art.

Finally, 95% confidence intervals should be calculated on all values of like-

lihood ratios, sensitivity, specificity, and predictive values. The formulas for

these are very complex. The best online calculator to do this can be found at

the School of Public Health of the University of British Columbia website at

http://spph.ubc.ca/sites/healthcare/files/calc/bayes.html. For very high or low

values of sensitivity and specificity (FN or FP less than 5) use the rules for zero

numerator to estimate the 95% CI. These are summarized in Chapter 13.

Multiple tests

The ideal test is capable of separating all normal people from people who have

disease and defines the “gold standard.” This test would be 100% sensitive and

100% specific and therefore, would have no false positive or false negative results.

Few tests are both this highly sensitive and specific, so it is common practice to

use multiple tests in the diagnosis of disease. Using multiple tests to rule in or

rule out disease changes the pretest probability for each new test when used

in combination. This is because each test performed should raise or lower the

pretest probability for the next test in the sequence. It is not possible to predict

a priori what happens to the probability of disease when multiple tests are used

in combination and whether there are any changes in their operating character-

istics when used sequentially.

This occurs because the tests may be dependent upon each other and measure

the same or similar aspects of the disease process. One example is using two dif-

ferent enzyme markers to measure heart-muscle cell damage in a heart attack.

Tests are independent of each other if they measure completely different things.

An example of this would be cardiac muscle enzymes and radionuclide scan of

the heart muscle. An overview of the effects of using multiple tests is seen in

Fig. 26.7.

In many diagnostic situations, multiple tests must be used to determine the

final diagnosis. This is required when application of an initial test does not

raise the probability of disease above the treatment threshold. If a positive

result on the initial test does not increase the post-test probability of disease

above the treatment threshold, a second, “confirmatory” test must be done.

The expectation in this case is that a positive result on the second test will
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Independent tests Dependent tests(a)

Pretest probability
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(first test)

Post-test

odds
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odds

(b)

Pretest probability

× LR2 +
(second test)

Post-test

probability

× LR1 +
(first test)

Pretest odds

Post-test

odds

Fig. 26.7 Using multiple tests.

“clinch” the diagnosis by putting the post-test probability above the treatment

threshold.

If the second test is negative this leads to more problems. This negative result

must be considered in the calculations of post-test probability. If the post-test

probability after the negative second test is below the testing threshold the diag-

nosis is ruled out. Similarly, if the second test is positive and the post-test prob-

ability after the second test is above the treatment threshold, the diagnosis is

confirmed. If the second test is negative and the resulting post-test probability

is not below the testing threshold, a third test must be done. If that is positive,

more testing may still need to be done to resolve the discordant results on the

three tests.

A complication in this process of calculation of post-test probability is that

the two tests may not be independent of each other. If the tests are indepen-

dent, they measure different things that are related to the same pathophysio-

logical process. They both measure the same process but by different mecha-

nisms. Another example of independent tests is in the diagnosis of blood clots in

the legs, deep vein thrombosis or DVT. Ultrasound testing takes a picture of the

veins and blood flow through the veins using sound waves and a transducer. The

serum level of d-dimer measures the presence of a byproduct of the clotting pro-

cess. The two tests are complementary and independent. A positive d-dimer test

is very non-specific, and a positive test does not confirm the diagnosis of DVT. A

subsequent positive ultrasound virtually confirms the diagnosis. The ultrasound

is not as sensitive, but is very specific and a positive test rules in the disease.
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Two tests are dependent if they both measure the same pathophysiologi-

cal process in more or less the same way. An example would be the release

of enzymes from damaged heart-muscle cells in an acute myocardial infarc-

tion, AMI. The release of creatine kinase (CK) and troponin I (TropI) both occur

through related pathological mechanisms as infarcted myocardial muscle cells

break down. Therefore they ought to have about the same characteristics of sen-

sitivity and specificity. The two tests should give the same or similar results when

they are consecutively done on the same patient. There is a difference in the time

course of release of each enzyme. Both are released early but, TropI persists for

a longer time than CK. This makes the two of them useful tests when monitored

over time. If a patient has an increased serum level of CK, the diagnosis of AMI

is confirmed. A negative TropI may cast doubt upon the diagnosis and a positive

TropI will confirm the diagnosis.

The use of multiple tests is a more challenging clinical problem than the use

of a single test alone. In general, a result that confirms the previous test result is

considered confirmatory. A result that does not confirm the previous test result

will most often not change the diagnosis immediately, and should only lead

to questioning the veracity of the diagnosis. It then must be followed up with

another test. If the pretest probability is high and the initial test is negative, the

risk of a false negative is usually too great and a confirmatory test must be done.

If the pretest probability is low and the initial test is positive, the risk of a false

positive is usually too great and a confirmatory test must be done.

If the pretest probability is high, a positive test is confirmatory unless the

specificity of that test is very low. If the pretest probability is low, a negative test

excludes disease unless the sensitivity of that test is very low. Obviously if the

pretest probabilities are either very high or very low, the clinician ought to con-

sider not doing the test at all. In the case of very high pretest probability imme-

diate initiation of treatment without doing the test should be considered as the

pretest probability is probably above the treatment threshold. Similarly, in the

case of very low pretest probability, the test ought not to be done in the first place

since the pretest probability is probably below the testing threshold.

Real-life application of these principles

What happens in real life? Can these concepts be used clinically? It is relatively

easy to learn to do the calculations necessary to determine post-test probabil-

ity. However, in the clinical situation, “in the trenches,” it is often not very help-

ful. Almost all clinicians will most often do what they always do and have been

taught to do in a particular clinical situation when it is similar to other clinical

encounters they have had in the past. Those actions should be based on these

same principles of rational decision making, but are learned through training
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and continuing education. However, in difficult cases, one will sometimes need

to think about these concepts and go through the process of application of diag-

nostic test characteristics and the use of Bayes’ theorem to one’s patient. There

are some general rules that ought to be followed when using diagnostic tests.

If the pretest probability of a diagnosis is high and the test result is positive

there should be no question but to treat the patient. Similarly, if the pretest prob-

ability is low and the test result is negative, there should be no question but not to

treat the patient. However, if the suspected disease has a high pretest probability

and the test is negative, additional tests must be used to confirm that the patient

does not have the disease. If the second test is positive, that should lead to fur-

ther investigation with additional tests, probably the gold standard to “break the

tie.” Similarly, if the disease has a low pretest probability and the test is positive,

additional tests must be done to confirm that the patient actually has the dis-

ease. If the second test is negative, that should lead to further investigation with

additional tests, probably the gold-standard test to “break the tie.”

In patients with a medium pretest probability, it may not be possible for a sin-

gle test to determine the need to treat, unless that test has a very high positive

or very low negative likelihood ratio. In general, go with the results of the test if

that result puts the post-test probability over the treatment threshold or under

the testing threshold. The higher the LR+ of a positive test, preferably over 10 is

best, the more likely it is to put the probability over the treatment threshold. The

lower the LR– of a negative test, preferably under 0.1 is best, the more likely it is

to put the probability under the testing threshold.
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Sources of bias and critical appraisal of studies of
diagnostic tests

It is a vice to trust all, and equally a vice to trust none.

Seneca (c.3 BC – AD 65): Letters to Lucilius

Learning objectives

In this chapter you will learn:
� the potential biases in studies of diagnostic tests
� the elements of critical appraisal of studies of diagnostic tests

Studies of diagnostic tests are unique in their design. Ideally they compare the

tests in a sample of patients who have a diagnosis that we are certain is cor-

rect. The reader must be aware of potential sources of bias in evaluating these

studies.

Overview of studies of diagnostic tests

In order to find bias in studies of diagnostic tests, it is necessary to know what

these studies are intended to do. When evaluating studies of a diagnostic test,

it is useful to use a structured approach. The first step is to formulate the four-

part clinical question in the PICO format. In these cases, the question relates the

diagnostic test, the intervention, to the gold standard, or the comparison. The

patient population is those patients in whom the test would normally be done

in a clinical setting and the target disorder is the disease that is attempting to be

diagnosed.

A typical PICO question might be framed as follows. A blood clot in the lungs

or a pulmonary embolism (PE) can be diagnosed with the new-generation x-ray-

computed tomography scanners (CT) of the chest. Is this diagnostic tool as accu-

rate as the gold-standard pulmonary angiogram obtained by squirting dye into

the pulmonary artery and taking an x-ray and is it better than the old standard

295
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test, the ventilation–perfusion (V/Q) scan of the lungs? The clinical question

asks: in patients suspected of having a PE (population), does the chest CT (inter-

vention) diagnose PE (outcome as determined by angiogram) better than the

V/Q scan (comparison)? This question asks what the sensitivity and specificity

of the CT and V/Q scans are relative to the gold standard test, the angiogram,

which is assumed to have perfect sensitivity and specificity.

Studies of diagnostic tests should begin with a representative sample of

patients in whom the reasonable and average practitioner would be looking for

the target disorder. This may not always be possible since studies done with dif-

ferent populations may result in different results of test characteristics, a result

which cannot be predicted. Patient selection can easily limit the external validity

of the test. In the ideal situation, the patients enrolled in the study are then all

given the diagnostic test and the gold-standard tests without the researchers or

the patient knowing the results of either test. The number of correct and incor-

rect diagnoses can then be computed.

As with any clinical study, there will be sources of bias in studies of diagnos-

tic tests. Some of these are similar to biases that were presented in Chapter 8

on sources of bias in research, but others are unique to studies of diagnostic

tests. You ought to look for three broad categories of bias when evaluating stud-

ies of diagnostic tests. These are selection bias, observer bias, and miscellaneous

biases.

Selection bias

Filter bias

If the patients studied for a particular diagnostic test are selected because they

possess a particular characteristic, the resulting operating characteristics found

by this study can be skewed. The process of patient selection should be explicit

in the study methods but it is often omitted. Part of the actual clinical diagnostic

process is the clinician selecting or filtering out those patients who should get

a particular diagnostic test done and those who don’t need it. A clinician who

believes that a particular patient does not have the target disorder would not

order the test for that disease.

Suspect this form of bias when only a portion of eligible patients are given the

test or entered into the study. The process by which patients are screened for

having the testing should be explicitly stated in any study of a diagnostic test

allowing the reader to determine the external validity of the study. Decide for

yourself if a particular patient in actuality is similar enough to the patients in the

study to have the test ordered and to expect results to be similar to those found

in the study.
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Using the example of a study of patients with suspected PE, what if only those

patients who were strongly suspected of having a PE are enrolled in the study. If

there is no clear-cut and reproducible way to deterimine how they were selected

it would be difficult, if not impossible, to determine how to select patients to

have the test done on them. It is possible that an unknown filter was applied to

the process of patient selection for the study. Although this filter could be applied

in an equitable and non-differential manner, it can still cause bias since its effect

may be different in those patients with and without the target disease. This selec-

tion process usually makes the test work better than it would in the community

situation. The community doctor, not knowing what that filter was, would not

know which patients to select for the suggested test and would tend to be less

selective of those patients to whom the test would be applied.

Spectrum and subgroup bias (case-mix bias)

A test may be more accurate when given to patients with classical forms of a

disease. The test may be more likely to identify patients with the disease that is

more severe or “well-developed” and less likely to accurately identify the disease

in those patients who present earlier in the course of the disease or in whom the

disease is occult or not obvious. This can be a reflection of real-life test perfor-

mance. Most diagnostic tests have very little utility in the general and asymp-

tomatic population, while being very useful in specific clinical situations. Most

of that problem is due to a large percentage of false positives when the very low

prevalence population is tested.

There are also cases for which the test characteristics, sensitivity and speci-

ficity, also increase as the severity of disease increases. Some patients with leak-

ing cerebral aneurysms present with severe headaches. If only a small leak is

present, the patient is more likely to present with a severe headache and no neu-

rological deficits. In this case, the CT scan will miss the bleed almost 50% of the

time. If there is a massive bleed and the patient is unconscious or has severe neu-

rologic deficit, the CT is positive in almost 100% of cases. These are the sensitivity

of the test in these two situations.

In the 1950s and 1960s, the yearly “executive physical examination,” which

included many laboratory, x-ray, and other tests was very popular, especially

among corporate executives. The yield of these examinations was very low. In

fact the results were most often normal and, when abnormal, were usually falsely

positive. There is a similar phenomenon today with a proliferation of private CT

scanners that are advertised as generalized screening tests for anyone who can

pay for them. They are touted as being able to spot asymptomatic disease in early

and curable stages with testimonials given on their usefulness. The correct use of

screening tests will be discussed in Chapter 28.
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Verification bias

Patients can be selected to receive the gold-standard test based upon the results

of the diagnostic test being evaluated. But, sometimes those who have negative

tests won’t all have the gold-standard test done and have some other method for

evaluating the presence or absence of disease in them. This will usually make the

test perform better than it would if the gold standard were done on all patients

who would be considered for the test in a real clinical situation. Frequently,

patients with negative tests are followed clinically for a certain period of time

instead of having the gold-standard test performed on them. This may be appro-

priate if no patients are lost to follow-up and if the presence of disease results in

some measurable change in the patient over the time of follow-up. You cannot

do this with silent diseases that become apparent only many years later unless

you follow all of the patients in the study for many years.

Incorporation bias

This occurs if the diagnostic test being studied is used as or is part of the gold

standard. One common way that this happens is that a diagnostic sign of inter-

est becomes a reason that patients are enrolled into the study. This means that

the final diagnosis of the disease is dependent on the presence of a positive diag-

nostic test. Ideally the diagnostic test and the gold standard should be indepen-

dent of each other meaning that there is no mechanistic relationship between

the diagnostic test and the gold standard.

A classic example of this type of bias occurs in studies of acute myocardial

infarction (AMI). One criterion for diagnosis of AMI is the elevation of the crea-

tine kinase enzyme (CK) in the blood of patients with AMI as a result of muscle

damage from the infarction. Another criterion is characteristic changes on the

electrocardiogram. Studies of the usefulness of CK as a serum marker for making

the diagnosis of AMI will be flawed if it is used as part of the definition of AMI.

It will be increased in all AMI patients since it is both the diagnostic test being

investigated and the reference or gold-standard test. This will make the diagnos-

tic test look better or more accurate in the diagnosis of AMI resulting in higher

sensitivity and specificity than it probably has in real-life diagnosis.

In another example, patients with suspected carpal tunnel syndrome have cer-

tain common clinical signs of carpal tunnel syndrome such as tenderness over

the carpal tunnel. The presence of this sign gets them into a study looking at

the validity and usefulness of common signs of carpal tunnel syndrome, which

are important diagnostic criteria in patients referred for specialty care. This bias

makes that sign look better than it actually is in making a positive diagnosis since

patients who might not have this sign, and who likely have milder disease, were

never referred to the specialist and were therefore excluded from the study.
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Observer bias

Absence of a definitive test or the tarnished gold standard

This is probably the most common problem with studies of diagnostic tests. The

gold standard must be reasonably defined. In most cases, no true gold standard

exists, and a research study must make do with the best that is available. The

authors ought to discuss the problem of lack of a gold standard as part of their

results.

For example, patients with abdominal trauma may undergo a CT scan of the

abdomen to look for internal organ damage. If the scan is positive, they are

admitted to the hospital and may be operated upon. If it is negative, they are

discharged and followed for a period of time to make sure a significant injury

was not missed. However, if the follow-up time is too short or incomplete, there

may be some patients with significant missed injuries who are not discovered

and some may be lost to follow-up. The real gold standard, operating on every-

one with abdominal trauma, would be ethically unacceptable.

Review or interpretation bias

Interpretation of a test can be affected by the knowledge of the results of other

tests or clinical information. This can be prevented if the persons interpreting the

test results are blinded to the nature of the patient’s other test results or clinical

presentation. If this bias is present, the test will appear to work better than it

otherwise would in an uncontrolled clinical situation. There are two forms of

review bias.

In test review bias, the person interpreting the tests has prior knowledge

of the patient’s outcome or their result on the gold-standard test. Therefore,

they may be more likely to interpret the test so that it confirms the already

known diagnosis. For example, a radiologist reading the myocardial perfusion

scan mapping blood flow through the heart of a patient whom they know to

have an AMI is more likely to read an equivocal area of the scan as showing

no flow and therefore consistent with an MI. This is because he or she knows

that there is a heart attack in that area that should show up with an area of

diminished blood flow to some of the heart muscle. As a result the radiologist

interprets the equivocal sign as definitely showing no flow, or a positive test for

AMI.

In diagnostic review bias, the person interpreting the gold-standard test

knows the result of the diagnostic test. This may change the interpretation of

the gold standard, and make the diagnostic test look better since the reviewer

will make it concur with the gold standard more often. This will not occur if

the gold-standard test is completely objective by being totally automated with
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a dichotomous result or if the interpreter of the gold standard is blinded to the

results of the diagnostic test. For example, a patient with a positive ultrasound

of the leg veins is diagnosed with deep venous thrombosis or a blood clot in the

veins. A radiologist reading the venogram, dye assisted x-ray of the veins, which

is the gold standard in this case, is more likely to read an equivocal area as one

showing blockage since he or she knows that the diagnostic test showed an area

consistent with a clot.

Context bias

This is a common heuristic, or thought pattern. The person interpreting the test

will base their reading of the test upon known clinical information. This can be

a bias when determining raw test data or in a real-life situation. Radiologists are

more likely to read pneumonia on a chest x-ray if they are told that the patient

has classical findings of pneumonia such as cough, fever, and localized rales over

one part of the lungs on examination. In daily clinical situations, this will make

the correlation between clinical data and test results seem better than they may

be in a situation in which the radiologist is given no clinical information, but

asked only to interpret the x-ray findings.

Miscellaneous sources of bias

Indeterminate and uninterpretable results

Some tests have results that are not always clearly positive or negative, but may

be unclear, indeterminate, or uninterpretable. If these are classified as positive or

negative, the characteristics of the test will be changed. This makes calculation

and manipulation of likelihood ratios or sensitivity and specificity much more

complicated since categories are no longer dichotomous, but have other possible

outcomes.

For example, some patients with pulmonary emboli have an indeterminate

perfusion–ventilation lung scan showing the distribution of radioactive mate-

rial in the lung. This means that the results are neither positive nor negative and

the clinician is unsure about how to proceed. Similarly, the CT scan for appen-

dicitis in some patients with the condition may not show the entire appendix.

This is more likely to occur if the appendix lies in an unusual location such as

in the pelvis or retrocecal area. In cases of patients who actually have the dis-

ease, if the result is classified as positive, the patient will be correctly classi-

fied. If however, the result is classified as negative, the patient will be incorrectly

classified. Again the need for blinded reading and careful a-priori definitions

of a positive and negative test can prevent the errors that go with this type of

problem.
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Reproducibility

The performance of a diagnostic test depends on the performance of the techni-

cian and the equipment used in performance of the test. Tests that are operator-

dependent are most prone to error because of lack of reproducibility. They may

perform very well when carried out in a research setting, but when extrapolated

to the community setting, the persons performing them may never rise to the

level of expertise required, either because they don’t do enough of the tests to

become really proficient or because they lack the enthusiasm or interest. For

example, CT scans for appendicitis are harder to read than those taken for other

GI problems. When tested in a center that was doing research on this use, they

performed very well. When extrapolated to the community hospital setting, they

did less well. Tests initially studied in one center should be studied in a wide

variety of other settings before the results of their operating characteristics are

accepted.

Post-hoc selection of test positivity criteria

This situation is often seen when a continuous variable is converted to a dichoto-

mous one for purposes of defining the cutoff between normal and abnormal. In

studying the test, it is discovered that most patients with the disease being sought

have a test value above a certain threshold and most without the disease have a

test value below that threshold. There is statistical significance for the difference

in disease occurrence in these two groups (P < 0.05). That threshold is therefore

selected as the cutoff point.

In some cases, the researchers looked at several cutoff points before deciding

on a final one. Some of them produced differences that were not statistically sig-

nificant. This is a form of data dredging and could be classified as a Type I error. A

validation study should be done to verify this result and the results given as like-

lihood ratios rather than simple differences and P values. This problem can be

evaluated by using likelihood ratios and sensitivity and specificity and plotting

them on the Receiver Operating Characteristics curve for the data rather than

using only statistical significance as the defining variables in test performance.

Temporal changes

Test characteristics measured at one point in time may change as the test is tech-

nically improved. The measures calculated from the studies of the newer tech-

nology will not apply to the older technology. This is especially true in radiol-

ogy, where new generations of MRI machines, CT scanners, and other imaging

modalities are regularly introduced. The results of a study done with the lat-

est generation of CT scanners may not be seen if your hospital is still using the
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older scanners. Look for this problem in the use of newer biochemical or patho-

logical tests, as well as in questionnaire tests if the questionnaire is constantly

being improved. There may also be problems associated with the technologi-

cal improvement in tests. Newer generations of CT scanners are more likely to

deliver higher doses of radiation to the body.

Publication bias

Studies that are positive, that find a statistically significant difference between

groups, are more likely to be published than those that find no difference. Con-

sider the possibility that there may be several unpublished negative studies “out

there” when deciding to accept the results of studies of a new test. Ideally, diag-

nostic tests should be studied in a variety of clinical settings and with different

mixes of patients.

Words of caution: the manufacturers of a new test want as many physicians

to use the test as often as possible and may sponsor studies that have various of

the biases noted above. There is a lot of money to be made in the introduction of

a new test, especially if it involves an expensive new technology. For example, a

magnetic resonance imaging, MRI, machine costs several million dollars, which

must be justified by the performance of lots of scans. These may not be justi-

fied based on good objective evidence obtained through well-conducted stud-

ies of the technology. As a conscientious physician, you must decide when these

expensive technologies are truly useful to your patient. Working with well-done

published guidelines and knowing the details of the studies of these new modal-

ities can help to put their use into perspective.

Studies sponsored by the manufacturer of the test being studied are always

open to extra scrutiny. Although this does not automatically make it a bad study,

if the authors have a financial stake in the results of the study they often “spin”

the results in the most favorable manner. Conversely, a company producing a

diagnostic test will resist publication of a negative study, and this may lead to

suppression of important medical information.

The ideal study of diagnostic tests

The following is a hypothetical example of an ideal research study of a diagnostic

test. The study looked at the use of head CT in predicting the complications of

stroke therapy with blood clot dissolving medication. Patients who are having a

stroke get an immediate head CT. The scan is initially read by a community radi-

ologist who is part of the treating physician group and not by a neuro-radiologist

who specializes in reading head CTs. If in that radiologist’s opinion the scan

shows any sign of potential bleeding into the brain, that patient is excluded from

the study.
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This scan is then taken to two neuro-radiologists who are experts in reading

head CTs. They read the scan without knowing the nature of the patient problem

or each other’s reading of the scan. If they disagree with each other’s reading, a

third radiologist is called in as a tiebreaker. All patients who are felt to be clini-

cally eligible for the drug are randomized to be given either the drug or placebo.

The rate of resolution of symptoms and the percentage of patients who make full

recovery, do worse, and die are measured for each group.

The reference standard is the reading of the two blinded neuro-radiologists,

or a majority of two in the case of disagreement. This is not perfect, but mirrors

the best that could be done in any radiology setting. The outcome should then

be judged by a clinician who would probably be a neurologist in this case and

who is also blinded to the results of the CT and the group to which the patient

was randomized. Although not perfect, and no study is, there are adequate safe-

guards to ensure the validity of the results. The inclusion criteria are specified

and the filter for which patients are chosen is explicit. The biggest problem with

this study is that patients who are excluded by the initial reading of the CT may in

fact have been eligible for the treatment if a bleed was mistakenly read. However,

in a real-life situation, this is what would occur, so the results are generalizable

to the setting of a community hospital. This group with positive CT scans can be

studied separately if all of their CT scans are taken and read by the same panel of

neuro-radiologists who then record their final readings, the gold standard. This

will tell us how accurate the reading of a bleed was on the CT scans by the com-

munity radiologists.

The gold standard is clearly defined and about as good as it gets. The test, CT

read by community radiologists, and gold standard, CT read by neuro-radiology

specialists, are independent of each other and read in a blinded manner since

the two groups of radiologists are not communicating with each other. A more

perfect gold standard could be another test such as magnetic resonance imaging,

MRI, of the brain. All patients would need to have both the diagnostic test and the

gold-standard test. The follow-up period must be made sufficiently long so that

all possible outcome events are captured. That is not a significant problem here

as all patients can be observed immediately for the outcome. The outcome is

being measured by a clinician who is blinded to the results of the gold-standard

test and the treatment given to the patient. The only potential problem is that

the time factor to get the patient into a CT scan and then an MRI might make the

time to getting the medication too long and lead to worse results for the patient.

How to evaluate research studies of diagnostic tests:
putting it all together

All practicing physicians will be faced with the ability to order an ever-increasing

number of diagnostic tests. Many of these will have only theoretical promise and
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may not have been tested very thoroughly in clinical practice. One must be able

to critically evaluate the studies of diagnostic tests and determine for oneself

whether the test is appropriate to use in your particular clinical setting. The cri-

teria discussed in this chapter are taken with permission from the series called

Users’ Guides to the Medical Literature, published in JAMA (see Bibliography).

Are the results valid?

(1) Was there an independent, blind comparison with a reference (gold)

standard of diagnosis?

Diagnostic test studies measure the degree of association between the predictor

variable or test result and the outcome or disease. The presence or absence of the

outcome or disease is determined by the result of a reference or gold-standard

test. The diagnostic test under study cannot be used to determine the presence

or absence of the disease. That would be an example of incorporation bias.

The term “normal” must be sensibly defined. How this term is arrived at must

be specified. This could be done using a Gaussian distribution, percentile rank,

risk factor presence or absence, culturally desirable outcome, diagnostic out-

come, or therapeutic outcome and should be specified. If prolonged follow-up

of apparently well patients is used to define the absence of disease, the period

of follow-up must be reasonable so that almost all latent cases of the disease in

question will develop to a stage where the disease can be readily identified.

Both the diagnostic test being studied and the gold standard must be applied

to the study and control subjects in a standardized and blinded fashion. This

should be done following a standardized protocol and using trained observers to

improve reliability. Comparing the new test to the gold standard assesses accu-

racy and validity. Blinding reduces measurement bias. Ideally, the test should

be automated and not operator-dependent, multiple measurements should be

made, and at least two investigators involved. One will apply or interpret the new

diagnostic test on the subjects while the second will apply or interpret the gold

standard on the subjects.

(2) Was the study test described adequately?

The test results should be easily reproducible or reliable and easy to inter-

pret with low inter-observer variation. Enough information should be present

in the Methods section to perform the diagnostic test, including any special

requirements, dosages, precautions, and timing sequences. An estimated cost

of performing the test should be given, including reagents, physician or tech-

nician time, specialty care, and turn-around time. Long- and short-term side

effects and complications associated with the test should be discussed. The

test parameters may be very variable in different settings because test reliabil-

ity varies. For “operator-dependent tests” the level of skill of the person per-

forming the test should be noted and some discussion of how they are trained
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included in the description of the study so that this training program can be

duplicated.

(3) Was the diagnostic test evaluated in an appropriate spectrum of patients?

In order to reduce sampling bias, the study patients should be adequately

described and representative of the population likely to receive the test. The dis-

tribution of age, sex, and spectrum of other medical disorders unrelated to the

outcome of interest should be representative of the population in whom the test

will ultimately be used. The spectrum of disease should be wide enough to rep-

resent all the levels of patients for whom the test may be used and should include

early disease, late disease, classical cases, and difficult-to-diagnose cases, those

commonly confused with other disorders. If only very classical cases are studied,

the diagnostic test may perform better than it would for less characteristic cases,

an example of spectrum bias.

Frequently, research studies of diagnostic tests are done at referral centers that

see many cases of severe, classical, or unmistakable disease. This may not corre-

late with the distribution of levels of disease seen in physicians’ offices or com-

munity hospitals leading to referral or sampling bias. Investigators testing a new

test will often choose a sample of subjects that have a higher-than-average preva-

lence of disease. This may not represent the prevalence of disease in the general

population. If the study is a case–control study or retrospective study, typically

50% of the subjects will have disease and 50% will be normal, a ratio that is very

unlikely to actually exist in the general population. Physicians tend to order test-

ing in subjects who are less likely to have the disease than those usually studied

when the test is developed.

There should be clear description of the way that people were selected for the

test. This means that the reader should be able to clearly understand the selec-

tion filter that was used to preselect those people who are eligible for the test.

They should be able to determine which patients are in the group most likely to

have the disease as opposed to other patients who have a lower prevalence of the

disease and yet might also be eligible for the test. In a case–control study, the con-

trol patients should be similar in every way to the diseased subjects except for the

presence of disease. This cannot be done using only young healthy volunteers as

the study subjects! The cases with the disease should be as much like the controls

without the disease in every other way possible. The similarity of study and con-

trol subjects increases the possibility that the test is measuring differences due

to disease and not age, sex, general health, or other factors or disease conditions.

(4) Was the reference standard applied regardless of the diagnostic test result?

The choice of a reference gold or diagnostic standard may be very difficult. The

diagnostic standard test may be invasive, painful, costly, and possibly even dan-

gerous to the patient, resulting in morbidity and even mortality. Obviously tak-

ing a surgical biopsy is a very good reference standard, but it may involve major
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surgery for the patient. For that reason, many diseases will require prolonged

follow-up of patients suspected as being free of the disease as an acceptable ref-

erence standard. How and for how long this follow-up is done will often deter-

mine the internal validity of the study. The study should be free of verification

and other forms of review bias such as test review and context bias, which can

occur during the process of observing patients who are suspected of having or

not having the disease. Adequate blinding of observers is the best way to avoid

these biases.

(5) Has the utility of the test been determined?

If the test is to be used or the investigators desire that it be used as part of a

battery or sequence of tests, the contribution of this test to the overall validity of

the battery or sequence must be determined. Is the patient better off for having

the test done alone or as part of the battery of tests? Is the diagnosis made earlier,

the treatment made more effective, the diagnosis made more cheaply, or more

safely? These questions should all be answered especially before we use a new

and very expensive or dangerous test. Some of these questions are answered by

the magnitude of the results. But, there are always logistical questions that must

be answered to determine the usefulness of a test in varied clinical situations.

What is the impact of the results?

The study results must be important. This means that the study must determine

the likelihood ratios of the test. In most studies this will be done by calculation

of the sensitivity and specificity. If these are reasonably good, the next step is

deciding to which patients the results can be applied. Confidence intervals for

the likelihood ratios should be given as part of the results. Where multiple test

cutoff points are possible, an ROC curve should be provided and the best cut-

off point determined. All of these points have associated confidence intervals. In

any study of a diagnostic test, the initial study should be considered a deriva-

tion study and followed by one or more large validation studies. These will deter-

mine if the initial good results were actually true or if they were just that good by

chance alone.

Can the results be applied to my patients?

Consider the population tested and the patient who is being evaluated. The

answer to the question of generalizability or particularizability depends on how

similar each individual patient is to the study population. You have to ask

whether he or she would have been included in the sample being studied. Ideally

the answer to that question ought always to be yes. But sometimes there are rea-

sons for using a particular population. For example, studies done in the Veterans
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Affairs Hospital System will be mostly of men. This does not automatically dis-

qualify a female patient from having the test done for the target disorder. There

ought to be a good physiological reason to exclude her from having the tests

based on the results from a study of men. Perhaps there is a hormonal effect that

will alter the results of the test. However, each physician must use their best clini-

cal judgment to be able to determine whether the results of the study can be used

in a given individual patient. Other factors which might affect the characteristics

of the test in a single patient, include age and ethnic group.

(1) Is the diagnostic test available, affordable, accurate, and precise

in my setting?

How do the capabilities of the lab or diagnostic center that one is working in

compare with the one described in the study? This is a function of the type of

equipment used and the operator-dependency of the test. Some very sophisti-

cated and complex tests may only be available at referral or research centers and

not readily available in the average community hospital setting. The estimated

costs of false positive and false negative test results should be addressed, includ-

ing the cost of repeat testing or further diagnostic procedures for false positive

results and of a missed diagnosis due to false negative results. The cost of the

test should be given, as well as the cost of following up on false positive tests and

missing some patients with false negative tests. This could include the cost of

malpractice insurance and payment of awards in cases of missed disease. This

is very complex since the notion of negligence in missing a diagnosis depends

more on one’s pretest probability of disease and how one handles the occurrence

of a false negative test.

(2) Can I come up with a reasonable pretest probability of disease

for my patient?

This was addressed earlier, and although small deviations from the true pretest

probability are not important, large variations are. One does not want to be very

far off in estimating the prior probability. If the physician estimates that the

patient has a 10% probability of disease and the true probability of disease is

90%, this will seriously and adversely decrease the ability to diagnose the prob-

lem. Data on pretest probability come from several sources including published

studies of symptoms, one’s personal experience, the study itself, if the sample is

reasonably representative of the population of patients from which one’s patient

comes, and clinical judgment based on the information that is gathered in the

history and physical exam process. If none of these gives a reasonable pretest

probability, consider getting some help from an expert consultant. A colleague

or consultant will probably be able to help here. Most reasonable and prudent

physicians will agree on a ballpark figure, high, medium, or low, for the pretest

probability in most patient presentations of illness.



308 Essential Evidence-Based Medicine

Indication creep is a phenomenon that occurs when a diagnostic test is used

in more and more patients who are less and less likely to have the disease being

sought. This will happen after a test is studied in one group of patients, usu-

ally those with more severe or classical disease and then extended to patients

with lower pretest probability of disease. As the test gets marketed and put into

widespread clinical use, the type of patient who gets the test tends to be one

with a lower and lower pretest probability of disease and eventually, the test is

frequently done in patients who have almost zero pretest probability of disease.

However, physicians are especially cautious to avoid missing anyone with a dis-

ease in the fear of being sued for malpractice. However, they must be equally

cautious about over-testing those patients with such low probability of disease

in whom almost all positive tests will be false positives.

(3) Will the post-test probability change my management of this patient?

This is probably the most important question to ask about the usefulness of a

diagnostic test, and will determine whether the test should or should not be

done. The first issue is a mathematical one. Will the resulting post-test probabil-

ity move the probability across the testing or treatment threshold? If not, either

do not do the test, or be prepared to do a second or even a third test to confirm

the diagnosis.

Next, is the patient interested in having the test done and are they going to

be “part of the team?” If the patient is not a willing partner in the process, it

is not a good idea to begin doing the test or tests. Give the information to the

patient in a manner they can understand and then ask them if they want to go

through with the testing. They ought to understand the risks of disease, and of

correct and incorrect results of testing, and the ramifications of a positive and

negative test results. Incorporated in this is the question of the ultimate utility of

the test. The prostate specific antigen (PSA) test to screen for prostate cancer is

a good example since a positive test must be followed up with a prostate biopsy,

which is invasive and potentially dangerous. In some men, a positive PSA test

does not mean prostate cancer, but only an enlarged prostate, which could be

diagnosed by other means. The decision making for this problem is very complex

and should be done through careful consideration of all of the options and the

patients’ situation such as age, general health, and the presence of other medical

conditions.

Finally, how will a positive or negative result help the patient reach his or

her goals for treatment? If the patient has “heartburn” and you no longer sus-

pect a cardiac problem, but suspect gastritis or peptic ulcers, will doing a test

for Helicobacter pylori infection as a cause of ulcers and treatment with specific

anti-microbial drugs if positive, or symptomatic treatment if negative, satisfy the

patient that he or she does not have a gastric carcinoma? If not, then endoscopy,
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the gold standard in this case, ought to be considered without stopping for the

intermediate test.

Studies of diagnostic tests should determine the sensitivity and specificity of

the test under varying circumstances. The prevalence of disease in the popula-

tion studied may be very different from that in most clinical practices. There-

fore, predictive values reported in the literature should be reserved for validation

studies and studies of the use of the test under well-defined clinical conditions.

Remember that the predictive value of a test is dependent not only on the likeli-

hood ratios, but also very directly on the pretest probability of disease.

Final thoughts about diagnostic test studies

It is critical to realize that studies of diagnostic tests done in the past were often

done using different methodology than what is now recommended. Many of the

studies done years ago only looked for the correlation between a diagnostic test

and the final diagnosis. For example, a study of pneumonia might look at all

physical examination findings for patients who were subjected to chest x-rays,

and determine which correlated most closely with a positive chest x-ray, the gold

standard.

There are two problems with these types of studies. First, the patients are

selected by inclusion criteria that include getting the test done, here a chest x-ray,

which already narrows down the probability that they have the illness. In other

words, some selection filter was applied to the population. Second, correlation

only tells us that you are more or less likely to find a certain clinical finding with

an illness. It does not tell you what the probability of the illness is after applica-

tion of that finding or test. The correlation does not give the same useful infor-

mation that you get from likelihood ratios or sensitivity and specificity. Those

will tell the clinician how certain diagnostic findings correlate with the presence

of illness and how to use those clinical findings to determine the presence or

absence of disease.
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Screening tests

Detection is, or ought to be, an exact science, and should be treated in the same cold and

unemotional manner. You have attempted to tinge it with romanticism, which produces

much the same effect as if you worked a love-story or an elopement into the fifth

proposition of Euclid.

Sir Arthur Conan Doyle (1859–1930): The Sign of Four, 1890

Learning objectives

In this chapter you will learn:
� the attributes of a good screening test
� the effects of lead-time and length-time biases and how to recognize them

in evaluating a screening test
� how to evaluate the usefulness of a screening test
� how to evaluate studies of screening tests

Introduction

Screening tests are defined as diagnostic tests that are useful in detecting disease

in asymptomatic or presymptomatic persons. The goal of all screening tests is to

diagnose the disease at a stage when it is more easily curable (Fig. 28.1). This is

usually earlier than the symptomatic stage and is one of the reasons for doing a

diagnostic test to screen for disease.

Screening tests must rise to a higher level of utility since the majority of people

being screened derive no benefit from having the test done. Because the vast

majority of people who are screened do not have the disease, they get minimal

reassurance from a negative test because their pretest probability of disease was

low before the test was even done. However, for many people, the psychological

relief of having a negative test, especially for something they are really scared of,

is a worthwhile positive outcome.

310
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Asymptomatic Symptomatic

Dead

Reversible Reversible Irreversible

Onset
of

disease

Diagnosed by screening.
Treatment resulting in

prolonged period of time
until death.

Usual diagnosis in patients

presenting with signs or

symptoms of disease.

Fig. 28.1 Disease timeline and
diagnosis by screening or
diagnostic test. The ideal
screening test.

There are three rules for diagnostic tests that must be more carefully applied

to screening tests. The first rule is that there is no free lunch. As the sensitiv-

ity of a test increases to detect a greater percentage of diseased persons, speci-

ficity falls and the number of false positives increases. The second rule is that the

prevalence of the disease matters and as the prevalence decreases, the number

of false positives increases and relative number of true positives to false positives

decreases. The final rule is that the burden of proof regarding efficacy depends

upon the clinical context, which can depend on multiple factors. If the interven-

tion is innocuous and without side effects, screening should be done more often

than if the intervention is dangerous, high-risk, or toxic. Similarly, if the test or

treatment is very expensive, the level of proof of benefit of the screeing test must

be greater.

During the 1950s the executive physical examination was used to screen for

“all” diseases in corporate executives and other, mostly wealthy, people. It was

a comprehensive set of diagnostic tests including multiple x-rays, blood tests,

exercise stress tests, and others, usually administered while the patient spent a

week in the hospital. It was justified by the thought that finding disease early

was good and would lead to improved length and quality of life. The more dis-

eases looked for, the more likely that disease would be found at an earlier phase

in its course and treatment at this early stage would lead to better health out-

comes. Subsequent analysis of the data from these extensive examination pro-

grams revealed no change in health outcomes as a result of these examinations.

There were more people incorrectly labeled with diseases that they didn’t have

than there were diseases detected early enough to reduce mortality or morbidity.

Ironically, most of the diseases that were identified in these programs could have

been detected simply from a comprehensive history.

This is occurring again with the advent of full body CT scans to screen for hid-

den illness, mostly cancer. In this case most of the positive tests are false positives

and the further testing that is required to determine wether the test is a false or

true positive usually requires invasive testing such as operative biopsy. Finally,



312 Essential Evidence-Based Medicine

Table 28.1. Criteria for a valid screening test

(1) Burden of suffering The disease must be relatively common. The burden of

suffering must be sufficiently great.

(2) Early detectability The disease must be detectable at an early stage,

preferably when totally curable.

(3) Accuracy and validity The test must be accurate and valid: it must reliably pick

up disease (few misses) and not falsely label too many

healthy people.

(4) Acceptability The test must be simple, inexpensive, not noxious, and

easy to administer. It must be acceptable to the patient

and to the health-care system.

(5) Improved outcome There must be treatment available, which if given at the

time that early disease is detected, will result in improved

outcome (lower mortality and morbidity) among those

patients being screened.

it has recently been determined that the radiation exposure from the CT scans

could actually cause more disease, specifically cancers, than would be picked up

with the screening.

Criteria for screening

There are five criteria that must be fulfilled before a test should be used as a

screening test. These are listed in Table 28.1. Following these rules will prevent

the abuses of screening tests that occurred in the 1950s and 1960s and which

continue today.

The disease must impose a significant burden of suffering on the population

to be screened. This means either that the disease is common or that it results in

serious or catastrophic disability. This disability may result in loss of productive

employment, patient discomfort or dissatisfaction, as well as passing the disease

on to others. It also means that it will cost someone a lot of money to care for

persons with the disease. The hope is to reduce this cost both in human suffer-

ing and in dollars by treating at an earlier stage of disease and preventing com-

plications or early death. This depends on well-designed studies of harm or risk

to tell which diseases are likely to be encountered in a significant portion of the

population in order to decide that screening for them is needed.

For example, it would be unreasonable to screen the population of all 20-year-

old women for breast cancer with yearly mammography. The risk of disease is
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so low in this population that even a miniscule risk of increased cancer asso-

ciated with the radiation from the examination may cause more cancers than

the test would detect. Similarly, the prevalence of cancer in this population is so

low that the likelihood a positive test would be cancer is very low and there will

be many more false positives than true positives. Similarly screening for HIV in

an extremely low-risk population would lead to incorrectly labeling many more

people as being HIV-positive who were not affected and therefore, false positives.

This could lead to a lot of psychological trauma and require lots of confirmatory

testing in these positives, which would cost a huge amount of money to find one

true case of HIV.

The screening test must be a good one and must accurately detect disease in

the population of people who are in the presymptomatic phase of disease. This

means that it must have high sensitivity. It should also reliably exclude disease in

the population without disease or have high specificity. Of the two, we want the

sensitivity to be perfect or almost perfect so that we can identify all patients with

the disease. We’d like the specificity to be extremely high so that only a few peo-

ple without disease are mislabeled leading to a high positive predictive value.

This usually means that a reasonable confirmatory test must be available that

will more accurately discriminate between those people with a positive screen-

ing test who do and don’t have the disease. This confirmatory test ought to be

very specific and acceptable to most people. It should be relatively comfortable,

not very painful, should not cause serious side effects, and also be reasonably

priced.

A screening test may be unacceptable if it produces too many false positives

since those people will be falsely labeled as having the disease, a circumstance

which could lead to psychological trauma, anxiety, insurance or employment

discrimination, or social conflicts. False labeling has a deleterious effect on most

people. Several studies have found significant increases in anxiety that interferes

with life activities in persons who were falsely labeled as having disease on a

screening test. This is an especially serious issue with genetic tests in which a

positive test does not mean the disease will express itself, but only that a person

has the gene for the disease.

There are practical qualities of a good screening test. The cost ought to be

low so it can be economically done on large populations. It should be simple

to perform with good accuracy and reliability. And finally, it must be accept-

able to the patient. For screening tests, most people will tolerate only a low

level of discomfort either from the test procedure itself or from the paperwork

involved in getting the test done. People would much rather have their blood

pressure taken to screen for hypertension than have a colonoscopy to look

for early signs of colon cancer. Finally, people are more willing to have a test

performed to detect disease when they are symptomatic than when they are

well.
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The mechanics of a screening program must be well planned if the plan is to

give a huge number of people a diagnostic test. If the test is too complex such

as screening colonoscopy for colon cancer, most people would not be willing

to have it done. A test that is very uncomfortable such as a digital rectal exam

for prostate or rectal cancer, may be refused by a large proportion of patients.

Both examples also require more complex logistics such as individual examin-

ing rooms and sedation for the colonoscopy than a screening test such as blood

pressure measurement. Screening tests must also be well advertised so that peo-

ple will know why and how to have the test done.

Pitfalls in the screening process

Simply diagnosing the disease at an earlier stage is not helpful unless the progno-

sis is better if treatment is begun at that earlier stage of the illness. The treatment

must be acceptable and more effective before people will be willing to accept

treatment at an asymptomatic stage of illness. Why should someone take a drug

for hypertension if they have no signs or symptoms of the disease when that drug

can cause significant side effects and must be taken for a lifetime?

During the 1960s and 1970s, some lung cancers were detected at an earlier

stage by routine screening chest x-rays. However, immediate treatment of these

cancers did not result in increased survival and caused increased patient suffer-

ing due to serious side effects of the surgery and chemotherapeutic drugs. There-

fore, even though cancers were detected at an earlier stage, mortality was the

same.

The validity of a screening test can be determined from the evidence in the

literature. Screening tests must balance the need to learn something about a

patient, the diagnostic yield, with the ability to actively and effectively intervene

in the disease process at an earlier stage.

There are three significant problems of studies of screening tests. These are

lead-time, length-time, and compliance biases. Lead-time bias results in over-

optimistic results of the screening test in the clinical study. The patients seem to

live longer but this is only because their disease is detected earlier. In this case,

the total time from onset of illness to death is the same in the group of patients

who were screened and treated early compared with the unscreened group. The

lead time is the time from diagnosis of disease by screening test to the appear-

ance of symptoms. The time from appearance of symptoms to death is the same

whether the disease was detected by the screening test or not. The total life span

of the screened patient is no different from that of the unscreened patient. The

time between early diagnosis with the screening test and appearance of symp-

toms, the lead time, will now be spent undergoing treatment (Fig. 28.2). This
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Fig. 28.2 Lead-time bias.

could be very uncomfortable due to the side effects of treatment or even dan-

gerous if treatment can result in serious morbidity or death of the patient.

Length-time bias is much more likely to occur in observational studies.

Patients are not randomized and the spectrum of disease may be very different

in the screened group when compared to the unscreened group. A disease that

is indolent and slowly progressive is more likely to be detected than one that is

rapidly progressive and quickly fatal. Patients with aggressive cancers are more

likely to die shortly after their cancer is detected. Those with slow-growing indo-

lent tumors are more likely to be cured of their disease after screening and will

live a long time until they die of other causes. There are some whose disease is too

early to detect and who will be missed by screening. Without screening, his or her

disease will be detected when it becomes symptomatic, which will be at a later

stage. Length-time bias is illustrated in Fig. 28.3. This problem can be reduced in

large population studies by effective randomization that ensures a similar spec-

trum of disease in screened and unscreened patients.

Compliance bias occurs because in general, patients who are compliant with

therapy do better than those who are not regardless of the therapy. Compliant

patients may have other characteristics such as being more health-conscious in

their lifestyle choices, which lead to better outcomes. Studies of screening tests

often compare a group of people who are in a screening program with people

in the population who are not in the screening program. They are usually not

randomized to be in either group. Therefore, the screened group is more likely to

be composed of people who are more compliant or health-conscious, since they

took advantage of the screening test in the first place. This will make it more likely

that the screened group will do better since they may be the healthier patients

in general. This bias can be avoided if patients in these studies are randomized

before being put through the screening test. One way to test for this bias is to
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Fig. 28.3 Length-time bias.

have two groups of patients, one that is randomized to receive the screening test

or not and the other group that has a choice of whether to get screened or not.

This was described in Chapter 15 on the randomized clinical trial (RCT).

Effectiveness of screening

Another problem with screening tests revolves around their overall effectiveness.

For example, consider the use of mammograms for the early detection of breast

cancer in young women. Women aged 50–70 in whom the cancer is detected

at an early stage do appear to have better outcomes. The use of mammogra-

phy for screening younger women (age 40–50) is still controversial. In studies

of this group, it made very little difference in ultimate survival if the woman was

screened. Early detection in this population resulted in a large number of false

positive tests requiring biopsy and unnecessary worry for the women affected.

It also resulted in an increased exposure to x-rays among these women and

increased the cost of health care for everyone in the society.

A convenient concept to use in the calculation of benefit is the number needed

to screen to get benefit (NNSB). Like the number needed to treat to get benefit

(NNTB), it is simply 1/ARR, ARR being the absolute risk reduction or the differ-

ence in percentage response between the screened and unscreened groups. The

ideal number to use here is the percentage of women who die from their cancer

in the screened (EER) and unscreened (CER) groups. The NNSB can be used to

balance the positive and negative effects of screening. For example, in the case

of using mammograms to screen for breast cancer in women at age 40, we can

make the spreadsheet as in Table 28.2.
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Table 28.2. Screening 40- to 50-year-old women for breast can-

cer using mammography

Screened Not screened

Total population 1000 1000

Positive mammogram 300 –

Biopsies (invasive procedures) 150 –

New breast cancers 15 15

Deaths from breast cancer 5–8 7–8

Source: From: D. Eddy. Clinical Decision Making. Sudbury, MA: Jones

& Bartlett, 1996.

On the benefit side, there is the prevention of at most three deaths per 1000

women screened. This leads to a large NNSB = 333. This means that 333 women

must be screened to prevent one death from breast cancer.

CER = 8/1000 EER = 5/1000 ARR = (8/1000 − 5/1000) = 3/1000

NNSB = 1/ARR = 1/(3/1000) = 1/0.003 = 333

If the tests actually result in the same number of deaths from breast cancer,

about 8% in both groups, the NNSB will be infinite and there will be no bene-

fit of screening.

Typical acceptable NNSB for currently used screening modalities are in the

100–1000 range. If the test is relatively benign or treatment is very easy and the

expected outcome is very good in the screened population a much larger NNSB

is acceptable. More randomized clinical trials of screening tests are needed to

determine acceptable levels of NNSB.

The United States Public Heath Service (USPHS) has published a set of cri-

teria for an acceptable screening test. The test must be accurate and able to

detect the target condition earlier than without screening and with sufficient

accuracy to avoid producing large numbers of false positive and false negative

results. Screening for and treating persons with early disease must be effective

and should improve the likelihood of favorable health outcomes by reducing

disease-specific mortality or morbidity compared to treating patients when they

present with signs or symptoms of the disease. These criteria come from the

USPHS Guide to Clinical Preventive Services, which also contains a compendium

of recommendations for the use of the most important screening tests.1 There are

1 US Preventive Services Task Force. Guide to Clinical Preventive Services. 2nd edn. Washington,
DC: USPHS, 1996. Available online through the National Library of Medicine’s HSTAT service at
hstat.nlm.nih.gov.



318 Essential Evidence-Based Medicine

also very effective evidence-based guidelines for screening put out by the Agency

for Healthcare Research and Quality.2

Critical appraisal of studies of screening tests3

(1) Are the recommendations valid?

(a) Is there evidence from RCTs that earlier intervention works? Most screen-

ing strategies are based upon observational studies. Ideally, the inter-

vention should be shown to be effective in a well-done RCT. The overall

screening strategy should also be validated by an RCT. Only if the ther-

apeutic intervention is extremely dramatic, which most aren’t, is there

likely to be no question about its efficacy. A good example of this would

be in screening for hypothyroidism in the newborn. Early detection and

treatment will prevent problems in this rare birth problem. Observational

studies of screening tests are weaker than a well-done RCT. If there is an

RCT of the screening modality, it should be first analyzed using the Users’

guide for studies of therapy, which is also the guide that would be used to

determine efficacy of prevention.

(b) Were the data identified, selected, and combined in an unbiased fash-

ion? Look for potential confounding factors during the process by which

subjects are recruited or identified for inclusion in a study of screening.

These may easily result in serious bias usually from confounding vari-

ables. Innate differences between the screened and not-screened groups

should be aggressively sought. Frequently these differences are glossed

over as being insignificant and they often are not and can lead to con-

founding bias.

(2) What are the recommendations and will they help me in caring for my

patients? What are the benefits?

(a) The benefits should be calculable using the NNSB (number needed

to screen to benefit). The beneficial outcomes that the results refer to

should be important for the patient. The confidence intervals should be

narrow.

(b) The harms or potential harms should be clearly identified. Persons who

are labeled with the disease and who are really disease-free will at least

be inconvenienced and may require additional testing that is not benign.

At least they may have increased anxiety until the final diagnosis is made.

Early treatment may result in such severe side effects that patients may

2 Agency for Healthcare Research and Quality. www.ahrq.gov.
3 Adapted with permission from the Users’ Guides to the Medical Literature, published in JAMA (see

Bibliography).
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not want the treatment. You should be able to calculate the NNSH (num-

ber needed to screen to harm) of the intervention based upon the study

data. This should be done with 95% confidence intervals to demonstrate

the precision of that result.

(c) These should be compared in different people and with different screen-

ing strategies by looking at all possible screening strategies when eval-

uating a screening program. Different strategies may result in different

outcomes either in final results or patient suffering, depending on the

prevalence of disease in the population screened and the screening and

verification strategy employed.

(d) Look for the impact of the screening test on people’s values and prefer-

ences. There ought to be an evaluation of patient values as part of the

study. These can be done using focus groups or qualitative studies of

patient populations. If this is missing, be suspicious about the accept-

ability of the screening strategy. The study should be asking patients how

they feel about the screening test itself as well as the possibility of being

falsely labeled.

(e) The study should explore the impact of uncertainty by calculating a sen-

sitivity analysis as described in Chapter 30. There is uncertainty associ-

ated with any study result and the 95% confidence intervals should be

given.

(f) The cost-effectiveness should be evaluated considering all the possible

costs associated with the screening, including but not limited to, setting

up the program, advertising, following up positives, and excess testing

and treatment of positives. A more complete guide to cost-effectiveness

analysis is found in Chapter 31.
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Practice guidelines and clinical prediction rules

Any fool can make a rule

And every fool will mind it.

Henry David Thoreau (1817–1862): Journal, 1860

Whoever controls guidelines controls medicine

D. Eddy, JAMA, 1990; 263: 877–880

Learning objectives

In this chapter you will learn:
� the reasons for and origins of practice guidelines
� the problems associated with practice guidelines and the process by which

they are developed
� how to evaluate practice guidelines and how they are actually used in

practice
� the process of clinical prediction rule development
� the significance of different levels of prediction rules

What are practice guidelines?

Practice guidelines have always been a part of medical practice. They are present

in the “diagnosis” and “treatment” sections in medical textbooks. Unfortunately,

published practice guidelines are not always evidence-based. As an example, for

the treatment of frostbite on the fingers, a surgical textbook says that operation

should wait until the frostbitten part falls off, yet there are no studies backing

up this claim. Treatment guidelines for glaucoma state that treatment should be

initiated if the intraocular pressure is over 30 mmHg or over a value in the middle

20 mmHg range if the patient has two or more risk factors. It then gives a list of

over 100 risk factors but gives no probability estimates of the increased rate of

glaucoma attributable to any single risk factor. Clearly these are not evidence-

based or particularly helpful to the individual practitioner.

320
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Practice guidelines are simply an explicit set of steps that when followed will

result in the best outcome. In the past, they have been used for good reasons

such as hand washing before vaginal delivery to prevent childbed fever or puer-

peral sepsis and for bad ones such as frontal lobotomies to treat schizophrenia.

In some cases they are promulgated as a result of political pressure. One recent

example is breast-cancer screening with mammograms in women between 40

and 50 years old. This has been instituted in spite of lack of good evidence of

improved outcomes. This particular program can cost a billion dollars a year

without saving very many lives and can irrationally shape physician and patient

behavior for years.

A physician in 1916 said “once a Caesarian section, always a Caesarian sec-

tion,” meaning that if a woman required a Caesarian section for delivery, all

subsequent deliveries should be by Caesarian section. As a result of this one

statement, the practice became institutionalized. This particular “guideline” was

based on a bad outcome in just a few patients. It may have been valuable 85 years

ago, but with modern obstetrical techniques it is less useful now. Many recent

studies have cast doubts on the validity of this guideline, but a new study sug-

gests that there is a slightly increased risk of uterine rupture and poor outcome

for mother and baby if vaginal delivery is attempted in these women. Clearly the

jury is still out on this one and it is up to the individual patient with her doctor’s

input to make the best decision for her and her baby.

Practice guidelines are used for a variety of purposes. Primarily they ought to

be used as a template for optimal patient care. This should be the best reason for

their implementation and use in clinical practice. When evidence-based practice

guidelines are written, reviewed, and based upon solid high-quality evidence,

they should be implemented by all physicians. A good example of an evidence-

based clinical guideline in current use is weight-based dosing of the anticoag-

ulant heparin for the treatment of deep venous thrombosis (DVT). When the

guideline is used, there are fewer adverse effects of treatment, treatment failure,

or excess bleeding and better outcomes leading to more rapid resolution of the

DVT.

However, there are “darker” consequences that accompany the use of prac-

tice guidelines. They can be used as means of accreditation or certification. Cur-

rently several specialty boards use chart-review processes as part of their spe-

cialty recertification process. Managed care organizations (MCOs) can develop

accreditation rules that depend on physician adherence to practice guidelines in

the majority of their patients with a given problem. Performance criteria can be

used as incentives in the determination of merit pay or bonuses, a process called

Pay for Performance (P4P).

In the last 30 years there has been an increase in the use of practice guide-

lines in determining the proper utilization of hospital beds. Utilization review

has resulted in the reduction of hospital stays, which occurred in most cases
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Table 29.1. Desirable attributes of a clinical guideline

(1) Accurate the methods used must be based on good-quality

evidence

(2) Accountable the readers (users) must be able to evaluate the

guideline for themselves

(3) Evaluable the readers must be able to evaluate the health and

fiscal consequences of applying the guideline

(4) Facilitate resolution of

conflict

the sources of disagreement should be able to be

identified, addressed, and corrected

(5) Facilitate application the guidelines must be able to be applied to the

individual patient situation

without any increase in mortality or morbidity. The process of utilization review

is strongly supported by managed care organizations and third-party payors. The

guidelines upon which these rules are based ought to be evidence-based (Table

29.1).

Development of practice guidelines

How should practice guidelines be developed? The process of guideline devel-

opment should be evidence-based. Ideally a panel of interested physicians is

assembled and collects the evidence for and against the use of a particular set

of diagnostic or therapeutic maneuvers. Some guidelines are simply consensus-

or expert-based and the results may not be consistent with the best available

evidence.

When evaluating a guideline it ought to be possible to determine the process

by which the guideline was developed. These are summarized using the AGREE

criteria.1 This working group of evidence-based practitioners have developed six

domains for the evaluation of the quality of the process of making a practice

guideline. These domains are: scope and purpose of the guideline, stakeholder

involvement, rigor of development, clarity and presentation, applicability and

editorial independence. This process only indirectly assesses the quality of the

studies that make up the evidence used to create the guideline.

There are several general issues that should be evaluated when appraising the

validity of a practice guideline. First, the appropriate and important health out-

comes must be specified. They should be those outcomes that will matter to

patients and all relevant outcomes should be included in the guideline. These

include pain, anxiety, death, disfigurement, and disability. They should not be

chemical or surrogate markers of disease. Next, the evidence must be analyzed

1 AGREE criteria: Found at website of the AGREE Collaboration: http://www.agreecollaboration.org



Practice guidelines and clinical prediction rules 323

for validity and the effect of these interventions on the outcomes of interest. This

must include explicit descriptions of the manner in which the evidence was col-

lected, evaluated, and combined. The quality of the evidence used should be

explicitly given.

The magnitudes of benefits and risks should be estimated and benefits com-

pared to harms. This must include the interests of all parties involved in provid-

ing care for the patient. These are the patient, health-care providers, third-party

payors, and society at large. The preferences assigned to the outcomes should

reflect those of the people or patients who will receive those outcomes.

The costs both economic and non-economic should be estimated and the net

health benefits compared to the costs of providing that benefit. Alternative pro-

cedures should be compared to the standard therapies in order to determine

the best therapy. Finally, the analysis of the guideline must incorporate reason-

able variations in care provided by reasonable clinicians. A sensitivity analysis

accounting for this reasonable variation must be part of the guideline.

Once a guideline is developed, physicians who will use this guideline in prac-

tice must evaluate its use. If the guideline is not acceptable for the practitioner,

it will not be used. For example, in 1992 a clinical guideline was developed for

the management of children aged 3 to 36 months with fever but no resources

to detect and treat occult bacteremia. This guideline was published simultane-

ously in the professional journals Annals of Emergency Medicine and Pediatrics.

After a few years, the guideline was only selectively used by pediatricians, but

almost universally used by emergency physicians. Why? The patients seen in

pediatricians’ offices are significantly different than those seen in emergency

departments (ED). Sicker kids are sent to the ED by their pediatricians for further

evaluation. The pediatricians are able to closely follow their febrile kids while

emergency physicians are unable to do this. Therefore, emergency physicians

felt better doing more testing and treating of febrile children in the belief that

they would prevent serious sequelae. Finally, testing was easier to do in an ED

than in a pediatrician’s office. This guideline has been removed since most of the

children in this age group are now immunized against the worst bacteria causing

occult bacteremia, hemophilus and pneumococcus.

Even if a practice guideline is validated and generally accepted by most physi-

cians, there may still be a delay in the general acceptance of this guideline. This

is mostly because of inertia. Physicians’ behavior has been studied and cer-

tain interventions have been found to change behavior. These include direct

intervention such as reminders on a computer or ordering forms for drugs or

diagnostic tests, follow-up by allied health-care personnel, and education from

opinion leaders in their field. One of the most effective interventions involved

using prompts on a computer when ordering tests or drugs. These resulted in

improved drug-ordering practices and long-term changes in physician behav-

ior. Less effective were audits of patient care charts and distributed educational

materials. Least effective were formal continuing medical education (CME)
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presentations especially if they were of brief duration (less than 1 day). In some

cases, these very short presentations actually produced negative results leading

to lower use of high quality evidence in physician practices. The construct called

Pathman’s Pipeline demonstrating the barriers to uptake of validated evidence

was discussed in Chapter 17.

Practice guidelines should be developed using a preset process called the

evidence- and outcomes-based approach. Separate the main steps of the policy-

making process, the outcome and desirability. First estimate the specific out-

comes and probability of each one of the proposed interventions. Then, make

judgments about the desirability of each of the outcomes. Explicitly estimate the

effect of the intervention on all outcomes that are important to patients. Estimate

how the outcomes will likely vary with different patient characteristics and based

on estimates of outcomes from the highest-quality experimental evidence avail-

able. Use formal methods such as systematic reviews or formal critical appraisal

of the component studies to analyze the evidence and estimate the outcomes. To

accurately understand patient preferences, use actual assessments of patients’

preferences to determine the desirability of the outcomes.

Critical appraisal of clinical practice guidelines2

(1) Are the recommendations valid?

(a) Were all important options and outcomes considered? These must be con-

sidered from the perspective of the patient as well as the physician. All rea-

sonable physician options should be considered including comments on

those options not evidence-based but in common practice.

(b) Was a reasonable, explicit, and sensible process used to identify, select,

and combine evidence? This must be reproducible by anyone reading

the paper outlining how the guideline was developed. Explicit rationale

for choice of studies should be done. Evidence should be presented and

graded by quality indicators.

(c) Was a reasonable, explicit, and sensible process used to consider the

relative value of different outcomes? The different outcomes should be

described explicitly and the reasons why each outcome was chosen

should be given. Patient values should be used where available.

(d) Is the guideline likely to account for recent developments of importance?

The bibliography should include the most recent evidence regarding the

topic.

(e) Has a peer-review and testing process been applied to the guideline? Ide-

ally, clinicians who are expert in the area of the guideline should develop

2 Adapted with permission from the Users’ Guides to the Medical Literature, published in JAMA (see
Bibliography).
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and review the guideline. The guideline developers must balance the need

to have experts create a guideline with the potential conflicts of interest

of those experts. It should be tested in various settings to determine if

physicians are willing to use it and to ensure that it accomplishes its stated

goals.

(2) What are the recommendations?

(a) Are practical and clinically important recommendations made? The

guidelines should be simple enough and make enough sense for most

clinicians to use them.

(b) How strong are the recommendations? The evidence for the guideline

should be explicitly listed and graded using a commonly used grading

scheme. Currently the GRADE criteria or the levels of evidence from

the Centre for Evidence-Based Medicine at Oxford University are prob-

ably the grading schemes most often used. The results of the studies

should be compelling with large effect sizes to back up the use of the

evidence.

(c) How much uncertainty is associated with the evidence and values used

in creating the guideline? It should be clear from the presentation of

the evidence how uncertainty in the evidence has been handled. Some

sort of sensitivity analysis should be included. What happens when basic

assumptions are changed within the limits of the 95% CI of the different

outcomes?

(3) Will the recommendations help me in caring for my patients?

(a) Is the primary objective of the guideline important clinically? The guide-

lines ought to meet your needs for improving the care of the patient you

are seeing. They should be consistent with your patient’s health objec-

tives.

(b) How are the recommendations applicable to your patients? The patient

must meet the criteria for inclusion into the guideline. Patient prefer-

ences must be considered after a thorough discussion of all the options.

It must be reasonable for any physician to provide the needed follow-up

and support for patients who require the recommended health care.

Clinical prediction rules

Physicians are constantly looking for sets of rules to assist them in the diagnos-

tic process. Prediction rules are more specific than clinical guidelines for certain

diagnoses. The definition of clinical prediction rules is that they are a decision-

making support tool that can help physicians to make a diagnosis. They are

derived from original research and incorporate three or more variables into the

decision process.
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The Ottawa ankle rules

The Ottawa ankle rules were first developed in the early 1990s and are now in

universal use in most ED and primary-care practices. Their development is an

excellent model for how prediction rules should be created. The main reason

for developing this rule was to attempt to decrease the number of ankle x-rays

ordered for relatively minor trauma. The rule has been successfully applied in

various settings and resulted in decreased use of ankle x-rays. This has become

the prototype for the development of clinical prediction rules.

The first step in the development of these rules was to determine the underly-

ing processes in making a particular diagnosis and initiating treatment modali-

ties. In the case of the Ottawa ankle rules, this involved defining the components

of the ankle examination, determining whether physicians could accurately

assess them, and attempting to duplicate the results in a variety of settings. In the

case of the ankle rules, it was found that only a few physical examination findings

could be reliably and reproducibly assessed. Surprisingly, not all physicians reli-

ably documented findings as apparently obvious as the presence of ecchymosis.

For some of the physical-examination findings the kappa values were less than

0.6. This level was considered to be the minimum acceptable level of agreement.

The next step was to take all these physical-examination variables and apply

them to a group of patients with the complaint of traumatic ankle pain. The

authors determined which of these multiple variables were the most predictive

of an ankle fracture. These variables were then applied to a group of patients and

a statistical model was used to determine the final variables in the rule. When

combined, these gave the rule the best operating characteristics. This means

that when these variables are correctly applied to a patient they have the best

sensitivity and specificity for diagnosing ankle fractures. In this case the rule

creators decided that they wanted 100% sensitivity and were willing to sacrifice

some specificity in the attempt. The process of determining which variables will

be part of the rules is pure and simple data dredging. The results of this study

become the derivation set for the prediction rule. This is defined as a Level-4 pre-

diction rule. It is developed in a derivation set and ready for testing prospectively

in the medical community as a validation set in different settings. For the Ottawa

ankle rules, the clinical prediction rule was positive and required that an x-ray be

taken if the patient could not walk four steps immediately and in the Emergency

Department and if they had tenderness over the lateral or medial malleoli of the

ankle.

Following this the rules were applied to another group of patients, the val-

idation set. The same rules were applied to a new population in a prospec-

tive manner. In this case the rule functioned perfectly. This raised the rule to a

Level-2 rule, since it had been validated in a different study population. If the

rule were only valid in a small subpopulation, it would be a Level-3 rule. In this
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Table 29.2. Levels of clinical decision rules

Level 1 Rule that can be used in a wide variety of settings with confidence that it can

change clinician behavior and improve patient outcomes. At least one

prospective validation in a different population and one impact analysis

demonstrating change in clinician behavior with beneficial consequences.

Level 2 Rule that can be used in various settings with confidence in its accuracy.

Demonstrated accuracy in at least one prospective study including a broad

spectrum of patients and clinicians or validated in several smaller settings

that differ from one another.

Level 3 Rule that clinicians may consider using with caution and only if patients in

the study are similar to those in the clinician’s clinical setting. Validated in

only one narrow prospective sample.

Level 4 Rule that is derived but not validated or validated only in split samples, large

retrospective databases, or by statistical techniques.

Source: From T. G. McGinn, G. H. Guyatt, P. C. Wyer, C. D. Naylor, I. G. Stiell & W. S.

Richardson. Users’ guides to the medical literature. XXII. How to use articles about clin-

ical decision rules. Evidence-based medicine working group. JAMA 2000; 284: 79–84.

Used with permission.

case, the rule was tried in a cross-section of the population that included men

and women of all ages. There was not a large ethnic mix in the population, but

this is a relatively minor point in this disease since there is no a-priori reason

to think that African-Americans or other non-Caucasian ethnic groups will react

differently in an ankle examination than Caucasians.

Finally, a Level-1 rule is one that is ready for general use and has been shown

to work effectively in many clinical settings. It should also show that the savings

predicted from the initial study were maintained when the rule was applied in

other clinical settings. This is now true of the Ottawa ankle rules.

There are some published standards for clinical prediction rules. Wasson and

others developed these in 1985, and a modified version was published in JAMA

in 2000 (Table 29.2).

Methodological standards for developing clinical decision rules

The clinical problem addressed should be a fairly commonly encountered con-

dition. It will be very difficult if not impossible to determine the accuracy of

the examination or laboratory tests for uncommon or rare illnesses. The clini-

cal predicament should have led to variable practices by physicians in order to
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support the need for a clinical prediction rule. This means that physicians act in

very different ways when faced with several patients who have the same set of

symptoms. There should also be general agreement that the current diagnostic

practice is not fully effective, and a desire on the part of many physicians for this

to change.

There must be an explicit definition of findings used to predict the outcome.

Ideally the inter-observer agreement should be able to be determined. Only

those with a high enough inter-observer reliability as demonstrated by a high

kappa value should then be used as part of the final rule. There are several ver-

sions of the kappa test. For most dichotomous data the simple kappa is used.

Other statistical methods are used for more complex data such as the weighted

kappa for ordinal data and intra-class correlation coefficient for continuous

interval data. Once tested, only those signs also called predictor variables with

good agreement across various levels of provider experience should be used in

the final rule.

All the important predictor variables must be included in the derivation pro-

cess. These predictors are the components of the history and physical exam that

will be in the rule to be developed. If significant components are left out of the

prediction rule, providers are less likely to use the rule, as it will not have face

validity for them. The predictor variables all must be present in a significant pro-

portion of the study population or they are not likely to be useful in making the

diagnosis.

Next, there should be an explicit definition of the outcomes. They must be eas-

ily understandable by all providers and be clinically important to the patient.

Finding people with a genetic defect that is not clinically important may be

interesting for physicians and researchers, but may not directly benefit patients.

Therefore, most providers will not be interested in this outcome and will not seek

to accomplish it using that particular guideline.

The outcome event should be assessed in a blinded manner to prevent bias.

The persons observing the outcome should be different from those recording

and assessing the predictor variables. In cases where the person assessing the

predictor variable is also the one determining the outcome, observation bias can

occur. This occurs when the people doing the study are aware of the assessment

and the outcome and may change their definitions of the outcome or the assess-

ment of the patient. This may occur in subtle ways yet still produce dramatic

alterations in the results.

The subjects should be carefully selected. There should be a range of ages, eth-

nic groups, and genders of patients. The selection of a sample should include the

process of selection, inclusion and exclusion criteria, and the clinical and demo-

graphic characteristics of the sample. Patient selection should be free of bias and

there should be a wide spectrum of patient and disease characteristics. The study
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should determine the population of patients to which this rule will be applied.

This gives the clinician the parameters for application of the rule. In the Ottawa

ankle rules, there were no children under age 18 and therefore initially the rule

could not be applied to them. Subsequent studies found that the rule applied

equally well in children as young as 12.

The setting should also be described. Studies that are done only in a special-

ized setting will result in referral bias. In these cases, the rules developed may not

apply in settings where physicians are not as academic or where the patient base

has a broader spectrum of the target disorder. A rule that is validated in a spe-

cialized setting must be further validated in more diverse community settings.

The original Ottawa ankle rule was derived and validated in both a university-

teaching-hospital emergency department and a community hospital. The results

were the same in both settings.

The sample size and number of outcome events should be large enough to

prevent a Type II error. If there are too few outcome events, the rule will not be

particularly accurate or precise and have wide confidence intervals for sensitivity

or specificity. As a rule of thumb, there should be at least 10–20 desired outcome

events for each independent variable. For example, if we want to study a predic-

tion rule for cervical spine fracture in injured patients and have five predictor

variables, we should have at least 50 and preferably 100 significant cervical spine

fractures. A Type I error can also occur if there are too many predictor variables

compared to the number of outcome events. If the rule worked perfectly, it would

have a sensitivity of 100%, the definition of a perfect screening rule. This rule will

rule out disease if it is completely negative. It will not rule in disease if positive.

However since a sample size of 50 patients without cervical spine fractures is

pretty small, the confidence intervals on this would go from 94% to 100%. If the

outcome is not too bad, this is a reasonable rule. However if the outcome were

possible paralysis, missing up to 6% of the patients with a potential for this out-

come would be disastrous. This would prevent that rule from being universally

used.

The mathematical model used to create the rule should be adequately

described. The most common methods are recursive partitioning and classifi-

cation and regression trees (CART) analysis. In each of these, the various pre-

dictor variables are modeled to see how well they can predict the ultimate

outcome. In the recursive-partitioning method, the most powerful predictor

variable is tested to see which of the positive patients are identified. Those

patients are then removed from the analysis and the rest are tested with the

next most powerful predictor variable. This is continued until all patients with

the desired outcome are identified. The CART methodology, a form of logis-

tic regression analysis, is much more complex and beyond the scope of this

text.
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There must be complete follow-up, ideally 100% of all patients enrolled in the

study. If fewer patients are followed to completion of the study, the effect of

patient loss should be assessed. This can be done with a best case/worst case

analysis, which will give a range of values of sensitivity and specificity within

which the rule can be expected to operate.

The rule should be sensible. This means it must be clinically reasonable, easy

to use, and with a clear-cut course of action if the rule is positive or negative.

A nine-point checklist for determining which heart-attack patient should go to

the intensive care unit and which can be admitted to a lower level of care is not

likely to be useful to most clinicians. There are just too many variables for anyone

to remember. One way of making it useful is to incorporate it into the order form

for admitting patients to these units, or creating a clinical pathway with a written

checklist that incorporates the rule and must be used prior to admission to the

cardiac unit.

For most physicians, rules that give probability of the outcome are less use-

ful than those that tell the physician there are specific things that must be done

when a certain outcome is achieved. However, future physicians, who will be bet-

ter versed in the techniques of Bayesian medical decision making, will have an

easier time using rules that give probability of disease rather than specific out-

come actions. They will also be better able to explain the rationale for a par-

ticular decision to their patients. The Wells criteria for risk-stratifying patients

in whom you suspect deep vein thrombosis (DVT) are an example of probabili-

ties as the outcome of the rule.3 The final outcome classifies patients into high,

moderate, and low levels of risk for having a DVT. Each of these has a probability

that is pretty well defined through the use of experimental studies of diagnostic

tests.

The rule should be tested in a prospective manner. Ideally this should be done

with a population and setting different than that used in the derivation set. This

is a test for misclassification when the rule is put into effect prospectively. If the

rule still functions in the same manner that it did in the derivation set, it has

passed the test of applicability. This is where provider training in the use of the

rule can be studied. How long does it take to learn to use the rule? If it takes

too long, most providers in community settings will be reluctant to take the time

to learn it. They will feel that the rule is something that will be only marginally

useful in a few instances. Providers who have a stake in development of the rule

are more likely to use it better and more effectively than those who are grudgingly

goaded into using it by an outside agency.

3 P. S. Wells, D. R. Anderson, J. Bormanis, F. Guy, M. Mitchell, L. Gray, C. Clement, K. S. Robinson & B.
Lewandowski. Value of assessment of pretest probability of deep-vein thrombosis in clinical manage-
ment. Lancet 1997; 350: 1795–1798.



Practice guidelines and clinical prediction rules 331

It must still be tested in other sites and with other practitioners in order to

determine the effect of clinical use in other sites. This testing should be done

in a prospective manner. As part of this testing, the use of the rule should be

able to reduce unnecessary medical care. This should result in automatic cost-

effectiveness of the rule. A rule designed to reduce the number of x-rays taken of

the neck, if correctly applied, will result in less x-rays ordered. There is no ques-

tion that there will be an overall cost saving. Of course, if there is a complex and

lengthy training process involved some of the cost savings will be transferred to

the training program, making the rule less effective. Of course, if the rule doesn’t

work well, it may lead to malpractice suits because of errors in patient care mak-

ing it even more expensive.

Critical appraisal of prediction rules

(1) Is the study valid?

(a) Were all important predictors included in the derivation process? The

model should include all those factors that physicians might take into

account when making the diagnosis.

(b) Were all important predictors present in a significant proportion of the

study population? The predictor variables should be those that are com-

mon. No specific percentage is required, but clinical judgment should

decide this.

(c) Were all the outcome events and predictors clearly defined? The descrip-

tion of the outcomes and predictors should be easily reproducible by any-

one in clinical practice.

(d) Were those assessing the outcome event blinded to the presence of the

predictors and those assessing the presence of predictors blinded to the

outcome event?

(e) Was the sample size adequate and did it include adequate outcome

events? There should be at least 10–20 cases of the desired outcome,

patients with a positive diagnosis, for each of the predictor variables

being tested.

(f) Does the rule make clinical sense? The rule should not fly in the face of

current clinical practice otherwise it will not be used.

(2) What are the results?

(a) How well do clinicians agree on the presence or absence of the findings

incorporated into the rule? Inter- and intra-rater agreement and kappa

values with confidence intervals should be given.

(b) What is the sensitivity and specificity of the prediction rule? The rule

should lead to a high LR+, ideally > 10, and a low LR–, ideally < 0.1.
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(c) How well does the rule predict the outcome? Depending on the severity

of the outcome, the rule should find patients with the desired outcome

almost all of the time. Is the post-test probability for the rule high in all

clinical scenarios?

(3) How can I apply the results to my patients?

(a) Are the patients in the study similar enough to my patient?

(b) Can I efficiently and effectively use the rule in my patients?



30

Decision analysis and quantifying patient values

Chance favors only the prepared mind.

Louis Pasteur (1822–1895)

Learning objectives

In this chapter you will learn:
� the function of each part of a decision tree
� how to use a decision tree in conjunction with the uncertainties of a

diagnostic test to assist in decision making for patients
� different ways of quantifying patient values using linear rating scales, time

trade-off, and standard gamble
� how to define and use QALYs

Introduction

How do physicians choose between various treatment options? For the individ-

ual physician treating a single patient, it is a matter of obtaining the relevant clin-

ical information to make a diagnosis. This is followed by treatment as set down

in some sort of clinical practice guideline or from the results of a well-done RCT.

However, these results may have a high degree of uncertainty with large 95% CI

and may not consider the patient’s preferences or values. To help deal with these

issues there are some statistical techniques that we can apply to quantify the

process.

To put the concept of risk into perspective, we must briefly go back a few hun-

dred years. Girolamo Cardano (1545) and Blaise Pascal (1660) noted that in mak-

ing a decision that involved any risk there were two elements that were com-

pletely unique and yet both were required to make the decision. These were the

objective facts about the likelihood of the risk and the subjective views on the

part of the risk taker about the utility of the outcomes involved in the risk. This

333
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second factor leads to the usefulness or expected value of the outcomes expected

from the risk. This involved weighing the gains and losses involved in taking each

of the potential risks and attaching a value to each outcome. Pascal created the

first recorded decision tree when deciding whether or not to believe in God.

The Port Royal text on logic (1662) noted that people who are “pathologically

risk-averse” make all their choices based only upon the consequences and will

refuse to make a choice if there is even the remotest possibility of an adverse

consequence. They do not consider the statistical likelihood of that particu-

lar consequence in making a decision. Later, in the early eighteenth century,

Daniel Bernoulli noted that those who make choices based only upon the prob-

ability of an outcome without any regard for the quality of the risk involved

with that particular outcome would be considered foolhardy. Most of us are

somewhere in between, which takes us to the modern era in medical decision

making.

There is a systematic way in which the components of decision making can be

incorporated to make a clinical decision and determine the best course of ther-

apy. This statistical method for determining the best path to diagnosis and treat-

ment is called expected-values decision making. Given the probability of each

of the risks and benefits of treatment, which strategy will produce the greatest

overall benefit for the patient? The theory of expected-values decision making

is based on the assumption that there is a risk associated with every treatment

option and uncertainty associated with each risk.

By using the technique known as instrumental rationality the clinician can cal-

culate the treatment strategy which will produce the most benefit for the average

or typical patient. The clinician quantifies each treatment strategy by assigning

a numerical value to each outcome called the utility and multiplying that value

by the probability of the occurrence of that outcome. The utilities and proba-

bilities can be varied to account for variation in patient values and likelihood of

outcomes.

The vocabulary of expected-values decision making: expected
value = utility × probability

The probability is a number from 0 to 1 that represents the likelihood of a partic-

ular outcome of interest. You must know as much about each outcome of the var-

ious treatment options as possible. The probability of each outcome (P) comes

from clinical research studies of patient populations. Ideally, they will have the

same or similar characteristics as the patient or population that is being treated.

These can also come from systematic reviews of many clinical studies or meta-

analyses. They are usually not exact, but are only a best approximation, and

ought to come with 95% confidence intervals attached.



Decision analysis and quantifying patient values 335

There must then be an assignment of a value or utility (U) to each outcome

that quantifies the desirability or undesirability of that outcome. A utility of 1

is assigned to a perfect outcome, usually meaning a complete cure or perfect

health. A utility of 0 is usually thought of as a totally unacceptable outcome,

usually reserved for death. Intermediate utility values are assigned to other out-

comes. The quality of life resulting from each intermediate outcome will be less

than expected with a total cure but more than death. This outcome state may be

wholly or partially unbearable due to treatment side effects or adverse effects

of the illness. A numerical value for utility between 1 and 0 is then assigned

to this outcome. Recent studies of patient values for outcomes of cardiopul-

monary resuscitation (CPR) revealed that some patients will give negative scores

to outcomes such as surviving in a persistent vegetative state and being main-

tained on a ventilator. This means that they consider these outcomes to be worse

than death. As research into the development of patient values has continued,

it is clear that there are many outcomes that are valued as less than zero. A

recent example was a study that requested patients to determine their values

in stroke care. Being alive but with a severe disability was rated as less than

zero.

A decision tree illustrating treatment options can then be constructed, as

seen from the following clinical example. Thrombolytic therapy, the use of clot-

dissolving medication called t-PA, can be used to treat acute embolic or throm-

botic cerebrovascular accident, a CVA, or stroke due to a blood clot in the brain.

Consider a patient who is a 60-year-old man with sudden onset of weakness of

the right arm and leg associated with inability to speak. A stroke is suspected and

the physician wants to try this new form of treatment to dissolve the suspected

clot in the artery supplying the left parietal area of the brain. A CT scan shows no

apparent bleeding in the brain. There are two options for the patient at this point.

Thrombolytic therapy (t-PA) can be given to dissolve the clot or the patient can

be treated using traditional methods of anticoagulation and intensive physical

rehabilitation therapy.

The first step is to list the possible outcomes for each therapy. For purposes

of the exercise we will greatly simplify this process and assume that there are

only three possible outcomes. Thrombolytic therapy can result in one of two out-

comes, either a cure with complete resolution of the symptoms or death from

intracranial hemorrhage, bleeding into the substance of the brain. Traditional

medical therapy will result in some improvement in the clinical symptoms in all

patients but leave all of them with some residual deficit.

Next, find the probabilities of each of the outcomes. Outcome probabilities are

obtained from studies of populations of patients with similarities for both the

stroke and risk factors for bleeding. The probability of death from thrombolyic

therapy is Pd, for complete cure it is Pc, which is equal to 1 – Pd, and for partial

improvement with medical therapy in this example only, the probability is 1.
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The next step is to assign a utility to each of the outcomes. The utility of com-

plete cure is 1, death is 0, and the unknown residual chronic disability is Ux.

These values are obtained from studies of patient attitudes toward each of the

outcomes in question and will be discussed in more detail shortly.

Mechanics of constructing a decision tree

There are three components to any decision tree. Nodes are junctures where

something happens. There are three types of nodes: decision, probability or

chance, and stationary. A decision node is the point where the clinician or patient

must choose between two or more possible options. A probability node is the

point where one of two or more possible outcomes can occur by chance. A

stationary node is the point where the patient starts, their initial presentation,

or finishes, their ultimate outcome. The symbols for the nodes are shown in

Fig. 30.1.

Node Symbol

Decision node

Probability node

Stationary node

Fig. 30.1 Symbols used in a
decision tree.

Arms connect the nodes. Each arm represents one treatment or management

strategy. Figure 30.2 shows a simple decision tree for our problem. In this sim-

plified decision tree for stroke, one arm represents thrombolytic therapy and the

other represents standard medical therapy. The thrombolytic therapy arm has

a probability node and then two other arms come from that. These are cure or

death.

In the simplified stroke-therapy example calculate the expected values in each

arm of the tree by multiplying the utility and probability and summing their val-

ues around each node. Therefore, for thrombolytic therapy the expected value

E will equal 1(1 – Pd) + 0(Pd). For standard medical therapy, since the utility

of chronic residual disability is Ux and since all patients have this intermediate

outcome, the expected value E is Ux. The patient should always prefer the strat-

egy that leads to the highest expected value. In this example, the patient would

always choose standard medical treatment for stroke if the expected value for

this arm is 100%, which will occur if Ux = 1 and if there is a measurable death rate

for treating with thrombolytic therapy, making the expected value of the throm-

bolytic arm 100% – Pd.
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In reality, there are more outcomes than shown in this example. For the thrombolytic therapy 
arm, the clot can be dissolved successfully,  there can be residual deficit or the patient may have 
an intracranial bleed and die or have a residual deficit. The thrombolytic arm of the decision tree 
would then look like this: (where Pd is the probability of cure and Ph the 
probability of hemorrhage):  The probability of death due to  
 
 
 
 

 

arm 

Probability Node  

Starting decision 
node: patient 

presents with acute 
stroke. 

Treatment options 

Die
Pd

Probabilities 

Chronic disability:  U = Ux 

Died: U = 0 

Cured:  U = 1 
Cure 
1−Pd

Final 
Outcome 

Utility 

E =  Expected value for each arm of the tree  
E (thrombolytics) = (1 − Pd)  × 1+ (Pd  × 0) 
E (medicine) = 1 × Ux  

Stationary node 

Thrombolytic therapy 

Standard medical therapy, P = 1 

Fig. 30.2 Decision tree for
thrombolytic therapy.However, the value of a lifetime of chronic neurological disability is not 100%,

and lets assume for this example that it is 0.9. This means that living with chronic

neurological disability is somehow equated with living 90% of a normal life.

Recalculating the expected value of each arm will determine what probability

of death from thrombolytics would result in wanting to choose thrombolytics

over medical therapy. We must solve the equation 1 – Pd = 0.9. Since the value

of E for the medicine arm is now 0.9, thrombolytic therapy should be the chosen

modality as long as Pd < 0.10.

Disagreeable events such as side effects may reduce the value of a given arm.

For example, if the experience of getting thrombolytics were unpleasant, that

may lead to a utility reduction of 0.01, changing the expected value of that arm

to 1 – 0.01 – Pd. In the example, and if Ux were still 0.9, thrombolytics would be

favored as long as Pd < 0.09.

In reality, there are more outcomes than shown in this example. For the

thrombolytic-therapy arm, the clot can be dissolved successfully, there can be

residual deficit, or the patient may have an intracranial bleed resulting in death,

or have partial improvement but be left with a residual deficit. The degree of

deficit can also be divided into different categories, for example using the Modi-

fied Rankin Scale to create six criteria for outcomes. The thrombolytic arm of the

decision tree would then look as shown in Fig. 30.3, where Pc is the probability of



338 Essential Evidence-Based Medicine

U = 0 

U = Ux 

Residual 

Death  

Cure  

Pc

Residual damage

1 − Pc − Ph

Thrombolytic therapy Hemorrhage

Ph

Pdt

damage 

U = 1 

U = Ux

1 − Pdt

E = Pc (1) + (1 − Pc − Ph) Ux + Ph (Pdt × 0 + (1 − Pdt)Ux) 

Fig. 30.3 Expanded decision tree
for thrombolytic therapy.

U = Ux

U = 0

U = 1

Standard medical therapy

Residual damage

Resolution

(cure) Pc

1 − Pc − Pdm

Death

Pdm

E = Pc(1) + (1 − Pc  − Pdm) Ux + Pdm × 0

Fig. 30.4 Expanded decision tree
for standard medical therapy. cure and Ph the probability of hemorrhage. The probability of death due to hem-

orrhage is Pdt and for residual damage due to hemorrhage is 1 – Pdt. For residual

damage we will use the same utility, Ux = 0.9 as in the previous example for the

standard-therapy arm.

Similarly, standard medical treatment can result in spontaneous cure or death.

This will result in that side of the decision tree looking like Fig. 30.4. Here Pc is the

probability of complete resolution and Pdm the probability of death.

The reason that a decision tree is needed at all is because while there is an

increase in complete cures with thrombolytic therapy there is also an increase in

intracranial hemorrhage leading to residual damage or death. Simply balancing

the two, using NNTB for cure and NNTH for death due to hemorrhage, ignores

the patient’s values for each of these outcomes. This is especially true when one

or both of the alternative outcomes can lead to a lifetime of disability.
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1 

                   Plausible range of Pd from literature 

0 

E 

Thrombolytic  
therapy 

Standard medical therapy 

0 
Probability of death from thrombolytics  

Fig. 30.5 One-way sensitivity
analysis of a simplified
hypothetical stroke therapy
model.

Sensitivity analysis

Sensitivity analysis is a way to deal with imprecision in the data used to create the

decision tree. We have discussed that this is true of almost all data obtained from

the medical literature and insist that the results of any kind of study have appro-

priate confidence intervals to give the uncertainty of the result. A sensitivity anal-

ysis tests the “robustness” of the conclusions over a range of different values of

probabilities for each branch of the decision tree. Sensitivity analysis asks what

would happen to the expected value of thrombolytics against standard medical

management if we varied the probability or utility of any of the outcomes. One

simple way of doing this it to take the 95% confidence intervals of the probabili-

ties and use them as the extreme used in the sensitivity analysis. In other words,

recalculate the expected values of each arm of the tree using first the upper and

then the lower 95% CI value as the new probability for one arm.

If there is very little difference between the expected values of the two treat-

ments being compared, then a slight change in the probabilities assigned to each

arm could easily alter the direction of the decision. In that case, if the values of

the probabilities are off by just a little bit, the entire result will change and the

patient and physician will have little useful information regarding the relative

merits of the two treatments, or which one is superior.
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0 

Probability of death Pd or Pdm 

0.5 

Range of plausible values 

0 

E 

Thrombolytic therapy        

Standard medical therapy  

0.25 

1 

Thrombolytic 
therapy better  

Thrombolytic 
therapy worse 

Fig. 30.6 One-way sensitivity
analysis of a more complex
hypothetical model for stroke
therapy.

Sensitivity analysis determines how much variation in the final outcome will

result from plausible variations in each of the input variables. One-way sensi-

tivity analysis changes only one parameter at a time (Figs. 30.5, 30.6). Multi-way

sensitivity analysis looks for the variable that causes the biggest change in the

value of the overall model. Then the analysis changes all those assumptions that

are “very sensitive” to see what happens to the model. Finally, a curve is drawn to

show what happens to the expected values when the two most “sensitive” vari-

ables are changed (Fig. 30.7).

The results of a sensitivity analysis can be graphed, showing the effect on the

final outcomes with a change in each of these values. Expected values are usu-

ally calculated for each branch of the decision tree as quality-adjusted life years

(QALYs). A QALY equals E × life expectancy, where E is the expected value calcu-

lated from the decision tree.

In the decision tree on thrombolytic therapy and stroke, adding the uncer-

tainty associated with the results of a CT scan which checks for early signs of

intracranial bleeding as the cause of the stroke, complicates the previous exam-

ple of thrombolytic therapy in stroke. This is because the presence of a small

amount of bleeding is difficult to diagnose on the CT scan, and if thrombolytic

therapy is given in the presence of even a very small bleed the likelihood of a

serious and possibly fatal intracranial hemorrhagic stroke increases. Since the

presence of a bleed is not always detected, the CT is not always a valid test and

the construction of the decision tree must incorporate the possibilities of incor-

rect interpretations of the CT. The sensitivity and specificity of the CT in stroke
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Treat 

1 − Specificity 

Don't treat  
Sensitivity 

1 

1 

0 

0 

Fig. 30.7 Two-way sensitivity
analysis of a complex model of
treatment for stroke based on
the results of the CT scan. (Yes,
the graph of sensitivity vs. 1 –
specificity is the ROC curve.)

patients would help to calcluate the probabilities associated with these additions

to the tree.

It is now possible to determine the probability of giving thrombolytic therapy

when there actually is a bleed and the CT scan is read incorrectly causing a false

negative CT, and of not giving the therapy when there is truly no bleed and yet

one is read on the CT scan, a false positive CT. The ultimate decision should still

be based on whichever strategy gives the highest final expected utility. Figure 30.8

shows this more complex but also more realistic decision tree of thrombolytic

therapy in stroke.

Reality check! (disclaimer)

This is not a model of what doctors actually do now at the bedside but a math-

ematical modeling technique that can help doctors and patients find the best

possible way of making complex medical decisions. It can be used to create

health policy or to determine the best strategy for a practice guideline. In actu-

ality, physicians have trouble applying decision analysis to individual patients

even when there is a clearly superior treatment. Also, the model requires that

the outcomes be put into a few discrete categories when in fact there are many

outcomes that are not as clear-cut as in the model.

In this example, thrombolytic therapy complications can vary from serious to

mild in severity. Chronic disability can also vary from a mild to a constant dis-

abling deficit, which can be very severe and last for only a brief period of time

and then spontaneously resolve. Standard medical treatment may actually result

in more patients having only a small amount of residual deficit. On the other
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bleed

Thrombolytics (CT-) 

Don t test (same options as 

above, probabilities will be different).

Test

Stroke
Standard therapy
(CT+)

no bleed (FP) 

P = 1 − PPV 

bleed (TP) 
 
P = PPV  

U = 0

U = 1

U = Ux

cure        U = 1 

death     U = 0

death  

chronic
residual  
disability 

cure 

chronic residual disability  U = Ux

cure  U = 1 

chronic residual disability  U = Ux 

death  U = 0

cure   U = 1 

chronic residual 
disability   U = Ux

no bleed (TN)  

bleed (FN) 

P = NPV 

P = 1 − NPV 

death
U = 0

chronic 
residual disability
 U = Ux

Fig. 30.8 Complex decision tree
incorporating the use of CT scans
in decision making for stroke.
The probabilities have been
omitted for clarity.

hand, thrombolytic treatment may result in more cases with increased residual

deficit or death, both unsatisfactory outcomes. This can occur even if a “cure” is

obtained in a few more patients in the thrombolytic group. You must include all

of these outcomes to make this a more realistic model of the situation. Finally,

any decision analysis must include a reasonable “time horizon” over which the

outcomes should be assessed.

Computers can be used to show patients how their personal values for each

outcome will change the expected value of each treatment. There are computer

programs that have been developed to assist patients in making difficult deci-

sions about whether or not to have prostate cancer screening and what options

to take if the screening test is positive, but they are not yet commercially avail-

able and are currently used only in research programs. This is clearly a direction

for future research in decision-making theory. The development of user-friendly

computerized interfaces will help improve the quality of patient decisions. This

will never make the doctor obsolete. The doctor must continue to be able to edu-

cate his or her patient about the consequences of each action and describe the

objective reality of each disease state and treatment options for them so that the
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patient can make appropriate decisions on the utility they want to assign to each

outcome. In short, the role of the health-care provider is to give their patients the

facts and probability of the outcomes and help the patient decide on their utility

for each outcome.

Threshold approach to decision making

Earlier, in Chapter 26, we talked about the treatment and testing thresholds. The

threshold approach to testing and treatment can use decision trees to determine

when diagnostic testing should be done. Consider the situation of a patient com-

plaining of shortness of breath in whom you suspect a pulmonary embolism or

blood clot in the lungs. Should you order a pulmonary angiogram test in which

dye is injected into the pulmonary arteries? The test itself is very uncomfortable,

causes some complications, and can rarely cause death. There are basically three

options:

(1) Treat based on clinical examination and give the patient an anticoagulant

without doing the test. Do this if the probability of disease is above the Treat-

ment Threshold.

(2) Test first and treat only if the test is positive.

(3) Neither test nor treat if one is very certain that the disease is not present. Do

this if the probability of disease is below the Testing Threshold.

The treatment threshold is the probability of disease above which a physician

should initiate treatment for the disease without first doing the test for the dis-

ease. This is the level above which, testing will produce an unacceptable number

of false negatives and the patient would then be denied the benefits of treatment.

“The pretest probability of disease is so great that I will treat regardless of the

results of the test.”

The testing threshold is the probability of a disease above which a physi-

cian should test before initiating treatment for that disease. This is the prob-

ability below which, there are an unacceptable number of false positives and

patients would then be unnecessarily exposed to the side effects of treatment.

“The pretest probability of disease is so small that I will not treat even if the test

is positive.”

If the post-test probability of disease after a positive test, the positive predic-

tive value, is still below the treatment threshold, don’t start treatment. It may

take another test to decide if the patient has the disease or not. If the post-test

probability after a negative test, the false reassurance rate, falls below the test-

ing threshold, it was a worthwhile test and the patient does not need treatment.

It took the probability of disease from a value of probability at which testing

should precede treating, to one at which neither treatment nor further testing is

beneficial. In essence this means that disease has been ruled out. Decision trees

are another way to determine the cutoffs for testing and treating.
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In order to complete the decision tree for our example of thrombolytic ther-

apy and stroke, the posterior probability that an intracranial bleed has occurred

when the CT scan has been read as negative must be known. This requires know-

ing the sensitivity and specificity of the CT scan and the prevalence of intracra-

nial bleeding. If the post-test probability of a bleed is low, thrombolytic treatment

will be better and a worsening bleed is very unlikely with t-PA, making throm-

bolytic therapy more beneficial and conversely standard medical therapy less

beneficial. If the post-test probability of a bleed is high, standard treatment is

likely to be better, since thrombolytic therapy is more likely to lead to increased

bleeding in the brain.

Both of the thresholds are dependent on prevalence or pretest probability! At

a low pretest probability, even a positive CT ought not make a difference since

there would be many false positives and you shouldn’t do the test at all since you

are more likely to have a false positive and unnecessarily give thrombolytic ther-

apy to someone who won’t benefit. At a high pretest probability, even a negative

CT ought not make a difference since there would be many false negatives and

you shouldn’t do the test at all since you are more likely to have a false negative

and withhold thrombolytic therapy from someone who would benefit. An exam-

ple would be a person with known atrial fibrillation, not on anticoagulants, who

had a sudden onset of severe left hemiparesis without a headache. Changing one

fact of this pattern would change the probability of a bleed and the final decision.

The consequence of giving thrombolytic therapy to someone with a bleed makes

the CT worthwhile, since treating anyone with a positive scan will result in a real

tragedy.

At a high pretest probability the clinical picture is so strong that the test

shouldn’t be done at all since a false negative is much more likely than a true

negative leading to treatment of someone with a potential bleed. An example

would be someone with a sudden onset of the worst headache of their life with

their only deficit being slight weakness of their non-dominant hand. Here the

potential of giving thrombolytic therapy to someone with a bleed is too high and

the projected benefit not great enough.

Mathematical expression of threshold approach to testing

There are formulas for calculating these thresholds, but please don’t memorize

them.

Test threshold =
(FP rate) (risk of inappropriate Rx) + (risk of test)

(FP rate)(risk of inappropriate Rx) + (TP rate)(benefit of appropriate Rx)

Treatment threshold =
(TN rate) (risk of inappropriate Rx) − (risk of test)

(TN rate)(risk of inappropriate Rx) + (FN rate)(benefit of appropriate Rx)
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Major  
symptoms  

Mild 
symptoms Disability 

Death

Fig. 30.9 Markov model
schematic. From F. A.
Sonnenberg & J. R. Beck. Markov
models in medical decision
making: a practical guide. Med.
Decis. Making 1993; 13:
322–338.

Determining the risks and benefits of incorrect diagnosis will set these thresh-

olds. A false positive test resulting in unnecessary use of risky tests or treatments

such as cardiac catheterization or cardiac drugs or a false negative test resulting

in unnecessarily withholding beneficial tests or treatments are both adverse out-

comes of testing. You can substitute different values of test characteristics, dif-

ferent positive and negative predictive values, and different values of the benefit

and risk of treatment in a sensitivity analysis of the decision tree and determine

what the effect of these changes will be on the utility of each treatment arm.

Markov models

Another method of making a decision analysis is through the use of Markov mod-

els. These consider the simultaneous interaction of all possible health states. A

patient can be in only one health state at a time. The difficulty with these is that

there must be some data on the average time a given individual patient spends

in each health state. This is then weighted by considering the quality of life for

each state.

Ovals are states of health associated with quality measures such as death

(U = 0), complete health or cure (U = 1), and other outcomes (U varies from 0

to 1). Arrows are transitions between states or within a state and are attached to

probabilities or the likelihood of changing states or remaining in the same state.

This type of model is ideal for putting into a computer to get the final expected

values. A Markov model of health decision making is diagrammed in Fig. 30.9.

Ethical issues

Finally, there are significant ethical issues raised by the use of decision trees and

expected-values decision making. After performing a decision tree, one must

place ethical values on the decisions. Issues of morality and fairness must be con-

sidered. When there are limited resources, is it more just to spend a large amount
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of resources for a small gain? Is a small gain defined as one affecting only a few

people or one having only a small health benefit? Some of these questions can

be answered using cost-effectiveness analyses and will be covered in the next

chapter.

The use of a decision tree in making medical decisions can help the patient,

provider, and society decide which treatment modality will be most just. Look

for treatments that benefit the most people or have the largest overall improve-

ment in health outcome. Ethical problems arise when a choice has to be made

on whether to consider the best outcome from the perspective of a large popula-

tion or the individual patient. If we take the perspective of the individual patient,

how are we to know that the treatment will benefit that particular patient, the

next patient, or the next 20 patients? Should we use the perspective of statisti-

cal significance (P < 0.05) or is it fairer to use NNTB? Is the decision up to each

individual or should the decision be legislated by society?

Decision trees allow the provider, society, and the patient to decide which ther-

apy is going to be the most beneficial for the most people. Whether decision trees

are a mathematical expression of utilitarianism is a hotly debated issue among

bioethicists.

Siegler’s schema (Table 30.1) is useful for using these models in medical and

ethical decision making. The basic perspectives of medical care within the tra-

ditional patient–physician relationship include medical indications, which are

physician-directed, and patient preferences, which are patient-driven. Both of

these are input variables in the decision tree. Current or added perspectives

modify the decision and include quality of life, which considers the impact on

the individual of high-technology interventions and contextual features, which

are cultural, societal, family, religious or spiritual, community, and economic fac-

tors. These are all part of the discussion between the provider and the patient and

form the basis of the provider–patient relationship.

Assessing patient values

Patient values must be incorporated into medical decision making and health-

care policies by providers, government, managed care organizations, and other

decision makers. The output of decision trees is variable and ultimately is based

on the patient preferences. We can measure and quantify patient values and use

them in decision trees to help patients make difficult decisions.

Using unadjusted life expectancy or life years cannot compare various states

of health in cases with the same number of years of life because they do not

quantify the quality of those years. Quality-of-life scales or measures of status

rated by others or by the patient themself include health status, functional sta-

tus, well-being, or patient satisfaction. Common scales are the Activities of Daily

Living or ADL and the Arthritis Activity Scale used in rheumatoid arthritis. These
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Table 30.1. Seigler’s schema for ethical decision making in medicine

Ethical concern Ethical principle

MEDICAL INDICATION BENEFICENCE

What is the best treatment? The duty to promote the good of the

patientWhat are the alternatives?

PATIENT PREFERENCES AUTONOMY

What does the patient want? Respect for the patient’s right to

self-determinationWhat outcome does the patient prefer?

QUALITY OF LIFE NON-MALEFICENCE

What impact will the proposed treatment

or lack of it have on the patient’s life?

The duty not to inflict harm or injury

SOCIECONOMIC ISSUES JUSTICE

(CONTEXTUAL FEATURES) The patient is given what is their “due”

What does the patient want within their

own socioeconomic milieu?

What are the needs of the patient’s

society?

Source: From A. R. Jonsen, M. Siegler & W. J. Winslade. Clinical Ethics. 3rd edn. New

York: McGraw-Hill, 1992. pp. 1–10.

0 1
Death

 
Normal

Fig. 30.10 Linear rating scale.
Simply measure the patient’s
mark on the scale as a
percentage of the entire length
of the scale.

are difficult to use in a quantitative manner. This discussion will present sev-

eral standardized quantitative measures of patient preference that can be used

to measure the relative preference that a patient has for one or another outcome.

The linear-rating-scale method utilizes a 10-cm visual analog scale (VAS) with

one end being zero or death and the other end one or a completely healthy life

(Fig. 30.10.) The patient is asked “where on this scale would you rate your life if

you had to live with chronic disease?” In the t-PA in stroke example that would be

the residual neurological deficit from the stroke syndrome. The resultant value of

U is the percentage of the total length of the line.

The time trade-off method for this example asks “suppose you have 10 years

left to live with chronic residual neurological disability from the stroke. If you

could trade those 10 years for x years without any residual neurological deficit,

what is the smallest number of years you would trade to be deficit-free?” Since

it is a direct question, there is a lot of variability attached to the answer between

patients.
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Sure thing Gamble 

Death = 0 

No stroke = 1  (cure) 
1 − Pdi 

Pdi 

U CND

(Utility) 

Fig. 30.11 Standard gamble.

The standard-gamble or utility method attempts to find out how much risk

the patient is willing to take. The patient is told to consider an imaginary situa-

tion in which you will give them a pill that will instantly cure their stroke. How-

ever, there is a risk in that it occasionally causes instant but painless death. If

there were 100% cure and 0% death, every patient would always take the pill. On

the other hand, if there were 0% cure and 100% death no one would ever take

the pill unless the patient is extremely depressed and considers their life totally

worthless. Continue to change the cure-to-death ratio until the person cannot

decide which course of action to take. This is the point of indifference. “At what

level of risk would you be indifferent to the outcome?” In our stroke example, the

sure thing is chronic residual neurological deficit and the gamble is no deficit or

death. Set up a “mini decision tree” and solve for the utility of living with chronic

neurological deficit. This is diagrammed in Fig. 30.11, where:

Pdi is the probability of death at the point of indifference, the information

learned when using the standard gamble.

UCND = (0 × Pdi) + (1 − Pdi) 1 or

UCND = 1 − Pdi. This is the value of living with a chronic stroke syndrome that

the patient assigns as an outcome through a standard gamble.

QALYs are the units of the standardized measure that combines the quality of

life and life expectancy. It is the output measure that is commonly used in deci-

sion analyses. It combines total life expectancy with a quantitative measure of

patient value. A decision analysis can determine how many QALYs result from

each strategy. The QALY is determined by taking the normal life expectancy and

multiplying it by the patient value or utility of 1 year of life.

Different values will be obtained from each method used to measure patient

values. The linear rating scale measures the quality of functionality of life, the

time trade-off introduces a choice between two certainties, and the standard

gamble introduces probability and willingness to take risks into the equation.

Attitudes toward risk and framing effects

Attitudes toward risk vary with individuals and at different periods of time during

their lives. Patient values can be related to special events such as the birth of a
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child or marriage, habits such as smoking or drinking, or age. The length of time

involved in the trade-off will be different if asked of a younger or older person

since a younger person may be less likely to be willing to trade off years. Also

personal preferences related to the amount of risk a person is generally willing

to take in other activities, such as sky-diving, play a role in determining patient

values. Since values tend to be very personal, providers should not be the ones to

assign these values. Values based on the provider’s own risk-taking behavior will

not accurately measure the values of their patient.

How the questions are worded or framed will influence the answer to the ques-

tion. Asking what probability of death a patient is willing to accept will likely

give a lower number than asking what probability of survival they are willing to

accept. The framing of the questions may reflect the risk-taking attitude of the

provider. A patient is more likely to prefer a treatment if told that 90% of those

treated are alive 5 years later than if told that 10% are dead after the same time

period, even though the outcome is exactly the same. The feelings aroused by the

idea of death are more likely to lead to the rejection of an option framed from the

perspective of death when this same option would be endorsed in the opposite

framing of the choice, the perspective of survival. Although apparently incon-

sistent and irrational, this effect is a recurring phenomenon. This irrationality is

not due to lack of knowledge since physicians respond no differently than non-

physician patients.

Probability means different things to different people. This is related to how

individuals relate to numbers and how well people understand probabilities. In

general, people (including physicians and other health-care providers) do not

understand probabilities very well. Physicians tend to give qualitative rather

than quantitative expressions of risk in many different and ambiguous ways. For

example, what does a “rare risk” of death mean? Does it mean 1% of the time or

one in a million? From the patient perspective, a rare event happens 100% of the

time if it happens to them.

Finally, patient values change when they have the disease in question as

opposed to when they do not. Patients who are having a stroke are much more

willing to accept moderate disability than well persons who are asked about the

abstract notion of disability if they were to get a stroke. This means that stroke

patients assign a higher value to the utility (U) of residual deficit than well peo-

ple asked in the abstract. Most clinical studies of these issues that are now being

done have quality-of-life and patient-preference measures attached to possible

outcomes. They should help clarify the effects of variations in patient values on

the outcomes of decision trees.
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Cost-effectiveness analysis

When gold argues the cause, eloquence is important.

Publilius Syrus (first century BC): Moral Sayings

Learning objectives

In this chapter you will learn:
� the process of evaluating an article on cost-effectiveness
� the concepts of marginal cost and marginal benefit
� how to use these tools to help make medical decisions for a population
� how to calculate a simple cost-effectiveness problem and evaluate the cost-

effectiveness of a specific therapy

The cost of medical care is constantly rising. The health-care provider of the

future will seek to use the most cost-efficient methods to care for her or his

patients. Cost-effectiveness analysis can be used to help choose between treat-

ment options for an individual patient or for large populations. Governments

and managed care organizations use cost-effectiveness techniques to justify

their coverage for various health-care “products.” Drug companies often pro-

duce cost-effectiveness studies to show that their more expensive drugs are

actually cheaper in the long run by being cheaper to administer or by saving

future health-care costs. Health-care providers, policy makers, and insurance-

plan administrators must be able to evaluate the validity of these claims through

the critical analysis of cost-effectiveness studies.

How do we decide if a test or treatment is worth it?

If one treatment costs less and is clearly more effective than the alternative

option, there is no question about which treatment to use. Similarly, if the

350
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treatment costs more and is clearly less effective, there will also be no question

about which to use. Treatment with the most effective treatment modality would

proceed for the patient and that would also save money in the process. More

often than not, however, the situation arises for which one therapy costs much

more and is marginally more effective than a much less expensive therapy or the

converse, where one therapy is clearly less effective but is also less expensive.

Cost-effectiveness analysis gives us the data to answer the question “how much

more will this extra effectiveness cost or how much more will use of the less effec-

tive therapy ultimately cost?”

This is a serious ethical issue for society and relates to a concept called oppor-

tunity costs. If one very expensive treatment is beneficial for a few people and

we decide to pay for that treatment, we may be unable to afford other equally

or more effective treatments that may help many more people. There is only

so much money to go around and you can’t spend the same dollar twice! If we

fund bone marrow transplants for questionably beneficial indications, we may

not be able to pay for hypertension screening leading to treatment that could

prevent the need for certain other high cost therapies like kidney or heart organ

transplants in the future. A bone marrow transplant may prolong one life by 6

years, yet result in loss of funds for hypertension screening and treatment pro-

grams which could prevent six new deaths from uncontrolled hypertension in

that same period. Cost-effectiveness analysis should be able to tell if the cost of a

new therapy is “worth it” or if we should be paying for some other, cheaper, and

possibly more effective therapy.

Cost rationing has always been a contentious issue in medicine. The wealthy

can get any medical procedure done regardless of efficacy or cost while the poor

must wait for available services. This is known as de-facto rationing and is man-

ifested by long waiting times in a municipal hospital emergency department or

for an appointment to be examined by a specialist or get diagnostic studies done.

In the United States, there may be reduced availability of certain drugs to patients

in some managed care organizations, on Medicaid and certainly to uninsured

working people who cannot afford to pay for that drug out of their own pockets.

The State of Oregon used a type of cost-effectiveness analysis to decide what ser-

vices the State Medicaid program should cover. We are constantly making value

judgments over how we as a society will spend our money. The ethical issues will

be left to the politicians and ethicists to discuss. This chapter will present the

tools needed to evaluate studies of cost-effectiveness.

Cost-effectiveness studies can be very complex to evaluate. On the most basic

level, they simply add up all the costs of a particular procedure, subtract from

them the cost of the comparison procedure that is in current use, and divide

by the benefit, usually the number of additional QALYs obtained by using the

new procedure. These are the same QALYs that were calculated in the previous
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chapter on Expected Values Decision Making. However, the manner in which the

analysis is set up will have an enormous impact on what kind of result will be

obtained. It is difficult to do a good and fair cost analysis and relatively simple

to do a bad and often biased one. Therefore it is up to the reader to apply a few

simple rules when reading a cost analysis. If these rules are followed, you can be

fairly sure the analysis is relatively fair and usually valid.

Guidelines for assessing an economic analysis of clinical care

Was a broad enough viewpoint adopted?

Is there a specified point of view, either a hospital, health insurance entity, min-

istry of health, or preferably society as a whole, from which the costs and effects

are being viewed?1 The viewpoint should be given from the perspective of who

is paying for the treatment and who is affected by the decision outcome of what

to treat and not treat. Often these studies compare usual fee for service or third-

party insurance against managed-care costs. However, the comparison may sim-

ply be for the costs of the treatments only without a specific viewpoint on who is

paying for them or how much is being reimbursed.

There is a disconnect between costs and charges in health-care finances

because of the large amount of uncompensated and negotiated care that is deliv-

ered. This must be considered in any economic analysis. Costs are the amount of

money that is required to initiate and run a particular intervention. Charges are

the amount of money that is going to be requested from the payors. It is disin-

genuous to use charges since they always overestimate the costs. However, when

using simple costs only, the cost of treating non-insured patients must be fac-

tored into the accounting.

The different programs being compared must be adequately described. It

should be possible from reading the article’s methods to set up the same pro-

gram in any comparable setting. This requires a full description of the process of

setting up the program, the costs and effects of the program, and how these were

measured.

Were all the relevant clinical strategies compared?

Does the analysis compare well-defined alternative courses of action? The com-

parison between treatment options must be specified. Typically two treatment

options or treatment as opposed to non-treatment are considered in a cost-

effectiveness analysis. The treatment options ought to be those that are in

1 Adapted with permission from the User’s Guide to the Medical Literature, published by JAMA (see
Bibliography).
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common use by the bulk of physicians in a particular field and not just fringe

practitioners. Using treatments that are no longer in common use will give a

biased result to the analysis.

Was clinical effectiveness established?

The program’s effectiveness should have been validated. There should be hard

evidence from well-done randomized clinical trials to show that the interven-

tion is effective, and this should be explicitly stated. Where not previously done,

a systematic review or meta-analysis should be performed as part of the anal-

ysis. A cost-effectiveness analysis should not be done based on the assump-

tion that because we can do something it is good. If no RCT is available that

looks at the relevant clinical question, observational studies can be used, but

with the caveat that they are more prone to bias especially from confounding

variables.

Were the costs measured accurately?

Does the analysis identify all the important and relevant costs and effects that

could be important? Were credible measures selected for the costs and effects

that were incorporated into the analysis? On the cost side this includes the actual

costs of organization and setting up a program and continuing operations, addi-

tional costs to patient and family, costs outside the health-care system like time

lost from work and decreased productivity, and intangible costs such as loss of

pleasure or loss of companionship. These costs must be compared for both doing

the intervention program and not doing the program but doing the alternatives.

On the effect side, the analysis should include “hard” clinical outcomes: mor-

tality, morbidity, residual functional ability, quality of life and utility of life, and

the effect on future resources. These include the availability of services and

future costs of health care and other services incurred by extending life. For

example, it may be fiscally better to allow people to continue to smoke since this

will reduce their life span and save money on end-of-life care for those people

who die prematurely. This doesn’t mean we should encourage smoking.

The error made most often in performing cost-effectiveness analyses is the

omission of consideration of opportunity costs that were referred to at the start

of this chapter. If you pay for one therapeutic intervention you may not be able

to pay for some other one. Cost-effectiveness analyses must include an analysis

of these opportunity costs so that the reader can see what equivalent types of

programs might need to be cut from the health-care budget in order to finance

the new and presumably better intervention. Analyses that do not consider this

issue are giving a biased view of the usefulness of the new program and keeping

it out of the context of the most good for the greater society.
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Table 31.1. Comparing inpatient vein stripping (IP Stripping) to outpatient

injection (OP Injections) of varicose veins

Treatment Outcomes

Cost to hospital No further Support Further

per patient treatement stockings treatment

(indexed) needed needed needed

OP injections 9.77 78% 9% 13%

IP stripping 44.22 86% 11% 3%

What is the resulting cost or cost per unit health gained and is this
gain impressive?

The marginal or incremental gain for both the costs and effects should be cal-

culated. First, the degree of risk reduction is determined. On a superficial basis,

a very simple way to do a quick cost-effectiveness analysis is with the number

needed to treat to benefit (NNTB). This is the number of patients you must treat

in order to achieve the desired effect in one additional patient. It is the inverse

of the attributable risk reduction (ARR) between the two therapies. This is com-

pared to the marginal cost of the better treatment to get a cost-effectiveness

estimate.

For example, in the GUSTO trial of thrombolytic therapy for myocardial infarc-

tion, a difference in outcomes was found when t-PA was used instead of strep-

tokinase: t-PA at $2000/dose resulted in 6.5% mortality while streptokinase at

$200/dose resulted in 7.5% mortality. The ARR is the difference between the two,

or 1%. The NNTB for t-PA is 100 (1/ARR) which is how many patients must be

treated with t-PA instead of streptokinase to prevent one additional death. The

marginal or incremental cost per life saved is then $180 000 [($2000 − $200) ×
100 lives].

The prices used to calculate costs should be appropriate to the time and place.

The use of US dollars in studies on Canadian health-care resources will not trans-

late into a credible cost analysis. Also, the effects measured should include lives

or years of life saved, improvement in level of function, or utility of the outcome

for the patient.

There are several different ways to analyze costs and effects. In a cost-

minimization analysis only costs are compared. This works if the effects of the

two interventions are equal or minimally different. For example, when compar-

ing inpatient vein stripping to outpatient injection of varicose veins, the results

shown in Table 31.1 were obtained. Here the cost is so different that even if 13%

of outpatients require additional hospitalization (and therefore we must pay for
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Table 31.2. Comparing doxycycline to azithromycin for Chlamydia infections

Treatment Outcomes

Cost to hospital No further Adverse Compliance

per patient treatement needed effects rate

Doxycycline 3 77% 29% 70%

Azithromycin 30 81% 23% 100%

Source: Data extracted from A. C. Haddix, S. D. Hillis & W. J. Kassler. The cost effective-

ness of azithromycin for Chlamydia trachomatis infections in women. Sex. Transm. Dis.

1995; 22: 274–280.

both procedures) you will still save money by performing outpatient injections.

We are assuming that the end results are similar in both groups.

Another analysis compared doxycycline 100 mg twice a day for 7 days to

azithromycin 1 g given as a one-time dose for the treatment of Chlamydia infec-

tions in women. It found that some patients do not complete the full 7-day

course for doxycycline and then need to be retreated, and can infect other people

during that period of time (Table 31.2). The cost of azithromycin that would make

the use of this drug cost-effective for all patients can then be calculated. In this

case, the drug company making azithromycin actually lowered their price for the

drug by over 50% based on that analysis, to a level that would make azithromycin

more cost-effective.

In a cost-effectiveness analysis the researcher seeks to determine how much

more has to be paid in order to achieve a benefit of preventing death or dis-

ability time. Here, the effects are unequal and all outcomes must be compared.

These include costs, well years, total years, and utility or benefits. The outcome

is expressed as incremental or marginal cost over benefit. Commonly used units

are additional dollars per QALY or life saved.

The first step in a cost-effectiveness analysis is to determine the difference in

the benefits or effects of the two treatment strategies or policies being compared.

This gives the incremental or marginal gain expressed in QALYs or other units of

utility. This is done using an Expected Values Decision Analysis as described in

Chapter 30. It is possible that one of the tested strategies may have a relatively

small benefit and yet be overall more cost-effective than others therapies, which

although only slightly less effective are very much more expensive.

Next the difference in cost of the two treatment strategies or policies must be

determined, to get the incremental or marginal cost. The cost-effectiveness is

the ratio of the incremental cost to the incremental gain. Consider the example

of two strategies, A and B. In the first (A), the quality-adjusted life expectancy is

15 QALYs and the cost per case is $10 000. In the second (B), the life expectancy
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is 20 QALYs, a definite improvement, but at a cost of $110 000 per case. The cost-

effectiveness of B as compared to A is the difference in cost divided by the dif-

ference in effects. This is (110 000 − 10 000)/(20 − 15) = $20 000/QALY gained.

Note that if the more effective treatment had also cost less, you should obviously

use the more effective one unless it has other serious drawbacks such as serious

known side effects. Calculate this only when the more effective treatment strat-

egy or policy is also more costly.

Are the conclusions unlikely to change with sensible changes

in costs and outcomes?

Since most research on a given therapy is done at different times, changes over

time must be accounted for. This process is called discounting and considers

inflation and depreciation. It takes into account that inflation occurs and that,

instead of paying for a program now, those costs can be invested now and other

funds used to pay for solving the problem later. For example, you can pay $200

a year for 10 years or $2000 in 10 years. The future costs are usually expressed in

current dollars since $200 in the future is equivalent to less than $200 today. Actu-

arial and accounting methods used should be specified in the methods section

of the analysis.

Setting up a program is usually a greater cost than running it and initial costs

are usually amortized over several decades. Discounting the value side of the

equation considers that the value of a year of life saved now may be greater than

a year saved later. Adding a year of life to someone at age 40 may mean more to

them than adding a year of life to a 40-year-old but only after they reach the age

of 60. This was considered in the discussion on patient preferences and values in

Chapter 30.

As with any other clinical research study, the numbers used to perform the

analysis are only approximations and have 95% confidence levels attached.

Therefore, a sensitivity analysis should always be done to check on the assump-

tions made in the analysis. This is a process by which the results of the analysis

are changed based on reasonable changes in costs or effects that are statistically

expected based upon the 95% CI values. Suitable graphs can demonstrate the

change in the overall cost-effectiveness based on changes in one or more param-

eters. If the cost curve is relatively flat, a large change in a baseline characteristic

does not result in much change in the cost-effectiveness of the intervention.

Are the estimates of the costs and outcomes appropriately related to the

baseline risk in the population?

There may be various levels of risk within the population. What is cost-effective

for one subgroup may not be cost-effective for another. The study should
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attempt to identify these subgroups and assign individual cost-effectiveness

analyses to each of them. For example, if looking at the cost-effectiveness of

positive inotropic agents in the treatment of heart failure, it may be that for

severe heart failure their use is cost-effective, while for less severe cases it is not.

The use of beta-blocker drugs in heart failure has been studied, and the cost-

effectiveness is much greater when the drug is used in high-risk patients than in

low-risk patients. However, it is above the usual definition of the threshold for

saving a life in both circumstances.

Final comments: ethical issues

How much are we willing to spend to save a life? What is an acceptable cost per

QALY gained? A commonly accepted figure in the decision-analysis literature is

$40 000 to $60 000 per QALY, approximately the cost to maintain a person on

dialysis for 1 year. This number has increased only slightly over the past 40 years

since renal dialysis is more common although more expensive. In the United

Kingdom, the National Institute for Health and Clinical Excellence (NICE) con-

siders a threshold of cost-effectiveness to be between £20 000 and £30 000 per

QALY.

There are multiple ethical issues involved in the use of cost-effectiveness anal-

yses. The provider is being asked to take sides with the option that will cost the

least, or at least be the most cost-effective. This may not be the best option for

each patient. Cost-effectiveness analyses are really more useful as political tools

for making decisions on coverage by insurance schemes rather than for daily use

in bedside clinical decision making.

There are some cases when cost-effectiveness is the best thing to do for the

individual patient. Universally these situations occur when the best practice is

the cheapest. One example is the use of antibiotics for treating urethral Chlamy-

dia infections that was mentioned earlier. More importantly, since most physi-

cians cannot understand the issues involved in cost-effectiveness analyses when

these come up in health policy areas, they should turn to agencies that are doing

these on a regular basis. These are the AHRQ in the United States and NICE in the

United Kingdom. Pharmaceutical and medical instrument and device manufac-

turers and some specialty physicians are often trying to assert that their service,

product, or procedure is the best and most cost-effective because, although more

expensive now, it will lead to savings later. This can occur because of the “spin”

that is put on their cost-effectiveness analysis. To be able to pick up the inconsis-

tencies and omissions from a cost-effectiveness analysis is very difficult. How-

ever, most physicians ought to be able at least to understand the analysis and

subsequent comments made by people who are more highly trained in evaluat-

ing this type of study. Recognizing the presence or absence of conflict of interest

in these commentaries is of utmost importance.
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One current debate is over the use of chest pain evaluation units (CPEU) in

Emergency Departments (ED) of acute care hospitals. These are for patients who

are at low risk of having a myocardial infarction and for whom a stay of 48 hours

in an intensive care unit is very expensive and probably unnecessary. In this dis-

cussion, it is assumed that discharge home from the ED is not safe as up to 4% of

acute MIs are missed by emergency physicians. Proponents of these CPEUs point

out that a lot of money will be saved if these low-risk patients are put into the

CPEU rather than the acute-care hospital bed. They have done cost-effectiveness

analyses that show only a slight overall increase in costs under the assumptions

of the current admission rate of these patients to the hospital. However, if now

all the extremely low-risk patients, including those who have virtually no risk, are

admitted to the CPEU, the overall admission rate may actually increase, result-

ing in markedly increased costs. Clearly there must be a search for some other

method of dealing with these patients, which will be cost-effective and result in

decreased hospital-bed utilization. The methods of cost-effectiveness analysis

must look at all eventualities.
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Survival analysis and studies of prognosis

He ended; and thus Adam last replied:

How soon hath thy prediction, seer blest,

Measured this transient world, the race of time,

Till time stand fixed! Beyond is all abyss,

Eternity, whose end no eye can reach.

John Milton (1608–1674): Paradise Lost

Learning objectives

In this chapter you will learn:
� how to describe various outcome measures such as survival and prognosis

of illness
� the ways outcomes may be compared
� the steps in reviewing an article which measures survival or prognosis

One of the most important pieces of information that patients want is to know

what is going to happen to them during their illness. The clinician must be able

to provide information about prognosis to the patient in all medical encounters.

Patients want to know the details of the outcomes they can expect from their dis-

ease and treatment. Evaluation of the clinical research literature on prognosis is

a required skill for the health-care provider of the future. Outcome analysis looks

at the interplay of three factors: the patient, the intervention, and the outcome.

We want to know how long a patient with the given illness will survive if given

one of two possible treatments. These treatments can be two active therapies

or therapy and placebo. Studies of outcomes or prognosis should clearly define

these three elements.

The patient: the inception cohort

To start an outcome study, an appropriate inception cohort must be assembled.

This means a group of patients for whom the disease is identified at a uniform
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point in the course of the disease, called the inception. This can occur at the

appearance of the first unambiguous sign or symptom of a disease or at the

first application of testing or therapy. Ideally this should be as early in the dis-

ease as possible. However, it should be at a stage where most reasonably prudent

providers can make the diagnosis and not sooner as most providers won’t be able

to make the diagnosis and initiate therapy at that earlier stage of disease. Collec-

tion of the cohort after the occurrence of the outcome event and looking back-

ward will distort the results either in a positive or negative way if some patients

with the disease die before diagnosis or commonly have spontaneous remis-

sions soon after diagnosis. A study of survival of patients with acute myocardial

infarction who are studied from the time they arrive in the coronary care unit

will miss those who die suddenly either before seeking care or in the emergency

department.

Incidence/prevalence bias can be a fatal flaw in the study if the inception

cohort is assembled at different stages of illness. This confuses new from ongo-

ing cases of the illness. There may be very different prognoses for patients at

these various stages of the illness. Lead-time and length-time bias occurring as

the result of screening programs should be avoided by proper randomization.

These were discussed in detail in Chapter 28 on screening tests.

Diagnostic criteria, disease severity, referral pattern, comorbidity, and demo-

graphic details for inclusion of patients into the study must be specified. Patients

referred from a primary-care center may be different than those referred from a

specialty or tertiary-care center. Termed referral filter bias, this is due to an over-

representation of patients with later stages of disease or more complex illness

who are more likely to have poor results. Centripetal bias is another name for

cases referred to tertiary-care centers because of the need for special expertise.

Popularity bias occurs when the more challenging and interesting cases only are

referred to the experts in the tertiary care center. The results of these biases limit

external validity in other settings where most patients will present with earlier or

milder disease.

All members of the inception cohort should be accounted for at the end of the

study and their outcomes known. This is much more important in these types

of studies as we really want to know all of the possible outcomes of the illness.

There are non-trivial reasons why patients drop out of a study. These include

recovery, death, refusal of therapy due to the disease, side effects of therapy, loss

of interest, or moving away. One study showed that patients in a study who were

harder to track and more likely to drop out had a higher mortality rate.

There are several rules of thumb to use in determining the effect of incomplete

follow-up. First, identify the outcome of most interest to you and determine the

fraction of patients who had this outcome. Then add the patients “lost to follow-

up” to both the numerator and the denominator, which gives the result if all

patients lost had the outcome of interest. Now add the patients lost to follow-up
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Table 32.1. A study of 71 patients 6 of whom were lost to follow-up

Original study “Highest” case “Lowest” case

Relapse rate 39/65 = 60% 45/71 = 63% 39/71 = 55%

Mortality rate 1/65 = 1.5% 7/71 = 10% 1/71 = 1.4%

to only the denominator, giving the lowest result if no patient lost had the out-

come of interest. Compare these two results. If they are very close to each other,

the result is still useful. If not the result of the study may be useless. In the exam-

ple in Table 32.1, the difference in relapse rates is minor while the difference in

mortality is quite large. As a general rule, the lower the rate of an outcome, the

more likely it is to be affected by patients lost to follow-up.

The intervention

There should be a clear and easily reproducible description of the intervention

being tested. All details of a therapeutic program should be described in the

study. The reader should be able to duplicate the process of the study at another

institution. All the interventions tested or compared should be those that make a

difference. It is of paramount importance that the intervention proposed in the

study be one that can be performed in settings other than at the most advanced

tertiary care setting only. Similarly, testing a drug against placebo may not be

as important or useful as testing it against the drug that is currently the most

favorite for that indication. Most of these issues have been discussed in the chap-

ter on randomized clinical trials in Chapter 15.

The outcome

The outcome criteria should be objective, reproducible, and accurate. The out-

come assessment should also be done in a blinded manner to avoid diagnostic

suspicion and expectation bias in the assessment of patient outcomes. There can

be significant bias introduced into the study if the outcomes are not measured

in a consistent manner. Ideally, the outcome measures should be unmistakably

objective. Death or life are clear and easily measured outcome variables although

the cause of death as measured on a death certificate is not always a reliable,

clear, or objective outcome measure of the actual cause of death. Admission to

the hospital appears to be clear and objective, but the reasons or threshold for

admission to the hospital may be very subjective and subject to significant inter-

rater variability. Outcomes such as “full recovery at home” or “feeling better”

have a higher degree of subjectivity associated with them.
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There should be adjustment for extraneous prognostic factors. The researcher

should determine whether the prognostic factor is merely a marker or actually

a factor that is responsible for the causation. This determines whether or not

there are alternative explanations for the outcomes due to some confounding

variable. Count on the article being reviewed by a statistician who can determine

if the authors used the correct statistical analysis, but be aware that the correct

adjustment for extraneous factors may not have been done correctly if at all. If

the authors suggest that a group of signs, symptoms, or diagnostic tests accu-

rately predict an outcome, look for a validation sample in a second study which

attempts to verify that indeed these results occurred because of a causal rela-

tionship and not just by chance. Look for at least 10 and preferably 20 patients

who actually had the outcome of interest for each prognostic factor that is eval-

uated to give clinically and statistically significant results. Chapter 14 has a more

detailed discussion of multivariate analysis.

Most often outcomes are expressed as a dichotomous nominal variable (e.g.,

dead or alive, disease or no disease, a patent or occluded bypass, improved or

worse, it works or it doesn’t, etc.). One is interested in the association of an inde-

pendent variable such as drug use, therapy, risk factor, diagnostic test result,

tumor stage, age of patient, or blood pressure with the dependent or outcome

variable.

Diagnostic-suspicion bias occurs when the physician caring for the patient

knows the nature and purpose of the outcomes being measured and as a result,

changes the interpretation of a diagnostic test, the actual care or observation of

the patient. Expectation bias occurs when the person measuring the outcome

knows the clinical features of the case or the results of a diagnostic test and alters

their interpretation of the outcome event. This is less likely when the interven-

tion and outcome measures are clearly objective. Ideally blind diagnosis, treat-

ment, and assessment of all the patients going through the study will prevent

these biases.

Another problem in the outcomes selected occurs when multiple outcomes

are lumped together. Many more studies of therapy are comparing two groups

for several outcomes at once and these so-called composite outcomes have

been discussed in Chapter 11 in greater detail. Commonly used measures of

heart therapies might include death, an important outcome, non-fatal myocar-

dial infarction, important but less than death and need for revascularization pro-

cedure much less important than death. The use of these measures can lead to

over-optimistic conclusions regarding the therapy being tested. If each outcome

were measured alone, none would have statistical significance, which could be

due to a possible Type II error. When combined, multiple or composite outcomes

may then show statistical significance.

One example is the recent CAPRIE trial comparing clopidogrel, an antiplatelet

agent, against aspirin. The primary outcome measures were overall number of
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deaths, and of deaths due to stroke, myocardial infarction, or vascular causes.

The definition of vascular causes was not made clear. The end result was that

there were no decreases in death from stroke or myocardial infarction, but a 20%

reduction in deaths in the patients with peripheral arterial disease. The abso-

lute reduction was 1.09% (from 4.80% to 3.71%, giving an NNTB of 91). If these

patient outcomes were considered as separate groups, the differences would not

have been statistically significant. Another danger is that some patients may be

counted several times because they have several of the outcomes. Finally, the

clinical significance of the combined outcome is unknown.

There are basically three types of data that are used to indicate risk of an out-

come. Interval data such as blood pressure is usually considered to be normally

distributed and measured on a continuous scale. Nominal data like tumor type

or treatment options is categorical and often dichotomous like alive and dead or

positive and negative test results. Ordinal data such as tumor stage is also cate-

gorical but with some relation between the categories. There are three types of

analyses applied to this type of problem: frequency tables, logistic analysis, and

survival analysis. Decision theory uses probability distributions to estimate the

probability of an outcome. A loss function measures the relative benefit or utility

of that outcome.

Frequency tables

Frequency tables use a chi-square analysis to compare the association of the out-

come with risk factors that are nominal or ordinal. For the chi-square analysis,

data are usually presented in a table where columns are outcomes, rows are risk

factors, and the frequencies appear as table entries. The observed data are com-

pared with the data that would be expected if there were no association. The

analysis results in a P value which indicates the probability that the observed

outcome could have been obtained by chance when it was really no different

from the expected value. Fisher’s exact test is used when the observed value of

any cell is less than 5.

Logistic analysis

This is a more general approach to measuring outcomes than using frequency

tables. Logistic regression estimates the probability of an outcome based on one

or more risk factors. The risk factors may be interval, ordinal, or nominal vari-

ables. Results of logistic regression analysis are often reported as the odds ratio,

relative risk, or hazard ratio. For one independent variable of interval-type data

and relative risk, this method calculates how much of an increase in the risk of

the outcome occurs for each incremental increase in the exposure to the risk fac-

tor. An example of this would answer the question “how much additional risk of



364 Essential Evidence-Based Medicine

stroke will occur for each increase of 10 mm Hg in systolic blood pressure?” For

ordinal data the analysis calculates the probability of an outcome based on the

stage of disease for example, the recurrence of a stage 4 compared to a stage 2

tumor.

For multiple variables, is there some combination of risk factors that will bet-

ter predict an outcome than one risk factor alone? Which of these risk factors

will be the best predictor of that outcome? The identification of significant risk

factors can be done using multiple regressions or stepwise regression analyses as

we discussed in Chapter 29 on clinical prediction rules.

Survival analysis

In the real world the ultimate outcome is often not known and could be dead

as opposed to “so far, so good” or not dead yet. It would be difficult to justify

waiting until all patients in a study die so that survival in two treatment or risk

groups can be compared. Besides, another common problem with comparing

survival between groups occurs in trying to determine what to do with patients

who are doing fine but die of an incident unrelated to their medical problem such

as death in a motor-vehicle accident of a patent who had a bypass graft 15 years

earlier. This will alter the information used in the analysis of time to occlusion

with two different types of bypasses. Finally, how should the study handle the

patient who simply moves away and is lost to follow-up?

The situations described above are examples of censored data. The data con-

sist of a time interval and a dichotomous variable indicating status, either failure

(dead, graft occluded, etc.) or censored (i.e., not dead yet, success so far, etc.). In

the latter case, the patient may still be alive, have died but not from the disease

of interest, or been alive when last seen but could not be located again.

A potential problem in these analyses is the definition of the start time. Early

diagnosis may automatically confer longer survival if the time of diagnosis is the

start time. This is also called lead-time bias, as discussed in Chapter 28, and is a

common problem with screening tests. Censoring bias occurs when one of the

treatment groups is more likely to be censored than the other. If certain patients

are lost as a result of treatment (e.g., harmful side effects) their chances of being

censored are not independent of their survival times. A survival analysis initially

assumes that any patient censoring is independent of the outcome. Figure 32.1

shows an example of the effects of censoring on a hypothetical study.

Survival curves

The distribution of survival times is most often displayed as a survivor function,

also called a survival curve. This is a plot of the proportion of subjects surviving

versus time. It is important to note that “surviving” may indicate things other



Survival analysis and studies of prognosis 365

9

8

7

6

5

4

3

2

1

1970 1975 1977 1980

x

x

x

x

x

O

O

9

8

7

6

5

4

3

2

1

t=0    t = 5 years

x

x

x

x

x

O

O

Fig. 32.1 Censoring. Patients are enrolled in a study over a 2-year period (1975–1977). All are
followed until 1980 and patients who die are marked with an x. Some patients (2 and 5) are
enrolled at a late stage of their disease. Their inclusion will bias the cohort toward poorer
survival. Two patients (4 and 6) are still alive at the end of the observation period. Patient 1
lived longer than everyone except patient 4, although it appears that patient 1 didn’t live so
long, since their previous survival (pre-1975) does not count in the analysis. We don’t know
how long patient 4 will live since he or she is still alive at the end of the observation period
and their data are censored at t = 5 years. Two other patients (3 and 8) are lost to follow-up,
and their data are censored early (o).
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Fig. 32.2 Kaplan–Meier survival
curve.
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than actual survival (i.e., life vs. death), such as success of therapy (i.e., patent

vs. non-patent coronary bypass grafts). These curves can be deceptive since the

number of individuals represented by the curve decreases as time increases. It

is key that a statistical analysis is applied at several times to the results of the

curves. The number of patients at each stage of the curve should also be given.

The Kaplan-Meier curve is the one most commonly used.

There is one primary method for plotting and analyzing survival curves. The

actuarial-life-table method measures the length of time from the moment the

patient is entered into the study until failure occurs. The product-limit method

is a graphic representation of the actuarial-life-table method and is also known

as the Kaplan–Meier method. It is the plot of survival that is most commonly used

in medicine. The analysis looks at the period of time, the month or year since the

subject entered the study, in which the outcome of interest occurred. A typical

Kaplan–Meier curve is shown in Fig. 32.2.

There are several tests of equality of these survivor functions or curves that are

commonly performed. One of the most popular is the Mantel–Cox also known as

log-rank test. The Cox proportional-hazard model uses interval data as the inde-

pendent variable determining how much the odds of survival are altered by each

unit of change in the independent variable. This answers the question of how

much the risk of stroke is increased with each increase of 10 mm Hg in mean

arterial blood pressure. Further discussion of survival curves and outcome anal-

ysis is beyond the scope of this book. Two of the Users’ Guides to the Medical

Literature articles provide more detail.1,2

1 A. Laupacis, G. Wells, W. S. Richardson & P. Tugwell. Users’ guides to the medical literature. V. How to
use an article about prognosis. Evidence-Based Medicine Working Group. JAMA 1994; 272: 234–237.

2 C. D. Naylor & G. H. Guyatt. Users’ guides to the medical literature. X. How to use an article reporting
variations in the outcomes of health services. Evidence-Based Medicine Working Group. JAMA 1996;
275: 554–558.
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Meta-analysis and systematic reviews

Common sense is the collection of prejudices acquired by age eighteen.

Albert Einstein (1879–1955)

Learning objectives

In this chapter you will learn:
� the principles of evaluating meta-analyses and systematic reviews
� the concepts of heterogeneity and homogeneity
� the use of L’Abbé, forest, and funnel plots
� measures commonly used in systematic reviews: odds ratios and effect size
� how to review a published meta-analysis and use the results to solve a clin-

ical problem

Background and rationale for performing meta-analysis

Over the past 50 years there has been an explosion of research in the medi-

cal literature. In the worldwide English-language medical literature alone, there

were 1,300 biomedical journals in 1940, while in 2000 there were over 14,000. It

has become almost impossible for the individual practitioner to keep up with

the literature. This is more frustrating when contradictory studies are published

about a given topic. Meta-analyses and systematic reviews are relatively new

techniques used to synthesize and summarize the results of multiple research

studies on the same topic.

A primary analysis refers to the original analysis of research data as presented

in an observational study or randomized clinical trial (RCT). Secondary analysis

is a re-analysis of the original data either using another statistical technique or

answering new questions with previously obtained data.

The traditional review article is a qualitative review. It is a summary of all pri-

mary research on a given topic and it may provide good background information

367
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that is more up to date than a textbook. But review articles have the disadvantage

of being somewhat subjective and reflecting the biases of the author, who may

be very selective of the articles chosen for review. One must be knowledgeable of

the literature being reviewed in order to evaluate this type of article critically.

Meta-analysis is more comprehensive or “transcends” traditional analysis of

data. Typically, a meta-analysis looks at data from multiple studies of the same

clinical question and uses a variety of statistical techniques to integrate their

findings. It may be called a quantitative systematic review and represents the

rigorous application of research techniques and statistical analysis to present an

overview of a given topic.

A meta-analysis is usually done to reconcile studies with different results. It can

look at multiple negative studies to uncover Type II errors or at clinical problems

where there are some negative and some positive studies to uncover Type I or

Type II errors. It can help uncover a single study which has totally different results

because of systematic error or bias in the research process. Large confidence

intervals in some studies may be narrowed by combining them. For example,

multiple small trials done before 1971 showed both positive and negative effects

of light or phototherapy on hyperbilirubinemia in newborns. A meta-analysis in

1985 showed an overall positive effect.

Occasionally a large trial shows an opposite effect from that found in multiple

small trials. This is often due to procedural or methodologic study design differ-

ences in the trials. However, as a general rule, correctly done large cooperative

trials are more reliable than meta-analysis of many smaller trials. For example a

meta-analysis of multiple small trials of magnesium in acute myocardial infarc-

tion (AMI) showed a positive effect on decreasing mortality. The ISIS-4 trial, a

large multicenter RCT where magnesium was given in one arm of the study,

showed no benefit, although it was given later in the course of the AMI than it

had been in the smaller studies. The disparity of study methodologies in this case

required that the researchers set up a new multicenter study of the use of magne-

sium in AMI. Called MAGIC, it is now in progress. The use of meta-analysis does

not reduce the need for large well-done studies of primary clinical modalities.

Guidelines for evaluation of systematic reviews

Were the question and methods clearly stated and were comprehensive

search methods used to locate relevant studies?

In meta-analysis, the process of article selection and analysis should proceed

by a preset protocol. By not changing the process in mid-analysis the author’s

bias and retrospective bias are minimized. This means that the definitions of

outcome and predictor or therapy variables of the analysis are not changed in
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mid-stream. The research question must be clearly defined, including a defined

patient population and clear and consistent definitions of the disease, interven-

tions, and outcomes.

A carefully defined search strategy must be used to detect and prevent publi-

cation bias. This bias occurs because trials with positive results and those with

large sample sizes are more likely to be published. Sources should include con-

ference proceedings, dissertation abstracts, and other databases, as well as the

usual search of MEDLINE. A manual search of relevant journals may uncover

some additional studies. The bibliographies of all relevant articles found should

be hand searched to find any misclassified articles that were missed in the origi-

nal search.

The authors must cite where they looked and should be exhaustive in look-

ing for unpublished studies. Not using foreign studies may introduce bias since

some foreign studies are published in English-language journals while others

may be missed. The authors should also contact the authors of all the studies

found and ask them about other researchers working in the area who may have

unpublished studies available. The Cochrane Collaboration maintains a register

of controlled trials called CENTRAL, which attempts to document all current tri-

als regardless of result. Also, the National Library of Medicine and the National

Institutes of Health in the United States have an online repository of clinical tri-

als called www.clinicaltrials.gov, which can be accessed to determine if a clinical

trial is ongoing and proceeding according to its original plan.

Were explicit methods used to determine which articles to include in the

review and were the selection and assessment of the methodologic quality

of the primary studies reproducible and free from bias?

Objective selection of articles for the meta-analysis should be clearly laid out and

include inclusion and exclusion criteria. The objectives and procedures must be

defined ahead of time. This includes a clearly defined research and abstraction

method and a scoring system for assessing the quality of the included studies. For

each study several factors ought to be assessed. The publication status may sug-

gest stronger studies in that those that were never published or only published

in abstract form may be significantly deficient in methodological areas.

The strength of the study design will determine the ability to prove causation.

Randomized clinical trials are the strongest study design. A well-designed obser-

vational study with appropriate safeguards to prevent or minimize bias and con-

founding, will also give very strong results. The methods of meta-analysis include

ranking or grading the quality of the evidence. The Cochrane Collaboration is

using the new GRADE recommendations to rank the quality of studies in their

systematic reviews. Appendix 1 gives two commonly used criteria for grading var-

ious levels of evidence, the one used by the Centre for Evidence-Based Medicine
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at Oxford and the GRADE criteria. The full set of GRADE criteria can be down-

loaded from the Cochrane Collaboration’s website, www.cochrane.org.

The study sites and patient populations of the individual studies may limit

generalizability of the meta-analysis. The interventions or exposures should be

similar between studies. Finally, the studies should be measuring the same or

very similar outcomes. We will discuss issues of how to judge homogeneity and

combine heterogeneous studies.

Independent review of the methods section looks at inclusion and exclusion

criteria, coding, and replication issues. There must be accurate and objective

abstraction of the data, ideally done by blinded abstracters. Two abstracters

should gather the data independently and the author should check for inter-

rater agreement. The methods and results sections should be disguised to pre-

vent reviewers from discovering the source of the research. Inter-rater reliability

of coders should be maximized with a minimal level of 0.9 on the kappa statistic.

Once this has been established, a single coder can code all the remaining study

results.

Were the differences in individual study results adequately explained and

were the results of the primary studies combined appropriately?

Studies may be homogeneous or heterogeneous. There are both qualitative and

quantitative measures of heterogeneity. Testing for heterogeneity of the stud-

ies is done to determine if the studies are qualitatively similar enough to com-

bine. The tests for heterogeneity include the Mantel–Haentszel chi-squared test,

the Breslow–Day test, and the Q statistic by the DerSimonian and Laird method.

They all suffer from low power so are likely to have a Type II error. If the test statis-

tic is statistically significant (P < 0.05), the studies are likely to be heterogeneous.

However, the absence of statistical significance does not mean homogeneity and

may only be present due to low power of the statistical test for heterogeneity.

The presence of heterogeneity among the studies analyzed will result in erro-

neous interpretation of the statistical results. If the studies are very heteroge-

neous, one strategy for analyzing them is to remove the study with most extreme

or outlier results and recalculate the statistic. If the statistic is no longer statisti-

cally significant, it can be assumed that the outlier study was responsible for all or

most of the heterogeneity. That study should then be examined more closely to

determine what about the study design might have caused the observed extreme

result. This could be due to differences in the population studied or systematic

bias in the conduct of the study.

Analysis and aggregation of the data can be done in several ways, but should

consider sample sizes and magnitude of effects. A simple vote count in which the

number of studies with positive results is directly compared with the number of

studies with negative results is not an acceptable method since neither effect
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size nor sample size are considered. Pooled analysis or lumped data add numer-

ators and denominators of each study together to produce a new result. This is

better than a vote count, but still not acceptable since that process ignores the

confidence intervals for each study and allows errors to multiply in the process

of adding the results. Simple combination of P values is not acceptable because

this does not consider the direction of the effect or magnitude of the effect size.

Weighted outcomes compare small and large studies, analyze them as equals,

and then weight the results by the sample size. This involves adjusting each out-

come by a value that accounts for the sample size and degree of variation. Con-

fidence intervals should be applied to the mean results of each study evaluated.

Aggregate study and control-group means and confidence intervals can then be

calculated. Subgroups should be analyzed where appropriate, recognizing the

potential for making a Type I error. There are two standard measures for evaluat-

ing the results of a meta-analysis: the odds ratio and the effect size.

The odds ratio (OR) is the most common way of combining results in meta-

analysis. The odds ratio can be calculated for each study showing whether the

intervention increases or decreases the odds of a favorable outcome. These can

then be combined statistically and the 95% confidence intervals calculated for

all the odds ratios. If we are looking at a positive outcome such as % still alive,

an OR > 1 favors the experimental treatment. If looking at a negative outcome

such as mortality rates, an OR < 1 favors the experimental treatment. The OR is

used rather than the relative risk (RR) even though the studies are usually RCTs.

This is done because of the mathematical problems when using the RR. Newer

calculation techniques are making it possible to calculate an aggregate RR, and

this is becoming more common in meta-analyses.

The effect size (d or δ) is a standard metric compared across studies. It is a rel-

ative and not an absolute value. The equation for effect size is d = (m1 – m2)/SD,

where m1 and m2 are the means of the two groups being studied and SD is the

standard deviation of either sample population. A difference (δ) in SD units of

0.2 SD is a small effect, 0.5 SD a moderate effect, and >0.8 SD, a large effect. If the

data are skewed, it is better to use median rather than mean of the data to cal-

culate the effect size, but this requires the use of other, more complex statistical

methods to accomplish the analysis.

The statistical analytic procedures usually employed in systematic reviews

are far too complex to discuss here. However, there are important distinctions

between the methods used in the presence and in the absence of heterogene-

ity of the results of the studies, which the reader should be aware of. If the data

are relatively homogeneous, a statistical process called the fixed-effects model

can be used. This assumes that all the studies can be statistically analyzed as

equals. However, if the data are very heterogeneous, a statistical process called

the random-effects model should be used. This is more complex and takes into

account that the various studies are part of a population of studies of the events.
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BFig. 33.1 Hypothetical
meta-analysis. Initial studies
(except one) lacked power to
find a difference. A difference
was found when all studies
were combined.

The result is the presence of wider confidence intervals. Unfortunately, the meth-

ods used for the random-effects model give more weight to the smaller studies,

which is a potential source of bias if there are more small studies with positive

results, a result of publication bias. Frequently, a single meta-analysis will use

both methods to determine statistical significance. If the two methods give the

same result, the statistical significance is more “powerful” than if one method

finds statistical significance and the other does not.

There are three graphic techniques that can be used to look at the overall data.

These all demonstrate the effect of the problem of publication bias but in dif-

ferent ways. Large studies or those showing positive effects are more likely to be

published. It is very likely that if one small study showed a positive effect it would

be published. Conversely if a small study showed a negative effect or no differ-

ence between the groups, it is less likely to be published. It is important to be able

to estimate the effect of this phenomenon on the results of the meta analysis.

Graphic displays are a powerful tool to show the difference in study results.

The most common way of graphing meta-analysis results is called the Forest

Plot. This shows the results of each study as a point estimate for the rate, risk

difference, or ratio (odds ratio, relative risk, or effect size) and a line for the 95%

confidence intervals on this point estimate. A log scale is commonly used so that

the reciprocal values are an equal distance from 1 (Fig. 33.1). Always be careful
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Fig. 33.2 L’Abbé plot of a
hypothetical meta-analysis. The
largest studies showed the most
effect of the treatment,
suggesting that the smaller
studies lacked power.

to check the scales. It is easy to see if the confidence interval crosses the point of

no significance, 0 for differences or 1 for ratios.

There is a visual guide that can suggest heterogeneity in this type of a plot.1

Simply draw a perpendicular from the higher end of the 95% CI for the study

with the lowest point value. In Fig. 33.1 this is line A drawn through the higher

end of the 95% CI of study 4. Draw a similar line through the lower end of the

95% CI of the study with the highest point value. Here it is line B, through the

lower point of study 5. If the confidence intervals of all of the studies appear in

the space between these two lines, the studies are probably not heterogeneous.

Any study outside this area may be the cause of significant heterogeneity in the

aggregate analysis of the study results.

The L’Abbé plot in Fig. 33.2, is used to show how much each individual study

contributes to the outcome. The two possible outcome rates, for the control and

intervention groups are plotted on the x- and y-axis, respectively. A circle, the

diameter of which is proportional to the sample size, represents each study. A

key to the sample size is given with the plot. The L’Abbe plot is a better visual aid

to see the differences between study results and how much those depend on the

sample size.

Finally, the funnel plot shown in Fig. 33.3, is another way to show the effect

of sample size on the effect size. This is a plot of the effect size (δ) on the x-axis

and sample size on the y-axis. If there are many positive small studies with large

effect sizes, the resulting plot will look like an asymmetric triangle or half of an

upside-down funnel. This suggests that the overall result of the meta-analysis is

being unduly influenced by these many, very positive, small studies, which could

1 Shown to me by Rose Hatala, M.D., from the Department of Medicine of the University of British
Columbia, Vancouver, BC, Canada.
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Fig. 33.3 Funnel plot of six
studies. Notice that the largest
effect sizes were found in the
smallest studies. A plot with this
configuration suggests
publication bias.

be due to publication bias or that all of these studies may have similar systematic

biases and perhaps fatal flaws in their execution.

Were the reviewers’ conclusions supported by the data cited?

A sensitivity analysis should be done to address the possibility of publication

bias also called the “file-drawer effect.” Negative and unpublished studies are

frequently small and usually won’t be able to drastically change the results of the

meta-analysis. Using the funnel or the L’Abbé plots and other methods will help

alert the reader to the potential presence of publication bias.

There is a way of calculating the potential effect of publication bias. Fail-safe

N is an estimate of the number of negative studies you would need in order to

eliminate the difference between treatment and outcome or cause and effect that

was found. This can mean to reverse the δ value or increase the overall probability

of finding a difference when one doesn’t exist to a value higher than the δ level

(i.e., P > 0.05). If a large part of the positive effect found is due to a few small

and very positive studies, it is possible that there are also a few small and clearly

negative studies that because of publication bias have never been published. If

the fail-safe N is small it means that only a few small negative studies would be

needed to reverse the finding. This is a plausible occurrence. But if fail-safe N is

very large, it is unlikely that there are that many negative studies “out there” that

have never been published and you would accept the results as being positive.

Some common problems with meta-analyses are that they may be comparing

diverse studies with different designs or over different time periods. There may

be excessive inter-observer variability in deciding on which trials to evaluate, and

how much weight to give to each trial. These issues ought to be addressed by the

authors and difference in the results explained. In many cases, the methodolo-

gies will contribute biases that can be uncovered in the meta-analysis process.
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Fig. 33.4 Meta-analysis of
therapeutic trials for myocardial
infarction. From J. Lau, E. M.
Antman, J. Jimenez-Silva, B.
Kupelnick, F. Mosteller, T. C.
Chalmers. Cumulative
meta-analysis of therapeutic
trials for myocardial infarction.
N. Engl. J. Med. 1992; 327:
248–254. Used with permission.

Cumulative meta-analysis is a meta-analytic approach that doesn’t look at

each study individually, but looks at them cumulatively. There are two ways of

doing this. In one, the studies are looked at chronologically. Each study’s results

are combined with the ones done before to give a new estimate of the effect size.

You can look and see where in the progression of these studies the results became

statistically significant.

Another way of doing this is by beginning with the study with smallest sam-

ple size and then successively adding larger ones. This is a good way to uncover

Type II errors. You can see where in the progression of studies the results become

statistically significant. If they only become statistically significant after the vast

majority of the studies had been done, the results are not as strong as if they had

become statistically significant after only a few studies. This implies that there is

a difference between the two groups, but that difference is relatively small clin-

ically, even though eventually it becomes statistically significant. The chrono-

logical cumulative meta-analysis by Lau and colleagues of therapeutic trials of

streptokinase in myocardial infarction showed statistical significance after the

sixth trial was completed, of a total of 33 studies (Fig. 33.4).
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A recent addition to the quantitative systematic review literature comes from

the Cochrane Collaboration, which was described in Chapter 5. The Cochrane

Collaboration is now a worldwide network of interested clinicians, epidemiolo-

gists, and scientists who perform systematic reviews and meta-analyses of clini-

cal questions. Their reviews are standardized, of the highest quality, and updated

regularly as more information becomes available. They are available online in the

Cochrane Library.

Additional guidelines for meta-analysis

There are some additional guidelines for creating and reviewing meta-analyses

that were published in 1985 by Green and Hall and are still very useful to follow.2

The inclusion and exclusion criteria for the relevant studies should be defined

and reported. This may lead to substantive and conceptual issues such as how to

handle a study with missing or incomplete data. The coding categories should be

developed in a manner that will accommodate the largest proportion of the iden-

tified literature. Over-coding of characteristics of studies is better than under-

coding. The following characteristics should be coded: type and length of the

intervention, sample characteristics, research design characteristics and quality,

source of the study (e.g., published, dissertation, internal report, and the like),

date of study, and so on. The reliability of the coders should be checked with the

kappa statistic.

Multiple independent and dependent variables should be separately evalu-

ated using a sensitivity analysis. Interactions between variables outside the prin-

cipal relationship being reviewed should be looked for. The distribution of results

should be examined and graphed. Look at outliers more closely. Perform sta-

tistical tests for the heterogeneity of results. If the studies are found to be het-

erogeneous, a sensitivity analysis should be performed to identify the outlier

study. The effect size should be specified and level of significance or confidence

intervals given. Effect sizes should be recalculated to give both unadjusted and

adjusted results. Where necessary, nonparametric and parametric effect size esti-

mates should be calculated.

In the conclusions, the authors should examine other approaches to the same

problem. Quantitative evaluation of all studies should be combined with qualita-

tive reviews of the topic. This should look at the comparability of treatment and

control groups from study to study. They should also look at other potentially

interesting and worthwhile studies that are not part of the quantitative review.

Finally, the limitations of the review and ideas for future research should be

2 B. F. Green & J. A. Hall. Quantitative methods for literature review. Annu. Rev. Psychol. 1984; 35: 37–54.
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discussed. For the reader, it is well to remember that “data analysis is an aid to

thought, not a substitute.”3

The same is true of evidence-based medicine in general. It should be an aid

to thought, and an encouragement to integrate the science of medical research

into clinical practice. But, it is not a substitute for critical thinking and the art

of medicine. There is a great tendency to accept meta-analyses as the ultimate

word in evidence. The results of such an analysis are only as good as the evidence

upon which it is based. Then again, this statement can apply to all evidence in

medicine. We will always be faced with making difficult decisions in the face of

uncertainty. In that setting, it takes our clinical experience, intuition, common

sense, and good communications with our patients to decide upon the best way

to use the best evidence.

3 B. F. Green & J. H. Hall. Ibid.



Appendix 1 Levels of evidence and grades of
recommendations

Adapted and used with permission from the Oxford Centre for Evidence-Based Medicine

Levels of Evidence (May 2001), available at www.cebm.net/levels of evidence.asp.

Adapted and used with permission from the GRADE working group of the Cochrane Col-

laboration.
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GRADE quality assessment criteria

Quality of

evidence Study design Lower if ∗ Higher if ∗

High Randomized

trial

Study quality:

−1 Serious limitations

−2 Very serious

limitations

Strong association:

+ 1 Strong, no plausible

confounders, consistent

and direct evidence∗∗

Moderate

Low Observational

study

−1 Important

inconsistency

+ 2 Very strong, no major

threats to validity and direct

evidence∗∗∗

Very low Directness:

−1 Some uncertainty

−2 Major uncertainty

−1 Sparse data + 1 Evidence of a Dose

response gradient

−1 High probability of

Reporting bias

+ 1 All plausible confounders

would have reduced the

effect

∗ 1 = move up or down one grade (for example from high to moderate); 2 = move up

or down two grades (for example from high to low).
∗∗ A statistically significant relative risk of >2 (<0.5), based on consistent evidence

from two or more observational studies, with no plausible confounders.
∗∗∗ A statistically significant relative risk of >5 (<0.2), based on direct evidence with no

major threats to validity.



Appendix 1: Levels of evidence and grades of recommendations 383

Moving from strong to weak recommendations

Factors that can weaken the strength of a recommendation Decision explanation

Absence of high quality evidence • Yes

• No

Imprecise estimates • Yes

• No

Uncertainty or variation in how different individuals value the

outcomes

• Yes

• No

Small net benefits • Yes

• No

Uncertainty about whether the net benefits are worth the

costs (including the costs of implementing the

recommendation)

• Yes

• No

Frequent “yes” answers will increase the likelihood of a weak recommendation

• Strong recommendation: the panel is confident that the desirable effects of

adherence to a recommendation outweigh the undesirable effects.

• Weak recommendation: the panel concludes that the desirable effects of adherence

to a recommendation probably outweigh the undesirable effects, but is not

confident.



Appendix 2 Overview of critical appraisal

Adapted from G. Guyatt & D. Rennie (eds.) Users’ Guides to the Medical Literature: a Manual

for Evidence-Based Clinical Practice. Chicago: AMA, 2002. Used with permission.

(1) Randomized clinical trials (commonly studies of therapy or prevention)

(a) Are the results valid?

(i) Were the patients randomly assigned to treatment and was allocation effec-

tively concealed?

(ii) Were the baseline characteristics of all groups similar at the start of the study?

(iii) Were the patients who entered the study fully accounted for at its conclusion?

(iv) Were participating patients, family members, treating clinicians, and other

people (observers or managers) involved in the study “blind” to the treat-

ment received?

(v) Were all measurements made in an objective and reproducible manner?

(vi) With the exception of the experimental intervention, were all patients treated

equally?

(vii) Were the patients analyzed in the groups to which they were randomized?

(viii) Was follow-up complete?

(b) What are the results?

(i) What is the treatment effect? (Absolute Rate Reduction, Relative Rate Reduc-

tion, Number Needed to Treat)

(ii) What is the variability of this effect? (Confidence Intervals)

(c) Will the results help me in my patient care?

(i) Were all clinically important outcomes considered in the study?

(ii) Will the benefits of the experimental treatment counterbalance any harms

and additional costs?

(iii) Can the results of this study be applied to most of my patients with this or

similar problems?

(2) Cohort studies (commonly studies of risk or harm or etiology)

(a) Are the results valid?

(i) With the exception of the risk factor under study, were all groups similar to each

other at the start of the study?

(ii) Were all measurements (outcome and exposure) made in an objective and

reproducible manner and carried out in the same ways in all groups?

384
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(iii) Were all patients that were entered into the study accounted for at the end of

the study and was the follow-up for a sufficiently long time?

(b) What are the results?

(i) Is the temporal relationship between the cause and effect correct?

(ii) Is there a dose–response gradient between the cause and effect?

(iii) How strong is the association between cause and effect? (Relative Risk Reduc-

tion, Relative Risk, Absolute Risk Reduction, Number Needed to Harm)

(iv) What is the variability of this effect? (Confidence Intervals)

(c) Will the results help me in my patient care?

(i) What is the relative magnitude of the risk in my patient population?

(ii) Can the results of this study be applied to most of my patients with this or sim-

ilar problems?

(iii) Should I encourage the patient to stop the exposure? If yes, how soon?

(3) Case–control studies (commonly studies of etiology or risk or harm)

(a) Are the results valid?

(i) With the exception of the presence of the disease under study, were all groups

similar to each other at the start of the study?

(ii) Were all measurements (disease and exposure) made in an objective and

reproducible manner and carried out in the same ways in all groups? Was an

explicit chart review method used for all patients?

(iii) Was the risk factor information obtained for all patients who were entered into

the study?

(b) What are the results?

(i) Is there a dose–response gradient between the cause and effect?

(ii) How strong is the association between cause and effect? (Odds Ratio)

(iii) What is the variability of this effect? (Confidence Intervals)

(c) Will the results help me in my patient care?

(i) What is the relative magnitude of the risk in my patient population?

(ii) Can the results of this study be applied to most of my patients with this or

similar problems?

(iii) Should I encourage the patient to stop the exposure? If yes, how soon?

Hierarchy of relative study strength

RCT > Cohort > Case–control > Case series

(4) Studies of diagnosis (commonly cohort or case–control studies)

(a) Are the results valid?

(i) Were all the patients in the study similar to those patients for whom the test

would be used in general medical practice?

(ii) Was there a reasonable spectrum of disease in the patients in the study?

(iii) Were the details of the diagnostic test described adequately?

(iv) Were all diagnostic and outcome measurements made in an objective and

reproducible manner and carried out in the same ways in all patients?

(v) Was both the test under study and a reasonable reference standard used to

test all patients?
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(vi) Was the comparison of the test under study to the reference standard done in

a blinded manner?

(vii) Did the results of the test being studied influence the decision to perform the

reference standard test?

(b) What are the results?

(i) How strong is the diagnostic test? (Likelihood Ratios, Sensitivity and Speci-

ficity)

(ii) What is the variability of this result? (Confidence Intervals)

(c) Will the results help me in my patient care?

(i) Can the test be used in my patient population when considering factors of

availability, performance, and cost?

(ii) Can I determine a reasonable pretest probability of disease in my patients?

(iii) Will the performance of the test result in significant change in management

for my patients?

(iv) Will my patient be better off as a result of having obtained the test?



Appendix 3 Commonly used statistical tests

The following is a very simplistic summary of the usual tests used in statistical inference.

Descriptive statistics

Type of variable

What is being

described Statistic Graph

Single variable

Ratio or interval Central

tendency

Mean Histogram

Stem–leaf plot

Frequency polygon

Box plot

Dispersion Standard

deviation

Deviation from

normality

Skew or

Kurtosis

Ranks Central

tendency

Median Box plot (ordinal)

Bar chart

Dispersion Range Interquartile range

Named Central

tendency

Mode Bar chart (nominal)

Dot plot

Dispersion Number of

categories

Two variables

Ratio or interval Association Pearson’s r Scatter plot

Nominal or

ordinal

Comparison Kappa, phi, rho

Weighted kappa

Paired bar chart

Scatter plot

387
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Inferential statistics

Type of dependent

variables

Number and type of

independent variables Test

Ratio or interval data

One or two means None t-test or z-test (n > 100)

Continuous F-test or t-test

Nominal t-test

(Multiple regression) Multiple continuous F-test

(ANOVA) Multiple nominal F-test or Student

Newman–Keuls test

(ANCOVA) Multiple continuous and

nominal

F-test

Association Pearson’s r

Predicting variable values Regression

Ordinal data None Wilcoxon signed rank test

Ordinal Spearman’s test

Nominal Mann–Whitney test

Multiple ordinal χ2-test

Multiple nominal Kruskal–Wallis test

Association Spearman’s ρ

Nominal data None (affected by time) Normal approximation to

Poisson

Nominal (paired) McNemar’s test

Nominal (unpaired) χ2-test, normal approximation,

or Mantel–Haenszel test

Continuous χ2-test for trend

Multiple continuous or

nominal

χ2-test

Multiple nominal Mantel–Haenszel test

Multivariate analysis

Multiple linear regression is used when the outcome variable is continuous

Multiple logistic regression is used when the outcome variable is binary event (e.g.,

alive or dead, disease-free or recurrent disease, etc.)

Discriminant function analysis is used when the outcome variable is categorical

(better, worse, or about the same)

Proportional hazards regression (Cox regression) is used when the outcome

variable is the time to the occurrence of a binary event (e.g., time to death or tumor

recurrence)



Appendix 4 Formulas

Descriptive statistics

Mean: μ = (�xi)/n

where xi-the numerical value of the i th data point, and n-the total number of data

points.

Variance (s2 or σ 2): s2 = (�(xi − μ)2)/(n − 1).

Standard deviation (SD, s, or σ ): s = √
s2

Confidence intervals using the standard error of the mean

95% CI = μ ± Z95%(σ/
√

n)

Z95% = 1.96 (number of standard deviations defining 95% of the data)

SEM = σ/
√

n

95% CI = μ ± 1.96 (SEM)

Basic probability

Probability that event a or event b will occur: P (a or b) = P (a) + P (b)

Probability that event a and event b will occur: P (a and b) = P (a) × P (b)

Probability that at least one of several mutually exclusive events will occur = 1 – P (none of

the events will occur)

where P (none of the events will occur) = P (not a) × P (not b) × P (not c) × . . .

Event rates (Fig A.4.1)

Control event rate = CER = control patients with outcome of interest/all control

patients = A/CE

Experimental event rate = EER = experimental patients with outcome of interest/all exper-

imental patients = C/EE

Absolute rate reduction = ARR = |EER − CER|
Relative rate reduction = RRR = (CER − EER)/CER

Number needed to treat to benefit = NNTB = 1/ARR

Relative risk and odds ratio (Fig A.4.2)

Absolute risk of disease in risk group = A/(A + B)

Absolute risk of disease in no risk group = C/(C + D)
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Control or
placebo group

Experimental
group

Events of interest Other events

Control group
events

Experimental
group events

CE

EE

A B

C D

Fig. A.4.1 Event-rate
calculations: 2 × 2 table.

   Direction of sampling (Case−control)

    Disease present Disease absent

Risk present

Direction of 
sampling (cohort or RCT)

A B

C D

A + B

C + D

Risk absent

A + C B + D N

population

Fig. A.4.2 Relative-risk and
odds-ratio calculations: 2 × 2
table.

Relative risk of disease = RR = [A/(A + B)]/[C/(C + D)]

Absolute attributable risk = AAR = [A/(A + B)] − [C/(C + D)]

Attributable risk percent relative to no-risk group = [A/(A + B) − C/(C + D)]/[C/(C + D)]

Also called relative attributable risk. Dependent on which variable you want to measure

this relative to, it can also be written as;

Attributable risk percent relative to risk group = [A/(A + B) − C/(C + D)]/[A/(A + B)]

Number needed to treat to harm = NNTH = 1/AAR

Odds of risk factor if diseased = A/C

Odds of risk factor if not diseased = B/D

Odds ratio = OR = [A/C]/[B/D] = AD/BC

Confidence intervals (Fig. A.4.3)

For odds ration: Confidence Interval = CI = expln(OR) ±1.96
√

(1/A + 1/B + 1/C + 1/D)

For relative risk: Confidence Interval = CI = expln(RR) ±1.96
√

([(1 − (A/(A + B)))/A])

+ [(1 − (C/(C + D))/D])

Let the computer do the calculations!
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    95% confidence interval

relative-risk
point estimate

0 1 2 3

1.3
 

1.8
 

2.6

risk factor reduces risk factor increases risk of outcome

risk of outcome

Fig. A.4.3 Confidence interval for relative risk.

Disease

Present Absent

Positive    TP    FP     T+

Negative

Test

   FN    TN     T−

   D+    D−

Fig. A.4.4 Diagnostic tests: 2 × 2
table.Diagnostic tests (Fig. A.4.4)

True positive rate = TPR = TP/D+ = sensitivity

False positive rate = FPR = FP/D− = 1 − specificity

False negative rate = FNR = FN/D+ = 1 − sensitivity

True negative rate = TNR = TN/D− = specificity

Likelihood ratio of a positive test = LR+ = sensitivity/(1 − specificity)

Likelihood ratio of a negative test = LR− = (1 − sensitivity)/specificity

Positive predictive value = PPV = TP/T+
Negative predictive value = NPV = TN/T−
False alarm rate = FAR = 1 − PPV

False reassurance rate = FRR = 1 − NPV

Bayes’ theorem

Odds = probability/(1 − probability)

Post-test odds = pretest odds × likelihood ratio (this is PPV if LR+ is used and FRR if LR−
is used)

Probability = odds/(1 + odds)



Appendix 5 Proof of Bayes’ theorem

For a given test with the following parameters:

Sensitivity = N Specificity = S Pretest probability (prevalence of disease) = P, the 2 × 2 table

will be as shown in Fig. A.5.1.

Using the sensitivity and specificity:

PPV = NP
T+ = NP

NP + ((1 − S)(1 − P))

Using Bayes’ theorem:

O(pre) = P/(1 − P) and

O(post) = O(pre) × LR+
LR+ = N/(1 − S)

O(post) = [P/(1 − P)] × [(N)/(1 − S)] = NP/((1 − S)(1 − P))

P(post) = O/(1 + O) = NP/((1 − S)(1 − P))
1 + (NP/((1 − S)(1 − P)))

Now multiply top and bottom by (1 − S)(1 − P):

= NP
((1 − S)(1 − P)) + NP

or
NP

NP + ((1 − S)(1 − P))

The same as the PPV.

Similarly:

FRR = 1 − NPV = (1 − N)P
T− = P(1 − N)

S(1 − P) + P(1 − N)
LR− = (1 − N)/S

O(post) = (P/(1 − P)) × ((1 − N)/S) = P(1 − N)/S(1 − P)

P(post) = P(1 − N)/S(1 − P)
1 + (P(1 − N)/S(1 − P))

Now multiply top and bottom by S(1 − P):

P(post) = P(1 − N)
S(1 − P) + P(1 − N)

The same as the FRR (Fig. A.5.1).

392



Appendix 5: Proof of Bayes’ theorem 393

T− (1−N)P    S(1−P) (1−N)P + S(1−P)

T+    NP (1−S)(1−P) NP + (1−S)(1−P)

P  1−P

D+   D−
Fig. A.5.1 Bayes’ theorem: 2 × 2
table.



Appendix 6 Using balance sheets to calculate
thresholds

Strep throat

Suppose you are examining a 36-year-old white male with a sore throat and want to know

whether treatment for strep throat is a good idea. Exam is equivocal with large tonsils with

exudate, but no cervical nodes or scarlatiniform rash, and only slight coryza.1

Disease Strep throat

Prevalence in the literature About 20% for large tonsils with exudate. If no exudate this

drops to about 10%, and if also tender cervical nodes it increases to 40%.

Estimate the treatment threshold.

Potential harm from antibiotic treatment 4–5% of patients will get a rash or diar-

rhea, both of which are uncomfortable but not life-threatening. Anaphylaxis (life-

threatening allergy) is very rare (< 1 : 200 000) and will not be counted in the analy-

sis. Harm = 0.05.

Impact of this harm Discomfort for about 2–3 days, gets about 0.1 on a 0–1 scale. It

could be greater if the patient modeled swimwear and a rash would put him or her

out of work for those days. Impact = 0.1.

Impact of improvement Since treatment results in relief of symptoms about 1 day

sooner, this should be similar to the harm impact, 0.1 on the 0–1 scale. Impact =
0.1. Improvement = 1 (100% get better by this 1 day).

Action or treatment threshold (Harm × harm impact) / (improvement × improve-

ment impact) = (0.1 × 0.05) / (0.1 × 1) = 0.05.

This is the threshold for treatment without testing.

Will a test change your mind if the pretest probability is 20%?

The sensitivity and specificity of throat culture is 0.9 and 0.85 respectively. If you apply

these to a pretest probability of 20%, a negative test will result in NPV = 0.03 (3%).

This is below the action (treatment) threshold (5%) and so treatment would not be

initiated if the test were negative. Therefore it pays to do the test.

Tuberculosis

Now let’s consider a different problem in an Asian man with lung lesions, fever,

and cough, and let’s use a slightly different methodology. The differential is between

1 From R. Gross. Making Medical Decisions: an Approach to Clinical Decision Making for Practicing
Physicians. Philadelphia, PA: American College of Physicians, 1999.
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tuberculosis (highly contagious and treated with antibiotics) and sarcoidosis (not conta-

gious and treated with steroids). The initial testing is negative for both. How should the

patient be treated while waiting for the results of the culture for TB (gold standard)? Clini-

cal probability of TB estimated at 70% before initial testing, 40% after initial testing (normal

angiotensin-converting-enzyme level, negative TB skin test, noncaseating granulomas on

biopsy).

Normal angiotensin-converting-enzyme level: against sarcoidosis but poor sensitivity

Negative TB skin test: against TB, but can be present in overwhelming TB infection

(poor sensitivity)

Noncaseating granulomas on biopsy: against TB and for sarcoidosis

Benefit (B) = untreated TB mortality − treated TB mortality = 50% − 20% = 30%

Risk (R) = death from hepatitis due to treatment = prevalence of hepatitis in Asian men

treated with TB medications (2%) × risk for death from hepatitis (7.6%) = 0.15%

Treatment threshold = 1/(B : R + 1)

B : R = 30 : 0.15 = 200

Treatment threshold = 1/201 = 0.005

Therefore treat with TB medications since the estimated probability of disease in this

patient is 40%, greater than the treatment threshold. If B is very high and R is very low,

you will almost always treat regardless of the test result. If the converse (R high and B

low) you will be much less likely to treat without fairly high degree of evidence of the

target disorder.

Acute myocardial infarction

In this case, you must consider how sure you are of the diagnosis to use the more expensive

thrombolytic therapy (t-PA) rather than the cheaper streptokinase (SK).

B = 0.01 − 1% (difference between the mortality of AMI with t-PA compared to SK)

R = 0.008 − 0.8% (difference between the occurrence of acute cerebral bleed from t-PA

over SK)

Therefore B : R = 1.2

B:R + 1 = 2.2 and T = 1/2.2 = 0.45 and you would not initiate thrombolytic therapy

unless the probability of thrombotic MI was greater than 45%.
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2AFC (two-alternative-forced-choice) problem The probability that one can identify an

abnormal patient from a normal patient using this test alone.

Absolute risk The percentage of subjects in a group that experiences a discrete outcome.

Absolute risk (rate) reduction (ARR) The difference in rates of outcomes between the

control group and the experimental or exposed group. An efficacious therapy serves to

reduce that risk. For example, if 15% of the placebo group died and 10% of the treatment

group died, ARR or the absolute reduction in the risk of death is 5%.

Accuracy Closeness of a given observation to the true value of that state.

Adjustment Changing the probability of disease as a result of performing a diagnostic

maneuver (additional history, physical exam, or diagnostic test of some kind).

Algorithm A preset path which takes the clinician from the patient’s presenting

complaints to a final management decision through a series of predetermined branching

decision points.

All-or-none case series In previous studies all the patients who were not given the

intervention died and now some survive, or many of the patients previously died and now

none die.

Alternative hypothesis There is a difference between groups or an association between

predictor and outcome variables. Example: the patients being treated with a newer

antihypertensive drug will have a lower blood pressure than those treated with the older

drug.

Anchoring The initial assignment of pretest probability of disease based upon elements

of the history and physical.

Applicability The degree to which the results of a study are likely to hold true in your

practice setting. Also called external validity, generalizability, particularizability,

relevance.
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Arm (of decision tree) A particular diagnostic modality, risk factor, or treatment

method.

Assessment Clinician’s inferences on the nature of the patient’s problem. Synonymous

with differential diagnosis or hypotheses of cause of the underlying problems.

AUC (area under the ROC curve) Probability that one can identify a diseased patient

from a healthy one using this test alone.

Availability heuristic The ability to think of something depends upon how recently you

studied that fact.

Bayes’ theorem What we know after doing a test equals what we knew before doing the

test times a modifier (based on the test results). Post-test odds = pretest odds × likelihood

ratio.

Bias Any factor other than the experimental therapy that could change the study results

in a non-random way. The direction of bias offset may be unpredictable. The validity of a

study is integrally related to the degree to which the results could have been affected by

biased factors.

Blinding Masking or concealment from study subjects, caregivers, observers, or others

involved in the study of some or all details of the study. Process by which neither the

subject nor the research team members who have contact with the subject know to which

treatment condition the subject is assigned. Single-blind means that one person (patient

or physician) does not know what is going on. Double-blind means that at least two

people (usually patient and treating physician) don’t know what’s going on. Triple-blind

means that patient, treating physician, and person measuring outcome don’t know to

which group patient is assigned. It can also mean that the paper is written before the

results are tabulated. The whole point of blinding is to prevent bias.

Case–control study Subjects are grouped by outcome, cases having the disease or

outcome of interest and controls. The presence of the risk factor of interest is then

compared in the two groups. These studies are usually retrospective.

Case report or case series One or a group of cases of a particular disease or outcome of

interest with no control group.

Clinical guideline An algorithm used in making clinical decisions. Also called a Practice

guideline.

Clinical significance Results that make enough difference to you and your patient to

justify changing your way of doing things. For example, a drug which is found in a

megatrial of 50 000 adults with acute asthma to increase FEV1 by only 0.5% (P < 0.0001)
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would fail this test of significance. The findings must have practical importance as well as

statistical importance.

Cochrane collaboration An internationally organized effort to catalog and systematically

evaluate all existing clinical studies into systematic reviews easily accessible to practicing

clinicians so as to facilitate the process of using the best clinical evidence in patient care.

Cohort study Subjects are grouped by the risk factor, and those with and without the risk

factor are followed to see who develops the disease and who doesn’t. The occurrence of

the outcome of interest is compared in the two groups. These studies can be prospective

or retrospective (non-concurrent).

Cointervention A treatment that is not under investigation given to a study patient. Can

be a source of bias in the study.

Competing-hypotheses heuristic A way of thinking in which all possible hypotheses are

evaluated for their likelihood and final decision is based on the most likely hypothesis

modified by secondary evaluations.

Confidence intervals An interval around an observed parameter guaranteed to include

the true value to some level of confidence (usually 95%). The true value can be expected to

be within that interval with 95% confidence.

Continuous test results A test resulting in an infinite number of possible outcome

values.

Control group The subjects in an experiment who do not receive the treatment

procedure being studied. They may get nothing, a placebo, or a standard or previously

validated therapy.

Controlled clinical trial Any study that compares two groups for exposure to different

therapies or risk factors. A true experiment in which one group is given the experimental

intervention and the other group is a control group.

Cost-effectiveness Marginal cost divided by marginal benefit. (Cost of treatment A – cost

of treatment B)/(benefit of treatment A – benefit of treatment B).

Cost-effectiveness (or cost–benefit) analysis Research study which determines how

much more has to be paid in order to achieve a given benefit of preventing death,

disability days, or another outcome.

Cost-minimization analysis Analysis in which only costs are compared.

Criterion-based validity How well a measurement agrees with other approaches for

measuring the same characteristic.
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Critical appraisal The process of assessing and interpreting evidence systematically,

considering its validity, results, and relevance.

Critical value Value of a test statistic to which the observed value is compared to

determine statistical significance. The observed test statistic indicates significant

differences or associations exist if its value is greater than the critical value.

Critically appraised topic (CAT) A summary of a search and critical appraisal of the

literature related to a focused clinical question. Catalogue of these kept in an easily

accessible place (e.g., online) can be used to help make real-time clinical decisions.

Decision analysis Systematic way in which the components of decision making can be

incorporated to make the best possible clinical decision using a mathematical model. Also

known as Expected values decision making.

Decision node A point on a branching decision tree at which the clinician must make a

decision to either perform a clinical maneuver (diagnosis or management) or not.

Degrees of freedom (df) A number used to select the appropriate critical value of a

statistic from a table of critical values.

Dependent variable The outcome variable that is influenced by changes in the

independent variable of a study.

Descriptive research Study which summarizes, tabulates, or organizes a set of measures

(i.e., answers the questions who, what, when, where, and how).

Descriptive statistics The branch of statistics that summarizes, tabulates, and organizes

data for the purpose of describing observations or measurements.

Diagnostic test characteristics Those qualities of a diagnostic test that are important to

understand how valuable it would be in a clinical setting. These include sensitivity,

specificity, accuracy, precision, and reliability.

Diagnostic tests Modalities which can be used to increase the accuracy of a clinical

assessment by helping to narrow the list of possible diseases that a patient can have.

Dichotomous outcome Any outcome measure for which there are only two possibilities,

like dead/alive, admitted/discharged, graduated/sent to glue factory. Beware of

potentially fake dichotomous outcome reports such as “improved/not improved”,

particularly when derived from continuous outcome measures. For example, if I define a

10-point or greater increase in a continuous variable as “improved,” I may show what

looks like a tremendous benefit when that result is clinically insignificant. This is lesson 2a

in “How to lie with statistics.”
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Dichotomous test results Only two possible outcome values, yes or no, positive or

negative, alive or dead, etc.

Differential diagnosis A list of possible diseases that your patient can have in

descending order of clinical probability.

Effect size The amount of change measured in a given variable as a result of the

experiment. In meta-analyses when different studies have measured somewhat different

things, a statistically derived generic size of the combined result.

Effectiveness How well the proposed intervention works in a clinical trial to produce a

desired and measurable effect in a well-done clinical trial. These results may not be

duplicated in “real life.”

Efficacy How well the proposed intervention actually works in practice to produce a

desired outcome in other more generalized clinical situations. This is usually the desired

outcome for the patient and society.

Event rate The percentage of events of interest in one or the other of the groups in an

experiment. These rates are compared to calculate number needed to treat. This is also a

term for absolute risk.

Expected values (E) Probability × Utility (P × U). The value of each arm of the decision

tree or the entire decision tree (sum of P × U).

Expected-values decision making See Decision analysis.

Experimental group(s) The subjects in an experiment who receive the treatment

procedure or manipulation that is being proposed to improve health or treat illness.

Explanatory research – experimental Study in which the independent variable (usually a

treatment) is changed by the researcher who then observes the effect of this change on the

dependent variable (usually an outcome). The key here is the willful manipulation of the

two variables.

Explanatory research – observational Study looking for possible causes of disease

(dependent variable) based upon exposure to one or more risk factors (independent

variable) in the population.

Exposure Any type of contact with a substance that causes an outcome. A drug, a

surgical procedure, risk factor, even a diagnostic test can be an exposure. In therapy,

prognosis, or harm studies the “exposure” is the intervention being studied.

External validity See Applicability.
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False negative (FN) Patients with disease who have a normal or negative test.

False positive (FP) Patients without disease who have an abnormal or positive test.

FAR (false alarm rate) Percentage of patients with a positive test who don’t have disease

and will be unnecessarily tested or treated based on the incorrect results of a test.

Filter A process by which patients are entered into or excluded from a study. Inclusion

and exclusion criteria when stated explicitly.

FNR (false negative rate) One minus the sensitivity (1 – sens). Percentage of diseased

patients with a negative or normal test.

FPR (false positive rate) One minus the specificity (1 – spec). Percentage of

non-diseased patients with a positive or abnormal test.

Framing effect How a question is worded (or framed) will influence the answer to the

question.

FRR (False reassurance rate) Percentage of patients with a negative or normal test result

who actually have disease and will lose benefits of treatment for the disease.

Functional status An outcome which describes the ability of a person to interact in

society and carry on with their daily living activities (e.g., Activities of Daily Living (ADL)

or the Arthritis Activity Scale used in Rheumatoid Arthritis).

Gaussian Typical bell-shaped frequency curve in which normal test values are 95%

(± 2SD of all tests done) of all possible values.

Generalizability See Applicability.

Gold standard The reference standard for evaluation of a measurement or diagnostic

test. The “gold-standard” test is assumed to correctly identify the presence or absence of

disease 100% of the time.

Harm vs. benefit An accounting of the positive and negative aspects of an exposure

(positive or negative) on the outcomes of a study.

Heuristics Models for the way people think.

Homogeneity Whether the results from a set of independently performed studies on a

particular question are similar enough to make statistical pooling valid.
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Hypothesis An educated guess on the nature of the patient’s illness, usually obtained by

selecting those diseases having the same history or physical examination characteristics

as the patient.

Hypothetico-deductive strategy A diagnosis is made by advancing a hypothesis and

then deducing the correctness or incorrectness of that hypothesis through the use of

statistical methods, specifically the characteristics of diagnostic tests.

Incidence The rate at which an event occurs in a defined population over time. The

number of new cases (or other events of interest) divided by the total population at risk.

Incorporation bias The test being measured is part of the gold standard or inclusion

criteria for entry into a study.

Incremental gain Amount of increase in diagnostic certainty. The change in the pretest

probability of a diagnosis as a result of performing a diagnostic test.

Independent variable(s) The treatment or exposure variable that is presumed to cause

some effect on the outcome or dependent variable.

Inferential statistics Drawing conclusions about a population based on findings from a

sample.

Instrumental rationality Calculation of a treatment strategy which will produce the

greatest benefit for the patient.

Instrumentation The process of selecting or developing measuring devices.

Instruments (measuring devices) Something that makes a measurement, e.g.,

thermometer, sphygmomanometer (blood pressure cuff and manometer), questionnaire,

etc.

Intention-to-treat Patients assigned to a particular treatment group by the study

protocol are retained in that group for the purpose of analysis of the study results no

matter what happens.

Internal validity See Validity.

Inter-observer reliability Consistency between two different observers’ measurements.

Interval likelihood ratios (iLR) Probability of a test result in the interval among diseased

subjects divided by the probability of a test result within the interval among non-diseased

subjects.

Intra-observer reliability Ability of the same observer to reproduce a measure.
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Intrinsic characteristics of a diagnostic test See Diagnostic test characteristics.

Justice Equal access to medical care for all patients who require it based only upon the

severity of their disease.

Kappa statistic A measure of inter- or intra-observer reliability.

Level of significance (confidence level) Describes the probability of incorrectly rejecting

the null hypothesis and concluding that there is a difference when in fact none exists (i.e.,

probability of Type I error). Many times this probability is 0.01, 0.05, or 0.10. For medical

studies it is most commonly set at 0.05.

Likelihood ratio of a negative test (LR–) The false negative rate divided by the true

negative rate. The amount by which the pretest probability of disease is reduced in

patients with a negative test.

Likelihood ratio of a positive test (LR+) The true positive rate divided by the false

positive rate. The amount by which the pretest probability is increased in patients with a

positive test.

Likelihood ratio A single number which summarizes test sensitivity and specificity and

modifies the pretest probability of disease to give a post-test probability.

Linear rating scale A scale from zero to one on which patients can place a mark to

determine their value for a particular outcome.

Markov models A method of decision analysis that considers all possible health states

and their interactions at the same time.

Matching An attempt in an experiment to create equivalence between the control and

treatment groups. Control subjects are matched with experimental subjects based upon

one or more variables.

Mean A measure of central tendency; the arithmetic average.

Measurement The application of an instrument or method to collect data

systematically. What the use of the instrument tells us, e.g., temperature, blood pressure,

results of dietary survey, etc.

Meta-analysis A systematic review of a focused clinical question following rigorous

methodological criteria and employing statistical techniques to combine data from

multiple independently performed studies on that question.

Multiple-branching strategy An algorithmic method used for making diagnoses.
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N or n Number of subjects in the sample or the number of observations made in a study.

Negative predictive value (NPV) Probability of no disease after a negative test result.

Nodes Junctures where something happens. The common ones are decision and

probability nodes.

Non-inferiority trial A study that seeks to show that one of two treatments is not worse

than the other.

Normal (1) A normal distribution or Gaussian distribution of variables, the bell-shaped

curve. (2) A value of a diagnostic test which defines patients who are not diseased.

Null hypothesis The assumption that there is no difference between groups or no

association between predictor and outcome variables.

Number needed to follow (NNF) Number of patients who must be followed before one

additional bad outcome is noted. The lower this number, the worse the risk factor.

Number needed to treat to harm (NNTH) Number of patients who must be treated or

exposed to a risk factor to have one additional bad outcome. The lower this number the

worse the exposure.

Number needed to treat to benefit (NNTB) Number of patients who must be treated to

have one additional successful outcome. The lower that number, the better the therapy.

Objective Information observed by the physician from the patient examination and

diagnostic tests.

Observational study Any study of therapy, prevention, or harm in which the exposure

is not assigned to the individual subject by the investigator(s). A synonym is “non-

experimental” and examples are case–control and cohort studies.

Odds The number of times an event occurred divided by the number of times it didn’t.

Odds ratio The ratio of the odds of an event in one group divided by the odds in another

group.

One-tailed statistical test Used when the alternative hypothesis is directional (i.e.,

specifies a particular direction of the difference between the groups.)

Operator-dependent The results of a test are dependent on the skill of the person

performing the test.

Outcome Disease or final state of patient (e.g., alive or dead).
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Outcomes study The outcome of an intervention, exposure, or diagnosis measured over

a period of time.

P value The probability that the difference(s) observed between two or more groups in a

study occurred by chance if there really was no difference between the groups.

Pathognomonic The presence of signs or symptoms of disease which can lead to only

one diagnosis (i.e. they are only characteristic of that one disease).

Patient satisfaction A rating scale which measures the degree to which patients are

happy with the care they received or feel that the care was appropriate.

Patient values A number, generally from 0 (usually death) to 1 (usually complete

recovery), which denotes the degree to which a patient is desirous of a particular outcome.

Pattern recognition Recognizing a disease diagnosis based on a pattern of signs and

symptoms.

Percentiles Cutoffs between positive and negative test result chosen within preset

percentiles of the patients tested.

Placebo An inert substance given to a study subject who has been assigned to the

control group to make them think they are getting the treatment under study.

Plan What treatment or further diagnostic testing is required.

Point On a decision tree, the outcome of possible decisions made by the patient and

clinician.

Point estimate The exact result that has been observed in a study. The confidence

interval tells you the range within which the true value of the result is likely to lie with 95%

confidence.

Point of indifference The probability of an outcome of certain death at which a patient

no longer can decide between that outcome and an uncertain outcome of partial

disability.

Population The group of people who meet the criteria for entry into a study (whether

they actually participated in the study or not). The group of people to whom the study

results can be generalized.

Positive predictive value Probability of disease after the occurrence of a positive test

result.
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Post-test odds The odds of disease after a test has been done. Post-test odds = pretest

odds × likelihood ratio.

Post-test probability The probability of disease after a test has been performed. This is

calculated from post-test odds converted to probability. Also called posterior or

a-posteriori probability.

Power The probability that an experimental study will correctly observe a statistically

significant difference between the study groups when that difference actually exists.

Precision The measurement is nearly the same value each time it is measured. Measure

of random variation or error, or a small standard deviation of the measurement across

multiple measurements.

Predictive values The probability that a patient with a particular outcome on a

diagnostic test (positive or negative) has or does not have the disease.

Predictor variable The variable that is going to predict the presence or absence of

disease, or results of a test.

Pretest odds The odds of disease before a test is run.

Pretest probability The probability of disease before a test is run. This is converted to

odds for use with Bayes’ theorem. Also called prior or a-priori probability.

Prevalence The proportion of people in a defined group who have a disease, condition,

or injury. The numbers affected by a condition divided by the population at risk. In the

context of diagnosis, this is also called “pretest probability.”

Probability node A point in the decision tree at which two or more events occur by

chance.

Problem-oriented medical record (POMR) A format of keeping medical records by which

one keeps track of and updates a patient’s problems regularly.

Prognosis The possible outcomes for a given disease and the length of time to those

outcomes.

Prospective study Any study done forward in time. Important in studies on therapy,

prognosis, or harm, where retrospective studies make hidden biases more likely.

Publication bias The possibility that studies with conflicting results (most often negative

studies) are less likely to be published.
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Quality of life A composite measure of the satisfaction of a patient with their life and

their ability to function appropriately.

Quality-adjusted life years (QALYs) Standardized measure of quality and life expectancy

commonly used in decision analyses. Life expectancy times expected value or utility.

Random selection or assignment Selection process of a sample of the population such

that every subject in the population has an equal chance of being selected for each arm of

the study.

Randomization A technique that gives every patient an equal chance of winding up in

any particular arm of a controlled clinical trial.

Randomized clinical trial or Randomized controlled trial (RCT) An interventional study in

which the patients are randomly selected or assigned either to a group which gets the

intervention or to a control group.

Receiver operating characteristic (ROC) curve A plot of sensitivity versus one minus

specificity (true-positive rate versus false positive rate) can give the quality of a diagnostic

test and determine which is the best cutoff point.

Referral bias Patients entered into a study because they have been referred for a

particular test or to a specialty provider.

Relative risk The probability of outcome in the group with exposure divided by the

probability of outcome in the group without the exposure.

Reliability Loose synonym of precision, or the extent to which repeated measurements

of the same phenomenon are consistent, reproducible, and dependable.

Representativeness heuristic The ease with which a diagnosis is recalled depends on

how closely the patient presentation fits the classical presentation of the disease.

Research question (hypothesis) A question stating a general prediction of results which

the researcher attempts to answer by conducting a study.

Retrospective study Any study in which the outcomes have already occurred before the

study and collection of data has begun.

Risk Probability of an adverse event divided by all of the times one is exposed to that

event.

Risk factor Any aspect of an individual’s life, behavior, or inheritance that could affect

(increase or decrease) the likelihood of an outcome (disease, condition, or injury.)
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Rule in To effectively determine that a particular diagnosis is correct by either excluding

all other diagnoses or making the probability of that diagnosis so high that other

diagnoses are effectively excluded.

Rule out To effectively exclude a diagnosis by making the probability of that disease so

low that it effectively is so unlikely to occur or would be considered non-existent.

Sample That part of the population selected to be studied. The group specifically

included in the actual study.

Sampling bias To select patients for study based on some criteria that could relate to the

outcome.

Screening Looking for disease among asymptomatic patients.

Sensitivity The ability of a test to identify patients who have disease when it is present.

True-positive rate.

Sensitivity analysis An analytical procedure to determine how the results of a study

would change if the input variables are changed.

Setting The place in which the testing for a disease occurs, usually referring to level of

care.

SOAP notes Subjective, objective, assessment, and plan. The typical format for

problem-oriented medical record notes.

Specificity The ability of a test to identify patients without the disease when it is

negative. True-negative rate.

Spectrum In a diagnostic study, the range of clinical presentations and relevant disease

advancement exhibited by the subjects included in the study.

Spectrum bias The sensitivity of a test is higher in more severe or “well-developed” cases

of a disease, and lower when patients present earlier in the course of disease, or when the

disease is occult.

Standard gamble A technique to determine patient values by which patients are given a

choice between a known outcome and a hypothetical-probabilistic outcome.

Statistic A number that describes some characteristic of a set of data.

Statistical power See Power.
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Statistical significance A measure of how confidently an observed difference between

two or more groups can be attributed to the study interventions rather than chance alone.

Stratified randomization A way of ensuring that the different groups in an experimental

trial are balanced with respect to some important factors that could affect the outcome.

Strategy of exhaustion Listing all possible diseases which a patient could have and

running every diagnostic test available and necessary to exclude all diseases on that list

until only one is left.

Subjective Information from the patient, the history which the patient gives you and

which they are experiencing.

Surrogate marker An outcome variable that is associated with the outcome of interest,

but changes in this marker are not necessarily a direct measure of changes in the clinical

outcome of interest.

Survival analysis A mathematical analysis of outcome after some kind of therapy in

which patients are followed for given a period of time to determine what percentage are

still alive or disease-free after that time.

Systematic review A formal review of a focused clinical question based on a

comprehensive search strategy and structured critical appraisal of all relevant studies.

Testing threshold Probability of disease above which we should test before initiating

treatment for that disease, and below which we should neither treat nor test.

Threshold approach to decision making Determining values of pretest probability below

which neither testing nor treatment should be done and above which treatment should be

begun without further testing.

Time trade-off A method of determining patient utility using a simple question of how

much time in perfect health a patient would trade for a given amount of time in imperfect

health.

Treatment threshold Probability of disease above which we should initiate treatment

without first doing the test for the disease.

Triggering A thought process which is initiated by recognition of a set of signs and

symptoms leading the clinician to think of a particular disease.

Two-tailed statistical test Used when alternative hypothesis is non-directional and

there is no specification of the direction of differences between the groups.
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Type I error Error made by rejecting the null hypothesis when it is true and accepting

the alternative hypothesis when it isn’t true.

Type II error Error made by not rejecting the null hypothesis when it is false and the

alternative hypothesis is true.

Unadjusted life expectancy (life years) The number of years a person is expected to live

based solely on their age at the time. Adjusting would consider lifestyle factors such as

smoking, risk-taking, cholesterol, weight, etc.

Uncertainty The inability to determine precisely what an outcome would be for a

disease or diagnostic test.

Utility The measure of value of an outcome. Also whether a patient is truly better off as a

result of a diagnostic test.

Validity (1) The degree to which the results of a study are likely to be true, believable and

free of bias. (2) The degree to which a measurement represents the phenomenon of

interest.

Variable Something that can take on different values such as a diagnostic test, risk

factor, treatment, outcome, or characteristic of a group.

Variance A measure of the spread of values around the mean.

Yule–Simpson paradox A statistical paradox in which one group is superior overall while

the other is superior for all of the subgroups.
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Web sites

The classic sites

Centre for Evidence-Based Medicine, Oxford University This is the one of the oldest

and best EBM sites, with many features including a toolbox, Critically Appraised Topics

(CAT) maker, a glossary, and links to other sites. There is also a CAT-bank of previously pre-

pared critical analyses. The toolbox has an all-purpose four-fold calculator, which requires

Macromedia Shockwave Player.

www.cebm.net

Bandolier This is an excellent site for getting quick information about a given topic.

They do very brief summary reviews of the current literature. Sponsored by the Centre for

Evidence-Based Medicine.

www.medicine.ox.ac.uk/bandolier

Evidence Based Emergency Medicine at the New York Academy of Medicine This is

an excellent site with many features including a Journal Club Bank, critical review forms,

glossary, the Users’ Guides to the Medical Literature, and links to other sites.

www.ebem.org/cgi-bin/index.php

University of British Columbia Written by Martin Schechter, this is an excellent site for

online calculations of NNT, likelihood ratios, and confidence intervals. Select links, then

go to Calculators and select either the Bayesian or Clinical Significance Calculators. Must

have data in dichotomous form.

www.spph.ubc.ca

Evidence Based Medicine Tool Kit, University of Alberta An excellent site to do the Users’

Guides to the Medical Literature. This site has worksheets for all the guides and links to

text versions of the original articles, made available by the Canadian Centres for Health

Evidence.

www.ebm.med.ualberta.ca/

Best evidence compilations

Evidence Updates from the BMJ Sponsored by the BMJ Group and McMaster Univer-

sity’s Health Information Research Unit, this site is a great place to look for evaluation of

recent studies and reviews. Very much up to date with a searchable database and email
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alert service, this is a free service of BMJ. Citations are all pre-rated for quality, clinical rel-

evance and interest by practicing physicians.

http://bmjupdates.mcmaster.ca/index.asp

Evidence-Based On-Call This is a wonderful site for Critically Appraised Topics (CATs).

Tends to favor acute care medicine, but you never know if you’ll find the answer to your

query very quickly. Professional team writes and reviews all CATs. There are 39 topic areas

with a total of hundreds of CATs.

http://www.eboncall.org

Agency for Health Research and Quality This US government agency is responsible for

evaluating the evidence behind new and upcoming technologies and improvements in the

practice of health care in the United States. They have an excellent list of topics with an

evaluation of the strength of the evidence behind them.

http://www.ahrq.gov

BestBETs is a free site that contains CATs, many of which are related to acute-care topics.

There are also unfinished CATS and topics needing CATS, and the site developers hope that

others will input their information into the site.

www.bestbets.org

Ganfyd (Get a note from your doctor) This is a medical wiki that catalogues medical

knowledge and can be edited by any registered medical practitioner and tries to be evi-

dence based with many of the citations graded for quality of the evidence. Some of the

evidence is better than other with no consistency, but that is the fun of wikis.

www.ganfyd.org

Trip Answers This is a spin off from the Trip Data Base search engine. Questions can be

posed to the site and will be answered quickly using the best evidence available.

www.tripanswers.org/

The following websites contain excellent links and other resources for learning and prac-

ticing EBM

Evidence-Based Health Informatics Health Information Research Unit, McMaster

University.

http://hiru.mcmaster.ca/hiru

Netting the Evidence.

www.shef.ac.uk/scharr/ir/netting

New York Academy of Medicine EBM Resource Center.

www.ebmny.org

Mount Sinai School of Medicine.

www.mssm.edu/medicine/general-medicine/ebm

Cochrane Collaboration abstracts The abstracts of the Cochrane reviews can all be

accessed here and no subscription is required to view the abstracts. The full Cochrane

Library is free in many countries, but not in the United States. Many libraries have sub-

scriptions. The abstracts are good if you want only the bottom line, but you won’t get any

of the details and be able to decide for yourself if the review is valid or potentially biased.

www.update-software.com/abstracts/crgindex.htm

Golden Hour is an Israeli site with many features, including links and evidence-based

medical information.

www.goldenhour.co.il
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NHS Centre for Reviews and Dissemination at the University of York is the sponsoring

site for the Database of Abstracts of Reviews of Effects (DARE)

www.york.ac.uk/inst/crd

Sites requiring subscription

InfoPOEMs Now called Essential Evidence Plus, this is the website for family-practice-

related CATs (called POEMs, or Patient-Oriented Evidence that Matters). The site has a free

trial period, but requires subscription after that.

www.essentialevidenceplus.com

Cochrane Collaboration main site. It contains a collection of the best and most uniformly

performed systematic reviews publications.

www.update-software.com/cochrane

Clinical Evidence from the British Medical Journal (BMJ). This is mainly geared to inter-

nal medicine and has an accompanying book and CD-ROM.

www.clinicalevidence.com

Searching sites

TRIP Database contains a free set of critically appraised topics and evidence-based

references.

www.tripdatabase.com

University of Virginia – Health Sciences Library Excellent access to evidence based sites,

which appears to be free to the public.

http://www.hsl.virginia.edu/internet/library/collections/ebm/index.cfm

Position statements

The AGREE Research Trust This is the home of the AGREE instrument for the evaluation

of Clinical Practice Guidelines. The instrument and training manual are free downloads

from the site.

http://www.agreetrust.org/

The Consort Group The CONSORT Group stands for Consolidated Standards of Report-

ing Trials. Their site has the CONSORT statement for reporting RCTs with its associated

check list and flow diagram.

http://www.consort-statement.org/

Learning EBM

JAMAevidence A new feature of the JAMA site will have the User’s Guides to the Medical

Literature and the Rational Clinical Examination series available without cost. Look for it

to open to the general public early in 2009.

http://jamaevidence.com/

Evidence-Based Knowledge Portal The Vanderbilt University (Tennessee, United States)

has a series of very nice and simple to use tutorials introducing EBM. There are also some



424 Bibliography

virtual cases that can be used to learn and practice the principles of EBM. Passwords

required but open to the general public.

http://www.mc.vanderbilt.edu/biolib/ebmportal/login.html

Delfini Group This consulting group has put together some nice resources to use in criti-

cal appraisal of the medical literature. There are also some slide shows, which are excellent

for EBM education. They are free.

http://www.delfini.org

Michigan State University. Introduction to EBM Course This is an excellent interactive

introduction to EBM. The seven modules covering Information Mastery, Critical Appraisal

and Knowledge Transfer can be done in a total of about 14–20 hours total.

http://www.poems.msu.edu/InfoMastery/

Anesthetist.com – Interactive Receiver Operating Characteristic Curves This is an excel-

lent way to learn about the use of diagnostic tests through the use of interactive ROC

curves. Other interesting stuff can be found on the Anesthetist.com website.

http://www.anaesthetist.com/mnm/stats/roc/Findex.htm

Contacts within EBM

CHAIN Contact, Help, Advice, and Information Networks are a free networking tool for

health care workers and others. Specific areas of interest relevant to EBM include knowl-

edge transfer and life long learning. It is a way of connecting with others in the field and

exchanging ideas. It is free to join. CHAIN Canada is found at

http://www.epoc.uottawa.ca/CHAINCanada.

http://chain.ulcc.ac.uk/chain/index.html

Centre for Evidence-Based Child Health This is a main link in child health EBM in

the United Kingdom. The website has an excellent list of links for physicians and non-

physicians who are interested in child health.

http://www.ich.ucl.ac.uk/ich/academicunits/Centre for evidence based child health/

Homepage

Teachers and Developers of EBM International A worldwide group of interested parties

meet every 2 years to discuss the teaching and practice of Evidence Based Medicine. Their

activities are chronicled on this site.

http://www.ebhc.org/

Create your own EBM sites

EBM Page Generator This shareware created by Yale and Dartmouth Universities (United

States) allows anyone to set up an interactive site to link to any EBM sources. It is easy to

adapt to most interactive educational web platforms.

http://www.ebmpyramid.org/home.php
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Locators in italic refer to figures and tables
Locators in bold refer to major entries
Locators for headings with subheadings refer to general aspects of that topic

α error 29
a-posteriori probability see post-test

probability
a-priori probability see pre-test probability
AAR (absolute attributable risk) 147
abdication 165
absolute attributable risk (AAR) 147
absolute rate reduction (ARR) 114,

396
absolute risk 142, 143, 144, 143–4,

396
absolute risk increase (ARI) 147, 151
absolute risk reduction (ARR) 136, 147,

205
abstracts 28, 28, 28
acronyms, mnemonic 221, 221, 222–3, 223,

257, 257; see also mnemonics
accuracy 73, 75–6, 233, 272, 396
accuracy criteria 245–7
ACP (American College of Physicians) 12, 13
ACP Journal Club 13
Activities of Daily Living (ADL) Scale 346
ActivStats 108
actuarial-life tables 366
adjustment 231, 396
adjustment heuristic 230–1
ADL (Activities of Daily Living) Scale 346
Agency for Healthcare Research and Quality

318
AGREE criteria 322
AHRQ, US 357
AIDS 57, 313
Alcohol Use Disorders Identification Test

(AUDIT) 72
algebra 4
algorithms, definition 396

all-or-none case series 58, 190, 396
alternative hypotheses 28, 110, 140, 396
American College of Physicians (ACP)

12, 13
American Society of Internal Medicine 13
analogy, reasoning by 196
anchoring 231, 396
anchoring heuristic 230–1
ancient history of medicine 2–3
ANCOVA 387
AND (Boolean operator) 36, 35–7
animal research studies 25–7
Annals of Internal Medicine 13
ANOVA (analysis of variance) 387
applicability 187–8, 306–7, 332, 396; see also

strength of evidence/applicability
appropriate tests 241; see also diagnostic tests
Arabic numerals 4
area under the curve (AUC) 277–9, 397
ARI (absolute risk increase) 147, 151
arm, decision tree 397
ARR see absolute rate reduction; absolute risk

reduction; attributable risk reduction
Ars magna (The Great Art) 5
art of medicine 16–18, 187, 225, 288, 291,

377
assessment 397
association (between cause and effect) 59
asterisk truncation function 50
attack rates 107
attributable risk 148, 147–8
attributable risk reduction (ARR) 354
attrition, patient 63, 88–9, 171, 361, 360–1
AUC (area under the curve) 277–9, 397
AUDIT (Alcohol Use Disorders Identification

Test) 72

425
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author bias 368
availability heuristic 230, 397

β errors 29, 135–6; see also Type II errors
background questions 14, 13–14
Bacon, Francis 109, 110–11
Bacon, Roger 109
balance sheets 394–5
Bandolier 12, 50
bar graphs 97, 98
baseline variables 169
Bayes’ theorem 251, 251, 262–3, 264–6, 294,

330
definition 397
formulas 391
proof 392, 393

bell-shaped curve 104, 103–4, 198
beneficence, principle of 185
Berkerson’s bias 85, 169
Bernard, Claude 6
Bernoulli, Daniel 6, 334
Bernoulli, Jacob 5
Best Bets 54
best case/worst case strategies 88, 172–3
bias 15, 27, 31, 90–2, 235; see also diagnostic

tests, critical appraisal; error; precision;
Type I errors

bibliography, medical literature 28, 31,
413–14; see also journals

biological plausibility 195
biological variability

patient 237
physician 235

biomedical research, recent history 7–8
biopsy 305
blinding 29, 65, 170

and bias 85, 86, 361, 362
clinical prediction rules development

328
definition 397
error reduction 242
gold standard comparisons 304
unobtrusive measurements 75

bloodletting 4, 6, 7
BMJ (British Medical Journal) 16, 18, 25, 31,

52, 54
body mass index (BMI) 73, 195
bone marrow transplantation 177
Bonferroni correction 123
Boolean operators 36, 35–7, 39, 50
Boots Pharmaceuticals 91
box-and-whisker plots 98, 100
Bradford Hill, Austin 8, 16, 188
Breslow-Day test 370

British Medical Journal (BMJ) 16, 18, 25, 31,
52, 54

Broad Street Pump study 6, 193
burden of proof 311

CA see critical appraisal
CAGE questionnaire for alcoholism 72, 74,

280, 280, 279–81
CAM (complementary and alternative

medicines) 167
CAPRIE trial 362–3
Cardano, Girolamo 5, 333–4
cardiopulmonary resuscitation (CPR) 335
CART analysis 329
Case Records journal feature 229
case-control studies 22, 23, 61, 60–2

definition 397
measures of risk 142
odds ratios/relative risk 146–7
overview 385
recall bias 83
research design strength 189

case-mix bias 297
case reports 57, 57–8, 189–90, 397
case series 57, 57–8, 189–90, 397
case studies 7, 25
cases 60
CAT (critically appraised topic) 12, 399
causation/cause-and-effect 19–20, 59, 61

bibliography 415–16
clinical question 21–3
cohort studies 62
contributory cause 62
learning objectives 19
multiple 194
proving 189
quotation 19
randomized clinical trials 168
strength of 188, 188
temporal 194
types 20–1

CDSR (Cochrane Database of Systematic
Reviews) 48, 54

censored data 364, 365
censoring bias 364, 365
CENTRAL (Cochrane Central Register of

Controlled Trials) 49, 54, 369
central limit theorem 116
central tendency measures 30, 94, 98–100
Centre for Evidence-Based Medicine 12, 190,

369, 378–81
centripetal bias 360
CER (control event rate) 114
chakras 2, 2
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chance nodes 336, 336
children, examining 240
Chinese belief systems 2, 2, 2–3
chi-squared analysis 363
chi-squared test 370
CI see confidence intervals
CINAHL 34
circulation of blood 4
classification and regression trees (CART)

analysis 329
clinical consistency 217–20, 233–4
Clinical Decision Making journal feature 229
Clinical Evidence database 50, 52, 54
clinical examination 220, 221, 220–2
clinical guidelines see guidelines
clinical prediction rules 325, 327, 327–32; see

also guidelines; Ottawa ankle rules
Clinical Queries search function 38, 38–9, 47,

50
clinical question 15–16, 21–3
clinical research studies 27–8
clinical reviews 27, 27, 30, 188; see also

meta-analyses
clinical significance 124–5, 173, 397–8; see also

significance
clinical trials 46, 65, 64–6, 128–9, 417–18; see

also controlled clinical trials; randomized
clinical trials

clinical uncertainty 112
clinically significant effect size 114
clipboard function 42
CME (continuing medical education) 197, 323
Cochrane, Archie 8
Cochrane Central Register of Controlled Trials

49, 54, 369
Cochrane Collaboration 8, 47, 48, 53, 54, 189

definition 398
GRADE scheme 369
levels of evidence 191
meta-analyses/systematic reviews 375–6

Cochrane databases 50, 55
Cochrane Library 13, 34, 49, 47–50
Cochrane Methodology Register 49
Code of Hammurabi 2
coding 213, 376
coffee 131, 142
cohort studies 22, 23, 62–4

definition 398
measures of risk 142
odds ratios to estimate relative risk 146–7
overview 384–5
research design strength 189

cointervention 88, 398
colorectal screening 35

common sense 196–7, 367, 377
common themes, identifying 212
communication with patients 200, 377

bibliography 205
checking for understanding/agreement

207
converting numbers to words 204, 206
decision making, shared 200
framing bias 205–6
learning objectives 199
natural frequencies 205, 206
patient experience/expectations 200, 202
patient scenario 199–200, 200, 201, 202,

203
presenting information 203–4
presenting recommendations 206–7
providing evidence 203, 204–6
quotation 199
rapport, building 202–3
steps toward 200
too much information 204, 206

comparison groups see controls/control
groups

comparisons, PICO/PICOT model 15–16, 21,
35

competing hypothesis heuristic 230, 398
complementary and alternative medicines

(CAM) 167
Complete Metabolic Profile 106
compliance bias 315–16
compliance rates 173
composite endpoints/outcomes 72, 90, 122–3,

128, 171, 362–3
computer software 212
computerization 342
conclusions 28, 31, 173, 374–6
concomitance 161
conditional probability 106
confabulation 238, 240
confidence formula 132
confidence intervals (CI) 30, 116, 173, 398

calculator 291
formulas 389, 390
hypothesis testing 116
meta-analyses/systematic reviews 371,

376
negative studies, evaluating 136–7
relative risk 391
results strength 192–3
risk assessment 149, 154
rules of thumb 124
Type I errors 123–4

confidence levels see significance
conflicts of interest 177, 183, 182–4
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confounding bias 87, 318
confounding variables 59, 76, 145, 156, 169,

170; see also multivariate analysis
cohort studies 63
prognosis 362
research design strength 189
specificity 194

consistency of evidence 193
consistency of evidence over time 195–6
Consolidating Standards of Reporting Trials

Group (CONSORT) statement 177, 176–7
construct validity 73
contamination bias 88
contamination of results 76
content analysis 213
context bias 300
continuing medical education (CME) 197,

323
continuous data 69
continuous test results 251–2, 398
continuous variables 139, 138–40
contradictory answers 238
contributory cause 21, 22, 62
control event rate (CER) 114
controlled clinical trials 63, 398; see also

randomized clinical trials
controls/control groups 58, 60, 65, 70, 114,

178, 398
cookbook medicine 18
cost-benefit analysis 323, 398; see also

cost-effectiveness
cost-effectiveness 216, 398

accurate cost measurement 353
baseline variables 356–7
clinical effectiveness, establishing 353
clinical prediction rules development

331
comparison of relevant alternatives 352–3
costs per unit of health gained 354–6
deciding if a test/treatment is worth it

350–2
differing perspectives 352
discounting 356
ethics 357–8
guidelines for assessing economic analysis

352–7
learning objectives 350
quotation 350
screening 319

cost-minimization analysis 398
costs, medical tests 227, 228, 246, 248, 307
Cox proportional hazard model 160, 366, 387
Cox regression 158
criterion-based validity 73, 246, 398

critical appraisal 10, 12–13, 377, 384–6, 399
critical value 399
critically appraised topic (CAT) 12, 399
cross-reactivity, diagnostic tests 246
cross-sectional studies 22, 23, 57, 59–60, 142
CT scanning 245, 295

intra-observer consistency 234
screening 311–12
technological improvement of tests 301–2

cumulative frequency polygons 98, 99
cumulative meta-analysis 374–6
cutoff points 258

DARE (Database of Abstracts of Reviews of
Effects) 48–9, 54

data acquisition 29
data analysis 212–13, 370–1, 377
data collection, qualitative research 211–12
data display see graphing techniques
data dredging 122–3, 168
Database of Abstracts of Reviews of Effects

(DARE) 48–9, 54
database studies see non-concurrent cohort

studies
databases 34, 51–2
death

certificates 71
guidelines 322
outcome criteria 361
outcome measure 72
probability 349
rates 37
from unrelated causes 364

decimal system 4
decision making 215–16, 219, 333–4

clinical consistency/physician
disagreement 217–20

clinical examination 220, 221, 220–2
decision trees 336, 335–6, 337, 338, 336–8
definition 399
differential diagnosis 216, 224, 225, 225,

223–5, 226, 227
ethics 345–6, 347
exhaustion strategy 229
expected-values 334, 334–6
expert vs. evidence-based 11–12
guidelines/automation 218, 219
heuristics 231
hypothesis generation 221, 222–3
hypothetico-deductive strategy 229
learning objectives 215, 333
Markov models 345, 345
multiple branching strategy 229
patient/physician shared 200, 200
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pattern recognition 228–9, 231
physician 165–6
premature closure 229, 231–2
pre-test probability 225, 224–5, 226
quotation 215, 333
reality checks 341–3
refining the options 226–8
risk, attitudes to 348–9
sensitivity analysis 339, 340, 339–40, 341,

342
threshold approach 343–5
uncertainty/incomplete information 218,

219
values, patient 346–8

decision nodes 336, 336, 399, 404
decision theory 363
decision trees 216, 337, 338, 397

methods of construction 336, 336–8
thrombolytic therapy example 337, 338,

336–8
deduction 165
de-facto rationing 351
degenerative diseases 21, 26
degrees of freedom 399
denial, patient 239
dependent events 105
dependent tests 293
dependent variables 20, 68, 399
depreciation 356
depression 59, 69, 72, 81–2, 235, 247
derivation sets 62, 123, 158
descriptive research 399
descriptive statistics 94, 387, 389, 399
descriptive studies 56, 57–60, 189–90
detection bias 83
diagnosis, consistency 217; see also decision

making
diagnosis, study type 22, 22, 23, 38, 385–6
diagnostic classification schemes 234–5
diagnostic review bias 299–300
diagnostic tests 303–4, 309; see also

probability of disease; utility
absence of definitive tests 299
accuracy criteria 245–7
applicability 306–7
bibliography 418
characteristics 216, 399
comparison 276, 278, 280, 280, 277–81
context bias 300
costs/applicability 307
definition 399
diagnostic thinking 247
filter bias 296–7
formulas 391

gold standard comparisons 304, 305–6
ideal research study 302–3
incorporation bias 298
indeterminate/uninterpretable results 300
learning objectives 244, 276, 295
observer bias 299–300
overview of studies of diagnostic tests

295–6
patient outcome criteria 248; see also

decision trees; values, patient
post-hoc selection of positivity criteria 301
post-test probability and patient

management 308–9
pretest probability 307–8
publication bias 302
quotations 244, 276, 295
reproducibility 301
results impact 306
review/interpretation bias 299–300
ROC curves 276–7, 278, 280
sampling bias 305
selection bias 296–8
social outcome criteria 248
spectrum/subgroup bias 297, 305
study description/methods 304–5
technical criteria 245–6
technological improvement of tests 301–2
therapeutic effectiveness criteria 247–8
two by two tables 391
uses/applications 244–5
validity of results 304–6
verification bias 298

diagnostic thinking 247
diagnostic-suspicion bias 361, 362
dichotomous data 69
dichotomous outcomes 399
dichotomous test results 251, 400
dichotomous variables 138, 139
diet 65
differential diagnosis 216, 224, 225, 225,

223–5, 226, 227, 282, 400
difficult patients 240
digitalis 4
disability 322, 337, 347, 349
discounting 356
discrete data 69
discriminant function analysis 158, 387
discussions 28, 30–1, 173; see also IMRAD

style
disease-free interval 205
disease oriented evidence (DOE) 12, 13
disease-oriented outcomes 72
dispersion measures 30, 94, 100–1
distribution of values 101–2
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doctor–patient relationship 3, 202–3
doctrine of clinical equipoise 185
DOE (disease oriented evidence) 12, 13
dogmatists, Ancient Greek 3
doing/doers 11
dose-response gradients 194–5
Double, Francois 7
double-blinded studies 29, 76; see also

blinding
drop-out, patient (attrition) 63, 88–9, 171, 361,

360–1
DynaMed database 34, 51

early detection 37
early termination of clinical trials 128–9,

165
EBCP (evidence-based clinical practice) 10
EBHC see evidence-based health care
Economic Evaluation Database 49
editorials 27
educational prescription 14
EER (experimental event rate) 114
effect size 30, 113–14, 133, 134, 400

meta-analyses/systematic reviews 371, 376
results strength 192–3

effectiveness 400
Effectiveness and Efficiency (Cochrane) 8, 47
effects 19
efficacy 400
eligibility requirements 29
embarrassment, patient 239
EMBASE records 54
empowerment, patient 18
empiricists, Ancient Greek 3
energy balance beliefs 2, 2–3, 4
Entrez dates 40
environmental sources of error 240–1
epidemiology 6, 107, 107–8, 193
equation, evidence usefulness 53
equivalence studies 140
Erlich, Paul 6
error 69–70; see also bias; precision; Type I-IV

errors
appropriate tests 241; see also diagnostic

tests
biological variations 235, 237
chance 90
clinical consistency, measuring 233–4
confabulation 238
contradictory answers 238
denial, patient 239
diagnostic classification schemes 234–5
diagnostic tools malfunction 241, 242
difficult patients 240

disruptive examination environments 240,
241

embarrassment, patient 239
environmental sources of error 240–1
examinee sources 240
examiner sources 234–7
expectations, physician 235
hypothesis testing 111–13
inference and evidence 234, 242
language barriers 239
learning objectives 233
lying, patient 240
medical 217
medication effects 237
mimimization strategies 241–3
patient ignorance 238
physician ignorance 236
physician off-days 237
problem-oriented medical record 242
questioning patients 235–6
quotation 233
recall bias 237–8
research conduct/misconduct 181
risk maximization/minimization 236–7,

239
staff non-cooperation 240–1
validity 74

Essential Evidence Plus database 34, 51–2
ethics 66; see also responsible conduct of

research
cost-effectiveness 351, 357–8
decision making 345–6, 347
randomized clinical trials 177–8

etiology, study type 22, 22, 22–3, 38
event rates 104, 114, 115, 389, 390, 400
evidence, consistency 193
evidence, strength of see strength of

evidence/applicability
evidence-based clinical practice (EBCP) 10
Evidence Based Emergency Medicine Group

12
Evidence Based Health Care (EBHC)

university course ix, 218–19
evidence-based health care 10

art of medicine 16–18
background/foreground questions 14,

13–14
clinical question structure 15–16
critical appraisal 10, 12–13
definition 10
expert vs. evidence-based decision making

11–12
importance of evidence 9–10, 188
learning objectives 9
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quotation 9
steps in practicing 14–15

Evidence-Based Interest Group, ACP 12
Evidence Based On Call 54
evidence carts 13
evidence-and-outcomes-based approach

324
examiner error 234–7
executive tests 244–5, 311; see also screening
exclusion criteria 29, 168–9, 369–70, 376
exercise 119
exhaustion strategy 229, 409
expectation bias 361, 362
expectations, patient 200, 202, 218, 219; see

also placebo effect
expectations, physician 235
expected-values decision making 334, 334–6,

352, 355, 400
experimental event rate (EER) 114
experimental group 114, 400
experimental settings 29, 329, 408
expert based randomization 167
expert bias 27
expert opinion 54
expert reviews 25
expert vs. evidence-based decision making

11–12
explanatory research 400
explicit reviews 61
exploratory studies 59
exposure 400
exposure suspicion bias 84
external validity 74, 89–90, 168–9, 396; see also

applicability

fabrication of results 181–2; see also
responsible conduct of research

face validity 74
fail-safe N method 374
false alarm rates (FARs) 262, 289, 401
false labeling 313, 319
false negative 401
false negative rates (FNR) 257, 401
false negative test results 112, 130, 246, 253,

253
false positive 401
false positive rates (FPR) 205, 256, 401
false positive test results 112, 120, 246, 253,

253
false reassurance rates (FRRs) 262, 265, 401
falsification of results 181–2; see also

responsible conduct of research
FARs (false alarm rates) 262, 289, 401
fatal flaws 81, 173

Fibonacci 4
field searching 47
file-drawer effect 374
filter bias 296–7, 360
filtering 85
filters 401
filters, literature search 38–9, 46–7
financial incentives 183, 302
Fisher, Sir Ronald 8, 111, 263
five S schema 53
fixed-effects model 371
Florence Nightingale 6
FNR (false negative rates) 257, 401
focus-group interviews 210
follow-up, patient 171, 247, 330, 361, 360–1
foreground questions 14, 13–14
Forest plot 372
FPR (false positive rates) 205, 256, 401
framing bias 205–6
framing effects 348–9, 401
fraud, research 180; see also responsible

conduct of research
frequency polygons 98, 99
frequency tables 363
Freud, Sigmund 6
FRRs (false reassurance rates) 262, 265, 401
functional status 401
funnel plot 374, 373–4

Galen 3
gambling odds 263–4
Ganfyd 34
Gaussian distribution 104, 103–4, 106, 401

gold standard comparisons 304
strength of evidence/applicability 198
test results 252, 252

gender 150, 195
generalizability 396; see also applicability
generalizability of population 101
germ theory 6
gold-standard tests 59, 76, 234, 245

comparing with other tests 252–3, 305–6
comparisons 304
definition 401
diagnostic tests, comparison 279
diagnostic tests, critical appraisal 309
examples 246–7
ideal research study 303
interpretation bias 299–300
post-test probability/patient management

308
pulmonary angiograms 295
strep throat 290
tarnished 299
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gold-standard tests (cont.)
threshold values 288
verification bias 298

Google/Google Scholar 54
GRADE (Grading of Recommendations

Assessment, Development and
Evaluation) scheme 191, 192, 325, 369,
382

grades of evidence 190–1, 378–81; see also
levels of evidence

grades of recommendation 382
graphing techniques

bar graphs 97, 98
box-and-whisker plots 98, 100
deceptive 94–5
frequency polygons 98, 99
histograms 98, 98
meta-analyses/systematic reviews 372–4
presenting information to patients 203
stem-and-leaf plots 97, 96–7

Graunt, John 5
grounded theory 213
Guide to Clinical Preventive Services (USPHS)

317
guidelines 218, 219, 322, 397; see also clinical

prediction rules
critical appraisal 324–5
development 322–4
learning objectives 320
nature of/role in medicine 320–2
quotation 320

handwriting, legible 243
harm vs. benefit 401
Hawthorne effect 75, 86
hazard ratios 363
health literacy 201
Health Technology Assessment Database 49
heterogeneity 370, 371–2, 373, 376
heuristics 231, 401
hierarchies of research studies 190–1
Hippocratic principle 3
histograms 98, 98
history and physical (H & P) 220, 221, 220–2,

241, 268; see also medical history-taking
history function 41, 41
history of medicine

ancient history 2–3
learning objectives 1
modern biomedical research 7–8
quotation 1
recent history 6–7
Renaissance 3–4
statistics 4–6

homeopathy 4
homogeneity 401
hospital bed management 321
human participants in research 184–5
humours 2, 2
hypothesis 167–8, 402; see also research

question
hypothesis generation 221, 222–3
hypothesis testing 110, 109–10, 112; see also

statistics
confidence intervals 116
effect size 113–14
error 111–13
event rates 104, 114
hypothesis, nature of 109, 110–11
learning objectives 109
placebo effect 118–19
quotation 109
signal-to-noise ratio 115–16
statistical tests 116–18, 387

hypothetico-deductive strategy 229, 231, 402

ignorance, patient/physician 236, 238
iLR (interval likelihood ratios) 272, 275, 272–5,

402
IM see information mastery
implicit reviews 61
IMRAD style (introduction, methods, results,

discussion) 27
inception cohort 361, 359–61
incidence 59, 62, 107, 108, 402
incidence bias 59, 360
inclusion criteria 29, 168–9, 369–70, 376
incorporation bias 298, 402
incremental gain 286, 287, 285–7, 402

learning objectives 282
likelihood ratios 283
multiple tests 292, 291–3
quotation 282
real-life applications 293–4
sensitivity/specificity 282, 283, 284, 283–5
threshold values 289, 287–91, 395
two by two tables 283, 284, 283–5

independent events 105
independent tests 292
independent variables 20, 67, 160, 161, 402
in-depth interviews 210
indeterminate/uninterpretable results 300
Indian belief systems 2, 2, 3
indication creep 307
induction 165
inductive reasoning 7
industrial revolution 3–4
inference and evidence 234
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inferential statistics 94, 387, 402
inflation 356
InfoPOEMS 50; see also Essential Evidence

Plus database
information, patient 18; see also medical

records
information mastery 10, 12, 53
information presentation to patients 206; see

also communication with patients
information retrieval strategies 35–7
informed consent 177, 185
initial exploratory studies 59
Institutional Review Boards (IRBs) 66, 177,

185
instrumental rationality 334, 402
instruments/instrument selection 29, 70–2,

241, 242, 402; see also
measurements/instruments

insurance, medical 351, 352
integrating 213
integrity, scientific see responsible conduct of

research
intention-to-treat 89, 172, 402
interference, test results 246
inter-observer consistency 76, 78, 234, 246,

328, 374
inter-observer reliability 76–7, 370, 402
internal validity 74; see also validity
interpretation bias 299–300
interquartile range 101
interval data 68, 363, 387
interval likelihood ratios (iLR) 272, 275, 272–5,

402
intervention criteria 361
intervention studies 214; see also clinical trials
interventions, PICO/PICOT model 15, 35
interviews 210
intra-observer consistency 76, 78, 234, 246
intra-observer reliability 402
intra-rater agreement 76
intrinsic characteristics, test 399
introductions, medical literature 28, 28; see

also IMRAD style
intuition 377

JCB (journal club bank) 12
Jones criteria 247
journal club bank (JCB) 12
Journal of the American Medical Association

(JAMA) 25, 31, 91, 151
journals 411–13
jumping to conclusions 234–5; see also

premature closure
justice, principle of 185, 403

Kaplan-Meier curve 365, 366
Kaposi’s sarcoma 57
kappa statistic 77, 78, 212, 234, 403

clinical prediction rules development
328

meta-analyses/systematic reviews 376
precision/validity 76–7, 78, 78–9

Kelvin, Lord 19
key words 35
knowledge transfer model 197–8
Koch, Robert 6
Koch’s postulates 20–1, 22
KT (knowledge translation) 10

L’Abbé plots 174, 373, 373
lack of proportionality 94, 96
The Lancet 25, 31
language barriers 239
Laplace, Pierre 7, 263
law of large numbers 5
laws, professional conduct 184; see also

malpractice suits; responsible conduct of
research

lead-time bias 315, 314–15, 360
legal cases, professional misconduct 180; see

also malpractice suits; responsible
conduct of research

length-time bias 315, 316, 360
level of significance 120, 134, 133–5, 376, 403
levels of evidence 188–90, 378–81; see also

grades of evidence
Liber abaci (Book of the Abacus) 4
Liber de ludo aleae (Book on Games of

Chance) 5
librarians, health science 55
life years 410
likelihood ratios 216, 251, 283, 403; see also

interval likelihood ratios
positive/negative 254, 255, 255, 254–5, 403
pretest probability 265, 264–6

Likert Scales 68, 71–2
limits function 40, 39–40
Lind, James 7, 164–5
linearity 160, 160
linear-rating scales 347, 347, 403
Lister, Joseph 6
literature see medical literature
literature searching see medical literature

searching
Lloyd, Edward 5
local variations in healthcare provision 9
logistic analysis 363–4
log-rank test 366
longitudinal studies 56–7, 60–4
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Louis, Pierre 6, 7
lying, patient 238, 240

MAGIC study 368
malpractice suits 218, 219, 308; see also

responsible conduct of research
mammography 77, 76–7, 78, 244, 245

framing bias 206
intra-observer consistency 234
screening 316

managed care organizations (MCOs) 321, 351
Mantel-Cox curve 366
Mantel-Haentszel chi-squared test 370
Markov models 345, 345, 403
Massachusetts General Hospital 229
MAST (Michigan Alcohol Screening Test) 72,

74
matching 403
mathematics and medicine ix
McMaster University, Canada 11
MCOs (managed care organizations) 321, 351
mean 94, 99–100, 403; see also regression to

the mean; standard error of the mean
measurements/instruments 29

attributes 72–3
bibliography 416
definition 403
error 69–70
evaluating 171
improving precision/accuracy 75–6
instruments/instrument selection 70–2
inter/intra-rater reliability tests 76–7
kappa statistic 77, 76–7, 78, 78, 78–9
learning objectives 67
quotation 67
types of data/variables 67–9
validity 73, 73–5

measures of central tendency 30, 94, 98–100
measures of dispersion 30, 94, 100–1
median 94, 100
Medicaid 351
medical history-taking 220, 221, 220–2, 241;

see also history and physical (H & P)
medical literature 25, 28, 31–2

abstracts 28, 28, 28
basic science research 25–7
bibliography/references 28, 31, 414–16, 421;

see also journals
clinical research studies 27–8
clinical reviews 27
conclusions 28, 31
discussion 28, 30–1
editorials 27
explosion 367

introductions 28, 28
journals 24–5
learning objectives 24
meta-analyses/clinical reviews 27
methods 28, 29
quotation 24
results 28, 29–30
searching see medical literature searching

medical literature searching 15, 33–4, 54–5;
see also MEDLINE; PUBMED website

clipboard function 42
Cochrane Library 49, 47–50
databases 34
field searching 47
history function 39–40, 41
information retrieval strategies 35–7
learning objectives 33
limits function 40, 39–40
MeSH search terms 44, 44, 45, 46, 43–6
methodological terms/filters 46–7
point of care databases 53, 51–4
printing/saving 42
quotation 33
responsible 180–1
synonyms/wildcard symbol 37
TRIP database 50–1

medical records 242, 406
medication 154, 167, 237
medicine

art/science of 16–18, 187, 225, 288, 291, 377
and mathematics ix

MEDLINE 34, 37–8, 54; see also PUBMED
website

clipboard function 42
field searching 47
general searching 42, 43
history function 41, 41
limits function 40, 39–40
MeSH search terms 44, 44, 45, 46, 43–6
methodological terms/filters 46–7
saving/printing functions 42

member checking 213
membership bias 84–5
memoing 213
MeSH database 38, 39
MeSH search terms 44, 44, 45, 46, 43–6, 50
meta-analyses 27, 372, 403; see also clinical

reviews; systematic reviews
additional guidelines 376–7
guidelines for evaluating 368–76
inclusion criteria 369–70, 376
learning objectives 367
quotation 367
rationale 367–8
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methods 28, 29, 171, 304–5, 368–9, 370
microscope, invention 3
Middle Ages 3
‘Mikey liked it’ phenomenon 58
milk pasteurization 194
mining, data 122–3
misclassification bias 64, 86–7
misconduct, scientific see ethics; responsible

conduct of research
mnemonics 224, 225, 257, 257; see also

acronyms, mnemonic
mode 94, 100
Modified Rankin Scale 337
Moivre, Abraham de 103
monitoring therapy 245
mortality rates 107, 108, 202

cardiovascular disease 168
colon cancer 36, 37
measles 142
pneumonia 74

Morton, William 6
multiple branching strategy 229, 403
multiple causation 194
multiple linear regression analysis 158, 387
multiple logistic regression analysis 158, 387
multiple outcomes 122–3, 362–3
multiple regression 158, 364, 387; see also

CART analysis
multiple tests use 292, 291–3
multiplication tables 4
multivariate analysis 87, 161

applications 157–9
concomitance 161
independent variables – coding 161
interactions between independent

variables 160
learning objectives 156
linearity 160, 160
nature of 156–7
outliers to the mean 161
overfitting 159
prognosis 362
propensity scores 162–3
quotation 156
research design strength 189
risk determination 157, 158, 159
underfitting 160
Yule–Simpson paradox 162, 163

mutually exclusive events 105–6

n-of-1 trial 175, 189
National Institutes of Health 186, 369
National Research Act (1974) 184
Native American belief systems 2, 2

natural frequencies 205, 206
Nazi atrocities 179
NCBI accounts 42, 50
negative in health (NIH) test result 256, 257
negative likelihood ratios 254, 255, 255, 254–5,

403
negative predictive values (NPVs) 262, 265,

404
negative studies, evaluating 130–1, 135–6; see

also Type II errors
confidence intervals 136–7
continuous variables 139, 138–40
dichotomous variables 138, 139
nomograms 138, 139, 137–40

New England Journal of Medicine 25, 31, 150,
229

new tests 301–2
New York Academy of Medicine 12
NHS (National Health Service) 13, 48, 49
NICE, UK 357
Nightingale, Florence 6
NIH (negative in health) test result 256, 257
NLM (National Library of Medicine), US 47,

369
NNEH (number needed to expose to harm)

127
NNF (number needed to follow) 404
NNSB (number needed to screen to benefit)

127, 317, 316–17, 318
NNSH (number needed to screen to harm)

319
NNTB (number needed to treat to benefit)

125, 125, 205, 346, 354, 404
NNTH (number needed to treat to harm)

125–7, 148, 148, 151, 404
nodes 404; see also decision nodes;

probability nodes
noise 115–16, 276, 277–81; see also ROC curves
nominal data 68, 363, 387
nomograms 138, 139, 137–40, 267, 267, 268
non peer-reviewed journals 25
non-concurrent cohort studies 62, 64, 83
non-inferiority trial 140, 404
non-respondent bias 84
non-steroidal anti-inflammatory drugs

(NSAIDs) 26, 183
normal distribution 103, 104, 103–4, 106,

404
gold standard comparisons 304
strength of evidence/applicability 198
test results 252, 253

NOT (Boolean operator) 36, 35–7
NPVs (negative predictive values) 262, 265,

404
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NSAIDs (non-steroidal anti-inflammatory
drugs) 26, 183

null hypothesis 28, 110–11, 140, 404
null point 136
numbering systems 4

objective information 404
objectivity, research 185, 186
observational studies 65, 189, 210, 404
observer bias 85–6, 299–300, 328
odds 264, 263–4, 404
odds ratios 142, 146, 147, 145–7, 150, 363

definition 404
formulas 390, 389–90
meta-analyses/systematic reviews 371
results strength 192–3
two by two tables 390

off-days, physician 237
OLDCARTS acronym 221, 221, 222–3
one-tailed tests 121, 121–2, 132, 140, 404
operator dependence 246, 404
opportunity costs 351, 353
OPQRSTAAAA acronym 221, 222–3
OR (Boolean operator) 36, 35–7
ordinal data 68, 363, 387
outcome criteria 248, 361–3; see also decision

trees; values, patient
outcome measurement bias 85–7
outcome misclassification 87
outcomes 64, 328, 404

PICO/PICOT model 16, 21, 35
outcomes study 405
outliers to the mean 99, 376
overfitting 159
Oxford Database of Perinatal Trials 48
Oxford University, UK 11, 12, 190

P value 30, 405
P4P (Pay for Performance) 321
Paccioli, Luca 4
pain

confidence intervals 136
contradictory answers 238
guidelines 322
measurement 71–2
placebo effect 119
relief 240
scales 70

Paracelsus 3
particularizability 396
Pascal, Blaise 5, 333–4
passive smoking 127, 183
Pasteur, Louis 6, 56
Pathman’s pipeline analogy 197, 197–8

pathognomonic 405
pathological specimens 246
patient attrition 63, 88–9, 171, 361, 360–1
patient inception cohort 361, 359–61
patient satisfaction 405
patient values see values, patient
patient-oriented evidence that matters

(POEMS) 12, 13; see also Essential
Evidence Plus database

patient-oriented outcomes 72
patients, PICO/PICOT model 15, 22
pattern recognition 228–9, 231, 405
Pay for Performance (P4P) 321
Pay-Per-View 50
peer pressure 218, 219
peer review 186
peer-review guidelines 324
peer-reviewed journals 24
percent of a percent 104
percentages 104–5
percentages of small numbers 105
percentiles 94, 100, 405
performance criteria 321
persistent vegetative states 335
perspectives, patient 201; see also values,

patient
phototherapy 368
physician behavior, changing 323–4
physician ignorance 236
PICO/PICOT model 14, 15–16, 35, 295–6
PID (positive in disease) test result 256,

i257
Pisano, Leonardo 4
placebo 405
placebo controls see controls/control groups
placebo drugs 113
placebo effect 118–19, 167, 219
plagiarism 181–2
plans 405
podcasts 55
POEMS (patient-oriented evidence that

matters) 12, 13; see also Essential
Evidence Plus database

PogoFrog 54
point estimate 405
point of care databases 53, 51–4
point of indifference 405
points, decision tree 405
POMR (problem-oriented medical record)

242, 406
popularity bias 360
population, patient 22, 35, 101, 405
Port Royal text on logic 334
positive in disease (PID) test result 256, 257
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positive likelihood ratios 254, 255, 255, 254–5,
403

positive predictive values (PPVs) 262, 265,
405

possession by demons 2
posterior probability see post-test probability
post-hoc subgroup analysis 128, 171
post-test odds 406
post-test probability 225, 251, 262, 267–8, 269,

286, 308–9, 406
potential bias 31
power, statistical 29, 30, 112, 131, 406

determining 131–5
effect size 133, 134
level of significance 134, 133–5
sample size 133, 132–3
standard deviation 135, 135

PPVs (positive predictive values) 262, 265, 405
practice guidelines see guidelines
precision 30, 72–3, 233, 406

diagnostic tests 245
improving 75–6, 76
kappa statistic 78

prediction rules see clinical prediction rules
predictive validity 74
predictive values 262, 270, 268–72, 406
predictor variables 328, 406
prehistory of medicine 2–3
premature closure 229, 231–2
pretest odds 406
pretest probability 224, 225, 224–5, 226, 250,

406
diagnostic tests, critical appraisal 307–8
incremental gain 285–7
and likelihood ratios 265, 264–6
multiple tests 293

prevalence 59, 62, 107, 108, 311, 406
prevalence bias 59, 360
prevention studies 23
primary analysis 367
principle of beneficence 185
principle of justice 185
principle of respect for persons 185
printing/saving functions 42
prior probability see pre-test probability
probability 105–7, 264, 263–4, 334, 334–6
probability of disease, diagnostic tests 261–2

Bayes’ theorem 262–3, 264–6, 392
interval likelihood ratios 272, 275, 272–5
learning objectives 261
likelihood ratios/pretest probability 265,

264–6
nomograms 267, 267, 268
odds/probability 264, 263–4

post-test probability calculation 225, 267–8,
269

predictive values 262
predictive values calculation 270, 268–72
quotation 261

probability nodes 336, 336, 404, 406
probability of survival, historical comparisons

6
probability theory 5–6, 389
procedures, experimental 29
professional misconduct see ethics;

responsible conduct of research
prognosis 406

frequency tables 363
inception cohort 361, 359–61
intervention criteria 361
learning objectives 359
logistic analysis 363–4
outcome criteria 361–3
quotation 359
study type 22, 22, 23, 38
survival analysis 364, 365, 409
survival curves 365, 364–6

prognostics 245
propensity scores 162–3
proportional hazards regression analysis 158,

160, 366, 387
proportionality 94, 96
prospective studies 57, 406
PsycINFO 34
publication bias 90, 302, 369, 374, 406
publish or perish 177
PUBMED website 37–8, 39, 38–9, 53, 55

Clinical Queries search function 50, 51
clipboard function 42
field searching 47
general searching 42, 43
history function 41, 41
limits function 40, 39–40
MeSH search terms 44, 44, 45, 46, 43–6
methodological terms/filters 46–7
saving/printing functions 42

purposive sampling 211

Q statistic 370
QALYs (quality-adjusted life years) 348, 351,

355–6, 357, 407
qi 2, 2, 2–3
qualitative research

applications 209
applying results 214
data analysis 212–13
data collection 211–12
learning objectives 208
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qualitative research (cont.)
methods 209
quotation 208
sampling 211
study objectives 210–11
study types 209, 210

qualitative reviews 367, 376
quality-of-life 202, 340, 346, 407
quantitative systematic review see

meta-analyses; systematic reviews
quartiles 94, 100
question, research 369, 407; see also

hypothesis
questioning patients 235–6
questionnaires 70

race 150
random error 69–70
random selection/assignment 407
random-effects model 371–2
randomization 29, 65, 169–70, 407
randomized clinical trials (RCTs) 8, 23, 47,

164–5, 166–7, 173–4
blinding 170
CONSORT statement 177, 176–7
definition 407
discussions/conclusions 173
early termination 165
ethics 177–8
evaluating 166, 166
hypothesis 167–8
inclusion/exclusion criteria 168–9
learning objectives 164
measures of risk 142
methods, description 171
methodological terms/filters 46
n-of-1 trial 175
overview 384
physician decision making 165–6, 176
quotation 164
randomization 169–70
research design strength 189
results 176
results, analysis 172–3
user’s guide 175–6
validity 175–6

range 94, 100
ratio data 68–9, 387
recall bias 61, 62, 83–4, 237–8
receiver operating characteristic (ROC) curves

216, 276–7, 278, 280, 306, 407
recursive partitioning 329
reference standards see gold-standard tests
references, medical literature 28, 31

referral bias 61, 82–3, 150, 329, 360, 407
registry of clinical trials 178
regression to the mean 118
relative rate reduction (RRR) 114
relative risk (RR) 145, 144–5, 147, 146–7, 150,

363
communication with patients 205
confidence intervals (CI) 391
definition 407
formulas 390, 389–90
meta-analyses/systematic reviews 371
results strength 192–3
two by two tables 390

relevance 396
reliability 73, 245, 407
removing patients from study 172
Renaissance 3–4
repeat observations 241
replication 54
replicators 11
reporting bias 61, 83–4, 150
representativeness heuristic 230, 407
reproducibility 301
research conduct/misconduct see responsible

conduct of research
research design strength 188–90
Research and Development Programme, NHS

48
research question 369, 407; see also hypothesis
respect for persons, principle of 185
responsible conduct of research; see also

ethics
conflicts of interest 183, 182–4
definitions of misconduct 181–2
human participants in research 184–5
learning objectives 179
managing conflicts of interest 184
motives for misconduct 182, 183
objectivity 185, 186
peer-review 186
quotation 179
research conduct/misconduct 179–82

results 28, 29–30, 176; see also IMRAD style
applicability 187–8, 332
case–control studies 385
clinical prediction rules 331–2
cohort studies 384–5
diagnosis – study type 385–6
impact 306
meta-analyses/systematic reviews 370–4
randomized clinical trials (RCTs) 172–3, 384
risk assessment 151
specificity 193–4
strength 191–3
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retrospective bias 368
retrospective studies 57, 83, 407; see also

case-control studies; non-concurrent
cohort studies

review bias 299–300
risk 407, 417
risk assessment

absolute risk 143, 144, 143–4
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